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Abstract

Competitive Bidding in Supply Chains

by Lusheng Shao

This thesis is primarily concerned with the competition between suppliers for a

buyer’s procurement business with consideration of subcontracting, commitment and

capacity reservation.

Under the circumstance where suppliers face diseconomies of scale, it may be cost

effective for a buyer to split an order across different suppliers. Even when the buyer

chooses only one supplier, the winning supplier may subcontract part of the work to

the others subsequently. Motivated by these observations, Chapter 2 studies a supplier

bidding game where a buyer requests quotes from two competing suppliers. We consider

two procurement scenarios: (1) Order Splitting where each supplier submits a function

bid which specifies different payments for different quantities, and the buyer may split

the order; (2) Single-Sourcing Commitment where the buyer commits to purchasing

from only one supplier before suppliers submit their bids, and the winning supplier

may subsequently subcontract with the losing one. The aim is to study the role of

subcontracting and single-sourcing commitment in supplier competition.

The second and third papers investigate the competitive behaviour of suppliers with

capacity reservation. Capacity reservation is vital when suppliers need to invest in

capacity to meet a further order and the future demand is unpredictable. To hedge

against financial risks, the suppliers often require a buyer to reserve capacity in advance

by paying an upfront fee. In Chapter 3, we consider a discrete version of this problem

in which competing suppliers each choose a reservation price and an execution price

for blocks of capacity, and the buyer, facing a known distribution of demand, needs to

decide which blocks to reserve. Chapter 4 studies a continuous version of the problem

where we allow general cost functions for suppliers. The suppliers compete by offering

the price functions (for both reservation and execution) and the buyer decides how much

to reserve from each supplier.

This thesis sheds light on how suppliers compete with each other by considering a

variety of factors. We believe an in-depth look at the competitive behaviour of suppliers

will deepen our understanding of a buyer’s procurement process, and hence has the

potential to help a buyer make a better sourcing decision.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

1.1.1 Motivations

The concept of “supply chain management” integrates supply and demand management

both within and across firms. According to the Council of Supply Chain Management

Professionals (CSCMP), supply chain management encompasses the planning and man-

agement of all activities including procurement, conversion and logistics management.

It also includes coordination and collaboration with channel partners, which may be

suppliers, intermediaries, third-party service providers, or customers (CSCMP, 2014).

By coordinating the upstream and downstream entities, the objective of supply chain

management is to deliver the right service or product to the right customers at the right

time and in the right place.

An important area of study in supply chain management revolves around competi-

tion. Broadly speaking, competition in supply chains can be classified into two cate-

gories: horizontal competition between firms in the same echelon; and vertical compe-

tition between upstream and downstream partners. In the past few decades, research

on vertical competition has received special attention from the operations management

(OM) community, while this thesis focuses on horizontal competition.

In a procurement setting, a buyer can now easily have access to many different sup-

pliers thanks to the advances in information & communication technologies (ICT). As a

result, a growing number of buyers have switched from bilateral negotiation to (reverse)

auctions. For example, Sun Microsystems awards almost 70% of its annual procure-

ment contracts using online auctions, worth $2.7 billion (Carbone, 2007). Procurement

auctions are particularly relevant in a commodity market where quality is not a major

concern since a buyer is roughly indifferent between purchasing from one supplier and

1



Chapter 1. Introduction 2

the other. Therefore, cost becomes a critical factor for the buyer’s sourcing decision.

This thesis is mainly concerned with such a horizontal competition setting where a buyer

purchases a homogeneous service or product and requests quotes from multiple suppliers.

As an important business practice, subcontracting has become an edge for many

firms to succeed in tough economic times. For example, in the contract cleaning industry,

“. . . subcontracting is now the way many cleaning companies generate decent margins

on their turnover . . . ” (Wynhausen, 2008). In South China, there are a number of

component contracting manufacturers who share production capacity with each other

on an ad hoc basis (Feng and Lu, 2012a). The big garment factories in Bangladesh

usually take orders based on subcontracting capacity (Lahiri and Passariello, 2013).

According to a quote from the managing director of Synergies Worldwide, “. . . [garment

factories] may have a two-million capacity and they will take orders for four-million . . . ”.

To facilitate the cooperation and coordination among manufacturers and subcon-

tractors in developing countries and countries with economies in transition, the United

Nations Industrial Development Organization (UNIDO) has established Subcontracting

and Partnership Exchange (SPX) Centers in more than 20 countries worldwide (UNIDO,

2013). The main objective is to help local enterprises successfully meet the challenges

of globalization and take advantage of the emerging opportunities that evolve from in-

dustrial subcontracting, outsourcing and supply chain opportunities.

Subcontracting is not equivalent to outsourcing. In an outsourcing situation, out-

sourcing firms do not have production or service facilities, and hence rely completely on

contractors. However, subcontracting is generally carried out when a prime contractor

reaches a capacity limit in its production or service process. In order to meet the cus-

tomer’s order on time, the remaining work is subcontracted to an external specialized

party for a temporary period of time. The purpose of subcontracting is to bring down

the overall production cost since otherwise the prime contractor has to use more expen-

sive resources. For example, it may run night shifts, hire more people, or use advanced

facilities. The implication is that if the prime contractor does everything by itself, the

production cost will be higher for the quantities beyond the existing standard capacity.

Thus, contractors face some form of diseconomies of scale when bidding for a buyer’s

work, which is unique to a subcontracting setting. Even though the research on outsourc-

ing is quite established, the topic of subcontracting has not been thoroughly studied. In

Chapter 2, we are particularly interested in how contractors compete with each other

for an outsourcing firm’s business when they face diseconomies of scale. Specifically, we

incorporate subcontracting and single-sourcing commitment into the supplier competi-

tion model, which allows us to evaluate their impact on supplier bidding behaviours and

supply chain performance.

In industries, such as semi-conductors and electricity, where suppliers (manufacturers
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or generators) face large investment costs and high demand uncertainty, risk manage-

ment becomes critical for their operations. Semi-conductor manufacturers usually have

limited opportunities to postpone production decisions until the time accurate demand

forecasts are available. Generators normally make their sites available ahead of time in

order to generate power later. Roughly speaking, there exist two types of risk involved

in these industries: financial risk from capacity installation, and inventory risk from

demand uncertainty. On one hand, suppliers are unwilling to take all the financial risks

from capacity installation without knowing how much capacity is needed in the future.

On the other hand, buyers remain hesitant to assume all the demand risks by making

firm commitment on later purchases. Therefore, an appropriate mechanism would be

beneficial in managing these risks.

One way of risk sharing between suppliers and buyers is capacity reservation. The

buyer reserves capacity in advance by paying the supplier an upfront fee (i.e. a reserva-

tion price), then the supplier builds capacity accordingly. After discovering the actual

demand, the buyer can purchase any amount up to the reserved level of capacity and

pays only for the dispatched amount (i.e. an execution price). This partial commitment

of capacity reservation helps reduce the risks for both parties: the supplier’s financial

risk is diminished by receiving a reservation payment for capacity installation; and the

buyer’s demand risk is mitigated by freely choosing how much capacity to use after it

knows the actual demand.

A notable example of this sort is the UK’s Short Term Operational Reserve (STOR)

(National Grid, 2014). In order to balance the supply and demand of electricity on

short time scales, the UK’s National Grid has contracts in place with generators and

large energy users to provide temporary extra power, or reduction in demand. STOR

is procured via competitive tender with three tender rounds per year. There are two

forms of payment in a STOR contract: (1) Availability Payments: service providers

are paid to make their units/sites available for the STOR service within an Availability

Window. (2) Utilisation Payments: service providers are paid for the energy delivered

as instructed by National Grid. Chapter 3 and Chapter 4 study the strategic behaviour

of suppliers in a situation where capacity reservation is required for the buyer as in the

STOR market.

1.1.2 Models

This thesis studies a competitive situation in which multiple suppliers bid for a buyer’s

work and the buyer’s demand is uncertain. The main contents of this thesis are organized

in three chapters.

Chapter 2 studies the role of subcontracting and single-sourcing commitment in

supplier bidding. Under the circumstance where suppliers face diseconomies of scale, it
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may be cost effective for a buyer to split an order across different suppliers. Even when

the buyer chooses only one supplier, the winning supplier may subcontract part of the

work to the others subsequently. Inspired by these observations, this chapter studies two

procurement scenarios. In the first scenario, the buyer does not commit to purchasing

from only one supplier, implying that it may split the order. We find that the buyer’s

ordering decision in equilibrium is supply chain optimal, each supplier’s profit equals its

marginal contribution to the supply chain system, and the buyer takes the remaining

profit. In the second scenario, the buyer makes a single-sourcing commitment before

suppliers submit their bids, and the winning supplier may subsequently subcontract

with the losing one. We demonstrate that the more bargaining power the winning

supplier has in the subcontracting stage, the more (less) profit the buyer (each supplier)

makes. Counter-intuitively, the buyer may be better off to allow subcontracting when

the winning supplier’s bargaining power exceeds a threshold. Finally, by comparing the

equilibrium outcomes of these two scenarios, we show that the buyer prefers to commit

to single-sourcing.

Chapter 3 examines the bidding behaviour of suppliers with capacity reservation.

When a firm faces an uncertain demand, it is common to procure supply using some

type of option or two-part contract. A typical setting of this problem involves capacity

being purchased in advance, with a separate payment made that applies only to the

part of capacity that is needed. We consider a discrete version of this problem in which

competing suppliers each choose a reservation price and an execution price for blocks of

capacity, and the buyer, facing a known distribution of demand, needs to decide which

blocks to reserve. We first show how to solve the buyer’s (combinatorial) problem effi-

ciently and then establish that suppliers can do no better than offer blocks at execution

prices that match their execution costs (making profits only from the reservation por-

tion of their bids). Second, we find that, when the suppliers have equal-size blocks, in

equilibrium the buyer selects the welfare maximizing set of blocks, each supplier makes

a profit equal to its marginal contribution to the supply chain system, and the buyer

takes the remaining profit. Finally, we provide a procedure to construct an equilibrium

for suppliers in the case with unequal-size blocks.

Chapter 4 investigates a similar setting to Chapter 3 where a buyer first reserves

capacity from suppliers before demand materializes and then decides how much capacity

to use after observing the actual demand. The critical distinction of this chapter is that

we allow general cost functions for suppliers, and the suppliers compete by offering the

price functions (for both reservation and execution). Similar to Chapter 3, we find that

it is optimal for suppliers to set execution prices to be execution costs, thus they make

profits only from the buyer’s reservation payments. We also show that, in a class of

equilibria, the buyer’s reservation choice is first best, each supplier’s profit equals its

marginal contribution to the supply chain system and the buyer takes the remaining
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profit. Comparing with the existing literature, we highlight the significant impact of the

suppliers’ strategy space on supplier bidding behaviours and supply chain performance.

1.1.3 Contributions

Previous research on supplier competition has begun to consider the sophisticated choices

that are often available: for example the use of the schedules of prices and quantities,

or the use of reservation prices. This thesis aims to contribute to this literature by

building models which better reflect the more complex issues in competition and supplier

bidding mechanisms that are important in practice, e.g., subcontracting, commitment

and capacity reservation.

We model an important setting where, from the supply chain point of view, it is

optimal for a buyer to split its order across multiple suppliers. The splitting of orders

is driven by the diseconomies of scale for suppliers (Chapter 2) or the trade-off between

flexibility and cost efficiency for the buyer (Chapter 3 and Chapter 4). Surprisingly, the

topic of supplier competition in this setting has not received as much attention as it

deserves, so this thesis aims to fill this gap.

Many papers on competition do not consider the buyer’s optimization problem explic-

itly. Instead, they directly assume that the demand functions satisfy certain conditions

so that the equilibrium analysis is tractable. However, in this research we explicitly

model the buyer’s ordering behaviour, which turns out to be a non-trivial task. Partic-

ularly, in Chapter 3, we find that the buyer’s problem is to maximize a non-monotonic

submodular function. In general it is NP hard to maximize a submodular function, but

we are able to develop a dynamic programming approach to solve the buyer’s problem

in polynomial time.

Chapter 2 and Chapter 4 involve the supply function competition in which suppliers

each offer a function bid (i.e. a schedule of prices and quantities). As opposed to the

competition models where the bidding strategy simply involves choosing a price, the

analysis is much more challenging. The supply function equilibrium (SFE) literature

deals with similar problems in that each bidder quotes a supply function which specifies

the quantities it is willing to supply at different prices. In the SFE literature, the buyer’s

problem is relatively straightforward since the buyer chooses a clearing price to equate

the demand with the aggregate supply. In our models, however, the buyer’s optimization

problem has to be addressed explicitly. As a result, the solution approach is different.

This thesis examines the buyer’s procurement problem from the supplier competi-

tion’s perspective. We believe a closer look at how suppliers behave when competing

for a buyer’s business will deepen our understanding of a buyer’s procurement process.

Ultimately, from a broader perspective, we hope this thesis will not only assist suppliers

in making better bidding decisions but also help buyers make better sourcing decisions.
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1.2 Literature Review

This section reviews the relevant literature. Since the detailed reviews will be provided

in each chapter, we will focus on more general related papers at this stage. Our research

is related to the literature on competition in supply chains and that on auctions.

1.2.1 Competition in supply chains

Many OM papers concern coordination and collaboration issues between upstream and

downstream players in supply chains, e.g., information sharing, channel coordination,

cost and/or lead time reduction, and collaborative R&D. For general reviews on these

topics, we refer readers to Tsay et al. (1998), Lariviere (1999), and Cachon (2003). As

we focus primarily on the horizontal competition between firms, we will restrict our

attention to the literature on this topic. Specifically, we will review the literature on

price and/or quantity competition, price and capacity competition, price and service

competition, and price and inventory competition.

Price and/or quantity competition

There is a large literature on price and/or quantity competition in both economics and

operations management, originating from the canonical Bertrand and Cournot compe-

tition models. The following quote from Kreps and Scheinkman (1983) clearly describes

the distinction between Bertrand and Cournot models:

“. . . it is easier to explain what we mean by reviewing the stories asso-

ciated with Cournot and Bertrand. The Cournot story concerns producers

who simultaneously and independently make production quantity decisions,

and who then bring what they have produced to the market, with the mar-

ket price being the price that equates the total supply with demand. The

Bertrand story, on the other hand, concerns producers who simultaneously

and independently name prices. Demand is allocated to the low-price pro-

ducers, who then produce up to the demand they encounter. Any unsatisfied

demand goes to the second lowest price producers and so on . . . ”.

As an extension of Bertrand competition and Cournot competition, supply function

competition has received considerable attention from researchers in economics and op-

erations research, in which firms each offer a schedule of prices and quantities. In the

following, we will divide the price and/or quantity competition models into four strands:

competition in a B2B setting; competition in a B2C setting; chain-to-chain competition;

and supply function equilibrium.

B2B: Supplier versus supplier competition is concerned with suppliers selling prod-

ucts to downstream distributors or retailers rather than end consumers (see Elmaghraby
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(2000) for an excellent review). In this line of research, the buyer’s optimization problem

is usually modelled explicitly. Some papers study the competitive behaviour of suppliers

with consideration of supply disruptions (Babich et al., 2007), commissions and sales tar-

gets (Gallego and Talebian, 2014a), or fixed capacity (Gallego and Talebian, 2014b). In

addition, Jiang and Wang (2009) examine the competitive and coordinative behaviour of

suppliers who provide complementary components to an assembly. Wu and Kleindorfer

(2005) and Mart́ınez-de Albéniz and Simchi-Levi (2009) examine supplier competition in

an option market. Cachon and Kok (2010) study a setting where two manufacturers sell

differentiated products to a common retailer and examine how different contract forms

affect the competition between manufacturers. More recently, several papers study sup-

plier competition under asymmetric information. Özer and Raz (2011) consider a supply

chain with two heterogeneous suppliers and one buyer where the “big” supplier (with low

variable cost) has incomplete information regarding the “small” supplier’s cost. Zhao

et al. (2014) study an outsourcing problem with a focus on information sharing where

two service providers compete for a client’s service contract. Lee and Yang (2013) ex-

tend Cachon and Kok (2010) by incorporating asymmetric demand information into the

competition model. Different from Lee and Yang (2013), Li et al. (2014) consider a set-

ting where competing suppliers supply a homogeneous product to a newvendor buyer,

and investigate the trade-off between cost advantage and information rent.

B2C: The research on competition in a B2C setting studies how firms compete in a

consumer market. In this literature, demand is usually taken as a primitive and exoge-

nously given, hence the buyer’s optimization problem is not relevant. An exception is

by Caro and Mart́ınez-de Albéniz (2012) who study price and product competition with

consumer satiation, and explicitly model the customer behaviour based on utilization

maximization. The demand models used in this literature include Multiplicative Com-

petitive Interaction (MCI), Attraction, Multinomial Logit (MNL), Linear, Multiplicative

and Exponential models (Cooper and Nakanishi, 2010). For comprehensive reviews on

demand models, readers can refer to Anderson et al. (1992) and Huang et al. (2013). Sev-

eral papers in this area study a one-shot game: Netessine and Shumsky (2005) analyze

an inventory control problem in the airline industry under both horizontal competition

and vertical competition. Federgruen and Yang (2009) examine the effect of the re-

tailer’s pricing power on supplier investment in supply reliability. Allon and Federgruen

(2009) analyze the equilibrium behaviour of service providers in industries where they

cater to multiple market segments. In addition to the above papers, there also exists a

class of supermodular games in which the payoff functions of players are supermodular:

see Topkis (1998) for an excellent treatment on supermodular games. Diverting from

the above one-shot games, Adida and Perakis (2009) study dynamic competition in a

make-to-order system where two firms compete in an uncertain market. Mart́ınez-de
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Albéniz and Talluri (2011) study dynamic pricing competition in an oligopoly with fixed

capacity.

Chain-to-chain: In a chain-to-chain competition model, multiple supply chains

compete by offering differentiated products to a common market. There is a rich litera-

ture on channel competition in economics and marketing (see e.g., McGuire and Richard,

1983; Moorthy, 1988; Choi, 1996), which explores the effect of channel coordination and

product differentiation on channel performance. In the operations management field,

Shou and Li (2009) study supply chain competition in the presence of supply disruptions.

Anderson and Bao (2010) consider price competition within integrated and decentral-

ized chains. Ha and Tong (2008) investigate the contracting and information sharing

decisions in two competing supply chains. Ha et al. (2011) study the incentive of vertical

information sharing in competing supply chains with the production technologies that

exhibit diseconomies of scale.

Supply function equilibrium: Supply function equilibrium (SFE) models study

the competitive behaviour of bidders who each submit a supply function, and have

widespread application in electricity markets. Following the seminal paper by Klemperer

and Meyer (1989), various extensions have been made by considering production capacity

constraint (Holmberg, 2008), cost asymmetry (Anderson and Hu, 2008), multi-step cost

functions (Holmberg et al., 2013), forward contracting (Anderson and Hu, 2012), or

private information (Vives, 2011), etc.

To provide a basic understanding of the SFE literature, we now review the basic

SFE model. Suppose the demand function is D(p, θ), where θ indicates a random shock.

Each bidder submits a supply function which maps prices into outputs: q : [0,+∞) →
(−∞,+∞). After knowing the demand, the buyer determines the market clearing price

that equates the demand with the aggregate supply. Assume there are two bidders i and

j, then we have D(p(θ), θ) = qi(p(θ)) + qj(p(θ)). Given the bidder j’s strategy qj(p), the

bidder i’s problem is to maximize its profit by choosing qi(p),

max
qi(p)

πi = pqi − C(qi) = p[D(p, θ)− qj(p)]− C[D(p, θ)− qj(p)].

Solving the first order condition with respect to p yields

dqj
dp

=
qi

p− C ′(qi)
+
∂D

∂q
.

Then we can solve the above differential equations and characterize the equilibrium for

bidders. In general, there exist multiple equilibria.
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Price and capacity competition

Perhaps, a starting point of research on price and capacity competition is to investi-

gate how capacity constraints affect the competitive equilibrium of firms by assuming

exogenous capacity. A well-known result is given by Levitan and Shubik (1972) who

show that there may not exist a pure strategy equilibrium, but there always exists an

equilibrium (pure or mixed strategy). With an endogenous capacity decision, Kreps and

Scheinkman (1983) study a two-stage game where in the first stage, firms build capacity,

then they compete in a consumer market by choosing sale prices in the second stage.

They show that there exists a unique (pure strategy) equilibrium which is equivalent

to the Cournot outcome. Davidson and Deneckere (1986) explore the role of rationing

rules in equilibrium outcomes. Acemoglu et al. (2009) examine a setting with a ho-

mogeneous product and demonstrate that there exist multiple pure strategy (subgame

perfect) equilibria. Ángeles de Frutos and Fabra (2011) study the role of demand uncer-

tainty in firm competition. Note that the competition models with capacity and price

involve discontinuous payoff functions, which is a result of Bertrand-like effects where

undercutting the price of other players is beneficial. See Dasgupta and Maskin (1986)

for a general treatment on the equilibrium existence problems with discontinuous payoff

functions.

Price and service competition

There are a number of papers that study price and service competition between firms.

Service is a broad concept which can be measured based on the criteria of quality, fill

rate, or delivery time. Tsay and Agrawal (2000) study a distribution system in which

a manufacturer supplies a common product to two independent retailers, who then

compete in a consumer market by setting service levels and retail prices. So (2000)

analyzes the impact of time guarantees on price competition between firms. Cachon

and Harker (2002) present both an EOQ model and a queueing model of competition

between two firms that face scale economies. Ha et al. (2003) consider an EOQ model

where two suppliers compete for supply to a customer on pricing and deliver-frequency

decisions. Bernstein and Federgruen (2004) develop a stochastic inventory model where

retailers compete by choosing retail prices, fill rates and inventory levels. More recently,

Jin and Ryan (2012) study a setting where a buyer (OEM) outsources the manufacturing

of a product to multiple make-to-stock suppliers who compete on price and service (i.e.

fill rate).

Besides the above papers, there also exists a line of research studying the competi-

tion between service providers who are modelled as queues (Hassin and Haviv, 2003).

Cachon and Zhang (2007) study a strategic queueing model in which two servers choose

their processing rates and highlight the important role of the buyer’s allocation policy.
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Benjaafar et al. (2007) consider a buyer who outsources a fixed demand for a good or ser-

vice to a set of potential suppliers, and compare two competition mechanisms of supplier

allocation and supplier selection. Afanasyev and Mendelson (2009) model the competi-

tion between two service providers by considering delay-sensitive customers. Shang and

Liu (2011) investigate the competitive behaviour of firms in industries where customers

are sensitive to both promised delivery time and on-time delivery rate. Li et al. (2012)

consider a two-stage game in which two service providers first select service rates and

then set prices.

Price and inventory competition

Inventory competition has received tremendous attention over the past few decades. For

a review, we refer readers to Chen and Simchi-Levi (2012). This literature, generally

assuming exogenous prices, considers the stock-out based substitution where customers

may turn to a different retailer when one retailer runs out of inventory. Some papers

consider one-shot inventory competition (Netessine and Rudi, 2003), Stackelberg game

(Serin, 2007), multi-period inventory competition (Nagarajan and Rajagopalan, 2009),

assortment and inventory decision (Honhon et al., 2010), or asymmetric demand infor-

mation (Jiang et al., 2011). A natural extension of inventory competition models is

to consider the competition over both price and inventory. Zhao (2008) investigates a

supply chain system with a common supplier selling to downstream retailers who are

engaged in both price and inventory competition. Zhao and Atkins (2008) examine the

simultaneous price and inventory competition between competing newsvendors. Kok and

Xu (2011) study the strategic assortment planning and pricing decision for a product

category with heterogeneous product types from two brands.

1.2.2 Auction and competitive bidding

Our model setup is similar to those in auctions where multiple bidders compete for

an auctioneer’s goods. There are a variety of criteria to distinguish different forms of

auctions. According to auction formats, auctions can be conducted in the open outcry

way or using sealed bids. Submitted bids might contain just a single attribute (price

only) or multiple attributes (price and qualities). According to the number of units to

sell, there are single-unit and multi-unit auctions. For a comprehensive literature review

on single-unit auctions, readers can refer to Milgrom (2004) and Krishna (2009). In the

following, we will focus our attention on multi-unit auctions.

If each bidder demands just a single unit the auction is called a unit-demand multi-

unit auction, otherwise it is a multi-demand multi-unit auction. For the latter, the

marginal evaluation of each unit is normally assumed to be decreasing. With an ex-

ogenous total amount, a number of auctions have been developed, for example, menu
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auction (Bernheim and Whinston, 1986), share auction (Wilson, 1979), Vickery auc-

tion (Vickrey, 1961), uniform price auction (Bresky, 2013), discriminatory price auction

(Menezes and Monteiro, 1995), and split award auction (Anton and Yao, 1989, 1992).

This literature examines the efficiency and profit allocation of a given auction format.

With an endogenous total amount, Chen (2007) studies a setting where suppliers com-

pete for a newsvendor’s business who each have private cost information, and proposes

a supply contract auction. Dasgupta and Spulber (1989) examine a similar procurement

problem and develop a quantity auction. More recently, Duenyas et al. (2013) develop

a simple modified version of the standard open-descending auction, which is shown to

be optimal for the buyer. These papers focus on designing an optimal auction mech-

anism for a buyer. The auction literature generally assumes that bidders have private

information, while this thesis considers a full information setting.



Chapter 2

Supplier Competition with

Subcontracting and Commitment

2.1 Introduction

Advances in information and communication technology have opened new channels for

a firm’s procurement function. A growing number of companies are re-thinking their

sourcing strategies and switching from bilaterial negotiation to auctions, because they

can now easily access many different suppliers and maintain reasonable competition.

Procurement auction helps buyers in efficient cost discovery and savings in negotiation

and contracting costs (Tunca and Wu, 2009). It also leads to standardization of sourcing

procedures, avoid bribery, and reduce order cycles. The electronic marketplaces, such

as Alibaba and FreeMarkets (acquired by Ariba in 2004, who then was acquired by SAP

in 2012), provide an excellent procurement platform for buyers to run auctions and for

suppliers to bid for the buyers’ business. Many large industrial players use reverse auc-

tions to procure direct and indirect materials. For example, Sun Microsystems awarded

almost 70% of its annual procurement contracts using online auctions, worth $2.7 billion

(Carbone, 2007). GM utilized internet tools to purchase most of its components, which

enables decreased lead time and lower purchase cost (Burke et al., 2007).

With multiple units to buy, a firm’s critical decision is whether to split an order

among multiple suppliers (multi-sourcing) or to award the entire order to a single sup-

plier (single-sourcing) (Elmaghraby, 2000). In practice, both multi-sourcing and single-

sourcing are often used. There has been a debate on the ideal number of suppliers to

fulfil product demand. Using a multi-sourcing strategy, firms may benefit from improv-

ing supply reliability (Federgruen and Yang, 2008), avoiding hold-up problems (Seshadri,

1995), and so forth. In contrast, a notable advantage of single-sourcing is that it helps

a firm maintain a sustainable and long-term relationship with its supplier. The existing

research on sourcing strategies has been focused on the ex post decision for a buyer

12
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after it receives bids from suppliers. Thus, it is interesting to investigate how ex ante

commitment on sourcing strategies affects competition between suppliers.

Subcontracting has recently become a prominent business practice in many indus-

tries1. While the most common examples of subcontracting exist in building and civil

engineering, the opportunities for subcontractors abound, ranging from manufacturing

to cleaning industries. In this research, we are interested in subcontracting based on

the short term need for additional production or service capacity. When the available

capacity of a prime contractor is insufficient to execute an order and further installation

of in-house capacity is neither feasible nor desirable, the contractor depends on a sub-

contractor to meet the balance of an order. For example, in South China, there are a

number of contracting manufacturers who share production capacity by means of sub-

contracting (Feng and Lu, 2012a). The large garment factories in Bangladesh usually

take orders based on subcontracting capacity. According to a quote from the managing

director of the Bangladesh office of Synergies Worldwide, “. . . [garment factories] may

have a two-million capacity and they will take orders for four-million . . . ” (Lahiri and

Passariello, 2013).

The incentives of subcontracting include reducing costs, meeting deadlines to avoid

punishment, and mitigating risks, etc. In this way, the buying firm receives the same

product or service, yet the overall cost for the prime contractor is lower than that if it

does everything by itself. Altogether, we claim that subcontracting is primarily driven

by diseconomies of scale. This is particularly true in a short-term market. To meet a

client’s order on their own, contractors may have to use more expensive resources. For

example, they may run night shifts by paying their employees at higher rates, or use

more advanced facilities at higher costs. In the Bangladesh garment industry, if factories

miss a shipping deadline, they may have to rush the shipment by airfreight, at their own

expense, or give the buyer a 5% discount as a penalty (Lahiri and Passariello, 2013).

The implication is that the contractors face higher marginal costs when the customer’s

order exceeds their existing capacity. Therefore, a model of competition in this situation

should take into account the fact that contractors face diseconomies of scale when they

bid for a firm’s procurement business. Surprisingly, this topic has not been thoroughly

studied, and this work aims to fill this important gap. Throughout this chapter, we

shall use the term “supplier” to refer to a contractor and the term “buyer” to refer to a

buying firm.

Under circumstances where suppliers face diseconomies of scale, it may be cost effec-

tive for a buyer to split an order across different suppliers. However, dealing with more

1There is a slight difference between subcontracting and outsourcing. Subcontracting typically refers
to the situation where a prime contractor procures an item or service that the contractor is normally
capable of producing using its own facilities and that requires the contractor to make specifications
available to a subcontractor. Outsourcing refers to the special case where the contractor has no in-house
facilities and depends on the subcontractor for the entire product volume (Van Mieghem, 1999).
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suppliers incurs a higher managerial cost, which may prevent the buyer from working

with multiple suppliers. If the buyer awards its entire order to a single supplier, the

winning supplier may subcontract part of the work to the others later. Motivated by

these observations, we are interested in whether the buyer has incentive to make a single-

sourcing commitment before running a bidding process. It is also intriguing to know how

the availability of subcontracting affects supplier competition. Specifically, we ask the

following research questions: (1) How do suppliers compete if the buyer does not commit

to single-sourcing? (2) If the buyer commits to single-sourcing, how does each supplier’s

bidding strategy change if subcontracting between competing suppliers is considered?

Is the buyer always worse off to allow subcontracting? (3) Should the buyer commit to

single-sourcing when purchasing an item using an auction?

To answer these questions, we consider a stylized model where two suppliers compete

for a single buyer’s business. We find that, if the buyer does not make a single-sourcing

commitment, the supply chain is coordinated in equilibrium, each supplier makes a

profit equal to his marginal contribution, and the buyer takes the remaining profit.

With single-sourcing commitment, we demonstrate that the bargaining power split at

the subcontracting stage plays a vital role in determining the subgame perfect Nash

equilibrium. Specifically, if the winning supplier has more bargaining power in subcon-

tracting, the buyer (each supplier) will make more (less) profit. Our results also show

that, counter-intuitively, subcontracting may benefit the buyer when the winning sup-

plier’s bargaining power is higher than a threshold. Finally, we show that the buyer

is better off to make a single-sourcing commitment whether or not subcontracting is

allowed.

Our model applies to both service and manufacturing industries where suppliers face

diseconomies of scale. In general, subcontracting is undertaken when a prime contractor

has arrived at a capacity limit in its production or service process. In order to meet

the customer’s demand, the remaining work is subcontracted to an external party for a

temporary period of time. In the following, we discuss two industries where our model

can be readily applied.

Contract manufacturing in the biopharmaceutical industry During the past

25 years, the biopharmaceutical industry has boomed to become a US$167-billion market

today (Martin, 2013). More than most high-technology industries, the biopharmaceuti-

cal sector faces a combination of high costs, competition, and uncertain demand, which

has led to increasing use of contract manufacturers. The main challenge facing these con-

tract manufacturers is that they lack the manufacturing plants, bioreactors, and other

equipment needed to make sufficient amounts of biopharmaceuticals. Industrial data

show that building a new manufacturing plant requires five years and hundreds of mil-

lions of dollars—typically from US$200 to US$400 million (Kamarck, 2006). Thus, these

manufacturers instead begin to partner on an ad hoc basis to share capacity whenever
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they run beyond capacity. This study is fascinated by the way the proactive strategy

of capacity sharing affects the competition between contract manufacturers. Capacity

sharing in this context is equivalent to subcontracting in the sense that contract man-

ufacturers temporarily jointly produce for an order. Our model can be calibrated to

address the following questions: Does a biopharmaceutical firm benefit from making a

commitment to sourcing from only one contract manufacturer? If so, should the firm

allow contract manufacturers to share capacity?

Contract cleaning industry Cleaning services are important in developed economies.

For example, in Australia, the commercial contract cleaning market continued to grow

at a rate of 2.2% annually from 2009 to 2014, and was worth AU$8 billion in 2013 (IBIS,

2014). A critical resource in cleaning is labor work; thus, to fulfil a client’s requirement,

cleaning firms may need to hire additional people. However, future clients may not need

as high a workload. As a result, many cleaning firms use subcontracting in order to

generate decent margins on their turnover. Clearly, the main driver of subcontracting

is to lower the overall cost for cleaning firms. However, it remains unclear whether this

also benefits the buyer. In practice, some firms allow subcontracting, such as Westfield

Group; while others do not, such as Mirvac Group (Wynhausen, 2008). This study ques-

tions whether a buyer has incentive to pre-commit to outsourcing its cleaning business

to a single cleaning firm, and whether the buyer benefits from subcontracting between

cleaning firms.

The remainder of this chapter is organized as follows: We review the relevant lit-

erature in Section 2.2 and present the model setup in Section 2.3. Two procurement

scenarios are studied: under the first scenario of order splitting, the buyer does not make

a single-sourcing commitment, thus it may split the order; under the second scenario of

single-sourcing commitment, the buyer commits to purchasing from only one supplier

but the winning supplier has the option to subcontract with the losing supplier later. We

examine these two procurement scenarios in Section 2.4 and Section 2.5, respectively.

Section 2.6 makes a complete comparison between them based on each player’s profit.

Finally, we conclude and discuss the managerial insights in Section 2.7.

2.2 Related Literature

This chapter primarily serves as a complement to the supply chain contract literature.

For reviews on this literature, refer to Lariviere (1999) and Cachon (2003). Most of the

work on contract design and supply chain coordination considers one-to-one or one-to-

many supply chains with linear total production costs. Thus, research on many-to-one

supply chains with nonlinear production costs would be beneficial (Cachon, 2003). Re-

cently, several papers have made progress in this area. Cachon and Kok (2010) consider
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a setting in which two manufacturers sell differentiated products to a retailer, and exam-

ine how different contract forms affect competition between manufacturers. Gallego and

Talebian (2014b) study supply chain coordination under competition between capaci-

tated suppliers. Li et al. (2014) examine how asymmetric demand information affects

supplier competition, with a focus on the trade-off between cost advantage and infor-

mation rent.

The current study contributes to this literature by examining a situation in which

suppliers face diseconomies of scale, as in the earlier discussions. This topic has not been

well explored. More importantly, this study incorporates ex-post subcontracting and

ex-ante single-sourcing commitment into the supplier competition model, which allows

evaluation of their effects on supplier bidding behaviors and supply chain performance.

Subcontracting has received some attention from the economics and operations man-

agement communities. Kamien et al. (1989) examine a setting where two symmetric

firms supply a market with price-dependent demand, and can subcontract with each

other. Van Mieghem (1999) studies a competitive stochastic investment game in which

manufacturers first decide on their capacity investment levels, and then choose their

production and sales with the option of subcontracting. Vairaktarakis and Aydinliyim

(2007) analyze a capacity competition game in which a set of manufacturers outsource

their workload to a subcontractor. In contrast to this literature, the current study is

concerned with the implications of single-sourcing commitment and subsequent subcon-

tracting on supplier bidding.

This study’s comparison between the two procurement scenarios resembles that be-

tween delegation and control mechanisms in the principal-agent literature, in which

a buyer purchases multiple products that are each produced by different privately in-

formed suppliers. In the control case (similar to this study’s order splitting scenario), the

buyer purchases from each supplier directly; while, in the delegation case (similar to this

study’s single-sourcing commitment scenario), the buyer purchases only from a primary

supplier who is delegated to purchase the other products. The main result is that the

buyer prefers the control case if the contract offered can be arbitrarily complex, because

there exists a cascading effect of information rent in the delegation case (Mookherjee,

2006). Enis et al. (2013) question the use of complex contracts and focus on simple con-

tract forms. They identify conditions under which one mechanism dominates the other.

Our model differs from the aforementioned studies in that it investigates the suppliers’

competitive behavior, rather than designing an optimal mechanism for the buyer. In our

commitment model, the competitors in the bidding game can be collaborators later in

subcontracting. This feature does not exist in the mechanism design models. Moreover,

our result is in sharp contrast with theirs—we find that single-sourcing commitment

outperforms order splitting from the buyer’s perspective.
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There exists a large literature on procurement auctions. See Elmaghraby (2000) for

a collection of papers on supplier competition and procurement auctions. In a setting

where a buyer purchases multiple units of an item, various auction formats can be

applied, such as split-award auction (Anton and Yao, 1989), multi-unit auction (Ausubel

and Milgrom, 2006), and menu auction (Bernheim and Whinston, 1986). Assuming an

exogenous purchase quantity, this literature focuses on price discovery and considers

how to divide the order among bidders. With an endogenous purchase amount, Chen

(2007) proposes a supply contract auction in which the buyer first designs a quantity-

payment schedule, and then auctions off this contract to a cohort of suppliers. Thinking

of the contract as an “object”, suppliers each bid a lump-sum fee. Dasgupta and Spulber

(1989) study a similar problem and develop a quantity auction in which suppliers each

bid a supply quantity instead of a lump-sum fee. However, our intention is not to design

an optimal auction mechanism for the buyer. Instead, the buyer—as a Stackelberg

follower in our model—decides how much to purchase from each supplier after receiving

the suppliers’ bids.

2.3 Model Setup

The supply chain we investigate consists of two suppliers (“he”) and a single buyer

(“she”), where the buyer purchases a homogeneous product or service from these two

suppliers. Each player is risk neutral and maximizes their own profit. We consider

two procurement scenarios: (1) order splitting, in which the buyer does not make any

commitment regarding the number of winners in the bidding game. Each supplier sub-

mits a function bid that specifies different payments for different quantities2. Given the

available function bids, the buyer decides how much to purchase from each supplier;

and (2) single-sourcing commitment, in which the buyer commits to purchasing from

only one supplier before the suppliers submit their bids, and the winning supplier can

subsequently opt to subcontract with the losing supplier.

The buyer has an expected revenue of R(q) if she purchases q units of an item. We

assume R(q) is a finite, increasing and concave function of q ≥ 0 and R(0) = 0. This

revenue function covers several operations and economics models. The notable example

in operations management is the newsvendor setting where a buyer places orders with

suppliers prior to knowing the actual demand. After the demand is observed, the buyer

sells the product at an exogenous price r. For simplicity, we assume zero penalty costs for

unsatisfied demand and zero salvage costs for excessive orders. The demand D follows

a distribution with the support [d1, d2] ⊂ [0,∞). The cdf of D, F (d), is a continuous,

strictly increasing and differentiable function over (d1, d2). Define its pdf f(d) := F ′(d),

2In some contexts, a function bid is referred to as a nonlinear contract, e.g., quantity discount contract.
Throughout we will use the term of “function bid”.
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thus we have f(d) > 0, ∀d ∈ (d1, d2). The revenue function in this setting can be written

as

R(q) := rE [min(D, q)] = r

(
q −

∫ q

0
F (τ)dτ

)
,

which can be readily checked to be increasing and concave with R(0) = 0. For con-

venience, we use the newsvendor model in the following analysis but the results apply

more generally.

Denote by i, j the indices of suppliers, whose total production costs are Ci(q) and

Cj(q), respectively, where i = 1, 2 and j = 3− i. We make the following assumption on

supplier costs.

Assumption 2.1. For i = 1, 2, the cost function Ci(q) is twice differentiable, increasing

and strictly convex, i.e. C ′i(q) > 0 and C ′′i (q) > 0, ∀q > 0. Also, Ci(0) = 0.

First, if there is no production, no cost will be incurred. Second, we focus on the

convex cost functions that have been used in the operations management literature (Ha

et al., 2011). The diseconomies of scale are also supported by much empirical evidence

for the industries in which firms use the cheapest resource first, then the second cheapest,

and so forth (Baldick et al., 2004; Mollick, 2004).

In a situation with order splitting, the timeline is as follows: First, each supplier

submits a function bid Ti(q). Second, before knowing the actual demand, the buyer

decides how much to purchase from each supplier. Third, the suppliers with positive

orders begin production and deliver the product to the buyer. Finally, after discovering

the actual demand, the buyer sells the product at the retail price, r. In a situation with

single-sourcing commitment, the timeline differs in that the winning supplier is allowed

to subcontract with the losing supplier after the buyer selects the winning supplier. See

Figure 2.1 for the detailed sequence of events.

Suppliers offer 

function bids 

Suppliers offer 

function bids

Time 4Time 3Time 2Time 1Time 0

Time 3Time 2Time 1Time 0
Order SplittingOrder Splitting

Buyer orders from 

each supplier

Suppliers start 

production 

Demand occurs and 

buyer sells products

Single-SourcingSingle-Sourcing

Commitment 

Buyer decides 

which bid to choose

Winner subcontracts 

with loser

Demand occurs and 

buyer sells products

Suppliers start 

production 

Figure 2.1: The timeline under each scenario

In our setting, the suppliers are Stackelberg leaders, and the buyer is a follower

who has limited control over contract design. This setting is consistent with relatively

mature markets. See Shi et al. (2013) and Chen et al. (2014) for discussions on power

relationships in supply chains. Moreover, the production technologies and business en-

vironments in mature markets are relatively transparent; thus, this chapter considers a
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complete information setting in which each supplier is fully aware of each other’s cost

and the product information (including demand distribution and retail price).

2.3.1 Supply chain optimal solutions

As a preliminary step, we examine the integrated supply chain problems which are

equivalent to the buyer’s problems if suppliers charge only their production costs. Define

Π(qi, qj) = rE [min(D, qi + qj)]− Ci(qi)− Cj(qj),

as the supply chain profit when the buyer purchases qi, qj from suppliers i, j, respectively.

We choose the order quantity from each supplier to maximize the supply chain profit:

max {Π(qi, qj) : qi, qj ≥ 0}. (2.1)

We can show that the objective function is jointly concave in qi and qj . We focus on the

cases where no supplier dominates the other in terms of cost efficiency.

Assumption 2.2. For supplier i = 1, 2, the cost functions Ci(q) are chosen such that

it is optimal for the buyer to split her order from the supply chain point of view.

Assumption 2.2 implies that there exists an interior solution for the problem in (2.1),

and the optimal solution (q̄i, q̄j) is characterized by the first order conditions:

r[1− F (q̄i + q̄j)] = C ′i(q̄i) = C ′j(q̄j). (2.2)

Let Q̄ = q̄i + q̄j be the supply chain optimal total quantity, and Π = Π(q̄i, q̄j) be the

supply chain optimal profit. Since we will need to introduce a significant amount of

notations it is convenient to collect all of them in Table 2.1.

Consider the case where supplier i is the sole supplier where j = 1, 2. Let

Π(q, 0) = rE [min(D, q)]− Ci(q)

be the supply chain profit when the buyer purchases q units from supplier i only. The

supply chain problem in this case is

max {Π(q, 0) : q ≥ 0}.

It can be readily shown that Π(q, 0) is concave in q, so the optimal solution Q̄i can be

found from the first order condition:

r
[
1− F (Q̄i)

]
= C ′i(Q̄i). (2.3)
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Table 2.1: The summary of notations

Notations Interpretations

Q̄ Supply chain optimal total quantity

q̄i Supply chain optimal quantity for supplier i (see (2.2))

Q̄i Single-sourcing supply chain optimal quantity for supplier i (see (2.3))

Π Supply chain optimal profit

Πi Single-sourcing supply chain optimal profit for supplier i

qDi Dual-sourcing buyer’s optimal order from supplier i (see (2.6))

qSi Single-sourcing buyer’s optimal order from supplier i (see (2.7))

q∗i Buyer’s global optimal order from supplier i

q̂∗i := q̂∗i (Tj) Buyer’s global optimal order from supplier i when i offers at cost

q̂∗j := q̂∗j (Tj) Buyer’s global optimal order from supplier j when i offers at cost

Γi Optimal supply chain surplus contributed by i given Tj(q) (see (2.12))

πDB Dual-sourcing buyer’s optimal profit

πiB Single-sourcing buyer’s optimal profit for supplier i

π∗B Buyer’s global optimal profit

T ∗i (q) Supplier i’s bid in equilibrium under order splitting

π∗i Supplier i’s profit in equilibrium under order splitting

Π∗ Supply chain profit in equilibrium under order splitting

Tni Supplier i’s bidding payment in equilibrium under SC-N

Qni Supplier i’s bidding quantity in equilibrium under SC-N

πni Supplier i’s profit in equilibrium under SC-N

πnB Buyer’s profit in equilibrium under SC-N

Πn Supply chain profit in equilibrium under SC-N

q̂j := q̂j(Qi) Optimal subcontracted amount to j if buyer orders Qi from i (see (2.30))

∆i(q̂j ;Qi) Optimal total gain from subcontracting if the buyer orders Qi from i

G(Qi) Optimal supply chain profit if the buyer orders Qi from i

T si Supplier i’s bidding payment in equilibrium under SC-S

Qsi Supplier i’s bidding quantity in equilibrium under SC-S

πsi Supplier i’s profit in equilibrium under SC-S

πsB Buyer’s profit in equilibrium under SC-S

Πs Supply chain profit in equilibrium under SC-S

Define Πi as the optimal supply chain profit when supplier i is the sole supplier, so

Πi = Π(Q̄i, 0). Note that we have Π > max(Π1,Π2), and Q̄ > Q̄i > q̄i where i = 1, 2.

We refer to Π−Πj as the supplier i’s marginal contribution to the supply chain system.

Throughout we use the following example to illustrate the main results derived in

this chapter.

Example 2.1. The buyer’s demand follows a uniform distribution D ∼ U(0, 1), thus,

F (q) = q for q ∈ [0, 1]. The retail price is r = 1. Therefore, we have

rE[min(D, q)] = r

(
q −

∫ 1

0
F (τ)dτ

)
= q − 1

2
q2.
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The production cost functions are quadratic with C1(q) = 1
2q

2 and C2(q) = q2. We solve

the integrated supply chain problems as follows:

• If both suppliers are available, the supply chain problem is

max

{
(q1 + q2)− 1

2
(q1 + q2)2 − 1

2
q2

1 − q2
2 : q1, q2 ≥ 0

}
.

The optimal solution is (q̄1, q̄2) = (2/5, 1/5), the supply chain optimal total quantity

is Q̄ = 3/5, and the chain optimal profit is Π = 3/10.

• If supplier 1 is the sole supplier, the supply chain problem is

max

{
q − 1

2
q2 − 1

2
q2 : q ≥ 0

}
.

The optimal quantity is Q̄1 = 1/2, and the single-sourcing supply chain optimal

profit is Π1 = 1/4.

• If supplier 2 is the sole supplier, the supply chain problem is

max

{
q − 1

2
q2 − q2 : q ≥ 0

}
.

The optimal quantity is Q̄2 = 1/3, and the single-sourcing supply chain optimal

profit is Π2 = 1/6.

2.4 Order Splitting

Under a situation with order splitting, the buyer does not commit to purchasing from

only one supplier. We make the following assumption on each supplier’s bidding strategy.

Assumption 2.3. The supplier i’s strategy is chosen from Ti being the set of functions

Ti(q) satisfying: (a) T ′i (q) > 0 and T ′′i (q) > 0 for q > 0; (b) Ti(0) = 0 and we allow for

a discontinuity at 0 with an upward jump; (c) T ′i (q) ≥ C ′i(q) for q > 0.

First, we assume in (a) that the supplier bids are strictly increasing and convex.

Also they are twice differentiable everywhere except at the origin. This condition will

facilitate the equilibrium analysis, but the equilibrium outcomes hold in more general

cases as we will show later. Second, the discontinuity at q = 0 is allowed in order to

take account of the fact that if supplier i is not chosen, the buyer does not pay anything

to him. Finally, we assume in (c) that the suppliers, as rational players, do not set the

marginal price below the marginal cost for any quantity produced. From (b), (c) and

Assumption 2.1, we can show that Ti(q) ≥ Ci(q) for q ≥ 0.
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Given the supplier bids, the buyer decides how much to purchase from each supplier.

Then knowing the buyer’s best response and given the competitor’s bid, each supplier

decides on the bidding strategy to maximize his profit. Following the backward induction

approach, we start with the buyer’s problem, and then characterize the equilibrium for

suppliers.

2.4.1 Buyer’s problem

Suppose the supplier bids are {Ti(q), Tj(q)}, then define the buyer’s profit when ordering

qi from supplier i and qj from supplier j as follows:

πB(qi, qj) = rE[min(D, qi + qj)]− Ti(qi)− Tj(qj). (2.4)

Given {Ti(q), Tj(q)}, the buyer’s problem is to maximize her profit by choosing the

purchase amount from each supplier:

max {πB(qi, qj) : qi, qj ≥ 0} . (2.5)

We can show that πB is jointly concave in qi and qj provided they are strictly positive.

Due to the possible discontinuity of Ti(q) at q = 0 where i = 1, 2, we consider two cases

regarding the buyer’s ordering decision: (1) the dual-sourcing strategy where the buyer

purchases from both suppliers; and (2) the single-sourcing strategy where the buyer

purchases from only one supplier.

If the buyer adopts the dual-sourcing strategy, the optimal solution (qDi , q
D
j ) must

satisfy the first order conditions:

T ′i (q
D
i ) = T ′j(q

D
j ) = r[1− F (qDi + qDj )]. (2.6)

Let πDB = πB(qDi , q
D
j ) be the buyer’s dual-sourcing optimal profit.

If the buyer adopts the single-sourcing strategy for supplier i, her problem is

max{πB(q, 0) = rE[min(D, q)]− Ti(q) : q ≥ 0}.

Again πB is concave in q, and the optimal solution qSi can be found by solving the first

order condition,

T ′i (q
S
i ) = r[1− F (qSi )]. (2.7)

Let πiB = πB(qSi , 0) be the buyer’s single-sourcing optimal profit when purchasing from

supplier i. From (2.6) and (2.7) we can show qSi ≥ qDi .

There are three local maxima for the buyer’s choice, and the buyer will choose the

sourcing strategy which gives her the largest profit, i.e. π∗B = max
(
πDB , π

i
B, π

j
B

)
. Note
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that the buyer’s optimal choice may not be unique. Following Cachon and Kok (2010),

we assume the buyer breaks ties in favour of purchasing from more suppliers, that is, if

πDB = max
(
πiB, π

j
B

)
, the buyer will purchase from both suppliers. If πiB = πjB > πDB , we

assume the buyer will randomly select a winning supplier.

2.4.2 Equilibrium Analysis

In this section, we study the equilibrium for suppliers. We begin by investigating each

supplier’s best response in choosing Ti(q).

2.4.2.1 Suppliers’ best responses

Given supplier j’s bid Tj(q), suppose the buyer’s profit of purchasing from supplier j

only is πjB and the optimal order quantity is qSj . Note that both πjB and qSj are fixed for

the supplier i’s best response problem.

Suppose the supplier i’s bid is Ti(q), and given Ti(q) (as well as Tj(q)), denote by

(q∗i , q
∗
j ) the buyer’s optimal choice, that is,

(q∗i , q
∗
j ) = arg max {πB(qi, qj) : qi, qj ≥ 0} . (2.8)

Then the supplier i’s profit from offering Ti(q) is given by,

πi(Ti(q); q
∗
i , q
∗
j ) = Ti(q

∗
i )− Ci(q∗i ).

Anticipating the buyer’s optimal ordering decision, supplier i aims to maximize his

profit by choosing Ti(q):

max
{
πi(Ti(q); q

∗
i , q
∗
j ) : Ti(q) ∈ Ti

}
, (2.9)

subject to (2.8). We need to consider the local maxima for the buyer’s optimal choice

as discussed in the previous section.

Our first observation is that supplier i will set the value of Ti(q
∗
i ) as high as possi-

ble, provided that the buyer purchases q∗i from supplier i. Specifically, given a certain

slope T ′i (q
∗
i ), since πi increases in Ti(q

∗
i ), supplier i will keep increasing the value of

Ti(q
∗
i ) (holding the slope constant) until the buyer turns to the single-sourcing strategy

j. Therefore, for an optimal solution of Ti(q), the buyer’s optimal profit of choosing

(q∗i , q
∗
j ) must equal πjB, i.e. πB(q∗i , q

∗
j ) = πjB (here undercutting behaviour occurs, but

for convenience of exposition we shall use equality). Plugging this equation into (2.9),

we rewrite the supplier i’s best response problem as follows:

P1: max
{
πi(Ti(q); q

∗
i , q
∗
j ) = rE[min(D, q∗i + q∗j )]− Ci(q∗i )− Tj(q∗j )− π

j
B : Ti(q) ∈ Ti

}
,

(2.10)
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subject to (2.8), and πB(q∗i , q
∗
j ) = πjB.

Notice that Ti(q) only appears in the constraints so supplier i can do no better than

the solution to the following relaxed problem when the constraints are dropped:

P0: max
qi,qj≥0

rE[min(D, qi + qj)]− Ci(qi)− Tj(qj)− πjB. (2.11)

The above problem can be thought of as solving the optimal marginal supply chain sur-

plus contributed by supplier i when he charges only his cost. Denote by (q̂∗i (Tj), q̂
∗
j (Tj))

the optimal solution to P0. To shorten notations, we shall use q̂∗i for q̂∗i (Tj) and q̂∗j for

q̂∗j (Tj) unless ambiguity arises. We write Γi for the optimal value of P0, so

Γi = rE[min(D, q̂∗i + q̂∗j )]− Ci(q̂∗i )− Tj(q̂∗j )− π
j
B. (2.12)

Note that this gives the maximum possible profit supplier i can make.

Obviously if q̂∗i = 0, then Γi = 0, meaning that the marginal supply chain surplus

contributed by supplier i is zero. In this trivial case, supplier i will make zero profits

for sure, and any bid Ti ∈ Ti is optimal for supplier i. In the following, we will focus

on the cases where q̂∗i > 0. We provide the necessary conditions for the supplier i’s best

response in Lemma 2.1.

Lemma 2.1 (Necessary conditions for best responses). Given the supplier j’s bid Tj(q),

suppose Ti(q) ∈ Ti is optimal for supplier i, then, assuming q̂∗i > 0,

(i) if q̂∗j = 0, then T ′i (Q̄i) = C ′i(Q̄i) and πB(Q̄i, 0) = πjB;

(ii) if q̂∗j > 0, then T ′i (q̂
D
i ) = C ′i(q̂

D
i ) and πB(q̂Di , q̂

D
j ) = πjB,

where q̂Di and q̂Dj satisfy r[1− F (q̂Di + q̂Dj )] = C ′i(q̂
D
i ) = T ′j(q̂

D
j ).

Given the supplier i’s optimal bid Ti(q) (as well as Tj(q)), the buyer’s optimal choice

equals the solution to P0, i.e. (q∗i , q
∗
j ) = (q̂∗i , q̂

∗
j ).

Proof of Lemma 2.1. First, consider the relaxed problem P0 with the optimal solution

(q̂∗i , q̂
∗
j ). In our discussion of the buyer problem in (2.5) we have observed that there are

three local maxima. Using the same argument, we consider three cases for P0: If the

buyer purchases from supplier j only, then her optimal order is qSj (by definition); If the

buyer purchases from supplier i only, then her optimal order is Q̄i, which is obtained

by solving the first order condition r[1− F (Q̄i)] = C ′i(Q̄i); If the buyer purchases from

both suppliers, then the optimal solution (q̂Di , q̂
D
j ) must satisfy the first order conditions:

r[1 − F (q̂Di + q̂Dj )] = C ′i(q̂
D
i ) = T ′j(q̂

D
j ). Comparing these three local maxima, we can

obtain the global maximum (q̂∗i , q̂
∗
j ). As discussed earlier, the first case has q̂∗i = 0 and

leads to the trivial condition that any bid Ti(q) is optimal for supplier i with zero profits.

Thus we focus on the cases where (q̂∗i , q̂
∗
j ) = (Q̄i, 0) or (q̂∗i , q̂

∗
j ) = (q̂Di , q̂

D
j ).
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Second, we show that if Ti ∈ Ti is optimal, then (q̂∗i , q̂
∗
j ) must be an optimal choice

for the buyer, and supplier i achieves the maximum profit of Γi (hence establishing the

last part of the lemma). Suppose otherwise and given the optimal bid Ti(q) (as well as

Tj(q)) the buyer’s optimal choice is (q̌i, q̌j) where (q̌i, q̌j) 6= (q̂∗i , q̂
∗
j ). We know from the

constraints of P1 that

πB(q̌i, q̌j) = rE[min(D, q̌i + q̌j)]− Ti(q̌i)− Tj(q̌j) = πjB. (2.13)

Moreover, from the optimality of (q̂∗i , q̂
∗
j ) for P0, we have

rE[min(D, q̌i + q̌j)]− Ci(q̌i)− Tj(q̌j) ≤ rE[min(D, q̂∗i + q̂∗j )]− Ci(q̂∗i )− Tj(q̂∗j ). (2.14)

Using (2.13) and (2.14), we show the supplier i’s profit as follows:

Ti(q̌i)− Ci(q̌i) = rE[min(D, q̌i + q̌j)]− Ci(q̌i)− Tj(q̌j)− πB(q̌i, q̌j)

≤ rE[min(D, q̂∗i + q̂∗j )]− Ci(q̂∗i )− Tj(q̂∗j )− π
j
B = Γi.

However, if we were to choose a Ti ∈ Ti such that (q̂∗i , q̂
∗
j ) is an optimal choice for the

buyer, for example, we could choose

Ti(q) = Ci(q) + Γi for q > 0, and Ti(0) = 0,

then the supplier i’s profit would be Γi. So the choice of Ti leading to (q̌i, q̌j) cannot be

strictly better for supplier i than a choice leading to (q̂∗i , q̂
∗
j ). Therefore, it is optimal for

supplier i to choose Ti ∈ Ti such that (q̂∗i , q̂
∗
j ) is an optimal choice for the buyer.

Third, if (q̂∗i , q̂
∗
j ) is optimal for the buyer, then it must satisfy the first order con-

ditions. We consider two cases: (i) (q̂∗i , q̂
∗
j ) = (Q̄i, 0), i.e. q̂∗j = 0; and (ii) (q̂∗i , q̂

∗
j ) =

(q̂Di , q̂
D
j ), i.e. q̂∗j > 0. In case (i), from (2.7) we know that if the buyer’s optimal or-

der is Q̄i, then r[1 − F (Q̄i)] = T ′i (Q̄i), which together with r[1 − F (Q̄i)] = C ′i(Q̄i)

yields T ′i (Q̄i) = C ′i(Q̄i). Moreover, πB(Q̄i, 0) = πjB follows from the constraints of P1.

Similarly, we can show the necessary conditions for case (ii) are T ′i (q̂
D
i ) = C ′i(q̂

D
i ) and

πB(q̂Di , q̂
D
j ) = πjB. This completes the proof.

Given Tj(q), supplier i essentially competes on how to share the buyer’s demand

with supplier j. Supplier i can first decide his desired demand allocation, and then

chooses Ti(q) so that the buyer’s optimal choice is indeed his desired order split, i.e.

(q∗i , q
∗
j ) = (q̂∗i , q̂

∗
j ). Because of the possible discontinuity of supplier bids, supplier i

needs to consider both the case when the buyer chooses to purchase from him only and

the case when the buyer splits her order. In the former case, from (i) of Lemma 2.1, we

obtain r[1− F (Q̄i)] = T ′i (Q̄i), indicating that (Q̄i, 0) is a boundary solution. Similarly,
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in the latter case, we have r[1 − F (q̂Di + q̂Dj )] = T ′i (q̂
D
i ) = T ′j(q̂

D
j ) from (ii) of Lemma

2.1, implying that (q̂Di , q̂
D
j ) is an interior solution for the buyer’s problem in (2.8).

To guarantee (q̂∗i , q̂
∗
j ) is globally optimal for the buyer, further conditions are needed.

As an example, we provide a set of sufficient conditions in the following lemma for the

supplier’s best response.

Lemma 2.2 (Sufficient conditions for best responses). Suppose that Ti(q) ∈ Ti satisfies

the following conditions: (i) if q̂∗j = 0, then Ti(Q̄i)− Ci(Q̄i) = Γi and T ′i (Q̄i) = C ′i(Q̄i);

or (ii) if q̂∗j > 0, then

Ti(q̂
D
i )− Ci(q̂Di ) = Ti(Q̄i)− Ci(Q̄i) = Γi (2.15)

T ′i (q̂
D
i ) = C ′i(q̂

D
i ) and T ′i (Q̄i) = C ′i(Q̄i), (2.16)

where q̂Di > 0 and q̂Dj > 0 satisfy r[1− F (q̂Di + q̂Dj )] = C ′i(q̂
D
i ) = T ′j(q̂

D
j ). Then Ti(q) is

optimal for supplier i.

Proof of Lemma 2.2. We begin with case (ii) where q̂∗j , q̂
∗
j > 0. First, we show that, given

a bid Ti(q) ∈ Ti satisfying (2.15) and (2.16), the buyer’s optimal choice is (q̂Di , q̂
D
j ). From

r[1−F (q̂Di +q̂Dj )] = C ′i(q̂
D
i ) = T ′j(q̂

D
j ) and (2.16), we obtain r[1−F (q̂Di +q̂Dj )] = T ′i (q̂

D
i ) =

T ′j(q̂
D
j ), which implies that (q̂Di , q̂

D
j ) is an interior solution for the buyer’s problem from

the concavity of her profit function. Using (2.4) and (2.15), we obtain the buyer’s profit

from choosing (q̂Di , q̂
D
j ) as follows:

πB(q̂Di , q̂
D
j ) = rE[min(D, q̂Di + q̂Dj )]− Ti(q̂Di )− Tj(q̂Dj ) = πjB.

Similarly, from T ′i (Q̄i) = C ′i(Q̄i) and (2.3) we obtain r[1 − F (Q̄i)] = T ′i (Q̄i), which

implies that the buyer’s optimal order is Q̄i if supplier i is the sole supplier. Again using

(2.4) and (2.15), we obtain the buyer’s optimal profit is πjB when purchasing from only

supplier i. Furthermore, the buyer’s optimal profit when purchasing from supplier j only

is also πjB (by definition). So all three local maxima give the buyer the same profit πjB,

and thus the buyer’s globally optimal choice is (q̂Di , q̂
D
j ) according to the tie-breaking

rule.

Second, since the buyer orders q̂Di from supplier i, the supplier i’s profit is Ti(q̂
D
i )−

Ci(q̂
D
i ) = Γi, which is the maximum profit supplier i can achieve. Therefore, such a

Ti(q) must be optimal for supplier i. This completes the proof for case (ii). The same

reasoning applies to case (i) and we omit the details here to avoid repetition.

Lemma 2.2 shows that the conditions on the bid Ti(.) involve the slopes and the

values at q̂Di and Q̄i. One one hand, with the slope conditions in (2.16), the local

optimal solutions for the buyer’s choice will be (q̂Di , q̂
D
j ) and (Q̄i, 0). On the other hand,

the value conditions in (2.15) ensure that the buyer makes the same profit from these
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two choices. According to the tie-breaking rule in relation to the buyer’s optimal choice,

the buyer will purchase q̂Di from supplier i and q̂Dj from supplier j. This gives supplier

i a profit of Γi. Since Γi is the maximum profit supplier i can make, such a Ti(.) must

be optimal. Note that the choice of Ti(q) is not unique, and there will be a continuum

of equilibria as we show in the next section.

2.4.2.2 Equilibrium characterization

We now characterize the equilibrium for suppliers. A Nash equilibrium is a pair of

bids {T ∗i (q), T ∗j (q)}, which are mutual best responses for each supplier. The equilibrium

outcome is the buyer’s optimal choice (q∗i , q
∗
j ). Let π∗B, π

∗
i , π
∗
j be the equilibrium profits

of the buyer, supplier i, and supplier j, respectively. We begin by showing that no

equilibrium exists where the buyer adopts the single-sourcing strategy.

Lemma 2.3. There exists no equilibrium where the buyer purchases from only one

supplier.

Proof of Lemma 2.3. Suppose otherwise and there exists an equilibrium {T ∗i (q), T ∗j (q)}
where the buyer purchases from one supplier. Then from (i) in Lemma 2.1 we have

T ∗′i (Q̄i) = C ′i(Q̄i). Suppose supplier i wins, and by definition we have the buyer’s profit

and the supplier i’s profit as follows:

π∗i = T ∗i (Q̄i)− Ci(Q̄i) and πiB = rE[min(D, Q̄i)]− T ∗i (Q̄i).

Thus, we obtain π∗i = Πi − πiB. We also know π∗i ≥ 0, so π∗i = max(0,Πi − πiB).

Again from (i) in Lemma 2.1, we have πiB = πjB in equilibrium, from which we deduce

π∗i = max(Πi −Πj , 0) and π∗B = min(Πi,Πj).

Using part (c) of Assumption 2.3, we obtain T ∗i (q̄i) − Ci(q̄i) ≤ T ∗i (Q̄i) − Ci(Q̄i)

because q̄i < Q̄i. This together with T ∗i (Q̄i)− Ci(Q̄i) = max(Πi −Πj , 0) yields

T ∗i (q̄i)− Ci(q̄i) ≤ max(Πi −Πj , 0), for i = 1, 2, j = 3− i. (2.17)

We now show that (q̄i, q̄j) gives the buyer a larger profit:

πB(q̄i, q̄j) = rE[min(D, q̄i + q̄j)]− T ∗i (q̄i)− T ∗j (q̄j)

≥ rE[min(D, q̄i + q̄j)]− Ci(q̄i)−max(Πi −Πj , 0)− Cj(q̄j)−max(Πj −Πi, 0)

= Π−max(Πi −Πj , 0)−max(Πj −Πi, 0)

= Π− [max(Πi,Πj)−min(Πi,Πj)]

> min(Πi,Πj) = π∗B,
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where the first inequality follows from (2.17). Thus, it is suboptimal for the buyer to

choose only one supplier. A contradiction.

Note that from the supply chain point of view, it is optimal for the buyer to split

her order. Lemma 2.3 shows that allowing suppliers to compete by offering function

bids does not support the equilibrium where the buyer chooses single-sourcing. Later,

we will establish a stronger result: the buyer’s optimal choice in equilibrium is always

first best.

Having eliminated the existence of equilibrium where the buyer chooses the single-

sourcing strategy, we next focus on characterizing the equilibrium where the buyer

chooses the dual-sourcing strategy. We need to consider the buyer’s single-sourcing

profit if she purchases from only one supplier, since this places a floor on the buyer’s

attainable profit. Lemma 2.4 provides a necessary condition for the equilibrium.

Lemma 2.4 (Equilibrium profit equivalence). Suppose {T ∗i (q), T ∗j (q)} is a Nash equi-

librium, then the buyer’s dual-sourcing profit is equal to the single-sourcing profit from

each supplier. Formally,

πDB = πiB = πjB. (2.18)

Proof of Lemma 2.4. In the equilibrium where the buyer chooses dual-sourcing, we must

have πDB ≥ max(πiB, π
j
B) since otherwise the buyer will choose only one supplier. Suppose

the result of the lemma does not hold and there exists a supplier i with πiB < πDB .

Define δ = πDB − πiB > 0. We show that supplier j has an incentive to deviate from

T ∗j (q). Consider a new bid Tj(q) for supplier j where Tj(q) = T ∗j (q) + δ/2 for q > 0 and

Tj(0) = 0, which clearly satisfies Assumption 2.3. Given the new bid Tj(q) (as well as

T ∗i (q)), the buyer’s dual-sourcing problem is,

max
{
rE[min(D, qi + qj)]− T ∗i (qi)− T ∗j (qj)− δ/2 : qi, qj > 0

}
,

We can show that the optimal solution is (qDi , q
D
j ) where

(qDi , q
D
j ) = arg max

{
rE[min(D, qi + qj)]− T ∗i (qi)− T ∗j (qj) : qi, qj > 0

}
,

and the buyer’s optimal profit is πDB − δ/2. If the buyer adopts the single-sourcing

strategy for j, her optimal profit is πjB − δ/2. Furthermore, by assumption the buyer

makes a profit of πiB = πDB − δ if she uses the single-sourcing strategy i. Therefore,

the buyer will choose (qDi , q
D
j ) due to πDB ≥ πjB. The supplier j then makes δ/2 more

profit, showing that supplier j has an incentive to deviate from the proposed bid. A

contradiction.

This lemma indicates that in equilibrium the buyer is indifferent between purchasing

from only one supplier and purchasing from both suppliers. The intuition is as follows: if
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the buyer’s single-sourcing profit is smaller, then the other supplier can slightly increase

the bid price but makes sure that the buyer’s choice remains unchanged. Hence, in

equilibrium the buyer’s profits of single-sourcing and dual-sourcing must be identical.

We are now in a position to characterize the equilibria for suppliers.

Proposition 2.5 (Equilibrium characterization). A pair of bids {T ∗1 (q), T ∗2 (q)} satisfy-

ing Assumption 2.3, is a Nash equilibrium if and only if, for i = 1, 2 and j = 3− i,

(a) T ∗′i (q̄i) = C ′i(q̄i) and T ∗′i (Q̄i) = C ′i(Q̄i);

(b) T ∗i (q̄i) = Ci(q̄i) + Π−Πj and T ∗i (Q̄i) = Ci(Q̄i) + Π−Πj.

In such an equilibrium, the buyer’s optimal choice is first best, i.e. (q∗i , q
∗
j ) = (q̄i, q̄j),

and the profit split amongst players is: π∗B = Πi + Πj − Π and π∗i = Π− Πj. The total

supply chain profit is Π∗ = Π.

Proof of Proposition 2.5. Necessity: Suppose {T ∗1 (q), T ∗2 (q)} is an equilibrium, then from

the necessary conditions for best responses in (ii) of Lemma 2.1, we know T ∗′i (q̂Di ) =

C ′i(q̂
D
i ), where q̂Di and q̂Dj satisfy the equations: r[1−F (q̂Di + q̂Dj )] = T ∗′i (q̂Di ) = C ′j(q̂

D
j ),

for i = 1, 2, j = 3− i. To find an equilibrium, we jointly solve the above equations, and

obtain that the buyer’s optimal choice in equilibrium is (q̄i, q̄j). This gives T ∗′i (q̄i) =

C ′i(q̄i) as we require for condition (a) of Proposition 2.5. In the following, we prove the

other results in two steps.

First, we show that, in equilibrium, if the buyer purchases from supplier i only, the

optimal order must be Q̄i, i.e. T ∗′i (Q̄i) = C ′i(Q̄i). Suppose otherwise and the buyer

purchases Q̂i when supplier i is the sole supplier where Q̂i 6= Q̄i, so we have T ∗′i (Q̂i) =

C ′i(Q̂i). By definition, the supplier i’s profit in equilibrium is π∗i = T ∗i (q̄i) − Ci(q̄i).

As we show earlier from (2.6) and (2.7), we have Q̂i ≥ q̄i, which together with (c) of

Assumption 2.3 yields,

T ∗i (Q̂i)− Ci(Q̂i) ≥ T ∗i (q̄i)− Ci(q̄i). (2.19)

Moreover, we know from Lemma 2.4 that πiB = πDB . To write explicitly,

rE[min(D, Q̂i)]− T ∗i (Q̂i) = rE[min(D, q̄i + q̄j)]− T ∗i (q̄i)− T ∗j (q̄j). (2.20)

From the optimality of Q̄i for the single-sourcing supply chain problem, we obtain

rE[min(D, Q̄i)]− Ci(Q̄i) > rE[min(D, Q̂i)]− Ci(Q̂i). Define the difference:

δ = rE[min(D, Q̄i)]− Ci(Q̄i)−
(
rE[min(D, Q̂i)]− Ci(Q̂i)

)
> 0. (2.21)

Now consider a new bid Ti(q) ∈ Ti for supplier i such that: T ′i (Q̄i) = C ′i(Q̄i),

T ′i (q̄i) = C ′i(q̄i), and the values of Ti at these two points are given by the following two
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equations:

rE[min(D, Q̄i)]− Ti(Q̄i) = rE[min(D, Q̂i)]− T ∗i (Q̂i) + δ/2, (2.22)

rE[min(D, q̄i + q̄j)]− Ti(q̄i)− T ∗j (q̄j) = rE[min(D, q̄i + q̄j)]− T ∗i (q̄i)− T ∗j (q̄j) + δ/4.

Given Ti(q) (as well as T ∗j (q)), we can show that the buyer will purchase from supplier

i only (by comparing the three local maxima as before and using (2.20)). Then, using

(2.21) and (2.22), we show the supplier i’s profit when offering Ti(q) is:

Ti(Q̄i)− Ci(Q̄i) = T ∗i (Q̂i)− Ci(Q̂i) + δ/2 ≥ T ∗i (q̄i)− Ci(q̄i) + δ/2 = π∗i + δ/2,

where the inequality follows from (2.19). This implies that supplier i can improve

his profit by offering Ti(q). A contradiction. Therefore, in equilibrium we must have

T ∗′i (Q̄i) = C ′i(Q̄i).

Second, we prove condition (b) which pertains to the profit split amongst players.

Let πi(Q̄i) = T ∗i (Q̄i)− Ci(Q̄i), and by definition we have π∗i = T ∗i (q̄i)− Ci(q̄i). Lemma

2.4 shows that πDB = πiB = πjB in equilibrium, which can be rewritten as follows:

Π− π∗i − π∗j = Πi − πi(Q̄i) = Πj − πj(Q̄j), (2.23)

where we have used the earlier result that if the buyer purchases from supplier i only,

the optimal order must be Q̄i.

From part (c) of Assumption 2.3, we know π∗i ≤ πi(Q̄i) and π∗j ≤ πj(Q̄j), which

together with (2.23) yields π∗i ≥ Π − Πj and π∗j ≥ Π − Πi. We now show that in

equilibrium no supplier’s profit can be greater than his marginal contribution. Suppose

otherwise and π∗i = Π− Πj + δi and π∗j = Π− Πi + δj , where δi + δj > 0. From (2.23)

we obtain

πi(Q̄i) = Π−Πj + δi + δj and πj(Q̄j) = Π−Πi + δi + δj .

Without loss of generality, suppose δi > 0. Then we show there exists a new bid T̃j(q) for

supplier j such that the buyer chooses supplier j only, and both the buyer and supplier

j are better off. For example, if a T̃j(q) ∈ Tj satisfies the following conditions:

T̃j(q̄j) = T ∗j (q̄j)−
δi
4

; T̃j(Q̄j) = T ∗j (Q̄j)−
δi
2

; T̃ ′j(q̄j) = C ′j(q̄j); T̃ ′j(Q̄j) = C ′j(Q̄j),

then the buyer will purchase from supplier j only. To see this, if the buyer chooses

dual-sourcing, her optimal profit is π∗B + δi/4. If the buyer chooses to purchase from

supplier j only, the buyer’s optimal profit is π∗B + δi/2. If the buyer purchases from

supplier i only, the buyer’s optimal profit will be π∗B (since the supplier i’s bid remains
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unchanged). So the buyer is better off not to purchase from supplier i, leaving supplier

i zero profits. Therefore, supplier i cannot make more profit than Π−Πj , and hence in

equilibrium we must have π∗i = Π−Πj . By definition we obtain T ∗i (q̄i) = Ci(q̄i)+Π−Πj .

Then from (2.23) we deduce T ∗i (Q̄i) = Ci(Q̄i) + Π − Πj . This completes the proof for

necessity.

Sufficiency: We first show the buyer’s choice is (q̄i, q̄j) given the bids {T ∗i (q), T ∗j (q)}.
Condition (a) ensures that the buyer’s optimal dual-sourcing choice is (q̄i, q̄j) and the

buyer’s optimal single-sourcing quantity is Q̄i. Using condition (b), we calculate the

buyer’s profit when purchasing from both supplier as follows: πDB = Πi + Πj −Π. If the

buyer purchases from only one supplier, then πiB = πjB = Πi + Πj − Π. Therefore, the

buyer will choose (q̄i, q̄j) according to the tie-breaking rule. Then the supplier i’s profit

is Π−Πj .

The remaining task is to show that no supplier has an incentive to deviate from the

proposed bid. Suppose to the contrary and there exists a supplier i who deviates by

choosing a different bid T̃i(q) and makes a higher profit π̃i > Π−Πj . Let (q̃i, q̃j) be the

buyer’s optimal choice given the new bid T̃i(q) (as well as T ∗j (q)). Thus,

π̃i = T̃i(q̃i)− Ci(q̃i) > Π−Πj . (2.24)

First, the supplier i’s profit when the buyer purchases from him only is no greater than

Πi − πjB = Π − Πj since otherwise the buyer will choose supplier j only and make a

profit of πjB. Thus, the only way of improving his profit is when the buyer purchases

from both suppliers, i.e. when q̃i, q̃j > 0. However, we will show that the buyer is better

off not to purchase from supplier i. The buyer’s profit from choosing (q̃i, q̃j) is:

πB(q̃i, q̃j) = rED[min(D, q̃i + q̃j)]− T̃i(q̃i)− T ∗j (q̃j)

< rED[min(D, q̃i + q̃j)]− Ci(q̃i)−Π + Πj − T ∗j (q̃j), (2.25)

where the inequality follows from (2.24). Note that the right hand side of (2.25) is

maximized when q̃i = q̄i and q̃j = q̄j due to T ∗′j (q̄j) = C∗′j (q̄j) and the concavity of the

buyer’s profit function. Furthermore, by definition we have T ∗j (q̄j) = Cj(q̄j) + Π − Πi.

Then, from (2.25) we deduce πB(q̃i, q̃j) < Π−Π + Πj −Π + Πi = Πi + Πj −Π. On the

other hand, if the buyer chooses supplier j only, her profit is πjB = Πi + Πj −Π. So the

buyer will purchase from supplier j only, leaving supplier i zero profits. Therefore, no

supplier has an incentive to deviate. This completes the proof for sufficiency.

Several points are worth mentioning. First, Proposition 2.5 reveals that the buyer’s

choice is first best in equilibrium, which is in contrast with Anton and Yao (1989)

who study a similar setting but with a deterministic demand and show that there exist

multiple demand allocations. If the buyer’s demand is fixed, each supplier knows exactly
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the order quantity from his competitor, so each supplier has the power to control the

demand allocation by submitting a bid such that his desired demand allocation occurs.

However, thanks to demand uncertainty, the total order quantity becomes endogenous,

and neither supplier knows exactly the buyer’s demand allocation without knowing the

competitor’s bid. As a result, the equilibria in which the buyer’s choice is not first best

are eliminated. This equilibrium refinement resonates with that which occurs in the

supply function equilibrium (SFE) literature (Klemperer and Meyer, 1989).

Second, we show that the profit split in equilibrium is a Vickrey-Clarke-Groves

(VCG) result: supplier i makes a profit which equals his marginal contribution to the

supply chain system, Π−Πj , and the buyer takes the remaining profit, Πi+Πj−Π. The

literature on VCG mechanisms concerns designing efficient mechanisms to elicit agents

to truthfully reveal their private information and the agents each are allocated a profit

in proportion to their marginal contributions (Ausubel and Milgrom, 2006). The dis-

tinction of our study is that we are interested in how suppliers compete with each other

rather than designing an mechanism for a buyer, and each supplier is paid according to

their bids.

Third, Proposition 2.5 establishes the necessary and sufficient conditions for equi-

librium bids. There are two critical points for the supplier i’s bid, (q̄i, T
∗
i (q̄i)) and

(Q̄i, T
∗
i (Q̄i)). When choosing the bid, each supplier needs to coordinate the case when

the buyer purchases from both suppliers with the case when the buyer purchases from

him only. The condition (b) in Proposition 2.5 states that each supplier makes the same

profit under these two cases. The equilibrium bidding strategy is not unique, despite

the fact that both the profit split and the buyer’s ordering decision are the same in all

equilibria. As an example, Corollary 2.6 shows an equilibrium where each supplier’s bid

resembles a cost-plus-lump-sum contract.

Corollary 2.6 (Equilibrium with cost-plus-lump-sum bids). It is an equilibrium for the

suppliers to make offers {T ∗1 (q), T ∗2 (q)} where, for i = 1, 2 and j = 3− i, T ∗i (0) = 0 and

T ∗i (q) = Ci(q) + Π−Πj for q > 0.

Proof of Corollary 2.6. The result can be implied by Proposition 2.5.

In this equilibrium, the bidding functions are constructed by shifting up the cost

functions by their marginal contributions. These bids can be thought of as cost-plus-

lump-sum contracts where each supplier adds a constant margin to his cost function

everywhere except at the origin.

To fully describe the equilibria in Proposition 2.5, we now characterize two extreme

equilibria where the bids are non-smooth. In doing so, we relax condition (a) in Assump-

tion 2.3 and keep conditions (b) and (c) unchanged. Suppose Ti(q) may be non-smooth

but is continuous and convex for q > 0.



Chapter 2. Supplier Competition with Subcontracting and Commitment 33

We first show an equilibrium of this form, which is the lower envelope of the equilibria

characterized in Proposition 2.5. Define, for i = 1, 2,

q0
i =

C ′i(Q̄i)Q̄i − C ′i(q̄i)q̄i − Ci(Q̄i) + Ci(q̄i)

C ′i(Q̄i)− C ′i(q̄i)
, (2.26)

which we will show is the threshold quantity for price changes. We have q̄i < q0
i < Q̄i.

To see this,

q0
i − q̄i =

C ′i(Q̄i)(Q̄i − q̄i)− Ci(Q̄i) + Ci(q̄i)

C ′i(Q̄i)− C ′i(q̄i)
> 0,

Q̄i − q0
i =

Ci(Q̄i)− Ci(q̄i)− C ′i(q̄i)(Q̄i − q̄i)
C ′i(Q̄i)− C ′i(q̄i)

> 0,

where the inequalities follow from the convexity of the cost function Ci(q). We summa-

rize in Lemma 2.7 the equilibrium for lower envelope piecewise linear bids.

Lemma 2.7 (Equilibrium for lower envelope piecewise linear bids). It is an equilibrium

for the suppliers to make offers {T 1(q), T 2(q)} where, for i = 1, 2 and j = 3−i, T i(0) = 0

and

T i(q) =

{
Ci(q̄i) + Π−Πj + C ′i(q̄i)(q − q̄i), 0 < q ≤ q0

i ,

Ci(Q̄i) + Π−Πj + C ′i(Q̄i)(q − Q̄i), q > q0
i ,

where q0
i is given by (2.26). The buyer’s optimal choice and the profit split in this

equilibrium are the same with those in Proposition 2.5.

Proof of Lemma 2.7. The proof is similar to that of Proposition 2.5 (for sufficiency). The

only difference is that the buyer’s profit function is not differentiable at q0
i . However, it

turns out to be insignificant. The detailed proof is omitted to avoid redundancy.

In this equilibrium, each supplier price-discriminates between different order sizes by

setting different unit prices. Opposite to the quantity discount contract, the bid in our

setting is a quantity premium contract, which is driven by the production diseconomies

of scale. We now summarize in Lemma 2.8 the equilibrium for upper envelope piecewise

linear bids.

Lemma 2.8 (Equilibrium for upper envelope piecewise linear bids). It is an equilibrium

for the suppliers to make offers {T 1(q), T 2(q)} where, for i = 1, 2 and j = 3−i, T i(0) = 0

and

T i(q) =


Ci(q̄i) + Π−Πj , 0 < q ≤ q̄i,
Ci(q̄i) + Π−Πj + Ci(Q̄i)−Ci(q̄i)

Q̄i−q̄i
(q − q̄i), q̄i < q ≤ Q̄i,

∞, q > Q̄i.

The buyer’s optimal choice and the profit split in this equilibrium are the same with those

in Proposition 2.5.
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Proof of Lemma 2.8. The proof is similar to that of Proposition 2.5 (for sufficiency).

The distinction is that the buyer’s profit function is not differentiable at both qi = q̄i

and qi = Q̄i. However, we can show that, at each point the left derivative of the

buyer’s corresponding profit function is positive, while the right derivative is negative.

Therefore, the buyer’s optimal solution when using the dual-sourcing strategy is (q̄i, q̄j),

and the buyer’s optimal order when purchasing from only supplier i is Q̄i. We then can

show that the buyer’s globally optimal choice is (q̄i, q̄j). The other proofs of Proposition

2.5 (for sufficiency) carry over to this lemma and are omitted here.

Lemma 2.8 shows that in the above equilibrium supplier i charges the same price

for any quantity q ∈ (0, q̄i], while the price is linearly increasing with the slope of
Ci(Q̄i)−Ci(q̄i)

Q̄i−q̄i
for q ∈ (q̄i, Q̄i]. Any quantity beyond Q̄i has the marginal price of positive

infinity.

The bids T i(q) and T i(q) provide the lower boundary and the upper boundary of the

bids characterized in Proposition 2.5. Any bid that crosses the two points, (q̄i, Ci(q̄i) +

Π−Πj) and (Q̄i, Ci(Q̄i)+Π−Πj), has the slopes of C ′i(q̄i) and C ′i(Q̄i) at these two points,

and satisfies Assumption 2.3 (and hence is smooth), can be an equilibrium strategy for

supplier i. See Figure 2.2 for the illustration of the equilibrium bids.

Best response of

Figure 2.2: The illustration of the supplier bids in equilibrium

Example 2.2 (Continued). We return to the example to illustrate how to work out the

equilibria. We know the supply chain optimal choice is (q̄1, q̄2) = (2/5, 1/5), and the

supply chain optimal profit is Π = 3/10. For the single-sourcing supply chain problems,

we have Π1 = 1/4; Π2 = 1/6, and Q̄1 = 1/2; Q̄2 = 1/3. Based on Proposition 2.5, we

know the buyer’s choice in equilibrium is (2/5, 1/5), and the profit split in equilibrium

is: π∗1 = Π−Π2 = 2/15, π∗2 = Π−Π1 = 1/20, and π∗B = Π− π∗1 − π∗2 = 7/60. Using the

results in Corollary 2.6 and Lemma 2.7, we can work out the equilibrium with cost-plus-

lump-sum bids and the equilibrium for lower envelope piecewise linear bids, respectively:
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Equilibrium with cost-plus-lump-sum bids The suppliers’ equilibrium bids are:

T ∗1 (0) = T ∗2 (0) = 0, and

T ∗1 (q) =
1

2
q2 +

2

15
and T ∗2 (q) = q2 +

1

20
, for q > 0.

Equilibrium with lower envelope piecewise linear bids The supplier 1’s piece-

wise linear bid is: T ∗1(0) = 0 and

T 1(q) =

{
2
25 + 2

15 + 2
5(q − 2

5), 0 < q ≤ 9
20 ,

1
8 + 2

15 + 1
2(q − 1

2), q > 9
20 .

The supplier 2’s piecewise linear bid is: T ∗2(0) = 0 and

T 2(q) =

{
1
25 + 1

20 + 2
5(q − 1

5), 0 < q ≤ 4
15 ,

1
9 + 1

20 + 2
3(q − 1

3), q > 4
15 .

The above equilibrium bids are depicted in Figure 2.3. We observe that both bids of

supplier i pass through the two points, (q̄i, Ci(q̄i)+Π−Πj) and (Q̄i, Ci(Q̄i)+Π−Πj), and

have the same slopes at these two points. In Figure 2.4 we plot the contours of the buyer’s

profits under these two equilibria. Note that the buyer’s profit function is discontinuous

at q1 = 0 or q2 = 0. We observe from Figure 2.4 that, at each equilibrium, there are

three local maxima for the buyer’s problem, i.e. an interior maximum (2/5, 1/5) as well

as two maxima at boundaries (0, 1/2) and (1/3, 0). This matches the result in Lemma

2.4, which states that the buyer’s dual-sourcing profit and the single-sourcing profit from

each supplier are the same in equilibrium.
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Figure 2.3: The supplier bids under the two equilibria
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(b) Lower envelope piecewise linear bids

Figure 2.4: The contours of buyer profit under the two equilibria

2.5 Single-Sourcing Commitment

In a situation with single-sourcing commitment, the buyer commits to purchasing from

only one supplier before suppliers submit their bids. To examine whether the buyer

benefits from subsequent subcontracting, we first consider the case in which suppliers

are disallowed to subcontract. This serves as a benchmark for the case in which suppliers

are allowed to subcontract.

As with the scenario of order splitting, each supplier submits a function bid and

the buyer decides the order quantity from the chosen supplier. Since in this scenario

the buyer will choose only one supplier, suppliers each essentially optimize the slope

and the value of only one point on their bidding functions. For easier exposition, we

assume supplier i offers a payment-quantity bid (Ti, Qi). This simplification of bidding

strategy does not change the equilibrium outcomes because supplier i can always choose

a function bid such that the buyer purchases Qi from him and pays Ti to him.

If the buyer selects the bid (Ti, Qi) from supplier i where i = 1, 2, then her expected

profit is

πB(Ti, Qi) = rE[min(D,Qi)]− Ti. (2.27)

The buyer chooses the bid which gives her a larger profit. In the event of a tie, she will

randomly select a supplier as the winning supplier.

2.5.1 Competition without subcontracting (SC-N)

In this benchmark case, suppliers are not allowed to subcontract with each other. Given

the supplier j’s bid (Tj , Qj), we write down the supplier i’s profit function with the offer
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(Ti, Qi) as follows,

πi(Ti, Qi) =


Ti − Ci(Qi), πB(Ti, Qi) > πB(Tj , Qj),
1
2 [Ti − Ci(Qi)] , πB(Ti, Qi) = πB(Tj , Qj),

0, πB(Ti, Qi) < πB(Tj , Qj).

Supplier i maximizes his own profit by choosing an optimal bid (Ti, Qi). We now

characterize the equilibrium for suppliers in Proposition 2.9.

Proposition 2.9 (Equilibrium without subcontracting). Suppose subcontracting is dis-

allowed, then there exists a unique Nash equilibrium {(Tn1 , Qn1 ), (Tn2 , Q
n
2 )} where, for

i = 1, 2 and j = 3 − i, Qni = Q̄i and Tni = Ci(Q̄i) + max(0,Πi − Πj). The supplier i’s

profit is πni = max(0,Πi − Πj) and the buyer’s profit is πnB = min(Πi,Πj). The total

supply chain profit is Πn = max(Πi,Πj).

Proof of Proposition 2.9. We first show that it is optimal for supplier i to set Qi = Q̄i.

For any Qi, since πi(Ti, Qi) is increasing in Ti, supplier i will set Ti as high as possible

provided that the buyer still chooses his bid. That is, supplier i chooses Ti such that

πB(Ti, Qi) = πB(Tj , Qj) + εi with εi > 0 as small as possible. Thus, for any Qi, we

obtain Ti = rE[min(D,Qi)]− πB(Tj , Qj)− εi. Substituting it into πi yields,

πi(Qi) = rE[min(D,Qi)]− Ci(Qi)− πB(Tj , Qj)− εi,

which is maximized at Qi = Q̄i. Therefore, it is optimal for supplier i to set Qi = Q̄i.

Next we derive the equilibrium for suppliers. Knowing Qi = Q̄i, we observe that if

supplier i wins, the sum of the buyer’s profit and the supplier i’s profit will be Πi. So

we can rewrite the buyer’s profit when supplier i wins: πB(Ti, Q̄i) = Πi − πi(Ti, Q̄i).
Noting that πi, πj ≥ 0, we obtain the suppliers’ best response functions as follows,

πi = max[0,Πi − (Πj − πj)− εi] and πj = max[0,Πj − (Πi − πi)− εj ],

where εi and εj are infinitesimally close to zero. Jointly solving the above equations yields

the supplier i’s profit in equilibrium: πni = max(0,Πi − Πj). By definition we obtain

Tni = Ci(Q̄i) + max(0,Πi−Πj). Then the buyer’s profit is πnB = Πi−max(0,Πi−Πj) =

min(Πi,Πj) and the supply chain profit is Πn = max(Πi,Πj). If Πi > Πj , then supplier

i wins out and gets a profit of Πi − Πj , and the supplier j’s profit is 0. If Πi = Πj , the

buyer will randomly select a supplier, and each supplier gets zero profits. This completes

the proof.

Proposition 2.9 shows that each supplier bids a quantity which maximizes the supply

chain profit when he is the sole supplier. Thus, the bidding quantity is independent of the

competitor’s bid. As a result, the two-dimensional supplier competition model with both
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quantity and price reduces to the one-dimensional price competition model. The above

equilibrium is similar to the Bertrand competition equilibrium where the undercutting

behaviour occurs.

2.5.2 Competition with subcontracting (SC-S)

In the case with subcontracting, the game involves two stages: in the first stage, suppli-

ers compete by offering quantity-payment bids; in the second stage, subcontracting may

occur between the winning supplier and the losing supplier. Following the backward in-

duction approach, we first examine the subcontracting game. Without loss of generality,

suppose supplier i wins the bidding game and his bid is (Ti, Qi). Thus, supplier i has to

deliver an amount of Qi to the buyer and gets a payment of Ti.

2.5.2.1 Subcontracting game

We model the subcontracting arrangement in a Nash bargaining framework (Mas-colell

et al., 1995). Another way to represent the split of bargaining power is to consider

changing the leader in a Stackelberg game where one supplier designs a take-it-or-leave-

it subcontract that is offered to the other. Either the winning or losing supplier could

be the leader, thus we could consider two cases. We will show these two extreme cases

are covered by the Nash bargaining game.

Assume the winning supplier’s bargaining power is α ∈ [0, 1] and the losing sup-

plier’s is 1 − α. The total gain from subcontracting is the difference in the production

costs when subcontracting occurs. Given the winning bid (Ti, Qi), the total gain from

subcontracting is

∆i(q;Qi) = Ci(Qi)− Ci(Qi − q)− Cj(q),

where q denotes the amount subcontracted to supplier j.

To formulate the bargaining problem, we need to specify both suppliers’ disagree-

ment points, i.e. their profits when the negotiation breaks down. Denote by di and

dj the disagreement points of supplier i and supplier j, respectively. By definition,

di = Ti − Ci(Qi) is the supplier i’s profit when he does not subcontract, and dj = 0

because supplier j, as the losing supplier in the bidding game, will make zero profits if

subcontracting does not occur. In the bargaining problem, the two suppliers negotiate

the profit split and choose the subcontracted quantity q. Let π̂i and π̂j be the profits

of supplier i and supplier j, respectively. For any given q, the problem is to choose the

profit split to maximize the Nash product Ω(π̂i, π̂j) = (π̂i − di)α (π̂j − dj)1−α:

max {Ω(π̂i, π̂j) : π̂i ≥ di, π̂j ≥ dj , π̂i + π̂j ≥ Ti − Ci(Qi) + ∆i(q;Qi)} , (2.28)
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where the last constraint states that the sum of both suppliers’ profits cannot exceed

the total surplus Ti − Ci(Qi) + ∆i(q;Qi).

From the KKT conditions, it is straightforward to show the bargaining leads to the

profit split of π̂i = Ti − Ci(Qi) + α∆i(q;Qi) and π̂j = (1 − α)∆i(q;Qi). We can see

that the gain from subcontracting, ∆i(q;Qi), is allocated to the suppliers proportionally

according to their bargaining power split. As α increases, the supplier i’s profit π̂i

increases and the supplier j’s profit π̂j decreases. As a result, the bilateral coordination of

both suppliers is achieved by choosing q to maximize the total gain from subcontracting:

max{∆i(q;Qi) : 0 ≤ q ≤ Qi}. (2.29)

Since ∆i(q;Qi) is concave in q, the optimal solution q̂j can be obtained by solving the

first order condition,

C ′i(Qi − q̂j) = C ′j(q̂j). (2.30)

If the buyer’s order quantity from supplier i is Qi, then it is optimal for supplier

i to subcontract q̂j(Qi) to supplier j. When Qi = Q̄, we have q̂j(Q̄) = q̄j . Note that

q̂j is an increasing function of Qi, and does not depend on the bargaining power split.

For notational simplicity, we will suppress Qi unless ambiguity arises. Thus we write

q̂j := q̂j(Qj) and ∆i(q̂j ;Qi) := ∆i(q̂j(Qi);Qi). We restrict our attention to the cases

with C ′i(Q̄i) > C ′j(0) so that, as we will show later, the equilibrium subcontracting

quantity is strictly positive. This assumption highlights the contrast between the case

with subcontracting and that without subcontracting. From the envelope theorem, we

can show that ∆i(q̂j ;Qi) is increasing in Qi.

We write down the profits of the winning supplier i and the losing supplier j as

follows,

π̂i = Ti − Ci(Qi) + α∆i(q̂j ;Qi) and π̂j = (1− α)∆i(q̂j ;Qi).

If there is a tie for the buyer’s choice, the buyer will randomly select a winning supplier.

Thus, the supplier i’s profit is

π̂t =
1

2
[Ti − Ci(Qi) + α∆i(q̂j ;Qi) + (1− α)∆j(q̂i;Qj)] ,

where (1−α)∆j(q̂i;Qj) is the supplier i’s reservation profit when he loses in the bidding

game.

If we model subcontracting in a Stackelberg framework where either the winning

supplier i or the losing supplier j offers a subcontract (t, q) to the other where t de-

notes the payment and q denotes the quantity, then we can show that the optimal

subcontracted amount is q̂j as well. In the case where the winning supplier i takes the
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lead by offering the subcontract, he will extract all the gain from subcontracting and

leave zero profits to the losing supplier j. Therefore, the winning supplier i’s profit is

π̂i = Ti − Ci(Qi) + ∆i(q̂j ;Qi), and the losing supplier j’s profit is π̂j = 0. This cor-

responds to the Nash bargaining game with α = 1. Similarly, we can show that the

Stackelberg game where the losing supplier j offers the subcontract is equivalent to the

Nash bargaining game with α = 0.

2.5.2.2 Bidding game

We now examine the competitive bidding problem in the first stage. Given the supplier

j’s bid (Tj , Qj), supplier i may win, lose, or there is a tie for the buyer’s supplier selection

decision. We write down the supplier i’s profit when offering the bid (Ti, Qi) as follows,

πi(Ti, Qi) =


Ti − Ci(Qi) + α∆i(q̂j ;Qi), πB(Ti, Qi) > πB(Tj , Qj),
1
2 [Ti − Ci(Qi) + α∆i(q̂j ;Qi) + (1− α)∆j(q̂i;Qj)] , πB(Ti, Qi) = πB(Tj , Qj),

(1− α)∆j(q̂i;Qj), πB(Ti, Qi) < πB(Tj , Qj).

The supplier i’s objective is to maximize his profit by choosing (Ti, Qi), taking ac-

count of the subcontracting opportunity in the later stage as well as the buyer’s supplier

selection decision. As opposed to the case without subcontracting, the supplier i’s reser-

vation profit (when he loses) is positive, i.e. (1− α)∆j(q̂i;Qj) > 0.

We next characterize the equilibrium for suppliers. First, define a useful function

of Qi: G(Qi) := maxq {rE[min(D,Qi)]− Cj(q)− Ci(Qi − q) : 0 ≤ q ≤ Qi}. Then, it is

straightforward to show that

G(Qi) = rE[min(D,Qi)]− Cj(q̂j)− Ci(Qi − q̂j),

where q̂j is given in (2.30). Provided the total order quantity is Qi, then G(Qi) gives

the optimal supply chain profit when subcontracting is considered. We can show that

G(Qi) is increasing in Qi since the increase in Qi enlarges the feasible region of the

maximization problem and hence improves the optimal profit. Note that when Qi = Q̄,

we have G(Q̄) = Π. We now summarize the equilibrium for suppliers in Proposition

2.10.

Proposition 2.10 (Equilibrium with subcontracting). Suppose subcontracting is al-

lowed, then there exists a unique subgame perfect Nash equilibrium {(T s1 , Qs1); (T s2 , Q
s
2)}

where, for i = 1, 2, j = 3− i, Qsi is obtained by solving the equation,

r [1− F (Qsi )] = (1− α)C ′i(Q
s
i ) + αC ′j(q̂j(Q

s
i )), (2.31)
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where q̂j(Q
s
i ) is given in (2.30), and T si = Ci(Q

s
i ) + max

[
0, G(Qsi )−G(Qsj)

]
+ (1 −

α)∆j(q̂i;Q
s
j). The profit split is

πsi = max
[
0, G(Qsi )−G(Qsj)

]
+ (1− α)∆j(q̂i;Q

s
j),

πsB = min
[
G(Qsi ), G(Qsj)

]
− (1− α)∆i(q̂j ;Q

s
i )− (1− α)∆j(q̂i;Q

s
j),

and the total supply chain profit is Πs = max
[
G(Qsi ), G(Qsj)

]
.

Proof of Proposition 2.10. Given the supplier j’s bid (Tj , Qj), supplier i will set Ti as

high as possible for any given Qi provided that the buyer still chooses him. Formally, we

have πB(Ti, Qi) = πB(Tj , Qj) + εi, where εi > 0 is infinitesimally close to zero. Plugging

it into πi(Ti, Qi), we cancel out Ti to obtain

πi(Qi) = rE[min(D,Qi)]−Ci(Qi) + α[Ci(Qi)−Ci(Qi − q̂j)−Cj(q̂j)]− πB(Tj , Qj)− εi,

which is a concave function of Qi. Taking the first derivative w.r.t. Qi yields,

∂πi(Qi)

∂Qi
= r [1− F (Qi)]− C ′i(Qi) + α

[
C ′i(Qi)− C ′i(Qi − q̂j)

(
1− dq̂j

dQi

)
− C ′j(q̂j)

dq̂j
dQi

]
= r [1− F (Qi)]− (1− α)C ′i(Qi)− αC ′i(Qi − q̂j),

where the second equality follows from (2.30). Then we obtain the first order condition

(2.31), which together with (2.30) gives Qsi .

In the following, for convenience, we work directly with the supplier profits instead

of the payments. Using Qi = Qsi we rewrite the supplier i’s profit as follows:

πi(Q
s
i ) = rE[min(D,Qsi )]− Ci(Qsi ) + α∆i(q̂j ;Q

s
i )− πB(Tj , Q

s
j)− εi.

We know that πi(Q
s
i ) ≥ (1−α)∆j(q̂i;Q

s
j) since this is the profit he obtains when he loses.

Note that if supplier j wins, the sum of the buyer’s profit and the supplier j’s profit is

rE[min(D,Qsj)] − Cj(Qsj) + α∆j(q̂i;Q
s
j). Therefore, the buyer’s profit when she selects

supplier j can be written as πB(Tj , Q
s
j) = rE[min(D,Qsj)] − Cj(Q

s
j) + α∆j(q̂i;Q

s
j) −

πj(Tj , Q
s
j). Therefore, the best response functions for both suppliers are

πi = max
{

(1− α)∆j(q̂i;Q
s
j), rE[min(D,Qsi )]− Ci(Qsi ) + α∆i(q̂j ;Q

s
i )

−
(
rE[min(D,Qsj)]− Cj(Qsj) + α∆j(q̂i;Q

s
j)− πj

)
− εi

}
,

πj = max
{

(1− α)∆i(q̂j ;Q
s
i ), rE[min(D,Qsj)]− Cj(Qsj) + α∆j(q̂i;Q

s
j)

− (rE[min(D,Qsi )]− Ci(Qsi ) + α∆i(q̂j ;Q
s
i )− πi)− εj} ,

where εi > 0 and εj > 0 are infinitely close to 0. Jointly solving the above best responses

yields πsi = max[0, G(Qsi ) − G(Qsj)] + (1 − α)∆j(q̂i;Q
s
j). By definition the bid price of
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supplier i is given by T si = πsi +Ci(Q
s
i ). The buyer’s profit is πsB = min[G(Qsi ), G(Qsj)]−

(1 − α)∆i(q̂j ;Q
s
i ) − (1 − α)∆j(q̂i;Q

s
j). The supply chain profit in equilibrium is Πs =

max[G(Qsi ), G(Qsj)]. In equilibrium, if G(Qsi ) > G(Qsj), the supplier i wins; if G(Qsi ) =

G(Qsj), the buyer randomly selects a supplier. This completes the proof.

Proposition 2.10 reveals that the supplier i’s bidding quantity Qsi can be obtained

by solving the simultaneous equations (2.31) and (2.30). Each supplier i’s profit consists

of two components: the reservation profit (1 − α)∆j(q̂i;Q
s
j) when he loses, and the

supply chain profit difference, max
[
0, G(Qsi )−G(Qsj)

]
. If G(Qsi ) > G(Qsj), supplier i

wins the bidding game, and supplier j makes a profit equal to his reservation profit,

(1− α)∆i(q̂j ;Q
s
i ).

We now discuss the two extreme cases with α = 0 and α = 1. In the case with α = 0

where the winning supplier gains nothing from subcontracting, we obtain from (2.31)

that Qsi = Q̄i. If supplier i wins, he will subcontract q̂j(Q̄i) to supplier j as we show

in (2.30). Supplier i makes a profit of πsi = max
[
0, G(Q̄i)−G(Q̄j)

]
+ ∆j(q̂i; Q̄j), and

the buyer’s profit is πsB = min
[
G(Q̄i), G(Q̄j)

]
− ∆i(q̂j ; Q̄i) − ∆j(q̂i; Q̄j). As opposed

to the case without subcontracting, suppliers compete less aggressively because of the

secondary opportunity arising from subcontracting even when losing the bidding game.

In the other extreme case with α = 1, we obtain from (2.31) that Qsi = Qsj = Q̄,

implying that both suppliers bid the supply chain optimal total quantity. If supplier i

wins, then he will subcontract q̂j(Q̄) = q̄j to supplier j. Each supplier’s actual production

quantity equals the first best quantity. Supplier i makes a profit of πsi = 0 and the buyer’s

profit is πsB = Π. The supply chain is coordinated and the buyer takes all the supply

chain profit. In this case, suppliers compete relentlessly, anticipating the big gain from

subcontracting once winning the bidding game.

2.5.2.3 Sensitivity analysis for α

In this subsection, we evaluate how α affects the bidding quantities and the profit split in

equilibrium. For clarity, we will explicitly write the bidding quantities and each player’s

profit as functions of α whenever necessary, e.g., Qsi (α). To facilitate the sensitivity

analysis, we make the following assumption.

Assumption 2.4. Both (1− α)∆j(q̂i;Q
s
j) and | Qsi −Qsj | decrease in α.

Note that the supplier i’s reservation profit when he loses is (1−α)∆j(q̂i;Q
s
j). When

α = 0 the reservation profit is ∆j(q̂i; Q̄j) which is greater than 0; when α = 1 the

reservation profit becomes 0. We assume that (1− α)∆j(q̂i;Q
s
j) decreases in α, since it

is sensible that if the winning supplier has more bargaining power, the losing supplier will

make a lower profit. Also, as shown earlier, | Qsi −Qsj |= 0 if α = 1, and | Qsi −Qsj |≥ 0

if α = 0, we assume that | Qsi −Qsj | decreases in α. This eliminates the cases where the
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sign of Qsi−Qsj changes as α varies. We can show that these two assumptions are satisfied

in the cases where suppliers have symmetric quadratic cost functions3. Making these

two assumptions will facilitate the sensitivity analysis for α but they are not required

for the qualitative results that we give in this chapter.

Corollary 2.11 (Sensitivity analysis for α). For i = 1, 2, Qsi (α) increases in α. Under

Assumption 2.4, as α increases, both πsB(α) and Πs increase, while πsi (α) decreases.

Proof of Corollary 2.11. We first show that the supplier i’s bidding quantity in equilib-

rium, Qsi , increases in α, where Qsi is obtained by solving the following simultaneous

equations:

r [1− F (Qsi )] = (1− α)C ′i(Q
s
i ) + αC ′j(q̂j) (2.32)

C ′i(Q
s
i − q̂j) = C ′j(q̂j). (2.33)

Taking the derivatives of both sides of (2.33) w.r.t. Qsi , we obtain

C ′′i (Qsi − q̂j)
(

1− dq̂j
dQsi

)
= C ′′j (q̂j)

dq̂j
dQsi

,

from which we obtain,
dq̂j
dQsi

=
C ′′i (Qsi − q̂j)

C ′′i (Qsi − q̂j) + C ′′j (q̂j)
.

We now take the derivatives of both sides of (2.32) w.r.t. α, and obtain

−rf(Qsi )
dQsi
dα

= −C ′i(Qsi ) + (1− α)C ′′i (Qsi )
dQsi
dα

+ C ′j(q̂j) + αC ′′j (q̂j)
dq̂j
dQsi

dQsi
dα

= −C ′i(Qsi ) + (1− α)C ′′i (Qsi )
dQsi
dα

+ C ′j(q̂j) +
αC ′′j (q̂j)C

′′
i (Qsi − q̂j)

C ′′i (Qsi − q̂j) + C ′′j (q̂j)

dQsi
dα

.

Thus we have

dQsi
dα

=
C ′i(Q

s
i )− C ′j(q̂j)

rf(Qsi ) + (1− α)C ′′i (Qsi ) +
αC′′j (q̂j)C′′i (Qsi−q̂j)
C′′i (Qsi−q̂j)+C′′j (q̂j)

> 0.

Therefore, we have established that Qsi is increasing in α.

Second, we show that each supplier’s profit is decreasing in α. Without loss of

generality, assume Qsi (α) ≥ Qsj(α) and supplier i wins. Then the supplier j’s profit is

πsj = (1− α)∆i(q̂j ;Q
s
i ), which is decreasing in α according to Assumption 2.4. We now

examine the supplier i’s profit: πsi = G(Qsi (α)) − G(Qsj(α)) + (1 − α)∆j(q̂i;Q
s
j). Note

first that (1−α)∆j(q̂i;Q
s
j) is decreasing in α. We next show that G(Qsi (α))−G(Qsj(α))

3See Appendix 2.8 for the proof.
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is decreasing in α as well. We have

∂
[
G(Qsi (α))−G(Qsj(α))

]
∂α

= G′(Qsi (α))
dQsi (α)

dα
−G′(Qsj(α))

dQsj(α)

dα

≤
[
G′(Qsi (α))−G′(Qsj(α))

] dQsj(α)

dα
≤ 0,

where the first inequality follows that Qsi (α)−Qsj(α) is decreasing in α and the second in-

equality follows that G(z) is concave in z. Therefore, the supplier i’s profit πsi is decreas-

ing in α. The buyer’s profit is πsB = G(Qsj)−(1−α)∆i(q̂j ;Q
s
i )−(1−α)∆j(q̂i;Q

s
j), which is

increasing because G(Qsj) is increasing and both (1−α)∆i(q̂j ;Q
s
i ) and (1−α)∆j(q̂i;Q

s
j)

are decreasing. The supply chain profit in equilibrium is Πs = max[G(Qsi ), G(Qsj)],

which is increasing in α. This completes the proof.

Corollary 2.11 states that each supplier’s bidding quantity increases in α. Both the

buyer’s profit and the supply chain profit increase in α, while each supplier’s profit de-

creases in α. The intuition of the above result is that, if the winning supplier has more

bargaining power, the losing supplier’s secondary opportunity arising from subcontract-

ing becomes smaller, while the winning supplier’s profit becomes larger. As a result,

suppliers bid more aggressively, anticipating that they can make more profit by subcon-

tracting once they win. Therefore, each supplier becomes worse off while the buyer is

better off in equilibrium.

Example 2.3 (Continued). Back to the earlier example, we can calculate the bidding

quantities of both suppliers:

Qs1 =
3

6− α
and Qs2 =

3

9− 4α
.

The profit split in equilibrium is given as follows:

πs1 =
3(7− 2α)

2(6− α)2
− 3

2(9− 4α)
, πs2 =

3(1− α)

2(6− α)2
, πsB =

3

2(9− 4α)
− 3(1− α)

2(6− α)2
, Πs =

3(7− 2α)

2(6− α)2
.

We plot the bidding quantities and each player’s profit in Figure 2.5.

We can see that as α increases, both Qs1 and Qs2 increase. Both the buyer’s profit

πsB and the total supply chain profit Πs increase in α as well, while each supplier’s

profit (πs1 and πs2) decreases in α. When α = 0, Qs1(0) = 1/3 and Qs2(0) = 1/2; when

α = 1, Qs1(1) = Qs2(1) = 3/5. Only when α = 1 is the supply chain coordinated.

In equilibrium, supplier 1 wins in the bidding game, and subcontracts q̂2 = (1/3)Qs1 to

supplier 2 subsequently. As a result, supplier 1 produces an amount of Qs1−q̂2 = 2/(6−α),

and supplier 2 produces an amount of q̂2 = 1/(6− α).
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(a) The supplier bidding quantity in equilibrium
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(b) Each player’s profit in equilibrium

Figure 2.5: The bidding quantities and each player’s profit as functions of α under
single-sourcing commitment with subcontracting

2.6 Comparisons

In this section, we answer the questions regarding whether the buyer benefits from

subsequent subcontracting and single-sourcing commitment.

2.6.1 Non-subcontracting vs. subcontracting

We now make the first comparison between the single-sourcing commitment without

subcontracting and that with subcontracting, according to the buyer’s equilibrium profit.

Theorem 2.12. Under Assumption 2.4, there exists a threshold α∗ ∈ (0, 1) such that if

α > α∗ the buyer making single-sourcing commitment is better off to allow subcontract-

ing; otherwise the buyer is better off to disallow subcontracting.

Proof of Theorem 2.12. We have shown in Corollary 2.11 that the buyer’s profit πsB(α)

is increasing in α under the commitment scenario with subcontracting. Note also

that the buyer’s profit is continuous in α, so we only need to show when α = 0,

πnB > πsB(0); and when α = 1, πnB < πsB(1). Without subcontracting, the buyer’s

profit is πnB = min(Πi,Πj). With subcontracting, if α = 0, the buyer’s profit is

πsB(0) = min
[
Πj −∆i(q̂j ; Q̄i),Πi −∆j(q̂i; Q̄j)

]
< πnB, where the inequality follows from

∆i(q̂j ; Q̄i) > 0 and ∆j(q̂i; Q̄j) > 0. In this case, the buyer is better off to disallow

subcontracting. If α = 1, the buyer’s profit is πsB(1) = Π > πnB, which implies that the

buyer is better off to allow subcontracting. Therefore, there must exist a threshold α∗

such that πsB(α∗) = πnB. If α > α∗ the buyer is better off to allow subcontracting. This

completes the proof.

This result is somewhat counter-intuitive since conventional wisdom may suggest

that the availability of subsequent subcontracting dampens the competition between

suppliers in the first stage’s bidding game. However, we show that, if the winning
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supplier’s bargaining power exceeds a threshold, the buyer prefers to allow suppliers

to subcontract with each other. We also observe that Qsi (α) ≥ Qni where the equality

holds only when α = 0. This implies that the supply chain performance is higher with

subcontracting (due to G(Qsi ) ≥ Πn). However, whether the supply chain performance

improvement benefits the buyer or not depends on its magnitude. With a smaller α, the

efficiency improvement is smaller but each supplier i’s reservation profit (1−α)∆j(q̂i;Q
s
j)

when he loses is larger. As a result, the efficiency improvement cannot counteract the

increase of the suppliers’ reservation profits. For example, in the extreme case with

α = 0, we have

πsB(0) = min
[
G(Q̄i), G(Q̄j)

]
−∆i(q̂j ; Q̄i)−∆j(q̂i; Q̄j)

= min
[
Πi −∆j(q̂i; Q̄j),Πj −∆i(q̂j ; Q̄i)

]
,

which is less than πnB = min (Πi,Πj). Thus, the buyer is better off to disallow subcon-

tracting. In the other extreme case with α = 1, we have πsB(1) = Π > πnB, implying that

the buyer benefits from subcontracting. Therefore, there exists a threshold α∗ ∈ (0, 1),

above which the buyer prefers to allow subcontracting.

One may wonder why suppliers still subcontract with each other if both are worse

off than they are with non-subcontracting. This results from the phenomenon of the

prisoner’s dilemma. In our model, non-subcontracting is strictly dominated by sub-

contracting in the second stage’s game, which implies that non-subcontracting is off

the equilibrium path. However, both suppliers are worse off in the overall game. The

prisoner’s dilemma in a dynamic game has been observed in other contexts. A notable

example is in a Cournot competition setting with forward markets (Allaz and Vila,

1993). Allaz and Vila (1993) show that, in equilibrium, each firm sells forward, which

makes them worse off than if the forward market does not exist.

2.6.2 Order splitting vs. single-sourcing commitment

We now make the second comparison between order splitting and single-sourcing com-

mitment according to each player’s equilibrium profit. We show that the buyer (each

supplier) is always better off (worse off) with single-sourcing commitment.

Theorem 2.13. From the buyer’s perspective, single-sourcing commitment outperforms

order splitting, while the reverse is true from the suppliers’ perspective, whether or not

subcontracting is allowed.

Proof of Theorem 2.13. We need to compare the order splitting scenario with the two

cases of single-sourcing commitment based on both the buyer’s profit and each supplier’s
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profit. First, we compare order splitting with single-sourcing commitment without sub-

contracting. Comparing the buyer’s profits under these two scenario, we have

π∗B − πnB = Πi + Πj −Π−min(Πi,Πj) = max(Πi,Πj)−Π < 0,

indicating that the buyer’s profit is lower under order splitting. In terms of each sup-

plier’s profit, we have

π∗i − πni = Π−Πj −max(0,Πi −Πj) = Π−max(Πi,Πj) > 0,

showing that each supplier’s profit is higher under order splitting.

Second, we compare order splitting with single-sourcing commitment with subcon-

tracting. Since under the latter scenario, the buyer’s profit is smallest and each supplier’s

profit is largest when α = 0, if we can show the result holds when α = 0, then the result

will hold for any value of α. We begin by comparing the buyer’s profits under these two

scenarios. We get the difference:

πsB(0)− π∗B = min
[
Πi −∆j(q̂i; Q̄j),Πj −∆i(q̂j ; Q̄i)

]
− (Πi + Πj −Π)

= Π−max
[
Πi + ∆i(q̂j ; Q̄i),Πj + ∆j(q̂i; Q̄j)

]
= G(Q̄)−max

[
G(Q̄i), G(Q̄j)

]
> 0,

where the inequality follows from Q̄ > max(Q̄i, Q̄j). Thus, the buyer makes a higher

profit under single-sourcing commitment. Now we make a comparison based on the

supplier i’s profit. We get the difference:

πsi (0)− π∗i = max
[
Πi + ∆i(q̂j ; Q̄i),Πj + ∆j(q̂i; Q̄j)

]
−Π

= max [G(Qi), G(Qj)]−G(Q̄) < 0.

So each supplier is worse off under the scenario of single-sourcing commitment. There-

fore, we have established that the buyer benefits from single-sourcing commitment while

the reverse is true for each supplier. This completes the proof.

Theorem 2.13 shows that the buyer prefers to make a single-sourcing commitment,

regardless of subcontracting. In particular, when α = 0, we have

πsB(0)− π∗B = min
[
Πi −∆j(q̂i; Q̄j),Πj −∆i(q̂j ; Q̄i)

]
− (Πi + Πj −Π)

= Π−max
[
Πi + ∆i(q̂j ; Q̄i),Πj + ∆j(q̂i; Q̄j)

]
= G(Q̄)−max

[
G(Q̄i), G(Q̄j)

]
> 0.
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Therefore, the buyer is better off making a single-sourcing commitment even when the

winning supplier has no bargaining power in subcontracting.

The intuitive reason that the buyer is better off under single-sourcing commitment

without subcontracting, as opposed to order splitting, is relatively straightforward. If

the buyer does not commit to single-sourcing, the competition between suppliers will

be dampened because each supplier feels “assured” that they will win at least part of

the buyer’s business. However, when comparing order splitting with single-sourcing

commitment with subcontracting, the intuition is less clear. Under both scenarios, both

suppliers produce for the buyer. Specifically, under order splitting, the buyer directly

purchases from both suppliers; while, under the latter scenario, the losing supplier signs

the subcontract with the winning supplier later. Our results suggest that suppliers

compete less aggressively under order splitting. Therefore, the buyer is better off making

a commitment, while each supplier becomes worse off with commitment.

Example 2.4 (continued). For the example we introduce earlier, we plot in Figure 2.6

each player’s profit and the supply chain profit against α under each scenario. Since the

profit splits under order splitting and single-sourcing commitment without subcontracting

have nothing to do with α, each player’s profit and the supply chain profit are constants

under these two scenarios.

From Sub-figure 2.6(a) we observe that there exists an intersection between πnB and

πsB, and the threshold value is α∗ = 0.35. When α > 0.35, the buyer is better off to allow

subcontracting. We also observe the buyer’s profit under the scenario of order splitting

is always lower than that under the scenario of single-sourcing commitment whether or

not subcontracting is allowed. As Sub-figures 2.6(c) and 2.6(d) show, however, both

suppliers’ profits are lower with single-sourcing commitment. Sub-figure 2.6(b) indicates

that the supply chain is coordinated under order splitting, which obviously outperforms

the other two scenarios from the supply chain’s perspective.

2.7 Conclusions

Many operations management models assume that firms face economies of scale or have

linear total costs, whereas this study focuses on the case in which firms face diseconomies

of scale, as in the examples discussed earlier. Although research on supply chain con-

tracts is a well-established field, the strategic interaction among suppliers facing produc-

tion diseconomies has not been well explored. This chapter attempts to fill this gap by

incorporating ex-post subcontracting and ex-ante commitment into the supplier compe-

tition model. In doing so, it is possible to study how these factors affect the competition

dynamics for suppliers, while also providing valuable guidance on procurement practices.

The results in this research are rich and insightful. The first model considered is the

order splitting scenario, in which the buyer does not make a single-sourcing commitment.
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Figure 2.6: Each player’s profit and the supply chain profit as functions of α under
different scenarios

We find that, in equilibrium, the buyer’s optimal choice is always first best. Each

supplier’s profit equals its marginal contribution to the supply chain system, and the

buyer takes the remaining profit. The second model is single-sourcing commitment in

which the buyer commits to purchasing from only one supplier. In this case, we study

whether the buyer has incentive to allow subsequent subcontracting between suppliers.

The analysis shows that, the buyer benefits from subcontracting when the winning

supplier’s bargaining power in subcontracting exceeds a threshold. It also shows that the

buyer prefers to commit to single-sourcing, whether or not subcontracting is considered.

Based on the analytical results, this study’s recommendation for procurement practi-

tioners is to commit to single-sourcing prior to running a bidding process. For example,

they could announce to suppliers that they will not split orders. This result is robust

to the case with a positive managerial cost of dealing with a supplier. If the admin-

istrative cost is taken into account, the buyer will have an even greater preference for

single-sourcing commitment. In addition, the buyer should allow subcontracting when

the winning supplier’s bargaining power in subcontracting is high. In practice, it may
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be difficult for the buyer to identify the extent of the bargaining power enjoyed by

the winning supplier. A rule of thumb is to consider the competition intensity in the

subcontracting market. If there are many subcontractors in the market, the winning

supplier may have high bargaining power. In this case, we recommend the buyer allow

subcontracting.

Regarding subcontracting, one may think that subcontractors may not participate

in the bidding game. Specifically, suppliers have an outside option of subcontracting,

and the subcontractors’ strategic behaviour is not considered. In this situation, subcon-

tracting only changes each supplier’s cost structure for the bidding game, and the game

theoretical models of outsourcing may provide some explanations (Feng and Lu, 2012b;

Wu and Zhang, 2014).

2.8 Appendix

We will show that Assumption 2.4 is satisfied with symmetric suppliers having quadratic

costs. Suppose suppliers have the same cost, i.e. Ci(q) = Cj(q) = C(q). Then each

supplier’s equilibrium bidding quantity will be the same and we write Qsi = Qsj = Qs.

From Proposition 2.10 we know there will exist a unique symmetric equilibrium. Let

q̂ := q̂(Qs) be the optimal subcontracted amount given the total amount of Qs. From

C ′(Qs − q̂) = C ′(q̂), we can easily obtain q̂ = 1
2Q

s, and so dq̂
dQs = 1

2 . Then

dQs

dα
=

C ′(Qs)− C ′(1
2Q

s)

rf(Qs) + (1− α)C ′′(Qs) + α
2C
′′(1

2Q
s)
.

Each supplier makes a profit of (1 − α)∆(q̂;Qs) = (1 − α)
[
C(Qs)− 2C(1

2Q
s)
]
. We

take the derivative of the supplier profit w.r.t. α, and obtain

∂[(1− α)∆(q̂;Qs)]

∂α
= −

[
C(Qs)− 2C(

1

2
Qs)

]
+ (1− α)

[
C ′(Qs)− C ′(1

2
Qs)

]
dQs

dα

= −
[
C(Qs)− 2C(

1

2
Qs)

]
+

(1− α)
[
C ′(Qs)− C ′(1

2Q
s)
]2

rf(Qs) + (1− α)C ′′(Qs) + α
2C
′′(1

2Q
s)

< −
[
C(Qs)− 2C(

1

2
Qs)

]
+

[
C ′(Qs)− C ′(1

2Q
s)
]2

C ′′(Qs)

Therefore, the sufficient condition on C(q) for ∂(1−α)∆(q̂;Qs)
∂α < 0 is

[
C ′(q)− C ′(1

2
q)

]2

− C ′′(q)
[
C(q)− 2C(

1

2
q)

]
≤ 0. (2.34)
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We now show that the quadratic cost function C(q) = aq2 +bq where a, b > 0 can satisfy

the condition (2.34):

[
C ′(q)− C ′(1

2
q)

]2

− C ′′(q)
[
C(q)− 2C(

1

2
q)

]
= (2aq + b− aq − b)2 − 2a

(
aq2 + bq − 1

2
aq2 − bq

)
= 0.

Hence, we have (1− α)∆(q̂;Qs) = (1− α)
[
C(Qs)− 2C(1

2Q
s)
]

is decreasing in α, which

can be verified as follows:

∂(1− α)∆(q̂;Qs)

∂α
=− 1

2
a(Qs)2 +

(1− α)(aQs)2

rf(Qs) + (2− α)a

<− 1

2
a(Qs)2 +

(1− α)(aQs)2

(2− 2α)a
= 0.



Chapter 3

Supplier Competition with

Reservation Bidding

3.1 Introduction

In recent years, increasingly high demand uncertainty and long lead times have chal-

lenged the operations of supply chains. One of the challenges revolves around how to

share various risks amongst supply chain members. Risk sharing is particularly impor-

tant when suppliers need to invest heavily in capacity installation and the future demand

is highly unpredictable. To hedge against financial risks, suppliers often require a buyer

to reserve capacity in advance by paying an upfront fee (i.e. a reservation price) and

build capacity accordingly. After knowing the actual demand, the buyer decides how

much capacity to use and pays only for the used capacity (i.e. an execution price). This

contract arrangement is referred to as “supply option” in the operations management

literature (Mart́ınez-de Albéniz and Simchi-Levi, 2009).

In an option contract, the buyer’s demand risk is mitigated by freely choosing how

much capacity to use after knowing the actual demand, while the supplier’s financial risk

is diminished by receiving a reservation payment in advance. The underlying assumption

is that the supplier only builds the capacity that is reserved, so this becomes the limit

for later production. This same basic model can represent a situation in which an early

decision is required in order to obtain components with a long lead time: once the

components are available actual production can take place quickly, but the components

ordered imply a limit on this production.

In a competitive situation with capacity reservation, each supplier quotes a reserva-

tion price and an execution price. The fundamental trade-off for a buyer is to balance

flexibility and cost efficiency. A flexible bid has a lower reservation price but a higher

0This chapter is based on a joint work with Professor Edward Anderson and Professor Bo Chen.
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execution price, while an inflexible bid has a higher reservation price but a lower execu-

tion price. If there is no demand uncertainty then the buyer will accept the bids with

the lowest total prices. But if there is a small chance of demand occurring, the buyer will

purchase the bids with very low reservation prices but high execution prices. Therefore,

with demand following a certain distribution, it is natural for the buyer to purchase

a portfolio of supply options. This research is concerned with how suppliers compete

with each other in such a supply option market. We believe that a closer look at how

suppliers compete will deepen our understanding of a firm’s procurement strategy, and

hence has the potential to help a buyer make a better sourcing decision.

This underlying model has numerous applications. First, in general industrial pro-

curement context, it is common to use these types of contracts. For example, Hewlett-

Packard adopts a portfolio of procurement contract for electronic and memory compo-

nents, amongst which 30% is in the form of option contracts (Mart́ınez-de Albéniz and

Simchi-Levi, 2005). Within an electricity market context we can see the selection of a

mix of generation capacity as falling into this framework. Instead of a single uncertain

demand with a known distribution we consider a range of electricity demand occurring

over time, but the mathematical model is entirely equivalent. The base-load generation

has the lowest overall cost, while peaking generation has lower costs for a fixed amount

of installed capacity, but higher costs for generation. This makes it appropriate as part

of the portfolio mix for use when demand is high.

In this chapter, we consider a discrete problem which involves a choice between

“blocks” of capacity offered, without the possibility of the buyer choosing to reserve

only part of a block. Thus the problem for the buyer is to select the right set of

suppliers. An example of this sort occurs within the UK’s system for purchasing Short

Term Operating Reserve (STOR) for electricity supply. This is a scheme under which

the UK’s National Grid maintains a reserve generation ability in case of sudden demand

variations or plant failures. Part of the Operating Reserve is made up by contracts that

are bid for within the STOR. Tenders are assessed on the basis of reservation prices

(called availability prices) and execution prices (called utilization prices) together with

a consideration of response times and geographical location.

Figure 3.1 shows the STOR bidding data from Round 18 (2012: Season 6.5) with

accepted bids shown as circles (in green). This illustrates the portfolio selection and one

can see that there is a curved boundary for the bids accepted.

The problems of procurement and contract design for supply options have received

a considerable amount of attention. With exogenous option contracts, several papers

study the buyer’s procurement strategy (See e.g., Barnes-Schuster et al., 2002; Burnetas

and Ritchken, 2005; Mart́ınez-de Albéniz and Simchi-Levi, 2005). More recently, Fu

et al. (2010) examine the value of portfolio procurement when a buyer can purchase

from suppliers using fixed price contracts, option contracts or spot purchases. Lee
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Figure 3.1: The STOR bids submitted in Round 18, Season 6.5, 2012.

et al. (2013) examine the buyer’s optimal procurement decision with capacity limits for

suppliers. More relevant to our work are the models of contract design for options. With

just a single supplier, several papers model a Stackelberg game between the supplier (the

leader) and a single buyer (the follower). For example, Wu et al. (2002) consider a single

supplier operating along side a spot market, and show that it is best for the supplier

to offer execution prices equal to its costs. Pei et al. (2011) analyze the structure and

pricing of option contracts in the presence of spot trading and asymmetric information of

the buyer’s valuation. With multiple suppliers competing with each other in an option

market, Wu and Kleindorfer (2005) extend the result of Wu et al. (2002) (again in

the case where a spot market provides an alternative source of supply/demand for the

buyer/supplier).

The paper that is closest to our model is Mart́ınez-de Albéniz and Simchi-Levi (2009),

but with one very significant difference: they assume that each supplier has (infinitely)

scalable capacity so that execution prices and reservation prices are bid and the buyer

can then decide how much capacity to reserve from each supplier. In our model (as in

the STOR example) where capacity comes as a block, the buyer has to reserve it all or

none. As a result, we have a combinatorial style auction with blocks of capacity reserved

from selected suppliers. It is interesting that the result of this assumption is to improve

the overall performance of the supply chain (in a sense that we will make clear later).

The general arrangement, in which an auction takes place in a multi-dimensional

setting and players have private information about their own costs, is often treated as a

type of mechanism design problem. Chao and Wilson (2002) discuss some fundamental
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questions of an auction for reserve in which the requirement is to specify both a scoring

rule (determining which capacity is to be used) and a payment rule for the winning

suppliers. Schummer and Vohra (2003) propose an Expected Vickrey-Clarke-Groves

(EVCG) mechanism which arranges the payments to give each supplier their contribution

to expected overall costs. There are a continuum of EVCG mechanisms with different

amounts paid to the suppliers “up front” after demand is realised, but they all have the

characteristic of inducing truthful revelation of the actual costs (both for reservation

and execution). Our approach is different from this literature in several ways: we are

concerned with optimizing the revenue for the buyer rather than overall welfare; suppliers

are paid exactly as they bid; and we consider a complete information setting.

In this chapter we consider the optimal behaviour for suppliers who know their costs

(both for reservation and execution) and want to determine their prices in a competitive

market. In Section 3.2 we first set up the model and describe the sequence of decisions

more precisely. Then we discuss the buyer’s problem of choosing an optimal set of

suppliers, and show that it is straightforward to find an optimal solution in the case

where all the suppliers offer blocks of the same size. In Section 3.3 we turn to the problem

faced by a supplier knowing the bids of the other players. We show that suppliers offer

at their execution costs, making profits only on the reservation component in their bids.

This result fails when suppliers own more than one block, or the buyer can reserve just

part of a block. In Section 3.4 we characterize the equilibrium for the suppliers and show

that, provided all the blocks have the same size, at a Nash equilibrium the buyer selects

exactly those suppliers necessary to give an efficient outcome for the supply chain as a

whole. For this equilibrium result we require the buyer’s optimal profit to be submodular

as a function of the set of supplier bids available. This submodulatity result requires a

complex proof and this is relegated to the Appendix1. Moreover, we provide a procedure

to construct an equilibrium for the case with unequal size blocks. Finally we conclude

in Section 3.5.

3.2 Model Setup and Buyer’s Problem

3.2.1 Model Setup

We suppose that demand is a non-negative random variable D with cdf F , so F (t) =

Pr[D ≤ t]. Before demand occurs, the buyer can reserve capacity that is offered by a

number of different suppliers in blocks. Later we will restrict our attention to the case

where all blocks have the same size, but initially we allow any size blocks. After demand

occurs the buyer will meet the demand (up to the total amount of capacity reserved)

1This proof is the work of Professor Bo Chen and is included here for convenience.
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and at this point pays an additional (execution) price for the capacity that is needed.

For the total demand that can be met, the buyer will be paid a retail price ρ.

Suppose that there are n suppliers, and supplier i ∈ N := {1, 2, ...n} sets a reservation

price ri and an execution price pi. The suppliers each try to maximize their expected

profits given their reservation costs ei, execution costs ci, and block sizes Ki > 0. We

write C = {(ci, ei,Ki) : i ∈ N}. Given the set of supplier bids B = {(pi, ri,Ki) : i ∈ N},
the buyer decides which blocks to select. For convenience of presentation we assume

without loss of generality that all execution prices are distinct. We label the bids so

that p1 < ... < pn. Note that both pi and ri are prices per unit so the buyer needs to

pay an amount riKi to reserve block i. If not all of the block is required when demand

occurs, say the amount required is xi where xi < Ki, then the buyer pays an execution

cost of pixi < piKi.

Following the backward induction approach, we first consider an optimal policy for

the buyer and then analyze the supplier’s best response as well as the equilibria for the

suppliers.

3.2.2 Buyer’s combinatorial problem

After receiving the supplier bids in B, the buyer makes a two-stage decision: reserva-

tion and execution. Provided that the buyer has reserved a set of bids and made the

reservation payment, when demand occurs the buyer decides which capacity to execute.

Our first observation is that the blocks that are used will be those that have the cheap-

est execution prices. In other words, the blocks will be used in the increasing order of

execution price. Since the sale price is ρ, any bid with an execution price greater than

ρ will not be used for sure. If the observed demand is higher than the total reserved

amount, there will be lost sales. On the other hand, if the actual demand is lower, the

buyer will not execute the excessive capacity.

Knowing the execution decision, the buyer needs to choose a set of bids that will

maximize her expected profit given the supplier bids in B. Suppose the buyer’s reser-

vation set is S = {j1, ..., jv} where v ≥ 1 and j1 < ... < jv. Hence from our observation

above, when demand is known the buyer will first use block j1, then j2 etc., till all the

demand is met, or all the blocks have been used.

It is convenient to write Yi for the total capacity of the first i blocks in S, so

Yi =
i∑

m=1

Kjm , for i = 1, ..., v, (3.1)

and Kji = Yi − Yi−1 with Y0 = 0. Then Yv is the total size of the blocks in S and we

will write this as Y (S).
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Denote by xi(t) the capacity dispatched from supplier ji if the actual demand is t.

It is easy to see that

xi(t) = min
(
(t− Yi−1)+ ,Kji

)
,

where (z)+ = max(z, 0). Thus the buyer’s expected profit from reserving S is given by

Π(S) =

v∑
i=1

((ρ− pji)ED [xi(D)]− rjiKji) ,

where ED [xi(D)] is the expected amount that the buyer uses from supplier ji. Note

that

ED [xi(D)] = ED
[
min

(
(D − Yi−1)+ ,Kji

)]
= [1− F (Yi)]Kji +

∫ Yi

Yi−1

(t− Yi)f(t)dt

= Kji −
∫ Yi

Yi−1

F (t)dt.

We rewrite the buyer’s expected profit as follows:

Π(S) =
v∑
i=1

(
(ρ− pji)

[
Kji −

∫ Yi

Yi−1

F (t)dt

]
− rjiKji

)
.

We now define a price function p̃S(t) associated with the set of bids S so that p̃S(t)

is the execution price that applies at quantity t. Hence

p̃S(t) = pji , for Yi−1 < t ≤ Yi

with p̃S(t) = 0 if t ≤ 0. With this definition we can rewrite the buyer’s profit as

Π(S) =

v∑
i=1

(ρ− pji − rji)Kji −
∫ Y (S)

0
(ρ− p̃S(t))F (t)dt.

It will be helpful to break down Π(S) into the contribution to the buyer’s profit

made by different subsets. For any set S ⊆ N with |S| = v and u ≥ 0, we define Π(u, S)

to be the contribution to the buyer’s profit from S if demand up to an amount u is met

from some other set of blocks. Then

Π(u, S) =
v∑
i=1

(ρ− pji − rji)Kji −
∫ u+Y (S)

u
(ρ− p̃S(t− u))F (t)dt

=
v∑
i=1

(ρ− pji − rji)Kji −
∫ Y (S)

0
(ρ− p̃S(τ))F (τ + u)dτ.
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So Π(u, S) is non-increasing in u as F is non-decreasing. Note that we have Π(0, S) =

Π(S).

For two subsets R,S ⊆ N , we write R 4 S if R is larger than S, and the blocks in

S have higher prices than the corresponding blocks in R. Specifically, we have R 4 S if

Y (R) ≥ Y (S) and p̃R(t) ≤ p̃S(t) for t ≤ Y (S). We now show a preliminary result that

deals with differences in Π(u, S) as u varies.

Lemma 3.1. For any subsets R,S ⊆ N , with R 4 S and a > b, we have

Π(b, S)−Π(a, S) ≤ Π(b, R)−Π(a,R).

Proof of Lemma 3.1. We observe that

Π(b, S)−Π(a, S) =

∫ Y (S)

0
(ρ− p̃S(τ))(F (τ + a)− F (τ + b))dτ

≤
∫ Y (S)

0
(ρ− p̃R(τ))(F (τ + a)− F (τ + b))dτ,

since p̃R(τ) ≤ p̃S(τ) and F (τ + a) ≥ F (τ + b). Hence, provided that ρ is greater than

any of the prices (so the integrand is positive) we can use Y (R) ≥ Y (S) to obtain

Π(b, S)−Π(a, S) ≤
∫ Y (R)

0
(ρ− p̃R(τ))(F (τ + a)− F (τ + b))dτ = Π(b, R)−Π(a,R).

This completes the proof.

Lemma 3.1 shows that the profit gain by shifting the blocks in a set forward from a

to b is higher when the execution prices of bids in the set are lower.

Next we will show the submodularity of the set function Π. Submodularity is an

important concept in combinatorial optimization. We begin with a definition of it.

Definition 3.2. A set function Φ : 2V → R is submodular if and only if, for all subsets

A,B ⊆ V , we have: Φ(A) + Φ(B) ≥ Φ(A ∪B) + Φ(A ∩B).

Note that if a function is submodular and Φ(∅) = 0 (which we always assume), then

for any two disjoint sets A,B ⊆ V , Φ(A ∪ B) ≤ Φ(A) + Φ(B). That is, submodularity

implies subadditivity. However, the reverse does not hold in general. For a supermodular

function, we simply replace ≥ with ≤.

There are some variations of the above definition. For example, the set function Φ

is submodular if and only if for all A,B ⊆ V and j, k ∈ V \A, we have

Φ(A ∪ {k})− Φ(A) ≥ Φ(A ∪ {j, k})− Φ(A ∪ {j}),

from which we observe that submodular functions present the property of “diminishing

return” and may be seen as a discrete analogue to concave functions.
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Let us introduce the following useful notations: for any S ⊆ N and 1 ≤ y ≤ x ≤ v,

Sx = {i ∈ S : i ≤ x}; Sy = {i ∈ S : i ≥ y}; Syx = Sx ∩ Sy. (3.2)

We are now in a position to show that the buyer’s profit function Π(S) is submodular.

Lemma 3.3. The set function Π(X) with X ⊆ N is submodular.

Proof of Lemma 3.3. To prove submodularity of Π(X), it is sufficient to establish the

following result: for any X ⊆ N and α, β ∈ N \X

Π(X ∪ {α, β}) + Π(X) ≤ Π(X ∪ {α}) + Π(X ∪ {β}).

Without loss of generality let α < β. Using the notations in (3.2), we can partition X

into three subsets Xjα , Xjα+1
jβ

and Xjβ+1 where jt = max{i ∈ X : i < t} for t = α, β.

Then, cancelling the common term Π(Xjα) we have

Π(X ∪ {α, β})−Π(X ∪ {β}) = Π(Y (Xjα), {α}) + Π(Y (Xjα) +Kα, X
jα+1
jβ

∪ {β} ∪Xjβ+1)

−Π(Y (Xjα), Xjα+1
jβ

∪ {β} ∪Xjβ+1),

Π(X ∪ {α})−Π(X) = Π(Y (Xjα), {α}) + Π(Y (Xjα) +Kα, X
jα+1
jβ

∪Xjβ+1)

−Π(Y (Xjα), Xjα+1
jβ

∪Xjβ+1).

Now observing that Xjα+1
jβ

∪ {β} ∪ Xjβ+1 4 Xjα+1
jβ

∪ Xjβ+1 and from Lemma 3.1, we

deduce

Π(Y (Xjα) +Kα, X
jα+1
jβ

∪Xjβ+1)−Π(Y (Xjα), Xjα+1
jβ

∪Xjβ+1)

≤ Π(Y (Xjα) +Kα, X
jα+1
jβ

∪ {β} ∪Xjβ+1)−Π(Y (Xjα), Xjα+1
jβ

∪ {β} ∪Xjβ+1).

Thus, we have

Π(X ∪ {α})−Π(X) ≤ Π(X ∪ {α, β})−Π(X ∪ {β}),

and the result is established.

Lemma 3.3 demonstrates the economic phenomenon of diminishing returns of the

buyer’s profit as a set function. It implies that the marginal contribution of a supplier

to the buyer profit decreases as the buyer’s earlier reservation set becomes larger.

Having characterized the property of the buyer’s objective function Π, we now max-

imize Π by choosing a set of blocks in N . This is a combinatorial optimization problem

and is formulated as follows:

Π∗(N) = max
S⊆N

Π(S). (3.3)
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In general, to maximize a monotonic submodular function is challenging and NP-

hard, and it is even harder for a non-monotonic submodular function. However, under

the special case with equal-size blocks (Ki = K), we are able to propose an efficient

algorithm to solve the buyer’s problem (3.3) in polynomial time.

3.2.3 The case with equal-size blocks

In the case where all the suppliers have equal-size blocks, we can establish stronger

results. Without loss of generality we take Ki = 1 so that we can rewrite

Π(S) =
v∑
i=1

(
(ρ− pji)F̄ (i)− rji

)
,

where F̄ (i) = 1 −
∫ i
i−1 F (t)dt. Since the integral here is the average of F in the range

(i−1, i) the F̄ function can be seen as a form of average probability that demand exceeds

a point in the range (i− 1, i). Similarly,

Π(u, S) =
v∑
i=1

(ρ− pji − rji) +

∫ Y (S)

0
(ρ− p̃S(τ))F (τ + u)dτ

=
v∑
i=1

(
(ρ− pji)F̄ (i+ u)− rji

)
.

We also write

∆(u, S) = Π(u, S)−Π(u+ 1, S) =
v∑
i=1

(ρ− pj) [F (i+ u+ 1)− F (i+ u)] ,

which is the loss from shifting each block in S back by one place. Note from Lemma

3.1 that for any subsets R,S ⊆ N , we have R 4 S if ∆(u, S) ≥ ∆(u,R). Using the

notations in (3.2), we obtain

Π(X)−Π(X ∪ {i}) = ∆(|Xi| , Xi)−Π(|Xi| , {i}).

We now consider a version of the buyer’s problem where the buyer is restricted to

choose k blocks where k = 1, ..., n. Denote by N(k) the buyer’s optimal choice set when

restricted to choose k blocks. That is,

N(k) = arg max
S⊆N,|S|=k

Π(S), (3.4)

so the buyer’s optimal profit in this case is given by Π(N(k)). We first show a property

of N(k).
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Lemma 3.4. For k = 1, ..., n− 1, the optimal buyer’s choice when restricted to k blocks

can be chosen as a subset of the optimal buyer’s choice when restricted to k + 1 blocks.

That is, N(k) ⊂ N(k + 1).

Proof of Lemma 3.4. Let U = N(k) = {j1, . . . , jk} where j1 < · · · < jk , and let V =

N(k + 1) = {h1, . . . , hk+1} where h1 < · · · < hk+1. We write U+(m) = {jm+1, ...jk},
U−(m) = {j1, ...jm}, V+(m) = {hm+1, ...hk+1}, and V−(m) = {h1, ...hm}. Define q as

the minimum value such that V+(q) 4 U+(q − 1), thus we must have jq−1 < hq. In the

case that jk < hk+1 we will take q = k + 1. We will show that U ∪ {hq} is just as good

a choice of blocks for the buyer as V .

We first show that Ṽ = V−(q) ∪ U+(q − 1) is as good a choice as V . Since U is the

best choice with k elements we cannot improve by using the set U−(q−1)∪V+(q) which

also has k elements. Hence

Π(q − 1, V+(q)) ≤ Π(q − 1, U+(q − 1)).

But, as V+(q) 4 U+(q − 1) we know that ∆(q − 1, V+(q)) ≥ ∆(q − 1, U+(q − 1)) and so

Π(q, U+(q − 1)) = Π(q − 1, U+(q − 1))−∆(q − 1, U+(q − 1))

≥ Π(q − 1, V+(q))−∆(q − 1, V+(q)) = Π(q, V+(q)).

This is precisely the inequality we need to show that Π(Ṽ ) ≥ Π(V ).

Second, we show that Π(U ∪ {hq}) ≥ Π(Ṽ ). To do this we need to replace the first

q−1 elements V−(q−1) of Ṽ with U−(q−1). Since U is the best choice with k elements

we cannot improve by using the set V−(q − 1) ∪ U+(q − 1) which also has k elements.

Comparing the Π values for these two sets we see they differ only on the first q − 1

elements. Thus Π(U−(q − 1)) ≥ Π(V−(q − 1)) and so

Π(U−(q − 1) ∪ {hq} ∪ U+(q − 1)) ≥ Π(V−(q − 1) ∪ {hq} ∪ U+(q − 1)) = Π(Ṽ ).

Combining the above two steps, we establish the result required.

We next show a property of Π(N(k)) which is a discrete analogue of concavity.

Lemma 3.5. For k = 1, ..., n− 1, we have

Π(N(k))−Π(N(k − 1)) ≥ Π(N(k + 1))−Π(N(k)).

Proof of Lemma 3.5. Denote by α and β the kth and (k + 1)th reserved blocks, re-

spectively. From Lemma 3.4, we know N(k) = N(k − 1) ∪ {α} and N(k + 1) =
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N(k − 1) ∪ {α, β}. Then we obtain

Π(N(k))−Π(N(k − 1))−Π(N(k + 1)) + Π(N(k))

= Π(N(k − 1) ∪ {α})−Π(N(k − 1))−Π(N(k − 1) ∪ {α, β}) + Π(N(k − 1) ∪ {α})

≥ Π(N(k − 1) ∪ {β})−Π(N(k − 1))−Π(N(k − 1) ∪ {α, β}) + Π(N(k − 1) ∪ {α})

≥ 0,

where the first inequality follows from Π(N(k − 1) ∪ {α}) ≥ Π(N(k − 1) ∪ {β}) be-

cause α is the best choice for the kth block, and the second inequality follows from the

submodularity of Π(S) in Lemma 3.3. This completes the proof.

The results in Lemma 3.4 and Lemma 3.5 allow us to solve the buyer’s problem using

a dynamic programming approach. We solve the problem (3.4) recursively, starting with

k = 1 and then increasing k one at a time. At each stage there are less than n options

to consider as we add each of the possible blocks into the reservation set one at a time.

Once we stop making an improvement by adding another block then we have found

an optimal solution. The question of finding an efficient computational approach for a

similar problem is also considered by Schummer and Vohra (2003) who show that it can

be solved using a linear program (either a transportation problem or a shortest path

problem). In terms of time complexity, our dynamic programming approach is more

efficient.

We now give an example to illustrate how the optimal buyer choice set evolves as k

increases.

Example 3.1. The buyer’s demand follows a discrete uniform distribution with Pr(D =

i) = 1/10, i = 1, ..., 10. The retail price is ρ = 10. The bids offered by the suppliers are

given in Table 3.1.

Table 3.1: The bids submitted by suppliers

Bid 1 Bid 2 Bid 3 Bid 4 Bid 5 Bid 6 Bid 7 Bid 8 Bid 9 Bid 10

pi 3 3.2 3.3 3.7 3.8 4 4.2 4.5 4.7 5
ri 4 3.8 3.7 3.7 3.5 3.4 3.2 2.5 2 1

Table 3.2 lists the buyer’s reservation sets as k increases from 1 to 10. The number

in each cell indicates whether the bid is chosen by the buyer (1 if the bid is chosen; 0

otherwise). As we can see, a block which is chosen when the buyer is restricted to choose

k blocks will still be chosen when restricted to choose k + 1 blocks.

We also plot in Figure 3.2 the optimal buyer profit Π(N(k)) against k. We observe

that Π(N(k)) is a discrete analogue of some concave function. The buyer profit Π(N(k))

increases as k increases until when k = 6. Therefore, the optimal number of reserved
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Table 3.2: The optimal buyer choice sets

Bid 1 Bid 2 Bid 3 Bid 4 Bid 5 Bid 6 Bid 7 Bid 8 Bid 9 Bid 10

1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 0 1 1 1
4 0 0 1 0 0 0 0 1 1 1
5 0 1 1 0 0 0 0 1 1 1
6 1 1 1 0 0 0 0 1 1 1
7 1 1 1 0 0 0 1 1 1 1
8 1 1 1 0 1 0 1 1 1 1
9 1 1 1 0 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

blocks is 6, and the optimal reservation set includes the first three and the last three

blocks as shown in Table 3.2.
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Figure 3.2: The optimal buyer profit as a function of k

Having established that the buyer’s profit function Π(X) is submodular, we next

show that, with equal-size blocks, this property is inherited by the set function Π∗(X)

in (3.3) which takes the best buyer profit given a set of available blocks X.

Lemma 3.6. When blocks are of equal-size, then Π∗(X) is submodular for X ⊆ N .

Proof of Lemma 3.6. See the Appendix.

We now demonstrate with an example that this submodularity property does not

hold when supplier blocks have different sizes.
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Example 3.2. Suppose that demand takes only the single value 10 and the selling price

ρ is 50. We have 5 blocks available {a, b, c, g, h} with (pi, ri,Ki) triples as follows: a =

b = c = (1, 10, 4) and g = h = (1, 7, 5). Then Π({a, b}) = 49 × 8 − (10 × 8) = 312,

Π({a, g}) = 49× 9− (10× 4)− (7× 5) = 366, Π({a, b, c}) = 49× 10− (10× 12) = 370,

Π({a, b, g}) = 49× 10− (10× 8)− (7× 5) = 375, Π({g, h}) = 49× 10− (10× 7) = 420.

Hence we see that

Π∗({a, b, c}) = Π({a, b, c}) = 370,

Π∗({a, b, c, g}) = Π∗({a, b, c, h}) = Π({a, b, g}) = 375,

Π∗({a, b, c, g, h}) = Π({g, h}) = 420.

Thus Π∗({a, b, c}) + Π∗({a, b, c, g, h}) > Π∗({a, b, c, g}) + Π∗({a, b, c, h}) contradicting

submodularity.

Based on the submodularity in Lemma 3.6, we now provide a further property of the

set function Π∗(X). This result will be used for the equilibrium analysis in Section 3.4.

Corollary 3.7. For any set A ⊆ S, we have

∑
i∈A

(Π∗(S)−Π∗(S \ {i})) ≤ Π∗(S)−Π∗(S \A). (3.5)

Proof of Corollary 3.7. We prove it by induction. Note that it is trivial when |A| ≤ 1.

If |A| = 2, let A = {j, k}. From Lemma 3.3, we obtain

Π∗(S \ {j}) + Π∗(S \ {k}) ≥ Π∗(S) + Π∗(S \ {j, k}),

which can be rearranged to show the result required.

Suppose (3.5) holds for a given subset B ⊆ S with |B| > 2, that is,

∑
i∈B

(Π∗(S)−Π∗(S \ {i})) ≤ Π∗(S)−Π∗(S \B). (3.6)

With any block l ∈ S \B, we have

∑
i∈B∪{l}

(Π∗(S)−Π∗(S \ {i})) =
∑
i∈B

(Π∗(S)−Π∗(S \ {i})) + Π∗(S)−Π∗(S \ {l})

≤ Π∗(S)−Π∗(S \B) + Π∗(S)−Π∗(S \ {l}),

where the inequality follows from (3.6). Moreover, from Lemma 3.3 we obtain,

Π∗(S \B) + Π∗(S \ {l}) ≥ Π∗(S) + Π∗(S \ (B ∪ {l})).
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Combining the above two inequalities yields,

∑
i∈B∪{l}

(Π∗(S)−Π∗(S \ {i})) ≤ Π∗(S)−Π∗(S \ (B ∪ {l})).

Hence, by induction, we complete the proof.

Corollary 3.7 shows that the overall contribution of a set is larger than the sum of

each bid’s marginal contribution to the optimal buyer’s profit.

3.3 Suppliers’ Best Responses

In this section, we examine each supplier’s best response problem. Denote by B−i =

B \ {(pi, ri,Ki)} the set of bids submitted by the suppliers except i. Let N∗−i be the

optimal buyer selection when block i is not available, so

N∗−i = arg max
S⊆N\{i}

Π(S).

We look at how supplier i responds to B−i by choosing a reservation price ri and an

execution price pi. Note that only when block i is selected by the buyer, can supplier i

make profit. Suppose that the supplier i’s offer is (pi, ri), and given this offer (as well

as B−i), denote by X ∪ {i} the buyer’s optimal set. Let u be the ranking of block i in

X ∪ {i}. Similar to our previous notations, we denote by Xu the subset of bids in X

with execution prices lower than pi and by Xu the subset of bids in X with execution

prices higher than pi. So the profit for the buyer when bid i is included is,

Π(X ∪ {i}) = Π(Xu) + Π(Y (Xu) +Ki, X
u) + Π(Y (Xu), {i})

= Π(Xu) + Π(Y (Xu) +Ki, X
u) + (ρ− pi)

[
Ki −

∫ Ki

0
F (τ + Y (Xu))dτ

]
− riKi.

The supplier i’s profit from offering (pi, ri) is

πi(pi, ri) = (pi − ci)
[
Ki −

∫ Ki

0
F (τ + Y (Xu))dτ

]
+ (ri − ei). (3.7)

Given B−i, the supplier i’s best response problem is to maximize his profit by choos-

ing (pi, ri),

max
(pi,ri)

πi(pi, ri), (3.8)

subject to

X ∪ {i} = arg maxS⊆NΠ(S), (3.9)
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where the constraint (3.9) is to ensure that the buyer selects block i. We now show an

optimal strategy for supplier i.

Theorem 3.8. Given B−i, the supremum of the expected profit for supplier i is achieved

when pi = ci and is constant for pi in an interval containing ci.

Proof of Theorem 3.8. Notice that for any given value of pi, it is optimal for supplier i

to set ri as high as possible, subject to the proviso that bid i is still chosen by the buyer.

Alternatively, for any pi there will be a maximum possible value of ri that depends on

pi. This maximum value for ri gives the maximum expected profit for supplier i, and

is such that the buyer is indifferent between including block i and excluding it (here

undercutting behaviour occurs, but for convenience of exposition we shall use equality).

So we have Π(X ∪ {i}) = Π(N∗−i), from which we deduce,

riKi = Π(Xu) + Π(Y (Xu) +Ki, X
u) + (ρ− pi)

[
Ki −

∫ Ki

0
F (τ + Y (Xu))dτ

]
−Π(N∗−i).

Plugging the above equation into πi we cancel out ri to obtain

πi = Π(Xu)+Π(Y (Xu)+Ki, X
u)+(ρ−ci)

[
Ki −

∫ Ki

0
F (τ + Y (Xu))dτ

]
−Π(N∗−i)−eiKi.

Since this depends on the choice of pi only through the set X which can take only finitely

many values, πi will be piecewise constant as a function of pi. The next step is to show

that ci is in an interval that achieves the maximum supplier profit.

We write B̄ = B−i ∪ {(ci, di,Ki)} and let ΠB̄(S) be the buyer’s profit when choosing

the bids in S under B̄. Let L∗ be the optimal buyer selection under B̄, thus,

L∗ = arg max
S⊆N

ΠB̄(S). (3.10)

We will show that supplier i can do no better than set p∗i = ci and r∗i = ei + (ΠB̄(L∗)−
Π(N∗−i))/Ki. With this offer supplier i makes profit only from the reservation component

of the offer, thus

πi(p
∗
i , r
∗
i ) = Ki(r

∗
i − ei) = ΠB̄(L∗)−Π(N∗−i).

Suppose a different offer (p′i, r
′
i) 6= (p∗i , r

∗
i ) gives a higher profit to supplier i. We

write B′ = B−i ∪ {(p′i, r′i,Ki)}. With this offer, denote the buyer’s optimal choice set by

L′. Thus, we have

πi(p
′
i, r
′
i) > ΠB̄(L∗)−Π(N∗−i),

and the buyer’s optimal profit from selecting L′ is no less than that from selecting N∗−i,

ΠB′(L
′) ≥ Π(N∗−i).
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Combining the above two inequalities yields

πi(p
′
i, r
′
i) + ΠB′(L

′) > ΠB̄(L∗).

However, the optimality of L∗ implies that ΠB̄(L∗) ≥ πi(p′i, r′i) + ΠB′(L
′). Therefore, we

arrive at a contradiction, implying the result required.

Theorem 3.8 shows that it is optimal for suppliers to set execution prices to be

execution costs. This result mirrors what have been found in other circumstances (Wu

et al., 2002; Wu and Kleindorfer, 2005), and significantly facilitates the equilibrium

analysis as we will see in Section 3.4.

3.3.1 Two extensions

In this subsection, we discuss two extensions of our basic model.

(1) Partial reservation: Each supplier owns a single block and the blocks can be of

different sizes. Every supplier chooses an execution price and a reservation price

for his capacity block and the buyer is allowed to reserve any portion of a block.

Compared with the baseline model, the difference in this extension is that the

buyer is not restricted to reserve a block all or none.

(2) Multiple blocks with a common owner: Each supplier owns multiple unit-

blocks and can choose different prices for (possibly) different unit-blocks. The

buyer can freely choose the offered blocks.

One of the key results obtained for the baseline model is that a best response for

supplier i is to set pi = ci and the suppliers make profits only through reservation

payments. In the above two extensions, however, this result does not hold in general, as

we will demonstrate with the following example.

Example 3.3. Suppose the other bids are B−i = {(1, 3, 1); (4, 1, 1)} where the first num-

ber in each triple is the execution price, the second is the reservation price, and the last

is the block size. The demand distribution is given by Pr(D = k) = 1/5 for k = 1, ..., 5.

The retail price is ρ = 15. Supplier i has a block of size 3 and ci = ei = 2, so we can

write i = (2, 2, 3) for block i. We also write B̄ = B−i∪{(2, 2, 3)}. Under B̄, we can show

that the buyer will choose all the three blocks which include five units, and the buyer’s

optimal profit is

Π∗B̄ = [
5

5
(15− 1)− 3] +

4∑
k=2

[
k

5
(15− 2)− 2] + [

1

5
(15− 4)− 1] = 29.6.
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If supplier i is unavailable, the buyer will choose both blocks in B−i and make a profit of

Π∗B−i =
5

5
(15− 1)− 3 +

4

5
(15− 4)− 1 = 18.8.

So we could expect that the maximum profit supplier i can achieve is 29.6 − 18.8 =

10.8. In fact, in the baseline model where the buyer is restricted to reserve the whole

block, the supplier i’s optimal profit is indeed 10.8. However, the optimal profit of supplier

i is less than 10.8 in the two extended models.

First, we consider the extension of partial reservation. We show that it is suboptimal

for supplier i to choose p∗i = 2. Since the buyer can decide how much to reserve from

supplier i, there are three cases regarding the buyer’s choice.

• If the buyer’s optimal selection includes only one unit from supplier i, then an

optimal strategy for supplier i is p∗i = 2 and r∗i = 8.2, which indeed leads to the

buyer to reserve only one unit from supplier i (plus the bids in B−i) and make a

profit of 18.8. The supplier i’s profit is

πi =
4

5
(p∗i − ci) + r∗i − ei = 6.2.

• If the buyer chooses two units from supplier i, the optimal solution is p∗i = 15 and

r∗i = 0. In this case, the supplier i’s profit is

πi = (
4

5
+

3

5
)(p∗i − ci) + 2(r∗i − ei) = 9.

• If the buyer chooses three units from supplier i, the optimal solution is again p∗i =

15 and r∗i = 0. The supplier i’s profit is

πi = (
4

5
+

3

5
+

2

5
)(p∗i − ci) + 3(r∗i − ei) = 9.6.

Comparing the above three cases, we find the optimal strategy is to set p∗i = 15 and

r∗i = 0. Note that the optimal execution price is not within the interval of [1, 4]. In

this case, the buyer reserves three units from supplier i and makes a profit of 18.8, and

supplier i makes a profit of 9.6.

If pi is forced to take the value of 2, then it is optimal for supplier i to set r∗i = 5.6.

In this case the buyer will reserve just two units and the supplier i’s expected profit is

πi =
4

5
(p∗i − ci) + r∗i − ei +

3

5
(p∗i − ci) + r∗i − ei = 7.2.
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If we impose the condition of 1 ≤ pi ≤ 4, then it is optimal for supplier i to set p∗i = 4

and r∗i = 4.4. In this case the buyer will reserve two units and the supplier i’s profit is

πi =
4

5
(p∗i − ci) + r∗i − ei +

3

5
(p∗i − ci) + r∗i − ei = 7.6.

Therefore, we have established that it is not optimal for supplier i to set p∗i = 2, or any

value in the range [1, 4].

Second, we consider the extension where a single supplier owns multiple unit-blocks

that can be offered at different prices. We can think of supplier i owning three unit-

blocks with identical costs. In contrast with the partial reservation extension, supplier i

can choose different prices for different blocks. To differentiate these three unit-blocks,

we denote the supplier i’s bids by {(pi1, ri1), (pi2, ri2), (pi3, ri3)}.
We find the optimal solution is: p∗i1 ∈ [1, 4], r∗i1 = 9.8 − 0.8p∗i1, and p∗i2 = p∗i3 =

15, r∗i2 = r∗i3 = 0. Given these bids, the buyer will reserve three unit-blocks from supplier

i (plus the bids in B−i). The supplier i’s profit is

πi =
4

5
(p∗i1 − ci) + r∗i1 − ei +

2

5
(p∗i2 − ci) + r∗i2 − ei +

1

5
(p∗i3 − ci) + r∗i3 − ei

=
4

5
(p∗i1 − 2) + 9.8− 0.8p∗i1 − 2 +

2

5
(15− 2) + 0− 2 +

1

5
(15− 2) + 0− 2

= 10.

This shows that it is optimal for supplier i to set different prices for different blocks, and

hence the result of p = c does not hold in this setting.

If we impose the constraint of pi1 = pi2 = pi3 = 2, the optimal solution is r∗i1 = r∗i2 =

r∗i3 = 5.6. The buyer will reserve two unit-blocks and the supplier i’s profit is 7.2 as we

show in Extension (1). If we impose the constraint of 1 ≤ pij ≤ 4 where j = 1, 2, 3, then

the optimal solution for supplier i is: p∗i1 = p∗i2 = p∗i3 = 4 and r∗i1 = r∗i2 = r∗i3 = 4.4.

In this case, the buyer will reserve two unit-blocks and the supplier i’s profit is 7.6 as

shown in Extension (1).

3.4 Equilibrium Analysis

Having established the best response for each supplier we are now in a position to

characterize the Nash equilibrium for the suppliers. For the case where suppliers have

equal-size blocks, we are able to fully characterize the equilibria for suppliers. When the

supplier blocks are of different sizes, we propose an algorithm to find an equilibrium.

Throughout the following analysis, we will slightly violate the earlier notations. We

use the notation ΠB(S) for the buyer’s profit when supplier offers are given by B and

the buyer selects the set S ⊆ N . Similarly, Π∗B(S) is the maximum profit achieved from

a subset of S (i.e. Π∗B(S) = maxX⊆S ΠB(X)). We will also write S(B)∗ and S(B)∗−i
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for the optimal buyer choices from amongst the set S and S\{i}, respectively, assuming

that supplier offers are given by B.

As we show for each supplier’s best response, the choice of bid at optimal solutions is

made in such a way that there is no unique optimum for the buyer. Moreover, because

supplier profits will depend on buyer choices, it is important to have a definite algorithm

to break ties.

Assumption 3.1. We assume that the costs in C are chosen such that N(C)∗ is unique

under C, where N(C)∗ = arg maxX⊆N ΠC(X). There are some given positive weights,

ζ1, ζ2, ..., ζn, that are only used to break ties, with ζi 6= ζj, for i 6= j, and with ζi > n+ ζj

for i ∈ N(C)∗ and j /∈ N(C)∗.

Assumption 3.1 states that in the event of a tie the buyer chooses the set of suppliers

X to maximize the sum of the weights of selected suppliers,
∑

i∈X ζi. Thus, when

it makes no difference to the buyer profit, the buyer will always prefer to choose an

additional block, and to choose a set of blocks with more elements from N(C)∗.
We first prove a key characteristic of an equilibrium set of bids: at equilibrium the

optimal buyer profit remains the same when any individual block is removed.

Lemma 3.9. Suppose B = {(p∗j , r∗j ,Ki) : j ∈ N} is a Nash equilibrium, then for i =

1, 2, ..., n, we have

Π∗B(N) = Π∗B(N\{i}). (3.11)

Proof of Lemma 3.9. From optimality we must have Π∗B(N) ≥ Π∗B(N\{i}), so we sup-

pose (3.11) does not hold and there exists some i with δ := Π∗B(N) − Π∗B(N\{i}) > 0.

Note that this implies that block i is in the buyer selection under B. We now consider

a new bid for supplier i, with a higher reservation price: (p∗i , r
∗
i + δ/(2Ki)). The buyer

now makes a choice from the set B′ = B \ {(p∗i , r∗i ,Ki)} ∪ {(p∗i , r∗i + δ/(2Ki))}.
If the buyer chooses N(B)∗ then the profit to the buyer is reduced by δ/2 from

Π∗B(N), and if the buyer chooses a set excluding i then its profit is the same as before.

Hence

ΠB′(N(B)∗) = Π∗B(N)− δ/2 > Π∗B(N\{i}) = Π∗B′(N\{i})

We also know Π∗B′(N) ≥ ΠB′(N(B)∗). Thus, we have Π∗B′(N) > Π∗B′(N\{i}), which

implies that after the change the optimal buyer selection still includes i. Hence the

change in offer will increase the profit for supplier i, which contradicts the fact that B
is an equilibrium. This establishes the result we require.

Lemma 3.9 shows that the buyer is indifferent between choosing a block and not

choosing it. According to our tie-breaking rule, the buyer will reserve N∗ instead of N∗−i

in equilibrium. The intuition of this property is the following: if the buyer’s profit from

reserving N∗ is greater than that from reserving N∗−i, supplier i can always increase the
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reservation price a little but makes sure that the buyer still chooses his bid. Therefore,

in equilibrium the marginal profit of each bid to the buyer must be zero.

3.4.1 The case with equal-size blocks

In this section, we consider the problem of finding a Nash equilibrium for the problem

where n suppliers each offer an equal-size block. Without loss of generality we take

Ki = 1, for i = 1, ..., n. For this case, we are able to fully characterize the equilibrium

for the suppliers, thanks to the submodularity property of Π∗(X) as shown in Lemma

3.6. From Theorem 3.8 we can assume that each supplier chooses an execution price

pi = ci.

We begin by showing that the property of an equilibrium is inherited by the solution

in which unselected suppliers reduce reservation prices to reservations costs. Also this

does not change the set selected by the buyer.

Lemma 3.10. Suppose B = {(ci, r∗i ) : i = 1, ..., n} is an equilibrium, and for some set

S that are not selected by the buyer, we let

B̂ = B \ {(ci, r∗i ) : i ∈ S} ∪ {(ci, ei) : i ∈ S},

then B̂ is also an equilibrium and Π∗B̂(N) = Π∗B(N).

Proof of Lemma 3.10. We establish this by induction. As usual, denote by N(B)∗ the

buyer’s optimal choice given the set of bids B. Consider any j ∈ N \ N(B)∗, and let

Bj = B \ {(cj , r∗j )} ∪ {(cj , ej)}. We first show Bj is an equilibrium and then establish

our result inductively.

It is trivially true if r∗j = ej . When r∗j > ej we have Π∗Bj (N) ≥ Π∗Bj (N\{j}) and

Π∗Bj (N\{j}) = Π∗B(N\{j}) = Π∗B(N), and so Π∗Bj (N) ≥ Π∗B(N). On the other hand

if Π∗Bj (N) > Π∗B(N) then supplier j must be selected by the buyer under Bj , from

which we deduce that supplier j can make non-zero profit by decreasing r∗j by ε, where

0 < ε < r∗j−ej . This contradicts that B is an equilibrium, and hence we have established

that Π∗Bj (N) = Π∗B(N). Next we show no supplier has an incentive to change his bid

given in Bj . We consider three cases:

(a) First, supplier j has no incentive to change his bid. Under Bj supplier j makes no

money, but it will not be selected if its price increases.

(b) Next, consider some k 6= j with k ∈ N \ N(B)∗. Since both j and k are not in

N(B)∗ we have Π∗B(N\{j, k}) = Π∗B(N), and so Π∗Bj (N\{j, k}) = Π∗Bj (N). Now

submodularity implies that

Π∗Bj (N \ {j}) + Π∗Bj (N \ {k}) ≥ Π∗Bj (N \ {j, k}) + Π∗Bj (N),
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which together with Π∗Bj (N \ {j}) = Π∗B(N \ {j}) = Π∗B(N) = Π∗Bj (N) yields

Π∗Bj (N \ {k}) ≥ Π∗Bj (N). We also know that Π∗Bj (N \ {k}) ≤ Π∗Bj (N). Hence, we

have Π∗Bj (N \ {k}) = Π∗Bj (N). Now we can use this to establish Π∗Bj,k(N \ {j}) =

Π∗Bk(N \ {j}) = Π∗Bk(N) = Π∗B(N), where Bj,k = Bj \ {(ck, r∗k} ∪ {(ck, ek)}. And

similarly, Π∗Bj,k(N \ {k}) = Π∗Bj (N) = Π∗B(N) and clearly Π∗Bj,k(N \ {j, k}) =

Π∗B(N). Now submodularity implies

Π∗Bj,k(N \ {j}) + Π∗Bj,k(N \ {k}) ≥ Π∗Bj,k(N \ {j, k}) + Π∗Bj,k(N),

from which we deduce Π∗Bj,k(N) ≤ Π∗Bj,k(N \{j, k}). However, we know Π∗Bj,k(N) ≥
Π∗Bj,k(N \{j, k}). Thus, they must be equal. If supplier k wishes to make a positive

profit under Bj it must ensure it is selected. But at any price higher than ek the

buyer profit is, for any subset S ⊆ N ,

ΠBj ({k} ∪ S) < ΠBj,k({k} ∪ S) ≤ Π∗Bj,k(N) = Π∗Bj,k(N \ {j, k}) = Π∗Bj (N \ {j, k})

and so k will not be selected.

(c) Finally, we show no supplier m ∈ N(B)∗ has an incentive to change his bid in Bj .
Now

Π∗Bj (N) = Π∗B(N) = Π∗B(N\{m}) ≤ Π∗Bj (N\{m}),

where the last inequality follows from the fact that for any particular selection

by the buyer, the buyer profit can only improve in moving from B to Bj . Hence

no supplier m ∈ N(B)∗ is able to improve his profit by increasing r∗m since this

reduces the buyer’s profit if m is selected and the buyer will find it preferable to

choose the optimal solution excluding m.

Thus we have shown that Bj forms an equilibrium, and hence by induction B̂ is also an

equilibrium. We have also established inductively that Π∗B̂(N) = Π∗B(N).

We now show there exists an equilibrium where each supplier adds a margin to the

reservation cost which equals its marginal contribution, i.e. Π∗C(N) − Π∗C(N \ {i}). In

equilibrium, the buyer selects the set of bids matching the supply chain optimal choice.

Theorem 3.11. Suppose suppliers have equal-size blocks, then it is a Nash equilibrium

for the suppliers when they offer p∗i = ci and r∗i = ei + Π∗C(N) − Π∗C(N \ {i}), where

i = 1, . . . , n. At this equilibrium the buyer’s reservation set is N(C)∗.

Proof of Theorem 3.11. We write B∗ = {(p∗i , r∗i ), i ∈ N}. Let M∗ be the optimal buyer

selection under B∗, i.e. M∗ = N(B∗)∗. We begin by showing that M∗ = N(C)∗. Suppose

otherwise and M∗ 6= N(C)∗, thus (from our tie breaking rule) we have Π∗B∗(N) >
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ΠB∗(N(C)∗). To write explicitly,

ΠC(M
∗)−

∑
i∈M∗

(r∗i − ei) > ΠC(N(C)∗)−
∑

i∈N(C)∗
(r∗i − ei).

From the definition of r∗i we have r∗i ≥ ei, and r∗i = ei if i /∈ N(C)∗. Hence the above

inequality is equivalent to

ΠC(M
∗) > Π∗C(N)−

∑
i∈N\M∗

(r∗i − ei) = Π∗C(N)−
∑

i∈N\M∗
(Π∗C(N)−Π∗C(N \ {i})) ,

which directly contradicts Corollary 3.7. Therefore, the buyer’s optimal choice must

match the supply chain optimal set given the bids in B∗.
The next step is to show that B∗ is a Nash equilibrium for the suppliers by demon-

strating that no supplier i can increase his profit by offering a different bid (p′i, r
′
i).

Without loss of generality, due to Theorem 3.8, we can assume that p′i = ci; so to show

that the choice of r∗i is the best response we will show that a unilateral increase of the

reservation price from r∗i cannot improve the profit of supplier i since block i will no

longer be chosen by the buyer.

Recall that N(C)∗−i is the optimal buyer choice under C from the set N\{i}. In fact,

as we have noticed r∗j = ej for j /∈ N(C)∗,

ΠB∗(N(C)∗−i) = ΠC(N(C)∗−i)−
∑

j∈N(C)∗−i

(r∗j − ej) = Π∗C(N\{i})−
∑

j∈N(C)∗\{i}

(r∗j − ej),

where the second equality follows that N(C)∗ \ {i} ⊆ N(C)∗−i as shown in Lemma 3.15

(see the Appendix). Now it follows from the definition of r∗i that

Π∗C(N\{i})−
∑

j∈N(C)∗\{i}

(r∗j − ej) = Π∗C(N)−
∑

j∈N(C)∗
(r∗j − ej) = ΠB∗(N(C)∗) = Π∗B∗(N).

where the last equality follows from M∗ = N(C)∗. Thus ΠB∗(N(C)∗−i) = Π∗B∗(N). We

also know Π∗B∗(N\{i}) ≥ ΠB∗(N(C)∗−i). Then we have established that Π∗B∗(N\{i}) ≥
Π∗B∗(N). This implies (from the optimality of Π∗B∗(N)) that

Π∗B∗(N\{i}) = Π∗B∗(N). (3.12)

Finally we show that block i will not be selected by the buyer if r∗i is increased by any

amount δ > 0. It is clear that this will decrease the buyer profit from any set including

block i, but the maximum buyer’s profit if i is not selected, given by Π∗B∗(N\{i}), is

unaltered. Using (3.12) we see that the buyer’s profit is Π∗B∗(N\{i}), which is larger than

any profit available when i is selected, establishing the result we require and completing

the proof that B∗ is an equilibrium.
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The equilibrium in Theorem 3.11 may not hold in the case where supplier blocks are

of unequal sizes, which we will demonstrate using Example 3.4.

Example 3.4 (Example 3.2 (continued)). Suppose that the 5 blocks are offered by 5

different suppliers. If the result in Theorem 3.11 holds, then we would expect blocks a, b

and c to be offered at costs (so p∗i = 1 and r∗i = 10 where i = a, b, c), and blocks g and h

to raise their reservation price by their contribution to supply chain profit which is equal

to 420−375 = 45. Thus for these two blocks we have p∗i = 1 and r∗i = 16 where i = g, h.

But now ΠB∗({g, h}) = 330 which is less than ΠB∗({a, b, c}) = 370. Hence the blocks g

and h are not selected, and their profits can be improved by a reduction of reservation

price to a point where they enter the selection set for the buyer. Thus this cannot be an

equilibrium. In fact there is a whole set of equilibria where r∗g = 12 + δ and r∗h = 12− δ
where δ ∈ [0, 5].

We now study the profit split in equilibrium. From Theorem 3.11, we know each

supplier i’s profit is given by,

π∗i = Π∗C(N)−Π∗C(N \ {i}), for i = 1, ..., n.

The buyer’s choice set is supply chain optimal. Then, the buyer’s profit is equal to the

supply chain optimal profit less the sum of the supplier profits,

Π∗B = Π∗C(N)−
n∑
i=1

π∗i = Π∗C(N)−
n∑
i=1

(Π∗C(N)−Π∗C(N \ {i})) .

Next we will show a stronger result: essentially, at any equilibrium the buyer’s

reservation choice is supply chain optimal and the profit split amongst players is the

same.

Theorem 3.12. In the case of equal-size blocks, at any equilibrium with pi = ci, the

buyer chooses the supply chain optimal set N(C)∗, and supplier i makes a profit π∗i =

Π∗C(N)−Π∗C(N\{i}).

Proof of Theorem 3.12. Suppose B = {(ci, r̃∗i ) : i = 1, ..., n} is an equilibrium. We

first show at equilibrium N(C)∗ is an optimal buyer choice, i.e. Π∗B(N) = ΠB(N(C)∗).
Suppose otherwise, N(B)∗ 6= N(C)∗ and Π∗B(N) > ΠB(N(C)∗). Define

B̂ = B \ {(ci, r̃∗i ) : i ∈ N(C)∗ \N(B)∗} ∪ {(ci, ei) : i ∈ N(C)∗ \N(B)∗},

From the definition, we obtain,

ΠB̂(N(B)∗) = ΠC(N(B)∗)−
∑

j∈N(B)∗

(r̃∗j−ej); ΠB̂(N(C)∗) = ΠC(N(C)∗)−
∑

j∈N(C)∗∩N(B)∗

(r̃∗j−ej).
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Thus the difference in buyer profit under B̂ between N(B)∗ and N(C)∗ is given by

ΠB̂(N(B)∗)−ΠB̂(N(C)∗) = ΠC(N(B)∗)−ΠC(N(C)∗)−
∑

j∈N(B)∗\N(C)∗
(r̃∗j − ej). (3.13)

We know ΠB̂(N(B)∗) = ΠB(N(B)∗) = Π∗B(N) = Π∗B̂(N) from Lemma 3.10, and thus

we have ΠB̂(N(B)∗) ≥ ΠB̂(N(C)∗), which together with (3.13) yields ΠC(N(C)∗) ≤
ΠC(N(B)∗). This contradicts the assumption that under C there is a unique maximum

N(C)∗.
We next show that at any equilibrium the profit split is the same. From the above

result and the tie breaking rule, we know the buyer’s reservation set is N(C)∗, i.e.

N(B)∗ = N(C)∗. Thus,

Π∗B(N) = ΠB(N(C)∗) = ΠC(N(C)∗)−
∑

j∈N(C)∗
(r̃∗j − ej).

We then show supplier imakes a profit of ΠC(N(C)∗)−ΠC(N(C)∗−i). Clearly, if i /∈ N(C)∗,
his profit in equilibrium will be 0 because he will not be chosen by the buyer, implying

the result required. We now consider i ∈ N(C)∗.
First, for any j ∈ N(B)∗−i \ N(B)∗, we must have r̃∗j = ej . Suppose otherwise and

r̃∗j > ej , then supplier j can decrease r̃∗j by ε where 0 < ε < r̃∗j − ej . With the new bid

of supplier j, the buyer will choose supplier j, which gives supplier j a positive profit.

Therefore, in equilibrium r̃∗j = ej must hold.

Now define

B̂ = B \ {(ci, r̃∗i ) : i ∈ N \N(B)∗} ∪ {(ci, ei) : i ∈ N \N(B)∗}.

From Lemma 3.10 we know B̂ is also an equilibrium and Π∗B̂(N) = Π∗B(N). Moreover,

from Lemma 3.9, we have Π∗B̂(N \ {i}) = Π∗B̂(N) and Π∗B(N \ {i}) = Π∗B(N). So

Π∗B(N\{i}) = Π∗B̂(N\{i}). (3.14)

We have

ΠB̂(N(C)∗−i) = ΠC(N(C)∗−i)−
∑

j∈N(C)∗−i∩N(B)∗

(r̃∗j − ej)

≥ ΠC(N(B)∗−i)−
∑

j∈N(B)∗\{i}

(r̃∗j − ej) (3.15)

where the inequality follows from Π∗C(N\{i}) ≥ ΠC(N(B)∗−i). From Lemma 3.15 (in the

Appendix), we know the absence of i does not cause the buyer to leave out any bid j
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where j ∈ N(B)∗ and j 6= i. Thus we obtain N(B)∗ \ {i} ⊆ N(B)∗−i and hence

ΠC(N(B)∗−i)−
∑

j∈N(B)∗\{i}

(r̃∗j − ej) ≥ ΠB(N(B)∗−i) = Π∗B(N \ {i}) = Π∗B̂(N \ {i}). (3.16)

Putting together (3.15) and (3.16) and since, by definition, Π∗B̂(N \ {i}) ≥ ΠB̂(N(C)∗−i)
we have shown Π∗B̂(N \ {i}) = ΠB̂(N(C)∗−i). Equality here also establishes that (3.15)

is an equality and hence that

ΠB̂(N(C)∗−i) = ΠC(N(C)∗−i)−
∑

j∈N(C)∗\{i}

(r̃∗j − ej). (3.17)

Using (3.14) and (3.17) we obtain

Π∗B(N\{i}) = ΠB̂(N(C)∗−i)

= ΠC(N(C)∗−i)−
∑

j∈N(C)∗
(r̃∗j − ej) + r̃∗i − ei

= ΠC(N(C)∗−i)−ΠC(N(C)∗) + ΠB(N(B)∗) + r̃∗i − ei,

where we have used our earlier result that N(B)∗ = N(C)∗. Knowing that Π∗B(N\{i}) =

Π∗B(N) in equilibrium, we obtain r̃∗i − ei = ΠC(N(C)∗) − ΠC(N(C)∗−i), which gives the

profit for supplier i as required. This completes the proof.

The result in Theorem 3.12 is appealing and unexpected. It shows that essentially the

supply chain is coordinated in the sense that the buyer’s ordering decision in equilibrium

maximizes the total supply chain profit.

3.4.2 The case with unequal-size blocks

In this subsection, we construct an equilibrium for the suppliers who have unequal-size

blocks. Let

B(0) = C = {(c1, e1,K1), ..., (cn, en,Kn)}, (3.18)

and denote by N(C)∗ = {j1, ..., jm} the optimal buyer choice when each supplier offers

at costs.

Define B(k) recursively by

B(k) = B(k−1)\{(cjk , ejk ,Kjk)} ∪ {(cjk , rjk ,Kjk)} (3.19)

where

rjk = Π∗B(k−1)(N)−Π∗B(k−1)(N\{jk}) + ejk , for k = 1, ..., n. (3.20)
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So, at each stage k we increase rjk by the maximum amount that we can without k

dropping out of the buyer’s choice. In this way, we are able to construct an equilibrium

for suppliers.

Theorem 3.13. Suppose the sets B(k), for k = 1, ...,m are defined from (3.18), (3.19)

and (3.20), then B(m) is an equilibrium.

Proof of Theorem 3.13. For i /∈ N(C)∗ the offers are at ri = ei, and there is no possibility

of one of these suppliers making more money by reducing its offer in order to be accepted.

We show that for each i ∈ N(C)∗ this block is chosen by the buyer and will not be chosen

if ri is increased. This is enough to show that none of these suppliers can make more

money.

First we show that N(B(k))∗ = N(B(k−1))∗. Since the difference in these two sets of

offers is an increase in rjk , the only possible change in buyer selection will involve block

jk not being selected. But

Π∗B(k)(N\{jk}) = Π∗B(k−1)(N\{jk}) = Π∗B(k−1)(N)− (rjk − ejk) = ΠB(k)(N(B(k−1))∗).

Thus the best possible result when the buyer leaves out block jk and makes other choices

arbitrarily, matches what the buyer achieves by continuing to choose N(B(k−1))∗, the

selection from the previous stage. Given our tie breaking rule, this is enough to establish

inductively that N(B(m))∗ = N(B(0))∗.

Now we show that increasing rjk will mean that the buyer no longer selects this block.

This is a consequence of the fact that with offers given by B(m) there is an equally good

buyer selection that leaves out block jk. Specifically we have

ΠB(m)(N(B(k−1))∗−jk) ≥ ΠB(k−1)(N(B(k−1))∗−jk)−
∑
i>k

(rji − eji)

= Π∗B(k−1)(N\{jk})−
∑
i>k

(rji − eji)

= Π∗B(k−1)(N)−
∑
i≥k

(rji − eji)

= ΠB(k−1)(N(B(k−1))∗)−
∑
i≥k

(rji − eji)

= ΠB(m)(N(B(m))∗) = Π∗B(m)(N).

Thus we have ΠB(m)(N(B(k−1))∗−jk) = Π∗B(m)(N), which implies that any increase in rjk

will cause the buyer not to choose block jk. Therefore no supplier unilaterally deviates

and this completes the proof.

The equilibrium constructed in this procedure ensures that the buyer’s optimal choice

matches the supply chain optimal set. Note that in the algorithm we have assumed



Chapter 3. Supplier Competition with Reservation Bidding 78

the order of blocks {j1, ..., jm} is fixed. As the example below demonstrates, different

orders may give different equilibria. Therefore, we could expect there may be multiple

equilibria with different profit splits despite the fact that in this class of equilibria the

buyer’s optimal choice is the same.

Example 3.5. Demand is fixed at 10 and the retail price is 10. There are four blocks:

i = (0, 3, 3), j = (0, 1.5, 7), k = (0, 3, 2), and l = (0, 3, 8). The first number denotes the

execution cost, the second number is the reservation cost, and the last is the block size.

The supply chain optimal solution is {i, j}, which gives ΠC({i, j}) = 80.5. We have

Π∗C({j, k, l}) = ΠC({j, k}) = 73.5,

Π∗C({i, k, l}) = ΠC({k, l}) = 70,

Π∗C({i, j, k, l}) = ΠC({i, j}) = 80.5,

Π∗C({i, j, l}) = Π∗C({i, j, k}) = ΠC({i, j}) = 80.5.

We can see the marginal contribution of each of blocks l and k is 0. The marginal

contribution of block i is 80.5− 73.5 = 7, while the supplier j’s marginal contribution is

80.5 − 70 = 10.5. Note that when block i is absent, block j is still chosen; while when

block j is absent, block i is not chosen. In fact, the marginal contribution 10.5 (of block

j) is actually the joint contribution of both block i and block j.

• If we start with block i, then the following bids form an equilibrium: i = (0, 3 +

7/3, 3), j = (0, 1.5 + 3.5/7, 7) and k = (0, 3, 2), l = (0, 3, 8). In this equilibrium, the

buyer will choose blocks {i, j}. The supplier i’s profit is 7, which equals his marginal

contribution. The supplier j’s profit is 3.5, which equals the joint contribution of

both i and j less the supplier j’s contribution (i.e. 3.5 = 10.5− 7).

• If we start with block j, then the following bids form an equilibrium: i = (0, 3, 3), j =

(0, 1.5 + 10.5/7, 7) and k = (0, 3, 2), l = (0, 3, 8). In this equilibrium, the buyer will

choose blocks {i, j}. Supplier j makes a profit of 10.5, while the supplier i’s profit

is 0, which is less than his marginal contribution.

3.5 Conclusions

This chapter has analyzed a model of competition between suppliers who offer two-part

contracts to a buyer under demand uncertainty. In this model each supplier offers a

block of capacity and quotes two prices: a reservation price and an execution price.

The buyer needs to decide which blocks of capacity to reserve in advance of knowing

the customer demand. Thus the buyer’s optimization problem becomes combinatorial:

choosing the right subset of suppliers.
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We first show that, when supplier blocks have the same size, the optimal buyer

profit function is submodular. Based on this result, we propose a dynamic programming

approach to solve the buyer’s optimization problem in polynomial time. We then demon-

strate that the submodularity property does not carry over to the case with unequal-size

blocks. If competing suppliers know the other bids that they face, it is optimal for each

supplier to bid their execution costs and make money only from the reservation margin.

This result mirrors what has been found in other circumstances (Wu and Kleindorfer,

2005). However, this result does not hold when the buyer is not restricted to reserve a

block all or none, or when each supplier owns multiple blocks and can choose different

prices for different blocks.

By using a submodularity result on the buyer’s optimal profit as a function of the

available set of supplier bids, we are able to analyze the equilibrium behaviour for the

suppliers. When the blocks are of equal size, the equilibrium is essentially unique: the

buyer’s choice at equilibrium matches that which achieves the maximum overall profit in

the supply chain and each supplier makes a profit equal to his marginal contribution to

the supply chain system (i.e., the difference between the overall supply chain profit when

that supplier is present and when it is absent). The fact that this model achieves a supply

chain optimal outcome at equilibrium is unexpected. The equivalent non-combinatorial

problem analyzed by Mart́ınez-de Albéniz and Simchi-Levi (2009) has a total loss up to

25% in comparison with the supply chain optimal outcome (and even more than this

when the demand distribution is not log-concave).

We have shown that our equilibrium result is sensitive to the setting that each

supplier has the same capacity. In the case that suppliers have blocks of different sizes,

the equilibrium is no longer unique and we characterize a set of equilibria that will imply

different profit values for the suppliers depending on which equilibrium occurs.

3.6 Appendix

In this appendix we prove the submodularity result that we need in order to show the

equilibrium behaviour of suppliers. This result was established by Professor Bo Chen

and is included here for reference.

For convenience of exposition, in our notation system (3.2) we will also use a sequence

to represent the set of elements in the sequence. Let us introduce a very useful technical

lemma. For any mutually disjoint sets X,Xin, Xout ⊆ N , denote by

Θ[X;Xin → Xout] ≡ Π(X ∪Xin)−Π(X ∪Xout)
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the buyer’s profit change when blocks of Xout are replaced by blocks of Xin while blocks

of X are kept. The following lemma characterizes how the buyer’s profit change depends

on the presence of a special block m ∈ N in the set of blocks that are kept.

Lemma 3.14. Let X,Xin, Xout, {m} ⊆ N be mutually disjoint and dm = Θ[X ∪
{m};Xin → Xout]−Θ[X;Xin → Xout]. Then

dm ≥ 0, if m > max{i : i ∈ Xout} and |Xout| ≥ |Xin|; (3.21)

dm ≤ 0, if m > max{i : i ∈ Xin} and |Xin| ≥ |Xout|. (3.22)

Proof. Let σ1 = Xout[m−] and σ2 = Xout[m+]; σ′1 = Xin[m−] and σ′2 = Xin[m+];

X1 = X[m−] and X2 = X[m+]. Since Π(X1 ∪ σ1) and Π(X1 ∪ σ′1) are canceled out in

their respective two Π-terms of dm, we have

dm = Π
[
|X1|+ |σ′1|,m

]
−∆

[
|X1|+ |σ′1|, X2 ∪ σ′2

]
−Π[|X1|+ |σ1|,m] + ∆[|X1|+ |σ1|, X2 ∪ σ2]. (3.23)

If m > max{i : i ∈ Xout} and |Xout| ≥ |Xin|, then σ2 = ∅ and |σ′1| ≤ |σ1| = |σ|.
According to (3.23), we get

dm = ∆[|X1|+ |σ′1|,m · · ·m︸ ︷︷ ︸
s

X2]−∆
[
|X1|+ |σ′1|, X2 ∪ σ′2

]
,

where s = |σ1| − |σ′1| = |σ′2| + |Xout| − |Xin| ≥ |σ′2|, which together with Lemma 3.1

implies dm ≥ 0.

Symmetrically, if m > max{i : i ∈ Xin} and |Xin| ≥ |Xout|, then σ′2 = ∅ and

|σ1| ≤ |σ′1| = |σ′|. According to (3.23), we get

dm = ∆ [|X1|+ |σ1|, X2 ∪ σ2]−∆[|X1|+ |σ1|,m · · ·m︸ ︷︷ ︸
s

X2],

where t = |σ′1| − |σ1| = |σ2| + |Xin| − |Xout| ≥ |σ2|, which together with Lemma 3.1

implies dm ≤ 0.

Let N0 ⊆ N be the optimal buyer choice when offer ` ∈ N is unavailable. Suppose

availability and then acceptance of offer ` has resulted in a new optimal buyer choice

N1 with ` ∈ N1. The following lemma demonstrates a limited impact created by the

additional block `.

Lemma 3.15. Inclusion of ` /∈ N0 into N1 will result in neither inclusion of another

k /∈ N0 into N1 nor exclusion of more than one element of N0 from N1. More formally,

we have

N1\{`} ⊆ N0 and |N1\{`}| ≥ |N0| − 1. (3.24)
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Proof. Let I, J,K ⊆ N\{`} be mutually disjoint such that N0 = I ∪ J and N1 =

I ∪ K ∪ {`}. We prove the lemma by showing that K = ∅ and |J | ≤ 1. To this end,

assume J ∪ K 6= ∅. Then respective optimality of N0 and N1 implies that, for any

partition {J0, J1} of J and {K0,K1} of K, we have

Π(N0)−Π(I ∪ J0 ∪K0) ≥ 0 and Π(N1)−Π(I ∪ J1 ∪K1 ∪ {`}) ≥ 0,

and, provided J1 ∪ K0 6= ∅, at least one of the two inequalities is strict according to

the Tie-Breaking Assumption, since it is impossible that the total weight of elements in

J0 ∪K0 plus the total weight of elements in J1 ∪K1 is smaller than the total weight of

elements in J ∪K. Therefore, if J1 ∪K0 6= ∅, then summation of the two inequalities is

strictly positive, namely:

Θ[I ∪ J0; J1 → K0]−Θ[I ∪K1 ∪ {`}; J1 → K0] > 0. (3.25)

or equivalently (with different combinations of terms):

Θ[I ∪K0;K1 ∪ {`} → J0]−Θ[I ∪ J1;K1 ∪ {`} → J0] > 0, (3.26)

Denote j = max{i : i ∈ J} and k = max{i : i ∈ K}.
If |J | ≥ |K|+ 2, then J 6= ∅ and hence j ∈ N . In (3.26) we let J1 = {j},K0 = ∅ and

hence J0 = J\{j},K1 = K, yielding

Θ[I;K ∪ {`} → J0]−Θ[I ∪ {j};K ∪ {`} → J0] > 0,

which contradicts (3.21).

We remain to consider |J | ≤ |K| + 1 with K 6= ∅, which implies k ∈ N . Suppose

first |J | ≤ |K|. If k > `, then in (3.26) we let J1 = ∅,K0 = {k} and hence J0 = J,K1 =

K\{k}, yielding

Θ[I ∪ {k};K1 ∪ {`} → J ]−Θ[I;K1 ∪ {`} → J ] > 0,

which contradicts (3.22). On the other hand, if ` > k, then then in (3.25) we let

J1 = J,K0 = K and hence J0 = ∅ = K1, yielding

Θ[I; J → K]−Θ[I ∪ {`}; J → K] > 0,

which contradicts (3.21).
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We are left with the final case where |J | = |K| + 1 and j, k ∈ N . If k > `, then in

(3.26) we let J1 = {j},K0 = {k} and hence J0 = J\{j},K1 = K\{k}, yielding

Θ[I ∪ {k};K1 ∪ {`} → J0] > Θ[I ∪ {j};K1 ∪ {`} → J0].

However, the left-hand side above is at most Θ[I;K1 ∪ {`} → J0] according to (3.22),

while the right-hand side is at least this same amount according to (3.21), demonstrating

a contradiction. On the other hand, if ` > k, then in (3.25) we let J1 = J\{j},K0 = K

and hence J0 = {j},K1 = ∅, yielding

Θ[I ∪ {j}; J1 → K] > Θ[I ∪ {`}; J1 → K].

However, the left-hand side above is at most Θ[I; J1 → K] according to (3.22), while the

right-hand side is at least this same amount according to (3.21), demonstrating another

contradiction.

Now we are ready to prove Lemma 3.6: set function h(X) = maxS⊆X Π(S) defined

on the subsets of N is submodular. We show that, for every X ⊆ N and `, k ∈ N\X
and ` < k,

h(X ∪ {`, k}) + h(X) ≤ h(X ∪ {`}) + h(X ∪ {k}). (3.27)

Suppose Π(A) = h(X), Π(Ā) = h(X ∪ {`}), Π(B) = h(X ∪ {k}) and Π(B̄) =

h(X ∪ {`, k}). Then inequality (3.27) is equivalent to

∆B ≡ Π(B̄)−Π(B) ≤ ∆A ≡ Π(Ā)−Π(A). (3.28)

Without loss of generality, we assume

{`, k} ⊆ B̄ (3.29)

since ` 6∈ B̄ implies Π(B̄) = Π(B) and k 6∈ B̄ implies Π(B̄) = Π(Ā). In either case,

inequality (3.28) becomes trivial. Consequently, we have

` ∈ Ā and k ∈ B, (3.30)

since otherwise, we would have Ā ⊆ A ⊆ X or B ⊆ A ⊆ X, contradicting (3.29) due to

Lemma 3.15, which states that whenever a new block becomes available and accepted,

no more other new blocks will be accepted and at most one block originally accepted

will be replaced.

Let B̄ = X0 ∪ {k, `} for some X0 = {j1, . . . , jm} ⊆ X with m ≥ 0. (NB: X0 = ∅ if

m = 0.) Then according to Lemma 3.15 and (3.30), we have (a1) Ā = X0 ∪ {`} or (a2)

Ā = X0 ∪ {`, i} for some i ∈ X\B̄; and (b1) B = X0 ∪ {k} or (b2) B = X0 ∪ {k, j} for
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some j ∈ X\B̄. Note that we may have i = j. Consequently, as follows we only have

four possible combinations, in which combination of (a2) and (b2) can be easily further

specified into the following three sub-cases: where i 6= j and i, j ∈ X\B̄:

Ā = X0 ∪ {`, j}, B = X0 ∪ {k, j} and A = X0 ∪ {j};
Ā = X0 ∪ {`, j}, B = X0 ∪ {k, j} and A = X0 ∪ {i, j};
Ā = X0 ∪ {`, i}, B = X0 ∪ {k, j} and A = X0 ∪ {i, j}.

1. Ā = X0 ∪ {`} and B = X0 ∪ {k}

Since Ā = X0 ∪ {`}, we have A = X0 or A = X0 ∪ {u} for some u ∈ X\B̄ according to

Lemma 3.15. If A = X0, then (3.28) is directly implied by Lemma 3.3. If A = X0∪{u},
then

∆B ≤ Π(B̄)−Π(B ∪ {u}) ≤ Π(B̄\{k})−Π(B ∪ {u}\{k}) = ∆A,

where the first inequality is due to the optimality of B, while the second one follows

from ` < k and (3.22).

2. Ā = X0 ∪ {`} and B = X0 ∪ {k, j}

As in the previous subsection, either A = X0 or A = X0 ∪ {u} for some u ∈ X\B̄
according to Lemma 3.15. Now since B = X0 ∪ {k, j}, there cannot be either A = X0

or u 6= j according to Lemma 3.15. Hence we must have A = X0 ∪ {j}. Therefore,

inequality (3.28) is directly implied by (3.22).

3. Ā = X0 ∪ {`, i} and B = X0 ∪ {k}

Let Ā′ = Ā\{i} and B′ = B ∪ {i}. Respective optimality of Ā and of B imply

Π(Ā)−Π(Ā′) ≥ 0 and Π(B)−Π(B′) ≥ 0,

and at least one of the two inequalities is strict according to the Tie-Breaking Assump-

tion, since otherwise the total weight of elements in {`, i, k} would be larger than itself.

Therefore, summation of the two inequalities with recombination of the four terms yield

Θ[X0 ∪ {i}; `→ k]−Θ[X0; `→ k] > 0,

which together with Lemma 3.14 implies that i < `. Consequently, we have k > `, i and

hence

∆B ≤ Θ[X0 ∪ {k}; `→ i] = Π(X0 ∪ {`})−Π(X0 ∪ {i}) ≤ ∆A,
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where the first and last inequality are respectively due to the optimality of B and Ā

(with A = X0 ∪ {i} due to Lemma 3.15 and the forms of Ā and B), and the equality is

implied by (3.21) and (3.22).

4. Ā = X0 ∪ {`, j}, B = X0 ∪ {k, j} and A = X0 ∪ {j}

According to (3.22) we have

∆B ≤ Π(B̄\{k})−Π(A) ≤ ∆A,

where the last inequality is due to the optimality of Ā.

5. Ā = X0 ∪ {`, j}, B = X0 ∪ {k, j} and A = X0 ∪ {i, j}

If j > i, then with optimality of B,

∆A

(3.21)

≥ Θ[X0; `→ i]
(3.22)

≥ Θ[X0 ∪ {k}; `→ i]

≥ Θ[X0 ∪ {k}; `→ j] = ∆B.

If i > j, then with optimality of Ā,

∆B

(3.22)

≤ Θ[X0; `→ j]
(3.21)

≤ Θ[X0 ∪ {i}; `→ j]

≤ Π(X0 ∪ {`, j})−Π(X0 ∪ {i, j}) = ∆A.

6. Ā = X0 ∪ {`, i}, B = X0 ∪ {k, j} and A = X0 ∪ {i, j}

We show that this case does not actually exist. If i > j, then immediately we have

∆A

(3.21)

≥ Θ[X0; `→ j]
(3.22)

≥ Θ[X0 ∪ {k}; `→ j] = ∆B.

Therefore we assume without loss of generality that i < j. Let Ā′ = Ā ∪ {j}\{i}
and B′ = B ∪ {i}\{j}. As we have argued before with the Tie-Breaking Assumption,

respective optimality of Ā and B imply that

Π(Ā)−Π(Ā′) + Π(B)−Π(B′) > 0, (3.31)

or equivalently

Θ[X0 ∪ {`}; i→ j] > Θ[X0 ∪ {k}; i→ j], and Θ[X0 ∪ {j}; k → `] > Θ[X0 ∪ {i}; k → `].
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Therefore, with (3.21) and (3.22) we have the following respective implications:

` > i ⇒ k < j, and i > ` ⇒ k > j,

which together with the fact that ` < k and i < j imply one of the following two

situations:

i < ` < k < j, (3.32)

` < i < j < k. (3.33)

Elements {i, j, k, `} partition the sequence of elements inX0 into five parts (σ1, . . . , σ5).

With canceling out, it is straightforward to derive the following:

Π(Ā)−Π(Ā′) + Π(B)−Π(B′)

=

{
∆[|σ1|+ |σ2|;σ3k]−∆[|σ1|+ |σ2|; `σ3], if (3.32) holds;

∆[|σ1|+ |σ2|;σ3j]−∆[|σ1|+ |σ2|; iσ3], if (3.33) holds.

In either case, inequality (3.31) is contradicted by Lemma 3.1.



Chapter 4

Supply Option Competition with

General Costs

4.1 Introduction

High demand uncertainty brings many operational challenges to supply chains, of which

an important one revolves around how to share various risks amongst supply chain

members. Risk sharing is particularly important in capital-intensive industries, such as

petrochemical, electronics and semiconductors, in which manufacturers need to invest

heavily in building capacity and the lead times are very long. Moreover, the costs of

capacity investment in early stages are much higher relative to actual production costs

(Kleindorfer and Wu, 2003).

Traditional approaches in capacity investment assume that all the financial risks

from investment are imposed on the firms who build capacity (Wu et al., 2005a). How-

ever, capital-intensive firms are reluctant to do so without knowing in advance how

much capacity will be required in the future. As a consequence, they tend to adopt a

conservative capacity management policy, which in turn leads to the low availability of

products and hence affects the buyer’s capability to fulfil the customer’s demand. On

the other hand, the buyer may hesitate to take all the demand risks by making firm

commitment for later purchases. Specifically, if it orders too little, there may be lost

sales, while there will be surpluses if it orders too much. Therefore, these two types of

risk provide a reason for buyers to reserve capacity from suppliers in advance.

We model capacity reservation in a supply option framework. In the first stage,

before knowing the actual demand, a buyer reserves a certain amount of capacity by

paying a reservation price. In the second stage, when observing the actual demand, the

buyer executes the capacity up to the lesser of the reserved amount and the observed

demand. At this stage, the buyer pays an execution price only for the amount dispatched.

86
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The underlying assumption of this model is that suppliers have to install capacity before

demand materializes, which can be justified when delayed capacity building is impossible.

Most literature on supply chain contracts assumes a constant marginal cost, while a

more general setting would specify arbitrary cost functions (Cachon, 2003). Our model

considers a setting where suppliers each have a two-dimensional cost structure: a reser-

vation cost and an execution cost. We allow both costs to be general functions (including

constant marginal costs as a special case), so our model is flexible enough to capture

many practical settings in terms of cost modelling. With constant marginal costs, it is

plausible to focus on simple contract forms as assumed in most of the literature. An

exception is Hochbaum and Wagner (2014) who investigate the impact of general pro-

duction costs on supply chain performance by considering price-only contracts within

a one-to-one supply chain. With generic cost functions, however, we expect that some

sophisticated bidding formats will be worthwhile, such as function bids which specify

different prices for different quantities.

This chapter is concerned with how suppliers compete to supply a homogeneous

item to a buyer in a supply option market. The buyer first reserves capacity before

knowing the actual demand, and then decides how much capacity to use after observing

the demand. The suppliers compete by offering the price functions (for both reservation

and execution).

Chapter 3 studies a similar problem but with fundamental differences: each supplier

owns a block of capacity and the buyer has to reserve a block all or none. Suppliers

each choose a reservation price and an execution price for their blocks. Therefore, it

is a combinatorial style auction. However, in this chapter we study the competitive

bidding problem for the suppliers whose costs are characterized by general functions.

Each supplier offers a function bid consisting of a reservation price function and an

execution price function, and the buyer, after receiving function bids, decides how much

to purchase from each supplier. In summary, Chapter 4 complements Chapter 3 by

studying a situation where the buyer is able to reserve any amount from each supplier

and suppliers can charge different prices for different quantities.

We find some similar results: for example, it is optimal for suppliers to set execution

prices to be execution costs, thus they make profits only from the buyer’s reservation

payment. We also show that, in a class of equilibria, the buyer’s reservation choice

is supply chain optimal, each supplier’s profit equals its marginal contribution to the

supply chain system, and the buyer takes the remaining profit.

Supply options have been widely studied in the operations management literature

(see e.g., Barnes-Schuster et al., 2002; Burnetas and Ritchken, 2005; Chen et al., 2005;

Wu et al., 2005b; Fu et al., 2010; Secomandi and Wang, 2012). Perhaps, the initial

step of study is to investigate a buyer’s optimal purchasing decision (see e.g., Mart́ınez-

de Albéniz and Simchi-Levi, 2005). As an extension of this, several papers examine
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option contract design problems in a Stackelberg game between a buyer and a supplier

with a focus on the interaction between option markets and spot markets (see e.g., Wu

et al., 2002; Pei et al., 2011). In a competitive setting, Wu and Kleindorfer (2005)

incorporate capacity decisions in a supplier competition model and derive a Bertrand-

Nash equilibrium.

The closest paper to ours is Mart́ınez-de Albéniz and Simchi-Levi (2009) (thereafter,

“MS”) who study a setting similar to ours except that marginal costs are constants

and each supplier chooses a reservation price and an execution price for their limitless

capacity. They show that, in the worst equilibrium, the efficiency loss is no greater than

25%. This chapter generalizes MS by considering general cost functions and allowing

suppliers to submit function bids. By enlarging the strategy space of suppliers, we find

a relatively clean and intuitive result as we discuss earlier. Comparing with MS, we

also find that allowing suppliers to offer a (sophisticated) function bid makes the buyer

worse off. Our findings highlight the significant impact of the suppliers’ strategy space

on equilibrium outcomes.

This chapter studies a situation where suppliers each submit a function bid, which re-

sembles that in the supply function equilibrium (SFE) literature (Klemperer and Meyer,

1989). The distinction is that we examine the buyer’s optimization problem explicitly;

while in the SFE literature, the buyer’s problem is to choose a clearing price to equate

the total supply with the demand, and each supplier’s best response is characterized by

a differential equation.

This work is also loosely related to the auction literature. At the heart of auctions

is the problem of decentralized resource allocation (Klagnanam and Parkes, 2003). A

subset of this literature examines the efficiency and profit allocation of a given auction

format, for example, menu auction (Bernheim and Whinston, 1986), share auction (Wil-

son, 1979), uniform price auction (Bresky, 2013), discriminatory price auction (Menezes

and Monteiro, 1995), and split award auction (Anton and Yao, 1989, 1992). The above

papers generally assume that the total purchase amount of a buyer is deterministic. With

an endogenous purchase amount, Chen (2007) studies a procurement mechanism design

problem for a newsvendor buyer and proposes a supply contract auction. Dasgupta and

Spulber (1989) examine a similar procurement problem and develop a quantity auction.

More recently, Duenyas et al. (2013) propose a simple modified version of the standard

open-descending auction, which is shown to be optimal for the buyer. These papers

focus on designing an optimal auction mechanism. Our research differs from the auc-

tion literature in that we consider a full information setting and look at how suppliers

compete in a supply option market.

The rest of this chapter is organized as follows: Section 4.2 presents the model setup

and examines the buyer’s problem. In the baseline model, we consider the case with two
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suppliers, and study the equilibrium for suppliers in Section 4.3. Section 4.4 discusses

the extension with more than two suppliers, and we conclude in Section 4.5.

4.2 Model Setup and Buyer’s Problem

4.2.1 Model Setup

Consider a supply chain with a single buyer (“she”) and multiple suppliers (“he”) indexed

by i = 1, ..., n, where the buyer purchases a homogeneous item from the n suppliers. The

buyer’s stochastic demand D has a cdf F (d) and a pdf f(d) over [d, d̄] with 0 ≤ d < d̄ <

∞. Let F̄ (d) = 1− F (d). The retail price ρ of the product is exogenously given.

Each supplier i’s cost consists of two components: the marginal reservation cost ei(t)

and the marginal execution cost ci(t). Note that ci(t) and ei(t) might be constants as

assumed in the previous literature. Suppliers each maximize their own expected profits

by choosing a reservation price function ri(t) and an execution price function pi(t) for

t ∈ [0, t̄]. Without loss of generality, we assume t̄ = d̄ since the buyer will not reserve

more than d̄ units in any case. On the other hand, if a supplier does not want to offer

that much, he may simply set a very high price for the quantities beyond the desired

amount so that the buyer will not reserve them for sure.

We model this game in a Stackelberg framework where the suppliers are leaders

and the buyer is a follower. Each supplier has complete information about the buyer’s

demand distribution and the supplier costs. The sequence of events is depicted in Figure

4.1.

Reservation ExecutionBidding

Suppliers each 
offer a function 

bid

Buyer reserves from 
suppliers and pays 

the reservation prices

Buyer sells the 
product to 
consumers

Buyer decides how 
much to use and pays the 

execution prices

Demand 
uncertainty is 

resolved

Time 4Time 3Time 1Time 0 Time 2

Figure 4.1: The timeline

First, suppliers each offer a function bid (consisting of a reservation price function and

an execution price function) to the buyer. Second, prior to knowing the actual demand,

the buyer decides the reserved amount from each supplier and pays the reservation price.

After demand is observed, the buyer chooses what capacity to use and pays only for the

amount used. If the demand exceeds the total amount of reserved capacity, there will

be lost sales. Finally, the buyer sells the product to the consumer market at the retail

price ρ.

We consider a stylized supply chain with two suppliers labelled by i = 1, 2. We use

j to indicate the supplier other than i where i, j = 1, 2, i 6= j. In Section 4.4, we will



Chapter 4. Supply Option Competition with General Costs 90

extend it to the case with more than two suppliers. Following the backward induction

approach, we start by analyzing the buyer’s optimal reservation behaviour.

4.2.2 Buyer’s problem

Suppose the bids offered by suppliers are {(pi(t), ri(t)) : i = 1, 2} for t ∈ [0, d̄]. Note

that both pi(t) and ri(t) can be constants. The buyer makes a reservation decision in

the first stage and an execution decision in the second stage. We first show the buyer’s

execution policy in Remark 4.1.

Remark 4.1. After making a selection of capacity, when demand materializes, the

buyer will use the capacity with the lowest execution price first.

Notice that the reservation payment becomes sunk when the buyer makes the ex-

ecution decision. With any actual demand, the buyer will first use the capacity with

the lowest execution price up until the lesser of the actual demand and the reserved

amount. Based on this observation, we make the following assumption regarding the

supplier bidding strategy.

Assumption 4.1. For i = 1, 2, both pi(t) and ri(t) are continuous, and pi(t) is non-

decreasing.

Assumption 4.1 allows us to easily formulate the cumulative amount of capacity with

execution prices below a given price.

Given the supplier bids {(pi(t), ri(t)) : i = 1, 2}, suppose the buyer’s reservation

choice is (t1, t2). That is, the buyer reserves t1 from supplier 1 and t2 from supplier 2.

For i, j = 1, 2, i 6= j, let

γi(x, tj) = sup{0 ≤ y ≤ tj : pj(y) ≤ pi(x)}, for x ∈ [0, ti] (4.1)

be the dispatched amount from supplier j with execution prices below pi(x). In partic-

ular, if pj(t) is strictly increasing and continuous, then γi(x, tj) = min{p−1
j (pi(x)), tj}.

We now write the cumulative amount of capacity with execution price less than pi(x)

as follows,

hi(x, tj) = x+ γi(x, tj), for x ∈ [0, ti], (4.2)

where the term x indicates the dispatched amount from supplier i and the second term

represents the dispatched amount from supplier j. In the special case with p1(t) = p1

and p2(t) = p2 where p1, p2 are constants, we obtain that: if pi < pj , then hi(x, tj) = x

and hj(x, ti) = x + ti; if p1 = p2, we can apply some tie-breaking rule for the buyer’s

execution policy.
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With the reservation choice (t1, t2), we can write down the buyer’s expected profit

as follows,

πB(t1, t2) =
∑

i,j=1,2,j 6=i

∫ ti

0

{
[ρ− pi(x)]F̄ (hi(x, tj))− ri(x)

}
dx, (4.3)

where hi(., .) is given in (4.2) and F̄ (z) = Pr[D ≥ z].
Given the supplier bids {(pi(t), ri(t))) : i = 1, 2}, the buyer aims to maximize her

expected profit by choosing the reserved amount from each supplier:

max
{
πB(t1, t2) : t1, t2 ∈ [0, d̄]

}
. (4.4)

We use the rules in Assumption 4.2 to break ties for the buyer’s reservation choice.

Assumption 4.2. In the event of a tie for the buyer’s reservation choice, the buyer

prefers to choose from more suppliers, and will randomly choose one if the candidate

solutions imply the same number of suppliers.

Solving the buyer’s problem in (4.4), we characterize the buyer’s optimal reservation

choice in Proposition 4.2.

Proposition 4.2. The buyer’s optimal reservation choice (T1, T2) satisfies the following

simultaneous equations: for i, j = 1, 2, i 6= j,

(ρ− pi(Ti))F̄ (hi(Ti, Tj))− ri(Ti)︸ ︷︷ ︸−
∫ Tj

γi(Ti,Tj)
[ρ− pj(x)]f(hj(x, Ti))dx︸ ︷︷ ︸ = 0. (4.5)

Proof of Proposition 4.2. First, we observe that πB is continuous as a function of (t1, t2).

From the extreme value theorem, there must exist an optimal solution in the compact

and bounded set [0, d̄] × [0, d̄]. Second, we show πB is differentiable and smooth. The

first partial derivative of πB with respect to ti is

∂πB
∂ti

= (ρ− pi(ti))F̄ (hi(ti, tj))− ri(ti)−
∫ tj

0
[ρ− pj(x)]f(hj(x, ti))

∂hj(x, ti)

∂ti
dx,

which is continuous because both pi(t) and ri(t) are continuous. Furthermore, we have,

for any x ∈ [0, d̄],

∂πB
∂ti

∣∣∣∣
ti=0,tj=x

= (ρ− pi(0))F̄ (0)− ri(0) > 0 and
∂πB
∂ti

∣∣∣∣
ti=d̄,tj=x

= −ri(d̄) < 0.



Chapter 4. Supply Option Competition with General Costs 92

Thus, the optimal solution (T1, T2) must satisfy the first order conditions: for i, j =

1, 2, i 6= j,

(ρ− pi(Ti))F̄ (hi(Ti, Tj))− ri(Ti)−
∫ Tj

0
[ρ− pj(x)]f(hj(x, Ti))

(
∂hj(x, ti)

∂ti

∣∣∣∣
ti=Ti

)
dx = 0,

(4.6)

We now simplify (4.6) by considering the following two cases.

(1) If pi(Ti) < pj(Tj), then from (4.1) we obtain γi(Ti, Tj) < Tj . Also,

γj(x, Ti) =

{
sup{y ≥ 0 : pi(y) ≤ pj(x)}, x ∈ [0, γi(Ti, Tj)),

Ti, x ∈ [γi(Ti, Tj), Tj ].

Then we have,

∂hj(x, ti)

∂ti

∣∣∣∣
ti=Ti

=
∂(x+ γj(x, ti))

∂ti

∣∣∣∣
ti=Ti

=

{
0, x ∈ [0, γi(Ti, Tj)),

1, x ∈ [γi(Ti, Tj), Tj ].

Therefore, the second term in (4.6) can be rewritten as,

∫ Tj

0
[ρ− pj(x)]f(hj(x, Ti))

(
∂hj(x, ti)

∂ti

∣∣∣∣
ti=Ti

)
dx =

∫ Tj

γi(Ti,Tj)
[ρ− pj(x)]f(hj(x, Ti))dx.

(2) If pi(Ti) ≥ pj(Tj), we have γi(Ti, Tj) = Tj and γj(x, Ti) < Ti for any x ∈ [0, Tj ].

Thus,
∂hj(x, ti)

∂ti

∣∣∣∣
ti=Ti

=
∂(x+ γj(x, ti))

∂ti

∣∣∣∣
ti=Ti

= 0.

Combining the above two cases establishes the result required.

We can think of the first term of (4.5) as the unadjusted marginal profit from the

last unit of reserved capacity, while the integral term represents a non-negative adjusting

component, which measures the effect of Tj on Ti. It will be helpful to break down (4.5)

into two cases:

(1) Tj = 0 and (4.5) reduces to (ρ− pi(Ti))F̄ (Ti)− ri(Ti) = 0. In this case, the buyer

reserves from supplier i only.

(2) T1 > 0, T2 > 0. In this case, the buyer reserves from both suppliers. In particular,

if p1(T1) = p2(T2), then h1(T1, T2) = h2(T2, T1) = T1 + T2, and (ρ− pi(Ti))F̄ (T1 +

T2)− ri(Ti) = 0 for i = 1, 2, from which we obtain r1(T1) = r2(T2).
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To find an optimal reservation choice, we also need to check the second order condi-

tions. The second derivative of πB with respect to ti is given by,

∂2πB
∂t2i

= −p′i(ti)F̄ (hi(ti, tj))− (ρ− pi(ti))f(hi(ti, tj))
∂hi(ti, tj)

∂ti
− r′i(ti)

−
∫ tj

0
[ρ− pj(x)]

[
f ′(hj(x, ti))

(
∂hj(x, ti)

∂ti

)2

+ f(hj(x, ti))
∂2hj(x, ti)

∂t2i

]
dx

= −p′i(ti)F̄ (hi(ti, tj))− (ρ− pi(ti))f(hi(ti, tj))
∂hi(ti, tj)

∂ti
− r′i(ti)

−
∫ tj

0
[ρ− pj(x)]f ′(hj(x, ti))

(
∂hj(x, ti)

∂ti

)2

dx,

where the second equality follows from ∂2hj(x, ti)/∂t
2
i = 0. The cross partial derivative

is given by,

∂2πB
∂ti∂tj

= −(ρ− pi(ti))f(hi(ti, tj))
∂hi(ti, tj)

∂tj
− (ρ− pj(tj))f(hj(tj , ti))

∂hj(tj , ti)

∂ti
.

If f ′ ≥ 0 and r′i(t) ≥ 0, then we can show the Hessian matrix is negative definite,

implying that πB is jointly concave in (ti, tj). Thus, the local maximum characterized

by (4.5) is also the global maximum. Note that there may exist multiple solutions for

the buyer’s problem. In this case, we need to compare all the solutions in order to obtain

the global maximum.

We now give an example to illustrate how to calculate the buyer’s optimal reservation

choice.

Example 4.1. Suppose the supplier bids are p1(t) = t, r1(t) = 1/4, p2(t) = (1/2)t,

and r2(t) = 1/2 for t ∈ [0, 1]. The demand D follows a uniform distribution over [0, 1].

Thus, F (t) = t for t ∈ [0, 1]. The retail price is ρ = 2. We have the following necessary

conditions for the buyer’s optimal choice (T1, T2):

(2− T1)(1− T1 −min{2T1, T2})−
1

4
−
∫ T2

2T1

(2− (1/2)x)dx = 0

(2− (1/2)T2)(1− T2 −min{(1/2)T2, T1})−
1

2
−
∫ T1

(1/2)T2

(2− x)dx = 0

Solving the above equations yields the optimal solution (T1, T2) = (0.6369, 0.1797).

4.3 Equilibrium Analysis

In this section, we study the equilibrium for suppliers. We begin with each supplier’s

best response.
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4.3.1 Suppliers’ best responses

Given the supplier j’s bid (pj(t), rj(t)), we now solve the supplier i’s best response prob-

lem. First, consider the buyer’s optimal choice when there is only supplier j available.

Denote by T sj the buyer’s optimal reserved amount if supplier j is the sole supplier, that

is,

T sj = arg max

{∫ t

0

{
[ρ− pj(x)]F̄ (x)− rj(x)

}
dx : t ∈ [0, d̄]

}
.

Further denote by πjB the optimal buyer profit if supplier j is the sole supplier.

As a Stackelberg leader, each supplier is able to anticipate the buyer’s reservation

choice provided that the competitor’s bid is observed. Notice that the buyer’s optimiza-

tion problem is embedded in the supplier i’s best response problem.

To distinguish from πB(t1, t2) in (4.3), we write πB(t1, t2; pi(t), ri(t)) for the buyer’s

profit from choosing (t1, t2) provided the supplier i’s offer is (pi(t), ri(t)). We have

πB(t1, t2; pi(t), ri(t)) =
∑

i,j=1,2,j 6=i

∫ ti

0

{
[ρ− pi(x)]F̄ (hi(x, tj))− ri(x)

}
dx. (4.7)

Suppose the optimal buyer choice is (T1, T2) given (pi(t), ri(t)) (as well as (pj(t), rj(t))),

so

(T1, T2) = arg max
{
πB(t1, t2; pi(t), ri(t)) : t1, t2 ∈ [0, d̄]

}
. (4.8)

Then the supplier i’s expected profit by offering (pi(t), ri(t)) is

πi(pi(t), ri(t);T1, T2) =

∫ Ti

0

{
[pi(x)− ci(x)]F̄ (hi(x, Tj)) + ri(x)− ei(x)

}
dx. (4.9)

Knowing the buyer’s reservation behaviour, supplier i aims to maximize his expected

profit by choosing (pi(t), ri(t)):

max
pi(t),ri(t)

πi(pi(t), ri(t);T1, T2), (4.10)

subject to (4.8) which pertains to the buyer’s problem given the supplier i’s bid (pi(t), ri(t))

(as well as (pj(t), rj(t))).

Fix pi(t) and suppose the buyer’s reservation choice is (T1, T2), then supplier i will set

ri(t) as high as possible subject to the proviso that the buyer still reserves Ti from sup-

plier i. That is, for the supplier i’s best response, we must have πB(T1, T2; pi(t), ri(t)) =

πjB, from which we deduce,

∫ Ti

0
ri(x)dx =

∫ Ti

0
[ρ−pi(x)]F̄ (hi(x, Tj))dx+

∫ Tj

0

{
[ρ− pj(x)]F̄ (hj(x, Ti))− rj(x)

}
dx−πjB.
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Plugging the above equation into the supplier i’s profit function πi(pi(t), ri(t);T1, T2),

we cancel out ri and obtain

πi(pi(t);T1, T2) =

∫ Ti

0

{
[ρ− ci(x)]F̄ (hi(x, Tj))− ei(x)

}
dx

+

∫ Tj

0

{
[ρ− pj(x)]F̄ (hj(x, Ti))− rj(x)

}
dx− πjB,

where hi(x, Tj) and hj(x, Ti) are given in (4.2). Then we reformulate the supplier i’s

problem as follows:

P1 : max
pi(t),ri(t)

πi(pi(t);T1, T2), (4.11)

subject to (4.8) and πB(T1, T2; pi(t), ri(t)) = πjB.

Solving the problem P1, we characterize the supplier i’s best response in Lemma

4.3.

Lemma 4.3. Given (pj(t), rj(t)), it is optimal for supplier i to set pi(t) = ci(t) and

choose ri(t) such that πB(T̂1, T̂2; ci(t), ri(t)) = πjB where (T̂1, T̂2) maximize the buyer

profit and are determined by the simultaneous equations:

(ρ− ci(T̂i))F̄ (h̄i(T̂i, T̂j))− ei(T̂i)−
∫ T̂j

γi(T̂i,T̂j)
[ρ− pj(x)]f(hj(x, T̂i))dx = 0 (4.12)

(ρ− pj(T̂j))F̄ (h̄j(T̂j , T̂i))− rj(T̂j)−
∫ T̂i

γj(T̂j ,T̂i)
[ρ− ci(x)]f(hi(x, T̂j))dx = 0, (4.13)

where h̄i(x, T̂j) = x+ sup{0 ≤ y ≤ T̂j : pj(y) ≤ ci(x)} and h̄j(x, T̂i) = x+ sup{0 ≤ y ≤
T̂i : ci(y) ≤ pj(x)}.

Proof of Lemma 4.3. First consider the buyer’s problem when supplier i charges only

his costs, i.e. pi(t) = ci(t) and ri(t) = ei(t). The buyer’s profit with the reservation

choice (t1, t2) is

πB(t1, t2; ci(t), ei(t)) =

∫ ti

0

{
[ρ− ci(x)]F̄ (h̄i(x, tj))− ei(x)

}
dx

+

∫ tj

0

{
[ρ− pj(x)]F̄ (h̄j(x, ti))− rj(x)

}
dx,

where h̄i(x, tj) = x+sup{0 ≤ y ≤ tj : pj(y) ≤ ci(x)} and h̄j(x, ti) = x+sup{0 ≤ y ≤ ti :

ci(y) ≤ pj(x)}. Suppose (T̂1, T̂2) is the optimal buyer choice. Similar to the problem in

(4.4), we can obtain the necessary conditions for (T̂1, T̂2) as shown in (4.12) and (4.13).

Second, observe that the objective function πi(pi(t);T1, T2) does not contain ri(t).

We now consider a relaxed problem by ignoring the constraints:

P0 : max
pi(t),T1,T2

πi(pi(t);T1, T2). (4.14)
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An optimal solution to the problem P0 is pi(t) = ci(t) and (T1, T2) = (T̂1, T̂2).

The last step is to show that it is achievable to find an appropriate ri(t) such that

the constraints are met. To guarantee (T̂1, T̂2) is the buyer’s optimal choice, we need to

examine the necessary conditions in (4.5). Putting (4.12), (4.13) and (4.5) together, we

obtain that a necessary condition is ri(T̂i) = ei(T̂i). Furthermore, we add a margin of

πB(T̂1, T̂2; ci(t), ei(t))− πjB to ei(t) in a segment before T̂i. Since we allow an arbitrary

function for ri(t), in fact there exist multiple solutions for ri(t) such that the buyer’s

optimal choice is indeed (T̂1, T̂2).

Lemma 4.3 gives an optimal solution with pi(t) = ci(t) for the supplier i’s best

response problem. There may be other solutions where pi(t) 6= ci(t). This happens

since supplier i can adjust ri(t) so that the supplier i’s profit remains unchanged. For

the supplier i’s best response, we show that the optimal buyer choice is (T̂1, T̂2), which

maximizes the buyer’s profit when supplier i charges only his costs. Similar to the buyer’s

problem in (4.4) we consider three cases regarding the buyer’s optimal reservation choice

characterized in (4.12) and (4.13). If T̂i = 0, then supplier j wins all the buyer’s business

even when supplier i sets prices to be costs. If T̂j = 0, then supplier j will win no business

from the buyer, implying that it is optimal for supplier i to beat supplier j out of the

market. If T̂i, T̂j > 0, the buyer reserves from both suppliers.

4.3.2 Equilibrium Characterization

Having established the best response for each supplier, we are now in a position to study

the equilibrium for suppliers. An equilibrium is a pair of bids {(p∗i (t), r∗i (t)) : i = 1, 2},
which are mutual best responses for each supplier. The equilibrium outcome is the

buyer’s reservation choice (T ∗1 , T
∗
2 ). Let π∗B, π

∗
1, π
∗
2 be the equilibrium profits of the

buyer, supplier 1, and supplier 2, respectively. If the buyer is constrained to reserve

from supplier i only, we denote by πi∗B , πs∗i , and T s∗i , the buyer’s optimal profit, the

supplier i’s optimal profit, and the reserved amount, respectively.

We first show that in equilibrium the buyer’s profit is the same when either supplier

is unavailable.

Lemma 4.4. Suppose {(p∗i (t), r∗i (t)) : i = 1, 2} is a Nash equilibrium, then

π∗B = π1∗
B = π2∗

B . (4.15)

Proof of Lemma 4.4. From optimality we must have π∗B ≥ πi∗B where i = 1, 2. Suppose

otherwise and (4.15) does not hold. Then there exists a supplier i and δ := π∗B−πi∗B > 0.

We will show that the other supplier j has an incentive to deviate from the proposed bid

(p∗j (t), r
∗
j (t)). Consider a new bid (p∗j (t), r̂j(t)) by lifting r̂j(t) above r∗j (t) in a segment
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before min(T ∗j , T
s∗
j ) so that:

∫ T ∗j

0
r̂j(x)dx =

∫ T ∗j

0
r∗j (x)dx+ δ/2 and

∫ T s∗j

0
r̂j(x)dx =

∫ T s∗j

0
r∗j (x)dx+ δ/2.

With this new bid (and the supplier i’s bid (p∗i (t), r
∗
i (t))), we can show that the buyer will

still reserve T ∗j units from supplier j. Then supplier j makes δ/2 more profit, implying

that supplier j has an incentive to deviate. A contradiction.

Lemma 4.4 shows that, in equilibrium the buyer’s optimal profit when reserving from

two suppliers is equal to that when reserving from only one. The intuition is that if the

buyer’s profit of reserving from either supplier is lower, the other supplier can always

increase his bid prices a little but makes sure that the buyer’s reservation choice remains

the same.

Now let us consider the supply chain optimal problems when both suppliers offer

bids at costs. Let c = (ci(t), cj(t)) and e = (ei(t), ej(t)). With the reservation choice

(t1, t2) for the buyer, we write the supply chain profit as follows,

πB(t1, t2; c, e) =
∑

i,j=1,2,j 6=i

∫ ti

0

{
[ρ− ci(x)]F̄ (hi(x, tj))− ei(x)

}
dx,

where

hi(x, tj) = x+ sup{0 ≤ y ≤ tj : cj(y) ≤ ci(x)}.

For tractability, we assume the supply chain profit function is jointly strictly concave in

q1 and q2. Suppose (T̄1, T̄2) is the supply chain optimal solution, which implies that

(T̄1, T̄2) = arg max
{
πB(t1, t2; c, e) : t1, t2 ∈ [0, d̄]

}
. (4.16)

Denote by Π the supply chain optimal profit, i.e. Π = πB(T̄1, T̄2; c, e).

If supplier i is the sole supplier, the supply chain profit when the buyer orders ti

from supplier i is given by

πsB(ti; ci(t), ei(t)) =

∫ ti

0

{
[ρ− ci(x)]F̄ (x)− ei(x)

}
dx.

Similarly, we assume πsB(ti; ci(t), ei(t)) is strictly concave in ti. Denote by T̄ si the buyer’s

optimal choice when she purchases from supplier i only. Therefore, we have

T̄ si = arg max
{
πsB(ti; ci(t), ei(t)) : ti ∈ [0, d̄]

}
.

Let Πs
i be the supply chain optimal profit when supplier i is the sole supplier, i.e.

Πs
i = πsB(T̄ si ; ci(t), ei(t)). Note that we have Π > max(Πs

i ,Π
s
j) because there exists an
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interior solution for the supply chain optimal problem in (4.16). We further assume

T̄ si ≥ T̄i where i = 1, 2. Though we do not give details here, it can be shown that this

assumption is satisfied when ri(t) is non-decreasing in t.

We now define the following power function, which will be used for constructing an

equilibrium: for i, j = 1, 2, i 6= j,

∆i(t) =
(βi + 1)(Π−Πs

j)

T̄i

(
T̄i − t
T̄i

)βi
, for t ∈ [0, T̄i], (4.17)

where βi > 0 is a constant. We call ∆i(t) the price margin imposed by supplier i. The

definite integral of ∆i(t) from 0 to T̄i is given by,

∫ T̄i

0
∆i(t)dt =

∫ T̄i

0

(βi + 1)(Π−Πs
j)

T̄i

(
T̄i − t
T̄i

)βi
dt = Π−Πs

j . (4.18)

The first derivative of ∆i(t) is given by,

d∆i(t)

dt
= −

βi(βi + 1)(Π−Πs
j)

T̄ 2
i

(
T̄i − t
T̄i

)βi−1

< 0, for t ∈ [0, T̄i).

Thus, ∆i(t) is decreasing in t for t ∈ [0, T̄i]. Moreover, with a larger βi, ∆i(t) decreases

more steeply at the beginning and becomes flatter at the end.

We now construct a continuum of equilibria for suppliers using the supply chain

optimal solutions and the price margin functions in (4.17).

Theorem 4.5 (Equilibrium with power functions). There exists a pair of β∗1 > 1 and

β∗2 > 1 such that for any (β1, β2) ∈ [β∗1 ,∞) × [β∗2 ,∞), the following strategy forms a

Nash equilibrium: for i, j = 1, 2, i 6= j,

p∗i (t) = ci(t) and r∗i (t) =

{
ei(t) + ∆i(t), 0 ≤ t ≤ T̄i,
ei(t), otherwise,

where ∆i is given in (4.17). At these equilibria, the buyer’s reservation choice is (T̄1, T̄2).

The profit split amongst players is

π∗B = Πs
1 + Πs

2 −Π and π∗i = Π−Πs
j . (4.19)

Proof of Theorem 4.5. Part (a): We first show that given the bids {(p∗i , r∗i ) : i = 1, 2},
the buyer’s optimal choice is (T̄1, T̄2). Let p∗ = (p∗i (t), p

∗
j (t)) and r∗ = (r∗i (t), r

∗
j (t)). We

consider two cases: (1) t1, t2 > 0; and (2) ti > 0, tj = 0.
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(1) If t1, t2 > 0, observe that

πB(t1, t2; p∗, r∗)

=
∑

i,j=1,2,j 6=i

∫ ti

0

{
[ρ− p∗i (x)]F̄ (hi(x, tj))− r∗i (x)

}
dx

=
∑

i,j=1,2,j 6=i

∫ ti

0

{
[ρ− ci(x)]F̄ (hi(x, tj))− ei(x)

}
dx−

∑
i,j=1,2,j 6=i

∫ min(ti,T̄i)

0
∆i(x)dx

= πB(t1, t2; c, e)−
∑

i,j=1,2,j 6=i

∫ min(ti,T̄i)

0
∆i(x)dx. (4.20)

Then the first partial derivative of πB with respect to ti is

∂πB(t1, t2; p∗, r∗)

∂ti
=
∂πB(t1, t2; c, e)

∂ti
−∆i(min(ti, T̄i)).

We obtain the derivative at T̄i as follows,

∂πB(t1, t2; p∗, r∗)

∂ti

∣∣∣∣
ti=T̄i

=
∂πB(t1, t2; c, e)

∂ti

∣∣∣∣
ti=T̄i

−∆i(T̄i) = 0, (4.21)

where the second equality follows from the concavity of πB(t1, t2; c, e) and ∆i(T̄i) = 0.

Therefore, T̄i satisfies the first order condition.

Next we show there always exists a positive βAi such that: when βi ≥ βAi , T̄i is the

unique solution to the first order condition. First, for ti > T̄i, we have

∂πB(t1, t2; p∗, r∗)

∂ti
=
∂πB(t1, t2; c, e)

∂ti
< 0, (4.22)

where the inequality follows from the concavity of πB(t1, t2; c, e). Second, again from

the concavity of πB(t1, t2; c, e), suppose ∂2πB(t1,t2;c,e)
∂t2i

∣∣∣
ti=T̄i

= K < 0 and we have, for ti

close enough to T̄i where ti < T̄i,

∂πB(t1, t2; c, e)

∂ti
= K(ti − T̄i) +O(ti − T̄i)2 > (−K/2)(T̄i − ti).

Thus

∂πB(t1, t2; p∗, r∗)

∂ti
=
∂πB(t1, t2; c, e)

∂ti
−∆i(ti)

> (−K/2)(T̄i − ti)−∆i(ti)

= (T̄i − ti)

(
−K

2
−

(βi + 1)(Π−Πs
j)

T̄ 2
i

(
T̄i − ti
T̄i

)βi−1
)
.
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Assume that ti is close enough to T̄i so that T̄i−ti
T̄i

< 1/2, then we can choose a βAi > 1

such that

−K
2
−

(βAi + 1)(Π−Πs
j)

T̄ 2
i

(
1

2

)βAi −1

> 0.

Then, for ti < T̄i and ti close enough to T̄i, when βi ≥ βAi we have

∂πB(t1, t2; p∗, r∗)

∂ti
> 0. (4.23)

Combining (4.21), (4.22) and (4.23), we show that when βi ≥ βAi , T̄i is the unique

solution to the first order condition, and hence (T̄1, T̄2) is the unique maximum for the

buyer’s choice. Then the buyer’s profit from choosing (T̄1, T̄2) is

πB(T̄1, T̄2; p∗, r∗) = πB(T̄1, T̄2; c, e)−
∑

i,j=1,2,j 6=i

∫ T̄i

0
∆i(x)dx

= Π− (Π−Πs
i )− (Π−Πs

j) = Πs
i + πsj −Π.

(2) If tj = 0, then the buyer purchases from supplier i only. Similar to case (1),

we can show there always exists a positive βBi > 1 such that when βi > βBi , T̄ si is the

unique solution to the first order condition. Then the buyer’s profit from choosing T̄ si is

πB(T̄ si ; p∗i (t), r
∗
i (t)) = πB(T̄ si ; ci(t), ei(t))−

∫ min(T̄ si ,T̄i)

0
∆i(x)dx

= Πs
i − (Π−Πs

j) = Πs
i + πsj −Π.

Let β∗i = max(βAi , β
B
i ). For a βi ≥ β∗i , combining case (1) and case (2), we obtain

πB(T̄1, T̄2; p∗, e∗) = πB(T̄i; p
∗
i (t), r

∗
i (t)). According to Assumption 4.2, the buyer will

choose (T̄1, T̄2). Then we can calculate each supplier’s profit π∗i = Π − Πs
j for i, j =

1, 2, j 6= i.

Part (b): We next show that no supplier unilaterally deviates from the proposed

offer. Suppose otherwise and supplier i improves his profit by making a different offer

(p̂i(t), r̂i(t)), i.e. π̂i > Π−Πs
j . Note that the buyer’s profit cannot be less than πj∗B = Πs

i+

Πs
j −Π since otherwise the buyer will reserve from supplier j only, so π̂B ≥ Πs

i + Πs
j −Π.

Combining the above two inequalities yields

π̂B + π̂i > Π−Πs
j + Πs

i + Πs
j −Π = Πs

i . (4.24)

From Lemma 4.3, we assume p̂i(t) = ci(t) without loss of generality. Given the new

offer (p̂i(t), r̂i(t)) (and (p∗j (t), r
∗
j (t))), suppose the buyer’s reservation choice is (T̂1, T̂2).
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Using (4.7) and (4.9) we obtain

π̂B + π̂i

=

∫ T̂i

0

{
[ρ− p̂i(x)]F̄ (hi(x, T̂j))− r̂i(x)

}
dx+

∫ T̂j

0

{
[ρ− p∗j (x)]F̄ (hj(x, T̂i))− r∗j (x)

}
dx

+

∫ T̂i

0

{
[p̂i(x)− ci(x)]F̄ (hi(x, T̂j)) + r̂i(x)− ei(x)

}
dx

=

∫ T̂i

0

{
[ρ− ci(x)]F̄ (hi(x, T̂j))− ei(x)

}
dx+

∫ T̂j

0

{
[ρ− cj(x)]F̄ (hj(x, T̂i))− ej(x)

}
dx

−
∫ min(T̂j ,T̄j)

0
∆j(x)dx (4.25)

Similar to Part (a) for the buyer’s problem, we can show that the right-hand side of

(4.25) is maximized at T̂i = T̄i and T̂j = T̄j (by checking the first order conditions as

before). Thus, we have,

π̂B + π̂i ≤
∫ T̄i

0

{
[ρ− ci(x)]F̄ (hi(x, T̄j))− ei(x)

}
dx

+

∫ T̄j

0

{
[ρ− cj(x)]F̄ (hj(x, T̄i))− ej(x)

}
dx−

∫ T̄j

0
∆j(x)dx

= Π− (Π−Πs
i ) = Πs

i ,

which contradicts (4.24), showing that no supplier has an incentive to deviate unilater-

ally. This completes the proof.

In this class of equilibria with power functions, each supplier sets the execution

price to be the execution cost and adds a margin to the reservation cost. The profit

split amongst players is the same: each supplier makes a profit equal to his marginal

contribution to the supply chain, and the buyer takes the remaining profit. The choice

of β∗i depends on the system parameters, e.g., demand distribution and cost functions.

The intention of choosing a large enough βi is to guarantee that the buyer will select the

supply chain optimal solution (T̄1, T̄2). Later in Subsection 4.3.3.2 we will demonstrate

this point using an example.

Next we construct an equilibrium where the reservation payment has two compo-

nents: a lump-sum payment and a marginal reservation price. This is equivalent to an

equilibrium with power functions when βi are infinitely large.

Corollary 4.6 (Equilibrium with lump-sum payments). There exists an equilibrium

where suppliers each set prices to be costs, i.e. p∗i (t) = ci(t), r
∗
i (t) = ei(t), and charge a

lump-sum reservation payment Ki = Π − Πs
j, for i, j = 1, 2, i 6= j. In this equilibrium,

the buyer’s reservation choice is first best. The profit split amongst players is given in

(4.19).
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Proof of Corollary 4.6. The proof is similar to that of Theorem 4.5. We first show that,

given the proposed bids, the buyer’s optimal reservation choice is (T̄1, T̄2). Second we

demonstrate that no supplier makes more profit by unilaterally deviating from his bid.

In fact, the proof is simpler because we do not need to check the second order optimality

conditions for the buyer’s problem. To avoid repetition, we omit the details here.

This result resonates with a result in Cachon and Kok (2010) (see Theorem 4), which

shows that in the two-part tariff equilibrium, each manufacturer charges only their costs

and extracts his full incremental profit via its fixed fee.

4.3.3 Special case with constant marginal costs

In this section, we consider a special case where suppliers have constant marginal costs.

MS study a similar problem where each supplier chooses a pair of reservation price

and execution price for their limitless capacity. We use an example provided in MS to

demonstrate the difference in equilibrium between our model and theirs.

Example 4.2 (Example 1 in MS). The buyer’s demand is uniformly distributed over

[0, 1], so F (t) = t for t ∈ [0, 1]. There are two suppliers and their costs are (c1, e1) =

(0, 60) and (c2, e2) = (75, 5). The retail price is ρ = 100. We now examine the supply

chain optimal problems.

• If the buyer reserves from two suppliers, the supply chain problem is:

max

{∫ t1

0

[
(ρ− c1)F̄ (x)− e1

]
dx+

∫ t2

0

[
(ρ− c2)F̄ (x+ t1)− e2

]
dx : t1, t2 ∈ [0, 1]

}
.

The optimal solution is (T̄1, T̄2) = (4/15, 8/15). The supply chain optimal profit is

Π = 32/3.

• If the buyer chooses supplier 1 only, the supply chain problem is:

max

{∫ t1

0

[
(ρ− c1)F̄ (x)− e1

]
dx : t1 ∈ [0, 1]

}
.

The optimal solution is T̄ s1 = 2/5 and the supply chain optimal profit is Πs
1 = 8.

• If the buyer chooses supplier 2 only, the supply chain problem is:

max

{∫ t2

0

[
(ρ− c2)F̄ (x)− e2

]
dx : t2 ∈ [0, 1]

}
.

The optimal solution is T̄ s2 = 4/5 and the supply chain optimal profit is Πs
2 = 8.
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4.3.3.1 Equilibrium with scalar prices

If suppliers each offer a pair of reservation price and execution price, in equilibrium these

two suppliers bid infinitesimally close to each other. MS show that the following is a

continuum of ε-equilibria parameterized with p ∈ [50, 75]:

(p∗1, r
∗
1) = (p∗2, r

∗
2) =

(
p, 60− 55

75
p

)
.

In equilibria, the buyer’s reservation choice is

T ∗1 =
4

15
and T ∗2 =

40

3(100− p)
.

The profit split amongst players is summarized as follows:

π∗B =
8(150− p)2

225(100− p)
, π∗1 =

8p

225
, π∗2 =

800(75− p)
9(100− p)2

, Π∗ =
32(225− 2p)

9(100− p)
+

800(75− p)
9(100− p)2

.

Note that all the above equilibria are inefficient (i.e. not supply chain optimal) except

the one with p = 75. At this efficient equilibrium, each supplier offers a bid (75, 5) which

is identical to the supplier 2’s cost. The supplier 2’s profit is 0, the supplier 1’s profit is

8/3, and the buyer’s profit equals 8.

We now demonstrate that the above strategies do not form an equilibrium if we

allow suppliers to offer function bids. Suppose supplier 1 chooses the proposed bid

(p∗1, r
∗
1) = (p, 60 − (55/75)p), and we now examine the supplier 2’s best response in

choosing a function bid.

First, if supplier 1 is the sole supplier, the buyer’s reserved amount will be the sum

of T ∗1 and T ∗2 , and the buyer’s profit is equal to π∗B. Therefore, we have

T s∗1 =
600− 4p

15(100− p)
and π1∗

B =
8(150− p)2

225(100− p)
.

Second, we show that the following strategy for supplier 2 improves his profit: setting

prices to be costs and charging a lump-sum payment,

(p̃2, r̃2, K̃2) =

(
75, 5,

32(75− p)
9(100− p)

)
.

Given this offer (and the supplier 1’s offer (p∗1, r
∗
1)), we can show that the interior solution

for the buyer’s problem is

(T̃1, T̃2) = (
4

15
,

8

15
),

and the buyer’s profit from choosing (T̃1, T̃2) is equal to π1∗
B . Also if the buyer purchases

from only supplier 2, the buyer makes a profit of π1∗
B as well. According to the tie-

breaking rule in Assumption 4.2, the buyer will select (T̃1, T̃2). Then the supplier 2’s
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profit becomes

π̃2 = K̃2 =
32(75− p)
9(100− p)

,

which is greater than π∗2 because,

π̃2 − π∗2 =
32(75− p)
9(100− p)

− 800(75− p)
9(100− p)2

=
32(75− p)2

9(100− p)2
≥ 0,

where the equality holds only when p = 75. Therefore, we have demonstrated that the

equilibria in MS do not hold if we allow suppliers to offer a function bid.

4.3.3.2 Equilibrium with function bids

In our setting where suppliers each offer a function bid, we construct the following

two equilibria: an equilibrium with power functions as shown in Theorem 4.5; and the

equilibrium with lump-sum payments as shown in Corollary 4.6.

Equilibrium with power functions The following bids form a Nash equilibrium:

p∗1(t) = 0 and r∗1(t) =

{
60 +

(
15
2

)3 (
t− 4

15

)2
, 0 ≤ t ≤ 4

15 ,

60, 4
15 < t ≤ 1.

p∗2(t) = 75 and r∗2(t) =

{
5 +

(
15
4

)3 (
t− 8

15

)2
, 0 ≤ t ≤ 8

15 ,

5, 8
15 < t ≤ 1.

Equilibrium with lump-sum payments The following bids form a Nash equilibrium:

(p∗1, r
∗
1,K1) = (0, 60,

8

3
) and (p∗2, r

∗
2,K2) = (75, 5,

8

3
).

At both equilibria, the buyer’s optimal reservation choice is (T ∗1 , T
∗
2 ) = (4/15, 8/15).

The profit split amongst players is given as follows:

π∗B =
16

3
and π∗1 = π∗2 =

8

3
.

In these equilibria, each supplier’s profit equals his contribution to the supply chain

system and the buyer takes the remaining profit.

We now use this example to demonstrate that an inappropriate βi may lead to the

buyer not choosing the supply chain optimal choice. For example, if we set βi = 1 for

(4.17), then the bids (with linear marginal prices) are given as follows:

p∗1(t) = 0 and r∗1(t) =

{
60 + 20

(
1− 15

4 t
)
, 0 ≤ t ≤ 4

15 ,

60, otherwise.
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p∗2(t) = 75 and r∗2(t) =

{
5 + 10

(
1− 15

8 t
)
, 0 ≤ t ≤ 8

15 ,

5, otherwise.

We will show the buyer may not choose the first best solution (4/15, 8/15) given

the linear bids. To illustrate, we plot in Figure 4.2 the contours for the buyer’s profits

under the above three strategies. For the strategy with linear marginal price (Subfigure

4.2(a)), there are a number of other interior solutions except (T̄1, T̄2). Thus, we cannot

guarantee that the buyer will choose the first best solution. For the strategies with

power functions and lump-sum payments (Subfigures 4.2(b) and 4.2(c)), there are three

maxima for the buyer choice, i.e. an interior maximum (4/15, 8/15) and two maxima at

boundaries (0, 4/5) and (2/5, 0). Then the buyer will choose (4/15, 8/15) according to

Assumption 4.2.

4.3.3.3 Comparisons

One of the key results in this chapter is that an optimal strategy for each supplier is to

set execution prices to be execution costs. This result does not hold in general for the

problem considered by MS as we show earlier.

Comparing with MS, we also find that the buyer makes a higher profit if each supplier

submits a pair of reservation price and an execution price rather than a function bid.

However, the suppliers are better off if they submit function bids. To see this, note that

for this example the buyer profit is

8(150− p)2

225(100− p)
≥ 64

9
>

16

3
,

and the supplier profits are

8p

225
≤ 8

3
,

800(75− p)
9(100− p)2

≤ 8

9
<

8

3
.

The result that the sophisticated contract makes the buyer worse off resonates with

a result by Cachon and Kok (2010), who consider a setting where two manufacturers sell

differentiated products to a retailer and study the preferences of different players over

different contract types. One of their results is that complex contracts do not benefit

the buyer when the manufacturers’ products are not close substitutes.

In addition, we show that in our equilibria the buyer’s reservation choice is first best,

while in MS only the equilibrium with p = 75 is efficient because

32(225− 2p)

9(100− p)
+

800(75− p)
9(100− p)2

≤ 32

3
.
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(a) Linear function (βi = 1)
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(b) Power function (βi = 2)
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(c) Lump-sum payment (βi = ∞)

Figure 4.2: The contours of buyer profit for the three bidding strategies
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In the equilibrium with p = 75, supplier 2 makes zero profits, while the buyer makes

a higher profit than that when function bids are allowed. In fact, the supplier 2’s

profit predicted by our model goes to the buyer in the equilibrium given by MS (i.e.

8/3 + 16/3 = 8) .

4.4 The Case with Multiple Suppliers

In this section, we consider an extension in which there are n competing suppliers where

n > 2. We write N = {1, ..., n} as the set of supplier indices. The buyer’s reservation

choice is denoted by a vector x = (x1, ..., xn) where xi is the reserved amount from

supplier i. Let x−i = (x1, ..., xi−1, xi+1, ..., xn).

Suppose the supplier bids are {(pj(t), rj(t)) : j = 1, ..., n}. If the buyer’s reservation

choice is t, then the cumulative amount of capacity with execution prices less than pi(x)

is,

hi(x, t−i) = x+
∑
j 6=i

γi(x, tj), for x ∈ [0, ti], (4.26)

where γi(x, tj) is defined in (4.1). The buyer’s profit from choosing t is given by,

πB(t) =
n∑
i=1

∫ ti

0

{
[ρ− pi(x)]F̄ (hi(x, t−i))− ri(x)

}
dx, (4.27)

where hi(., .) is given in (4.26). Then the buyer’s problem is to maximize her expected

profit by choosing an optimal reservation choice t:

max
{
πB(t) : t ∈ [0, d̄]n

}
.

For i = 1, ..., n, the first partial derivative with respect to ti is given as follows:

∂πB
∂ti

= (ρ−pi(ti))F̄ (hi(ti, t−i))−ri(ti)−
∑
j 6=i

∫ tj

0
[ρ−pj(x)]f(hj(x, t−j))

(
∂hj(x, t−j)

∂ti

)
dx.

Denote by T = (T1, ..., Tn) the buyer’s optimal reservation choice. Further let T−i =

(T1, ..., Ti−1, Ti+1, ..., Tn). Similar to (4.5) the first order conditions are: for i = 1, ..., n,

(ρ− pi(Ti))F̄ (hi(Ti,T−i))− ri(Ti)︸ ︷︷ ︸−∑
j 6=i

∫ Tj

γi(Ti,Tj)
[ρ− pj(x)]f(hj(x,T−j))dx︸ ︷︷ ︸ = 0.

(4.28)

We now look at each supplier’s best response problem. Given the other supplier

bids {(pj(t), rj(t))}j 6=i, we examine how supplier i responds by choosing (pi(t), ri(t)).

To distinguish from πB(t) in (4.27), we write πB(t; pi(t), ri(t)) for the buyer’s profit of
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choosing t provided that supplier i offers the bid (pi(t), ri(t)). We have

πB(t; pi(t), ri(t)) =
n∑
i=1

∫ ti

0

{
[ρ− pi(x)]F̄ (hi(x, t−i))− ri(x)

}
dx.

Suppose the optimal buyer reservation choice is T given the supplier i’s bid (pi(t), ri(t))

(and the other supplier bids), that is,

T = arg max
{
πB(t; pi(t), ri(t)) : t ∈ [0, d̄]n

}
. (4.29)

Then we can write down the supplier i’s profit as follows,

πi(pi(t), ri(t); T) =

∫ Ti

0

{
[pi(x)− ci(x)]F̄ (hi(x,T−i)) + ri(x)− ei(x)

}
dx.

The supplier i’s best response problem is to maximize his profit by choosing (pi(t), ri(t)):

max
pi(t),ri(t)

πi(pi(t), ri(t); T), (4.30)

subject to (4.29), which gives the buyer’s optimal reservation choice given the supplier

i’s offer (pi(t), ri(t)) (as well as {(pj(t), rj(t))}j 6=i).
Before solving the supplier i’s best response problem, we consider the buyer’s reserva-

tion problem when supplier i charges only his costs, i.e. when (pi(t), ri(t)) = (ci(t), ei(t)).

Suppose the optimal buyer choice is T̂ in this case and the optimal buyer profit is de-

noted by πB(T̂; ci(t), ei(t)). Further suppose the optimal buyer profit is π−iB if supplier

i is unavailable. We now show an optimal response for supplier i in Lemma 4.7.

Lemma 4.7. Given {(pj(t), rj(t))}j 6=i, it is optimal for supplier i to set pi(t) = ci(t)

and ri(t) = ei(t) as well as charge a fixed amount Ki = πB(T̂; ci(t), ei(t))− π−iB .

Proof of Lemma 4.7. The proof is similar to that of Lemma 4.3 and is omitted.

Next we will find an equilibrium for suppliers. An equilibrium can be constructed us-

ing the results for the supply chain optimal solutions. We begin by examining the supply

chain optimal problems where each supplier i sets prices to be costs, i.e. (pi(t), ri(t)) =

(ci(t), ei(t)). Let c = (c1(t), ..., cn(t)) and e = (e1(t), ..., en(t)). With the reservation

choice t we have the supply chain profit as follows:

πB(t; c, e) =

n∑
i=1

∫ ti

0

{
[ρ− ci(x)]F̄ (hi(x, t−i))− ei(x)

}
dx.

Let T̄ = (T̄1, ..., T̄n) be the optimal reservation choice, that is,

T̄ = arg max{πB(t; c, e) : t ∈ [0, d̄]n}
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We also denote by Π the supply chain optimal profit, i.e. Π = πB(T̄; c, e).

For any subset S ⊂ N , denote by T̄−S = (T̄−S1 , ..., T̄−Sn ) the supply chain optimal

solution when the buyer purchases from only the suppliers in N \ S. Formally,

T̄−S = arg max
{
πB(t−S ; c, e) : t ∈ [0, d̄]n, and t−Si = 0 for i ∈ S

}
,

where

πB(t−S ; c, e) =

n∑
i=1

∫ t−Si

0

{
[ρ− ci(x)]F̄ (hi(x, t

−S
−i ))− ei(x)

}
dx.

Note we have T̄−Si = 0 for i ∈ S. The optimal supply chain profit in this case is denoted

by Π−S where Π−S = πB(T̄−S ; c, e). Clearly, we have Π ≥ Π−S , for S ⊂ N .

To characterize an equilibrium for suppliers, we make the following assumption re-

garding the supply chain optimal profit.

Assumption 4.3. The supply chain optimal profit is submodular, i.e. for S ⊂ N and

j, k /∈ S, we have,

Π−S + Π−(S∪{j,k}) ≤ Π−(S∪{j}) + Π−(S∪{k}). (4.31)

We conjecture that this assumption holds when suppliers have non-decreasing marginal

costs for both execution and reservation.

Conjecture 4.1. If both the marginal reservation cost and the marginal execution cost

are non-decreasing for each supplier, then the supply chain optimal profit is submodular.

In support of the above conjecture we explore an example where suppliers have

constant marginal costs.

Example 4.3. Suppose the buyer demand D follows a uniform distribution over [0, 1].

There are three suppliers whose costs are: c1 = 1, e1 = 3; c2 = 2.5, e2 = 2; and c3 =

5, e3 = 1. The retail price is ρ = 10. We solve the supply chain optimal problems and

summarize the optimal reservation choices and profits in Table 4.1. To save space, we

skip the detailed calculations here (see Example 4.2 for similar calculations).

Using the results in the table, we can show that:

Π + Π−{2,3} < Π−{2} + Π−{3}

Π + Π−{1,3} = Π−{1} + Π−{3}

Π + Π−{1,2} < Π−{1} + Π−{2}

Π < Π−{1} + Π−{2,3}

Π < Π−{2} + Π−{1,3}

Π < Π−{3} + Π−{1,2}.
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Table 4.1: The supply chain optimal reservation choices and profits

Available Suppliers S T̄−S1 T̄−S2 T̄−S3 Π−S

{1, 2, 3} ∅ 1/3 4/15 1/5 2.1333

{1, 2} {3} 1/3 2/5 0 2.1

{1, 3} {2} 1/2 0 3/10 2.1

{2, 3} {1} 0 3/5 1/5 2.05

{1} {2, 3} 2/3 0 0 2

{2} {1, 3} 0 11/15 0 2.0167

{3} {1, 2} 0 0 4/5 1.6

Therefore, the submodularity property in Assumption 4.3 is satisfied.

The submodularity property in Assumption 4.3 may not hold when suppliers have

decreasing marginal costs as we demonstrate with the following example.

Example 4.4. Suppose the demand is fixed with D = 10 and the retail price is ρ = 20.

There are three suppliers. Supplier i and supplier j have the same costs with ci(t) =

cj(t) = ei(t) = ej(t) = 0, for t ∈ [0, 5]. The supplier k’s costs are ck(t) = 0 and

ek(t) = 10− t for t ∈ [0, 10]. So both supplier i and supplier j have the capacity of 5 and

the supplier k’s capacity is 10.

We now look at the supply chain optimal problems. If all the three suppliers are

available, the buyer will choose 5 units both from supplier i and supplier j. The supply

chain optimal profit is Π = 200. If only suppliers k and i (or j) are available, the

buyer will choose 5 units both from k and i (or j). The supply chain optimal profit

is Π−{i} = Π−{j} = 162.5. If supplier k is the sole supplier, the buyer will choose 10

units from k and the supply chain optimal profit is Π−{i,j} = 150. Therefore, we have

Π + Π−{i,j} = 350 > Π−{i}+ Π−{j} = 325, which contradicts the submodularity property.

As a preliminary step, we show a result based on Assumption 4.3, which is similar

to Corollary 3.7 in Chapter 3.

Corollary 4.8. Under Assumption 4.3, for any S ⊆ N , we have,

Π−Π−S ≥
∑
i∈S

(
Π−Π−{i}

)
. (4.32)

Proof of Corollary 4.8. The proof is the same with that of Corollary 3.7 in Chapter 3,

and is omitted here.

We are now in a position to show an equilibrium. Following the similar idea as in

the two-supplier case, we show the following strategies form an equilibrium, which is an

extension of Corollary 4.6 to the case with more than two suppliers.
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Theorem 4.9. Under Assumption 4.3, there exists an equilibrium {(p∗i (t), r∗i (t)) : i ∈
N} where, for i = 1, ..., n, supplier i sets prices to be costs, i.e. p∗i (t) = ci(t), r

∗
i (t) =

ei(t), and charges a lump-sum reservation payment Ki = Π−Π−{i}. In this equilibrium,

the buyer’s reservation choice is T̄. The profit split is

π∗B = Π−
n∑
i=1

(
Π−Π−{i}

)
and π∗i = Π−Π−{i}. (4.33)

Proof of Theorem 4.9. We first show that, given the supplier bids {(p∗i (t), r∗i (t),Ki) : i ∈
N}, the buyer will choose the first best solution T̄. Note that once the buyer decides

to reserve from the suppliers in N \ S, the buyer’s optimal choice must be T̄−S (due to

p∗i (t) = ci(t) and r∗i (t) = ei(t)). Therefore, the buyer’s reservation choice problem boils

down to the supplier selection problem, and is a combinatorial optimization program.

Provided that the buyer chooses the suppliers in N \S, then her profit is given as follows:

π−SB = Π−S −
∑
i∈N\S

(
Π−Π−i

)
= Π−S +

∑
i∈S

(
Π−Π−i

)
−
∑
i∈N

(
Π−Π−i

)
≤ Π−S + Π−Π−S −

∑
i∈N

(
Π−Π−i

)
= Π−

∑
i∈N

(
Π−Π−i

)
,

where the inequality follows from Corollary 4.8. Note that the buyer’s profit from

choosing T̄ is π∗B = Π −
∑

i∈N
(
Π−Π−i

)
. Therefore, the buyer’s optimal choice must

be T̄ according to Assumption 4.2. Moreover, we find that the buyer’s profit when

choosing T̄−i is,

π−iB = Π−i −
∑
j 6=i

(
Π−Π−j

)
= Π−

n∑
i=1

(
Π−Π−i

)
= π∗B. (4.34)

Next we show that no supplier has an incentive to deviate from the proposed strat-

egy. Suppose otherwise and supplier i makes a higher profit by offering a different bid

(p̃i(t), r̃i(t), K̃i). From Lemma 4.7, we assume (p̃i(t), r̃i(t)) = (p∗i (t), r
∗
i (t)) and K̃i > Ki.

We will show that the buyer is better off not to choose supplier i. First, from (4.34)

the buyer’s optimal profit when not choosing supplier i is π∗B. Second, any set of bids

that includes i will mean that the buyer makes a smaller profit than π∗B. Therefore, the

buyer will not choose supplier i, implying that no supplier has an incentive to unilaterally

change his bid. This completes the proof.



Chapter 4. Supply Option Competition with General Costs 112

4.5 Conclusions

In this chapter, we have considered a supplier competition game in a supply option

market where suppliers have general cost functions. Suppliers each submit a function

bid consisting of a reservation price function and an execution price function. Then

the buyer decides how much capacity to reserve from each supplier before knowing the

actual demand.

When observing the competitors’ bids, we show an optimal strategy for a supplier is

to set the execution price to be the execution cost and add a margin on the reservation

cost. This implies that suppliers make profits only from the buyer’s reservation pay-

ments. Regarding the strategic interaction amongst suppliers, we characterize a class of

equilibria where the buyer’s reservation choice is first best, each supplier’s profit equals

his marginal contribution to the supply chain and the buyer takes the remaining profit.

The implication is that by allowing suppliers to compete using function bids, the supply

chain is coordinated. This chapter complements Chapter 3 by allowing general cost

functions for suppliers. Comparing with Mart́ınez-de Albéniz and Simchi-Levi (2009) it

also highlights the important impact of the strategy space on supplier competition.



Chapter 5

Concluding Remarks

5.1 Main Results

This thesis studies how suppliers compete with each other for a buyer’s business by

considering subcontracting, commitment, and capacity reservation.

In a procurement setting with multiple units to buy, one of the fundamental decisions

for a buyer is whether to split an order across multiple suppliers (multi-sourcing) or to

award its entire order to a single supplier (single-sourcing). Chapter 2 studies the role of

subcontracting and single-sourcing commitment in supplier bidding. We show that the

buyer prefers to commit to single-sourcing whether or not subcontracting is considered.

The intuition is that the competition between suppliers is dampened if the buyer does not

commit to single-sourcing. Regarding whether the buyer should allow subcontracting, we

find the bargaining power of the winning (or losing) supplier at the subcontracting stage

plays a vital role in determining the subgame perfect Nash equilibrium. Our analysis

shows that, counter-intuitively, subcontracting does not necessarily hurt the buyer. The

buyer is better off to allow subcontracting when the winning supplier’s bargaining power

exceeds a threshold.

Capacity reservation is important when suppliers need to invest in capacity to meet

a further order and the future demand is uncertain. To hedge against financial risks,

suppliers often require a buyer to reserve capacity in advance. In Chapter 3, we con-

sider the situation where each supplier owns a “block” of capacity characterized by a

reservation cost and an execution cost as well as a block size. Suppliers each offer a

reservation price and an execution price. Then the buyer decides which blocks to re-

serve. We first show that the optimal buyer profit function is submodular when suppliers

have equal-size blocks. This submodularity property fails when supplier blocks are of

different sizes. Then we find that it is optimal for suppliers to set execution prices to

be execution costs, thus they make profits only from the buyer’s reservation payments.

In the case with equal-size blocks, we show in equilibrium the buyer’s choice matches

113



Chapter 5. Concluding Remarks 114

the supply chain optimal choice, each supplier’s profit equals his marginal contribution

and the buyer takes the remaining profit. We also provide a procedure to construct an

equilibrium for the case with unequal-size blocks.

Chapter 4 complements Chapter 3 by studying a continuous version of the problem

where suppliers face general cost functions. The suppliers each quote a function bid

consisting of a reservation price function and an execution price function. Then the

buyer, after receiving a set of function bids, decides how much to reserve from each

supplier. We show that some results in Chapter 3 still hold in this setting. To be

specific, it is optimal for suppliers to set execution prices to be execution costs. Under

mild conditions, we are able to show that, in a class of equilibria, each supplier’s profit

equals his marginal contribution to the supply chain system and the buyer takes the

remaining profit.

5.2 Future Research

This research opens up a number of follow-up questions. In this subsection, we discuss

several extensions.

A natural extension for Chapter 2 is to consider the case with more than two sup-

pliers. This requires dealing with each procurement scenario separately because they

present different types of challenges. Under the order splitting scenario, this study shows

that the equilibrium result will still hold if the supply chain optimal profit is sub-modular

in the sense that each supplier makes a decreasing marginal contribution to the supply

chain optimal profit as the number of available suppliers increases. Whether this con-

dition is satisfied depends largely on supplier costs. It is challenging to characterize the

cost functions for which the sub-modularity property holds. However, the main results

carry over to the case with more than two symmetric suppliers. For the single-sourcing

commitment scenario, the question of how suppliers compete in bidding relates directly

to the modelling of subcontracting negotiation between the winning supplier and los-

ing suppliers. The subcontracting negotiation may be addressed by drawing on the

multilateral bargaining theory.

Another extension for Chapter 2 is the incomplete information setting where sup-

pliers each have private information regarding their own costs. For example, supplier

i may have the cost function parameterized by βi which follows a known distribution,

and the aim is to characterize the Bayesian Nash equilibrium for suppliers.

In Chapter 3, we formulate a one-shot competition game with reservation bidding in

which suppliers each submit a reservation price and an execution price simultaneously,

while the buyer makes a two-stage decision (of reservation and execution). It remains

unclear how the competitive dynamics change if we separate the supplier bidding decision

into two stages as well. In particular, we can study a dynamic game where suppliers



Chapter 5. Concluding Remarks 115

compete in the first stage by offering a reservation price, and then compete by choosing

an execution price in the second stage. Moreover, it is intriguing to compare the dynamic

game with the one-shot game. Doing so may have the potential to help a buyer design

a better sourcing strategy.

Chapter 3 builds a two-dimensional price competition model where capacity is ex-

ogenous. It would be interesting to endogenize capacity decisions in addition to pricing

decisions. Specifically, we can consider a one-shot game where suppliers each offer a

three-dimensional bid which consists of an execution price, a reservation price and an

offered quantity (which is no greater than its block size). A similar problem has been

examined by Wu and Kleindorfer (2005) who focus on the interaction between option

markets and spot markets, and consider only execution costs for suppliers. We leave

these extensions for future research.
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