
Copyright and use of this thesis

This thesis must be used in accordance with the 
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright 
may be an infringement of copyright and 
copyright owners may be entitled to take 
legal action against persons who infringe their 
copyright.

Section 51 (2) of the Copyright Act permits 
an authorized officer of a university library or 
archives to provide a copy (by communication 
or otherwise) of an unpublished thesis kept in 
the library or archives, to a person who satisfies 
the authorized officer that he or she requires 
the reproduction for the purposes of research 
or study. 

The Copyright Act grants the creator of a work 
a number of moral rights, specifically the right of 
attribution, the right against false attribution and 
the right of integrity. 

You may infringe the author’s moral rights if you:

-  fail to acknowledge the author of this thesis if 
you quote sections from the work 

- attribute this thesis to another author 

-  subject this thesis to derogatory treatment 
which may prejudice the author’s reputation

For further information contact the University’s 
Director of Copyright Services

sydney.edu.au/copyright



 

The Extracellular Matrix Protein Fibulin-1 

in Idiopathic Pulmonary Fibrosis 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 Jade Jaffar 

Central Clinical School 

June 2014 

 

 

 



Page I of VIII 

 

Preface 

All the experimental work reported in this thesis was carried out by the candidate, 

except where acknowledgment of the work of others is given in the text. No portion of 

this work has been submitted by the candidate toward the award of any other degree. 

Ethical approval for this project was provided by the Human Ethics Committee of the 

University of Sydney (Australia), Belberry Human Research Ethics Committee 

(Perth, Australia), Comitato Etico Provinciale di Modena (Modena, Italy) and the 

Laurel Heights Panel (San Francisco, USA). 

 



Page II of VIII 

 

Acknowledgements 

It’s just not possible to do a PhD thesis without a ton of people that this candidate 

relied on for guidance, moral support and, most importantly, focus on the task(s) at 

hand. I’d first like to thank Profs. Ingegerd and Karl Erik Hellstrom, who encouraged 

me to pursue a PhD after spending several years as their research assistant. 

I’d next like to thank my primary supervisor, Associate Prof. Janette Burgess, for 

bringing me to Sydney, Australia through the Rebecca L. Cooper PhD scholarship 

scheme and for being a dedicated mentor over the years. I am also grateful to my 

associate supervisors Dr. Brian Oliver and Prof. Judy Black for their continuous and 

diverse support.  

Naturally this leads me into the other members of the Respiratory Research Group. It 

is a great advantage to come from a big family of researchers and I fear I will never 

again be part of such an amazing group. In no particular order, Dr. Lyn Moir, Dr. Qi 

Ge, Dr. Xiahui Tan, Dr. Hatem Alkouri, Maree Svolos, Hilary Cox, Nessa (dancing 

queen) Banville and my fellow PhD students, Louise (It’s like Darkness with an H) 

Harkness, Fran (I love cheese) Tang, Ling (ELISA machine) Chen, David (Gym time) 

Van Ly, Patrick (Cash-money) Ng,  Alen (Sleepy drunk) Faiz, Gavin (G.T.T) Tjin, 

who made my time at the Woolcock Institute of Medical Research the most awesome 

PhD experience one could hope to have. I’d also like to thank the other students that 

helped me in this project, in particular Monique de Pedro, Qing Xiang Qie, Sofia 

Unger and Lizzie Munk. I definitely could not have done it without all of you guys.  



Page III of VIII 

 

Thanks to all the other students, collaborators, laboratory technicians, research nurses, 

patients and volunteers from the Woolcock who gave their time and blood (literally!!) 

for my project.  

Lastly, I’d like to thank my family, especially mom and dad, who stepped in more 

than once to help me along and help me find my way. Mom, you’re a hardass but I 

know I’m better off because of it. Dad, I continue the Jaffar line of doctors and hope 

that I did Yeh Yeh proud. Finally, to my partner, Brock, for being a calming presence 

and bringing me back into balance. 

This thesis is dedicated to you all. 



Page IV of VIII 

 

List of Abbreviations  

AFM Atomic force microscopy 

AIHW Australian Institute of Health and Welfare 

ANCOVA Analysis of covariance 

ANOVA Analysis of variance 

APS Ammonium persulphate 

a-SMA Alpha smooth muscle actin 

bp Base pairs 

BSA Bovine serum albumin 

COPD Chronic obstructive pulmonary disease 

CT Computed tomography 

CTD-ILD Connective tissue disease related interstitial lung disease 

DLCO Diffusing capacity of the lung for carbon monoxide 

DLCO% Percentage predicted diffusing capacity of the lung for carbon monoxide 

DMEM Dulbecco's modified Eagle's medium 

DMSO Dimethyl sulphoxide  

DNA Deoxyribonucleic acid 

DTT Dithiotheritol 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid disodium salt 

ELISA Enzyme-linked immunosorbant assay 

EMT Epithelial-mesenchymal transition 

FBLN1 Fibulin-1 

FBS Foetal bovine serum 

FEV1 Forced expiratory volume in 1 second 

FEV1% Percentage predicted forced expiratory volume in 1 second 

FN Fibronectin 

FVC Forced vital capacity 

FVC% Percent predicted forced vital capacity 

HBSS Hank's balanced salt solution 

HP Hypersensitivity Pneumonitis 

IHC Immunohistochemistry 

IIP Idiopathic interstitial pneumonia 

IL Interleukin 



Page V of VIII 

 

ILD Interstitial lung disease 

IPF Idiopathic pulmonary fibrosis 

kDa Kilodalton 

LAM Lymphangioleiomyomatosis 

MMP Matrix metalloproteinase  

mRNA Messenger ribonucleic acid 

OD Optical density 

PBS  Phosphate buffered saline 

Pen-Strep Penicillin-Streptomycin 

PFA Paraformaldehyde 

PO Periostin 

PVDF Polyvinylidene flouride 

QPCR Quantitative polymerase chain reaction 

RT Reverse transcription 

Sarcoid Sarcoidosis 

SD Standard deviation 

SDS Sodium dodecyl sulphate 

SEM Standard error mean 

TEMED Tetramethylethylenediamine 

TGFβ Transforming growth factor beta 

TMB Tetramethylrhodamin iso-thiocyanate 

TNC Tenascin-C 

v/v Volume to volume ratio 

w/v Weight to volume ratio 

  



Page VI of VIII 

 

Abstract 

One of the most pressing issues in the clinical management of patients with idiopathic 

pulmonary fibrosis (IPF) is how a clinician can respond when asked “how long do I 

have?”  IPF has a varied clinical course and the only available treatments, aside from 

lung transplantation, are corticosteroids and immunosuppressants. The side effects of 

both corticosteroids and immunosuppressants may actually outweigh the benefits for 

use in IPF. Biomarkers of disease progression are often unable to predict acute lung 

function decline. This is possibly because the underlying mechanisms driving the 

disease are poorly understood and little attention has been paid to how intrinsic 

differences in resident lung fibroblasts may be contributing to this disease.  

In this thesis, extracellular matrix (ECM) molecules that are both found in the blood 

and released by resident lung fibroblasts were investigated for their utility as 

biomarkers of disease progression in IPF. The primary focus was on the ECM protein 

fibulin-1, an essential constituent of elastic fibres, which has not previously been 

studied in the context of interstitial lung disease. This thesis investigated the 

relationship between fibulin-1, and disease severity in patients with and without 

pulmonary fibrosis. In addition, the utility of fibulin-1 as a biomarker of disease 

progression was compared against other previously described components of the 

ECM, namely periostin, tenascin-C and fibronectin, in the same patients. Lastly, the 

effect of the profibrotic cytokine transforming growth factor-beta-1 (TGFβ1) on 

fibulin-1 levels in resident lung fibroblasts from patients with and without IPF was 

interrogated.  
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Patients with IPF had higher levels of serum, tissue and fibroblast-derived fibulin-1 

than patients without IPF. Serum fibulin-1 levels accurately discriminated between 

patients with IPF who progressed (whereby progression is defined as a decline in lung 

function) within one year of blood draw and those who remained stable. Neither 

periostin, tenascin-C or fibronectin levels were predictive of disease progression in 

patients with IPF. 

Increased ECM deposition leads to decreased lung function as the normal architecture 

is replaced by fibrotic tissue. Tissue fibulin-1 negatively correlated with lung function 

in patients with IPF. Importantly, while tissue periostin and total collagen were 

similarly increased in patients with IPF compared to patients without IPF, levels of 

periostin and total collagen did not correlate with lung function. This thesis highlights 

for the first time that fibulin-1 may be an important contributor to lung mechanical 

properties. Furthermore, fibulin-1 dysregulation may stem from altered fibulin-1 

production by fibroblasts derived from patients with IPF. Cell-secreted and cell-

associated fibulin-1 levels were increased in fibroblasts derived from patients with 

IPF compared to patients without IPF. TGFβ1 induced deposition of fibulin-1 was 

observed in fibroblasts derived from patients with IPF but not in fibroblasts derived 

from patients without IPF. 

In conclusion, the ECM profile is altered in patients with IPF compared to patients 

without IPF. While any of the 300+ proteins that constitute the lung ECM may be 

dysregulated in the context of IPF, fibulin-1 stood out as a novel biomarker of disease 

severity and may be an important target of the fibrotic process. 



Page VIII of VIII 

 

Publications arising from this thesis 

Published journal manuscripts 

Fibulin-1 predicts disease progression in patients with pulmonary fibrosis 

Jaffar J, Unger S, Corte TJ, Keller M, Wolters PJ, Richeldi L, S Cerri S, Prele CM, 

Hansbro PM, Argraves WS, Oliver  BGG, Oliver RA, Black JL and Burgess JK 

Chest. 2014 May 15. doi: 10.1378/chest.13-2688  

 

Manuscripts in preparation 

Transforming growth factor-beta 1 increases fibulin-1 in fibroblasts from patients 

with idiopathic pulmonary fibrosis 

Primary parenchymal fibroblasts from patients with idiopathic pulmonary fibrosis are 

stiffer than fibroblasts from patients without idiopathic pulmonary fibrosis as 

measured by atomic force microscopy. 

Published conference abstracts 

International 

The Matricellular Protein Fibulin-1 Is Increased In Primary Parenchymal Fibroblasts 

Derived From Patients With Idiopathic Pulmonary Fibrosis 

Jaffar J, Oliver BGG, Black JL, Burgess JK 

American Thoracic Society International Conference Abstracts 2014, San Diego 

Volume 269, A6647 

DOI: 10.1164/ajrccm-conference.2014.189.1_MeetingAbstracts.A6647 

 

Fibulin-1 is a novel biomarker of disease severity in pulmonary fibrosis 

Burgess JK,  Jaffar J, S Unger, Keller M, Corte TJ, Wolters PJ, Richeldi L, Cerri S, 

Argraves WS, Black JL, Oliver BGG  

European Respiratory Society Conference 2013, Barcelona  

Volume 42, Suppl. 57, p. 69S 

First author must present at this conference. Supervisor Burgess presents on behalf of 

Jaffar J. 

 

 

 

 

 



Page IX of VIII 

 

Levels of fibulin-1 in the lung and serum are increased in fibrotic interstitial lung 

disease 

Jaffar J, Unger S, Corte TJ, Wolters PJ, Richeldi L, Cerri S, Argraves WS, Oliver 

BGG, Black JL, Burgess JK 

American Thoracic Society International Conference Abstracts 2013, Phildelphia 

Volume 272, A3382 

DOI: 10.1164/ajrccm-conference.2013.187.1_MeetingAbstracts.A3382 

 

Is the extracellular matrix protein fibulin-1 a key player in idiopathic pulmonary 

fibrosis? 

Burgess JK, Jaffar J, Oliver BGG, Corte TJ, Argraves WS, Twal WO, Wolters PJ, 

and Black JL.  

International Colloquium on Lung and Airway Fibrosis 2012 Conference, Modena 

 

Does the dysregulation of the ECM result in the pathology of 

Lymphangioleiomyomatosis? 

Burgess JK, Jaffar J, Tjin G, Weckmann M, Heckman CA, Corte TJ, Argraves WS, 

Twal WO, Moir LM, Black JL, Oliver BGG 

International Colloquium on Lung and Airway Fibrosis 2012 Conference, Modena 

 

The release of soluble fibulin-1 from airway epithelial cells is increased by 

transforming growth factor-beta 

Jaffar J, Tan X, Black JL, Oliver BGG,  Argraves WS, Twal WO, Burgess JK  

American Thoracic Society International Conference Abstracts 2012, San Francisco 

Volume 315, A6684 

DOI: 10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A6684 

 

The serum level of Fibulin-1 is elevated in idiopathic pulmonary fibrosis.  

Jaffar J, Tan X, Black JL, Oliver BGG, Corte T, Wolters PJ, Argraves WS, Twal WO, 

Burgess JK  

American Thoracic Society International Conference Abstracts 2012, San Francisco 

Volume 315, A5173 

DOI:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A5173 

 

Local 

The Matricellular Protein Fibulin-1 is a Better Marker of Disease Progression than 

Periostin, Tenascin-C and Fibronectin In Patients with Idiopathic Pulmonary Fibrosis 

Jaffar J, Van Ly D, Munk L, Corte TJ, Cerri S, Richeldi L, Wolters PJ, Prele CM, 

Oliver RA, Oliver BGG, Black JL, Burgess JK 

Respirology 2014, Volume 19, Issue S2, p. 32–34, 

 

 

 

 



Page X of VIII 

 

Primary Lung Fibroblasts from Patients with IPF Show Increased Stiffness which 

may be due to Differential Production of ECM Proteins 

Jaffar J, Chrzanowski W, Faiz A, Wolters PJ, Oliver BGG , Black JL, Burgess JK. 

Respirology 2014, Volume 19, Issue S2, p.18-20 

 

The extracellular matrix protein fibulin-1 is increased in patients with IPF 

Jaffar J, Tjin G, Unger S, Black JL, Oliver BGG, Burgess JK 

Respirology 2013, Volume 18, Issue S2, p.27 

 

Fibulin-1 and periostin levels are associated with the severity of fibrotic lung disease 

Keller M and Jaffar J, Corte TJ, Black JL, Webster S, Troy L, Corte P, Torzillo P, 

Burgess JK 

Respirology 2013, Volume 18, Issue S2, p. 47 

  

 

Transforming growth factor-beta increases the release of soluble fibulin-1 in primary 

airway epithelial cells.  

Jaffar J, Tan X, Black JL, Oliver BGG, Argraves WS, Twal WO, Burgess JK 

Respirology 2012, Volume 17, Issue S1, p.P-003 

 

 

Fibulin-1 is increased in the blood of idiopathic pulmonary fibrosis patients. 

Jaffar J, Tan X, Black JL, Oliver BGG, Corte T, Argraves WS, Twal WO, Wolters P, 

Burgess JK  

Respirology 2012, Volume 17, Issue S1, p.P-046 

  

 

Awards linked to abstracts 

• Finalist – Ann Woolcock Young Investigator Award, Thoracic Society of 

Australia and New Zealand 2014 

• Newcastle Asthma Meeting Best Clinical PhD student presentation 2013 

• American Thoracic Society International Trainee Scholarship 2013 

• Thoracic Society of Australia and New Zealand Travel Award 2013 

• Thoracic Society of Australia and New Zealand Travel Award 2012 

• Woolcock Institute of Medical Research Symposium Award (Overall best 

presentation) 2013 
 



Page 1 of 252 

 

Table of Contents 

Preface...........................................................................................................................I 

Acknowledgements......................................................................................................II 

List of Abbreviations..................................................................................................IV 

Abstract.......................................................................................................................VI 

Publications arising in this thesis.............................................................................VIII 

Table of Contents...........................................................................................................1 

Chapter 1. Introduction .............................................................................................. 9 

1.1 Interstitial lung disease .................................................................................... 9 

1.1.1 Background .............................................................................................. 9 

1.1.2 Aetiology................................................................................................ 10 

1.1.3 Diagnosis................................................................................................ 12 

1.1.4 Treatment and Management .................................................................. 12 

1.1.5 Connective-tissue disease related interstitial lung disease..................... 13 

1.1.6 Hypersensitivity pneumonitis ................................................................ 14 

1.1.7 Sarcoidosis ............................................................................................. 14 

1.1.8 Idiopathic interstitial pneumonias .......................................................... 14 

1.2 Idiopathic pulmonary fibrosis ....................................................................... 16 

1.2.1 The problem of an unknown cause ........................................................ 16 

1.2.2 Clinical trials .......................................................................................... 16 

1.2.3 Biomarkers of progression ..................................................................... 18 



Page 2 of 252 

 

1.2.4 ECM proteins as biomarkers in IPF ....................................................... 19 

1.3 The extracellular matrix ................................................................................ 19 

1.3.1 Conservation throughout evolution........................................................ 19 

1.3.2 A bioactive entity ................................................................................... 22 

1.3.3 Tissue homeostasis and ECM turnover.................................................. 23 

1.3.4 Cells that produce ECM ......................................................................... 23 

1.3.5 Important ECM proteins ........................................................................ 25 

1.4 Fibrosis .......................................................................................................... 28 

1.4.1 Regeneration vs Repair .......................................................................... 28 

1.4.2 The stages of wound healing.................................................................. 29 

1.4.3 The ECM in fibrosis............................................................................... 33 

1.4.4 Dysregulation of ECM in pulmonary fibrosis ....................................... 34 

1.4.5 Matrix Stiffness ...................................................................................... 36 

1.4.6 Atomic Force Microscopy ..................................................................... 36 

1.5 Transforming growth factor-β1 ..................................................................... 37 

1.5.1 Background ............................................................................................ 37 

1.5.2 Cytokines, the ECM and TGFβ1 regulation .......................................... 39 

1.5.3 TGFβ1, EMT and pulmonary fibrosis ................................................... 41 

1.6 Fibulin-1 ........................................................................................................ 42 

1.6.1 Background ............................................................................................ 42 

1.6.2 The fibulin family .................................................................................. 43 



Page 3 of 252 

 

1.6.3 The structure of fibulin-1 ....................................................................... 45 

1.6.4 Fibulin-1 has 4 isoforms ........................................................................ 47 

1.6.5 Fibulin-1 protein-protein interactions .................................................... 49 

1.6.6 Fibulin-1 and fibronectin ....................................................................... 50 

1.6.7 Fibulin-1 and collagen ........................................................................... 51 

1.6.8 Fibulin-1 and periostin ........................................................................... 51 

1.6.9 Fibulin-1 and tenascin-C ........................................................................ 52 

1.6.10 Fibulin-1 in embryonic morphogenesis and elastic fibre assembly ....... 52 

1.6.11 The role of fibulin-1 in other diseases ................................................... 53 

1.6.12 Hypothesis.............................................................................................. 53 

1.7 Summary and Aims ....................................................................................... 54 

Chapter 2. Fibulin-1 in Pulmonary Fibrosis ............................................................ 57 

2.1 Introduction ................................................................................................... 57 

2.2 Methods ......................................................................................................... 59 

2.2.1 Patient Data ............................................................................................ 59 

2.2.2 Definition of progression ....................................................................... 62 

2.2.3 Serum collection .................................................................................... 62 

2.2.4 Tissue collection .................................................................................... 62 

2.2.5 Cell isolation .......................................................................................... 64 

2.2.6 Cell culturing ......................................................................................... 64 

2.2.7 Cell experimentation .............................................................................. 65 



Page 4 of 252 

 

2.2.8 Real-time reverse transcription polymerase chain reaction (QPCR) ..... 66 

2.2.9 Immunoblotting...................................................................................... 68 

2.2.10 Specificity of fibulin-1 antibody ............................................................ 72 

2.2.11 Optimization of normalization protocol for cell supernatants ............... 77 

2.2.12 Immunohistochemistry .......................................................................... 79 

2.2.13 Image Capture ........................................................................................ 81 

2.2.14 Densitometric analysis ........................................................................... 81 

2.2.15 Statistical analysis .................................................................................. 84 

2.3 Results ........................................................................................................... 85 

2.3.1 Serum fibulin-1 is increased in patients with IPF compared to other 

ILDs and subjects without lung disease ............................................................... 87 

2.3.2 Serum fibulin-1 correlates with disease severity in patients with ILDs 88 

2.3.3 The level of fibulin-1 in whole lung lysates was increased in patients 

with IPF compared to subjects without lung disease ........................................... 90 

2.3.4 Tissues from patients with IPF show greater levels of fibrosis. ............ 92 

2.3.5 The level of fibulin-1 in paraffin embedded formalin fixed tissue was 

increased in patients with IPF compared to subjects without lung disease ......... 94 

2.3.6 Tissue fibulin-1 levels correlate with disease severity in patients with 

IPF……… ............................................................................................................ 96 

2.3.7 Fibroblasts from IPF patients produce more fibulin-1 mRNA under 

basal conditions than fibroblasts from subjects without lung disease ................. 99 



Page 5 of 252 

 

2.3.8 Fibroblasts from IPF patients produce more fibulin-1 than fibroblasts 

from non-IPF fibroblasts .................................................................................... 102 

2.3.9 Serum levels of fibulin-1 between patients with IPF were similar across 

patient cohorts .................................................................................................... 104 

2.3.10 Serum fibulin-1 was increased in patients with IPF who progressed 

compared to those who remained stable ............................................................ 107 

2.3.11 Serum fibulin-1 predicts disease progression in patients with IPF ...... 108 

2.3.12 Patients with IPF and a high level of serum fibulin-1 had a shorter 

progression-free survival time than those with a low level of serum fibulin-1 . 112 

2.3.13 Measurement of serum fibulin-1 predicts progression in patients with 

IPF independent of other predictors. .................................................................. 114 

2.3.14 Summary of findings............................................................................ 116 

2.4 Discussion ................................................................................................... 117 

Chapter 3. Other matrix proteins and fibulin-1 ..................................................... 123 

3.1 Introduction ................................................................................................. 123 

3.2 Methods ....................................................................................................... 130 

3.2.1 Patient data ........................................................................................... 130 

3.2.2 Fibroblast isolation, cell culture and sample collection ....................... 130 

3.2.3 RNA isolation and QPCR .................................................................... 130 

3.2.4 Sandwich ELISA ................................................................................. 130 

3.2.5 Immunohistochemistry, image capture and analysis ........................... 132 

3.2.6 Statistical Analysis ............................................................................... 133 



Page 6 of 252 

 

3.3 Results ......................................................................................................... 135 

3.3.1 Serum periostin is increased in patients with IPF ................................ 135 

3.3.2 Serum tenascin-C is decreased in patients with IPF compared to patients 

with HP. ............................................................................................................. 137 

3.3.3 Serum fibronectin is not increased in patients with ILD ..................... 138 

3.3.4 Serum periostin and tenascin-C correlate with lung function in patients 

with ILD ............................................................................................................. 139 

3.3.5 Serum ECM proteins correlate with each other in patients with IPF .. 140 

3.3.6 No difference in serum periostin, tenascin-C or fibronectin between 

patients with IPF who progressed and those patients who remained stable ...... 142 

3.3.7 Periostin, tenascin-C, fibronectin do not predict disease progression in 

patients with IPF ................................................................................................ 142 

3.3.8 Tissue periostin and fibronectin levels in patients with IPF ................ 144 

3.3.9 Tissue levels of total collagen, periostin, or fibronectin do not correlate 

with lung function in patients with IPF.............................................................. 147 

3.3.10 Fibroblasts from patients with IPF do not produce more periostin or 

fibronectin mRNA ............................................................................................. 151 

3.3.11 Basal production of fibulin-1, periostin and tenascin-C by fibroblasts154 

3.3.12 Summary of results from biomarker investigation .............................. 156 

3.4 Discussion ................................................................................................... 157 

Chapter 4. The effect of TGFβ1 stimulation on fibulin-1 production in 

fibroblasts…………. .................................................................................................. 163 

4.1 Introduction ................................................................................................. 163 



Page 7 of 252 

 

4.2 Methods ....................................................................................................... 168 

4.2.1 Patient Data .......................................................................................... 168 

4.2.2 Fibroblast isolation and cell culture ..................................................... 168 

4.2.3 Stimulation with TGFβ1 ...................................................................... 168 

4.2.4 RNA isolation ...................................................................................... 168 

4.2.5 Real-time reverse transcription polymerase chain reaction ................. 168 

4.2.6 Secreted and cell-associated protein collection from cell cultures ...... 169 

4.2.7 Immunoblotting.................................................................................... 169 

4.2.8 Sandwich ELISA ................................................................................. 169 

4.2.9 Light microscopy ................................................................................. 170 

4.2.10 Atomic Force Microscopy ................................................................... 170 

4.2.11 Statistical Analysis ............................................................................... 171 

4.3 Results ......................................................................................................... 172 

4.3.1 Characterisation of the basal mRNA expression of fibulin-1 isoforms in 

primary parenchymal fibroblasts ....................................................................... 172 

4.3.2 The dose related effect of TGFβ1 on fibulin-1 mRNA levels in 

parenchymal fibroblasts ..................................................................................... 176 

4.3.3 The effect of TGFβ1 on fibulin-1 mRNA levels of primary parenchymal 

fibroblasts ........................................................................................................... 178 

4.3.4 The effect of TGFβ1 on mRNA levels of other genes of interest in 

primary parenchymal fibroblasts ....................................................................... 180 



Page 8 of 252 

 

4.3.5 The effect of TGFβ1 on cell-derived ECM proteins in primary 

parenchymal fibroblasts ..................................................................................... 183 

4.3.6 The effect of TGFβ1 on cell-associated fibulin-1 production by primary 

parenchymal fibroblasts ..................................................................................... 189 

4.3.7 Basal morphology of primary parenchymal fibroblasts ....................... 189 

4.3.8 The effect of TGFβ1 on cell morphology ............................................ 192 

4.4 Discussion ................................................................................................... 201 

Chapter 5. General Discussion .............................................................................. 208 

5.1 Summary and conclusions ........................................................................... 208 

5.2 Fibulin-1 is a biomarker of disease progression in IPF ............................... 210 

5.3 Dysregulation of  ECM proteins in IPF ...................................................... 214 

5.4 Fibulin-1 production in primary parenchymal fibroblasts is increased by 

TGFβ1 in patients with IPF ................................................................................... 220 

5.5 Future Directions ......................................................................................... 227 

Chapter 6. References ............................................................................................ 236 

Chapter 7. List of Figures and Tables.................................................................... 230 

 

 



Page 9 of 252 

 

Chapter 1.    Introduction 

1.1 Interstitial lung disease 

1.1.1 Background 

The term interstitial lung disease (ILD) is an umbrella term that describes a large 

group of disorders that can affect men, women and children (Bradley et al. 2008). 

Most of the more than 150 different ILD disorders eventually lead to lung scarring, or 

pulmonary fibrosis (Selman and Pardo 2013). Causes of ILDs are varied and often 

hard to determine in the individual patient. Some patients could go many years 

without a definitive diagnosis and disease guidelines outline the need for a 

multidisciplinary approach for the most accurate diagnosis (Raghu et al. 2011).  

Diagnosis of ILD is challenging and there is an entire subgroup of ILDs of which the 

cause of the initial injury is ruled unknown. Idiopathic interstitial pneumonias (IIPs) 

encompass an equally varied spectrum of ILDs in which all typical causes of ILD 

have been ruled out, which puts a special emphasis on the need for a complete patient 

history in addition to baseline lung function measurements during the initial 

presentation. However, pulmonary fibrosis remains a common theme and a cause for 

concern in many ILDs.   

In pulmonary fibrosis, the alveoli that are responsible for efficient gas transfer are 

hindered by perpetual inflammation and damaged interstitium. When scarring occurs, 

it is generally not reversible (Paz and Shoenfeld 2010). Progressive fibrosis eventually 

leads to the destruction of the normal lung architecture, loss of lung function and 

eventually death (Araya and Nishimura 2010).  
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Changes in lung function parameters are often used to monitor patients with ILD. In 

patients with idiopathic pulmonary fibrosis (IPF), a small decline in lung function can 

indicate increased risk of death due to fibrosis. Pulmonary fibrosis is a consequence 

for which lung transplantation remains the only viable option of treatment in the end 

stages of different ILDs (Demedts et al. 2001; Raghu et al. 2011).  

Greater understanding of the mechanisms driving pulmonary fibrosis is critical in 

order to design treatments to slow or even reverse the fibrotic process. The 

extracellular matrix (ECM) is a key driver of the fibrogenesis (Tschumperlin et al. 

2012). Changes in ECM proteins signal states of active fibrogenesis in other diseases 

(Jourdan-LeSaux et al. 2010; Lopez-Hernandez and Lopez-Novoa 2012) and have 

recently also been shown to be important in IPF (Naik et al. 2012). 

1.1.2 Aetiology 

There are many different causes of ILD and identification of the causal agent is an 

essential component of the diagnostic strategy. Classification of ILD is based on 

aetiology (Figure 1.1) and the clinical course of ILD is largely determined by its 

underlying cause. Most commonly, ILDs will be associated with occupational or 

environmental exposures (eg. smoke, bird allergens) or due to an underlying 

connective-tissue disease (eg. scleroderma).  

Although some forms of ILD are untreatable, many forms do respond to treatment 

(Theodore et al. 2012). This makes accurate diagnosis of the specific ILD very 

important. ILDs can be grouped into categories where the initial insult is known, and 

those where the cause of the ILD is unknown, or idiopathic.  
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Figure 1.1 Classification of some Interstitial Lung Diseases (ILDs) 
The classification of ILDs is based primarily by aetiology. 

IIP idiopathic interstitial pneumonia, IPF idiopathic pulmonary fibrosis, LAM 

lymphangioleiomyomatosis 
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1.1.3 Diagnosis 

Diagnosis in ILD is difficult as the scores of disease entities all affect the lung 

interstitium and share similar clinical and radiological manifestations. Prior to 

diagnosis, a patient will often present with very diffuse respiratory symptoms 

(Kameda et al. 2011). These symptoms include shortness of breath (dyspnea) and a 

persistent but non-productive cough.  Upon taking a patient history, the clinician will 

need to determine if there have been any exposures to agents of ILD such as a history 

of smoking and even certain medications. The clinician also needs to investigate if the 

ILD is caused by an underlying connective-tissue disease. 

A thorough patient history is critical to identify the causal factor and if a patient is 

suspected to have an ILD, a detailed physical examination follows, again looking for 

potential underlying causes of ILD not easily elucidated from a patient’s memory.  

Lastly, a series of lung function tests and high-resolution computed tomography (HR-

CT) scans will be performed; not only for diagnosis, but also to assess the severity of 

the ILD at first presentation, as this is indicative of mortality in certain ILDs (Jegal et 

al. 2005).  

If a definitive diagnosis cannot be made following the routine examination, a surgical 

lung biopsy is then taken. However, this is an invasive procedure and it is possible 

that diagnosis can be made on the radiological features on HR-CT instead (Ryerson 

and Collard 2013).  

1.1.4 Treatment and Management 

Management in ILD is multifaceted. Often, for ILDs which have a known aetiology, 

correct identification of the causal agent is required at first consultation. Patients with 
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newly diagnosed ILD are all advised to cease smoking and undergo pulmonary 

rehabilitation which can improve or prevent the further decline of lung function.  

Monitoring of ILD patients is done through repeated lung function measurements.  

In most cases, if the causal agent is an allergen or environmental toxin, removal or 

limitation of exposure to the agent is recommended. If the causal agent is an 

underlying connective tissue disease, then the connective tissue disease is treated with 

the paramount aim of slowing of lung function decline. However, some instances of 

ILD, such as IPF, are relentlessly progressive and currently have no effective 

treatment beyond lung transplantation.  

1.1.5 Connective-tissue disease related interstitial lung disease 

Connective-tissue disease related ILD (CTD-ILD) accounts for about 15% of all ILDs 

(Fischer and du Bois 2012). Underlying connective tissue disease represents a 

difficult-to-treat sub-group of ILDs, including rheumatoid arthritis, systemic lupus 

erythematosus and systemic sclerosis. As with other ILDs, there is a lot of 

heterogeneity between CTD-ILDs and each is associated with particular clinical 

features. 

Most clinically relevant is the fact that CTD-ILD often has a more favourable 

prognosis compared to the other idiopathic ILDs. There have been substantial gains in 

the understanding of systemic sclerosis through the recent completion of two major 

clinical trials (Homer and Herzog 2010). Features of CTD are often seen in patients 

diagnosed with ILD as 13% of those meeting the diagnostic criteria for IPF also have 

undifferentiated CTD (Fischer and du Bois 2012).  
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1.1.6 Hypersensitivity pneumonitis 

Hypersensitivity pneumonitis (HP) is similar in presentation to IPF but is caused by 

repeated exposure to a particular allergen.  Inhalation of organic allergens is the most 

common cause, but inorganic chemicals can also cause HP (Hanak et al. 2007). 

Treatment mostly requires avoidance of the causal antigen. HP comes in three states; 

acute, subacute and chronic, and the majority of patients will present with a pattern 

that fits one of the three categories (Bradley et al. 2008). Despite this, patients with 

chronic HP are the most difficult to diagnose as careful patient history must be 

obtained to rule out IPF (Selman and Buendia-Roldan 2012). 

1.1.7 Sarcoidosis 

Sarcoidosis is an ILD that rarely progresses to pulmonary fibrosis and 55-90% of 

patients with stage I disease will undergo spontaneous remission (Bradley et al. 2008). 

Again, the natural history and progression of this disease is difficult to predict but 

most remissions will occur during the first six months. Due to the high rates of 

remission, treatment is not normally prescribed if the patient has normal or mildly 

abnormal lung function and normal oxygen saturation (Reich 2012). If the disease 

progresses, the overall mortality is 1-5%, mainly due to myocardial or central nervous 

system involvement (Bradley et al. 2008).     

1.1.8 Idiopathic interstitial pneumonias 

The IIPs includes seven clinico-radiologic-pathologic groups of ILDs: IPF, 

nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP), 

acute interstitial pneumonia (AIP), respiratory bronchiolitis-associated interstitial lung 
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disease (RB-ILD), desquamative interstitial pneumonia (DIP), and lymphoid 

interstitial pneumonia (LIP).  

The availability of HR-CT allowed for the discrimination of a particular radiologic 

pattern known as usual interstitial pneumonia (UIP) from the other IIP patterns. UIP is 

the hallmark feature of IPF (Figure 1.2), with its presence determining IPF diagnosis 

with the greatest certainty (King et al. 2001). Of the seven disease entities, IPF 

remains the most common of the IIPs and has the greatest mortality (Flaherty et al. 

2003).  

 

Figure 1.2 High-resolution computed tomography (HR-CT) scans of a patient 

with usual interstitial pneumonia (UIP). 
HR-CT scans demonstrate the classic UIP pattern that defines idiopathic pulmonary 

fibrosis (IPF). (A) Axial and (B) coronal images show extensive fibrosis with basal 

predominance of the honeycombing pattern that is the hallmark feature of UIP 

(arrows).   

Reproduced with permission from (Raghu et al. 2011) 
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1.2 Idiopathic pulmonary fibrosis 

1.2.1 The problem of an unknown cause 

IPF occurs primarily in older adults and fibrosis is limited to the lungs. The diagnosis 

of IPF is determined by the exclusion of other known causes of ILD and a particular 

pattern of fibrosis that is seen on HR-CT scans or by surgical biopsy (Raghu et al. 

2011). In addition, many patients with IPF present with concomitant diseases such as 

pulmonary hypertension and emphysema, making both diagnosis and treatment 

difficult. 

IPF affects more males than females and smoking is a significant risk-factor for the 

development of the disease (Ryerson and Collard 2013). Progression in IPF is varied 

and unpredictable and the effect of co-morbidities has not been well-studied. Unlike 

other ILDs where allergen avoidance or medications can significantly improve lung 

function, a diagnosis of IPF has no such positives and clinicians and patients alike are 

often at a loss as to what are the next steps to take (Swigris et al. 2005).  

Current recommendations for treatment are limited to only oxygen therapy in the most 

severe patients (Raghu et al. 2011). Enrolment into clinical trials may be the only 

course of action, besides lung transplantation, but often strict inclusion criteria leave 

many patients without options.  

1.2.2 Clinical trials 

Treatment of IPF has been largely unsuccessful (Noble et al. 2011), partly due to 

incomplete knowledge of the mechanisms driving fibrogenesis. Pirfenidone ((5-

methyl-1-phenyl-2-[1H]-pyridone; Shionogi & Co., Ltd., Osaka, Japan; MARNAC 
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Inc., Dallas, TX, USA) is a synthetic molecule that acts on transforming growth 

factor-beta 1 (TGFβ1) and tumour necrosis factor (TNF)-α in vitro (Raghu et al. 

1999), cytokines thought to play major roles in the development of fibrosis (Leask 

and Abraham '2004).  

Phase 3 results from one of the most recent trials in IPF, the CAPACITY (Clinical 

Studies Assessing Pirfenidone in idiopathic pulmonary fibrosis: Research of Efficacy 

and Safety Outcomes) programme, have just been published (King et al. 2014) and 

aimed to confirm the results of Phase 2 trials of the drug in patients with IPF. 

Previous studies in a Japanese cohort of patients with IPF indicated that pirfenidone 

was successful at increasing the progression-free survival time and improved forced 

vital capacity (FVC) in 163 patients compared to 104 patients who were in the 

placebo group (Taniguchi et al. 2011).  

In a bleomycin model of mouse fibrosis, pirfenidone suppresses the induced elevation 

of lung basic-fibroblast growth factor and prevents the downregulation of interferon-γ 

(Oku et al. 2008). It was hypothesized that by targeting the cytokines that were major 

drivers of the fibrotic environment that the development of chronic pulmonary failure 

could be slowed. However, in the CAPACITY study, they found that while overall 

there was a favourable outcome for the use of pirfenidone as a treatment in IPF, a 

substantial number of patients experienced significant side-effects including nausea, 

photosensitivity and rash, to name a few (Noble et al. 2011).  Furthermore, the 

greatest benefits of the drug, an increase in percentage predicted forced vital capacity 

(FVC%), was no longer significant at 72 weeks.   

One interpretation of this finding is that while able to suppress the acute pro-fibrotic 

effects of cytokines, which are largely non-specific to fibrosis, pirfenidone does not 
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act on the underlying mechanism that specifically drives excessive ECM deposition in 

the lung interstitium. Therefore, a greater understanding of what distinctively induces 

ECM deposition is needed and biomarkers of disease progression that reflect states of 

active lung fibrogenesis would be ideal targets for drug development in IPF.  

1.2.3 Biomarkers of progression 

Peripheral blood biomarkers of disease progression in IPF have been identified and 

are the most likely to achieve clinical utility because of their ease of sampling (Vij 

and Noth 2012). A biomarker of disease progression could tie the physical 

development of fibrosis (ie. excessive ECM deposition) with the cell type most 

responsible for the production of matrix components, the resident fibroblast. 

Of the known serum biomarkers in IPF, most are produced by alveolar epithelial cells 

or circulating immune cells (Richards et al. 2012; Vij and Noth 2012).  Those that are 

associated with mucus producing epithelial cells include the MUC5B gene 

polymorphism (Seibold et al. 2011), mucin-1 (KL-6), intracellular adhesion molecule 

1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1), surfactant proteins SP-A 

and SP-D and periostin (Naik et al. 2012). Matrix metalloproteinases 1 and 7, 

chemokines CCL18 and CXCL8, calgranulin B (S100A12) are produced by 

macrophages and other immune cells (Rosas et al. 2008; Vij and Noth 2012). 

Of these potential biomarkers, only periostin is a matricellular protein and its 

production is predominantly linked to the epithelium (Sidhu et al. 2010).  However, as 

fibroblasts are the main producers of ECM (Kisseleva and Brenner 2008), more 

biomarkers related to activated resident lung fibroblasts are needed.  
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1.2.4 ECM proteins as biomarkers in IPF 

The development of fibrosis is by definition the dysregulation of ECM production 

resulting in net deposition by lung fibroblasts. The ECM is created by secretion of 

ECM components and their extracellular organization into a distinct structure by 

mechanisms that remain to be fully elucidated. Particular ECM components are also 

found as serum proteins that are released from the ECM by matrix metalloproteinases 

(MMPs) (Mott and Werb 2004) or other endogenous enzymes. 

Changes in the levels of serum ECM proteins have been used to identify states of 

disease in cancer (Liu et al. 2006), infertility (Liu et al. 2011), and diabetes (Cangemi 

et al. 2011) that reflect their respective changes in ECM.  In addition, the matrix is 

bioactive (Roman and Mcdonald 1993), influencing the behaviours of the cells that 

inhabit it (Perumpanani et al. 1998; Frantz et al. 2010). Therefore, it has been 

hypothesized that ECM proteins found in the blood, like periostin, have potential as 

biomarkers of activated fibroblasts and therefore disease progression in IPF (Vij and 

Noth 2012). 

1.3 The extracellular matrix 

1.3.1 Conservation throughout evolution  

The ECM is made up of hundreds of different proteins each with a different purpose 

(Hynes 2012). Many of these proteins are highly conserved throughout the animal 

kingdom (Hynes 2012). The reason the diversity of ECM molecules was able to 

evolve is due to the modular structure of their protein domains. This layout allows for 

extensive exon shuffling during the molecular course of evolution (Engel 1996). The 

EGF-like repeats that are found as a common feature of ECM proteins can mediate 
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protein-protein interactions (Kubota et al. 2004). The emergence of extracellular 

proteins allowed for the physical linking of individual cells, allowing for the basis of 

the development of multicellular organisms (Frantz et al. 2010). 

The general structure of the ECM is similar throughout the body (Figure 1.3) but 

organ specific changes in ECM composition result in different biochemical and 

biophysical profiles (Bosman and Stamenkovic 2003). The conceptual understanding 

of the function of the ECM started out as a simple physical barrier between different 

cell types (Vracko 1974) but knowledge of its influence on cellular behaviour is 

increasing (Pardo and Selman 2001; Marinkovic et al. 2012; Parker et al. 2014).  

Even though the ECM is fundamentally composed of water, proteins and 

polysaccharides, each tissue has a specific combination of these components in which 

a dynamic cross-talking relationship between cells and their extracellular environment 

is made possible.  Maintenance of the ECM is regulated through selective deposition 

and degradation of ECM proteins via MMPs and tissue inhibitors of 

metalloproteinases (TIMPs)(Nagase et al. 2006) and other endogenous enzymes such 

as cathepsins (Xie et al. 2008).   
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Figure 1.3 Diagrammatic representation of the general structure of the 

extracellular matrix (ECM) in the lung parenchyma 
The ECM supports many cells and is made of proteins that each have a role in the 

maintenance of the interstitial space of the parenchyma.  

The interstitum contains many cells and is made of ECM proteins and a diversity of 

cellular elements.  
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The ECM is not simply an inert scaffold but also contributes to essential parts of 

homeostasis, including cell-to-cell signalling (Perumpanani et al. 1998) and cytokine 

regulation (Crosby and Waters 2010). The ECM interacts with many cell types and 

provides an essential chemical and physical framework for intrabody communication.   

1.3.2 A bioactive entity 

The control of cell proliferation (Krimmer et al. 2012), differentiation (Maxson et al. 

2012), migration (Kubota et al. 2006) and other biological processes is directly and 

indirectly driven by the ECM and it is particular constituent proteins that directly 

affect cell behaviour (Hynes 2009; Royce et al. 2009). ECM proteins do not only have 

biological functions in situ, as soluble fragments of ECM have been shown to induce 

biochemical effects in the circulation (Perumpanani et al. 1998).  

The physical properties of the ECM allows it to function as an important store of 

growth factors and also regulates growth factor activity (Araya and Nishimura 2010), 

as these cytokines are often stored in latent form within the ECM (Raghunath et al. 

1998). Fibrotic growth factors, like TGFβ1, in turn can alter the stiffness of the matrix 

by increasing production of ECM molecules like fibronectin and collagen.  

The importance of a tightly regulated matrix stiffness lies in the fact that cells respond 

to mechanical signals as well as chemical ones. The expression of the contractile 

protein α-smooth muscle actin (α-SMA) by pulmonary fibroblasts in vitro has been 

shown to be dependent on the stiffness of the surface they are seeded on while 

substrate stiffness can also alter the sensitivity of cells to cytokines (Chia et al. 2012). 
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Therefore, understanding the role of the ECM as a controller of tissue homeostasis is 

key in understanding fibrotic disease progression. 

1.3.3 Tissue homeostasis and ECM turnover 

The complexities of cell turnover are outside the scope of this thesis, but it is 

important to point out that as cells are being turned over, so too is the underlying 

structure that holds them all together (Pardo and Selman 2001).   

In the normal organ, there is continuous ECM deposition and degradation, known as 

tissue homeostasis. Tissue homeostasis is necessary to replace any dead or damaged 

cells in the body. The rate of cell turnover differs in each organ. For example, lung 

epithelium takes six months to regenerate whereas the lining of the gut is thought to 

turnover every five days (Blanpain et al. 2007) .  

Dysregulation of the MMPs and TIMPs is a shared mechanism of metastasis in 

multiple cancers (Ricciardelli and Rodgers 2006) and is also seen in pulmonary 

fibrosis (Corbel et al. 2002).  

1.3.4 Cells that produce ECM 

While all cells produce varying amounts of ECM, there are two categories of cells 

that are responsible for the majority of the structure known collectively as the ECM in 

the lung.  

1.3.4.1 Lung mesenchymal cells 

The type of mesenchymal cells that are the major contributor to the ECM are 

fibroblasts. Fibroblasts are difficult to define as they lack a unique and universal cell-

surface marker, despite being present in most tissues (Burstein et al. 2008).  
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Fibroblasts themselves are not a homogeneous population of cells. Fibroblast sub-

types are differentiated in the tissue they are found in. In the lung, the heterogeneity 

of fibroblasts from different areas of the lung is specifically dysregulated depending 

on the type of lung disease present (Kotaru et al. 2006). In IPF, fibroblasts from areas 

undergoing rapid fibrotic change show increased responsiveness to inflammatory 

cytokines compared to fibroblasts from areas of slower fibrotic change (Habiel and 

Hogaboam 2014). Fibroblasts are also potent sources of mediators that recruit other 

cells to the site of injury, such as eotaxin which attracts eosinophils (Kotaru et al. 

2006).  

Similarly, circulating fibroblast progenitor cells, known as fibrocytes, are thought to 

home in on areas requiring sudden ECM deposition (Andersson-Sjoland et al. 2008). 

The contribution of the fibrocyte has been identified in renal fibrosis, and airway 

remodelling in asthma and there is a positive correlation between the number of lung 

fibrocytes and the abundance of fibroblastic foci in patients with IPF (Hardie et al. 

2009), a potential marker of disease severity (Flaherty et al. 2003).  

1.3.4.2 Lung epithelial cells 

The main function of epithelial cells is maintenance of barrier function. The epithelial 

lining of the airway system is divided into 3 anatomically distinct regions, the 

trachea/bronchi, the bronchioles, and the alveoli. All three areas contain epithelial 

cells that appear typically cobblestone-shaped in monolayer cell culture (Rackley and 

Stripp 2012). Major cell types of the airways include ciliated, columnar, 

undifferentiated, secretory and basal cells (Hackett et al. 2008).   

In the alveolar region, type I and type II pneumocytes line branches 2
23

 and greater. 

90% of the alveolar surface is covered in type I cells to provide a surface suitable for 
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gas exchange. In concert, type II cells are found closer in proximity to mesenchymal 

cells and serve as surfactant producers and type I progenitors (Selman and Pardo 

2006).   

1.3.5 Important ECM proteins 

Due to the incredible protein diversity that is exhibited by the ECM, we have chosen 

to investigate a few ECM proteins of note in this study that have previously been 

identified to play roles in fibrogenesis. Collagen and fibronectin make up the majority 

of the ECM as they provide the main structural components. Periostin and tenascin-C 

play important roles in the orientation of collagen and fibronectin respectively (Kii et 

al. 2010).  

1.3.5.1 Fibronectin 

Fibronectin is one of the most highly conserved ECM proteins in the animal kingdom 

and its assembly into the ECM is a cell-mediated, integrin-dependent process (Mao 

and Schwarzbauer 2005). During this assembly, fibronectin is required to undergo 

many conformational changes that allow for the exposure of the necessary binding 

sites for other proteins needed to assist in the process (Sottile and Hocking 2002).  

Aside from directly influencing cell behaviour such as proliferation, attachment, 

migration and survival, the formation of a scaffold of fibronectin guides the 

deposition of latent TGFβ binding proteins that regulate the storage of TGFβ and 

therefore influence its activity (Dallas et al. 2005).  Briefly, soluble fibronectin dimers 

are dispersed diffusely over the cell surface. Next these dimers are arranged into short 

fibrils and finally into a fibrillar network (Mao and Schwarzbauer 2005).  
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Fibronectin has been shown to be critical in development as mice lacking in the 

fibronectin gene die in early embryogenesis due to defects in cell migration (Muro et 

al. 2008). Furthermore, fibronectin is an essential part of the wound provisional 

matrix and is a major blood protein (Midwood et al. 2006). A functioning fibronectin 

scaffold is necessary for the deposition of collagen I (Sottile and Hocking 2002), one 

of the other main components of the ECM. 

1.3.5.2 Collagen 

Collagen is the most abundant protein in the ECM, accounting for about 30% of the 

total weight of the ECM. In addition, there are dozens of collagens that differ in 

function and ECM abundance (Prockop and Kivirikko 1995). It is type I collagen that 

is induced upon treatment with bleomycin (Reiser and Last 1983), a drug typically 

prescribed for cancer chemotherapy which has been shown to cause pulmonary 

fibrosis (Mouratis and Aidinis 2011). Collagen fibrils are most responsible for the 

strength of the tissue and define an organ’s shape. The generation of these fibrils is an 

important step to understand in the context of both development and disease and this 

process is still not fully elucidated. The induction of collagen by TGFβ1 is one of the 

most well-studied effects of pro-fibrotic cytokines (Kenyon et al. 2003). The exact 

mechanisms driving collagen deposition are outside the scope of this thesis, but 

collagen maturation is important to mention as all scar formation is made of immature 

collagen (Widgerow 2011).  

Pro-collagen fragments are translocated to the lumen of the endoplasmic reticulum 

(ER) where it co-localises with other molecular chaperones and enzymes necessary 

for correct folding and polymerization (Lamande and Bateman 1999), similar to 

fibronectin fibrillogenesis. Fibrillogenesis of the major structural components, both 

fibronectin and collagen, is a tightly organized process involving other ECM proteins 



Page 27 of 252 

 

that act as molecular bridges. Previously identified molecular bridges of collagen 

include decorin (Culav et al. 1999) and periostin (Norris et al. 2007). 

1.3.5.3 Periostin 

Periostin is a secreted ECM protein that is associated with collagen-rich fibrous 

connective tissues and directly controls proper collagen I fibre formation (Norris et al. 

2007). Periostin was first described as a TGFβ-induced protein that was expressed 

following inflammation during tooth and bone remodelling (Kudo 2011). In addition 

to TGFβ, periostin is also upregulated by inflammatory cytokines such as interleukin 

(IL)-13 and contributes to the airway remodelling seen in asthma (Takayama et al. 

2006).  

During  remodelling, periostin  enhances the activity of lysyl oxidase (LOX), the 

enzyme responsible for collagen cross-linking,  through interactions with both 

fibronectin and bone morphogenic protein (BMP) -1 (Maruhashi et al. 2010). 

Furthermore, periostin also acts in concert with tenascin-C, possessing adjacent 

domains to those on tenascin-C that bind to fibronectin and type I collagen. 

Deposition of tenascin-C into the ECM was shown to be dependent on the presence of 

periostin (Kii et al. 2010).  

1.3.5.4 Tenascin C 

Tenascin-C is a member of the tenascin family which includes other tenascins such as 

tenascin-X and tenascin-H (Udalova et al. 2011). It is only expressed during periods 

of active tissue repair and is downregulated once repair is complete. As a hexametric 

molecule with multiple binding sites, tenascin-C exhibits the ability to bind to and 

regulate a variety of cell-cell and cell-matrix interactions (Midwood et al. 2011). In 
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this manner, tenascin-C can be thought of as a counter to the adhesive actions of 

fibronectin.  

Similar to fibronectin and other ECM protein binding partners, tenascin-C can also be 

induced by TGFβ1 (Hau et al. 2006). In addition, tenascin-C participates in the 

fibrinolytic system through its ability to inhibit plasminogen, the precursor to plasmin, 

the enzyme that degrades fibrin (Brellier et al. 2011). The fibrinolytic system plays an 

important role during normal wound healing and is vital in dampening fibrosis 

(Swaisgood et al. 2000). 

1.4 Fibrosis 

1.4.1 Regeneration vs Repair   

Damage as a consequence of mere existence is a problem shared by all living 

organisms. Tissue homeostasis is maintained through tightly regulated cell turnover 

during which older cells are replaced by newer ones. During this process of 

regeneration, normal tissue morphology and function are preserved. In a review of 

tissue homeostasis, authors Pellettieri and Alvarado state “it has been estimated that 

each of us eradicates and, in parallel, generates a mass of cells equal to almost our 

entire body weight each year” (Pellettieri and Sanchez Alvarado 2007). 

In contrast to this, reconstitution of an adult tissue that does not exactly replicate the 

original state is known as repair (Martin and Parkhurst 2004). Fibrosis can be thought 

of as pathological wound healing (Diegelmann and Evans 2004). The process of 

fibrosis is part of the natural wound healing process that is necessary for development 

and growth as well as repair. However, somewhere along this process, the regulation 

of ECM deposition goes awry. The end result is excessive ECM deposition that 
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changes the architecture of the organ that is affected. Similarities between fibrogenic 

lung diseases have been repeatedly reviewed throughout the literature (Araya and 

Nishimura 2010; Murray 2012).  

1.4.2 The stages of wound healing 

During wound repair, one of two things can occur. Either the wound can be mended 

with fibrotic scar tissue, or it can be replaced with normal, and ordinarily functioning, 

tissue. Some species are known to have great systems to keep that repair process in 

check. The scar-free repair process following tail loss in the gecko is a perfect 

example of this (Delorme et al. 2012)(Figure 1.4) .   
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Figure 1.4 Images of scar-free wound healing and regeneration following tail 

loss in the leopard gecko. 
The gross morphology of the tail following (A, C, E, G) autonomy, the self-

detaching of the tail, or (B, D, F, G) amputation is indistinguishable from one 

another.  

Reproduced with permission from (Delorme et al. 2012) 
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The gecko, and many other urodeles (tailed amphibians), can spontaneously 

regenerate a lost tail, without any scarring occurring during the repair process 

(Delorme et al. 2012). While the regenerative capabilities of these animals are outside 

the scope of this thesis, it would be also be interesting to study the processes active in 

those animals in contrast to the formation of scar tissue that is a possible, and 

unwanted, conclusion of wound repair (Yates et al. 2011).  

In humans, wound healing is a complicated process involving the initiation and 

resolution of a number of different stages. Each stage involves many different cell 

types, proteins and signalling pathways. Haemostasis is the first stage that involves 

the cooperation of the coagulation system as well as the fibrinolytic system. During 

haemostasis the formation of the fibronectin provisional matrix occurs and its 

development is controlled by members of the coagulation cascade (Mosher 1995). 

The ECM molecule fibrin is a fibrous protein formed from fibrinogen and is 

polymerized to form the mesh work that plugs the wound (Reinke and Sorg 2012). 

After haemostasis at the wound site is complete, the stages of wound healing are 

classically divided into three parts, (1) inflammation, (2) proliferation, (3) 

remodelling (Figure 1.5).  

During the inflammation stage, neutrophils are the cell type most abundant and they 

move from the circulation into the wound microenvironment as guided by 

chemokines and other chemotactic agents, like ECM proteins. Neutrophilic 

phagocytosis removes any foreign material, bacteria, dead cells and bits of damaged 

ECM. Also present in the wound microenviroment are mast cells, monocytes and 
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macrophages. These cells provide the chemical mediators to activate the structural 

cells for the next stage of wound healing (Diegelmann and Evans 2004).  

 

Figure 1.5 The stages of wound healing 
Wound healing is a series of events that commence and conclude in series. The failure 

to resolve the final stage, remodelling, results in fibrosis.  

Adapted from www.worldwidewounds.com accessed September 2013. 

 

Following inflammation, proliferation is required to replace the cells that have been 

lost and to start knitting together the edges of the wound. TGFβ1 is a critical cytokine 

in this process and will be covered in greater detail later in this chapter. TGFβ1 

increases the deposition of many ECM molecules, in particular, but by no means 

limited to, collagen (Sidhu et al. 2010). At the same time, TGFβ1 can inhibit 

proteases involved in ECM turnover and increase inhibitors of those matrix proteases 

to further encourage ECM deposition (Sidhu et al. 2010).  

Epithelisation is driven by cytokines produced by platelets and macrophages (Reinke 

and Sorg 2012). New blood vessels begin to form at the wound site, stimulated by 

growth factors produced by vascular endothelial cells. Fibroblasts produce the 
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increased quantities of ECM proteins needed to create the supramolecular structures 

that stabilize the newly formed tissue for the next phase of the process.  

Resolution of wound healing involves the remodelling of the tissue architecture. 

Fibroblasts are the connective tissue cells that are responsible for the ECM deposition 

needed to repair the injury. Increased ECM deposition is necessary to replace 

structures that were lost. Before proliferation decreases, the edges of the wound need 

to be brought together in a process that is regulated through the fibroblasts’ contractile 

properties (Tomasek et al. 2002).  

The idea is that by the end of this process (1-2 years or longer) the acute inflammatory 

and proliferative environment at the wound site is no longer needed. As the wound 

heals, the number of fibroblasts and macrophages should decrease by apoptosis and 

the growth of blood capillaries stops (Bonner 2010). If there is too little deposited 

ECM at the wound site, the repair will be weak and may split apart. However, if too 

much ECM is deposited then the normal architecture of the site is compromised and 

anatomical function is lost. This is called fibrosis. 

1.4.3 The ECM in fibrosis 

Fibrosis in humans is thought to follow a similar pattern no matter which is the 

organ/tissue that is affected (Thannickal et al. 2004). When the fibrosis is in the lung, 

it is termed pulmonary fibrosis. This term is often confused with the named types of 

ILD, such as IPF, and should be thought of as a consequence of many different 

diseases, not a disease in and of itself.  

A common reoccurring theme of fibrosis, no matter the organ affected, is the 

disruption of one or more of the regulatory processes that control the ECM. Because 
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there is not a particular protein that is only found in areas of active fibrosis and ECM 

production and turnover of the ECM is a normal part of homeostasis, understanding 

the underlying mechanisms and key ECM components contributing to fibrosis is 

essential. However, little attention has been paid to the exact composition of the ECM 

as it changes throughout development and during stages of disease (Royce et al. 2009; 

Booth et al. 2012).  

1.4.4 Dysregulation of ECM in pulmonary fibrosis 

Change to ECM protein organization is an essential step in the development and 

restoration of organ function and similarities between these two processes have been 

recognized in the context of fibrotic disease (Martin and Parkhurst 2004; Redd et al. 

2004; Hardie et al. 2009; Imanaka-Yoshida 2012). In pulmonary fibrosis, 

dysregulation of particular ECM proteins can be linked to every stage of wound 

healing.  

As one of the initial stages following damage, the importance of the fibrinolytic 

system has been implicated in pulmonary fibrosis as mice that do not express either 

urokinase or plasminogen exhibited accelerated fibrosis in response to bleomycin 

treatment (Swaisgood et al. 2000). This pro-fibrinolytic system is diminished in the 

alveolar microenvironment of lung diseases (Sisson and Simon 2007) while tenascin-

C levels  are increased in the serum of patients with collagen diseases (Inoue et 

al. 2013). Plasmin is secreted from the liver as plasminogen, which is inactive in the 

circulation.  Tenascin-C was shown to inhibit the conversion of plasminogen to 

plasmin by downregulating tissue plasminogen activator (Brellier et al. 2011). 

Plasmin is responsible for the degradation of the fibrin that is present in the 

provisional wound matrix.  
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Although IPF is no longer thought to be driven by inflammation, abnormal wound 

repair in the alveolar microenvironment is thought to propagate pulmonary fibrosis 

from the epithelium to the interstitium (Selman and Pardo 2006). During the 

inflammatory phase, ECM proteins like periostin (Takayama et al. 2006) are released 

from damaged epithelial cells and contribute to subepithelial fibrosis found in the 

context of asthma.  

Release of pro-fibrotic mediators like TGFβ1 and platelet-derived growth factor 

(PDGF)  by both  immune cells, like mast cells (Thomas et al. 2010) and 

macrophages (Lacronique et al. 1984), as well as by epithelial cells becomes 

excessive in fibrosis (Leask and Abraham '2004). Cytokine production also induces 

the proliferation and activation of fibroblasts that drive fibrosis (Kramann et al. 2013) 

and results in ECMs with an altered protein profile (Booth et al. 2012). 

This altered ECM profile, the result of chronic injury, slowly disrupts the resolution 

of the wound (Yates et al. 2011). Furthermore, ECM deposition becomes unrestrained 

as the mechanisms regulating survival of mesenchymal cells are decreased (Bonner 

2010). The effect of the ECM on cell survival is well documented in the context of 

cancers (DeClerck 2010) however the contribution of small ECM proteins has not 

been fully examined. 

Composition of the ECM is important because the particular make-up of the ECM 

defines both its biomechanical and biochemical properties (Antunes et al. 2009). In 

the context of fibrotic lung disease, it has long been established that the lung becomes 

stiffer as the disease progresses (Gibson and Pride 1976). The result of increased 

stiffness may be important in the pathogenesis of fibrosis as fibroblasts from patients 

with scleroderma express increased levels of contractile ECM proteins and lower 
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levels of elastic fibre content (Reich et al. 2009).  However, there have been few 

studies relating the changes to matrix stiffness with alterations in the ECM profile in 

patients with IPF.  

1.4.5 Matrix Stiffness 

Physical effects of the ECM are of particular importance in the lung. The ECM is 

responsible for the compressive and tensile strength of the tissue or organ. Increases 

in ECM stiffness relate to the progression of fibrosis of the lung and increase the work 

of breathing (Faffe and Zin 2009).  The stiffening of lung tissue has previously been 

regarded as the passive end-point of the fibrotic process. In fact, more modern 

concepts describe how fibroblasts and other cells respond to increased matrix stiffness 

by selectively increasing expression of contractile proteins and decreasing production 

of fibrosis-inhibiting cytokines (Liu et al. 2010; Mih et al. 2012).  

1.4.6 Atomic Force Microscopy 

Matrix stiffness can be measured using a technique that has long been employed in 

research on inorganic surfaces. In 1988, atomic force microscopy (AFM) on an 

organic material showed that the forces used for imaging had no effect on a 

monolayer of polymer strands and could potentially be used to study biological 

systems (Marti et al. 1988). 

AFM can measure the amount of deflection that a cantilever experiences as it travels 

over the surface of the fibroblast (topography). In addition, it can also measure the 

amount of resistance to deflection, also known as stiffness, of each point on that 

surface. We can then overlay the two measurements and obtain both the surface 

morphology and underlying stiffness of fibroblasts grown in a monolayer. In addition 
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to the ability to measure basal differences between normal and fibrotic fibroblasts 

(Reich et al. 2009), it is also possible to measure the changes in matrix stiffness as a 

result of stimulation with growth factors such as TGFβ1(Chia et al. 2012).  

1.5 Transforming growth factor-β1 

1.5.1 Background 

TGFβ1 is a multifunctional cytokine that is one of the most effective at promoting the 

fibrotic microenvironment. Upon activation of TGFβ1, a complicated series of 

signalling events is set off, involving multiple pathways, within and external to  the 

cell. Because multiple cellular pathways are affected, TGFβ1 is able to influence 

many different phenotypes and biological processes including cancer and wound 

healing.  

In particular, TGFβ1 promotes the fibrotic phenotype by increasing the expression of 

many ECM proteins including but not limited to, collagen, fibronectin, tenascin C and 

periostin. Furthermore, TGFβ1 decreases the production of MMPs and increases 

TIMPs, resulting in greater ECM conservation (Nagase et al. 2006). Due to the 

accumulation of latent TGFβ1, within the ECM, a greater amount of ECM results in a 

greater store of potentially active TGFβ1 (Lepparanta et al. 2012).   

Because of the pro-fibrotic environment it generated, it was quickly demonstrated that 

TGFβ1 plays a critical role in the development of fibrotic lung disease (Hoyt and 

Lazo 1988). Dysregulation of fibroblasts and epithelial cells play a central role in the 

mechanisms that drive pulmonary fibrosis. Firstly, TGFβ1 can delay epithelial cell 

proliferation and migration while promoting apoptosis (Lee et al. 2004). Secondly, 

TGFβ1 is a major growth factor that regulates the conversion of a quiescent fibroblast 
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to the contractile alpha-smooth muscle actin (αSMA) expressing myofibroblast 

(Horowitz and Thannickal 2006). Finally, TGFβ1 signals the recruitment of 

inflammatory cells to the site of the insult (Diegelmann and Evans 2004). All these 

cells also produce cytokines that mediate TGFβ1 activity (Bonner 2010). 
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1.5.2 Cytokines, the ECM and TGFβ1 regulation 

TGFβ1 is secreted in an inactive complexed form and targeted to specific places in the 

ECM by the latent TGFβ1 binding protein (LTBP) (Hyytiainen et al. 2004) (Figure 

1.6).  

 

Figure 1.6  The formation of the small and large latent forms of transforming 

growth factor-beta 1 (TGFβ1). 
 TGFβ1 is secreted and stored in the lung extracellular matrix (ECM) in an inactive 

form through the direction of the latent TGFβ1 binding protein (LTBP). Activation of 

TGFβ1 requires removal of the latency binding peptide (LAP). 

Adapted from (Hyytiainen et al. 2004) 
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The large latent complex is bound to the ECM through ECM binding regions at the 

amino and carboxyl terminals of the LTBP. The small latent complex is released from 

the ECM through protease cleavage sites but activation of TGFβ1 requires the 

additional removal of the non-covalently bound latency binding peptide (LAP) from 

the TGFβ1 dimer (Dubois et al. 1995).  

The activity of TGFβ1 is both pro-inflammatory and anti-inflammatory and is 

mediated through several mechanisms. Due to the exceedingly complex array of 

pathways affected by TGFβ1, only those mechanisms known to be pertinent to the 

role of TGFβ1 in the lung will be mentioned. It is not surprising that in the human 

lung, the means by which regulation and storage of TGFβ1 is accomplished have not 

been fully elucidated (Lepparanta et al. 2012). 

TGFβ1 signals by initially binding to the TGFβ type II receptor which then recruits 

TGFβ type I receptor on the cell membrane. The receptor complex activates the 

Smad2/3/4 complex, causing it to be transported to the nucleus and combine with 

transcriptional coactivators CREB-binding protein (CBP) and p300. In addition, the 

TGFβ1 receptor complex can also activate Smad-independent pathways such as 

through c-Jun N-terminal kinase (JNK).  

TGFβ induces many ECM proteins such as perlecan (Ichimaru et al. 2012) and 

collagen (Kenyon et al. 2003), as well as growth factors such as connective tissue 

growth factor (CTGF) (Kono et al. 2011), vascular endothelial growth factor (VEGF) 

(Lee 2012) and fibroblast growth factors (FGF) (Srisuma et al. 2010). TGFβ1 can also 

increase ECM proteases such as matrix metalloproteinases MMP2 and MMP9 (Dallas 

et al. 2002). All of these factors are likely to be important in the development of 

fibrosis. 
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1.5.3 TGFβ1, EMT and pulmonary fibrosis 

TGFβ1 is overexpressed in many pathological conditions that have a fibrotic 

component such as pulmonary fibrosis (Lepparanta et al. 2012), kidney disease 

(Lopez-Hernandez and Lopez-Novoa 2012), Crohn’s disease and cancer (Prud'homme 

2007). LTBP-1 expression was found to be increased in the lungs of patients with IPF 

(Lepparanta et al. 2012).  In addition, increased active TGFβ1 is found in the 

bronchoalveolar lavage (BAL) of patients with IPF compared to normal controls 

(Khalil et al. 2001).  

Pulmonary fibrosis is the consequence of a range of acute and chronic lung injuries 

that eventually culminate in the destruction of the normal lung architecture and death 

(Araya and Nishimura 2010). It has been shown through tissue specimens of patients 

with pulmonary fibrosis that it is an abnormal wound response driving excessive 

ECM deposition (Thannickal et al. 2004; Araya and Nishimura 2010). As a 

pleiotropic cytokine, TGFβ1 can tip the cellular phenotype of epithelial cells towards 

a pro-fibrotic phenotype (Doerner and Zuraw 2009) making it a critical contributor to 

the pulmonary fibrosis in interstitial lung disease (Strieter 2008).  

Previous work in our laboratory has shown that TGFβ1 increases the production of 

the ECM protein fibulin-1 and which plays a role in the pathophysiology of airway 

fibrosis in asthma (Lau et al. 2010). Fibulin-1 may play an important role in the 

pathophysiology of diseases such as IPF, which are predominately characterized by 

diffuse pulmonary fibrosis.  



Page 42 of 252 

 

1.6 Fibulin-1  

1.6.1 Background 

Fibulin-1 is an ECM glycoprotein that was first discovered as an unknown binding 

partner of fibronectin (Argraves et al. 1989). Further study into the characterization of 

fibulin-1 showed that it was a calcium-binding protein with a repeated structure and 

was expressed in cultured gingival fibroblasts (Tanaka et al. 1994). One of the first 

described roles of fibulin-1 was its association with elastic fibres (Roark et al. 1995).  

Fibulin-1 was found in the unstructured core of elastic fibres but not in the fibrillin-

containing, elastin-associated microfibrils, suggesting that fibulin-1 was a structural 

protein with a role in the elastic properties of connective tissue fibres (Roark et al. 

1995).  Secreted fibulin-1 becomes incorporated into a fibrillar ECM when added 

exogenously to cultured fibroblast monolayers (Argraves et al. 1990), and recent 

studies have shown that fibulin-1 ECM production is in part driven by TGFβ1 (Chen 

et al. 2013). In the blood, fibulin-1 is the predominant fibulin, with a reported plasma 

concentration range of 30-40µg/mL (Tran et al. 1995). In addition, fibulin-1 mRNA is 

found in most tissues and in some cultured cells (Roark et al. 1995).   

Previous studies have identified the role of fibulin-1 in asthma (Lau et al. 2010). In 

asthma, the generation of airway fibrosis is among a variety of structural changes 

known collectively as airway remodelling (Elias et al. 1999). The degree of airway 

remodelling, similar to the degree of parenchymal remodelling, has been linked to 

increased disease severity (Shifren et al. 2012). The extent of fibrosis, or the degree of 

parenchymal consolidation, has been used as a measure of disease severity in IPF 

(Wells et al. 2003). 
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Similarities between fibrotic lung diseases outline the potential for common 

mechanisms of fibrogenesis in the lung (Araya and Nishimura 2010). Fibulin-1 may 

be involved in the general mechanism that is essential for normal wound healing and 

dysregulation of fibulin-1 may have a role in the pathogenic changes that occur during 

lung fibrosis.  

1.6.2 The fibulin family 

The fibulin family of ECM proteins currently sits at eight identified members which 

all share a similar elongated structure with overlapping binding sites for several 

basement-membrane proteins. Fibulin-1 was the first to be identified (Argraves et al. 

1989) and was followed by discoveries of fibulin-2 (Pan et al. 1993), fibulin-3 and 

fibulin-4 (Giltay et al. 1999), and fibulin-5 (Kowal et al. 1999), also known as 

DANCE (Nakamura et al. 2002). Fibulin-6 (Katoh and Katoh 2004), also known as 

HMCN1, and fibulin-7 are recently added members of the fibulin family. Fibulin-7 is 

also a binding partner of fibulin-1 (de Vega et al. 2007).  

Orthologs of fibulins are seen in all animals (Segade 2010) with seven of the fibulins 

found in mammals (Vogel et al. 2006). Fibulin-8 is the last of the fibulins that have 

been described and is not found in any mammals, except the platypus (Segade 2010) 

(Figure 1.7). 
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Figure 1.7 The molecular evolution of the fibulins (FBLN). 
The FBLN genes are highly conserved throughout the animal kingdom. There are eight 

FBLNs known to date.  
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1.6.3 The structure of fibulin-1 

Fibulin-1 and its family members share a similar repeated domain structure.  Named 

after the latin fibula, meaning clasp or buckle, members of the fibulin family are 

widespread components of the ECM whose protein structures are all arranged in a 

distinct form. These repetitive domains are necessary for the protein interactions 

involved in ECM assembly (Hynes 2009). 

Their amino acid sequences are grouped into modules named domain I, II and III 

(Figure 1.8).  Domain I is the amino-terminal sequence that varies among fibulin 

members. Domain II contains a variable number of repeated epidermal growth factor 

like modules. The specific part of the sequence is domain III, also known as the 

fibulin C-terminal globular (FC) domain which is shared between 7 of the fibulin 

members (Fibulin-1 to 7) (de Vega et al. 2009).  

 

Figure 1.8 The structure of fibulin-1 
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This repetitive domain structure is a reflection of the ancient origins of the fibulin 

family. The highly conserved structure can be seen in the multiple orthologs that are 

shared by all vertebrates (Vogel et al. 2006) and in fact, the origin of the fibulin gene 

family has been traced to the base of the metazoans, or animal kingdom (Segade 

2010). The simplest of the metazoans are nematodes (flat worms) and mammals share 

both fibulin-1 (Hesselson et al. 2004; Kubota et al. 2004) and fibulin-6 (Vogel and 

Hedgecock 2001) with them. As a result of this interspecies homology, a lot of the 

study into the function of fibulin-1 has been carried out in “simpler” model systems.   

Evolutionarily speaking, the fibulin family can be described as basement membrane 

proteins (Argraves et al. 2003), and some, like fibulin-1, have involvement in elastic 

fibre assembly (Roark et al. 1995).  Fibulin-1 is 90-100kDa and gene splicing results 

in 4 isoforms of varying C-terminal domains (A-D) (Figure 1.8). 

 

 



Page 47 of 252 

 

1.6.4 Fibulin-1 has 4 isoforms 

The functions of the four fibulin-1 isoforms have not been fully elucidated. The 

natural expression of fibulin-1A and fibulin-1B is in the human placenta, and at low 

abundance.  Fibulin-1A and B have also been shown to be expressed in ovarian 

tissues and cancer cell lines at trace amounts (Moll et al. 2002).  Alternative splicing 

of the gene gives rise to proteins of varying lengths (Table 1.1).  For proper 

processing through the golgi apparatus, each fibulin-1 isoform undergoes post-

translational modification where an identical 29-amino acid signal peptide is added to 

Domain I.  

 

Table 1.1 The size and sequence of the fibulin-1 isoforms in humans 
 

Isoform # Amino acid residues GenBank Accession 

number 

A 537 NM_006487 

B 572 NM_006485 

C 654 NM_001996 

D 656 NM_006486 

 

 

All four isoforms of fibulin-1 share the first 537 amino acid residues with fibulin-1A 

completely missing the C-terminal domain III (Tran et al. 1997). Only the two longer 

fibulin-1 isoforms, C and D, contain the fibulin-type carboxy-terminal module 

(Fujimoto et al. 2005). The predominant fibulin-1 forms in humans are isoforms C 

and D (Roark et al. 1995) and these are proteins of similar molecular weight (100kDa) 

but whose functions are thought to be distinct (Moll et al. 2002). However, functional 
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redundancy between fibulin-1C and D and fibulin-6 has been shown, albeit in 

zebrafish (Feitosa et al. 2012).  

In Caenorhabditis elegans (C. elegans), the flatworm model organism which was the 

first to get its genome sequenced (Sulston and Brenner 1974), the function of fibulin-

1C was shown to be involved in the control of developmental growth through the 

epidermal growth factor (EGF)-like repeats (Hesselson and Kimble 2006). C. elegans 

fibulin-1C had specific roles in the development of the pharynx, intestine, gonad and 

muscle. Conversely, fibulin-1D was shown to assemble in the flexible polymers that 

connected the pharynx and basement membranes of the body wall (Muriel et al. 

2005).  However, in humans, the EGF domain of fibulin-1 is the same for all fibulin-1 

isoforms (Argraves et al. 1990). The nucleotide length difference between fibulin-1C 

and fibulin-1D is a mere 0.6kb but they share only approximately 28% identity with 

each other’s C-terminal domain (Tran et al. 1997). The isoform specific functions of 

human fibulin-1 have not been fully examined.   

Dysregulation of the isoform balance has been reported in some cancers (Moll et al. 

2002) but not others (Wlazlinski et al. 2007). Fibulin-1C has been linked to tumour 

progression (Moll et al. 2002) whilst haplo-insufficiency of the fibulin-1D gene 

results in limb malformations seen in synpolydactyly (Debeer et al. 2002).  In mice, 

isoforms C and D were found to differ in their affinity for nidogen, another important 

ECM protein (Sasaki et al. 1995). Furthermore, the assembly of fibulin-1C into the 

ECM was shown to be dependent on the basement membrane protein laminin in C. 

elegans, but the inclusion of fibulin-1D was linked to perlecan, another component of 

the basement membrane (Muriel et al. 2006). This indicates that it is likely that there 
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are site-specific functions to fibulin-1 isoforms that have been conserved over a long 

period of time.  

However, investigations of fibulin-1 often do not specify which isoform is being 

studied. Despite this limitation in the literature, the common modules of fibulin-1 

confer properties of interest as the vast majority (~80%) of each isoform is of 

identical sequence.  

1.6.5 Fibulin-1 protein-protein interactions  

The ability of fibulin-1 to participate in supramolecular structures stems from the 

presence of overlapping binding sites with several other basement-membrane proteins 

such as tropoelastin, fibrillin, and fibronectin (Timpl et al. 2003) in addition to the 

aforementioned nidogen (Sasaki et al. 1995), laminin and perlecan (Muriel et al. 

2006). Fibulin-1 is also known to bind to aggrecan and versican (Aspberg et al. 1999) 

as well as nidogen (Sasaki et al. 1995). Nidogen is part of the CCN family of growth 

factors of which connective-tissue growth factor (CTGF) is also a member (Perbal 

2001).  

Fibulin-1 can also enhance the properties of other ECM proteins such as the 

metalloproteinase A Distintegrin And Metalloprotease with Thrombospondin repeats 

(ADAMTS)-1 (Lee et al. 2005). Fibulin-1C was shown to bind to the C-terminal 

domain of NOVH protein, which is a negative regulator of cell growth and member of 

the CCN family (Perbal et al. 1999).  One way that fibulin-1 exerts influence is by 

modulating the bioactive effects of fibronectin, one of the main ECM proteins. 
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1.6.6 Fibulin-1 and fibronectin 

As the molecule responsible for the discovery of fibulin-1, fibronectin-fibulin-1 

interactions may be a confounding factor in this study.  As previously mentioned in 

this Chapter, fibronectin is an essential ECM player that influences proliferation, 

attachment, migration and growth factor storage. Fibronectin is also a highly 

expressed protein found in the blood, having been reported at concentrations of 300-

350µg/mL.  Serum fibronectin levels are also elevated in, and were able to 

discriminate between those with liver fibrosis and those with non-fibrotic livers 

(Attallah et al. 2013). As fibronectin is required for collagen deposition, it is possible 

that increased fibronectin levels contribute to increased pulmonary fibrosis.  

In ILD, fibronectin levels are elevated in the BALF but not in the plasma of patients 

with IPF, sarcoidosis and “other” ILDs compared to healthy controls and patients with 

non-interstitial lung diseases (Rennard and Crystal 1982). Surprisingly, the most 

recent study on the levels of fibronectin in patients with ILD was published in 1994 

(Zhao et al. 1994). However, plasma levels of fibronectin were found to be elevated in 

asthmatics compared to healthy controls (Ohke et al. 2001) and studies undertaken by 

a previous PhD student in this laboratory have shown that fibulin-1 is increased in the 

serum and BALF of asthmatics (Lau et al. 2010).  It is possible that with advances in 

methodologiess with which to distinguish the different forms of fibronectin, that an 

increase in the levels one form of fibronectin in the serum of patients with IPF may be 

identified. As fibronectin and fibulin-1 bind together, this could therefore influence 

the levels of fibulin-1 in patients with IPF. 
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1.6.7 Fibulin-1 and collagen 

Collagen is the main component in fibrosis and but its relationship to fibulin-1 has not 

been studied in great detail. Collagen fibrillogenesis is a complex cell-mediated 

process that involves helper molecules like periostin (Kudo 2011) and possibly 

fibulin-1. Decades old analysis on fibulin-1 binding activity demonstrated that fibulin-

1 binds to collagen IV but not to collagen I, II, III, V and VI (Sasaki et al. 1995).  

During gonadogenesis in the C. elegans, the orthologs to mammalian fibulin-1 and  

ADAMTS act antagonistically against each other to control tissue architecture 

involving collagen IV (Kubota et al. 2012). In a model of IPF, alveolar epithelial cells 

produced biologically active TGFβ1 and increased deposition of collagens I, III, V 

and in particular IV (Xu et al. 2003), highlighting another potential mechanism by 

which fibulin-1 may play a role in pulmonary fibrosis. 

Fragments of collagens (type I, III, V, and VI) have been reported as increased in the 

serum of patients with IPF, stressing the potential of ECM molecules as biomarkers 

(Leeming et al. 2012).  

1.6.8 Fibulin-1 and periostin 

Both fibulin-1 and periostin function as regulators of collagen fibre formation (Norris 

et al. 2007) and periostin is the only ECM molecule that has been identified as a 

biomarker of disease progression in IPF (Naik et al. 2012). Like fibulin-1, periostin 

acts as a bridging molecule which alludes to an overarching mechanism by which 

dysregulated large fibre formation is a driver of fibrosis. Orientation of the large 

fibres collagen and fibronectin are both regulated by periostin, which works in concert 

with tenascin-C (Kii et al. 2010). There is nothing known about the direct interaction 

between fibulin-1 and periostin. 
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1.6.9 Fibulin-1 and tenascin-C 

Tenascin-C functions by altering the binding of cells on a fibronectin matrix and 

shares a binding site on the amino-terminal end of fibronectin with fibulin-1, the 

HepII region of fibronectin. (Williams and Schwarzbauer 2009). Cell signalling and 

matrix contraction are induced though this site and require binding of the heparin 

sulphate proteoglycan syndecan-4 (Midwood et al. 2006).  

Syndecan-4 is an important mediator of fibroblast-matrix interactions. In syndecan-4 

null mice, treatment with bleomycin resulted in a marked increase in myofibroblast 

recruitment and interstitial fibrosis compared to wild type controls (Jiang et al. 2010).  

Therefore, by competing for this binding site, both tenascin-C and fibulin-1 can 

influence fibrogenic cell adhesion and behaviour as both tenascin-C and fibulin-1 

inhibit fibroblast spreading and cell-mediated contraction of a matrix (Williams and 

Schwarzbauer 2009) . 

1.6.10 Fibulin-1 in embryonic morphogenesis and elastic fibre assembly 

As previously discussed, fibulin-1 is a highly conserved ECM molecule that is 

essential during normal development (Singh et al. 2006). It is thought to play a role in 

stabilizing the ECM, as it colocalizes with elastin fibres during the first stages of 

embryogenesis (Visconti et al. 2003), the deposition of which occurs as one of the 

initial stages of development. Because elastic fibres are one of the two main 

determinants responsible for biomechanical properties of the lung (Faffe and Zin 

2009), alterations in elastic fibre assembly affect lung function. Increased fibulin-1 

deposition may alter elastic fibre assembly and hinder proper lung function. 
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1.6.11 The role of fibulin-1 in other diseases 

Ultimately, as an ECM protein, and one that is essential to normal ECM formation, 

fibulin-1 plays an important role in diseases which involve ECM dysregulation. 

Fibulin-1 dysregulation in both the blood form and tissue form has been seen in a 

variety of diseases such as diabetes (Cangemi et al. 2011), preeclampsia (Liu et al. 

2011), and synpolydactyly (Debeer et al. 2002). One common factor between these 

diseases is the disruption of the tissue architecture.  

In the context of IPF, progressive disruption of the tissue architecture results in 

eventual lung failure and fibulin-1 may play a similar role in IPF pathogenesis. 

1.6.12 Hypothesis  

Fibulin-1 may be a biomarker of disease progression in patients with IPF as it is: 

• Increased in fibrotic lung fibroblasts 

• Increased in fibrotic tissue 

• Induced by TGFβ1 in lung fibroblasts 

• Increased in patients with fibrotic lung disease 

Therefore, we hypothesize that fibulin-1 may play a role in disease progression by 

altering the 3D structure of the lung ECM as a consequence of its dysregulated 

deposition in the lung tissue. Elevated and progressive fibulin-1 deposition may result 

in gradual lung function impairment  in patients with IPF (Figure 1.9).  



Page 54 of 252 

 

 

 

Figure 1.9 The potential role of fibulin-1 in idiopathic pulmonary fibrosis 
 

Fibrotic lung tissue is different to normal lung tissue. (1) During fibrosis, lung 

fibroblasts are thought to take on a myofibroblast phenotype. (2) Part of this 

phenotype involves the increased deposition of extracellular matrix (ECM) molecules 

such as collagen and fibronectin. Other ECM proteins like fibulin-1 may also be 

increased. (3) Myofibroblasts also produce increased amounts of growth factors such 

as transforming growth factor-beta 1 (TGFβ1). (4) TGFβ1 is known to induce 

production of collagen and fibronectin by fibroblasts and it is possible that fibulin-1 is 

similarly upregulated.   
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1.7 Summary and Aims 

IPF is a pulmonary disease that proceeds relentlessly with loss of the normal lung 

architecture and eventual respiratory failure, leading to death. Characterized by 

excessive ECM deposition, IPF is thought to be driven by a dysregulated wound 

repair process that involves activated fibroblasts. The pathogenesis of this disease 

remains unknown and there is a lack of mechanism-targeted treatments. Progression 

in IPF is also varied and more biomarkers of disease progression are needed.  

Fibulin-1 is involved in matrix and elastic fibre formation and may be a biomarker of 

activated fibroblasts in the context of IPF. Mechanisms of fibrogenesis are known to 

be shared between pulmonary diseases and fibulin-1 may play a role in the 

pathogenesis of IPF. Fibulin-1 is produced by normal lung fibroblasts, but its 

expression in diseased fibroblasts has not been examined. In IPF, TGFβ1 induces 

excessive ECM production and TGFβ1 has been shown to induce fibulin-1 in the 

context of asthma, a disease which exhibits airway fibrosis, however, the effect of 

TGFβ1 on fibulin-1 in IPF has not been investigated. 

The specific aims of this thesis are: 

1. To examine the expression of fibulin-1 in patients with interstitial pulmonary 

fibrosis and to determine if fibulin-1 is a biomarker of disease progression in 

patients with IPF. 

2. To compare the expression of fibulin-1 to other ECM proteins, that have been 

identified as dysregulated in the context of fibrotic interstitial lung disease, as 

biomarkers of disease progression in IPF. 
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3. To investigate the effect of TGFβ on fibulin-1 expression and production in 

fibroblasts derived from patients with IPF. The effect of TGFβ1 on the 

expression and production of other ECM proteins will also be investigated. In 

addition, the effect of TGFβ1 on fibroblast morphology will be examined. 
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Chapter 2. Fibulin-1 in Pulmonary Fibrosis 

2.1 Introduction 

The heterogeneous group of more than 200 parenchymal diseases that comprise the 

interstitial lung disease (ILD) spectrum differ in their presentation, histopathology, 

clinical course and aetiology. ILDs are difficult for the non-specialist to diagnose, 

treat and monitor. For example, the ability to discriminate between chronic 

hypersensitivity pneumonitis (HP), an allergic lung disease also known as extrinsic 

allergic alveolitis, and idiopathic pulmonary fibrosis (IPF) is of particular concern due 

to their similarities in clinical presentation and stark difference in prognosis (Thomeer 

et al. 2004).  

IPF is the most common of the idiopathic interstitial lung diseases and has the highest 

mortality (Demedts et al. 2001). Forty four percent of all IPF patients are expected to 

die within 5 years, compared with 33% of patients with connective tissue disease and 

2% of patients with sarcoidosis, two other interstitial lung diseases (Demedts et al. 

2001). 

Treatment for ILDs are limited, differ widely between ILDs, and may be delayed as 

patients need to be referred to regional tertiary centres for the multidisciplinary 

diagnostic approach recommended by the guidelines (Raghu et al. 2011). In IPF, 

treatments have been largely unsuccessful (Raghu et al. 2013; Shulgina et al. 2013), 

mainly due to the fact that the underlying mechanisms of IPF are unresolved and there 

is no biomarker available to pinpoint individuals at risk of accelerated disease 

progression.  Therefore, biomarkers in IPF that reflect states of active fibrogenesis in 
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the lung are needed to indicate those patients that will rapidly decline, in order to 

prioritize them for intensive management care and lung transplantation. 

The large, fibrous extracellular matrix (ECM) proteins like collagen and fibronectin, 

are well-known to be increased in fibrotic conditions (Reiser and Last 1983; Muro et 

al. 2008; Araya and Nishimura 2010), but smaller, interlacing, ECM proteins can also 

play a key role. In their soluble form, altered ECM protein levels have been 

implicated in a variety of diseases such as cancer (Hellstrom et al. 2006) and 

mesothelioma (Robinson et al. 2003).  

The ECM glycoprotein fibulin-1 binds to several key ligands involved in the fibrotic 

process, including fibronectin (Mattei et al. 1994; Tanaka et al. 1994; Godyna et al. 

1995). Fibulin-1 is necessary during embryonic morphogenesis of several organs 

(Miosge et al. 1996; Cooley et al. 2008), and is essential for alveolar septa formation 

in the lung (Kostka et al. 2001). It is likely that there are common pathways between 

normal embryogenesis and fibrogenesis in many diseases with a fibrotic component 

(Araya and Nishimura 2010). The composition of the ECM is a known important and 

unifying factor in the pathophysiology of fibrosis, including lung fibrosis 

(Tschumperlin et al. 2012). 

A number of ECM proteins also circulate in the blood.  However, the utility of blood 

borne ECM proteins as serum biomarkers in IPF has not been well investigated 

(Richards et al. 2012; Vij and Noth 2012). In a recent review of peripheral blood 

biomarkers of importance in IPF, only one of the 13 described was an ECM protein, 

periostin (Vij and Noth 2012). This reflects our lack of knowledge of the contribution 

of particular components of the ECM to the disease pathology of pulmonary fibrosis.   



Page 59 of 252 

 

Fibulin-1 is produced by lung fibroblasts (Roark et al. 1995) and has been shown to 

play a role in the pathophysiology of patients with asthma (Lau et al. 2010), a disease 

characterized in part by airway fibrosis (Royce et al. 2012). Therefore, it was 

reasoned that dysregulated fibulin-1 expression may be involved in lung diseases with 

more extensive fibrosis as mechanisms of fibrogenesis are likely to be shared 

(Kisseleva and Brenner 2008).  

This study explored the role of fibulin-1 in disease pathogenesis and progression of 

IPF. Intitially serum and tissue fibulin-1 levels in patients with IPF and other ILDs 

were examined and related to lung function. Fibulin-1 production by lung fibroblasts 

derived from patients with IPF and from subjects without lung fibrosis were then 

measured. Lastly, whether serum fibulin-1 could serve as a biomarker was 

investigated and its prognostic utility assessed in several cohorts of IPF patients. 

2.2 Methods 

2.2.1 Patient Data  

Due to the relatively low prevalence of ILDs within the local populations, this study 

involved collaborations with researchers in tertiary referral centres in Modena, Italy 

and San Francisco, USA. In addition, a researcher in Perth, Australia provided more 

samples of lung tissue from patients with IPF. The materials for this study were 

obtained from patients recruited from tertiary referral centres located in three different 

countries. Serum and tissue from Italy and San Francisco was obtained through 

collaboration with Professor Luca Richeldi and Dr. Stefania Cerri (University of 

Modena, Italy) and Professor Paul Wolters (University of California, San Francisco). 
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Tissue from Perth was obtained from Assoc. Prof. Cecilia Prele (University of 

Western Australia).  

2.2.1.1 Ethical Approval 

Ethical approval for this study was obtained from each of the institutions involved, as 

detailed in Table 2.1. All participants provided informed patient consent. 

Table 2.1 Detailed ethical approval for the materials studied in this thesis 
 

Institution Location # Ethics Board Sample 

collected 

University of 

Sydney 

Sydney, 

Australia 

2012/946 University of 

Sydney Human 

Research Ethics 

Committee 

Serum, tissue 

Royal Prince 

Alfred Hospital 

Sydney, 

Australia 

HREC/10/RPAH/613 Ethics Review 

Committee  

Serum 

Lung Institute 

of Western 

Australia 

Perth, 

Australia 

2011-10-497 Bellberry 

Human 

Research Ethics 

Committee 

Serum, tissue 

University of 

Modena 

Modena, Italy #74-08 and 31/12 Comitato Etico 

Provinciale di 

Modena 

Serum, tissue 

University of 

California, San 

Francisco 

San Francisco, 

USA 

IRB#10-00198 Laurel Heights 

Panel 

Serum, lung 

lysates 

 

Australia:  Consecutive patients referred to the Interstitial Lung Disease Clinic at the 

Royal Prince Alfred Hospital, Sydney were recruited and written informed consent 

attained. Diagnoses as determined by multidisciplinary review of patients included 

definite IPF (n=14), probable IPF (n=13), HP (n=11), and sarcoidosis (n=7). Other 

ILDs included non-specific interstitial pneumonia (NSIP) (n=3), connective tissue 

ILD (n=22), drug-induced ILD (n=1) and lymphangioleiomyomatosis (LAM) (n=2). 

Healthy volunteers with no history of lung disease were also recruited (n=17). 
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Italy: Consecutive IPF patients referred to the Centre for Rare Lung Diseases at the 

University of Modena and Reggio Emilia were recruited and written informed consent 

attained. Diagnoses as determined by multidisciplinary review of patients included 

definite IPF (n=28) and other ILDs included lymphangioleiomyomatosis (n=2). 

USA: Consecutive ILD patients recruited through the Nina Ireland Lung Disease 

program were recruited and written informed consent attained. Diagnoses as 

determined by multidisciplinary review of patients included definite IPF (n=17), HP 

(n=21), and sarcoidosis (n=5). Other ILDs included NSIP (n=1), and connective tissue 

ILD (n=4). 

The total numbers of participants in each disease category are summarized in Table 

2.2. 

Table 2.2 Numbers of participants in each of the diagnostic categories studied 

Disease Category Number of patients 

No lung disease 17 

Sarcoidosis 12 

HP 32 

“Other ILDs”  35 total 

• Connective tissue ILD (26) 

• NSIP (4) 

• LAM (4) 

• Drug induced ILD (1) 

IPF 72 

 

Lung Function Measurements: Demographic information including age, gender, body 

mass index (BMI) and smoking history were collected. Baseline lung function 

measurements taken included pre-bronchodilator percent predicted forced vital 

capacity (FVC%), percent predicted forced expiratory volume in 1 second (FEV1%), 

percent predicted diffusing capacity of carbon monoxide (DLCO%) and percent 
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predicted total lung capacity (TLC%) (Miller et al. 2005).The Composite Physiologic 

Index (CPI) was calculated as previously published (Wells et al. 2003). Follow up 

FVC% and DLCO% were collected at 365 days (±1) when available. 

2.2.2 Definition of progression 

Patients with IPF were followed up for a minimum of one year (365 ± 1 day) after 

blood draw.  A progression event was defined as any of the following occurring 

within the first one-year follow up period, ≥10% relative fall in FVC%, ≥15% relative 

fall in DLCO%, or death, as previously published (Ryerson et al. 2013).   

2.2.3 Serum collection 

Whole blood from patients and healthy volunteers in Sydney was collected, processed 

and stored by Jade Jaffar. Methods for whole blood processing from all centres were 

as follows: 

Whole blood was isolated from patients using sterile venepuncture technique by a 

qualified phlebotomist into serum Vacutainer (Becton Dickinson, USA cat #367958). 

The containers were inverted five times and left upright to clot for a minimum of 30 

minutes at room temperature (approximately 22-25°C). Samples were then 

centrifuged at 14,000 x g for 10 minutes and the serum fraction was aspirated with a 

sterile pipette. Aliquots of 200 – 500µL of serum was stored at -80°C until testing.  

2.2.4 Tissue collection 

Australia: Lung tissues from patients with IPF, who had provided written informed 

consent, were obtained from explanted lung following lung transplantation at St. 

Vincent’s Public Hospital, Sydney (n=5; 2 samples per patient) or from diagnostic 
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biopsies from Perth (n=7; 2-6 samples per patient). Where permission had been 

provided by the next of kin for the lungs to be used for research purposes,  normal 

human lung tissue was obtained from healthy transplant donors’ lungs that were 

deemed not suitable for transplantation (n=5) . 

Italy: Excess tissue following diagnostic surgical lung biopsies were obtained from 

patients with IPF who had given permission for their tissues to be used for research 

(n=6; 2-6 samples per patient). 

USA: Whole lung lysates extracted from explanted lung following transplantation. 

Where permission had been provided for the tissue to be used for research were stored 

at -80°C until testing (n=8). The method for preparation of lung lysates is found 

below. 

2.2.4.1 Tissue processing  

Tissue samples used for immunohistochemistry were processed as follows. Following 

removal from the patient, the tissues were submerged in 10% neutral buffered 

formalin solution (Sigma Aldrich, Sydney, Australia) to prevent post mortem 

decomposition. Tissues were then submerged in graded alcohol baths (from 70% 

alcohol to 100% alcohol) until all water had been removed. Finally, the samples were 

submerged in xylene and embedded in paraffin wax for sectioning. 

Whole lung lysates were a gift from Dr. Paul Wolters (University of California, San 

Francisco) and were prepared as follows: Lung tissue was directly snap-frozen in 

liquid nitrogen immediately after harvest. Samples were stored at –80°C until used for 

experiments. For immunoblot experiments, frozen lung tissue was pulverized using a 

stainless steel tissue pulveriser (Fisher Scientific, USA) pre-cooled in liquid nitrogen 
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and was immediately lysed in SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

(Sigma-Aldrich, USA) running buffer and analysed as described below.  

2.2.5 Cell isolation 

Primary parenchymal fibroblasts were isolated from 7 patients diagnosed with non-

small cell carcinoma and 8 patients with IPF. Human distal parenchymal fibroblasts 

were isolated from lung tissue obtained from donors undergoing resection for either 

thoracotomy or transplantation. For all experiments in this thesis, cell cultures at less 

than 6 passages are used. Demographic information for donors of tissue is found in 

Table 2.8. 

Tissue from distal parenchyma was minced into 1-2mm
3
 pieces and placed into sterile 

Hanks Buffered Saline Solution (Hanks) (Sigma Aldrich, Sydney Australia) and 

centrifuged for 5 minutes at 1000rpm. After aspiration of the supernatant, the tissue 

pellet was resuspended in media containing 10% (vol/vol) foetal bovine serum (FBS) 

with 2% Penicillin-Streptomycin (Invitrogen)  in Dulbecco's Modified Eagle Medium 

(DMEM) (Invitrogen) and plated into tissue culture grade plastic flasks (BD 

Biosciences, North Ryde, Australia).  

2.2.6 Cell culturing 

Cells were passaged using 0.4% trypsin-EDTA (Thermo Scientific, Melbourne, 

Australia): a confluent monolayer of cells from a single flask was washed with Hanks 

and then incubated with 5 ml 0.4% trypsin-EDTA (Thermo Scientific, Melbourne 

Australia) for up to 5 minutes at 37oC, 5% CO2. The trypsin was then inactivated 

with double its volume of 5%FBS/DMEM. The cells were then centrifuged for 5 mins 

at 1000 x g and resuspended in 6mL 5% FBS/DMEM supplemented with 1% 
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Pencillin-Streptomycin (anti-mycotic) (growth media) and divided into three new 175 

cm
2
 sterile culture flasks each containing 8mL growth media.  

Passages of cells between 3 and 5 were used in all experiments. All cultures tested 

negative for the presence of mycoplasma before use in experiments. 

2.2.7 Cell experimentation 

Primary fibroblasts were seeded in 6-well plates at 1 x 10
4
cells/cm

2
 in 5%FBS/1% 

antibiotics/DMEM for 72 hours and then quiesced in 0.1% FBS/1% Pencillin-

Streptomycin /DMEM (quiescing media) for 24 hours. Fresh quiescing media is then 

added for a further 72 hours.  

2.2.7.1 RNA collection 

Total RNA was collected using the BIOLINE mRNA Isolate Miniprep kit (Bioline, 

London, UK). Cells were seeded in 6-well plates as previously described and the 

supernatant was removed and discarded. Cells were lysed with 450µL of Lysis Buffer 

and incubated for 3 minutes at room temperature. Cell lysates were collected and 

placed into the 1.5mL spin column R1 placed inside a collection tube. After spinning 

at 10,000 x g for 2 minutes at room temperature, the filtrate was saved and transferred 

to a new spin column R1. 450µL of 70% ethanol was added to the filtrate and spun 

again at 10,000 x g for 2 minutes at room temperature. The filtrate was then discarded 

and 500µL of wash buffer AR was added. The column was spun again at 10,000 x g 

at room temperature for 1 minute and the filtrate was discarded. 700µL of wash buffer 

BR was added and the column was spun for 1 minute at 10,000 x g at room 

temperature, the filtrate was discarded and then the column was spun again at 10,000 

x g for 2 minutes. Finally, the column was placed in a fresh RNA-free microtube and 

30µL of RNase-free water was added. Following 1 minute incubation at room 
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temperature the RNA was collected by spinning the tube at 6,000 x g for 1 minute at 

room temperature. The concentration of the RNA was measured using a Nanodrop 

2000 (Thermo Scientific, Melbourne, Australia).  

The Nanodrop 2000 is a spectrophotometer that measures the light diffraction in a 

1µL sample of RNA isolate using a narrow beam of light. The amount of light that 

travels through the sample corresponds to the amount of RNA present.  

RNA was stored at -80°C until conversion to cDNA. 

2.2.7.2 Cell supernatant and cell lysate collection 

Cells were seeded in 6-well plates as previously described. Cell culture supernatants 

were collected into microtubes and the remaining cells are immediately washed twice 

in cold sterile phosphate buffered saline (PBS, pH 7.2).  

On wet ice, total cellular protein extracting buffer was added. Extraction buffer 

contains 20mM Tris, pH 7.4, 150mM NaCl, 1mM Na2EDTA, 1% Triton X-100, 10% 

glycerol, 0.1% SDS, 0.5% sodium deoxycholate, 1% protease inhibitor cocktail set III 

(Millipore, USA) and 1mM phenylmethylsulfonyl fluoride (PMSF) (Amresco, Solon, 

OH, USA).   

Lysates are then collected and centrifuged at 4°C/14,000g for 5 mins to pellet debris. 

The cell debris-free fraction was then aspirated and aliquoted into a fresh microtube. 

Cell supernatants and lysates were stored at -20°C until analysis. This extraction 

buffer is also used as a diluent in immunoblot experiments. 

2.2.8 Real-time reverse transcription polymerase chain reaction (QPCR) 

2.2.8.1 mRNA to cDNA conversion 
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PhD candidate Alen Faiz isolated and converted the mRNA to cDNA specific to this 

chapter. All further experiments were performed and analysed by Jade Jaffar. 

500 ng of mRNA was converted to cDNA using the M-MLV reverse transcriptase 

(Invitrogen, USA cat# 28025-013). On ice, 500 ng of the mRNA isolate was added to 

1 µL of random primer (Biolabs cat#S1230S). The random primer was a mixture of 

hexamers (a 6 nucleotides fragment of cDNA) that was used to start the cDNA 

conversion. To this, 1 µL of 10mM dNTPs (Invitrogen) was added and DNA-free 

water was added to make the final volume 12 µL.  This mixture was heated for 5 

minutes at 65°C and then immediately chilled on ice.  

Next, 4 µL of 1
st
 strand buffer (Invitrogen,  cat#Y002321), 2µL of 0.1M dithiothreitol 

(DTT)(Invitrogen, cat#Y00147), and 1µL of ribonuclease inhibitor (Invitrogen, 

cat#10777-019) was added to the mixture and incubated for 2 minutes at 37°C. 

Finally, 200 units (1 µL) of M-MLV reverse transcriptase was added. The mixture 

was incubated at 25°C for 10 mins, then at 37°C for 50 minutes and finished with a 15 

minute incubation at 70°C to stop the reaction. cDNA was then stored at -20°C until 

use in QPCR. 

2.2.8.2 Measurement of fibulin-1 mRNA levels  

A commercially available QPCR primer pair specific for human fibulin-1 was 

obtained from Invitrogen (Hs_00243545_m1). Quantitative analysis of fibulin-1 

expression was performed using human 18S rRNA (Invitrogen) as the endogenous 

control. All samples were kept on ice during experiment set up and every sample was 

tested in triplicate. To each 3.3µL sample of cDNA, 33µL of TaqMan Universal 

Master Mix (Invitrogen), 3.3µL of fibulin-1 primer, 3.3µL of 18S primer and 23.1µL 

of DNA-free water was added. In a 96-well PCR plate (Invitrogen) 20µL of this 
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solution was added in sequential wells.  As a negative control, three wells that 

contained the master mix, primers, and water, but without cDNA was included.  

Thermal cycle conditions  were 40 cycles of 95°C for 15 seconds and 60°C for 1 

minute (Johnson et al. 2006). QPCR was performed using the StepOne Plus detection 

system and the data were collected and analyzed using StepOne software (Applied 

Biosystems, Melbourne, Aus). The relative abundance of mRNA was calculated by 

using the ∆∆Ct method and the results were normalized against the 18S rRNA levels.  

2.2.9 Immunoblotting 

Placental fibulin-1 was donated by Dr. Scott Argraves (Medical University of South 

Carolina) and was purified as published (Twal et al. 2001). Placental fibulin-1 was 

reconstituted in sterile PBS (Invitrogen)  and was used as a positive control in 

immunoblot experiments.  

Cell-derived fibulin-1 was also donated by Dr. Scott Argraves. The fibrosarcoma cell 

line HT-1080 (Rasheed et al. 1974)  was transfected with the fibulin-1 gene in their 

lab. This cell line was chosen as it does not normally produce the fibulin-1 protein 

(Godyna et al. 1995; Xie et al. 2008).  

Fibulin-1 transfected HT-1080 cells were grown in growth media supplemented with 

300µg/mL G418 antibiotic (Invitrogen) as a selection agent. This maintained the 

selection pressure an ensured that all the cells present contain the plasmid with the 

fibulin-1 gene. HT-1080 cell supernatants and cell lysates were collected from tissue 

culture flasks as previously described (2.2.6) and used as positive controls in 

immunoblot experiments.  



Page 69 of 252 

 

Whole lung lysates, fibroblast cell lysates, fibroblast supernatants and sera were 

separated by SDS-PAGE. For whole lung and cell lysates, total protein was measured 

by Bicinchoninic Acid (BCA) assay (Sigma Aldrich, Melbourne, Australia cat 

#BCA1). The separating gel was made of 25% Tris-SDS buffer (pH 8.8),  0.1% w/v 

N,N,N‟,N‟-Tetramethylethylenediamine (TEMED) (Sigma) , 1% w/v ammonium 

persulfate (APS) (Sigma), and 25% v/v Acrylamide:Bis solution (40% 37:1 

Acrylamide:Bis-acrylamide) (Bio-Rad) in distilled water. The stacking gel consisted 

of 25% Tris-SDS buffer (pH 6.8), 0.1% w/v TEMED, 1% w/v APS, and 10% v/v 

Acrylamide:Bis solution in distilled water.  

Using the mini-PROTEAN gel casting equipment (Bio-Rad), the separating gel was 

poured and flattened using 500µL of 100% butanol to ensure an even polymerisation 

across the gel. After letting the gel set for at least 2 hours at room temperature, the 

butanol was decanted and the gel was washed twice with distilled water and the 

stacking gel was added along with 15-well combs (Bio-Rad) and allowed to set for a 

further 30 minutes. 

A 5X loading dye was made consisting of 0.312M Tris-HCl, 5% SDS, 0.5M DTT, 

and 50% glycerol in distilled water and then diluted with sample/lysis buffer at 1:5 

dilution for use. The pre-stained molecular weight marker (ranging between 10 – 

250kDa) was sourced from Bio-Rad (USA). 
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The samples were diluted as follows: 

Sample  Quantity of sample Volume of extraction 

buffer 

Volume of 5X 

loading dye 

Serum (pre-diluted 

1:10 with sterile 

PBS) 

8µL  72µL 20µL 

Whole lung lysates 0.15µg/µL As needed* As needed* 

Fibroblast cell 

lysates 

0.15µg/µL As needed* As needed* 

Fibroblast cell 

supernatants 

6µL none 24µL 

Placental fibulin-1 0.5ng/µL As needed* As needed* 

HT-1080 cell lysate 0.15µg/µL As needed* As needed* 

HT-1080 supernatant 3µL 3µL 24µL 

*As needed, the volumes of lysis buffer and dye were adjusted to provide a final 

concentration of the sample as listed. 

 

Samples diluted in lysis buffer and/or extraction buffer (10µL/well) was added to 

each well and run in SDS electrophoresis tank buffer which consisted of 0.3% w/v 

Tris-Base, 1.44% w/v glycine and 0.1% w/v SDS in distilled water (pH 8.5). A Bio-

Rad power pack 300 was set at 125 V and the gel was run for approximately 90 

minutes.    

Proteins were transferred to a 0.45µm pore size polyvinylidenedifluoride (PVDF) 

membrane using a Bio-Rad trans-blot tank filled with 10% methanol in SDS 

electrophoresis buffer. Bio-Rad power pack was set at 25 V for 1.5 hours. Membranes 

were blocked with 5% skim milk/2% BSA/TBS-Tw for 1 hour at room temperature, 

and rinsed quickly with TBS/Tw before being probed with  primary antibody to 

fibulin-1 (#SC25281, Santa Cruz Biotechnologies, USA) diluted to a concentration of 

0.2 µg/mL in 2% BSA/TBS-Tw for two hours at room temperature or overnight at 

4°C. 
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Membranes were washed in three changes of TBS-Tw for 5 minutes each at room 

temperature before being incubated with horseradish peroxidase-conjugated 

secondary anti-mouse antibodies (Dako, USA) diluted to 0.1µg/mL in 2% BSA/TBS-

Tw for one hour at room temperature. Membranes were again washed in three 

changes of TBS-Tw for 5 minutes at room temperature before visualization was 

carried out by incubating the membranes in enhanced chemiluminescence (ECL) 

western blot detection reagent (Millipore, USA) for one minute. A Kodak Image 

Station 4000MM camera was used to capture images and analysis was performed 

using Carestream Molecular Imaging software (v. 5.3.3.17476 Carestream Health Inc. 

1994-2011). 

Membranes loaded with whole lung or cell lysates were then stripped by incubating 

the membranes in 2% SDS/Tris-HCl (pH 6.8) supplemented with freshly added 0.8% 

β-mercaptoethanol (Sigma) for 15 minutes at 50°C. Membranes were washed in 3 

changes of TBS-Tw as before and then blocked again using 5% skim milk/ 2% BSA/ 

TBS-Tw for another hour at room temperature.  

Membranes were incubated at room temperature for 45 minutes with anti-human 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibodies (Millipore) diluted 

to 0.04µg/mL in 2% BSA/TBS-Tw. Membranes were washed in three changes of 

TBS-Tw for 5 minutes each before being incubated with horseradish peroxidise-

conjugated secondary anti-mouse antibodies (Dako, USA) diluted to 0.02µg/mL in 

2% BSA/TBS-Tw for 30 minutes at room temperature. Membranes were again 

washed in three changes of TBS-Tw for 5 minutes before visualization was carried 

out as before. Image capture and analysis were carried out as described above. 

 



Page 72 of 252 

 

2.2.10 Specificity of fibulin-1 antibody 

There were no previous reports in the literature of publications involving the use of 

the SC25281 monoclonal antibody and western blotting as a method for the 

quantification of fibulin-1. Therefore, initial experiments were carried out to ensure 

specificity and sensitivity of the antibody for use in this study (Figure 2.1). Fibulin-1 

was discovered as a binding partner for fibronectin (Argraves et al. 1989) and 

therefore it was important to ensure that the fibulin-1 specific antibody did not cross 

react with fibronectin. Fibronectin is also present in high concentrations in the blood 

(Lafuma et al. 1987) and could affect the measurements. Anti-fibronectin antibody 

(#MAB1935, Chemicon, USA) and plasma purified fibronectin protein (#FC010, 

Millipore, USA) were used as negative controls. By assaying the samples at 3-5 

concentrations, a standard curve was drawn indicating that there was a linear 

relationship between the concentration of fibulin-1 and the resulting band intensity 

and that this method could be used to quantify the level of fibulin-1 in samples 

(Figure 2.1).  

Importantly, Figure 2.2 shows that there was no fibronectin contamination in either of 

the positive fibulin-1 control materials used in this study. Finally, all quantification of 

fibulin-1 (whether in serum or tissue) was done without knowledge of the patient’s 

corresponding lung function measurements in order to ensure the data were analysed 

in a blinded manner. 
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Figure 2.1 The sensitivity and specificity of the fibulin-1 antibody  
A representative immunoblot showing fibulin-1 (FBLN1) protein 

purified from human placenta (lanes 1-3), recombinant fibulin-1(C-

isoform) isolated from transfected human fibrosarcoma cell line (HT-

1080) (lanes 4-8), and purified human plasma fibronectin 

(hFibronectin, #FC010, Millipore, USA)(lane 9) as probed by anti-

fibulin-1 antibody (#SC25281, Santa Cruz Biotechnologies, USA). 

Protein size ladder is shown on the left.  

Cell-secreted FBLN1 is the cell-free culture supernatant from HT-

1080 cells that have been transfected with the FBLN1(C-isoform) 

gene.(A) Densitometric analysis was performed on the immunoblot shown.  A dilution of 1 indicates an undiluted sample. Fibulin-1 

concentration (FBLN1 conc) was measured by BCA assay. Net, Sum, and Mean Intensity of each band was analysed by Kodak Image Station 

4000MM (Carestream Molecular Imaging Software v. 5.3.3.17476). The Interior Area indicates the number of pixels that is analysed for each 

sample. The Sum Intensity indicates the total intensity of each pixel in the interior area. The Mean Intensity is the average intensity of the 

interior area. The Net Intensity is the sum intensity minus the intensity of the background of the blot.  

(B) Net intensity of each band is then plotted against the FBLN1 concentration and a linear regression is performed.   
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Figure 2.2 Purity of fibulin-1 positive controls were investigated by probing with 

an antibody to human fibronectin 
A representative immunoblot showing fibulin-1 (FBLN1) protein from placenta (lanes 

1-3), from a fibulin-1(C-isoform) transfected human fibrosarcoma cell line (HT-1080) 

(lanes 4-8), and purified human plasma fibronectin (hFibronectin, #FC010, Millipore, 

USA)(lane 9) as probed by anti-fibronectin antibody (#MAB1935, Chemicon, USA). 

Protein size ladder is shown on the left. Net, Sum, and Mean Intensity of each band 

was analysed by Kodak Image Station 4000MM (Carestream Molecular Imaging 

Software v. 5.3.3.17476). 

Concentration of the proteins loaded were as follows: 

Lane 1 8ng/mL, Lane 2 4ng/mL, Lane 3 2ng/mL, Lane 4 6ug/mL, Lane 5 3ug/mL, 

Lane 6 1.5ug/mL, Lane 7 0.75ug/mL, Lane 8 0.38ug/mL, Lane 9 100ng/mL 
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Lastly, the level of fibulin-1 in serum samples at the same concentration were 

compared (Figure 2.3). Serum fibulin-1 contained 4 bands. Fibulin-1 was considered 

to be 100kDa as this is the size of the protein that was first identified as a binding 

partner of fibronectin (Argraves et al. 1989). The other bands may be fragments of 

fibulin-1 or non-specific binding of the antibody to other proteins which have not 

been identified in this thesis. To our knowledge, this is the first time that serum 

fibulin-1 has been quantified in this manner and there is no evidence in the literature 

of other sizes of fibulin-1 in the serum.  
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Figure 2.3 Serum levels of fibulin-1 quantified by western blot.  
 (A) A representative immunoblot of fibulin-1 in serum samples. In lane 1, placental 

fibulin-1 (5ug/mL) loaded as a positive control. Lane 2 contained the serum sample 

used for relative quantification of fibulin-1 and is diluted 1:500. Lane 3 contained 

100ng/mL human plasma fibronectin as a negative control. Serum from ten 

independent patients was diluted 1:500 and loaded in lanes 4-10.  Densitometric 

analysis was performed using Kodak Image Station 4000MM (Carestream Molecular 

Imaging Software v. 5.3.3.17476). Fibulin-1 is 100kDa. 

 

(B) The net intensity of the 100kDa band of lane 2 was set to 1. The net intensities of 

each of the patient samples were then calculated relative to the net intensity of lane 2. 

Fibulin-1 level was reported in relative units.  
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2.2.11 Optimization of normalization protocol for cell supernatants 

There is evidence in both the literature (Ramos et al. 2001) and from work previous 

completed in our laboratory (Havryk, PhD thesis 2005) that fibroblasts from patients 

with IPF have lower levels of proliferation compared to fibroblasts from subjects 

without lung disease. Therefore it was important to take cell number into account 

(which has been referred to as normalisation) when comparing the level of fibulin-1 in 

cell culture supernatants.  

This experiment was designed to investigate the effect of different methods of cell 

number normalisation and 4 cell lines were determined to be enough to address this 

question. Fibroblasts from patients with IPF (n=2) and subjects without IPF (n=2) 

were grown in 5% FBS/ DMEM/1% Penicillin-Streptomycin for 72 hours described 

in Chapter 2.2.6 and supernatants were harvested as described in Chapter 2.2.7.2. 

Duplicate wells were harvested for estimations of cell numbers by (A) manual cell 

counting, (B) commercially available DNA-binding assay CyQuant (#C7026, 

Invitrogen, USA) (Marinkovic et al. 2012), and by (C) measurement of the total 

protein concentration of the cell monolayer as described in the Methods 2.2.9. Briefly, 

plates used for manual cell counting were washed and cells were detached using 

trypsin as described in Chapter 2.2.6. Total cells were stained with haematoxylin 

(Sigma Aldrich, Melbourne Australia) and the ones dye excluded were counted using 

a haemocytometer. The average of 10 large squares was calculated.  

The fibulin-1 level in the cell supernatant as measured by immunoblot was then 

normalized to each of the three cell number estimations (Figure 2.4). There was no 

difference between the level of fibulin-1 when normalized to either manual cell 
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number (Figure 2.4A), Cyquant estimation (Figure 2.4B), or to the concentration of 

the cell monolayer (Figure 2.4C).  

 

Figure 2.4 The effect of normalization to different cell number estimations on 

fibulin-1 level. 
Fibroblasts from four patients were grown in 5% FBS/DMEM for 72 hours and 

supernatants were harvested. Fibulin-1 level was measured by immunoblot. 

Total cell numbers were estimated using (A) manual cell counts as performed by 

haemocytometer, (B) commercially available CyQuant assay (#C7026, Invitrogen, 

USA), and (C) the total protein concentration as measured by BCA assay. 

BCA bicinchroninic acid, IPF idiopathic pulmonary fibrosis 

Subsequently, for measurements of fibulin-1 level in fibroblast supernatants, equal 

volumes of supernatant were loaded and final fibulin-1 levels are adjusted for the total 

protein concentration of the respective confluent cell monolayer lysate as measured 

by BCA and described in the literature ((Quesnel et al. 2008; Quesnel et al. 2010)). 
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2.2.12 Immunohistochemistry 

Five micrometre thick paraffin sections from formalin-fixed tissue were directly 

stainedfor fibulin-1 and in parallel with the matching isotype control, mouse IgG2a 

(Dako, Sydney, Australia).  The concentration of the primary antibodies that were 

used are found in Table 2.3. 

Table 2.3 Concentrations of the primary antibodies used for 

immunohistochemistry 
 Source Final concentration 

Fibulin-1 antibody Santa Cruz (cat# 25281) 0.01µg/mL 

Mouse IgG2a 

antibody 

Dako 0.01µg/mL 

 

Slides were deparaffinised by incubating in 2 baths of xylene for 5 minutes at room 

temperature. This was followed by 2 minute incubations each in 2 baths of 100% 

ethanol, 95% ethanol, 70% ethanol and 50% ethanol before being left standing in 

distilled water for the final 2 minutes or up to overnight. 

No antigen retrieval was used. Antigen retrieval is a technique employed to “unmask” 

sites for antigen binding that may be blocked by the fixation process. Slides were then 

blocked for one hour at 37°C in 10% normal goat serum diluted in pH 7.4 Tris 

buffered saline (0.3% Tris, 0.8% NaCl, 0.02% KCl) supplemented with 0.05% tween-

20 (Sigma) and 1% BSA (1% BSA/ TBS-Tw). The blocking solution prevents non-

specific binding of the primary antibody and was removed by tapping the slide once 

on paper towels. The fibulin-1 antibody was diluted in 1% BSA/TBS-Tw and 50 – 

200 µL of the solution was loaded onto each slide. Slides were incubated at 37°C for 

another 2 hours.  
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Slides were then washed twice in TBS-Tw for 5 minutes each and oxidised in 3% 

hydrogen peroxide for 5 minutes at room temperature. This prevents the endogenous 

peroxidise activity in the tissue from affecting the secondary reagent. Slides were 

again washed twice in TBS-Tw for 5 minutes each and 50 to 200 µL of the secondary 

reagent (Dako cat#K4006) was added for 30 minutes at room temperature.  

After incubation with DakoEnVision secondary reagent, areas that were positive for 

the antibody were visualized by incubating in diaminobenzidine (DAB) (Dako 

cat#K3467) for 2 minutes. This dye was diluted 1 drop per mL of substrate for use 

and turned brown when in contact with the horseradish peroxidase (HRP) enzyme that 

was conjugated to the anti-mouse secondary antibody. The reaction was stopped once 

the slides were dipped in distilled water. Sections were counterstained by incubating 

in Mayer’s haematoxylin (Sigma cat#MHS1) for 3 minutes. Slides were then washed 

briefly in tap water, taken backwards through the graded alcohols to finish in xylene 

and coverslipped with the xylene-based mounting medium DPX (Sigma cat# 44581). 

Serial sections were also stained using standard Masson’s Trichrome in order to 

quantify total collagen levels. Masson’s Trichrome staining was performed by Dr. 

Rema Oliver, University of New South Wales. Following deparaffinisation as 

described above, slides are incubated in Weight’s haematoxylin for 20 minutes at 

room temperature. Slides were washed in running tap water for 5 minutes before 

incubation with 0.5% acid fuchsin solution and then again washed briefly in tap 

water. Slides were then incubated for 25 minutes in 1% phosphomolybdic acid and 

rinsed in tap water before incubating for 3 minutes in 2% Light Green Counterstain 

solution. Slides were washed with tap water and incubated for 1 minute in 1% acetic 

acid before being dehydrated in the graded alcohols and mounted in DPX as before. 
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Collagen stained green while cell nuclei were a blue/black. Cytoplasm, muscle or 

erythrocytes were red. 

2.2.13 Image Capture 

A majority (75%) of the image capture of stained tissue sections was performed by 

undergraduate student Sofia Unger as part of a student research project, under the 

tutelage of Jade Jaffar. All further experimentation and analysis was performed by 

Jade Jaffar.    

Western blot images were captured using a Kodak Image Station 4000mm camera and 

analysed using Carestream Molecular Imaging software (v. 5.3.3.17476 Carestream 

Health Inc. 1994-2011). Immunohistochemisty images were taken at 20X 

magnification using an Olympus BX60 microscope (North Ryde, Australia). 20 

consecutive (minimally overlapping) images of each section were randomly (not 

focused on any particular structure) taken using a DP71 camera with Kohler 

illumination and it was ensured that the entire surface of the section was included in 

the final analysis. Pictures of all sections that were stained in the same manner were 

taken on the same day to maintain identical light settings. Two to six sections from 

each patient were imaged. 

2.2.14 Densitometric analysis 

The images of sections stained for fibulin-1 were analysed by the open source 

software ImageJ (http://rsb.info.nih.gov/ij/ accessed June 2011) (Busquets et al. 

2010). First, each image was colour deconvoluted (Ruifrok and Johnston 2001; 

Lesack and Naugler 2012) using an algorithm and the plugin vector H&E DAB 

(http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html, accessed 
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July 2013). The resulting brown stain was further investigated and a threshold of 

positive staining was set manually by examining 5 random images of sections from 5 

independent non-diseased control patients. This threshold was then applied to every 

image. The algorithm then calculated the positively stained area as a numerical value 

and adjusted for the total positively stained area in the image. The resultant mean 

value took into account any compression of the tissue during processing as well as the 

increased tissue mass in fibrotic lesions (Haafiz et al. 2011). 

Similarly, images of sections stained with Masson’s trichrome were colour 

deconvoluted using an algorithm and the plugin vector Masson trichrome 

(http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html, accessed 

July 2013). The resulting green stain was quantified and reported as the percentage 

area of collagen. 

Each of the 20 image values in each analysis set were then averaged to obtain the 

average staining density for each tissue section. 

Finally, the multiple samples from each patient were averaged together to give the 

final fibulin-1 level or percentage area of collagen per patient. A sample of an image 

used for analysis is seen in Figure 2.5. 
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Figure 2.5 Quantification of fibulin-1 level by computer-based image analysis 
(A) A single image of a tissue section stained for fibulin-1 (brown) and counterstained 

with haematoxylin (blue). (B) A computer algorithm separates the brown stain from 

the blue stain. The level of brown staining can then be quantified and in this case 

measures 131 units. (C) A sequential tissue section is stained with the isotype control 

for fibulin-1 and is used for quality control purposes. The level of brown staining in 

the isotype control should not be greater than that of the fibulin-1 stained section. 

Details regarding methods can be found in 2.2.14 
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2.2.15 Statistical analysis 

To determine the repeatability and the reliability of the measurements, the coefficient 

of repeatability and intraclass correlation coefficient were calculated (Bland and 

Altman 1996). 

Duplicate serum samples from 17 subjects were tested on two separate occasions and 

the coefficient of repeatability was 1.48 units of fold difference. This indicates that 

the same serum tested the first time would be expected to differ by more than 1.48 

fold on the second test only 5% of the time. The intraclass correlation coefficient was 

0.91 (95% CI 0.77 to 0.97) indicating that there was a high degree (>0.6) of 

reproducibility of the serum measurements.  

Graphs were made using GraphPad Prism 6 Software for Windows (Version 6 

GraphPad Software Inc. 1992-2007, Redmond, USA). Statistical analysis was done 

using Statistical Package for the Social Sciences (SPSS) (Version 21 IBM 

Corporation 1989-2012, Armonk, USA). 

Characteristics of the subjects and spirometric results were summarized with the use 

of descriptive statistics.  

Distributions of serum, parenchyma and fibroblast levels of fibulin-1, and lung 

function parameters were tested for normality using the Kolmogorov-Smirnov test, 

Shapiro-Wilk test, and skewness and kurtosis were calculated. 

Serum fibulin-1 levels were not normally distributed (n=168; p<0.0001). For 

multivariate linear analyses, serum fibulin-1 levels were transformed to the natural log 

value to obtain a normal distribution. Between-group differences were assessed by 
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means of one-way analysis of covariance (ANCOVA) with adjustments for 

confounders with post-hoc analysis by Tukey’s test.  

Receiver-operator curves (ROC) were used to model the utility of serum fibulin-1 as a 

marker of progression.  Cox regression, with and without baseline parameters, were 

used to model the impact of serum fibulin-1 levels on predicting progression. Kaplan-

Meier survival curves were used to model the progression-free survival rate of serum 

fibulin-1 and between group rates were compared using the Mantel-Cox log rank test. 

Parenchyma fibulin-1 levels were normally distributed (n=25; p=0.504). Between-

group differences were assessed by Student’s unpaired t-test. 

To study the relationship between serum fibulin-1 levels and lung function 

parameters, correlations between serum fibulin-1 and lung function variables were 

analysed using Spearman’s rank correlation co-efficient. To study the relationship 

between parenchyma fibulin-1 levels and lung function parameters, correlations 

between tissue fibulin-1 and lung function were analysed using Pearson’s product-

moment tests.  

The sample size for analysis of fibroblast fibulin-1 levels was too small to determine 

normality (n=15). Between-group differences were assessed by means of Student’s 

unpaired t-test.  

 

2.3 Results 

Baseline demographics for our study population are summarized in Table 2.4. 
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Table 2.4 Baseline demographics for the study population 
 

 
Serum was collected from 151 patients with interstitial lung disease (ILD) and 17 subjects without lung disease.  

 

*”Other” refers to patients with connective tissue-disease related ILD (n=26), Non-specific interstitial pneumonia (n=4), lymphangioleiomyomatosis (n=4), 

and drug-induced ILD (n=1). 

** P value for  unpaired t-test, non-diseased control vs. all ILDs  

***P value for Chi-squared test, non-diseased control vs. all ILDs  

 

BMI body mass index, FEV1 forced expiratory volume in 1 second, FVC forced vital capacity, DLCO diffusing capacity of carbon monoxide, CPI composite 

physiologic index, TLC total lung capacity, Yr year, n/a Not available, ns Not significant 

 
  

Non-diseased 

control 

Sarcoidosis Hypersensitivity 

Pneumonitis 

“Other” ILD* Idiopathic 

pulmonary fibrosis 

P value ** 

  n=17 n=12 n=32 n=35 n=72 

  Mean SD Mean SD Mean SD Mean SD Mean SD 

Age, yr 34 12 48 11 61 11 59 14 68 9 <0.0001 

BMI, kg/m2 n/a n/a 31 5 31 5 26 5 30 6 ns 

Baseline FEV1, % predicted n/a n/a 79 23 70 19 74 22 79 20 ns 

Baseline FVC, % predicted n/a n/a 91 22 68 22 78 24 74 20 ns 

Baseline DLCO, % predicted n/a n/a 70 23 49 15 48 20 41 16 ns 

Baseline CPI, units n/a n/a 22 19 46 14 44 18 52 13 ns 

Baseline TLC, % predicted n/a n/a 88 20 73 20 76 22 67 13 ns 

                        

  Count % Count % Count % Count % Count % P value *** 

Male 5 29 7 58 10 31 10 29 41 57 <0.0001 

History of smoking 1 6 2 17 16 50 14 40 45 63 <0.0001 
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2.3.1 Serum fibulin-1 is increased in patients with IPF compared to other ILDs 

and subjects without lung disease 

The level of serum fibulin-1 was greatest in IPF compared to the other ILDs after 

adjustments for potential confounding variables – age, gender and smoking history  

(Figure 2.6). Levels of serum fibulin-1 were greater in patients with IPF compared to 

subjects without lung disease. 

 

 

Figure 2.6  Serum fibulin-1 levels are increased in patients with IPF compared to 

non-diseased controls.  
The fibulin-1 level of each serum sample was determined by immunoblotting and 

reported as relative to a standard serum sample. Densitometric analysis was 

performed using a Kodak Image Station 4000MM (Carestream Molecular Imaging 

Software v. 5.3.3.17476). Serum fibulin-1 levels were adjusted for age, gender and 

smoking history. (Analysis of covariance, n=168, post-test Tukey’s *p<0.05. 

***p=0.006, median ± 25th & 75th percentiles). 

”Other” refers to patients with connective tissue-disease related ILD (n=26), Non-

specific interstitial pneumonia (n=4), lymphangioleiomyomatosis (n=4), and drug-

induced ILD (n=1). 

HP hypersensitivity pneumonitis, ILD interstitial lung disease, IPF idiopathic 

pulmonary fibrosis 
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2.3.2 Serum fibulin-1 correlates with disease severity in patients with ILDs 

Serum fibulin-1 correlates with CPI in patients with ILDs. The CPI is a representation 

of the morphological extent of fibrosis as seen on high resolution computed 

tomography (Wells et al. 2003). Spearman’s rank correlation analysis was used to 

model the relationship between serum fibulin-1 and CPI in patients with ILDs. 

(rho=0.34, p=0.01, n=73) (Figure 2.7). 

 

Figure 2.7 Serum fibulin-1 levels correlate with disease severity in patients with 

fibrotic ILD 
The composite physiologic index (CPI) was calculated in 73 patients with interstitial 

lung disease (ILD). CPI was derived from lung function measurements and provided a 

representative measurement of disease severity. 

The fibulin-1 level of each serum sample was determined by immunoblotting and 

reported as relative to a standard serum sample. Densitometric analysis was 

performed using Kodak Image Station 4000MM (Carestream Molecular Imaging 

Software v. 5.3.3.17476). The linear regression line was calculated by least squares 

methodology and the significance of the relationship was determined using 

Spearman’s rank correlation analysis (rho=0.34, p=0.01). 
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Lung function measurements were used to assess disease severity in patients with 

ILDs. Serum fibulin-1 correlated with FVC% (rho =-0.3, p=0.01), DLCO% (rho=-0.25, 

p=0.04), CPI (rho =0.34, p=0.01) (Figure 2.7) and TLC% (rho =-0.34, p=0.01) but not 

with FEV1% (Spearman’s rho correlation, Table 2.5). 

Neither age, BMI, nor smoking status correlated with serum fibulin-1 levels. 

Table 2.5 Serum fibulin-1 correlates with lung function parameters in patients 

with ILDs 

Variable 

Spearman’s  

correlation 

coefficient 

p value 

Age, yr 0.17 0.20 

BMI, kg/m2 0.10 0.49 

Baseline FEV1, % predicted -0.14 0.23 

Baseline FVC, % predicted -0.30 0.01 

Baseline DLCO, % predicted -0.25 0.04 

Baseline CPI, units 0.34 0.01 

Baseline TLC, % predicted -0.34 0.01 

 Pearson chi-square p value 

Male 0.001 0.98 

History of smoking 0.40 0.82 

 

Lung function parameters and demographic information was obtained for 73 patients 

with interstitial lung disease (ILD). The time between serum collection and lung 

function measurements was no more than 15 days (±5). Continuous variables were 

analysed with spearman’s rank correlation analysis and categorical variables were 

analysed by Pearson chi-square test. Serum fibulin-1 was measured by immunoblot. 

BMI body mass index, FEV1 forced expiratory volume in 1 second, FVC forced vital 

capacity, DLCO diffusing capacity of carbon monoxide, CPI composite physiologic 

index, TLC total lung capacity, Yr year 
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2.3.3 The level of fibulin-1 in whole lung lysates was increased in patients with 

IPF compared to subjects without lung disease 

The presence of fibulin-1 in the tissue of patients with IPF was then examined 

specifically. The level of tissue fibulin-1 in whole lung lysates from patients with IPF 

(n=4, mean 3.43 units, SD 0.91) was 2.6 fold higher than in non-diseased controls 

(n=4, mean 1.34, SD 0.2; p=0.02) (Figure 2.8).  
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Figure 2.8 Tissue fibulin-1 is increased in the whole lung lysate derived from 

patients with IPF compared to subjects without lung disease 
(A) The level of fibulin-1 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

in whole lung lysates derived from patients with and without IPF was determined by 

immunoblot. The cell lysate of the fibulin-1 transfected cell line (HT-1080) was used 

as a positive control. Densitometric analysis was performed using Kodak Image 

Station 4000MM (Carestream Molecular Imaging Software v. 5.3.3.17476). The 

intensity of the fibulin-1 band was normalised to the intensity of the GAPDH band 

and reported in arbitrary units. 

(B) The relative levels of fibulin-1 of subjects without disease and patients with IPF 

were compared using unpaired t-test. Values are expressed as means ± SD, *p=0.02.
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2.3.4 Tissues from patients with IPF show greater levels of fibrosis. 

As a positive control ensuring the presence of fibrosis in our samples, we measured 

the levels of total collagen in tissues from patients with IPF. Patient information is 

found in Table 2.6. 

More total collagen (percentage area stained with Masson’s trichrome) was measured 

in tissue from IPF patients (n=12, mean 25.0% area, SD 10.5) than in tissue from 

subjects without lung disease (n=5, mean 12.1, SD 6.4; p=0.02) (Figure 2.9). 

 

Table 2.6 Characteristics of subjects used for lung tissue analysis 
 

 
Non-Diseased 

Control (n=5) 

Idiopathic pulmonary 

fibrosis (n=20)  

p value* 
 Mean SD Mean SD 

Age, yr 38 14 59 8 0.03 

FEV1, % predicted n/a n/a 77 21 n/a 

FVC, % predicted n/a n/a 74 20 n/a 

DLco, % predicted n/a n/a 42 20 n/a 

CPI, units n/a n/a 52 16 n/a 

TLC, % predicted n/a n/a 81 18 n/a 

    

 Number % Number % p value** 

Male 4 80 14 70 0.24 

*P value for unpaired t-test 

**P value for Fisher’s exact test 

Continuous data were compared by use of unpaired t-tests, and categorical data by 

Fisher’s exact tests 

FEV1 forced expiratory volume in 1 second, FVC forced vital capacity, DLCO 

diffusing capacity of carbon monoxide, CPI composite physiologic index, TLC total 

lung capacity, Yr year 
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Figure 2.9 Tissues from patients with IPF are more fibrotic compared to tissues 

from subjects without lung disease. 
Paraffin-embedded formalin fixed tissue sections from subjects without lung disease 

(n=5) and patients with IPF (n=12) were stained by Masson’s trichrome. Levels of 

total collagen were quantified by computer aided image analysis using ImageJ and 

reported as the percentage area of tissue components stained green. Twenty images 

from each tissue section were analysed and 2-6 tissue sections were measured for 

each subject.  Averaged staining levels of collagen between the groups were 

compared using unpaired t-test. (*p<0.05). Values are expressed as mean ± SD. 

IPF idiopathic pulmonary fibrosis, SD standard deviation 
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2.3.5 The level of fibulin-1 in paraffin embedded formalin fixed tissue was 

increased in patients with IPF compared to subjects without lung disease 

In patients with IPF, the level of tissue fibulin-1 detected in paraffin embedded 

formalin fixed tissue sections was significantly higher (n=20, mean 129.2 units, SD 

4.32) compared to non-diseased controls (n=5, mean 118.6, SD 3.73) (p<0.001). Age 

was not a confounding factor. There was no significant difference in the level of 

tissue fibulin-1 between samples taken from patients with IPF whether the tissue 

originated from a diagnostic surgical lung biopsy or from explanted lung post-

transplant (p=0.24)(Figure 2.10).  
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Figure 2.10 Tissue sections derived from patients with IPF have greater fibulin-1 

levels compared to sections derived from subjects without lung disease. 
 

Paraffin-embedded formalin fixed tissue sections were stained for fibulin-1 and 

counterstained for all other tissue components. Levels of fibulin-1 were quantified by 

computer aided image analysis using ImageJ and reported as the area positively 

stained for fibulin-1 as a percentage of the total area stained. Twenty images of each 

tissue section were analysed, 2-6 tissue sections were measured for each subject. 

Subsequently, measurements of each image were averaged together to obtain a single 

value per subject/patient.   

Levels of fibulin-1 compared using one-way analysis of variance and Tukey’s 

multiple comparison post-test (**p<0.005). 

Values are expressed as mean ± SD. 

IPF idiopathic pulmonary fibrosis, SD standard deviation 

Details on staining quantification can be found in 2.2.14 and seen in Figure 2.5 
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2.3.6 Tissue fibulin-1 levels correlate with disease severity in patients with IPF 

Higher tissue fibulin-1 levels correlated significantly with lower FEV1% and FVC% 

measurements (FEV%1 r=-0.86, p=0.014, FVC% r=-0.92, p=0.004) (Figure 2.11). 

Tissue fibulin-1 levels did not significantly correlate with age, DLCO%, CPI, or TLC% 

(Table 2.7).  All samples for correlation analysis were from Modena and the time 

between lung function test and biopsy was not more than 30 (±5) days. 
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Figure 2.11 . Lung tissue fibulin-1 levels in patients with IPF inversely correlate 

with lung function measurements.  
Paraffin-embedded formalin fixed tissue sections were stained for fibulin-1 and 

counterstained for all other tissue components. Levels of fibulin-1 were quantified by 

computer aided image analysis using ImageJ and reported as the area positively 

stained for fibulin-1 as a percentage of the total area stained. Twenty images of each 

tissue section were analysed and 2-6 tissue sections were measured for each subject. 

Subsequently, measurements of each image were averaged to obtain a single value per 

patient. Averaged tissue fibulin-1 levels for each patient (n=7) was compared to their 

(A) FEV1 and (B) FVC percentage predicted measurements. The linear regression line 

represents Pearson product-moment coefficients (FEV1 r=-0.86, p=0.014, FVC 

r=0.92, p=0.004). The time between biopsy and lung function measurements was 30 

days (±5). 

 

FEV1 forced expiratory volume in 1 second, FVC forced vital capacity, IPF idiopathic 

pulmonary fibrosis  
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Table 2.7 Tissue fibulin-1 correlates with percentage predicted FEV1 and FVC 

measurements in patients with idiopathic pulmonary fibrosis 
 

Variable 

Pearson 

Correlation 

Coefficient 

P-value 

FEV1, % predicted -0.855 0.014 

FVC, % predicted -0.916 0.004 

DLCO, % predicted -0.589 0.164 

TLC, % predicted -0.786 0.064 

CPI 0.665 0.103 

Age, yr -0.624 0.135 

Levels of fibulin-1 were quantified by computer aided image analysis using ImageJ 

and reported as the area positively stained for fibulin-1 as a percentage of the total 

area stained. Twenty images of each tissue section were analysed, 2-6 tissue sections 

were measured for each subject. Subsequently, measurements of each image were 

averaged to obtain a single value per patient. Two to six surgical lung biopsies and 

lung function parameters were obtained from each of 7 patients with idiopathic 

pulmonary fibrosis. The relationship between tissue fibulin-1 level and lung function 

variables were examined by Pearson correlation analysis. The time between biopsy 

and lung function measurements was 30 days (±5). 

 

FEV1 forced expiratory volume in 1 second, FVC forced vital capacity, DLCO 

diffusing capacity of carbon monoxide, CPI composite physiologic index, TLC total 

lung capacity, Yr year 
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2.3.7 Fibroblasts from IPF patients produce more fibulin-1 mRNA under basal 

conditions than fibroblasts from subjects without lung disease 

To investigate the role of the fibroblast in the production of fibulin-1, fibroblasts 

derived from the distal parenchyma of patients with and without IPF were compared. 

Initially, the levels of fibulin-1 at the transcription level were examined.  

Fibroblasts isolated from patients with IPF and from age and gender matched subjects 

without IPF were cultured under non-stimulatory conditions. Patient information from 

whom the fibroblasts were isolated are found in Table 2.8. 

Equal amounts of mRNA from each fibroblast line were converted into cDNA and 

levels of mRNA were quantified by QPCR.  The comparative (or ∆∆Ct) method was 

used to calculate the relative abundance of mRNA compared to the housekeeping 

gene 18S. Samples with a high amount of a particular mRNA transcript have a 

smaller delta Ct value because fewer cycles of PCR are required to amplify the target 

gene to a pre-determined threshold value. Fibroblasts from patients with IPF (n=5, 

mean 9.05 cycles, SD 0.70) produced more fibulin-1 mRNA under basal conditions 

compared to fibroblasts from subjects without IPF (n=4, mean 11.17, SD 0.40, 

p=0.03) (Figure 2.12). 

Therefore, for ease of reference, mRNA levels are displayed as 1/delta Ct.  
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Table 2.8 Patient information from whom fibroblasts were derived 
 

 

Parenchymal fibroblasts were isolated from lung tissue obtained from donors 

undergoing thoracotomy for either resection or transplantation. Non-IPF fibroblasts 

were derived from the macroscopically normal tissue isolated from the tumour-free 

margin of resections from patients with non-small cell carcinoma (NSCLC). 

Pulmonary function and smoking data were not available for these patients. 

IPF idiopathic pulmonary fibrosis, Yrs years 

 

Donor # Gender 
Age 

(Yrs) 
Diagnosis Surgery 

Non-IPF 1 Male 55 NSCLC Resection 

Non-IPF  2 Male 66 NSCLC Resection 

Non-IPF  3 Female 54 NSCLC Resection 

Non-IPF  4 Male 60 NSCLC Resection 

Non-IPF 5 Male 57 NSCLC Resection 

Non-IPF 6 Male 59 NSCLC Resection 

Non-IPF 7 Male 61 NSCLC Resection 

IPF 1 Male 53 
Idiopathic 

pulmonary fibrosis 
Transplant 

IPF 2 Male 62 
Idiopathic 

pulmonary fibrosis 
Transplant 

IPF 3 Male 57 
Idiopathic 

pulmonary fibrosis 
Transplant 

IPF 4 Male 55 
Idiopathic 

pulmonary fibrosis 
Transplant 

IPF 5 Male 58 
Idiopathic 

pulmonary fibrosis 
Transplant 

IPF 6 Male 58 
Idiopathic 

pulmonary fibrosis 
Transplant 

IPF 7 Male 54 
Idiopathic 

pulmonary fibrosis 
Transplant 

IPF 8 Male 63 
Idiopathic 

pulmonary fibrosis 
Transplant 
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Figure 2.12 Fibroblasts derived from patients with IPF produce more fibulin-1 

mRNA under basal conditions than fibroblasts from patients without IPF. 
 

Primary parenchymal fibroblasts from patients with IPF (n=8) and age and gender 

matched patients without IPF (n=7) were grown for 72 hours in 5% FBS/ DMEM/ 1% 

Pen-Strep, quiesced in 0.1% FBS/ DMEM/ 1% pen-strep for 24hours and maintained 

in fresh 0.1% FBS/ DMEM / 1% pen-strep for a further 72 hours. Non-IPF fibroblasts 

are derived from the macroscopically normal tissue isolated from the tumour-free 

margin of resections from patients with non-small cell carcinoma. 500ng of mRNA 

was converted to cDNA for this comparison. **p=0.003 unpaired t-test Values are 

expressed as median and interquartile range. 

Data are expressed as 1/delta cycle threshold to 18S (∆Ct) to enable a greater number 

to reflect more mRNA.  

IPF idiopathic pulmonary fibrosis, FBS foetal bovine serum, DMEM Dulbecco's 

Modified Eagle Medium, Pen-Strep penicillin-streptomycin 
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2.3.8 Fibroblasts from IPF patients produce more fibulin-1 than fibroblasts 

from non-IPF fibroblasts 

The production of the two forms of fibulin-1 protein, secreted and cell-associated 

were examined. The secreted and cell-associated levels of fibulin-1 were compared 

between primary parenchymal fibroblasts from patients with IPF and with age and 

gender matched subjects without IPF under non-stimulated cell culture conditions and 

in fibroblasts at low passage number (≤ 5 passages). Cell-associated levels include 

intracellular, extracellular, and cell surface-bound proteins.  

Fibroblasts derived from patients with IPF produced significantly more secreted 

(measured by cell culture supernatant) fibulin-1 than fibroblasts derived from subjects 

without lung disease (p=0.003) (Figure 2.13A). In addition, fibroblasts from patients 

with IPF produced more cell-associated (measured by both intra- and extra-cellular 

protein)  fibulin-1 than fibroblasts derived from subjects without lung disease 

(p=0.007) (Figure 2.13B).   

The stability of the level of fibulin-1 between cell passages is not known and could be 

investigated in future studies. In these studies, cell cultures at less than 6 passages 

were used. 
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Figure 2.13 Parenchymal fibroblasts from patients with IPF produce more 

fibulin-1 than fibroblasts from patients without IPF. 
 

Primary parenchymal fibroblasts from patients with IPF (n=8) and age and gender 

matched patients without IPF (n=7) were grown for 72hours in 5% FBS/DMEM/1% 

pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep for 24hours and maintained in 

fresh 0.1% FBS/DMEM/1% pen-strep for a further 72hours. Supernatants and cell 

lysates were collected and analysed by western blot.  Densitometric values were 

normalised to total protein of the cell monolayer (supernatants, A) or GAPDH 

detected on the same blots (cell lysates, B).  Unpaired t-test **p<0.01. Values are 

expressed as median and interquartile range. 

Non-IPF fibroblasts are derived from the macroscopically normal tissue isolated from 

the tumour-free margin of resections from patients with non-small cell carcinoma.  

IPF idiopathic pulmonary fibrosis, GAPDH Glyceraldehyde 3-phosphate 

dehydrogenase, FBS foetal bovine serum, DMEM Dulbecco's Modified Eagle 

Medium, Pen-Strep penicillin-streptomycin 
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2.3.9 Serum levels of fibulin-1 between patients with IPF were similar across 

patient cohorts 

There were no significant differences in fibulin-1 levels between patients with IPF 

from the 3 cohorts used in this study. Patients with IPF from San Francisco had the 

poorest lung function of the groups (Table 2.9). 
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Table 2.9 Patient characteristics of the patients with IPF from 3 independent populations. 
 

 
Cohort 1 Cohort 2 Cohort 3 

  

Variable Sydney IPF (n=27) 
Modena IPF 

(n=28) 

San Francisco IPF 

(n=17) 
*ANOVA **Tukey's post-hoc 

(between group, p value) 

 
Mean SD Mean SD Mean SD p value 

Age, yr 67.7 7.7 65.9 10.1 71.6 9.7 0.225 n/a 

BMI, kg/m2 30.5 6.4 n/a n/a n/a n/a n/a n/a 

Baseline FEV1%, % predicted 82.7 20.5 80.6 22.0 72.3 14.0 0.248 n/a 

Baseline FVC%, % predicted 78.2 19.9 77.7 21.6 62.4 14.3 0.021 
(1 vs 3, 0.03) 

(2 vs 3, 0.04) 

Baseline DLCO%, % predicted 41.0 16.2 42.3 18.0 38.9 15.6 0.838 n/a 

Baseline CPI, units 51.0 12.2 49.0 14.5 57.8 10.0 0.129 n/a 

Baseline TLC%, % predicted 66.8 11.2 75.6 12.1 62.0 13.0 0.039 (2 vs 3, 0.03) 

First blood draw serum fibulin-1, units 2.0 0.7 2.0 1.1 2.2 1.4 0.800 n/a 

    

 
Number % Number % Number % 

  

Male 21 77.80 10 35.70 10 83.30 0.00 
(1 vs 2, 0.002) 

(2 vs 3, 0.008) 

History of smoking 17 63.00 17 60.70 11 70.60 0.21 n/a 

*One way analysis of variance (ANOVA) 

**Significant ANOVA comparisons were then analysed post-hoc for between group differences using Tukey’s 

IPF idiopathic pulmonary fibrosis, SD standard deviation, n/a not applicable, yr years, FEV1 forced expiratory volume in 1 second, FVC forced 

vital capacity, DLCO diffusing capacity of carbon monoxide, CPI composite physiologic index, TLC total lung capacity
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Patients with IPF, combined from the 3 independent populations, had significantly 

higher serum fibulin-1 levels than subjects without lung disease (Figure 2.14).  
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IPF (San  Francisco n=17)

IPF (Modena n=28)�
 

Figure 2.14 Patients with IPF had significantly higher levels of serum fibulin-1 

compared to subjects without lung disease. 
Serum fibulin-1 levels in patients with IPF, measured by western blot analysis of 

equal volumes of serum, were normalised against a standard serum sample loaded 

onto every gel.  Densitometric values were transformed to natural log values before 

analysis.  Data were adjusted for age, gender and smoking history. (ANCOVA, 

Sydney cohort n=27, black circle, San Francisco cohort n=17, black square, Modena 

cohort n=28, grey diamond, post-test Tukey’s ***p=0.006, median ± 25th & 75th 

percentiles).  

IPF idiopathic pulmonary fibrosis, ANCOVA analysis of covariance
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2.3.10 Serum fibulin-1 was increased in patients with IPF who progressed 

compared to those who remained stable 

The utility of serum fibulin-1 as a biomarker of disease progression in patients with 

IPF was then investigated. There were a total of 72 patients with IPF and of those 48 

had follow up information available. Patient characteristics of the patients with IPF 

used in the progression analysis are found in Table 2.10. 

Table 2.10 Characteristics of patients with IPF used in progression analysis 
 

  All IPF Stable Progressed p 

value

* 
  n=72 n=21 n=27 

  Mean SD Mean SD Mean SD 

Age, yr 68 9 65 11 70 9 ns 

FEV1, % predicted 79 20 79 19 76 20 ns 

FVC, % predicted 74 20 78 18 68 21 ns 

DLco, % predicted 41 16 48 18 33 14 0.012 

CPI, units 52 13 44 14 58 10 0.002 

TLC, % predicted 67 13 75 12 63 12 0.027 

Serum fibulin-1, 

units 

2.04 1.05 1.59 0.83 2.34 1.18 0.013 

              p 

value

** 
  Number % Number % Number % 

Male 41 57 10 48 15 56 ns 

History of smoking 45 63 14 74 19 70 ns 

*P value for Kruskal-Wallis test 

**P value for Pearson Chi-squared test 

 

Of the total of 72 patients with IPF, 48 had follow up information available. 

Continuous data of patients with IPF that either remained stable or progressed in the 

year following blood draw were compared by the Kruskal-Wallis test, and categorical 

data were compared with Pearson’s chi-squared test. 

IPF idiopathic pulmonary fibrosis, SD standard deviation, yr years, FEV1 forced 

expiratory volume in 1 second, FVC forced vital capacity, DLco diffusing capacity of 

carbon monoxide, CPI composite physiologic index, TLC total lung capacity, ns non 

significant 
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Patients with IPF who later experienced a progression event had a higher level of 

serum fibulin-1 at the time of blood draw compared to patients with IPF who 

remained stable (Table 2.10). As expected, and as supported by evidence in the 

literature, those who progressed also had a poorer DLCO%, CPI and TLC% than those 

that remained stable (Best et al. 2008).   

2.3.11 Serum fibulin-1 predicts disease progression in patients with IPF 

To investigate the ability of serum fibulin-1 levels to discriminate between patients 

who progressed and those who remained stable, receiver-operating characteristic 

(ROC) curves were constructed. 

The area under the ROC curve was 0.71 (95%CI 0.57-0.86, p=0.012) (Figure 2.15A). 

Kaplan-Meier curves showed that IPF patients with a serum fibulin-1 level > 1.6 units 

had a shorter progression-free survival time than those with ≤ 1.6 units (p=0.003) 

(Figure 2.15B) 
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Figure 2.15 Serum fibulin-1 level predicts disease progression patients with IPF. 
Patients with IPF were followed up for at least one year (365 ± 1 day) following blood 

draw. (A) Fibulin-1 levels in patients who progressed (n=27) were compared to the 

levels in patients who did not progress (n=21) and a receiver operating characteristic 

(ROC) curve was generated. (B) Kaplan-Meier survival curves showing time to 

progression event were generated. Patients who had a serum fibulin-1 of less than 1.6 

units (n=23, dashed line) were compared to patients who had a level of more than 1.6 

units (n=25, solid line). Circles on each line represent time censoring. Mantel-Cox log 

rank **p=0.003.  

AUC area under the curve, CI confidence interval, IPF idiopathic pulmonary fibrosis 
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From the ROC, thresholds of serum fibulin-1 were used to estimate the ability of 

serum fibulin-1 to predict disease progression. The sensitivities and specificities of the 

test are found in Table 2.9. 

Three threshold values differing in their respective sensitivities and specificities were 

chosen for further analysis. The three thresholds are ≤ 1.1 units, ≤1.6 units and ≤2.9 

units.  

At a threshold of 1.6 units, serum fibulin-1 identified patients with IPF who 

progressed with 70% sensitivity and 71% specificity. At thresholds of 1.1 and 2.9 

units, the sensitivities and specificities were 93% and 33%, and 30% and 90% 

respectively (Table 2.11).   
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Table 2.11 Validity of serum fibulin-1 thresholds in patients with IPF to predict 

disease progression 
 

Representative 

threshold value 

Sensitivity Specificity Used for 

further 

analysis 

0.697 100% 5%  

0.815 100% 14%  

1.085 93% 33% * 

1.309 89% 38%  

1.355 85% 48%  

1.417 74% 48%  

1.535 70% 62%  

1.592 70% 71% * 

1.810 52% 71%  

1.857 48% 76%  

2.076 41% 81%  

2.500 37% 86%  

2.888 30% 90% * 

3.088 26% 90%  

3.497 15% 90%  

Selected threshold values from the ROC curve (Area under the curve = 0.71, 95% 

confidence interval 0.57 – 0.86, p=0.012, n=48). Values with * were used for further 

analysis 

IPF, idiopathic pulmonary fibrosis



Page 112 of 252 

 

 

2.3.12 Patients with IPF and a high level of serum fibulin-1 had a shorter 

progression-free survival time than those with a low level of serum 

fibulin-1 

Additional threshold levels were also analysed for their ability to predict disease 

progression in patients with IPF. At three thresholds of serum fibulin-1, those that had 

a higher level of serum fibulin-1 had a shorter progression-free survival time 

compared to those that had a lower level of serum fibulin-1 at the time of blood draw. 

The case processing summary for these comparisons is found in Table 2.12. 

The progression-free survival rates of patients with IPF with high or low serum 

fibulin-1 levels at the time of blood draw were also significantly different if 

thresholds of 1.1 units or 2.9 units were used to stratify the groups (1.1 units p=0.016, 

2.9 units p=0.019) (Table 2.12). 
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Table 2.12 Patients with IPF who presented with a high level of serum fibulin-1 

had a shorter progression free survival time compared to those who had a low 

level of serum fibulin-1 
 

   Average time to progression event (days) 

Threshold 1.1 

units 

Total N N of 

Progressed 

Estimate Std. 

Error 

95% CI p value 

Lower Upper 

Low fibulin-1 10 2 1772 360 1066 2478 0.016 

High fibulin-1 38 25 704 167 377 1031 

Threshold 1.6 

units 

Total N N of 

Progressed 

Estimate Std. 

Error 

95% CI p value 

Lower Upper 

Low fibulin-1 23 8 1509 241 1036 1982 0.003 

High fibulin-1 25 19 433 156 128 738 

Threshold 2.9 

units 

Total N N of 

Progressed 

Estimate Std. 

Error 

95% CI p value 

Lower Upper 

Low fibulin-1 39 20 1056 197 670 1441 0.019 

High fibulin-1 9 7 215 35 146 283 

The progression-free survival time of patients who presented with a high level of 

fibulin-1 (greater than the threshold of 1.1, 1.6 or 2.9) and low level of fibulin-1 (less 

than the threshold of 1.1, 1.6 or 2.9) were compared using the Mantel-Cox log rank 

test.  N= number, IPF= idiopathic pulmonary fibrosis, CI confidence interval 
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2.3.13 Measurement of serum fibulin-1 predicts progression in patients with IPF 

independent of other predictors.  

Due to the small number of patients with IPF available for follow up analysis, only a 

few traditional predictors of disease progression were included in the cox regression 

models. The predictors of disease progression in IPF included in the models were 

baseline age, history of smoking, FVC%, and DLCO%.  

An increase in one unit of serum fibulin-1 level in patients with IPF carried a 

significant hazard ratio for the likelihood of disease progression of 1.69 (95%CI 1.2 – 

2.3, p=0.001).   

Univariate logistic regression showed that age, history of smoking, or FVC% did not 

predict disease progression in our study population.  When the variables serum 

fibulin-1, age, history of smoking, FVC%, and DLCO% were analysed simultaneously 

in the multivariate model, the independent contribution of serum fibulin-1 increased 

to 2.11 (95%CI 1.3 – 3.5, p=0.004) (Table 2.13). DLCO% did not predict disease 

progression in the multivariate model. 

Finally, an IPF patient with a level of serum fibulin-1 > 1.6 units was 5 times more 

likely to progress compared to a patient with a level of serum fibulin-1 ≤ 1.6 units 

(HR 5.2, 95% CI 2.0 – 13.3, p=0.001). 
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Table 2.13  Measurement of serum fibulin-1 predicts progression in patients with 

IPF 
 

*Significant p value of <0.05 

FVC forced vital capacity, DLCO diffusing capacity of carbon monoxide, HR hazard 

ratio, CI confidence interval, Yr years 

 

 

 

Fibulin-1 was increased in all the tested materials from patients with IPF compared to 

subjects without lung disease or without IPF. Importantly, a potential source for the 

increased serum fibulin-1 was the mesenchymal fibroblast. Furthermore, levels of 

serum fibulin-1 were able to discriminate between IPF patients who later experienced 

a decline in lung function and those who did not.  

Fibulin-1 may play an important role in the pathogenesis of pulmonary fibrosis and 

may be useful to identify patients with IPF who are at a greater risk of disease 

progression. 

 

 

 

  Univariate Multivariate 

Variable HR 95% CI  P value HR 95% CI P value 

Serum fibulin-1, 

units 

1.691 1.225 2.335 0.001* 2.109 1.271 3.500 0.004* 

Age, yr 1.019 0.981 1.058 0.332 0.965 0.913 1.019 0.200 

History of smoking 0.939 0.411 2.149 0.882 0.879 0.291 2.649 0.818 

FVC, % predicted 0.989 0.970 1.009 0.280 0.990 0.965 1.015 0.428 

DLco, % predicted 0.971 0.942 1.000 0.050* 0.997 0.960 1.035 0.875 
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2.3.14 Summary of findings 

Fibulin-1 is increased in materials from patients with IPF compared to individuals 

without IPF (Table 2.14) 

 

Table 2.14 Fibulin-1 is increased in patients with IPF compared to subjects 

without IPF 

Sample material 
Without IPF* IPF 

Serum ���� ↑ 

Whole lung lysate ���� ↑ 

Parenchymal tissue ���� ↑ 

Primary fibroblasts 

• mRNA 

• Cell- secreted protein 

• Cell-associated 

protein 

���� 
���� 
 

���� 

↑ 
↑ 
 
↑ 

� = present/detected 

↑ = increased compared to without IPF 

 

*Primary fibroblasts were derived from the macroscopically normal tissue isolated 

from the tumour-free margin of resections from patients with non-small cell 

carcinoma. All other material was obtained from subjects without lung disease  

 mRNA messenger ribonucleic acid, IPF idiopathic pulmonary fibrosis 
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2.4 Discussion 

In this chapter, the importance of fibulin-1 as a biomarker in IPF was examined. This 

chapter contained four subsections. Firstly the presence of fibulin-1 in the serum of 

patients with various ILDs was characterised and the level was related to that patient’s 

lung function measurements. Secondly the presence of fibulin-1 in the tissue of 

patients with IPF specifically was identified and measured, and the levels were also 

related to the lung function measurements. Parenchymal fibroblasts from patients with 

IPF and age and gender matched patients without IPF were then examined as a 

potential source of fibulin-1. Finally, the prognostic utility of serum fibulin-1 in 

patients with IPF was explored. 

This is the first study linking the levels of fibulin-1 with the severity and disease 

progression of IPF, a relentlessly progressive disease with high mortality rates. 

Increased levels of fibulin-1 were found in the serum, lung tissue, and primary 

fibroblast cultures of patients with IPF  

and importantly, a high serum fibulin-1 level may serve as a biomarker for future 

disease progression.  Moreover, the findings were derived from four separate patient 

cohorts from three different countries, which is important, as IPF is a variable and 

global disease.  

Raised fibulin-1 levels in the serum and bronchoalveolar lavage fluid of patients with 

asthma have been previously observed by our research group (Lau et al. 2010), a 

disease in which fibrosis of the airways is associated with disease progression (Royce 

et al. 2012).  Across diseases in which fibrosis occurs there may be similar 

mechanisms contributing to fibrogenesis (Kisseleva and Brenner 2008).  Hence, it 
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was logical to explore whether fibulin-1 would also be important in a disease 

predominantly characterised by fibrosis, ie IPF.  This was the case, as serum, tissue 

and fibroblast-produced fibulin-1 were increased in patients with IPF compared to 

subjects without IPF. Interestingly, while the full length of fibulin-1 was considered to 

be 100kDa, as this is the size of fibulin-1 isolated from placenta and used as the 

positive control in the western blots, serum appears to contain at least four sizes of 

proteins that were detected with the fibulin-1 antibody used in these studies. Within 

the constraints of this study, it was not possible to sequence the remaining bands to 

investigate whether these additional bands represented smaller fragments of fibulin-1 

or other proteins.    

Alterations in fibulin-1 levels have been observed in a number of diseases.  Plasma 

levels of fibulin-1 were identified as a potential marker for kidney malfunction 

(Neiman et al. 2011), and increased levels of fibulin-1 were detected in sera from 

patients with preeclampsia (Liu et al. 2011). It is likely that the feature common to 

these diseases and the lung disease that was the focus of this study is active fibrosis.   

Serum fibulin-1 levels were elevated across patients with various ILDs and were not 

specifically increased in patients with IPF. The average level of serum fibulin-1 

increased as the likelihood of lung fibrosis increased within the ILDs. However, when 

age, gender and smoking history were taken into account, only patients with IPF have 

levels of serum fibulin-1 significantly greater than subjects without lung disease. 

Further investigation into the levels of fibulin-1 in other ILDs is warranted.   

Sarcoidosis is an ILD which rarely progresses to fibrosis while IPF is invariably 

fibrotic. This relationship between increasing levels of serum fibulin-1 and extent of 

fibrosis was supported by the inverse correlations between serum fibulin-1 and lung 
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function among patients with ILD, although serum fibulin-1 did not correlate with 

lung function among patients with IPF alone. However, this could be because the 

study population was recruited from tertiary referral centres and there were limited 

numbers of IPF patients with lung function at the higher end of the scale (>70 % 

predicted). 

In addition, in this study progression was defined as a decline in lung function. So if a 

patient had stable but poor lung function at presentation, then unless the patient died, 

the patient would not have been considered to have "progressed". Progression was a 

yes/no (discrete) event in this study. Correlation is a continuous relationship. Serum 

fibulin-1 doesn't perfectly identify which patients will progress (70% specificity at 1.6 

units cutoff). It may be possible to overcome the limit of random chance (p<0.05) 

with a greater study population.  

In correlation analysis, the strength of the relationship determines the minimum 

number of samples that are needed in order to correctly reject the null hypothesis 

(which is that there is no relationship between the two variables in question). The 

relationship between serum fibulin-1 at blood draw in patients with ILD and their 

corresponding DLCO% value was rho=-0.25 and the number of samples tested was 73 

in this study. If it is assumed that this sample relationship was true in only patients 

with IPF then more than 45 samples would be needed to test in order to be able to 

correctly reject the null hypothesis. Although our study consisted of 72 patients with 

IPF, only 36 of these patients had a lung function test within 15 (±5) days of blood 

draw and therefore could be included in the correlation analysis. Measurements of 

serum fibulin-1 and lung function would be needed from nine more patients with IPF 

in order to be able to correctly reject the null hypothesis. 
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If fibulin-1 were to be biologically important during active fibrosis, then levels of 

fibulin-1in the serum could stem from  increased secretion of fibulin-1 by lung 

fibroblasts. The excess fibulin-1 may also be deposited into the ECM and therefore 

promote to disease progression by modulating cell behaviour such as increasing 

platelet adhesion (Godyna et al. 1995). Fibulin-1 is a provisional matrix protein 

(Williams and Schwarzbauer 2009) and as such is one of the first proteins to be 

deposited during the wound healing cascade (Midwood et al. 2004). While much of 

the focus in the literature has centred on the importance of collagen to fibrosis 

(Calabresi et al. 2007), it is possible that smaller ECM connecting proteins 

(Bensadoun et al. 1996), like fibulin-1 which binds to elastic fibres (Roark et al. 

1995), can also act to alter the mechanical properties of the lung (Le Saux et al. 2008). 

In this study, as the levels of tissue fibulin-1 increased, the lung function of the 

patients decreased.   

Fibulin-1 is a known modulator of the ECM during the progression of some diseases 

(Argraves et al. 2009) and therefore may be a protein to target during fibrogenesis. 

There is emerging evidence that the changes in ECM composition are relevant for 

understanding pulmonary fibrosis, as a “fibrotic” matrix induces myofibroblast 

differentiation (du Bois 2010). The “activated” fibroblast is central to the 

development of fibrogenesis (Liu et al. 2010) and our cellular studies on fibroblasts 

have reinforced the importance of fibulin-1 in IPF.  

The primary parenchymal fibroblasts derived from patients with IPF produced more 

secreted and cell-associated fibulin-1 than fibroblasts derived from patients without 

lung disease. This dysregulation was seen at the transcriptional level as fibroblasts 

from patients with IPF also produced more mRNA under basal conditions than 
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fibroblasts from subjects without lung disease. The contribution of particular ECM 

molecules to the development of fibrogenesis has not been extensively investigated in 

IPF, as research has largely focused on either chemokines or circulating progenitors 

of myofibroblasts as targets to dampen the “pro-fibrotic environment” that drives 

fibrosis (Naik et al. 2012).  Although it is possible that excessive production of 

secreted fibulin-1 by the resident fibroblasts of IPF patients contributes to the 

increased fibulin-1 level found in the blood, a second hypothesis could be that damage 

to alveolar epithelial cells also causes increased fibulin-1 secretion.  

As shown in the ROC curve analysis, serum fibulin-1 has predictive value for acute 

disease progression in patients with IPF which is an important finding for the future 

management of IPF. The AUC analysis showed that there was a 71% chance that 

there was a higher serum fibulin-1 level in a patient with IPF who experienced a 

progression event within 1 year compared to a patient who remained stable. In 

addition, patients with a high level of serum fibulin-1 had a higher likelihood of 

progression and a shorter progression-free survival time compared to their low 

fibulin-1 counterparts.  

A number of serum biomarkers of disease severity and progression in IPF have been 

identified and reviewed (Richards et al. 2012; Vij and Noth 2012).  These include 

mucin-1 (KL-6), surfactant proteins SP-A and SP-D, matrix metalloproteinases 1 and 

7, chemokines CCL18 and CXCL8, calgranulin B (S100A12), intracellular adhesion 

molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) as well as 

periostin (Naik et al. 2012). Other biomarkers include the gene polymorphism,  mucin 

5B (MUC5B)(Seibold et al. 2011).   
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This shows that it is likely that numerous factors contribute to fibrogenesis. The value 

of our focus on fibulin-1 lies in the fact that we have been able to study it in multiple 

patient cohorts and multiple forms - soluble and tissue incorporated - and have been 

able to relate these to physiological measurements of lung function. In addition, while 

all lung fibroblasts are capable of producing fibulin-1, an increased production of 

fibulin-1 likely reflects the activated fibrogenic state of fibroblasts derived from 

patients with IPF.    

It is crucial to identify factors which are able to categorise which IPF patients will 

rapidly decline compared to those patients with a more stable form of the disease. 

Further follow up studies to confirm the potential of fibulin-1 levels for the 

stratification of patients with IPF are urgently needed. This information will enable 

clinicians to optimise early referral to transplantation programs and palliative care. 

Additionally, fibulin-1 may be a useful tool to stratify patients for inclusion in future 

therapeutic trials, and to guide future management decisions. 

In the future, it would be worthwhile to measure fibulin-1 levels in fibroblasts and 

tissues isolated from patients with the other ILDs, in particular sarcoidosis, due to its 

rare fibrotic component. Differences in levels of certain biomarkers between ILDs 

would help in identify which proteins are surrogate markers of fibrogenesis, not just 

interstitial lung disease.  
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Chapter 3. Other matrix proteins and fibulin-1 

3.1 Introduction 

It is the extracellular matrix (ECM) that allows tissue to withstand tensile forces and 

collagen is the main source of this strength (Canty and Kadler 2005). Fibroblasts are 

the main source of ECM in the lung (Hutchison et al. 2013) and changes in the ECM 

can influence the behaviours of the cells that populate it (Klingberg et al. 2013). The 

role of fibroblasts in pulmonary fibrosis will be investigated in greater detail in 

Chapter 4. Fibroblasts routinely deposit collagen and other ECM molecules during 

normal tissue homeostasis but this process becomes uncontrolled during pathological 

wound healing such as fibrosis (Phan 2002).  

The process of collagen and elastin fibril formation from their insoluble components 

is a complicated process that is outside the scope of this thesis however, the general 

overview is that the matrix is a collagen scaffold from which a network of interlacing 

proteins is formed (Bosman and Stamenkovic 2003).  

Collagen is the most abundant protein in the ECM, accounting for about 40% of the 

total protein mass of the ECM, and densely fibrotic tissue display increased type I 

(Raghow et al. 1985) and type IV collagens (Specks et al. 1995). Collagen has long 

been the hallmark protein of pulmonary fibrosis (Reiser and Last 1983). Collagen IV 

was first reported to be increased in the serum of patients with idiopathic pulmonary 

fibrosis (IPF) in 1996 (Kasuga et al. 1996). It was shown that measurement of serum 

concentrations would be reflective of fibrotic changes occurring in the lung.  
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Because the ECM is a complicated and diverse structure, it is likely that there are 

numerous ECM proteins that are dysregulated in the context of pulmonary fibrosis. In 

support of this, there are many differences in the composition of decellularized ECM 

from normal and fibrotic lungs that have recently been described (Booth et al. 2012). 

The bioactive nature of the ECM, the majority of which is deposited by pathogenic 

fibroblasts,  is increasingly being recognized as a key factor of the fibrogenic process 

(Klingberg et al. 2013).  

Because of this, three other ECM proteins related to fibulin-1 that are also produced 

by lung fibroblasts were selected for investigation in this study (Figure 3.1). 

Fibronectin,  periostin, and tenascin-C are members of the matricellular class of 

proteins so named because of their ability to modulate cell-matrix interactions (Frantz 

et al. 2010). Like other matricellular proteins including fibulin-1, these proteins are 

typically expressed at high levels during periods of development, but only appear in 

adult tissue during repair or disease (Strieter 2008; Kaarteenaho et al. 2010; Midwood 

et al. 2011).    

Collagen IV interacts directly with fibulin-1 during development (Kubota et al. 2012) 

and with plasma fibronectin during infection (Hauk et al. 2008). Collagen I interacts 

directly with periostin during collagen I fibre formation (Kii et al. 2010), and collagen 

I increases tenascin C expression in smooth muscle cells (Jones et al. 1999). 
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Figure 3.1 Extracellular matrix molecules produced by lung fibroblasts that 

were investigated in this thesis 
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Fibronectin was the first discovered binding partner of fibulin-1 (Argraves et al. 1989) 

and is essential in normal tissue maintenance (Tran et al. 1995). It is a large 220-250 

kDa molecule that plays a key role in cell migration and adhesion in addition to being 

the initial scaffold for the ECM. Fibronectin provides the initial “wound plug” during 

haemostasis, the first stage of wound healing. In association with fibrin, the 

fibronectin/fibrin clot seals the wound before collagen is deposited by contractile 

mesenchymal cells (Stenman et al. 1980).   

Fibulin-1, which also binds fibrinogen (Tran et al. 1995), is found alongside 

fibronectin and can inhibit the effect of fibronectin on cell attachment and spreading 

(Twal et al. 2001). Fibronectin increases cell attachment and spreading through 

activation of its integrins, which are the main class of matrix receptors that allow 

cross-talk between cells and the matrix (Bosman and Stamenkovic 2003). Binding 

sites on fibronectin for other ECM proteins, such as periostin (Kudo 2011) and 

tenascin-C (Kudo 2011), further demonstrate how complex the relationship between 

ECM proteins is.   

Periostin is a secreted, 90kDa, cell adhesion protein that plays an important role 

during connective tissue development (Hamilton 2008). Fibroblasts produce 

significant amounts of periostin (Hamilton 2008), as well as fibulin-1, and 

immunohistochemical staining shows increased deposition of periostin in fibrotic 

tissue (Naik et al. 2012). Periostin has been implicated in the sub-epithelial fibrosis of 

asthma (Takayama et al. 2006) and serum levels of periostin have been shown to 

predict disease progression in patients with IPF (Naik et al. 2012). 

The binding sites for fibronectin, tenascin-C and collagen I are located adjacent to 

each other on periostin (Norris et al. 2007). This allows periostin to acts as a structural 
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bridge between the larger fibres and to support the deposition of tenascin-C into the 

matrix (Kii et al. 2010).  

Tenascin-C is member of the tenascin family, which are known to be overexpressed in 

diseases like asthma and certain cancers (Kaarteenaho-Wiik et al. 2000), although 

tenascin-C is the only member of the family which forms hexamers. Interestingly, like 

fibulin-1 and fibronectin before it, tenascin-C is associated with fibrin expression in 

tissue (Brellier et al. 2011) and it is thought that its hexameric structure allows it to 

support the larger fibres in the ECM (Kii et al. 2010).  

In a role that can be thought of as opposing the actions of fibronectin, tenascin-C is an 

anti-adhesive molecule (Midwood et al. 2011) which also increases the expression 

and activity of matrix metalloproteinases (Imanaka-Yoshida 2012). One mechanism 

driving these processes is shared with fibulin-1. Both tenascin-C and fibulin-1 bind to 

the HepII domain on fibronectin (Balbona et al. 1992; Williams and Schwarzbauer 

2009) and block syndecan-4 (cell surface receptor also implicated in pulmonary 

fibrosis (Jiang et al. 2010) binding.  

Serum tenascin-C (Inoue et al. 2013), serum periostin (Yamaguchi et al. 2013) and 

serum fibronectin (Lafuma et al. 1987) have been reported to be increased in fibrotic 

lung conditions, thus supporting the hypothesis that serum ECM molecules can be 

used as biomarkers of disease progression in pulmonary fibrosis. Although there have 

been several blood-based biomarkers of disease progression in patients with 

pulmonary fibrosis reported (Richards et al. 2012) the utility of the aforementioned 

ECM molecules as biomarkers, as well as their inter-relationships (Table 3.1),  has not 

been fully explored.  
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Table 3.1 ECM proteins interact with each other as well as with collagen 
 

 Fibronectin Periostin Tenascin-C Collagen 

Fibulin-1 Fibulin-1 binds 

to fibronectin 

(Argraves et al. 

1989) 

Fibulin-1 and 

periostin are 

both increased 

in Hodgkin’s 

lymphoma 

(Kischel et al. 

2011)  

Fibulin-1 shares 

adhesion 

mechanism with 

tenascin-C 

(Williams and 

Schwarzbauer 

2009) 

Fibulin-1 

interacts directly 

with Col IV 

(Kobayashi et 

al. 2007) 

Fibronectin  Periostin binds 

to fibronectin 

(Takayama et al. 

2006) 

Tenascin-C 

binds to 

fibronectin 

(Midwood et al. 

2011) 

Collagen 

interacts via 

membrane 

protein with 

fibronectin 

(Stenman et al. 

1980) 

Periostin   Tenascin-C 

structurally 

supported by 

periostin (Kii et 

al. 2010) 

Collagen I fibre 

formation 

regulated by 

periostin 

(Hamilton 2008) 

Tenascin-C    Collagen I 

induces  

tenascin-C 

(Jones et al. 

1999) 
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The physical properties of connective tissues are determined by the amount, type and 

composition of the ECM (Culav et al. 1999). Importantly, it has been shown that the 

interconnecting ECM proteins such as periostin can act on the biomechanical 

properties of the tissue they populate (Norris et al. 2007). It is known that the 

mechanical properties of the lung, similar to any organ, are dependent on the physical 

formation of the collagen and elastic fibres and that these differences may be due to 

differences in ECM composition (Antunes et al. 2009). 

As shown in Chapter 2, increased levels of fibulin-1 were an accurate indication of 

disease progression of patients with IPF. It is the aim of this chapter to establish the 

strength and specificity of that relationship by comparing the performance of fibulin-1 

as a biomarker in IPF against the performance of three other ECM proteins known to 

be implicated in pulmonary fibrogenesis.  

This chapter aimed to establish if the relationship between fibulin-1 and pulmonary 

fibrosis was unique, or if similar pathological associations (such as the ability to 

predict disease progression in patients with IPF) could be seen in other ECM proteins 

also thought to be involved in fibrogenesis. In addition, a group of patients with 

chronic obstructive pulmonary disease (COPD) was included to investigate if ECM 

dysregulation was a function of any diffuse parenchymal disease.  
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3.2 Methods 

3.2.1 Patient data  

The patients with and without IPF from whom the fibroblasts were derived were 

previously described in Chapter 2 (Table 2.8). The patients with COPD from whom 

the fibroblasts were derived are described in Table 3.10. 

3.2.2 Fibroblast isolation, cell culture and sample collection 

Primary parenchymal fibroblasts were cultured and set up for experiment as 

previously described in Chapter 2 (Methods 2.2.5, 2.2.6, 2.2.7). 

3.2.3 RNA isolation and QPCR 

Primers from Invitrogen were obtained for periostin (Hs01566734_m1), tenascin-C 

(Hs01115665_m1), and fibronectin (Hs00365052_m1). RNA isolation and QPCR 

were performed as described in Chapter 2 (Methods 2.2.8). 

3.2.4 Sandwich ELISA 

Cell-secreted periostin, tenascin-C and fibronectin were measured by enzyme-linked 

immunosorbent assay (ELISA) antibody sets (for periostin and tenascin-C) or 

complete kits (for fibronectin). The specifics of each assay are summarised in Table 

3.2. For fibronectin, all reagents were provided as part of the kit (Life Science cat# 

L00170025). 

The ELISA assay was similar for each of the ECM proteins. For periostin and 

tenascin-C, polystyrene 96-well Corning COSTAR flat-bottom plates (Fisher 

Scientific, Sydney) were coated with 100µL/well of the primary antibody of interest 
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diluted in phosphate buffered saline (PBS pH7.2, 137mM NaCl, 2.7mM KCl, 100mM 

Na2HPO4, 2mM KH2PO4) as summarised in Table 3.2. The plates were sealed with 

Parrafilm (Holgate Scientific, NSW) and incubated overnight at 4°C. The primary 

antibody was then decanted on clean paper towels and each well was washed three 

times with wash buffer (0.05%v/v Tween-20 in PBS). After washing, 300µL of 

1%BSA/PBS (blocking solution) was added to each well and the plates were sealed 

and incubated for one hour at room temperature on a shaker. For fibronectin, the 

plates provided as part of the kit were pre-coated with the primary antibody and 

samples were assayed immediately.  

Plates coated with anti-periostin and anti-tenascin-C antibodies were decanted and 

washed three times as before and 100µL of cell-free supernatant (containing only 

secreted extracellular proteins) was added to each well in duplicate. Standards for all 

three ECM proteins were diluted in a serial two-fold manner with the top standard 

concentrations for each assay listed in Table 3.2. Wells with standards also contained 

100µL. The final standard concentration was the respective antibody diluents without 

any standard protein present. In all plates, a sample of cell-free culture media was also 

added as a baseline control for the endogenous level of ECM protein.  

After incubation for two hours at room temperature on a shaker (periostin, tenascin-C) 

or 90 minutes at 37°C (fibronectin), the plates were again decanted and washed as 

before and 100µL/well of the secondary antibody was added and plates were 

incubated at room temperature as described in Table 3.2. Plates were again decanted 

and washed as before and incubated with 100µL/well streptavidin-horseradish 

peroxidase (HRP) diluted in 1% BSA/PBS and incubated as described in Table 3.2.  
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Lastly, plates were decanted and washed and 50µL of the substrate solution 3,3’,5,5’-

Tetramethylbenzidine (TMB) (Zymed, CA, USA) was added to each well. Plates were 

incubated in the dark for 5-15 minutes (dependent on colour development) and the 

reaction was stopped with the addition of 50µL/well of stop solution (0.1M H3PO4) 

per well. Plates assayed for fibronectin used TMB and stop solution provided as part 

of the kit. The optical density (OD) was read at 450nm using a microplate reader and 

the amount of each ECM protein was determined from the OD of the corresponding 

standard curves.  

Table 3.2 Concentrations of the materials used in secreted ECM measurements 

 Periostin kit 
(R&D cat#DY2955) 

Tenascin-C  
(R&D cat# 

MAB3358, BAF3358) 

Fibronectin kit  
(Life Science cat# 

L00170025) 

Primary antibody 4µg/mL in PBS 1µg/mL in PBS Pre-coated plates 

Blocking media 1%BSA/PBS 1%BSA/PBS Not applicable 

Standard 6000pg/mL � 

0pg/mL 

30ng/mL � 0ng/mL 

(R&D cat#3358-TC) 

100ng/mL � 0ng/mL 

Samples Diluted as necessary 

in PBS 

Diluted as necessary 

in PBS 

Diluted as necessary 

in PBS 

Secondary antibody 0.4µg/mL in PBS 0.5µg/mL in PBS Kit reagents 

Detection antibody 1:200 (R&D 

cat#DY998) 

1:200 (R&D 

cat#DY998) 

Kit reagents 

Substrate TMB (Zymed cat#00-

2023) 

TMB (Zymed cat#00-

2023) 

Kit reagents 

Stop solution 1M H3PO4 1M H3PO4 Kit reagents 

Lower limit of 

detection 

93.8pg/mL 0.47ng/mL 0.72ng/mL 

 

3.2.5 Immunohistochemistry, image capture and analysis  

Immunohistochemistry was performed in the same fashion as for fibulin-1 and 

described in Chapter 2 (Methods 2.2.12). Like fibulin-1, sections that were 

investigated for the levels of periostin and fibronectin did not require antigen 

retrieval. Antibodies directed against both periostin and fibronectin were produced 

from rabbit and therefore used the same isotype control (Table 3.3).  
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In addition, because the same DAB system was used for visualisation (2.2.12) the 

same image capture and deconvolution techniques were employed for both periostin 

and fibronectin quantification (2.2.13, 2.2.14).  

Table 3.3. Concentrations of the primary antibodies used for immunohistochemistry 

 Source Final concentration 

Periostin antibody ABCAM (cat# 

ab14041) 

0.5µg/mL 

Fibronectin antibody Sigma (cat# F3648) 0.5µg/mL 

Rabbit IgG isotype 

control 

Dako  0.5µg/mL 

 

3.2.6 Statistical Analysis 

Graphs were made using GraphPad Prism 6 Software for Windows (Version 6 

GraphPad Software Inc. 1992-2007). Statistical analysis was done using SPSS 

(Version 21 IBM Corporation 1989-2012). 

Distributions of serum, parenchyma and fibroblast levels of periostin, tenascin-C and 

fibronectin, and lung function parameters were carried out in the same fashion as 

described in Chapter 2 (Methods 2.2.15). 

It was not necessary to determine the repeatability and reliability of the periostin, 

tenascin-C or fibronectin measurements as these investigations were carried out by 

sandwich ELISA and a standard curve was used in every experiment for 

quantification.   

Between-group differences, receiver-operating characteristic (ROC) curves, and 

correlations between serum and tissue ECM proteins and lung function parameters 

were performed as described in Chapter 2 (Methods 2.2.15). 
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Because the same patients were investigated for the levels of fibulin-1 and collagen 

(Chapter 2), as well as for periostin, tenascin-C and fibronectin (Chapter 3), 

correlation analysis investigating the relationship between ECM proteins was 

possible. Correlations between fibulin-1, periostin, tenascin-C and fibronectin in the 

serum of patients with interstitial lung disease (ILD) were performed with Spearman’s 

rank correlation co-efficients. 

Serial sections were used to investigate the levels of fibulin-1, collagen, periostin and 

fibronectin in patients with IPF. This allowed for additional correlation analysis 

between the ECM proteins in parenchyma tissue to be performed.  

Statistical analysis was performed as described in Chapter 2 (Methods 2.2.15). 
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3.3 Results 

3.3.1 Serum periostin is increased in patients with IPF 

Serum periostin was increased in patients with IPF compared to subjects without lung 

disease and patients with other ILDs after adjustments for potential confounding 

variables – age, gender and smoking history. Unlike serum fibulin-1, serum periostin 

was not increased in patients with IPF compared to patients with sarcoidosis (Figure 

3.2).  
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Figure 3.2 Serum periostin is increased in patients with IPF compared to 

subjects without lung disease. 
Serum periostin levels were measured by ELISA. Values were adjusted for age, 

gender and smoking history. (ANCOVA, n=168, post-test Tukey’s *p<0.05. 

***p=0.006, median ± 25th & 75th percentiles). 

”Other” refers to patients with connective tissue-disease related ILD (n=26), Non-

specific interstitial pneumonia (n=4), lymphangioleiomyomatosis (n=4), and drug-

induced ILD (n=1). 

HP hypersensitivity pneumonitis, ILD interstitial lung disease, IPF idiopathic 

pulmonary fibrosis, ANCOVA analysis of covariance 
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3.3.2 Serum tenascin-C is decreased in patients with IPF compared to patients 

with HP 

Interestingly, the level of tenascin-C was decreased in the patients with IPF compared 

to patients with HP (Figure 3.3).   

 

Non-Diseased ControlSarcoidosis HP Other ILD IPF

0

100
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300

(n=17) (n=12) (n=32) (n=35) (n=72)

**

 

Figure 3.3 Serum tenascin-C is decreased in patients with IPF compared to 

patients with HP 
Serum tenascin-C levels were measured by ELISA. Values were adjusted for age, 

gender and smoking history. (ANCOVA, n=168, post-test Tukey’s **p<0.01, median 

± 25th & 75th percentiles). 

”Other” refers to patients with connective tissue-disease related ILD (n=26), Non-

specific interstitial pneumonia (n=4), lymphangioleiomyomatosis (n=4), and drug-

induced ILD (n=1). 

HP hypersensitivity pneumonitis, ILD interstitial lung disease, IPF idiopathic 

pulmonary fibrosis, ANCOVA analysis of covariance 
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3.3.3 Serum fibronectin is not increased in patients with ILD 

There was no difference in serum fibronectin level between the 5 groups (Figure 3.4). 

Non-Diseased ControlSarcoidosis HP Other ILD IPF
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50000

100000
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(n=17) (n=7) (n=32) (n=35) (n=72)

 

Figure 3.4 Serum fibronectin is not increased in patients with ILD 
Serum fibronectin levels (ELISA) were adjusted for age, gender and smoking history. 

(ANCOVA, n=168, median ± 25th & 75th percentiles). 

”Other” refers to patients with connective tissue-disease related ILD (n=26), Non-

specific interstitial pneumonia (n=4), lymphangioleiomyomatosis (n=4), and drug-

induced ILD (n=1). 

HP hypersensitivity pneumonitis, ILD interstitial lung disease, IPF idiopathic 

pulmonary fibrosis, ANCOVA analysis of covariance 
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3.3.4 Serum periostin and tenascin-C correlate with lung function in patients 

with ILD 

Next the relationship between the serum level of the three ECM proteins and lung 

function in patients with ILD was examined. Serum draw and lung function 

measurements were taken no more than 15 (±5) days apart.  

Both fibulin-1 (Table 2.5) and periostin correlated significantly with poorer percent 

predicted FVC (FVC%), percent predicted DLCO (DLCO%), composite physiologic 

index (CPI) and percent predicted TLC (TLC%)  measurements(Table 3.4) in patients 

with ILD. Tenascin-C only correlated with FVC% while fibronectin did not correlate 

with any measurement (Table 3.4).  

None of the four ECM proteins examined correlated with age, gender or smoking 

history.  
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Table 3.4 Serum ECM proteins correlate with lung function in patients with ILD 
 

  Periostin Tenascin-C Fibronectin 

FEV1, % predicted -0.091 -0.236 0.039 

FVC, % predicted -0.265* -0.287* -0.006 

DLco, % predicted -0.308* -0.178 0.189 

CPI, units 0.377** 0.213 -0.091 

TLC, % predicted -0.312* -0.225 -0.083 

Age, yr 0.131 0.172 0.132 

Gender 0.031 0.043 0.103 

Smoking History 0.124 -0.104 0.140 

Lung function parameters and demographic information was obtained for 73 patients 

with interstitial lung disease (ILD). The time between serum collection and lung 

function measurements was no more than 15 days (±5). Serum periostin, tenascin-C 

and fibronectin levels were measured by ELISA. Continuous variables were analysed 

with spearman’s rank correlation analysis and categorical variables were analysed by 

Pearson chi-square test.  

*p<0.05 ,**p<0.01  

 

3.3.5 Serum ECM proteins correlate with each other in patients with IPF 

Serum fibulin-1 and periostin both correlated strongly with tenascin-C in patients 

with IPF (Table 3.5). In correlation analysis, a coefficient of more than 0.3 is 

considered a “large” effect and is therefore more likely to be biologically meaningful 

(Hayek and Heyer 2005).
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Table 3.5 The correlation between the four serum ECM proteins is disease group 

specific 

 

Serum fibulin-1 was measured by western blot and quantified using densitometric 

analysis. Serum periostin, tenascin-C and fibronectin levels were measured by 

ELISA.  

Spearman’s rank correlation analysis (*p<0.05, **p<0.01) 

”Other” refers to patients with connective tissue-disease related ILD (n=26), Non-

specific interstitial pneumonia (n=4), lymphangioleiomyomatosis (n=4), and drug-

induced ILD (n=1). 

ECM extracellular matrix, HP hypersensitivity pneumonitis, ILD interstitial lung 

disease, IPF idiopathic pulmonary fibrosis 

 

 

 

Sarcoidosis 

(n=12) Fibulin-1 Periostin Tenascin-C Fibronectin 

Fibulin-1  .126 -.119 .000 

Periostin .126  .329 -.679 

Tenascin-C -.119 .329  -.536 

Fibronectin 0.000 -.679 -.536  

 

HP 

(n=32) Fibulin-1 Periostin  Tenascin-C Fibronectin 

Fibulin-1  .188 .285 .020 

Periostin .188  .017 -.468
*
 

Tenascin-C .285 .017  .355 

Fibronectin .020 -.468
*
 .355  

“Other “ 
ILD (n=35) 

 Fibulin-1 Periostin Tenascin-C Fibronectin 

Fibulin-1  .078 .163 -.001 

Periostin .078  .341 .312 

Tenascin-C .163 .341  .019 

Fibronectin -.001 .312 .019  

IPF 
(n=72) Fibulin-1 Periostin Tenascin-C Fibronectin 

Fibulin-1  .212 .416** .126 

Periostin .212  .406** -.189 

Tenascin-C .416** .406**  -.232 

Fibronectin .126 -.189 -.232  
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3.3.6  No difference in serum periostin, tenascin-C or fibronectin between 

patients with IPF who progressed and those patients who remained stable 

There was no difference in serum ECM level between those patients with IPF who 

experienced significant lung function decline  (≥ 10% fall in FVC%, ≥ 15% fall in 

DLCO%, or death)  during the year following blood draw and those patients who 

remained stable in the same time period (Table 3.6). 

Table 3.6 Serum periostin, tenascin-C or fibronectin levels in patients with IPF 

who progressed or who remain stable  

 

 Stable (n=21) Progressed (n=27) 

 

(ng/mL) 
Mean SD Mean SD 

P 

Value 

Periostin 54.26 39.03 48.46 27.39 .549 

Tenascin-C 46.20 18.05 60.66 43.95 .173 

Fibronectin 14916.43 18669.12 23920.83 46436.72 .481 

Patients with IPF were followed up for at least one year (365 ± 1 day) following blood 

draw. 

Serum periostin, tenascin-C and fibronectin levels were measured by ELISA.  

Between group differences were assessed by unpaired t-tests. All p values were > 0.05 

and therefore not considered significant. 

IPF idiopathic pulmonary fibrosis, SD standard deviation 

 

 

 

3.3.7 Periostin, tenascin-C, fibronectin do not predict disease progression in 

patients with IPF 

In order to investigate the utility of each ECM protein as a biomarker of disease 

progression, ROC curves were constructed (Figure 3.5).  
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Figure 3.5 ROC analysis shows that neither periostin, tenascin-C or fibronectin 

are able to discriminate disease progression in patients with IPF. 
The utility of periostin (A), tenascin-C (B) and fibronectin (C) as biomarkers of 

disease progression were modelled using receiver-operating characteristic curve 

analysis in patients with idiopathic pulmonary fibrosis (IPF) (n=48).
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The area under the curve for each of the three potential biomarkers is shown in Table 

3.7. Serum periostin, tenascin-C and fibronectin levels were unable to accurately 

identify patients with IPF who progressed. 

 

Table 3.7 ROC curve analysis of periostin, tenascin-C and fibronectin  

ROC Analysis 
Area under 

the curve 

95% Confidence 

Interval 
P value 

Periostin .487 .319  to .655 .876 

Tenascin-C .613 .450  to .776 .189 

Fibronectin .591 .389  to .794 .347 

Patients with IPF were followed up for at least one year (365 ± 1 day) following blood 

draw. Serum periostin, tenascin-C and fibronectin levels were measured by ELISA. 

Serum levels in patients who progressed (n=27) were compared to the levels in 

patients who did not progress (n=21). A receiver operating characteristic (ROC) curve 

was generated and the area under the curve was calculated. 

 

 

3.3.8 Tissue periostin and fibronectin levels in patients with IPF 

Periostin and fibronectin have been reported to be increased in lung tissue of patients 

with IPF. As shown in Chapter 2, tissues from patients with IPF showed increased 

levels of fibrosis as measured by total collagen deposition (Figure 2.9). In addition to 

having higher levels of fibulin-1 (Figure 2.10), tissue from patients with IPF also had 

increased levels of periostin compared to tissue from subjects without lung disease 

(Figure 3.6A).  Levels of fibronectin were not different between tissue from patients 

with IPF and subjects without lung disease (Figure 3.6B).  
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Figure 3.6 Levels of tissue periostin and fibronectin in patients with IPF and 

subjects without lung disease 
Levels of (A) tissue periostin and (B) tissue fibronectin were measured by 

immunohistochemistry. Paraffin-embedded formalin fixed tissue sections from 5 

subjects without lung disease and 17 patients with IPF were stained for the proteins 

individually and each was counterstained for all other tissue components.  

Levels of each protein were quantified separately by computer aided image analysis 

using ImageJ and reported as the area positively stained for each protein as a 

percentage of the total area stained. Twenty images of each tissue section were 

analysed, 2-6 tissue sections were measured for each subject. Subsequently, 

measurements of each image were averaged together to obtain a single value per 

patient.  

Between group differences were compared using the unpaired t-test (****p<0.0001, 

**p<0.01). 

IPF = idiopathic pulmonary fibrosis  

 

 

 

Representative images of tissue from a subject without lung disease (A-D) and from a 

patient with IPF (E-H) are found in Figure 3.7. 
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Figure 3.7 Immunohistochemical stains of total collagen, fibulin-1, periostin, and 

fibronectin. 
Representative paraffin-embedded formalin fixed parenchymal tissue sections from a 

subject without lung disease or a patient with IPF were stained for total collagen 

(green, with cell cytoplasm in red), fibulin-1 periostin or fibronectin (brown). Cell 

nuclei are blue in fibulin-1, periostin and fibronectin stains.  
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3.3.9 Tissue levels of total collagen, periostin, or fibronectin do not correlate 

with lung function in patients with IPF 

The relationship between the level of tissue ECM proteins and lung function in 

patients with IPF who had undergone a diagnostic biopsy within 30 (±5) days of a 

lung function test was then investigated. Unlike tissue fibulin-1, tissue periostin did 

not correlate with either FEV%1 or FVC% (Figure 3.8). In addition, the relationship 

between the ECM proteins and other lung function variables was also examined in 

Table 3.8. Age did not correlate with any ECM protein level. 
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Figure 3.8 Tissue periostin does not correlate with percentage predicted FEV1 or 

FVC in patients with IPF 
 

Paraffin-embedded formalin fixed tissue sections were stained for periostin and 

counterstained for all other tissue components. Levels of periostin were quantified by 

computer aided image analysis using ImageJ and reported as the area positively 

stained for periostin as a percentage of the total area stained. Twenty images from 

each tissue section were analysed and 2-6 tissue sections were measured for each 

subject.  Averaged tissue level of periostin for each patient (n=5) was compared to 

their (A) FEV1 and (B) FVC percentage predicted measurements using Pearson 

product-moment coefficients.  

Time between biopsy and lung function measurements were within 30 days (±5). 

 

FEV1 forced expiratory volume in 1 second, FVC forced vital capacity, IPF idiopathic 

pulmonary fibrosis  

 

 

 

 



Page 149 of 252 

 

Table 3.8 Tissue ECM protein levels do not correlate with lung function 

measurements or age in patients with IPF 
 FEV1% FVC% DLco% CPI TLC% Age, Yrs 

Total 

Collagen 
-.169 -.178 -.215 .226 .208 .003 

Periostin -.253 -.249 -.225 .245 -.034 .045 

Fibronectin -.564 -.491 -.518 .522 -.447 -.067 

Two to six surgical lung biopsies and lung function parameters were obtained from 

each patient with idiopathic pulmonary fibrosis (n=5-7). Tissue ECM protein level 

was measured by immunohistochemistry. Twenty images of each tissue section were 

analysed and 2-6 tissue sections were measured for each subject. The relationship 

between tissue ECM level and lung function variables were examined by Pearson 

correlation analysis and P>0.05 all cases. The time between biopsy and lung function 

measurements were within 30 days (±5).  

FEV1% percentage predicted forced expiratory volume in 1 second, FVC% 

percentage predicted forced vital capacity, DLCO% percentage predicted diffusing 

capacity of carbon monoxide, TLC% percentage predicted total lung capacity, CPI 

composite physiologic index, IPF idiopathic pulmonary fibrosis, Yrs years, ECM 

extracellular matrix  

 

Finally, the relationships between ECM proteins continued into the tissue. Fibulin-1 

correlated strongly with periostin with 26.4% (Pearson r
2
 = 0.264, p<0.05) with one 

protein (eg. Fibulin-1) able to predict the other (eg. Periostin). Tissue periostin 

correlated even more strongly with fibronectin and collagen as it was able to predict 

52.9% of the level of tissue fibronectin (Pearson r
2
 = 0.529, p<0.01) and 66.6% of 

total collagen (Pearson r
2
 = 0.666, p<0.01) (Figure 3.9, Table 3.9). 

Table 3.9 Tissue ECM proteins correlate with each other in patients with IPF 

 Fibulin-1 Periostin Fibronectin Total Collagen 

Fibulin-1  0.514* 0.479 0.286 

Periostin   0.727*** 0.816*** 

Fibronectin    0.251 

Total collagen     

Two to six surgical lung biopsies and lung function parameters were obtained from 

each patient with idiopathic pulmonary fibrosis (IPF) (n=17). Tissue ECM protein 

levels was measured by immunohistochemistry. Twenty images of each tissue section 

were analysed and 2-6 tissue sections were measured for each subject. The 

relationships between tissue ECM levels were examined by Pearson correlation 

analysis. (*p<0.05, ***p<0.001) 

ECM extracellular matrix  

 



Page 150 of 252 

 

 
Figure 3.9 Tissue ECM proteins correlate with each other in patients with IPF 
Paraffin-embedded formalin fixed tissue sections from 17 patients with IPF were stained for 

each ECM protein and counterstained for all other tissue components. Levels of ECM 

proteins were quantified by computer aided image analysis using ImageJ and reported as the 

area positively stained for ECM protein as a percentage of the total area stained. Twenty 

images of each tissue section were analysed, 2-6 tissue sections were measured for each 

subject. Subsequently, measurements of each image were averaged together to obtain a single 

value per patient and shown by a single solid dot. Significant (p<0.05) Pearson’s product 

moment correlations are shown with the linear regression line. 
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For ease of comparison, the fibulin-1 levels in fibroblasts derived from patients with 

and without IPF have been repeated from Chapter 2 in the following sections.  

3.3.10 Fibroblasts from patients with IPF do not produce more periostin or 

fibronectin mRNA 

Information of the patients from whom the non-IPF and IPF fibroblasts were derived 

are found in Table 2.8. Information of the patients from whom the COPD fibroblasts 

were derived are found in Table 3.10. 

Table 3.10 Patient information from whom COPD fibroblasts were derived 

Donor # Gender Age Diagnosis 
Reason for 

Surgery 

COPD 1 Male 62 COPD Transplant 

COPD 2 Male 54 COPD Transplant 

COPD 3 Male 63 COPD Transplant 

COPD 4 Male 58 COPD Transplant 

Parenchymal fibroblasts were isolated from lung tissue obtained from donors 

undergoing transplantation. Pulmonary function and smoking data were not available. 

COPD chronic obstructive pulmonary disease 
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Figure 3.10 shows the mRNA levels of the four ECM proteins of interest in this 

thesis. For ease of reference, results of fibulin-1 mRNA in non-IPF and IPF 

fibroblasts are repeated from Figure 2.12. 

Tenascin-C mRNA production was significantly lower in fibroblasts from IPF 

patients compared to those from patients with COPD and subjects without lung 

disease. Fibulin-1 mRNA was the only one of the ECM proteins to be increased in 

fibroblasts from patients with IPF compared to patients without IPF  
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Figure 3.10 Basal mRNA levels of ECM proteins in fibroblasts. 

Primary parenchymal fibroblasts from patients with IPF (n=5) and age and gender 

matched patients without IPF (n=4) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep, 

for 24 hours and maintained in fresh 0.1% FBS/DMEM/1% pen-strep for a further 72 

hours. Non-IPF fibroblasts are derived from the macroscopically normal tissue 

isolated from the tumour-free margin of resections from patients with non-small cell 

carcinoma. 500 ng of mRNA was converted to cDNA for this comparison. *p<0.05 

one way ANOVA with Tukey’s post-test for between group comparisons.  

Data are expressed as 1/delta cycle threshold to 18S (∆Ct) to enable a greater number 

to reflect more mRNA. 

FBLN1 fibulin-1, COPD chronic obstructive pulmonary disease, IPF idiopathic 

pulmonary fibrosis, FBS foetal bovine serum, DMEM Dulbecco’s Modified Eagle 

Medium, Pen-Strep penicillin-streptomycin 
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3.3.11 Basal production of fibulin-1, periostin and tenascin-C by fibroblasts 

To investigate a possible source of serum periostin and tenascin-C the basal levels of 

the two additional proteins secreted by the same fibroblasts used in Chapter 2 (Figure 

2.13) were measured. In addition, the levels of cell-secreted fibulin-1, periostin, and 

tenascin-C from fibroblasts derived from patients with COPD was also measured. 

Only fibulin-1 was increased in fibroblasts from patients with IPF compared to 

subjects without lung disease and patients with COPD (Figure 3.11).  
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Figure 3.11 Basal production of secreted ECM proteins by primary fibroblasts 
 
Primary parenchymal fibroblasts from patients with IPF (n=8) and age and gender matched 

patients without IPF (n=7) and patients with COPD (n=4) were grown for 72 hours in 5% 

FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep for 24 hours and 

maintained in fresh 0.1% FBS/DMEM/1% pen-strep for a further 72 hours. Supernatants were 

collected and analysed by western blot (fibulin-1) and ELISA (periostin, tenascin-C).  All 

values were normalised to total protein of the cell monolayer as measured by BCA assay. 

Between group differences were assessed by ANOVA with Tukey’s post-test analysis 

*p<0.05. Values are expressed as median and interquartile range. 

Non-IPF fibroblasts are derived from the macroscopically normal tissue isolated from the 

tumour-free margin of resections from patients with non-small cell carcinoma.  

COPD chronic obstructive pulmonary disease, ECM extracellular matrix, BCA 

Bicinchroninic Acid, IPF idiopathic pulmonary fibrosis, FBS foetal bovine serum, DMEM 

Dulbecco's Modified Eagle Medium, Pen-Strep penicillin-streptomycin 
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3.3.12  Summary of results from biomarker investigation 

The aim of this chapter was to compare the utility of three other ECM proteins that 

have been implicated in disease progression of patients with pulmonary fibrosis and 

are also ECM proteins that relate (eg. bind same proteins) to fibulin-1. Fibulin-1 stood 

out as a better biomarker of disease progression in patients with IPF compared to 

periostin, tenascin-C and fibronectin. Fibulin-1 was increased in all the patient 

materials that were examined in this study and successfully predicted disease 

progression in patients with IPF, independent of baseline lung function measurements. 

A summary of the findings covered so far in this thesis is found in Table 3.11. 

Table 3.11 Summary of the biomarker investigation  
 
Research Question Fibulin-1 Periostin Fibronectin  Tenascin-C 

1  Is the biomarker 

increased in the serum 

of patients with IPF 

compared to controls?  

Yes  Yes No  No  

2  Does the biomarker 

predict progression in 

patients with IPF?  

Yes No  No  No  

3  Is the biomarker 

increased in the tissue 

of patients with IPF 

compared to controls?  

Yes Yes No   

4  Do fibroblasts from 

patients with IPF 

produce increased 

mRNA of the 

biomarker?  

Yes No  No  No 

5  In patients with IPF, 

do fibroblasts produce 

increased levels of the 

soluble biomarker 

protein?  

Yes No  No 

6 In patients with IPF, 

do fibroblasts produce 

increased levels of the 

cellular biomarker 

protein? 

Yes    

Grey boxes indicate research questions outside the scope of this thesis. 

mRNA messenger ribonucleic acid, IPF idiopathic pulmonary fibrosis 
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3.4 Discussion 

Because there are likely to be many ECM proteins that are dysregulated during 

pathogenic fibrogenesis, three additional ECM proteins were investigated in this 

Chapter to elucidate if they also were biomarkers of disease progression in patients 

with IPF. This chapter demonstrates that the ECM proteins, periostin, tenascin-C and 

fibronectin were not biomarkers of disease progression in patients with IPF. None of 

these additional ECM proteins were able to successfully predict which patients with 

IPF were at greatest risk of lung function decline within one year of blood draw.  

Published evidence suggests that serum levels of ECM proteins (like collagen) can be 

reflective of fibrotic changes in the lung (Kasuga et al. 1996), and in this study, the 

ECM protein periostin, which binds collagen, was increased in the serum of patients 

with IPF compared to subjects without lung disease. However, prior findings in the 

literature that reported an increased serum periostin level in patients with IPF who 

progressed compared to those who remained stable (Naik et al. 2012) were not 

replicated in this study. One explanation of this discrepancy may be the difference in 

the blood fraction that was studied.  

In this study serum periostin was examined whereas Naik and colleagues investigated 

plasma periostin levels in patients with IPF. The average plasma periostin level in 

patients with IPF in the Naik study was approximately 21 µg/mL but the average 

serum periostin level in patients with IPF in the current study was only 2.9 ng/mL. 

The main difference between plasma and serum is the lack of clotting factors and cells 

in the serum (Burnouf et al. 2013) and therefore it is possible that the level of 

periostin in the serum would be less than in the plasma.  
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Further support of our initial hypothesis that fibulin-1 is a unique ECM protein 

biomarker of disease progression in IPF, was drawn from ROC curve analysis, which 

showed that of the four serum ECM biomarkers tested, only fibulin-1 was able to 

accurately discriminate between patients with IPF who progressed or those who 

remained stable. While the 95% confidence intervals for the area under the curve of 

serum fibulin-1 were wide, they did not cross 0.5. This is an indication that serum 

fibulin-1 is worthy of further study as a biomarker. If the 95% confidence intervals 

cross 0.5, then the biomarker has no better than a 50% chance of discriminating 

between the two cases being compared (in our case whether a patient was likely to 

progress or remain stable), which was the case for the other three ECM proteins.  

The three ECM proteins periostin, tenascin-C and fibronectin have roles in the 

progression of fibrosis in patients with IPF (Carey et al. 2010; Lepparanta et al. 2012; 

Naik et al. 2012). Furthermore, increased periostin mRNA has been implicated as a 

characteristic of myofibroblasts in fibroblastic foci. Although accuracy of disease 

progression prediction was the characteristic most important in this biomarker study, 

alterations in ECM levels may still reflect changes in lung function.  

When the relationship between lung function and serum ECM proteins in patients 

across all ILDs was examined, three of the four (all except fibronectin) ECM 

molecules were increased as FVC% decreased. In addition, both serum fibulin-1 and 

periostin were increased as DLCO% and TLC% decreased, and as CPI increased. 

Taken together, we begin to illustrate an environment of elevated serum ECM 

proteins that is reflective of an overall poorer state of lung function and increased 

disease severity in patients with pulmonary fibrosis.  
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Lung function decreases as the normal architecture of the lung is replaced by fibrotic 

tissue. Tissue levels of both fibulin-1 and periostin were increased in patients with IPF 

compared to subjects without lung disease, but only fibulin-1 correlated with poorer 

lung function in patients with IPF. It is not hard to imagine why an interlacing, 

bridging protein like fibulin-1 would be found in greater amounts in the tissue of 

subjects whose lung function is poor. The physiological effect of increased collagen 

deposition is not only a consequence of excessive protein production, but also in its 

changed 3-D structure. A good example of this is the fact that increased collagen 

deposition is associated with both IPF (McKleroy et al. 2013) and emphysema 

(Martin-Mosquero et al. 2006), yet the physiological outcome on lung mechanics is 

drastically different (Faffe and Zin 2009).   

The ability of periostin to modulate collagen and fibronectin deposition has been 

shown in mice (Norris et al. 2007; Kudo 2011) and in this study, we showed that as 

tissue periostin increases so does tissue collagen and fibronectin in the tissue of 

patients with IPF. Similarly, the relationship between periostin and tenascin-C (Kii et 

al. 2010) was reproduced as the proteins correlated in the serum of patients with IPF. 

The effect size is used to describe the strength of the relationship between  two 

variables and in this case, the relationships between serum fibulin-1 and tenascin-C 

and between serum tenascin-C and periostin may be considered moderately correlated 

as the Pearson’s correlation coefficients were only 0.4. This effect size may not be 

accurately reflect the importance of the relationship in biological context as small 

changes in lung 3D structure may result in a pronounced effect on lung function . 

The biomechanics of lung parenchyma is largely determined by the structural 

arrangement of collagen, elastin and proteoglycans (Suki et al. 2005). The 
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macromolecules collagen, elastin and fibronectin are capable of forming fibres thicker 

than several hundred nanometres which form a network that extends from the central 

airways to the alveolar ducts. The orientation of these large fibres is determined by 

the smaller interlacing proteins (Culav et al. 1999) and this is the first study to 

highlight correlations between fibulin-1, periostin, tenascin-C and fibronectin ECM 

proteins in the serum and tissue of patients with IPF.  

While increasing levels of tissue fibulin-1 moderately correlated with increasing 

levels of periostin, it did not correlate with fibronectin, as we might have expected. 

This may be due to insufficient power in this study to be able to correctly reject the 

null hypothesis. However, strong correlations were seen between tissue periostin and 

fibronectin and between periostin and total collagen as expected from the literature 

(Hamilton 2008; Kii et al. 2010; Kudo 2011). Interestingly, tissue fibronectin and 

total collagen did not correlate with each other. This may be explained by the 

replacement of fibronectin with collagen during fibre maturation as seen in various 

stages of development (Dessau et al. 1980).   

Expression of certain ECM proteins is limited in normal adult tissues, but increased 

during development/wound healing (Bosman and Stamenkovic 2003) and tenascin-C 

is one such ECM protein (Imanaka-Yoshida 2012). To our knowledge this is the first 

study to show that serum tenascin-C has potential as another biomarker in IPF, as it 

was decreased in the serum of patients with IPF compared to patients with HP, a 

disease of similar clinical presentation. Conversely, increases in tenascin-C have been 

shown in the BALF of patients with IPF (Kaarteenaho-Wiik et al. 1998). This may 

reflect a different source of tenascin-C as both the BALF and route of experimental 

fibrosis involve the epithelial cells.  
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However, except for fibulin-1, none of the other three ECM proteins tested were 

increased in the serum and had increased tissue levels that correlated with poorer lung 

function in patients with IPF. Those two factors (increased serum and tissue levels of 

the candidate protein) are central in being able to distinguish which patients exhibit an 

active fibrogenic state and therefore are an indication of the usefulness of that protein 

as a biomarker. 

Activated fibroblasts are known to be the mesenchymal cell most responsible for 

ECM deposition (Kisseleva and Brenner 2008). Fibroblasts are the key driver in the 

fibrotic process and the matrix they produce influences those fibrogenic changes 

(Klingberg et al. 2013). In pulmonary fibrosis, the diseased matrix is drastically 

altered (Booth et al. 2012; Tschumperlin et al. 2012) and this was reflected in the 

dysregulation of the ECM proteins in fibroblasts derived from patients with IPF.  In 

this study, basal mRNA expression of tenascin-C is decreased in IPF fibroblasts 

compared to both Non-IPF and COPD fibroblasts. In contrast, there was no difference 

in either periostin or fibronectin mRNA levels between patients with IPF and subjects 

without lung disease and this supports our hypothesis that fibulin-1 is a unique signal 

of fibrotic fibroblasts.  

In the search for a serum biomarker of active fibrogenesis it is important to establish a 

potential source of the serum protein for future targeted therapies. To complete this 

investigation, the levels of soluble ECM protein production secreted from the cultures 

of primary parenchymal fibroblasts were compared between Non-IPF, COPD and IPF 

fibroblasts. Neither cell-secreted periostin or tenascin-C production was increased in 

IPF fibroblasts compared to Non-IPF or COPD fibroblasts, results which strengthen 
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the conclusion that increased fibulin-1 production may be a unique target of activated, 

and resident, fibrotic fibroblasts. 

This study is the first to report that while it is likely that many ECM proteins are 

dysregulated in the context of idiopathic fibrotic disease, fibulin-1 is a better 

biomarker than three other ECM proteins that have been identified as participants in 

the fibrotic process. The variable clinical course in IPF emphasizes the need for serum 

biomarkers of disease progression that reflect active fibrogenic states in the lung and 

identify patients who are at a higher risk of lung function decline. In the search for a 

biomarker, measurements of fibulin-1 may be able to identify patients with IPF who 

are most likely to rapidly require lung transplantation. 
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Chapter 4. The effect of TGFβ1 stimulation on 

fibulin-1 production in fibroblasts 

4.1 Introduction 

An injury to the lung sets off a tightly regulated chain of events that under normal 

circumstances results in restoration of the lung architecture following closure of the 

wound. However, in the event of pathological fibrosis, the repair process becomes 

unrestrained and extracellular matrix (ECM) deposition becomes excessive.   

Mesenchymal cells are responsible for the production of most of the ECM and 

therefore the building blocks of fibrosis. Fibroblasts produce the vast majority of the 

matrix proteins and provide the basis of the ECM in the interstitium (Frantz et al. 

2010). Although pulmonary fibrosis is thought to be driven by an abnormal epithelial 

repair process that propagates throughout the interstitium (Crosby and Waters 2010), 

it is the dysregulated ECM production by lung fibroblasts that alters the physical 

architecture of the tissue and results in the loss of lung function (Faffe and Zin 2009).  

Impaired communication between epithelial cells and resident fibroblasts drives 

aberrant wound repair (Selman and Pardo 2002). Epithelial cells line the airways, 

cover the alveolar surface and airway epithelial cells can exhibit a thickened basement 

membrane, which is a specialized ECM, during fibrogenesis. Both epithelial cells and 

fibroblasts can also produce cytokines that further perpetuate the disease process 

(Lomas et al. 2012) by recruiting other cells to the injury site. For example, 

circulating fibrocytes, which are potential progenitors of fibroblasts, are recruited to 

the lung by chemo-attractant cytokines produced by alveolar epithelial cells and are a 
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potential source of the increased fibroblast numbers in IPF (Andersson-Sjoland et al. 

2008).  

The pro-fibrotic cytokine transforming growth factor (TGF)-β1 is a major driver in 

fibrogenesis and is overproduced in IPF (Lepparanta et al. 2012). TGFβ1 is also 

important in differentiation of the fibroblast into its pathological and contractile 

phenotype during pulmonary fibrosis (Kage and Borok 2012), which is characterized 

by the expression of alpha-smooth muscle actin (α-SMA) (Zhang et al. 1996).  

Stimulation of fibroblasts with TGFβ1 induces ECM proteins like fibronectin 

(Doerner and Zuraw 2009) and type I collagen (Kenyon et al. 2003).  TGFβ1 can also 

bind to other ECM components such as elastin and decorin (Prud'homme 2007), two 

ECM molecules that affect the overall physiology of the lung (Antunes et al. 2009). 

TGFβ1 is also known to induce production of periostin  (Naik et al. 2012) and 

tenascin-C (Fitch et al. 2011). Furthermore, latent TGFβ1 co-localizes with 

fibronectin, indicating that the storage of TGFβ1 and therefore availability are 

modulated in the fibrotic lung and emphasizing the role of the ECM as an active 

player in fibrogenesis (Lepparanta et al. 2012).  

The ECM protein fibulin-1 is increased following stimulation with TGFβ1 in airway 

smooth muscle (ASM) cells derived from patients with asthma (Lau et al. 2010). In 

the asthmatic airway, TGFβ1 is increased and associates with fibroblasts as well as 

ASM (Howell and McAnulty 2006). As part of the fibrogenic remodelling process in 

asthma, there is excessive subepithelial deposition of ECM molecules that result in 

increased basement membrane thickness and, importantly, stiffening of the 

tracheobronchial walls (Royce et al. 2009).  
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In the lung, as with other organs, mechanical forces can directly influence cellular 

behaviour, especially during embryonic development (Kubota et al. 2012). The 

mechanical properties of the lung parenchyma are in part determined by the structure 

of the alveolar walls (Suki et al. 2005) and in particular, fibulin-1 is necessary for the 

embryonic development of the alveolar septa (Figure 4.1) (Kostka et al. 2001).  

 

 

 

 

 

 

 

Figure 4.1 Fibulin-1 is necessary for proper lung development of mice.  
Hemotoxylin (blue, cell nuclei) and eosin (red, collagen/muscle) staining of 

mouse tissue sections show that mice which are homozygous-deficient for 

fibulin-1 exhibit improperly expanded sacculi and thickened septa in the lungs 

at mouse embryonic day 18.5 (E18.5) and one day after birth (P1) compared to 

heterozygous controls.  

Bar 100µm 

Adapted with permission from (Kostka et al. 2001). 
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Fibulin-1 also has an important role in elastic fibre formation (Roark et al. 1995) as it 

binds to tropoelastin (Sasaki et al. 1999) and several of the central proteoglycans 

involved in ECM structure such as nidogen (Kubota et al. 2006) and versican 

(Aspberg et al. 1999), the latter of which is increased in pulmonary fibrosis 

(Bensadoun et al. 1996). Elastic fibres are also important determinant fibres in the 

biomechanical properties of the lung and changes in ECM composition in the context 

of fibrotic disease often includes the dysregulation of elastic fibre molecules (Faffe et 

al. 2006).  

In the lung parenchyma, elastic properties are largely determined by the orientation of 

elastin fibres and the loosely-arranged collagen fibres that form a spring-like network 

around cells and vessels (Rocco et al. 2004). Tenascin-C, in concert with periostin, is 

largely responsible for the proper orientation of collagen fibres (Kii et al. 2010). 

Fibulin-1 binds fibronectin (Argraves et al. 1989) and is also known to alter the 

binding of tenascin-C to fibronectin (Williams and Schwarzbauer 2009). The nature 

of the interconnected relationship between large structural fibres (fibronectin and 

collagen) and smaller, bridging ECM proteins like fibulin-1 (as well as periostin, and 

tenascin-C) may be dysregulated within the fibroblasts themselves in the context of 

fibrotic disease, resulting in an overall stiffer lung because the fibroblasts that 

populate the ECM are also more stiff. Lung tissue from mice treated with bleomycin 

(an experimental model of pulmonary fibrosis in which interstitial collagen deposition 

is induced) is stiffer than lung tissue from saline-treated mice, as measured by atomic 

force microscopy (AFM) (Liu and Tschumperlin 2011)  but to date, there have been 

no investigations into the stiffness of primary lung fibroblasts derived from patients 

with and without pulmonary fibrosis.  
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AFM is a microscopy technique that has been used for decades in material science 

and has been used on organic materials since the late 1980’s (Marti et al. 1988). AFM 

first characterizes the topography of the material by measuring the deflection of a 

cantilever attached to a probe as it is passed over the cellular surface (Marti et al. 

1988). Secondly, it then estimates the stiffness of the tissue layer by measuring the 

resistance of the tissue to deformation by the cantilever/probe as it is indented into the 

tissue (Marti et al. 1988). A stiffer tissue would be more resistant to the pushing of the 

cantilever (Jalili and Laxminarayana 2004).  

Studies with lung fibroblast cell lines have demonstrated that TGFβ1 can increase 

fibroblast cell stiffness (Liu et al. 2010) and it is likely that a similar relationship can 

been seen in primary cells. Consequently, we were interested in using AFM to 

investigate the physical differences between individual primary fibroblast cells as they 

are grown in culture in both basal and fibrotic conditions using stimulation with 

TGFβ1.  

To this end, in this chapter we aimed to examine the effect of TGFβ1 on fibulin-1 

expression and production in fibroblasts derived from patients with IPF, COPD and 

from subjects without lung disease. Secondly, we aimed to confirm that TGFβ1 also 

increased the expression of the ECM proteins periostin, tenascin-C and fibronectin. 

Lastly we examined the morphology and stiffness of fibroblasts in the context of both 

a basal and TGFβ1-stimulated environment.  
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4.2 Methods  

4.2.1 Patient Data  

The patients from whom the fibroblasts were derived were previously described in 

Chapter 2 (Table 2.8) and Chapter 3 (Table 3.10).  

4.2.2 Fibroblast isolation and cell culture 

Primary parenchymal fibroblasts were cultured and set up for experiment as 

previously described in Chapter 2 (Methods 2.2.5, 2.2.6, 2.2.7). For atomic force 

microscope measurements, cells were washed twice with cold, sterile PBS and fixed 

for 20 minutes at room temperature with 10% neutral buffered formalin solution 

(Sigma Aldrich, Sydney, Australia). Cells were washed twice again with PBS as 

before. Cells were stored in sterile PBS at 4°C until probing.  

4.2.3 Stimulation with TGFβ1 

Activated TGFβ1 (R&D Systems, USA) recombinant protein was used in all 

experiments. For cell stimulation, TGFβ1 was diluted in quiescing media as described 

in Chapter 2 (Methods 2.2.7).   

4.2.4 RNA isolation 

RNA isolation was performed as described in Chapter 2 (Methods 2.2.7.1). 

4.2.5 Real-time reverse transcription polymerase chain reaction 

QPCR was performed as described in Chapter 2 (Methods 2.2.8). In addition to the 

primers that have been described in Chapter 2 (2.2.8.2) and Chapter 3 (Methods 

3.2.3), additional primers used in this chapter were for the specific isoforms of 
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fibulin-1 (A: custom made primer designed by previous PhD candidate Justine Lau 

((Lau et al. 2010)), B: Hs00972625_m1, C: Hs00242546_m1, D: Hs0019774_m1) 

and for IL-6 (Hs00174360_m1), α-SMA (Hs00426835_g1) and Fibulin-5 

(Hs00197064_m1).  

4.2.6 Secreted and cell-associated protein collection from cell cultures 

Cell secreted and cell-associated proteins were collected from primary parenchymal 

fibroblast cultures as described in Chapter 2 (Methods 2.2.7.2). 

4.2.7 Immunoblotting 

Immunoblotting was performed as previously described in Chapter 2 (2.2.9 and 

2.2.13) and analysed as described  in Chapter 2 (2.2.14).  

4.2.8 Sandwich ELISA 

The levels of periostin and tenascin-C were investigated by sandwich ELISA as 

previously described in Chapter 3 (3.2.4). Levels of the cytokines IL-6 and IL-8 were 

measured using antibody pairs from BD (Becton Dickinson & Co, USA), summarised 

in Table 4.1, using the ELISA method outlined in Chapter 3 (Methods 3.2.4). 

Table 4.1 Materials used in ELISAs for cytokine measurements 

 IL-6 set (BD cat#55520) IL-8 set (BD cat#555244) 

Primary antibody 1µg/mL  in 0.1M Na2HPO4 4µg/mL in PBS 

Blocking media 1% BSA/PBS 1% BSA/PBS 

Standard 1000pg/mL �0pg/mL 2000pg/mL � 0pg/mL 

Samples Diluted as necessary Diluted as necessary 

Secondary antibody 0.5µg/mL 40ng/mL  

Detection antibody 1:200 (R&D cat#DY998) 1:200 (R&D cat#DY998) 

Substrate TMB (Zymed cat#00-2023) TMB (Zymed cat#00-2023) 

Stop solution 1M H3PO4 1M H3PO4 

Lower limit of detection 47pg/mL 31pg/mL 
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4.2.9 Light microscopy 

Images of fibroblasts in culture were taken using an Camedia C4000 Zoom (Olympus, 

USA) digital camera attached to a CK2 light microscope (Olympus, USA) at 10x 

magnification. 

4.2.10 Atomic Force Microscopy 

Atomic force microscopy (AFM) was performed under the supervision and tutelage of 

Dr. Wojciech Chrzanowski (Faculty of Pharmacy, The University of Sydney). The 

analysis of the results was performed by Jade Jaffar.  

For atomic force microscope measurements, cells were washed twice with cold, 

sterile PBS and fixed for 20 minutes at room temperature with 10% neutral buffered 

formalin solution (Sigma Aldrich, Sydney, Australia). Cells were washed twice again 

with PBS as before. Cells were stored in sterile PBS at 4°C until probing. 

AFM was performed using an atomic force microscope from Asylum Research (Santa 

Barbara, CA, USA) with the IGOR Pro software (Version 6.3.4.1, Wavemetrics, 

Oregon, USA). The cantilever (Asylum Research, Santa Barbara, CA, USA) used was 

a silicone-nitrate base with a cone-shaped tip. The model used to fit the force curves 

generated by AFM was the Derjaguin–Muller–Toporov (DMT) model with the invols 

set to 147nm/V and the spring constant of the cantilever was set to 12.8 piconewtons 

per nanometer (pN/nm) as per the manufacturer’s instructions.  

The Poisson ratio of all the samples was set to 0.5. When material is stretched in one 

direction it will get thinner in the other two directions. The Poisson ratio is a measure 

of deflection of the sample and relates to the amount of compression that the material 

can undergo. This compression leads to a larger change in volume in materials with a 
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higher Poisson’s ratio. Most metals have a Poisson’s ratio between 0.25 and 0.35 

whereas rubber has a Poisson’s ratio of 0.5. Biological materials have a Poisson’s 

ratio of 0.5 because the indentation of the cantilever does not produce a permanent 

change in volume (Buzard 1992). The Poisson’s ratio is limited between -1 and 0.5.  

 Surface topography of fibroblasts was measured in contact mode, where the surface 

of the sample remains in contact with the tip of the cantilever. The scan rate for 

topography was 0.2Hz. Cell stiffness of the fibroblasts was measured by contact-

indentation mode, where the surface is indented by the cantilever tip and then 

retracted before the tip moves along to the next measurement point. The scan rate for 

cell stiffness was also 0.2Hz. 

4.2.11 Statistical Analysis 

Graphs were made using GraphPad Prism 6 Software for Windows (Version 6 

GraphPad Software Inc. 1992-2007). Statistical analysis was done using SPSS 

Statistics (Version 21 IBM Corporation 1989-2012). 

The effect of different concentrations of TGFβ1 was assessed using paired t-tests. 

Differences in the basal levels of ECM proteins between groups of fibroblasts were 

assessed by one-way ANOVA with Tukey’s post test correction for multiple 

comparisons. Differences between groups before and after stimulation with TGFβ1 

were assessed by two-way ANOVA with Tukey’s post test correction for multiple 

comparisons. 
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4.3 Results 

The basal levels of fibulin-1, periostin, tenascin-C and fibronectin were reported in 

the previous Chapters (fibulin-1, Figure 2.12, Figure 2.13; periostin/ tenascin-C/ 

fibronectin, Figure 3.10, Figure 3.11) and have been reproduced in this Chapter for 

comparison purposes. Graphical mRNA data is presented using 1/∆Ct levels on the y-

axis. Equal amounts of mRNA from each fibroblast line were converted into cDNA 

and levels of mRNA were quantified by QPCR.  The comparative (or ∆∆Ct) method 

was used to calculate the relative abundance of mRNA compared to the housekeeping 

gene 18S. Samples with a high amount of a particular mRNA transcript have a 

smaller delta Ct value because fewer cycles of PCR are required to amplify the target 

gene to a pre-determined threshold value. 

4.3.1 Characterisation of the basal mRNA expression of fibulin-1 isoforms in 

primary parenchymal fibroblasts 

Alternative splicing of the fibulin-1 gene produces 4 isoforms that differ in their C-

terminal region (Tran et al. 1997). Isoforms C and D are the predominant forms 

expressed in adult human tissues and have been shown to have differing functions 

during tissue morphogenesis (Muriel et al. 2005). In Chapter 2, this study showed that 

fibroblasts from patients with IPF produced more fibulin-1 mRNA than fibroblasts 

from patients without IPF (Figure 2.12) however, whether there was differential 

expression of the four isoforms of fibulin-1 was not examined. In addition, the levels 

of fibulin-1 mRNA in fibroblasts derived from patients with COPD was not different 

compared to fibroblasts derived from patients with and without IPF (Figure 4.2). The 

basal expression levels of all 4 fibulin-1 isoforms followed the same pattern as shown 

in Chapter 2 in that fibulin-1A, C, and D were all significantly increased in fibroblasts 
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from patients with IPF compared to fibroblasts from subjects without lung disease 

(Two-way ANOVA, p<0.01) (Figure 4.2). Fibulin-1B expression was lower than the 

other fibulin-1 genes and there was no statistical difference in the expression levels in 

the fibroblasts derived from the three patient groups (patients with IPF, patients 

without IPF and patients with COPD).  

 

 

Figure 4.2 Basal mRNA levels of the four fibulin-1 isoforms in primary 

parenchymal fibroblasts. 

Primary parenchymal fibroblasts from patients with IPF (n=5) and age and gender 

matched patients without IPF (n=4) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM, quiesced in 0.1% FBS/DMEM for 24 hours and maintained 

in fresh 0.1% FBS/DMEM for a further 72 hours. Non-IPF fibroblasts were derived 

from the macroscopically normal tissue isolated from the tumour-free margin of 

resections from patients with non-small cell carcinoma. 500ng of mRNA was 

converted to cDNA for this comparison. Data are expressed as 1/delta cycle threshold 

to 18S (∆Ct) to enable a greater number to reflect more mRNA. The centre line is the 

population median. *p<0.05 one way ANOVA with Tukey’s post-test for between 

group comparisons.  

FBLN1 fibulin-1, COPD chronic obstructive pulmonary disease, IPF idiopathic 

pulmonary fibrosis, FBS foetal bovine serum, DMEM Dulbecco’s Modified Eagle 

Medium 
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Because this study was investigating the effect of TGFβ1 on these fibroblasts, the 

basal expression of IL-6 and α-SMA, two proteins known to be induced by TGFβ1, 

was also measured. 

In addition, fibulin-5, another member of the fibulin family which also plays a role in 

elastogenesis (Nakamura et al. 2002) and is also a TGFβ1 gene target (Lee et al. 

2008) was measured to elucidate if other fibulin family members were induced by 

TGFβ1 in primary parenchymal fibroblasts. 

There was no difference in basal mRNA expression of IL-6, α-SMA or fibulin-5 

between fibroblasts from subjects without IPF and fibroblasts from patients with IPF. 

Fibroblasts from patients with IPF produced significantly less IL-6 mRNA than 

fibroblasts from patients with COPD (one-way ANOVA, p<0.05) (Figure 4.3).  
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Figure 4.3 Basal mRNA levels of markers measured to gauge response to TGFβ1 

stimulation in primary parenchymal fibroblasts 
Primary parenchymal fibroblasts from patients with IPF (n=5) and age and gender 

matched patients without IPF (n=4) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep 

for 24 hours and maintained in fresh 0.1% FBS/DMEM/1% pen-strep for a further 72 

hours. Non-IPF fibroblasts were derived from the macroscopically normal tissue 

isolated from the tumour-free margin of resections from patients with non-small cell 

carcinoma. 500ng of mRNA was converted to cDNA for this comparison. Data are 

expressed as 1/delta cycle threshold to 18S (∆Ct) to enable a greater number to reflect 

more mRNA. The centre line is the population median. *p<0.05 one way ANOVA 

with Tukey’s post-test for between group comparisons.  

FBLN5 fibulin-5, COPD chronic obstructive pulmonary disease, IPF idiopathic 

pulmonary fibrosis, FBS foetal bovine serum, DMEM Dulbecco’s Modified Eagle 

Medium, IL interleukin, α-SMA alpha smooth muscle actin, Pen-Strep penicillin-

streptomycin 
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4.3.2 The dose related effect of TGFβ1 on fibulin-1 mRNA levels in 

parenchymal fibroblasts 

Initially, the study investigated the effect of different concentrations of TGFβ1 and 

different times of exposure on fibulin-1C and fibulin-1D mRNA in fibroblasts from 5 

subjects without lung disease (Figure 4.4). Fibulin-1C and fibulin-1D were examined 

as these are the majority isoforms of fibulin-1 in adult humans (Tran et al. 1997). 

Treatment with three concentrations of TGFβ1 (1, 3, 10ng/mL) significantly 

downregulated the expression of fibulin-1C and fibulin-1D mRNA at the three 

timepoints examined, 24 hours, 48 hours and 72 hours of stimulation, with no 

difference between the time points.  

To ensure that the fibroblasts were responding to TGFβ1, the change in fibronectin 

mRNA was also measured. As expected, TGFβ1 increased fibronectin mRNA at both 

the 24 hour and 48 hour timepoints, albeit only with the highest concentration of 

TGFβ1 (Figure 4.5).  

For these reasons, further experiments were carried out using 10ng/mL of TGFβ1 for 

72 hours. 
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Figure 4.4 Effect of TGFβ1 on fibulin-1C and fibulin-1D mRNA levels in primary parenchymal 

fibroblasts from subjects without IPF 

Primary parenchymal fibroblasts from patients without IPF (n=5) were grown for 72 hours in 5% 

FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep for 24 hours and maintained 

in fresh 0.1% FBS/DMEM/1% pen-strep or treated with 1, 3, 10ng/mL TGFβ1 in 0.1% 

FBS/DMEM/1% pen-strep for a further 24, 48 or 72 hours. Non-IPF fibroblasts were derived from the 

macroscopically normal tissue isolated from the tumour-free margin of resections from patients with 

non-small cell carcinoma. Values are expressed as fold change compared to time matched unstimulated 

control. 

(Paired t-test compared to unstimulated *p<0.05). 

TGFβ1 transforming growth factor-beta 1, IPF idiopathic pulmonary fibrosis, FBS foetal bovine serum, 

DMEM Dulbecco’s Modified Eagle Medium, Pen-Strep penicillin-streptomycin 
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Figure 4.5 Effect of TGFβ1 on fibronectin mRNA levels in primary parenchymal 

fibroblasts from subjects without idiopathic pulmonary fibrosis (IPF) 
 

Primary parenchymal fibroblasts from patients without IPF (n=5) were grown for 72 

hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep 

for 24 hours and maintained in fresh 0.1% FBS/DMEM/1% pen-strep or treated with 

1 or 10ng/mL TGFβ1 in 0.1% FBS/DMEM/1% pen-strep for a further 24 (left) or 48 

(right) hours. Non-IPF fibroblasts were derived from the macroscopically normal 

tissue isolated from the tumour-free margin of resections from patients with non-small 

cell carcinoma. Values are expressed as fold change compared to time matched 

unstimulated control. (Paired t-test compared to unstimulated *p<0.05) 

TGFβ1 transforming growth factor-beta 1, FBS foetal bovine serum, DMEM 

Dulbecco’s Modified Eagle Medium, Pen-Strep penicillin-streptomycin 

 

 

  

4.3.3 The effect of TGFβ1 on fibulin-1 mRNA levels of primary parenchymal 

fibroblasts 

Treatment with 10ng/mL of TGFβ1 for 72 hours significantly downregulated all 

isoforms of fibulin-1, regardless of disease status of the fibroblasts (Figure 4.6).  
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Figure 4.6 The effect of 10ng/mL TGFβ1 on mRNA levels of fibulin-1 isoforms. 
 

Primary parenchymal fibroblasts from patients with IPF (n=5) and age and gender 

matched patients without IPF (n=4) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep 

for 24 hours and either left (●) unstimulated  in fresh 0.1% FBS/DMEM/1% pen-strep 

or (■) stimulated for a further 72 hours with 10ng/mL TGFβ1 in 0.1% 

FBS/DMEM/1% pen-strep  

(*two-way ANOVA, p<0.05) 

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated 

from the tumour-free margin of resections from patients with non-small cell 

carcinoma. 500ng of mRNA was converted to cDNA for this comparison. Data are 

expressed as 1/delta cycle threshold to 18S (∆Ct) to enable a greater number to reflect 

more mRNA.  

COPD chronic obstructive pulmonary disease, IPF idiopathic pulmonary fibrosis, 

TGFβ1 transforming growth factor-beta 1, FBS foetal bovine serum, DMEM 

Dulbecco’s Modified Eagle Medium, Pen-Strep penicillin-streptomycin  
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4.3.4 The effect of TGFβ1 on mRNA levels of other genes of interest in primary 

parenchymal fibroblasts 

Treatment with TGFβ1 significantly increased fibronectin mRNA and α-SMA 

expression in all 3 disease groups (Figure 4.7). TGFβ1 has been shown to increase α-

SMA expression in fibroblasts (Kage and Borok 2012),  Treatment with TGFβ1 

upregulated periostin mRNA in fibroblasts from patients with IPF (p<0.05) but had no 

effect in fibroblasts from patients without IPF or patients with COPD (Figure 4.7). 

TGFβ1 stimulation did not alter the mRNA levels of tenascin-C, IL-6 or fibulin-5. 

 A summary of the means and standard deviations (SD) for the mRNA results is 

shown in Table 4.2. 
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Figure 4.7 The effect of TGFβ1 on mRNA levels of ECM proteins, IL-6 and α-

SMA in fibroblasts. 

Primary parenchymal fibroblasts from patients with IPF (n=5) and age and gender 

matched patients without IPF (n=4) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep 

for 24 hours and either left (●) unstimulated in fresh 0.1%FBS/DMEM/1% pen-strep 

or (■) stimulated for a further 72 hours with 10ng/mL TGFβ1 in 

0.1%FBS/DMEM/1% pen-strep (*two-way ANOVA, p<0.05). Data are expressed as 

1/delta cycle threshold to 18S (∆Ct) to enable a greater number to reflect more 

mRNA. Non-IPF fibroblasts were derived from the macroscopically normal tissue 

isolated from the tumour-free margin of resections from patients with non-small cell 

carcinoma. 500ng of mRNA was converted to cDNA for this comparison.  

COPD chronic obstructive pulmonary disease, IPF idiopathic pulmonary fibrosis, 

TGFβ1 transforming growth factor-beta 1, FBS foetal bovine serum, DMEM 

Dulbecco’s Modified Eagle Medium, Pen-Strep penicillin-streptomycin, IL 

interleukin, SMA smooth muscle actin, FBLN5 fibulin-5 
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Table 4.2 Summary of the effect of TGFβ1 on mRNA levels of genes of interest in 

primary parenchymal fibroblasts 

mRNA levels (1/∆Ct) Non-IPF COPD IPF 

Basal TGFβ1 Basal TGFβ1 Basal TGFβ1 

  (n) 4 4 4 4 5 5 

FBLN1 (pan) Mean  0.093 0.066 0.102 0.070 0.111 0.077 

SD 0.004 0.004 0.015 0.005 0.009 0.004 

Periostin Mean  0.098 0.117 0.099 0.114 0.099 0.128 

SD 0.013 0.006 0.013 0.004 0.015 0.008 

Tenascin-C Mean  0.094 0.087 0.096 0.087 0.082 0.085 

SD 0.004 0.005 0.005 0.003 0.006 0.003 

Fibronectin Mean  0.126 0.159 0.128 0.153 0.121 0.160 

SD 0.010 0.005 0.013 0.007 0.009 0.006 

FBLN1A Mean  0.071 0.048 0.075 0.050 0.081 0.053 

SD 0.003 0.003 0.009 0.002 0.006 0.002 

FBLN1B Mean  0.055 0.046 0.057 0.047 0.060 0.050 

SD 0.002 0.003 0.004 0.002 0.002 0.002 

FBLN1C Mean  0.091 0.065 0.097 0.067 0.110 0.074 

SD 0.005 0.005 0.013 0.005 0.006 0.003 

FBLN1D Mean  0.092 0.065 0.099 0.067 0.107 0.074 

SD 0.004 0.006 0.012 0.004 0.007 0.004 

IL-6 Mean  0.073 0.075 0.078 0.071 0.065 0.066 

SD 0.012 0.010 0.007 0.010 0.001 0.004 

α-SMA Mean  0.131 0.213 0.133 0.214 0.135 0.251 

SD 0.007 0.029 0.007 0.024 0.016 0.024 

FBLN5 Mean  0.075 0.077 0.077 0.079 0.080 0.084 

SD 0.003 0.005 0.003 0.002 0.002 0.002 

Primary parenchymal fibroblasts from patients with IPF (n=5) and age and gender matched 

patients without IPF (n=4) patients with COPD (n=4) were grown for 72 hours in 5% 

FBS/DMEM /1% pen-strep, quiesced in 0.1% FBS/DMEM /1% pen-strep for 24 hours and 

either left unstimulated in fresh 0.1% FBS/DMEM /1% pen-strep (Basal) or stimulated for a 

further 72 hours with 10ng/mL TGFβ1 in 0.1%FBS/DMEM /1% pen-strep.   

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated from the 

tumour-free margin of resections from patients with non-small cell carcinoma. 500ng of 

mRNA was converted to cDNA for this comparison.  

COPD chronic obstructive pulmonary disease , IPF idiopathic pulmonary fibrosis, n Number, 
TGFβ1 transforming growth factor-beta 1, FBS foetal bovine serum, DMEM Dulbecco’s 

Modified Eagle Medium, Pen-Strep penicillin-streptomycin, IL interleukin, SMA smooth 

muscle actin, FBLN5 fibulin-5 
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4.3.5 The effect of TGFβ1 on cell-derived ECM proteins in primary 

parenchymal fibroblasts 

The primary focus of this Chapter was the effect of TGFβ1 on cell-derived fibulin-1 

because of the hypothesis that increased TGFβ1 may be a driving factor leading to 

increased fibulin-1 found in the parenchyma tissue, which was shown to correlate 

with decreased lung function in patients with IPF (Figure 2.11, Table 2.7). Therefore, 

the effect of TGFβ1 on fibulin-1 protein production in fibroblasts was next examined. 

Figure 4.8 shows an example blot of cell supernatants probed for fibulin-1.  

Figure 4.9 shows the matching blot of cell lysates from the corresponding samples 

also probed for fibulin-1. 
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Figure 4.8 Example blots of supernatants probed for fibulin-1 from 

fibroblasts derived from patients with and without IPF 

Primary parenchymal fibroblasts from patients with IPF (n=3) and age 

and gender matched patients without IPF (n=3) were grown for 72 hours 

in 5% FBS/DMEM /1% pen-strep, quiesced in 0.1% FBS/DMEM/1% 

pen-strep,  for 24 hours and either leftunstimulated in 0.1% 

FBS/DMEM/1% pen-strep  (-) or stimulated for a further 72 hours with 

10ng/mL TGFβ1in 0.1%FBS/DMEM /1% pen-strep (+). 

 (+ve) indicates cell secreted fibulin-1 protein as a positive control. 

Non-IPF fibroblasts were derived from the macroscopically normal 

tissue isolated from the tumour-free margin of resections from resections 

from patients with non-small cell carcinoma. 

 IPF idiopathic pulmonary fibrosis, n Number, TGFβ1 transforming 

growth factor-beta 1, FBS foetal bovine serum, DMEM Dulbecco’s 

Modified Eagle Medium, Pen-Strep penicillin-streptomycin 
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Figure 4.9 Example blots of cell lysates probed for fibulin-1 and GAPDH from fibroblasts derived from patients with and without IPF 
Primary parenchymal fibroblasts from patients with IPF (n=3) and age and gender matched patients without IPF (n=3) were grown for 72 hours 

in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep for 24 hours and either left (-) unstimulated in 0.1% 

FBS/DMEM/1% pen-strep or (+) stimulated for a further 72 hours with 10ng/mL TGFβ1in 0.1%FBS/DMEM/1% pen-strep. (+ve) indicates cell 

secreted fibulin-1 protein as a positive control. 

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated from the tumour-free margin of resections from resections 

from patients with non-small cell carcinoma. IPF idiopathic pulmonary fibrosis, n Number, TGFβ1 transforming growth factor-beta 1, FBS 

foetal bovine serum, DMEM Dulbecco’s Modified Eagle Medium, Pen-Strep penicillin-streptomycin, GAPDH Glyceraldehyde 3-phosphate 

dehydrogenase 
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There was a differential effect of TGFβ1 on the cell-secreted ECM proteins that were 

measured. Treatment with TGFβ1 significantly decreased fibulin-1 levels and this 

effect was consistent across all the disease groups. Conversely, TGFβ1 increased 

periostin levels in fibroblasts from patients with IPF, but had no effect on periostin 

levels in fibroblasts from subjects without IPF or with COPD (Figure 4.10).   

TGFβ1 significantly increased the production of IL-6 in both fibroblasts from subjects 

without lung disease and from patients with IPF (Figure 4.11A) however, there was 

no significant effect on fibroblasts from patients with COPD.  

In the absence of stimulation, fibroblasts from patients with COPD produced a 

significantly higher level of both IL-6 and IL-8 cytokines compared to fibroblasts 

from subjects without IPF and from patients with IPF (Figure 4.11). Increased levels 

of IL-6 and IL-8 have been reported in fibroblasts derived from patients with COPD 

(Zhang et al. 2012). There was no effect of TGFβ1 on IL-8 production in any of the 

three disease groups (Figure 4.11B).  
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4.3.5.1 The effect of TGFβ1 in cell-secreted protein production of ECM 

proteins. 

Figure 4.10 The effect of TGFβ1 on cell-secreted ECM protein production in 

primary parenchymal fibroblasts. 
 

Primary parenchymal fibroblasts from patients with IPF (n=8) and age and gender 

matched patients without IPF (n=7) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS DMEM/1% pen-strep 

for 24 hours and either left unstimulated in fresh 0.1% FBS/ DMEM/1% pen-strep  

(●) or stimulated for a further 72 hours with 10ng/mL TGFβ1 in 0.1% FBS/ 

DMEM/1% pen-strep (■)  (*paired t-test, p<0.05). 

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated 

from the tumour-free margin of resections from patients with non-small cell 

carcinoma..  

Values were normalized to the total protein content of the cell monolayer as measured 

by BCA assay.  

BCA Bicinchroninic Acid, ECM extracellular matrix, COPD chronic obstructive 

pulmonary disease, IPF idiopathic pulmonary fibrosis, TGFβ1 transforming growth 

factor-beta 1, FBS foetal bovine serum, DMEM Dulbecco’s Modified Eagle Medium, 

Pen-Strep penicillin-streptomycin 
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Figure 4.11 The effect of TGFβ1 on cell-secreted cytokine protein production in 

primary parenchymal fibroblasts. 
 

Primary parenchymal fibroblasts from patients with IPF (n=8) and age and gender 

matched patients without IPF (n=7) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM, quiesced in 0.1% FBS/DMEM for 24 hours and either left 

(●) unstimulated or (■) stimulated for a further 72 hours with 10ng/mL TGFβ1 in 

0.1% FBS/DMEM (*paired t-test, p<0.05). 

(A) IL-6 and (b) IL-8 in cell culture supernatants were measured by ELISA. Values 

(ng/mL) were normalized to the total protein content of the cell monolayer as 

measured by BCA assay.  

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated 

from the tumour-free margin of resections from patients with non-small cell 

carcinoma.  

BCA Bicinchroninic Acid, COPD chronic obstructive pulmonary disease, IPF 

idiopathic pulmonary fibrosis, TGFβ1 transforming growth factor-beta 1, FBS foetal 

bovine serum, DMEM Dulbecco’s Modified Eagle Medium, 
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4.3.6 The effect of TGFβ1 on cell-associated fibulin-1 production by primary 

parenchymal fibroblasts 

Basal expression of cell-associated (containing intracellular and membrane bound 

proteins) fibulin-1 protein was increased in fibroblasts from patients with IPF 

(Chapter 2, Figure 2.8) compared to fibroblasts from patients without IPF and patients 

with COPD. Therefore the effect of TGFβ1was investigated in this system. Treatment 

with TGFβ1 significantly increased cell-associated fibulin-1 production by fibroblasts 

derived from patients with IPF (Figure 4.12). There was no effect of TGFβ1 in either 

of the other two groups. Figure 4.9 shows a representative western blot.  

4.3.7 Basal morphology of primary parenchymal fibroblasts 

The basal morphology of fibroblasts from patients with and without IPF was then 

qualitatively examined. Cultures of fibroblasts derived from three subjects without 

lung disease and three patients with IPF were used to generate data addressing the 

final aim of this Chapter. Cells were grown on uncoated plastic dishes. There were no 

macroscopic differences in gross morphology between the cultures of fibroblasts 

grown in basal conditions (Figure 4.13).  
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Figure 4.12 The effect of TGFβ1 on cell-associated fibulin-1 production by 

primary parenchymal fibroblasts. 
 

Primary parenchymal fibroblasts from patients with IPF (n=8) and age and gender 

matched patients without IPF (Non-IPF, n=7) patients with COPD (n=4) were grown 

for 72 hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS DMEM/1% 

pen-strep for 24 hours and either left unstimulated in fresh 0.1% FBS/ DMEM/1% 

pen-strep  (●) or stimulated for a further 72 hours with 10ng/mL TGFβ1 in 0.1% FBS/ 

DMEM/1% pen-strep (■). Cell lysates were collected and analysed by western blot. 

Blots were stripped and reprobed for GAPDH as loading control (*paired t-test, 

p<0.05) and data were normalised to these protein levels. 

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated 

from the tumour-free margin of resections from patients with non-small cell 

carcinoma. 

COPD chronic obstructive pulmonary disease, IPF idiopathic pulmonary fibrosis, 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase, TGFβ1 transforming growth 

factor-beta 1, FBS foetal bovine serum, DMEM Dulbecco’s Modified Eagle Medium , 

Pen-Strep penicillin-streptomycin 
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Figure 4.13 Images of fibroblast monolayers from patients with and without IPF. 
Primary parenchymal fibroblasts from patients with IPF (n=3) and age and gender 

matched patients without IPF (n=3). Cells were grown for 72 hours in 5% 

FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep for 24 hours 

and maintained in fresh 0.1% FBS/DMEM/1% pen-strep for a further 72 hours. Non-

IPF fibroblasts were derived from the macroscopically normal tissue isolated from the 

tumour-free margin of resections from patients with non-small cell carcinoma.  

IPF idiopathic pulmonary fibrosis, FBS foetal bovine serum, DMEM Dulbecco’s 

Modified Eagle Medium, Pen-Strep penicillin-streptomycin 

Magnification 10x 
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4.3.8 The effect of TGFβ1 on cell morphology 

Qualitative changes in morphology were seen in all fibroblast cultures when treated 

with 10ng/mL TGFβ1 for 72 hours (Figure 4.14). Regardless of disease status, 

fibroblasts responded to TGFβ1 treatment by assembling in tight colonies and losing 

their spindle-like extensions that are seen under basal conditions.  

Next, the effect of treatment with TGFβ1 on the surface topology and stiffness of the 

cells was quantified by AFM. Scans were performed on  two cell lines, one from a 

patient with IPF and one from a patient without IPF. Each cell line was either treated 

with TGFβ1 or left unstimulated and  a single area, measuring 50µm by 50µm, from 

each sample was investigated.  Areas of similar gross apperance were selected to 

undergo AFM scanning. The surface topography of the four samples is shown in 

Figure 4.15. 
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Figure 4.14 Fibroblasts treated with 

TGFβ1 undergo morphological changes. 

 Representative light microscopy images 

of primary parenchymal fibroblasts from 

patients without (top panels) or with 

idiopathic pulmonary fibrosis (IPF) 

(bottom panels) are shown. Cells were 

grown for 72 hours in 5% FBS/DMEM/ 

1% pen-strep, quiesced in 0.1% FBS/ 

DMEM/1% pen-strep for 24 hours and 

either left unstimulated in fresh in 0.1% 

FBS/DMEM/1% pen-strep or stimulated 

for a further 72 hours with 10ng/mL 

TGFβ1 in 0.1% FBS/DMEM /1% pen-

strep. Images are representative of three 

fibroblast lines per group. 

Arrows indicate places of spindle-like 

extensions of fibroblasts. Non-IPF 

fibroblasts were derived from the 

macroscopically normal tissue isolated 

from the tumour-free margin of resections 

from patients with non-small cell 

carcinoma. 

TGFβ1 transforming growth factor-beta 1, 

FBS foetal bovine serum, DMEM 

Dulbecco’s Modified Eagle Medium, Pen-

Strep penicillin-streptomycin. 

Magnification 10x 
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Figure 4.15 Surface morphology of fibroblasts derived from patients with and 

without idiopathic pulmonary fibrosis (IPF) as measured by atomic force 

microscopy. 
 

Cells were grown for 72 hours in 5% FBS/DMEM /1% pen-strep, quiesced in 0.1% 

FBS/DMEM /1% pen-strep for 24 hours and either left unstimulated in fresh 0.1% 

FBS/DMEM /1% pen-strep or stimulated for a further 72 hours with 10ng/mL TGFβ1 

in 0.1% FBS/DMEM /1% pen-strep. 

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated 

from the tumour-free margin of resections from a patient with non-small cell 

carcinoma. 

Images are representative of 1-3 scans per patient. 

TGFβ1 transforming growth factor-beta 1, FBS foetal bovine serum, DMEM 

Dulbecco’s Modified Eagle Medium, Pen-Strep penicillin-streptomycin 
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After scanning for surface topology, the same sample area was then probed for cell 

stiffness. A representative scan from one of the four samples is shown in Figure 4.16. 

 

Figure 4.16 Representative cell height and stiffness scan of fibroblasts as 

measured by atomic force microscopy. 
Fibroblasts were grown on plastic dishes and first scanned for surface topography. 

The “height” image was generated by measuring the deflection of the cantilever from 

a predetermined set point as the cantilever was moved across the surface. 

Subsequently, the same area was probed for “stiffness” by measuring the deflection of 

the same cantilever as the cantilever was indented into the cell surface. Points of red 

indicate where there was no measurement due to instrumental error. 
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These data suggest that there may be a difference in the response to TGFβ1 between 

cells derived from patients with IPF compared to cells derived from patients without 

IPF.  The summary of the force measurements of fibroblast stiffness is found in Table 

4.3. 

The maximum stiffness of fibrotic lung tissue has been reported to be approximately 

50kPa (Liu and Tschumperlin 2011) but this figure can change depending on which 

model is used to calculate the stiffness from the forces measured using AFM. 

Furthermore, where the cells are of minimal thickness, the influence of the underlying 

tissue culture plastic may skew the data. Tissue culture plastic has a stiffness of 

gigapascals (Wells 2008).  Therefore the median and interquartile range (IR) of  

stiffness measurements were initially used to compare the samples.  

Unstimulated cells from a patient without IPF had a median stiffness of 0.6kPa (IR 

0.2 – 1.1) whereas unstimulated cells from a patient with IPF had a median stiffness 

of 0.8kPa (IR 0.5 – 1.2). Under stimulation with TGFβ1, cells from a patient without 

IPF increased in median stiffness to 3.0kPa (IR 1.8 to 6.9), which was an increase of 

400%. Cells from a patient with IPF also increased median stiffness under stimulation  

with TGFβ1to 15.3kPa (IR 10.8 to 24.7), which was an increase of over 1700%.  
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Table 4.3 Summary of Force Measurements on human lung fibroblasts 
 

 Non-IPF 

unstimulated 

Non-IPF 

TGFβ1 

IPF 

unstimulated 

IPF 

TGFβ1 

Number of points measured* 6400 6368 6400 6338 

Number of points not 

analysed** 0 16 0 62 

Average stiffness (kPa) 4.97 26.45 0.99 22.53 

Standard Deviation 57.34 72.47 3.55 40.55 

Minimum Stiffness (kPa) 0.005 0.021 0.046 0.169 

Maximum Stiffness (kPa) 3460.4 514.6 158.7 700.1 

Median Stiffness (kPa) 0.551 3.046 0.839 15.349 

25
th

 Percentile (kPa) 0.249 1.846 0.475 10.841 

75
th

 Percentile (kPa) 1.128 6.855 1.184 24.737 

*Number of points measured in a 50 x 50µm area 

**Unable to analyse due to instrument error 

Primary parenchymal fibroblasts were grown for 72 hours in 5% FBS/DMEM /1% 

pen-strep, quiesced in 0.1% FBS/DMEM /1% pen-strep for 24 hours and either left 

unstimulated in fresh 0.1% FBS/DMEM /1% pen-strep or stimulated for a further 72 

hours with 10ng/mL TGFβ1 in 0.1% FBS/DMEM /1% pen-strep. Surface stiffness of 

cell cultures was measured using atomic force microscopy (AFM) and images were 

generated using Asylum Research software (Igor Pro Version 6.34A). Stiffness 

(Young’s modulus) was calculated using the Derjaguin–Muller–Toporov (DMT) 

model. Non-IPF fibroblasts were derived from the macroscopically normal tissue 

isolated from the tumour-free margin of resections from a patient with non-small cell 

carcinoma. 

Data are generated from a single scan on each cell line per treatment. 

IPF idiopathic pulmonary fibrosis, TGFβ1 transforming growth factor-beta 1, FBS 

foetal bovine serum, DMEM Dulbecco’s Modified Eagle Medium, Pen-Strep 

penicillin-streptomycin 
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The change in the proportions of stiffness measurements that fell between 0 and 

50kPa in the two different cell lines was examined. For this study, a measurement of 0 

to 1kPa was considered normal whereas a measurement of greater than 1kPa to less 

than or equal to50kPa was considered fibrotic. This range (0 to 50kPa) was chosen to 

encapsulate the biological range of stiffness measurements and to discount any 

potential influence of the underlying tissue culture plastic, which measures 

approximately 10
6
kPa (Discher et al. 2005). This assumption was necessary as the 

maximum measured stiffness in the current experiments was 3460kPa. In all cases, 

the total number of points that was disregarded (eg. points that measured more than 

50kPa) was less than 10% of the total number of points that were measured. This 

indicates that the vast majority of each sample area contained cellular material and not 

plastic.  

Because the total number of points that was successfully measured differed and the 

influence of tissue culture plastic may also have differed between the samples the data 

was then expressed as percentages of the “Usable Total”. The Usable Total was 

defined as the total number of points that measured less than or equal to 50kPa. The 

data were normalised by dividing the number of points that fell into each of six 

consecutive and non-overlapping intervals of stiffness (bins) by the Usable Total. This 

gave the relative frequencies, or the proportion of cases that fell into each of the bins. 

The summary of the relative frequencies is found in Table 4.4. Untreated fibroblasts 

from a patient with IPF  exhibited more stiffness values in the fibrotic range than 

untreated fibroblasts from a patient without IPF. Fibroblasts from a patient with IPF 

cultured in non-stimulating conditions had 38% of points of stiffness measure over 
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1kPa whereas fibroblasts from a patient without IPF grown in the same manner had 

only 27% of points of stiffness measure over 1kPa.  

Treatment with TGFβ1 had a similar effect on fibroblasts from patients with and 

without IPF. When stimulated with TGFβ1, fibroblasts from a patient without IPF 

increased to 94% fibrotic (defined as points of stiffness greater than 1kPa) while 

fibroblasts from a patient with IPF were 100% fibrotic. In both groups of fibroblasts, 

cells that were treated with TGFβ1 increased the proportion of points that were in the 

higher stiffness bins. For example, the proportion of points that was greater than 

10kPa but less than or equal to 50kPa was 3% and 0% in unstimulated cells from a 

patient without IPF and from a patient with IPF respectively. Treatment with TGFβ1 

increased the proportion of points in that category to 10% and 80% respectively.  
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Table 4.4 Treatment with TGFβ1 increases the relative frequency of points in the categories of higher stiffness in lung fibroblasts. 

*Count indicates the number of points (x) that fell into each stiffness bin  

**Relative Frequency is the count of each stiffness bin divided by the Usable Total 

***The Usable Total is the number of points measured that fell between 0 and 50kPa. 

TGFβ1 transforming growth factor-beta 1, IPF idiopathic pulmonary fibrosis, kPa kilopascal

 
Non-IPF unstimulated Non-IPF TGFβ1 IPF unstimulated IPF TGFβ1 

Stiffness bin 

(kPa) 
Count* 

Relative 

Frequency** 
Count* 

Relative 

Frequency** 
Count* 

Relative 

Frequency** 
Count* 

Relative 

Frequency** 

0 > x ≤ 0.2 1253 20% 7 0.12% 276 4% 1 0.02% 

0.2 > x ≤ 0.5 1714 27% 65 1% 1406 22% 2 0.03% 

0.5 > x ≤ 1 1657 26% 259 5% 2280 36% 7 0.11% 

1 > x ≤ 5 604 10% 1506 27% 2294 36% 36 1% 

5 > x ≤ 10 882 14% 3232 57% 135 2% 1171 19% 

10 > x ≤ 50 177 3% 575 10% 3 0.00047% 4937 80% 

More than 50kPa 113 
 

581 
 

6 
 

184 
 

Total  points 

measured 
6400 

% of total 

points 

measured 

6224 

% of total 

points 

measured 

6400 

% of total 

points 

measured 

6338 

% of total 

points 

measured 

Usable Total*** 6287 98% 5643 91% 6394 100% 6154 97% 
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4.4 Discussion 

The aim of this chapter was primarily to investigate if fibulin-1 levels in primary 

parenchymal fibroblasts were altered by treatment with TGFβ1, a pro-fibrotic 

pluripotent cytokine and a key driver of the fibrotic process. Previous studies had 

indicated that TGFβ1 had the ability to induce fibulin-1 production in the context of 

fibrotic airways disease (Lau et al. 2010) and therefore possibly played a role in 

interstitial fibrosis as many of the mechanisms driving fibrogenesis in lung diseases 

are shared (Hardie et al. 2009). Therefore, this study aimed to investigate the effect of 

TGFβ1 on lung fibroblast-derived fibulin-1 and the ECM molecules (periostin, 

tenascin-C and fibronectin) investigated in earlier chapters as TGFβ1 is known to 

induce these proteins in other mesenchymal cells (Horiuchi et al. 1999; Doerner and 

Zuraw 2009). Lung fibroblasts, regardless of disease status, change morphologically 

when treated with TGFβ1, and these results in turn suggest may result in increased 

cell stiffness. A summary of the results in Chapter 4 is found in 
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Table 4.5. 

This study provides evidence that stimulation with 10ng/mL TGFβ1 significantly 

decreases fibulin-1 mRNA at 24, 48 and 72 hours in fibroblasts derived from patients 

without IPF (Non-IPF fibroblasts), patients with emphysema (COPD fibroblasts), or 

patients with IPF (IPF fibroblasts).  This decline in fibulin-1 mRNA levels across all 

disease groups was consistent and the mRNA levels for all four isoforms of fibulin-1 

were reduced by the TGFβ1 treatment. This shows that although there were 

differences in basal levels of fibulin-1 isoforms between disease groups, these 

differences are negated in the presence of TGFβ1, resulting in similar levels of 

fibulin-1 mRNA in fibroblasts regardless of disease group. The depressive effect of 

TGFβ1 treatment on fibulin-1 mRNA is also seen in airway smooth muscle (ASM) 

cells derived from patients with and without COPD (Chen et al. 2013), indicating that 

this phenomenon is not limited to parenchymal fibroblasts.   

In contrast, treatment with TGFβ1 had a consistent inductive effect on both 

fibronectin and α-SMA mRNA across the board, a finding which is supported by 

previous reports in the literature (Thannickal et al. 2003; Dunkern et al. 2007) and 

indicates a successful response to TGFβ1 stimulation in our study. The effect of 

TGFβ1 on cytokine production in fibroblasts was also supported by the literature (Ge 

et al. 2012). Finally, in the absence of stimulation, COPD fibroblasts produced a 

significantly higher level of both IL-6 and IL-8 cytokines compared to Non-IPF and 

IPF fibroblasts, again consistent with previous reports in the literature (Zhang et al. 

2012). These data provide evidence that the differences in fibulin-1 production among 

fibroblasts from patients with different diseases are disease specific. 
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Messenger RNA and protein levels do not necessarily track with one another 

(Kalinichenko et al. 2008). As this study was investigating the fibrotic signal found in 

the circulation, the effect of TGFβ1 treatment on the soluble, cell-secreted form of the 

ECM molecules was examined. Differences in soluble protein regulation between the 

disease types examined were identified, consistent with earlier literature investigating  

tenascin-C and periostin  (Carey et al. 2010; Yamaguchi et al. 2013).  

This is the first study to show that TGFβ1 significantly decreased the amount of cell-

secreted fibulin-1 produced by fibroblasts in all the disease groups studied. In 

addition, a concomitant increase in cell-associated fibulin-1 levels was observed only 

in IPF fibroblasts. The simplest explanation for this is that TGFβ1 directly drives cell-

secreted fibulin-1 into the ECM although the source of the soluble fibulin-1 may in 

fact be coming from the cell culture media. However, in previous studies from our 

laboratory, treatment of ASM cells with TGFβ1 also decreased  cell-secreted fibulin-1 

levels derived from the cells while increasing cell-associated fibulin-1. Importantly, 

the subsequent increase in cell-associated fibulin-1 levels were not due to de novo 

synthesis of protein, but rather from requisition of cell-secreted fibulin-1 (Chen et al. 

2013).   

Many ECM proteins are likely to be dysregulated during fibrosis, therefore, due to the 

promiscuous nature of TGFβ1, this study investigated the effect on ECM proteins 

which were potential candidate biomarkers of disease progression in IPF. Periostin 

mRNA has been reported to be increased in IPF fibroblasts compared to Non-IPF 

fibroblasts (Naik et al. 2012). This finding was not confirmed in this study, albeit this 

may be explained by a difference in experimental timings between the studies. 

However, following reports in periodontal ligament fibroblasts (Wen et al. 2010), and 
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embryonic lung fibroblasts (Takayama et al. 2006), this study confirmed that TGFβ1 

increased periostin mRNA in lung IPF fibroblasts. Furthermore, this is the first study 

to report increases in periostin protein following TGFβ1 stimulation in adult lung 

fibroblasts, although TGFβ1 has been shown to induce cell-secreted periostin protein 

in transfected bone stromal cells previously (Oku et al. 2008).  

TGFβ1 did not upregulate either cell-secreted periostin or tenascin-C protein in Non-

IPF or COPD fibroblasts. However, in IPF fibroblasts, cell-secreted periostin but not 

tenascin-C was increased. In the literature, cell-associated periostin increases with 

TGFβ1 treatment in mouse osteoblast cells (Horiuchi et al. 1999), supporting the data 

generated in this study. Periostin has been identified as a potential biomarker of 

disease progression in IPF (Naik et al. 2012) and its significance as a protein that 

stabilises the ECM is shown through its interactions with tenascin-C and collagen (Kii 

et al. 2010). The current study indicates that periostin may also be an important 

contributor to the fibrotic process in the presence of increased levels of TGFβ1. 

Periostin, which is produced as a cytokine from airway epithelial cells (Sidhu et al. 

2010), can induce a TGFβ-dependent secretion of type I collagen by airway 

fibroblasts. Periostin is known to stimulate the TGFβ pathway itself (Sidhu et al. 

2010). It is possible that a similar mechanism of ECM modulation is at work in the 

distal parenchymal fibroblasts as well. In solution, periostin mixes with collagen and 

alters its cross-linking or fibrillogenesis (Sidhu et al. 2010) and may explain the 

increased lung tissue stiffness seen in fibrosis (Norris et al. 2007). This action of 

soluble ECM molecules affecting the 3-dimensional orientation of larger ECM fibres 

is a concept not fully explored in the context of IPF. Our study exposes the possibility 

that this increased deposition of fibulin-1 and the increased secretion of periostin may 
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be altering the physical properties of fibroblasts and by extension, the lung tissue. Our 

study does not distinguish between extracellular and  intracellular stores of fibulin-1, 

and therefore, further investigation  around  matrices from which cells have been 

removed is needed.   

ECM proteins determine the biomechanical properties of the lung (Faffe et al. 2006). 

In this Chapter, treatment with TGFβ1 altered both the gross morphology and surface 

stiffness of Non-IPF and IPF fibroblasts. The median stiffness measurements of the 

fibroblasts were higher than those reported in the literature for lung fibroblasts (Liu et 

al. 2010) but this is likely due to the effect of fixation which has been shown to 

increase overall cell stiffness (Codan et al. 2013). Because live cells could not be 

investigated in our experimental set up, all cultures were fixed for the same length of 

time. 

From the images of the fibroblast monolayer cultures morphological changes are 

visible following TGFβ1 stimulation in both Non-IPF and IPF fibroblasts. At this 

same timepoint (72 hours), there was an increase in fibulin-1 deposition only in the 

IPF fibroblasts. Furthermore, experiments with representative samples of Non-IPF 

and IPF fibroblasts indicate that treatment with TGFβ1 may increase the proportion of 

the cell’s surface that demonstrates a high level of stiffness in both groups. However, 

the increase in stiffness was far greater in IPF fibroblasts compared to Non-IPF 

fibroblasts.  

It is possible that the difference in the change of stiffness pattern is due to the 

increased deposition of fibulin-1. Further investigation, beyond the scope of this 

thesis is required to map the distribution of the fibulin-1 onto the stiffness maps of the 

fibroblasts to elucidate the potential relationship between the fibroblast stiffness and 
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fibulin-1 deposition. In addition, expanded experiments exploring the effect of TGFβ1 

on cell stiffness are needed. Increased cell stiffness may also be a result of increased 

periostin deposition (Sidhu et al. 2010), or altered cytoskeletal arrangements (Jester et 

al. 1999) but these aspects were not studied as part of this thesis.  

Experiments using fibulin-1 and/or periostin gene-silenced fibroblasts and stimulation 

with TGFβ1 could elucidate if these ECM proteins are playing a significant role in 

orchestrating the cell stiffness.  

TGFβ1 is increased in the tissue of patients with IPF (Lepparanta et al. 2012) and 

would therefore be continuously present in the context of the disease. Our 

experiments indicate that fibroblast-secreted fibulin-1 may be driven into the ECM by 

TGFβ1. In the context of IPF, where fibroblast-secreted fibulin-1 is increased, this 

may result in increased stiffness of parenchymal fibroblasts and consequently, a stiffer 

lung which then results in decreased lung function.  



Page 207 of 252 

 

Table 4.5 Summary of results in Chapter 4 

Grey box indicates experiment not undertaken as part of this thesis 

Primary parenchymal fibroblasts from patients with IPF (n=8) and age and gender 

matched patients without IPF (n=7) patients with COPD (n=4) were grown for 72 

hours in 5% FBS/DMEM/1% pen-strep, quiesced in 0.1% FBS/DMEM/1% pen-strep 

for 24 hours and either left unstimulated (in fresh 0.1% FBS/DMEM/1% pen-strep) or 

stimulated for a further 72 hours with 10ng/mL TGFβ1 in 0.1% FBS/DMEM/1% pen-

strep. Significant results are shown with the direction of the relationship between 

unstimulated and TGFβ1 treated cells indicated by the arrows (paired t-test, p<0.05).  

 

Non-IPF fibroblasts were derived from the macroscopically normal tissue isolated 

from the tumour-free margin of resections from patients with non-small cell 

carcinoma. 

COPD chronic obstructive pulmonary disease, IPF idiopathic pulmonary fibrosis, ns 

not significant, TGFβ1 transforming growth factor-beta 1, FBS foetal bovine serum, 

DMEM Dulbecco’s Modified Eagle Medium, Pen-Strep penicillin-streptomycin 

 

 

 

 

 

What is the effect of TGFβ1 on 

ECM proteins in primary 

parenchymal fibroblasts? 

Non-IPF COPD IPF 

mRNA 

Fibulin-1 ↓ ↓ ↓ 

Periostin ns ns ↑ 

Tenascin-C ns ns ns 

Fibronectin ↑ ↑ ↑ 

Cell-secreted 

Fibulin-1 ↓ ↓ ↓ 

Periostin ns ns ↑ 

Tenascin-C ns ns ns 

Cell-associated Fibulin-1 ns ns ↑ 

Cell stiffness Stiffness ↑  ↑ 
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Chapter 5. General Discussion  

5.1 Summary and conclusions 

Although pulmonary fibrosis is a feature of many interstitial lung diseases (ILDs), a 

diagnosis of idiopathic pulmonary fibrosis (IPF) carries with it the poorest prognosis.  

For many patients, disease progression is a foregone conclusion as there is no 

effective treatment for this disease and there have been no improvements in drug-

based therapy in decades. At this moment in time, patients with IPF face a median 

survival time of 2-5 years but often without the knowledge of whether lung function 

decline will proceed rapidly or remain stable for years (Mura et al. 2012). 

The fibrotic extracellular matrix (ECM) is now recognized as an important initiator, 

and driver, of the fibrotic process, but the contribution of individual components of 

the ECM has not been fully investigated. The experiments described in this thesis 

have, for the first time, identified the ECM protein fibulin-1 as a biomarker of disease 

progression in patients with IPF. Importantly, serum fibulin-1 levels were able to 

accurately identify patients with IPF who experienced rapid lung function decline 

independent of other predictors of survival (eg. baseline lung function).   

IPF is a rare and heterogeneous disease. The diversity in the location from which 

patients’ samples were sourced, coupled with the multiple patient materials that have 

been studied in this thesis highlights the consistency of the findings that fibulin-1 may 

be an important factor in the fibrogenic process. This study involved patients from 

three continents and researchers from seven institutions. Through these extensive 

networks of collaborators, investigations on patterns of ECM expression in serum, 
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lung lysates, fixed tissue, as well as isolated fibroblasts of patients with and without 

lung diseases was performed. Studies comparing fibroblasts derived from patients 

with various lung diseases have shown that differences in protein expression are 

maintained in-vitro (Marinkovic et al. 2012; Habiel and Hogaboam 2014) and 

therefore may reflect important differences in disease pathogenesis in-vivo. Building 

an extracellular foundation in any organ requires that component proteins are secreted 

from resident or invading cells in a soluble form and are then cross-linked into a 

deposited network by a cell-driven process with the help of existing “helper” 

molecules (Frantz et al. 2010). Some of these helper ECM proteins can be detected in 

the peripheral blood and serve as biomarkers of active fibrogenesis (Inoue et al. 

2013).  

Experiments in this study showed that fibulin-1 was a better biomarker of disease 

progression in IPF than the ECM proteins fibronectin, periostin and tenascin-C. This 

is an important finding considering that there are over 300 ECM proteins that could be 

dysregulated in the context of fibrosis (Booth et al. 2012) but not all are predictive of 

the disease process. In our study we confirmed that periostin, being the only other 

ECM protein identified as a potential biomarker for IPF (Naik et al. 2012), was also 

increased in both the serum and tissue of patients with IPF, but periostin did not 

predict disease progression these patients with IPF.  

Fibulin-1 is secreted by lung fibroblasts and it is possible that the increased fibulin-1 

in the serum of patients with IPF is a reflection of increased fibulin-1 production by 

fibrogenic fibroblasts. The basal expression of fibulin-1 was increased in fibroblasts 

derived from patients with IPF (IPF fibroblasts) compared to fibroblasts derived from 

patients without IPF (Non-IPF fibroblasts). This may also explain the source of the 
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increased fibulin-1 found in the lung tissue of patients with IPF. However, fibroblasts 

are not the only cell type known to be dysregulated in fibrosis and therefore other 

cells may be contributing the increased serum fibulin-1 levels in patients with IPF. 

Parenchymal lung mechanics can be altered by increased ECM deposition (Faffe and 

Zin 2009) but it is the expression of α-smooth muscle actin (α-SMA) and stress fibres 

that determines the physical properties of fibroblasts themselves (Thoelking et al. 

2010). Both ECM deposition and  actin/stress fibre formation in fibroblasts are driven 

by transforming growth factor –β1 (TGFβ1) (Willis and Borok 2007) and therefore 

the effect of TGFβ1 on fibroblast-derived fibulin-1 was examined in the final Chapter 

of this thesis. 

In this study, the effect of TGFβ1 was highly varied, keeping with the pleiotropic 

nature of the cytokine. This study is also the first to demonstrate that TGFβ1-induced 

cell-associated fibulin-1 production was limited to IPF fibroblasts and not Non-IPF or 

COPD fibroblasts. TGFβ1 increased the stiffness of both Non-IPF and IPF fibroblasts, 

albeit much more dramatically in IPF fibroblasts. This increase in stiffness may be 

attributed to increased cellular fibulin-1 deposition in IPF fibroblasts compared to 

Non-IPF fibroblasts, but this remains to be investigated in future studies. 

5.2 Fibulin-1 is a biomarker of disease progression in IPF 

Biomarkers of disease progression in patients with pulmonary fibrosis are needed to 

aid in current clinical management and treatment. As shown in Chapter 2, fibulin-1 is 

an attractive candidate biomarker as its levels are elevated in the serum, whole lung 

lysates, fixed lung tissue and isolated parenchymal fibroblasts of patients with IPF 

compared to subjects without IPF. Furthermore, patients with IPF had higher serum 
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fibulin-1 levels compared to patients with sarcoidosis and in patients with “other” 

ILDs examined, of which 74% (26 out of 35) had connective-tissue disease related 

ILD.  In addition, patients with IPF were the only ILD category in this study to have 

serum fibulin-1 levels greater than subjects without lung disease, after adjustments for 

age, gender and smoking history were made.   

While it would be reasonable to conclude that elevated fibulin-1 levels were a feature 

of IPF alone, a wide range of serum fibulin-1 levels is shared between ILDs. It is 

possible that serum fibulin-1 levels are simply a reflection of the fibrotic environment 

in a particular ILD patient and relate to a general state of active lung fibrosis, not a 

specific feature of IPF. In support of this hypothesis, this study also showed that 

serum fibulin-1 levels were inversely correlated with disease severity (as measured by 

the extent of fibrosis represented by the composite physiologic index) in patients with 

ILDs, including IPF. The follow up period of the patients in this study was a 

minimum of one year from blood sampling. Patients with IPF are the most likely to 

experience lung function decline or death (Demedts et al. 2001), and therefore a 

longer period of follow up for patients with other ILDs may be necessary in order to 

investigate the utility of serum fibulin-1 as a marker of disease progression in other 

ILDs, something which was outside the scope of this thesis.  

The contribution of individual components of the ECM to lung mechanics is an area 

that is not well studied and this study was the first to recognize the correlation 

between increased levels of tissue fibulin-1 and decreased lung function in patients 

with IPF. Measuring the level of lung tissue fibulin-1 in two forms (whole lung 

lysates and fixed tissue sections) was important in determining the robustness of the 

results. The amount of elastic fibres, measured as the proportion of lung tissue that is 
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elastic fibre, predicts prognosis in IPF (Enomoto et al. 2013). Because fibulin-1 binds 

elastic fibres (Roark et al. 1995) it is possible that the increased levels of fibulin-1 are 

a manifestation of increased elastic fibre content.  

A correlation between increased elastic fibre content and decreased FVC% has 

recently been reported in patients with IPF (Enomoto et al. 2013). Increased elastic 

fibre content was also predictive of disease progression in IPF (Enomoto et al. 2013). 

However, the correlation between tissue fibulin-1 and FVC% (r = 0.9, p<0.05) was 

much stronger than the correlation reported between elastic fibre content and FVC% 

(r=0.5, p<0.01) leading to the hypothesis that fibulin-1 is not merely a “passenger 

along for the ride” but may be directly influencing lung mechanics. The level of 

fibulin-1 may also directly affect the compliance, or elasticity, of the lung, although 

further experiments are needed to confirm this hypothesis. 

The measured level of fibulin-1 in this study did not take into account any 

fragmentation that may have occurred post-translationally. Fibulin-1 in three types of 

patient materials was measured by western blot and therefore comparisons of the size 

of fibulin-1 between serum, whole lung lysates, and fibroblast-derived protein were 

possible. Western blots of serum showed four bands (weighing 100kDa, 73kDa, 

50kDa and approximately 28-30kDa) for fibulin-1 but blots of lung lysates, fibroblast 

cell-secreted and cell-associated fibulin-1 showed only one band of 100kDa size.  

All measurements of fibulin-1 in this study were based on the 100kDa size band. It is 

possible that the increase of fibulin-1 in the 100kDa band of the serum of patients 

with IPF is the contribution of fibulin-1 from the lung, in particular from the resident 

fibroblast. Previous studies of fibulin-1 in the literature have been measured by 

sandwich ELISA (Cangemi et al. 2011) and as a result, to our knowledge, this is the 
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first study to identify additional fragments of fibulin-1 in the serum that potentially 

could have bioactive properties of their own. Sequence analysis of the other size 

bands of fibulin-1 found in the serum are needed to identify these proteins in order to 

establish if they are fragments of fibulin-1, or artefacts of serum-derived proteins 

binding non-specifically to the fibulin-1 antibody used in the current studies. Should 

future studies determine that the bands of different sizes are fragments of fibulin-1, it 

would be interesting to determine if they also have roles in disease pathogenesis. 

Fibulin-1 can be subjected to degradation by cathepsin D, a protease tasked with 

regulating apoptosis, which generates a bioactive fragment of approximately 65kDa  

named Neostatin that exhibits tumour suppressor activity (Xie et al. 2008). Enhanced 

cathepsin D protein has been reported in the alveolar epithelium of fibrotic lungs, 

particularly in regions of active proliferation (Kasper et al. 1996) and an inverse 

relationship between fibulin-1 and cathepsin D is seen in breast cancer (Pupa et al. 

2004). Both fibrosis and cancer are instances of active ECM remodelling and 

therefore it would be interesting to investigate the consequences of fibulin-1 activity 

following degradation by other proteases involved in the lung fibrotic process such as 

matrix metalloproteinases (MMPs)(Song et al. 2013).  

Dysregulation of fibroblast-derived ECM proteins in IPF is an area ripe for further 

study. It is incredible to realise that in a lifetime, the cells that populate an 

individual’s organs are regenerated many times with little apparent loss of fidelity 

during normal homeostasis (Pellettieri and Sanchez Alvarado 2007). However, in the 

context of disease, studies of decellularized matrices indicate that there may be 

dozens of ECM proteins that are altered in the fibrotic lung (Booth et al. 2012) and in 

IPF, one of these dysregulated ECM proteins is periostin (Naik et al. 2012). 



Page 214 of 252 

 

Therefore, it was important to investigate, in this study, whether other ECM proteins 

were also dysregulated in the context of IPF and could also be used as biomarkers of 

disease progression in addition to fibulin-1. 

5.3 Dysregulation of  ECM proteins in IPF 

It is now recognized that the ECM plays an active role in determining cell behaviour 

such as morphology (Royce et al. 2009), proliferation (Krimmer et al. 2012), 

migration (Perumpanani et al. 1998), and signalling (Chiquet et al. 2003). The ECM 

has been shown to drive the fibrotic process by producing a fibrogenic positive-

feedback loop by altering particular components of the ECM (Parker et al. 2014). It is 

critical to identify which of the nearly 300 proteins that constitute the ECM are the 

key players to target for future therapies. These proteins (fibulin-1, periostin, tenascin-

C, fibronectin) influence one another (Williams and Schwarzbauer 2009; Kii et al. 

2010) and in Chapter 3 it was demonstrated how relationships between these proteins 

may be important in understanding the pro-fibrotic environment in patients with 

fibrotic interstitial lung disease.   

The results presented in this thesis support a model in which patients with fibrotic 

lung diseases can be stratified by their level of “fibrotic potential” and in addition to 

fibulin-1, the ECM proteins periostin and tenascin-C were also dysregulated in 

patients with IPF. For the purposes of this discussion, the fibrotic potential as been 

defined as the probability that a patient will experience a progressive decline in lung 

function over the course of their disease.  

Within 5 years of diagnosis, 44% of all patients with IPF are expected to die, 

compared with only 2% of patients with sarcoidosis (Demedts et al. 2001) and 
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therefore, in keeping with our definition, patients with IPF have the highest fibrotic 

potential whereas those with sarcoidosis have the lowest. The fibrotic potential of a 

patient may be quantified by sampling serum levels of any number of ECM proteins 

in patients with ILD.  

In this study, 45% (75/167) of patients with ILD exhibited increased levels of at least 

one of the four serum ECM proteins studied.  Pearson’s chi-squared test was used to 

assess whether there was a relationship between  the number of patients who had a 

high level of at least 1 ECM protein and the particular ILD group. The proportion of 

patients who had high levels of serum ECM proteins differed between disease groups 

(Table 5.1). A high level of serum ECM protein was defined as greater than or equal 

to the mean + 2 standard deviations level of that protein measured in the healthy 

controls (n=17). If patients with IPF had the highest fibrotic potential, then it would 

make sense that more than half (52%) of the patients with IPF exhibited high levels of 

at least one of the four ECM proteins we studied (Table 5.1).  

Furthermore, patients with IPF that had a high level of at least one of the ECM 

proteins studied were also more likely to progress within one year of blood draw 

(Table 5.2).  
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Table 5.1 The number of patients with a high serum level of at least one ECM protein is greatest in IPF  

Disease Category (n) 

Fibulin-1 Periostin Tenascin-C Fibronectin At least 1 ECM* 

Count % Count % Count % Count % Count % 

Non-diseased 

Control 
17 1 6% 1 6% 0 0% 1 6% 2 12% 

Sarcoidosis 12 0 0% 2 17% 6 50% 2 17% 4 33% 

HP 32 9 28% 6 19% 18 56% 5 16% 16 50% 

"Other" ILD 35 10 29% 6 17% 11 31% 4 11% 16 46% 

IPF 71 28 39% 15 21% 22 31% 14 20% 37 52% 

Total 167 48  30  57  26  75 45% 

The means and standard deviations (SD) of serum levels of the ECM proteins were calculated from n=17 non-diseased controls with no history 

of lung disease. A high level of ECM protein was defined as greater than or equal to the mean+ 2SD of that protein.  

Those patients who had a high level of serum ECM protein were counted individually.  

% is defined as the number of patients who had a high level of ECM protein expressed as a percentage of the total number of patients within 

each disease category. 

*At least 1 ECM is defined as the number of patients who had a high level of at least one of the four ECM proteins. 

Pearson Chi-Square value 9.771, degrees of freedom 4, p=0.044 
”Other” refers to patients with connective tissue-disease related ILD (n=26), Non-specific interstitial pneumonia (n=4), 

lymphangioleiomyomatosis (n=4), and drug-induced ILD (n=1). 

ECM extracellular matrix, ILD intersitital lung disease, IPF idiopathic pulmonary fibrosis, HP hypersensitivity pneumonitis
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Table 5.2 Patients with IPF who had a high ECM level were more likely to 

progress within 1 year of blood draw. 

 

 
The means and standard deviations (SD) of serum levels of fibulin-1, periostin, 

tenascin-C and fibronectin was calculated from n=17 non-diseased controls with no 

history of lung disease.  

A high level of an ECM protein was defined as greater than or equal to the mean + 

2SD level of that protein. A patient was considered to have high ECM levels if any 

one of the four ECM protein levels was high. 

Patients that did not have high serum levels of any of these ECM proteins were 

considered to have normal ECM levels. 

Progression was defined as having a significant fall in lung function (defined as ≥10% 

relative fall in FVC%, ≥15% relative fall in DLCO%, or death one year of blood draw). 

ILD interstitial lung disease, IPF idiopathic pulmonary fibrosis, ECM extracellular 

matrix

  

Normal 

ECM 

levels 

High 

ECM 

levels 

Total 

patients 

Pearson 

Chi-

Square p-

value 

Non-IPF ILD 
Stable 9 11 20 

0.214 Progressed 4 12 16 

Total Non-IPF 
 

13 23 36 

IPF 
Stable 15 6 21 

0.025 Progressed 11 16 27 

Total IPF 
 

26 22 48 
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Serum levels of periostin and tenascin-C also inversely correlated with lung function 

parameters in patients with ILDs. Like a concentration gradient, it may be that 

increased systemic levels of ECM proteins act to tilt the patient’s circulatory 

microenvironment towards a state of enhanced ECM deposition, outside of de novo 

ECM production. Fibulin-1 incorporation into the ECM requires fibronectin, and 

increasing amounts of fibronectin in the matrix also increases the amount of fibulin-1 

deposited (Godyna et al. 1995). Increases in systemic levels of particular ECM 

proteins may drive the increased deposition of that ECM protein, and potentially also 

proteins that associate with the protein of increased levels, into the lung as more 

“fibrotic building blocks” are available for use during wound healing events. 

One of the mechanisms driving the progression of IPF is thought to be propagated 

through constant damage to the lung (Wilson and Wynn 2009), in which vascular 

homeostasis plays a critical role. The initial stage of wound healing is haemostasis 

and in concert with fibulin-1 (Godyna et al. 1996), it is fibronectin and fibrin that 

form the initial thrombus, or “plug”, that seals the wound (Stenman et al. 1980). 

Fibronectin fibre assembly is of particular importance because collagen fibres do not 

form without the presence of fibronectin (Sottile and Hocking 2002). This provisional 

matrix provides the seed structure for the deposition of collagen that follows (Hernnas 

et al. 1992). In this manner, it is possible that the increased amounts of fibulin-1, 

produced by IPF fibroblasts, could be contributing to fibrosis via the role of fibulin-1 

in the initial clot formation that underlies all fibrosis (Tran et al. 1995). In this study 

increased levels of fibronectin in the patients with ILDs were not seen. It is possible 

that whilst fibulin-1 and fibronectin are known to bind to each other in tissue (Godyna 
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et al. 1995), this does not necessarily mean that the two molecules bind in the 

circulation.   

In the later stages of wound healing, after the initial deposition of the individual 

subunits of collagen, cross-linking of the collagen strands occurs through the 

maturation process of the fibres. During this process, myofibroblasts replace the 

fibronectin in the provisional matrix with decorin. Decorin is a “C” shaped molecular 

bridge that is placed between collagen fibrils as a “spacer,” ensuring uniform distance 

between collagen fibres (Weber et al. 1996). Fibroblasts from patients with 

pulmonary fibrosis also produce more decorin than fibroblasts from non-fibrotic 

subjects (Westergren-Thorsson et al. 2004). This study did not investigate the role of 

decorin in the tissue of patients with IPF and future work is necessary to elucidate the 

relationship between decorin and the ECM proteins studied here. However, similarly 

to decorin, periostin functions as a molecular spacer in collagen fibrillogenesis (Norris 

et al. 2007) and can also alter fibronectin fibres by acting as a bridge linking multiple 

fibronectin fibres (Kudo 2011).   

An essential part of ECM remodelling is collagen fibril formation. Collagen fibril 

formation requires the correct intracellular formation of ECM component proteins in 

the endoplasmic reticulum in a process that involves many molecular chaperones for 

proper folding and secretion (Lamande and Bateman 1999).  Once in the extracellular 

space, the mechanisms involved in tissue-scale ECM formation are complex and often 

require the assistance of fibril-associated molecules that are targeted to the surface of 

collagen precursors (Canty and Kadler 2005).  The mechanisms driving collagen fibril 

formation are outside the scope of this thesis however this study highlighted a novel 

link between fibulin-1 and periostin in lung tissue from patients with IPF. Further 
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investigation into the role of fibulin-1 in collagen fibril formation, via the shared 

correlation between fibulin-1 and periostin and periostin and collagen in lung tissue 

from patients with IPF are warranted.  

Whilst levels of tissue periostin and tissue total collagen were also increased in lung 

tissue from patients with IPF, levels did not correlate with lung function in these 

patients with IPF.  Interestingly, tissue periostin did correlate strongly with tissue total 

collagen, as would be expected from prior reports in the literature (Takayama et al. 

2006). Although collagen is a major determinant of lung function (Suki et al. 2005), it 

is possible that the increases seen in periostin/total collagen deposition in the tissue of 

patients with IPF was not as influential on lung function as the increases seen in 

fibulin-1 deposition. Fibulin-1 may have a strong role in determining lung function 

because of its role in elastic fibre formation (Sasaki et al. 1999). Elastic fibres are 

another major determinant of lung function (Faffe and Zin 2009).  

A greater mechanistic understanding of the processes regulating and driving site-

specific fibrogenesis would allow for the development of anti-fibrotic treatments 

potentially capable of “resetting” the dysregulated ECM and restoring normal lung 

architecture and function. Future studies investigating the precise manner in which the 

network of proteins that makes up the ECM are aligned relative to each other are 

needed.  

5.4 Fibulin-1 production in primary parenchymal fibroblasts is 

increased by TGFβ1 in patients with IPF 

Fibroblasts from patients with IPF inherently produce increased levels of fibulin-1, at 

both the gene and protein levels. Chapter 3 was concluded by showing that none of 
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the other three proteins studied in this thesis (periostin, tenascin-C, or fibronectin) 

shared this same characteristic. Fibroblasts are capable of altering specific ECM 

proteins in response to mechanical stress even in the presence of TGFβ1 (Chiquet et 

al. 2003), alluding to parallel production of ECM proteins, as well as growth factors, 

in response to mechanical stress.  

TGFβ1 is a potent inducer of ECM proteins (Zanotti et al. 2010). TGFβ1 is also 

released from activated platelets in the first stages of wound healing (Grainger et al. 

1995). The earlier hypothesis that increased circulating fibulin-1 was driven into the 

matrix during wound healing events was extended in Chapter 4 by including a study 

of TGFβ1 as an inducer of fibulin-1 deposition. The data presented here lead to the 

hypothesis that in a healthy individual, after an injurious event to the lung, in which 

blood vessels are damaged, TGFβ1, perhaps released from platelets, drives fibulin-1 

from the blood into the wound. In a patient with IPF, increased levels of fibulin-1 may 

be deposited in the tissue because of (1) increased levels of circulating fibulin-1, 

and/or (2) increased production of fibulin-1 by fibrotic fibroblasts. 

TGFβ1 increased fibronectin mRNA in lung fibroblasts this study (Chapter 3) and has 

been shown to increase fibronectin protein deposition by lung fibroblasts (Patel et al. 

2012). It is possible that TGFβ1-induced fibronectin deposition subsequently 

increases fibulin-1 deposition. Fibronectin regulates latent TGFβ1 by controlling the 

assembly of the latent-TGFβ1-binding protein-1 into the matrix (Dallas et al. 2005). 

There is extensive evidence that fibronectin is important in the context of fibrotic 

disease (White and Muro 2011) but its significance may actually be due in part to how 

it interacts with other proteins (Muro et al. 2008), for example fibulin-1.  
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Upon activation from its latent state, TGFβ1 stimulation increases other pro-fibrotic 

cytokines such as vascular endothelial growth factor (VEGF) and connective tissue 

growth factor (CTGF) (Lee 2012). Levels of CTGF in the serum have also been 

reported as a biomarker of disease progression in IPF (Kono et al. 2011) and another 

extension of this work could be to investigate the effect of CTGF on fibulin-1. Other 

cytokines such as the tumour cytokine CXCL1/GROα have been reported to decrease 

fibulin-1, resulting in increased cell migration of prostate cancer cells (Kuo et al. 

2012). Additional cytokines may prove to also regulate fibulin-1 deposition, the study 

of which could also broaden the results of this thesis. 

Gene levels of pro-inflammatory cytokines like interleukin (IL)-6 are increased in 

patients with IPF (Pantelidis et al. 2001) and predictive of disease progression (De 

Lauretis et al. 2013). Furthermore, although obvious inflammation is absent in 

patients with established IPF (Keane 2008), TGFβ1 has been shown to induce IL-6 

mRNA in primary human lung fibroblasts (Eickelberg et al. 1999), and in this study, 

also induced IL-6 protein. IL-6 contributes to proliferation and reduces apoptosis in a 

subpopulation of fibroblasts in patients with IPF and is therefore important in disease 

progression (Habiel and Hogaboam 2014).  

Most relevant to our study is that IL-6 can regulate ECM deposition in the context of 

an already disordered ECM. Mice with fibrillin-1 deficiency, a model of Marfan’s 

syndrome which is a connective tissue disorder resulting in heart defects, are 

protected from ECM degeneration when IL-6 is also knocked out (Ju et al. 2014). 

Fibrillin-1 binds fibulin-1 (El-Hallous et al. 2007), and therefore, it is possible for IL-

6 to indirectly affect fibulin-1 deposition into the ECM and could be explored as an 

extension of this study.  
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The deposition of particular ECM proteins gives each tissue ECM a unique 

topography that is generated by an exceedingly complex interaction between 

epithelial, endothelial, adipocyte and fibroblast cells (Frantz et al. 2010). This study 

concluded by examining morphological, and physical, changes in the topography of 

lung fibroblast cells after TGFβ1 stimulation, from which the importance of 

differences in ECM deposition was inferred. 

It was hypothesized that increased fibulin-1 deposition into the ECM decreased lung 

function due to the role that fibulin-1 plays in determining the orientation of larger 

structural fibres such as fibrillin-1, fibronectin (Cooley et al. 2008), and elastic fibres 

(Roark et al. 1995). This was supported by the results presented in Chapter 2, which 

indicated a strong correlation between the level of fibulin-1 deposited in lung tissue 

and the lung function of that patient with IPF. In addition it was concluded, from the 

data presented in Chapter 3, that the relationship between amount of ECM protein and 

lung function was not a feature of just any ECM protein, as periostin did not possess 

this characteristic despite being increased in the same tissue samples from patients 

with IPF. Differences in lung tissue levels of fibulin-1 between patients with and 

without IPF were mirrored in the fibroblasts derived from the aforementioned 

patients. 

Fibroblasts from a patient with IPF were stiffer than fibroblasts from a patient without 

IPF. Furthermore, while TGFβ1 stimulation increased the stiffness of both Non-IPF 

and IPF fibroblasts, TGFβ1 stimulation  increased fibulin-1 production in IPF 

fibroblasts but not in Non-IPF fibroblasts. The mechanism underlying fibulin-1 

deposition by fibroblasts may be regulated by TGFβ1. In support of this possibility, 

greater levels of TGFβ, co-localised with ECM proteins that bind fibulin-1, namely 
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fibronectin and fibrillin-1, are found in the lungs of patients with IPF (Lepparanta et 

al. 2012).  

In a healthy lung, an injury starts a chain of events that terminates in the restoration of 

the normal lung architecture and a return to normal lung function. Any number of 

control-points that lie along this chain of events may become dysregulated in the 

context of fibrotic ILDs that progress to lung failure. IPF is thought to be driven by 

activated fibroblasts that deposit excessive amounts of ECM in an aberrant wound 

response. Understanding this mechanism is of importance because IPF carries the 

greatest public burden due to its lack of treatment and high rate of mortality (Raghu et 

al. 2011).  

A summary of the results in this thesis is found in Table 5.3. The novel findings 

presented in this thesis are illustrated in Figure 5.1. Increased deposition of fibulin-1 

into the tissue ECM may result in decreased elasticity as fibulin-1 is a component of 

elastic fibres. Increased deposition of fibulin-1 may result in the overall stiffening of 

the lung, and eventual loss of function. Levels of circulating fibulin-1 predicted 

disease progression in patients with IPF and could be a useful clinical biomarker. 

Insights into the precise role of fibulin-1 in the ECM and its effect on fibroblasts 

could lead to new therapies for drug development and targeting.  
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 Table 5.3 Summary of thesis  
 

*indicates novel findings 
Grey boxes indicate research questions not undertaken as part of this thesis. 

mRNA messenger ribonucleic acid, IPF idiopathic pulmonary fibrosis 

Research Question     

Biomarker Study Fibulin-1 Periostin Fibronectin Tenascin-C 

1 

Is the biomarker increased 

in the serum of patients with 

IPF compared to controls? 

Yes* Yes No No 

2 

Does the biomarker predict 

progression in patients with 

IPF? 

Yes* No No No 

3 

Is the biomarker increased 

in the tissue of patients with 

IPF compared to controls? 

Yes* Yes No  

4 

Do fibroblasts from patients 

with IPF produce increased 

mRNA of the biomarker? 

Yes* No No No 

5 

In patients with IPF, do 

fibroblasts produce 

increased levels of the 

soluble biomarker protein? 

Yes* No  No 

6 

In patients with IPF, do 

fibroblasts produce 

increased levels of the 

cellular biomarker protein? 

Yes*    

7 

Does TGFβ1 increase the 

biomarker mRNA in 

fibroblasts from patients 

with IPF? 

No* Yes* Yes No 

8 

Does TGFβ1 increase the 

levels of deposited 

biomarker protein in 

fibroblasts from patients 

with IPF? 

Yes*    

Matrix Stiffness Study Non-IPF IPF 

9 
Are fibroblasts from 

patients with IPF stiffer? 
n/a Yes* 

10 
Does TGFβ1 increase the 

stiffness of fibroblasts? 
Yes Yes* 
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Figure 5.1 Summary of 

the results presented in 

this thesis.  
 

Five novel findings 

presented in this thesis 

are illustrated.  

 

High-resolution 

computed tomography 

scans from a patient 

without (http://www.ers-

education.org/media/836

51/ers_handbook_2nd_s

amplesection.pdf, 

accessed 02-06-14) and 

with IPF (reproduced 

with permission from 

(Raghu et al. 2011)) 

 were used to compare 

the differences in lung 

composition. Lighter 

areas are more solid. 

 

Double-lined black 

arrow represents a 

possible source of 

increased fibulin-1 in the 

serum of patients with 

IPF. 
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5.5 Future Directions 

The main limitation in this study was the inability to study serial samples of serum in 

patients with ILDs. Investigation of the stability of fibulin-1 levels would be 

necessary to confirm the findings presented in this thesis. Furthermore, the results 

described herein would be strengthened following validation in a second study of an 

alternate population of patients with IPF.  

Properties of ECM proteins differ between their soluble form and their cell-associated 

form and ECM proteins can alter collagen fibrogenesis (Flynn et al. 2010).  

Fibroblasts from subjects without IPF showed a different pattern of stiffness 

compared to fibroblasts from patients with IPF (Figure 5.1). Fibroblasts from subjects 

without IPF had a majority of points of stiffness on the normal end of the stiffness 

scale whereas fibroblasts from patients with IPF had a shift in the median towards 

fibrotic levels of stiffness. An additional limitation in the experimental set up required 

that the cells investigated using AFM in this thesis needed to be fixed prior to 

analysis. 

Further follow up work would be required to strengthen these observations. 

Fibroblasts derived  from fibrotic disease states are known to respond to matrices of 

differing stiffness (Marinkovic et al. 2012), but no study has investigated the inherent 

differences between IPF fibroblasts and normal fibroblasts.  

The differences described above may relate to the differential expression of ECM 

proteins, in particular fibulin-1. It would be interesting to see if knockdown of fibulin-

1 has an effect on the stiffness of the overall lung matrix. One way to study this would 

be the use of AFM on lung tissue from fibulin-1 heterozygous knockout mice. A 
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heterozygous knockout would be necessary as homozygous fibulin-1 knockouts are 

embryonically lethal (Kostka et al. 2001).  Mouse models with and without fibulin-1 

would also allow for the study of the effect of fibulin-1 on lung mechanics in vivo. 

Another way to study the effect of fibulin-1 in cell stiffness would be through the use 

of a transfected cell line such as the one that was used as a positive control in this 

study. The HT1080 fibrosarcoma line does not produce fibulin-1 and was transfected 

with the C-isoform of fibulin-1 to study the anti-angiogenic function of fibulin-1 (Xie 

et al. 2008). Differences in the stiffness between HT1080 cell lines transfected with 

and without the fibulin-1 gene would allow for a direct comparison of the impact of 

fibulin-1 on cell stiffness both in the presence and absence of cytokines like TGFβ1. 

TGFβ1 is not the only cytokine that induces fibulin-1. In the cancer literature, 

oestrogen (Nakamoto et al. 2005) and progesterone (Moll et al. 2002) both can induce 

fibulin-1 in ovarian cancer and endometrial stromal cells respectively. Furthermore, 

expression of fibulin-1 is increased in preeclampsia, a pregnancy-specific syndrome 

of which proteinuria (excess serum proteins in the urine) is characteristic (Liu et al. 

2011). Therefore, it would be worthwhile investigating if other cytokines can induce 

fibulin-1 in the context of fibrotic lung disease.  

Dysregulation of fibulin-1 may have subsequent effects on the deposition of other 

ECM proteins as the creation of this complex network involves many players. The 

relationship between ECM proteins has not been extensively studied and as shown in 

the preceding Chapters, ECM proteins correlate with each other. Future work could 

extend the aforementioned experiments of cell stiffness to include studies on the 

deposition patterns of other ECM proteins when fibulin-1 is knocked out. Such 

experiments would go towards elucidating if fibulin-1 is a driver of the fibrogenic 
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process or is merely a bystander, increased through association with some of the key 

players in the progression of fibrosis. Ultimately, a greater understanding of fibulin-1 

and the mechanisms that drive fibrosis would allow for more targeted treatments in 

pulmonary fibrosis.  
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