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Abstract

This thesis investigates methods to enable a robot to build and maintain an
environment model in an automatic manner. Such capabilities are especially
important in long-term autonomy, where robots operate for extended periods of
time without human intervention. In such scenarios we can no longer assume that
the environment and the models will remain static. Rather changes are expected
and the robot needs to adapt to the new, unseen, circumstances automatically.
The approach described in this thesis is based on clustering the robot’s sensing

information. This provides a compact representation of the data which can be
updated as more information becomes available. The work builds on affinity
propagation (Frey and Dueck, 2007), a recent clustering method which obtains
high quality clusters while only requiring similarities between pairs of points, and
importantly, selecting the number of clusters automatically. This is essential for
real autonomy as we typically do not know “a priori” how many clusters best
represent the data.
The contributions of this thesis are three fold. First, a self-supervised method

is presented that automatically builds a visual appearance model of the envi-
ronment with traversability information of objects within the environment. The
model allows the detection of obstacles in new observations for safe navigation.
Improvements over existing large scale affinity propagation extensions are made
with meta-point affinity propagation, reducing computational time and improv-
ing robustness to noise. Experiments on indoor and outdoor data demonstrate
the quality of the model as well as the ability to recognise obstacles. The useful-
ness in long-term autonomy is demonstrated on outdoor data captured months
apart.
Second, an extension of affinity propagation capable of clustering multiple data

sources automatically is described. The method only requires information on a
per sensor basis, which is automatically combined into a single clustering solution.
This is of particular interest in robotics, as robots generally obtain data from
different sensors. Experiments on indoor and outdoor RGB-D data demonstrate
the advantage of combining multiple sensor modalities and the quality obtained
by the proposed method in tasks such as segmentation and clustering.
Third, joint clustering and anomaly detection is formulated as a generic inte-

ger program to which two optimisation methods are proposed. The formulation
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automatically selects the number of clusters as well as a user defined number of
meaningful outliers while only requiring pairwise similarities as input. The first
solution is formulated using the affinity propagation framework while the second
uses the Lagrangian duality which provides guarantees on the optimality of the
solution. The benefits and properties of the proposed methods, including opti-
mality, scalability and robustness, are shown on synthetic data. Applicability to
real data is demonstrated on various real datasets such as hurricane GPS traces,
MNIST digits, and New College image dataset.
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Nomenclature

Notation

The following is a listing of the notation used throughout this thesis.

General

X matrix
x vector
xT transpose of vector x
‖x‖ L2 norm of vector x
|x| cardinality of x
N number of points in a dataset
` number of outliers
k number of clusters to select
µ centroid of a cluster
N (µ,Σ) normal distribution with mean µ and covariance Σ
Bk k-th laser scan bin
Bki i-th measurement of the k-th laser scan bin
S laser scan

Spectral clustering

S similarity matrix
G similarity graph
D degree matrix
W weight matrix
L graph Laplacian matrix
U projected data matrix
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Convex optimisation

f, g, q functions
x function input
x[t] function input at time t
X value range of x
L Lagrangian function
λ Lagrangian multiplier
f ∗, q∗ optimal function values
u[t] step size at time t
∆x[t] step direction at x at time t
∇f(x) gradient of f at x
s[t] subgradient at time t
δf(x) subdifferential of f at x

Features and metrics

d(i, j) distance between point i and j
l, a, b LAB colour space values
x, y image pixel coordinates
H histogram
H entropy
I image
p image pixel
dist(Ia, Ib) distance between two images
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Affinity propagation

C(e, a), C(X) cost of specific solution
e exemplar choices
a assignments of points to exemplars
X binary assignment matrix
xij assignment matrix value in row i column j
I, E, S,Q, P factor nodes
L layer in layered affinity propagation
βij, ηij, ρij, αij,

τij, ωij, χik, λik,

τik, ωik

factor graph message

S similarity matrix
sij similarity value between point i and j
µv→f variable to factor message
µf→v factor to variable message
f factor in a factor graph
v variable node in a factor graph
Mlong long term model represented by streaming affinity propagation
Mshort short term model represented by affinity propagation
θmin-points minimum number of points required for a meta-point to be consid-

ered during the clustering
θsimilarity radius of a meta-point sphere
P set of points used for clustering with MPAP
N set of points considered noise with MPAP

Lagrangian duality

cj cost of selecting point j as exemplar
dij cost of assigning point i to exemplar j
o outlier indicator vector
A constraint matrix
FLOLP optimal solution value of the linear program
FLOLR optimal solution value of the Lagrangian relaxation
FLOIP optimal solution value of the integer program
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Abbreviations

AP Affinity propagation
APOC Affinity propagation outlier clustering
BIC Bayesian information criterion
FLO Facility location with outliers
GPS Global positioning system
IMU Inertial measurement unit
IP Integer program
LAP Layered affinity propagation
LBP Local binary pattern
LD Lagrangian duality
LDA Latent Dirichlet allocation
LOF Local outlier factor
LP Linear program
LR Lagrangian relaxation
MAP Maximum a posteriori
MPAP Meta-point affinity propagation
RANSAC RANdom SAmple Consensus
ROC Receiver operating characteristic
STRAP Streaming affinity propagation
TU Totally unimodular
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Chapter 1

Introduction

Robotics has evolved drastically over time, from tools used to automate manufac-
turing to autonomous rovers exploring Mars and self-driving cars. This would not
have been possible without the advances and development of sophisticated hard-
ware, from improved robotic designs to sensors such as IMU, cameras and laser
scanners, associated with theoretical developments in machine learning. Chal-
lenges to the robotics community, such as the ones organised by DARPA, play
a significant role in advancing what is currently feasible. Projects such as the
Google car would hardly be at the point they are today without those challenges.
Robots are also becoming ubiquitous in every day life, from automated vacuum
cleaners to small quadrotors. This means that robots are used in areas and ways
that were not thought possible only a short time ago, naturally creating new chal-
lenges, such as operating robots for extended periods of time with no or minimal
supervision by humans. The availability of robots to non experts also highlights
the importance of methods that do not rely on highly specialised knowledge to
obtain good results. Robotics has always been a field which combined research
from many different fields. Machine learning, supervised learning methods in
particular, have been used extensively thanks to their ability to build accurate
models from labelled data. However, for long-term autonomy, the big question
is how can robots operate in unknown, changing environments without requiring
human supervision?

1.1 Motivation

With robots being deployed to operate longer, with less human supervision, and
by non-experts, methods with the ability to adapt become paramount. In such
scenarios an important question is how models built based on training data can
adapt to changes in the environment? One solution is to label more data and
retrain the model. However, this is not appealing in the context of long-term
autonomy due to the required human involvement. Unsupervised learning meth-
ods, capable of automatically building and adapting a model, are an interesting
solution to these problems. Such methods are not without challenges, as data

1



(a) Mars Rover (b) Google Car (c) Parrot AR Drone

Figure 1.1: Contemporary robots of varying complexity deployed in different sce-
narios. From Mars rovers (a) (courtesy NASA/JPL-Caltech) to the
autonomous Google car (b) (Courtesy of Wikimedia Commons) to
recreational drones (c) (http://www.parrot.com/).

needs to be processed continuously and with limited control over the data being
gathered. Clustering methods are good candidates as they typically make little
to no assumptions about the data, and purely work on distance metrics to group
the data into groups. This allows the clusters, or the model, to change as more
and different data is observed.
The use of unsupervised methods has other advantages in addition to adapting

to changes. There is no need for an initial model to exist and, as such, enables
the creation of models entirely from scratch. This is particularly appealing for
deployments in previously unvisited or inaccessible areas, such as other planets
or disaster zones. Finally, such methods are suitable for use by non experts as
they can independently learn a model after being deployed.
In another scenario, assume a robot equipped with a camera and a bump sensor

is required to build a model that allows it to safely navigate the environment, i.e.
without collisions. A typical supervised approach would label images collected
in the environment with obstacle information, and train a classifier based on this
data, allowing the robot to identify obstacles in images. However, as soon as the
environment changes the model is no longer valid. Using unsupervised methods
this issue can be avoided altogether. At the beginning, the model is empty and
has to be built incrementally by observing the environment. Clustering images
can be used to build a model of the environment, however, the information needed
to classify parts of the environment as obstacles or non-obstacles is still missing.
This information is added by incorporating the bump sensor in a self-supervised
manner. Whenever the robot collides with the environment the bump sensor is
triggered and the currently observed image data is labelled as belonging to ob-
stacles. Over time the robot will accumulate this information in the clusters and
be able to infer that certain clusters belong to obstacles. As time continues fewer
collisions will occur, as the model will be able to classify observations correctly

2



Figure 1.2: Example of the exemplars and their relation to parts of the image.

into obstacles and non-obstacles. Figure 1.2 shows what such a model looks like,
the small image patches indicate the clusters, corresponding to different objects
in the environment. The two patches on the left represent obstacles while the
two on the right correspond to non-obstacles. All of this happens without human
supervision and is therefore amenable to adaptation in a changing environment.

1.2 Affinity propagation

Clustering algorithms, on which methods developed in this thesis are based on,
group data points into clusters according to how similar or close they are to each
other. Clustering methods typically require the user to provide the number of
clusters to create beforehand, which is impossible for applications such as the
one described above. Affinity propagation (Frey and Dueck, 2007) is a clustering
method that does not require this information and works solely based on the
distances between pairs of data points.
A short overview of affinity propagation is provided here with more details

available in Section 2.2. Affinity propagation requires a square similarity matrix
which contains the similarity or distance between all pairs of points as input and
produces clusters and exemplars – the most representative point of a cluster –
as outputs. Based on the similarity matrix a factor graph is built representing
the clustering problem. The goal is to find the maximum a posteriori solution
to the factor graph which is achieved through message passing, which propagates
messages between the nodes in the factor graph. The messages represent two
intuitive measures: availability, sent from point k to point i, indicates how ap-
propriate it is for a point i to choose k as its exemplar, and responsibility, sent
from point i to point k, indicates how suitable k is as an exemplar for i. By iter-
atively updating these two messages across the entire graph a clustering solution
emerges over time. The evolution of this process is depicted in Figure 1.3, where
circles indicate the different data points, and arrows the availability messages,

3



(a) State 1 (b) State 2 (c) State 3

(d) State 4 (e) State 5

Figure 1.3: Different states in an exemplary run of affinity propagation. The ar-
rows indicate the availability message sent from one point to another.
Darker arrows indicate a higher message value. At the beginning no
point is better suited to be an exemplar then any other, then over
time, by passing messages, the most appropriate exemplars, marked
in red, emerge.

with darker ones having higher belief value. Over time the clusters disconnect
from each other and the exemplar points emerge.
While affinity propagation allows us to cluster data without providing an ex-

plicit number of clusters, it has drawbacks over simpler clustering methods such
as k-means. The biggest drawback is runtime, which is quadratic in the number
of data points making scaling to large amounts of data, and incorporating new
data in a streaming manner, challenging. Additionally, the formulation of affin-
ity propagation makes extensions challenging. Finally, affinity propagation has
to cluster all data points which can be problematic in the presence of noise.

1.3 Problem statement

In its most general form the problem addressed in this thesis is: how to enable a
robot to learn and maintain a model of the environment autonomously. Building
the model should not require any human supervision. The methods should be
incremental and run in real-time. Not relying on human supervision allows the
robot to be used in a much wider range of applications while incremental opera-
tion allows the robot to adapt to changes without throwing away previous efforts.
The very general nature of these requirements makes the developed methods us-
able within a wide range of sensors and data, including cameras, laser scanners,
GPS traces, and more. The models built in this way can be augmented with ex-
periences made by the robot in a self-supervised manner, resulting in models that
are automatically customised to the robot’s sensors and the task to be performed.
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1.4 Contributions

This thesis addresses the challenges outlined above and makes contributions to
clustering in general with applications to long-term autonomy. In the following
we detail each of the contributions.

1.4.1 Self-supervised model learning

Robots operating for extended periods of time require methods that enable them
to build and maintain a model of the environment without human supervision.
We propose to address this problem using unsupervised methods, namely cluster-
ing. As the methods need to operate without human input a clustering method
capable of automatically selecting the right number of clusters is needed, affinity
propagation in this case. Using this method an appearance model of the envi-
ronment is built by clustering images observed by the robot. In order to provide
information about whether an object is and obstacle or not the bump sensor on
the robot is used in a self-supervised manner to annotate clusters with collision
information. This allows building an appearance model with obstacle information
without human supervision.
While affinity propagation produces good results it has quadratic runtime in the

number of data points, which makes it impractical for real-time use in robotics.
To address this problem an extension, meta-point affinity propagation, is intro-
duced which reduces the amount of data points considered, and thus runtime,
significantly. An additional benefit of this method is that it allows handling
outliers, which affinity propagation is not capable of.

1.4.2 Multi-sensor clustering

Clustering algorithms typically require the user to provide distance information
for pairs of points. In robotics, however, often times the goal is to cluster multiple
data sources jointly which requires building and tuning a function that weights the
different data sources against each other, before providing the clustering method
with the combined distance values. This process is time consuming and does
not generalise easily to different sensor configurations or datasets. The thesis
addresses this with an extension to affinity propagation which requires only the
distances between pairs of points for each sensor individually. Combing the dis-
tances into a single clustering solution is performed by the clustering method in
a way that obtains the best possible solution considering all the sources without
any further tuning.
This makes processing multi modal data convenient and approachable. Experi-

mental evaluation on RGB-D data shows the benefits of using multiple modalities
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and the quality of the results obtained by selecting a clustering solution that is
optimal with respect to all data modalities.

1.4.3 Joint clustering with outlier selection

A common phenomena in robotics data is noise, which often times is reduced by
filtering the data. However, noise or outliers can also provide us with information.
To address this an integer program formulation of clustering with outlier selection
is presented. The goal of this is to cluster the data while removing a fixed
number of points from the dataset which are the most likely outliers. In doing so
the clustering problem becomes easier and more robust while at the same time
information about the outliers in the data is preserved.
Two methods to solve the integer program are presented, one based on an

extension of affinity propagation to outlier clustering, the other based on the
Lagrangian relaxation of the integer program. The Lagrangian method exhibits
additional appealing properties such as provable optimality, convergence guar-
antees, and ease of parallel implementation. Experiments extensively test both
methods on both synthetic and real datasets, demonstrating the ability to reveal
interesting outliers as well as obtaining near optimal solutions at the fraction of
the computational cost required by typical linear program solvers.

1.5 Outline

This chapter showcased how robotics is moving towards longer term deployments
with less access to expert human supervision and therefore requires methods
capable of unsupervised learning. Affinity propagation is a clustering method that
provides a good base to build upon for these goals. This thesis takes advantage of
the strengths of affinity propagation while improving its weaknesses and extending
it for use in robotics applications.
Chapter 2 provides background knowledge necessary to the understanding of

the thesis. Starting with clustering methods in Section 2.1 before describing affin-
ity propagation and its extension to streaming, streaming affinity propagation, in
Section 2.2. Section 2.3 provides an overview of convex optimisation and subgra-
dient optimisation. Image data pre-processing methods are detailed in Section 2.4
while Section 2.5 describes the different feature extraction and comparison meth-
ods used in the thesis. Finally, Section 2.6 details the evaluation metrics used
throughout the thesis.
Chapter 3 presents a system capable of learning a model of the environment

and deciding if objects represent an obstacle to the robot without human super-
vision. Additionally, meta-point affinity propagation is presented as an extension
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to affinity propagation which significantly improves the computational perfor-
mance. The problem is introduced in Section 3.1 and related work is discussed in
Section 3.2. The system itself, using affinity propagation and streaming affinity
propagation, is discussed in Section 3.3 before the meta-point affinity propaga-
tion (MPAP) extension is discussed in Section 3.4. Experiments in Section 3.5
demonstrate the advantages of MPAP, as well as, the capability of the proposed
system to learn and maintain a model based on data collected several months
apart.
Chapter 4 generalises affinity propagation to allow multiple data sources to

be clustered jointly without having to specify a joint cost function. Section 4.1
introduces the problem together with related work in Section 4.2. The graphical
model and messages required for the method, layered affinity propagation, are
derived in Section 4.3 based on the binary variable model (Givoni and Frey,
2009). Experiments in Section 4.4 demonstrate the capabilities of the method
when segmenting and clustering RGB-D data.
In Chapter 5 a linear program formulation of the joint clustering and anomaly

detection problem is introduced. The goal is to remove the most likely outliers
in the dataset while automatically selecting the number of clusters. The prob-
lem is introduced in Section 5.1 and related work is discussed in Section 5.2.
Section 5.3 presents the integer program formulation alongside the derivation of
the two methods of solving it: (i) a message propagation formulation and (ii) a
Lagrangian duality based method. A proof of the optimality of the Lagrangian
method as well as a comparison between the two methods follows. In Section 5.4
extensive evaluations on synthetic and real datasets demonstrate the behaviour
of the methods and demonstrate the ability to reveal interesting outliers in the
data while obtaining good clustering results.
The thesis concludes in Chapter 6 with a summary of the work presented in

Section 6.1 and directions for future research in Section 6.2.
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Chapter 2

Background

In this chapter we present the theoretical background of methods used throughout
this thesis. In Section 2.1 we present clustering algorithms such as k-means and
spectral clustering. Section 2.2 gives an introduction to affinity propagation, the
clustering method on which many of our contributions are built. This is followed
by an overview of convex optimisation and its popular methods in Section 2.3.
Section 2.4 introduces common image processing methods used to split an image
into smaller patches, something commonly performed prior to feature extraction.
Feature extraction and distance functions for use in clustering methods are ex-
plained in Section 2.5. Finally, metrics used to compare clustering results are
detailed in Section 2.6.

2.1 Clustering

Clustering is an unsupervised learning method that groups data according to the
similarity of data points. As such clustering methods require the computation of
the similarity or distance between pairs of data points. The number of clusters
or groups found by the method are, based on the algorithm, either defined by the
user or automatically determined at runtime.

2.1.1 k-means

k-means is a popular clustering algorithm consisting of the following two steps:

1. assign points to cluster centroids;

2. update centroids based on assignments.

These two steps are repeated until the assignments are stable. The algorithm
requires the specification of the number of clusters. Algorithm 1 shows the steps
performed by the k-means algorithm in more detail. First, the k initial centroids
µi are selected (line 1 to 3). Next, points pi are assigned to the centroid closest
to them (line 5 to 7) and subsequently the centroids are updated (line 8 to 10).
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Algorithm 1: k-means
Input: data points pi ∈ P , number of clusters k,

number of data points N
Output: cluster centroids µ, cluster assignments a

1 for i ∈ {1, . . . , k} do
2 µi ← pr ∈ P
3 end
4 repeat
5 for i ∈ {1, . . . , N} do
6 ai ← argminj ‖pi − µj‖
7 end
8 for j ∈ {1, . . . , k} do
9 µj ← (∑i piI(i, j)) / (∑i I(i, j))
10 end
11 until until convergence
12 return µ, a

This is repeated until a convergence criteria, such as no assignment changes, is
fulfilled. The I function in line 9 is an indicator function defined as follows:

I(i, j) =

1 if ai = j

0 otherwise
. (2.1)

The result of the algorithm are k centroids with the points assigned to the corre-
sponding clusters.
The advantages of k-means are that it is a very simple and highly efficient

algorithm with a runtime of O(N), i.e. linear in the number of data points N .
Since the assignment of points to centroids is independent of each other this step
can also be parallelised easily. The drawbacks of the method are its reliance on
the user provided value for k as well as the need for good initial centroid selection.
A lot of work has been done in order to address these issues, such as using the
Bayesian information criterion (BIC) to determine the number of clusters (Pelleg
and Moore, 2000) or smart ways of selecting the initial centroids (Arthur and
Vassilvitskii, 2007).

2.1.2 Spectral clustering

Spectral clustering refers to a group of algorithms operating on similar principles
(see (von Luxburg, 2007) for a detailed overview). Here we describe a common
version of the algorithm. Spectral clustering requires a similarity matrix which
stores the pairwise similarities between pairs of points Sij = s(i, j). Based on
this a similarity graph G is built by connecting points based on a criterion such
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Algorithm 2: Spectral clustering
Input: similarity matrix S, number of clusters k
Output: clustering centroids µ, cluster assignments a

1 G← BuildSimilarityGraph(S, condition)
2 for i, j ∈ {1, . . . , N} do
3 if Gij = 1 then
4 Wij ← Sij
5 end
6 end
7 for i ∈ {1, . . . , N} do
8 Dii ←

∑
jWij

9 end
10 L← D −W
11 for i ∈ {1, . . . , k} do
12 Ui ← EigenVector(L, i)
13 end
14 µ, a ← k-means(U, k)
15 return µ, a

as ε-neighbourhood, k-nearest neighbours or full connectivity. The corresponding
weight matrix W is computed as Wij = Sij, ∀i, j : Gij = 1. Finally, the degree
matrix D of this graph is derived as follows:

Dii =
∑
j

Wij. (2.2)

Based on the degree and weight matrices the graph Laplacian L is computed as:

L = D −W. (2.3)

From the graph Laplacian L, we compute the k eigenvectors corresponding to the
k smallest eigenvalues. These eigenvectors are then assembled into the new data
matrix U as follows:

U = [u1, . . . , uk] ∈ Rn×k, (2.4)

i.e. the eigenvectors make up the columns of U . Finally, this new data matrix
U is clustered using k-means. Algorithm 2 shows the typical steps performed
during spectral clustering as pseudo code. The selection of the number k, used to
select the number of eigenvectors and number of clusters is still topic of ongoing
research. Common solutions such as, analysing the eigenvalues or eigenvectors
has been shown to work well (Zelnik-Manor and Perona, 2004).
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2.2 Affinity propagation

In this section we describe the affinity propagation method proposed by Frey
and Dueck (2007) based on the binary variable model presented by Givoni et al.
(2011). Affinity propagation is an exemplar based clustering method. This means
that for each cluster a representative point, the exemplar, is selected. Addition-
ally, affinity propagation also selects the number of clusters based on the pairwise
similarities between points and the cost of cluster creation. The pairwise similar-
ities and cluster creation cost are the only parameters the user needs to provide.
We start by describing the approach from an optimisation point of view in

Section 2.2.1. In Section 2.2.2, we described an algorithm for solving the problem
using belief propagation (Pearl, 1988).

2.2.1 Optimisation view

Our goal is to find the set of exemplars e and assignments a of points to these
exemplars which maximises the cost C of the solution, i.e.:

C(e, a) =
N∑
i=1

sim(i, ai) +
k∑
j=1

cost(ej), (2.5)

where sim(i, ai) is the similarity between point i and the exemplar point ai,
cost(ej) is the cost of creating a cluster with point j as the exemplar, and k

is the number of clusters selected by the algorithm. Note that similarity and
cost values need to be always negative, i.e. simij, costj < 0. Points that are very
similar to each other have a similarity value close to 0. For this reason our goal
is to maximise the cost function as this results in a solution which is as close to
0 as possible.
We can simplify Eq. (2.5) by representing the assignments a and exemplars e

by a binary assignment matrix X, where xij = 1 indicates that point i is assigned
to exemplar j and xjj = 1 denotes point j as an exemplar. Additionally we
combine the sim(i, j) and cost(j) functions into a single matrix as follows:

Sij =

cost(j) if i = j

sim(i, j) otherwise
. (2.6)

With these changes the cost function takes the form:

C(X) =
N∑
i=1

N∑
j=1

Sijxij (2.7)

In order to obtain valid clustering results we impose the following constraints:
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Figure 2.1: Visualisation of affinity propagation (a) messages and (b) complete
factor graph. The factor graph shows how each row in the assignment
matrix X is connected to a single I factor and similarly each column
is associated with a single E factor node.

1. an exemplar must choose itself as its own exemplar;

2. points can only be assigned to valid exemplars;

3. every point can only be assigned to a single exemplar.

This results in the following optimisation problem:

maximise
N∑
i=1

N∑
j=1

Sijxij (2.8a)

subject to
∑
j

xij = 1 ∀i (2.8b)

xij ≤ xjj ∀i, j (2.8c)
xij ∈ {0, 1} (2.8d)

In the next section we describe how Eq. (2.8) can be reformulated such that
loopy belief propagation (Kschischang et al., 2001) can be used to solve it.

2.2.2 Graphical model view

Affinity propagation maximises the energy of Eq. (2.8) by representing the prob-
lem as a factor graph, shown in Figure 2.1b. The nodes in the graph are the
variable assignments xij while the factors encode the different constraints enforc-
ing a valid solution. The maximum a posteriori (MAP) solution is then computed
using loopy belief propagation. The only input required is the similarity matrix S
which contains the similarity between pairs of data points and the cost of selecting
a point as an exemplar on the diagonal.
The constraints imposed on a valid solution in Section 2.2.1 are formulated as

follows:
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1. 1-of-N Constraint (Ii). Each data point has to choose exactly one exemplar.

2. Exemplar Consistency Constraint (Ej). For point i to select point j as its
exemplar, point j must declare itself an exemplar.

Mathematically, these constraints are formulated as follows:

Sij(xij) =

Sij if xij = 1

0 otherwise
(2.9)

Ii(xi:) =

0 if ∑j xij = 1

− inf otherwise
(2.10)

Ej(x:j) =

0 if xjj = maxi xij
− inf otherwise

(2.11)

where xi: = xi1, . . . , xiN and x:j = x1j, . . . , xNj.
Combining these constraints with the user provided similarity values Sij, we

obtain the following energy function to be maximised:

max
X

N∑
i=1

N∑
j=1

Sijxij +
∑
i

Ii(xi:) +
∑
j

Ej(x:j). (2.12)

In order to optimise this energy function with the max-sum algorithm we propa-
gate messages through the factor graph. In their most general form, these mes-
sages are defined as follows:

µv→f (xv) =
∑

f∗∈ne(v)\f
µf∗→v(xv), (2.13)

µf→v(xv) = max
x1,...,xM

[
f(xv, x1, . . . , xM) +

∑
v∗∈ne(f)\v

µv∗→f (xv∗)
]
, (2.14)

where f is a factor, or a function over a subset of variables, µv→f (x) is the message
sent from node v to factor f , µf→v(xv) is the message from factor f sent to node
v, ne() is the set of neighbours of the given factor or node, and xv is the value of
node v.
In Figure 2.1a it can be seen that each node xij is connected to three factors

Sij, Ii and Ej. The messages ρij and βij are sent from nodes to factors and thus
are derived using Eq. (2.13). The other three messages sij, αij and ηij are sent
from factor to node and need to be derived using Eq. (2.14).
In order to obtain an efficient algorithm we employ several strategies to sim-

plify the computations needed to obtain the solution. Since we are using binary
variables and absolute scale is not important it is sufficient to compute the dif-
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ference between the two possible variable settings, i.e. αij = αij(1) − αij(0).
Furthermore, due to the construction of the two constraints in Equations (2.10)
and (2.11) only certain assignments are possible which is exploited here to sim-
plify the update equations. Combining these two ideas we arrive at the following
update equations:

sij = Sij (2.15)
βij = sij + αij (2.16)
ηij = −max

k 6=j
βik (2.17)

ρij = sij + ηij (2.18)

αij =


∑
k 6=j max(0, ρkj) i = j

min
[
0, ρjj +∑

k/∈{i,j}max(0, ρkj)
]

i 6= j.
(2.19)

This can be further simplified by expressing ρij as follows:

ρij = sij + ηij = sij −max
k 6=j

βik = sij −max
k 6=j

(sik + αik) (2.20)

Thus we have recovered the availability (α) and responsibility (ρ) messages of
the original affinity propagation formulation (Frey and Dueck, 2007). The two
messages that need to be computed iteratively are therefore α and ρ.
The pseudo code for Algorithm 3 shows the steps performed by affinity prop-

agation. The only input is the similarity matrix S which contains the point to
point distances on the off-diagonal as well as the cost of declaring a point an
exemplar on the diagonal. The algorithm starts by initialising α and ρ messages
to 0 and then repeatedly updates ρ and α until convergence is achieved. Con-
vergence is typically achieved when the energy of the solution is stable over a
number of iterations. Finding the MAP solution is performed by first extracting
the exemplars and then assigning the remaining points to them. Exemplars are
the points for which αjj + ρjj > 0, while the assignment of points to exemplars is
achieved by assigning point i to the exemplar e which satisfies argmaxe(αie+ρie).
An example of the evolution of the belief represented by the algorithm about

the MAP solution is shown in Figure 2.2. Circles represent the nodes while the
darkness of the lines indicate the strength of the association of points to each
other. Over time the links between nearby points strengthen identifying the
exemplars, shown as red circles.
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Algorithm 3: Affinity propagation
Input: Similarity matrix S
Output: Exemplars e and assignments a

1 foreach i, j ∈ {1, . . . , N} do
2 αij, ρij ← 0
3 end
4 repeat
5 foreach i, j ∈ {1, . . . , N} do
6 ρij ← sij −maxk 6=j(sik + αik)
7 end
8 foreach i, j ∈ {1, . . . , N} do

9 αij ←

∑
k 6=j max(0, ρkj) i = j

min
[
0, ρjj +∑

k/∈{i,j}max(0, ρkj)
]

i 6= j.

10 end
11 until convergence
12 e ← points for which (αjj + ρjj) > 0 holds
13 ai ← assign point i to exemplar e satisfying argmaxe(αie + ρie)
14 return e, a

2.2.3 Streaming affinity propagation

While affinity propagation can compute solutions involving a few thousands data
points in under a minute, it is not fast enough for use in real-time robotics applica-
tions with a large number of observations. However, there are methods extending
affinity propagation to handle data streams in real time, such as streaming affinity
propagation by Zhang et al. (2008). The naïve approach to use affinity propaga-
tion for data streaming would be to recompute the clustering with every newly
observed data point. This obviously does not work when real-time performance
is required. Streaming affinity propagation solves this problem with the following
two ideas:

1. reduce the number of data points involved in the affinity propagation com-
putation;

2. limit the number of times affinity propagation needs to be executed.

These two goals are achieved by treating data points as one of two types, those
that are similar to existing clusters and those that are dissimilar from the existing
clusters. Points that are similar to an existing cluster are used to update the most
similar cluster. Points that are dissimilar are added to an outlier reservoir which
stores data points that currently cannot be represented by the clusters. Each
cluster is described by a 4-tuple (ei, ni,Σi, ti) where ei is the exemplar associated
with the cluster, ni is the number of data points represented in the cluster, Σi
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(a) State 1 (b) State 2 (c) State 3

(d) State 4 (e) State 5

Figure 2.2: Different states in an exemplary run of affinity propagation. The ar-
rows indicate the availability message sent from one point to another.
Darker arrows indicate a higher message value. At the beginning no
point is better suited to be an exemplar then any other, then over
time, by passing messages, the most appropriate exemplars, marked
in red, emerge.

is the distortion of the cluster, and ti is the last time a point has been added
to the cluster. Once the outlier reservoir is full, affinity propagation is used
to recompute the clustering. This requires the computation of similarity values
between clusters and the points in the reservoir. These computations take the
statistics stored in the clusters into account and are recomputed once affinity
propagation has clustered the data. The net result of this approach is that the
affinity propagation algorithm is executed less often and when performed, the
number of data points involved is small.

2.3 Convex optimisation

Affinity propagation is an optimisation problem, which is solved using message
passing, however, classic optimisation is another way to solve the problem. Con-
vex optimisation in particular is appealing due to its properties and is used in
Chapter 5 to perform clustering with outlier selection.
Convex optimisation (Boyd and Vandenberghe, 2009) is a field of optimisation

concerned with the optimisation of convex functions. A function f : Rn 7→ R is
convex if its domain is a convex set and if for all x, y ∈ domf with 0 ≤ θ ≤ 1
the following holds:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.21)

A graphical interpretation of this expression is shown in Figure 2.3. Convex
functions are desirable as they guarantee that a local optimum is also the global
optimum, and as such, can be optimised using simple gradient based approaches.
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Figure 2.3: Visualisation of the convexity definition of Eq. (2.21).

A general convex optimisation problem has the following form:

minimise f(x) (2.22a)
subject to gi(x) ≤ 0, i = 1, . . . ,m (2.22b)

x ∈ X (2.22c)

where f is a convex cost function, gi the set of convex constraint functions and
X ⊂ Rn a non-empty closed convex set.

2.3.1 Lagrangian relaxation

The formulation of Eq. (2.22) is called the primal problem. Introducing Lagrange
multipliers λi ≥ 0 for the constraints gi, the Lagrangian can be written in the
following manner:

L(x, λ) = f(x) +
m∑
i=1

λigi(x). (2.23)

This forms a weighted sum of the objective and constraint functions with associ-
ated Lagrange multipliers. The optimisation problem formed by the Lagrangian
relaxation is called the dual problem and is of the form:

maximise q(λ) (2.24a)
subject to λ ≥ 0 (2.24b)

λ ∈ Rm, (2.24c)

where q(λ) is the dual function defined by:

q(λ) = inf
x∈X

{
f(x) +

m∑
i=1

λigi(x)
}
. (2.25)
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The optimal value of the primal problem is denoted f ∗ while the optimal solution
to the dual problem is denoted as q∗. This formulation has the following useful
property.

Theorem 1. The dual function q(λ) is a lower bound to the primal solution for
λ ≥ 0, i.e.:

q(λ) ≤ f(x∗) (2.26)

Proof. Consider a feasible solution x̃:

q(λ) = inf
x∈X
L(x, λ) ≤ L(x̃, λ)

= f(x̃) +
m∑
i=1

λigi(x̃)

≤ f(x̃)

(2.27)

since gi(x̃) ≤ 0 and λi > 0. Therefore, q(λ) ≤ L(x̃, λ) ≤ f(x̃) for all feasible x̃
and thus q(λ) ≤ f(x∗) = f ∗.

From Theorem 1 we obtain q∗ ≤ f ∗. If the inequality is strict, i.e. q∗ < f ∗

we have “weak duality”, which gives rise to the duality gap f ∗ − q∗. This gap
indicates how far apart the two solutions are. The second and more interesting
case, where q∗ = f ∗, is called strong duality and implies that the solution of the
dual is equivalent to that of the primal. Strong duality is interesting, as it allows
us to solve the primal problem to the optimality by solving another, potentially
easier problem. In order for strong duality to hold the primal problem needs to
satisfy the so called constraint qualifications.
All of the above becomes more useful when combined with the fact that the

Lagrangian dual function q(λ) is always a concave optimisation problem, as its
objective function is the infimum of a family of affine functions in λ. This means
that we can apply standard gradient based optimisation methods to solve it.
In the following we will introduce gradient descent and its adaptation to non
differentiable functions, subgradient descent (Bertsekas, 1999).

2.3.2 Gradient descent method

One of the simplest methods for convex optimisation is the gradient descent
method. Given a convex function f(x) the method generates a sequence x[t], t =
1, . . . with

x[t+1] = x[t] + u[t]∆x[t], (2.28)

which minimises f . The update involves the “step size” u[t] > 0 and “step direc-
tion” ∆x[t]. The “step direction” is the gradient of f at the current location, i.e.
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Algorithm 4: Gradient descent
Input: function to optimise f , starting point x, stopping threshold η
Output: Optimal value of x

1 repeat
2 ∆x ← −∇f(x)
3 Select step size u > 0
4 x ← x+ u∆x
5 until ‖∇f(x)‖ ≤ η
6 return x

∆x[t] = −∇f(x). The “step size” can be found using a variety of methods such
as exact line search, backtracking line search, fixed step size or decreasing step
size. Algorithm 4 shows the steps performed by gradient descent.

2.3.3 Subgradient method

As mentioned before the Lagrangian dual problem is a convex optimisation prob-
lem, even if the primal problem is non convex. The optimisation problem though
is piecewise linear and convex and therefore non differentiable, which is a require-
ment for gradient descent based methods. However, we can sidestep this problem
by using subgradient based methods.
The vector s is a subgradient of the convex function f : Rn 7→ R at x∗ if:

f(x) ≥ f(x∗) + sT (x− x∗), (2.29)

for all x ∈ Rn. The subdifferential ∂f(x∗) is the set of all subgradients of f at
x∗. Using subgradients we can optimise functions using gradient based methods
even if they are not differentiable. Algorithm 5 shows the general steps performed
during subgradient optimisation of the Lagrangian dual function. The Lagrange
multipliers λ are initialised to random values before repeatedly (i) solving the dual
function, (ii) selecting one subgradient at the location obtained as the solution of
(i) and then (iii) updating the Lagrange multipliers. This is repeated until the
optimal solution is found, which is the case when the subdifferential contains the
zero vector.
The method used to select the step size u[t] can have a significant impact on

convergence and optimality properties. When the step size fulfils the following
constraint: ∞∑

t=1
u[t] =∞ and lim

t→∞
u[t] = 0, (2.30)

the algorithm is guaranteed to converge to the optimal solution. A simple step
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Algorithm 5: Lagrangian dual function optimisation
Input: Optimisation problem q(λ)
Output: Optimal solution λ[t−1]

1 λ[0] ← random vector ∈ Rn
+

2 t ← 0
3 repeat
4 x∗ ← infx∈X{f(x) +∑

i λigi(x)}
5 Pick a subgradient s[t] at L(λ, x∗)
6 λ[t+1] ← max(λ[t] − u[t]s[t], 0), u[t] > 0
7 t ← t+ 1
8 until 0 ∈ ∂q(λ[t])
9 return λ[t−1]

size function that fulfils this constraint is the following,

u[t] = u[0] αt α ∈ (0, 1). (2.31)

2.4 Image pre-processing

In this thesis we are often interested in modelling objects in scenes captured by
images. As such it is desirable to break the image down into smaller patches to
reduce the complexity contained in patch compared to the full image. There are
many different approaches to this problem with different trade-offs in runtime
and accuracy. In the following we present the two methods used in this work,
equal subdivision and super pixel methods.
The visual difference of the patches these methods produce is shown in Fig-

ure 2.4 where the top image is produced using equal subdivision and the bottom
image with SLIC.

2.4.1 Equal subdivision

This is the simplest method to split an image into smaller patches. The original
images is subdivided into a user defined number of equal sized rectangles covering
the entire image. This method entirely ignores the contents of the image and, as
such is inaccurate at finding borders of objects in a scene, however, it is extremely
fast to compute.

2.4.2 Super pixel

Another popular approach is the use of super pixels. A super pixel is a collection
of connected pixels in the image that are similar to each other. A super pixel
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method segments the entire image into a collection of super pixels attempting to
split the image along object borders. Commonly used methods include normalized
cuts (Shi and Malik, 2000), watershed based methods (Vincent and Soille, 1991)
and the recently proposed SLIC method (Achanta et al., 2012). In this work we
use SLIC, as it has better runtime performance then alternative methods and
produces good super pixels.
In the following we give a short overview of the SLIC algorithm. The basic

idea of the algorithm is to run k-means on the image. Unfortunately, running
standard k-means would be too costly so a different strategy is adopted. The
assignment step of k-means is restricted in size around each centroid. The algo-
rithm requires two parameters, the number of super pixels k to be generated as
well as a compactness parameter m. The algorithm starts by seeding the initial k
centroids in a regular grid over the image. Next, the algorithm performs several
rounds of k-means in a five dimensional space. The search space consists of the
three LAB colour channels of the image as well as the x and y pixel coordinates.
A special distance function is used, which normalises the colour and coordinate
distance of pixels against each other, and has the following form:

dc(i, j) =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2 (2.32)

ds(i, j) =
√

(xj − xi)2 + (yj − yi)2 (2.33)

D(i, j) =

√√√√( dc
Nc

)2

+
(
ds
Ns

)2

, (2.34)

where dc is the colour distance, ds the spatial distance, Nc the colour normaliser
and Ns the spatial normaliser. The spatial normaliser Ns can be defined as
the step size S, the initial distance between neighbouring centroids. The colour
normaliser Nc, however, is harder and is often left as a user defined compactness
parameter m. Using the normalisers NS = S and Nc = m the distance function
can be rewritten as:

D(i, j) =

√√√√d2
c +

(
ds
S

)2

m2. (2.35)

Tuning m allows to change the behaviour of the super pixels to either be more
compact, high value of m, or adhere more to image boundaries, low value of m.
The pseudo-code in Algorithm 6 shows the steps involved in the algorithm.
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(a) Rectangle subdivision

(b) SLIC

Figure 2.4: Examples of the two presented methods applied to an image of the
University of Sydney’s Quadrangle. The white border indicates the
individual patches.

2.5 Feature extraction and comparison

Typically raw sensor readings need to be processed before being used by other
algorithms. This is done for several reasons. First, raw data can be too high
dimensional to be used directly especially with images. Second, raw data may
not be invariant to certain types of transformations, such as orientation or illu-
mination which makes observations harder to relate to each other. Finally, raw
data can be susceptible to noise which a pre-processing step can reduce.

2.5.1 Camera based features

Cameras are a very common passive sensor that provide colour and texture infor-
mation about a scene and typically have high resolution and information density.
Extracting meaningful features from images is a topic of constant research and
has evolved dramatically over the years. Examples include simple statistical fea-
tures, such as the ones we will present here, finely tuned descriptors such as SIFT
(Lowe, 1999), and recent advances based on deep belief networks (Lee et al., 2009)
and convolutional neural networks (Krizhevsky et al., 2012).
There is always a trade-off between the computational complexity of a feature
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Algorithm 6: SLIC
Input: Step size S,
Output: Super pixel labels label

1 Initialise cluster centres µk ← [lk, al, bk, xk, yl] using step size S
2 foreach pixel i do
3 labeli ← −1
4 disti ← ∞
5 end
6 repeat
7 foreach Cluster centre µk do
8 foreach pixel i in a 2S × 2S region around µk do
9 if distance(i, µk) < disti then
10 disti ← distance(i, µk)
11 labeli ← k

12 end
13 end
14 end
15 Update cluster centres
16 until iteration limit reached
17 Fix connectivity and merge small super pixels
18 return label

extractor and the quality of the results obtained in a particular application. In
the following we will describe very simple histogram based features, as they are
very fast to compute and typically offer a reasonable description for our goals.

Colour histograms

Colour histograms are a very simple way to concisely represent the intensity
distribution of an image. The intensity value range is discretised into several bins
of equal width and the value of each bin is based on the number of pixels that
fall into it, i.e.:

Hi =
∑
p∈I

δ(p), (2.36)

where Hi is the i-th bin, I the image and δ(p) the Dirac function that returns 1
if p is within the interval of Hi, and 0 otherwise.
Such a representation is good at capturing information on a global scope but

loses all spatial information contained in the image. When considering colour
images represented by multiple channels, such as RGB, HSV or LAB, different
schemes can be used to represent them via histograms. One possibility is to create
one histogram per channel and treat them separately. Another one is to build
two or three dimensional histograms where each dimension represents a different
channel. The choice of which representation is the best often depends on the size
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of the image. This is due to the fact that in order to create a meaningful two
or three dimensional histogram, a large number of data points, i.e. image pixels,
need to be available.

Local binary patterns

As mentioned previously, colour histograms discard the spatial information con-
tained in an image. As such the histograms for two images with identical amount
of black and white but one organised as a chequerboard and the other one as two
halves of solid colours would result in the same histogram. An attempt to rem-
edy this problem are features which extract texture information from an image.
Texture information is typically obtained by evaluating the gradients in a local
neighbourhood of a pixel. Aggregating this gradient information into histograms
allows us to capture the overall texture information of a single image.
Local binary patterns (Ojala et al., 2002) is a feature that builds such a texture

representation. The feature is built by considering P neighbouring points which
are equally spaced on a circle of radius R around a central pixel. Based on this
the texture extractor is defined as:

T = t(gc, g0, . . . , gP−1), (2.37)

where gc is the grey scale value of the centre pixel and g0, . . . , gP−1 are the values
of the neighbouring P pixels.
In order to obtain a feature invariant to global changes in grey scale values

and rotation, the following steps are performed. First, the difference between the
centre pixel and the neighbours is used, i.e.:

T = t(gc, (g0 − gc), . . . , (gP−1 − gc)). (2.38)

This is then simplified via the assumption that gi − gc is independent of gc,
yielding:

T = t(gc)t((g0 − gc), . . . , (gP−1 − gc)). (2.39)

In practice this assumption is not warranted, however, it provides invariance to
shifts in grey scale levels and allows us to remove gc from the texture extractor.
To further increase robustness only the sign of gi − gc is considered resulting in:

T = t(s(g0 − gc), . . . , s(gP−1 − gc)), (2.40)
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where

s(x) =

1 x ≥ 0

0 x < 0
. (2.41)

To encode the extracted texture with a single descriptor a binary representation
is used, where the value 2i is assigned to each sign s(gi − gc), i.e.:

LBPP,R =
P−1∑
i=0

s(gi − gc)2i. (2.42)

This encoding results in 2P possible values. Rotational invariance is achieved
through a rotation scheme which aims to ensure that a maximal number of most
significant bits, starting from gP−1, are 0.
In order to reduce the number of possible patterns and exclude those patterns

occurring infrequently the concept of uniform patterns is introduced. The uni-
formity of a pattern is based on the number of 0 → 1 transitions in the binary
representation of a pattern. Only patterns with a uniformity score of 2 or less
are used in the final representation, i.e.:

LBPU
R,P =


∑P−1
i=0 s(gi − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
, (2.43)

where the uniformity score is computed as

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|

+
P−1∑
i=1
|s(gi − gc)− s(gi−1 − gc)|

. (2.44)

The result of this is that the P uniform patterns are mapped to bins 0 through P
while the remaining patterns are mapped to bin P + 1. The reason non-uniform
patterns are discarded is that they make up only a small portion of the observed
patterns and it is therefore hard to obtain accurate statistics for them. To obtain
the actual histogram representation of an image’s texture, the LBPU

P,R value is
computed for every pixel in the image.

2.5.2 3D laser point clouds

3D point cloud data is becoming more common, mainly due to the Kinect, an
affordable structured light sensor. However, the Kinect is restricted to short
ranges and indoor environments. In outdoor environments 3D point cloud data is
therefore gathered by rotating planar laser scanners or Velodyne laser scanners.

25



0 1 2 3 4
0

10
20
30
40

(a) Histogram 1

0 1 2 3 4
0

10
20
30
40

(b) Histogram 2

0 1 2 3 4
0

10
20
30
40

(c) Histogram 3

Figure 2.5: Examples of histograms. Histograms (a) and (b) have similar shape
but differ in absolute value while histogram (c) has entirely different
shape and values. Using Euclidean distance this notion of shape of the
distribution is not captured, however, using Bhattacharyya distance
this information is considered in the computation.

Common to the data provided by all of these sensors is that they provide 3D
points with no direct information about the structure they represent, which can
make their interpretation challenging.

Surface normal histograms

Data collected in urban environments is full of planar surfaces, which can be
characterised by their normals. As such a histogram over the surface normals can
be a good feature in such situations. Before we can compute a surface normal
histogram we need to compute the normal of each point in the point cloud. As
mentioned before, point cloud data contains no information about the structure
these normals are estimating. Several methods exist which use different assump-
tions, an overview of common methods is given in Klasing et al. (2009).
Surface normals can be treated in a similar manner to the pixels in colour

images, i.e. they are composed of three independent channels. This allows us to
create one, two or three dimensional histograms. This representation discards
a large amount of information such as distance and position. Furthermore, the
histograms are extremely view point dependent. As such the histograms are not
suitable for all applications, especially when classification is the final goal. With
3D point cloud data becoming more common, a large amount of descriptors suit-
able for recognition have been proposed, e.g.(Johnson and Hebert, 1999; Steder
et al., 2011; Quadros et al., 2012).

2.5.3 Histogram distance

All the features discussed above create a histogram representation. In order to
use these with the clustering methods described in the thesis we need to be able
to compute the distance or similarity between pairs of histograms.
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Algorithm 7: Earth Mover’s distance
Input: Histograms a and b
Output: Distance between the histograms

1 emd1 ← 0
2 foreach i ∈ {1, · · · , N} do
3 emdi+1 ← (ai + emdi)− bi)
4 end
5 return (∑i |emdi|)

A simple way to obtain such a distance value is the Euclidean distance:

dE(a, b) =
√∑

i

(ai − bi)2, (2.45)

where a and b are histograms. This treats the histograms as simple high-dimensional
vectors and ignores the fact that histograms are discrete probability distributions.
Compared to the Euclidean distance, the Bhattacharyya distance is designed to

compare probability distributions and thus looks at their overlap. The distance
is computed as follows:

dB(a, b) =
√√√√1− 1√∑

i ai
∑
i biN2

∑
i

√
aibi, (2.46)

where N is the total number of bins. The result of this function is between 0 and
1 which makes it easy to work with.
Another popular distance metric is the so called earth mover’s distance. The

idea behind this metric is that it computes the amount of “dirt” that needs to be
moved to transform one histogram into the other. As such similar histograms will
have a lower cost then dissimilar ones. In the case of one dimensional histograms
the earth mover’s distance can be computed iteratively as shown in Algorithm 7.
The difference between these distances is best shown with an example. If we

look at the histograms in Figure 2.5 it is clear that the histogram in (a) and
(b) are more similar to each other then the other combinations. Looking at the
distances computed by the three metrics in Table 2.1 the Bhattacharyya and earth
mover’s distance mirror this intuition clearly, while the Euclidean distance does
less so. Additionally, for both the Bhattacharyya and earth mover’s distance the
distances d(a, c) and d(b, c) are almost identical which makes sense if we consider
histograms (a) and (b) to be similar. This fact is not conveyed by the Euclidean
distance. The main difference between the Bhattacharyya and earth mover’s
distance is that the former is directly normalised between 0 and 1 which can
make its usage easier.
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Euclidean Bhattacharyya Earth Mover
d(a, b) 20.0 0.15 20
d(a, c) 37.4 0.44 220
d(b, c) 44.7 0.45 200

Table 2.1: Comparison of values obtained for different distance metrics on the
example histograms.

2.6 Evaluation metrics

As the work in this thesis deals with clustering, commonly used measures such as
accuracy are not ideal. For this reason metrics designed specifically to evaluate
clustering results and outlier quality of points are needed. Some of these methods
are introduced in the following.

2.6.1 V-Measure

Precision and recall based measures such as F-measure are not ideal for the eval-
uation of clustering results as we deal with multiple classes and pure classification
accuracy is not the only important factor. For this reason V-Measure (Rosenberg
and Hirschberg, 2007) is used which captures two properties of a solution, ho-
mogeneity and completeness, and combines them into a single value. Intuitively
homogeneity encodes how uniform a cluster is while completeness captures how
points belonging to one class are distributed over the clusters.
The metric is based on the concept of entropy which is used to compute the two

measures. To compute the two values the method requires the true labels C of the
N data points as well as the predictions in the form of the cluster assignments K.
Based on this the contingency table A = {aij} : i ∈ {1, . . . , |C|}, j ∈ {1, . . . , |K|}
is built, which stores the number of points with class label i assigned to cluster
j. The homogeneity value h is defined as follows:

h =

1 if H(C,K) = 0

1− H(C|K)
H(C) otherwise

(2.47)

where

H(C | K) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log ack∑|C|
c̃ ac̃k

(2.48)

H(C) = −
|C|∑
c=1

∑|K|
k=1 ack
|C| log

∑|K|
k=1 ack
|C| , (2.49)
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while completeness c is computed as:

c =

1 if H(K,C) = 0

1− H(K|C)
H(K) otherwise

(2.50)

where

H(K | C) = −
|C|∑
c=1

|K|∑
k=1

ack
N

log ack∑|K|
k̃=1 ack̃

(2.51)

H(K) = −
|K|∑
k=1

∑|C|
c=1 ack
|C| log

∑|C|
c=1 ack
|C| . (2.52)

The final V-Measure score is then computed based on the homogeneity h and
completeness c values as:

Vβ = (1 + β)hc
(βh) + c

, (2.53)

where the parameter β allows the measure to give more or less importance to the
two parts. With β < 1 homogeneity is weighted more strongly, while for β > 1
completeness has more importance. A value of β = 1 gives equal importance to
both parts and is therefore used throughout this thesis.

2.6.2 Local outlier factor

Local outlier factor (Breunig et al., 2000) (LOF) measures the outlier quality of
a point p in a dataset D with respect to its surroundings. The metric is based
on the notion of k-distance(p) which for any positive integer k is defined as the
distance d(p, o) where o is the k-th nearest neighbour of p. Based on this the
k-distance neighbourhood of p, Nk(p), is defined as the set of all points closer
then k-distance(p), i.e.:

Nk(p) = {q ∈ D \ {p}|d(p, q) < k-distance(p)}. (2.54)

In order to reduce statistical fluctuations for points in close proximity to p a
reachability distance is introduced as:

reach-distk(p, o) = max(k-distance(o), d(p, o)), (2.55)

which equals the k-distance for nearby points and the actual distance for distance
points. As the goal is to detect density based outliers the local reachability density

29



is introduced as:

lrdk(p) = 1/
(∑

o∈Nk(p) reach-distk(p, o)
|Nk(p)|

)
, (2.56)

which captures the local density of a given point p. Finally, to obtain the local
outlier factor value for point p the local reachability density of p is compared with
that of its k-distance neighbourhood, i.e.:

LOFk(p) =
∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)|
, (2.57)

where k is the user defined number of other points to consider during the com-
putations.

2.6.3 Jaccard index

The Jaccard index is a statistical measure that compares the similarity and di-
versity of sample sets and is defined as:

J(A,B) =

1 if A,B = ∅
|A∩B|
|A∪B| otherwise

. (2.58)

The value of Jaccard index is always 0 ≤ J(A,B) ≤ 1.
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Chapter 3

Self-supervised learning

3.1 Introduction

The ability to automatically build a representation of an environment and to
adapt to new, unseen scenarios without human supervision is paramount for long-
term autonomy in mobile robotics. To navigate safely a robot needs to recognise
particular properties of objects, the most fundamental one being whether or not
an object is traversable. Often such representations and object properties are
carefully engineered by a human expert, for example by providing a labelled
dataset to learn a semantic map. While this guarantees a representation suitable
for the task at hand it can be tedious to obtain and inflexible in case of changes in
the environment. Alternatively, methods that build a model of the environment
in an unsupervised fashion have the advantage that they can adapt to changes
more easily. Such methods also make robots more accessible to non-experts, as no
special setup is required and allows operation in areas where no data is available
for prior training.
In this chapter we present a method to learn the visual appearance of objects

and whether or not they represent an obstacle to the robot. The entire learning
process runs in real time and without the need for human supervision. We build
the model using clustering, specifically, affinity propagation (Frey and Dueck,
2007), described in detail in Section 2.2. The advantage of affinity propagation
over other clustering methods, such as k-means, is that it does not require the
number of clusters to be known “a priori”. Furthermore, affinity propagation finds
high quality clusters while being efficient to compute. An extension of affinity
propagation called streaming affinity propagation (Zhang et al., 2008) allows us
to cluster data streams in real time. To encode the visual appearance of the
environment we use colour histograms and local binary patterns (Ojala et al.,
2002). These features are clustered to generate groups of similar appearance.
Interactions of the robot with the environment provides us with information on
whether or not an object represents an obstacle. The model built from this
information is then used to build a k-nearest neighbour classifier which allows us
to label new images into parts that are traversable and non-traversable. Based
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Figure 3.1: Examples of the visual appearance of object parts detected by our
method. From top to bottom: seat of a chair, a tree trunk and a car
tire.

on the labels obtained from the classifier a simple decision making procedure can
determine safe motion commands for the robot. Building on this we propose an
extension to affinity propagation, called meta-point affinity propagation, which
aims to reduce the computational cost as well as offer robustness in the presence
of noise.
Unsupervised learning for robot navigation has received increasing attention in

recent years. The methods developed within the DARPA program Learning Ap-
plied to Ground Vehicles (LAGR) (DARPA, 2004) were concerned with learning
to predict terrain traversability from images only. Clustering is often employed
in these cases particularly methods that do not require the number of clusters
to be defined “a priori” such as spectral clustering (Ng et al., 2001) and latent
Dirichlet allocation (Blei et al., 2003). The work presented here follows similar
ideas but it is the first to present a solution based on an online version of affinity
propagation.
Using synthetic data we evaluate the properties of the different clustering meth-

ods. Experiments with a real robot show how the clusters capture the different
objects in the environment accurately and how recognition of the different objects
in the environment improves as time progresses. Additionally, we demonstrate
that meta-point affinity propagation allows for long-term operation. Finally, we
show that the proposed method can be easily adapted to other problems, such as
learning to predict collisions based on laser scanner data.
The main contributions of this chapter are:

• a real-time system that learns a model of the appearance of objects in a
totally unsupervised manner with streaming affinity propagation;

• a system that learns to recognise and predict collisions with the environment
directly from laser scans without the need for human supervision;

32



• a clustering method based on affinity propagation which improves robust-
ness and scalability in robotics applications;

• experimental evaluation in indoor and outdoor environments demonstrating
that the robot learns to recognise obstacles through interaction.

The chapter is organised as follows. In Section 3.2 we present previous work re-
lated to our approach, before we present our method in Section 3.3. In Section 3.4
we present our extension to affinity propagation, meta-point affinity propagation,
and evaluate the different methods in experiments in Section 3.5. Finally, we
summarise the chapter in Section 3.6.
The work presented in this chapter was previously published in ICRA 2012

(Ott and Ramos, 2012a), ISER 2012 (Ott and Ramos, 2012b), and the IJRR
special issue on long-term autonomy (Ott and Ramos, 2013b).

3.2 Related work

Traversability

In the context of the LAGR program several methods have been developed that
learn to extract traversability information from images observed by a robot. Hap-
pold et al. (2006) predict the 3D terrain traversability from images based on data
obtained from a stereo camera and a neural network classifier. They link colour
features to geometry and use this to predict traversability with a histogram rep-
resentation. The approach by Howard et al. (2006) uses support vector machines
to learn the mapping between geometrical features and traversability. This map-
ping is then used to assign traversability information to clusters of colour features
obtained through k-means clustering. The work by Kim et al. (2006) uses the
experience of the robot as it drives over parts of the environment to train a
traversability classifier. A simple incremental clustering method is used to as-
sociate the terrain appearance with traversability information by driving over
the observed area. Similar to our method these approaches use a combination
of colour and texture features to represent the appearance of the environment.
However, all but the work by Kim et al. (2006) require a supervised classifier to
predict traversability, which requires data labelled by a human expert. The main
difference though lies in the way visual appearance is related to the traversability
information. Whereas our method uses affinity propagation and thus can infer the
number of clusters to use, previous methods either define the number of clusters
beforehand or use simple “ad hoc” rules for clustering.
Training a classifier with the information gathered by a robot while driving

can be used not only to determine traversability, but also for terrain roughness
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estimation, as shown in the work by Stavens and Thrun (2006). The roughness
of the terrain is measured by an inertial measurement unit as the vehicle drives
over it. This estimate is then associated with terrain discontinuities extracted
from a 3D laser point cloud, thus allowing the vehicle to predict terrain rough-
ness before driving over it, such that the vehicle can slow down if needed. A
similar approach was taken by Ulrich and Nourbakhsh (2000) to detect obstacles
using only monocular vision. Their method uses the terrain appearance of past
trajectories to learn the general appearance of the ground plane. Obstacles are
subsequently defined as parts in the image that differ significantly in appearance
from the ground plane. The obvious drawback of this method is that it only
learns a single model for the ground plane which requires the environment to be
uniform. Secondly, training has to be performed by a human driving the robot
through the environment, as opposed to our method where the robot learns the
model on its own. In a similar manner Maier et al. (2011) use the information
of calibrated 3D laser scan and monocular vision to train an image based ground
classifier which is then used to avoid obstacles in absence of continuous 3D data.
The work by Modayil and Kuipers (2004) is similar to ours in that it collects
features from the robot’s sensors, a laser scanner in this case, and builds a model
of them. Their approach mainly concentrates on the feature extraction while we
focus on the model building in this work.

Vision

In the computer vision community, the topic of object detection has been ex-
tensively studied. For example, the parts based methods by Weber et al. (2000),
Agarwal and Roth (2002), and Fergus et al. (2003) represent an object by a collec-
tion of parts from a vocabulary. While these methods successfully learn to detect
objects in images it is unclear whether such methods are suitable for robotic
applications as the scenes are sterile in comparison to those found in robotic ap-
plications. Furthermore, the training phase in all the mentioned approaches is
too expensive to be performed in real-time.

Clustering

As indicated by the prior work in the LAGR project clustering is an impor-
tant technique in unsupervised learning. The desired properties of a clustering
method, however, are challenging. The properties include: speed, incremental
updates, flexibility and, most importantly, automatic selection of the number
of clusters. The work by Kim et al. (2006) for example employs a heuristic
based clustering method to achieve this. Other principled methods include latent
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Dirichlet allocation (Blei et al., 2003), spectral clustering (Ng et al., 2001), DB-
SCAN (Ester et al., 1996) and affinity propagation (Frey and Dueck, 2007). All
of the above methods make different assumptions when modelling the clusters
and the way clustering is computed. DBSCAN for example assumes that clusters
are based on density and closeness of points while spectral clustering assumes
that a projection to a lower dimensional space affords better separability then
the original one. Finally, Latent Dirichlet allocation assumes all observations can
be modelled by a set of topics.
We are not the first attempting to use affinity propagation for real time appli-

cations. Streaming affinity propagation (Zhang et al., 2008) approaches this by
representing clusters only through an exemplar and statistics about the cluster.
Points which do not fit into the model are integrated once the entire model is
recomputed. Other methods rely on heuristics to reduce the number of points
involved in the computations. One such approach is presented by Katz et al.
(2010). They use a subset of all the available points, based on the current clus-
tering solution, when recomputing the clusters with new data. Xia et al. (2008)
propose to run AP on a subsample of the data and assign the remaining points
in a k-means fashion to the result. Finally, Furtlehner et al. (2010) introduce a
hierarchical approach which shows reduction in complexity with little to no loss
in accuracy. The original data is divided in multiple subsets which are clustered
individually and then merged hierarchically using a modified version of affinity
propagation called weighted affinity propagation. They shown that this reduces
the computational complexity to O(N (h+2)/(h+1)), where h is the depth of the
hierarchical strategy. In comparison to these methods we approach the problem
from a different angle. We directly reduce the number of points by merging them
into meta-points. As we will see in the experiments this has a significant impact
on the runtime with negligible clustering quality degradation.

3.3 A model to avoid obstacles

In this section we describe a system to enable a robot to explore the environment
and build a representation of it based on visual features. The model represents
objects present in the environment and whether they represent an obstacle to
the robot. Features are clustered with a combination of affinity propagation and
streaming affinity propagation. Streaming affinity propagation is responsible for
the long-term model of the environment while affinity propagation captures the
short-term model. With two separate instances for different time scales we can
react to sudden changes in the environment while maintaining a stable long-term
model. By continuously adding new observations into the clustering system the
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Model learning Bumper Properties Clusters (AP) Classifier

Feature extraction Camera Patches Features

Decision making Classifier Objects Movement

Figure 3.2: Overview of the processes of our system. Common to all operations is
the division of the image into patches and the extraction of features
from these patches. The learning of a model then proceeds by associ-
ating the obstacle property captured by the bumper to these features.
Next the features are clustered using affinity propagation and the re-
sult is used to build a classifier. When using an existing model for
motion decisions each patch is classified according to its features and
the assigned cluster and traversability properties are obtained. This
information is then used to determine the best motion command for
the robot.

model adapts to changes in the environment and improves over time. The la-
bels required for the classification of the discovered objects into obstacle and
non-obstacle classes are obtained through the robot’s interaction with the envi-
ronment, i.e. collisions or free motion. A short overview of the system is provided
next.

3.3.1 Overview

A schematic overview of the processing pipeline is shown in Figure 3.2. In the
first step our method extracts features from raw images (centre row in Figure 3.2)
in the following manner:

1. divide the original image into smaller patches in order to roughly capture
a single object per patch;

2. compute colour histograms and histograms of local binary patterns for each
of the patches to capture colour and texture information.

Once the features are extracted we can learn a model of the environment as
follows (top row in Figure 3.2):

1. assign to each patch a traversability property obtained from the bumper
for object classification;

2. add new features to the clustering system and recompute the clusters to
update the model of the environment;
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3. use the clustering results to build a k-nearest neighbours classifier to classify
new observations as either traversable or non-traversable.

With a model of the environment we can make decisions about the motion com-
mands the robot should execute using the following approach (bottom row in
Figure 3.2):

1. obtain the object class for the features extracted from the image patches
by classifying them using the k-nearest neighbours classifier;

2. obtain the traversability property associated with each object class;

3. make movement decisions based on the arrangement of traversable and non-
traversable parts of the environment.

The steps outlined above will be described in greater detail in the following. We
start with the extraction of features and traversability labels. Thereafter, we
describe how the model of the environment is built using affinity propagation
and how the traversability information is processed. Finally, we show how the
learned model can be used to determine motion commands for the robot.

3.3.2 Feature extraction

Images are likely to contain multiple objects with very distinct visual appear-
ances, such as ground, chairs, trees, cars, etc. Ideally we would like to compute
the features for parts of the image that represent a single distinct object. The
difficulty is how to select parts of the image that are likely to only contain a single
object. We choose the widely used approach of segmenting the image into equally
sized rectangular patches. This approach is simple to implement and use while
also being computationally efficient, important properties for a real-time system
such as the one we describe. In our application we segment a 320×240 image into
32 rectangular patches of identical size. This has the advantage that it does not
require any additional computation while providing a reasonable approximation
when the individual patches are small enough. Different number of patches have
been tried and values from 9 to 144 worked equally well. However, if the patches
become too small the performance will degrade. More elaborate approaches, such
as watershed based methods (Meyer and Beucher, 1990) or super pixel methods
(Felzenszwalb and Huttenlocher, 2004; Achanta et al., 2012) might provide bet-
ter approximations but are also computationally more expensive. For each of the
patches we compute two different histogram features: the colour distribution in
the HSV colour space, and the distribution of local binary patterns Ojala et al.
(2002). These features allow us to capture both colour and texture when compar-
ing image patches. As we represent the features using histograms, the similarity
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values required by affinity propagation are obtained using the Bhattacharyya
distance (see Section 2.5.3). This allows us to treat the features as distributions
rather then simple vectors.

3.3.3 Obstacle label extraction

In order to associate obstacle information with the learned objects we need to
know how the robot interacts with the environment. Therefore, whenever the
robot collides with obstacles in the environment we label the currently observed
image patches as obstacles. This information is then transferred to the learned
objects represented by clusters. As the robot will never collide with the ground,
image patches representing the ground will not be labelled as obstacles, while
parts of the environment that represent obstacles, such as walls, chairs, trees and
cars will be labelled as obstacles. In the next section we detail how the features
and the obstacle labels are used to learn object classes and their obstacle property.

3.3.4 Building the model

Features extracted from image patches are added sequentially into the clustering
system. The clustering is performed by a combination of affinity propagation
(AP) and streaming affinity propagation (STRAP) which are explained in detail
in Section 2.2.
The pseudo code in Algorithm 8 shows the steps performed for each obser-

vation we add. Each observation is added to the long-term clustering instance
Mlong (STRAP), where it is either used to update an existing cluster or added
to the outlier reservoir,Mlong.reservoir. In the latter case, the data point is addi-
tionally added to the short-term clustering instanceMshort (AP), which is rebuilt
thereafter. Once the outlier reservoir is fullMlong is rebuilt and information from
Mshort is merged intoMlong.
In order to decide if a specific cluster represents an obstacle or not we keep

count of how often members of a cluster have been labelled as obstacle and non-
obstacle. With these two counts we can easily compute the probability of each
cluster representing an obstacle as follows:

p(obstaclei) = |obstaclesi|
|obstaclesi|+ |non-obstaclesi|

, (3.1)

where p(obstaclei) is the probability of cluster i representing an obstacle, |obstaclei|
and |non-obstaclei| are the number of image patches in the cluster that were la-
belled as obstacle and non-obstacle respectively. Note that the clustering is based
purely on the visual features and the obstacle properties are never used for this.
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Algorithm 8: AP & STRAP integrating a novel observation
Input: Observation obs, STRAP instanceMlong, AP instanceMshort
Output: UpdatedMlong andMshort instances

1 Insert obs intoMlong
2 if obs ∈Mlong.reservoir then
3 Insert obs intoMshort
4 RecomputeMshort
5 end
6 if Count(Mlong.reservoir) > max_count then
7 RecomputeMlong
8 MergeMshort intoMlong
9 ResetMshort
10 Mlong.reservoir←∅
11 end
12 returnMlong,Mshort

There is always the possibility that one visual appearance represents an obstacle
in one environment but not in another. In such a case the model will adapt the
obstacle probability of a cluster over time by making new observations. This is
not ideal as we try to model two different objects as the same clusters. Therefore,
detecting such discrepancies in the model and handling them at a higher level is
preferable.

3.3.5 Building the classifier

In order to predict where obstacles are located in new images a classifier is trained
based on the exemplars of the current model. As the system has to run in real-
time and the model can change frequently, classifiers that are computationally
expensive to train can not be used. For this reason we use a k-nearest neighbours
classifier which can be efficiently trained directly from the clustering result. The
training data are the features of the exemplars identified by the clustering, i.e.
only a small portion of the original features are used to build the classifier which
further reduces the computational cost.

3.3.6 Decision making

The first step of the decision making process is to label the current image with
obstacle information. This is performed by classifying all patches using the pre-
viously trained classifier. This yields an object class and the associated obstacle
property for each patch in the image. Based on the arrangement of the obstacle
patches in the image a simple set of heuristics decides how the robot should move.
The heuristics provide three types of instructions to the robot:
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(a) move forward (b) stop and rotate left

(c) stop and rotate left (d) rotate until no longer stuck

Figure 3.3: Exemplary classification results and movement decisions. Obstacles
are denoted by the shaded areas while the command decision is listed
below each image.

• continue on the current path;

• stop and rotate left or right;

• stop, select new destination, and turn on the spot.

These actions are selected based on the classification result of the current image.
The first action type is used when there is enough free space for the robot to
continue moving on its current heading, as shown in Figure 3.3a. In case that
there are obstacles to either the left or right of the robot the second action is
used to prevent collision with the environment, as can be seen in Figures 3.3b
and 3.3c. Finally, if the robot is surrounded by obstacles it discards its current
goal and selects a new one. Then it rotates on the spot until a heading is found
that allows the robot to move freely again, an instance of this can be seen in
Figure 3.3d.
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3.4 Meta-point affinity propagation

Affinity propagation requires a similarity matrix S which contains the pairwise
distances between all N points in the dataset. Based on this similarity matrix the
solution is computed by iteratively updating the availability αij and responsability
ρij messages, defined as:

αij =


∑
k 6=j max(0, ρkj) i = j

min
[
0, ρjj +∑

k/∈{i,j}max(0, ρkj)
]

i 6= j
, (3.2)

ρij = sij −max
k 6=j

(sik + αik). (3.3)

Computing these messages requires quadratic runtime in the number of data
points which is prohibitively slow for large data sets. To reduce the computational
burden of AP the number of data points has to be reduced.
The system proposed in the previous section used streaming affinity propa-

gation (Zhang et al., 2008) to handle the continuous image stream. STRAP is
capable of handling data streams in real-time by not storing data points but
only statistics about clusters. Each cluster is represented by a tuple (ei, ni,Σi, ti)
where ei is the exemplar associated with the cluster, ni is the number of data
points represented by the cluster, Σi is the distortion of the cluster, and ti is
the last time a point has been added to the cluster. In addition to these cluster
statistics there is a fixed size storage for points that do not fit into the current
clusters. New points are used to either updated the cluster statistics or placed
in the storage if they are too far away from the centre of the clusters. Once
the storage is full the entire clustering solution is updated. During the update
the statistics about the clusters are used generate similarity matrix entries. The
result is that AP is run on a small similarity matrix and with reduced frequency.
However, this design has two drawbacks: (i) there is some delay between novel
observations being made and them being represented by the clusters and (ii) clus-
ters that have not been observed for some time can be “lost”, by merging them
with other clusters.
These two drawbacks make it difficult to use in long-term autonomy scenarios

and we propose a different method to increase the speed of affinity propagation
which guarantees that we will not forget information. Our method, called meta-
point affinity propagation, is inspired by ideas presented in Cao et al. (2006). The
main idea is that data points which are close in feature space can be grouped to-
gether and replaced by a single meta-point. In robotics similar observations occur
frequently, for example multiple observations made from a similar pose. By re-
placing such redundant observations with a single aggregated one we effectively
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Figure 3.4: Visualisation of meta-points and the different cases that can occur
when adding a new data point. A is merged into the cluster-point
while B is merged into the noise-point. Finally, C is used to create
an entirely new meta-point.

reduce the number of points involved when performing affinity propagation with-
out running the risk of erasing knowledge.
Formally a meta-point is a 4-tuple Pi = (ci, µi, ei, ti) and stores the number

of points ci represented by a meta point, the mean µi of all represented points,
the exemplar ei of the meta-point, and the last time ti a point was added to the
meta-point. Besides the immediate effect of reducing the computational burden,
the concept of meta-points has two additional benefits:

1. the number of points to be clustered depends on the size of the feature
space and not the number of observations;

2. random observations can be dealt with in a straight forward manner, by
ignoring meta-points representing few actual points.

The first point is a direct consequence of the usage of meta-points instead of
raw data points. If a robot moves in a static environment, after a while the
meta-points will cover the entire feature space and all new observations will be
mapped to an existing meta-point. The second point requires us to distinguish
between two types of meta-points: cluster-points that represent the points used
for clustering, and noise-points which are ignored during the clustering. A meta-
point is considered a cluster-point once it represents enough raw data points,
otherwise it is considered a noise-point. This allows us to discard points generated
from random observations such as spurious readings from a laser scanner. Put
differently we can detect and ignore outliers in our observations.
The most important part of meta-point affinity propagation is the handling of

new observations. The pseudo code in Algorithm 9 shows the steps performed
in order to add a point p into either the set of cluster-points P or the set of
noise-points N . There are three possible cases the algorithm needs to cover:
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1. there is a suitable cluster-point present;

2. there is no suitable cluster-point present but only a noise-point;

3. no suitable cluster-point or noise-point is present.

In the first case we simply add the new observation into the meta-point. In
the second case we update the meta-point but also check if the noise-point now
represents enough data points to be considered a cluster-point. Updating a meta-
point is done by recomputing the statistics of the meta-point. Finally, in the
third case we create a new meta-point for the observation. These different cases
are visualised in Figure 3.4. This method requires two parameters: θmin-points

a threshold which decides if a meta-point i is a cluster-point (θmin-points ≥ ci)
or a noise-point (θmin-points < ci). The second parameter θsimilarity represents the
radius of the sphere of influence of a meta-point. The choice of θmin-points is mainly
dependant on the noise encountered in the data but typically values between 5
and 10 produce good results. θsimilarity is more complicated as it is dependant on
the magnitude of the feature space. We typically use a value between 5 to 15%
of the magnitude of the feature space.
We use two distinct sets for noise and cluster meta-points to both make their

difference more prominent and for performance reasons. The actual clustering
result is obtained by running standard affinity propagation using the cluster-
points as input data.
This form of merging data points obviously assumes that small changes in the

feature space distance result in no noticeable change of the object class to be
clustered. Additionally, the handling of noise only addresses noise which results
from random measurements or one off sensing failures. It does not detect or
handle complete failure of a sensor or systematic noise, as these produce consistent
and continuous observations.

3.5 Experiments

In the following several experiments on synthetic as well as real data are presented.
Synthetic data is used to compare the properties of AP, MPAP and STRAP on
clustering problems. Next, we show how AP and STRAP can be used to learn an
environment model using the method outlined in Section 3.3. The same data is
also processed using MPAP, building a model capable of explaining data collected
months later. Finally, we present another application which allows a robot to
predict collisions based purely on laser range data without any knowledge about
the robot’s shape using the pipeline shown in Section 3.3.
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Algorithm 9: MPAP add new observation
Input: New data point p, Data point set P , Noise point set N
Output: Updated sets P and N

1 nn ← minq∈P Dist(q, p)
2 if Dist(nn, p) < θsimilarity then
3 nn ← nn ∪ p
4 else
5 nn ← minq∈N Dist(q, p)
6 if Dist(nn, p) < θsimilarity then
7 nn ← nn ∪ p
8 if |nn| ≥ θmin-points then
9 P ← P ∪ nn
10 N ← N \ nn
11 end
12 else
13 r ← Create new meta-point from p
14 N ← N ∪ r
15 end
16 end
17 return P, N

3.5.1 Speed and quality evaluation on synthetic data

In these synthetic experiments we investigate both quality and speed of AP,
STRAP and MPAP on data sampled from random 2D Gaussian distributions
with randomly selected mean µ and covariance Σ. The noise is sampled uniformly
over the area of the data. The similarity between points is computed using the
euclidean distance. We perform comparisons on data with and without noise.
Exemplary results are shown in Figure 3.5. The top row shows the results on
noise free data while the bottom row has added noise. In the noise free case all
methods produce similar results, however, when noise is added we see that AP
splits some of the clusters while STRAP generates some extremely large clusters.
MPAP on the other hand performs just as it did before as it only deals with the
meta-points representing enough raw points, discarding the noise points.
In a quantitative analysis we performed 1000 trials with both noisy and noise

free data and compared the runtime, V-Measure, and number of points clustered
by each of the methods. The results in Table 3.1 show that MPAP and STRAP
are significantly faster then AP. In the noise free case MPAP and STRAP have a
better V-Measure score then AP, however, this can be largely ignored as MPAP
and STRAP label only a fraction of the points while AP labels all points. Looking
at the results for data containing noise we can see that the speed differences stay
similar. The big change is in the V-Measure score where both AP and STRAP
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AP STRAP MPAP

Figure 3.5: Results obtained with AP, STRAP and MPAP on 2D data. The first
row shows results obtained on noise free data, while the second row
shows the results on the same data with added noise. The colouring of
points indicates the cluster assignments. In case of MPAP the larger
circles indicate the meta points.

drop as they try to explain every point, including the noise. MPAP ignores the
noise as the meta-points representing noise are ignored and therefore there is no
loss in clustering quality.
To further demonstrate the need for MPAP we show the effect data ordering

has on STRAP. We run STRAP and MPAP with the same data once randomly
shuffled and once ordered by clusters. As Table 3.2 shows, if the data is ordered
STRAP performs poorly. This is the effect of forgetting we mentioned earlier and
is caused by the way the clustering update uses the data. MPAP does not suffer
from this, as similar points are simply merged into a single meta-point which will
never be removed.
From these experiments on synthetic data we can see it is critical to improve

the performance of AP, as its runtime is O(N2) where N is the number of points
clustered. Both STRAP and MPAP significantly improve on AP’s runtime, how-
ever, STRAP can perform badly when the data stream is not diverse enough,
something that can easily occur in robotics.

3.5.2 Visual appearance learning and obstacle avoidance

In this section we present evaluation results of our system, presented in Sec-
tion 3.3, which learns visual object appearance and obstacle property in both
indoor and outdoor environments. We show results of the clustering quality as
well as the learning performance of our system. All the experiments were per-
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Time (s) V-Measure Points
No Noise

AP 14.61± 2.92 0.87± 0.18 2000
STRAP 0.02± 0.01 0.94± 0.08 2000
MPAP 0.08± 0.03 0.94± 0.13 195± 62

With Noise
AP 22.26± 3.48 0.73± 0.12 2200
STRAP 0.02± 0.01 0.86± 0.04 2200
MPAP 0.07± 0.02 0.92± 0.06 161± 41

Table 3.1: Results for 1000 runs of AP and MPAP on synthetic 2D data with
varying numbers of clusters. V-Measure was computed based on the
points used in the clustering. MPAP achieves better results then AP
and is significantly faster since it processes fewer points.

Data Ordering
Random By Clusters

STRAP 0.95± 0.08 0.65± 0.11
MPAP 0.96± 0.06 0.96± 0.06

Table 3.2: Impact of data ordering on STRAP and MPAP. Unless the data stream
is diverse enough the quality of the clustering suffers with STRAP
while MPAP has no such issues.

formed with a Pioneer-AT robot, equipped with a SICK laser scanner and a Point
Grey Firewire camera. The laser scanner was used to detect obstacles in close
proximity to the robot and trigger a “bump” event instead of a bumper, in order
to avoid damage to both the robot and the environment. The camera on the
robot is angled downwards such that obstacles on the floor are visible at a dis-
tance of 1.2 m. The images were subdivided into 36 equal sized patches of 52×40
pixels. Other subdivisions were tried but provided similar results.
Our method is implemented in C++ using the Robot Operating System (ROS).

All the computations were performed on a Pentium M with 1.7 GHz at a rate of
5 Hz. The entire process is CPU bound and only minimal memory is required as
only the patches of the exemplars are stored for the clustering and classifier.

Learning visual appearance from images over time

Our method learns the appearance of objects in the environment by observing
them with a camera and labelling them as obstacles when they are very close
to the robot (a simulated bump). When the robot starts its exploration there is
no information about the environment available. As time progresses previously
unobserved parts of the environment are encountered and their appearance and
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Figure 3.6: Map of one of the indoor environments with exemplary image patches
referenced to the location they have been perceived at. The coloured
box around the patches also indicates if they represent an obstacle
(red) or free space (green).

obstacle property is added to the model.
In an initial experiment the robot moved for 15 minutes in different environ-

ments, both indoor and outdoor, colliding while gathering images. The indoor
environments are typical office areas with desks, cubicle walls, chairs, etc. The
outdoor environment covers a grass area and a parking lot with variability in the
illumination due to shadows from nearby trees. While the robot travels through
these environments the model was continuously updated. One would expect that
at the beginning all observations are new to the system and thus require incorpo-
rating into the model. Over time, as more of the environment is covered, fewer
observations contain new information. This expected behaviour is verified by
plotting the percentage of observations that were novel to the system over time
in Figure 3.7. We can see that for all three environments the first few minutes,
when the robot is still mostly traversing previously unvisited areas, the major-
ity of the observations contain novel knowledge for the system. Then, as time
progresses most observations can already be explained by the learned model and
are thus uninteresting. Sometimes observations contain information explained by
the robot looking at areas that have not been observed or changes in the lighting
conditions producing observations that are significantly different from what the
model predicts.
A visual representation of the model learnt in an indoor environment is shown

in Figure 3.6. The grid map is not part of the model but is shown for visuali-
sation purposes. The patches show the appearance the robot perceives at those
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Figure 3.7: The plot shows the percentage of all observations made during a 60 s
window that add new information to the environment model. It is
clearly visible that the majority of observations which lead to new
knowledge are observed in the beginning.

locations. A green border indicates a non-obstacle while a red border indicates
an obstacle. We can easily see how the carpet floor is recognised as not being
an obstacle while other things such as walls, doors and boxes are selected and
correctly labelled as obstacles.
Exemplars found by the clustering algorithm in both indoor and outdoor sce-

narios are shown in Figure 3.8. As can be seen the clusters found can be easily
distinguished from each other and represent the different types of objects present
in the environment, such as floors, pavement, walls, and predominant obstacles.
Ideally, clusters should be distinct from each other, i.e. separated in the feature
space. However, clusters should also contain a reasonable amount of data points,
i.e. allow for a certain amount of variability within a cluster. The examples of
cluster members shown in Figure 3.9 demonstrate that the clusters obtained ex-
hibit this property. Each row in Figure 3.9 contains members of a single cluster.
As can be seen their appearance is sometimes considerably different from each
other. Nonetheless they are assigned to the same cluster even though they appear
blurred, were observed at a different viewing angle, had different lighting condi-
tions, or were only partially visible. This ability to group similar objects even
with diverse appearance allows the overall number of clusters to be kept small
and thus more representative of the environment.
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Figure 3.8: Examples of the exemplars as determined by streaming affinity prop-
agation. (Left) Results from indoor experiments. (Right) Exemplars
obtained in outdoor experiments.

Obstacle avoidance performance

In order to test the capability of our method to detect and avoid obstacles we
placed obstacles in the environment for the robot to detect. The system was al-
lowed to automatically learn a model of the environment before the test started.
Whenever our method detected an obstacle in front of the robot, the robot
stopped and the distance to the nearest obstacle was recorded. This experi-
ment was carried out in different environments. Overall our method recognised
and stopped at a distance of 0.94 m ± 0.23 m. This shows that the environment
model learned by our approach can be used to detect obstacles well before a colli-
sion can occur. This leaves enough time and distance to execute actions to avoid
the detected obstacle.

Model consistency for long-term autonomy

The previous experiments have shown how STRAP and AP can build a suitable
model. Here, we demonstrate that using MPAP we can build a model in the
same way without the drawbacks of STRAP. As we are interested in long-term
autonomy we also investigate how the model handles data that has been collected
some time apart. To demonstrate this the robot moved between two visually
distinct outdoor environments. Figure 3.10 shows exemplary image patches from
the areas used in the experiment. The areas cover a parking lot, grass area, and
a courtyard with the illumination varying from sun lit to overcast between the
various observations. The robot starts out in environment A and stays there
for 10 min before moving to environment B from where it returns to area A
after 10 min. The plot in Figure 3.11 shows the percentage of observations made
during a 60 s window which are considered novel. The two vertical lines in the plot
indicate the transition between the two environments. At the first transition there
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Figure 3.9: Examples of cluster members from both indoor and outdoor exper-
iments. Each row contains image patches that are assigned to the
same cluster. The examples show that even if the appearance changes
significantly between images, the clustering procedure is still able to
assign them to the appropriate cluster. The rows from top to bottom
represent a cardboard box, a piece of structured room divider, carpet,
wood chips, brick wall and asphalt.

is a clear spike in the amount of new knowledge contained in the observations,
as we visit a visually novel area. When moving back from area B into area A
there is no such spike, as the model learned previously in area A can be reused.
To simulate an operation over extended period of time the above experiment
is repeated with data gathered several months after the initial visit of area A,
referred to as A’. We perform the same task as in the previous experiment, moving
from A to B and then to A’. Figure 3.12 shows the plot of observation novelty over
time. We can see a behaviour very similar to that in Figure 3.11. We have spikes
in the novelty when first visiting area A and B but not when entering A’. The
novelty values of area A’ are not as low as in the previous experiment, however,
they still indicate that the majority of the existing model is reused, even though
the model is based on data gathered months before. While this experiment is not
performed with a robot operating for an extended period of time it shows that the
method can deal with changes that occur over time by reusing an existing model
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Figure 3.10: Exemplary images from the different areas, from top to bottom A,
A’ and B. Area A and A’ differ mainly in illumination and camera
setting changes which affects the colour appearance.

Preprocessing Feature extraction Insert data Cluster data
Overall 3.7 s 5.3 s 47.9 s 1.0 s
Per Image 2.5 ms 3.6 ms 32.5 ms 0.7 ms

Table 3.3: Breakdown of the runtime of meta-point affinity propagation when pro-
cessing the long-term autonomy dataset. Time for the entire process,
as well as per image is shown.

and adding to it. These experiments show how the proposed system can learn
valid models from observations and adapt and update the model when changes
occur over time without compromising the current model.
This can be executed in real time on a robot, as the number of points to be

clustered is typically less then 1000 which can be clustered in a second. The
most expensive operation over time is the addition of points into the model.
However, adding a single point is very cheap. The initial 1472 images are split
into 52 992 patches from which 873 meta-points are formed. A breakdown of the
runtime of the entire system is given in Table 3.3. The processing time for a
single image shows that images can be processed a 30 Hz using a current Intel
Core-i5 processor. Furthermore, since the original images are not stored the entire
method is CPU bound.

3.5.3 Learning to predict collisions from laser data

In this section we present an approach that enables a robot to learn to predict
when it will collide with the environment based solely on laser scanner range
information. Our method learns this model without any knowledge of the robot’s
physical dimensions or location of the sensor. It is purely based on the laser
scanner returns and the information of the bump sensor on the robot. The
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Figure 3.11: This plot shows the percentage of novel observations when the
method is presented with two types of environments starting in en-
vironment A then moving to environment B and then back to envi-
ronment A. The black vertical lines indicate the transition from one
environment into the other. This clearly shows two desirable prop-
erties: upon entering a new environment most of the observations
are novel and need to be represented, when switching back into the
already known environment A no such spike in novelty occurs.

processing pipeline of this method, shown in Figure 3.13, is very similar to the one
used in Section 3.3.1 and involves two learning parts. An unsupervised one which
learns an appearance model for the laser scans and a self-supervised one which
learns the probability of a given cluster to indicate a collision. The combination
of these two allows us to learn to predict collisions without having to provide
specifics of the robot or the laser scanner to the system.

Model overview

The first step of the system is to extract features from the raw laser scanner data.
To this end each laser scan is divided into bins Bk containing a fixed number of
sequential readings, i.e.:

Bk =
{
Si : i ∈ {ck, . . . , c(k + 1)− 1}

}
with c = |S||B| , (3.4)

where Si is the i-th laser range value, Bk the k-th bin, |S| the number of range
readings, |B| the total number of bins, and c the number of readings per bin.
From each bin a single feature value is computed which results in a feature vector
or histogram representing the entire scan which are then clustered using meta-
point affinity propagation. The information of the bumper, i.e. collision or no
collision, is associated with each scan and accumulated in the clusters, which
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Figure 3.12: This plot shows the percentage of novel observations when the data
from environment A and A’ is recorded several months apart, emu-
lating long-term operation. From the graph we can see that although
the data was recorded several months apart the method still is able
to reuse most of the existing model when visiting A’.

allows the computation of a collision probability for each cluster. Based on the
cluster exemplars we build a simple k-nearest neighbours classifier. In order to
decide if a robot is about to collide with the environment we compute the feature
vector of the current scan and classify it using the classifier. The classifier output
tells us whether the observation indicates a collision or not, which allows us to
stop the robot if needed.

Feature extraction

The feature design is important as it will allow us to obtain a succinct represen-
tation of the entire laser scan. The goal in our case is a feature that is capable
of capturing the broad shape of the laser scan which should be enough to dis-
tinguish different types of observations. In the following we show the different
functions used to extract a single value from each bin Bk to produce the histogram
representation of a scan:

• Min-value: min(Bk)

• Max-value: max(Bk)

• Mean-value: 1
|Bk|

∑
i(Bki )

• Global difference: max(Bk)−min(Bk)

• Sequential difference: 1
|Bk|−1

∑|Bk|−1
1 (|Bk

i −Bk
i+1|)
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Model learning Bumper Properties Clusters (AP) Classifier

Feature extraction Laser Bins Features

Decision making Classifier E-Stop

Figure 3.13: Overview of processing pipeline used to predict collisions based on
raw laser data. We extract features from the binned laser scans which
are then either used to build the model or make decisions. Building
the model involves clustering the features and attaching the obstacle
or non-obstacle label obtained from the robot’s bumper. Based on
this clustering result the classifier is built. The decision making uses
the classifier output for new features to decide if the robot needs to
stop.

where Bki is the range value of the i-th entry in the bin. The first three features
capture straight forward statistical information. The last two are more complex.
The global difference feature tells us how much the distance changes over the
entire bin, independent of location. The sequential difference features gives an
intuition of the overall smoothness of the bin and if there are any sudden changes
present. Using any of the above simple functions yields a histogram representing
a single scan. In order to compute the similarity between the histograms of two
scans, needed by affinity propagation, we use the Bhattacharyya distance, see
Section 2.5.3.

Classification performance

We evaluate how well the different features perform at grouping laser scans and
predicting if they correspond to the robot colliding with the environment. For this
we collected datasets in which the robot collides with the environment in both
indoor and outdoor environments. The main difference between those is that the
indoor environment has lower distances between objects and more reflective ob-
jects due to the presence of chairs and tables. The outdoor environment features
more areas where no measurements are available due to the limited range of the
laser scanner. This data is processed by our method which allows it to learn a
model of the laser scans by clustering them and to build collision statistics for
each of the clusters. In Figure 3.14 we show scans collected in an indoor envi-
ronment. The plots show the scan both in polar and Cartesian coordinates as
well as the image taken at the same time. From the plots one can see that there
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Indoor Outdoor
Feature 6 Bins 12 Bins 6 Bins 12 Bins
Min-value 0.86 0.89 0.89 0.88
Max-value 0.90 0.90 0.91 0.87
Mean-value 0.87 0.85 0.69 0.81
Global difference 0.90 0.88 0.90 0.65
Sequential difference 0.77 0.78 0.78 0.70

Table 3.4: Table showing the area under (ROC) curve for the different features
and bin sizes evaluated over the two environments. We can see that
the min-value, max-value and global difference features perform at a
similar level. While the mean-value feature worked well enough indoors
it fails in the outdoor environment.

are distinct differences between collision and collision-free scans. In particular
the amount of max-range readings present in the case of collision observations.
These are due to the physical location of the scanner on the robot. The Cartesian
plots also show that just relying on those would in many cases make it very hard
to decide if a robot is in collision with the environment or not.
We evaluate the different features with two different bin sizes, 6 bins with 30

values each and 12 bins with 15 values each. Figure 3.16 shows ROC curves of
the classification performance of the different feature and bin size combinations.
We can see that all plots share an overall trend, as far as feature performance
goes with slightly better performance when using only 6 bins. As for the features
themselves: the “min-value” feature performs best, however, only if we accept a
large percentage of false positives. Both the “max-value” and “global difference”
perform close to the “min-value” feature but attain a good and stable performance
at a much lower false positive rate. The reason that the “max-feature” performs
so well can be explained by the large number of max-range readings produced
by the laser scanner as shown in Figure 3.14. Therefore the “global difference”
feature seems the best choice due to its more generic nature. The “mean-value”
feature performs reasonably well indoors but does a poor job outdoors. The
“sequential difference” feature performs similar in all cases but is outperformed
by the “global difference” feature, which seems to indicate that smoothness is
not particularly typical for either collision or collision-free scans. The area under
curve values corresponding to the roc curve plots are shown in Table 3.4 and paint
a similar picture. It is easy to see how similar the “min-value”, “max-value” and
“global difference” features perform. Combining this with the data from the roc
curves we can conclude that the simple “global difference” feature is a good and
robust feature for the task of collision prediction.
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Collision prediction

Another way to look at how well the learned model performs is by comparing the
timeline of collision and non-collision scans. Figure 3.15 shows the plot obtained
for the indoor dataset with the “global-distance” feature using a threshold of 0.2.
The top plot in red shows the hand labelled ground truth while the bottom plot
in blue shows the prediction of our model. It shows that the blue plot mostly
covers the actual instances of collisions with some short instances misclassified as
a collision. It is worth noting that in many cases the prediction triggers before
the actual classification in the ground truth plot, indicating that we could stop
the robot before it collides with the environment.
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Figure 3.14: Some exemplary scans shown in both polar and Cartesian coordi-
nates as well as an image taken by the robot. The first two rows
represent cases where no collision with the environment is present.
The second two rows both contain collisions. The third row is in
collision with a metallic table leg to the left while the fourth row is
in collision with the big cardboard box in front of the robot.
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Figure 3.15: This figure shows the classification of each single scan as it is received
by the robot as it travels through an environment. The top plot
shows the ground truth labels and the lower plot shows the prediction
made by our method.
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Figure 3.16: ROC plot for different features evaluated on different binning sizes
of laser scans in indoor and outdoor environments. We can see sim-
ilar trends independent of the number of bins we use. The “min
value” feature obtains the best results, however, at a larger false
positive rate then other features. Both the “max-value” and “overall
difference” features obtain similar results.
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3.6 Summary

We developed an online method to build a model of the environment without the
need for human supervision. This is achieved by clustering the visual appearance
of image patches observed by a robot using a combination of AP and STRAP.
Additionally the information obtained by the interaction of the robot with the
environment is used to assign the discovered objects with an obstacle property.
To increase robustness for long-term operation we proposed meta-point affin-
ity propagation which overcomes drawbacks of streaming affinity propagation,
namely the loss of information over time
Using AP and STRAP we show how the proposed system is capable of learn-

ing an accurate model which allows the robot to recognise objects and avoid
obstacles. We then demonstrate how MPAP can build consistent models capable
of recognising already visited areas even if the observations are several months
apart. Finally, we show how the proposed pipeline can be used to learn to pre-
dict collisions based on raw laser scanner data without knowledge about a robot’s
configuration.
The presented method is one of the first attempts to address the problems of

long-term autonomy and model building with incremental unsupervised and self-
supervised learning techniques. We believe this topic has a lot of potential for
future work both algorithmically and experimentally.

59



Chapter 4

Layered clustering

4.1 Introduction

In the previous chapter we have shown how to learn representations of the envi-
ronment using only the robot’s sensory information. However, only a single sensor
was used, whereas robots normally have multiple different sensors. Therefore, it
is desirable to cluster the information of multiple sensors together. Typically, this
involves the construction of a function that weights features extracted from the
different sensors against each other. Constructing and tuning such a function is
non trivial and typically does not generalise well. For this reason we present a
novel algorithm that automatically clusters data from multiple sensors. The algo-
rithm only requires the features to be extracted on a per sensor basis, combining
the features is done automatically by the proposed method.
The presented method is called layered affinity propagation (LAP) and, as the

name suggests, is an extension to affinity propagation (Section 2.2). The term
layered refers to the fact that we represent the similarity values derived from
each data source and the associated features by a separate affinity propagation
instance or layer. Broadly speaking our method consists of the following two
types of layers:

1. data layers, each representing a single data source;

2. a merging layer, ensuring an overall consistent clustering solution.

During clustering the data layers are all updated independently followed by an
update of the merging layer. This cycle is repeated until convergence is achieved.
Because we do not explicitly define how the different features are merged, we can
use simple, well known methods to obtain similarities between data points for a
single data source. The difficult part, which is to decide how to best combine the
different data sources, is left to the algorithm.
The main contribution of this chapter is a novel, principled way to perform

clustering of multiple data sources by message passing. In experiments we show
that the method is capable of handling data from different sensors with signif-
icantly better clustering quality than alternative methods. A first set of exper-
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iments demonstrates the capability to perform scene segmentation on RGB-D
data collected indoors with a Kinect sensor. In a second experiment we cluster
segments extracted from a Velodyne and camera combination in an urban setting
into groups of similar appearance.
The remainder of this chapter is organised as follows. In Section 4.2 we discuss

some work related to the content of this chapter. Following that in Section 4.3 we
present our novel clustering algorithm. In Section 4.4 we evaluate the method in
different experiments before concluding with a summary of the chapter’s content
in Section 4.5
The work presented in this chapter was previously published in IROS 2013 (Ott

and Ramos, 2013a).

4.2 Related work

In machine learning, there have been several extensions to affinity propagation
addressing hierarchical clustering. Xiao et al. (2007) propose a greedy hierarchical
model in which each subsequent layer is based on the exemplars of the previous
layer. The method proposed by Givoni et al. (2011) uses a graphical model
which connects subsequent layers, showing it can outperform the simple greedy
approach. A two-layer hierarchical model is proposed by Wang et al. (2013).
Their method jointly finds exemplars and associated clusters. These last two
methods derive a set of update rules from a graphical model. In contrast to these
our work uses a lateral rather then a hierarchical model. It is, however, also based
on a graphical model from which we derive message updates.
There are also other methods designed to cluster data from multiple sources.

Zhang et al. (2004) propose a Markov random field model with mutual infor-
mation as potential functions to cluster data with multiple modalities. Another
method, based on spectral clustering, was proposed by Bekkerman and Jeon
(2007) in which a k-partite graph based on the input data is built. This graph is
then used to derive the matrices needed by spectral clustering.
In another line of research, the combination of different sensor modalities has

been shown to improve perception performance. Triebel et al. (2012) process
point cloud data into a mesh and compute features to segment scenes and iden-
tify objects in the scene. Jebari and Filliat (2012) performed object segmentation
by combining depth and colour features of superpixels with a Markov random
field. Schoenberg et al. (2010) presented another method employing a Markov
random field to cluster RGB-D data in order to segment urban scenes. In Howard
et al. (2006) texture and geometric features are used to learn terrain type and
traversability from stereo camera data. The clustering of these features is per-
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Figure 4.1: The messaging structure for (a) affinity propagation and (b) layered
affinity propagation. The Q factor node is in a sense an augmented
version of the E factor node of the original affinity propagation.
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Ĩ1

Ĩi
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Figure 4.2: The complete factor graph used in layered affinity propagation. The
left side shows the L data layers while the right side shows the merging
layer.

formed using a distance function that weights the different features. A different
approach to learning terrain traversability is taken by Sun et al. (2005) who use
shape and colour as features. Those are then clustered using an ad-hoc clustering
method based on the feature similarity. Katz et al. (2010) use a linear weighted
combination of visual and laser stamps to detect dynamic obstacles in the en-
vironment. All of these methods require the user to manually define how the
different features are to be combined. Our method, in contrast, only requires the
definition of features for each data source separately. How these are combined is
a task automatically solved by the algorithm.

4.3 Layered affinity propagation

The idea behind our algorithm is to allow the data of each sensor to be clustered
individually, in so called data layers, while imposing the constraint that the so-
lution of each of these layers is identical. During optimisation this will lead to
trade-offs where some layers have to choose suboptimal solutions to improve the
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overall solution. The cost function we wish to optimise is an extension of the one
used by affinity propagation and has the following form:

C({x:
ij, x̃ij}) =

∑
i,j,l

Slij(xlij) +
∑
i,l

I li(xli:) +
∑
i

Ĩi(x̃i:) +
∑
j,l

Ql
j(xl:j, x̃:j) , (4.1)

where xlij is the binary assignment variable between point i and j in data layer
l, x̃ij is the binary variable between point i and j in the merging layer. The
merging layer is responsible for enforcing that the data layers agree on a common
solution. The different terms of the energy function are defined as follows:

Slij =

s
l
ij ifxlij = 1

0 otherwise
(4.2)

I li(xli:) =

0 if ∑j x
l
ij = 1

−∞ otherwise
(4.3)

Ĩi(x̃i:) =

0 if ∑j x̃ij = 1

−∞ otherwise
(4.4)

Ql
j(xl:j, x̃:j) =

0 if xljj = maxi xlij ∧ xljj = xkjj∀l, k
−∞ otherwise

. (4.5)

These constraints can be interpreted as follows. I li and Ĩi ensure that each point
is assigned to only one exemplar in the data and merging layer respectively. Ql

j

connects the individual data layers with the merging layer and ensures that (i)
only valid exemplars are selected and (ii) that the same exemplars are chosen
by all layers. We can represent the cost function as a factor graph, as shown in
Figure 4.2. The left part of the graphical model shows the data layers which do
not communicate with each other directly. Each of these data layers is connected
to the merging layer, shown on the right side of the model. The different mes-
sages exchanged in this model are displayed in Figure 4.1b, the original affinity
propagation messages are shown in Figure 4.1a for comparison.
Comparing the messages exchanged by affinity propagation and layered affinity

propagation we can see that the data layers L are very similar to standard affinity
propagation. Both methods have a factor node I which ensures that every data
point is assigned to exactly one cluster. The difference comes from the Q factor
node, which replaces the E factor node. This factor enables communication be-
tween the data layers and the merging layer. The role though stays the same with
the addition that the exemplar consistency constraint is enforced over the entire
network. The merging layer has a few more differences as it merges the informa-
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tion from all data layers through the Q nodes into its own cluster assignments.
It also accesses the similarities S:

ij of all data layers. While the model allows the
values of S:

ij to differ between the data layer and the merging layer we have kept
the values identical. The merging layer uses the information from the data layers
to come up with its own decision which is propagated back to the data layers and
thus information is shared between all layers. All this is encoded in the energy
function Eq. (4.1) which we optimise again by finding its MAP assignments.
The update messages are derived in the same way they are derived for affinity

propagation. It involves the computation of the difference in settings as well as
simplifications based on the constraints. This results in the following messages
for the data layers:

slij = Slij (4.6)
βlij = slij + αlij (4.7)
ηlij = −max

k 6=j
βlik (4.8)

ρlij = slij + ηlij (4.9)

αlij = min
[
0, ρljj + τ ljj +

∑
k/∈{i,j}

max(0, ρlkj) +
∑
k 6=j

max(0, τ lkj)
]

(4.10)

αljj = τ ljj +
∑
k 6=j

max(0, ρlkj) +
∑
k 6=j

max(0, τ lkj) . (4.11)

While the messages of the merging layer have the following form:

β̃ij =
∑
t

stij +
∑
t

φtij (4.12)

η̃ij = −max
k 6=j

β̃ik (4.13)

τ lij = η̃ij +
∑
t

stij +
∑
t6=l

φtij (4.14)

φlij = min
[
0, τ ljj + ρljj +

∑
k/∈{i,j}

max(0, τ lkj) +
∑
k 6=j

max(0, ρlkj)
]

(4.15)

φljj = ρljj +
∑
k 6=j

max(0, τ lkj) +
∑
k 6=j

max(0, ρlkj). (4.16)

These messages can be further simplified through substitution, yielding:

ρlij = slij + ηlij

= slij −max
k 6=j

βlik

= sij −max
k 6=j

(
slik + αlik

) (4.17)
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Algorithm 10: Layered affinity propagation
Input: Similarity matrices Sl
Output: Exemplars e and assignments a

1 for l ∈ L do
2 ρlij, τ

l
ij, α

l
ij, φ

l
ij ← 0

3 end
4 repeat
5 for l ∈ L do
6 ρlij ← sij −maxk 6=j

(
slik + αlik

)
7 αlij ← min

[
0, ρljj + τ ljj +∑

k/∈{i,j}max(0, ρlkj) +∑
k 6=j max(0, τ lkj)

]
8 end
9 for l ∈ L do
10 τ lij ←

∑
t s
t
ij −

∑
t6=l φ

t
ij + maxk 6=j

(∑
t s
t
ij +∑

t φ
t
ij

)
11 φljj ← ρljj +∑

k 6=j max(0, τ lkj) +∑
k 6=j max(0, ρlkj)

12 end
13 until convergence
14 e ← points for which ∑l(τ ljj + φljj) > 0 holds
15 ai ← assign point i to exemplar e satisfying argmaxe

∑
l(τ lie + φlie)

16 return e, a

τ lij =
∑
t

stij +
∑
t6=l

φtij + η̃ij

=
∑
t

stij −
∑
t6=l

φtij + max
k 6=j

(
β̃ik
)

=
∑
t

stij −
∑
t6=l

φtij + max
k 6=j

(∑
t

stij +
∑
t

φtij

)
.

(4.18)

The pseudo code of the algorithm is shown in Algorithm 10. First, all messages
are initialised to 0. Next, we update the local data layer messages ρlij and αlij be-
fore merging the results by computing τ lij and φlij. These two steps are performed
until we achieve convergence. Convergence is achieved when the net similarity
stays stable over a few iterations. The final solution is extracted by first finding
the exemplars as the points for which ∑l

(
τ ljj + φljj

)
> 0. The remaining points

are then assigned to the exemplar e which satisfies argmaxe
∑
l

(
τ lie + φlie

)
.

The algorithm requires O(5LN2) storage for the messages and similarities. The
runtime is O((L+1)N2) per iteration where L is the number of data layers and N
is the number of data points, as we need to run affinity propagation for every layer
and the merging layer. Note that the L data layers can all be run in parallel as
they do not influence each other directly. With the ubiquity of multi-core CPUs
distributing the computation of message updates over multiple cores should allow
for significant reductions in runtime.
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4.4 Experiments

In this section we evaluate the proposed method in two different applications.
First we demonstrate that layered affinity propagation (LAP) can be used to
perform scene segmentation on Kinect data. Next, we cluster data obtained from
a Velodyne and camera pair. We compare our method against affinity propagation
using only colour or depth information as well as k-means using a combined colour
and depth feature vector. In all experiments the self-similarity values Sjj were
set to θ ·median(S), θ ∈ [2, 10]. In practice this results in an adequate number of
clusters without favouring any single point in the exemplar choice. Convergence
of affinity propagation is achieved once the similarity score of the assignments is
stable over a number of iterations, 20 in our case. In the experiments convergence
was never an issue and typically achieved after 100 to 200 iterations.
In both experiments the ground truth required for the evaluation using V-

Measure was obtained by manually labelling the data. The labels represent the
class of an observation rather then individual instances, as we are interested in the
ability to group the data into larger concepts as opposed to recognizing specific
objects.

4.4.1 Indoor RGB-D segmentation

In this experiment we evaluate how well combining different features using LAP
performs at segmenting scenes captured with a Kinect. The Kinect provides
us with dense depth and colour information with a 1:1 mapping between depth
and colour pixels. We start by over-segmenting the data by extracting super
pixels from the image using SLIC (Achanta et al., 2012). From these super
pixels we extract colour and depth features which we subsequently cluster to
obtain the final segmentation. In this experiment we use LAB colour histograms
and average surface normals as our features. The similarity values required by
affinity propagation are computed using the Bhattacharyya distance for colour
histograms and angular difference between vectors for the mean surface normals.
The features and similarity measures used are summarised in Table 4.2.
k-means operates directly on the two histograms and is set to find 10 clusters.

For a more direct comparison to k-means we additionally run affinity propagation
with a similarity matrix obtained from the Euclidean distance between the feature
histograms. For both k-means and affinity propagation we choose reasonable
parameters but no search for the optimal parameter set is performed, as this
would not demonstrate the typical performance of the methods. To see how
clustering methods perform in comparison to dedicated segmentation approaches
we also use colour and smoothness based region growing methods.
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Figure 4.3: Exemplary segmentation results for three different scenes. From top
to bottom we have: raw image, LAP, colour affinity propagation, ge-
ometry affinity propagation, k-means, colour based region growing
and spatial region growing. The colours indicate the cluster assign-
ments made.
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Method V-Measure Homogeneity Completeness
Scene 1

LAP 0.48 0.49 0.47
Colour AP 0.32 0.36 0.29
Geometry AP 0.52 0.53 0.51
Combined AP 0.41 0.51 0.34
k-means 0.36 0.46 0.29

Scene 2
LAP 0.56 0.55 0.57
Colour AP 0.40 0.36 0.46
Geometry AP 0.45 0.41 0.51
Combined AP 0.54 0.57 0.52
k-means 0.52 0.50 0.54

Scene 3
LAP 0.44 0.45 0.44
Colour AP 0.36 0.36 0.36
Geometry AP 0.36 0.30 0.44
Combined AP 0.45 0.47 0.44
k-means 0.45 0.43 0.48

Overall
LAP 0.48± 0.09 0.49± 0.10 0.47± 0.09
Colour AP 0.40± 0.09 0.40± 0.10 0.40± 0.10
Geometry AP 0.43± 0.13 0.41± 0.14 0.45± 0.14
Combined AP 0.43± 0.10 0.46± 0.12 0.40± 0.12
k-means 0.41± 0.06 0.48± 0.10 0.37± 0.08

Table 4.1: V-Measure, homogeneity and completeness scores for the four methods
evaluated for the three scenes shown in Figure 4.3 as well as all the
recorded scenes.
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Figure 4.4: Clustering statistics for the results shown in Figure 4.3. The first
column contains ground truth labels for each of the scenes while the
four plots to the right show the ground truth label distribution in
the clusters for each of the four methods used. Each bar represents a
single cluster and visualises the number of data points in the cluster
via its height. Homogeneity of a cluster is visualised by the number
of different colours in the bar. Completeness can be assessed by the
distribution of a single colour over all clusters

We collected several scenes in a typical office environment containing chairs,
books, binders, desks, shelves, computers, etc. Typical results for both clustering
and region growing methods are shown in Figure 4.3. Each row contains the
results obtained with the method shown in the first column. The different colours
in the images indicate the segmentation produced by the method.
One big difference between clustering and region growing methods is that typ-

ically clustering methods do not consider spatial closeness and thus may group
spatially distant but similar objects together. This can be seen in the second
scene with the grey drawers or table surfaces in the third scene. Whether or not

Data Type Feature Similarity Measure
Indoor RGB-D

Colour image LAB histograms Bhattacharyya distance
Pointcloud Surface normals Angular vector difference

KITTI
Colour image LAB histograms Bhattacharyya distance
Pointcloud Normal histograms Bhattacharyya distance

Table 4.2: Features and similarities used with the indoor RGB-D and KITTI
datasets.
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this is a desirable property depends on the application. However, adding spa-
tial connectivity information into the clustering system would allow it to exhibit
a more region growing like behaviour. Adapting a region growing approach to
behave more like clustering methods though is not possible.
Figure 4.3 shows quantitative evaluation of results obtained with the different

clustering methods in three scenes. Looking at colour AP and geometry AP it
is obvious that the clusters they find correspond to the features used. However,
this is problematic as for example the depth feature is unable to distinguish
between the surface of a table and the floor. From the k-means results we see
how having both modalities improves the results. However, the choice of the
number of clusters can have a big impact on the result as it can lead to under
or over segmentation. If we now look at results obtained with LAP we can
see that clusters adhere well to object boundaries with most larger areas being
successfully clustered as a single region when compared to k-means which often
ends up splitting them. The numerical evaluation using V-Measure (Rosenberg
and Hirschberg, 2007) in Table 4.1 shows a general trend where LAP outperforms
k-means while colour AP and geometry AP come in last. Comparing k-means to
Combined AP, which uses the Euclidean distance metric on the feature vectors
used by k-means, we can see how AP outperforms k-means even when using the
same metric. However, LAP is still able to improve on these results indicating
that a more principled way of combining the data is beneficial. Looking at the
individual results of the three scenes we can see that geometry AP performs
better when the scene is composed of a few large and distinct areas, as is the case
in scene one. This is not always beneficial though, as we see in scene 3, where
the book shelve is better segmented by colour AP while geometry AP simply
merges it into the wall. These points show how useful it can be to merge multiple
different sensor modalities which is also reflected by the scores obtained by LAP.
For a more detailed analysis of the results we visualise the size, homogeneity

and completeness of each cluster in Figure 4.4. Each bar represents a single
cluster with the distribution of true labels in it, given by the labelled image to
the left. The height indicates the cluster’s size while the distribution of true
labels within a bar represents its homogeneity. A cluster’s completeness can be
assessed by the distribution of a single label over all bars. These plots show how
geometry AP tends to form a few large clusters which capture the major surface
normals in the environment which explains the tendency to under segment scenes.
For colour AP we can observe how most clusters contain multiple different labels
such as the second cluster in the second scene which contains both the chair and
floor. This shows how colour AP fails to separate areas that appear similar based
on colour histograms. The k-means results exhibit a more uniform size then the
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Figure 4.5: Visualisation of exemplary point clouds of the KITTI dataset coloured
using information from the camera images.

other methods with a mixture of very homogeneous clusters and mixed clusters.
Finally, LAP produces uniform clusters for large areas in the scenes and at times
collapses multiple small classes into a single cluster.
Observing the results of the two region growing methods we see that they

produce cleaner results compared to the clustering methods. Still, each have their
own set of drawbacks. The colour based version is prone to oversegmentation if
there is no direct connectivity between components which is easily caused by
occlusions. The smoothness based version has the same need for connectivity but
is much more sensitive to a good smoothness threshold choice. A different set
of thresholds could potentially provide better results for the wall in scene three
though this would cause other parts to be undersegmented.

4.4.2 KITTI dataset

The KITTI dataset (Geiger et al., 2012) is designed as a vision benchmark but
also provides calibrated Velodyne and camera data recorded in urban environ-
ments. This provides us with the same data modalities as the Kinect, depth
and colour, but at different densities and no direct correspondence between the
two modalities. Figure 4.5 shows the type of coloured point clouds this dataset
provides us with. In this experiment we are not clustering raw point clouds but
rather segments extracted from these. To this end we segment process the data
as follows:

1. remove the ground plane from the point cloud;

2. find segments in the point cloud using Euclidean distance clustering;

3. extract image parts corresponding to the point cloud segment.
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Figure 4.6: Exemplary image data corresponding to point cloud segments ex-
tracted from the raw Velodyne data. Shown are cars, pedestrians,
cyclists and wall segments.

This provides us with 3D point clouds with associated colour information. From
this data we select segments which occur frequently, i.e. cars, cyclists, pedestri-
ans and wall segments. Examples of such segments are depicted in Figure 4.6
which shows the variability the data has in orientation, posture, colour, and size,
both within and between classes. From this collection of segments we choose
random subsets to cluster. The features we extract, listed in Table 4.2, are colour
histograms and surface normal histograms. Bhattacharyya distance is used to
compute pairwise similarities. We show the average results obtained from 20
runs in Table 4.3. We can see how combining the two modalities with LAP im-
proves the results. The colour and geometry based affinity propagation methods
produce decent results but are outperformed by LAP. k-means on the other hand
struggles on this data set. Adjusting the number of clusters could improve the
result somewhat but no single value would work for all runs. This reinforces
the importance of methods that select the appropriate number of clusters au-
tomatically. Another important observation is the high homogeneity score of
LAP which means that using hierarchical methods can easily further improve the
results. High homogeneity indicates that most clusters consist of a single type
of object and therefore merging them with an hierarchical method will produce
clusters that are more complete without reducing the homogeneity.
To better understand the results we show segments successfully assigned to the

same cluster by LAP in Figure 4.7. This shows how cars, pedestrians and cyclists
are grouped together even though they appear different in colour and posture.
While at first this may be counter intuitive we have to remember that affinity
propagation optimises a global cost function and as such is influenced by within
cluster similarity as well as inter cluster dissimilarity. For example cars tend to use
a single colour and have one or two strong normals, whereas a pedestrian will have
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Figure 4.7: Examples of successful clustering results obtained with LAP. The in-
dividual groups show cars, pedestrians and cyclists respectively clus-
tered together despite their different appearances.

Figure 4.8: This shows one of the more common clustering mistakes, the side view
of a car being clustered together with wall segments. Since only the
planar side of the van is visible and both walls and van have rather
uniform colour distributions this type of error is not surprising.

multiple main colours and more evenly distributed normals. Thus by optimising
both the similarity within a cluster as well as the dissimilarity between clusters
the algorithm is capable of finding the solutions shown. In Figure 4.8 we show
an instance where the clustering failed to separate a van from wall segments.
Since only the side of the van is visible it is easy to see why these segments
were grouped together. While we ideally would like the clustering to provide us
with four clusters representing our four classes it is unrealistic to achieve this
directly. However, the homogeneous nature of LAP clusters should allow us to
use hierarchical methods to improve the results.

4.4.3 Convergence behaviour

To investigate the impact on convergence of the more complicated graphical model
of LAP compared to that of standard AP we compare the evolution of the solution
energy as the number of iterations increases. Figure 4.9 shows the energy for both
LAP and AP on data from the Kinect experiment. Looking at the results for LAP
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Method V-Measure Homogeneity Completeness
LAP 0.41± 0.01 0.82± 0.02 0.28± 0.01
Colour AP 0.35± 0.01 0.66± 0.02 0.26± 0.01
Geometry AP 0.37± 0.01 0.67± 0.02 0.26± 0.01
k-means 0.14± 0.02 0.19± 0.02 0.11± 0.01

Table 4.3: Average V-Measure, homogeneity and completeness scores with stan-
dard deviation of 20 clustering runs. LAP has the best overall V-
Measure score but also produces much more homogeneous results. This
is important as it indicates that further hierarchical processing is likely
to improve the results.
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Figure 4.9: This plots shows the energy of the solution over iterations of both
LAP (left) and AP (right) on data from the Kinect experiment. In
the case of LAP the energies for the merging layer as well as the two
data layers for colour and geometry data. While the energy values
of the two methods can not be compared, both LAP and AP exhibit
similar curves and converge to a solution in a reasonable amount of
iterations.

we can see that the two modalities, colour and geometry, have different levels of
improvements. While colour improves quite drastically the geometry based layer
improvements are less pronounced. However, the two data layers and the global
merging layer all converge together to a stable solution in about 70 iterations.
Comparing this to AP, which uses a concatenated feature vector of colour and
geometry data, we can see that it requires around 60 iterations but has a similar
convergence pattern otherwise. This example of typical behaviour shows that
LAP tends to converge in a similar number of iterations as standard AP does
with all parts of the model converging. While the energy values are not directly
comparable the overall shapes of the curves can be compared.
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4.5 Summary

In this chapter we presented a novel clustering approach that combines informa-
tion from multiple sensors in a principled way. The approach enables the user
to define features that are appropriate for each sensor individually, without hav-
ing to worry about how to best combine them. In experiments we have shown
that this approach can be used to perform segmentation by combining colour
and depth information of a Kinect. In a second experiment we evaluated the
performance of the method when clustering point cloud segments with colour
information obtained in urban scenes. While the experiments concentrated on
depth and colour information nothing prevents the use of data from other sen-
sors, such as accelerometers or hyperspectral cameras for example.
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Chapter 5

Joint clustering and outlier detection

5.1 Introduction

The data provided by sensors in robotics always contains noise and outliers which
can stem from invalid observations, malfunctioning sensors or other unforeseen
events. Typically, the goal is to remove such observations during processing as
they can cause problems. A commonly used approach to this end is RANSAC
(RANdom SAmple Consensus) (Fischler and Bolles, 1981), which attempts to fit
a model to a subset of the dataset which contains outliers. For example, in visual
odometry matches between frames are typically subjected to RANSAC filtering
to remove matches that do not fit the assumed model.
Outliers, however, can also indicate a novel process and as such can provide

important new information. For long-term autonomy it is expected that changes
in the environment are initially identified as outliers. The methods presented so
far did not attempt to handle outliers separately. Here we propose a novel method
that handles clustering and outlier selection in a unified manner. The outputs
of the method are both the clusters as well as the outliers found in the data.
This is important as not only can outliers be useful later on but also improve the
robustness of the clustering method.
In this chapter we present an integer program formulation for joint clustering

and outlier selection. Two algorithms are proposed to solve this optimisation
task. The resulting algorithms require distance measurements between pairs of
points as well as the number of outliers ` to be found. The methods proposed
are: (i) an extension to affinity propagation (Frey and Dueck, 2007) for clustering
and outlier detection (APOC) and (ii) a Lagrangian duality relaxation algorithm
to solve the same optimisation problem (LR). The main contributions of this
chapter are:

• formulation of the clustering with outlier selection problem as an integer
program;

• extension of affinity propagation to solve the integer program;

• a scalable algorithm based on the Lagrangian duality;
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• evaluation on synthetic and real-world data sets.

The remainder of this chapter is structured as follows. In Section 5.2 we present
related work before we present the general problem and two algorithms for solving
the problem in Section 5.3. In Section 5.4 we evaluate the methods on both
synthetic and real datasets. Finally, Section 5.5 concludes this chapter with a
short summary.
The work presented in this chapter was previously published in NIPS 2014 (Ott

et al., 2014).

5.2 Related work

Clustering and outlier detection are often studied as two separate problems (Chan-
dola et al., 2009). However, it is natural to consider them simultaneously, as
outliers can have a disproportionate impact on the location and shape of clusters,
which in turn can help to identify, contextualise and interpret outliers.
The field of robust statistics studies the design of statistical methods which

are less sensitive to the presence of outliers (Huber and Ronchetti, 2008). For
example, the median and trimmed mean estimators are far less sensitive to out-
liers than the mean. Similarly, versions of principal component analysis (PCA)
have been proposed (Croux and Ruiz-Gazen, 1996; Wright et al., 2009) which
are more robust against model misspecification. An important primitive in the
area of robust statistics is the notion of minimum covariance determinant (MCD)
(Rousseeuw, 1984). The objective is to identify a subset in a multivariate dataset
of n points that minimises the determinant of the variance-covariance matrix
over all subsets of size n − `, given a user defined value of `. The resulting
variance-covariance matrix can be integrated into the Mahalanobis distance and
used as part of a chi-square test to identify multivariate outliers (Rousseeuw and
Driessen, 1999).
In theoretical computer science similar problems have been studied in the con-

text of clustering and facility location. For example, Chen (2008) proposes a
constant factor approximation algorithm for the k-median with outliers problem.
The idea is to minimise the cost of k-median clustering by removing ` points
from a dataset with n points. Charikar et al. (2001) have proposed a bi-criteria
approximation algorithm for the facility location with outliers problem. While of
theoretical interest, none of these algorithms are amenable to a practical imple-
mentation on large data sets.
Robustness of clustering methods in general is discussed in (Garcia-Escudero

et al., 2010; Hennig, 2008). They provide a good theoretical overview about the
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conditions under which clustering methods can deal with noise or outliers. How-
ever, it is difficult to determine “a priori” if data exhibits the required properties.
More recently, Chawla and Gionis (2013) have proposed k-means-- a practical

and scalable algorithm for the k-means with outlier problem. The method is a
two step approach where in each iteration of standard k-means, the ` points with
the largest distance to their centroid are ignored in the next round of k-means.
However, the algorithm inherits the weaknesses of classical k-means, i.e., (i) the
requirement of setting the number of clusters k and (ii) initial selection of the
k centroids. The trimmed k-means (Cuesta-Albertos et al., 1997) algorithm is a
special case of k-means-- with k = 1.
In data mining Knorr and Ng (1997) proposed a definition of distance-based

outliers which relaxed strict distributional assumptions and was readily general-
isable to multi-dimensional data sets. Following Knorr and Ng, several variations
and algorithms have been proposed to detect distance-based outliers (Bay and
Schwabacher, 2003; Ramaswamy et al., 2000). However, the outliers detected by
these methods are global outliers, i.e., the “outlierness” is with respect to the
whole dataset. Breunig et al. (2000) have argued that in some situations local
outliers are more important than global outliers and cannot be easily detected
by standard distance-based techniques. They introduced the concept of local
outlier factor (LOF ) which captures how isolated an object is with respect to
its surrounding neighbourhood. The concept of local outliers has subsequently
been extended in several directions (Chandola et al., 2009; Chawla and Sun, 2006;
Papadimitriou et al., 2003).
In robotics, outliers are often considered a nuisance and methods typically

attempt to filter them out with methods such as RANSAC. For example, in visual
odometry the matching process is made robust by using RANSAC to remove
wrong matches (Nistér et al., 2004). To obtain a robust place recognition method
Olson (2009) uses Single Cluster Graph Partitioning (SCGP) (Olson et al., 2005),
as an alternative to RANSAC, to reject outliers in local matches to create a single
high quality global match. Paul and Newman (2011) proposed a system based
on latent Dirichlet allocation (LDA) to identify the most surprising images in
order to improve the model for these specific images. Girdhar et al. (2014b)
use a realtime online spatiotemporal topic modelling technique (Girdhar et al.,
2014a) to build a terrain representation based on the robot’s observations. This
model is then used to plan paths of high information gain based on metrics such
as word and topic perplexity. In both cases these perplexing observations can
be considered outliers in the observed dataset as the model struggles to explain
them.
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5.3 Optimisation formulation

5.3.1 Integer program

Given an assignment cost matrix dij, cluster creation costs cj, and the number of
outliers ` we define the task of clustering and outlier selection as the problem of
finding the assignments to the binary exemplar indicators yi, outlier indicators oi
and point assignments xij that minimises the following cost function:

minimise
∑
j

cjyj +
∑
i

∑
j

dijxij (5.1a)

subject to xij ≤ yj (5.1b)
oi +

∑
j

xij = 1 (5.1c)

∑
i

oi = ` (5.1d)

xij, yj, oi ∈ {0, 1}. (5.1e)

The above constraints enforce valid solutions, i.e.:

• points can only be assigned to valid exemplars (Eq. (5.1b));

• every point must be assigned to exactly one other point or be declared an
outlier (Eq. (5.1c));

• exactly ` outliers have to be selected (Eq. (5.1d));

• only integer solutions are allowed (Eq. (5.1e)).

This formulation describes the facility location problem (Hamacher and Drezner,
2002) with the addition of outlier selection (FLO). Optimising this cost function
automatically selects the optimal number of clusters as well as the most likely
outliers. This formulation can be directly solved using linear programming pack-
ages such as CPLEX. We will refer to this solution as FLOLP , the optimal LP
solution.
In the following we present two different methods to solve this optimisation

problem. The first method is an extension to affinity propagation while the
second one exploits the Lagrangian duality formulation of the original problem.

5.3.2 Affinity propagation outlier clustering (APOC)

The extension to affinity propagation, based on the binary variable model (Givoni
and Frey, 2009) solves the integer program of Section 5.3.1 by representing it with
the factor graph shown in Figure 5.1a. The factor graph consists of two parts.
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The left side is identical to AP, with the difference that it is connected to the
right side responsible for the selection of outliers. The constraints of the integer
program Eq. (5.1a) are encoded by the following energy function:

max
∑
ij

Sij(xij) +
∑
j

Ej(x:j) +
∑
i

Ii(xi:, oi:) +
∑
k

Pk(o:k), (5.2)

where

Sij(xij) =

−ci if i = j

−dij otherwise
(5.3)

Ii(xi:, oi:) =

0 if ∑j xij +∑
k oik = 1

−∞ otherwise
(5.4)

Ej(x:j) =

0 if xjj = maxi cij
−∞ otherwise

(5.5)

Pk(o:k) =

0 if ∑i oik = 1

−∞ otherwise
(5.6)

with xi: = xi1, . . . , xiN . Due to the nature of affinity propagation we maximise
the energy function and use negative distances. The three constraints can be
interpreted as follows:

1. 1-of-N Constraint (Ii). Each data point has to choose exactly one exemplar
or be declared as an outlier (Eq. (5.1c)).

2. Exemplar Consistency Constraint (Ej). For point i to select point j as its
exemplar, point j must declare itself an exemplar (Eq. (5.1b)).

3. Select ` Outliers Constraint (Pk). For every outlier selection exactly one
point is assigned (Eq. (5.1d)).

These constraints are enforced by associating an infinite cost with invalid con-
figurations, resulting in an obviously suboptimal solution. As with all affinity
propagation based methods we find the maximum a posteriori settings (MAP)
using the max-sum algorithm (Kschischang et al., 2001). The message update
rules required for this are obtained by using the above constraints to simplify the
general update messages (Equations (2.13) and (2.14)).
The messages exchanged by APOC are shown in Figure 5.1b. We can see

that each node xij is connected to three factors: Sij, Ii and Ej, whereas outlier
nodes oik are connected to only two, Ii and Pk. Messages ρij, βij, τik and χik are
sent from nodes to factors and derived using Eq. (2.13). The other five messages
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(b) Messages

Figure 5.1: (a) Graphical model of APOC, the left part is responsible for the
clustering of the data, while the right part is responsible for the out-
lier selection. These two parts interact with each other via the I
factor nodes. (b) Messages exchanged by APOC, xij represents the
clustering choice whereas oik represents the outlier choice.

sij, αij, ηij, λik and ωik are derived with Eq. (2.14) since they are sent from a factor
to a node. Since only binary variables are involved, it is sufficient to compute the
difference between the two variable settings. Combining and simplifying these
messages we obtain the final set of update equations as:

ρij = sij + min
[
−max

t6=j
(αit + sit),−max

t
(ωit)

]
, (5.7)

αij =


∑
t6=j max(0, ρtj) i = j

min
[
0, ρjj +∑

t/∈{i,j}max(0, ρtj)
]

i 6= j
, (5.8)

λik = min
[
−max

t
(αit + sit),−max

t6=k
(ωti)

]
, (5.9)

ωik = −max
t6=i

(λtk). (5.10)

With the messages defined we can now outline the complete algorithm, as
shown in Algorithm 11. We start by initialising the messages αij, ρij and λik

to 0 and ωij to the median of S. Once the messages are initialised they are
updated in turn with damping until convergence is achieved. Typically this is
the case when the energy of the solution is stable over a few iterations. Outliers
are determined as the ` points with the largest values of maxk(λik + ωik). From
the remaining points, the exemplars are then selected as the points for which
(αii + ρii) > 0 is true. All other points i are assigned to the exemplar e satisfying
argmaxe(αie + ρie).

5.3.3 Lagrangian duality (LR)

Another way to solve Eq. (5.1a) is via the Lagrangian dual function. The La-
grangian dual is generally a lower bound on the primal problem. However, in this
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Algorithm 11: Affinity propagation with outlier selection
Input: Similarity matrix S and number of outliers `
Output: Exemplars e, assignments a, and outliers o
// Initialise messages

1 foreach i, j ∈ {1, . . . , N}, k ∈ {1, . . . , `} do
2 αij, ρij, λik ← 0
3 ωik ← median(S)
4 end

// Perform clustering and outlier selection
5 repeat
6 ρij ← sij + min [−maxt6=j(αit + sit),−maxt(ωit)]

7 αij ←

∑
t6=j max(0, ρtj) i = j

min
[
0, ρjj +∑

t/∈{i,j}max(0, ρtj)
]

i 6= j

8 λik ← min [−maxt(αit + sit),−maxt6=k(ωti)]
9 ωik ← −maxt6=i(λtk)
10 until convergence

// Extract final solution
11 o ← ` points for which maxk(λik + ωik) holds
12 e ← points for which (αii + ρii) > 0 holds
13 ai ← assign point i to exemplar e satisfying argmaxe(αie + ρie)
14 return e, a, o

case equality can also be proved. Additionally, optimising the dual is easier as
the function is convex and thus has a unique optimum. The dual though is not
differentiable and hence we rely on subgradient based methods.
Dualising the primal cost function Eq. (5.1a) by relaxing the constraint in

Eq. (5.1c) with Lagrange multipliers λ, we obtain the following Lagrangian dual
function:

min
∑
i

(1− oi)λi︸ ︷︷ ︸
outliers

+
∑
j

cjyj +
∑
i

∑
j

(dij − λi)xij︸ ︷︷ ︸
clustering

. (5.11a)

subject to

xij ≤ yi (5.11b)∑
k

ok = ` (5.11c)

0 ≤ xij, yj, ok ≤ 1 ∀i, j, k (5.11d)

We find valid assignments that attempt to minimise Eq. (5.11a) following the
ideas of Bertsimas and Weismantel (2005). The Lagrange multipliers λ act as
a penalty incurred for constraint violation which we try to minimise. From
Eq. (5.11a) we see that the penalty influences two parts: outlier selection and
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clustering. We pick good outliers by selecting the ` points with largest λ as out-
liers, as this removes a large part of the penalty. For the remaining N − ` points
we determine clustering assignments by setting xij = 0 for all pairs for which
dij − λi ≥ 0. To select the exemplars we compute:

µj = cj +
∑

i:dij−λi<0
(dij − λi), (5.12)

which represents the amortised cost of selecting point j as exemplar and assigning
points to it. Thus, if µj < 0 we select point j as an exemplar and set yj = 1,
otherwise we set yj = 0. Finally, we set xij = yj if dij − λi < 0. From this
complete assignment we then compute a new subgradient s[t] and update the
Lagrange multipliers λ[t] as follows:

s
[t]
j = 1−

∑
j

xij (5.13)

λ
[t]
j = max(λ[t−1]

j + u[t]s
[t]
j , 0), (5.14)

where u[t] is the step size at time t computed as

u[t] = u[0]αt α ∈ (0, 1), (5.15)

which is guaranteed to converge (Bertsimas and Weismantel, 2005) if a step func-
tion is used for which the following holds:

∞∑
t=1

u[t] =∞ and lim
t→∞

u[t] = 0, (5.16)

which is the case for the step function in Eq. (5.15). To obtain the final solution
we repeat the above steps until the changes become small enough, at which point
we extract a feasible solution.
The pseudo code in Algorithm 12 shows how to compute the assignment matrix

X, exemplars y, and outliers o with the method described above. The input
required is the current Lagrange multipliers λ, which are first processed to find
the outliers which correspond to the points with the largest λ values. Then a
score indicating the quality of each point as an exemplar is computed. Based on
this score we perform exemplar selections as well as cluster assignments.

Optimality of the Lagrangian duality-based method

In general the Lagrangian dual is a lower bound to the primal problem. However,
as outlined in Section 2.3.1, under certain circumstances the solution to the La-
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Algorithm 12: Lagrange relaxation iteration(λ)
Input: Lagrange multipliers λ
Output: Assignment matrix X, exemplar selections y, outliers o

1 o ← ∅ // Outlier indicators
2 y ← 0 // Exemplar indicators
3 X ← 0 // Assignments

// Selecting outliers
4 foreach i ∈ {1, . . . , N} do
5 if λi one of the L largest values then
6 o ← o ∪ i
7 end
8 end

// Compute exemplar scores
9 foreach j ∈ {1, . . . , N} do
10 µj ← cj
11 foreach i ∈ {1, . . . , N} do
12 if (dist(i, j)− λi) < 0 then
13 µj ← µj + (dist(i, j)− λi)
14 end
15 end
16 end

// Select exemplars and perform assignments
17 foreach j ∈ {1, . . . , N} do
18 if µj < 0 then
19 yj ← 1
20 else
21 yj ← 0
22 end
23 foreach i ∈ {1, . . . , N} do
24 if (dist(i, j)− λi) < 0 ∧ yj = 1 then
25 xij ← 1
26 end
27 end
28 end
29 return X, y, o
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grangian dual can be equivalent to the primal solution. In the following we show
that this is the case for the problem of clustering with outlier detection. Consider
the constraint set L = {(x, y, o) ∈ Rn2+2n|xij ≤ yj ∧

∑
i oi ≤ ` ∀ i, j}. Then the

optimal value of the Lagrangian relaxation problem FLOLR is equal to the cost
of the following optimisation problem:

minimise
∑
j

yjcj +
∑
i

∑
j

xijdij (5.17a)

subject to oi +
∑
j

xij = 1 (5.17b)

xij, yj, oi ∈ conv(L) (5.17c)

where conv(L) is the convex hull of the set L. We now show that L is integral,
i.e.:

conv(L) =
{

(x, y, o) ∈ Zn2+2n|xij ≤ yj ∧
∑
i

oi ≤ ` ∀ i, j
}

(5.18)

This in turn will imply that the solution of FLOLR is equivalent to the linear
program FLOLP . In order to show that L is integral, we establish that the
constraint matrix corresponding to the set L is totally unimodular (TU). For
completeness, we recall several important definitions and theorems from integer
program theory (Bertsimas and Weismantel, 2005; Schrijver, 1998):

Definition 1. A matrix A is totally unimodular if the determinant of every square
submatrix of A has value −1, 0 or 1.

An equivalent definition of total unimodularity and often easier to establish is
captured in the following definition.

Definition 2. A matrix A is TU iff for any subset of rows X of A, there exists
a colouring, or partition, of rows of X, with 1 or -1 such that the weighted sum
of every column (while restricting the sum to rows in X) is -1, 0 or 1.

Theorem 2. Let A be a totally unimodular matrix and b an integral vector. Then
the polyhedron P = {x : Ax ≤ b} is integral.

Proof. Let F = {x : A′x = b′} be a minimal face of P , where A′x ≤ b′ is a
subsystem of Ax ≤ b and A′ has full row rank. Then we may permutate the
coordinates in such a way that A′ = [U V ] for some unimodular matrix U , and[
U−1b

0

]
is an integral vector in F .

From this it follows that every linear program with integer data and totally
unimodular matrix has an integral optimal solution.
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Figure 5.2: Visualisation of the building blocks of the A matrix. The top left is
a n2 × n2 identity matrix which is followed by n row stacked blocks
of n × n negative identity matrices. To the right of those is another
n2 × n block of zeros. The final row in the block matrix consists of
n2 + n zeros followed by n ones.

Theorem 3. Let A be a totally unimodular matrix and let b, c be integral vectors.
Then both problems in the LP-duality equality

max{xTx : Ax ≤ b} = min{yT b : y ≥ 0 and yA = c} (5.19)

have integral optimal solutions.

Proof. Follows from Theorem 2, using the fact that the matrix
I

AT

−AT

 (5.20)

is also totally unimodular.

With these definitions we are now ready to state and prove the main theorem:

Theorem 4. Let L = {(x, y, o) ∈ Zn2+2n|xij ≤ yj ∧
∑
i oi ≤ ` ∀ i, j} be the

constraint set corresponding to the Lagrangian relaxation problem then L is totally
unimodular.

Proof. Consider the constraints

xij ≤ yj ∀ i, j (5.21a)
n∑
i=1

oi ≤ ` (5.21b)

xij, yj, oi ∈ conv(L) (5.21c)

We can express the above constraints in the form Au = b where u is the vector:

u = [x11, . . . , x1n, . . . , xn1, . . . , xnn, y1, . . . , yn, o1, . . . , on]T (5.22)
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and A is a block matrix of the form:

A =
I B 0

0 0 1

 . (5.23)

Here I is an n2×n2 identity matrix, B is a stack of n matrices of size n×n where
each element of the stack is a negative identity matrix, and 1 is a 1× n block of
1’s. See Figure 5.2 for a detailed visualisation.
Using Definition 2 we now prove that A is TU. Take any subset Z of rows of

A. Whether we colour the rows of Z with 1 or -1, the column sum (within Z) of
a column of I will be 1, 0 or − 1. A similar argument holds for columns of the
block matrix 1. Now consider the submatrix B. We can express X as

Z = ∪ni=1,i∈B(Z,:)Zi, (5.24)

where each Zi = {r ∈ Z|Z(r, i) = −1}. Given that B is a stack of negative
diagonal matrices, Zi ∩ Zj = ∅ for i 6= j. Now consider a column j of B. If Zj
has even number of −1′s, then split the elements of Zj evenly and colour one
half with 1 and the other with −1. Then the sum of column j (for rows in Z)
will be 0. On the other hand, if another set of rows Zk has odd number of −1,
colour the rows of Zk alternating with 1 and −1. Since Zj and Zk are disjoint
their colouring can be carried out independently. Then the sum of column j will
be 1 or −1. Thus we satisfy the condition of Theorem 3 and conclude that A is
TU.

Scalable implementation details

In order to enable the algorithm to scale to large datasets we need to consider
the limited availability of computational resources. Most importantly, we can-
not assume that the complete distance matrix can fit into the main memory.
Therefore, we compute the distances between point pairs on the fly. Since this
involves N2 evaluations per iteration it is the most costly part of the method.
However, the evaluation of the distance function can be easily parallelised as
they are independent of each other. In practice with simple distance functions,
such as the Euclidean distance, approximately 75% of the computational time is
spent evaluating the distance function. This percentage will become larger with
more complex distance functions. Another important point is that just as stor-
ing the full distance matrix is not possible, neither is storing the full assignment
matrix X. However, we are only interested in the values where xij = 1, which
is a small portion of the full matrix. Thus we can use standard sparse matrix
implementations to manage the assignment matrix.
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5.3.4 Comparisons

Now that we have presented the different methods we want to give an overview of
the advantages and disadvantages of these. Table 5.1 presents a quick overview of
different properties of the proposed methods which we will discuss in more detail.
First, the speed of APOC and LR clearly outperforms LP by a large margin,
however, other methods such as k-means-- still are faster.
With regards to optimality we know that the optimal solution of the Lagrangian

relaxation FLOLR is bounded by the optimal solutions of the linear program
FLOLP and integer program FLOIP , i.e.:

FLOLP ≤ FLOLR ≤ FLOIP (5.25)

(Bertsimas and Weismantel, 2005). Thus, if LP finds a solution that is integer
it is equivalent to the IP one, i.e. FLOLP = FLOIP . The LR implementation
sacrifices optimality for performance by using discounted updates of the solution
matrix X as well as stopping before converging to a pure integer solution. APOC
has no theoretical guarantees on either convergence or optimality bounds of the
solution. While such guarantees can be given for certain types of structures with
belief propagation (Weiss et al., 2007) it is unclear how they apply to the special
case of APOC. However, in practice both APOC and LR achieve scores very close
to the optimum.
The speed of LP clearly makes it impossible to scale for large datasets with

several thousands of data points, which leaves us with the comparison of APOC
and LR. APOC requires storage for messages and similarities and performs op-
erations which cannot be supported by standard sparse matrix implementations.
As such APOC cannot be made truly scalable. LR on the other hand spends
the majority of its runtime computing distances between pairs of points, a task
that can easily be parallelised. Furthermore the actual assignment matrix can be
stored using standard sparse matrix implementations. Thus LR is a much better
candidate for large scale datasets. Finally, with regards to extensibility LP is the
easiest as the relaxation only modifies the value range of variables. LR is more
involved as there is more freedom in the relaxation of the constraints and the
dual problem needs to be efficiently solved. Affinity propagation is the hardest
modify as it requires very careful choice of constraints which can be modelled
by the graphical model and laborious derivation of update rules, which makes it
difficult to derive solutions to new problems.
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LP APOC LR
Speed −− + +
Optimality ++ + +
Scalability −− − +
Extensibility ++ − +

Table 5.1: Advantages and disadvantages of LP, APOC and LR. See Section 5.3.4
for detailed explanation.

5.4 Experiments

In this section we evaluate the proposed methods on both synthetic and real data.
First, we present experiments using synthetic data to show different properties of
the methods and perform quantitative analysis. Next, we process hurricane GPS
traces to show the applicability of this method to temporal data. In the last two
experiments we process MNIST images as well as images from the “New College”
dataset (Smith et al., 2009).
Both APOC and LR require a cost for creating clusters. In all experiments we

obtain this value as θ ∗ median(xij), θ ∈ [1, 30], i.e. the median of all distances
multiplied by a scaling factor θ which gives equal importance to all points during
exemplar selection. Varying this value impacts the result in a predictable manner,
i.e. a smaller value results in more clusters, though any value in the provided range
will obtain a sensible result.

5.4.1 Synthetic data

We use synthetic datasets to evaluate the performance of the proposed methods
in a controlled setting. We randomly sample k clusters with m points each from
d-dimensional normal distributions N (µ,Σ) with randomly selected µ and Σ. To
these clusters we add ` additional outlier points that have a low probability of
belonging to any of the selected clusters.
We compare APOC and LR against k-means-- using k-means++ (Arthur and

Vassilvitskii, 2007) to select the initial centres. Euclidean distance is used as the
metric for all methods. Unless mentioned otherwise k-means-- is provided with
the exact number of clusters generated, while APOC and LR are required to
determine this automatically.
To assess the performance of the methods we use the following three metrics:

1. Normalised Jaccard index, see Section 2.6.3, measures how accurately a
method selects the ground truth outliers. It is a coefficient computed be-
tween selected outliers O and ground-truth outliers O∗. The final coefficient
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Ground Truth APOC

LD kmeans–

Figure 5.3: Clustering results for a 2D dataset with k = 10, 100 points per cluster
and 100 outliers. APOC and LR accurately detect the clusters and
select appropriate outliers without requiring k as input. k-means--,
provided with the correct value of k, fails to split certain clusters
which results in the selection of non-outliers as outliers. Black crosses
indicate the outliers selected, points of identical colour indicate clus-
ters and the red circles indicate errors made by k-means--.

is normalised with regards to the best possible coefficient obtainable in the
following manner:

J(O,O∗) = |O ∩O
∗|

|O ∪O∗|/
min(|O|, |O∗|)
max(|O|, |O∗|) . (5.26)

2. Local outlier factor (Breunig et al., 2000) (LOF), see Section 2.6.2, measures
the outlier quality of a point. We compute the ratio between the average
LOF of O and O∗, which indicates the quality of the set of selected outliers.

3. V-Measure (Rosenberg and Hirschberg, 2007), see Section 2.6.1, indicates
the quality of the overall clustering solution. The outliers are considered as
an additional class for this measure.

For all the metrics a value of 1 is the optimal outcome.
In Figure 5.3 we present clustering results obtained by the different methods.

Both APOC and LR manage to identify the correct number of clusters and select
accurate outliers. k-means-- on the other hand, even with good initialisation and
correct value for k specified, fails to find the correct clusters, and as a result, finds
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Figure 5.4: The impact of increasing the data dimensionality on the quality of
the clustering and outlier selection quality. APOC and LR provide
similar results while k-means--, provided with the correct k, has more
trouble.

a suboptimal solution. The errors made by k-means-- are highlighted by the red
circles.
We first investigate the influence of the data dimensionality on the results. In

Figure 5.4 it is clear that in general the quality of the solution increases with
higher dimensions. This can be explained by the fact that in higher dimensional
spaces points are farther apart and hence easier to cluster. Looking at k-means--
we can see that it struggles more then the other two methods even though it is
provided with the correct number of clusters. In higher dimensions it achieves
perfect scores for the two outlier centric measures but is unable to always find the
correct solution to the entire clustering problem. Looking at APOC and LR we
observe that both have little trouble finding perfect solutions in high dimensions.
In lower dimensions LR shows a bit more variability compared to APOC. In
general, two dimensional data is the most challenging and thus will be used for
all further experiments.
The number of outliers ` is a parameter that all methods require. Typically,

the correct value of ` is unknown and it is therefore important to investigate
how the algorithms react when the user’s estimate is incorrect. We generate 2D
datasets with 2000 inliers and `∗ = 200 outliers and vary the number of outliers
` selected by the methods. The results in Figure 5.5 show that in general no
method fails completely if the correct value for ` is not provided. Looking at the
Jaccard index we see that if ` < `∗ all methods select only outliers. When ` > `∗

we can see a difference in performance, namely that LR selects the largest outliers
which APOC does to some extent as well, while k-means-- does not seem to be
very specific about which points to select. This difference in behaviour stems
from the fact that APOC and LR optimise a cost function in which removing
the biggest outliers is the most beneficial. Looking at the LOF results we can
see that if we select a small value for ` the scores are low, which is a result of
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Figure 5.5: The impact of number of outliers specified (`) on the quality of the
clustering and outlier detection performance. APOC and LR perform
similarly with more stability and better outlier choices compared to k-
means--. We can see that overestimating ` is more detrimental to the
overall performance, as indicated by the LOF Ratio and V-Measure,
then underestimating it.
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Figure 5.6: The graphs shows how the number of points influences different mea-
sures. In (a) we compare the speedup of both APOC and LR over LP.
(b) compares the total runtime needed to solve the clustering problem
for APOC and LR. Finally, (c) plots the time required (on a log scale)
for a single iteration for APOC and LR.

the metric as opposed to a bad selection of outliers. Selecting more outliers then
the dataset contains causes the quality to drop the higher the value of `. This
is to be expected as we select more and more points that are not true outliers,
thus lowering the LOF score. The gradual decline of the score also indicates
that we initially select true outliers and then progressively select points at the
edge of clusters. LR and APOC again perform similarly with less variability and
better scores compared to k-means--. Finally, V-Measure shows that the overall
clustering results remain accurate even if the number of outliers is misspecified.
For large differences between actual and specified outliers a drop in clustering
performance can be observed. Again, as in the two other metrics, k-means--
exhibits larger variations when compared to APOC and LR which optimise the
same underlying cost function.
Since both APOC and LR are not guaranteed to find the optimal solution we

92



examine how close the solutions obtained are to the optimum. The ground truth
needed for this is obtained by solving the LP formulation in Section 5.3.1 with
CPLEX. This comparison indicates what quality can be typically expected from
the two methods. Additionally, we can evaluate the speed of the two approxima-
tions. We evaluate 100 datasets, consisting of 2D Gaussian clusters and outliers,
with varying number of points. On average APOC obtains an energy that is
96%± 4% of the optimal solution found by LP, LR obtains 94%± 5% of the LP
energy while k-means--, with correct k, only obtains 86%± 12% of the optimum.
These results reinforce the previous analysis; APOC and LR perform similarly
while outperforming k-means--. We now look at the speedup of APOC and LR
over LP, as shown in Figure 5.6 (left). Both methods outperform LP by a large
margin which increases as more points are involved. Overall for a small price in
accuracy the two methods obtain a solution significantly faster.
Next we compare the performance between APOC and LR. Figure 5.6 (middle)

shows the overall runtime of both methods for varying number of data points.
Here we observe that APOC takes less time then LR. However, by observing the
time a single iteration takes, shown in Figure 5.6 c), we see that LR is much faster
on a per iteration basis compared to APOC. In practice LR requires several times
the number of iterations of APOC, which is affected by the step size function used.
Using a more sophisticated method of computing the step size will provide large
gains to LR. Finally, the biggest difference between APOC and LR is that the
former requires all messages and distances to be held in memory. This obviously
scales poorly to large datasets. Conversely, LR computes the distances during
running time and only needs to store indicator vectors and a sparse assignment
matrix, thus using much less memory. This makes LR amenable to processing
large datasets. For example, with single precision floating point numbers, dense
matrices and 10 000 points APOC requires around 2200 MB of memory while LR
only needs 370 MB. Further gains can be obtained by using sparse matrices which
is straight forward in the case of LR but complicated for APOC.

5.4.2 Hurricane dataset

In this experiment we use hurricane GPS trace data from 1970 to 2010 provided
by the National Oceanic and Atmospheric Administration (NOAA). The data
provides a time series of longitude and latitude coordinates for each storm forming
a GPS trace. In order to compare the overall shape of these traces we use the
discrete Fréchet distance (Eiter and Mannila, 1994). Intuitively this measures
the minimal distance required to connect points on two curves being compared,
i.e. structurally similar curves have a low score. Before computing the Fréchet
distance between two curves we move their starting points to the same location.
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(a) Outliers (b) Clusters (c) Clusters

Figure 5.7: Outliers and clusters found in the hurricane data set. In (a) we show
the outliers as two groups: Cape Verde-type hurricanes (thick lines)
and others (dashed lines). In (b) and (c) we display examples of
clusters which all exhibit similar shape albeit not necessarily in the
same position.

This means that we are comparing their shapes and not their global location.
Clustering the 700 traces using the LR method with ` = 20 we obtain clusters
that move in a similar direction, as shown in Figure 5.7 b) and c). Analysing
the outliers shown in Figure 5.7 a) we find that half of them are category 4
and 5 Cape Verde-type hurricanes, shown by the thick stroke. The other half of
the outliers were selected due to either their long life time, unusual motion, or
high destructive power and are shown with dashed line. This demonstrates that
the outliers found by the proposed methods reveal interesting patterns in spatial
temporal data which are not directly apparent.
To better understand the behaviour of LR we plot the value of the λ values

associated with outliers and exemplars in Figure 5.8. One can see how after about
100 iterations the values level out and remain stable. Interestingly the outliers
have higher λ values compared to the exemplars which allows the method to
distinguish between them more easily. Lastly, the outliers have smoother curves,
i.e. less jumps, when compared to the exemplars. This indicates that outliers do
not change significantly whereas exemplars will vary more during the optimisation
process. Overall, stable results are achieved after about a third of the runtime
suggesting that a more sophisticated termination criterion can be used to improve
the rate of convergence.

5.4.3 MNIST dataset

The MNIST dataset, introduced by LeCun et al. (1998), contains 28 × 28 pixel
images of handwritten digits. We extract features from these images by repre-
senting them as 768 dimensional vectors which we reduce to 25 dimensions using
PCA. The point wise distances required by our methods is computed by the L2

norm. In Figure 5.9 we show exemplary results obtained when processing 10 000
digits with the LR method with θ = 5 and ` = 500. Each row in Figure 5.9 a)
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Figure 5.8: Evolution of the λ values of select exemplars and outliers over the
iterations. In both cases we can observe how after about 150 iterations
the values have stabilised. Additionally, outliers have larger λ values
and exhibit less variation compared to exemplars.

and b) shows examples of clusters representing the digits 1 and 4 respectively.
This illustrates how different the same digit can appear and the separation in-
duced by the clusters. Figure 5.9 c) contains a subset of the outliers selected by
the method. These outliers have different characteristics that make them sensible
outliers, such as: thick stroke, incomplete, unrecognisable or ambiguous meaning.
To investigate the influence the cluster creation cost has we run the experiment

with different values of θ. Table 5.2 shows results for values of cost scaling factor
θ ∈ {5, 15, 25, 50} for both LR and APOC and k ∈ {10, 30} for k-means. For LR
there is a clear peak with θ = 15 which produces the best results of any method. If
the cluster creation cost is further increased, performance drops. APOC behaves
differently as it seems to plateau over a wide range of values and only degrade
performance with extreme values. That being said it never reaches the quality of
the LR solution. With k-means we can see that the number of clusters makes a
difference but that number may not reflect the true number of clusters expected.
Observing the results for LR and APOC the number of clusters is always de-

creasing for APOC, whereas it increases and decreases with increasing θ value for
LR. This can indicate that LR is more capable of changing its solution drastically
compared to APOC.
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(a) Digit 1 (b) Digit 4 (c) Outliers

Figure 5.9: Each row in (a) and (b) shows a different appearance of a digit cap-
tured by a cluster. The outliers shown in (c) tend to have heavier
then usual stroke, are incomplete or are not recognisable as a digit.

LR APOC k-means--
θ 5 15 25 50 5 15 25 50 n.a. n.a.
V-Measure 0.52 0.67 0.54 0.44 0.53 0.54 0.54 0.48 0.52 0.58
Homogeneity 0.78 0.74 0.65 0.47 0.82 0.73 0.67 0.54 0.51 0.71
Completeness 0.39 0.61 0.46 0.42 0.39 0.43 0.46 0.45 0.52 0.49
Clusters 120 13 27 14 129 51 32 17 10 30

Table 5.2: Evaluation of clustering results of the MNIST data set with different
cost scaling values θ for LR and APOC as well as different settings for
k-means--. We can see that increasing the cost results in fewer clusters
but as a trade off reduces the homogeneity of the clusters.

5.4.4 Outliers in image dataset

In this section we show the results obtained from performing clustering with
outlier selection on typical robotics data. We use data from the “New College”
dataset (Smith et al., 2009) as well as data collected on the University of Freiburg
campus. Our goal in this experiment is to group images based on the type of
scenery they represent. As such we are not splitting images into smaller patches
but use the entire image directly. Each image is described by an HSV colour and
LBP texture histogram with the distance between histograms computed using
the Bhattacharyya distance, i.e.:

dist(Ia, Ib) = dB(HHSV (a),HHSV (b)) + dB(HLBP (a),HLBP (b)), (5.27)

where dist(Ia, Ib) is the distance between two images, dB(·, ·) the Bhattacharyya
distance between two histograms, HHSV the HSV colour histogram extractor and
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LR APOC k-means--
0.80± 0.08 0.84± 0.14 0.37± 0.08

Table 5.3: Average and standard deviation of the percentage of true outliers cor-
rectly identified by the different methods. LR and APOC clearly out-
perform k-means--. APOC has slightly higher accuracy while LR has
lower variability in the results.

HLBP the local binary pattern histogram extractor.
A big challenge with this type of data is obtaining accurate ground truth.

For this reason we sample a number N of images belonging to the “New College”
dataset and inject a small number ` of images from the “Freiburg” dataset. These
injected images will act as the outliers since they clearly do not belong to the
“New College” dataset. We also do the inverse, i.e. using “Freiburg” as the main
dataset and sample outliers from the “New College” data set. This allows us to
obtain accurate ground truth while still using images typically encountered in
robotics, even if the data is from two different datasets. We sample multiple data
sets processed with k-means--, APOC and LR and measure the accuracy of the
methods at identifying the correct outliers. The average and standard deviation of
the three methods on data sets with N = 2000 and ` = 100 is shown in Table 5.3.
All methods were provided with the correct value of ` and k-means additionally
was provided with k = 15, which is a typical number of clusters found by APOC
and LR in these data sets. From the results we can clearly see how k-means-- has
trouble identifying good solutions which is mainly due to the way clusters and
outliers are more rigidly defined compared to APOC and LR. With APOC and
LR we can see that they perform on similarly. APOC has slightly higher accuracy
but has higher variability compared to LR. From this we can conclude that even
in complex image data with simple features the proposed methods are capable
of selecting the majority of the true outliers added. The fact that the algorithm
is capable of identifying visually distinct outliers even if they form clusters of
their own demonstrates the quality of the methods. The output generated for
a run with inliers drawn from the “New College” dataset and outliers from the
“Freiburg” dataset is shown in Figure 5.11. The images in the bottom right show
samples of the outliers while the other groups show members of the different
clusters. The outliers clearly belong to the “Freiburg” dataset. Investigating
the clusters themselves we can see how the clusters represent different thematic
groups encountered in the “New College” dataset.
Another way to demonstrate the quality of the outliers is to remove images of

a certain type from the original dataset and then slowly add them back to the
dataset and observe how the outliers change. The result of doing this is shown
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Figure 5.10: Samples of clusters and outliers (bottom right) when images from the
“New College” dataset are processed. The clusters capture distinct
aspects while the outliers, consisting mainly of arch ways show an
uncommon and highly distinct concept in the dataset.

in Figure 5.12 where we remove all images containing lawns and gravel walk
ways and then over time add them back. The left most image shows the outliers
selected when all images of the above type have been removed. The middle image
shows the outliers once a handful of the removed images are added back in. As
we can see they are clearly represented as outliers. Finally, the right most image
shows the outliers when all removed images have been added back. The clear
outliers in the middle image have vanished as they have formed their own cluster
and the outliers are mostly back to the type seen in the left most image.
Finally, we show the results obtained for clustering images belonging to the

“New College” dataset. The results are shown in Figure 5.10. The outliers are
shown in the bottom right surrounded by a border while the remaining groups
show members of the different clusters. We can see that most of the outliers
consist of images close to or inside an arch way. These images have very peaked
histograms compared to other images in the dataset. Looking at the clusters
we can see thematically different groups, some of which a human would possibly
merge into a single cluster. The important aspect here is that the outliers tell us
that either more similar images are needed or they can be ignored as they could
otherwise cause issues.
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Figure 5.11: Outliers and samples of cluster members selected by APOC. All
images belonging to the “Freiburg” dataset have been selected as
outliers.

Figure 5.12: Effect of adding a novel type of observation into the system over time.
The left image are the outliers before new observations are added, the
middle image shows the outliers when a few new observations have
been added and the right image are the outliers once all observations
have been added.
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5.5 Summary

In this chapter we presented a novel approach to joint clustering and outlier
selection formulated as an integer program. The proposed optimisation problem
automatically selects the number of clusters while jointly selecting a fixed number
of outliers. We described two algorithms to solve the optimisation problem: (i)
an extension of affinity propagation to outlier selection and (ii) a Lagrangian
duality based relaxation method. For the Lagrangian relaxation based method
we provide a proof of the optimality of the solution, something that is missing in
affinity propagation. In the experiments on synthetic data we show how the joint
optimisation outperforms two stage approaches such as k-means--. The results
also highlight the overall quality of the solutions and resistance to misspecification
of the number of outliers. Additionally, comparing the solutions of APOC and
LR to the optimal solution obtained via linear programming we observe that the
solutions are close to the optimum at a fraction of the computational time. In
the next experiments the methods are applied to real data demonstrating their
ability to cluster and select outliers. In the hurricane dataset the outliers capture
a class of devastating hurricanes with no apparent pattern. Evaluation on the
popular MNIST dataset indicates the capacity to find visually distinct outliers.
Finally, the methods are applied to image data from the “New College” dataset
which demonstrates the power of the method to identify atypical images in a
dataset.
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Chapter 6

Conclusion

This thesis addressed the problem of how to enable a robot to build and main-
tain a model of the environment in a fully unsupervised manner. This problem
was approached using affinity propagation, a clustering algorithm, which was ex-
tended to solve challenges faced by such methods in robotics applications. This
results in methods capable of learning an environment model in real-time while
the robot moves around the environment, clustering data from multiple sensors
only requiring information on a per sensor basis, and clustering data while jointly
selecting the most likely outliers. While the methods are used in the context of
model learning for long-term autonomy they are general in nature and, as such,
can be applied to a variety of clustering tasks. All methods are based on combi-
natorial optimisation techniques allowing the methods to automatically select the
number of clusters. The optimisation problems are then solved using either belief
propagation in the case of affinity propagation, or Lagrangian duality in the case
of FLO. This chapter concludes the thesis with a summary of the contributions
as well as some potential directions for future work.

6.1 Summary of contributions

The contributions in this thesis relate to real-time self-supervised model learning,
clustering of multiple data sources based solely on per sensor information and
clustering with outlier selection. The following gives a short summary of each of
these contributions.

6.1.1 Self-supervised learning

In Chapter 3 we developed a system that allows a robot to build and maintain a
model of the environment in a self-supervised manner in real-time with no prior
knowledge. The system uses affinity propagation to cluster observations which
creates the foundation of the model. By adding self-supervision, in the form of
collision information obtained from bumpers, the robot can additionally learn
which clusters represent obstacles and which do not. This allows the system
to build and maintain models for safe navigation in completely unknown envi-
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ronments. In order to obtain real-time performance, the scalability of affinity
propagation was addressed with an extension, meta-point affinity propagation,
capable of clustering large amounts of data in real-time. The applicability of
this system to long-term autonomy was shown in experiments demonstrating the
method successfully reutilised parts of a model learnt from data collected months
ago to model changes in the environment. Additionally, the flexibility of the sys-
tem was demonstrated by applying it to the task of learning a model capable of
predicting collisions from laser scans with only bump sensor information available
for self-supervised training.

6.1.2 Multi-sensor clustering

A typical issue in robotics is that of combining data from multiple sensors into
one cohesive model. This often involves tuning parameters which weight the
importance of the different sensors in the final model which is time intensive
and difficult to generalise. In Chapter 4 we presented a solution to this problem
which required the user to only provide information about each sensor individually
while the method selected the best combination of the data with regards to the
clustering solution. Experiments on RGB-D data demonstrated the effectiveness
of combining both data modalities with automated fusion of data sources.

6.1.3 Clustering with outliers

Chapter 5 addressed the important problem of dealing with noisy observations
in the data. Instead of purely removing noise, the method selected the ` most
appropriate outliers and returned them together with the clusters. The process
of joint clustering and outlier selection is formulated as an integer program to
which two solutions were presented. The first one is a generalisation of affinity
propagation to clustering with outlier selection while the second one is based
on the Lagrangian duality formulation of the integer program. The Lagrangian
duality algorithm is provably optimal and can be easily parallelised. Extensive
experiments on synthetic and real datasets demonstrated the capabilities of both
methods at revealing interesting outliers and obtaining high quality clusters.

6.2 Future work

In this section we provide ideas for future research directions based on the meth-
ods and results presented in this thesis.
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6.2.1 Long-term autonomy

While the method for self supervised model learning presented in Chapter 3 can
automatically learn a model of the environment it currently does not integrate
planning and exploration aspects, which would make it a truly autonomous sys-
tem. Adding exploration and planning into the system would allow the robot to
improve the model autonomously. Furthermore, integrating the outlier informa-
tion provided by methods presented in Chapter 5 would be a good starting point
to obtain information about the type of observations the robot needs to gather.

6.2.2 Multi-sensor clustering

Layered affinity propagation, introduced in Chapter 4, currently requires all data
sources to observe the same area at the same time. Exploring ways to remove this
constraint would increase the flexibility of the method significantly. Another pos-
sibility to exploit multiple data sources is to learn models which predict expected
observations of another sensor. As predicting raw sensor readings is impractical
predicting the type of observation is more interesting. One possible application
for such predictions is to extrapolate from high density data close to the robot
to sparse data far away from the robot in applications such as terrain or object
classification.

6.2.3 Lagrangian duality

Lagrangian duality offers many possibilities for future developments. On an im-
plementation side, improvements to the scalability of the FLO algorithm intro-
duced in Chapter 5 by exploiting multithreading and GPU computing. Currently
the method requires the user to provide the number of outliers ` to be selected.
For some applications this can be seen as a restriction, however, reformulating
the original integer program should allow the removal of this requirement.
In general the properties of Lagrangian duality make it very appealing for future

research as encoding constraints is straightforward and the resulting optimisation
problem is always convex. In this vein, investigating subgradient optimisation
with regards to the impact different step size functions and subgradient update
schemes have on convergence speed and quality of the final solution an interesting
are for further investigation. Additionally, exploring ways to incrementally add
data to the optimisation in a theoretically sound manner can be beneficial in
many online applications.
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6.2.4 Clustering methods

With regards to clustering techniques, incorporating data density information
directly into the clustering process can be beneficial as demonstrated by DBSCAN
(Ester et al., 1996). In the methods developed in this thesis the density of data
points is not directly considered during the clustering. One simple solution is to
apply a transformation to the distances which yields new distance values that
take density into account. However, having a method capable of automatically
considering distance as well as density is a preferable solution.
Finally, relaxing the restrictions of fully unsupervised operation opens up an

entirely new area where small amounts of data could be used to bootstrap a
system. One example would be the conditioning of the clustering method with
labelled data to ensure the creation of specific types of clusters. Such methods
would allow having the flexibility of an unsupervised method with the control of
a supervised method.
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