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1. Introduction 
 
 In this paper we consider the stochastic frontier (SF) model 

௜ݕ  (1) ൌ ߙ ൅ ௜ݔ
ᇱߚ ൅ ௜ݒ െ ݅  , ௜ݑ ൌ 1,… , ݊  , 

where ݕ௜ is log output, ݔ௜ is a vector of inputs or functions of inputs, ݒ௜ is random noise distributed 

as ܰሺ0, ௜ݑ ௩ଶሻ, andߪ ൒ 0 represents technical inefficiency.  Here i indexes firms and n is the 

number of firms.  We are interested in the case that some of the x’s may be endogenous, in the sense 

that they are correlated with v or u or both.  This can occur when there is feedback from either statistical 

noise or inefficiency to the choice of inputs, or when the inputs influence the level of inefficiency as well as 

the frontier.  Endogeneity needs to be dealt with because the usual procedures for estimating SF models 

depend on the assumption that the inputs are exogenous. 

 In a standard regression setting, simultaneity is handled by a number of procedures that are 

numerically or asymptotically equivalent.  These include instrumental variables (2SLS); using the residual 

from the reduced form equations for the endogenous variables as a control function; and MLE of the system 

that contains the equation of interest plus the reduced form equations for the endogenous variables (LIML).  

We will consider modifications of these standard procedures for the SF setting.  An important issue is that 

procedures that are numerically or asymptotically equivalent in the usual linear regression model may not 

be equivalent for the SF model.  Another important issue is that it is definitely not appropriate to insert 

“fitted values” for the endogenous variables and then proceed with standard SF procedures such as the usual 

SF MLE. 

 Modification of the first three of these procedures to the SF model is straightforward.  However, 

appropriate modification of LIML is not straightforward, because it is not clear how best to model the joint 

distribution of the composed error in the SF model and the error in the reduced form equations for the 

endogenous inputs.  This is a potentially important issue because correlation between the reduced form 

errors and either noise or inefficiency can be helpful in the decomposition of the composed error into its 
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noise and inefficiency components. 

 This paper is mostly a survey and combination of existing results from the SF literature and the 

classic simultaneous equations literature, but it also contains some new results.  The material in this paper 

may be assumed to be part of the existing literature unless it is specifically claimed to be  new.  The plan of 

the paper is as follows.  In Section 2 we give a brief review of estimation of stochastic frontier models, and 

in Section 3 we give a brief review of 2SLS and LIML in the usual linear simultaneous equations model.  In 

Section 4 we consider stochastic frontier models with endogeneity, and we discuss how the simple 2SLS 

and LIML estimators can be modified for use in the stochastic frontier model.  We also discuss some issues 

that are relevant in the case of a translog model (or other nonlinear models).  In Section 5 we give an 

empirical example.  Finally, Section 6 gives our concluding remarks. 

 

2. A Brief Review of Estimation in SF Models 

 This section will give a very brief review of the estimation of SF models under exogeneity.  This is 

all standard material but it allows us to define some necessary notation and to summarize the relevant 

results for readers who are not knowledgeable about SF models. 

 The most common way to estimate the SF model is by MLE.  Following standard terminology, we 

define ߝ௜ ൌ ௜ݒ െ ௜ݑ ൌ ௜ݕ െ ߙ െ  which is the composed error.  We will make the standard ,ߚ′௜ݔ

assumptions (Aigner, Lovell and Schmidt (1977)) that we have random sampling (and therefore 

independence) over i, that ݔ௜, ,௜~ܰሺ0ݒ ௜ are mutually independent, thatݑ ௜ andݒ  ௩ଶሻ, and thatߪ

,௜~ܰାሺ0ݑ  ௜ isߝ The implied density of  (.௜ has the so-called half normal distributionݑ ,That is)  .௨ଶሻߪ

(2)   ఌ݂ሺߝ௜ሻ ൌ ׬ ௩݂ሺߝ௜ ൅ ሻݑ ௨݂ሺݑሻ݀ݑ
ஶ
଴  = 

ଶ

ఙ
߮ ቀ

ఌ೔
ఙ
ቁߔሺെ

ఒఌ೔
ఙ
ሻ , 

where: ߪଶ ൌ ௨ଶߪ ൅ ߣ ;௩ଶߪ ൌ  is the standard normal ߔ ௩; ߮ is the standard normal density function; andߪ/௨ߪ

cdf.  We can then form the likelihood function: ݈݊ L = ∑ ݈݊௜  ఌ݂ሺݕ௜ െ ߙ െ  .(ߚ′௜ݔ
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The MLE’s of the parameters of the model are obtained by maximizing the likelihood function with respect 

to the parameters ߙ, ,ߚ ,ߣ ,ߙ ,ଶ (or, equivalentlyߪ ,ߚ ,௨ଶߪ  .(௩ଶߪ

 An alternative to MLE is corrected ordinary least squares (COLS), which was defined in Aigner, 

Lovell and Schmidt (1977) and Olson, Schmidt and Waldman (1980).  We can make the same assumptions 

as above, or the slightly weaker assumptions that, conditional on ݔ௜, the first three moments of ݒ௜ are the 

moments of ܰሺ0, ,௜ are the moments of  ܰାሺ0ݑ ௩ଶሻ, the first three moments ofߪ  ௜ areݑ ௜ andݒ ௨ଶሻ, andߪ

independent.  Define  ߤ ൌ ሻݑሺܧ ൌ ටଶ

గ
መߚ ො andߙ ௨.  Letߪ  be the OLS estimates when y is regressed on x.  

These are consistent estimators of (ߙ െ respectively.  Now define the OLS residuals ݁௜ ,ߚ and (ߤ ൌ ௜ݕ െ

ොߙ െ መߚ′௜ݔ .  The second and third sample moments of the residuals are ߪොఌଶ ൌ
ଵ

௡
∑ ݁௜

ଶ
௜  and  ̂ߤଷ′ ൌ

ଵ

௡
∑ ݁௜

ଷ
௜  .  

These are consistent estimators of ߪఌଶ ൌ ௩ଶߪ ൅
గିଶ

గ
ଷߤ ௨ଶ andߪ

ᇱ ൌ ߝሾܧ െ  =  ሻሿଷߝሺܧ
గିସ

గ
ටଶ

గ
 ௨ଷ.  Solving forߪ

 ௩ଶ, in terms of sample quantities we haveߪ ௨ଶ andߪ

ො௨ଶߪ  (3) ൌ ൬ గ

గିସ
ට
గ

ଶ
ଷ′൰ߤ̂

ଶ/ଷ

ො௩ଶߪ    ,    ൌ ොఌଶߪ െ
గିଶ

గ
 .  ො௨ଶߪ

This presumes that ̂ߤଷ′ ൏ 0.   (It is the case that ߤଷ′ ൏ 0, but because of estimation error it is possible that 

ଷߤ̂
ᇱ ൐ 0.)  If ̂ߤଷ′ ൐ 0, the so-called wrong skew problem, we set ߪො௨ଶ ൌ 0 (Waldman (1982)).  We can now 

correct the intercept:  ߙ෤ ൌ ොߙ ൅ ටଶ

గ
,෤ߙ ො௨.  Then the COLS estimates areߪ ,መߚ ,ො௨ଶߪ    .ො௩ଶߪ

There is no real case for preferring the COLS estimate to the MLE in the current setting, but as we 

will see it is easy to generalize to models with endogeneity. 

 Once the parameters have been estimated, the ultimate aim is to estimate (or, more properly, 

predict) the values of the inefficiency terms ݑ௜.  Under the assumptions that were made in the discussion of 

MLE above, Jondrow et al. (1982) showed that the distribution of ݑ௜ conditional on ߝ௜ is ܰାሺܽ௜,  ଶሻ where∗ߪ

ܽ௜ ൌ െߝ௜ߪ௨ଶ/ߪଶ and ߪ∗ଶ ൌ  :௜ is the mean of this distributionݑ ଶ.  Then the prediction ofߪ/௩ଶߪ௨ଶߪ
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ො௜ݑ  (4) ൌ ∗ߪ = ௜ሻߝ|௜ݑሺܧ ቂ
ఝሺ௕೔ሻ

ଵିఃሺ௕೔ሻ
െ ܾ௜ቃ  where  ܾ௜ ൌ  . ߪ/ߣ௜ߝ

To implement this formula, it must be evaluated at the estimated parameters (ߙො, ,መߚ ,ො௨ଶߪ  ො௩ଶ and the impliedߪ

values of  ߣመ and ߪොଶ) and at ߝ௜̂ ൌ ௜ݕ െ ොߙ െ መߚ′௜ݔ .  (Here, with a slight abuse of notation, ߙො, መߚ  etc. can be 

either the MLE or the COLS estimates.) 

 

3. A Brief Review of 2SLS and LIML 

 This section will give a very brief review of the estimation of linear models (not SF models) when 

some variables may be endogenous.  This is all standard material but the discussion allows us to define 

some necessary notation and to summarize the relevant results that will be generalized to the stochastic 

frontier model. 

 The model of interest is 

௜ݕ  (5) ൌ ௜ݔ
ᇱߚ ൅ ଵ௜ݔ  = ௜ݒ

ᇱ ଶ௜ݔଵ൅ߚ
ᇱ ଶߚ ൅ ݅  , ௜ݒ ൌ 1,… , ݊  . 

Here ݔଵ௜ is exogenous, meaning ܧሺݒ௜|ݔଵ௜ሻ ൌ 0 (loosely, ݔଵ௜ is not correlated with ݒ௜) and ݔଶ௜ is 

endogenous, meaning ܧሺݒ௜|ݔଶ௜ሻ ് 0 (loosely, ݔଶ௜ is correlated with ݒ௜).  There are ݇ଵ variables in ݔଵ௜ and 

݇ଶ variables in ݔଶ௜.  The intercept is part of ݔଵ௜.  In matrix terms we write the model as ݕ ൌ ߚܺ ൅   = ݒ

ଵܺߚଵ ൅ ܺଶߚଶ ൅ ݊ where y is ݒ ൈ 1, ଵܺ is ݊ ൈ ݇ଵ, etc. 

 We assume there are some instruments ݖ௜ ൌ ቂ
ଵ௜ݔ
௜ݓ
ቃ with ݓ௜ of dimension ݇௪ ൒ ݇ଶ, so there are at 

least as many instruments as x’s.  We say that the model is exactly identified when ݇௪ ൌ ݇ଶ and that it is 

overidentified when ݇௪ ൐ ݇ଶ.  The instruments are exogenous, in the sense that ݒ)ܧ௜|ݖ௜ሻ ൌ 0.  We can 

think in terms of a reduced form for the endogenous variables, which we write in matrix terms as  

(6)  ܺଶ ൌ ߎܼ ൅   ߟ

where ܼ ൌ ሺ ଵܺ,ܹሻ and where ߟ௜ is uncorrelated with ݖ௜.  Then endogeneity of ܺଶ corresponds to 

,ߟሺݒ݋ܿ ሻݒ ് 0. 

 The problem that endogeneity causes (simultaneous equations bias) is that ordinary least squares is 
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inconsistent.  This occurs because ܧሺݒ|ܺଶሻ ് 0, and therefore ܧሺݕ| ଵܺ, ܺଶሻ ് ଵܺߚଵ ൅ ܺଶߚଶ, so the 

regression model is not valid. 

 We now discuss standard methods to obtain consistent estimates in the presence of endogeneity.  

These are the methods that we will later generalize to the SF model. 

3.1 Two Stage Least Squares (2SLS) 

 Let ߎ෡ ൌ ሺܼᇱܼሻିଵܼ′ܺଶ be the ordinary least squares estimate of the reduced form (6), and let 

෠ܺଶ ൌ ߟ̂ ෡ andߎܼ ൌ ܺଶ െ ෠ܺଶ be the corresponding fitted values and residuals, respectively.  Also define 

෠ܺ ൌ ሺ ଵܺ, ෠ܺଶሻ.  Then the 2SLS (or instrumental variables, IV) estimator of ߚ in (5) is 

መߚ  (7) ൌ ሺ ෠ܺ′ ෠ܺሻିଵ ෠ܺ′ݕ = ሺܺ′෡ ܺሻିଵܺ′෡  . ݕ

This estimator is consistent if the instruments are exogenous (as defined above) and if there are enough 

relevant instruments (the model is identified).   

 An alternative approach that is equivalent to 2SLS in the linear model uses a so-called control 

function.  In principle, we could control for the effect of ߟ on v by including ߟ in the regression (7).  This 

would be a regression of the form	ݕ ൌ ߚܺ ൅ ߦߟ ൅ ߦ where ,ݎ݋ݎݎ݁ ൌ  Least  .ߦߟ – ఎ௩ and error = vߑఎఎିଵߑ

squares applied to this equation yields a consistent estimator of ߚ because error is uncorrelated with X and 

with ߟ.  Now, we do not observe ߟ, but we do observe the reduced form residuals ̂ߟ.  We can enter them as 

a control function in the regression: 

ݕ	  (8) ൌ ߚܺ ൅ ߦߟ̂ ൅   ݎ݋ݎݎ݁

and the resulting least squares estimator of ߚ is consistent.  For obvious reasons, this is also sometimes 

called the residual inclusion method (e.g. Terza, Basu and Rathouz (2008)).   

 For the linear model we are now considering, this estimate of ߚ is the same as 2SLS.  However, as 

is well known, this estimate is not the same as 2SLS in nonlinear models like the translog model.  We will 

discuss this point later. 

 Another feature of the control function regression (8) is that it can be used to test the null hypothesis 
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that the X variables are exogenous.  We simply use a standard t or F test to test the significance of the 

control function variables ̂ߟ.  That is, the hypothesis that X is exogenous corresponds to the hypothesis that 

ߦ ൌ 0 in equation (8).  This test is valid asymptotically. 

3.2 Limited Information Maximum Likelihood (LIML) 

 Consider the system of equations made up of the equation of interest plus the reduced form 

equations for the endogenous regressors.  Define ߰௜ ≡ ቂ
௜ݒ
௜ߟ
ቃ, the vector of errors from this system.  Suppose 

that we assume that, conditional on the instruments ݖ௜, ߰௜~ܰሺ0, ߗ ሻ whereߗ ൌ ቈ
௩ଶߪ ௩ఎߑ
ఎ௩ߑ ఎఎߑ

቉.  (This implies 

that ߰௜ is independent of ݖ௜.)  Then we can form a likelihood based on the multivariate normal density for 

߰௜.  Maximizing this likelihood with respect to the parameters (ߎ,ߚ, ,௩ଶߪ ,௩ఎߑ  ఎఎሻ yields the limitedߑ

information maximum likelihood estimator of ߚ. 

 There are several other ways to derive the LIML estimator.  See, for example, Schmidt (1976), pp. 

169-195.  The one just given is easiest to generalize to the SF model. 

 The LIML estimator is numerically equivalent to the 2SLS estimator if the equation (5) is exactly 

identified.  In the overidentified case, it is different.  In either case it is asymptotically equivalent to (has the 

same asymptotic distribution as) the 2SLS estimator.  Importantly, its consistency and asymptotic 

distribution do not depend on the correctness of the normality assumption for ߰௜ or on the correct 

specification of the reduced form (6).  The LIML estimator is consistent and has the same asymptotic 

distribution as 2SLS under the same assumptions as were needed for 2SLS, namely, ܧሺݒ௜|ݖ௜ሻ ൌ 0, plus the 

identification condition and some basic regularity conditions on the distribution of ݒ. 

3.3 Other Sources of Identification 

 In the discussion above, we had exogenous regressors ݔଵ௜, endogenous regressors ݔଶ௜ and some 

“outside instruments” ݓ௜.  Our identifying assumptions are that ݔଵ௜ and ݓ௜ are uncorrelated with the error 

  .(ଶ௜ݔ ௜ is at least as big as the dimension ofݓ the dimension of) ௜ and that there are enough instrumentsݒ
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However, under additional assumptions we can create more instruments (moment conditions), either to 

create identification when we do not have enough instruments, or to improve efficiency of estimation even 

in cases where we do already have enough instruments for identification.  This will generally be possible 

because if the expectation of ݒ௜ conditional on ݔଵ௜ (or ݓ௜) equals zero, then any function of ݔଵ௜ (or ݓ௜) will 

be uncorrelated with ݒ௜.  Alternatively, additional moment conditions may be based on assumptions about 

higher moments of the data or the form of the error distribution. 

 An early example is Lewbel (1997).  He has (in our notation) an exogenous regressor ݔଵ௜ and an 

endogenous regressor ݔଶ௜, and the endogenous regressor is endogenous because it is a mismeasured version 

of a second regressor ݔଶ௜
∗  that would be exogenous but is unobservable.  He then creates instruments using 

assumptions on the higher moments of the data.  For example, one of his instruments is (ݔଵ௜ െ ଶ௜ݔଵሻሺݔ̅ െ

,ଵ௜ݔ|௜ݒሺܧ ଶሻ, and this is a legitimate instrument ifݔ̅ ଶ௜ݔ
∗ ሻ = 0 and if ݔଵ௜ is uncorrelated with the square of the 

measurement error. 

 Lewbel (2012) follows somewhat similar lines.  In this paper he has a system of two equations with 

exogenous variables x and errors ߝ ൌ ሺߝଵ,  ଶሻ′.  Lewbel creates additional moment conditions by restrictingߝ

the correlations of ߝߝ′ with x.  These moment conditions are useful so long as ܧሺݔ|′ߝߝሻ is not constant. 

 Hansen, McDonald and Newey (2010) attempt to increase the efficiency of the 2SLS estimator by 

using moment conditions that arise from assuming a flexible parametric form for the error density.  This 

would lead to a likelihood that could be maximized to obtain a consistent estimator, if the regressors were 

exogenous.  That is, if f is the assumed density, the first order condition for its maximization with respect to 

∑ is ߚ ௜ݔ
ᇱߩሺݕ௜ െ ௜ݔ

ᇱߚሻ ൌ 0௜  where ߩሺߝሻ ൌ ߲ ln ݂ሺߝሻ/߲ߝ, and it reflects the moment conditions that 

௜ݔሾܧ
ᇱߩሺߝ௜ሻሿ ൌ 0.  This moment condition does not hold if ݔ௜ is endogenous.  Therefore we replace the 

endogenous regressors ݔ௜ with the exogenous instruments ݖ௜, assumed to be independent of ߝ௜, to obtain the 

moment conditions ݖܧ௜
ᇱߩሺݕ௜ െ ௜ݔ

ᇱߚሻ ൌ 0. Estimation of ߚ can be based on these moment conditions alone, 

or these moment conditions could be used together with the 2SLS moment conditions ݖܧ௜
ᇱሺݕ௜ െ ௜ݔ

ᇱߚሻ ൌ 0.  
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If we use them as extra moment conditions, these extra moment conditions will generally improve 

efficiency, except when ߩሺߝሻ is proportional to ߝ, as it is in the normal case.  This is relevant to the SF case 

because in the SF model we do have a specific non-normal error distribution. 

 Finally, there are papers that claim to establish identification and consistent estimation without any 

exogeneity assumptions (a truly instrument-free approach).  An example is Park and Gupta (2012).  They 

assume that the marginal distribution of ߝ௜ is normal, and they use nonparametric density estimation to 

identify the marginal distribution of ݔ௜.  Then they assume a Gaussian copula to create a joint distribution 

for ߝ௜ and ݔ௜ that has the appropriate marginal distributions.  This joint distribution implies a likelihood that 

can be maximized, presumably to obtain a consistent estimator of ߚ.  However, no proof of consistency is 

given.  This approach is suspect because it misses the point that the problem with endogeneity is 

fundamentally an identification problem.  The issue is not that we cannot construct a likelihood, but rather 

that different parameter values give the same (maximal) value of the likelihood. 

 

4. SF Models with Endogeneity 

 We now wish to embed the endogeneity problem into the SF model.  So we consider the SF model 

௜ݕ   (9) ൌ ߙ ൅ ௜ݔ
ᇱߚ ൅ ߙ  = ௜ߝ ൅ ଵ௜ݔ

ᇱ ଶߚ′ଶ௜ݔଵ൅ߚ ൅  , ௜ߝ

where, as in Section 2, ߝ௜ ൌ ௜ݒ െ ௜ݑ ൌ ௜ݕ െ ߙ െ   ,In matrix terms  .ߚ′௜ݔ

ݕ  (10) ൌ 1௡ߙ ൅ ଵܺߚଵ ൅ ܺଶߚଶ ൅  . ߝ

where 1௡ is an ݊ ൈ 1 vector of ones (representing the constant in the regression, which we now distinguish 

from the rest of ଵܺ).  We assume, as we did in Section 2, that we have random sampling (and therefore 

independence) over i, that ݒ௜ and ݑ௜ are mutually independent, that ݒ௜~ܰሺ0, ,௜~ܰାሺ0ݑ ௩ଶሻ, and thatߪ   .௨ଶሻߪ

However, we now distinguish the exogenous ଵܺ from the endogenous ܺଶ.  We assume a set of instruments 

ܼ ൌ ሺ1௡, ଵܺ,ܹሻ, and we assume that the identification condition holds, which requires ݇௪ ൒ ݇ଶ, as in 
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Section 3.  We assume that ݑ௜ and ݒ௜ are independent of the instruments ݖ௜ (but not of the endogenous 

variables ݔଶ௜), though this assumption can be weakened for some of the estimators we are about to consider. 

 Some of the estimators that we will consider require specification of the reduced form (6).  For the 

moment we put no restrictions on the relationship between the reduced form error ߟ௜ and either ݒ௜ or ݑ௜. 

 For the SF model, neither the MLE nor COLS will be consistent when we have endogeneity.  We 

now proceed to consider modifications of these procedures that are consistent. 

4.1 Corrected 2SLS (C2SLS) 

 This is a straightforward generalization of COLS, which perhaps surprisingly does not appear to 

have been discussed in the literature.  For COLS, we estimated the model by OLS.  Then we estimated ߪ௨ଶ 

and ߪ௩ଶ from the second and third moments of the residuals, and finally we corrected the intercept using the 

estimate of ߪ௨.  For C2SLS, the first step is to estimate the model (9) by 2SLS, using the instruments Z.  Let 

the 2SLS estimates be ߙො, ߚመଵ and ߚመଶ.  These are consistent estimators of  ߙ െ  ଶ, where as beforeߚ ଵ andߚ ,ߤ

ߤ ൌ  ሻ.  The second step is to construct the 2SLS residuals ݁௜, calculate the second and third moments ofݑሺܧ

the residuals, and then calculate the implied estimates ߪො௨ଶ and ߪො௩ଶ as in equation (3) above.  An important 

detail is to use the right residuals.  The correct residuals to use are 

(11)  ݁௜ ൌ ௜ݕ െ ොߙ െ ଵݔ
ᇱߚመଵ െ ଶݔ

ᇱߚመଶ  .   

Note that this is not the same as ݕ௜ െ ොߙ െ ଵݔ
ᇱߚመଵ െ ොଶݔ

ᇱߚመଶ, which would be incorrect.  Finally, the third step is 

to correct the intercept: ߙ෤ ൌ ොߙ ൅ ටଶ

గ
   .ො௨ߪ

 A somewhat similar procedure was considered by Guan, Kumbhakar, Myers and Lansink (2009).  

They estimated a stochastic frontier model using a generalized method of moments approach that is a 

generalization of 2SLS.  Also their application involved panel data and therefore some details are 

considerably different than here. 

4.2 The Approach of Hansen, McDonald and Newey 
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 An alternative to C2SLS is the approach of Hansen, McDonald and Newey (2010).  Like C2SLS, it 

depends only on the correct specification of the SF model, but it makes use of the distributional assumptions 

for ݒ௜ and ݑ௜ in a way that is more analogous to the MLE estimator that would be used in the case of 

exogeneity.  

 Unlike Hansen, McDonad and Newey, in the SF context we have a “true” likelihood, not just an 

approximate one.  The first order conditions for the maximization of the likelihood under exogeneity are 

given by Aigner, Lovell and Schmidt (1977, p. 27).  The (population) moment conditions that are the 

analogue to these first order conditions are: 

(12a)  ܧሾെ1 ൅
ଵ

ఙమ
ሺݕ௜ െ ௜ݔ

ᇱߚሻଶ] = 0 

(12b)  ܧ ቂሺݕ௜ െ ௜ݔ
ᇱߚሻ

ఝ೔
ଵିః೔

ቃ ൌ 0 

(12c)  ܧ ቂ
ଵ

ఙ
௜ݕ௜ሺݔ െ ௜ݔ

ᇱߚሻ ൅ ௜ݔߣ
ఝ೔

ଵିః೔
ቃ ൌ 0 

where ߮௜ and ߔ௜ are the standard normal density and cdf, evaluated at  
ఒ

ఙ
ሺݕ௜ െ ௜ݔ

ᇱߚሻ.  Under exogeneity, the 

MLE is the generalized method of moments (GMM) estimator based on these moment conditions. 

 The moment conditions (12a) and (12b) depend on the assumptions about the errors, not about the 

relationship of the errors to the ݔ௜, and thus they hold under exogeneity or endogeneity of the ݔ௜.  The 

moment condition (12c) would not hold under endogeneity.  However, given the instruments ݖ௜, we can 

replace it with the moment condition 

(12d)  ܧ ቂ
ଵ

ఙ
௜ݕ௜ሺݖ െ ௜ݔ

ᇱߚሻ ൅ ௜ݖߣ
ఝ೔

ଵିః೔
ቃ ൌ 0,  

which corresponds to ݖܧ௜
ᇱߩሺݕ௜ െ ௜ݔ

ᇱߚሻ = 0 in the notation of Section 3.3.  An important point is that the 

validity of this moment condition requires independence of ݖ௜ and ߝ௜, not just ܧሺߝ௜|ݖ௜ሻ ൌ 0.  If we are 

willing to make this independence assumption, we can estimate the parameters of the model consistently by 

GMM based on the moment conditions (12a), (12b) and (12d), assuming that enough of the instruments are 

relevant, exactly as was required for C2SLS.   
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 A difference between this procedure and the procedure of Hansen, McDonald and Newey is that, 

because we are assuming a correctly specified parametric likelihood, there is no need for a separate 

estimation step to estimate the nuisance parameters in the distribution of the errors.  GMM simply estimates 

these along with ߚ. 

4.3 LIML: v is correlated with ࣁ, but ࢛ is independent of v and ࣁ 

 We now consider MLE of the system consisting of the SF model (9) and the reduced form equation 

(6).  Endogeneity occurs when the reduced form error ߟ௜ is correlated with either ݒ௜ or ݑ௜ or both.  In this 

subsection we will consider the analytically tractable case that ݑ௜ is independent of  ߰௜ ≡ ቂ
௜ݒ
௜ߟ
ቃ,  so that 

endogeneity is due to correlation between ݒ௜ and ߟ௜. 

 More explicitly, we assume that, conditional on ݖ௜, ߰௜~ܰሺ0, ߗ ሻ whereߗ ൌ ቈ
௩ଶߪ ௩ఎߑ
ఎ௩ߑ ఎఎߑ

቉; 

,௜~ܰାሺ0ݑ  ,௜ and ߰௜ are independent.  This model has been considered by Kutlu (2010)ݑ ௨ଶሻ, andߪ

Karakaplan and Kutlu (2013), Tran and Tsionas (2013) and Tsionas, Atkinson and Assaf (2013). The 

derivation of the likelihood by Kutlu (2010), Karakaplan and Kutlu (2013) and Tran and Tsionas (2013) 

was based on the Cholesky decomposition of the variance matrix.  In Appendix A, we derive the likelihood 

using a conditioning argument that is novel and perhaps more intuitive.  This corresponds to the 

factorization of the density of the endogenous variables conditional on the instruments:  ݂ሺݕ, ܺଶ|ܼሻ ൌ

݂ሺݕ|ܺଶ, ܼሻ ∙ ݂ሺܺଶ|ܼሻ.  Whichever derivation is used, the likelihood is: 

(13a)  ln ܮ ൌ	 ln ଵܮ ൅ ln    ଶܮ

where 

(13b)  ln ଵ =  െܮ
௡

ଶ
ln ଶߪ െ

ଵ

ଶఙమ
∑ ሺݕ௜ െ ߙ െ ௜ݔ

ᇱߚ െ ௖௜ሻଶ௜ߤ 	

   + ∑ ln ቂߔ ቀ
ିఒሺ௬೔ିఈି௫೔

ᇲఉିఓ೎೔ሻ

ఙ
ቁቃ௜    

and  

(13c)  ln 	ଶ =  െܮ
௡

ଶ
lnหߑఎఎห	 െ

ଵ

ଶ
∑ ሺݔଶ௜′ െ ௜ݖ

ᇱߎሻߑఎఎିଵሺݔଶ௜ െ ௜ሻ௜ݖ′ߎ  , 
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where ߔ is the standard normal cdf and: 

(13d)  ߤ௖௜ ൌ ଶ௜ݔఎఎିଵሺߑ௩ఎߑ െ ଶߪ , ௜ሻݖ′ߎ ൌ ௨ଶߪ ൅ ߣ , ௖ଶߪ ൌ
ఙೠ
ఙ೎

௖ଶߪ ,  ൌ ௩ଶߪ െ  . ఎ௩ߑఎఎିଵߑ௩ఎߑ

 We can obtain the MLE by maximizing the likelihood with respect to the parameters 

,ߙ) ,ߚ ,௩ଶߪ ,௨ଶߪ ,ఎఎߑ	,௩ఎߑ  Tran and Tsionas (2013) consider a GMM procedure based on the score of the  .(ߎ

likelihood, which is very similar to the MLE.  Alternatively, as suggested by Kutlu (2010), we can use a 

two-step procedure.  Let ߠଵ ≡ ሺߙ, ,ߚ ,௩ଶߪ ,௨ଶߪ ଶߠ ௩ఎሻ be the “first set” of parameters andߑ ≡ ሺߑఎఎ,  ሻ be theߎ

“second set”.  Then Step 1 is to estimate the second set of parameters from the reduced form equations, that 

is by maximizing ln ෠ఎఎߑ  ෡ = OLS of ܺଶ on ܼ andߎ ଶ.  This yieldsܮ ൌ
ଵ

௡
∑ ൫ݔଶ௜ െ ௜൯௜ݖ′෡ߎ ሺݔଶ௜ െ  ௜ሻ′.  Stepݖ෡ᇱߎ

2 is to estimate the first set of parameters by maximizing ln  ଵ taking the estimates of the second set ofܮ

parameters as given. This is essentially a control function approach where the control function in the SF 

model equation is ߑఎఎିଵሺݔଶ௜ െ ଶ௜ݔ௩ఎ.  (Or the control function is ሺߑ ௜ሻ and the coefficients areݖ′ߎ െ  ௜ሻݖ′ߎ

and the coefficients are ሺߑ௩ఎߑఎఎିଵሻ.)   

 The two-step procedure is generally different from the MLE because it ignores the information 

about ߑఎఎ and Π  contained in ln ఎఎ and Π appear implicitly in lnߑ	,ଵ.  That isܮ  ௖ଶ.  Aߪ ௖௜  andߤ ଵ throughܮ

practical implication is that the conventionally-calculated standard errors from the Step 2 estimation are not 

correct.  They need to be adjusted to reflect the fact that ߑఎఎ and Π have been estimated.  Kutlu (2010) 

suggests constructing standard errors using bootstrapping, which is a valid suggestion.  Alternatively, an 

analytical approach is possible.  See Murphy and Topel (2002) or Wooldridge (2010), section 12.4.2, 

equation (12.41). 

 An exception to the conclusion of the previous paragraph is the case that ׏ܧఏభఏమ ln ଵܮ ൌ 0.  This 

will hold when ߑ௩ఎ = 0.  In this case the estimation error in ߠ෠ଶ does not affect the asymptotic distribution of 

 ෠ଵ, the two-step estimator is asymptotically as efficient as the MLE, and the conventionally-calculatedߠ

standard errors for the second step estimation of ߠଵ are valid.  A practical implication is that we can test the 
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null hypothesis of exogeneity of ݔଶ௜, which corresponds to ߑ௩ఎ = 0, using a standard F-test of the 

hypothesis that the coefficients of the control function ሺݔଶ௜ െ  .௜ሻ equal zeroݖ′ߎ

 We will call the MLE just discussed the “LIML” estimator because it is logically similar to the 

LIML estimator discussed in Section 3.3.  However, there is an important difference, because in the 

discussion of Section 3.3 the consistency of the LIML estimator did not require the correctness of the linear 

reduced form specification or normality of its error, whereas here it does require both of these things.  In 

fact, we now have a completely specified likelihood-based model for which we are calculating the MLE.  

The only sense in which we are operating with limited information is that we have not specified a structural 

(economic based) specification for the distribution of the endogenous variables.  We will return to this point 

later. 

4.4 Prediction of ࢏࢛ 

 The usual predictor of ݑ௜ is ݑො௜ ൌ  ௜ሻ, as suggested by Jondrow et al. (1982).  An original andߝ|௜ݑሺܧ

important observation is that given the model of Section 4.3 we can define a better predictor of ݑ௜, namely 

෤௜ݑ ൌ ,௜ߝ|௜ݑሺܧ  is correlated with, and therefore informative	௜ߟ ,௜ߟ ௜ is independent ofݑ ௜ሻ.  Even thoughߟ

about, ݒ௜.  Therefore, conditional on ߝ௜ = ݒ௜ െ    .௜ݑ ௜ is informative aboutߟ ,௜ݑ

 Suppose that we transform (ݑ௜, ,௜ߝ ,௜ݑ) ௜) intoߟ ௜̃ߝ ,  ௜) whereߟ

௜̃ߝ  (14) ൌ ௜ߝ െ ௖௜ߤ  ௖௜  whereߤ ൌ  . ௜ߟఎఎିଵߑ௩ఎߑ

Then ߟ௜ is independent of (ݑ௜, ,௜ߝ|௜ݑሺܧ ௜̃), so thatߝ ,௜̃ߝ|௜ݑሺܧ = ௜ሻߟ  ௜̃ሻ.  We show in Appendix Bߝ|௜ݑሺܧ = ௜ሻߟ

that the distribution of ݑ௜ conditional on ߝ௜̃ (or conditional on ߝ௜ and ߟ௜) is ܰାሺߤ∗௜, ௜∗ߤ ଶሻ where∗ߪ ൌ െ
ఙೠమ

ఙమ
 ௜̃ߝ

and ߪ∗ଶ ൌ
ఙೠమఙ೎మ

ఙమ
 .  This is essentially the same as Theorem 1 of Jondrow et al. (1982), with ߪ௖ଶ replacing their 

 ௜.  This leads to theߝ ௜̃ replacing theirߝ ଶ, and withߪ and ߣ ௩ଶ in these definitions and in the definitions ofߪ

explicit expression: 

,௜ߝ|௜ݑሺܧ  = ෤௜ݑ  (15) ሺ݄௜ሻ߉ሾ∗ߪ = ௜̃ሻߝ|௜ݑሺܧ = ௜ሻߟ െ ݄௜ሿ 
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where ݄௜ ൌ
ఒ

ఙ
ሺ݄ሻ߉ ௜̃ and whereߝ ൌ ߮ሺ݄ሻ/ሾ1 െ  ሺ݄ሻሿ  is the standard normal hazard function.  This isߔ

similar to equation (3) of Jondrow et al. (1982). 

 This is a better predictor than the former predictor, ݑො௜ ൌ ௖ଶߪ ௜), becauseߝ|௜ݑሺܧ ൏  ௩ଶ.  Moreߪ

explicitly, consider the following well-known identity, which holds for any random variable u and for any 

set of random variables m that are used to predict u: 

ሻݑሺݎܽݒ  (16) ൌ ሻሿ݉|ݑሺܧ௠ሾݎܽݒ ൅  .	ሻሿ݉|ݑሺݎܽݒ௠ሾܧ

(Here ܧ௠ and ݎܽݒ௠ are respectively the mean and the variance over the distribution of m.)  This is the usual 

decomposition of the variance of u into its explained (by m) and unexplained parts.  When we enlarge the 

set m the explained variance increases and the unexplained variance decreases.  In our specific case, 

෤ݑ ൌ ,ߝ|ݑሺܧ ොݑ ሻ andߟ ൌ  .ොሻݑሺݎܽݒ > (෤ݑሺݎܽݒ ሻ, so on averageߝ|ݑሺܧ

The obvious disadvantage of the new estimator of ݑ௜ is that now the reduced form must in fact be a 

correctly specified model with normal errors.  Unlike in the standard linear model this is now a substantive 

assumption. 

 Either ݑ෤௜ or ݑො௜ has to be evaluated at the estimated parameters.  Any consistent estimator can be 

used (e.g. C2SLS or LIML).  Given that the reduced form model must be correctly specified for ݑ෤௜ to make 

sense, it is natural to think of using the LIML estimates, but this is not required.  All that is required is that 

the model that would be assumed for LIML be correctly specified.  

4.5 LIML: ࣁ is correlated with both v and u 

 We now wish to allow ߟ to be correlated with both v and u.  This case has not been considered in 

the literature.  We will consider the slightly more general case in which ߟ,  and u are all potentially ݒ

correlated.  The issue we face is to find a joint distribution such that (i) the marginal distribution of u is 

half-normal; (ii) the marginal distribution of ߰ ൌ ቀ
ݒ
 is multivariate normal; and (iii) u and ߰ are	ቁߟ

correlated in a sensible way. 

4.5.1 Two things that don’t work 
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 There are (at least) two intuitive approaches to this problem that do not work. 

 The first approach that does not work is to specify a multivariate normal distribution with zero 

mean for ߟ, ݑ and u, and then truncate this distribution by requiring ݒ ൒ 0.  This does generate a 

half-normal marginal for u.  However, the marginal for ߰ is no longer normal.  See, e.g., Horrace (2005, p. 

214).  In fact, the marginal distribution of ߰ is skew-normal (Azzalini (2005), p. 163). 

 A second approach that does not work is to specify a multivariate normal distribution with zero 

mean for ߟ, ݑ and then define ,∗ݑ and ݒ ൌ  This generates the correct marginals, but now u is not  .|∗ݑ|

correlated with ߰.  See Schmidt and Lovell (1980), who used this construction in a context where they 

wanted u and ߰ to be dependent but not correlated. 

4.5.2 Specification of a joint distribution using a copula 

 A copula is a joint distribution whose marginal distributions are uniforms.  The copula captures the 

dependence in a joint distribution.  Suppose that we have a joint distribution of two random variables 

ሺݔଵ, ,ଵݔଶሻ with density ݄ሺݔ  ௝ሻݔ௝ሺܨ ௝൯ andݔ௝ are ௝݂൫ݔ ଶሻ, and suppose that the marginal density and cdf ofݔ

respectively, j=1,2.  Then a well-known result, Sklar’s Theorem (e.g. Nelsen (2006, p. 15)) says that 

(17)   ݄ሺݔଵ, ଶሻݔ ൌ ܿሺܨଵሺݔଵሻ, ଶሻሻݔଶሺܨ ∙ ଵ݂ሺݔଵሻ ∙ ଶ݂ሺݔଶሻ . 

Here “c” is the density of the copula distribution, and its arguments are the uniform random variables 

ଵݖ ൌ ଶݖ ଵሻ andݔଵሺܨ ൌ  ଶሻ.  More explicitly, Sklar’s Theorem says that the joint distribution hݔଶሺܨ

determines the marginal distributions and also the copula c (and c is determined uniquely if h is a 

continuous distribution).  Conversely, if we specify the marginals and we specify a copula c, this 

determines the joint distribution h, and h does have the marginals with which we started. 

 The result in (17) extends in the obvious way to the case of more than two random variables.  In our 

case there are ݇ଶ ൅ 2 random variables: v, u and ߟ.  

 In our context, we begin with a half-normal marginal for u and normal marginals for the elements 

of ߰ ൌ ሺݒ,  ᇱሻ′.  Then we need to pick a copula, with the obvious candidate being the multivariate normalߟ
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(or “Gaussian”) copula.  This is partly a matter of convenience, but also it implies that the distribution of ߰ 

is multivariate normal, which is what we want to assume. The assumed marginals and copula imply a joint 

density for u and ߰; that is, for u, v and ߟ.  By a simple substitution this gives us the joint density for u, 

ߝ ൅  that is, we need to ;ߟ and ߝ However, to form the likelihood we need the joint density of  .ߟ and ݑ

integrate out u from the joint density for u, ߝ ൅  Perhaps for some clever choice of copula it would  .ߟ and ݑ

be possible to do this analytically, but we have not found such a choice.   

 An alternative is to evaluate the joint density by numerical methods.  We want to calculate  

(18)  ఌ݂,ఎሺߝ, ሻߟ ൌ ׬ ௨݂,௩,ఎሺݑ, ߝ ൅ ,ݑ ݑሻ݀ߟ
ஶ
଴  

׬ =     ቂ
௙ೠ,ೡ,ആሺ௨,ఌା௨,ఎሻ

௙ೠሺ௨ሻ
ቃ ௨݂ሺݑሻ݀ݑ

ஶ
଴ ௨ሾܧ = 

௙ೠ,ೡ,ആሺ௨,ఌା௨,ఎሻ

௙ೠሺ௨ሻ
ሿ . 

Here ܧ௨ denotes the expectation over the distribution of u.  We can evaluate (approximate) this by the 

averaging over draws from the distribution of u.  That is, if we draw ݑ௦ , s = 1,…,S, from the distribution of 

u, our simulated value of ఌ݂,ఎሺߝ,   ሻ isߟ

(19)  መ݂
ఌ,ఎሺߝ,  = ሻߟ

ଵ

ௌ
∑ ሾ

௙ೠ,ೡ,ആሺ௨ೞ,ఌା௨ೞ,ఎሻ

௙ೠሺ௨ೞሻ
ሿௌ

௦ୀଵ  . 

This leads us to the simulated log likelihood 

(20)  ln ෠ܮ ൌ ∑ ln መ݂
ఌ,ఎሺߝ௜, 	௜ሻߟ

௡
௜ୀଵ , 

where, as before, ߝ௜ ൌ ௜ݕ െ ߙ െ ௜ߟ and ߚ′௜ݔ ൌ ଶ௜ݔ െ  ௜.  Very similar applications of simulation toݖ′ߎ

evaluate a likelihood can be found in Greene (2005, p. 24) and Amsler, Prokhorov and Schmidt (2014). 

 The maximum simulated likelihood estimator (MSLE) is obtained by maximizing the simulated 

likelihood with respect to the parameters.   The parameters are ߙ, ,ߚ ,ߎ ,௨ଶߪ ఎଵߪ ,௩ଶߪ
ଶ , … , ఎ௞మߪ

ଶ  (where ߪఎ௝
ଶ  is 

the variance of ߟ௝) plus whatever parameters appear in the copula.  If we use the Gaussian copula for u, v 

and ߟ, and if we let R denote the correlation matrix in this copula, the parameters in the copula that we need 

to estimate are the 
ଵ

ଶ
ሺ݇ଶ ൅ 1ሻሺ݇ଶ ൅ 2ሻ distinct off-diagonal elements of R. 
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Standard results (e.g. Gourieroux and Monfort (1993)) indicate that the MSLE is consistent and has 

the same asymptotic distribution as the MLE based on ఌ݂,ఎሺߝ, ݊ ሻ, provided thatߟ → ∞, ܵ → ∞ and 

ܵ/√݊ → ∞, and suitable regularity conditions hold.  That is, the randomness due to the simulation of the 

likelihood can be ignored if we use a large enough number of random draws in the simulation.   

Unfortunately the Gourieroux and Monfort result does not give us practical guidance as to how large S 

should be for a given sample size n. 

 A remaining issue is to calculate ݑ෤௜ = ܧሺݑ௜|ߝ௜,  ௜ሻ.  Following Amsler, Prokhorov and Schmidtߟ

(2014), we can do this based on draws from the joint distribution of  ݒ, ,ݑ  by kernel methods.  More , ߟ

explicitly, since we have specified the marginal distributions and a copula, we have defined the joint 

distribution of  ݒ, ,ݑ  If the copula is simple enough that we can draw simulated observations from it (and  .ߟ

this would be true of the Gaussian copula), we can then draw simulated observations from the joint 

distribution of  ݒ, ,ݑ ,௦ݒ Call these  .ߟ ,௦ݑ ௦ߝ ௦, s = 1,…,S.  We can then calculateߟ ൌ ௦ݒ െ  so that we have	௦ݑ

a sample on ߝ௦, ,௦ݑ ,௜ߝ|௜ݑሺܧ ௦.  From this sample we can estimateߟ  ௜ሻ nonparametrically, by nearestߟ

neighbors or kernel methods.  This estimator is consistent as ܵ → ∞. 

 A potential advantage of this approach is that we should be able to obtain more precise predictions 

of ݑ௜ when it is correlated with ߰௜ than when it is not.  In the LIML model of Section 4.3, ݑ௜ was not 

correlated with ߟ௜, and the only reason that ߟ௜ was useful in predicting ݑ௜ is that ݑ௜ is correlated with ߟ௜ 

conditional on ߝ௜.  In the present model, however, ݑ௜ and ߟ௜ are correlated “directly” (not just through ߝ௜) 

and, intuitively speaking, the case for the usefulness of  ߟ௜ in predicting ݑ௜ is stronger. 

 One obvious difficulty with the approach of this section is the need to specify a copula.  If u and ߰ 

have a continuous joint distribution, then there is a true copula, but we do not know what it is.  The Gaussian 

copula is often used for reasons of convenience, and in our case it does imply the desired multivariate 

normal distribution for ߰, but there is no good reason to think that it properly captures the dependence 

between u and ߰.  It is well known that the Gaussian copula is “comprehensive” in the sense that it can 
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accommodate any range of correlation between the uniform random variables ܨ௨ሺݑሻ and ܨట೔
ሺ߰௜ሻ.  Also, 

because the implied distribution of ߰ is multivariate normal, it can accommodate any range of correlation 

in ߰.  However, it cannot necessarily accommodate any range of correlation between ݑ and ߰.  Still, 

assuming a Gaussian copula is at least more general than assuming that u and ߰ are independent, as we did 

in Section 4.3, because the Gaussian copula contains the independence copula as a special case 

(correlations equal to zero). 

 Another difficulty is that, given the current state of computing technology, the application of 

copulas is effectively limited to the case of a small number of variables.  For example, in our empirical 

application of Section 5, there were no serious computational problems, but we had only four endogenous 

inputs. 

4.6 The Translog Case 

 All of the discussion so far has been for the linear case (e.g. Cobb-Douglas production function).  

Now we will discuss the translog case, though the same issues that arise here would arise in other nonlinear 

specifications. 

 For expositional simplicity we will restrict our attention to the case of two inputs, both of which are 

endogenous.  The translog model is 

(21) ln ݕ௜ = ߙ ൅ ଵߚ ln ଵ௜ݔ ൅ ଶߚ ln ଶ௜ݔ ൅ ଵߛ ሺln ଵ௜ሻଶݔ ൅ ሺln	ଶߛ ଶ௜ሻଶݔ ൅ ሺln	ߜ ଵ௜ሻሺlnݔ ଶ௜ሻݔ ൅  ௜ߝ

Note that although we have only two endogenous inputs, we have five endogenous variables, because 

functions of endogenous variables are in general endogenous.  Also note that to make the correspondence to 

the SF model we need to interpret ߝ௜ as being demeaned, that is, as equal to ݒ௜ െ ௜ݑ
∗ where ݑ௜

∗ ൌ ௜ݑ െ

 ௜ሻ, as in the discussion of COLSݑሺܧ is equal to the original intercept minus ߙ ௜ሻ, and correspondinglyݑሺܧ

in Section 2 above. 

 In this case we can use 2SLS but it is cumbersome.  We need to have five valid instruments, not just 

two.  Valid here means that ܧሺߝ௜|ݖ௜ሻ ൌ 0.  Of course, we can create five instruments out of two because, if 
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௜ሻݖ|௜ߝሺܧ ൌ 0, then ߝ௜ is uncorrelated with any function of ݖ௜.  For example, if input prices are exogenous, 

then we could use their logarithms, the squares of their logarithms, and the cross-product of their 

logarithms, thus essentially copying the translog functional form in the reduced form equations.  One might 

reasonably worry about the marginal strength of some of these instruments. 

 A well-known but important result is that, for this nonlinear model, a control function regression is 

not the same as 2SLS.  More precisely, a control function regression in which we used five control 

functions, namely the residuals from the five reduced form equations, would be the same as 2SLS.  

However, under some additional assumptions, we can obtain consistent estimators using only two control 

functions, not five.  This point has been made by a number of people, including Blundell and Powell (2004), 

Terza, Basu and Rathouz (2008) and Wooldridge (2010).  Our discussion will follow Wooldridge.  

Consider the system consisting of the translog function (21) plus two reduced form equations: 

௜ݍ  (22) ൌ ௜ݖߎ ൅  ௜ߟ

where ݖ௜  is the vector of instruments and where ݍ௜ ൌ ൤
ln ଵ௜ݔ
ln ଶ௜ݔ

൨.  We need to assume that ߝ௜ and ߟ௜ are 

independent of ݖ௜, which is a stronger assumption than the usual exogeneity condition that ܧሺߝ௜|ݖ௜ሻ ൌ 0 

and the usual linear projection condition that ݖ௜ and ߟ௜ are uncorrelated.  We also need to assume that 

 ௜ are jointlyߟ ௜ andݒ This last assumption would follow if  .ߩ′௜ߟ = (௜ߟ|௜ߝሺܧ ,௜; that isߟ ௜) is linear inߟ|௜ߝሺܧ

normal and independent of ݑ௜, but it is technically slightly weaker since joint normality is sufficient but not 

necessary for linearity of the conditional expectation.  Under these assumption, the argument in Wooldridge 

(2010, pp. 128-129) establishes that 

ሺlnܧ  (23) |௜ݕ ln ,ଵ௜ݔ ln  ଶ௜ሻݔ

ߙ =   ൅ ଵߚ ln ଵ௜ݔ ൅ ଶߚ ln ଶ௜ݔ ൅ ଵߛ ሺln ଵ௜ሻଶݔ ൅ ሺln	ଶߛ ଶ௜ሻଶݔ ൅ ሺln	ߜ ଵ௜ሻሺlnݔ ଶ௜ሻݔ ൅ ௜ߟ
ᇱߩ . 

The implication is that ̂ߟ௜, the vector of reduced form residuals from least squares estimation of (22), can be 

used as a control function in an operational version of (23) to obtain consistent estimators of the translog 

parameters.  Note that the dimension of ̂ߟ௜ is two; we have two control functions, not five. 
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Under the assumptions made above, the control function estimates are more efficient than the 2SLS 

estimates.  But they do rely on more assumptions and they will not be consistent if those assumptions are 

violated. 

The LIML estimation of the system consisting of (22) and (23) has not been considered in the 

literature, but similar results would apply.  In particular we have only two reduced form equations, not five.  

Now we make the same assumptions as were made in Section 4.3, so that ݒ௜ and ߟ௜ are jointly normal, and 

 ௜.  As noted above, these assumptions are slightly strongerߟ ௜ andݒ ௜ is half-normal and independent ofݑ

than are needed for the control function approach.  Then the joint density of ߝ௜ and ߟ௜ is as given in equation 

(A4) of Appendix A, and we obtain the likelihood by substituting ߟ௜ ൌ 	 ௜ݍ െ ௜ݕ = ௜ߝ ௜ andݖߎ െ ߙ െ

ଵߚ ln ଵ௜ݔ െ ଶߚ ln ଶ௜ݔ െ ଵߛ ሺln ଵ௜ሻଶݔ െ ሺln	ଶߛ ଶ௜ሻଶݔ െ ሺln	ߜ ଵ௜ሻሺlnݔ  ଶ௜ሻ.  (The Jacobian of thisݔ

transformation equals one despite the nonlinearity in variables.)  This LIML estimator should be more 

efficient than the control function estimator, because it takes into account the composed error in the 

production function, but we will not attempt to prove that in this paper. 

4.7 Structural Approaches 

 In the discussion above, the source of the instruments Z and the justification for the linearity of the 

reduced form equations for ܺଶ are vague.  An alternative to this kind of unrestricted approach is to make 

behavioral assumptions that indicate how the endogenous inputs are generated.  (This might reasonably be 

called a “full-information” or a “structural” approach.)  In the frontiers literature, an early example of this 

approach is Schmidt and Lovell (1979), who assumed a Cobb-Douglas production function in which the 

output level and input prices were exogenous, the input levels were endogenous, and the firm minimized 

cost.  They estimated the system consisting of the production function and the first-order conditions for cost 

minimization.  The first order conditions for cost minimization are linear in output and input prices, and 

more fundamentally there are no new parameters in these equations; the parameters in them are functions of 

the parameters in the production function.  A somewhat similar early paper is Greene (1980), who 

considered a translog cost function and the associated cost-minimizing share equations. There have been 
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many papers since then along these same lines, but with different functional forms for the equation of 

interest and different assumptions about the behavior of the firm.  Examples include Kumbhakar (1987), 

Atkinson and Cornwell (1994), Kumbhakar (1997), Kumbhakar and Tsionas (2005) and Kumbhakar and 

Tsionas (2009), to name just a few. 

 

5. Empirical Example 

Our empirical example is an analysis of data on dairy farms in Northern Spain.  The data set is an 

extension of the data analyzed by Alvarez and Arias (2004), to whom we are grateful for providing the data.  

They analyzed data on 196 farms over six years (1993-1998) whereas our data is a balanced panel (except 

for a few exclusions due to missing data) on 137 farms over 12 years (1999-2010).  However, we ignore the 

panel nature of the data in order to make the empirical analysis better reflect the techniques described 

earlier in the paper. 

We use a Cobb-Douglas production function.  (They used a translog, but we wanted in the first 

instance to keep things simple.)  The dependent variable is (the log of) milk production in liters.  There are 

five inputs:  Labor, in man-equivalent units; Cows, the number of milking cows; Feed, number of kilograms 

of feedstuff fed to the cows; Land, the number of hectares of land devoted to pasture and crops; and Rough, 

expenses in euros incurred in producing roughage on the farm.  For more detail on the data, see Alvarez and 

Arias (2004).  We also include an intercept and 11 dummy variables for year in the production functions 

specification, so that we have 17 regressors. 

The first two pairs of columns in Table 1 give the results for COLS and the SF MLE, both of which 

assume exogeneity.  These two methods give rather similar results (a common empirical finding).  Returns 

to scale are about 1.06, which is not unreasonable.  The inputs with the biggest coefficients (elasticities) by 

far are Cows and Feed.  The coefficient of Labor is small and only marginally significant (which agrees 

with the result of Alvarez and Arias).  The coefficient of Land is negative, and small in magnitude but 

significantly different from zero.  Zero would not be hard to believe, but negative seems unreasonable.  
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Nevertheless, a negative coefficient for Land will occur for all of our methods of estimation, so we will just 

accept it. 

Next we allow for possible endogeneity of the five inputs.  We have 22 variables that we assume to 

be exogenous: PMilk, the price of milk; PFeed, the price of feed; Landown, the percentage of land owned 

by the farmer; seven dummy variables reflecting membership in one of eight agricultural cooperatives; plus 

the constant and the 11 time dummies. 

We test the exogeniety of the inputs using t-tests for the significance of the control functions 

(reduced form residuals), as described at the end of Section 3.1.  We find that Land is exogenous and the 

other four inputs are endogenous, an intuitively reasonable outcome.  So now we have 23 exogenous 

variables. 

The C2SLS estimates are strikingly different from COLS and SF MLE.  Returns to scale are higher, 

about 1.18.  Now the coefficient of Cows is just slightly less than one.  The coefficient of Labor is higher 

than before, and the coefficient of Feed is smaller.  These general results are true for all of the methods we 

consider that allow for endogeneity.  So allowing for endogeneity makes a substantial difference in this 

application. 

Unsurprisingly, the standard errors for C2SLS are substantially larger than for COLS or SF MLE.  

Our reduced form regressions had values of ܴଶ that ranged from 0.48 to 0.64, so our instruments are not 

really “weak,” but here as elsewhere allowing for endogeneity carries a price, in terms of variability of the 

estimates. 

We implemented the method of Hansen, McDonald and Newey (2010) using continuously updated 

GMM.  The results are very similar to those for C2SLS and need not be discussed separately, other than to 

note that the standard errors for the estimator of Hansen, McDonald and Newey are smaller (about 20% 

smaller) than those for C2SLS, as would have been expected. 
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TABLE 1 

Estimates of the Production Function Parameters 

 

                           COLS                      SF MLE                     C2SLS                   Hansen et al.                   LIML               2-Step              Copula 

 Est Std Err Est Std Err Est Std Err Est Std Err Est Std Err Est Est Std Err 
Const 0.0595  0.0602 0.0127 0.0679  0.0409 0.0231 0.0399 0.0282 0.0368 0.0375 0.0390 
Labor 0.0250 0.0121 0.0184 0.0118 0.1246 0.0628 0.1166 0.0513 0.1298 0.0675 0.1169 0.1168 0.0677 
Cows 0.5802 0.0205 0.6354 0.0216 0.9704 0.0827 0.9666 0.0669 0.9925 0.0870 0.9685 0.9684 0.0877 
Feed 0.3723 0.0122 0.3438 0.0125 0.0889 0.0472 0.1119 0.0357 0.0722 0.0582 0.1156 0.1154 0.0605 
Land -0.0234 0.0094 -0.0268 0.0089 -0.1136 0.0177 -0.1081 0.0151 -0.1208 0.0187 -0.1047 -0.1048 0.0204 

Rough 0.1042 0.0064 0.0982 0.0063 0.1108 0.0260 0.0858 0.0182 0.1125 0.0286 0.0911 0.0909 0.0278 
D00 0.0167 0.0161 0.0165 0.0153 0.0093 0.0202 0.0107 0.0196 0.0032 0.0223 0.0096 0.0096 0.0217 
D01 0.0213 0.0158 0.0207 0.0149 0.0256 0.0221 0.0256 0.0204 0.0197 0.0247 0.0244 0.0245 0.0247 
D02 0.0462 0.0159 0.0400 0.0151 0.0406 0.0244 0.0365 0.0218 0.0310 0.0274 0.0354 0.0355 0.0271 
D03 0.0246 0.0166 0.0203 0.0157 0.0163 0.0250 0.0144 0.0231 0.0090 0.0278 0.0132 0.0132 0.0274 
D04 0.0404 0.0158 0.0394 0.0149 0.0430 0.0256 0.0434 0.0246 0.0372 0.0274 0.0423 0.0424 0.0278 
D05 0.0830 0.0168 0.0772 0.0160 0.1005 0.0371 0.0942 0.0352 0.0920 0.0405 0.0933 0.0934 0.0400 
D06 0.1053 0.0168 0.1039 0.0161 0.1320 0.0401 0.1313 0.0393 0.1321 0.0425 0.1305 0.1306 0.0422 
D07 0.0979 0.0169 0.1016 0.0161 0.1294 0.0412 0.1326 0.0391 0.1335 0.0437 0.1302 0.1303 0.0428 
D08 0.0826 0.0169 0.0883 0.0161 0.1135 0.0403 0.1161 0.0397 0.1177 0.0428 0.1151 0.1152 0.0416 
D09 0.0698 0.0169 0.0717 0.0161 0.1031 0.0419 0.1033 0.0406 0.1072 0.0456 0.1025 0.1026 0.0436 
D10 0.0951 0.0168 0.0990 0.0161 0.1194 0.0405 0.1227 0.0382 0.1263 0.0450 0.1222 0.1223 0.0430 
 0.0357 0.2713 0.1910 0.0081 0.1967 0.0254 0.2024  0.2166 0.0060 0.1761  0.1738 ߪ
 0.2592 1.8816 1.2766 0.1537 1.2488 0.1881 1.8098  1.7735 0.1993 1.8758  1.7675 ߣ
  ௨ଶ 0.0229  0.0241  0.0356  0.0314  0.0236  0.0226 0.0574ߪ
  ௩ଶ 0.0073  0.0069  0.0113  0.0096  0.0151  0.0139 0.0162ߪ

E(u) 0.1207  0.1240  0.1505  0.1413  0.1225  0.1200 0.1911  
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The estimates for the LIML estimator of Section 4.3 are quite similar to the C2SLS estimates and 

those from the method of Hansen, McDonald and Newey.  They imply slightly smaller average levels of 

inefficiency.  Interestingly, they do not show any evidence of improved efficiency of the estimated 

parameters.  However, they do provide a good illustration of how we can improve the prediction of u by 

conditioning on the reduced form errors in addition to the production function error, as discussed in Section 

4.4.  We have ܧ෠ሾݎܽݒሺߝ|ݑሻሿ = 0.0052 and ܧ෠ሾݎܽݒሺߝ|ݑ,  ሻሿ = 0.0030, where these are the sample averages ofߟ

the theoretically calculated conditional variances.  So we can reduce the variance of the prediction of u by 

almost a factor of two by using the reduced form errors. 

The 2-Step LIML estimates are very similar to the one-step estimates just discussed. 

Finally, “Copula” in Table 1 refers to the copula-based LIML estimates of Section 4.5.  The 

parameter estimates are not very different from those for the other methods that allow for endogeneity, but 

we do obtain a noticeably larger estimate of ߪ௨ଶ and correspondingly a larger value of E(u).  These results 

also illustrate the extent to which we can improve our predictions of u by using the reduced form errors 

when the reduced form errors are correlated with u, as discussed in Section 4.5.2.  Now our estimated value 

of ܧሾݎܽݒሺߝ|ݑ,    .ሻሿ is only 0.0010, compared to 0.0030 from the LIML model of Section 4.3ߟ

 

6. Concluding Remarks 

 In this paper we have attempted a systematic treatment of endogeneity in stochastic frontier models.  

The paper is largely a survey but it does contain some new results.  We have basically concentrated on the 

technical details of the extension of the familiar 2SLS and LIML estimators from the standard linear 

simultaneous equations model to the stochastic frontier model.  But there are some non-trivial issues raised 

by the fact that variables can be correlated with statistical noise, or with technical inefficiency, or both.   

 The simple COLS estimator for the standard SF model is easy to generalize to the SF model with 

endogeneity.  The usual MLE for the standard SF model is harder to generalize.  The LIML estimators that 

we discuss rely on a reduced form model for the endogenous variables conditional on the instruments, and 
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this model must be correctly specified.  Furthermore if the endogenous variables are correlated with 

inefficiency in addition to (or instead of) with noise, we need to model the joint distribution of inefficiency 

and the reduced form errors, and this is not simple.  However, if we are willing to undertake the LIML 

approach, we should be able to obtain more precise predictions of the technical inefficiency terms ݑ௜. 

 We have not discussed reasons why explanatory variables might be endogenous.  There could be a 

long list of such reasons.  Here are a few, phrased in the context of agricultural production.  (1) The farmer 

may have some idea of his value of ݒ௜, and this may affect his input choices.  For example, if some farms 

have more favorable climates, differences in weather appear random to the econometrician but are less 

random to the farmer.  (ii) Similarly, the farmer may have some idea of his value of ݑ௜, and this may affect 

his input choices.  For example, a farmer may put more (or less) fertilizer on good soil than on bad soil, or 

on fields that have been planted properly than on fields that have not.  (iii) In some settings liquidity 

constraints (lack of a perfect credit market) may prevent optimal use of inputs.  If a farmer has had good 

weather in the past, his liquidity constraints may be less binding.  If weather is positively autocorrelated, 

input choices will be correlated with weather in a cross-section of data. 

 Obviously the list in the previous paragraph could go on and on.  What all of these examples have in 

common is that if we observed more data, like climate and soil quality, and if we had a better behavioral 

model of the farmer, we would have less apparent endogeneity.  Perhaps there will be a “next generation” of 

models for which these considerations are relevant.  However, in the present state of affairs, technical 

methods of dealing with endogeneity still seem to us to be useful. 
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APPENDIX A 

 Since u is independent of v and ߟ,  
 
(A1)  ௨݂,௩,ఎሺݑ, ,ݒ ሻߟ ൌ ௨݂ሺݑሻ ∙ ௩݂,ఎሺݒ, ሻߟ ൌ ௨݂ሺݑሻ ௩݂|ఎሺݒሻ ఎ݂ሺߟሻ.   

So then 

(A2)  ఌ݂,ఎሺߝ, ሻߟ ൌ ׬ ௨݂,௩,ఎሺݑ, ߝ ൅ ,ݑ ݑሻ݀ߟ
ஶ
଴  = ఎ݂ሺߟሻ ׬ ௩݂|ఎሺߝ ൅ ሻݑ ௨݂ሺݑሻ݀ݑ.

ஶ
଴  

Now ఎ݂ሺߟሻ ൌ ݐ݊ܽݐݏ݊݋ܿ ∙ หߑఎఎห
ିଵ/ଶ

∙ exp	ሺെ
ଵ

ଶ
,௖ߤis ܰሺ ߟ|ݒ Also the distribution of  .(ߟఎఎିଵߑ′ߟ   ௖ଶሻ whereߪ

(A3)  ߤ௖ ൌ ௖ଶߪ  ,  ߟఎఎିଵߑ௩ఎߑ ൌ ௩ଶߪ െ  . ఎ௩ߑఎఎିଵߑ௩ఎߑ

Therefore ׬ ௩݂|ఎሺߝ ൅ ሻݑ ௨݂ሺݑሻ݀ݑ
ஶ
଴  is the convolution of ܰሺߤ௖, ,௖ଶሻ and ܰାሺ0ߪ  ௨ଶሻ.  If we make a change ofߪ

variables, ̃ߝ ൌ ߝ െ ෤ݒ ௖, which corresponds toߤ ൌ ݒ െ  is the ߟ conditional on ̃ߝ ௖, then the distribution ofߤ

convolution of ܰሺ0, ,௖ଶሻ and ܰାሺ0ߪ  ௨ଶሻ.  By the result in Aigner, Lovell and Schmidt (1977), the density ofߪ

 is ߟ|̃ߝ
ଶ

ఙ
	߮ ቀ

ఌ෤

ఙ
ቁߔ ቀ

ିఒఌ෤

ఙ
ቁ .  Here ߪଶ ൌ ௨ଶߪ ൅ ௖ଶߪ ൌ ௨ଶߪ ൅ ௩ଶߪ െ ߣ , ఎ௩ߑఎఎିଵߑ௩ఎߑ ൌ

ఙೠ
ఙ೎
ൌ

ఙೠ

ටఙೡ
మିఀೡആఀആആ

షభఀആೡ
 , and ߮ 

and ߔ are respectively the standard normal density and cdf.  Then we simply change the variables back to 

their original form, so that ߝ ൌ ̃ߝ ൅  :௖, and we obtain the desired resultߤ

(A4)  ఌ݂,ఎሺ߳, ሻߟ ൌ ݐ݊ܽݐݏ݊݋ܿ	 ∙ หߑఎఎห
ି
భ
మ ∙ exp	ሺെ

ଵ

ଶ
∙	( ߟఎఎିଵߑ′ߟ ଵିߪ ∙ 	߮ ቀ

ఌିఓ೎
ఙ
ቁ 

     ∙ ߔ	 ቀ
ିఒሺఌିఓ೎ሻ

ఙ
ቁ 

 Now we add subscripts i where appropriate; substitute ߟ௜ ൌ ଶ௜ݔ െ ௜ߝ , ௜ݖ′ߎ ൌ ௜ݕ െ ߙ െ  and ߚ′௜ݔ

௖௜ߤ ൌ  .௜; and take logs and sum over i; and we arrive at the log likelihood of equation (13)ߟఎఎିଵߑ௩ఎߑ
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APPENDIX B 

 We have ܧሺݑ௜|ߝ௜, ,௜̃ߝ|௜ݑሺܧ = ௜ሻߟ  ௜̃ሻ, where the first equality follows from the fact thatߝ|௜ݑሺܧ = ௜ሻߟ

there is a one-to-one relationship between (ߝ௜, ,௜̃ߝ) ௜) andߟ  ௜ሻ and the second equality follows from the factߟ

that ߟ௜ is independent of ݑ௜ and ߝ௜̃.  Also ߝ௜̃ ൌ ෤௜ݒ െ  ௜ is a “composed error” just as in the usual stochasticݑ

frontier model (it is the convolution of a normal and a half-normal), so the result of Jondrow et al. (1982) 

applies.  Since var(ݒ෤௜) = ߪ௖ଶ ൌ ௩ଶߪ െ  ఎ௩, we simply have to make a few substitutions in theߑఎఎିଵߑ௩ఎߑ

Jondrow et al. formula:  their ߪ௩ଶ now becomes ߪ௖ଶ;  their ߣ ൌ 	
ఙೠ
ఙೡ

 now becomes ߣ ൌ 	
ఙೠ
ఙ೎

; and their 

ଶߪ ൌ ௨ଶߪ ൅ ଶߪ ௩ଶ now becomesߪ ൌ ௨ଶߪ ൅  ௖ଶ .  With these changes we can show, by the same algebra as inߪ

Jondrow et al., that the distribution of ݑ௜|ߝ௜̃ is ܰାሺߤ∗௜, ௜∗ߤ ଶሻ, where∗ߪ ൌ െ
ఙೠమ

ఙమ
ଶ∗ߪ ௜̃ andߝ ൌ

ఙೠమఙ೎మ

ఙమ
 .  The 

expression in (15) then follows from a standard result for the mean of a truncated normal distribution. 
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