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Abstract 

The encapsulation of devices sensitive to moisture is necessary to prolong the operational 

lifetimes under adverse environmental conditions. Active implantable medical devices, 

solar cells, and organic light emitting diodes (OLEDs) have particularly stringent 

requirements on their encapsulations. Quantifying the flow of moisture is important in the 

design and verification of encapsulations for devices operating in adverse environments. 

Flows of a wide variety of gases have been studied in the years since the pioneering paper 

of Knudsen appeared in 1909, with one important exception: water vapour, the flow of 

which has scarcely received any attention. Before we study flows of water vapour, 

nitrogen as the majority constituent of air and representative of ideal gas is selected to be 

a reference for water vapour. Theoretical predictions of flows in tubes are still developing 

until the present time. A convenient one is named extended Navier-Stokes equations 

which have only one equation for all flow regimes with one empirical parameter, 

approaching the classical Navier-Stokes equations at small Knudsen number (Kn) and the 

Smoluchowski extension of the Knudsen equation at large Kn. Here we use the extended 

Navier-Stokes equations, as developed by Cha and McCoy in 1971, for predicting flow 

rates of nitrogen and water vapour through a 25 μm diameter silica glass cylindrical tube. 

In this thesis, flow rates of nitrogen and water are both under assumptions of isothermal 

conditions. 

A recent unexpected finding from Holt et al. concerning ultra-fast water and air flows in 

carbon nanotubes due to large slip length and atomically smooth walls is significant. In 

contrast, Gruener and Huber did not obtain ultra-fast nitrogen flow rates in silicon 

nanotubes. This leaves us with important questions concerning the main factors that affect 



flows in tubes. Liquid water has enhanced flow rates in nanotubes, but what about for 

water vapour? Do the enhanced flow rates only occur in nanotubes? In order to test the 

enhanced flow rates in another material, here we first measure nitrogen flow rates through 

silica cylindrical microtubes across a wide range of Kn (0.0048 ~ 12.4583) using a  

two-chamber method. These measurements enable the evaluation of the tangential 

momentum accommodation coefficient (TMAC) 𝛼 defined by Maxwell which describes 

the collision situations between molecules of fluid and walls. This is the first study for 

nitrogen flows through a cylindrical microtube across all flow regimes. Smoluchowski’s 

equation relies on the TMAC definition of Maxwell, recently challenged by Arya et al. We 

find that the nitrogen flow obeys the Cha and McCoy equation with a large value of 𝛼, 

unlike carbon nanotubes which show flows consistent with a small value of 𝛼. Silica 

microtubes are therefore not atomically smooth. We find the flow at small Kn has 

𝛼  = 0.91 and at large Kn has 𝛼  close to one, consistent with the redefinition of 

accommodation coefficient by Arya et al., which also resolves a problem in the literature 

where there are many observations of 𝛼 of less than one at small Kn and many equal to 

one at large Kn.  

Although the silica microtubes are not atomically smooth, we still obtain fast transport of 

water vapour compared to the predictions from the equation of Cha and McCoy over a 

restricted range of pressures using the two-chamber method and a mass loss method. We 

attribute the excess flows to two effects. One is that a thin adsorbed layer of chain-like 

water on the walls reducing the TMAC at lower inlet pressures, an effect recently found 

for humid nitrogen flows over silica. The other is due to liquid or two-phase flow existing 



in the tube for inlet pressure close to saturation pressure. A theory for the effect is 

developed using an approximation to the Langmuir adsorption.  

In practice, interdiffusive flow of moisture in a background of air at atmospheric pressure 

occurs more commonly. However, there is no study of mass flow rates under these 

conditions. In this thesis, we measure the interdiffusive flow rates of water and water 

vapour in the same silica microtubes with and without air at atmospheric pressure using 

mass loss method and compare experimental results with ideal gas interdiffusive flow 

theory. We find interdiffusive flows of water vapour in air agree with the theory except 

for the case where water vapour partial pressures are close to the saturation pressure. 

When liquid is present, it causes an enhancement of the interdiffusive flow by up to three 

orders of magnitude. The flow enhancement is attributed to two phase flows that have 

been observed in silica tubes of similar size.  

Using the best available theories we predict the dominant types of flow as a function of 

channel diameter and we make recommendations on the testing for moisture hermeticity 

in devices requiring high performance moisture barriers.  
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Chapter 1 Introduction 

Gaseous and liquid flows through tubes have been studied for more than two hundred 

years. Many famous names are associated with this field, including Poiseuille, Graham, 

Maxwell, Stokes, Boltzmann, Knudsen, Smoluchowski and others. Nowadays, the 

prevention of moisture penetration through barriers is more and more important to ensure 

long enough lifetimes for devices. Food packaging is a well known application in which 

the environmental moisture penetration through the barrier is prevented. Sensitive food 

products require a water vapour transmission rate (WVTR) of less than 100 g/m
2
/day [1]. 

The WVTR can be measured using commercial equipment for water vapour transmission 

rate testing, including the apparatus manufactured by MOCON [2]. Electrical and 

electronic devices demand much higher moisture barrier performance. Example devices 

are organic light emitting diodes (OLEDs), solar cells and active implantable medical 

devices that have electronic components. The WVTR of OLED encapsulation needs to be 

lower than 10
-6

 g/m
2
/day to guarantee a 10 year lifetime [3]. Implantable medical devices, 

such as Cochlear implants, demand even better moisture barriers to enable the devices to 

work well for the normal lifetime of a human. Electronic devices are very sensitive to 

moisture, which presents a challenge to develop new materials with a high barrier 

performance and low cost. In order for industry to guarantee the performance it is 

essential to develop a sensitive, accurate and convenient measurement method for a very 

low WVTR. Therefore, it is important to understand the behaviour of water vapour and 

liquid water as they flow through tubes and permeate through materials. 
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This thesis reports an investigation of the flow rates of noncondensable single phase gases 

and condensable single/two-phase vapours through silica microtubes, in addition to 

theories for predicting gas and liquid flows in micro- and nano-tubes. Chapter 2 reviews 

the history and development of fluid flows during 200 years in brief and points out where 

there is a lack of understanding of water vapour flows.  

Chapter 3 presents the basic definitions and equations of fluid flows. A useful 

dimensionless number, the Knudsen number [4], is introduced to define the flow regimes 

(continuum, slip, transition and molecular flow regimes).  

In Chapter 4, nitrogen flow rates were first studied through microtubes theoretically and 

experimentally as an example of noncondensable gas. Although there are many studies of 

a wide variety of gases, this is the first study that measures the flow of nitrogen through a 

cylindrical microtube over all flow regimes. The Maxwell tangential momentum 

accommodation coefficient (TMAC) is obtained from the experimental data and revisited 

based on a recent study by Arya et al. [5]. 

In Chapter 5, the measurement of water vapour flows in silica microtubes is undertaken at 

the first time. This is essential knowledge for the quantification of moisture penetration. 

Two measurement methods which are two-chamber method and mass loss method agree 

well. Enhanced water vapour transport is found due to either variable TMAC caused by 

adsorption of ice-like layers or two-phase/liquid flows arising from the inlet pressure at 

the tube that is near the saturation pressure of water vapour. A theory for TMAC of water 

on silica surface is proposed based on the adsorption isotherms of water. This work 

presents a solution for the difficulty raised by Seo et al. [6] in the understanding of the 

behaviour of nitrogen colliding with a thin water layer adsorbed on a silica surface. 
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Chapter 6 provides the theoretical and experimental results of interdiffusive flow which is 

a practical case since devices requiring protection usually operated in a background of air. 

The theory of interdiffusive flow has been developed recently, while the experimental 

results of water diffusing into atmospheric air through microtubes have not been reported 

to my knowledge. The interdiffusive water vapour flow rate in air in a 25 µm tube is 

predicted to be approximately three orders of magnitude lower than the flow rate for 

water vapour only without air. This prediction is in agreement with experiment for small 

vapour pressures while enhanced interdiffusive flow rates of water vapour are found to be 

due to two-phase/liquid flows when the inlet vapour pressure at the tube is near the 

saturation pressure of water.  

Chapter 7 predicts the mass flow selectivity for helium, nitrogen and water vapour from 

the equation of Cha and McCoy and liquid water from the Poiseuille law and makes 

recommendations on moisture hermeticity testing of encapsulations for industry. It is 

concluded that helium leak testing, the most commonly used method in industry cannot 

predict water leak rates directly. This chapter also predicts the flow modes and their mass 

conductance as a function of tube diameter. Surface flow contributes significantly to flow 

rates only for very small nanotubes and liquid flow becomes dominant as diameter 

increases to approximately 40 nm. 

REFERENCES 
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Chapter 2 Previous Studies 

2.1 THEORIES OF FLOWS IN A TUBE 

The first study on pressure driven viscous flow through tubes was done by Jean Louis 

Marie Poiseuille, a French anatomist. He devised the well known Poiseuille law for the 

flow rate in a cylindrical tube with an assumption of the flow velocity being zero at the 

walls [1]. For this no-slip boundary condition, the dominant forces are the viscous drag 

forces and the forces due to the pressure gradient in the tube. The Poiseuille law is 

applicable to liquid flow as well as to dense gaseous flow. For relatively dense gaseous 

flow, the Poiseuille equation can be derived from the famous Navier-Stokes equations 

with the help of the ideal gas law. However, when the mean free path of the gas becomes 

comparable with the dimensions of the tube, friction forces at the walls of the tube 

become more important than the viscous drag in the fluid. In this case, the Poiseuille law 

has to be corrected in order to provide accurate flow rates. Maxwell proposed boundary 

conditions at the walls that include a TMAC [2]. This allows the Poiseuille law to work in 

the slip flow regime with only one correction factor (first boundary conditions). For dilute 

gases, Knudsen had completed a theoretical and experimental investigation of flows in 

cylindrical tubes at low pressures in 1909 in which he derived the equation that bears his 

name for both cylindrical and rectangular tubes [3]. Knudsen assumes all the incident 

molecules diffuse after collision with the walls, which applies in most cases but shows 

limits in special cases where the walls are exceptionally smooth. The year after 

Knudsen’s important paper, Smoluchowski [4] extended his equation by using Maxwell’s 
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definition for TMAC which allows molecules to have either a diffuse or a specular 

reflection after collision.  

For the intermediate transition flow regime, the Navier-Stokes equations with first order 

boundary conditions break down as Knudsen diffusion becomes more and more dominant, 

requiring higher order boundary conditions such as the Burnett and Woods equations. The 

Burnett and Woods equations are derived from the Boltzmann equation based on the 

Chapman-Enskog expansion of the velocity distribution function [5]. The Boltzmann 

equation is in turn derived from the Liouville equation [6], as a basic equation in fluid 

mechanics, and not only provides higher order boundary conditions but also predicts 

accurate flow rates of gases in arbitrary complex geometries for all flow regimes.  

However, the Boltzmann equation is difficult to solve, encouraging the development of 

several approximate forms, for example, the linearised Boltzmann equation [7] and the 

Bhatnagar-Gross-Krook (BGK) equation [8-11] which may also be linearised. A 

combination of the Navier-Stokes equations and the Boltzmann equation was used for 

rectangular and elliptical tubes by Sharipov et al. [12-15]. There is another branch of 

theories named extended Navier-Stokes equations which have only one equation with an 

empirical parameter to match the behaviour of dense and dilute gases. The extended 

Navier-Stokes equations trend to the classical Navier-Stokes equations (the Poiseuille law) 

at high pressures and to the Knudsen equation at low pressures. Cha and McCoy [16] 

derived an extended Navier-Stokes equation for a cylindrical tube which works very well 

for various gases, such as nitrogen, air and carbon dioxide. Recently, Dongari et al. [17] 

devised an extended Navier-Stokes equation for a rectangular tube and showed that the 

extended Navier-Stokes equation predicts flow rates even better than the Boltzmann 
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equation does when compared with simulation methods such as the Direct Simulation 

Monte Carlo (DMSC) method. Extended Navier-Stokes equations are more convenient 

than other theories to be used owing to their closed analytical form.  

For the derivation of the theories above, there are two useful works: the book of  

Karniadakis et al. [18] and the review of Sharipov [11]. The book by Karniadakis focuses 

on simulations for gas flow through two parallel plates for pressure driven flow (flow 

driven by pressure difference) and for liquid transport driven by surface tension and 

electrokinetic forces. The review of Sharipov provides numerical and analytical models 

on mass flow rate and heat flux but does not compare with experiment.  

The translation of the theories above to the study of the hermeticity of encapsulations has 

led to an emphasis on ideal gas behaviour [19, 20], even for water permeation [21]. The 

flow of condensable gases and vapours such as carbon dioxide and organic vapours which 

may show strong departures from ideal gas behaviour in porous media has been reviewed 

by Choi et al. [22] but a discussion of water vapour flows is lacking. Reviews of the 

literature covering specifically moisture permeation rates have been limited to summaries 

of measurements of permeabilities rather than attempts to relate moisture permeability to 

theories based on microstructural properties. 

2.2 EXPERIMENTAL METHODS FOR MEASURING FLOW AND 

PERMEATION 

Measurement of gaseous flow rate in microtubes has been mainly studied in recent years. 

For gaseous flow rates under isothermal condition, the most common method is  

a two-chamber method for which the two chambers with set pressures are connected with 

a microtube. It is also named “constant volume technique” which has been used for 
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testing flow rates of nitrogen, helium, argon and carbon dioxide [23-26]. For condensable 

vapour flow rates, permeation rates are measured by gravimetric testing in which the 

mass of accumulated water is measured by weighing a test cell containing a water 

absorbing material such as a desiccant before and after a known exposure time to water  

vapour [27-29]. However, such tests are time consuming and not readily compatible with 

routine testing for performance compliance during manufacture. For this reason, testing 

for water penetration under accelerated conditions may be carried out in equipment such 

as that produced by MOCON [30]. In the MOCON equipment, water molecules are 

detected by their effect on electrical conductivity using a coulometric cell. While this 

method is more convenient than the gravimetric test, there remain significant time delays 

associated with the response time of the sensor and the time for the water background to 

come into equilibrium with and be cleared from the interior of the equipment. Mass 

spectrometry is a method of detecting and quantifying the partial pressures of gases 

present in a chamber that has been used for measuring water vapour permeation rates [31]. 

Mass spectrometry has an excellent sensitivity and offers some advantages in response 

time and sensitivity. However, it is still subject to the time delays in the system that result 

from the need for the flow rates to come to equilibrium and the need for residual or 

background water to be cleared from the system. The use of isotopically modified water 

with mass 20 such as H2O
18

 [31] and heavy water D2O
16

 are of considerable value in 

minimising the background of adventitious water vapour. There is a new WVTR testing 

system using mass spectrometer appearing in 2013, Vacutran [32]. In its brochure, it is 

said that “Vacutran enables WVTR measurement of barrier layers to better than  

10
-6

 g/m
2
/day”. However, the service of Vacutran was stopped in the market place in 

2014 and the technique has to be restudied. Nowadays, obtaining a better WVTR testing 
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limit than MOCON still has challenges. In addition, it is surprising that there is no 

measurement or theory applicable to water vapour flow rate measurement. 

2.3 FLOWS IN NANOTUBES CHALLENGE CLASSICAL THEORIES 

The subject of water flows and permeation has received a resurgence of interest as part of 

a trend in which phenomena traditionally studied by observation on the macroscopic scale 

are now being viewed on the nanometre scale where new and often unexpected findings 

are being made. The availability of atomistic and molecular simulations has assisted this 

trend and has delivered valuable insights. The design of microfluidic devices requires an 

understanding of flow in small tubes and is an active field of research. As the dimensions 

of the tubes are reduced to achieve miniaturisation of the devices, the flow becomes 

dependent on the boundary conditions at the walls so that the permeability of the walls to 

the (usually aqueous) fluids becomes important (see for example [33]). An emerging field 

that relies on the permeation of fluids is that of drug delivery by means of particles, 

especially nanoparticles. These drug delivery particles are required to control the drug 

release to provide local administration of the drug [34].  

Recent unexpected findings have challenged our understanding of flows in small tubes at 

low pressures [35-38] (shown in Figure 1(a)), for example, Holt et al. [35] found 

maximum enhancements of 2.1 for polycarbonate (PC) and 120 for double-walled carbon 

nanotubes (DWNTs) for air flow rate over Knudsen equation and the enhancements of 3.7 

for PC and 8400 for DWNTs for liquid water permeability over Poiseuille law. Our 

understanding of the flow of condensable vapours in membranes has also been challenged 

in membranes with layered microstructures (see for example the work of Nair et al. [39] 

in which the flow of water is observed to be up to almost ten orders of magnitude higher 
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than the flow of helium, shown in Figure 1(b)). Such findings have outlined the need for 

deeper understanding in these fields and have driven a resurgence of interest into what 

seemed only a few years ago to be a mature research field with no surprises.  

 

Membrane 

Maximum 

enhancement 

over Knudsen 

equation (air) 

Maximum 

enhancement 

over Poiseuille 

law (water) 

DWNTs 120 8400 

Polycarbonate 2.1 3.7 

(a) 

 

(b) 

Figure 1 Reproduced pictures (a) from Holt et al. [35] and (b) from Nair et al. [39]. (a) The left 

picture is a transmission electron microscopy (TEM) picture of the grown DWNTs used by Holt 

et al. and the right table shows the enhancements for permeability of air over Knudsen model. (b) 

The left upper picture is a picture of a 1 μm thick graphene oxide (GO) film peeled off of a Cu 

foil and the lower one is a schematic view for possible permeation through the laminates with L 

(sizes of crystals of the GO film) over d (distance between the laminates) of 1000 approximately. 

The right picture shows the permeability of GO film with respect to water and various small 

molecules (argon, hydrogen and nitrogen) and other organic molecules (acetone, hexane, ethanol, 

decane and propanol) with an inset picture showing the schematic representation of the structure 

of monolayer water inside a graphene tube with d = 7 Å.  
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Chapter 3 Theoretical Basis 

In this chapter, we first introduce basic definitions for fluid through tubes and then porous 

medium and membranes, including mass, molar, volume and particle number flow rates 

through tubes and permeability, permeance and water vapour transmission rate through a 

material. Two important constants were given: Reynolds number which determines 

whether the flow is laminar flow and Knudsen number which determines flow regimes. 

Under the condition of laminar flow, we show brief derivations of several useful 

equations (Knudsen equation, Boltzmann and its related equations and Navier-Stokes 

equations) for predicting flow rates in various flow regimes. The guide for this chapter is 

shown as below. 

 

Figure 2 A guide for basic definitions in Chapter 3.  

Theoretical 
Basis 

Basic 
definitions 

Flow 
through 
tubes 

Mass/Molar/Volume/Particle 
flow rate, flux, conductance 

Flow 
through a 
material 

Permeability/Permeance/Water 
vapour transimission rate 

Two 
important 
constants 

Reynolds 
number 

Laminar/Turbulent  
flow 

Knudsen 
number 

Molecular 
flow regime 

Knudsen diffusion and 
Knudsen equation 

(used in Section 4.1.2) 

Transition flow 
regime 

Boltzmann equation 
(used in Section 4.1.3) 

Slip flow regime 

Continuum flow 
regime 

Navier-Stokes 
equations (used in 

Section 4.1.1&4.1.2) 



 

16 

 

3.1 BASIC DEFINITIONS AND REGIMES OF FLOW 

3.1.1 Mass, Volume and Particle Number Flow Rates, Fluxes and 

Conductance 

Quantities that are basic to the quantification of a flow are the flow rate and the flux. The 

flow rate is the quantity of flow per unit time and a flux is defined as the flow rate divided 

by the area of the conducting aperture. Some authors have tended to emphasise mass flow 

rate [1] while others use volume [2] and particle number (or molar) flow rates. The mass 

flow rate 𝑚̇ in kg/s will be used in this thesis as the normal outcome of a calculation or 

measurement on a single tube or of permeation through a material medium. The mass flux 

is defined by: 

 
𝑚̇

𝐴
 (1) 

where 𝐴 is the cross sectional area of the aperture defining the boundaries of the flow. 

Another convenient outcome of calculation or measurement is the mass conductance: 

 𝐶 =
𝑚̇

∆𝑃
 (2) 

where ∆𝑃 = 𝑃𝑖 − 𝑃𝑜 is the pressure difference across the tube defined as the difference in 

the pressures of the fluid on the inlet (𝑃𝑖) and the outlet of the tube (𝑃𝑜). Conductance is 

useful for comparing flow rates under various pressure differences. 

The particle number flow rate and molar flow rate are often convenient for determining 

the effects on the contents of packages or encapsulations and are useful when comparing 

two different gases or vapours. The mass flow rate is readily converted to particle number 

flow rate using the conversion: 
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 𝑛̇ = 𝑚̇/𝑚𝑚 (3) 

where 𝑛̇ is the number of particles flowing per second and 𝑚𝑚 is the molecular mass. The 

particle flow rate is converted to a molar flow rate by dividing the Avogadro’s number  

6.023 × 10
23

.  

The volume flow rate (m
3
/s) is related to the mass flow rate by: 

 𝑉̇ = 𝑚̇/𝜌 (4) 

where 𝜌 is the density of the fluid in kg/m
3
. The flow velocity averaged over the cross 

section 𝑣̅ is given by: 

 𝑣̅ =
𝑉̇

𝐴
 (5) 

Particle, molar and volume conductances are obtained using a similar conversion method 

with Eq.(2). In cases where there are two species present, labelled 1 and 2, the 

composition of the fluid under flow is described by the contributions of each to the total 

particle concentration, the particle number per unit volume: 

 𝑐 =
𝑛

𝑉
=

𝑛1

𝑉
+

𝑛2

𝑉
= 𝑐1 + 𝑐2 (6) 

In the case where species are gases, it is usual to write the total pressure 𝑃𝑇 as the sum of 

the two partial pressures 𝑃1 and 𝑃2: 

 𝑃𝑇 = 𝑃1 + 𝑃2 (7) 

and for ideal gases the equation of state applies: 

 𝑃𝑉 = 𝑛𝑘𝐵𝑇 (8) 
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where V is the volume, n is the number of particles, 𝑘𝐵 is the Boltzmann constant and T is 

temperature in Kelvin. Eqs.(7) and (8) can be used to relate the particle concentrations to 

partial pressure for ideal gases: 

 𝑐1 =
𝑃1

𝑘𝐵𝑇
, 𝑐2 =

𝑃2

𝑘𝐵𝑇
 (9) 

3.1.2 Diffusion Coefficients, Permeability, Permeance and Water 

Vapour Transmission Rate 

The permeation process usually does not consider the boundaries of the medium to 

influence the permeation rate. Here we follow the ASTM standard definitions of 

permeability, permeance and WVTR, but will express them in SI units. The lateral 

boundaries of the medium under consideration are normally considered distant and cause 

no perturbation of the flow, as in a thin membrane covering an aperture. We will use axes 

in which the flow is directed along x. The particle number flow rate under steady state 

conditions through a medium with a defined aperture 𝐴  (particle flux) is frequently 

observed to be proportional to the particle concentration gradient of permeant across the 

medium, a result originally arrived at by Fick from a consideration of diffusive processes 

and named Fick’s law [3]: 

 
𝑛̇

𝐴
= −𝐷𝐹

𝜕𝑐

𝜕𝑥
 (10) 

where 𝐷𝐹 is the Fick’s law diffusion coefficient. For a gas diffusing in a volume where 

the boundaries are distant, 𝐷𝐹 is derivable from kinetic theory [4]: 

 𝐷𝐹 =
1

3
𝜆𝑢̅𝑚 (11) 
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where 𝑢̅𝑚 is the mean molecular speed, and 𝜆 is the mean free path which is given for an 

ideal gas by [4]: 

 𝜆 =  
𝑘𝐵𝑇

√2𝜋𝑃𝑑𝑚
2 

 (12) 

where 𝑑𝑚 is the diameter of molecules.  

Wroblewski [5] further developed Fick’s law and related the mass flux to a pressure 

gradient: 

 
𝑚̇

𝐴
= 𝑃𝑚𝑎𝑠𝑠

∆𝑃

𝑙
 (13) 

where 𝑃𝑚𝑎𝑠𝑠 is the mass permeability (kg/m/Pa/s) of the medium to the permeant under 

study, 𝑙  is the thickness of the medium and ∆𝑃  is the pressure difference across the 

medium. In the special case where the medium under permeation is another ideal gas, the 

concentration of the permeant is continuous across the boundaries, but in general for other 

media there is a discontinuity in the concentration on passing from the outside to the 

inside of the medium. It is possible to assign volume, particle number and molar 

permeabilities of a membrane by changing the mass flux to volume, particle number and 

molar fluxes respectively. 

Mass permeance in units of kg/Pa/m
2
/s is the mass permeability divided by the thickness 

of the test piece. In the special case of water permeation through a membrane, a quantity 

termed WVTR is defined as the mass transfer rate of water vapour per unit area of 

membrane (kg/m
2
/s) under known conditions of water vapour pressure on each side of the 

membrane. Following this definition, WVTR is the product of the permeance of the 
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material to water vapour multiplied by the difference in water vapour pressure just 

outside the inlet and outlet surfaces of the test piece.  

To describe the permeation process in a material membrane, the solution-diffusion model, 

originating in the work of Graham in 1866 [6], proposes that the flow through a 

membrane is established in three steps. First, the permeant dissolves in the surface of the 

material to give an internal concentration that is dependent on the pressure just outside the 

input surface (assuming, for now, the linear relation known as Henry’s law which does 

not always apply): 

 𝑐𝑖 = 𝑃𝑖𝑆𝐻 (14) 

where 𝑆𝐻 is the Henry law solubility and 𝑐𝑖 is the internal concentration in the inlet side 

of the membrane. Second, the concentration gradient of the permeant inside the 

membrane is established by diffusion over time to a steady state level also determined by 

the conditions at the outlet side, in turn determined by the external pressure of the 

permeant just outside the outlet surface of the membrane, 𝑃𝑜. Finally, the evaporation of 

the permeant from the outlet surface of the membrane, where again the external pressure, 

is related to the internal concentration at the outlet side of the membrane by the Henry’s 

law solubility.  

From Eqs.(10) and (14) we write the mass flux as: 

 
𝑚̇

𝐴
= −𝐷𝐹

𝜕𝑐

𝜕𝑥
= 𝐷𝐹𝑆𝐻

𝑃𝑖 − 𝑃𝑜

𝑙
 (15) 

So that from Eq.(13): 

 𝑃𝑚𝑎𝑠𝑠 = 𝑆𝐻𝐷𝐹 (16) 



 

21 

 

In some of the literature on membranes, the term permeation coefficient is used instead of 

permeability [7]. In polymers, the Fick’s law diffusion coefficient is often referred to 

simply as the diffusivity. An analogy can be made with the electrical conductivity of a 

medium where the mass flux is analogous to the current density and the pressure is 

analogous to electrical potential.  

In the case where Henry’s law applies, the relation Eq.(16) may be used to obtain any of 

three variables in it when the other two are known. The solubility can be determined 

separately by the total permeant uptake when the medium is immersed in permeant. In the 

case of water, a water absorbance is often measured in this way as a mass of water per 

unit mass of medium.  

Flow in porous medium is different from the flow in permeable membranes. A porous 

medium is one having interconnected void spaces that can be filled with liquid or gas. 

The geometry of the pores may be complex, leading to flow tubes with both constrictions 

and tortuosity. The nature of the interconnectivity may also be complex, with divergent 

and convergent connections. The simplest case is for ideal gas flows through a porous 

medium, in which case the concentration of the gas is continuous on entering the medium 

(corresponding to a Henry’s law solubility of unity). For condensable gas flows there will 

be a concentration increase on entering the medium when condensation occurs on the 

surface of the pores. The proportionality of the flow rate to the pressure difference ∆𝑃 

across the medium often applies in viscous flows through porous media where it is 

referred to as Darcy’s law. For our purposes, a viscous flow is one in which the viscosity 

of the permeant is a well defined quantity. When written as an expression for the volume 

flow rate [8] Darcy’s law is: 
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 𝑉̇ = −𝑃𝑣𝑜𝑙𝑢𝑚𝑒𝐴
∆𝑃

𝑙
= −

𝑘 𝐴

𝜇

∆𝑃

𝑙
 (17) 

where 𝑃𝑣𝑜𝑙𝑢𝑚𝑒  is the volume permeability (m
2
/s/Pa), 𝑘  is the intrinsic Darcy’s law 

permeability of the porous medium (m
2
) and 𝜇 is the dynamic viscosity. For an ideal gas 

of elastic hard spheres, 𝜇 has the value [9]: 

 𝜇 =
5

16𝑑𝑚
2

(
𝑘𝐵𝑇𝑚𝑚

𝜋
)

1
2
 (18) 

Eq.(18) predicts viscosity of nitrogen well (for nitrogen at 25°C, 𝜇 = 1.73 × 10
-5

 kg/m/s 

from Eq.(18) and 1.78 × 10
-5

 kg/m/s from the database of National Institute of Standards 

and Technology (NIST) [10]), but fails for water vapour. Water is a polar molecule and it 

is not well approximated as an elastic hard sphere. In this thesis, we use the dynamic 

viscosity of water vapour at 25°C obtained from NIST database [10] which is about  

9.87 × 10
-6

 kg/m/s. 

Note that when Eq. (17) applies, the intrinsic Darcy’s law permeability is a property of 

the porous medium and not of the permeant since the properties of the permeant enter 

through the viscosity. In this respect, the intrinsic Darcy’s law permeability differs from 

the more common mass and volume permeability definitions given above. The 

permeation process in a porous medium is frequently more complex than Darcy’s law 

suggests, especially for condensable permeants such as water vapour. It is therefore 

important to distinguish between gases that do not condense on the surface of a tube and 

vapours that condense to form a liquid layer. 

We divide flows into cases where there is a single species and cases where there are 

multiple species. For two component flows, Landau and Lifshitz [11] have given a useful 
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breakdown of the flux of one species in a two component flow. If species 1 is considered 

as the permeant of interest then its particle flux is given by:  

 𝐽1 = −[𝐷12

𝜕𝑐1

𝜕𝑥
+ 𝐷𝑇𝑐1

𝜕𝑇

𝜕𝑥
+ 𝐷𝐹

𝑐1

𝑐𝑇

𝜕𝑐𝑇

𝜕𝑥
] (19) 

where 𝐷12 is the mutual Fick’s law interdiffusion coefficient of species 1 in species 2 

describing the “interdiffusive” component of the flow. 𝐷𝑇  is the “thermodiffusion” 

coefficient describing temperature driven flow and 𝐷𝐹  is the Fick’s law diffusion 

coefficient describing the flow of both species together. Eq.(19) is a statement that the 

fluxes are independent and additive. For example, the interdiffusive flux and total flux 

can occur together. A two component flow is entirely interdiffusive if there are only 

partial pressure gradients and no total pressure gradient.  

3.1.3 Dimensionless Constants of Flow in a Tube 

The Reynolds number is useful in determining whether a viscous flow is turbulent or 

laminar and for a flow having a fluid velocity 𝑣̅ is defined by: 

 𝑅𝑒 =
𝜌𝑣̅𝑑ℎ

𝜇
 (20) 

where 𝑑ℎ is the hydraulic diameter of the tube defined by: 

 𝑑ℎ =
4𝐴

𝑝𝑤
 (21) 

where 𝑝𝑤 is the wetted perimeter of the tube. Laminar flows are described by streamlines 

representing the vector direction of the flow. 

The Knudsen number is useful in defining flow regimes [12] and is defined as: 
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 𝐾𝑛 =  
𝜆

𝑙0
=

𝑘𝐵𝑇

4√2𝜋𝑟𝑚
2P𝑙0 

 (22) 

where 𝑙0 is a characteristic dimension of the tube for which it is common practice to use 

the diameter 2𝑟𝑐 for a circular tube or the smallest separation of the walls for a rectangular 

tube and 𝑟𝑚  is the radius of molecule. The flow regimes are defined by the following 

ranges of 𝐾𝑛: 

 For 0 < 𝐾𝑛 ≤ 0.01, we define the continuum flow regime (also 

called hydrodynamic flow or viscous flow). The classical Navier-Stokes 

equations with no-slip boundary conditions are usually valid for this flow 

regime. 

 For 0.01 < 𝐾𝑛 ≤ 0.1, we define the slip flow regime. In this flow 

regime, a sublayer, known as the Knudsen layer, exists between the bulk 

of the fluid and the surface which has a thickness of the order of the mean 

free path. The majority of the flow is governed by the classical  

Navier-Stokes equations, while the flow in the Knudsen layer, which 

usually covers much less than 10% of the tube width or diameter, can be 

neglected. It is more accurate to use Maxwell’s velocity slip boundary 

conditions (first order boundary conditions) as a correction factor added to 

the classical Navier-Stokes equations. 

 For 0.1 < 𝐾𝑛 ≤ 10, we define the transition flow regime. In this 

flow regime, the classical Navier-Stokes equations require higher-order 

boundary conditions to give accurate flow rates. A simplified form of the 
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Boltzmann equation known as the Bhatnagar-Gross-Krook (BGK) 

equation is one approach for modelling flow in this flow regime.  

 For 𝐾𝑛 > 10, we define the free molecular flow regime. In this 

flow regime, intermolecular collisions are assumed to be negligible in 

determining the gas dynamics. The BGK equations are also used to model 

flow in this flow regime [1, 13].  

3.2 KNUDSEN DIFFUSION AND THE KNUDSEN EQUATION 

The diffusion of a single component gas in a conduction tube was first studied 

quantitatively by Knudsen [14] who derived a value for the diffusion coefficient under 

molecular flow conditions in which collisions with the walls are dominant over 

intermolecular collisions, a process termed Knudsen diffusion. Knudsen’s expression for 

the Knudsen diffusion coefficient 𝐷𝐾  is analogous to that for the Fick’s law diffusion 

coefficient (Eq.(11)) where the mean free path is replaced by a path length determined by 

the tube dimensions: 

 𝐷𝐾 =
1

3
𝑢̅𝑚𝐻 (23) 

where H is a shape dependent length equal to the diameter 2rc for a cylindrical tube. The 

Knudsen diffusion coefficient is readily related to the mass flow rate in the tube by 

invoking the ideal gas law Eq.(8), so that the particle flux is related to the pressure 

gradient along the diffusion direction x by: 

 
𝑛̇

𝐴
=

𝑛̇

𝜋𝑟𝑐
2

=
𝐷𝐾

𝑘𝐵𝑇

𝑑𝑃

𝑑𝑥
 (24) 

The mass flow rate is: 
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 𝑚̇ = 𝑚𝑚 𝑛̇ =
𝜋𝑟𝑐

2𝑚𝑚𝐷𝐾

𝑘𝐵𝑇

𝑑𝑃

𝑑𝑥
 (25) 

Evaluating 𝐷𝐾 from kinetic theory using the result of 𝑢̅𝑚 given by Loeb [3]:  

 𝑢̅𝑚 = √
8𝑘𝐵𝑇

𝜋𝑚𝑚
 (26) 

We obtain the Knudsen equation for the mass flow rate in the molecular flow regime: 

 𝑚̇ =
4√2𝜋𝑟𝑐

3

3
√

𝑚𝑚 

𝑘𝐵𝑇

𝑑𝑃

𝑑𝑥
 (27) 

The Knudsen equation works well for the flow at low pressures. There is an implicit 

assumption that the collisions with the walls of a tube are similar to collisions between 

molecules in the sense that the momentum of a molecule in the direction of flow is not 

preserved after the collision. This corresponds to an assumption of diffuse reflection at 

the walls, to be discussed later. Soon after Knudsen’s paper appeared, Smoluchowski [15] 

provided a generalisation of the Knudsen result for the case where a fraction 𝛼 (TMAC) 

of the collisions with the walls are diffuse and the remainder specular. Smoluchowski’s 

result is the same as Knudsen’s in the limit of TMAC 𝛼 approaching unity: 

 𝑚̇ =
4√2𝜋𝑟𝑐

3

3
√

𝑚𝑚 

𝑘𝐵𝑇

𝑑𝑃

𝑑𝑥

2 − 𝛼

𝛼
 (28) 

3.3. THE BOLTZMANN AND RELATED EQUATIONS  

A general starting point for the understanding of gas flows under a wide variety of 

conditions is the Boltzmann equation, derived by Ludwig Boltzmann in 1872. The 

Boltzmann equation is the fundamental equation governing flow in regimes from a 

moderately dense gas or vapour to a rarefied gas or vapour. For dense gases and vapours, 



 

27 

 

it is more convenient to consider the gas as a homogeneous viscous fluid and to use the 

classical Navier-Stokes equations as the starting point. 

To determine the mass flow rate of a gas crossing an area on the 𝑦  – 𝑧  plane, the 

integrated value of the product of the macroscopic observables density  and fluid 

velocity 𝑢 over the cross section of the conduction tube is needed: 

 𝑚̇ = ∬ 𝜌(𝑦, 𝑧)𝑢(𝑦, 𝑧)𝑑𝑦𝑑𝑧
𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

 (29) 

The functions 𝜌 and 𝑢 are in principle determined by the underlying equations of motion 

for the individual molecules, which can be described classically by Newton’s laws. By 

working within certain simplifying assumptions, it is possible to write averaged equations 

of motion that are much simpler to solve than the individual equations for each particle 

and in some limits give rise to the macroscopic fluidic dynamic descriptions. A 

generalized form of the Boltzmann equation has been derived from the Liouville  

equation [16] for the time evolution of the phase space distribution function 𝑓(𝒓, 𝒗, 𝑡) that 

describes the probability of there being a particle in a given phase space volume 𝑑3𝒓𝑑3𝒗 

at time 𝑡, where r is the position of a particle and 𝒗 its velocity. The particles are assumed 

identical and uncorrelated (molecular chaos) with no internal degrees of freedom. 

Macroscopic properties are obtained by taking velocity moments of the distribution 

function. The quantities needed for calculating the mass flow rate in Eq.(29) are defined 

using the distribution function as: 

Particle number: 𝑛 = ∫ 𝑓(𝒓, 𝒗, 𝑡)𝑑𝒗 (30) 

Density: 𝜌(𝒓, 𝑡) = 𝑚𝑚 ∫ 𝑓(𝒓, 𝒗, 𝑡)𝑑𝒗 (31) 
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Bulk velocity: 𝒖 =
1

𝑛
∫ 𝒗𝑓(𝒓, 𝒗, 𝑡)𝑑𝒗 (32) 

The Boltzmann equation is the following governing equation for the probability 

distribution function f:  

 
𝜕𝑓

𝜕𝑡
+ 𝒗 ∙

𝜕𝑓

𝜕𝒓
+ 𝑭 ∙

𝜕𝑓

𝜕𝒗
= 𝑄 (33) 

The first term gives the rate of change of the number of molecules at 𝒓 having velocity 𝒗 

in the phase space; the second term describes molecules passing through a fluid volume at 

𝒓 with velocity 𝒗; the third term describes molecules at 𝒓 passing through velocity space 

under the influence of the external force 𝑭. For steady flows, in which f has no explicit 

dependence on time, the first term vanishes and for flows in the absence of external forces, 

the third term vanishes. The term on the right hand side represents the effect of collisions 

between molecules, where 𝑄 is an operator acting on the velocity distribution function 

𝑓 before and after a collision. To find an expression for 𝑄, further assumptions must be 

made. First, we discuss the case where there are no boundaries and assume that the only 

collisions that take place are between molecules. Furthermore, these collisions are 

assumed to be binary collisions only, an assumption that applies provided the gas is 

sufficiently dilute. 𝑄 is expressed by the integral giving the operator that gives the change 

in the number of particles with velocity 𝒗 as a result of a collision between two particles 

of velocity 𝒗 and 𝒗∗: 

𝑄 =  ∫ ∫ |𝒗 − 𝒗∗| 𝐼(|𝒗 − 𝒗∗| ,
4𝜋

0𝑅3

𝛺)[𝑓(𝒓, 𝒗∗)𝑓(𝒓, 𝒗) 

−𝑓(𝒓, 𝒗∗′)𝑓(𝒓, 𝒗′)]𝑑𝛺𝑑𝒗∗ 

(34) 

where 𝐼(|𝒗 − 𝒗∗| , 𝛺) is the differential cross section of the collision, where the relative 

velocity changes from the incident direction to the element of the solid angle 𝑑𝛺 as a 
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result of collision. 𝑅3 is the domain of integration over all velocities. It considers two 

particles colliding, starting with velocities 𝒗 and 𝒗∗ and leaving the collision elastically 

with velocities 𝒗′ and 𝒗∗
′ . The terms subtracted from one another in the square brackets 

have the form “the number of particles scattered in, minus the number of particles 

scattered out”; some particles that had velocity 𝒗 will be scattered through collisions to 

having new velocities, while other particles will join the group of particles with velocity 𝒗 

after colliding. Here we consider only isothermal cases. 

When considering flow in a tube, collisions with the boundary must be included in the 

collision term. Maxwell derived a form of the scattering term that includes an 

accommodation coefficient that describes two cases of collisions, diffusive and specular. 

An accommodation coefficient of unity describes the case where all molecules are 

diffusely reflected and a value of zero describes the case where all molecules are 

specularly reflected, that is the momentum parallel to the surface is unchanged after the 

collision. For more details of the derivation of the equations in this section the reader is 

referred to the book of Karniadakis [17]. 

The Boltzmann equation is difficult to solve because of its six dimensional phase space. 

A popular approach that applies to the case of a relative dense particle system is named 

the Chapman-Enskog method for which the phase space distribution function 𝑓 takes the 

form below including terms up to 𝐾𝑛2: 

 𝑓 = 𝑓0 + 𝑓1 + 𝑓2 = 𝑓0(1 + 𝑎𝐾𝑛 + 𝑏𝐾𝑛2) (35) 

where 𝑎  and 𝑏  are functions of fluid density, temperature and velocity, and 𝑓0  is the 

absolute Maxwellian distribution function for an equilibrium state and: 
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 𝑓0 = 𝑛0 (
𝑚𝑚

2𝜋𝑘𝐵𝑇
)

3/2

exp (−
𝑚𝑚

2𝑘𝐵𝑇
𝒗2) (36) 

where 𝑛0 is the equilibrium number density.  

For a rarefied gas or vapour, approximate forms of the Boltzmann equation have been 

applied such as the linearised Boltzmann equation (LBE) [18, 19] and the  

Bhatnagar-Gross-Krook (BGK) equation [2, 20-22] which may also be linearised. In the 

LBE and BGK equations, linearizing is carried out by writing the velocity distribution 

function as a perturbation expansion: 

 𝑓 = 𝑓0[1 + h(𝒓, 𝒗, 𝑡)] (37) 

using a perturbation distribution function h(𝒓, 𝒗, 𝑡) [23]. These approaches differ in the 

form of the collision term in the Boltzmann equation, as shown in Table 1 for the case of 

steady flows. In this table, 𝑓𝑙𝑜𝑐 is the local Maxwellian distribution function: 

 𝑓𝑙𝑜𝑐 = 𝑛 (
𝑚𝑚

2𝜋𝑘𝐵𝑇
)

3/2

exp [−
𝑚𝑚(𝒗 − 𝒖)2

2𝑘𝐵𝑇
] (38) 

where 𝑛 = 𝑛(𝒓, 𝑡) is the local number density depended on the spatial coordinates and 

time. 

Table 1 Approximate forms of the governing equations for the phase space distribution function f 

in the Boltzmann equation with the corresponding forms of the collision terms and the governing 

equation for steady flows.  

Name Collision term Governing equations 

BGK equation 𝑄𝐵𝐺𝐾 =
1

𝜏
(𝑓𝑙𝑜𝑐 − 𝑓) 𝒗 ∙

𝜕𝑓

𝜕𝒓
=

1

𝜏
(𝑓𝑙𝑜𝑐 − 𝑓) 

Linearised Boltzmann 

equation 
𝑄𝐿𝐵𝐸 = ∫ ∫ 𝑓0(

𝑆+𝑅3

𝒗∗) 

× (h′ + h∗
′ − h − h∗)𝑑𝑛𝑑𝒗∗ 

𝜕h

𝜕𝑡
+ 𝒗 ∙

𝜕h

𝜕𝑡
= 𝑄𝐿𝐵𝐸 
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As in the Knudsen equation, the boundary condition at the walls is usually assumed to be 

fully diffuse reflection, which imposes a condition on the perturbation function at the 

walls. The above form of the BGK equation was used by Cercignani and Daneri in a 

conceptually simple approach using a discrete ordinate method [2]. It has been estimated 

that the difference of the mass flow rate between parallel plates calculated by solving the 

BGK equation and that obtained by solving the full Boltzmann equation for the 

isothermal flow in a rectangular tube is only about 2% [20]. 

3.4 NAVIER-STOKES EQUATIONS  

The Navier-Stokes equations were first derived by the French mathematician L. M. H. 

Navier in 1822 and then further developed by the English mechanician Sir G. G. Stokes 

in 1845. These equations apply to the single phase viscous flow of fluids including liquids 

as well as vapours and gases in the continuum flow regime. While some researchers have 

focused on the derivation of the Navier-Stokes equations from the Boltzmann equation 

[24-26], we obtain the Navier-Stokes equations more simply from Cauchy’s equation of 

motion, which is based on Newton’s second law: 

 (𝒈 −
𝜕𝒖

𝜕𝑡
) 𝜌 + ∇ ∙ 𝛔 = 0 (39) 

This equation is valid for both compressible and incompressible fluids in the presence of 

the gravitational acceleration 𝒈 . By expressing Eq.(39) in Cartesian coordinates and 

evaluating the contributions to the total stress tensor 𝛔 from pressure gradients and shear 

stresses and then relating the shear stresses to the rate of strain tensor (using the fluid 

constitutive relations), we obtain the compressible Navier-Stokes equations [27]. For 

which the 𝑥 component is: 
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𝜕𝑢𝑥

𝜕𝑡
+ 𝑢𝑥

𝜕𝑢𝑥

𝜕𝑥
+ 𝑢𝑦

𝜕𝑢𝑥

𝜕𝑦
+ 𝑢𝑧

𝜕𝑢𝑥

𝜕𝑧
 

= 𝑔𝑥 −
1

𝜌

𝜕𝑃

𝜕𝑥
+

𝜇

𝜌
∙ (

𝜕2𝑢𝑥

𝜕𝑥2
+

𝜕2𝑢𝑥

𝜕𝑦2
+

𝜕2𝑢𝑥

𝜕𝑧2
+

𝜕𝐷𝑣

𝜕𝑥
) 

(40) 

with corresponding equations for the y and z components. As in previous sections, the x 

direction is the direction of flow. 𝐷𝑣  is a volumetric dilation and in the case of 

incompressible flow, 𝐷𝑣 = 0. In vector notation for the incompressible case the equations 

are: 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = 𝒈 −

1

𝜌
∇𝑃 +

𝜇

𝜌
∇2𝒖 (41) 

 I. II. III. IV. V.  

In the case where the flow velocity depends only on a single spatial variable, the flow is 

termed one dimensional. The terms numbered in Eq.(41) with Roman numerals have the 

meanings shown in Table 2. The meanings of steady flow and uniform flow are also 

defined in Table 2. In parallel flow the velocity is in one direction at all positions and 

times. Table 3 gives the special conditions for incompressible flows that lead to related 

governing equations that are special cases of Eq.(41), well known in fluid mechanics. 

A well known equation named after Poiseuille which predicts the flow rate of liquid in 

tubes can be derived from a special condition of the Navier-Stokes equations, the Stokes 

equation:  

 𝑚̇𝑃 =
𝜋𝑟𝑐

4∆𝑃𝜌

8𝜇𝐿
 (42) 

where 𝐿 is the tube length.  

The classical Navier-Stokes equations have been extended to cover all flow regimes by 

ensuring that the expressions approach the Knudsen flow Eq.(27) at large Kn. An 
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empirically determined parameter is usually needed to achieve a smooth dependence on 

Kn for intermediate values of Kn [17, 28]. In one approach, the matching process is 

formalised by adding an additional diffusive mass flow rate term to the Navier-Stokes 

equations based on Fick’s law [29-31]. The resulting extended Navier-Stokes equations 

provide agreement with experimental data of helium, argon, nitrogen and carbon dioxide 

over a wide range of Knudsen numbers across all flow regimes. 

The available theories for describing single non-condensing gas or vapour flow without 

special conditions have been summarized diagrammatically by Bird [32] as a function of 

Kn. An updated summary of Bird’s diagram is shown in Figure 3.  

 

Table 2 The meaning of the terms in the incompressible Navier-Stokes equations, Eq.(41). 

Term No. Meaning of the terms 

I. 

The temporal change in momentum at a fixed control volume in the 

flow. 

For a steady flow, in which the velocities at each position in the flow 

are independent of time, this term is zero. All steady flows are 

laminar. 

II. 

The convective change in momentum of the fluid, which describes the 

rate at which momentum in convected away from a control volume in 

the flow. Uniform flow, as for example in a tube with dimensions 

independent of position, has no convective acceleration. 

III. The body forces acting on the fluid. The example used is gravity. 

IV. The force arising from pressure gradients. 

V. 
The acceleration (deceleration) due to the frictional resistance 

(viscosity) of the fluid. 
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Table 3 Special conditions applying to the Navier-Stokes equations (Eq.(41)) lead to the other 

principal equations of fluid flow, with the applications listed. 

Name Formula 

Special 

Conditions 

on the 

Terms 

Application 

Euler’s 

equation 

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖

= 𝒈 −
1

𝜌
𝛁𝑃 

V. = 0 Inviscid and incompressible flow. 

Bernoulli’s 

equation 

𝜌𝑢2

2
+ 𝑃 + 𝜌𝑔𝑧

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(integral form of 

Euler’s equation) 

I. = V. = 0 
One dimensional, steady, inviscid 

and incompressible flow. 

Parallel flow 

𝜕𝑢

𝜕𝑡
 

= −
1

𝜌
∇𝑃 +

𝜇

𝜌
∇2𝒖 

II. = III. = 0 

Uniform, incompressible flow with 

velocity in one direction in a 

horizontal tube or in zero gravity 

conditions. 

Stokes flow 

1

𝜌
 ∇𝑃 

= 𝒈 +
𝜇

𝜌
∇2𝒖 

I. = II. = 0 

Steady, parallel flow. The 

advective inertial forces are small 

compared with viscous forces. 
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Figure 3 The Knudsen number Kn ranges defining flow regimes. Also shown is a selection of 

equations for predicting flow rates (adapted from Bird [32]) with their regimes of applicability. 

There are three types of theory covering the values of Kn between the slip flow regime and the 

molecular flow regime, those using higher order boundary conditions (red box) [33, 34], those 

requiring an empirical parameter (pink box) [28, 31] and those arising from an approximate 

solution of the Boltzmann equation (blue box) [2, 18, 22, 35].  
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Chapter 4 Maxwell’s Accommodation Coefficient 

and Nitrogen Flow Rate through Microtubes  

Gas flows have been studied quantitatively for more than a hundred years and have 

modern relevance in fields such as the control of gas inputs to processes, the 

measurement of leak rates and the separation of gaseous species. In this chapter, a 

convenient formula for the flow of an ideal gas applicable across a wide range of Kn, 

theory of Cha and McCoy, has been introduced and extended using a recent finding by 

Arya et al. replacing the Smoluchowski factor. We measure the flow rate of nitrogen gas 

in a smooth walled silica tube across a wide range of Knudsen number from 0.0048 to 

12.4583. This is the first time to study flow rates across all flow regimes in a well-defined 

microtube. We find that the nitrogen flow obeys the Cha and McCoy equation with a 

large value of α, unlike carbon nanotubes which show flows consistent with a small value 

of α. Silica capillaries are therefore not atomically smooth. The flow at small Kn has  

α = 0.91 and at large Kn has α close to one, consistent with the redefinition of 

accommodation coefficient by Arya et al., which also resolves a problem in the literature 

where there are many observations of α of less than one at small Kn and many equal to 

one at large Kn. Silica capillaries are an excellent choice for an accurate flow control 

system. 

4.1 INTRODUCTION 

Calculation and accurate control of the flow of gases in microtubes are important in many 

fields. In biology and botany, air flows in nanodimensioned tubes are of fundamental 
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importance in respiration and transpiration. Gas flows in microfluidic devices are used for 

sensing and many process control applications require an accurate knowledge of the flow 

of a gas. Nitrogen has been selected as it is representative of a noncondensable ideal gas, 

it is the majority constituent of air and the control of its flow is required in many 

processes. The use of a tube for obtaining a calibrated gas flow rate has the advantage that 

the kinetic rather than the thermal properties of the gas are important. Such a method 

would use a tube of known dimensions to control the flow by means of the pressure 

difference across it. The only property of the gas needed to specify the flow rate is then 

the molecular mass. 

For the Smoluchowski equation (Eq.(28)), a value of α less than one gives a flow rate 

higher than the Knudsen value (Eq.(27)), with the flow rate diverging to infinity as α 

tends to zero. Until recently, there have been no well authenticated cases of 

Smoluchowski’s equation being required (that is α < 1) instead of Knudsen’s equation  

(α = 1) in the molecular flow regime. This is in contrast to the slip flow regime where 

values of α of less than one are frequently reported. Recent results for air flows in carbon 

nanotubes have found that the Knudsen equation seriously underestimates the flow in 

carbon nanotubes in the molecular flow regime, suggesting that the Smoluchowski result 

may apply with small α. Carbon nanotubes may be exceptional in having atomically 

smooth walls and diameters less than 2 nm [1]. Meanwhile, the flow of argon and helium 

in fabricated silicon tubes of similar dimensions has subsequently been found  to follow 

Knudsen’s equation even for very high values of Kn up to 10
7
 [2]. 

In order to simplify the calculation of flow across all flow regimes, extended  

Navier-Stokes equations have been derived which match the Smoluchowski result at large 
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Kn and the Poiseuille result at small Kn and also appear to fit the intermediate regimes 

well with only one additional empirically determined parameter. A problem arose 

however, when Arya et al. [3] showed that the use of the Maxwell definition of α is not 

appropriate in the molecular flow regime. In practice, all collisions are partly diffuse and 

partly specular so that only the ensemble average of the diffuse component across all 

collisions is meaningful. Simulation [3] revealed that the use of the Maxwell α 

overestimates the flow rate except for the trivial case where α is equal to unity. This 

overestimation resolves the problem in the literature that only values of α close to one are 

observed. 

There are three studies in the literature that measure the mass flow rate of nitrogen in 

tubes of micrometer dimensions. Ewart et al. studied nitrogen mass flows in 25 μm 

diameter fused silica tubes in the continuum and slip flow regimes [4]. Tison studied 

flows in 1.08 μm radius tubes of stainless steel in the slip flow regime [5]. Otani et al. 

studied the nitrogen mass flow rates in porous Vycor glass in the transition flow  

regime [6]. In the last case the tubes have an average diameter of 4.5 nm but have a 

tortuosity. Until now, experimental data has not been available for the same gas in the 

same well-defined tube across all flow regimes. Here we present results for a 25 μm 

diameter fused silica tube with exceptionally smooth surface without imperfections [7], 

covering Knudsen numbers in the range 0.0048 to 12.4583.  

A motivation for this work was to validate the approach to the accommodation coefficient 

of Arya et al. [3] by experiment. A second motivation was to obtain a formula for the 

accurate calculation of nitrogen mass flow rates in a silica tube across all flow regimes by 

obtaining a precise value of the empirical parameter in the extended Navier-Stokes 
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method of Cha and McCoy [8]. The formula would then be useful in controlling nitrogen 

flows. Silica tubes are readily available with controlled diameters and have relatively 

smooth surfaces so it is of interest to compare flows in silica and flows in carbon 

nanotubes. 

4.2 PRESSURE DRIVEN IDEAL GAS FLOW IN A TUBE 

4.2.1 The Continuum and Slip Flow Regimes 

We consider two-dimensional isothermal flow through a cylindrical tube in the form of a 

tube of length L, radius 𝑟𝑐, as shown in Figure 4. We consider the case where L/𝑟𝑐 >> 1, 

which allows us to neglect end effects near the inlet and the outlet of the tube.  

 

Figure 4 A cylindrical tube showing relevant variables. The flow direction is along x for which 

the flow velocity u is positive. 

The flow is sustained by a pressure drop ∆𝑃. For a cylindrical tube of uniform diameter, 

the Cauchy equation contains only the viscous drag force and the force arising from the 

pressure difference and becomes the Stokes equation (see Table 3). In cylindrical 

coordinates, the Stokes equation is: 
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 −
𝜕𝑃

𝜕𝑥
+

𝜇

𝑟
(

𝜕𝑢

𝜕𝑟
+ 𝑟

𝜕2𝑢

𝜕𝑟2
) = 0 (43) 

When the no-slip boundary condition is applied at the wall, the equation is solved to give 

the velocity as a function of r. The mass flow rate in the continuum is then given by the 

well known Poiseuille law (Eq.(42)) for an ideal gas: 

 

𝑚̇𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 = 𝑚̇𝑃 =
𝜋𝑟𝑐

4∆𝑃𝜌

8𝜇𝐿

=
𝜋𝑟𝑐

4∆𝑃𝑃𝑚𝑚𝑚

8𝜇𝑘𝐵𝑇𝐿
=

𝜋𝑟𝑐
4𝑃𝑂

2𝑚𝑚

16𝜇𝑘𝐵𝑇𝐿
(Π2 − 1)

 (44) 

where 𝑃𝑚 is the mean pressure across the tube, we define Π = 𝑃𝑖  /𝑃𝑜 as the pressure ratio 

between inlet and outlet of the tube. It is useful to plot the mass flow rate against pressure 

ratio Π when the outlet pressure is constant. 

In reality, the velocity of flow at the walls is not zero, but has a slip velocity, given by 

𝑢𝑤. Reviews of the subject of slip velocity are given in Neto et al. [9] and Cao et al. [10]. 

Maxwell considered two limiting cases to take into account the collisions between the 

flowing molecules and the surface of the walls, each described by a value of the TMAC 

of 𝛼. If the surface of the wall is smooth on the molecular size scale, the reflection is 

perfectly specular. In this case, there is no momentum transferred from the molecules in 

the direction tangent to the surface of the walls, a case defined by 𝛼 = 0 where 𝛼 is the 

average value of the ratio of the tangential momentum transferred to the surface divided 

by the initial momentum. It is easy to show that this average is also equal to the fraction 

of molecules that undergo diffuse reflection, if it is assumed that specular reflection and 

diffuse reflection are the only two options available to a molecule. If the surface of the 

wall is rough on the molecular scale, diffuse reflection occurs. A complete diffuse 

reflection transfers, on average, all of the tangential momentum of a molecule to the wall, 
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a case defined by 𝛼 = 1. In general, the TMAC is in the range of 0 ≤ 𝛼 ≤ 1. Maxwell 

related 𝛼 to the slip length that had been introduced by Helmholtz and Piotrowski [11] to 

refine the boundary conditions for fluid flows in the viscous flow regime involving the 

first order derivative of the velocity:  

 𝑢𝑤 = ±
2 − 𝛼

𝛼
𝜆

𝜕𝑢

𝜕𝑟
 (45) 

Here the mean free path 𝜆 is not the kinetic theory result (Eq.(12)), but an expression 

derived using the hard-sphere model [12]: 

 𝜆 =
𝜇

𝑃
(
𝜋𝑘𝐵𝑇

2𝑚𝑚
)1/2 (46) 

This equation gives the previously quoted result for 𝜇  (Eq.(12)). Since the Knudsen 

number changes with pressure, its value in the tube will depend on the distance x along 

the flow direction. 𝐾𝑛(𝑥) is the local Knudsen number, 𝐾𝑛(𝑥) = 𝜆(𝑥) 𝑑⁄  where 𝜆(𝑥) is 

the local mean free path, defined as 𝜆(𝑥) =
𝜇

𝑃(𝑥)
(

𝜋𝑘𝐵𝑇

2𝑚𝑚
)1/2 and 𝑃(𝑥) is the local pressure. 

Using an approach in which the presence of a slip velocity is used to correct the Stokes 

equation, a mass flow rate equation for slip flow conditions can be obtained by 

integrating Eq.(43) over the cross section to give the flow at location 𝑥 in the tube [13]: 

 𝑚̇𝑠𝑙𝑖𝑝 = −
𝜋𝑟𝑐

4𝑚𝑚

8𝜇𝑘𝐵𝑇

𝑑𝑃

𝑑𝑥
[1 + 8𝐴1𝐾𝑛(𝑥)] (47) 

where 𝐴1 =
𝜎𝑝

𝑘𝜆
, 𝜎𝑝 =

2−𝛼

𝛼
 is known as the first velocity slip coefficient and 𝑘𝜆  is a 

coefficient dependent on the assumed molecular interaction model (for example, 𝑘𝜆 =
√𝜋

2
 

for a hard sphere model [12], and 𝑘𝜆 = 0.731 for nitrogen for a “variable hard sphere” 

model [4]).  
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An improved expression for the first velocity slip coefficient is obtained by  

Albertoni et al.[14]: 

 𝜎𝑝 =
2 − 𝛼

𝛼
(𝜎𝑝(1) − 0.1211(1 − 𝛼)) (48) 

where 𝜎𝑝(1) = 1.016 is the first velocity slip coefficient when 𝛼 = 1.  

In the case where the flow conditions do not change substantially in a tube, it is 

convenient to use a mean Knudsen number 𝐾𝑛𝑚  to replace 𝐾𝑛(𝑥). A mean Knudsen 

number can be obtained from the relation 𝐾𝑛𝑚  = 𝜆 𝑑⁄ =
𝜇

𝑃𝑚
(

𝜋𝑘𝐵𝑇

2𝑚𝑚
)1/2, where the mean 

pressure is 𝑃𝑚 =
1

2
(𝑃𝑖 + 𝑃𝑜). By integrating Eq.(47) with respect to 𝑥 and replacing the 

integral of  𝐾𝑛(𝑥) by 𝐾𝑛𝑚, we obtain a convenient result for predicting the mass flow 

rates in the slip flow regime: 

 𝑚̇𝑠𝑙𝑖𝑝 =
𝜋𝑟𝑐

4∆𝑝𝑃𝑚𝑚𝑚

8𝜇𝑘𝐵𝑇𝐿
(1 + 8𝐴1𝐾𝑛𝑚) (49) 

This mass flow rate equation applies to the slip flow regime when first-order boundary 

conditions are used. The first order boundary conditions introduced by Maxwell can be 

extended by adding a series of derivatives of the high orders of velocities. The highest 

order of derivative specifies the order of the boundary condition. Where second-order and 

higher-order boundary conditions are used, a straightforward solution of the  

Navier-Stokes equations is no longer possible. The Burnett equations are then applicable 

but are much more difficult to solve. As an approximate method, a separate analysis of 

the Navier-Stokes equations for the interior region and the region near the walls has been 

used with higher order boundary conditions at the walls [15]. 
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Maurer et al. [15] compared the use of first and second order boundary conditions with 

experimental data ranging from the slip flow to the transition flow regimes. In order to 

illustrate the effects of boundary conditions on the flow rates more clearly, it is useful to 

define a nondimensional normalised flow rate 𝑆 defined as the ratio of mass flow rates 

under the slip boundary conditions to the mass flow rate under no-slip boundary 

conditions (𝑚̇𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚):  

 𝑆 =
𝑚̇𝑠𝑙𝑖𝑝−𝑆

𝑚̇𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
= 1 + 8𝐴1𝐾𝑛𝑚 + 16𝐴2𝑙𝑛 Π 𝐾𝑛𝑚

2  (50) 

where 𝑚̇𝑠𝑙𝑖𝑝−𝑆 is the mass flow rate with second order slip flow boundary conditions, and 

𝐴2 is another dimensionless constant dependent on the molecular interaction model. For 

the hard sphere model 𝐴2 =
𝜎2𝑝

𝑘𝜆
2

Π−1

Π+1
 where 𝜎2𝑝  is the second velocity slip coefficient 

obtained from fitting to experimental data. For the variable hard sphere model [4]: 

 𝐴2 = (
𝜎2𝑝

𝑘𝜆
2 +

1

2𝑘𝜆
2)

Π + 1

Π − 1
 (51) 

Although the first and second order boundary conditions give somewhat different 

theoretical predictions, the experimental precision is not sufficient to discriminate 

between the predictions based on the different orders of boundary condition. Here we 

compare Eq.(49) for the first order boundary conditions and the mass flow rates for the 

second boundary conditions obtained from Eq.(50) with the experimental results from 

Ewart et al. [4] (see Figure 5). 
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(a) 

 

(b) 

Figure 5 (a) The points show the experimental measurements of mass flow rate for nitrogen in a 

cylindrical tube of diameter 25 μm from [4] through the continuum regime, slip flow regime and 

part of the transition flow regime for a pressure ratio of 3, as a function of Knudsen number. The 

first order slip boundary conditions (lower curve, blue) and the second order slip boundary 

conditions (upper curve, red) are calculated from Eqs.(49) and (50); (b) shows the normalised 

nondimensional flow rate S defined in Eq.(50) as a function of the mean Knudsen number for the 

same two cases as in the theoretical curves in (a) to illustrate more clearly the difference caused 

by the choice of boundary conditions. 
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4.2.2 Extended Navier-Stoke Equations: Theory of Cha and McCoy 

Cha and McCoy [8] developed equations for ideal gas flows based on the standard 

assumptions of Poiseuille flow, that the flow is laminar, independent of time, isothermal, 

that the end effects are negligible, the pressure is uniform in the plane normal to the flow 

and that the rate of pressure drop along the flow is constant. The approach of their work 

was to solve the Cauchy equation Eq.(39) by expanding the stress tensor in terms up to 

third order in velocity gradient and applying the Chapman-Enskog theory to the Krook 

equation to obtain the expansion coefficient. They required the resulting flow to approach 

the Smoluchowski equation (Eq.(28)) at large Kn and the Poiseuille law (Eq.(42)) at small 

Kn. They found a single adjustable numerical constant was required to match 

experimental data in the transition flow regime. Therefore, this equation is the extended 

Navier-Stokes equation we introduced previously which can work for all flow regimes.  

For a steady flow, driven by a pressure gradient and in the absence of external body 

forces, the Cauchy relation Eq.(39) reduces to: 

 ∇ ∙ 𝛔 = 0 (52) 

Evaluating the total stress in terms of contributions from pressure gradients and from the 

shear stress tensor 𝝈𝒔this can be written: 

 ∇𝑃 − 𝛻 ∙ 𝝈𝒔 = 0 (53) 

Expressing the shear stress tensor in terms of the velocity gradient including terms up to 

the third order in velocity gradient, a dimensionless nonlinear differential equation is 

obtained: 

 
𝑁2

𝑟∗

𝑑

𝑑𝑟∗
{𝑟∗

𝑑

𝑑𝑟∗
[

1

𝑟∗

𝑑

𝑑𝑟∗
(𝑟∗

𝑑𝑢∗

𝑑𝑟∗
)]} +

1

𝑟∗

𝑑

𝑑𝑟∗
(𝑟∗

𝑑𝑢∗

𝑑𝑟∗
) = 𝛽 (54) 
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where 𝑁 = 4𝐾𝑛/√𝜋, 𝑟∗ = 𝑟 𝑟𝑐⁄  is a dimensionless radial coordinate, 𝑢∗ = (𝑈 − 𝑢)/𝑈 is 

the dimensionless velocity normalised to the centreline velocity 𝑈, and a function: 

 𝛽 =
𝑟𝑐

2∆𝑃

𝜇𝑈𝐿
 (55) 

The solution to Eq.(54) is the reduced velocity profile [8]: 

 𝑢∗ = 𝑐1 − 𝑐2𝐽0 (
𝑟∗

𝑁
) − 𝑐3𝑌0 (

𝑟∗

𝑁
) + 𝑐4 ln (

𝑟∗

𝑁
) +

𝛽𝑟∗2

4
 (56) 

where 𝑐1 , 𝑐2 , 𝑐3 , and 𝑐4  are constants determined by the boundary conditions and the 

limits at low and high Knudsen numbers, and 𝐽0 and 𝑌0 are the Bessel functions of first 

and second kinds respectively of zero order. For the velocity in the centreline of the tube, 

𝑢∗(𝑟∗ = 0) = 0 ; when 𝑟∗  tends to zero, 𝑌0 (
𝑟∗

𝑁
)  and ln (

𝑟∗

𝑁
)  approach minus infinity. 

Using these two conditions, Cha and McCoy show that 𝑐1 = 𝑐2, 𝑐3 = 𝑐4 = 0. They also 

found that 𝑐1 = 𝑐0𝐾𝑛 𝑡𝑎𝑛ℎ𝐾𝑛 where 𝑐0  is a numerical factor determined by empirical 

methods. The velocity profile for the continuum flow regime was then obtained from the 

Stokes equation (Eq.(43)): 

 𝑢𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 =
𝑟𝑐

2∆𝑃

4𝜇𝐿
(1 − 𝑟∗2) (57) 

Evaluating the centreline velocity (𝑟∗ = 1), we obtain a value of 𝛽 in Eq.(55) for the 

continuum flow regime: 

 𝛽𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 =
𝑟𝑐

2∆𝑃

𝜇𝐿𝑈𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
= 4 (58) 

For the molecular flow regime, the boundary conditions are full slip, so the velocities are 

independent of r. The limiting conditions at large Knudsen number are: 
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lim
𝐾𝑛→∞

𝑢∗ = 0 

lim
𝐾𝑛→∞

[1 − 𝐽0 (
1

𝑁
)] = 0 

(59) 

Therefore,  

 lim
𝐾𝑛→∞

𝛽 = 𝛽𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟0 (60) 

Based on Eq.(58) and (60), the ratio of 𝛽 in the continuum and molecular flow regimes is: 

 
𝛽𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟

𝛽𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
=

1

1 + 𝜖𝐾𝑛
 (61) 

where 𝜖 is the dimensionless factor 
2−𝛼

𝛼

64

3𝜋
 ,dependent on the TMAC 𝛼. Then the reduced 

velocity profile from Eq.(56) becomes: 

 𝑢∗ = 𝑐0𝐾𝑛 𝑡𝑎𝑛ℎ𝐾 [1 − 𝐽0 (
𝑟∗

𝑁
)] +

𝑟∗2

1 + 𝜖𝐾𝑛
 (62) 

From Eq.(58) and the relation 𝜇 =
𝜌

2
(

8𝑘𝐵𝑇

𝜋𝑚
)1/2𝜆, the axial velocity is: 

 

𝑈 =
𝑟𝑐

2∆𝑃

𝜇𝐿𝛽𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
 

= [
8

3√𝜋

2 − 𝛼

𝛼
+

√𝜋

8

1

𝐾𝑛
]

𝑟𝑐

𝜌
(

𝑚𝑚

2𝑘𝐵𝑇
)1/2

∆𝑃

𝐿
 

(63) 

From Eqs.(62) and (63), the velocity profile u(rc) is evaluated. Integrating it gives the 

mass flow rate in cylindrical tube for all flow regimes: 

𝑚̇ = ∫ 2𝜋𝑟𝜌𝑢𝑑𝑟
𝑟𝑐

0

=
𝜋𝑟𝑐

3∆𝑃

𝐿
(

𝑚𝑚

2𝑘𝐵𝑇
)

1
2

[
8

3√𝜋

2 − 𝛼

𝛼
+

√𝜋

8

1

𝐾𝑛
]

× {1 − 𝑐0𝐾𝑛 𝑡𝑎𝑛ℎ𝐾𝑛 [1 − 2𝑁𝐽1 (
1

𝑁
)] −

1

2(1 +
2 − 𝛼

𝛼
64
3𝜋 𝐾𝑛)

}

 (64) 
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This equation has the correct asymptotic behaviour at small and large Knudsen numbers 

as required. A single empirically determined parameter, c0 is required to ensure the 

correct behaviour in the intermediate flow regimes. At small Knudsen numbers, Eq.(64) 

gives the same result as the Poiseuille law (Eq.(42)) and at large Knudsen numbers, it 

gives the same results as the Knudsen equation (Eq.(27)) in the case where 𝛼 = 1. We 

will use the term Smoluchowski diffusivity for the fraction 
2−𝛼

𝛼
. 

Cha and McCoy used the nondimensional flow rate G to assist comparison with earlier 

theories where: 

 𝐺 =
𝐿

𝜋𝑟𝑐
3∆𝑃

(
2𝑘𝐵𝑇

𝑚𝑚
)1/2𝑚̇ (65) 

This definition of nondimensional flow rate has been used by other authors and will be 

referred to as the reduced mass flow rate or simply the reduced flow rate. G is analogous, 

except for the factor (
2𝑘𝐵𝑇

𝑚𝑚
)1/2, to the concept of conductivity in electrical property 

measurements, as it normalises for the length and the cross sectional area of the tube. 

Note that the other nondimensional flow rate S introduced earlier is useful mainly in the 

continuum and slip flow regimes, whereas G is useful across all flow regimes.  

In the limit of large Knudsen numbers, the asymptotic value of G from Eqs.(64) and (65) is: 

 𝐺 =
8

3√𝜋

2 − 𝛼

𝛼
 (66) 

Cha and McCoy’s result for G as a function of 𝐾𝑛𝑚 for three different choices of c0 is 

shown in Figure 6 with a comparison with experimental data [16-18] and the Knudsen 

equation [18]. Theories without any empirical parameters based on a solution of the 
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Boltzmann equation by Cercignani and Daneri [19] and Loyalka and Hamoodi [20], that 

apply in the transition flow regime are also shown in Figure 6.  

 

Figure 6 The reduced flow rate G in the transition flow regime for a cylindrical tube (d = 25 μm) 

as a function of the mean Knudsen number Knm showing theoretical predictions for the gases 

shown in the legend. The results of Cercignani and Daneri [19] and Loyalka and Hamoodi [20] 
are solutions of the BGK equation and the LBE equation respectively. The result of Knudsen is 

obtained with an assumption of α = 1[18]. The effect of varying the empirically determined 

number co in the theory of Cha and McCoy (C&M) [8] is shown. Experimental data shown as 

points for comparison are: Smith [6] and Tomothée for N2 Knudsen [21]and Dong et al. [22] for 

CO2 and Dong for H2, He and air [22].  

The theory of Cha and McCoy illustrates the Knudsen paradox, first enunciated by 

Knudsen in 1909 [18] which states that there is a minimum value of the mass flow rate 

per unit pressure difference when plotted as a function of Knudsen number. The 

occurrence of this minimum value happens when the diffusive flow begins to be 

dominant where it relates to the physical properties of the gas or vapour and the pressure 

ratio. In Cha and McCoy, this value shows when the Kn is around 1.43 for a cylindrical 

tube.[8]. 
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There is another theory derived by Beskok and Karniadakis [23] that provides a similar 

type of formula with that of Cha and McCoy:  

 𝑚̇ = −
𝜋𝑟𝑐

4𝑃𝑚𝑚

8𝜇𝑘𝐵𝑇

∆𝑃

𝐿
(1 + 𝑎𝐾𝑛)(1 +

4𝐾𝑛

1 − 𝑏𝐾𝑛
) (67) 

Beskok and Karniadakis gave a relation for a derived from a fit to the experimental 

results of Tison [23]: 

 𝑎 = 𝑎0

2

𝜋
𝑡𝑎𝑛−1(𝑎1𝐾𝑛𝑎2) (68) 

where 𝑎0 = 1.358, 𝑎1 = 4.0 and 𝑎2 = 0.4. We will use the parameter b as an adjustable 

parameter to fit our data later. 

4.2.3 Comparison of Experiment with Theories That Cover All Flow 

Regimes 

Here we compare several popular theories for mass flow rates and the reduced flow rate 

G covering all flow regimes in cylindrical tube. Figure 7 shows a comparison of the 

theories of Cha and McCoy [8], Lo and Loyalka [24], Loyalka and Hamoodi [20], 

Valougeorgis and Thomas [25] and Sharipov [26]. The theory of Lo and Loyalka and the 

theory of Valougeorgis and Thomas are solutions of the BGK equation for a cylindrical 

tube and the theory of Loyalka and Hamoodi is a solution of the linearised Boltzmann 

equation for a cylindrical tube. The theory of Graur and Sharipov is a solution of the 

BGK equation for an elliptical tube. Here we assume that the major and minor axes of an 

elliptical tube equals, which enable the theory of Graur and Sharipov to be applied for 

cylindrical tubes in order to allow comparison with other theories. From Figure 7, all the 

theories become almost consistent when Kn is larger than 0.1 for G. However, when Kn is 

small, only the theory of Cha and McCoy overlaps with the Navier-Stokes equations 
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which describe classical behavior in the continuum and slip flow regimes. The other 

theories are more advanced for the transition and molecular flow regimes as they have no 

empirical parameters. From Figure 7, it is clear that the reduced flow rate G allows a more 

discriminating comparison of the theories than does the mass flow rate itself. 

 
(a) 

 
(b) 

Figure 7 Comparison of experimental results with theories for helium mass flow rates in 

cylindrical tubes (d = 25 μm) across all flow regimes, including works by Graur and  

Sharipov [26], Loyalka and Hamoodi [20], Lo and Loyalka [24], Cha and McCoy [8] and 

Valougeorgis and Thomas [25]. Also shown is the result for the Navier-Stokes equation.  

(a) Comparison of theories mentioned above and the classical Navier-Stokes equations with 
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experimental results of Otani et al. [6] for the reduced flow rate G; (b) Comparison the same 

theories with (a) for mass flow rate. 

4.3 APPARATUS AND TEST METHOD 

The experimental apparatus uses the “constant volume technique” [8, 11-13] or “two-

chamber method” shown in Figure 8. Two test chambers of constant volume are 

connected by the microtube under test. The volumes of the test chambers are required to 

be much larger than the volume within the microtube in order to minimize pressure 

fluctuations in the chambers to less than 2%.  

The volume of Chamber 2 was measured using an additional known volume reference, to 

obtain a result of 447.6234 ml with a standard error of 0.0098 ml. The pressure in 

Chamber 2 was measured by an appropriately selected MKS Capacitance Manometers 

(CM) with maximum pressure readings of 133 Pa, 1333 Pa, 13333 Pa or 133333 Pa. The 

accuracy of the capacitance manometer was better than 0.5% of the reading. The pressure 

in Chamber 2 was recorded as a function of time under isothermal conditions at 298 ± 2 K 

over a period of time using Labview software. The temperature of the surrounding air was 

logged together with the pressure.  

The uncertainties of measurement in the constant volume technique arise principally from 

the exchange of gases with the walls of Chamber 2 while the test is running. The pressure 

in Chamber 1 was found to be stable over periods of hours at the operating pressure. The 

small outgassing of the walls is effectively balanced by the small outflow through the 

microtube. The leak rate of the two chambers was checked by helium leak detection 

(QMS 200) and was found to be less than the detection limit (~5.3 × 10
-12

 kg/s). The 

minimum measureable nitrogen flow rate was in the order of 10
-16

 kg/s established by the 
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outgassing rate of Chamber 2 (~1.23 × 10
-12

 kg/s). Nitrogen mass flow rates in the range 

of 1 × 10
-10

 to 2 × 10
-15

 kg/s were possible for measurement.  

 

Figure 8 The apparatus consists of two chambers connected by the microtube under test.  

Chamber 1 is at the higher pressure and Chamber 2 has a known volume. After the test pressures 

are established, both chambers are isolated from inflows and outflows. The pressures in the 

chambers are monitored using capacitance manometers. 

The silica microtube was from SGE Analytical Science Pty Ltd (Australia) of specified 

diameter 25 ± 0.5 µm and 20 cm length. The diameter was confirmed to an uncertainty of 

± 3 µm using an image from an Axioplan 2 optical microscope Figure 9 (a) and a 

calibrated 50 μm reference length. The advancing contact angle of the tubes was 

measured to be 82° measured by optical microscope (shown in Figure 9 (b)). The 

measured contact angle is in agreement with the fabrication temperature of 1000°C 

reported by the manufacturer. Baking at these temperature is known to increase the water 

contact angle of silica [27, 28]. Limited by the saturation pressure of water vapor at a 

certain temperature, we can only obtain Knudsen numbers from the transition flow 

regime. Three tubes of length 1 cm were used in part of the transition flow regime  

(0.1 < Kn < 10) and for near the molecular flow regime (Kn > 10) 30 tubes of 1 cm length 
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were used. As the length of the tube is much larger than the diameter, end effects were 

neglected. The largest Reynolds number in this study was 2.26 × 10
-5

 ensuring laminar 

flow.  

The measurement procedure of nitrogen mass flow rates is summarised below: 

(1) Open valves 1 and 2 and pump Chambers 1 and 2 down to ~ 10
-4

 Pa; 

(2) Close pump and fill Chambers 1 and 2 with nitrogen in high pressure, close valve 1; 

(3) Open pump to decrease the pressure in Chamber 2 to low pressure, close valve 2; 

(4) Start to record data of pressure change in Chamber 2. 

  
(a) (b) 

Figure 9 (a) An optical microscope image of the 25 ± 0.5 μm diameter cylindrical microtube in 

cross section. (b) An optical microscope image of liquid water in the 25 μm channel. Water 

contact angle was measured as 82°. 

4.3.1 Analysis of Uncertainty 

For isothermal conditions, the ideal gas law applies: 

 𝑃𝑜𝑉2 = 𝑚𝑚𝑘𝐵𝑇 (69) 

where𝑃𝑜 is the pressure in outlet of the channel and V2 are the pressure and volume of 

Chamber 2. From Eq.(69), 

Liquid water Air 
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𝑑𝑃𝑜

𝑃𝑜
=

𝑑𝑚

𝑚
+

𝑑𝑇

𝑇
 (70) 

We can obtain the mass flow rate by combining Eqs.(69) and (70): 

 

𝑚̇ =
𝑑𝑚

𝑑𝑡
=

𝑉2

𝑘𝐵𝑇

𝑑𝑃𝑜

𝑑𝑡
(1 − 𝛿); 

𝛿 =
𝑑𝑇/𝑇

𝑑𝑃𝑜 𝑃0⁄
 

(71) 

If 𝛿 is much smaller than 1, an uncertainty estimate is obtained following Ewart et al. [4] 

For our experiments, the temperature variation is 2 K and pressure variation is 2%, giving 

a value of 𝛿  of the order of 0.34. In order to determine the mass flow rate, the only 

unknown parameter in Eq.(71) is 
𝑑𝑃𝑜

𝑑𝑡
, obtained from a linear fitting of experimental data 

as a function of test time: 

 𝑃0𝑓(𝑡) = 𝑎′𝑡 + 𝑏′ (72) 

The uncertainty in the coefficient 𝑎′ is ± 0.5% for our experiments. Thus, we can obtain a 

total uncertainty in mass flow rate of ± 3.24% (
∆𝑉

𝑉
 = ± 2.1%, 

∆𝑇

𝑇
 = ± 0.67%, 

∆𝑎

𝑎
 = ± 0.5%). 

4.3.2 An Example of Recording Pressure Change 

For nitrogen flow rate measurements (Pi = 71820 Pa, Po = 23940 Pa), the pressure change 

in the outlet side of the tube is the red dots in Figure 10(a). The outgassing rate (black 

dots in Figure 10(a)) of the chamber results from natural adsorption of water vapour and 

other adsorbants. We measured the outgassing rate using two kinds of gauges with both 

showing a similar outgassing rate. The outgassing rate is stable at constant temperature 

and does not vary with nitrogen pressure since nitrogen absorbs weakly on stainless steel. 

We applied linear fitting to obtain rates of pressure rising for the outlet side of the tube 
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(black line) and the outgassing (red line), and then used the former one to reduce the latter 

one to gain a rate of 𝑑𝑃𝑜/𝑑𝑡 to calculate the mass flow rate using Eq. (71).  

 

(a) 

 

(b) 

Figure 10 (a) An example of the pressure change in Chamber 2 with time during a flow test (red 

line). The inlet pressure is 71820 Pa and the outlet pressure is 23940 Pa. The black line shows the 

outgassing rate of Chamber 2 in the absence of a flow tube; (b) outgassing rate test using a hot 

cathode ionization gauge. 
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4.4 RESULTS AND DISCUSSION 

The experimental values of the mass flow rate as a function of the inlet and outlet 

pressures are given in Table 4. Every value is a result of one measurement with ± 3.24% 

for uncertainty. The theory of Cha and McCoy fits the experimental results well across all 

of the flow regimes with 𝛼 = 1 (Figure 11). The value of the empirical parameter c0 that 

gives the best fit is c0 = 6.5 ± 1.5. 

We obtain a value of the empirical parameter b of 0.39 for the theory of Beskok and 

Karniadakis (Eq. (67)) which provides a good fit with our experimental data for the 

continuum and molecular flow regimes. However, it does not fit our data well for the slip 

and transition flow regimes as shown in Figure 11. 

The use of G is necessary for comparison of our results with other authors (see Figure 12) 

as a variety of tube materials and diameters were used, each covering a limited flow 

regime. The results of Tison in Figure 12 were digitized from the conductance in his 

Figure 5 in (mole g)
1/2

/Pa/s, converted to a molar conductance and then to the reduced 

flow rate (Eq.(65)). The results of Ewart et al. were taken from their Table 9 and 

converted to G using the quoted pressure difference and tube dimensions (diameter  

25 μm, length 5.3 cm). The results of Otani et al. were digitized from Figure 3 in Cha and 

McCoy, a plot of G as a function of 𝑟𝑐/λ. The values of λ were converted to Kn using 

Eq.(22). The results of all authors except for Tison agree well with our results. The results 

of Tison can be brought into alignment with all other results by multiplying the values of 

G by a scale factor of 1.64. The reason for the need for a scale factor for the Tison data is 

not known, but could be associated with turbulent flow near the inlet of his tube where 
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the high pressure gives a Reynolds number of ~ 10
5
. Note that the theory of Beskok and 

Karniadakis provides a good fit only to the data of Tison. 

 

Figure 11 Experimental nitrogen mass flow rates as a function of mean Knm fitted with Cha and 

McCoy theory (c0 = 6.5 ± 1.5). The data are for a pressure ratio Pi/Po of 3. 

Cha and McCoy assumed a value of 𝛼 of unity after considering a wide variety of gases. 

Fitting our data to the Navier-Stokes equations with first order Maxwell boundary 

conditions only in the slip flow regime (0.0048 < 𝐾𝑛𝑚  < 0.1) gives a value of 𝛼  of  

0.91 ± 0.051. Since the wall condition is constant throughout all flow regimes, it is 

noteworthy that we obtain a value of 𝛼 of 1.000 ± 0.032 in the Knudsen regime (using our 

data for 𝐾𝑛𝑚  > 5). This is a lower bound for 𝛼 in our tube since G asymptotes from 

below at large 𝐾𝑛𝑚 . The definition of 𝛼  used by Maxwell and Smoluchowski has 

recently been shown to be inappropriate for the molecular flow regime by Atrya et al. 

who point out that each reflection has a diffuse component and a specular component [3], 

so that Maxwell’s assumption that reflections are either fully diffuse of fully specular is 

not correct. Arya et al. [3] show by simulation that the use of Maxwell’s definition for 𝛼 
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and the Smoluchowski diffusivity (2 − 𝛼)/𝛼 greatly overestimate the flow at large Kn 

and that the modified Smoluchowski diffusivity for the flow at large Kn should be: 

 𝐷𝑚𝑆 = 1 −
2𝜋

ln 𝜖′

1 − 𝛼′

𝛼′
 (73) 

where 𝛼′  is defined as the ensemble average of the diffuse fraction, and 𝜖′  is cutoff 

parameter of the order of 10
-6

 [3]. Therefore, our value of 𝛼 of 0.91 ± 0.051 in the slip 

flow regime is consistent with the value of unity at large Kn. Our value of 𝛼 in the slip 

flow regime agrees with that found by Maurer et al. [15] in silicon wafer microtubes  

(0.87 ± 0.03), by Ewart et al. [4] in fused silica microtubes (0.933 ± 0.037) and  

Porodnov et al. [29] in glass tubes (0.925 ± 0.014). Despite the relative smoothness of a 

silica glass surface, we conclude that the walls of our silica tube are not smooth on the 

atomic scale using either definition of accommodation coefficient and there is no 

similarity to the behaviour of a carbon nanotube. We note that in cases where the walls 

are smooth it will be necessary to modify the equation of Cha and McCoy (Eq.(64)) by 

replacing the Smoluchowski diffusivity (2 − 𝛼)/𝛼 by 𝐷𝑚𝑆 in Eq.(73). 
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Table 4 Experimental results for the mass flow rate as a function of the inlet and outlet pressures 

in the tube. 

𝑲𝒏𝒎 Pi(Pa) Po(Pa) 𝒎̇(kg/s) 

0.0048 83790 27930 1.0197e-10 

0.0055 71820 23940 6.4537e-11 

0.0062 63840 21280 5.0081e-11 

0.0077 51870 17290 4.2835e-11 

0.0082 48279 16093 2.9126e-11 

0.0085 46816 15428 2.7101e-11 

0.0091 43890 14630 2.2145e-11 

0.0099 39900 13300 1.9059e-11 

0.0111 35910 11970 2.2550e-11 

0.0166 23940 7980 8.2841e-12 

0.0249 15960 5320 3.8325e-12 

0.0369 10773 3591 2.1154e-12 

0.0664 5985 1995 7.0232e-13 

0.0831 4788 1596 5.4381e-13 

0.0997 3990 1330 4.3421e-13 

0.1103 3591 1197 3.6676e-13 

0.1240 3192 1064 3.2460e-13 

0.1979 1995 665 1.6441e-13 

0.3584 1197 399 8.5155e-14 

0.3559 1117.2 372.4 8.4312e-14 

0.3987 997.5 332.5 6.8199e-14 

0.4530 877.5 292.6 6.2654e-14 

0.4983 798 266 6.0594e-14 

0.7935 518.7 172.9 3.7940e-14 

1.2458 319.2 106.4 2.1078e-14 

3.3222 119.7 39.9 6.3057e-15 

9.9666 39.9 13.3 2.7720E-15 

12.4583 31.92 10.64 2.1695E-15 
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(a) 

 

(b) 

Figure 12 (a) The experimental results of this work for reduced nitrogen flow rates G compared to 

reported values in the literature. Red dots show data of Ewart et al. [4], circles show data from  

Otani et al. [6], and pink triangles show data from Tison. [5] The solid line is the theory of Cha 

and McCoy (C&M theory) (Eq. (64)); (b) enlargement showing the fitting of c0 in the transition 

flow regime. 
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4.5 CONCLUSION 

We have shown that the theory of Cha and McCoy with the value of c0 of 6.5 ± 1.5 

provides an excellent fit to experimental measurements across all flow regimes for the 

flow of nitrogen in a silica capillary. A silica capillary can be used to provide a calibrated 

mass flow rate that depends only on a knowledge of the capillary length, diameter and the 

pressure difference. Our result enables an accurate mass flow of nitrogen to be delivered 

to a process. If the process requires admission into vacuum or near vacuum, only the inlet 

pressure requires measurement.  

The value we find of the Maxwell accommodation coefficient of 0.91 ± 0.051 agrees with 

all other measurements in the literature for nitrogen flow in silica. However, there will be 

cases for ultra-smooth walls where the Arya et al. [3] result for the diffusivity 𝐷𝑚𝑆 should 

replace the Smoluchowski diffusivity in the equation of Cha and McCoy (Eq. (64)). 
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Chapter 5 Enhanced Water Vapour Flow in Silica 

Microtubes Explained by Maxwell’s Tangential 

Momentum Accommodation and Langmuir’s 

Adsorption 

Maxwell introduced the TMAC in 1879 to describe boundary conditions in fluid flow [1]. 

Recent findings of anomalously high gas flow rates in carbon nanotubes show how 

smooth hydrophobic walls can increase specular reflection of molecules and reduce 

TMAC. Here we report the first measurements of water vapour flows in microtubes over 

a wide humidity range and show that for hydrophobic silica there is a range of humidity 

over which an adsorbed water layer reduces TMAC and accelerates flow. Our results 

show that this association between hydrophobicity and accelerated moisture flow occurs 

in readily available materials. We develop a hierarchical theory that unifies Maxwell’s 

ideas on TMAC with Langmuir’s ideas on adsorption. We fit the TMAC data as a 

function of humidity with the hierarchical theory based on two stages of Langmuir 

adsorption and derive total adsorption isotherms for water on hydrophobic silica that 

agree with direct observations. We propose structures for each stage of the water 

adsorption, the first reducing TMAC by a passivation of adsorptive patches and a 

smoothing of the surface, the second resembling bulk water with large TMAC. We find 

that leak testing of moisture barriers with an ideal gas such as helium may not be accurate 

enough for critical applications and that direct measurements of the water leak rate should 

be made. 
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5.1 INTRODUCTION 

The study of water flows, especially over hydrophobic surfaces, is of importance in many 

areas of scientific and technological interest including permeation through membrane 

channels [2-5], through carbon nanotubes [6-9], the formation of micelles [10] and 

biological self-assembly processes [11, 12]. Recent findings for liquid water flows in 

channels lined with hydrophobic aquaporins [3, 4] and in carbon nanotubes [6-9] show 

that the boundary conditions lead to large slip lengths and higher than expected flow 

rates. The flow of water vapour as well as the flow of liquid water has become very 

important in the understanding of the penetration of moisture through encapsulations 

designed to protect sensitive electronic devices such as active implantable prosthetics 

(“bionic” ears and eyes). Therefore, there is a need to investigate water vapour flows in 

hydrophobic channels to determine whether such effects are reflected in changes in 

TMAC and whether they translate to strongly enhanced water vapour flows. 

In the early years of the 20
th

 century, the regime of free molecular flow, in which the 

mean free path is larger than the channel width, was investigated as an application of the 

kinetic theory of gases. Knudsen [13] developed a formula for an ideal gas flow under the 

assumption that all molecules suffer diffuse reflections from the walls, an assumption 

which has been confirmed many times by experiment when the gas is in the free 

molecular flow regime. Flows of a wide variety of gases have been carefully studied in 

the years since Knudsen’s paper appeared, with one important exception: water vapour, 

the flow of which has received hardly any attention, probably because of the perceived 

experimental difficulty of controlling the adsorption of water to the walls of the flow 

channel. While Knudsen’s formula for free molecular flow assumed 𝛼 was equal to one, 
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Smoluchowski [14] allowed it to take any value between zero and one. More recently, it 

has been realized that the TMAC is a sensitive probe of molecule/surface interactions 

[15]. Flow rates of hydrogen [8], air [9], argon [8],[16], nitrogen [8],[16] and oxygen 

[8],[16] greatly exceeding Knudsen’s prediction have been found in carbon nanotubes, 

leading to the idea that very smooth hydrophobic surfaces do in fact lead to very small 

values of 𝛼.  

Silica glass was chosen for this study of the TMAC of water vapour because of its  

well-known water adsorption and its ability to show a transition from a hydrophilic to a 

hydrophobic surface by suitable heat treatment [17-20]. The hydrophobic form of silica 

glass is prepared directly from the melt or by heating above 600 K [21] and the 

hydrophilic form is obtained by hydroxylation of the hydrophobic form by reaction with 

acids or bases in aqueous solution. The water adsorption isotherms of the hydrophobic 

form differ significantly from those of the hydrophilic form [19]. Since adsorption 

destroys tangential momentum, it is conceivable that these adsorption observations could 

be linked with TMAC observations. A theoretical basis for linking Langmuir’s adsorption 

theory with the boundary conditions for flow (including the Maxwell TMAC) has been 

attempted by Myong et al. [22, 23] but there are no observations of both adsorption and 

TMAC on a single surface to test these ideas. An intriguing result has been found by  

Seo et al. [15] [24] in which a layer of water and ocatadecyltrichlorosilane (OTS) 

adsorbed on the surface of silica glass greatly reduces the value of TMAC that applies to 

incident nitrogen molecules. For the paper on water adsorption modifying TMAC, the 

nitrogen TMAC for both hydrophilic and hydrophobic silica glass has been measured [15] 

at various humidity levels using an atomic force microscope. For hydrophobic silica there 



 

72 

 

is a range of humidities that causes the nitrogen TMAC to fall to as low as 0.2 before it 

rises again to 1 as the saturation pressure is approached, a result regarded as unexpected 

and unexplained by Seo et al. They also found that a small TMAC is caused by OTS 

adsorption. The OTS films provide a smooth layer on silica and the stiffness of OTS films 

also plays a role at low temperature. If such effects applied to incident water molecules 

colliding with the walls of a channel, then the water vapour flow would be greatly 

affected.  

5.2 ADSORPTION AND CONDENSATION 

There are three possible components to the flow of a condensable vapour in a tube: gas 

phase flow, surface flow and tube condensate flow (where liquid plugs the tube). Gas 

phase flow where it approximates ideal gas behaviour is described by the methods of the 

previous sections for non-condensable gases. Surface and tube flows represent new 

contributions to the mass flow rate and they can make a larger contribution to the total 

flow than gas phase flow under some conditions. For example, surface diffusion alone 

can account for the majority of the total mass flow of moisture in nano-dimensional  

tubes [25], and the presence of tube condensate also can have significant effects on 

reducing or enhancing the flow, depending on the conditions. 

5.2.1 Adsorbed Layers 

Condensable gases such as water initially form monolayers and then multilayers on the 

surfaces of tubes and pores under isothermal conditions, producing a layer thickness that 

is time dependent before reaching an equilibrium value depending on the pressure of the 

vapour relative to the saturation vapour pressure. An overview of adsorption is provided 
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in the book by Butt et al. [26]. A distinction between adsorbed layers and subsequent 

condensate is somewhat arbitrary, but can be made in terms of the strength of interaction 

with the surface. The thickness of the adsorbed layer determines the mass flow rate 

through the tube, strongly influencing surface and tube condensate flow. The relation 

between the vapour pressure above a surface and the number of adsorbed particles per 

unit area at a given temperature is the adsorption isotherm. The theory of Brunauer, 

Emmett, and Teller (BET) for isothermal adsorption builds upon the more basic theory 

for monolayer adsorption derived by Langmuir by describing the build-up of multilayers 

each of which is described by Langmuir theory for a single monolayer. In the BET theory, 

the heat of adsorption for the first layer 𝑄1 differs from that of all further layers 𝑄𝑖 which 

are all equal to the heat of condensation of the liquid; 𝑄1 and 𝑄𝑖  influence the rate of 

desorption. Adsorption and desorption processes are only allowed to take place between 

the vapour and the immediate surface in the model, and adsorbed molecules are not 

allowed to move from one layer directly to another. 

The amount of adsorption at an interface is described by the function Γ which measures 

the number of molecules adsorbed per unit area. A plot of Γ versus the pressure 𝑃 of 

vapour at constant temperature is an adsorption isotherm. Adsorption where the 

sublimation energy is lower than 50 kJ/mol is typically referred to as physisorption, 

whereas adsorption within typical sublimation energies of higher than 50 kJ/mol is 

referred to as chemisorption and involves chemical reactions [27]. Substances with 

sublimation energies < 20 kJ/mol effectively do not adsorb as the available energy (kT) is 

of the same order as the sublimation energy. Here we consider physisorption, rather than 
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chemisorption, since a water flow will be most strongly influenced by reversible 

adsorption. 

 

Figure 13 Classification of four common adsorption isotherms for condensation on surfaces.  

(a) Langmuir isotherm for a single monolayer, (b) BET isotherm (for high values of the parameter 

𝑪 - see Eq.(76)), (c) BET isotherm (for low values of the parameter 𝑪), and (d) step isotherm, 

showing BET model at lower pressures and saturation at higher pressures, commonly seen in 

porous materials, which saturate when all pores have been filled. Reproduced with permission 

from Choi et al. [25]. 

All of the basic isotherms show an increase in the amount of adsorption as pressure 

increases. The normal Langmuir isotherm is a monolayer adsorption that forms the basis 

for the more complex behaviours. The BET adsorption isotherms show no saturation 

(Figure 13(b)) while the other type of BET isotherm (Figure 13(c)) shows saturation for 

high pressures. The BET isotherm in Figure 13(c) is relevant to porous materials. A 

feature of adsorption in porous solids is that on desorption, as pressure is reduced, 

hysteresis is often observed.  
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Experimental studies have been made of adsorbed water layers using ellipsometry [28] 

and atomic force microscope (AFM) [15] by measuring the thickness of the adsorbed 

layers. We will confine attention here to a range of materials having various affinities 

with water, as determined by the contact angles. For example, Tadros et al. [29] have 

studied water adsorption on polyethylene and have obtained the BET behaviour shown in 

Figure 13(c). Ellipsometry modeling of adsorption normally assumes a single adsorbed 

layer and therefore does not distinguish between a smooth layer conformal with the 

surface and an array of adherent droplets. We now discuss the mathematical description 

of the various adsorption isotherms. 

(1) The Langmuir Adsorption Isotherm 

A simple model to describe adsorption was presented by Langmuir in 1916 [30]. The 

model assumes that the surface contains a certain number of binding sites. Binding 

progresses until all sites are filled and the surface is saturated, with each site being able to 

be occupied once only, at which point a complete monolayer is reached. The amount of 

material adsorbed on the surface depends on the adsorption and desorption rates of the 

gas molecules from the surface binding sites: the adsorption rate is assumed to depend on 

both of the number of the vacant binding sites and the pressure, while the desorption rate 

is assumed to depend on the number of adsorbed molecules (the total number of binding 

sites reduce vacant ones). Equilibrium is reached when the adsorption and desorption 

rates are equal to one another. The particle number adsorption given by the Langmuir 

adsorption isotherm is: 

 Γ(P) = Γ𝑚𝑜𝑛

𝐾𝐿 𝑃

1 + 𝐾𝐿𝑃
 (74) 
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where Γ  is the particle number adsorption per m
2
, 𝐾𝐿  is the ratio of adsorption to 

desorption rate, known as the Langmuir adsorption constant, and Γ/Γ𝑚𝑜𝑛 is the relative 

coverage, and Γ𝑚𝑜𝑛 is the particle number adsorption per square meter in a full monolayer. 

We will use this isotherm to develop a theory for TMAC in this Chapter. 

(2) The BET Adsorption Isotherm 

The expression for the BET isotherm takes the form: 

 

Γ

Γ𝑚𝑜𝑛
=

𝑪

(1 −
𝑃
𝑃𝑠

) [1 +
𝑃
𝑃𝑠

(𝐶 − 1)]
 
𝑃

𝑃𝑠
 

(75) 

where 𝑃𝑠 is the equilibrium saturation vapour pressure, and 𝑪 is given by: 

 𝑪 = 𝑪𝐵𝑒(𝑄1−𝑄𝑖)/𝑅𝑇 (76) 

where 𝑅  is the ideal gas constant and CB is a constant that depends on the binding 

properties of the surface. Note that the ratio Γ/Γ𝑚𝑜𝑛  is a measure of the equivalent 

number of monolayers built up and becomes infinite as 𝑃/𝑃𝑠 →  1, which is expected 

because condensation then continues unabated.  

For large values of the parameter 𝑪, the binding of vapour molecules from the vapour 

directly to the surface is strong compared with the intermolecular interaction  

(see Figure 13(b)). For small values of 𝑪, the molecules prefer binding to themselves 

while the binding energy to the surface is lower (see Figure 13(c)). Therefore, in the case 

of low values of 𝑪, the first monolayer only forms at relatively high pressures, and once it 

has formed, it is easier for the next molecules to adsorb.  
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By calculating the number of layers that build up, Γ/Γ𝑚𝑜𝑛, it is possible to determine the 

overall thickness of the multilayer by multiplying the number of layers by the thickness of 

each layer. This is expressed as 

 𝑡𝑙 = (𝑛/𝑛𝑚𝑜𝑛)𝑉𝑡/𝑆𝑡 (77) 

where 𝑉𝑡/𝑆𝑡 is the ratio of specific volume to the specific surface area of the tube. 

5.2.2 Surface Flows 

Surface flows primarily occur in small tubes and porous media in which case the transport 

of adsorbed molecules competes with transport in the gas phase. During the period from 

the 1940s to the 1980s, surface flows attracted many researchers [31-34]. The starting 

point is a two dimensional form of Fick’s law [34] which for a cylindrical tube is: 

where 𝐷𝑠 is the surface diffusion coefficient, Γ′ is the surface concentration in particles 

per unit area of the condensed vapour. Compared to other flow modes, for example 

Knudsen flow, which has a dependence on 𝑟𝑐
3  and Poiseuille flow which has a 

dependence on 𝑟𝑐
4, the linear dependence on 𝑟𝑐 of surface flows causes them to dominate 

in small tubes if both surface and vapour flow modes occur together. 

Barrer [35] found that 𝐷𝑠 is in practice not constant with concentration as for example in 

the case of condensed metal vapour spreading on tungsten but increases with 𝐶𝑆 . 

Considerations arising from the confinement of flows to a surface are discussed in the 

work of Gilliland et al. [33] who made measurements on the flow of adsorbed SO2, CO2 

and NH3 and also found that the diffusion coefficient increases with 𝐶𝑆. Gilliland [33] 

 𝑛̇ = −2π𝑟𝑐𝐷𝑠

𝑑Γ′

𝑑𝑥
 (78) 
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proposed that a second adsorbed layer will show higher diffusion than the first layer 

because it is less strongly bound to the surface (see Figure 13(b)). For P/𝑃𝑠 of less than 

0.1 the slope of the isotherm for water on silica 
𝑑𝛤

𝑑𝑃
 is small. The value of 𝐷𝑠 is likely to be 

small for the first layers. A 𝐷𝑠  for water vapour on mica has been reported of  

3.85 × 10
-16

 m
2
s

-1
 at a P/𝑃𝑠 of 0.14 using atomic force microscopy [36]. In order to obtain 

an upper limit for the contribution of surface flows at low P/𝑃𝑠, the highest value from the 

range of reported values [33] gives a surface mass conductance of the order of  

5 × 10
-24

 m s. This very small value can be safely ignored in comparison to the vapour 

phase flow for small P/𝑃𝑠. However, when P/𝑃𝑠 exceeds approximately 0.6, condensation 

of liquid water dominates over the chain-like structure, 
𝑑𝛤

𝑑𝑃
, increases sharply, as may 𝐷𝑠 

and surface flows are expected to play a role. 

5.2.3 Laplace Pressure, the Kelvin Equation and Washburn theory 

When adsorbed layers grow thick enough, they may be considered as a liquid phase with 

the properties of a bulk liquid. The distinction between an adsorbed layer and a liquid is 

not always clear, but for our purposes the distinction is based on the extent to which the 

internal structure of the layer is modified by the presence of the surface. In a porous 

medium, corners and small cavities will be filled, forming liquids with curved surfaces. In 

a cylindrical tube, the adsorbed layers on opposite sites may join to achieve local tube 

filling, bounded by a curved meniscus. Consider an interface in a partially filled tube 

between a wetting phase (in our case liquid water), and a non wetting phase (in our case a 

gas consisting of air and water vapour), surface curvature causes a pressure difference 

across the interface termed the Young-Laplace pressure [26]:  
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 ∆𝑃′ = 𝛾 (
1

𝑟1
+

1

𝑟2
 ) (79) 

where ∆𝑃′ is pressure difference across the interface between the two phases, also called 

Laplace pressure, 𝛾 is the surface tension of the interface, and 𝑟1 and 𝑟2 are the principal 

radii of curvature of the interface. The curvature of the interface is related to the contact 

angle between the liquid and the solid. For a tube of circular cross section of radius 𝑟𝑐, the 

two principal curvatures are the same and are related to the tube radius by: 

 𝑟1 = 𝑟2 =
𝑟𝑐

𝑐𝑜𝑠𝜒
 (80) 

where 𝜒 is the contact angle. The water vapour pressure in the gas phase is different from 

its value above a flat water surface and is determined by the Kelvin equation. A 

consequence of this is that the condensed phase appears at a lower pressure in a tube than 

for condensation at a flat interface. The Kelvin equation is: 

 𝑙𝑛
𝑃𝑐

𝑃𝑠
= −𝛾

2𝑚𝑚𝑐𝑜𝑠𝜒

𝜌𝑘𝐵𝑇𝑟𝑐
 (81) 

where 𝑃𝑐 is the vapour pressure above the curved interface (condensation pressure in a 

tube), for water vapour at 25°C, 𝑃𝑠  = 3169.8 Pa and 𝛾  is surface tension of water  

(71.99 mN/m [26]).  

The interior surface of a tube has a cylindrical curvature and from Eq.(81), condensation 

will begin to occur in a tube with radius 𝑟𝐶at a pressure given by:  

 𝑃𝑐 = 𝑃𝑠𝑒
− 

𝛾𝑚𝑚
𝜌𝑘𝐵𝑇𝑟𝐶 (82) 

In a tube with surfaces of contact angle 𝜒, a fully developed meniscus with spherical 

curvature becomes stable at the vapour pressure given by:  
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 𝑃𝑐 = 𝑃𝑠𝑒
− 

2𝛾𝑐𝑜𝑠𝜒𝑚𝑚
𝜌𝑘𝐵𝑇𝑟𝐶  (83) 

The equation predicts that for the case where 2𝑐𝑜𝑠𝜒 > 1 (contact angles less than 60°) 

the spherical meniscus becomes stable at lower pressures in vapour than in liquid coated 

cylindrical wall. For contact angles greater than 90°, the spherical meniscus is convex and 

the Laplace pressure will tend to expel the liquid from the tube.  

Capillary filling occurs by Washburn flow [37] in which the unbalanced Laplace 

pressure of the single meniscus draws in the liquid from the outside reservoir against the 

frictional forces described by the Poiseuille law until the meniscus approaches its final 

position where it remains, allowing water to evaporate into the encapsulation. For short 

channels the meniscus will reach the outlet. For smaller channels the meniscus 

evaporation rate exceeds the mass flow rate for capillary filling so that the Washburn 

equation determines the flow rate: 

 𝑙2 =
(𝑟𝑐

2 + 4Ϛ𝑟𝑐)𝑃

4𝜇
𝑡 (84) 

where l is the distance between the meniscus and the inlet of the tube (shown in  

Figure 14), Ϛ is the slip length, a parameter determined empirically and described as the 

increase in tube radius required to give the observed flow. The parameter Ϛ characterizes 

the hydrodynamic boundary condition of the liquid at the tube wall. An expression for the 

slip length in terms of microscopic parameters describing the nature of the wall has been 

derived from considerations of the friction at the interface by Bocquet and Barrat [38]. 

For the driving pressure P, in our case, is Laplace pressure only (Eq. (79)) or a net force 

with atmospheric pressure: 

 𝑃 = 𝑃𝐴 +
2𝛾

𝑟𝑐
cos 𝜃 (85) 
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where 𝑃𝐴 is the atmospheric pressure. 

 

Figure 14 Schematic diagram for capillary filling that obey Washburn theory. The blue symbols 

are water molecules. One end of the channel is filled with liquid water, the other end of the 

channel is free of water. l could be the length of the channel (shown here) or smaller than it. 

5.2.4 Two-Phase Flow 

Two phase flows of water and humid air and water and water vapour (steam) in a tube 

have been reported [39, 40] for the case where there is a total pressure gradient. Various 

types of two phase flows in silica tubes have been observed using optical microscopy for 

20, 25 and 100 µm air-water flows and 50 µm steam-water flows [40] (see Figure 15(a)). 

Many geometrical arrangements of liquid and gas were observed, including annular flows 

with water on the tube surface with a core of vapour, slug flows of liquid water with 

gas/vapour in the spaces between slugs and flows where there are bubbles of gas/vapour.  

A recent example for two-phase flow in carbon nanotubes is reported by Rossi et al. [41]. 

A hydrophilic tube (water contact angle 5° and 15°) presents the interesting scenario that 

surface liquid coatings will be maintained on its walls and the tube will block with water 

liquid in several forms shown in Figure 15(b). The very high water conduction properties 

of the nanotubes are therefore maintained by surface flow. Such predictions are, however, 

based on the assumption that the microstructure of the liquid state when adsorbed in thin 

l 
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layers remains the same as for bulk water and therefore the vapour pressure is predictable 

on that basis.  

 

 

(a) (b) 

Figure 15 Two phase flows in (a) 25 μm diameter silica tube at nearly atmospheric pressure of air 

from Serizawa et al. [40]; (b) 200-300 nm diameter carbon nanotubes at temperature of 4°C with 

pressures of water vapour of (1) 5.5 Torr, (2) 5.8 Torr, (3) 6 Torr, (4) 5.8 Torr and (5) 5.7 Torr, 

showing the dynamic behavior of a water slug close to the open end of the tube. A transmission 

electron microscopy (TEM) image (6) shows a similar slug shape in a closed carbon nanotube. 

Figures in (b) are reproduced from Rossi et al. [41]. 

For a two-phase flow as shown in Figure 16, the flow rates may be determined by a 

combination of theories for liquid flow rate, vapour flow rate and evaporation rate from a 

meniscus. Flow across a phase boundary (e.g. menisci and drops) was studied by Birdi 

and Vu [42] who measured the evaporation rate from the surface of water drops into a 

surrounding gas at a constant total pressure. The rate of evaporation was found to be 

determined by the rate of self-diffusion of the vapour away from the liquid surface rather 

than the much higher rate at which molecules cross the phase boundary, giving a mass 

flow rate of: 
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 𝑚̇ = 4𝜋𝑟𝑐𝑚𝐷∆𝑐 (86) 

where 𝐷 is the self diffusion coefficient (m
2
/s), c is the molecular concentration derived 

from the ideal gas law: 𝑐 = 𝑃/𝑘𝐵𝑇 where P is the vapour partial pressure. For the case of 

water vapour interdiffusing into air, 𝐷 is the self-diffusion coefficient of water vapour 

into air; for the case water diffusing into vacuum, 𝐷 is the diffusion coefficient of water 

vapour into vacuum. 

 

Figure 16 A schematic diagram of a two-phase flow with two menisci. The blue symbols 

represent water molecules. One end of the tube is provided saturated pressure of water vapour and 

the other end of the tube is exposed to an environment without water. Water vapour condensates 

on the meniscus proximal to the inlet and evaporates from the meniscus. 

5.3 TEST APPARATUS AND PROCEDURE 

We use the two-chamber method and mass loss method for studying water vapour flow 

rates. The two-chamber method we use here is the same with that we used for nitrogen 

flow rates. Either 3 or 30 identical parallel 25 μm diameter tubes were used. When this 

method applied to water vapour, it is necessary to carefully measure the net rate of 

adsorption or desorption from the surface of the second chamber that makes a 

contribution to the pressure change additional to that from the flow of vapour through the 

tube. Since the saturation pressure of water vapour at 295.5 K is 2702.3 Pa, the maximum 

input pressure was 2128 Pa. Water vapour mass flow rates in the range of  

1 × 10
-13

 to 1 × 10
-15

 kg/s were possible for measurement.  
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For mass loss method, the glass vials (2 ml, Thermo Scientific, Australia) were charged 

with ~1.8 ml of water or mixture of water and glycerol, shown in Figure 17. We used 

aluminium sheet as lids for vials and punched it to make a little hole in the middle. Then 

put microtube samples through the hole and seal with epoxy resin (Selleys Araldite Super 

Strength, Australia). The lids with samples were sealed with epoxy resin onto the vials. 

After waiting for a curing period, we weighed to an accuracy of 100 μg. Three containers 

with different numbers of tubes formed an experimental set, together with the control 

having a resin seal and no tube. Mixtures of glycerol and water were made to vary the 

partial pressure of water vapour. We used 93.5% and 95% weight concentration of 

glycerol to mix with water to provide pressure of water vapour of 532 Pa and 425.6 Pa in 

the bottle [43]. For operation in vacuum the containers were placed in a vacuum chamber 

and slowly evacuated to less than 10
-2

 Pa. using a mechanical pump. The pressure in the 

vacuum chamber was measured using a manometer gauge. The silica microtubes were cut 

to 1 cm length for the measurements in this chapter. 

 

Figure 17 Schematic diagram of the mass loss method. 
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5.3.1 Measurement of adsorption rate 

Water vapour adsorbs strongly on stainless steel walls. Because of adsorption of water 

vapour, pressures in chambers decreased once water vapour purged into the test chambers. 

Deitz and Turner have showed that water vapour obeys BET adsorption isotherms on 

stainless steel [44]. Since the pressure in Chamber 2 is much lower than the saturation 

pressure in our test, the adsorption occurs fast and then trends to a constant value.  

For an example of water vapour experiments (Pi = 119.7 Pa, Po = 39.9 Pa shown in  

Figure 18), Stage I. shows the case that adsorption rate is faster than the flow rate and 

Stage II. shows the flow rate is faster than the adsorption rate. There is also desorption in 

both stages, while here we consider the sum of adsorption and desorption as background 

“outgassing rate” which corresponds to the black dots in Figure 18. The flow rate starts to 

be counted after the initial decrease (red dots in Figure 18) and then reduce the 

“outgassing rate”. Using this result, the exact flow rate is obtained using Eq.(71). Unlike 

the case for measuring outgassing rate for nitrogen tests, each input pressure of water 

vapour needs to be measured to obtain a corresponding “outgassing rate”, since 

adsorption rate is dependent on the input pressure. 
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Figure 18 An example of the pressure change in Chamber 2 with time during a flow rate testing 

(red dots). The inlet pressure is 119.7 Pa and the outlet pressure is 39.9 Pa. The black line shows 

the outgassing rate of Chamber 2 in the absence of a flow tube. 

5.4 RESULTS AND DISCUSSION 

We show in Figure 19 the results of our measurements of nitrogen and water vapour 

flows through the same silica tubes (see Figure 9) across a wide range of Knudsen 

number. The Cha and McCoy formula guides understanding of the water vapour flow 

results and a value of 𝑐0 of 5.0 and a TMAC of 1.0 were used for the theory line for water 

vapour of Figure 19. The experimental measurements for water vapour obtained using the 

two-chamber method show significant departures from the theoretical curve for mean 

Knudsen numbers in the restricted range 8 < 𝐾𝑛𝑚  < 25. Data for the mass flow rate 

measured by the mass loss method for the same tube for 𝐾𝑛𝑚  close to the saturation 

pressure limit (see Figure 19) show a very high mass conductance which we attribute to 

two phase and liquid flow modes. The mass loss results for values of 𝐾𝑛𝑚 of 1.825 and 

2.281 give flow conductances near the theory line of the Cha and McCoy formula, 

providing confirmation that there are two distinct ranges of 𝐾𝑛𝑚where the conductance 

I. II. 
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exceeds the theory line. To achieve this value of 𝐾𝑛𝑚  it was necessary to reduce the 

water vapour pressure by using a glycerol-water mixture [43]. To assist the interpretation 

of the results for water vapour, we delineate in Figure 19 (b) the regions of relative mean 

water vapour pressure (relative humidity) 𝑃𝑚/𝑃𝑠, where flows involving the liquid phase 

and where vapour-only flows occur. The region where 𝑃𝑚/𝑃𝑠 is close to unity is labeled 

“Two-phase and liquid flow”. Elsewhere in Figure 19(b), the phenomena will be 

interpreted as the result of changes in TMAC, indicated in Figure 19 (b) as “Variable 

TMAC”. 

Surface flow could in principle contribute to conduction across the whole range of 𝐾𝑛. It 

takes place when there is an imposed concentration gradient on an adsorbed layer. The 

mass conductance of surface diffusion is obtained from Eq.(78): 

 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
2𝜋𝑟𝑐𝐷𝑠𝑚 

𝐿

𝑑Γ

𝑑𝑃
 (87) 

For P/𝑃𝑠 of less than 0.6 the slope of the isotherm for water on silica 
𝑑Γ

𝑑𝑃
 is small. The 

value of 𝐷𝑠 is likely to be small for the ice-like layers. A 𝐷𝑠 for water vapour on mica has 

been reported of 3.85 × 10
-16

 m
2
s

-1
 at a P/𝑃𝑠 of 0.14 using atomic force microscopy [36]. 

In order to obtain an upper limit for the contribution of surface flows at low P/𝑃𝑠, the 

highest value from the range of reported values [33] gives a surface mass conductance of 

the order of 5 × 10
-24

 m s. This very small value can be safely ignored in comparison to 

the vapour phase flow for small P/𝑃𝑠. However, when P/𝑃𝑠 exceeds approximately 0.6, 

condensation of liquid water dominates over the chain-like structure, 
𝑑𝛤

𝑑𝑃
, increases 

sharply, as may 𝐷𝑠 and surface flows are expected to play a role.  
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(a) 

 
(b) 

Figure 19 (a) The mass conductance of the 25 μm hydrophobic silica capillary for nitrogen at  

298 K (black squares, same results with Chapter 4) and water vapour at 295.5 K (blue triangles) 

as a function of the mean Knudsen number Kn. The experimental data for nitrogen were measured 

using the two-chamber method [45], and the data for water vapour were measured by the  

two-chamber and mass loss methods. The solid curves are the theory of Cha and McCoy [46] for 

nitrogen (black) and water vapour (blue). The dashed curve is for water vapour flows that cannot 

be accessed at the test temperature (295.5 K) because of the formation of liquid water above the 

saturation vapour pressure. The pressure ratio is 3 for both nitrogen and water vapour for the two-

chamber method. For the mass loss method, the outlet is under vacuum. Only three data points are 

shown for the mass loss method. (b) The same water vapour flow measurements and theory as in 

(a) are here shown as a function of 𝑃𝑚/𝑃𝑠. The mass loss measurements are labeled with an arrow 

indicating the composition of the water/glycerol mixture used. The dashed line is a guide to the 

eye. The stars are results of a t test comparing theory and experiment ( p<0.001,  

p<0.01). The experimental points lie above the theory curve in two regions labeled as “Variable 
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TMAC” and “Two-phase and liquid flow” as discussed in the text. The blue cross hatching 

indicates the region of liquid flow and the adjacent red hatching indicates two-phase flow. 

5.4.1 Theory for Modifying TMAC with Water Vapour Pressure 

We obtained TMAC results for water vapour on hydrophobic silica from our data by 

fitting to the Cha and McCoy formula (Eq.(64)) with 𝛼  as the fitting parameter. The 

resulting TMAC dependence on 𝑃𝑚/𝑃𝑠 shows a strong reduction for very thin adsorbed 

water layers. We interpret this behavior as reflecting the properties of the adsorbed water. 

When any surface is exposed to water vapour, an adsorption takes place to produce a 

mass concentration 𝛤 of water molecules that depends on the surface, the temperature, 

and the partial pressure P of water vapour. At constant temperature, for a fluid with a 

saturation vapour pressure of 𝑃𝑠 , the dependence of 𝛤  on the ratio P/ 𝑃𝑠  at constant 

temperature is an adsorption isotherm. For water, 𝑃𝑠  is 2702 Pa at 295.5 K [47]. The 

adsorption isotherm for water on a hydrophobic silica surface has been measured in many 

works [17, 19, 20, 48-50]. Klier et al [19] obtained adsorption isotherms of water on silica 

glass with two different hydrophobicities, showing that progressive heating in vacuum 

removes hydroxyl groups and increases the hydrophobicity on the isotherms. Both 

surfaces show initial Langmuir-like adsorption, with the more hydrophobic surface, 

measured after treatment to 1073 K, more resistant to adsorption. At P/Ps of 0.4, the slope 

of the isotherm changes quickly, suggesting that a different adsorption mode (non-

Langmuir) dominates from this humidity level.  

We now develop a hierarchical model in which there are two adsorbed components. One 

component is unlike bulk liquid water and strongly bonded to the surface that acts as a 

passivation layer for subsequent adsorption. This layer is assumed to have a low TMAC 
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of 𝛼1. The second component is a bulk-water-like one with a higher TMAC of 𝛼2. The 

model is termed “hierarchical” because of the hierarchy of coverage, illustrated in (a). We 

use Langmuir adsorption for both components, following the work of Klier et al. [19] The 

dry surface of TMAC 𝛼0 is covered by a Langmuir adsorption of TMAC 𝛼1 onto the sites 

most attractive to water on the overall hydrophobic surface. These sites may be located at 

low points on the surface, and the effect of filling them is to smooth the surface for 

incoming water molecules, so that the TMAC of 𝛼1 is imparted to an area larger than the 

area actually covered by water molecules. The smoothed area is larger than the adsorption 

area by an enhancement factor 𝑓, which can be determined by observation of the mass 

coverage at small Pm/Ps. The occupancy of these sites ensures that the surface retains the 

ability to grow a subsequent layer with bulk-water-like properties, which, at least in its 

initial stages, we describe by a second Langmuir adsorption. This adsorption covers both 

the previous adsorption and any uncovered original dry surface and imparts a TMAC of 

𝛼2 to the area it covers. We write the isotherms for the fractional covered areas by the two 

adsorptions in the Langmuir form: 

 

𝛤1 =
𝐾1𝑥

1 + 𝐾1𝑥
 

𝛤2 =
𝐾2𝑥

1 + 𝐾2𝑥
 

(88) 

where 𝑥 is the ratio 𝑃𝑚/𝑃𝑠, and 𝐾1and 𝐾2 are the two Langmuir constants. The TMAC is 

then written as the weighted average of the three component TMACs where the weights 

are the exposed fractional areas determined by the hierarchical scheme of Figure 20 (a): 

 𝛼 = (1 − 𝛤1)(1 − 𝛤2)𝛼0 + (1 − 𝛤2)𝛤1𝛼1 + 𝛤2𝛼2 (89) 

This expression was fitted to the TMAC data (Figure 20(a)) using the values of 𝛼1, 𝐾1, 

and 𝐾2 as the fitting parameters. We assume a value of 1 for both 𝛼0 and 𝛼2, since we 
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find the dry surface and the fully wet surface both have a TMAC of 1. Other variables 

used here are obtained as well by fitting result as shown in Table 5. The fitting was 

carried out using an algorithm named Trust-Reqion. 

Table 5 Fitting results for variables in Eqs.(88) and (89). 

𝐾1 202.7 

𝐾2 16.5 

𝛼1 0.001 

Using these data, we calculated the adsorption isotherms shown in Figure 20(c). The 

initial water layer applies for small water vapour pressures and water-like layers dominate 

after 𝑃𝑚/𝑃𝑠 larger than about 0.1. The values for 𝛼1 are in agreement with Seo et al. [15] 

who describe an experiment in which nitrogen molecules in the presence of water vapour 

are reflected from silica glass. Within a narrow range of humidities, these authors found 

values of the nitrogen TMAC as low as 0.3, in agreement with our minimum value in 

Figure 20 (a). We used our values of the fitting parameters 𝐾1 and 𝐾2 to calculate a total 

adsorption isotherm of the form 𝛤 = 𝑆(
1

𝑓
𝛤1 + 𝛤2), where 𝑓 is the enhancement factor for 

the smoothing effect and S is a scale factor determined by fitting to experiment as shown 

in Figure 20 (b). Using the observations of Klier et al. [19] for a silica surface with the 

same heat treatment as our tube, we chose 𝑓 = 2.5 and S = 0.0002 to give a good fit. Other 

experimental observations by many authors for hydrophobic silica are shown for 

comparison in Figure 20 (b).  

The structure of very thin adsorbed layers of water on hydrophobic silica are not known, 

but their sum-frequency vibrational spectrum suggests a structure unlike that of bulk 

liquid water [51, 52]. A strong tendency for hydrogen atoms to be directed towards the 

hydrophobic silica surface in a strongly-bonded initial adsorption has been described in 
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several works, some of which refer to an “ice-like” structure [52-54]. Figure 20 (c) and 

Figure 20 (d) show two proposed configurations for the initial water layer on hydrophobic 

silica. The principles illustrated by these structures are that the deeper (more concave) 

parts of the surface are most attractive to adsorbing water molecules and that the coverage 

is limited to a small fraction of the total area. We propose that the initial layer, by filling 

depressions in the surface first, imparts a smoothing effect to the whole of the surface. 

Two possible structures are patches (Figure 20 (c)) or chains (Figure 20 (d)) of water that 

form with hydrogen bonds directed to neighboring molecules as well as to the surface. 

The effect is a suppression of further adsorption, once the attractive sites are filled, as 

well as a reduction of the TMAC. The effect on TMAC is a type of passivation in which 

the interactions of the surface with incoming molecules are minimized. Chain-like 

configurations of water have been proposed in a mechanism for single file flow though 

small hydrophobic channels [55]. The chain-like configuration of Figure 20 (d) allows 

water molecules to line up in single file on the surface in such a way that one hydrogen 

atom on each water molecule interacts with an atom on the surface and the remaining 

hydrogen atom is directed towards the oxygen atom of its neighbor in the chain. The 

chains may branch in such a way that they have a smoothing effect by filling the low 

points on the silica surface as they wander over it. In a study of water adsorbed on silica 

using density functional theory, Ma et al. [56] show that chain-like water clusters on the 

silica surface are energetically favorable.  



 

93 

 

 
(a) 

 
(b) 



 

94 

 

 
(c) 

 
(d) 

Figure 20 (a) TMAC obtained by fitting the Cha and McCoy theory (Eq.(64)) to the experimental 

data of water vapour in Figure 19. Also shown is the fitted line corresponding to the hierarchical 

two-component adsorption model of Eq.(89). The inset shows the adsorption hierarchy as 

overlapping circles. The yellow circle is the first Langmuir component that smoothes the surface 

and the overlapping blue component is the dominant water-like adsorption. (b) Adsorption 

isotherms of water on hydrophobic silica measured near room temperature by various authors 

(two heat treatments of HiSil silica from Klier et al.[19], silica particles (green) from  

Baker et al. [50], silica particles (dark blue) from Muster [20] and Aerosil-50 silica from  

Bolis et al. [49]). The solid line is our calculation based on the hierarchical adsorption theory, 

approximating the shape of the HiSil treated to 1073 K. (c) Schematic contour diagram of a 
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hydrophobic silica surface showing water molecules smoothing the surface by preferentially 

filling the depressions in a patch-like configuration. (d) The same contour diagram of (c) showing 

water molecules smoothing the surface by filling low points in a chain-like configuration. 

The experimental results of the flow rates of water vapour (shown in Figure 19) are 

summarized in Table 6. 

Table 6 Experimental results for the mass conductance as a function of the inlet and outlet 

pressures in the tube.  

Knm Pi(Pa) Po(Pa) 𝐶(m s) 

Three tubes 

0.45799 1596 503.272 1.1734e-16 

0.6134 1197 385.9095 1.1574e-16 

1.85872 399 123.5969 1.3912e-16 

6.42011 119.7 31.6287 3.9274e-16 

19.66863 39.9 11.9704 9.6260e-16 

Thirty tubes 

0.38009 2161.25 394.345 2.2255e-16 

6.25031 119.7 35.644 3.2450e-16 

17.62432 39.9 15.1972 3.3356e-16 

25.19975 31.92 6.6101 4.9044e-16 

29.49893 27.93 4.9847 8.6896e-17 

60.83638 11.97 3.99 1.5879e-16 

mass loss method 

0.35934 2702.3 0 4.9414e-14 

1.82509 532 0 1.2770e-16 

2.28136 425.6 0 1.4082e-16 

 

5.5 CONCLUSION 

This work has demonstrated using two different experimental techniques that water 

vapour flow rates are measurable with good precision, provided that the effects of two-

phase flows are understood and separated. The results show that hydrophobic silica walls 

enhance water vapour flows in a restricted range of relative humidity Pm/Ps by up to an 

order of magnitude. Application of extended Navier-Stokes theory interprets the cause of 
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the enhanced flows as a reduction of TMAC. The dependence of TMAC on humidity is 

explained by a model in which there is a hierarchy of adsorption of water on the 

hydrophobic silica. In such a hierarchical adsorption, the properties of the adsorbed layers 

are quite different, being distinguished by their effect on TMAC. The model shows how a 

measurement of TMAC and a measurement of the adsorption isotherm reveal different 

aspects of the same adsorption phenomenon. 

Our work shows the usefulness of TMAC as a sensitive probe of the properties of 

adsorbed layers. The extent to which water flow enhancements apply in cases of other 

channel wall materials is not known, but we recommend a direct measurement of 

moisture penetration for a component under test rather than relying on a helium or other 

ideal gas test, to ensure the flows are not underestimated. 
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Chapter 6 Interdiffusive Mass Flow Conductances 

of Water and Water Vapour through Micro- and 

Nano- Tubes in a Background of Air 

In this chapter, we investigate the theory and measurement of the mass flow rate of water 

through a tube consisting of a uniform air filled tube and the flow in the same tube in the 

absence of air. Such a study has not yet been reported in the literature. The outcomes of 

this study are important to the design and testing of encapsulations for preventing 

moisture ingress as well as to the building of knowledge of all the possible modes of flow 

of water in the vapour phase, the liquid phase and combinations of the two in the presence 

of a background of air. 

6.1 INTRODUCTION 

Knowledge of the rate of diffusion of moisture (liquid water and water vapour) through a 

channel is of relevance in the assessment of leaks in device encapsulations, the science of 

moisture barriers, water purification and in the prediction of the rate of water diffusion 

through soils on earth and regoliths on planets and comets. In this age of bionic implants, 

electronic devices are required to operate reliably for long periods in environments that 

contain both air and water. As devices such as the bionic ear and eye become widespread, 

it is critical that the resistance of their encapsulations to water penetration is quantified 

and understood to protect against failure. The discovery of graphene oxide membranes [1] 

that are highly selective to water penetration while impervious to helium gas has, on the 

one hand offered the possibility of higher performance water purification membranes 
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while on the other raising questions about the use of traditional helium leak testing as a 

quality control measure for water penetration.  

Water is present as ice on Mars and on the surface of comets where, as a result of low 

temperatures and pressures, it sublimes directly to the vapour. The rate at which water 

vapour penetrates the porous regolith determines how quickly it is lost to the vacuum of 

space. An understanding of how water is retained in these environments therefore 

depends on knowledge of the rate of flow of water vapour through pathways that may 

also contain other gases. From bionics to comets, there is a need to know how fast water 

penetrates channels especially when a background of air or another gas is present.  

It appears that there is a substantial gap in knowledge surrounding the flow of water 

vapour and mixed flows of water vapour and liquid water in channels. The flow of a great 

many other gases and vapours has been studied and it is surprising that, given its 

importance, the measurement of the flow of water vapour has been so neglected and 

related theory untested. Interdiffusive flows in channels, defined as flows of moisture as 

the diffusing species in a background of another gas, are especially important but have 

not been measured in a channel of known dimensions, preventing an adequate test of 

theory.  

6.2 THEORIES OF INTERDIFFUSIVE FLOW 

When there are two components, species 1 (defined as the permeant) and species 2 

(defined as the background) we are now concerned with the interdiffusive flows that 

occur when there is no total pressure gradient, but partial pressure gradients are 

maintained between the ends of the tube. The concentration gradients are such that 
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diffusion drives an intermixing of the components in the tube. Marrero and Mason [2] 

have discussed the calculation and measurement of the binary interdiffusion coefficients 

𝐷12 defined in Eq.(19). It can be shown that the interdiffusion coefficients are symmetric 

in the two species in order to maintain a constant pressure in an interdiffusing binary 

mixture, so that: 

 𝐷12 = 𝐷21 (90) 

The simplest case of binary interdiffusion, termed interdiffusive flow applies to a mixture 

of gases in a container where there are imposed partial pressure gradients along one 

direction x but no imposed total pressure gradients. It is not in principle possible to 

maintain a strictly constant total pressure in an isothermal interdiffusing binary mixture, 

since if the particles are different, the molecular velocities are in general not equal and 

collisions in the laboratory frame are in general not symmetric. A small pressure 

difference is in fact needed to maintain the equilibrium particle distribution. For example, 

one species will tend to diffuse more readily through the other, requiring a total pressure 

difference to establish an equal and opposite flux of the two species. Such pressure 

differences have been measured in tubes but can usually be neglected for larger 

containers (see Page 6 of Marrero and Mason [2]) and will be neglected here.  

6.2.1 Knudsen Interdiffusive Flow  

Here we consider three cases of binary gaseous interdiffusive flow, depending on the 

dimension of the tube and the mean free path of the molecules undergoing flow. For 

flows in which the critical dimension of the flow tube is smaller than the mean free path 

of the permeant in the background gas, a case known as Knudsen interdiffusive flow 

applies. The two gases diffuse independently of each other and the flow of the gas 
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specified as the permeant is given by the Knudsen formula for molecular flow. Knudsen 

interdiffusive flow obeys the same equation as ordinary Knudsen flow (Eq.(27)) since the 

background gas plays no role: 

 𝑚̇𝐾𝐼 =
𝜋𝑟𝑐

2𝐷𝐾

𝑘𝐵𝑇

𝜕𝑃1

𝜕𝑥
=

4√2𝜋𝑟𝑐
3

3
√

𝑚 

𝑘𝐵𝑇

𝜕𝑃1

𝜕𝑥
 (91) 

where 𝑃1 is the partial pressure of the permeant vapour. This equation applies to flows in 

the regime specified by values of the Knudsen number 𝐾𝑛 greater than 10. For example, 

for water vapour diffusing into air at atmospheric pressure for tubes smaller than 

approximately 120 nm, the mean free path in air at one atmosphere is comparable with 

the diameter of the tubes. The practical outcome is that for large tubes, the presence of air 

at atmospheric pressure will impede the diffusive flow of permeant, whereas for tubes 

smaller than 120 nm it will not provide any additional impedance.  

6.2.2 Interdiffusive Flow in the Absence of Boundaries 

In this case the flow is described by a diffusive process in which the boundaries are 

distant (mean free path between molecules is much smaller than channel diameter). The 

results of Section 3.1.2 can be used. From Eq.(19) deleting terms in the total 

concentration gradient and the temperature gradient, we obtain: 

 𝐽1 = −𝐷12

𝜕𝑐1

𝜕𝑥
= −

𝐷12

𝑘𝐵𝑇

𝜕𝑃1

𝜕𝑥
 (92) 

There are several theoretical approaches to the calculation of 𝐷12, as outlined in Chapman 

and Cowling P`258 [3], the simplest of which, described by Chapman and Cowling as a 

first approximation, applies to rigid elastic spheres: 
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where 𝑑𝑚12 is the average molecular diameter given by: 

 𝑑𝑚 =
𝑑𝑚1 + 𝑑𝑚2

2
 (94) 

where 𝑑𝑚1 and 𝑑𝑚2 are diameters of the two components respectively. 

The mass flow rate is: 
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(95) 

where 𝑃𝑇 is the total pressure. There are many works on the binary diffusion of water 

vapour in a background gas at atmospheric pressure, measured from the evapouration rate 

of the water (see Table 16 of Marrero and Mason’s paper [2]). Bogatyrev and  

Nezovitina [4] have measured the experimental values of the interdiffusion coefficients 

for many pairs of gases at various pressures other than atmospheric pressure. For the 

binary mixtures studied, it was found from measurement that the interdiffusion 

coefficients are not dependent purely on 1/P as implied in Eq.(93) since the product D12P 

shows a systematic decrease with increasing pressure, indicating that the actual value of 

D12 is less than that expected from Eq.(93) as pressure increases. Barajas et al. [5] and 

Bennett et al. [6] have presented a formula known as the Enskog-Thorne formula which 

applies to a binary mixture of hard spheres and gives an understanding of the behaviour 

of D12 as a function of pressure. While Thorne’s theoretical derivations of his 
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generalisations of the original work of Enskog were never published, they have been 

quoted for a long time in the literature (see [3]). 

6.2.3 Intermediate Interdiffusive Flow 

For tubes that are too large to ensure Knudsen interdiffusive flow and too small to ensure 

distant boundaries as in ordinary interdiffusive flow, there is an intermediate case 

discussed by Remick and Geankopolis [7] and Ernst and Hemond [8]. These authors 

considered Knudsen interdiffusive flow as one limit and ordinary interdiffusive flow as 

the other limit, and then combined the two limits using two equations (Eqs.(23) and (93)) 

corresponding to the two kinds of flows. Remick and Geankopolis first confirmed the 

theory for binary flows in the transition regime with experiment and then took the 

composition of the binary gases into account for the diffusion coefficient in the transition 

region. From their experiments, the diffusion coefficient in the transition region is only 

affected slightly by the composition, and the theory worked well for the test gases they 

used, N2 and He. Subsequently, Ernst and Hemond studied both monatomic and 

polyatomic molecules (Ar, benzene, and 1,1,1-trichloroethane) by mass spectrometer. 

Following Remick and Geankopolis’s results, they used the combination for specific 

conductance of transition regime without considering composition. We convert the 

specific conductance given by Ernst et al. to a diffusion coefficient: 

 𝐷𝑡 = 1/(
1

𝐷𝐾
+

1

𝐷12
) (96) 

At high total pressures Eq.(96) approaches 𝐷12 since 𝐷𝐾 is much larger than 𝐷12 and the 

ratio term dominates over the unity term. At low pressures Eq.(96) approaches 𝐷𝐾, but at 

intermediate total pressures Eq.(96) is used in regions of total pressure where it formally 
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does not apply. The formula is therefore a convenient interpolation derived empirically 

but at present has no rigorous foundation. This approach has been tested experimentally 

by Ernst and Hemond [8] who carried out a series of experiments using air as the 

background gas and argon, benzene, and 1,1,1-trichloroethane (TCA) as permeants. In the 

continuum flow regime, as expected, the experiment agrees with Eq.(96). The air 

injection initially caused advective flow of the permeants first in several seconds and then 

diffusive flow took place in opposite direction. In the transition flow regime 

corresponding to relatively low pressures, Knudsen diffusion is dominated. Eq.(96) works 

well for single atom molecules but overestimated for multiatoms molecules because 

multiatoms molecules have relatively high specific heats associated with their high 

internal energy storage capability. This capability makes their collisions less elastic, 

leading to less momentum transfer in each collision. In the slip flow regime 

corresponding to relatively high pressures, interdiffusive flow is dominant. In this case, 

Eq.(96) works perfectly for both monatomic and polyatomic molecules. This means 

inelastic collisions between multicomponent gases or vapours are only important in 

Knudsen diffusive flow. It is accurate to predict the diffusive mass flow rate for the 

monatomic gas helium irrespective of flow regimes, while the existing models have 

difficulties in predicting the diffusive mass flow rate of water vapour in the transition and 

molecular flow regimes.  

6.2.4 Liquid Flows 

The Poiseuille law (Eq.(42)) has an implicit assumption of no-slip boundary conditions 

which are not always obeyed. Neto et al. [9] have reviewed the literature on the 

conditions under which boundary slip occurs and have given examples of cases where the 
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boundary slip contributes significantly to an increase of flow. Extreme cases of boundary 

slip are the aquaporin hydrophobic tubes in cell walls [10] and carbon nanotubes [11]. 

While a positive correlation between the slip length and the contact angle has been 

reported in experimental studies [12, 13] as well as simulations [14, 15], some boundary 

slip can also occur at hydrophilic surfaces. The formula for liquid water flow with a slip 

length is: 

 𝑚̇𝑃−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
𝜋𝑟𝑐

4∆𝑃𝜌

8𝜇𝐿
(1 +

4Ϛ

𝑟𝑐
) (97) 

6.2.5 Surface and Two-Phase Flows 

Surface and two-phase flows will occur in interdiffusive flow and may enhance the flow 

rate when the inlet pressure is close to the saturation pressure. Equations for surface flow 

and meniscus flow rates are detailed in Section 5.2.2 and 5.2.4. 

6.3 EXPERIMENTAL METHODS 

We use the mass loss method discussed in Chapter 5 to measure the interdiffusive flow 

rates. The set of containers (1, 2 and 3 tubes with a control vial samples) were placed in a 

desiccator containing silica gel desiccant and weighed every few days. Mixtures of 95%, 

93.5%, 90%, 84%, 70% and 50% of glycerol by weight were used, corresponding to the 

partial pressure of water in the bottle 425.6 Pa, 532 Pa, 771.4Pa, 997.5 Pa, 1729 Pa and 

2128 Pa respectively [16]. The silica microtubes were cut to 1 cm length for the 

measurements in this chapter. Three ways of using the vials are shown in Figure 21. The 

first one is that microtubes were not connected with liquid water in the vial, in which 

case, the inlet pressure depends on partial pressure of water vapour inside the vials. The 

second one is that microtubes were connected with liquid water at the inlet, therefore the 
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inlet pressure is Laplace pressure with additional 1 atm. The third one is that microtubes 

samples were connected with liquid water and the inlet pressure is the same with the 

former one. The experimental results were shown in Table 7. 

 

Figure 21 Schematic diagram for the mass loss method. 

6.4 RESULTS AND DISCUSSION 

The results for the mass conductance for atmospheric interdiffusive flows for the 25 μm 

diameter tube as a function of the mean partial pressure of water vapour in the tube are 

shown in Figure 22(a) and as a function of the inlet partial pressure of water vapour are 

shown in Figure 22(b). Two plots are shown with different independent variables since 

the inlet partial pressure determines the likelihood of the formation of liquid water slugs 

inside the inlet of the tube, while the mean partial pressure more accurately determines 

the average 𝐾𝑛  of the flow. Theoretical predictions for Poiseuille liquid water flow 

conductance and the interdiffusive water vapour conductance in air are shown as dashed 

and dashed-dotted lines respectively. When the inlet pressure approaches the saturation 

pressure of water, there is a possibility of two phase flows, since liquid water may 

condense at the inlet of the tube to form a liquid annular, slug flow or bubbly flow [17]. 

The presence of two phase flows with both liquid and air/vapour phases may be the 

reason that the experimental observation for interdiffusive flow of water vapour in air 

exceeds the theoretical prediction. At the highest value of 𝑃𝑖/𝑃𝑠, the excess conductance 

is approximately two orders of magnitude higher than theory (see Figure 22(b)). When 
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the inlet water vapour pressure is reduced by the presence of 50% glycerol, the flow 

conductance is greatly reduced and is progressively further reduced by the presence of 

84% and 95% glycerol. The theoretical result for flows of water vapour in the absence of 

air using the formula of Cha and McCoy is shown in Figure 22 as a solid line. Our 

observation of detailed plots of mass loss as a function of time reveals two different types 

of behaviors as shown in Figure 22 (c), only one of which gives a steady flow as a 

function of time as implied in the above description. In the second type of behavior, there 

are sudden increases or “jumps” in the mass loss at a certain times, due to small pressure 

or temperature changes of the environment. The experimental results of interdiffusive 

flow of water vapour are summarised in Table 7. 

 
(a) 
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(b) 

 

Figure 22 Water conductance in 25 µm silica tubes as a function of the ratios of (a) mean water 

vapour pressures to saturation pressure and (b) inlet water vapour pressures to saturation pressure. 

The data points for water vapour flows only are shown as solid symbols, while the data points for 

interdiffusive flows in air at one atmosphere are shown as hollow symbols. (a) The red patterned 

zone on the right is where two phase flows occur and the blue patterned zone is where tube filling 

is expected and Poiseuille flow will apply; (b) Arrow A indicates the excess flow caused by two 

phase flow for an interdiffusive flow situation (combination interdiffusive flow Eq.(96)). Arrow 

B indicates the excess flow caused by two phase flow for a water only situation (no background 
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of air). Excess vapour flow arising from reduced tangential momentum accommodation is shown 

as cross hatching. (c) Two examples of interdiffusive mass losses as a function of time for one, 

two and three tubes operating in parallel. The rapid mass loss increases “jumps” for two and three 

tubes shown in Group 2 are attributed to occasional ejection of liquid slugs. 

Table 7 Experimental results for the mass conductance as a function of the partial pressure of 

water vapour at inlet and outlet of the tube.  

Weight 

Concentration of 

Glycerol 

Pi (Pa) Po (Pa) C (m s) 

95% 425.6 0 8.48784e-18 

90% 771.4 0 1.22641e-17 

84% 997.5 0 1.257e-17 

70% 1729 0 1.79752e-17 

50% 2128 0 1.55146e-17 

0 2702.3 0 2.18015e-15 

The aim of a testing procedure is to detect the presence of flow paths through tubes that in 

practice might be described as “leaks”. It is important to discriminate between tests done 

in the absence of air and tests done in the presence of air, since this determines whether 

interdiffusive flow applies. It is also important to determine whether the liquid water is 

likely to be present at the inlet by considering the partial pressure of water vapour in 

comparison to the tube condensation pressure 𝑃𝑐  as determined by the Kelvin  

equation (Eq.(81)). 

6.5 CONCLUSION 

We have found using two different experimental methods, that water vapour flows in the 

presence of air have contributions from vapour flow and at least one flow mode involving 

the liquid phase. In applying the results of this work to the measurement of the moisture 

flow rates through very small leaks, it is important to recognize that the slip length for 

liquid water flows is the critical parameter in determining whether it is possible to 

estimate the flow from a gas penetration test using helium. Since the slip length for water 
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is not known from a helium penetration test, a significant recommendation of this work is 

that encapsulations requiring high levels of water hermeticity should be tested directly for 

their water leak rate rather than relying on a test using an ideal gas surrogate such as 

helium. 
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Chapter 7 Recommendations for Hermeticity 

Testing 

Based on the theories for various leak types we discussed above, theory of Cha and 

McCoy (Eq.(64)) for ideal gas, Poiseuille flow (Eq.(42)) for liquid, meniscus evaporation 

into air and vacuum (Eq.(86)), Washburn theory for capillary filling (Eq.(84)), surface 

flow (Eq. (78)), we know that the flow rates for various type of leaks are different. To 

predict accurate flow rates for a known structure channel or material, it is important to 

confirm the leak type first. Channel size is another important factor to be considered, 

since unexpected phenomenon of moisture penetrating occurs in carbon nanotubes. In this 

chapter, we summarise the experimental results described in previous chapters and 

compare them with theories for a wide range of channel diameter (0.1 to 10
5
 nm).  

For making a bridge between our 25 μm channel and carbon nanotubes from literature, 

we measured flow rates for 1.7 μm channel (Polymicro Technologies, Australia) using 

mass loss method under three conditions (see Figure 21): channels above liquid water 

surface; one end of channels immerged in liquid water surface; channels immerged in 

liquid water and vials inverted.  

In Figure 23, we show four types of leak (a-d) that allow moisture to penetrate an initially 

dry chamber that may contain air. These leak types are intended to represent real cases for 

an encapsulation operating in an environment such as the human body. The outside 

environment is either saturated humid air as in leaks a and b, or liquid water as in leaks c 

and d. Data from the literature is supplemented by our new experimental results in  



 

117 

 

Figure 23 to show the state of agreement between theory and experiment for the four 

kinds of water leaks. For purposes of comparison, we have converted the flow rate to that 

for a 1 mm channel. 

Type a leaks are a flow of water vapour in a channel that may also contain air or other 

gases, with a possible contribution from a surface diffusive flow in which a very thin 

layer of adsorbed water molecules on the channel wall diffuses into the chamber.  

Type b leaks have one or more slugs of liquid water condensed in the channel. Such slugs 

form readily in small channels, even when the vapour pressure at the inlet is less than the 

saturation pressure, as the Kelvin pressure for capillary condensation is always less than 

the saturation pressure. Without a total pressure gradient, the flow takes place by 

condensation onto the meniscus nearer the inlet and evaporation from the meniscus nearer 

the outlet. In the absence of a background gas, there is a pressure gradient in the slug 

caused by the vapour pressure gradient across the channel. In the presence of a 

background gas that maintains a constant total pressure on both sides of the slug, liquid 

flow could occur by drying and refilling of the slug. If the total pressure is not maintained 

constant, small “adventitious” pressure gradients arising from changes in atmospheric 

pressure or changes in ambient temperature can cause flow. 

Type c leaks are driven by capillary filling from a reservoir of liquid water at the inlet. A 

single meniscus forms in the channel, with a continuous connection to the much larger 

volume of water outside. Water is drawn in by the Laplace pressure difference across the 

meniscus, a very large pressure for small channels. The channel fills, as described by the 

Washburn model [1] enabling water vapour to enter the encapsulation as the meniscus 
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nearer the outlet evaporates. Under some conditions the evaporating meniscus reaches the 

outlet as shown in Figure 23. 

Type d leaks occur when there is a reservoir of liquid water at both inlet and outlet. This 

occurs when the encapsulation contains accumulated excess water that is present at the 

channel outlet. The channel is completely filled with liquid and both entrance and exit are 

connected to liquid reservoirs so that no meniscus forms in the channel. The flow is 

driven entirely by environmentally imposed or adventitious pressure gradients. 
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Figure 23 Schematic diagrams of four types of moisture leak (a-d) and corresponding theory for 

the molar flow rate as a function of channel diameter for 1mm long channels. The points for type 

a leaks are our experimental results for water vapour interdiffusion into air (1 atm) at five relative 

humidities, matching interdiffusion theory; The points for type b leaks are our measurements for 

saturated air at the inlet. For the 25 μm channel, a meniscus is present that limits the flow; For 

channels smaller than 1.4 μm (pressure difference of 1 atm) or 4.4 μm (pressure difference of 

saturation pressure, Ps), Poiseuille flow will limit flow, as shown for our experimental point at 1 

μm where evaporation is into air; The points for type c leaks for the 25 μm channel are for the 

case where air is present at 1 atm, limited by meniscus evaporation into air; for the 1 μm channel 

the points refer to the case when only water and its vapour are present, limited by meniscus 

evaporation into vacuum; the points for 2 nm and 20 nm channels are those of Lee and Hwang [2] 

and Tzevelekos et al. [3] respectively which agree with Washburn flow for 88° contact angle and 

no slip; The theory for type d leaks is Poiseuille flow, driven by either 1 atm pressure difference 

or saturation pressure difference, at slip length of 24.26 μm. The points for type d leaks at 25 μm 

and 1 μm are our measurements and the other points are for carbon nanotubes: theoretical 

simulation results from Li et al. [4] (squares), Thomas and McGaughey [5] (circles) and Thomas 

et al. [6] (triangles) and experimental results from Holt et al. [7] (filled circle), Majumder et al. [8] 

(filled square), Majumder et al. [9] (filled diamond) and Du et al. [10] (filled triangle). 

For a Type a leak, the flow of moisture through the channel is driven by a concentration 

gradient of water vapour. The flow is carried partly by water vapour flow and partly by 

surface diffusion. Surface diffusion is important only for nanodimensioned leaks and its 

flow rate is described in Section 5.2.2. Surface flows with a surface diffusion coefficients 

of 0.2 m
2
/s and 12 m

2
/s is, which are the lowest and the highest values among those 

reported for various gases [11]. When air is present with no total pressure gradient, the 

flow is described by interdiffusion theory (Eqs.(91) (95) (96)). The mass flow rates of 

Eqs.(91) (95) (96)) are converted to molar flow rates of H2O with saturated air outside the 

encapsulation and dry air inside, both at 1 atm. The results are shown in Figure 23. Water 

vapour flow in the absence of air and helium flow also in the absence of air (relevant for a 

helium leak test) are also shown. These latter two curves are calculated from the equation 

of Cha and McCoy (Eq.(64)). We use a value of α of 1 and 5 for c0 for both water vapour 

and helium. The experimental points shown in Figure 23 for the type a leak are our results 

for a 25 μm silica tube at five relative humidities close to but less than Ps. The 

experimental points lie just below the theory line as expected. 
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For a Type b leak, we consider only the highest flow case, where the slug fills the 

channel. Without a total pressure difference, the flow consists of condensation of vapour 

onto one meniscus, classical Poiseuille flow in the slug and evaporation from the other 

meniscus. Interdiffusive flow across a phase boundary (e.g.: menisci and drops) was 

studied in Section 5.2.4 (Eq.(86)). In Figure 23 for type b leaks, the meniscus evaporation 

rate limits the flow. Evaporation takes place into vacuum or air depending on the 

application. The limiting flow rate for tubes larger than approximately 1.4 μm (pressure 

difference of Ps) and 4.4 μm (pressure difference of 1 atm) is given by Eq.(86), while for 

smaller channels the Poiseuille flow provides the limit. In Figure 23 two cases of 

Poiseuille flow are shown, depending on the driving pressure difference (1 atm or Ps). 

The meniscus may withdraw into the channel as evaporation takes place, whereupon 

Kelvin capillary condensation acts to refill the channel. An oscillatory solution for this 

type of flow has been discussed by Rand [12]. Changes in atmospheric pressure or 

changes in temperature cause this type of flow to “surge” as liquid slugs are ejected and 

reform, named “jumps” (Figure 22(c)). Our experimental results for the 25 μm channel 

are for evaporation into air and into vacuum and agree with the limit imposed by 

meniscus evaporation into air and vacuum. Our experimental results for the 1 μm channel 

are for evaporation into vacuum with relative large fluctuations because of jumps. 

In the Type c leak, capillary filling occurs by Washburn flow [1] in which the unbalanced 

Laplace pressure of the single meniscus draws in the liquid from the outside reservoir 

against the frictional forces described by the Poiseuille law until the meniscus approaches 

its final position where it remains, allowing water to evaporate into the encapsulation. For 

short channels the meniscus will reach the outlet. For smaller channels the meniscus 
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evaporation rate exceeds the mass flow rate for capillary filling so that the Washburn 

equation (Eq.(84)) determines the flow rate. The Washburn flow rate is shown in  

Figure 23 as a function of channel diameter for contact angles of zero and 88
o
 (as an 

example for relatively hydrophobic channel) without slip (Ϛ = 0). A contact angle of zero 

gives a higher Washburn flow rate because the Laplace pressure difference across the 

interface depends on the surface curvature, highest for the smallest contact angles. The 

orange zone in the figure defines the most probable range of Washburn flow rates that 

would be encountered for a hydrophobic channel with contact angle of 88°. The lower 

limit is defined by zero slip length and the upper limit is defined by the largest observed 

slip length in carbon nanotubes [5] (Ϛ = 24.26 μm). Additional atmospheric pressure 

difference across the channel provides a higher flow rate when the diameter is larger than 

4.5 μm while for small channels, the Laplace pressure is so large that the effect of an 

additional 1 atm pressure is not observable. For the channels larger than about 200 nm, 

Washburn theory with additional 1 atm is close to Poiseuille flow with 1 atm as a total 

pressure gradient. For our 1 and 25 μm channels, the experimental results, in the case 

where the channels immerged in liquid water (shown in Figure 21), may either from type 

c or type d leaks. 

For the type d leak, viscous liquid (Poiseuille) flow applies (Eq.(42)). In the absence of a 

total pressure gradient, this leak would produce no flow, but if there were a total pressure 

gradient of 1 atm, the flow rate would occur. This flow rate is useful for comparison with 

the other leaks in cases since adventitious or environmentally imposed pressure gradients 

are common in applications: for example, 1 atm total pressure gradient could occur if the 

encapsulation were immersed under water to give an external pressure of 2 atm, while the 
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interior remained at 1 atm. In some channels, slip flow may apply, giving an accelerated 

flow determined by the slip length. The recent availability of nanodimensioned channels 

in the form of carbon nanotubes and carbon nanopipes has enabled measurements in very 

small channels of well-defined dimensions [7-10] that reveal flow rates of liquid water 

greatly exceeding the Poiseuille result with no slip. These results are shown in Figure 23 

for type d leaks. For liquid water Poiseuille flows, the excess flow is attributed to slip 

flow against the smooth walls. In Figure 23 we show the Poiseuille flow as the blue 

regions (light blue: pressure difference of saturation pressure, dark blue: pressure 

difference of 1 atm) defined by a lower boundary with no slip boundary conditions and an 

upper boundary defined by a slip length of 24.26 μm that is the largest obtained from 

Thomas and McGaughey [5]. The experimental point for the 25 μm channel (the same 

with type c) is smaller than both the Washburn theory with additional 1 atm and 

Poiseuille flow (1 atm). The experimental point for 1 μm channel (the same with type c) 

agrees better with the limit imposed by Washburn flow than Poiseuille flow for 

evaporation into vacuum with an additional 1 atm imposed pressure. 

It is clear from this work that a helium leak test has limitations for predicting moisture 

penetration rates. For a type a leak, the helium flow rate overestimates the flow of water 

at all scale sizes. The overestimation is most severe for large channels in the presence of 

air, where interdiffusive theory operates. For small channels in type a leak, the correction 

factor expected from Graham’s law, namely 0.53 can be applied. For a type b leak, 

helium flow approximates water flow for channels large than about 1 μm, while for 

smaller channels, it ovestimates the Poiseuille flow that limits water flow, except if large 

slip length applies. For a type c leaks, He flow underestimates flow at all scale sizes. The 
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underestimation is most severe at small scale sizes, even when slip flow does not apply, 

but when it does apply, the water flow could be as much as 8 orders of magnitude higher. 

For type d leaks, helium flow underestimates water flow at large scale sizes and at small 

scale sizes in the presence of slip. The results of comparison between helium flow rate 

and moisture flow rates are summarized in Table 8.  

Table 8 Flow modes that exceed He for a 1 mm length channel, for various channel diameters. 

Diameter 

(nm) 

Flow 

types 
Flow modes exceeding He 

<10 

Type b Meniscus evaporation into air/vacuum 

Type c Washburn theory 

Type d Poiseuille flow (1 atm/Ps) with slip length 

10~350 

Type b Meniscus evaporation into air/vacuum 

Type c Washburn theory 

Type d 
Poiseuille flow (1 atm) with or without slip length, Poiseuille 

flow (Ps) with slip length 

350~7 × 10
4
 

Type b Meniscus evaporation into vacuum 

Type c Washburn theory 

Type d Poiseuille flow 

> 7 ×10
4
 

Type c Washburn theory 

Type d Poiseuille flow 

There is a straightforward comparison of water vapour and helium molar flow rates in the 

molecular flow regime corresponding to the elementary relation known as Graham’s Law, 

giving the result for the ratio of the molar flow rate of water vapour to that of helium for 

the same mean pressure is given by √𝑀𝐻𝑒/𝑀𝐻2𝑂 =0.471. In our calculation on the basis 

of the theory of Cha and McCoy (Eq.(64)), the ratio of molar flow rate is 0.471 which for 

ideal gases is the same with the result of Graham. The only experimental measurement of 

the ratio of helium to water vapour flow rates available in the literature appears to be that 

of Lee and Hwang [2] for flows in porous Vycor glass at 70°C where the tube size was 

estimated to be 2 nm. From Figures 5 and 8 and Table V of their paper, it is possible to 
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obtain a value of 0.41 for the ratio of volume permeabilities of helium to water vapour at 

a temperature of 70°C. This compares well with the theoretically derived ratios.  

In this chapter, we have defined four types of moisture leak and developed theory for 

predicting their water and helium gas flow rates, both in the presence and absence of a 

background gas. For nanoscale channels the theory has been validated by comparison 

with results in the literature. The behaviour of water in leaks is surprisingly diverse and in 

some cases remarkably efficient, so much so that the use of a simple helium leak test for 

predicting the hermeticity of an encapsulation is not adequate. In cases where Laplace 

pressure drives capillary filling, a helium leak test will severely underestimate flow and if 

slip boundary conditions also apply, the underestimation can be as high as 8 orders of 

magnitude. We conclude that helium is not a reliable reference for moisture testing. 

Encapsulations requiring high levels of water hermeticity should be tested directly for 

their water leak rate rather than relying solely on a test using an ideal gas surrogate such 

as helium. 
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Chapter 8 Conclusion 

The subject of ultra-fast flows in nanotubes and new membrane materials such as 

graphene oxide has attracted many researchers and is developing quickly. Holt et al.,  

Majumder et al. and Nair et al. all demonstrated enhanced water liquid flow in carbon 

nanotubes and Holt et al. also showed enhanced air flow rates. In contrast, Gruener and 

Huber did not find the enhanced flow rates in silicon nanotubes. This thesis provides 

understanding of water behaviour in micro- and nano-tubes theoretically and 

experimentally and fills the gap in knowledge of water vapour flows with and without air 

as background transporting through microtubes. 

The main findings of this thesis are that (1) nitrogen flow obeys the theory of Cha and 

McCoy with different TMAC in slip flow regime and molecular flow regime. The 

extended theory based on the theory of Cha and McCoy with Arya’s diffusivity should 

replace Smoluchowski’s diffusivity for ultra-smooth channels. (2) Water vapour 

transporting in microtubes has close relation with the surface properties of the channel. 

Hydrophilic channels provide 𝛼 = 1 for water vapour because water molecules prefer to 

adsorb on the hydroxyl groups on the surface of the channel, which provides a diffusive 

reflection. Hydrophobic channels provide a small value of 𝛼 because the groups on the 

surface of channel prefer to repel the incident water molecules. The repelled water 

molecules could gather into the lower topography on the surface and form chain-like 

groups to smooth the wall surface, which provides a specular reflection. This specular 

reflection only occur in a limited range of relative humidity since when the surface is 

fully covered with water molecules it will behave like a hydrophilic surface then. In this 
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limited range of relative humidity, enhanced flow rates of water vapour than expected 

from the theory of Cha and McCoy are obtained. When the relative humidity is close to 1, 

two-phase flow occurs, which provides another enhanced flow rates. (3) Interdiffusion 

theory has been tested for interdiffusive flow of water vapour. It shows that experimental 

results obeys the theory when the relative humidity is smaller than 1. Two-phase flow 

also occurs when the relative humidity is close to 1 as the case for water vapour flow only. 

(4) Four types of leaks has been developed. Theories for vapour phase, liquid phase and 

two-phase flows of water with and without atmospheric air as background gas have been 

plotted as a function of channel diameter. The comparison of flow rates from these 

theories and helium flow rates shows that helium leak testing as a commonly used method 

in industry underestimates moisture leak rates for type c and d leaks much (up to 8 orders) 

and part of type b leaks. Therefore, encapsulations requiring high levels of water 

hermeticity should be tested directly for their water leak rate rather than relying solely on 

a test using an ideal gas surrogate such as helium.  

For further study, there are several areas can be further investigated: 

(1) Test method: We used two test methods in this thesis: the two-chamber method 

and the mass loss method. They both have limitations which are that the 

outgassing rate of the chamber for the two-chamber method and accuracy of the 

microbalance for the mass loss method. Therefore, the methods we used cannot 

measure flow rates for small tubes (< 1 µm) during a proper period. To solve this 

problem, mass spectrometry will be a good method. 

(2) Surface modification: The microtubes we used were heated to 1000°C during 

manufacture. This is one way of surface modification. If we could treat the surface 
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using other methods, such as plasma surface treatment or chemical solution 

immersing, we could obtain a comprehensive understanding on the relation 

between TMAC and surface conditions. 

(3) Nanotubes: We only did theoretical predictions for nanochannels but no 

experiments. As far as we know, there are no studies on water vapour transport 

through nanotubes yet. 

 



 

 

Appendix: Nomenclature 

 

𝑚̇ mass flow rate 

A 
cross sectional area of 

the aperture 

C mass conductance 

∆𝑃 pressure difference 

𝑃𝑖 
pressure on the inlet side 

of the membrane/tube 

𝑃𝑜 

pressure on the outlet 

side of the 

membrane/tube 

𝑛̇ particle flow rate 

𝑚𝑚 molecular mass 

𝑉̇ volume flow rate 

𝜌 fluid density 

𝑣̅ average flow velocity 

c particle concentration 

𝑃𝑇  total pressure 

𝑃1 or 𝑃2 partial pressure 

V volume 

n number of particle 

𝑘𝐵 Boltzmann constant 

T temperature 

𝑐1 or 𝑐2 partial concentration 

𝐷𝐹 
Fick’s law diffusion 

coefficient 

𝑢̅𝑚 mean molecular speed 

𝜆 mean free path 

𝑑𝑚 molecular diameter 

𝑃𝑚𝑎𝑠𝑠 mass permeability 

𝑙 thickness of medium 

𝑐𝑖 

internal concentration in 

the inlet side of 

membrane 

𝑆𝐻 henry law solubility 

𝑃𝑣𝑜𝑙𝑢𝑚𝑒 volume permeability 

𝑘 
intrinsic Darcy’s law 

permeability 

𝜇 dynamic viscosity 

𝐽1 particle flux of species 1 

𝐷12 
mutual Fick’s law 

interdiffusion coefficient 

𝐷𝑇 
thermodiffusion 

coefficient 

𝑅𝑒 Reynolds number 

𝑑ℎ hydraulic diameter 

𝑝𝑤 
wetted perimeter of the 

tube 

𝐾𝑛 Knudsen number 

𝑙0 
characteristic dimension 

of the tube 

h 
height of rectangular 

tube 

𝑟𝑐 radius of a tube 

𝐷𝐾 
Knudsen diffusion 

coefficient 

  



 

 

H 
a shape dependent 

length (2rc) 

𝛼 

tangential momentum 

accommodation 

coefficient 

𝒖 bulk velocity 

𝒗 particle velocity 

𝑄 
collision term in 

Boltzmann equation 

𝑓 
phase space distribution 

function 

𝑓0 
absolute Maxwellian 

distribution function 

𝑛0 
equilibrium number 

density 

h(𝒓, 𝒗, 𝑡) 
perturbation distribution 

function 

𝑓𝑙𝑜𝑐 
local Maxwellian 

distribution function 

𝑛𝑙𝑜𝑐 local number density 

𝒈 
gravitational 

acceleration 

𝛔 

total stress tensor from 

pressure gradients and 

shear stresses 

L tube length 

𝐷𝑣 volumetric dilation 

𝑚̇𝑃 
mass flow rate from 

Poiseuille law 

𝑚̇𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 
mass flow rate in 

continuum flow regime 

𝑃𝑚 mean pressure 

Π 𝑃𝑖  /𝑃𝑜 

𝑢𝑤 
velocity of flow at the 

walls 

𝑚̇𝑠𝑙𝑖𝑝 
mass flow rate in slip 

flow regime 

𝜎𝑝 
first velocity slip 

coefficient 

𝑘𝜆 
√𝜋

2
 (hard sphere model) 

𝐾𝑛𝑚 mean Knudsen number 

𝑆 normalised flow rate 

𝑚̇𝑠𝑙𝑖𝑝−𝑆 

mass flow rate in slip 

flow regime with the 

second boundary 

conditions 

𝐴1 =
𝜎𝑝

𝑘𝜆
 

𝐴2 =
𝜎2𝑝

𝑘𝜆
2

π−1

π+1
 

𝜎2𝑝 
second velocity slip 

coefficient 

𝝈𝒔 shear stress tensor 

𝑁 =4𝐾𝑛/√𝜋 

𝑟∗ 
dimensionless radial 

coordinate 

𝑢∗ dimensionless velocity 

𝑈 
centreline velocity in 

cylindrical tube 

𝛽 
𝑟𝑐

2∆𝑃

𝜇𝑈𝐿
 

𝑐1, 𝑐2, 𝑐3, 𝑐4 

constants determined by 

boundary conditions and 

the limits for low and 

high Kn 

𝐽0, 𝑌0 

Bessel functions of first 

and second kinds of zero 

order 

𝑐0 
empirical parameter in 

Cha & McCoy theory 

  



 

 

𝑢𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 
velocity profile in 

continuum flow regime 

𝜖 
2 − 𝛼

𝛼

64

3𝜋
 

𝐺 
nondimensional flow 

rate 

V2 volume of Chamber 2 

𝛿 
𝑑𝑇/𝑇

𝑑𝑃2 𝑃2⁄
 

𝑃0𝑓(𝑡) linear fitting function 

𝑎′ 
slope of the linear fitting 

function 

𝑏′ 
intercept of the linear 

fitting function 

𝐷𝑚𝑆 
Smoluchowski 

diffusivity 

𝛼′ 
ensemble average of the 

diffusion fraction 

𝜖′ 
cutoff parameter of 

Smoluchowski 

diffusivity 

𝑄1 
adsorption heat of the 

first adsorbed layer 

𝑄𝑖 
adsorption heat of 

further adsorbed layers 

Γ 
amount of adsorption at 

an interface 

𝐾𝐿 
ratio of adsorption to 

desorption rate 

Γ𝑚𝑜𝑛 

particle number 

adsorption per square 

meter in a full 

monolayer 

𝑃𝑠 saturation pressure 

CB 

a constant depends on 

the binding properties of 

the surface 

𝑪 

a constant describing the 

binding condition 

between molecules and 

the surface 

𝑅 ideal gas constant 

𝑡𝑙  
thickness of adsorbed 

multilayers 

𝑉𝑡 specific volume 

𝑆𝑡 specific surface area 

𝐷𝑠 
surface diffusion 

coefficient 

Γ′ 
surface concentration in 

particles per unit area of 

the condensed vapour 

∆𝑃′ Laplace pressure 

𝛾 surface tension 

𝑟1 and 𝑟2 
principal radii of 

curvature of the 

interface 

𝜒 contact angle 

𝑃𝑐 
condensation pressure in 

a tube 

𝑚̇𝑚𝑒𝑛𝑖𝑠𝑐𝑢𝑠 
mass flow rate of 

evaporation from a 

meniscus 

𝜎𝑐 condensation coefficient 

P’ 
actual pressure above 

the meniscus 

𝐴𝑠 
a constant for the 

equation for 𝑚̇𝑚𝑒𝑛𝑖𝑠𝑐𝑢𝑠 

𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
mass conductance of 

surface diffusion 

𝐶𝑃 
mass conductance of 

Poiseuille flow 

Γ1 
first Langmuir 

adsorption 



 

 

Γ2 
second Langmuir 

adsorption 

K1, K2 Langmuir constants 

α0 TMAC for dry surface 

α1 
TMAC for passivation 

layer 

α2 
TMAC for bulk-water-

like layer 

f 
enhancement factor for 

the smoothing effect 

S scale factor 

𝑚̇𝐾𝐼 
mass flow rate of 

Knudsen interdiffusive 

flow 

𝑑𝑚12 
average molecular 

diameter 

𝐷𝑡 
total diffusion 

coefficient 

𝑚̇𝑃−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 
mass flow rate for 

modified Poiseuille law 

Ϛ slip length 
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