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Abstract

Christopher Innes Doctor of Philosophy
University of Sydney 2015

A Stochastic Method for

Representation, Modelling and Fusion

of Excavated Material in Mining

The ability to safely and economically extract raw materials such as iron ore from

a greater number of remote, isolated and possibly dangerous locations will become

more pressing over the coming decades as easily accessible deposits become depleted.

An autonomous mining system has the potential to make the mining process more

e�cient, predictable and safe under these changing conditions.

One of the key parts of the mining process is the estimation and tracking of bulk

material through the mining production chain. Current state-of-the-art tracking and

estimation systems use a deterministic representation for bulk material. This is prob-

lematic for wide-scale automation of mine processes as there is no measurement of

the uncertainty in the estimates provided. A probabilistic representation is critical

for autonomous systems to correctly interpret and fuse the available data in order

to make the most informed decision given the available information without human

intervention.

This thesis investigates whether bulk material properties can be represented prob-

abilistically through a mining production chain to provide statistically consistent

estimates of the material at each stage of the production chain. Experiments and

methods within this thesis focus on the load-haul-dump cycle.

The development of a representation of bulk material using lumped masses is pre-

sented. A method for tracking and estimation of these lumped masses within the
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mining production chain using an 'Augmented State Kalman Filter' (ASKF) is de-

veloped. The method ensures that the fusion of new information at di�erent stages

will provide statistically consistent estimates of the lumped mass.

There is a particular focus on the feasibility and practicality of implementing a solu-

tion on a production mine site given the current sensing technology available and how

it can be adapted for use within the developed estimation system (with particular

focus on remote sensing and volume estimation).
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Chapter 1

Introduction

The aim of this thesis is to provide a comprehensive method for representing, track-

ing and fusing information in preserved correlated process chains. Particular focus is

placed on open pit mining process chains. By doing this in a systematic and com-

prehensive manner, signi�cant bene�ts can be gained over traditional state-of-the-art

deterministic methods.

A preserved correlated process chain is a de�nition given in this thesis to a speci�c

subset of problems which arises when considering process chains and the movement

of a quantity of items through this chain. The �rst notable characteristic of these

process chains is the `preservation' quality. This is where the total amount of an item

estimated in the system is preserved (i.e. a `closed system'). The second property

of this speci�c problem subset is the spatial correlations between the items in the

system (and subsets of these items) as they progress through the process chain.

An example of a preserved correlated process chain is the mining cycle. An amount

of raw material is removed from the ground, the material is then transported to a

processing facility. Once processed the material is then stored until transportation to

a client. Over this process the total mass of material in the system remains constant

(even though the core product to be transported may be a subset of the total mass

removed). The mass that has been removed from the system is also correlated with

its original location in the ground. The ability to correctly model these properties
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could provide powerful bene�ts such as real-time probabilistic estimates of material

properties at any unique location as well as reconciliation estimates.

The proposed method in this thesis shows that a system providing these bene�ts is

possible. To validate this claim, large and small scale experiments will demonstrate

these bene�ts. The experiments aim to mimic a generic open pit mining process.

The method in this thesis is shown to provide a statistically consistently method

for representing material at unique locations in a process chain using a probabilistic

framework. As part of the large scale experiment, an innovative method for providing

volume estimates of bulk material is used to assist in validation.

1.1 Motivation

A fully autonomous mine would provide a solution to many of the problems that the

world faces today and in the future.

Developing countries, such as China and India, are driving increased demand for raw

materials and re�ned products such as steel (produced primarily using iron ore and

coking coal). Some have predicted presently known world reserves of iron ore to be

depleted within 79 years at current production rates [129]. The ability to safely and

economically extract raw materials such as iron ore from a greater number of remote,

isolated and possibly dangerous locations will become more pressing over the coming

decades as easily accessible deposits become depleted. An autonomous mining system

has the potential to make the mining process more e�cient and safe to handle these

changing conditions.

The ability to accurately track and estimate bulk material properties through a pro-

duction chain in mining would be highly valuable both in autonomous and non-

autonomous environments. In the mining industry, having incorrect estimates of ore

grade and quantity in transport stockpiles can lead to �nancial penalties for the mine

[85]. Improving the quality of information, by tracking material through the produc-

tion process, provides mine engineers with a more accurate inventory of their product
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and enables better planning strategies to avoid these penalties.

One of the paradigm shifts in modern �eld robotics which has allowed for signi�cant

improvements in performance in unstructured environments has been the transition

from a deterministic representation of the world to a stochastic representation. Thrun

[118] describes the transition and reasoning in the following: "in recent years the

probabilistic approach has become the dominant paradigm in a wide array of robotic

problems. Probabilistic algorithms have been at the core of a series of �elded au-

tonomous robots, exhibiting an unprecedented level of performance and robustness

in the real world. These recent successes can be attributed to at least two devel-

opments: the availability of immense computational resources even on low-end PCs

and, more importantly, fundamental progress on the basic algorithmic and theoretical

levels".

In the mining industry, state-of-the-art tracking and estimation techniques use a

deterministic representation. This is problematic when considering a vision for a

robust autonomous mine.

In non-autonomous systems, the human operator fuses their expert knowledge and

experience with their level of understanding of the trustworthiness of the data pro-

vided by the deterministic system in order to make a decision upon it. This can

possibly lead to sub-optimal decisions being made on the basis of this process as the

operator can both over and underestimate the true level of uncertainty in the data

provided.

There is a need for a system which can appropriately de�ne the uncertainty in the

estimates provided to the operator. In an autonomous system, a probabilistic repre-

sentation is essential for making the most informed decision on the available informa-

tion.

This need for a probabilistic estimate of bulk material properties is the driving prin-

ciple for the research of this thesis.
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1.2 Thesis Objectives

This thesis aims to �ll a gap in knowledge regarding a method for tracking, modelling,

estimating and fusion of new information as material moves through a process chain.

The methods discussed in this thesis provide numerous bene�ts to managing these

chains more e�ectively. These include providing a richer representation of the material

at di�erent stages while at the same time remaining statistically consistent to ensure

appropriate levels of con�dence can be achieved. This has great potential in increasing

the e�ectiveness of decision making on the material data at each stage in the process

chain.

One of the main goals of this thesis is to provide an understanding of the problems

and possible solutions to this problem using an estimation theory framework as the

basis with the work targeted for use in a mining environment.

One of the main challenges when attempting to provide a comprehensive solution to

the above problem, as will be discussed further in Chapter 2 (speci�cally Sections

2.3.1 and 2.3.2), is the lack of prior work addressing this problem in mining or indeed

other lumped material process chains. One of the objectives and contributions of

this thesis is the investigation and identi�cation of the research problems as well

as the problems associated with implementing a practical solution within a mining

environment.

Methods and experiments are presented which demonstrate potential solutions for

some of the fundamental problems in this area. However, given the lack of prior work

in this �eld, trade-o�s were made in regards to the depth of investigation into each

speci�c problem to ensure appropriate coverage of all the research problems could

be made. This was done to ensure that this thesis can provide a complete picture

of the feasibility of a stochastic method for representation, modelling and fusion of

excavated material in mining. It also provides a demonstration of not only the bene�ts

of solving each problem in isolation but the net bene�t of integrating the tracking,

modelling, estimation and the fusion of new information.



1.3 Thesis Contributions 5

1.3 Thesis Contributions

This thesis is primarily concerned with a method for stochastically representing and

estimating bulk material properties over a process chain. The contributions of this

thesis address many of the di�erent aspects in making this method feasible for im-

plementation in an open pit mining environment.

• A novel approach for representing groupings of logically separated bulk material

(referred to as `lumped masses') as the basis for modelling processes and estima-

tion of bulk material properties. This representation allows for the complexity

in the estimation research problem to be reduced to a more manageable size.

• A method for probabilistically modelling the extensive properties of lumped

masses as they move through a process chain. An Augmented State Kalman

Filter (ASKF) is used as the basis for this method.

• A novel constraint for the ASKF which ensures that spatial correlations between

extensive material properties are maintained correctly. This constraint is based

on the assumption the process chain is a `closed system' where the total amount

of material in the system is conserved. By maintaining the spatial correlations

between extensive properties of lumped masses the fusion of new information

on an extensive property of a lumped mass propagates to correlated lumped

mass extensive property states.

• A novel method for estimating 2.5D bulk volumes to integrate into a stochastic

bulk material estimation system. This method is based on Gaussian processes

and is compared to a series of state-of-the-art methods to validate its perfor-

mance. The advantage of the proposed method over the comparative methods

is greater accuracy and precision under sparse data sets while simultaneously

providing an estimate of the uncertainty in the bulk volume estimate.

• A novel method for modelling and representation of intensive lumped mass

properties as they progress through a process chain. This method includes a
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method for averaging intensive properties when combining two lumped masses

together. The e�ectiveness of this representation and modelling method for

intensive properties is discussed within the context of the state dependencies

between intensive and extensive properties.

• This thesis introduces an algorithm for reconciling intensive lumped mass prop-

erties to their source location. This method is based on the constrained ASKF

implementation and modelling methods derived in this thesis. The algorithm

combines the spatial correlations developed between the extensive properties

with the method for combining intensive lumped mass properties together in

an iterative methodology.

1.4 Thesis Structure

Chapter 1 provides an overview of the contributions in this thesis. It also introduces

the objectives of this thesis and presents the motivations for this research work.

Chapter 2 introduces the fundamentals of open pit mining. This is followed by a

review of current mine automation, tracking and estimation systems. The signi�-

cance of this research within an open architecture Mine Automation System (MAS)

is discussed. This is then followed by an introduction to the principles of probability,

Bayesian �ltering, control theory, machine learning and bulk volume estimation.

Chapter 3 presents the novel `lumped mass' representation for physically unique

groupings of bulk material. This is followed by the method for modelling extensive

`lumped mass' properties through a process chain using an ASKF. The constraint

on the ASKF is derived to ensure that the total amount of material in the system

remains constant. The methodology is then tested on two real world data sets.

Chapter 4 introduces the stochastic method for bulk volume estimation using Gaus-

sian processes. This includes an introduction to Gaussian process regression. The

method for 2.5D bulk volume estimation is derived and compared to current state-

of-the-art methods using real world data sets.
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Chapter 5 discusses the modelling and representation of intensive material properties

using the `lumped mass' representation. This includes a discussion on the dependence

between the extensive and intensive properties. The methodology for representing

intensive properties is tested through experimentation. An algorithm for reconciling

the intensive properties is developed and then tested through experimentation to

prove its validity.

Chapter 6 discusses how all of the contributions of this thesis can be combined

together into a single integrated system and some of the potential problems involved in

implementing this on an open pit mine site. This chapter also includes possible future

areas where further research would bene�t an end-to-end tracking and estimation

system for an open pit mine.

Chapter 7 provides conclusions and future work considerations speci�c to each of

the contributions presented in this thesis.
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Chapter 2

An Introduction to Tracking,

Estimation Methods and Mining

2.1 Introduction

This chapter reviews the typical processes involved in open pit mining. A basic under-

standing of the mining process allows for a greater understanding of the signi�cance

of this research work in this �eld. The review of open pit mining includes current

developments in mine automation systems as well as material tracking systems which

are currently available. A short introduction to the research work being done at the

Rio Tinto Centre for Mine Automation (RTCMA) is also presented. The introduc-

tion focuses on how the development of a complete mine automation system (MAS)

in�uences the research work presented in this thesis.

The second part of this chapter reviews the core theory in developing probabilistic

estimation, tracking and observation systems. This begins with an introduction to

probability and Bayesian theory, which are the foundations of the current state of the

art methods in the development of the prior probabilistic systems. This is followed by

a discussion of tracking and estimation methods with speci�c focus on the suitability

for use in a mining scenario. Finally there is an introduction to machine learning
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techniques. This section discusses the possible applications of machine learning to

tracking and estimation. The machine learning section reviews the techniques nec-

essary for deriving models based on spatial data, which is needed for developing the

probabilistic bulk volume observation technique. This is followed by a section on

volume estimation which covers current volume estimation techniques and systems in

industry. Volume estimation in mining is also introduced, this section discusses the

shortfalls of current state-of-the-art techniques when considering the implementation

into the estimation and tracking framework presented in this thesis.

A note on some de�nitions used in this thesis:

For this thesis, material properties are separated into two categories, extensive

and intensive.

Extensive properties are de�ned as properties which are directly correlated to

the amount of material in the system. In mining some pertinent examples include

mass and volume. Chapter 3 deals with tracking and estimation of extensive

material properties.

Intensive properties are de�ned as properties which are invariant to the amount

of material present (provided the material is homogeneous). These include prop-

erties such as chemical composition, density, hardness etc. In practice there is

a dependence when modelling intensive properties on the extensive properties of

the material in the system. A further discussion on tracking and estimation of

intensive material properties is included in Chapter 5.

Additional information on the classical de�nition of intensive and extensive prop-

erties can be found in thermodynamic and material science literature [110].

2.2 An Introduction to Open Pit Mining

One of the key applications of the work in this thesis is open pit mining. The majority

of experimental work was designed on the premise of mimicking a subset of processes
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which occur on open pit mine sites. The research is designed with the intent of work-

ing in collaboration with other research projects with similar autonomous operation

themes in the mining domain. For this reason, a generic understanding of the open

pit mining process is helpful in understanding the signi�cance of the work, as well as

the related work in the �eld. This section is not intended as a de�nitive explanation

of the factors and processes involved in open pit mining. A more detailed description

can be found in reference books such as the `SME Mining Engineering Handbook' by

Darling [32]. This section instead provides the reader, unfamiliar with the theory and

practice of open pit mining, a high level view of the processes and factors involved to

better understand the contributions described in this thesis.

2.2.1 An Overview

The physical processes involved in moving material through an open pit mine depends

on many factors. These include the type of material being excavated, the concentra-

tion of the material as well as the ore body geology to name a few. This review

will emphasise the movement of material from its location in the ground through to

a �nal stockpile for transportation o� the mine site. These processes are the most

relevant to this thesis. Figure 2.1 provides a �owchart showing the general process

�ow involved in the design of an open pit mine.
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Figure 2.1 � A simpli�ed model of the design and processes in open pit mining.

2.2.2 The Mine Development

One of the �rst stages in developing an open pit mine is the exploratory drilling phase.

The purpose of this phase is to develop a greater understanding of the geology of the

ore body. The distance between drill holes is sparse when compared to production

drilling during the blast phase of production (see Section 2.2.4). The ore body is

modeled once exploration has been completed using the data gained from exploratory

drill holes. This is usually through a spatial interpolation techniques such as Kriging

[27]. Figure 2.2 gives an example of an exploration drilling pattern over a hypothetical

ore body.
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Figure 2.2 � An example of an exploration drilling pattern and hypothetical ore body.

The data gathered from the exploration drilling is used to develop a geological

model of the ore body.

The results of the exploration drilling combined with the ore body modelling process

forms a key part in the decision on whether to create an open pit mine. The results

provide valuable geological information such as the stripping ratio (how much waste

material must be removed compared to product material) and the spatial geology of

the ore body (deep and narrow ore bodies may prove more economical as underground

mines). Other key issues a�ecting whether or not to create an open pit mine include

environmental and safety impact when developing the ore body.

All these factors in�uence the decision whether or not it is economical to create an

open pit mine. If the decision is made to create an open pit mine, development of

the pit can begin. This often involves the removal of the overburden (waste material

located above the ore body) before actual mining of the desired ore can begin. The

pit is progressively made deeper with a series of haul truck access roads providing

the means to remove material. Open pit mines progress downwards through a series

of benches. These benches vary in size depending on the type of equipment used in

excavation, the selectivity required in the mining operation as well as the stability

of the bench walls, given the geological properties of ore. An example of a series of

benches can be see in 2.3.
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Figure 2.3 � A series of benches at an iron ore mine in West Australia. The height of

the benches vary depending on equipment, stability of bench walls and selectivity

required in the mining operation.

2.2.3 Mine Visualisation and Ore Body Estimation

One of the important aspects of mining is having a reliable model of the ore located

in ground, thus enabling the e�ective creation of mining plans. A typical mine will

generally have contractual obligations to produce a certain quantity and quality of

material at a prede�ned intervals. Providing incorrect levels of ore grade and quantity

to the client can lead to �nancial penalties for the mine operator [85].

As discussed in Section 2.2.2, prior to visualisation of the material as a block model

the ore body is modelled using geostatistic techniques such as Kriging [102]. Kriging

is a methodology which can account for directional dependencies of spatially corre-

lated data. This allows inferences to be made on the material properties at di�erent

spatial locations. The sampling variations in material properties used in this method

can be typically represented as log-normal distributions [65]. This is due to the nat-

ural constraint of these physical properties. For example chemical composition of
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material(e.g Fe%, Si%) must always be greater that 0%.

The ore body which is being excavated can be visualised through a block model.

Some examples of software which provide this functionality are Maptek's Vulcan [74]

and Gemsoft's GEMS [46]. It is common for software suites such as these to have

optimised mine planning functionality as well.

A block model is a method for discretising the ore body into smaller regions based

on a level of homogeneity of the material in that area. Figure 2.4 gives and example

of a block model on an iron ore mine site. The material in this example is separated

into four blocks.

Figure 2.4 � An example iron ore block model. The ore body is divided into geologically

similar regions. In this �gure, regions denoted with a W are waste blocks, H are

high grade blocks and BLS are blending blocks.

One of these sections (W1) is a waste material block and consists of material which

is either too low in concentration for the desired output or too high in impurities.

Material from this block is excavated (if required) and moved to a waste dump. Two

of the other sections are designated as `High Grade' (H111 and H110) and would

be excavated and processed under the assumption that material from these areas
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maintains a certain level of quality, in terms of chemical composition, in order to be

classi�ed as `High Grade' material. The remaining block (BLS1) is designated to be

used for blending. This is used on mine sites where the grade of material in the block

is not at the required level but can be blended in a stockpile with higher grade blocks

to create a product which is within the required grade levels.

Mine planners use optimisation software in order to determine what is the best se-

quence of excavation in order to provide a certain level of output quantity and quality

while maximising the current blocks available for mining.

2.2.4 Drill and Blast

Often the materials of interest are located within hard rock formations. This makes it

very di�cult to excavate unless the material is broken up beforehand. Explosives can

be used to break up the hard material. This is achieved by �rst drilling into the rock.

A number of drill holes are created in a predesignated pattern in order to achieve

certain blast characteristics. When drilling is complete, the holes are �lled with

explosives and an exclusion zone is created before the explosive material is detonated.

Geologists occasionally take �lings from the drill holes to validate geological models.
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Figure 2.5 � An example of blast hole drill pattern. The drill holes are �lled with

explosives and detonated in order to make the excavation of hard material easier.

Figure 2.5 gives an example of blast hole drilling. Once the material is blasted a

geologist inspects the area and mark out the block model boundaries. This enables

the excavator operator to de�ne the boundaries of their work area. Figure 2.6 gives

an example of the boundaries outlined by a geologists tape. The tape has been

highlighted green for clarity.
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Figure 2.6 � A recently blasted bench with block boundaries highlighted. The grade

block boundaries are marked by a geologist after blasting. The tape used to mark

the boundaries has been highlighted green for clarity in this picture.

2.2.5 Excavation and Haul

Excavators (or shovels) and haul trucks work in unison to remove the material from

a designated grade block. Ideally, an optimum amount of trucks are assigned to each

excavator to ensure that the excavator is not waiting for an unloaded haul truck.

Conversely the amount of haul trucks is constrained so that the amount of time

waiting to be loaded by an excavator is at a minimum. The excavator operator works

from a designated grade block as decided by the mine plan. The excavator loads the

material onto the haul truck until the haul truck is at capacity. Once this is achieved,

the haul truck travels to either a run-of-mine (ROM) stockpile or a processing point

to unload the material before returning to the excavator to repeat the process. An

example of the loading process can be seen in �gure 2.7.
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Figure 2.7 � The excavator operator �lls the haul truck with material from the grade

block tasked for excavation. The haul truck unloads the material at a ROM stock-

pile or processing point.

2.2.6 Processing

The processing of the material is dependent on the type of material being excavated.

It also depends on the product which the mine is seeking to produce. For example,

if the mine is required to produce material of a speci�c grade, any material outside

this grade undergoes a process to either increase or decrease the chemical properties

to meet the required grade. Certain types of mined material (e.g. iron ore) are

frequently put through crushing and screening procedures to reduce the material to

a uniform size. Figure 2.8 shows an example of a crush and screening process plant.
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Figure 2.8 � Mined material needs to be processed to produce a product with predes-

ignated properties in regards to size and chemical composition. This picture shows

a processing plant used to crush and screen iron ore into lumps and �nes.

Figure 2.9 gives an example of a possible process chain which may occur on an iron

ore site. In this scenario, iron ore is separated into four distinct products. These

include low grade lumps and �nes and high grade lumps and �nes. Lumps is a term

used to describe material which is equivalent to a small rocky pebble size. Fines

describes material which is signi�cantly smaller and can be considered similar in size

to sand and dust. It should be noted that in this example the amount of grade classes

is �xed as high and low grade. It is possible to have as many grade classes as desired.

This can be bene�cial when combining the output of multiple mine sites at a central

transport facility. In this example the central transport facility is a port. The di�erent

products can then undergo further blending at the port location to reach the desired

grade level and provide a reduced number of grade classes to the �nal customer.
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Figure 2.9 � An example iron ore process �ow map showing the movement of material

from blasted stocks through to railing stockpiles.
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2.2.7 Stockpiling

Stockpiles can occur both before and after plant processing occurs. Pre-processing

stockpiles can be used when material will never be processed, such as waste product.

Stockpiles can also be used to ensure an adequate bu�er of input material into other

processes, such as crushing. Material can also be stored for later use in blending

stockpiles if the pit development does not allow the material to be blended to the

required grade immediately.

Stockpile design is an area which is particularly important when trying to obtain a

uniform product. Research has been done on which stockpile designs would produce

the least amount of variability [104] when being reclaimed for transport.

Final stockpiles are stockpiles where material is kept before being transported o�-site

to a central transport facility or directly to the customer. It is very important to

have an accurate measure of both how much material is in each stockpile as well as

the grade level of the material so that the appropriate material can be transported.

Figure 2.10 � A stockpile of iron ore which will be transported by rail to a port facility.

Figure 2.10 provides and example of a stockpile of material. In this instance the

material is waiting to be transported by rail to a port facility for shipping. A boom-

reclaimer system is used to remove the material from the stockpiles to be placed into
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the waiting rail cars.

2.3 A Mine Automation System

The research work in this thesis can be applied without any additional input from

other automation systems. However, one of the primary aims of this research is

that it will work in synergy with a wide variety of other systems which are being

concurrently developed (see Section 2.3.4). As a result, the bene�ts which can be

obtained from using the results of this research work in co-operation with the other

proposed systems will be substantial when compared to using the results in isolation.

An understanding of how this research work relates to other work being developed

gives a greater understanding of why speci�c choices were made in the research pro-

cess.

One of the key applications of this research is mine automation. This section outlines

the current state-of-the-art mining automation systems. Examples from other pri-

mary industries such as agriculture, forestry and horticulture are also provided. This

section includes the systems presently available which track and estimate material

through a process chain in these industries. This section provides an overview of

sensor systems which are designed for, or can be applied to, the mining environment.

Sensor systems play a key role in applying the contributions of this thesis to a real

world application.

2.3.1 Current Mine Automation Systems

A prominent trend in mine automation is to automate (or tele-operate) equipment.

Examples include a wide range of mining equipment such as excavators [106], Load-

Haul-Dump (LHD) vehicles [39], rock breakers [40], haul trucks [3][8] and drills [22].

Mining is an inherently dangerous job so the ability to remove employees from poten-

tially dangerous environments is a great bene�t. The possibility for enabling more
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�exible and diverse working arrangements will improve the ability to employ and

maintain sta� [56]. This is particularly an issue in Australia where mine sites are

often located in very remote areas [71].

Automation of equipment in uncontrolled environments such as mining is a di�cult

task. Other industries have made good progress in solving this problem. Practical

examples include autonomous cargo handling machinery [41] and autonomous crop

management equipment [48]. Automation in even less controlled environments than

the prior examples has also made signi�cant advancements, most notably in automat-

ing road vehicles [120].

Substantial work has been carried out on methods for optimising speci�c stages in the

mining process and providing decision support systems to aid mine workers, the goal

being to achieve greater productivity and e�ciency. Robinson [104] for example looks

at the variance on di�erent blended stockpile con�gurations to determine the best

con�guration for achieving a consistent blend. Giacaman et al. [45] describe a forecast

modelling system for the loading and transportation of material to a stockpile. This

is used to predict the e�ect of changed equipment carrying capacity. Sensogut and

Ozdeniz [109] describe a statistical study of a stockpile using �nite element analysis to

predict the behavior of a stockpile under speci�c environmental conditions. Bastos et

al. [13] describe an improved method for truck dispatching using a stochastic approach

when compared to current state-of-the-art deterministic systems. The approach used

in this paper is a particularly signi�cant as it is a shift from the standard deterministic

approaches in this area of research. A further discussion of tracking and estimation

systems similar to the work in this thesis is described in Section 2.3.2.

The component which is lacking from mine automation research is not the automation

of equipment or decision support systems, rather what is needed is a complete end-

to-end system which enables automation of information processes as well as the �ow

of information from all systems on a mine site. Current automation and information

systems are set up on mine sites and tend to work in isolation from other systems.

This leads to a `silo' e�ect of information in the system. One of the causes of this is the

multitudes of propriety software on mine sites, each with their own data storage and
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interface policies. Jansen [53] presents additional contributing factors which impact

the ability to track and reconcile material up to the point of mineral processing. In

the study by Jansen, he proposes that incorporating "The magnitude and behavior

of error in the measurements" of material would be valuable in developing tools to

reducing these sources of error.

This is not an exclusive mining problem. Thompson et al. [117] discuss similar

problems which arise in the horticultural (�shing) industry. One possible solution

suggested in this paper is for `vertical' integration of companies involved in the pro-

duction chain, with a single database accessible through a common standard. This

database would store information about the �sh starting at its point of harvest all

the way to the consumer.

An ideal mining solution is to have just one automation system for an entire site.

By having a singular system which controls all systems on a mine site, information

from any system can be accessed freely and common data integrity policies can be

implemented. Individual autonomous information systems can make good use of the

�ow of information from di�erent systems to provide tangible bene�ts. An example

of this is an autonomous blast hole drill gathering information about rock hardness as

it drills blast holes. An automated process for relating rock hardness to a geological

model could be applied [131]. This model can then be fused with the underlying

geological model to improve the accuracy of the model to enable better mine planning.

The aim of the RTCMA [94][1], based at the University of Sydney, is to develop

this end-to-end automation system. Part of this system is a common framework in

which information can be stored and shared from a variety of di�erent sources, such

as commercial automation solutions for di�erent aspects of the mining process. For

more information on this system and where the research in this thesis contributes to

this system see Section 2.3.4.
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2.3.2 Material Tracking Systems

In the �eld of material tracking, the majority of the research and products available

today are based on the tracking of discrete products. Examples of this include the

tracking of packages through couriers, parts stored in a warehouse and tracking of

luggage through an airport. This is usually done through a combination of Radio

Frequency Identi�cation (RFID) tags, Global Positioning Systems (GPS) and barcode

scanning [19] [83]. When the material and processes involved become less constrained

the range of research and products decrease substantially.

Research in the �eld of integrated real-time material tracking in mining is limited.

The state-of-the-art is represented by commercial products from companies such as

QMASTOR [60], Snowden [88, 89, 116] and OreTracker [4] which provide determin-

istic estimates at di�erent locations in the system. The `DISPATCH' system from

Modular Mining [125] also provides a limited degree of ore tracking during the haul

cycle. It has database �elds for a material type, which is recorded with the vehicle

GPS position. However, the material properties are not estimated online. The cur-

rent practice in mining is to assume all trucks carry a common constant percentage

of their maximum load. This value, termed a `load factor', is used in the calculation

of average mass of material moved by trucks calculated over a long time line. When

used in conjunction with estimated total truck movements of a speci�ed time frame

(possibly from a dispatch system), it can be used to estimate productivity [61]. The

method does not represent the actual material movements in a haul truck on a haul

by haul basis. Over a shorter time frame, loads are prone to �uctuations based on

operator skill through over or under �lling of trucks and excavation of material out-

side the designated mining area. It also relies on the accuracy of initial in-ground

estimates of the material being excavated for estimates of material properties.

One recent development in the �eld of material tracking in mining combines conven-

tional material tracking theory with the unconstrained mining environment. Metso's

SmartTag [127] uses RFID tracking of embedded devices in the ore from blasting

through to stockpiles to track groupings of material.
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One of the key disadvantage amongst these di�erent options is the lack of a prob-

abilistic representation which allows for fusion from multiple di�erent inputs. As

an example, Figure 2.11 shows a few of the possible sensors on a mine site. The

information from these sensors is likely be stored in a database. One use for this

data is to validate mining factors (e.g. haul truck load factors). This thesis shows

that the information from these sensors can be used in real-time to provide consis-

tent probabilistic estimates of material properties at di�erent locations. Alarie and

Gamache [10] present a statistic that transportation costs make up 50% of costs in

mining. Being able to use more accurate representations of material at di�erent lo-

cations could allow for greater optimisation of production vehicles which will mean

substantial savings can be achieved.

Figure 2.11 � An example of the range of sensors which could be utilised on a mine

site. The ability to utilise the information from these sensors in an end-to-end

estimation system would be highly valuable.

Another aspect which is missing from current state-of-the-art methods is a statisti-

cally correct method for correlating the properties of spatially distributed groups of

material. Ideally, when new information is introduced about material at a speci�c

location, that information should be utilised to determine more about material at
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previous locations. One example is learning more about the mass of material in a

haul truck from a sensor such as the strut pressure sensors on the haul truck shown

in Figure 2.11. When this data is fused it should be able to not only provide an im-

proved estimate of the amount of material in the haul truck; but also correlate that

new understanding of how much material is in the haul truck to provide an improved

estimate of how much material has been removed from the grade block where the

material was mined. This thesis provides a systematic method for tracking material

and correlating the properties correctly to able to allow these e�ects.

The current de�ciencies in mining systems as stated previously are shared with other

industries. The forestry industry has developed multiple tracking techniques to track

logs from their source location through to the manufacturer [42]. A large driver for

this work has been to certify that the wood is not illegally logged [114]. D'Amours

et al. [31] describe in their journal article similar problems which also arise in the

mining industry. Most notably that 40% of operational costs arise from transportation

which stokes a large demand for research and products involved in process chain

and truck dispatch optimisation. Commercial tracking systems such as Heleveta's

TracElite [2] provide estimates of the material as it passes through prede�ned nodes

in the production chain. There are some properties of the forestry industry which

make estimation and tracking of the material comparatively easier than in the mining

scenario. For example, the material in logging can be more easily de�ned as discrete

set of logs rather than a large continuous grouping of material. This allows for more

conventional tracking techniques such as barcoding and RFID tags to be used.

Another example of a similar primary industry is the agricultural industry. Similar

commercial systems (with comparable features to current mining tracking and esti-

mation systems) exist to track agricultural stock movements. These include products

such as CropBase [6], Farm Files Crop [7] and Cattleworks [5]. Research work has

been done in probabilistic modelling of various farming variables to be used in deci-

sion support systems as well which aid in decisions such as optimal stock levels and

planting schedules. A review of this research can be found in Janssen's paper [54]

which provides a description of state-of-the-art research in this �eld.
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Whilst the work in this thesis is focused on mining, the theory can be translated to

other process chain systems. In the agricultural industry, a system which enables

a probabilistic representation and maintains the proper spatial correlations between

agricultural stock at di�erent stages would provide many bene�ts. One example would

be more e�ective weed control systems. If at harvest the level of weeds (such as rye

grass in a wheat crop) can be sensed by either the harvester or during unloading to

silos, this information can be correlated back to the point of harvest. This could be

used to develop a probabilistic spatial map of weed density. This information can then

be used in more targeted weed control systems. This could lessen the environmental

impact from herbicide use, reduce costs and improve yield.

One of the most prominent problems in the food industry is both disease and bio-

terrorism [99]. The knowledge that a particular food has been contaminated greatly

reduces the consumer con�dence in the product. An e�ective real-time system which

can correlate spatially separated material would be able to, upon detection of im-

purities in a food source, determine which other products have come from the same

source. This could enable e�ective targeted quarantine measures at a rapid pace.

2.3.3 Mine Sensing Equipment

One of the greatest enablers for automation work is the development of sensing sys-

tems. Over recent years, the cost of sensor systems has decreased while their capa-

bilities have improved. Gates [44] describes this brie�y in his article on the parallels

between the robotics and computer industries "Another barrier to the development

of robots has been the high cost of hardware, such as sensors that enable a robot to

determine the distance to an object as well as motors and servos that allow the robot

to manipulate an object with both strength and delicacy. But prices are dropping

fast. Laser range �nders that are used in robotics to measure distance with precision

cost about $10,000 a few years ago; today they can be purchased for about $2,000.

And new, more accurate sensors based on ultrawideband radar are available for even

less".
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This thesis introduces methods for representing material stochastically at di�erent

stages in the process chain. A probabilistic representation provides the capability

to fuse data from information sources, each source providing individual estimates

and corresponding uncertainties, to improve the estimate of the material properties

present. This section outlines recent developments in mine sensor technology which

could be used as inputs into the probabilistic estimation and tracking system discussed

in this thesis.

Remote sensing has seen signi�cant development recently. This has led to the develop-

ment of safety systems for mine equipment such as haul trucks [90] by companies like

Acumine Pty Ltd [72]. 3D terrestrial laser scanners are also now becoming prominent

in surveying tasks. This is due to their ability to gather dense amounts of spatial data

over long distances at considerable speed. This has allowed for the removal of survey-

ors from possible dangerous areas of the mine such as bench crests. Several di�erent

models of these laser scanners are reviewed by Lichti et al. [68] along with possible

applications. Vasudevan et al. [123] provide an example of how the data gathered

from these scanners can be used to create large scale stochastic terrain models for

mining by using Gaussian processes. This concept is extended upon in Chapter 4,

where a stochastic method for bulk volume estimation is discussed.

Utilising visual sensors to estimate properties, such as volume, in a mining environ-

ment is particularly challenging due to the large amounts of dust present on site.

Figure 2.12 provides an example of the dust which can occur during mining opera-

tions. Sensors such as a millimeter wave radar [20][57] would be useful in this domain

due to their ability to penetrate through dust. Being able to reliably estimate a

surface using a 3D point cloud is a vital component when estimating volume.
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Figure 2.12 � The dust generated through an excavator loading a haul truck. This

dust makes it di�cult to use sensors such as lasers and cameras to gather surface

data.

Remote sensing technology has also has improved in its ability to determine intensive

properties of material at di�erent locations in the mining process. An example of this

is hyper-spectral cameras [108][79][86] which have been used to determine probabilistic

classi�cation of intensive material properties at the bench face.

There has also been considerable commercial development of mining speci�c sensor

systems. Some current working examples include the following; the autonomous

estimation of haul truck contents (mass and volume). This has been tested live in

research by Du� et al. [38] and commercialised by Transcale [121]. MotionMetrics

[82] has also developed a system for payload estimation on excavators.

2.3.4 The RTCMA Mine Automation System

The vision of the RTCMA is to create a fully autonomous mine. This has led to the

development of the Mine Automation System (MAS). As explained in Section 2.3.1,

there is a need for a common system for storing and communicating information on
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a mine site. The MAS aims to provide this functionality. Although automation is

the primary goal of the system, human operator input is expected to be a valid and

required input into the system. As a result, the services provided by MAS include

valuable decision support for mine operators even with low levels of automation.

The research work at the RTCMA focuses on representing information in a Bayesian

framework. Representing information probabilistically allows for autonomous systems

a greater understanding of how trustworthy the data is, thus enabling more informed

decisions to be made. It also allows for information from multiple sources to be fused

together in a consistent manner. This is explained in greater detail in Section 2.4.2.

The work in this thesis aims to describing the �ow of material from the bench as it

is excavated, hauled, processed and then stockpiled. The material properties are to

be reconciled with in-ground estimates during the process of moving the excavated

material from the pit to transport stockpiles. New information is fused from sensors at

di�erent stages during this process. The model should be able to, on demand, provide

an estimate of the location and grade of all available stock (which is not considered

in-ground) on the mine. The intent of this work is to aid in the development of a

common operating picture of a mine site, this common operating picture can then be

used by other systems to assist in automation or optimisation work.

The key goals of the research work for this thesis to aid in the development of this

common operating picture can be described as follows:

• Provide a probabilistic inventory of all available stock: This is to be

limited to material which is not considered in-ground. For the purposes of

this thesis, broken stocks currently being excavated are included in this system.

The system ideally will extend through to the �nal stockpiles for transportation.

The system should provide information on important material properties at each

location.

• Fusion of new information: This requirement drives the need for a common

way of representing the quality of estimates of material over multiple stages in

the mining processes.
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• Conservation of material: A method is needed to ensure that the total

material in the system remains consistent and all �ows of material are accounted

for.

• Reconciliation with geological model: In order to reconcile probabilistic

estimates in the out-of-ground model with the in-ground-model, a statistically

consistent way of correlating new fused information during the mining process

to the materials point of excavation is required.

The contributions discussed in Chapters 3 - 5 aim to provide a method for ful�lling

these stated goals.

2.4 An Introduction to Bayesian Estimation and Vol-

ume Estimation

Probability theory is a key component in the work presented in this thesis. The

following section describes theories which build upon the basics of probability theory.

This includes sections on Bayesian �ltering, machine learning and estimation theory

techniques.

A section discussing current state-of-the-art volume estimation techniques is presented

and a method using a probabilistic representation is compared to these techniques.

2.4.1 Probability Theory

Over the past 20 years, the use of probabilistic representations in robotics has led to

many important developments [119]. One example is a robust technique for mapping

and localisation known as Simultaneous Localisation and Mapping (SLAM) [36].

A deterministic representation works under the assumption that all inputs into the

system are known and singular in value. An example is determining the speed of
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a standard road vehicle. The speedometer in the vehicle may read 80 Km/h. This

estimate of the speed is based on the assumption of pre-known singular values for

tyre circumference and engine / transmission ratios.

In reality, a variety of factors in�uence the accuracy of the assumption of a �xed

tyre circumference and engine / transmission ratio. These include tyre wear, engine

/ transmission wear as well as tyre temperature and tyre pressure.

Being able to handle the inherent uncertainty of the inputs into a system is one of

the prime advantages of using a probabilistic representation. A probabilistic repre-

sentation operates under the assumption that each input into the system is a�ected

by some level of `randomness'. To represent this `randomness' (which can also be

referred to as uncertainty) a valid probability distribution is formed over all possi-

ble values which each input can take. This can be a discrete number of states (e.g

the probability of heads or tails when �ipping a coin has two states), a continuous

function of possible values or a combination of the two.

There are three probability theorems which must be followed in order to form valid

probability distributions [15].

Theorem 2.4.1 (1. Nonnegativity). P (A) ≥ 0, for every event A.

Theorem 2.4.2 (2. Additivity). P (A ∪B) = P (A) + P (B), if events A and B

are mutually exclusive of each other. Following from this, if a sample space has an

in�nite number of mutually exclusive elements (E1, E2, . . . ). The following will also

be true. P (E1 ∪ E2 ∪ . . . ) = P (E1) + P (E1) + . . .

Theorem 2.4.3 (3. Normalisation). P (S) = 1, the probability of the entire sample

space S will be equal to 1.

Further information on applying probability representations relevant to the work in

this thesis is discussed in Section 2.4.2.
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2.4.2 Bayesian Filtering

Bayesian theory was originally developed by Thomas Bayes and came to light in

his posthumous essay published in 1763 [14]. The signi�cance, popularisation and

application of this discovery to statistical inference is credited to Pierre-Simon de

Laplace [9]. Bayesian theory forms the basis for various control theory methods which

utilise a probabilistic representation. This work was pioneered by both Wiener [126]

and Kolmogorov [64]. This pioneering work led to the development of the still widely

used Kalman Filter in 1960 [58][59][78]. Bayesian �ltering since this development has

broadened extensively from the conventional closed form linear estimation solutions

to a general approach to solving control problems [50].

The core principle when using Bayesian statistics is the assumption of a prior prob-

abilistic model of a random variable during modelling. When new evidence is intro-

duced about this particular variable, `Bayes theorem' is used in determining the level

of belief between the prior model and the new evidence. The resulting distribution

formed is known as the `posterior'. Bayes theorem is summarised in Theorem 2.4.4.

Theorem 2.4.4 (Bayes Theorem). P (x|z) = P (z|x)P (x)
P (z)

, x is the random variable of

interest and z is independent observational evidence of this variable.

Bayes theorem P (x|z) could be thought of as the result of the prior model being con-

ditioned with the observational evidence z. P (z|x) is often thought of as the `sensor

model'. Where a model must be formed to describe how the observation evidence `z'

relates to the random variable of interest x. As an example, consider a radar station

estimating the cartesian co-ordinates (x,y,z) of a target. The sensor available to the

station may provide only a range and a bearing to the target from the radar station.

Thus a model needs to be created in order to condition the observational evidence `z'

(range-bearing data) on the prior model `x' (x,y,z co-ordinates).

Fundamentally, Bayes theorem allows for the fusion of observational evidence with

the prior model. This is provided that both the prior model and observational evi-

dence are valid probability distributions. The application of Bayes theorem can be
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demonstrated using the example shown in Figure 2.13. In this scenario the variable

of interest is the mass of the material in the haul truck. A prior model of the amount

of material expected to be in the haul truck is shown in Figure 2.13 (b). One possible

method for building this prior model is through empirical observational evidence of

the mass by measuring a statistically signi�cant amount of prior loads. There are

multiple methods for developing the prior model, ideally the appropriate model is

validated in experimental cases where a ground truth value is available.

In this example the prior model of mass in the haul truck is assumed to be Gaus-

sian distributed. Now suppose observational evidence from a sensor is provided which

gives another probabilistic model of the mass of material in the haul truck. This could

be from a load scale such as the one shown in Figure 2.14 (a). It also could come

from other sensors such as suspension strut pressures or possibly a volume estimation

system with a density model. The important factor is that the probabilistic distribu-

tion model for the observational evidence is valid. Figure 2.14 (b) shows a possible

observational evidence model along with the prior model of the mass of material in

the truck. Again, in this scenario the observational model is assumed to be Gaussian

distributed. The Gaussian assumption is not a requirement for Bayes theorem, the

distribution can be of any shape provided it is a valid probability distribution.

(a) A truck being loaded by an excavator. (b) A prior model of the material located in the
truck.

Figure 2.13 � An example showing the mathematical representation of the prior model

of material located in the haul truck.
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(a) A truck located on a set of scales which observe
mass.

(b) A model for the mass in the truck as pro-
vided by the scales is shown in addition to the
prior model. The red line illustrates the observa-
tional model where as the blue line is the prior

model.

Figure 2.14 � An example showing the prior model and observational model estimates

of the mass of material in the haul truck.

Figure 2.15 gives the result of fusing the prior model and the observational evidence

using Bayes theorem 2.4.4. One of the important features to note is that the fused

model is in�uenced more by the observational evidence. This is expected as the

observational probability distribution had a lower uncertainty. In other words it can

be considered to be more `believable'. Another feature is that the fused model has

a smaller uncertainty than either the prior model or the observational model. This

is always the case when using Bayes theorem. As a result regardless of the quality

of the observational evidence, in regards to accuracy and precision, an improvement

on the prior model is possible. This is dependent however on being able to correctly

model the probabilistic distribution of the observational evidence.

2.4.3 Estimation and Control Theory

Control theory enables the user to estimate the behavior and outcomes from a speci�c

set of actions in a dynamic system. Estimation theory deals with the measurement

of parameters and systems with random components. Estimation theory can allow
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Figure 2.15 � An example showing the fused estimate using Bayes rule. The green line

is the fused model. The red line is the observational model of mass of material in

the haul truck. The blue line is the prior model on the mass of material located in

the truck.

machinery to estimate position, pose, speed as well as many other characteristics.

These are some of the reasons it is integrated with control theory to assist in guidance,

target tracking and autonomous operations [124].

From the review of material tracking systems in Section 2.3.2 it was evident that

there is a lack of systems that take a similiar approach to tracking material through a

process chain. This section reviews some of the fundamental estimation and control

theory techniques and the applications of these techniques. This gives an overview

of the bene�ts and drawbacks of particular methods in light of being applied to a

material tracking scenario.

The Linear Kalman Filter

The Linear Kalman Filter (LKF) is often chosen due to its Best Linear Unbiased

Estimator (BLUE) property. It provides the optimal solution in regards to estimation

accuracy for any series of operations in which the processes and observations are

linear (Gaussian distributed). A brief history of the creation of the Kalman �lter

was covered in Section 2.4.2. Due to the popularity of the Kalman �lter there are

many books available describing how the Kalman �lter operates and how it is derived

[21][12][47][49]. There are several other bene�ts for using a standard LKF, besides
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the BLUE principle. The LKF is capable of being very e�cient due to the fact it

assumes all noise and processes as Gaussian. A Gaussian distribution requires two

variables to de�ne a distribution (mean and variance). Due to this fact, it is e�cient

in memory storage when the state vector (x) is large. The covariance matrix (P )

remains only x2 in size.

One of the main drawbacks of the LKF is that it can only handle linear systems. This

is important when considering estimation of non-linear states. One mine automation

example is determining the position of an autonomous LHD vehicle described in a

paper by Scheding et al. [107]. Being able to consistently estimate the position of the

vehicle is shown to be a non-linear process given the e�ects of wheel slippage. The

non-linearity is a factor of the terrain, weather, tyre wear, mass and velocity. The

paper by Scheding et al. uses an extended Kalman �lter (EKF) to model the wheel

slip in relation to the position of the LHD.

The LKF traditionally has a �xed state vector. The state vector is a list of the

properties in the system which are being estimated. In mining as well as other

industries, the material being moved through the process chain is constantly changing

in regards to size and location. A state vector which is able to increase and decrease

in size to cater for the material as it moves the process chain would be bene�cial.

It would allow for a more memory e�cient means of representing the state space.

Additionally it does not require prior knowledge of the exact states which are to

be estimated. For these reasons a standard LKF is likely to be a poor choice for

representing all the material in single state space.

The Extended Kalman Filter

The EKF is a version of the Kalman �lter which can handle non-linear processes

and observations. The negative aspect of using the EKF is that it is sub-optimal in

regards to accuracy and maintaining statistical consistency, (except in cases where

both the processes and observations are linear in which case the EKF is identical

to the LKF). The consistency of the states estimated is not guaranteed. The EKF
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functions by `linearising' the non-linear observation and processes, the quality of this

linearisation largely decides the quality of the estimate provided by the �lter. There is

a strong case to argue that a number of processes in the mining cycle have signi�cant

non-linearities to in�uence the consistency of the estimated property values from the

�lter. One example is blasting and estimating the fragmentation of rock post blast

[37]. Hodouin et al. [51] describe in their paper several cases of non-linearity which

occur during mineral processing ranging from comminution to mineral separation.

There are other sections of the mining process which can be considered approximately

linear. These mainly involve the standard load-haul-dump cycle (This assumption is

validated in Section 3.6.3). The di�culty in implementing an EKF is that it requires

an accurate system model in order for the linearisation to be reasonable. In complex

systems where systems models are di�cult to derive this becomes problematic.

The Particle Filter

A common theme of the previous two methods of estimation is the requirement that

each property is Gaussian distributed. This assumption makes it di�cult to handle

systems with complex non-linear processes. There are a wide variety of Monte Carlo

methods which can be applied which overcome these problems. One of the most no-

table methods is particle �lters (also known as bootstrapping, sequential Monte Carlo

�lters). Particle �lters operate by partitioning the state space into a �nite set of par-

ticles. A probability measure is applied over the set of particles such that areas of

high probability are populated by a greater number of particles. Each particle has its

own probability mass. A state equation is then applied to project the particles further

in time. Observations update each particle's probability mass. Chen [26] provides a

great resource for learning about the methods involved in developing a particle �lter.

Arulampalan et al. [11] also provide a tutorial on how to start developing particle

�lters. The main advantage of using a particle �lter is that it is not constrained to the

Gaussian distribution. It can handle cases where there is multi-modal distributions

and far greater complexity in the probability distributions. The optimality of the

solution in regards to representing the true underlying distribution can also be con-
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trolled by the number of particles, such that when the number of particles approaches

in�nity the solution resembles the Bayesian distribution from which the particles are

drawn.

The prior stated bene�ts are useful in the material tracking scenario. Tracking cer-

tain properties of material, especially intensive material properties could bene�t from

the richer representation available in Monte Carlo methods such as particle �ltering.

An example of this would be the concentration of chemical properties iron ore. The

properties of iron, silica, alumina and phosphorous is likely to form a multi-modal

distribution when combined from two separate groupings of material with two di�er-

ent chemical property pro�les. The particle �lter could provide the means to model

this combination more accurately than a method which assume a Gaussian distribu-

tion for all state variables. This particular problem is discussed in further detail in

Chapter 5.

Particle �lters however do present several practical problems. The �rst one is the

computational complexity of the �lter. Daum [34] illustrates in his paper titled "Curse

of Dimensionality and Particle Filters" that as the dimension of the state vector

increases the computational complexity increases signi�cantly. In a material tracking

scenario, there is likely to be as many states as there is unique locations of material.

To maintain a single correlated framework for all material has the potential to become

too computationally expensive. As well as computationally expensive, the particle

�lter is also one of the more di�cult �lters to maintain and develop. After several

iterations of the particle �lter, it is likely the majority of particle's probability mass

will reduce to near zero. This is known as the degeneracy problem, which is often

overcome by increasing the number of particles in the �lter, which in turn increases

the computational complexity. There is also the need to resample the particles around

the particles of high probability mass to ensure that the complexity of the distribution

is adequately de�ned. A central problem with implementing a system such as this

on a mine site is that the system may eventually be distributed across a wireless

network. A particle �lter is signi�cantly less memory e�cient than a LKF or EKF,

given that the memory required to store the data is directly proportional to the
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amount of particles used in estimation. A summary of non-linear �lters was by done

by Daum [33] and is a useful reference for a more comprehensive comparison between

the di�erent non-linear �lter types.

A Comparison of Filtering Methods

The preceding section focuses on an overview of three commonly utilised �ltering

methods. For each �ltering method there are multiple subtle versions which alter the

behavior of each techniques to �t a speci�c role. The attributes required of the �lter

are discussed further in both Chapter 3 and Chapter 5. In brief, the �lter needs to

achieve the goals stated in Section 2.3.4.

The challenge in developing a �lter to ful�ll these requirements is that mining is quite

a complex process. This is due to the amount of mining processes and the variations

in these processes from mine site to mine site, even in the same mineral group.

This makes creating a generic �lter with process models for each process practically

unfeasible in regards to this thesis. For this reason the processes were limited to mass

transfer processes such as the load-haul-dump cycle in this thesis. This was due to

the fact that proxies for this process chain can be developed cost-e�ectively and the

process and material can be controlled relatively easily.

In the `ideal world' of unlimited processing speed, unlimited bandwidth and exten-

sive research and development time an ideal solution to the representation problem

would be to use a pure discrete Bayesian �lter. A pure discrete Bayesian �lter can

be considered similar to a particle �lter, except the particles are not randomly sam-

pled but evenly distributed over the variables of interest. The number of particles

tends towards positive in�nity. E�ectively, this produces the most accurate discrete

representation of the underlying probabilistic distribution being modeled. In real

world applications pragmatic choices must be made. Particle �lters allow for the

most robust method for representing the underlying distribution comparative to the

LKF and EKF given the particle �lters ability to represent non-gaussian multi-modal

distributions more accurately. The trade o�, again like a pure Bayesian �lter is both
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memory, processing time and greater development complexity. In cases where the

underlying distribution is approximately Gaussian, the LKF / EKF perform almost

as e�ectively with considerably less operational and development overheads. Given

this information, it is highly important to have a good understanding of the under-

lying distribution in question. In Section 3.6.3, an analysis of the experimental data

set (containing mass only) used in this thesis is performed. An analysis of a set of

truck scales is also done. In both cases the result is the underlying distribution can

be thought of as approximately Gaussian.

Given this result, a particle �lter for representation of extensive material properties

in this experimental scenario would be excessive. Therefore a LKF/EKF solution

provides a good point of origin in developing a �ltering system to track the extensive

material properties over the system processes.

The Augmented State Kalman Filter

One of the prominent trends in the previously mentioned material tracking systems

(Section 2.3.2) is the inability to track spatial correlations between material properties

as it progresses through a process chain. This problem can be considered quite similar

to a robotics problem which has been encountered. Smith et al. [113] [112] describe

the creation of a map which correlates uncertain spatial relationships. Speci�cally the

paper claims the following "The map contains the estimates of relationships among

objects in the map, and their uncertainties, given all the available information. The

procedures provide a general solution to the problem of estimating uncertain relative

spatial relationships". Since the publication of the paper by Smith et al., the solution

has become to be known as an Augmented State Kalman Filter (ASKF). Given the

stated contribution, the ASKF provides an excellent foundation for tracking material.

Though the ASKF forms the foundation for the �ltering method described in this

thesis, the ASKF in its original form does not solve all the necessary requirements.

These are namely that in essence the `map' in mining requires the addition as well as

subtraction of features, it also requires the ability to conserve mass in the system.
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One of the other techniques used in robotics which has similarities to the ASKF is

what is known as Simultaneous Localisation and Mapping (SLAM) which is described

in tutorials such as those by Dissanayake et al. [36]. The purpose of the SLAM

algorithm is for an autonomous vehicle to map the features of an environment. As

the vehicle moves over the environment, the features which are mapped are then used

to localise the vehicle. There has been work in the �eld to optimise this process to run

over large areas and with computational e�ciency. An example is the implementation

by Montemerelo et al. [87] known as FastSLAM, which uses a combination particle

and EKF �lter.

The techniques for ore tracking used in this thesis are closely related to target tracking

and autonomous vehicle localisation. In particular, the augmented state estimation

method developed here can be likened to the Simultaneous Localisation and Mapping

(SLAM) problem. However, instead of dynamically changing the state vector to add

features to a map, we dynamically change the state vector to add or remove lumped

masses of excavated material. The augmented state representation is also used to

constrain estimates to conserve mass throughout the system. The point of excavation

can also be considered similar to the vehicle in SLAM which is to be localised.

Constrained Kalman Filtering

One of the di�culties in developing a �lter for practical use is incorporating real-word

constraints and ensuring consistency. Constrained Kalman �lters have been developed

to ensure that physical real world constraints are incorporated into a Kalman �lter

framework. Massicotte et al. [76] provide an example of how a positivity constraint

can be introduced to a state variable. Another example is in Simon and Chia's paper

[111], which describes a method for state equality constraints being integrated into

the Kalman �lter. Rao et al. [98] show a method for horizon constrained �ltering

which can be used to solve nonlinear constraints, though at the expense of the BLUE

property of the Kalman Filter. One of the requirements of the material tracking

problem is to ensure that the amount of material in the system remains consistent.

An example would be an estimate of the material removed from a grade block and the
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estimate of the amount of material in a haul truck. This is what is referred to in this

thesis as the conservation of mass principle. The total mass estimated to be removed

by the haul truck from the grade block should always be consistent. Such that if

there is 300T estimated to be removed from the grade block, that material should be

allocated to speci�c subsequent locations in the mining process, including mass which

has become unrecoverable throughout the mining process (such as through losses).

Developing this constraint is discussed in Chapter 3.

2.4.4 Machine Learning

The problems addressed by machine learning can be broadly classi�ed into two main

�elds, regression and classi�cation. Regression is the act of developing a function to

best represent a set of data over a designated domain. Classi�cation can be thought

of as associating a particular set (or subset) of data with a class. Mjolsness and

DeCoste [84] describe machine learning as "the study of computer algorithms capable

of learning to improve their performance of a task on the basis of their own previous

experience". This describes how fundamentally machine learning techniques allow for

data to drive model development. This is where machine learning di�ers from control

theory approaches. Conventional control theory relies largely on the developer to

input into the system an amount of application speci�c knowledge. One example of

this are the system models used in Kalman �lters to transition between time states.

A machine learning approach still requires knowledge of the system, but in a more

generic way.

There are many approaches to machine learning. Some examples include neural

networks, graphical models, mixture models, principle component analysis, support

vector machines and kernel machines. There are several books available which can

give an introduction to machine learning techniques [105][17][92]. The area in which

this thesis is particularly focused is on Gaussian processes (A kernel machine method).

This is used for probabilistic volume estimation in Chapter 4.

The similarities between the Kalman �lter and the machine learning technique of
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Gaussian processes is highlighted in Reece and Roberts paper [101]. The techniques

for fusing additional data follows the same mathematical process. The paper by

Ko and Fox [63] gives an example of how Gaussian processes can be integrated into

particle �lters and Kalman �lters to improve prediction and observational models

compared to the standard parametric models. This however comes at a cost of ad-

ditional computational complexity. The decision in this thesis not to use Gaussian

processes to model the system processes and observations (volume estimation in the

large scaled experimentation will use Gaussian processes) is again one of pragma-

tism. Given there is currently no probabilistic system available to track material the

�rst step is to trial the simplest solution possible. A simple solution has the bene�t

of being quicker to develop and easier to understand and therefore maintain. Once

the performance of the simplest solution is evaluated, if the accuracy is outside the

targeted levels a re-evaluation may be necessary. Gaussian process regression is also

typically a computationally expensive task which could inhibit real-time operation.

This is discussed further in Section 4.8.

One of the contributions of this thesis is a system for probabilistic volume estima-

tion where Gaussian process regression is used to model a 2.5D surface and a triple

integration is performed to estimate the volume and uncertainty.

The decision to use Gaussian processes is based on the need to represent volume prob-

abilistically. Gaussian processes allow for a continuous probabilistic representation

over a set of variables, which is important when considering developing a probabilistic

volume estimation method to integrate into a similarly probabilistic tracking system.

Gaussian processes are able to appropriately assign uncertainty over areas where data

is not available. By correctly correlating the spatial relationships between data points,

Gaussian processes are the best linear unbiased estimator of the underlying proba-

bilistic representation [62]. This makes Gaussian processes a powerful tool to be used

for interpolating over sparse data points.

When considering volume estimation, the ability to have a multi-resolution represen-

tation allows for a �exible manner in which speed and accuracy can be made as a

trade o� when numerically integrating or representing a volume of material. Gaussian
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processes are a non-parametric technique, which places a lot of emphasis on allowing

the data to drive the probabilistic representation. A series of hyper-parameters used

in the covariance function change the general behavior of the function chosen. The

hyper-parameters can be optimised by such methods as maximising the marginal

likelihood of the output function (given a set of training data) conditioned on the

hyper-parameters. The textbook by Rasmussen and Williams [100] is an excellent

source for further learning in Gaussian processes.

Gaussian processes (though using a di�erent name and methodology) have been ef-

fectively used in the mining domain for some time. Kriging [77] is a common tech-

nique which is used in geostatistics to correlate spatial data and generate interpo-

lated geological models. One di�erence between conventional Kriging and Gaussian

processes is that in Kriging a variogram is designed to represent the uncertainty in

spatially separated data points. Gaussian processes use covariance functions (with a

set of hyper-parameters) which e�ectively generate the variogram intrinsically from

the given training data. There has been prior work in the �eld of terrain modelling

using Gaussian processes such as the paper by Plagemann et al. [97] on developing

a predictive terrain model using Gaussian processes to enhance path planning for a

legged robot. An example in the mining domain is shown in the paper on modelling

large scale mine geometry using Gaussian processes by Vasudevan et al. [122].

A more in-depth discussion on the mechanics and algorithms involved in performing

Gaussian process regression can be found in Chapter 4.

2.4.5 Volume Estimation

Estimating the volume of a region or of a discrete item has become increasingly

valuable across a range of industries. In mining, there is a trend towards greater

estimation of volume at di�erent sections in the mining process. One possible ex-

planation for this is the bene�ts provided by greater process control, planning and

reconciliation which can be achieved by improving the quality of information is be-

coming more renown. One of the areas in which current volume estimation techniques
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are lacking is in regards to providing an adequate encapsulation of the quality of the

volume estimate. The quality of the estimate is important when considering how to

integrate the volume estimate with prior knowledge of the volume of the material at

a particular location. This thesis is particularly focused on the 2.5D problem of esti-

mating a volume of material located on the ground in which the surface is observed

by a sensor system. The techniques can also be applied to estimation of non 2.5D

problems provided certain constraints are met.

One of the requirements, of the approach in this thesis, for estimating the volume

of a large irregular surface is obtaining a 3D point cloud of the surface by a sensor

system. Example sensor systems include laser, radar and camera. Typical methods

for estimating volume require interpolation between the data set points in order to

map the surface. The volume is estimated from the interpolated surface to the ground

plane. The primary problem with the current range of methods is that there is no way

of accurately estimating the surface when data on the surface is missing (such as a

physical occlusion) or the distance between points is sparse. This has increasingly led

to hard engineered solutions where dense 3D point clouds of the surface are gathered

in order to ensure accuracy. The downside of this solution is that the sensors are

typically expensive and the process is more time intensive as it requires observations

with no occlusions.

Gaussian processes provide a framework for surface modelling which overcome these

problems. Gaussian processes provide a method for incorporating uncertainty in sen-

sor observations. This enables less accurate sensors to be utilised, as well as providing

a statistically sound method for inference on the surface model by adequately encap-

sulating the spatial correlations in the data. These spatial correlations are learned

during the estimation process. The functional representation the surface model pro-

vided by the Gaussian process method allows for volume to be estimated by an in-

tegration of the function over a designated area. This integration can be done either

intrinsically or a set of inference points can be gathered and integral approximations

can be made on these points.

This thesis provides a method for volume estimation using Gaussian processes to
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model the surface of the data. Experiments are performed to validate the perfor-

mance of this method against other state-of-the-art methods. The experiments pro-

vide a comparison of covariance functions used in the Gaussian process model to

determine their e�ect on the volume estimation process. This method is used to esti-

mate material in a stockpile bin (a proxy for a grade block). This method of volume

estimation is used as an input into the material tracking and estimation system which

is discussed in Chapter 3.

To gain an understanding of how this method di�ers from current state-of-the-art

techniques, an overview of other techniques follows. Volume estimation techniques

have been implemented in a variety of di�erent industries to suit the needs of each

particular situation. One example is approximating the volume as simple shapes [95]

(spheres, cubes, prisms etc), which can be used in quality assurance measures in the

food industry. In the medical industry, the marching cubes and voxel representation

[70] (and the latter marching tetrahedrons) are popular to visualise and estimate

volumes of body components from imaging systems such as MRI (Magnetic Resonance

Imaging).

In the mining industry, estimating irregular 3D volumes and the geostatistical prop-

erties has been discussed and implemented by systems such as LYNX [52][28] to

estimate the volume and geological properties of ore bodies.

This thesis addresses the problem of estimating volume from a 2.5 D surface data and

its corresponding uncertainty. There have been many techniques designed to address

this problem as it is a common requirement in surveying tasks. One of the most com-

mon volume estimation techniques used is a triangulated surface projected against a

plane [130]. Triangle polygons are often generated using a Delaunay triangles algo-

rithm [35][67]. The triangles are tesselated in such a way that no triangle overlaps

with another. This forms a continuous surface known as the Triangulated Irregular

Network (TIN). Once the triangle tessellation is complete, the volume of a sectional

plane can be generated by adding the volumes of each triangular prism together. An

example of this process for a mining application can be seen in the paper by Kudowor

et al. [66].
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Another method commonly used is elevation maps (also known as height maps). An

elevation map is e�ectively a series of (x,y) points arranged in a grid format with

corresponding elevation (z) values. From the elevation map, volume can be calcu-

lated in several ways. This can be either through a cell based method in which

trapezoidal prisms are formed over the gridded data or through a mathematical in-

tegration method such as trapezoidal, Simpson and averaging. Recently Bewley et

al. [16] describe a real-time volume estimation system for a dragline which uses a

height map as the basis for its volume estimation. In this example, averaging is done

to create the height for each cell in the grid; the volume is then calculated using the

area of the grid multiplied by the averaged height grid for that particular cell.

The inaccuracy of using linear interpolators (such as TINs) is a well reported problem

in surface estimation. Chen and Lin [25] discuss using a cubic spline in order to more

accurately represent the surface and avoiding the "sharp edges" prevalent in linear

methods such as trapezoidal and triangular prisms. Using irregular intervals while

integrating has been proposed as one method for improving accuracy [23]. Easa [43]

discusses a similar solution to Chen and Lin, but instead using a Hermite polynomial

with allowance for intervals which are unequal during integration. Yanalak [128]

provides a comparison of the current state-of-the-art volume estimation techniques

over three separate volume cases along with a method for calculating volumes using

rectangular prisms.

As discussed in Section 2.3.2, a method for measuring the uncertainty of an estimate

is necessary when trying to incorporate this information into a wider probabilistic

system as it allows for e�ective fusion of information. Therefore, the representation

provided by Gaussian processes is ideal for incorporating into such a system. Swales

[115] uses an approach similar to this in his paper on volume estimation of beach fronts

to estimate erosion. This is done using Kriging and the average of three numerical

integration methods to determine the volume estimate. The method in this thesis

di�ers in its approach to that used of Swales beyond the methodology di�erences

between Gaussian processes and Kriging. The uncertainty estimated in the method by

Swales is calculated by averaging the estimated error at each inferred point times the
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total area. The derivation using Gaussian processes in this thesis (see Section 4.3.3)

requires the inclusion of the covariance between inferred points when calculating the

uncertainty, this requires a 4D integral compared to a 2D integral.

Chapter 4 discusses how Gaussian processes can be used in the volume estimation

process to provide accurate estimates of volume along with the associated uncertainty

in the volume estimates.
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Chapter 3

Modelling Extensive Material

Properties

3.1 Introduction

Tracking of discrete products through a process chain has received a signi�cant

amount of research (see Section 2.3.2). The current state-of-the-art methods typi-

cally involve tracking products in inventory systems (with assumed known properties)

through discrete identifying marks such as bar codes, RFID tags and serial codes.

The process chains in primary industries such as mining and agriculture have several

factors which make these prior techniques in tracking systems less ideal. The nature

of bulk materials from these particular primary industries makes it di�cult to place

identifying markers on each piece of material given the size and amount of material.

In open pit mining, the commercial tracking systems (as well as reconciliation sys-

tems) described in Section 2.3.2 are not end-to-end. The estimation of material

properties over the processes which are tracked is also not done probabilistically.

One of the problems with current state-of-the-art tracking and estimation systems

is the discrepancies between the input of one system compared to the output of an

earlier system. To make reconciliation possible, this discrepancy is often accounted
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for by the use of `factors'. The paper by Morley [88] describes brie�y the process

of reconciliation with factors as well as some of the negative aspects in using this

approach. An example of a common factor used is the relative grade received at the

plant compared to the expected grade given the geological model. For example this

factor could be 105%, meaning that the ore processed at the plant is 5% higher on

average then the expected grade from the geological model.

One of the di�culties in using reconciliation on mine sites is being able to use the data

e�ectively to improve operational performance. The large length and time scales over

which the data is collected and reported means the data is often used reactively. The

large length factors also make it di�cult to isolate which mine processes are causing

a bias in the results. This can mask operational problems within the system. As an

example, the reconciliation factor over a set of processes for a material property may

be 100%. This would suggest the mine plan is performing as expected. However,

another possibility is that one process may be operating at 110% while another at

90%, but given the large length scale this is averaged to 100% for a given reconciliation

factor and would suggest that there is no operational issues.

A probabilistic end-to-end estimation and tracking system would provide the capa-

bilities for improving not only reconciliation in mining, but also substantial bene�ts

for control and planning in an autonomous mine.

In order to achieve this, a new probabilistic representation for material properties

at each stage in the mining process is necessary. As discussed in Section 2.4.2, a

probabilistic representation allows for consistent fusion of information from a variety

of sources of di�erent quality. One of the bene�ts of using a Bayesian approach is

that provided the observational model is correct, any additional information always

decreases the uncertainty of the prior estimate. This allows for utilisation of noisy

sensors such haul truck strut pressure monitors to be able to be actively used in mine

operations to improve the performance of the estimation system.

Estimating the material properties at each location in the mining process, while

maintaining the spatial correlations between the estimated material and its prior

source locations, enables the capability to reconcile over the shortest of length scales
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in the mine process chain. For example, observing the amount of material in the

excavator bucket would enable using this information to update the estimated amount

of material removed from the grade block from which it was excavated.

In an autonomous system, a real-time inventory of material at each location on a

mine site would have signi�cant operational bene�ts. It �rstly provides feedback to

planning systems in a format which enables for e�ective mine plan decision making.

For example, if the estimate of the grade of material in the stockpile is below the

required grade, it could prompt an alteration of a mine plan to mine more high grade

material. It would also bene�t in the control and planning of autonomous equipment.

The estimate of mass in a haul truck would be useful in determining an accurate

dynamic model enabling better control and path planning.

This chapter introduces a system for probabilistic estimation using a Bayesian frame-

work. In addition to this, it is shown that integration of both the tracking and

probabilistic estimation systems provides several substantial bene�ts. These bene-

�ts include more e�ective use of information sources, real-time reconciliation and the

ability to ensure that all �ows of mass in the system are accounted for (ensuring a

conservation of mass). This is validated through small and large scale experiments

which simulate a process chain of an open pit mine.

The method used in this chapter is a constrained augmented state Kalman �lter. A

brief review of this technique and similar Bayesian methods is found in Section 2.4.3.

3.2 Problem Formulation

3.2.1 The Lumped Mass Model

One of the problems in tracking of bulk material is managing the scale at which the

material properties are represented as a single entity (with a single mean and variance

on each property). When dealing with extensive properties one solution is to set the

scale at the same resolution as the information sources. An example of this solution
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would be to represent material in a haul truck as one entity given that sensors, such

as haul truck strut pressure monitors, typically measure that total mass of material in

the haul truck. A similar scenario can be applied to material in an excavator bucket.

An entire stockpile volume can be estimated by acquiring 3D point cloud data of the

stockpile surface to estimate the bulk volume.

One of the issues involved in this process is that di�erent sensing systems provide

di�erent levels of resolution on the various material properties. Therefore additional

processing and modelling may be required when integrating sensor data of di�erent

resolutions. This is needed to maintain a system where all material properties at a

particular unique logical location can be de�ned by a single mean and variance.

The `lumped mass model' is a term used in this thesis to describe the method for

representing and discretising the excavated material into manageable components

based on a unique logical location. This is done to reduce the complexity of the

estimation problem into smaller manageable parts. The lumped mass model implies

that material is estimated based on its separation from other lumps of material.

A unique logical location describes a grouping of material which provides a useful

resource for mine operations and observation of the material properties. For example,

the material in a haul truck is a unique logical location. Grouping the material stored

at this location is logical both for observing the properties as well as for using the

information about the material properties at this location to aid in the planning and

control of the vehicle.

At any point of time the system is estimating as many lumped masses as there are

logically separated groupings of material. The properties of a lumped mass can be

represented as a probabilistic vector P (Xn). An example of Xn can be seen in

Equation 3.1 using properties which may be of interest in iron ore mining.

Xn = [M,V, Fe, SiO2, Al2O3, F ragmentation]T (3.1)

Where n represents the location identi�er for the lump (e.g. excavator bucket, haul

truck, stockpile), M is mass, V is volume, Fe is iron%, SiO2 is silicon dioxide%,
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Al2O3 is aluminium oxide% and Fragmentation = is ore fragmentation level.

A probabilistic estimate exists for each of the listed material properties de�ned in the

vector Xn.

3.2.2 Comparing Mass, Volume and Bulk Volume

Mass and volume represent the two extensive properties of lumped material which

can measure the quantity of the material present.

The majority of volume estimation techniques on large scales measure bulk volume.

Bulk volume is the volume of area the material occupies including the gap spaces

between the material. Volume can be extrapolated from this by determination of the

bulk factor (see Equation 3.2).

Bf =
Vb
Vt

(3.2)

Where Bf is the bulk factor, Vb is bulk volume and Vt is volume.

Depending on the consistency of the material and the con�guration in the space

which it is occupying, the bulk factor can vary signi�cantly. These variations may

be small in certain scenarios. An example is excavating a �ne soft, homogeneous and

dry material. The nature of material such as this minimises the gap between the

material. Conversely, material such as blasted stocks on a mine site often fragment

the material into a wide spread of sizes. This can lead to variations in the bulk density

on a load-by-load basis given the con�guration of the material in both the excavator

bucket and haul truck.

One of the requirements for integrating both probabilistic estimation and tracking

using the method described in this thesis is placing a modelling constraint on one of

the extensive material properties. The precise reasoning for this is explained in Section

3.5. The ideal choice is the property which has the most accurate representation of

the amount of material present at each location.
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Mass and volume (not bulk volume) essentially ful�ll the same purpose of describing

the amount of material present at a location. In the experiments used in this thesis

the observations of mass are considerably more accurate then the observations of

volume resulting in much greater accuracy in estimates. Mass is therefore used as

the constrained property. Volume can still be included as a property which is tracked

and estimated in the lumped mass model.

3.3 The Kalman Filter

A brief introduction to the properties of the LKF and why it is an attractive choice for

probabilistic estimation was discussed in Section 2.4.3. This section brie�y outlines

the mathematical processes involved in the discrete LKF.

The LKF equations can be separated into two steps known as the `prediction' step

and the `update' step. The prediction step outlines how to project forward in time

each of the di�erent state vector values. It is also used to project forward in time the

covariance matrix describing how the di�erent state vector elements are correlated to

each other.

The prediction equation for the state vector is as follows:

xk+1 = Fxk +Buk (3.3)

xk+1 is the predicted state estimate at the time interval k + 1. xk is the prior state

estimate before prediction at time interval k. F is known as the state-transition

matrix and describes how states in vector xk changes between the time intervals k

and k+ 1. uk is a linear additive input to the state estimate. The matrix B describes

how the input uk relates to the state estimate over the time period between k and

k + 1.

The prediction equation for the covariance matrix is described in Equation 3.4.
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Pk+1 = FPkF
′ +GQkG

′ (3.4)

Pk+1 is the predicted covariance matrix associated with the state estimate xk+1 at

the time interval k + 1. Pk is the prior covariance matrix at time interval k. F is

the state transition matrix from Equation 3.3. Qk and G denote respectively system

noise and a projection matrix of that noise onto the estimated system states.

Equations 3.3 - 3.4 combine to form the prediction step. The update step occurs

when independent observational data which can either directly or indirectly provide

information on one of the systems states. The update process can be broken down

into 5 main equations. Equations 3.5 - 3.9 describe the update process.

vk+1 = zk+1 −Hxk+1 (3.5)

vk+1 is referred to as the innovation. The innovation is the residual between the

observed data to the predicted states in xk+1. zk+1 is a vector containing the observa-

tional data. H is the observational model (or sensor model) matrix which describes

how the observational data relates to each element in the state vector.

Sk+1 = HPk+1H
′ +R (3.6)

Sk+1 is the innovation covariance. R is the sensor noise matrix.

Wk+1 = Pk+1H(Sk+1)
−1 (3.7)

Wk+1 is known as the Kalman weighting (or Kalman gain). The Kalman weight

de�nes how much weighting is given to the observational data given the priori data.

x+k+1 = x−k+1 +Wk+1v (3.8)
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x+k+1 is the posterior state estimate. This is the resultant state estimate vector af-

ter the observational data has been included. The − and + de�ne prior and post

observational update respectively.

P+
k+1 = P−k+1 −Wk+1Sk+1W

′
k+1 (3.9)

P+
k+1 is the posterior covariance estimate.

From Equations 3.3 - 3.9 it is important to note that the LKF is a recursive estimation

tool. The only data which is required to be stored is the current estimate of both

the state vector (xk) and covariance matrix (Pk). This e�ciency is one of the reasons

why the Kalman �lter is a very popular choice in a wide range of computationally

and memory sensitive applications.

LKF Summary:

The LKF can be broken down into a prediction and update step. The equations

required to complete each step are as follows:

Prediction:

xk+1 = Fxk +Buk

Pk+1 = FPkF
′ +GQkG

′

Update:

vk+1 = zk+1 −Hxk+1

Sk+1 = HPk+1H
′ +R
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Wk+1 = Pk+1H(Sk+1)
−1

x+k+1 = x−k+1 +Wk+1v

P+
k+1 = P−k+1 −Wk+1Sk+1W

′
k+1

3.4 Probabilistic Estimation

Bulk material tracking and estimation systems in mining can be improved by taking

a Bayesian (see Section 2.4.2) approach for representing data. This allows for appro-

priate encapsulation of prior knowledge based on modelling and information sources

to be e�ectively weighed when fusing additional data from new information sources.

3.4.1 A Non-tracking Method

One approach to probabilistic modelling is to model each lumped mass with an indi-

vidual LKF. This would begin with an initialisation of the lumped mass properties

based on a theoretical model. The lumped mass properties can then be updated

whenever new information is available. This would ful�ll the goal of obtaining a

probabilistic estimate of the material at each location. An example of this applied to

a mining scenario can be seen in Figure 3.1. The `Out of Ground Model Interface'

would be a communications layer which would be capable of retrieving information

about material properties from the Kalman �lter estimate in regards to a speci�c

lump location when required. The lumps estimated would be generated from one end

of the system to the other.

It should be noted that the non-tracking methodology can be applied to a variety

of Bayesian �lter types. The Kalman �lter can be directly substituted for a particle

�lter for example. Given that dimensionality is less of issue under these conditions
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Figure 3.1 � A series of LKFs could be used to estimate lumped masses at di�erent

locations. This method however, does not take into account the spatial correlations

between extensive lumped mass properties.
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(compared to a single framework containing all lumps) this may form a more accurate

estimation system for a variety of material properties (particularly intensive).

3.4.2 The Importance of Spatial Correlations in Bulk Material

Process Chains

E�cient Utilisation of Information Sources

The primary drawback from the non-tracking system described in Section 3.4.1 is

that it does not take into account the spatial correlations which exist between lumped

masses.

As an example from Figure 3.1 it is clear to see that additional independent in-

formation about the mass of material in the excavator bucket should increase the

understanding of how much material has been removed from the grade block. Fur-

thermore, additional information from information sources at the haul truck about

the mass of material removed should further increase this understanding of material

removed from the grade block.

The non-tracking system does not incorporate this spatial correlation and therefore

does not make the most e�cient use of the information sources available. A system

which could incorporate the spatial correlations consistently when fusing additional

information about speci�c properties of a lumped mass has the potential to reduce

the uncertainty of these material property estimates over correlated states.

The Conservation of Mass

One of the issues in current bulk material tracking and estimation methods, as well

as with the prior estimation only method, is that there is no statistically consistent

method for ensuring a `conservation of mass'. The principle behind the conservation

of mass is that in a closed system the total mass should remain consistent.
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Applying this principle to a open pit mining operation, one would expect that the

total mass of material removed from the ground should be equivalent to the total

mass located in all the lumped masses located on the mine site. This is assuming we

temporarily disregard that an open pit mine is an open system, given that mass is

removed from the system by train or port to the customer and all material is stored

on the mine. The principle can be reduced to smaller frames of reference such as

between the excavator and the grade block. In this example system, it is expected

the total mass in the excavator bucket is equivalent to the change in mass removed

from the grade block.

If the end-to-end estimation system is to be accurate it needs to ensure that there

is no `creation' or conversely `destruction' of mass between the di�erent processing

stages. By maintaining a link to all spatially correlated lumped masses by tracking

the material through each stage in the process chain, a method for constraining the

total mass present in the system can be developed.

Reconciliation

Reconciliation is an important part of the mining process. It provides validation of

both geological and mining models and can be used to improve operational perfor-

mance. One of the di�culties in applying reconciliation currently is the signi�cant

delay between actual production and reconciliation of the product. Another problem

is the lack of certainty in the quality of data used during the reconciliation process.

Using a tracking and estimation system which takes advantage of the spatial relation-

ships between the material at di�erent locations creates the opportunity to perform

reconciliation in real time.

3.5 A Constrained Augmented State Kalman Filter

One way of accounting for the spatial correlations between lumped masses is to use

a single state vector which contains all of the lumped masses to be estimated in the
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system. One of the problems which needs to be addressed is that the total number

of lumped masses in the system is is likely to be dynamic. An example from mining

is that when material is excavated, divided and stockpiled the amount of lumped

masses both increases and decreases as the material is divided and grouped together

respectively. As a result, a conventional LKF with a �xed length state vector cannot

e�ciently store the lumped masses to be estimated. The Augmented State Kalman

Filter (ASKF) solves this problem with the capability of `augmenting' new states into

the state vector. A brief introduction to the ASKF was presented in Section 2.4.3.

Equation 3.10 describes how each of the lumped masses sit inside the Kalman �lter

state vector.

xk = [X1, X2, ..., Xj−1, Xj]
T (3.10)

xk is the Kalman �lter state vector. The vector Xi ∈ xk, where i = [1, 2, ..., j − 1, j],

represents a collection of all lumped masses which are to be estimated in the system.

Xi can contain a set of states such as those showed in Equation 3.1.

The factor which still needs to be accounted for in the tracking and estimation is the

real-world constraint that the system must conserve mass. A discussion of constraint

based Kalman �ltering was discussed in Section 2.4.3. Some of the drawbacks of

constraints in Kalman �lters discussed were that they can add additional computa-

tional complexity or remove the BLUE property of the Kalman �lter. The proposed

method in this thesis preserves the BLUE property of the LKF. This is done by taking

advantage of the characteristics of both the ASKF as well as the properties of bulk

material process chains. By ensuring that a speci�c set of system models are applied,

a consistent set of spatial relationships between extensive material properties over

di�erent lumps can be maintained.

3.5.1 Initialising Lumped Masses into the ASKF

The ability to `augment' new states into the ASKF is what di�erentiates it from a

standard LKF. Initialising a lumped mass into the system is a relatively straightfor-
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ward task. Equations 3.22 and 3.23 detail how to �rst augment a new lumped mass

(Xn) into the state vector (xk).

xk|Xn =

 xk

Xn

 (3.11)

where xk|Xn is the Kalman �lter state vector, once the new lumped mass has been

augmented in, Xn is a vector containing the states of interest to be estimated in each

lumped mass (See Equation 3.1).

Pk|Xn =

 Pk 0

0 σ2
Xn

 (3.12)

where Pk|Xn is the new covariance matrix which includes the initialised covariance

values associated with the new lumped mass (σ2
Xn
).

The creation of a new lumped mass in a bulk material process chain is the result of

removing material from a previous larger lumped mass. Thus whenever a new lump

is initialised into the �lter it has a spatial correlation with the prior lumped mass

in which it was sourced from. The following equations dictate how to generate the

spatial correlation in the ASKF when initialising.

x#k+1 = Axk|Xn (3.13)

x#k+1 is the ASKF state vector, the # superscript de�nes that that this is the post

augmentation and initialisation of the new lumped mass Xn. A is de�ned as a design

matrix used to initialise the new lumped mass state correlations to previous states in

the ASKF state vector.

P#
k+1 = APk|XnA

T (3.14)

P#
k+1 is the ASKF covariance matrix post augmentation and initialisation.
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An Example Lumped Mass Initialisation

Take a very simple example of a system with one existing lumped mass. For this

example the existing lumped mass is a stockpile of bulk material. The stockpile

has an excavator remove a portion of material thus generating a new lumped mass

in the system which needs to be augmented and initialised. For simplicity the only

property estimated is mass (Xn = [ m ]).

Prior to excavation:

xk = [mstockpile] (3.15)

Pk =
[
σ2
stockpile

]
(3.16)

Equations 3.15 and 3.16 represent the ASKF state and covariance matrixes respec-

tively prior to any material being excavated. The next step is the initialisation

once a new lump has been generated by removing material from the stockpile and

placing it into the excavator.

Material is loaded into excavator:

xk|Xexcavator =

 mstockpile

mexcavator

 (3.17)

Pk|Xexcavator =

 Pk 0

0 σ2
excavator

 (3.18)

The operations performed in Equations 3.17 and 3.18 is that which was described

in Equations 3.22 and 3.23.

The next step in the initialisation process is to perform the modelling to generate

the spatial correlations between the new lumped mass excavator state and the
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prior lumped mass stockpile state. This also updates the state vector estimate of

the stockpile lumped mass to take into account the removed material.

The design matrix A describing how the material in the excavator is correlated

to the material in the stockpile is described in Equation 3.19.

A =

 1 −1

0 1

 , (3.19)

Given the design matrix A, equations 3.13 and 3.14 are performed to generate the

post initialisation state vector (x#k+1) and covariance matrix (P#
k+1).

Post initialisation result:

x#k+1 =

 mstockpile −mexcavator

mexcavator

 (3.20)

P#
k+1 =

 σ2
stockpile + σ2

excavator −σ2
excavator

−σ2
excavator σ2

excavator

 (3.21)

As seen from the results in Equations 3.26 and 3.29 the system behaves intuitively.

The mass in the stockpile is reduced by the mass in the excavator. The stockpile

variance is increased by the variance associated with the mass of material in the

excavator bucket. The cross correlation terms show that the spatial correlation

between the two lumped masses is equivalent to the variance of the mass in the

excavator bucket.

3.5.2 Combining Lumped Masses in the ASKF

Combining lumped masses occurs when separated lumps are joined together through

some external transfer process. The process for combining these lumps is shown
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mathematically below for the extensive properties ω1 and ω2.

xk =

 ω1

ω2

 (3.22)

where xk is the Kalman �lter state vector with two extensive material states ω1 and

ω2.

Pk =

 σ2
ω1

0

0 σ2
ω2

 (3.23)

Pk contains two spatially uncorrelated lumped masses.

Now using the Kalman �lter state and covariance prediction formulas (See Equation

3.3 and 3.4, where we assume there is no linear input (u(k)) or process noise Q(k).

The state transition matrix F to combine the vector state ω1 into the vector state ω2

can be given as:

F =

 0 0

1 1

 , (3.24)

alternatively if ω2 is being combined into ω1 the state transition matrix F can be

given as:

F =

 1 1

0 0

 , (3.25)

The only remaining step is to remove the empty lumped mass state from the state

vector and covariance matrix.
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3.5.3 Removing Lumped Masses from the ASKF

Removing a lumped mass should be performed when a system process removes all

lumped material from a unique location and it is combined with another lump(or

initialised into a new lump at a new location). Mathematically, this process involves

removing the rows and columns associated with the lumped mass in the covariance

matrix(Pk) and state matrix(xk).

One of the di�culties in removing a lumped mass from the ASKF is determining

when a prior lump has been depleted to e�ectively zero mass or volume. For material

stored in excavator buckets and haul trucks which by their nature remove material

when performing certain operations makes it easier to remove these states. For other

states such as stockpiles and grade blocks it is a more di�cult operation.

An Example Combining and Removal of a Lumped Mass

Following on from the prior example of initialisation of a lumped mass (Equations

3.15 - 3.29), the excavator unloads the material into a haul truck. This example

assumes that all the material in the excavator bucket is removed and added to

the haul truck.

Prior to haul truck loading:

xk =

 mstockpile −mexcavator

mexcavator

 (3.26)

Pk =

 σ2
stockpile + σ2

excavator −σ2
excavator

−σ2
excavator σ2

excavator

 (3.27)

The next step is to initialise the haul truck lumped mass then combine the ex-

cavator lumped mass with it. This example assumes that the haul truck has no

material currently loaded.
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Initialise haul truck:

xk =


mstockpile −mexcavator

mexcavator

0

 (3.28)

Pk =


σ2
stockpile + σ2

excavator −σ2
excavator 0

−σ2
excavator σ2

excavator 0

0 0 0

 (3.29)

Transfer excavator lump to haul truck:

F =


1 0 0

0 0 0

0 1 1

 , (3.30)

Then using Equations 3.3 and 3.4 the resultant state vector and covariance matrix

can be given as

xk+1 =


mstockpile −mexcavator

0

mexcavator

 (3.31)

Pk+1 =


σ2
stockpile + σ2

excavator 0 −σ2
excavator

0 0 0

−σ2
excavator 0 σ2

excavator

 (3.32)

As can be seen in Equations 3.31 and 3.32 the material in the excavator bucket,

along with the spatial correlations to the stockpile have been transferred to the

haul truck. The excavator lumped mass can now be removed from the state �lter

if desired by removing both the row in the state vector containing the excavator

lumped mass properties as well as in the row and column in the covariance matrix.
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In this example this is done by removing the second row from the state vector and

the second row and column from the covariance matrix. One can verify whether

it is possible to remove a lumped mass by analyzing both the state vector and

covariance matrix rows and columns. If all the cell values are equal to 0, removing

the lump should not have an impact on the consistency of the �lter.

For completeness, the �nal result from this operation can be seen in Equations

3.33 and 3.34. This is the same as what can be seen in Equations 3.26 and 3.29

which is to be expected given the only process which occurred was a transfer of

all the material from the excavator to the haul truck.

xk =

 mstockpile −mexcavator

mexcavator

 (3.33)

Pk =

 σ2
stockpile + σ2

excavator −σ2
excavator

−σ2
excavator σ2

excavator

 (3.34)

3.5.4 A Modelling Constraint

One of the trends in the prior models for initialising, combining and removing lumped

mass is the tendency to use the set of numbers −1, 0, 1. The interactions between

di�erent lumped mass extensive properties during movement of the lumped masses

through a process chain can be de�ned into 3 categories. These categories are full

negative correlation, no correlation and full positive correlation. This modelling con-

straint is done to ensure the conservation of mass over all of the lumped masses in

the system. Equations 3.35 - 3.39 show the reasoning for this constraint using the

extensive material properties ω1 and ω2.
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Two lumps prior to applying model:

xk =

 ω1

ω2

 (3.35)

Pk =

 σ2
ω1

0

0 σ2
ω2

 (3.36)

Equations 3.35 and 3.36 describe two lumped masses with a yet to be de�ned spatial

relationship.

Equation 3.37 describes a generic state transition matrix F used in standard linear

Kalman �ltering to describe the relationship between these two lumped masses.

F =

 i j

k l

 (3.37)

Now using the Kalman �lter state and covariance prediction formulas (See Equation

3.3 and 3.4), where we assume there is no linear input (u(k)) or process noise Q(k).

The result becomes the following:

xk+1 =

 iω1 + jω2

kω1 + lω2

 (3.38)

Pk+1 =

 i2σ2
ω1

+ j2σ2
ω2

ljσ2
ω2

+ ikσ2
ω1

ljσ2
ω2

+ ikσ2
ω1

l2σ2
ω2

+ k2σ2
ω1

 (3.39)

In order to constrain the problem to ensure that no mass is created or destroyed

the signi�cance of square component of i, j, k, l must be eliminated from the diagonal

terms in Equation 3.39. This can be achieved by setting the values of i, j, k, l to the

subset of real numbers −1, 0, 1.
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3.5.5 Mass Loss

One of the assumptions used in all prior examples is that process noise (Qk) is equal

to zero. This assumes no noise is present in the system models. The system models

that are needed for conservation of mass assume that mass transfer between lumped

masses is the entirety of the mass. As can be seen from Figure 3.2 where an excavator

is loading a haul truck with bulk material, this is not the case. The loss of material

either over time or during the transfer process must be included in the previously

described system. By not including losses in the system it risks becoming inconsistent

if these losses are signi�cant.

Figure 3.2 � Portions of bulk material can be `lost' as lumped masses move through a

mining process chain. This material needs to be accounted for to ensure consistency

in the estimates given a conservation of mass constraint.

These losses can be accounted for using the existing initialising and combining method
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which have been described previously. A new loss lumped mass can be created to

represent the material that has separated from the excavator bucket in Figure 3.2.

An Example with Mass Loss

This example shows how to incorporate the losses as shown in Figure 3.2 into the

ASKF representation. The process used is described in Section 3.5.1. The initial

representation is as follows:

Prior to applying loss model:

xk =

 mstockpile −mexcavator

mexcavator

 (3.40)

Pk =

 σ2
stockpile + σ2

excavator −σ2
excavator

−σ2
excavator σ2

excavator

 (3.41)

A loss lumped mass is then initialised which estimates how much material is lost

from the excavator during the transfer process.

Initialise loss model:

xk|Xloss
=


mstockpile −mexcavator

mexcavator

mloss

 (3.42)

Pk|Xloss
=


σ2
stockpile + σ2

excavator −σ2
excavator 0

−σ2
excavator σ2

excavator 0

0 0 σ2
loss

 (3.43)

Once the loss lumped mass is initialised it is then applied to the excavator bucket.
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Apply loss design matrix to excavator bucket:

A =


1 0 0

0 1 −1

0 0 1

 , (3.44)

x#k+1 =


mstockpile −mexcavator

mexcavator −mloss

mloss

 (3.45)

P#
k+1 =


σ2
stockpile + σ2

excavator −σ2
excavator 0

−σ2
excavator σ2

excavator + σ2
loss −σ2

loss

0 −σ2
loss σ2

loss

 (3.46)

To complete the process, a haul truck lumped is intialised and then combined

with the excavator lumped mass. It is assumed, as in previous examples, that the

haul truck has no material currently inside. This follows the process described in

Section 3.5.2.

Initialise haul truck lumped mass:

xk =


mstockpile −mexcavator

mexcavator −mloss

mloss

0

 (3.47)

Pk =


σ2
stockpile + σ2

excavator −σ2
excavator 0 0

−σ2
excavator σ2

excavator + σ2
loss −σ2

loss 0

0 −σ2
loss σ2

loss 0

0 0 0 0

 (3.48)
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Apply state transition matrix:

F =


1 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

 , (3.49)

Result:

xk+1 =


mstockpile −mexcavator

0

mloss

mexcavator −mloss

 (3.50)

Pk+1 =


σ2
stockpile + σ2

excavator 0 0 −σ2
excavator

0 0 0 0

0 0 σ2
loss −σ2

loss

−σ2
excavator 0 −σ2

loss σ2
excavator + σ2

loss

 (3.51)

The excavator lumped mass can then be removed from the ASKF. As can be

seen in Equation 3.51, the loss state is correlated to the material now in the haul

truck. Thus if one was able to observe for instance that no material was lost with

absolute certainty (i.e. zero mean zero variance on the observation of mass lost)

then the state vector and covariance matrix would appear as the following:

Posterior state vector and covariance matrix after zero loss observation:

xk+1 =


mstockpile −mexcavator

0

0

mexcavator

 (3.52)
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Pk+1 =


σ2
stockpile + σ2

excavator 0 0 −σ2
excavator

0 0 0 0

0 0 0 0

−σ2
excavator 0 0 σ2

excavator

 (3.53)

By removing the loss lumped mass from Equation 3.52 and 3.53 the same result

is obtained as in Equations 3.33 and 3.34 which is the scenario in which no losses

were accounted for.

There are many ways in which the loss lumped mass can be modeled. In the

scenario shown in Figure 3.2, the process which is likely to occur is that the loss

lumped mass is combined with the grade block lumped mass. This usually occurs

when a front end loader pushes the material back into the grade block at the end

of an excavation.

This could be modeled by creating two lumped mass loss states. One would

contain a short lived excavator loss lumped mass which is generated each time

the excavator loads and transfers material to the haul truck. This excavator loss

lumped mass, after possibly being observed could then be combined into another

lumped mass which would stockpile all of the excavator loss lumped masses. At

the point in time when the material is pushed back into the grade block, this loss

stockpile lumped mass is then combined into the grade block lumped mass.

Losses throughout the process chain can be modeled by using a similar method-

ology.

3.5.6 Discussion

The constrained ASKF allows for the proper spatial correlations between lumped

masses which ensure conservation of mass in the system to be maintained. This

approach leaves the core �ltering algorithms are unchanged, thus the ASKF retains

the BLUE property.
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The performance of this integrated tracking and estimation system is ultimately a

function of both the performance characteristics of the information sources provided

(and how well these are probabilistically modeled) as well as the accuracy of the

system modelling. It is also important that both the information sources and system

models can be approximated as Gaussian distributions or, in the case of non-linear

processes, in an EKF style representation - linearised with an appropriate level of

accuracy.

One of the practical di�culties in implementing a system such as this in both an

autonomous and manual environment is deciding when and how to initialise, remove

and combine new lumped masses. This is discussed further in Chapter 6 with speci�c

focus on implementing a system described in this chapter in a mining scenario.

3.6 Experiments

To verify the constrained ASKF method two scales of experiments are performed. The

experiments are designed to simulate mining processes. The processes involved are

the removal of material from a stockpile (a proxy for a grade block) by an excavator.

The material is then unloaded into a haul truck which then unloads the material

at a stockpile (a proxy for a ROM stockpile). This set of processes was chosen for

several reasons. One is that the processes which occur are reasonably simple to

model accurately. The set of processes are generic enough to be applied across a wide

range of mining, horticulture and agriculture scenarios in that material is removed in

portions from a start location and subsequently divided and recombined in stages at a

�nal location. Finally, in a mining context, the set of processes listed is considerably

cheaper to simulate comparatively to processes which re�ne and alter the intensive

properties of the bulk material.

One of the di�culties in validating spatial systems is �nding an accurate measure of

ground truth. This problem increases in di�culty as the amount of material increases

in size (e.g. measuring the mass of a large stockpile of material). As systems become

larger, the amount of control over system processes also diminishes comparatively to
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smaller scale systems. For this reason, a small scale experiment was designed. This

experiment allows for complete control over the system dynamics. Most importantly

it allows for the extensive properties of the material to be observed by highly accurate

information sources at each lumped mass location. This can be then used as ground

truth in validating the system. This experiment validates conceptually the method

for estimation and tracking developed in this chapter.

A second experiment is of a larger scale. It is designed to mimic conditions which are

more realistic of a mining scenario. The system dynamics are less controlled. As an

example, on this scale compared to the small scale, it is not possible to control the

mass transfer process to occur with 100% accuracy. Most signi�cantly, the extensive

material properties at each lumped mass location can not be fully observed. This

makes it harder to validate the system compared to the small scale experiment. The

observational sources are less precise then what is available for the smaller scale

experiment. In addition to these factors, the material and environmental conditions

are considerably less controlled which has an impact on properties such as bulk density

calculation. The large scale aims to show that the constrained ASKF tracking and

estimation method developed in this chapter is able to provide consistent estimates,

even when the scale of material and equipment increases in size as well as less control

of the system dynamics.

Figure 3.3 gives an overview of the two di�erent experiment scales and the processes.

The mining scale is included as a reference to show how the experiments aim to

simulate the processes which occur on a mine site. As a point of reference in terms

of scale, the small scale experiment utilises approximately 3L of material total. The

large scale experiment uses approximately 10T of material in total.

3.6.1 Method for Validation

For the system to be validated, the estimate provided by the system for the exten-

sive lumped mass property should be consistent with the ground truth value. This

consistency can be veri�ed using a statistically signi�cant number of sample points.
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Figure 3.3 � A comparison of the mining scale process chain to the process chains of

the experiments performed in this thesis. In the experiments in this thesis the small

scale and large scale use approximately 3L and 10T of material respectively.
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The ground truth in both scales of experiments is the mass sensor observations. In

both experiments, this sensor is a more precise and accurate sensor compared to the

bulk volume sensor estimates.

The bulk volume sensor estimates are used as information sources into the system to

provide information about the mass at each location. A sensor model is applied to

convert the bulk volume estimate to a mass. This model is based on the ability to

accurately estimate the bulk factor and the density of the material. For this reason,

a beach sand blend is used in both experiments as the material is consistent in size.

The sensor model applied is as follows

m = V ∗ d (3.54)

where m is mass, V is the bulk volume estimated from the information source and d

is the bulk density.

The observation noise is calculated by

σ2
m = σ2

V ∗ d+ σ2
d ∗ V (3.55)

where σ2
d contains the noise associated with the estimate of the bulk density.
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A summary of the goals and assumptions for both the small and large

scale experiments:

The central aim of both the small and large scale experiments within this chapter

is to validate a method for tracking, estimation and fusion of lumped masses as

they progress through a process chain; the experiments are designed to mimic the

processes within a mining scenario. The method is described through Equations

3.22 -> 3.53. The method described is a generic approach which provides a

method to initialise, transfer, combine and fuse new information about lumped

masses as they move through a process chain.

The hypotheses of the method developed in this chapter is:

• Mass is conserved in the system (i.e. over time through application of the

above method, no mass is added or removed from the system).

• Estimates of mass at each point in the process chain will remain consistent

within 2 standard deviations as the method is applied over time.

• Fusion of new sensor information over time improves the quality of spatially

correlated estimates while not invalidating the above two results.

The assumptions of this method are:

• The sensor information will be (through an observation model) represented

as approximately Gaussian.

• Lumped masses at any time can be approximately represented as a Gaus-

sian.

• Processes within the chain can be approximately represented as Gaussian.

This includes models for estimating material lost while transferring lumps

between locations, initialisation of lumps into the system through external

actuations (e.g. loading material from a stockpile using an excavator, ma-

terial losses, initial stockpile values)
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The intention of the experiments is not to show a complete solution to all the

problems involved in the application of the method to a real-world scenario. This

aspect is discussed further in Chapter 6 of this thesis. The intent is to prove

the underlying method for initialising, transferring, combining and fusing new

information about lumped masses as they move through a process chain is valid.

Experimental data (as opposed to simulated date) was used to validate this

method as it is essential to validate the assumptions made by the method would

be reasonable within a mine like context.

3.6.2 Small Scale

Method

The small scale experiment involves �rst measuring the initial grade block using a

digital kitchen scales (±1g precision) and a measuring cylinder with 5ml gradients.

These two sensors can be seen in Figure 3.4.

Figure 3.4 � Information sources used in the small scale experiment. The digital scales

are used as the ground truth. The volume estimates are used in conjunction with

an estimate of bulk density to provide a mass sensor model.

Each excavator bucket is measured in the measuring cylinder, where it is also weighed.

The material is then unloaded into the haul truck. A small portion of material is left

in the measuring cylinder which is used to simulate losses. This loss is measured and

weighed. The loss data is later used to form a model on how much material is lost

over each excavated load. The material left in the measuring cylinder is then placed

back into the initial grade block.
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Once three excavator loads have been placed into the haul truck, the material is placed

into the measuring cylinder where it is measured and then weighed. This material

is then unloaded into the �nal stockpile. A small amount of material is again left in

the cylinder to simulate the losses between the excavator and �nal stockpile. This

material after being weighed and measured (again to be used in a loss model) is placed

into a separate container which represents material which is lost and likely not to be

recovered.

In summary, there are up to seven lumped masses in the system at any one point in

time. These include:

• Grade Block

• Excavator Bucket

• Excavator Loss

• Haul Truck

• Haul Truck Loss

• Haul Truck Loss Stockpile

• Final Stockpile

The amount of material initialised in the excavator bucket by the system is based on

the average of all of the loads used in the small scale experiment as measured by the

scales and measuring cylinder. This data is also used to initialise the uncertainty on

the excavator bucket estimate.

The operation of the constrained ASKF over the small scale experiment can be seen

in the �owchart in Figure 3.5. Only the excavator bucket and haul truck are observed

during the running of the experiment. This is to simulate a similar scenario which is

likely to occur on a mine site.
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Figure 3.5 � This �owchart describes how the small scale experiment operates within

the constrained ASKF framework along with the methodology.
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Results

Figure 3.6 shows the residual between the system estimate of mass in the excavator

bucket with the ground truth value. It also includes 2σ con�dence boundaries from the

system estimate. One of the aims of this experiment is to prove that the estimates

provided by the system are statistically consistent. In Figure 3.6 95.45% of the

residual values should remain within the 2σ con�dence boundaries (red lines) in order

for the system estimates to be consistent with the ground truth values. As seen in the

graph, 3 out of the 43 samples or 93.02% remains within the 2σ con�dence boundaries.

Figure 3.6 � A comparison between the ground truth estimates and the system esti-

mates at the excavator bucket lumped mass location. The residual values should

ideally be Gaussian distributed with a mean error of 0 and be consistent with the

2σ con�dence boundaries estimated from the ASKF system.

Figure 3.7 shows the same variables as Figure 3.6 except the location has changed

from excavator bucket to haul truck. In this case 13 out of 15 or 86.6% of the samples

are within the 2σ con�dence boundaries.

Table 3.5 provides the averaged estimate over the entire experiment of each of the

lumped mass locations. This excludes the short lived `loss' lumped masses which are

not observed and are combined into stockpiles which are included in the averaged

estimates. In a scenario where both the system models and information sources can
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Figure 3.7 � A comparison between the ground truth estimates and the system esti-

mates at the haul truck lumped mass location. The residual values should ideally

be Gaussian distributed with a mean error of 0 and be consistent with the 2σ
con�dence boundaries estimated from the ASKF system.

be perfectly modeled as Gaussian distributions and given enough sample points the

mean estimate is expected to be 0 (with the error being Gaussian distributed). As

can be seen form Table 3.5, the excavator and haul truck states (the locations with

the highest amount of samples) have close to 0 mean error with mean errors of 0.01g

and 1.4g respectively.

Lumped Mass Location Mean Residual Mean 2σ Number of Units

Grade Block -12.5 g 86.5 g 1
Excavator Bucket 0.01 g 9.4 g 43

Haul Truck 1.4 g 22.1 g 15
Stockpile -25 g 221.4 g 1

Haul Truck Loss Stockpile 28.8 g 204.2 g 1

Table 3.1 � A summary of the mean residuals and mean 2σ estimates at each of the

lumped mass locations in the small scale experiment.

To test the conservation of mass principle, a comparison between the amount of

material in the system at initialisation to the amount of material once the experiment

has �nished is made. In this experiment the stockpile is initialised with with a mass

of 13815g. The estimated mass at the di�erent lumped mass locations can be seen



3.6 Experiments 89

in Table 3.2. Summing the values 17.4853g + 12417.7632g + 1379.7515g obtains the

value of 13815g. This illustrates that the conservation of mass principle is maintained

when using the constrained ASKF.

Lumped Mass Location Mass

Grade Bock 17.4853 g
Stockpile 12417.7632 g

Haul Truck Loss Stockpile 1379.7515 g

Table 3.2 � The estimated mass of the lumped masses in the system at the end of the

small scale experiment.

Figure 3.8 provides a graphical representation of the covariance matrix over the small

experiment processes. In this �gure the haul truck lumped mass states have not been

cleared once the trucks have unloaded at the �nal stockpile. This is to done in this

example for two reasons. First, it gives an example of the correlations which develop

over time between lumped masses in the process chain (from the grade block to the

haul truck to the �nal stockpile). Secondly, in the experiment only one haul truck

is used, by keeping multiple haul truck states in the covariance matrix it provides

a representation which is closer to what occurs on a real mine site where multiple

haul trucks service one excavator. Zeroed lumped mass locations (excavator, exca-

vator loss, haul truck loss) are also included to give perspective on how some of the

additional process states would in�uence the size of the covariance matrix.

One of the important factors to note is that the covariance matrix is sparse. This

is attractive computationally as it allows for the matrix inversion when calculating

the Kalman weighting (see Equation 3.7) to take less computational time. This is

important given that this is the most computationally expensive operation in the

�lter.
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Figure 3.8 � A graphical representation of the covariance matrix (P). The white squares

indicate a non-zero value, black indicates a zero value. This is not a consistent

system, the lumped mass states of the haul trucks are not zeroed and removed in

order to illustrate how the spatial correlations are transferred through the system

over time. It also creates a scenario where the amount of lumped masses more

closely resembles an actual open pit mine. Each lumped mass consists of mass and

volume state.

3.6.3 Large Scale

A Comparison with the Small Scale Experiment

The large scale experiment has the disadvantage of being harder to control and mea-

sure all of the processes and lumped masses in the system. This makes it more di�cult

to verify and model compared to the small scale experiment. The advantage of this

experiment is that it provides a more realistic scenario in which the system developed

in this thesis aims to be practically utilised.

One of the signi�cant di�erences between the two experiments is the ability to accu-

rately estimate the density of the material. The small scale experiment was performed

in a controlled environment. The material was kept dry, there is also no wind to erode

the material away. In contrast, the large scale experiment is performed without any
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controls to the weather. The lack of control of the moisture content increases the

uncertainty in estimating the density of the material. Areas close to the surface are

likely to be less dense since the sun dries the material out, while the material deeper

from the surface contains more water and therefore is more dense, this makes the den-

sity of the material inconsistent over the entire volume of material. The scale of the

experiment performed in this thesis required several days to complete. This leads to

the material in stockpiles `settling' as well as taking on moisture when left overnight.

This again increases the uncertainty in estimating the density as the material has a

tendency to compact. This causes the density to decrease during this time. These

are some of the factors which make modelling the system on the large scale a much

more challenging task.

Another point of di�erence is that it is not possible to explicitly measure the mass of

both the grade block and �nal stockpile. This poses a validation problem compared

to the small scale experiment where the material at these locations could have their

masses measured directly. To overcome this, the initial grade block ground truth is

inferred from the mass scales (see Appendix A.2.3) used to estimate the amount of

material in the haul truck. This sensor is used as the ground truth in the large scale

experiment due to its accuracy and precision. The amount of material initialised into

the grade block is the sum of the mass estimated for each haul truck over the duration

of the experiment. Given that a method to observe and model the losses between the

grade block, excavator and haul truck was not included as part of this experiment

this makes it impossible to include the losses in the initialisation of the grade block.

The true mass in the grade block (MGradeB lock) is therefore de�ned as:

MGrade_Block =
∑

MHaul_Trucks +
∑

MLosses (3.56)

where MLosses is the material lost between the processes grade block, excavator and

haul truck.
∑
MHaul_Trucks is the value which is assumed to be ground truth in

this experiment. As a result of this, the large scale experiment does not include

loss lumped masses between these states. A similar scenario occurs when inferring
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the ground truth for the �nal stockpile. In this experiment there is no method for

observing and estimating the losses between the haul truck and �nal stockpile. The

�nal stockpile ground truth is inferred as
∑
MHaul_Trucks, thus the losses between the

haul truck and stockpile are also not included in the estimation and tracking process.

Method

The process followed in the large scale experiment is broadly the same as the small

scale experiment. Material is loaded from the grade block, by the excavator where it

is then unloaded into a haul truck. When the haul truck is full (after 3 loads) the

truck then unloads at the stockpile. Each excavator bucket mass is measured as it

enters the haul truck. The haul truck while being loaded is positioned on top of the

mass scales. This can be seen in Figure 3.9.

Figure 3.9 � The haul truck waits on a set of truck scales as material from each

excavator load is placed into the haul truck. The mass of each excavator load is

estimated by subtracting the prior observation of the truck mass from the scales

with the estimate of truck mass after the material has unloaded.

The bulk volume of material in the excavator bucket is estimated using a Gaussian

process method which is described in Chapter 4. This is done by scanning the grade
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block face before and after each excavation, the di�erence in volume is calculated to

be the volume in the excavator bucket. The data for this method is obtained using

a Riegl VZ-1000 3D surveying laser (See Appendix A.2.1. 320 uniformly sampled

data points are used in the volume estimation process, in this instance a exponential

covariance function is used. The results from volume experiments which use a subset

of large scale data show that the exponential covariance function is the best placed

to encapsulate the uncertainty in the estimate, the uncertainty estimated does have a

tendency to be conservative. The Gaussian process method is essential in this process

as it provides the ability to encapsulate the uncertainty in the volume estimate. The

output from this method is a single mean and variance. This can then be easily

integrated into the constrained ASKF representation.

This is then used as an observational source on the mass of material in each bucket

(see Section 3.6.1 in the constrained ASKF, the mass observations provided by the

scales is used as the ground truth. The process �ow of the constrained ASKF can be

seen in Figure 3.10.

The Gaussian Assumption

One of the assumptions when using a LKF approach to estimation and tracking is

that both the system processes and information sources are Gaussian distributed.

This section shows how these assumptions were validated.

When modelling any system, it is often convenient to simplify the problem to make it

mathematically, computationally and conceptually more feasible. This simpli�cation

can possibly involve the choice of how to represent the probability distributions for the

process models, process noise and observation error of the system. One of the most

common simpli�cation is to represent these distributions as Gaussian (also known as

normal) distributions. The underlying true representation of the di�erent variables

we seek to model is often `unknown'. They are typically approximated through estab-

lished dynamic laws (e.g. Newton's Laws, Fluid Dynamics etc), empirical methods

or a combination of both. In the case of this thesis, the system model properties are
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Figure 3.10 � A �owchart showing how the large scale experiment operates within the

constrained ASKF framework. This �owchart also shows the methodology of the

experiment.
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approximated by experimental evidence (empirical).

When making the Gaussian assumption, the underlying probability distribution should

be already close to or be able to be transformed close to a Gaussian distribution.

There are many di�erent tests and methods which can be used to determine whether

or not a set of sampled points comes from a Gaussian distribution. These tests can

also provide numerical estimates on how `close' a distribution is to a Gaussian dis-

tribution. These include qualitative graphing methods such as histograms, Quantile-

Quantile plots (Q-Q plots) and Gaussian probability plots. There is also quantitative

testing methods which include the Kolg-Smirnov test [75], Lilliefors test [69], Pear-

son's Chi squared test [96], Jarque-Bera test [55] and D'Agostino-Pearson's test [30].

Ideally these tests would be able to show that the distribution of interest has a sta-

tistically signi�cant chance of coming from a Gaussian distribution thus validating

one of the assumptions of the LKF. Table 3.3 provides a list of Gaussian distribution

test algorithms with experimental data from the large scale experiment used in this

thesis (data used can be found in Appendix A.1 in Table A.1). The data is of the ob-

served mass inside the excavator bucket. Table 3.3 lists the �ve example quantitative

methods cited previously. The null hypothesis used was that the experimental empir-

ical data has a 95% chance to be from a Gaussian distribution with the parameters

derived from the experimental data. For this reason, the Kolg-Smirnov (one-sample)

test is not a valid method as the critical values it calculates are incorrect. The critical

values are essential in calculating the appropriate con�dence intervals on the data.

Lilliefor's test performs essentially the same algorithm as Kolg-Smirnov, but with the

critical values calculated using Monte Carlo simulation to obtain a more accurate

estimate of the critical values for data with smaller sample sizes and from which the

comparative Gaussian distribution parameters derived from experimental data.

Not all of the tests in Table 3.3 agree. There are several possible explanations for

this. One reason is that the sample size is low (approximately 120 samples) and thus

there is a lower probability of obtaining a representative distribution. Another reason

is that the underlying distribution may only be borderline Gaussian distributed. This

can be seen in Table 3.3 where the probability values for all the test values are <
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Table 3.3 � Quantitative Gaussian goodness of �t test results for excavator load data

set

Method Signi�cance
Level

Probability Null Hypothesis
Satis�ed?

Kolg-Smirnov Test 0.05 < 0.001 No
Lilliefor's Test 0.05 0.0268 No

Pearson's Chi Squared(χ2) Test 0.05 0.0978 Yes
Jarque-Bera Test 0.05 0.0733 Yes

D'Agostino-Pearson's Test 0.05 0.0825 Yes

0.1, given a signi�cance level of 0.05, the test methods provide evidence that the

distribution is borderline Gaussian distributed.

Figure 3.11 shows a histogram of the excavator loads over the large scale experiment.

From this graph the data appears approximately Gaussian with a slight positive skew

of the data at the mean. This can be further seen in Figure 3.12 where the predicted

mean of the Gaussian distribution is slightly biased to the right of the mode.

Figure 3.11 � Histogram of excavator load mass data. From this graph, the data

appears to take on a shape similar to that of a Gaussian distribution.

The assumption that the observational model of the mass sensor (see Appendix A.2.3)

used in the large scale experiment is also Gaussian distributed is validated in the

same way. The data set is derived from weighing the haul truck with no loaded mass

multiple times.

Table 3.4 shows the results of the di�erent Gaussian tests using this data set. All of the

numerical goodness of �t tests agree that the data is likely to come from a Gaussian
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Figure 3.12 � Histogram of excavator load mass data with superimposed Gaussian

distribution. The Gaussian distribution is calculated from the data set used to

generate the histogram.

Figure 3.13 � Cumulative density function of excavator load mass data with compar-

ative Gaussian distribution cumulative density function.

distribution. The probability levels show a reasonable level of con�dence in these

results comparative to the excavator load model. The histogram with superimposed

Gaussian distribution generated from the data set seen in Figure 3.14 also shows that

representing the underlying distribution as a Gaussian distribution is a reasonable

assumption. Similar to the prior analysis using the excavator mass data, there is a

tendency for outliers with a positive skew from the mean. The cumulative density

function comparison shown in Figure 3.15 illustrates that despite the outlier values,

approximating the distribution as a Gaussian distributed appears to be reasonable

assumption.
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Table 3.4 � Quantitative Gaussian goodness of �t test results for unloaded haul truck

data set

Method Signi�cance
Level

Probability Null Hypothesis
Satis�ed?

Lilliefor's Test 0.05 0.0697 Yes
Pearson's Chi Squared(χ2) Test 0.05 0.2831 Yes

Jarque-Bera Test 0.05 0.1173 Yes
D'Agostino-Pearson's Test 0.05 0.1827 Yes

Figure 3.14 � The histogram of unloaded haul truck data with superimposed Gaussian

distribution suggests that the sensor has a Gaussian error.

Figure 3.15 � Cumulative density function of unloaded haul truck data with compar-

ative Gaussian distribution.

For completeness, the bulk volume sensor Gaussian assumption is brie�y validated

through the histogram shown in Figure 3.16. A Gaussian assumption for the un-

derlying data set reasonably encapsulates the underlying distribution. There is a

substantial amount of skewing though which does occur around the mean which is



3.6 Experiments 99

not entirely encapsulated by the Gaussian distribution. The data used in this graph

is derived from the large scale experiment described in Section 4.7 using the residual

values (as a % of total volume) from the Gaussian process method with exponential

covariance function with 320 samples over all of the experiments.

Figure 3.16 � The histogram of residual error of the volume information source with

superimposed Gaussian distribution shows that the Gaussian approximation is a

reasonable approximation. There appears to be slight biases in the distribution,

such as near the mean, overall the Gaussian distribution encapsulates the data

well.

The prior statistical analysis of the excavation process and mass / bulk volume in-

formation sources is performed to validate the Gaussian assumption which is used in

the tracking and estimation process in the ASKF. Each of the data sets could not be

exactly described by a Gaussian distribution, however the Gaussian distribution in all

cases was able to represent the overall probability mass of the underlying distribution

with a reasonable level of accuracy.
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Results

Figure 3.17 shows the residual at the excavator lumped mass location along with 2σ

con�dence boundaries. Over the 105 samples, it is expected that there be approxi-

mately 5 values outside of the con�dence bounds shown. From the graph, 4 samples

are outside the bounds. This shows that the mean and uncertainty estimated by the

ASKF is consistent with the ground truth values. The discrepancies in numbers can

be explained by factors such as small sample size as well as the fact that the pro-

cess models and information sources can not be exactly approximated as Gaussian

distributions.

Figure 3.17 � A comparison between the ground truth estimates and the system es-

timates at the excavator bucket lumped mass location in the large scale ex-

periment. The residual values should ideally be Gaussian distributed with a mean

error of 0 and be consistent with the 2σ con�dence boundaries estimated from the

system.

Figure 3.18 shows the residual at the haul truck lumped mass location along with

2σ con�dence boundaries. Over the 35 samples, it should be expected that there be

approximately 2 values outside of the con�dence bounds. From Figure 3.18 it can be

seen that 3 samples are outside the bounds.

The mean estimates at each of the lumped mass locations is summarised in Table 3.5.

The grade block and stockpile having the same mean residual values is a consequence



3.6 Experiments 101

Figure 3.18 � A comparison between the ground truth estimates and the system es-

timates at the haul truck lumped mass location in the large scale experiment.

The residual values should ideally be Gaussian distributed with a mean error of 0

and be consistent with the 2σ con�dence boundaries estimated from the system.

of the ground truth being inferred from the same source as explained at the beginning

of Section 3.6.3. At the excavator bucket and haul truck locations the mean residuals

have errors of -8.605 Kg and -25.815 Kg respectively. Given an average excavator and

haul truck load of 769.2381 Kg and 2307.7143 Kg the mean residual as a % of the

average load can be given for both as -1.1%. This small error can again be reasonably

explained through small sample size and inaccuracies in the Gaussian approximation.

Lumped Mass Location Mean Residual Mean 2σ Number of Units

Grade Block 903.5258 Kg 2336.7 Kg 1
Excavator Bucket -8.605 Kg 227.77 Kg 105

Haul Truck -25.815 Kg 394.6577 Kg 35
Stockpile -903.5258 Kg 2336.7 Kg 1

Table 3.5 � Summary of mean residual results from the large scale experiment.

The initial grade block had a mass of 80770Kg. This was calculated from summing

all the mass observations of full haul trucks (
∑
MHaul_Trucks). Table 3.6 shows the

�nal estimates of the mass of the di�erent lumped masses still present at the end of

the experiment. The sum of these lumped masses is 903.5258 + 79866.4742 = 80770.

This shows that like the small scale experiment, mass is conserved during the tracking
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and estimation process in the large scale experiment.

Lumped Mass Location Mass

Grade Bock 903.5258 Kg
Stockpile 79866.4742 Kg

Table 3.6 � The estimated mass of the lumped masses in the system at the end of the

large scale experiment.

One of the claimed bene�ts of using the system described in this chapter is that it

is possible to fuse additional information regardless of the quality of the information

provided the information source can be accurately modeled as a Gaussian distribu-

tion. Figure 3.19 shows a comparison of the residuals and 2σ con�dence boundaries

at the excavator bucket lumped mass for an ASKF system which fuses in additional

information (from a bulk volume sensor) and one which fuses no additional informa-

tion and provides predictions based on system models. As can be seen from Figure

3.19, fusing additional information is able to reduce the uncertainty on the estimate

while at the same time still remaining consistent.

Another of the claimed bene�ts of the ASKF approach was that it would be able to

utilise the fused information to improve the estimates of spatially correlated lumped

masses. Table 3.7 provides a comparison of the mean uncertainty in the mass esti-

mates at each of the lumped mass locations between the prediction only and the fusion

approach. A shown in Table 3.7, the system with fusion lowers the uncertainty in the

spatially correlated lumped masses. This is evident through the information source,

bulk volume estimates of excavator loads, lowers the uncertainty of the estimate at

the grade block.

Lumped Mass Location Prediction Only Mean 2σ Fusion Mean 2σ

Grade Block 2679.7 Kg 2336.7 Kg
Excavator Bucket 261.4039 Kg 227.77 Kg

Haul Truck 452.7648 Kg 394.6577 Kg
Stockpile 2679.7 Kg 2336.7 Kg

Table 3.7 � A comparison of uncertainty estimates across lumped masses between

prediction only and with fusion of information sources



3.7 Discussion 103

Figure 3.19 � A comparison of the residual at the excavator bucket and ground truth at

the excavator bucket between an ASKF system which does not fuse any additional

information to one which fuses information from a bulk volume information source.

The system with fusion is able to provide a consistent estimate (within 2σ of the

estimated uncertainty by the ASKF) with overall less uncertainty then the non-

fusion system.

3.7 Discussion

In both small scale and large scale experiments the amount of material estimated

at each lumped mass location is consistent within the predicted error. The most

convincing results (given the sample size) can be seen in Figures 3.6 and 3.17 of

the excavator bucket in both the small and large scale experiments. One of the

main di�erences between the two �gures is the predicted 2σ con�dence bounds of

the estimates provided by the ASKF. The small scale experiments are approximately

straight where as the in the large scale experiment the con�dence boundaries vary

considerably. This is a result of two factors. First in the small scale experiment, the

volume observation is a measuring cylinder. The predicted observational error of the

bulk volume is assumed as a constant value. The other factor is the uncertainty in

the estimate of the bulk density. This uncertainty was calculated by estimating over

the data set where the bulk density is calculated at each lump location where a mass

and volume observation was taken. This uncertainty is then used in the sensor model
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for mass from bulk volume estimates in the ASKF (see Section 3.6.1). A comparison

of the bulk volumes and the estimated error is seen in Table 3.8

Experiment Mean Bulk Density σ σ as %

Small 1442.1 Kg/m3 19.5 Kg/m3 1.4 %
Large 1437.1 Kg/m3 324.3 Kg/m3 22.6 %

Table 3.8 � A comparison in bulk density variation between the small and large scale

experiments.

The uncertainty in the bulk density of the small scale experiment is quite small (1.4%).

The uncertainty of the bulk volume observation is approximated as a constant value

of 1.5% (1σ error of 4mL, average load 265mL). The result of this combination of

values in the small scale experiment is that the majority of the uncertainty in the

sensor model for mass is encapsulated by the bulk volume estimate uncertainty. The

opposite scenario is true for the large scale experiment, the bulk density uncertainty

plays the most signi�cant part in calculating the uncertainty of the mass observation.

Additionally the uncertainty estimated on the bulk volume estimate is not constant

in the large scale experiment.

Some of the additional uncertainty in the large scale experiment can be explained

through the method of estimating the bulk density uncertainty. The observation sen-

sors in the large scale experiment are less precise comparatively to the small scale

sensors. The mass sensor 1σ operating precision for the large scale experiment was

calculated as 1%, this was calculated using the unloaded haul truck (see Section 3.6.3

for more information). From Table 4.10 in Chapter 4 the precision of the bulk volume

estimation method is approximately 6% (320 samples, exponential covariance func-

tion). The precision of the small scale experiment bulk volume observation estimates

comparatively is estimated as 1.5%. The large variance in bulk density (20%at1σ) in

the large scale experiment can not be solely explained through the error in precision

in the sensors used to estimate the bulk density. Some of the possible reasons for a

variable bulk density in the large scale method was explained at the beginning in this

section in the comparison between the small and large scale experiments.

One goal of the large scale experiment was to take a less controlled approach to learn
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how di�cult it would be to implement the ASKF into a more realistic scenario. A

variable bulk density is one of the issues which becomes more prominent in a less

controlled environment. Using a simplistic method of modelling bulk density (e.g a

single gaussian distribution over the entire process) and then applying that in the

mass sensor model could be improved. A method for more accurately measuring the

bulk density could utilise additional sensors such as ones which estimate the water

moisture content of each excavator load. This research is outside the scope of this

thesis. The method used in this thesis however, as can be seen in Figure 3.19, was

still an improvement compared to no information fusion at all.

3.8 Summary

This section outlined an method for integrated tracking and estimation of extensive

properties of a lumped mass. The aim was to create a system which provides a

consistent estimate of the extensive material properties at each of the lumped mass

locations. The other claims which were made about the constrained ASKF approach

was that it would be able to ensure conservation of mass and more e�ective use of

information sources in the system by tracking the spatial correlations between lumped

masses. This improved use of information sources would provide the bene�t of real-

time reconciliation.

The ASKF is constrained by limiting the system models available to a speci�c subset.

This is done to ensure that mass is conserved in the system as well as information to

be shared between spatially correlated states correctly during fusion.

Two experiments were performed to validate these claims and test the constraints.

The small scale experiment provides the ability control and measure all variables in

the system. This allows for an environment which was ideal for proving the modelling

constraints using the ASKF are valid. In particular, the unplanned mass transfers

in the system (losses) can be modeled and observed. The results show that the

estimates provided by the ASKF system in this experiment are consistent with the
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error estimated by the system. It was also shown that the conservation of mass is

upheld in the system.

The large scale experiment provided a scenario which was closer to the processes and

conditions which occur in the real-world. The system models are more di�cult to

estimate and observing the properties of the lumped masses at di�erent locations

is more challenging. The volume estimation techniques proposed in Chapter 4 were

used as part of the sensor model for estimating mass. It was shown that fusing

this additional information it was able to decrease the uncertainty over the spatially

correlated lumped masses in the system. The estimates in the large scale experiment

were also shown to be consistent with ground truth values, conservation of mass was

also ensured.

This section provides a system to probabilistically estimate and track extensive lumped

mass properties. The models presented are applicable only in the case of extensive

material properties. Incorporating intensive material properties into the ASKF sys-

tem requires a di�erent approach. An approach to incorporating intensive material

properties is presented in Chapter 5. Some of the more practical considerations in

implementing this system on a mine site are discussed in Chapter 6.



Chapter 4

Bulk Material Volume Estimation

4.1 Introduction

As discussed in Section 2.4.5, information to be fused into the tracking and estimation

system described in Chapter 3 needs be represented probabilistically. A review of

the current state-of-the-art in volume estimation techniques in Section 2.4.5 shows

that there is no current system which will intrinsically provide a volume estimate

and corresponding uncertainty for 2.5D data set. As a result of this, a method for

estimation of volume in 2.5D surfaces is developed to allow for validation of the

tracking and estimation system in the large scale experiment presented in this thesis.

A surface scan can be produced from a variety of sensors (radar, camera, laser). The

choice of sensor is dependent on the operating conditions. In the mining domain a

millimeter wave radar given its dust penetration properties is an excellent choice for

surface mapping. In less dusty conditions, laser systems (particularly 3D survey grade

lasers) can be very accurate over large distances. Camera systems have the bene�t

of being generally the cheapest of the sensors. The disadvantages of camera systems

however, is that they are typically short range compared to lasers and radars and are

restricted by factors such as dust.

In this thesis, the source of the surface scan is a laser. The laser sensors used are a
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Riegl LMS-Z620 3D survey laser and a Riegl VZ1000 3D survey laser, data sheets for

each sensor can be found in Appendixes A.2.2 and A.2.1 respectively.

There are several areas in which volume estimation can be performed in the mining

cycle. One example is surveying before and after a pit during excavation. Doing so

allows for an estimate of the volume of material removed during a particular operation.

Other examples include stockpiles, excavator buckets and haul trucks. As described

in Chapter 3, fusion of additional information on a material property at one location

enables that information to be reconciled with spatially correlated lumped masses.

This consequently enables greater accuracy in the estimates of the material in the

system.

This chapter provides a method for volume estimation which utilises a Gaussian pro-

cess surface representation to provide an encapsulation of the uncertainty in the sur-

face estimate. Due to the functional representation of both the mean and covariance

provided by the Gaussian process surface model, these functions can be integrated to

provide a volume estimate with corresponding uncertainty.

Chapter 4 includes an introduction to the basic concepts involved in Gaussian Pro-

cesses. Gaussian processes are a data-driven machine learning technique, where the

training data is required for generating the underlying model. It is strongly recom-

mended that the reader refers to the referenced literature [100] for a more in-depth

understanding of how Gaussian Processes are used to generate data-driven models.

4.2 Problem De�nition

Given a set of 2.5D data points (with cartesian co-ordinates), the problem can be

de�ned through the following set of requirements:

• Provide means to estimate the volume of material in a given region (S).

• A method for encapsulating the uncertainty in the volume estimate over the

region (S).
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• Flexibility to accurately estimate the volume and corresponding uncertainty

given varying levels of scale, surface formations and sparseness of data over an

estimation region S.

4.3 Gaussian Process Method

4.3.1 Introduction

Rasmussen and Williams [100] de�ne a Gaussian process as "a collection of random

variables, any �nite number of which have a joint Gaussian distribution". One way

of interpreting Gaussian processes is known as the `function-space view' . This is

whereby the Gaussian process can be considered as a distribution over functions.

Gaussian processes are non-parametric, this means that there is no speci�c basis

function with a set of parameters de�ning how inputs relate to output values. Gaus-

sian processes are characterised by a mean function (m(x)) and a covariance function

(k(x, x′)).

The mean and covariance function are de�ned as

m (x) = E [f (x)] (4.1)

and

k [x, x′] = E [(f (x)−m (x)) (f (x′)−m (x′))] (4.2)

Where x is a location on the Gaussian processes (x can be multidimensional which is

the case in surface mapping application in this thesis).

Gaussian process regression is a data driven modelling technique. In order to generate

the regression model a set of `training' data is used. The training data consists of a

set of sample input variables with a corresponding set of outputs. The training set

D of n observations can be de�ned as:
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D = {(xi, yi) | i = 1, . . . , n} (4.3)

In the training set D, x is the input vector, whereas y is a scalar output vector. It

should be noted that the input vector can be of dimension D. The notation for the

training set can be simpli�ed to the form:

D = (X, y) (4.4)

In this instance X is de�ned as an aggregate of the D dimensional input vectors. For

the purposes of this thesis X is arranged to be of size n×D, y will be arranged as a

vector of size n.

One of the requirements of the volume estimation technique is for it to be �exible

enough to work on a variety of surface formations. One way of allowing for this is

by letting the data drive the model development. For this reason the mean function

is set to zero (m(x) = 0). The co-ordinate system is manipulated such that the

arithmetic average of the data points is equal to zero to facilitate this mean function.

This mean function with this manipulated co-ordinate system e�ectively assumes

no prior knowledge on the set of training data. This mean function and co-ordinate

con�guration allows the model to be driven by the covariance function and the training

data.

The training data set D in the surface mapping scenario, containing n observations,

consists of a two dimensional input vector X, where X = (x, y). The output vector

y will contain the corresponding z (height) values of the data points.

As described previously in Equation 4.2, the x value corresponds to a location and

can be multi-dimensional. The end-result, for surface mapping, is that the Gaussian

process can be given a location (an (x,y) co-ordinate) as an input and then the

output of the Gaussian process f (x) equates to the z co-ordinate of the input point.

Therefore the surface can be considered to be represented by a function rather than

a set resolution of data points.
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To incorporate the training data a prior joint distribution is formed between the

training data points (y and X from Equation 4.4) and a predetermined set of test

(also known as inference) points (X∗). This process can be seen in Equation 4.5. f∗

corresponds to the output of the Gaussian process at the test points.

 y

f∗

 ∼ N

0,

 K (X,X) K (X,X∗)

K (X∗, X) K (X∗, X∗)

 (4.5)

K(X,X) corresponds to the covariance between the training set, K(X,X∗) is equiv-

alent to the covariance between the training set and the test points and so forth. In

a process which is theoretically the same as Bayes rule (see Section 2.4.1), the prior

distribution is conditioned on the training data in order to generate the posterior

distribution. From this posterior distribution, the mean output f∗ as well as the

covariance function cov(f∗) can be obtained.

The result of conditioning the prior distribution on the training data is as follows:

E (f∗) = K (X∗, X) [K (X,X)]−1 y (4.6)

cov (f∗) = K (X∗, X∗)−K (X∗, X) [K (X,X)]−1K (X,X∗) (4.7)

Therefore given a covariance function K, training data set D and set of test points X∗

a set of outputs Ef(x) and cov(f(x)) can be generated. The prior joint distribution

(described in Equation 4.5) is applicable only in scenarios where the training data

points are noiseless. In surface mapping, the techniques to gather the 3D point

clouds contains some level of sensor noise. A method for incorporating this sensor

noise must be introduced. This can be done by altering the prior distribution model

to the following:
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 y

f∗

 ∼ N

0,

 K (X,X) + σ2
nI K (X,X∗)

K (X∗, X) K (X∗, X∗)

 (4.8)

The posterior mean and covariance function, conditioned on the training data, can

be expressed through the following equations:

E (f∗) = K (X∗, X)
[
K (X,X) + σ2

nI
]−1

y (4.9)

cov (f∗) = K (X∗, X∗)−

K (X∗, X)
[
K (X,X) + σ2

nI
]−1

K (X,X∗) (4.10)

This allows for an additional parameter σ2
n to be utilised to account for the error

(noise) associated with the observed data points.

4.3.2 Choice of Covariance Function

As described in Section 4.3.1, the covariance function (K) performs a critical role in

Gaussian process regression. The covariance function controls how the data points

are spatially correlated to each other (similar to a variogram in Kriging). Therefore,

choosing the appropriate covariance function for the data is important. The ideal

choice of covariance is the one which both encapsulates the uncertainty in the surface

map consistently as well as providing an accurate and non biased estimate of the

surface. These factors are important when considering the integration of the mean and

covariance functions in order to determine the volume and corresponding uncertainty.

Squared Exponential

One of the most popular covariance functions is the squared exponential function.

The squared exponential function for surface mapping can be written as such:
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kSE(x, x′) = σ2
f exp

[
−1

2
(x− x′)T M (x− x′)

]
(4.11)

where

M =

 `x 0

0 `y

−2 (4.12)

From the covariance function equation several features can be highlighted which give

an insight into how the function correlates data. This covariance function, given its

exponential term is in�nitely di�erentiable. This results in the output curves being

very smooth. The x − x′ component de�nes the squared exponential function as

stationary, thus it is invariant to translation. An example (reproduced using data

from Rasmussen and Williams [100]) of the squared exponential function can be

seen in Figure 4.1. The plus symbols represent training points, the thick line is the

mean function output from the Gaussian process. The shaded area represents the 2σ

boundaries on the distribution of functions along the mean function.

Matern

The Matern series of covariance functions have many useful properties. The Matern

series of covariance functions can be represented by the following equation:

kMatern (r) =
21−v

Γ (v)

(√
2vr

`

)v

Kv

(√
2vr

`

)
(4.13)

Where Kv is a modi�ed Bessel function. Γ(v) is a Gamma function. r is notation

for representing the isotropic function (x−x′). This covariance function is stationary

and takes the absolute Euclidean distance to points when calculating correlations.

The parameters v and ` are always positive and de�ne the behavior of the covariance

function.
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Figure 4.1 � An example Gaussian process regression using the squared exponential

covariance function in 1D. Hyper-parameters are set to ` = 3, σ2f = 1.2, σ2n = 1

Some of the most useful applications of the Matern covariance function occur when

v = p + 1
2
. In this scenario, Equation 4.13 is simpli�ed signi�cantly. Of particular

interest are the scenarios in which p = 3 and p = 5. These are commonly referred to

in literature as the Matern 3
2
and Matern 5

2
covariance functions [81]. The Matern 3

2

covariance function, when v = 3
2
, is simpli�ed to:

kMatern3 (r) = σ2
f

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
(4.14)

The Matern 5
2
covariance function, when v = 5

2
, is simpli�ed to the following:

kMatern5 (r) = σ2
f

(
1 +

√
5r

`
+

5r 2

3`2

)
exp

(
−
√

5r

`

)
(4.15)

The goal of the Gaussian process in this thesis is to map the terrain surface. Therefore

the isotropic nature of Equation 4.14 and Equation 4.15 is inadequate to learn the

terrain changes which are dimensionally dependent. This can be remedied by altering
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the covariance functions to be anisotropic. The resulting Matern 3
2
covariance function

becomes:

kMatern3 (x − x ′) = σ2
f

(
1 +

√
3 (x− x′)T M (x− x′)

)
· · ·

exp

(
−
√

3(x − x ′)T M (x − x ′)

) (4.16)

The Matern 5
2
covariance function becomes:

kMatern5 (x− x′) = σ2
f

(
1 +

√
5 (x− x′)T M (x− x′) +

5((x−x′)TM(x−x′))
3

)
· · ·

exp

(
−
√

5(x − x ′)T M (x − x ′)

)
(4.17)

where in both Equation 4.16 and Equation 4.17

M =

 `x 0

0 `y

−2 (4.18)

The Matern covariance functions in Equation 4.16 and Equation 4.17 are anisotropic

like the squared exponential covariance function given in Equation 4.11.

The Matern series of covariance functions are useful for controlling the level of smooth-

ness of the output function. The Matern covariance functions are v − 1 times dif-

ferentiable, as v → 0 the output mean function becomes progressively less smooth.

When v →∞ the output mean function becomes very smooth, in fact as v →∞ the

Matern covariance function becomes identical to the squared exponential function.

Exponential

The exponential covariance function is a special case of the Matern covariance function

where p = 0, therefore v = frac12. The anisotropic exponential covariance function

for the surface mapping scenario is given by the following:
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kExp (x− x′) = σ2
f exp

(
−
√

(x− x′)T M (x− x′)
)

(4.19)

where

M =

 `x 0

0 `y

−2 (4.20)

The exponential is unique from the previous covariance functions in that it is not

di�erentiable. It does not produce the same level of `averaging' which is a feature of

the covariance functions described previously. Therefore it is well suited for scenarios

in which the surface geometry changes rapidly with sharp edges. However, in scenarios

where the surface is generally smooth and with no complex sharp features the lack

of averaging of the data in the exponential function is less likely to encapsulate the

uncertainty correctly. This results in a large increase in the spread of possible function

in areas of sparse data. Conversely, the squared exponential and Matern 3
2
and Matern

5
2
covariance functions, to varying degrees, have the opposite problem when estimating

sharp complex features where the surface features are likely to be smoothed and the

corresponding uncertainty being overly con�dent.

A 2D Comparison of the Covariance Functions

How the choice of covariance function alters both the output mean and covariance

function is illustrated in Figures 4.3-4.6. The true model with sampled points can be

found in Figure 4.2.

The squared exponential covariance function (Figure 4.3) has the most obvious smooth-

ing e�ect. The squared exponential can be thought of to work like an averaging

function. This averaging e�ect (in practice a consequence of a long length scale (`))

is the reason the squared exponential output covariance function has a near con-

stant distribution of functions over the surface. The squared exponential covariance

function does not deal well with the sharp line change. The Matern 5
2
covariance
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Figure 4.2 � The true line to be modeled by each covariance function with 10 uniformly

sampled points.

Figure 4.3 � The squared exponential estimate of the sampled points from Figure

4.2.

function (Figure 4.4) provides a representation which is less smooth than the squared

exponential and thus can better represent the sharper edges in the true distribution,

though like the squared exponentional does over smooth the change in direction. The

Matern 3
2
covariance function (Figure 4.5) shows reduction in the level of smoothing

as v → 0. The output covariance function is also noticeably di�erent with a decrease

in covariance around the sample points. This is due to the reduced averaging e�ect

present in the Matern 3
2
compared with higher level Matern covariance functions and

the squared exponential covariance function. This is a result of a smaller length scale

(`), which causes an increased emphasis on passing through the sampled data points.
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Figure 4.4 � The Matern 5
2 estimate of the sampled points from Figure 4.2.

Figure 4.5 � The Matern 3
2 estimate of the sampled points from Figure 4.2.

Figure 4.6 shows how the exponential covariance function, the output mean function

is very responsive to sharp edges. The output covariance function also shows how

the spread of functions once moved away from the sample data increases signi�cantly

when compared to the other covariance functions.

Hyper-parameters and Learning

One of the interesting aspects about Gaussian processes which has not yet been re-

viewed is the set of hyper-parameters which determine the behavior of each covariance

function. In the squared exponential Equation 4.11 three hyper-parameters are listed,

σ2
f is the signal variance and M contains the two length scale hyper-parameters `x
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Figure 4.6 � The exponential estimate of the sampled points from Figure 4.2.

and `y which govern how quickly the sample functions vary in both the x and y direc-

tions. This thesis represents the hyper-parameter set as θ. In the squared exponential

covariance function, θ =
[
`x, `y, σ

2
f , σ

2
n

]
where the additional term σ2

n describes the

signal noise component which is found in Equation 4.8.

The `learning' which is performed in Gaussian processes is the optimisation of the

hyper-parameter terms to �nd the distribution of functions which best satis�es the

output of the training data set (y) given the input data from the training set (X). One

possible method for this optimisation process is to maximise the log of the marginal

likelihood with respect to θ. This can be performed through the following equation.

log p (y|X, θ) = −1

2
yTK−1y y − 1

2
log |Ky| −

N

2
log 2π (4.21)

From this equation, Ky = K(X,X) + σ2
nI is the covariance associated between the

training dataX and output y with the inclusion of the sensor noise. Equation 4.21 can

be separated into three components. The �rst term is concerned with �nding the best

�t of the data with the hyper-parameters. The second term performs `Occam's Razor'

to penalise over-�tting. The �nal term is a normalisation constant. Optimisation

of Equation 4.21 is not a trivial process as the function is non-convex. There is a

variety of the optimisers currently available to deal with solving non-convex problems.

The text by Nocedal and Wright [93] provides an excellent resource on a range of
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optimisation tools which can be applied to solve this problem.

The work in this thesis uses a gradient-based method with a Broyden-Fletcher-

Goldfarb-Shanno (BRGS) hessian update for optimising Equation 4.21. This method

is classi�ed as quasi-Newton by Nocedal and Wright [93]. It uses a hill climb approach,

therefore each hyper-parameter is optimised in sequence. This gradient method en-

sures that the local maximum is quickly obtained. The negative of this approach

is that there is no guarantee that the local maximum is the global maximum. This

problem can be reduced by choosing a reasonable set of starting parameters given

the training data. Melkumyan and Ramos [80] discuss one solution to this problem

by using multiple start points. The main problem with this approach is increased

computational requirements. Figure 4.7 shows the result of optimising the parame-

ters shown in Figure 4.1 using the BRGS method. The optimisation is not over �tted

with the mean estimate not passing through every data point. The mean function

improves on the non-optimised hyper-parameters by accounting for the sinusoidal like

�uctuations in the data points. The non-optimised parameters, given the large length

scale is unable to properly represent this underlying feature of the training data.

For the surface mapping work in this thesis the hyper-parameters are optimised using

5 separate starting points. The hyper-parameters with the greatest log marginal

likelihood are chosen as the parameters to be used in the Gaussian process.

Discussion

Choosing the correct covariance function to model a 2.5D surface depends partially

on having prior knowledge on how the surface changes over the region of interest. As

described and hypothesized previously, surfaces with rapid sharp changing features

should be more suitably modeled by the Matern 3
2
or exponential covariance func-

tions. These covariances functions are more likely given their formulation to be better

at encapsulating the uncertainty in the surface model. Alternatively, smooth consis-

tent surfaces modeled by the Matern 5
2
and squared exponential covariance functions

should be superior at encapsulating the uncertainty in the surface model under these
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Figure 4.7 � This is the result of optimising the hyper-parameters from Figure 4.1.

The squared exponential covariance function hyper-parameters are optimised from

[` = 3, σ2f = 1.2, σ2n = 1] to [` = 1.37, σ2f = 1.55, σ2n = 0.14].

conditions.

Figure 4.8(a) shows an example of a 2.5D data set. 64 sampled points are used as

training data (Figure 4.8(b)).

(a) A plot of the raw sensor output (20% of
points taken).

(b) 64 samples taken from raw senor output.

Figure 4.8 � This �gure provides an example of how much data is able to be gathered

by the sensor used in this experiment. From this data set 64 samples are taken.
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Figure 4.9 shows how each covariance function described in this thesis estimates

the surface shown in Figure 4.8(a) along with a corresponding uncertainty given

the training data from Figure 4.8(b). Figure 4.9 shows how each of the described

covariance functions performs in a simple 2.5D scenario. Speci�cally, the squared

exponential covariance function produces a highly smoothed surface with a consistent

uncertainty over the entire surface. The exponential on the other hand provides a

less averaged surface with the uncertainty increasing rapidly when the mean function

moves away from the training data.

4.3.3 Theoretical Volume Derivation

The prior sections in this chapter have described how to develop a Gaussian process

regression model to generate a functional representation of a 2.5D surface which in-

cludes a function for representing the uncertainty in this model. The following is a

derivation of how to calculate the probabilistic volume estimate given this represen-

tation.

The Gaussian process Equations 4.9 - 4.10 for mean and variance can be expressed

in terms of a single point x∗ as shown below:

E [f∗ (x∗)] = K (x∗, X)
[
K (X,X) + σ2

nI
]−1

y (4.22)

var [f∗ (x∗)] = K (x∗, x∗)−K (x∗, X)
[
K (X,X) + σ2

nI
]−1

K (X, x∗) (4.23)

From Equations 4.9 - 4.10 the volume can be expressed as:

V =

∫
S

f∗ (u) du (4.24)

where S is a region over which the volume is to be estimated, given this, the following
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(a) Squared exponential mean sur-
face estimate

(b) Squared exponential variance
function

(c) Matern 5
2 mean surface esti-
mate

(d) Matern 5
2 variance function

(e) Matern 3
2 mean surface esti-
mate

(f) Matern 3
2 variance function

(g) Exponential mean surface esti-
mate

(h) Exponential variance function

Figure 4.9 � An overview of how the di�erent covariance functions in�uence the mean

surface as well as the corresponding uncertainty in this estimate.
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statistics hold:

E [V ] =

∫
S

E [f∗ (u)] du =

(∫
S

K (u,X) du

)[
K (X,X) + σ2

nI
]−1

y (4.25)

var [V ] = E
[
(V − E (V ))2

]
= E

[(∫
S

f∗ (u) du−
∫
S

E [f∗ (u)] du

)2
]

= E

[(∫
S

(f∗ (u)− E [f∗ (u)]) du

)2
]

= E

[(∫
S

(f∗ (u)− E [f∗ (u)]) du

)(∫
S

(f∗ (w)− E [f∗ (w)]) dw

)]
= E

[∫
S

∫
S

(f∗ (u)− E [f∗ (u)]) (f∗ (w)− E [f∗ (w)]) dudw

]
=

∫
S

∫
S

E [(f∗ (u)− E [f∗ (u)]) (f∗ (w)− E [f∗ (w)])] dudw

=

∫
S

∫
S

cov (f∗ (u) , f∗ (w)) dudw (4.26)

Therefore to summarise, the mean and variance of the estimate over a region S can

be expressed in the following forms:

E [V ] =

(∫
S

K (u,X) du

)[
K (X,X) + σ2

nI
]−1

y (4.27)

var [V ] =

∫
S

∫
S

cov (f∗ (u) , f∗ (w)) dudw (4.28)

where K (x, x′) is the covariance function of the GP representing the function f (x)

and cov (f∗ (u) , f∗ (w)) is de�ned in Equation (4.10).

4.3.4 Numerical Volume Integral Approximation

One of the most computationally e�cient ways of calculating the integrals for mean

volume and variance (Equations 4.27 and 4.28) would be to develop a closed form

solution of the mean and variance integrals. This is a non-trivial task and is out
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(a) Small amount of integral points (b) Large amount of integral points

Figure 4.10 � Accuracy and precision of the rectangular integration method depends

largely on the number of integral points used.

of the scope of this thesis. This thesis instead focuses on providing the proof that

it is possible to provide probabilistic volume estimates which could then be used to

validate a probabilistic tracking and estimation system. The optimisation of this

technique for practical application is left as future work. A simple solution is to use

the generic approach of numerical approximations of the integral.

Mean Volume

The mean volume can be calculated as a 2D integral over the Gaussian process mean

function. There are multiple numerical integration methods to calculate this integral.

Some examples include the rectangular, trapezoidal and Simpson methods which have

all been well documented in literature [24].

In this thesis, the rectangular method is used. The rectangular method has the ad-

vantage of being computationally inexpensive for a comparable number of integration

points compared to other numerical integration approximation methods. The limi-

tation of using the rectangular method is that the accuracy of the method is highly

correlated to the number of integral points. A comparison of the accuracy of this

method over a sine wave using di�erent amounts of integral points is shown in Figure

4.10.

Using the rectangular approximation method the equation for calculating volume

becomes:
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V =
1

N

N∑
i=1

f∗ (xi)×
∫
S

dxdy (4.29)

where N is the total number of integral points. f∗ (xi) is the mean function output

from a Gaussian process given an inference location de�ned by xi.
∫
S
dxdy is in this

thesis a rectangular region over which the volume is to be integrated.

Variance

The variance over the volume integration as seen in (4.28) is a 4D integral over the

covariance function. It can be calculated using the rectangular method as follows:

var [V ] =
1

N2

N∑
i=1

N∑
j=1

KPost(Xi, Xj)×
(∫

S

dxdy

)2

(4.30)

where KPost(Xi, Xj) is the posterior covariance calculated in (4.10).

4.4 Current Techniques

The e�ectiveness of the Gaussian process technique for volume estimation is compared

against a selection of current state-of-the-art volume estimation techniques. The

state-of-the-art techniques were chosen to broadly represent the di�erent types volume

estimation techniques used in practice. As such each technique has a fundamentally

di�erent method for estimating volume. The example data set in Figure 4.11 is used

to show how each of the di�erent state-of-the-art techniques represent volume.

4.4.1 Triangular Prisms

The triangular prisms method requires generating a TIN (further information on

TINs can be found in Section 2.4.5) over the sampled data points. From this TIN,
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Figure 4.11 � This is a sampled set of 2.5D data which is used by each of the state-of-

the-art methods to show how each method calculates the volume.

triangular prisms are formed to a surface plane in which volume is calculated from.

The TIN in this thesis is generated using Delaunay triangulation. Figure 4.12 gives

the result of using the sample data in Figure 4.11 to create the TIN with Delaunay

triangulation.

Figure 4.12 � The Delaunay triangles create the TIN, the volume is calculated by

triangular prisms to a surface plane.
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4.4.2 Rectangular Averaging Grid

The rectangular grid method is one of the simplest methods for calculating volume.

The region of interest is divided into a �nite set of rectangular cells. The height of

the rectangular cells is determined by the average height of the sample data points

within the cell bounds. An example of how a surface is represented using this method

can be seen in Figure 4.13.

Figure 4.13 � The volume is calculated by summing all the rectangular prisms to a

surface plane.

4.4.3 Cubic Spline Interpolation and Integration using Simp-

son's Method

Cubic spline interpolation is performed using a piecewise 3rd order polynomial func-

tion which is used to create smooth surfaces over the input data points. As described

in Section 2.4.5, the cubic spline interpolation method is one of the most accurate

methods currently available for surface mapping. The volume is calculated from this

surface map using Simpson's method for numerical approximation. An example of

the style of surface produced by the cubic spline method can be seen in Figure 4.14.
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Figure 4.14 � A surface map generated using cubic spline interpolation, the volume is

calculated using Simpson's rule for integration.

4.5 Experiments

There are two sets of experiments over which the volume estimation methods are

tested. One experiment is a tightly controlled small scale experiment for which a

more easily veri�able ground truth can be obtained.

A large scale experiment, for which the exact volume is not veri�able to the same

degree as the small scale experiment, is used to investigate how the results of the

small scale translate to a larger scale experiment. The larger scale experiment also

provides surfaces with more varied formations than what is used in the small scale

experiment.
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A note on terminology:

The two metrics for comparing each of volume estimation methods in this thesis

are accuracy and precision.

Accuracy is de�ned as how close the estimated volume is to the true volume.

Precision is de�ned as a measure of how repeatable a method is.

Accuracy and precision can be thought of in a Gaussian framework simply as the

mean residual value and variance of the residual estimates.

4.6 Small Scale Experiment

The small scale experiment aims to simulate a stockpile of material. A total of 10

di�erent stockpiles ranging from 1000mL to 10000mL are constructed to test the

volume estimation methods. The stockpiles are scanned by a Rigel VZ-1000 survey

laser (see Appendix A.2.1 for data sheet) on a elevated platform to give full perspective

over the stockpile. The apparatus and experiment setup is shown in Figure 4.15.

One of the most di�cult aspects of volume estimation of bulk material is obtaining

a reliable ground truth. Bulk volume is dependent on many factors such as material

size and variation, water content and forces applied to the grouping of bulk material.

The experiments in this thesis use beach sand blend which mitigates (but does not

eliminate) some of these factors, notably material size and variation.

To provide a ground truth estimate of the bulk volume the high saturation of accurate

3d points which the VZ-1000 provides (for an example showing 20% of the points see

Figure 4.17a) is used. By using a fast linear interpolater (in this case Delaunay

triangulation which overcomes any minor occurrences of laser shadow) over all the

data points we can obtain a highly accurate estimate of the surface and consequently

a highly accurate estimate of the volume. The principle behind this decision is similar

to that of increasing the amount of integral points during numerical integration with
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(a) 1000ml measuring cylinder used to add
more material for each experiment

(b) Experiment con�guration with the Riegl
VZ-1000 laser

Figure 4.15 � Small scale volume estimation experiment setup, the survey laser is

placed at height in order to reduce the chance of laser shadow on the surface.

the rectangular method as shown in Figure 4.10. As the amount of integral points

increases the closer the method comes to approximating the true function.

One common application for bulk volume estimation, is comparing the volume before

and after a set of excavation work. The di�erence between the two volume estimates is

used to estimate how much material has been excavated over a particular time frame.

In the small scale experiment, a scan of the ground surface before material is added

is performed. The bulk volume estimate used to compare each of the techniques is
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the di�erence between the bulk volume estimated from this original scan compared

to the bulk volume estimate once the varied amounts of material have been added.

In all these cases a consistent reference plane is used as well as a common co-ordinate

frame (each scan is geo-registered to a common reference system). The base ground

surface before material is added can be seen in Figure 4.16.

Figure 4.16 � The raw scan data of the ground surface before material is added in the

small scale experiment. The volume of this surface is calculated and subtracted

from each of the volume estimates which contain material.

4.6.1 Discussion

Given the availability of sensors such as the Riegl VZ-1000 and Riegl LMS-Z620 which

provide high density accurate point clouds of the surface, there is a question as to

why anything more complex than a simple linear interpolation volume estimation

technique (such as a TIN) is necessary.

Although the highly dense point cloud which these sensors can generate have many

positive properties, they also have several substantial negative aspects. Currently,

obtaining the data is time intensive. The sensor also needs to be within close proxim-

ity to the surface to achieve the dense accurate point cloud representation used in the
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experiments in this thesis. Another drawback is that it requires signi�cant storage

capacity to store the data from these dense point clouds. Consequently, transferring

the data over network infrastructure (especially wireless networks) becomes cumber-

some. Thirdly, high accuracy / precision instruments are generally expensive which

leads to less availability and implementation into robust environments.

To simulate using cheaper sensors which obtain less data (or the same sensor used from

a signi�cantly greater distance), three scenarios were developed which use di�erent

levels of sampled points from the original point cloud obtained by the sensor. These

include a low resolution in which 64 samples are used, a medium resolution with 256

samples and a high resolution with 1024 samples. A visual example showing how

each of the di�erent volume estimation methods represent the volume under these

di�erent resolutions can be seen in Figures 4.17, 4.18 and 4.19.

Each of the di�erent volume estimation techniques are compared using these three

di�erent data set sizes. This provides an insight into how well each of the methods

handles sparse data sets. To test the accuracy and precision of each method under

these conditions, 100 sets of sampled points from the original complete point cloud

(obtained from the sensor) are taken for each of the di�erent resolutions over all of

the di�erent volume sizes. The sampling method splits the region into a rectangular

grid with each rectangle of uniform size, a random data point is then taken from each

rectangle. Each volume method uses the same set of sampled data on each iteration.

As stated previously, the ground truth is obtained by using the complete data set

and using the triangular prism method with Delaunay triangulation to estimate the

volume.

4.6.2 64 Sample Scenario

Figure 4.20 shows two graphs comparing both the accuracy and precision of the

Gaussian process method (using each of the covariance functions described in this

thesis) and the current state-of-the-art methods in the 64 sample scenario. Figure

4.21 represents the accuracy and precision in this scenario as a percentage of the true
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(a) A plot of the raw sensor output (20% of
points taken).

(b) 64 samples taken from raw sensor output.

(c) Delaunay triangulated surface from sam-
pled points.

(d) Rectangular grid method from sampled
points.

(e) Cubic Spline model from sampled points. (f) Gaussian process model using squared ex-
ponential covariance function.

Figure 4.17 � This shows how each of the di�erent methods estimate approximately

10000mL of volume using 64 samples.
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(a) A plot of the raw sensor output (20% of
points taken).

(b) 256 samples taken from raw senor out-
put.

(c) Delaunay triangulated surface from sam-
pled points.

(d) Rectangular grid method from sampled
points.

(e) Cubic Spline model from sampled points. (f) Gaussian process model using squared ex-
ponential covariance function.

Figure 4.18 � This shows how each of the di�erent methods estimate approximately

10000mL of volume using 256 samples.
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(a) A plot of the raw sensor output (20% of
points taken).

(b) 1024 samples taken from raw senor out-
put.

(c) Delaunay triangulated surface from sam-
pled points.

(d) Rectangular grid method from sampled
points.

(e) Cubic Spline model from sampled points. (f) Gaussian process model using squared ex-
ponential covariance function.

Figure 4.19 � This shows how each of the di�erent methods estimate approximately

10000mL of volume using 1024 samples.
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volume. The 2σ boundaries in Figure 4.20 are calculated from the collection of 100

volume estimates. In comparison, the 2σ boundaries in Figure 4.22 shows the mean

2σ uncertainty level computed by each of the Gaussian process methods over the 100

iterations for each volume experiment.

From Figure 4.21, all of the Gaussian process methods produce very similar results in

this scenario. From the current state-of-the-art methods the rectangular grid method

provides a good level of accuracy compared to the other state-of-the-art methods,

however it is the least precise of all the methods. This is expected for this speci�c

method given it is highly dependent on the sampled points in determining the volume.

The number of intervals used in the cubic spline method for integration was one hun-

dred in each direction. This is the same amount of integral points which the Gaussian

process method uses to estimate the mean volume and corresponding uncertainty.

From Figure 4.21 it can be noted that both the triangular prism and cubic spline

method overestimate the volume in the majority of the volume experiments. One

explanation for this is that given the low number of sample points, these methods do

not accurately interpolate the edge of the stockpiled material between to the ground.

This can be further seen in Figures 4.17, 4.18, 4.19 which give a visual representation

of how the volume estimation techniques function under the di�erent sampling sizes.

Figure 4.22 shows the mean volume output as well as the mean 2σ uncertainty level

provided by each of the Gaussian process methods over the 100 iterations for each

volume experiment. The exponential covariance function deviates the most from the

other covariance functions. Given that the surfaces been estimated in the small scale

volume experiments are all reasonably smooth, the exponential covariance function

tends to overestimate the uncertainty between training points as can be seen in Figure

4.22.

Table 4.1 provides a measure of how well the uncertainty estimates provided by the

Gaussian process methods are in comparison to the ground truth values. Each of

the 100 iterations of each of the Gaussian process methods over all the volumes are

tested to see if the predicted volume ±1σ of the estimated uncertainty encapsulates
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(a) State-of-the-art methods.

(b) Gaussian process methods.

Figure 4.20 � The mean volume error and a 2σ distribution of mean volume error over

the ten di�erent volumes used in this experiment using 64 samples.

the ground truth volume.

If the estimated uncertainty is correct, over 100 iterations it should be expected

that ≈ 68.2% of the results encapsulate the ground truth value. From Table 4.1,

excluding the exponential covariance function, each of the Gaussian process methods

provide (on average) a slightly conservative estimate of the uncertainty over the small

scale experiment. The exponential covariance function, possibly due to the surface
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(a) State-of-the-art methods.

(b) Gaussian process methods.

Figure 4.21 � This �gure shows a normalised error of the values in Figure 4.20 with

respect to the true volume using 64 samples.

being modeled being relatively smooth and continuous as well as the sparsity of the

data, does not encapsulate the uncertainty in the surface model as well as the other

covariance functions.

A summary is provided in Table 4.2 which compares the performance of the di�erent

methods using only 64 sample points.
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Figure 4.22 � Mean volume error of Gaussian process methods with the corresponding

mean 2σ uncertainty estimated by the Gaussian process methods using 64 samples.

Volume Number 1 2 3 4 5 6 7 8 9 10 Mean
GP Squared Exp 70 90 80 73 85 70 85 78 76 78 78.5
GP Matern 5 67 69 80 76 74 60 69 79 60 89 72.3
GP Matern 3 64 74 66 82 86 90 65 75 59 850 74.6

GP Exp 88 100 99 99 99 100 98 100 99 98 98

Table 4.1 � Number of estimates which are within 1σ of ground truth using a sample

size of 64 over 100 di�erent combinations of samples per volume.

4.6.3 256 Sample Scenario

Figures 4.23 - 4.25 describe how each of the di�erent methods perform when the

amount of samples is increased to 256.

In this scenario, all of the methods have increased in both accuracy and precision.

This is not unexpected given that when more data is available, a more accurate surface

map should be generated. The cubic spline and triangulation methods improved in

accuracy the greatest and have converged to a level of accuracy which is similar to

that of the Gaussian process methods.

One of the interesting volume estimation results is from volume experiment number

1. In this scenario all of the methods perform poorly (relative to the performance

over the other volume experiments using 256 samples). From Table 4.3 it can be seen
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Method
Normalised
Mean Error

Normalised
2σ Sampling

Error

1σ Consistency
(GP methods

only)

Triangular Prism 2.88 % 3.76 % -
Rectangular Grid - 0.71 % 9.30 % -
Cubic Spline 4.52 % 3.81 % -
GP Sq. Exp. - 0.0074% 2.96 % 78.5 %
GP Matern 5

2
- 0.15% 3.15 % 72.3 %

GP Matern 3
2

- 0.16 % 2.90 % 74.6 %
GP Exp. - 0.18% 3.02 % 98 %

Table 4.2 � Summary of all methods over 64 Samples and all ten volumes.

Volume Number 1 2 3 4 5 6 7 8 9 10 Mean
GP Squared Exp 14 97 89 39 86 77 93 94 84 80 75.3
GP Matern 5 14 92 87 39 86 77 91 93 73 75 72.7
GP Matern 3 14 91 79 40 83 76 88 91 67 74 70.3

GP Exp 17 100 85 77 95 97 97 100 86 99 85.3

Table 4.3 � Number of estimates which are within 1σ of the ground truth using a

sample size of 256 over 100 di�erent combinations of samples.

that all the Gaussian process methods understate the uncertainty. The similar trend

lines of the error values of the di�erent methods provide evidence to the possibility

that there is a slight bias in the sampling of the points which are used to estimate

the surface and volume. This result suggests that the sampling method used in

this thesis is not necessarily the best solution for surface and volume estimation.

The sampling method could possibly be improved by sampling more points around

complex features. An example of this would be the apexes at the top of a stockpile

or between the ground and the stockpile. In these areas the general surface trend

changes rapidly, more points would allow for these features to be represented more

accurately.

This method of sampling is commonly used in manual surveying. While overall less

points are sampled in manual surveying, the points sampled are all of generally high

value in representing the surface features.

Developing an improved sampling method for surface estimation from raw sensor data
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.23 � Mean volume error and 2σ distribution of mean volume error over the

ten di�erent volumes using 256 sample points.

would likely be able to increase the accuracy and precision of all the methods tested

in this thesis. The actual development of this sampling method is not within the

scope of this thesis.

Table 4.4 provides a summary of the performance of the di�erent techniques using

256 samples.
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.24 � This �gure shows a normalised error of the values in Figure 4.23 with

respect to the true volume using 256 samples.

4.6.4 1024 Sample Scenario

In the 1024 sample scenario, all of the tested methods have converged to very similar

levels of accuracy and precision (Figures 4.26 - 4.28.

The uncertainty estimated by the Gaussian process methods has also become more

accurate compared to the 64 and 256 sample scenarios. This can be seen in Table 4.5
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Figure 4.25 � Mean volume error of Gaussian process methods with the corresponding

mean 2σ uncertainty estimated by the Gaussian process methods using 256 samples.

Method
Normalised
Mean Error

Normalised
2σ Sampling

Error

1σ Consistency
(GP methods

only)

Triangular Prism 0.11 % 1.28 % -
Rectangular Grid - 0.35 % 2.18 % -
Cubic Spline 0.34 % 1.29 % -
GP Sq Exp. - 0.11% 0.86 % 75.3 %
GP Matern 5

2
- 0.12% 0.87 % 72.7 %

GP Matern 3
2

- 0.14 % 0.85 % 70.3 %
GP Exp. - 0.19% 0.84 % 85.3 %

Table 4.4 � Summary of all methods over 256 Samples and all ten volumes

where the uncertainty estimated is now much closer to the expected value of ≈ 68.2%.

One of the other signi�cant changes in results is the improvement of the exponential

covariance function in estimating the uncertainty of the volume. These improvements

can be attributed to the increase in sample size. This improves the accuracy of the

learning process to determine the most accurate hyper-parameters for the given data

set. This is particularly true for parameters such as sensor noise.

Disregarding the result from volume experiment number 1 (which follows on from

the same trend as the 256 sample experiment), each of the covariance functions are

overall still conservative on estimating the uncertainty. This result can be seen in
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.26 � Mean volume error and 2σ distribution of mean volume error over the

ten di�erent volumes using 1024 samples.

Table 4.5.

Table 4.6 provides a summary of all the di�erent methods using a sample size of 1024.
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.27 � This �gure shows a normalised error of the values in Figure 4.26 with

respect to the true volume using 1024 samples.

4.7 Large Scale Experiment

In order to test how the Gaussian process volume estimation method compares in

an environment which more closely represents an open pit mine, another series of

experiments is performed.

These tests form part of the experiment which was used in the large scale experiments
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Figure 4.28 � Mean volume error of Gaussian process methods with mean 2σ uncer-

tainty estimated of the volume estimate in the 1024 sample experiment.

Volume No. 1 2 3 4 5 6 7 8 9 10 Mean

GP Sq Exp 1 96 50 55 68 84 76 94 62 96 68.2
GP Mat 5 1 95 49 56 64 84 76 94 59 96 67.4
GP Mat 3 1 96 46 56 64 85 74 93 54 97 66.6
GP Exp 0 94 39 63 61 85 70 93 53 97 65.6

Table 4.5 � Number of estimates which are within 1σ of the true volume using a sample

size of 1024 over 100 di�erent combinations of samples.

Method
Normalised
Mean Error

Normalised
2σ

Sampling Error

1σ Consistency
(GP methods

only)

Triangular Prism -0.75 % 0.62 % -
Rectangular Grid - 0.29 % 0.64 % -
Cubic Spline -0.57 % 0.60 % -
GP Sq Exp. - 0.24% 0.46 % 68.2 %
GP Matern 5

2
- 0.24% 0.46 % 67.4 %

GP Matern 3
2

- 0.25 % 0.46 % 66.6 %
GP Exp. - 0.27% 0.46 % 65.6 %

Table 4.6 � Summary of all methods over 1024 Samples and all ten volumes.

in Chapter 3 to provide proof that probabilistic tracking of extensive bulk material

properties is possible.
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In this larger scale experiment, material is removed sequentially from a `simulated'

grade block using a front end loader. An example of this grade block and the volume

to be estimated can be seen in Figure 4.29.

Figure 4.29 � An example of the volume to be estimated in the larger scale experiment.

This scenario aims to simulate the removal of material from a grade block in an

open pit mine.

The volume estimated is the amount of material removed from the grade block before

and after each excavator load. This volume is used as an estimate for the amount of

material in the excavator bucket.

As part of the preprocessing of the original data sets for each volume, GPS co-

ordinates are used to provide a rectangular boundary over the grade block to include

only the material in the grade block and not the �xed walls in which the material is

stored.

Like the small scale experiment, three di�erent resolutions are used to gauge the

accuracy and precision of each method. In this scenario, the resolutions are set at

96, 320 and 1124 samples. The ground truth is calculated using the same method as

the small scale experiment, all of the data points are used to form the surface using

Delaunay triangulation, then using triangular prisms to determine the volume.

An example of the di�erent stages of excavation and the corresponding representation
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from each volume estimation technique can be seen in Figures 4.30 - 4.32. In these

examples 320 sample points are used.

4.7.1 96 Sample Scenario

Figures 4.33 - 4.35 show how each method performs as material is removed from the

grade block over time.

In this scenario, the squared exponential, Matern 5
2
and Matern 3

2
methods produce

similar levels of accuracy (as can be seen in Figures 4.33 and 4.34). The exponential

covariance function deviates from the other Gaussian process methods on several of

the volume experiments. This could be attributed to the way in which the exponen-

tial covariance function handles sparse data sets. It typically produces a model which

is much sharper between sample points. Comparatively, the other covariance func-

tions smooth (average) the model signi�cantly more over the sparse data (producing,

relatively, more similar results).

The state-of-the-art-methods provide both slightly lower accuracy and precision than

the Gaussian process methods. The one exception is the rectangular grid method.

This method is as accurate as the Gaussian process methods but considerably less

precise.

From Table 4.7 there is a considerable di�erence to that of the similar scenario in the

small scale example (the 64 sample case). The expected value for each entry of the

table is approximately 68.2%.

Table 4.7 shows that each of the covariance function is very conservative in the es-

timates given of the uncertainty. The least conservative of the four options is the

exponential covariance function. This is the opposite result to which occurred in the

small scale experiment.

The relative level of uncertainty estimated by each of the Gaussian process methods

can be seen more clearly in Figure 4.35. The uncertainty estimated by each of the

covariance functions appears to be correlated to the amount of averaging each of the
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(a) A plot of the raw sensor output. (b) 320 samples taken from raw sensor out-
put.

(c) Delaunay triangulated surface from sam-
pled points.

(d) Rectangular grid method from sampled
points.

(e) Cubic Spline model from sampled points. (f) Gaussian process model using exponen-
tial covariance function.

Figure 4.30 � An example of how each volume estimation method represents the sim-

ulated grade block prior to excavation on the large scale experiment. 320

samples are used in each of the volume estimation methods.
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(a) A plot of the raw sensor output. (b) 320 samples taken from raw sensor out-
put.

(c) Delaunay triangulated surface from sam-
pled points.

(d) Rectangular grid method from sampled
points.

(e) Cubic Spline model from sampled points. (f) Gaussian process model using exponen-
tial covariance function.

Figure 4.31 � An example of how each volume estimation method represents the simu-

lated grade block after six excavator loads on the large scale experiment. 320

samples are used in each of the volume estimation methods.
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(a) A plot of the raw sensor output. (b) 320 samples taken from raw senor out-
put.

(c) Delaunay triangulated surface from sam-
pled points.

(d) Rectangular grid method from sampled
points.

(e) Cubic Spline model from sampled points. (f) Gaussian process model using exponen-
tial covariance function.

Figure 4.32 � An example of how each volume estimation method represents the simu-

lated grade block after thirteen excavator loads on the large scale experiment.

320 samples are used in each of the volume estimation methods.
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.33 � Mean volume error and 2σ distribution of mean volume error over the

�fteen di�erent volumes in the large scale experiment using 96 samples.

covariance functions performs. This can be seen in Figure 4.35 whereby the variance

estimated in order of least to most conservative is exponential, Matern 3
2
, Matern

5
2
then squared exponential. This is the same order as the number of times each

covariance function is di�erentiable from lowest to highest.

The outcome of this experiment shows that the choice of covariance function (even

quite similar covariance functions) does have an impact upon the estimation perfor-
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.34 � This �gure shows a normalised error of the values in Figure 4.33 with

respect to the true volume using 96 samples.

mance. Based on the previous results, the best method for estimating the uncertainty

under these types of surface conditions in the large scale experiment is the exponential

covariance function.

This matches the prior hypothesis in Section 4.3.2 that the exponential covariance

function would perform better at representing surfaces with more complex fast chang-

ing features. In the small scale example the more smoother covariance functions were
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Figure 4.35 � Mean volume error of Gaussian process methods with mean 2σ uncer-

tainty estimated of the volume estimate in the 96 sample large scale experiment.

better at estimating the uncertainty in the smooth stockpile volume scenarios.

Volume No. 1 2 3 4 5 6 7

GP Sq Exp 100 100 100 100 100 100 99
GP Mat 5 100 100 100 100 100 100 99
GP Mat 3 100 100 100 100 100 100 99
GP Exp 89 98 90 92 95 98 100

Volume No. 8 9 10 11 12 13 14 Mean

GP Sq Exp 99 100 100 100 100 100 100 99.86
GP Mat 5 99 100 100 100 100 100 100 99.86
GP Mat 3 99 100 100 100 100 100 100 99.86
GP Exp 100 100 97 99 100 99 89 96.14

Table 4.7 � Number of estimates which are within 1σ of the true volume using a sample

size of 96 over 100 di�erent combinations of samples.

A summary of the results for all the methods in the 96 sample case can be seen in

Table 4.8.

4.7.2 320 Sample Scenario

The results in the 320 sample case for the large scale experiment can be seen in Figures

4.36 - 4.38. The accuracy and precision of all methods increased compared to the 96
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Method
Normalised
Mean Error

Normalised
2σ Sampling

Error

1σ Consistency
(GP methods

only)

Triangular Prism -1.12 % 26.93 % -
Rectangular Grid 0.36 % 46.64 % -
Cubic Spline -2.21 % 27.95 % -
GP Sq Exp. - 0.38% 19.97 % 99.86 %
GP Matern 5

2
- 0.59% 18.82 % 99.86 %

GP Matern 3
2

- 0.67 % 18.87 % 99.86 %
GP Exp. - 0.37% 21.83 % 96.14 %

Table 4.8 � Summary of all methods over 96 Samples and all �fteen volumes

sample scenario. The Gaussian process methods still outperform the state-of-the-art

methods as can be seen in the summary in Table 4.10.

Increasing the amount of sample points leads to a clear di�erentiation between the

uncertainty estimated by each of the Gaussian process methods. This can be seen in

Figure 4.38.

Volume No. 1 2 3 4 5 6 7

GP Sq Exp 100 100 100 100 100 100 100
GP Mat 5 100 100 100 100 100 100 100
GP Mat 3 100 100 100 100 100 100 100
GP Exp 91 97 98 98 99 100 99

Volume No. 8 9 10 11 12 13 14 Mean

GP Sq Exp 100 100 100 100 100 100 100 100
GP Mat 5 100 100 100 100 100 100 100 100
GP Mat 3 100 100 100 100 100 100 100 100
GP Exp 98 100 95 100 98 92 88 96.64

Table 4.9 � Number of estimates which are within 1σ of the true volume using a sample

size of 320 over 100 di�erent combinations of samples.

A summary of the results for all the methods in the 320 sample case can be seen in

Table 4.10
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.36 � Mean volume error and 2σ distribution of mean volume error over the

�fteen di�erent volumes in the large scale experiment using 320 samples.

4.7.3 1152 Sample Scenario

The results of the 1152 sample volume scenarios can be seen in Figures 4.39 - 4.41.

The relative performance of all the methods follows a similar trend as the 1024 sample

case in the small scale volume experiments. Each of the methods in terms of accuracy

have converged to very similar levels (see Table 4.12). The exception in this case is
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.37 � This �gure shows a normalised error of the values in Figure 4.36 with

respect to the true volume using 320 samples.

the cubic spline method which maintains a slight negative bias compared to the other

methods. The accuracy and precision of the Gaussian process methods still provide

an improvement over the other state-of-the-art methods. The absolute di�erence

between methods is very slim when using this amount of samples however.

One of the interesting features when using the higher sample count can be seen

in Figure 4.41, when compared to the 96 sample case (Figure 4.35) and the 320
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Figure 4.38 � Mean volume error of Gaussian process methods with mean 2σ uncer-

tainty estimated of the volume estimate in the 320 sample large scale experiment.

Method
Normalised
Mean Error

Normalised
2σ Sampling

Error

1σ Consistency
(GP methods

only)

Triangular Prism -0.33 % 7.81 % -
Rectangular Grid -0.16 % 13.45 % -
Cubic Spline -1.26 % 8.61 % -
GP Sq Exp. - 0.2% 6.31 % 100 %
GP Matern 5

2
- 0.16% 5.89 % 100 %

GP Matern 3
2

- 0.12 % 5.77 % 100 %
GP Exp. - 0.12% 6.24 % 96.14 %

Table 4.10 � Summary of all methods over 320 Samples and all �fteen volumes

sample case (Figure 4.38). The mean uncertainty estimated by each of the covariance

functions follow more consistent patterns, albeit o�set proportionally, when compared

to the other sample sizes.

A similar e�ect was noted in the 1024 sample case in the small scale experiments.

More training points allow for a more consistent estimates of the hyper-parameters

while learning, while also allowing for each of the covariance functions to better learn

the hyper-parameters.

One common trait in each of the Gaussian process methods is the increase in un-
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certainty predicted by each of the methods as the stockpile volume bin approaches

empty (the bin is considered empty in Volume Experiment No. 15). One reason

for this can be seen in Figure 4.32. The raw scan data also includes some slight

portions of material which has compacted and stuck onto the Besa (concrete) block

wall. These sharp near vertical surface changes are not handled well in general by

smooth covariance functions like the squared exponential (the sharp change results

in increasing the uncertainty across the whole surface).

Volume No. 1 2 3 4 5 6 7

GP Sq Exp 100 100 100 100 100 100 100
GP Mat 5 100 100 100 100 100 100 100
GP Mat 3 100 100 100 100 100 100 100
GP Exp 93 83 95 98 98 96 85

Volume No. 8 9 10 11 12 13 14 Mean

GP Sq Exp 100 100 100 100 100 100 100 100
GP Mat 5 100 100 100 100 100 100 100 100
GP Mat 3 100 100 100 100 100 100 100 100
GP Exp 100 100 99 90 100 100 100 95.50

Table 4.11 � Number of estimates which are within 1σ of the true volume using a

sample size of 1152 over 100 di�erent combinations of samples.

Method
Normalised
Mean Error

Normalised
2σ Sampling

Error

1σ Consistency
(GP methods

only)

Triangular Prism -0.087 % 2.21 % -
Rectangular Grid -0.12 % 3.97 % -
Cubic Spline -1.08 % 2.77 % -
GP Sq Exp. 0.011% 2.01 % 100 %
GP Matern 5

2
- 0.0011% 1.86 % 100 %

GP Matern 3
2

- 0.0066 % 1.80 % 100 %
GP Exp. - 0.026% 1.87 % 95.50 %

Table 4.12 � Summary of all methods over 1152 Samples and all �fteen volumes.

A summary of the results for all the methods in the 1152 sample case can be seen in

Table 4.12
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.39 � Mean volume error and 2σ distribution of mean volume error over the

�fteen di�erent volumes in the large scale experiment using 1152 samples.

4.8 Discussion

4.8.1 Accuracy

All of the methods are compared to a control method which uses Delaunay triangu-

lation and triangular prisms using all available data from the sensor to estimate the
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(a) State-of-the-art methods

(b) Gaussian process method

Figure 4.40 � This �gure shows a normalised error of the values in Figure 4.39 with

respect to the true volume using 1152 samples.

volume. The volume calculated in the small scale experiment is the di�erence between

the volume of the ground surface and the surface with an additional amount of ma-

terial added as a stockpile. In the large scale experiment, the volume was calculated

as the di�erence before and after each grade block excavator load.

In Tables 4.2 and 4.8 the results using 64 and 96 samples are summarised respectively.

In these scenarios, the Gaussian process methods and the rectangular grid methods
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Figure 4.41 � Mean volume error of Gaussian process methods with mean 2σ uncer-

tainty estimated of the volume estimate in the 1152 sample large scale experiment.

are the most accurate.

Tables 4.4, 4.6, 4.10 and 4.12 provide a summary of the results from the 256, 1024,

320 and 1156 sample scenarios respectively. In these scenarios, there is a trend for all

of the volume estimation methods to become more accurate and converge to closer

absolute levels of accuracy (< 1%). This suggests that further increasing the amount

of sample points will lead to only very minor di�erences between each method in

terms of accuracy.

4.8.2 Precision

In both the small and large scale experiments the rectangular grid method is the

least precise over all of the tested scenarios. The Gaussian process methods are more

precise than any of the state-of-the-art methods. The triangular prism and cubic

spline volume estimation methods are less precise compared to the Gaussian processes

methods over all of the scenarios (these two methods are more precise however than

the rectangular grid method). All of the methods become more precise as the number

of samples increase.

One of the aims of developing the Gaussian process method as described in Section
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4.2 was to have a method which would be able to deal with sparse data sets e�ectively

as well as work over a variety of surface formations. In both the small and large scale

experiments, the Gaussian process methods have the best performance, in terms of

accuracy and precision, over all of the test scenarios.

4.8.3 Estimation of Uncertainty with the Gaussian Process

Method

One of the requirements in the development of the Gaussian process method was

to �nd a method which would be able to encapsulate the uncertainty in a volume

estimate from a 2.5D surface scan.

The results from both experiments show how the choice of covariance function does

have a signi�cant impact on the uncertainty estimated.

In the small scale experiment, the uncertainty estimated by the squared exponential

and Matern series of covariance functions perform better at lower levels of sparseness

compared to the exponential covariance function. From the large scale experiments,

the exponential covariance function was found to be considerably more accurate at

encapsulating the uncertainty.

The estimated uncertainty over the test scenarios was on average `conservative'. From

Table 4.5, it was shown that given a high saturation of sample points of the surface,

the choice of covariance function has a minimal impact. The estimated uncertainty

in this scenario was also the closest to the true value.

One area in which this method could be improved in future work would be in the

development of a covariance function which could better encapsulate the uncertainty

over sparse data sets.

4.8.4 Computational Complexity

Given the previous results, the Gaussian process method appears to have a clear

advantage over the other methods. The Gaussian process method does however have
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one signi�cant negative aspect when compared to the other estimation methods.

The computational requirements of the Gaussian process methods are substantially

higher than the other state-of-the-art methods. The matrix inversion [K (X,X) + σ2
nI]
−1

has a computational cost of O(N3) [91]. As a reference, an iterative Delaunay trian-

gulation implementation has a worst case cost of O(N2) [67]. Cubic spline construc-

tion is well known to be of complexity O(N) with evaluation of the cubic spline at

O(log(N)) [73].

On top of this evaluation cost, the process of learning when using the Gaussian process

method increases the cost as well. This is important to consider when attempting to

perform volume estimation in real-time. A common solution to the learning problem

for real-time implementation is to take a data set representing on average the data to

be evaluated in the �eld. The hyper-parameters are then learnt o�-line using this data

set and used as the parameters in the evaluation of the data as it arrives in real-time.

This reduces the computational requirements. However, this solution will ultimately

be less precise and accurate than learning the set of hyper-parameters online for each

individual data set.

4.9 Summary

This chapter has provided a probabilistic method for estimating a 2.5D volume using

Gaussian processes. The theory behind Gaussian process regression and learning

was introduced as well as a description of several covariance functions which were

experimentally compared.

The Gaussian process method developed was also compared to several state-of-the-art

methods. This included Delaunay triangulation with triangular prisms, rectangular

prisms with height averaging as well as cubic spline interpolation with Simpson's

rule used for integration to determine volume. The comparison was performed over

experiments of two separate scales. A small controlled experiment where a more

de�nitive ground truth can be obtained. A larger more realistic mining scenario is
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then used to test each of the methods. The ground truth was calculated using all of the

raw data provided by the Riegl VZ-1000 survey laser and using Delaunay triangulation

and triangular prisms to determine the volume. The experiments comprised of three

di�erent resolutions to compare how each method performs with varying sparseness

of the sample data set.

The results show that the Gaussian process methods on average are more accurate

and precise under both of the experiment conditions than the current state-of-the-

art methods. The uncertainty estimated by the Gaussian process methods was, on

average, of a conservative nature. The choice of covariance function was found to

play a factor in the accuracy of the uncertainty estimation.

The representation of bulk material properties as probabilistic is vital in integrating

this information into the estimation and tracking system developed in this thesis. The

Gaussian process method with its intrinsic capability of estimating the uncertainty

of the volume estimated provides a method which is capable of performing on a wide

range of surface formations. The current state-of-the-art methods were unable to

provide this functionality.

Future work in this area could include decreasing the computational requirements

of the Gaussian process methods. This would allow for greater use in a real-time

environment. The performance of this method could also be improved by the devel-

opment of a covariance function which is better able to encapsulate the uncertainty

over the 2.5D surface.



Chapter 5

Modelling Intensive Material

Properties

5.1 Introduction

One of the main goals of the research work in this thesis (as stated in Section 2.3.4)

is to "Provide a probabilistic inventory of all available stock". This goal involves

keeping an estimate of material properties that are vital in mine operations. Chapter

3 discusses a method for estimating and tracking extensive material properties within

an ASKF framework. This chapter describes a method for including intensive material

properties. Some examples of intensive properties include chemical composition (e.g.

Iron%, Silica%, Alumina%), fragmentation and bulk density.

It would be highly valuable to include intensive property states in an integrated

tracking and estimation system. The ability to have a probabilistic estimate of ore

grade in a haul truck, for example, would allow an autonomous control system to

ensure the haul truck is always directed to the correct stockpile. The ability to have

an estimate of the uncertainty of chemical properties in stockpiles would allow for

more con�dence in ensuring that blending stockpiles are within the correct tolerance

levels for the product being produced. This information could be used in a mine
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planning system to be able to plan more e�ectively which grade blocks to excavate

in order to meet the correct grades on these stockpiles.

One of the other bene�ts is the ability to incorporate additional information about

the chemical properties of the material and then be able to reconcile this in real-time

to the point of excavation. This information could be used to update an underlying

geological model. This would have signi�cant bene�ts for a mine planning system

seeking to �nd the optimal mine plan given the available information. One of the

drawbacks of reconciliation as it is done at the moment is the considerable delay

which occurs between excavation and reconciliation data becoming available.

As discussed in Section 2.3.3, there have been considerable advances in remote sensing

(e.g. hyper-spectral cameras) which makes it more feasible to observe intensive ma-

terial properties at di�erent stages in the mining process. As with extensive material

properties, the ability to consistently fuse information together from a variety of in-

formation sources of varying levels of uncertainty is important. This chapter provides

a method for probabilistic estimation and fusion of intensive material properties along

a process chain using the lumped mass representation. A method for reconciling this

information back to the point of excavation is also presented.

5.2 Problem Formulation

5.2.1 Representation

One of the requirements when using a ASKF approach to tracking and estimation is

the assumption that all states can be adequately represented by a Gaussian distribu-

tion. The performance of the �lter, in regard to estimation accuracy and statistical

consistency, will be a function of the degree in which the system models, observations

and state properties can be approximated as Gaussian distributions.

This assumption becomes especially problematic when combining lumped masses with

intensive material properties. Take for example the hypothetical scenario in Figure

5.1. In this scenario each lumped mass has two states, mass and Fe%.
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Figure 5.1 � When combining the intensive properties from the two lumped masses

pictured, the resultant distribution is non-Gaussian.

When the material in the excavator is combined with the material in the haul truck,

a uniform blending of the two lumps is assumed (where each particle of material

within both lumps is assumed to be of equal size and the amount of particles is

proportional to the mass). When randomly selecting a particle within this combined

blended lumped mass, the probability of selecting a particle belonging from either

of the initial two lumped masses prior to blending will be proportional to the mass

of each of the initial lumps. Assuming that the estimate of an intensive property

(e.g. Iron content Fe%) was represented as a Gaussian for each of the initial lumped

masses, the probability of selecting a particle with a particular intensive property will

be weighted by the chance of drawing that particle from each of the initial lumps and

the corresponding representation of the intensive property in the initial lumped mass.

Further reading on the estimation of blended bulk material, particular for stockpiles
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in mining, can be found in prior work in this area [104].

When combining the lumped mass in the excavator bucket with the lumped mass in

the haul truck from Figure 5.1, the underlying Bayesian distribution (Figure 5.2) of

the Fe% (Iron) is poorly approximated by a Gaussian distribution, this can be noted

by the lack of common probability density.

The model shown in Figure 5.2 is a Gaussian Mixture Model [103] of the form:

p (x) =
M∑
m=1

wm p (x |N (µm;σm)) , where
∑

wi = 1 (5.1)

where p (x |N (µm;σm)) are the Gaussian distributions of the intensive properties of

the two lumped masses prior to combining. The weighting of each respective gaussian

(wm) is calculated using the mean mass of each lump prior to combining as a fraction

of the total combined mass of both lumped masses. The parameters used are shown

in Figure 5.1.

Figure 5.2 � The resultant distribution when combining the intensive lumped mass

properties in the scenario shown in Figure 5.1.

As was discussed in the `Introduction to Open Pit Mining' (Section 2.2), and specif-

ically the section on `Mine Visualisation' (Section 2.2.3), the scenario in Figure 5.1

is not likely to be common place for each grade block. Each grade block is typi-

cally grouped together with material of consistent chemical composition. However,
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in circumstances where this not the case (such as blended grade blocks, see Section

2.2.3) the accuracy and consistency will be negatively impacted through the use of a

Gaussian representation. As an illustration of a more ideal scenario for a Gaussian

representation, take the same scenario as shown in Figure 5.1. However, instead of

the excavator lumped mass having 45% Fe it has 62% Fe. When combining the two

lumped masses the underlying probabilistic representation can be seen in Figure 5.3.

From this distribution, it can be seen that a Gaussian approximation of this combined

probabilistic distribution of the two lumped masses is more reasonable.

Figure 5.3 � This is the resultant distribution when the values of Fe in the excavator

lumped mass in Figure 5.1 is changed to 62%.

Using a Gaussian representation is not the ideal choice, especially when considering

the excavation of blended grade blocks as well as combining lumped masses into

blended stockpiles where chemical compositions are likely to vary considerably. The

choice to use this representation in this thesis is one of pragmatism. The development

of a more rich representation is a complex process due to the inherent dependencies

between extensive-intensive properties as well as between intensive properties (this is

discussed further in Section 5.2.2). The Gaussian representation allows for a simplistic

method of including intensive properties in the estimation process which maintains
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a consistent approach to representation as the extensive properties. Improving the

modelling of intensive properties to account for the physical constraints of the material

properties (using a log-normal distribution) is discussed further in Section 6.3.1 as

future work to extend upon the representation discussed in this Chapter.

5.2.2 The Issue of State Dependencies

One of the main research problems involved in including intensive material properties

is accounting for the dependence on the extensive material properties when de�ning

a lumped mass with an intensive material property.

This dependency can be seen in the prior discussion on the representation of the in-

tensive material properties. In the scenario shown in Figure 5.1 the Fe % probability

is weighted by the amount of material present originally in each lumped mass. The

resultant probability distribution (Figure 5.2) when the two lumped masses are com-

bined is based on the assumption that when the two lumped masses are combined

the material is perfectly mixed.

One open-ended problem is how to consistently model the intensive properties taking

into account the state dependency with the extensive properties. The following sec-

tion discusses several di�erent ways of approaching this problem within a Gaussian

representation framework. It also discusses an additional problem of dependencies

between intensive states.

A Percentage Based Approach

One approach is to model the intensive properties as a percentage of the estimated

material present. This is what is shown in Figure 5.1. One of the di�culties in

this approach is how to incorporate this into the constrained ASKF approach. The

extensive properties can be modeled as linear combinations of each other. This is not

possible when using a percentage approach with intensive properties as they are by

their nature not linearly additive.
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One possible approach is to assume that extensive and intensive properties are in-

dependent of each other. This approach would make it possible to remove intensive

properties from the ASKF containing the extensive properties and run as a parallel

�lter if desired.

The assumption that extensive and intensive properties are independent however,

has several disadvantages. The �rst is that, given there is no spatial, when fusing

new information at a particular location there is no autonomous method using the

standard LKF equations (Section 3.3) to update the spatially related states (as de�ned

by the covariances between extensive properties) with this new information.

A Combined Extensive-Intensive Approach

A di�erent approach is to account for the state dependency between the extensive

and intensive properties in the ASKF by using a di�erent representation of both the

extensive and intensive properties. Instead of representing the intensive properties

as a percentage of the extensive properties the intensive and extensive properties are

combined into a single value. As an example, take again the scenario shown in Figure

5.1. Instead of representing the material in the haul truck lumped mass as two states

`mass' and `Fe', these two values can be combined into a single value. Therefore the

state is estimated as 84t of Fe. This is a combination representing the dependency

between extensive and intensive properties (140t and 60% Fe). The uncertainty would

then be estimated as a combination based on these two properties `mass' and `Fe'.

This method has several advantages over the percentage based approach. It enables

many of the bene�ts of the extensive approach such as linearly additive states and a

consistent method for maintaining spatial relationships. Thus when fusing additional

information, this method would allow for the information to autonomously �ow onto

correlated lumped masses.

There are however several prominent research issues which must be overcome before

this approach can be made viable.
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One issue is that observational sensors in the mining domain do not observe in this

combined extensive-intensive state. Sensors estimate either the extensive property

(e.g. mass, volume) or the intensive property (e.g. chemical composition %) over

a region. These observations can not be directly applied on their own to this new

combined extensive-intensive state in an ASKF framework. The estimated mean and

uncertainty approximated of the combined extensive-intensive state is an amalgama-

tion of both the intensive and extensive properties. To apply one of these observations

would require a method for incorporating the mean and uncertainty of either the in-

tensive and extensive property (depending on which form the original observation

takes) to derive the combined state.

The Problem of Dependencies between Intensive States

One of the other major issues when dealing with intensive properties is the dependen-

cies between intensive states. One prime example of this is the dependencies between

chemical properties.

Using an iron ore example, the chemical properties Fe, SiO2. AlO3 and P will be

have strong dependencies driven by complex geological factors and processes. It is

a non-trivial task to develop a method for modelling the relationship between these

properties within an ASKF framework.

Another problem is the natural constraints imposed by speci�c intensive properties.

In the percentage based approach described a constraint would need to be enforced

to ensure that intensive material properties of the same class sum to 100%. In this

case, an example of a class of intensive properties would be chemical composition.

In the combined extensive-intensive approach a similar problem arises. Using the ex-

ample of chemical composition class again, the total masses of each combined property

should sum to the actual total mass at that particular location.

The development of this constraint is not within the scope of this thesis.
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Discussion

The two discussed approaches using a Gaussian representation both have positive

and negative qualities. The percentage based approach can be used alongside the

extensive modelling method described in Chapter 3 without altering the performance

or characteristics of the extensive modelling system. Therefore the bene�ts provided

by the extensive property system described in Chapter 3 are maintained.

The combined extensive-intensive approach would take into account the dependent

nature of extensive and material properties. This is bene�cial in that it removes

the need for approximations when combining lumped mass intensive properties. The

main di�culty in this approach is that there are much more complex interactions

between the state variables which need to be modeled than the percentage based

approach. Modelling these interactions within a ASKF framework would be a non-

trivial research problem.

This thesis uses the percentage based approach as the method for representing the

intensive properties of the material at each location in the ASKF. The combined

extensive-intensive solution has many attractive qualities, however solving the re-

search problems involved in implementing this approach is beyond the scope of this

thesis. Furthermore, for simplicity, the intensive properties are assumed to be inde-

pendent for the work within this thesis.

5.2.3 Approximating the Sum of Gaussian Distributions

The approach to estimating intensive properties in this thesis is one by which the

intensive property will be represented by a single Gaussian. The Gaussian represen-

tation uses a percentage based approach in which it is assumed the intensive state to

be estimated is independent of other intensive property states as well as independent

of extensive properties.

As described in the previous sections, this approach has several drawbacks. Notably,

the inability to correctly model the underlying chemical distribution when combining
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lumped masses together with di�erent chemical compositions. The approximation will

be less ideal the more the chemical compositions di�er. This is slightly negated by

the fact that in a large amount of cases where lumped masses are combined together

they will be of similar chemical composition.

Given that this is the approach taken, a method for approximating the sum of two

Gaussian distributions as a single Gaussian distribution is needed. This section will

numerically compare several methods for achieving this with respect to optimising

for the least amount of information loss.

Covariance Union

There are several methods for approximating a sum of Gaussians into a single Gaus-

sian estimate. One approach is to use the `Covariance Union' method [18].

This is a method which is commonly used in Multiple Hypothesis Tracking (MHT).

In MHT, it is common problem that when the number of hypothesis keep increasing.

This results in the calculations becoming computationally intractable. The covariance

union is a technique aimed at consolidating several hypothesis into a single consis-

tent hypothesis. This reduces the computational complexity making the estimation

process computationally tractable.

Figure 5.4 gives an example of a covariance union approximation. The graph on

the left shows a set of possible hypothesis which are to be approximated by a single

Gaussian distribution. The graph on the right shows a single approximation produced

by the covariance union method. As can be seen from Figure 5.4 the distribution

estimated by the covariance union ensures that all the uncertainty in all original

hypothesis is accounted for.

The problem with this approach, when applied to the problem of combining lumped

mass intrinsic properties, is that it does take into account the state dependency

between the extensive and intensive properties. Figure 5.5 shows an example of the

distribution approximated using the data shown in Figure 5.1. The approximated

distribution is not a good representation of the underlying true distribution.
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Figure 5.4 � An example of the covariance union method being applied over a set of

hypothesis. This method ensures that the distribution estimated encapsulates all

the uncertainty of the input hypothesis.

Figure 5.5 � The covariance union method being applied to the data from the scenario

shown in Figure 5.1. The non-weighted mean intensive property estimate is located

in the middle of the two lumped mass intensive mean values. This is problematic

as it does not take into account the mass of each lumped mass.
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One way of accounting for this using the covariance union method is to weight the

mean value approximation based on the mass. The result from this can be seen in

Figure 5.6. This method makes the approximation more conservative (larger spread).

It does however appear to encapsulate the underlying distribution more adequately

in this scenario.

Figure 5.6 � The covariance union method being applied the data from the scenario

shown in Figure 5.1, the mean estimated mass includes a weighting method for the

mean.

Figure 5.4 shows the scenario in which the covariance union method is ideal for. In a

bulk material scenario, where intensive material properties are being combined only

two distributions will be involved. In MHT ensuring that the �nal approximation

contains all possible hypothesis from the original inputs is important, this makes

a conservative approach attractive. This level of conservatism could potentially be

reduced in a bulk material tracking scenario.

The Mathematical Averaging (MA) Method

Another method of approximating the sum of Gaussian distributions is to take a

weighted average of the two Gaussian distributions. The mean of the joint distribution
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xJ can be calculated as the following:

xJ = p1x1 + p2x2 (5.2)

where p1 and p2 represent the weights applied to each of the means of the intensive

properties x1 and x2.

p1 and p2 can be given by

p1 =
M1

M1 +M2

(5.3)

and

p2 =
M2

M1 +M2

(5.4)

where M1 and M2 are the mass values of the �rst and second lumped masses which

are being combined together.

The variance on the averaged distribution can be calculated as the second moment

subtracted by the square of the �rst moment. The �rst moment is given by Equation

5.2, the second moment is given by the following:

x
(2)
J = p1(x

2
1 + σ2

1) + p2(x
2
2 + σ2

2) (5.5)

where σ2
1 and σ2

2 represent the variances on the intensive properties x1 and x2, re-

spectively.

The variance of the averaged distribution (σ2
J) therefore can be calculated as

σ2
J = x

(2)
J − x

2
J = p1(x

2
1 + σ2

1) + p2(x
2
2 + σ2

2)− (p1x1 + p2x2)
2 (5.6)

A summary of the results is presented in in Equations 5.7 and 5.8. These equations
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include substituting the values for p1 and p2 and factorisation in the mean (xJ) and

variance (σ2
J) equations.

xJ =

(
M1

M1 +M2

x1

)
+

(
M2

M1 +M2

x2

)
(5.7)

σ2
J =

M1σ
2
1 +M2σ

2
2

M1 +M2

+

(
x1 − x2
M1 +M2

)2

M1M2 (5.8)

Representing Equation 5.8 as shown aids in understanding how the variance is calcu-

lated. The �rst term represents a weighted combination of the two previous lumped

mass variances on the intensive properties. The second term represents the additional

variance required to compensate for the di�erence in mean values between the two

intensive lumped mass properties.

The result of applying this method to the scenario shown in Figure 5.1 can be seen

in Figure 5.7. The covariance union methods are included as a comparison.

Figure 5.7 � An example showing the mathematical averaging method along with the

covariance unions methods to approximate the combined intensive property from

the scenario shown in Figure 5.1.
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From Figure 5.7 it can be seen that this method provides a less conservative estimate

than the covariance union methods.

5.3 Comparison between Approximation Methods

To compare the di�erent methods more formally there are several di�erent methods

and metrics which can be used. The aim is to compare each of the approximation

methods against the true distribution to see which method best approximates this

distribution. It is di�cult to compare the performance of each of the approximation

methods using graphical methods (Q-Q plots, Histograms, Gaussian plots etc) over

a wide range of scenarios given the vast range of values the di�erent input values can

take. This problem can be addressed by using a numerical metric as the method for

comparison.

One way of numerically evaluating how good the approximation is, is to compare

the Cumulative Density Function (CDF) of the true and approximated distributions.

Ideally, the two CDF curves should be as close as possible. One metric for sum-

marising the estimation performance is to calculate the max di�erence in the CDFs

between the true and approximated distributions. A smaller number in this metric

would signify an approximation which is closer to the true distribution. Figure 5.8

provides a graphical example of how this metric is calculated.

By using this metric as indicative of approximation performance, each of the approx-

imations can be tested over a wide range of scenarios.

5.3.1 The Example Scenario

One of the recurring examples in this chapter is the scenario in Figure 5.1. Figure

5.9 shows the CDF of each of the di�erent approximation methods as well as the true

distribution. The method for comparing distributions is shown in Figure 5.8. The

results of applying this to the CDFs shown in Figure 5.9 can be seen in Table 5.1.
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Figure 5.8 � A visual representation of the CDF max error metric.

Figure 5.9 � A comparison of CDFs of the di�erent approximation methods using the

data from the example scenario shown in Figure 5.1. It is evident from this graph

that the MA method (black line) has the smallest CDF error (the true distribution

is the red line) compared to the covariance union methods.

As can be seen in Table 5.1 the MA method provides the smallest max di�erence in

CDF compared to the true CDF. The 'Covariance Union' method weighted by mass,

produces slightly worse results. The standard covariance union method provides the

least accurate approximation using this metric.
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Approximation Method Max CDF Error

Covariance Union 29.18 %
Covariance Union Mass Weighted 15.74 %
Mathematical Averaging (MA) 10.16 %

Table 5.1 � Max CDF di�erence between approximation methods and the true distri-

bution using the properties from the example scenario shown in Figure 5.1

Figure 5.10 shows the CDF values when the scenario is changed to have closer Iron

% values in each of the lumped masses. This is using the same values as shown to

generate the distribution in Figure 5.3. This Figure shows that the MA and weighted

covariance union method are very close at approximating the true distribution in this

scenario.

Figure 5.10 � A comparison of CDFs of the di�erent approximation methods using the

data from the example scenario shown in Figure 5.3. In this instance, there is only

small visual di�erences between all of the methods.

Table 5.2 gives perspective on the quality of probability density approximation. When

the mean values of the intensive properties being combined are close together, the

standard covariance union method provides an estimate which is least representative

according to the metric used.
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Approximation Method Max CDF Error

Covariance Union 5.04 %
Covariance Union Mass Weighted 1.02 %
Mathematical Averaging (MA) 0.15 %

Table 5.2 � Max CDF di�erence between approximation methods and the true distri-

bution using the properties from the example scenario shown in Figure 5.1

5.3.2 A Wide Range of Scenarios

It is di�cult to ascertain which method is overall the better approximation method

based on one or two scenarios alone. The three approximation methods were tested

over a set of scenarios which could possibly occur in an open pit mining scenario.

The set of scenarios tested is summarised in Table 5.3. Overall, this includes testing

57344 di�erent combinations of input properties.

Property Range Interval

Excavator Bucket Mean Iron 10 % - 80 % 10 %
Haul Truck Mean Iron 10% - 80 % 10 %

Excavator Bucket Iron Variance 10 % - 40 % 10 %
Haul Truck Iron Variance 10 % - 40 % 10 %
Excavator Bucket Mass 30 t - 60 t 10 t

Haul Truck Mass 30 t - 300 t 20 t

Table 5.3 � A summary of the scenarios in which each of the approximation methods

was tested using the max CDF di�erent statistic

Figure 5.11 displays histograms of the `Max CDF error' over the range of scenarios

for each of the approximation methods. It is evident from these histograms that the

MA method, on average, has the smallest error. The results are summarised in Table

5.4, which shows the average accuracy of each approach using the max CDF error

metric.

5.3.3 Discussion

Choosing which approximation method to use must take into consideration the trade

o�s of using that particular method. The standard covariance union method is an
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(a) Covariance union histogram of max CDF error

(b) Weighted mass covariance union histogram of
max CDF error

(c) Mathematical averaging histogram of max
CDF error

Figure 5.11 � A comparison in the max CDF error between the di�erent approxima-

tion methods over a wide range of scenarios, the mathematical averaging method

provides the has on average the smallest residual error.
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Approximation Method Mean Max CDF Error

Covariance Union 32.75 %
Covariance Union Mass Weighted 27.29 %
Mathematical Averaging (MA) 20.91 %

Table 5.4 � The mean `Max CDF Error' over the wide range of scenarios described in

Table 5.3 using the di�erent approximation methods

exception, as shown it is clearly a poor choice, when measured by max CDF error,

compared to the other two options. The MA method, is superior at approximating

the probability density comparatively to the mass weighted covariance union method

over the test scenarios. The weighted covariance union method, by its nature, is a

conservative approach which can be bene�cial in ensuring that the solution accounts

for the worst case scenarios more e�ectively.

The true distribution used for comparison is derived by assuming that the mass of

each lumped mass is the most likely value. In simulation, this can be discounted by

assuming the mass is a known quantity, therefore has no corresponding uncertainty.

This will unlikely be the case however in an open pit mine. One improvement which

could be made to the approximation process would be to develop a method for in-

cluding the variance on the mass of each combined lumped mass. This is is a similar

problem to that discussed between the percentage based approach and a combined

intensive-extensive approach.

The method used in the experiments to test the inclusion of intensive properties

in the ASKF is the MA approach. The uncertainty estimated by the MA method

provides is closest to the true distribution. This should increase the chance that the

estimate of intensive properties is statistically consistent in the ASKF framework.

This hypothesis is tested in the experiments in this chapter.
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5.4 Including Percentage Based Intensive Properties

in the Constrained ASKF

Including intensive properties is a relatively straightforward process given that each

intensive property is considered independent of all other states in the constrained

ASKF. When a new lumped mass is initialised into the system the process for ini-

tialising the intensive property is the same as that of the extensive property with the

exception that no spatial correlation is made to the prior lumped mass from which

the new lumped mass was formed.

The method for combining lumped masses however does deviate from the extensive

property method. Each time two lumped masses are combined, Equations 5.7 and 5.8

are used to derive an approximation of both the mean and variance of the combined

lumped masses intensive properties. These values are then set in the state vector

and covariance matrix for the lumped mass which remains. The prior values are

overwritten.

The intensive lumped mass properties can be removed from the constrained ASKF

when necessary in the same way as extensive properties (see Section 3.5.3).

5.5 Experiment

5.5.1 Method

Creating an experiment to test the modelling of intensive properties creates several

additional problems than experiments with extensive properties only. In general,

extensive sensors (e.g. scales, measuring cylinders) are cheaper then intensive sensors

(e.g. hyper-spectral cameras). Managing the material in the experiment is also

di�cult, given that when material is combined and mixed together it is di�cult

to obtain the ground truth of the intensive properties as a percentage present at that

particular location. Once material is mixed, especially on a large scale, it is di�cult to
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return the material to its original state. This makes it di�cult to repeat experiments

on a large scale.

Several of these problems can be overcome by using a small scale experiment. In

this thesis, the intensive properties are simulated by using two sets of coloured stones

(green and blue). These coloured stones can be imagined as a proxy for chemical

properties (e.g. Fe % and Si %). The stones are the same dimension size for height.

The diameter varies slightly from one stone to another. The ground truth is measured

by comparing the ratio of mass between green stone and blue stones. Given the small

scale of the experiment, it is easy to �lter the rocks by colour. The colours of the

stones are observed during the experiment using a web cam (Logitech C-120, a basic

low-end web camera). The ratio of green to blue as distinguished by the camera is

the observed estimate of the intensive properties.

The process chain which the intensive property experiment follows is the same as

which occurs in the prior experiments for the extensive properties (see Chapter 3).

The coloured stones are moved from the grade block by an excavator, the material is

then moved from the excavator to a haul truck. Once the haul truck receives three

loads of material the truck is unloaded to a �nal stockpile. The observations of the

intensive properties are included at the excavator and haul truck stages. A set of

scales (the same as used in the small scale experiment in Chapter 3) is used as an

observation at the excavator and haul truck stages to observe the extensive property

mass. A small amount of white gaussian noise is added to this observation.

In this experiment, the material is controlled such that no losses occur. The lumped

masses in the system are limited to the following states:

• Grade Block

• Excavator Bucket

• Haul Truck

• Stockpile
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Each lumped mass tracks the following extensive and intensive properties:

• Mass

• Green %

• Blue %

This experiment aims to show that a consistent estimate of intensive material prop-

erties can be achieved using the percentage based approach in the ASKF framework

while using the MA to combine intensive properties together.

5.5.2 Observing Intensive Properties in the Small Scale Ex-

periment

In this experiment there is assumed to be two separate types of ore present in the

current grade block. These are represented by di�erent coloured stones. The web

camera takes pictures of the stones at the di�erent lumped mass locations. Figure

5.12 shows an example of the output from the web cam. This simple system of colour

modelling is aimed at being broadly representative of measuring chemical properties

using hyper-spectral camera.

Figure 5.12a shows the output of the web cam on the excavator bucket, this includes

colour saturation. This is done to make di�erentiation between stones easier. A

black mat is used to help remove background noise. A series of image processing

techniques are used in order to improve the classi�cation of blue and green stones.

An explanation of the image processing which occurs is described below:

Camera Colour Saturation: This �ltering is done inside the Logitech camera

drivers. E�ectively what is done is that pixels with dominant red, green or blue

colour attributes are further emphasised by enhancing the dominant colour value.

Pixels with no dominant colour attributes tend towards a 0 (black) value. In the

intensive experiment this is used to further distinguish between the two di�erent
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(a) Web cam image with colour saturation. (b) Web cam image after applying image �lters.

Figure 5.12 � The base image has multiple image �ltering techniques applied in order

to ensure an accurate and consistent estimate of the coloured stones.

types of stones.

Median Filter: A median �lter primarily removes outlying points in a localised

neighbourhood. In a MxN neighbourhood, the value for each pixel located in that area

is replaced by the median value of the pixels located within the MxN neighbourhood.

This is done to remove some random white noise present in the image.

Gaussian Blur: A Gaussian blur is done to remove some of the induced colour

distortion from lighting in the experiment. This enables a more accurate colour

threshold to be used in order to determine whether a stone is green or blue.

Colour Identi�cation: This is done by a simple pixel check of each pixel in the

captured image. A comparison is made in the blue and green values of each pixel,

the higher value is assumed to be the actual colour of the pixel and is stored. This

process is aided by thresholding the background noise initially, as well as using the

camera colour saturation techniques.

The result of applying these image processing techniques can be seen in Figure 5.12b.

Figure 5.13 shows the result of the observation system using a simple example of one

blue stone and one green stone. The image on the far right is the result after all

�ltering and identi�cation has been completed and displays its estimate of what are

blue stones and what are green from the captured image.
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Figure 5.13 � The interface used to observe the ratio of coloured stones in the intensive

experiment. The image titled `original image' is a view of the coloured stones

once the image processing techniques have been applied. The image title `Colour

Decomposed Image' contains the results of classifying the stones as either blue or

green.
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The ratio of blue to green is calculated and is displayed at the bottom of Figure 5.13.

In this case the results displayed are 50.2% Blue to 49.7% Green (the results are

rounded down for display purposes, the stored results combine to 100%).

During the experiment the stones were allowed to overlap each other. This was

intended to represent a more realistic sensor system likely to be available for an

autonomous mine such as face scanning using hyper-spectral cameras where only

the surface of the lumped mass is likely to be available to ascertain the chemical

properties. An example of this overlapping can be seen in �gure 5.12.

5.5.3 Results

Figures 5.14 and 5.15 show the residual and 2σ con�dence boundaries of the mass at

the excavator and haul truck lumped mass locations. This result is included for com-

pleteness, validation of extensive properties is discussed in greater depth in Chapter

3.

Figure 5.14 � A comparison between the ground truth estimates of mass and the

system estimates of mass at the excavator bucket lumped mass location. The

residual values should ideally be Gaussian distributed with a mean error of 0 and

be consistent with the 2σ con�dence boundaries estimated from the ASKF system.

Figures 5.16 and 5.17 show the residual and 2σ con�dence bounds of the blue property

at the excavator and haul truck lumped mass locations. In this graph, it should be
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Figure 5.15 � A comparison between the ground truth estimates of mass and the

system estimates of mass at the haul truck lumped mass location. The resid-

ual values should ideally be Gaussian distributed with a mean error of 0 and be

consistent with the 2σ con�dence boundaries estimated from the ASKF system.

expected that 20 out of 21 residual values should lie within the 2σ con�dence bounds.

As can be seen, all 21 of the values lie within the 2σ bounds. This could be partially

attributed to the small sample size. From the graph, the residual values do not

have any inherent negative or positive bias, the residual values are also reasonably

spread over the 2σ con�dence bounds. This suggests that the estimated mean and

uncertainty are reasonable. A summary of the results for the blue property can be

seen in Table 5.5.

Lumped Mass Location Mean Residual Mean 2σ Number of Units

Excavator Bucket 0.8 % 12.5 % 21
Haul Truck -0.4 % 5.6 % 7
Stockpile -0.3 % 18.2 % 1

Table 5.5 � A summary of the estimates of the blue property in the intensive experiment

The residual and 2σ con�dence boundary graphs for the green property at the exca-

vator and haul truck lumped masses are seen in Figures 5.18 and 5.19. The results

for the green property is a perfect mirror of the results for the blue property at these

lumped mass locations (Figures 5.16 and 5.17).

This mirror e�ect creates an appearance that the system constrains the percentage
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Figure 5.16 � A comparison between the ground truth estimates of the intensive blue

property and the system estimates of the blue property at the excavator bucket

lumped mass location.

Figure 5.17 � A comparison between the ground truth estimates of the intensive blue

property and the system estimates of the blue property at the haul truck lumped

mass location.

of intensive properties of the same class to equal 100 %, this is not the case. This

is the result of the speci�c modelling parameters used in this experiment. The pre-

dicted blue and green states in the excavator bucket location are initialised with the

same variance. The mean estimates of both properties, on initialisation, sum to 100

%. When fusing information from the camera sensor, the observation noise on each
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Figure 5.18 � A comparison between the ground truth estimates of the intensive green

property and the system estimates of the green property at the excavator bucket

lumped mass location.

Figure 5.19 � A comparison between the ground truth estimates of the intensive green

property and the system estimates of the green property at the haul truck lumped

mass location.

property is equivalent. The summation of both of the observational means of the

properties also is 100 %. Each of the intensive properties is also observed an equal

amount of time. These are the reasons for the mirrored results.



196 Modelling Intensive Material Properties

5.5.4 Summary

The results from the intensive experiment are limited. They do suggest however, that

it is possible to achieve consistent estimates of the intensive properties of the material

at the di�erent lumped mass locations using the experimental method.

5.6 Reconciliation Using the Constrained ASKF with

the Percentage Based Approach and MA Ap-

proximation

5.6.1 Introduction

This section aims to ful�ll the research goal of "Reconciliation with geological model"

described in Section 2.3.4.

The process of reconciling extensive properties using the constrained ASKF is intrinsic

to the chosen modelling method discussed in Chapter 3. For extensive properties no

additional methods need to be employed in order for the reconciliation process to

occur.

One way of implementing reconciliation of the intensive properties is to take advantage

of the spatial relationships developed in the modelling of the extensive properties. The

process for achieving this is developed in this section.

There are several areas which need to be considered when reconciling intensive prop-

erties using the lumped mass representation. One of the problems is determining the

reconciliation resolution and its application. Reconciliation resolution can be thought

of as a limit describing how far new information about intensive lumped mass proper-

ties `correlate back' to update spatially correlated lumped masses. This problem is a

result of the current lumped mass formulation, in which material which is physically

grouped together is measured as a single lumped mass. The reconciliation resolution
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increases proportionally to the size of the lumped mass. For example, an excava-

tor bucket estimate is the average of the properties around the point of excavation,

a haul truck lumped mass is an average over the cumulative areas from which its

excavator buckets were sourced. This continues through the mining process. The

di�erent resolutions of data are likely to be useful to di�erent applications and at

di�erent timescales. As an example, when updating a geological model, the smallest

resolution of reconciliation data is likely to be much more useful. These observations

could be used to more e�ectively identify ore boundaries within a grade block. The

requirements for this would be an ability to determine the location of where the ma-

terial was excavated from in the grade block. The intensive properties would also

need to be observed in the excavator bucket.

In the lumped mass representation, the grade block extensive and intensive properties

are represented as a single mean and variance. Using the reconciled data from the

grade block lumped mass to update a geological model is likely to be less useful.

There are areas in which this reconciled data can still be useful for applications such as

geological modelling. For example, when a grade block has been excavated completely.

The average of the intensive properties can be compared to the expected average of

the intensive properties. If the reconciled data is inconsistent with the expected data

it would suggest the geological modelling can be improved. In an autonomous mine,

this could trigger increased sensing of the areas around the excavated grade block to

improve the geological model.

The previous reconciliation resolution problem is a function of the averaging e�ect

when combining lumped masses from di�erent sources. A blended stockpile can be

used as an example to illustrate this averaging e�ect. In this example, material com-

bined at the blended stockpile is from two sources. One source exceeds the product

speci�cation while the other source is below speci�cation. The goal of the blended

stockpile is to average these two sources such that the material in the stockpile is

within product speci�cation.

This blended stockpile in this thesis is described using a single lumped mass. Using

the spatial correlations between the blended stockpile and any of the source locations
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to reconcile the intensive properties the results would be inconsistent with the true

intensive properties at each source location. The reconciled values would be either

above or below the actual true values. The decision to use reconciled data needs

to take into consideration this averaging e�ect, particularly for applications such as

geological model validation described prior.

An example of how this reconciled data can be used can be shown through using

the example of a blended stockpile constructed from two grade blocks again. Once

both of the grade blocks are empty, the reconciled values for each grade block can

be combined and compared to the expected result from the combining the two grade

blocks. An inconsistent result would suggest that there could be a problem in the

geological modelling around each of those two grade blocks. This could again be used

to instigate additional measures to improve the modelling.

This section describes a generic method for reconciling intensive properties in the

ASKF. This method is applied to the previous experimental results.

5.6.2 Reconciliation Algorithm Derivation

The reconciliation algorithm uses the correlations between the extensive properties

in the ASKF to determine the weighting of correlated material at other lumped mass

locations.

The following is an example of a state vector (xk) and covariance matrix (Pk) of a

hypothetical system �lled with Mn mass states.

xk =


M1

M2

...

Mn

 , Pk =


ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n
...

...
. . .

ρn1 ρn2 ρnn

 (5.9)

The amount of correlated mass from a particular state Ma to a state Mb ([Ma,Mb] ∈
xk) can be calculated by the following equation.
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Mc = αab ×Ma (5.10)

where

αab = ρba
ρaa

,

Mc is the total amount of correlated mass.

Recall in Equations 5.7 and 5.8 the equations for approximating the mean and vari-

ance when combining intensive properties from two lumped masses.

This approximation method can be applied iteratively to all correlated lumped masses

to provide a reconciled estimate.

The algorithm for this iterations is as follows:

xR =
α1RM1x1 + α2RM2x2 + · · · + αnRMnxn

α1RM1 + α2RM2 + · · · + αnRMn

=
n∑
i=1

αiRMixi
αiRMi

(5.11)

σ2
R =

∑n
i=1 αiRMiσ

2
i∑n

i=1 αiRMi

+

∑n
i<j,i,j=1 αiRMiαjRMj (xi − xj) 2

(
∑n

i=1 αiRMi)
2 (5.12)

xR de�nes an intensive property of the state which is to be reconciled, σ2
R provides

the estimated variance of this state.

5.6.3 Example Results with Intensive Experiment

Equations 5.11 and 5.12 are applied to the previous intensive experiment results. The

state reconciled is the `Blue' property of the grade block lumped mass.

Table 5.6 provides a set of observations of the grade block prior to excavation. The

mean and variance of these observations are used as the method for estimating the

prior model.

The reconciliation algorithm is run with each of the 7 haul trucks in the experiment

having a full load of material. This is before these loads are unloaded at the �nal
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Observation No Blue (%) Green (%)

1 58 42
2 53.5 46.5
3 57.5 42.5
4 56.5 43.5
5 46.4 53.6
6 55.3 44.7
7 52.7 47.3

Mean 54.27 45.73
Ground Truth 50.64 49.36

2σ 7.3 7.3

Table 5.6 � A set of observations on the blue and green intensive properties of the

grade block lumped mass in the intensive experiment. The same set of samples is

used for each observation. This mean and variance of these observations is used as

the estimate of the blue and green intensive properties in the grade block.

Value Mean (%) 2σ (%)

Prior Estimate 54.27 7.3
Reconciled Estimate 51.17 18.29

Ground Truth 50.64 -

Table 5.7 � A comparison between reconciled estimate, prior estimate and ground

truth using the intensive property reconciliation algorithm. The reconciled estimate

provides a result which is consistent within 2σ of the ground truth. The mean value

estimate is improved compared to the prior estimate.

stockpile. A comparison of the reconciliation data, prior model and ground truth can

be seen in Table 5.7. The results of the blue property are shown, the green property

results mirror the blue results.

As can be seen, the reconciled estimate provides a mean estimate which is consistent

within 2σ of the ground truth. This reconciled estimate could be fused with the

prior model to form a better estimate of intensive properties removed from the grade

block. This fusion would require a method to account for the dependence between

the reconciled estimate and the prior estimate.
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5.7 Summary

The core contributions of this thesis have concentrated on the development of an

integrated stochastic estimation and tracking system for bulk material properties

over a process chain which is based on a open pit mining operation.

The experiments in this chapter, although limited, have shown that it is possible to

probabilistically estimate the intensive properties of the material at di�erent lumped

locations consistently over a speci�c controlled process. It was also shown that the

intensive properties can also be reconciled using the spatial correlations developed

through the modelling of the extensive properties in the ASKF.

The work in this chapter would bene�t from future work involving additional exper-

imentation over longer timescales with larger scale equipment (similar to the larger

scale experimentation performed with the extensive properties in Chapter 3).

One of the goals of this thesis is to contribute towards the development of an end-

to-end system for estimation of material properties in a preserved correlated process

chain. This thesis is particularly focused on open pit mining and in an autonomous

environment. There are many additional system dynamics which need to be taken

into consideration when taking into account the end-to-end system. Examples of

these additional complex dynamics were discussed in Section 5.6 in the introduction

to reconciling intensive properties (blended stockpiles).

Chapter 6 describes how the contributions made in this thesis can be used together in

a complete integrated system. It gives examples of how this can be speci�cally applied

to open pit mining. Furthermore, it also discusses possible avenues of research to deal

with the additional complexities in developing an end-to-end estimation system.
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Chapter 6

An Integrated System

6.1 Introduction

A core contribution of this thesis is the development of a practically designed, inte-

grated stochastic tracking and estimation system for bulk material properties in open

pit mining. This chapter describes possible ways in which the contributions made in

Chapters 3, 4 and 5 can be combined into a single system for use on an open pit mine

site.

Prior to implementation, there are many practical challenges which need to be over-

come. An example of some of these challenges which will be addressed in this chapter

are:

• Determining appropriate models for initialisation of `lumped mass' properties.

• Modelling of losses in the system at di�erent locations.

• Creating a method for enacting system models when the corresponding action

occurs in reality (e.g. when to perform the appropriate �lter and modelling

actions for combining lumped masses or initialising a new lumped mass which

has been excavated.
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• Modelling of information sources to be fused into the ASKF representation.

This chapter also presents some of the wider research problems required to ful�ll the

vision of having an end-to-end integrated tracking and estimation system, as well as

possible ways in which the current system could be improved. Some of the areas

discussed are:

• Inadequacies in representing lumped mass properties and information sources

as Gaussian distributions.

• Including process plant operations.

• Re�ning the method and representation of material when complex mass transfer

processes are involved (e.g. ROM blended stockpiles).

• Improving the value of the information provided by the system model to other

mining systems.

6.2 An Integrated System

6.2.1 A Summary of the Developed System

The research outcomes in this thesis are categorised into three chapters. Chapter

3 describes a tracking and estimation system for extensive material properties. As

part of Chapter 3 a representation, referred to as the lumped mass model, is used

to segment the estimation and tracking problem into smaller more manageable com-

ponents. A method for maintaining spatial correlations between each of the lumped

masses extensive properties using a constrained ASKF is developed. This enables

information from observational sources to be fused consistently amongst spatially

correlated lumped masses. This method allows for conservation of mass in the sys-

tem and enables real-time reconciliation of extensive properties.
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Chapter 4 describes a method for volume estimation which can be integrated into the

system described in Chapter 3. One common element in each of the contributions in

this thesis is the representation of data as probabilistic. Chapter 4 provides a method

for generating a probabilistic estimate of the bulk volume given a set of 2.5D cartesian

data points (x,y,z) representing a surface. This method was found, when the data is

sparse, to provide a more accurate and precise estimate of the bulk volume compared

to state-of-the-art deterministic methods. This has several bene�ts in a mining envi-

ronment. Firstly, the method is able to utilise data from lower quality sensors which

collect sparser data sets compared with high quality surveying equipment which is

currently used (e.g Riegl LMS-Z620 A.2.2). This could enable robust, inexpensive

sensors, such cameras or laser systems, to attached to mining equipment (e.g haul

trucks, excavators) to provide volume estimates at di�erent locations. Another ben-

e�t is that the volume estimation method can be easily integrated into the ASKF

framework. This is shown in the large scale experiment in Section 3.6.3.

The contributions in Chapters 3 and 4 provide both a method for representing, esti-

mating and fusing extensive properties in a probabilistic manner. The lumped mass

representation does not have a requirement for all properties of the material to be

estimated in order for it to be used in operations. If desired, a system based on the

work in Chapter 3 could be made to track extensive properties through a process

chain on a mine site. The bulk volume estimation method in Chapter 4 can be used

as an information source at di�erent locations along the process chain.

Chapter 5 describes a method for including intensive properties in the constrained

ASKF representation. Chapter 5 also discusses some of the complexities in modelling

intensive properties, speci�cally in dealing with the state dependency between the

intensive properties and the extensive properties. A method for reconciling intensive

properties back to a particular lumped mass location is also shown.

The work in all three chapters was designed to be operate together. Section 6.2.3

describes scenarios in which all these components can be used in an open pit mine

site.

Section 6.2.2 describes some of the practical challenges in implementing the work
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described in these chapters in order to operate in the example scenarios described in

Section 6.2.3.

6.2.2 Possible Implementation Challenges

Determining Appropriate Models for Initialisation of Lumped Mass Prop-

erties

The initialisation and system models in the experiments in Chapters 3 and 5 were

derived from the ground truth observations available. The ground truth values were

collated, then averaged to �nd the mean estimate as well as the variance.

In a practical real-time application of this system, the ability to know the ground

truth values is not available. Additionally, there is likely to be more variables which

a�ect the initialisation models than in the controlled experiments performed in this

thesis. One example is generating a model for the amount of mass of the material

in the excavator bucket. During the experiments in this thesis, the loading process

was controlled to be as uniform as possible (single operator, constant weather, three

loads of equal size per truck). In an open pit mine the loading process is likely to be

in�uenced by a range of additional factors such as varied weather conditions, di�erent

operators with varying skill levels, night/day shift variations as well as operators

moderating the �nal excavator load to bring the haul truck to capacity.

One area for future work is to develop a method for modelling these processes on

a mine site. One possible solution is to use a method such as Gaussian process

regression (the method used for volume estimation in Chapter 4). The initialisation

model could be learnt from training data consisting of the prior mass observations

and a set of appropriate variables which are likely to in�uence the mass.

Modelling of Losses in the System at Di�erent Locations

Loss modelling was discussed in Chapter 3. Mass losses were included in the small

scale experiment. In the experiment it was possible to model the losses in the con-
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strained ASKF consistently. Modelling losses on a mine site has several challenges.

Firstly, it is often di�cult to `observe' losses, which makes it challenging to rely solely

on using observations as the basis to initialise a new loss lumped mass. Attempting

to model the losses, similar to modelling excavator loads, is likely to be dependent

on a variety of factors. One example is haul trucks unloading at a crusher. The haul

truck, as it unloads, may not deposit 100% of the material into the crusher. The

amount of material lost is dependent on several factors such as material type, load

size, operator skill, crusher type and entry conditions to the crusher.

As the `lost' material at the crusher builds up to a level which inhibits the unloading

e�ciency, typically, a front end shovel (or similar equipment) is used to push this

lost material into the crusher. With the lumped mass representation and using the

models described in Chapter 3 on loss modelling, this process can be dealt with inside

the ASKF framework presented in this thesis.

Interacting with Real World Events

One of the requirements in making the integrated tracking and estimation system

possible is linking the process models with real world events. As an example, an

excavator unloading its current load into a haul truck. There needs to be a method for

linking this real-world unloading action with the process of combining the excavator

lumped mass with the haul truck lumped mass.

This problem would be simpler in a mine where all equipment and processes are fully

automated. A data interface between the equipment and estimation system would

enable the equipment to inform the estimation system that it has performed a certain

action (such as the excavator unloading into a haul truck). In a manned system,

the process of informing the estimation system could be done through operator in-

put. Alternatively, the equipment actuators and sensors could possibly be monitored.

Certain con�gurations of actuator and sensor information could be interpreted au-

tonomously and classi�ed to speci�c actions. For example, a system which monitors

haul truck tilt tray angle. This system could indicate when the angle reaches a cer-
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tain level (e.g. through a hydraulic piston position sensor) which could be classi�ed

as the haul truck unloading. This information could then be communicated to the

estimation and tracking system.

Another aspect of this interaction between lumped masses which needs to be taken

into account is how to determine which lumped masses are interacting with each

other. This requires the ability to de�ne the lumped masses in a common reference

frame. One possibility is to use GPS co-ordinates. When a process occurs the GPS

data can be used to infer which lumped masses have interacted. This speci�c problem

is discussed further in Section 6.2.3.

Modelling of Information Sources

In order to utilise information sources in the constrained ASKF framework the data

must be represented by a Gaussian distribution. Chapter 4 described a method for

estimating bulk volume which provides the �nal estimate in this format directly.

Other observational sources for properties such as mass, chemical, fragmentation etc

which may be desired to be estimated in the system are also required to have an

appropriate sensor model designed such that the information is represented by a

Gaussian distribution.

6.2.3 Possible Mining Scenarios

This section describes several di�erent scenarios in which the work in this thesis could

be applied to an open pit mine operation.

Thesis Example

The �rst example is a scenario which mimics the processes performed in the exper-

iments in this thesis in Chapters 3 and 5. Figure 6.1 provides an overview of the

scenario using the lumped mass representation.
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Figure 6.1 � An open pit mine scenario showing a hypothetical lumped mass repre-

sentation. The scenario is an example of a mine site process which mimics the

experiment processes used in this thesis.
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In this example the ASKF at the instance shown in Figure 6.1 contains the following

lumped masses:

• Grade Blocks A - E

• Excavator A

• Excavator A Loss Stockpile

• Haul Truck A

• Haul Truck C

• ROM Stockpile A

`Haul Truck B' is not estimated given that is does not contain any lumped mass.

GPS co-ordinates (red dots) are used to identify the boundaries of the grade block

and ROM stockpile lumped masses. The blue dots represent an active GPS system

which would be able to update the boundaries of lumped masses in mobile equipment.

In this scenario Grade Blocks A - E could represent a series of grade blocks which have

been part of a recent blast and now contain broken stocks. Grade Block B is tasked

for excavation. The material is to be transferred to ROM Stockpile A. Excavator

A Loss Stockpile represents material lost between the excavator and the haul truck,

this lumped mass could be recombined with the Grade Block B lumped mass when

a front end loader cleans up the grade block a the end of a shift.

In this example, the lumped mass properties (both extensive and intensive) at any

location can be observed and the ASKF estimation system ensures that mass is con-

served between Grade Block B and ROM Stockpile A. The reconciliation algorithm

for intensive properties as described in Section 5.6 could be used to provide reconciled

data in real-time on the intensive properties in lumped mass Grade Block B.
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Figure 6.2 � This example open pit mine scenario involves multiple grade blocks trans-

ferred directly to a crusher. This example contains processes outside of the experi-

ments developed in this thesis. The work in this thesis can be applied however to

this scenario.
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Multiple Sources Example with Crusher

The scenario in Figure 6.2 describes another scenario which the work in this thesis

could be used to estimate the properties of the material.

The ASKF at the instance shown in Figure 6.2 contains the following lumped masses:

• Grade Blocks A - E

• Excavator A

• Excavator A Loss Stockpile

• Excavator B

• Excavator B Loss Stockpile

• Haul Truck A

• Haul Truck B

• Haul Truck C

• Crusher A

• Crusher A Loss Stockpile

This scenario is similar to the previous example. In this scenario however, two grade

blocks (Grade Block B and Grade Block D) are tasked for excavation simultaneously.

The haul trucks unload directly to the plant crusher (Crusher A). The `Crusher A

Loss Stockpile' lumped mass corresponds to material lost from the haul truck as it

unloads at the crusher.

The method used in this thesis can be adapted for this scenario to provide an estimate

of the total amount of material which has entered the crusher along with the intensive

properties of this material. This can be achieved by treating Crusher A the same way

as a stockpile lumped mass. The material from each successive haul truck lumped
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mass is combined with the Crusher A lumped mass. In this scenario the reconciliation

of intensive properties needs to take into account the averaging e�ect as described in

Section 5.6.

If desired, the reconciliation data for each individual grade block could be conserved

by treating the crusher as three separate lumped masses. Haul trucks from each

grade block are combined into separate lumped masses at the crusher dependent on

their source location. In this example there would be two lumped mass estimates

for Crusher A. One would describe material properties unloaded at the crusher from

Grade Block B, the other from Grade Block D. The third lumped mass would consist

of the material from the Crusher A Loss Stockpile as it is pushed into Crusher A.

This lumped mass would be correlated to both Grade Block B and D. It would

be expected however that the amount of material in this lumped mass would be

considerably smaller than the lumped masses speci�c to material unloaded from each

of the grade blocks.

6.3 Developing an End-to-End Integrated System

6.3.1 Improving the Representation and Modelling of Proper-

ties

One of the assumptions when using the ASKF is that the process model and ob-

servational models can be represented as Gaussian distributions. This is a problem

when considering the nature of the properties which are being tracked in the lumped

masses. Take as an example the estimate of mass of a random lumped mass shown

in Figure 6.3a. Mass can not be a negative number. Figure 6.3b highlights the areas

in which the probability density is valid (green) and invalid (red).

A signi�cant amount of material properties which would be estimated in mining have

a positivity constraint. Some other examples include volume, chemical properties and

density. Some intensive properties also have an additional constraint of being always

<= 100 %.
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(a) An estimate of mass with a mean of 3 T and
variance of 20 T

(b) Valid probability density is coloured green,
invalid probability density is coloured red.

Figure 6.3 � The Gaussian assumption does not handle well the physical constraints

of certain material properties. In this example, the Gaussian distribution assigns

probability mass to negative values. The distribution is representing a mass esti-

mate which can not take negative values.

This positivity constraint is problematic in cases where the mean estimate is close to

zero and (or) the uncertainty associated with this mean estimate is high. In cases

where the mean estimate is far away from zero, or the variance is small enough, the

amount of invalid probability density would be negligible.

A similar problem occurs in meteorological predictions. One solution suggested by

Cohn [29], when including properties with these positivity constraints, is to �rst es-

timate the properties as log-normal distributions. Then approximate the log-normal

distributions as Gaussian distributions (for use in estimation techniques such as

Kalman �lters) using the mean and variance characteristics from the log-normal dis-

tribution.

An example of this process can be shown in Figure 6.4 which uses the same set of data

from Figure 6.3. The log-normal distribution of the data is shown in Figure 6.4a. As

can be seen, it is not possible for the log-normal distribution to allow negative values.

Figure 6.4b shows the log-normal mean and variance properties used as values in a

Gaussian approximation. The amount of negative probability mass has decreased

from the original Gaussian distribution (seen in Figure 6.3).
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(a) Log normal probability distribution of the
mass described in Figure 6.4

(b) Comparison between standard Gaussian
(Blue) and Gaussian derived from log normal de-

scriptive statistics(red)

Figure 6.4 � A method for accounting for the positivity constraint of material properties

under a Gaussian assumption using a log-normal approximation.

The prior method describes one possible avenue where further work can be done in

improving the representation and modelling of material properties in a system which

requires a Gaussian assumption.

Another possible area of research is to consider reformulating the lumped mass repre-

sentation away from the Gaussian based system used in this thesis. At present lumped

masses are broadly classi�ed as logically separated groupings of material. The ma-

terial properties are then approximated using a single mean and variance. Using a

continuous representation rather than a discrete formulation, especially for intensive

material properties, has the potential to provide a much richer source of information.

Maintaining a discrete lumped mass representation is also likely to be di�cult when

tracking the material �ow through the process plant operations.

6.3.2 Including Process Plant Operations

The work in this thesis is limited in scope from point of excavation to point of entry

into a plant process. The vision for this research work is to estimate the material

probabilistically from excavation all the way to the �nal stockpiles used for transporta-

tion o� site. This could possibly be extended even further to estimation through to

centralised processing and transportation facilities of multiple mines.
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The processes used to interact with lumped masses in the experiments in this thesis

are all mass transfer processes. As discussed in the review of control theory (Section

2.4.3) there are many mine plant processes which are non-linear. This creates several

interesting research questions.

• How do you model the change in material properties caused by the processing

plant in a consistent probabilistic manner given the non-linearity of some of the

processes?

• How do you reconcile these changes in properties to the point of excavation

e�ectively?

One of the other research issues particular to material in the processing plant is the

ability to track and estimate material as lumped masses. The nature of a processing

plant means material is not transferred around as singular groupings of material but

more as a continuous stream of ore. There is an issue of how to keep track and model

the interactions between lumped masses as they are combined and separated with

di�erent rates of �ow in the processing plant.

A continuous representation to solve this problem is di�cult for several reasons. It

requires a more complex model (both computationally and theoretically) to track

intensive material properties from point of excavation. If a continuous model is used

in the plant, but not outside the plant, how is transition handled between the two

representations also requires additional research.

One other possible avenue for future work is using Finite Element Modelling (FEM)

to dynamically model the interactions between the processing operations and the bulk

material. Using FEM is traditionally a computationally expensive process, thus being

able to develop a system which could function at a real-time level would be a valuable

research contribution.
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6.3.3 Re�ning the Methodology for Maintaining Spatial Cor-

relations

One re-occurring issue which needed to be constantly accounted for in this thesis is the

method for appropriately handling the spatial relationships in a manner which allows

information to be shared appropriately between correlated lumps. The reconciliation

that occurs, both for extensive and intensive properties, relies on the correlations

developed between extensive properties in the constrained ASKF developed in this

thesis.

One possible future area of research could be an approach which maintains the model

of the original lumped mass representation when lumped masses are combined to-

gether. This is di�cult when considering processes which physically mix material

from lumped masses together (e.g. plant processes). Figure 6.5 shows an additional

layer of lumped masses applied to the previous example shown in Figure 6.2. The

aim of maintaining these additional smaller lumped masses is to be able to correlate

to source locations at an improved resolution when fusing additional information.

This approach is a compromise between a continuous representation and the lumped

mass representation described in this thesis.

6.4 Summary

This chapter has provided an overview of how the di�erent contributions of this thesis

can be combined to create an integrated tracking and estimation system on an open

pit mine site.

Some of the implementation problems in order to transfer the work in this thesis from

the lab to the �eld are presented. These include problems such as; model development

for the mining processes, relating system model processes to real world events as well

as developing the models for information sources to be fused into this system.
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Figure 6.5 � By maintaining the original lumped mass representations in the ROM

stockpile, observations of intensive properties could possibly be reconciled at a

much smaller resolution then what is possible when using a single lumped mass

representation.
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Two generic scenarios were presented showing how the current representation could

be used to estimate lumped mass properties given the prior implement. This included

the scenario used for experiments in this thesis as well as an additional scenario which

with some minor adjustments to the modelling process can estimate the total amount

and averaged intensive properties of material entering a crusher.

The �nal section discussed several ways to build upon the contributions made in

this thesis in regards to developing an end-to-end integrated tracking and estima-

tion system. Some of the possible avenues for future research include developing an

improved method for representing bulk material properties which does not require a

Gaussian assumption. It also includes a discussion on extending the current method

through process plant operations as well as possible methods for improving the spatial

correlations between lumped masses in order to reconcile more useful information.
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Chapter 7

Conclusion

The aim of this thesis was to develop a stochastic method for representing, estimating

and fusing bulk material properties over a process chain.

This thesis presented a novel methodology to solving this problem with particular

emphasis on providing a system which would operate on an autonomous open pit

mine.

The basis for the modelling of extensive and intensive properties is the representation

of physically separated groupings of bulk material as lumped masses.

A constrained ASKF is used for modelling the extensive and intensive bulk material

properties within each lumped mass. A novel stochastic method for bulk volume

estimation is used as an input to validate the proposed estimation system in the large

scale experiments. The bulk volume estimation method has been shown through

experimentation to provide an improvement in accuracy and precision under sparse

data sets compared to state-of-the-art deterministic methods.

This chapter summarises the contributions made in this thesis.
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7.1 Summary of Contributions

7.1.1 The Lumped Mass Model

The lumped mass model was developed as a means for reducing the complexity in the

estimation problem to a more manageable size. This model represents groupings of

logically separated bulk material as the basis for process modelling and estimation of

material properties. This method represents individual extensive and intensive prop-

erties as Gaussian distributed, allowing for the utilisation computationally e�cient

methods for tracking and estimation. This contribution is discussed in Chapter 3.

7.1.2 Estimation of Extensive Properties

Chapter 3 introduces a method for stochastically modelling extensive lumped mass

properties using an ASKF as the material moves through a process chain. This

method has many useful properties, these include the following:

• The method allows for extensive lumped mass properties to be estimated con-

sistently at each location in the process chain.

• The ability to add and remove lumped masses to the system at any point in

time. This allows the system to evolve as lumped masses are moved, partitioned

and combined throughout the process chain.

• Flexibility to model the unintended loss of material over a process chain.

These features are validated through small and large scale experiments.

7.1.3 A Constraint to Conserve Total Material in the System

The process chains that this thesis focuses on are closed systems. One of the char-

acteristics of a closed system is that the total amount of material within the system
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remains constant. A novel constraint for the ASKF is derived in Chapter 3 to en-

sure that spatial correlations between extensive material properties are maintained

correctly. This guarantees conservation of material over the process chain. This con-

straint ensures that when fusing additional information about an extensive property

of a lumped mass the information propagates appropriately to correlated lumped

masses.

7.1.4 Probabilistic Bulk Volume Estimation

Chapter 4 introduced a novel method for estimating 2.5D bulk volumes to integrate

into a stochastic material estimation system as described in Chapter 3. This method

was used as an input in to the large scale experiments in Chapter 3 as an independent

information source. This was an important information source used in validating the

prior contributions in probabilistic extensive lumped mass property estimation.

Through experimentation it was found the Gaussian process method introduced in

this thesis had the advantage over the comparative methods. The Gaussian pro-

cess method provided greater accuracy and precision under sparse data sets while

simultaneously providing an estimate of the uncertainty in the bulk volume estimate.

7.1.5 Estimation of Intensive Properties

Chapter 5 presented a method for including intensive lumped mass properties into a

lumped mass based estimation system. This method includes a method for averaging

intensive properties when combining two lumped masses together. The proposed

`Mathematical Averaging' method was tested during experimentation and was found

to be consistent over the experimental data used. The overall e�ectiveness of the

representation and modelling method for intensive properties was discussed within

the context of the limitations of the assumptions used. These included that each

intensive and extensive property states are mutually exclusive and can be adequately

represented by a Gaussian distribution.
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7.1.6 Reconciliation of Intensive Properties

An algorithm for reconciliation of intensive lumped mass properties was developed in

Chapter 5. This algorithm is derived both from the spatial correlations between exten-

sive lumped mass properties and the `Mathematical Averaging' method for combing

intensive lumped mass properties together. An example of applying this algorithm

iteratively over a experimental data set is provided.

7.2 Future Work

Section 6.3 discussed possible areas in which the method in this thesis could be

improved to be used as an end-to-end system on an open pit mine site. This section

provides areas of future work speci�c to the contributions made in this thesis.

7.2.1 Accounting for the Bulk Factor in the Relationship be-

tween Mass, Volume and Density

One of the bene�ts of maintaining the spatial correlations between lumped mass

extensive properties is the ability to use information sources more e�ectively in real-

time by propagating the new information to correlated states.

The work in this thesis focussed primarily on estimating mass as the extensive prop-

erty used to maintain the spatial relationships between lumped masses. Developing a

system which accounts for bulk factor variations inside the ASKF framework would

be useful. This allows for bulk volume estimates to be of more value.

7.2.2 Additional Experiments

Increasing the size and scope of the processes in the experiments in this thesis would

allow for greater con�dence that the system will be valid at a commercial mine scale.
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An increased amount of samples data sets would allow for greater insight into the

system dynamics and areas where the current representation may be inadequate.

7.2.3 Improved Sampling Methods for Bulk Volume Estima-

tion

One of the di�culties in sampling from a data set is ensuring that the most valuable

data is chosen. In surface estimation, these are points which give the most information

about the structure of the surface. An approximately unform method as used in this

thesis has the problem of assuming an equal weighting of data points over the sampling

area. A method for increased sampling of data points around areas of complex features

and comparatively reduced sampling over simple structural areas could allow for an

improvement in the accuracy of not only the Gaussian process method but most of

the comparative volume estimation methods used in this thesis.

7.2.4 Improving the Computational E�ciency of Gaussian Pro-

cess Based Volume Estimation

As discussed in Section 4.8, the Gaussian process method for bulk volume estimation

is considerably more computationally expensive then the comparative methods in this

thesis. Developing methods for improving this method to be more e�cient will be

vital for enabling its use in real-time applications. One possible approach which is

being actively researched in the community at the moment is increasing the sparsity

in the covariance function to reduce the time required for the matrix inversion.

Another possible avenue for research is improving the method for deriving the bulk

volume estimate from the gaussian process regression. Finding a closed form solution

would signi�cantly reduce the computational time required in numerically deriving a

solution. It would also provide a more accurate and precise solution.
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7.2.5 Development of a Combined Intensive-Extensive Repre-

sentation of Lumped Material

Chapter 5 presented a discussion on the merits of di�erent representations of lumped

masses when intensive properties are incorporated. One suggested method is a com-

bined intensive-extensive representation of the lumped mass. This is discussed in more

detail in Section 5.2.2. Overcoming the research problems associated with implement-

ing this method would be valuable to compare with the percentage based approach

used in this Thesis. A combined intensive-extensive representation could simplify the

combination of lumped masses and possibly enable a more accurate estimation of the

material present.

7.2.6 Compare the Performance of the Stochastic Estimation

and Tracking Method Developed with Current State of

the Art on Mine Sites

A comparison of the method developed in this thesis with similar material tracking

systems present on mine sites will provide useful information as to whether or not the

developed method is practical to be used on a commercial mine site. It would also

highlight any advantages or disadvantages the current representation and method has

compared to current state of the art methods as well as present new areas for future

research in the representation and method developed within this thesis.
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Appendix A

Data sets & Data sheets

A.1 Large Scale Excavator Mass Data

Table A.1 � Excavator mass values from large scale experiment. All masses are in Kg.

1055 935 630 800 820 820 700 975 830 890 890
1000 535 700 680 855 785 785 705 780 730 980
1090 675 880 790 900 755 750 725 765 715 1010
1170 955 660 660 725 725 740 770 790 860 1050
1170 720 765 745 850 760 720 740 650 920 1005
940 755 760 600 585 705 645 570 640 920 975
940 635 565 770 655 705 670 525 675 1280 1035
760 460 755 775 675 900 820 800 825 1075 1000
1000 720 640 825 845 820 800 945 820 1095 870
660 655 630 760 790 715 870 755 870 1050 930
885 705 445 720 660 665 915 675 800 920 925
935
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A.2 Sensor Data sheets

A.2.1 Riegl VZ-1000

visit our website 
www.riegl.com

® The V-Line 3D Terrestrial Laser Scanner RIEGL VZ-1000 provides 

high speed, non-contact data acquisition using a narrow 

infrared laser beam and a fast scanning mechanism. High-

accuracy laser ranging is based upon RIEGL’s unique echo 

digitization and online waveform processing, which allows 

achieving superior measurement capability even under 

adverse atmospheric conditions and the evaluation of multiple 

target echoes. 

The line scanning mechanism is based upon a fast rotating multi-facet 

polygonal mirror, which provides fully linear, unidirectional and parallel 

scan lines. The RIEGL VZ-1000 is a very compact and lightweight surveying 

instrument, mountable in any orientation and even under limited space 

conditions.

Modes of Operation

·stand-alone data acquisition without the need of a notebook, 
basic configuration and commanding via the built-in user 
interface

·remote operation via RiSCAN PRO on a notebook, connected
either via LAN interface or integrated WLAN

·well-documented command interface for smooth integration
into mobile laser scanning systems

·Interfacing to Post Processing Software

User Interfaces

·integrated Human-Machine Interface (HMI)
for stand-alone operation without computer

·high-resolution 3,5” TFT color display, 320 x 240 pixel,
scratch resistant cover glass with anti-reflection coating
and multi-lingual menu

·water and dirt resistant key pad with large buttons
for instrument control

·loudspeaker for audible signaling of messages by voice

3D Terrestrial Laser Scanner with Online Waveform Processing

·Topography & Mining

·As-Built Surveying

Architecture & Facade Measurement

Archaeology & Cultural Heritage Documentation

City Modelling

Tunnel Surveying

Civil Engineering

·

·

·

·

·

·very long range up to 1400 m

·very high speed data acquisition 

·wide field-of-view, controllable 
while scanning

·high-accuracy, high-precision 
ranging based on echo digitization 
and online waveform processing

·multiple target capability

·superior measurement capability  
in adverse atmospheric conditions

·high-precision mounting pads 
for optional digital camera

·integrated inclination sensors 
and laser plummet 

·integrated GPS receiver 
with antenna

·various interfaces  
(LAN, WLAN, USB 2.0)

·internal data storage 
capability

LASER MEASUREMENT SYSTEMS

®

RIEGL VZ-1000
®

Terrestrial Laser Scanning Preliminary Datasheet



Scanner Hardware RIEGL VZ-1000          
allows high-speed, high resolution and accurate 3D measurements

The combination of the key components Scanner, Software and Camera results in

Software RiSCAN PRO
RIEGL software package for scanner operation and data processing 

·Range up to 1400 m @ Laser Class 1
·Repeatability 5 mm
·Measurement rate up to 122 000 measurements/sec
·Field of View up to 100° x 360°
·LAN/WLAN data interface, easily allowing wireless data 

transmission
·Operated by any standard PC or Notebook or cable less
·Fully portable, rugged & robust

·Data archiving using a well-documented tree 
structure in XML file format

·

·

·

Object VIEW / INSPECTOR for intelligent 
data viewing and feature extraction
Straightforward Global Registration
Interfacing to Post Processing Software

Digital Camera (optional)
provides high resolution calibrated color images 

·NIKON D700, NIKON D300(s)
- D700: 12.1 Megapixel, Nikon FX format 
- D300(s): 12.3 Megapixel 
- USB interface

Mounting device with digital camera can be easily fixed by means of 
two knurled head screws. Precise position and orientation is provided by 
three supporting points. Power supply and USB 2.0 interface is provided 
by the scanner directly.

·Automatic generation of high •Exact identification of details

resolution textured meshes •Online position and distance measurements
•Photorealistic 3D reconstruction •Online setting of any virtual point of view

·integrated GPS receiver (L1)

·integrated biaxial inclination sensors 
(tilt range ±10°, accuracy typ. ±0.008°)

·RiSCAN PRO Processing and Multistation Adjustment Module (MSA)

·precise and fast fine scanning of retro-reflectors

·RiSCAN PRO Processing

Registration via control points

·setup above well known point (integrated laser plummet)

·integrated inclination sensors

·precise fine scanning of well known remote target (reflector)

·RiSCAN PRO Processing Backsighting function

Totalstation-like-Registration

Stand-alone Registration

Global        Scan Position Registration

2 Preliminary Datasheet

System Configuration
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Operating Elements and Connectors

Scan Data Storage

Communication and Interfaces

High-resolution color TFT display 

Key pad for instrument control

Carrying handles

WLAN antenna

Connectors for power supply and
LAN interface 10/100 MBit/sec,
power off/on button

TOP VIEW

Ø 200 mm

3
0

8
 m

m

·LAN interface 10/100/1000 MBit/sec within
rotating head

·LAN interface 10/100 MBit/sec within base
·integrated WLAN interface with rod antenna
·USB 2.0 for external storage devices

(USB flash drives, external HDD)
·USB 2.0 for connecting the optional digital 

camera
·connector for GPS antenna
·two connectors for external power supply
·connector for external GPS synchronization

pulse (1PPS)

Add-on rechargeable battery

·optional add-on rechargeable battery pack (high power, high capacity NiMH cells)

·compact disc design, short-circuit-proof and protected connection pins

·rechargeable during standard scan operation via external power supply

·integrated micro-controller based charging electronics

·easily pluggable to base of the laser scanner by central locking screw

·DC voltage source (11-32 V DC) sufficient for recharging 

·Intelligent power supply management, up to three independent external power 
sources can be connected simultaneously for uninterrupted operation

·Reliable under- and over voltage protection

·Wide external voltage supply range 11-32 V DC

·Power consumption typ. 82 W

·LED indicators for power status 

External power supply

Power Supply

•internal 32 GByte flash memory
(1 GByte reserved for the operating system)

•external storage devices (USB flash drives or

external hard drives) via USB 2.0 interface

3Preliminary Datasheet

USB and DC power connector
for digital camera

Connector for GPS antenna

Connector for GPS antenna 
(optional)

Mounting points (3x) and
mounting threads inserts (2x)
for digital camera 

Connector for WLAN antenna

USB 2.0 slot for
external memory devices

LAN 10/100/1000 MBit/sec,
for rapid download
of scan data 
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Information contained herein is believed to be accurate and reliable. However, no responsibility 
is assumed by RIEGL for its use. Technical data are subject to change without notice.

Preliminary Data sheet, RIEGL VZ-1000, 20/09/2010

Technical Data 3D Scanner Hardware RIEGL VZ -1000
®

2)Laser PRR (Peak) 70 kHz 100 kHz 150 kHz 300 kHz
2)Effective Measurement Rate 29 000 meas./sec. 42 000 meas./sec. 62 000 meas./sec. 122 000 meas./sec.

3)Max. Measurement Range 
4) 4)for natural targets ρ ≥ 90% 1400 m 1200 m 950 m 450 m

for natural targets ρ ≥ 20% 700 m 600 m 500 m 350 m
5)Max. Number of Targets per Pulse practically unlimited 

6) 8)
Accuracy 8 mm

7) 8)Precision 5 mm

CLASS 1 

LASER PRODUCT

1) with online waveform processing 4) limited by PRR
2) rounded values, selectable by measurement program 5) details on request
3) Typical values for average conditions. Maximum range is 6) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.

specified for flat targets with size in excess of the laser 7) Precision, also called reproducibility or repeatability, is the degree to
beam diameter, perpendicular angle of incidence, and for which further measurements show the same result.
atmospheric visibility of 23 km. In bright sunlight,  8) One sigma @ 100 m range under RIEGL test conditions.
the max. range is shorter than under an overcast sky. 9) 0.3 mrad correspond to 30 mm increase of beamwidth per 100 m of range.

Minimum Range 2.5 m
Laser Wavelength near infrared

9)Beam Divergence 0.3 mrad

10) frame scan can be disabled, providing 2D operation 11) selectable, minimum stepwidth increasing to 0.004° @ 70 kHz PRR

www.riegl.com

1)Range Performance

Vertical (Line) Scan Horizontal (Frame) Scan
Scan Angle Range total 100° (+60° / -40°) max. 360°
Scanning Mechanism rotating multi-facet mirror rotating head

10)Scan Speed 3 lines/sec to 120 lines/sec 0°/sec to 60°/sec 
11) 11)Angular Stepwidth ∆ ϑ (vertical),  ∆ ϕ (horizontal) 0.0024° ≤ ∆ ϑ ≤ 0.288° 0.0024° ≤ ∆ ϕ ≤ 0.5°  

between consecutive laser shots between consecutive scan lines

Angle Measurement Resolution better 0.0005° (1.8 arcsec) better 0.0005° (1.8 arcsec)

Inclination Sensors integrated, for vertical scanner setup position
GPS receiver integrated, L1 antenna
Compass integrated, for vertical scanner setup position
Internal Sync Timer integrated real-time synchronized time stamping of scan data
Scan Sync (optional) scanner rotation synchronization

The following conditions are assumed:

Flat target larger than footprint of laser beam, 
perpendicular angle of incidence,
average brightness

Scan Performance

Max. Measurement Range

Laser Product Classification Class 1 Laser Product according to IEC60825-1:2007
The following clause applies for instruments delivered into the United States: 
Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant
to Laser Notice No. 50, dated June 24, 2007.

Physical Data temperature range 0°C to +40°C (operation), -10°C to +50°C (storage)

protection class IP64 (dust and splash-proof)

weight approx. 9.8 kg

LASER MEASUREMENT SYSTEMS

® RIEGL Laser Measurement Systems GmbH, 3580 Horn, Austria
Tel.: +43-2982-4211, Fax: +43-2982-4210, E-mail: office@riegl.co.at

RIEGL USA Inc., Orlando, Florida 32819, USA
Tel.: +1-407-248-9927, Fax: +1-407-248-2636, E-mail: info@rieglusa.com

RIEGL Japan Ltd., Tokyo 1640013, Japan
Tel.: +81-3-3382-7340, Fax: +81-3-3382-5843, E-mail: info@riegl-japan.co.jp
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A.2.2 Riegl LMS-Z620

The terrestrial laser scanner system RIEGL LMS-Z620 

consists of a high performance long-range 3D scanner, 

the accompanying operating and processing software 

RiSCAN PRO, and a calibrated and accurately orientated 

and mounted high-resolution digital camera.

The system provides data which lends itself to automatic or semi-

automatic processing of scan- and image data to generate products 

such as textured triangulated surfaces and high resolution panorama 

images as a basis for e.g., geotechnical analysis and mining 

assessment.

The RIEGL LMS-Z620 is a rugged and fully portable sensor especially 

designed for the rapid acquisition of high-quality three dimensional 

images even under highly demanding environmental conditions, 

providing a unique and unrivalled combination of a wide field-of-view, 

high maximum range, and fast data acquisition. 

A standard Windows notebook and the bundled software package 

RiSCAN PRO enable the user to instantly acquire high-quality 3D data in 

the field and provide a variety of registration, post processing and 

export functions. 

• Topography & Mining

• Monitoring & Civil Engineering

• Archaeology & Cultural 
Heritage Documentation

• Architecture & Facade Measurement

Extra Long Range & High Accuracy 3D Terrestrial Laser Scanner System

LMS-Z620

LASER MEASUREMENT SYSTEMS

visit our webpage www.riegl.com

Terrestrial Laser Scanning



Scanner Hardware LMS-Z620         
 allows high-speed, high resolution and accurate 3D measurements

Software RiSCAN PRO
RIEGL software package for scanner operation and data processing 

·Ranges up to 2000 m @ Laser Class 1

·Repeatability up to 5 mm

·Measurement rates up to 11000 pts/sec

·Field of View up to 80° x 360°

·TCP/IP data interface, allowing easy wireless data 
transmission

·Operable with any standard PC or Notebook

·Fully portable, rugged & robust

·Data archiving using a well-documented tree structure in 
the XML file format

·

·

·

Object VIEW / INSPECTOR for intelligent data viewing
and feature extraction

Straightforward Global Registration

Interfacing to Post Processing 
Software

·

·

·

·

·

Automatic generation of high resolution textured meshes

Online position and distance measurements

Photorealistic 3D reconstruction

Online setting of any virtual point of view

Exact identification of details

Camera (optional)
provides high resolution calibrated color images 

·D300(s): 12.3 Megapixel 

·D700: 12.1 Megapixel, Nikon FX format 

·D200: 10.2 Megapixel 

·USB interface

NIKON D700 / NIKON D300(s) / NIKON D200:

The combination of the key components 
Scanner, Software and Camera results in

System Key Performance Data

2
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Principle of Scanner Operation & Dimensional Drawings

Maximum Measurement Range and Scan Pattern RIEGL LMS-Z620

The range finder electronics of the 3D laser scanner RIEGL

LMS-Z620 are optimized in order to meet the requirements 

of high speed scanning (high laser repetition rate, fast signal 

processing, and high speed data interface).

The vertical deflection ("line scan") of the laser beam is 

realized by a polygon with a number of reflective surfaces. 

For high scanning rates and/or a vertical scan angle of θ 

up to 80°, the polygonal mirror continuously rotates at an 

adjustable speed. For slow scanning rates and/or small 

scanning angles, it linearly oscillates up and down. The 

horizontal scan ("frame scan") is realized by rotating the 

complete optical head up to 360°.

Scandata: RANGE, ANGLE, SIGNAL AMPLITUDE, and 

optional TIMESTAMP are transmitted to a laptop via TCP/IP 

Ethernet Interface. Camera data is fed into the same 

laptop via USB/firewire interface.
 
The RiSCAN PRO software allows the operator to perform a 

large number of tasks including sensor configuration, data 

acquisition, data visualization, data manipulation, and 

data archiving. RiSCAN PRO runs on the platforms Windows 

XP Professional, Windows VISTA Professional, and Windows 7 

Professional.
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Information contained herein is believed to be accurate and reliable. However, no responsibility 
is assumed by RIEGL for its use. Technical data are subject to change without notice.

Data sheet, LMS-Z620, 09/12/2009

Technical Data 3D Scanner Hardware RIEGL LMS-Z620

RIEGL Laser Measurement Systems GmbH, A-3580 Horn, Austria
Tel.: +43-2982-4211, Fax: +43-2982-4210, E-mail: office@riegl.co.at

RIEGL USA Inc., Orlando, Florida 32819, USA
Tel.: +1-407-248-9927, Fax: +1-407-248-2636, E-mail: info@rieglusa.com

RIEGL Japan Ltd., Tokyo 1640013, Japan
Tel.: +81-3-3382-7340, Fax: +81-3-3382-5843, E-mail: info@riegl-japan.co.jp

CLASS 1 

LASER PRODUCT

7) Selectable via Ethernet Interface or RS232. 8) Horizontal scan can be disabled, providing 2D-scanner operation.

2)
Max. Measurement Range 

for natural targets, ρ ≥ 80 % up to 2000 m
for natural targets, ρ ≥ 10 % up to 750 m

Minimum Range 2 m
3) 5)Accuracy 10 mm

4) 5)Repeatability 10 mm (single shot), 5 mm (averaged)
Measurement Rate up to 11000 pts/sec @ low scanning rate (oscillating mirror)

up to   8000 pts/sec @ high scanning rate (rotating mirror)
Laser Wavelength near infrared

6)
Beam Divergence 0.15 mrad

Scanner Performance
Vertical (Line) Scan

Scan Angle Range 0° to 80°
Scanning Mechanism rotating / oscillating mirror
Scan Speed 1 scan/sec to 20 scans/sec @ 80° scanning range

7)Angular Stepwidth ∆ ϑ 0.004° ≤ ∆ ϑ ≤ 0.2° 
between consecutive laser shots

Angle Measurement Resolution 0.002°

Horizontal (Frame) Scan
Scan Angle Range 0° to 360°
Scanning Mechanism rotating optical head

8)Scan Speed 0.01°/sec to 15°/sec
7)Angular Stepwidth ∆ ϕ 0.004° ≤ ∆ ϕ ≤ 0.75°

between consecutive scan lines

Angle Measurement Resolution 0.0025°

Inclination Sensors integrated, for vertical scanner setup position
(specifications to be found in separate datasheet)

Internal Sync Timer option for real-time synchronized time stamping of scan data
(specifications to be found in separate datasheet)

General Technical Data
Interfaces: for configuration & data output    TCP/IP Ethernet, 10/100 MBit/sec

for configuration RS 232, 19.2 kBd
for data output ECP standard (enhanced capability port) parallel

Power Supply Input Voltage 12 - 28 V DC
Power Consumption typ. 75 W max. 85 W
Current Consumption @ 12 V DC typ. 6.25 A max. 7.1 A

@ 24 V DC typ. 3.13 A        max. 3.54 A
Main Dimensions 463 mm x 210 mm  (length x diameter)

Weight 16 kg
Temperature Range 0°C to +40°C (operation), -10°C to +50°C (storage)

Protection Class IP64, dust and splash-proof

www.riegl.com

1) First, Last, or Alternating Target Mode selectable. 3) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.
2) Typical values under average conditions. Maximum range 4) Precision, also called reproducibility or repeatability, is the degree to which further 

is specified for flat targets with size in excess of the laser measurements show the same result.
beam diameter and near perpendicular incidence of the 5) One sigma @ 100 m range under RIEGL test conditions.
laser beam and atmospheric visibility in excess of 23 km. 6) 0.15 mrad correspond to 15 mm increase of beamwidth per 100 m of range.
In bright sunlight the operational range is considerably
shorter than under an overcast sky. 

Laser Product Classification Class 1 Laser Product according to IEC60825-1:2007
The following clause applies for instruments delivered into the United States: 
Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant
to Laser Notice No. 50, dated July 26, 2001.

1)
Rangefinder Performance
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A.2.3 CAS RW-10P
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