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Insulin resistance pathogenesis in visceral fat and gut 
organisms
Yan Lam,1 Connie Ha2 and Andrew Holmes2

Epidemiological work has shown that visceral adiposity is strongly related to metabolic 
disorders including insulin resistance. What regulates visceral fat deposition and why 
it is so metabolically deleterious remains largely unclear. Recent data suggest that 
the gastrointestinal tract may be a central player in the development of visceral fat 
accumulation and metabolic syndrome. An impaired gut barrier function, as a consequence 
of inflammation and/or altered microbiota composition, increases the leak of microbial 
molecules and their metabolites to the adjacent mesenteric fat resulting in hypertrophy 
and inflammation of the fat depot. Subsequently, the increased efflux of fatty acids and 
pro-inflammatory factors in the portal vein leads to liver dysfunction and systemic insulin 
resistance. 

Obesity is a condition in which fat accumulation in adipose tissue is in excess to an extent 
that health may be impaired. Obese individuals are at an increased risk of developing 
chronic health problems including cardiovascular disease, type 2 diabetes, hypertension, 
non-alcoholic fatty liver disease and certain cancers [1]. A subset of obese individuals, 
classified as ‘metabolically healthy obese’ (MHO) account for ~20% of the obese population, 
remain insulin-sensitive and appear to be less susceptible to obesity-related metabolic 
complications [2]. It has been estimated that type 2 diabetes and cardiovascular disease 
is six- and twofold respectively more common in ‘at-risk’ obese as compared to MHO 
individuals [3]. An important feature of MHO individuals is they have proportionally less 
visceral fat (the abdominal fat within the visceral cavity). This is consistent with recent data 
suggesting that regional fat distribution is an important determinant of insulin sensitivity 
and metabolic risk [4]. What regulates visceral fat deposition and why it is so metabolically 
dangerous remains largely unclear. This article summarises literature on underlying 
mechanisms of visceral adipose dysfunction and the emerging role of the gut, and its 
resident microbes, as a central player in metabolic disorders (Figure 1).
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Figure 1. Overview of interconnections between lifestyle factors, host factors and gut 
microbiota in metabolic health. Refer to the text for a more detailed explanation and 
description of terms used.

Regional fat distribution

The distribution of adipose tissue varies considerably among individuals even with similar 
total body fat. What regulates regional fat deposition is not entirely clear but is at least 
known to be affected by gender, age and ethnicity. Men tend to have more visceral fat and 
have at least twice the proportion of fat localised in the intra-abdominal depot as compared 
to women [5, 6]. The gender-specific difference in fat distribution, however, appears to 
diminish in older age as females tend to develop central adiposity after menopause [7]. 
Ethnicity also affects regional adiposity. Aboriginal men and women in Australia have 
been shown to have greater waist-to-hip ratio as compared to their European Australian 
counterparts and the difference is observed across all BMI levels up to 30 kg/m2 [8]. Central 
obesity is also more common in Hispanic as compared to white women in early adulthood 
[9].

Epidemiological data suggest a relationship between central adiposity and metabolic risk 
factors including elevated blood pressure, fasting plasma glucose and triglycerides [10]. 
Visceral fat accounts for ~50% of the variance in insulin sensitivity [11, 12] and has been 
shown to be a predictor for future insulin resistance [13]. The accumulation of visceral 
fat is strongly related to reduced insulin responsiveness irrespective of adiposity [6, 14]. 
Conversely, the association between visceral fat reduction and improved insulin sensitivity 
has been consistently demonstrated in obese [15], glucose intolerance-impaired [16] and 
type 2 diabetic [17] individuals.
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In contrast to visceral fat, the relationship between subcutaneous fat and metabolic risk is less 
clear-cut. Wagenknechi and co-workers [18] reported that both visceral and subcutaneous 
adiposity were inversely associated with insulin sensitivity; Cnop et al. [19] estimated that 
subcutaneous fat only accounted for 5% of the variance in insulin sensitivity; in patients 
with type 2 diabetes, Miyazaki and colleagues [20] reported that insulin-stimulated glucose 
disposal was inversely correlated with visceral but not subcutaneous fat area; data from the 
Framingham Heart Study even suggested a protective effect of subcutaneous fat against 
metabolic and cardiovascular risk in individuals in the highest tertile of visceral adiposity 
[21]. Some attributed the inconsistent relationship between subcutaneous fat and insulin 
sensitivity to different metabolic effects of the subdivisions of the fat depot [22], with the 
deep subcutaneous adipose tissue exhibiting a secretory profile similar to that of visceral fat 
[22]. It has also been proposed that once the accumulation of visceral adipose tissue exceeds 
a certain threshold, the contribution of the depot to insulin resistance would overwhelm 
that of abdominal subcutaneous fat regardless of subdivisions [23].

It is logical to hypothesise that the intrinsic difference(s) between visceral and subcutaneous 
adipocytes (fat cells) may contribute to the region-specific metabolic effects of fat depots. 
Indeed, visceral adipocytes are shown to be both structurally and functionally distinct. For 
example, they are larger in size, less insulin-sensitive and have a greater lipolytic activity as 
compared to subcutaneous adipocytes (for details please refer to a comprehensive review 
by Ibrahim [24]). These characteristics, however, do not appear to completely account for 
the deleterious nature of visceral fat.

Obesity, inflammation and insulin resistance

Over the past decade it has been increasingly recognised that adipose tissue is a complex 
endocrine organ secreting, inter alia, a range of cytokines [25]. Together with the well-
characterised state of low-grade chronic inflammation in obesity [26], this points to an 
entirely novel angle to investigate regional metabolic effects of fat depots. Adipose tissue 
produces a range of protein factors including cytokines, chemokines and growth factors. 
Leptin and adiponectin increase insulin sensitivity; tumor necrosis factor (TNF)-alpha, 
interleukin (IL)-1beta, IL-6, IL-8 and monocyte chemoattractant protein (MCP)-1 are 
pro-inflammatory, either by direct activation of the inflammatory signalling pathway or 
by promoting the migration of immune cells; IL-10, which inhibits the production of pro-
inflammatory cytokines, is one of the main adipose-derived anti-inflammatory factors. 

Epidemiological data indicate an association between chronic inflammation and decreased 
insulin sensitivity. Circulating levels of inflammatory markers are increased in individuals 
with type 2 diabetes, insulin resistance or the metabolic syndrome [27]. In a prospective 
case-control study, elevated plasma levels of IL-6 and C-reactive protein were shown 
to be associated with an increased risk of developing type 2 diabetes independent of 
BMI, physical activity and other lifestyle factors [28]. The role of inflammation in the 
pathogenesis of insulin resistance is further supported by the effect of high-dose aspirin, 
an anti-inflammatory drug commonly used to treat rheumatoid arthritis, in reducing 
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fasting blood glucose and improving insulin-stimulated peripheral glucose uptake in type 
2 diabetic patients [29]. 

More importantly, there is evidence supporting inflammation as the major determinant 
of the deleterious metabolic effects of visceral fat. Compared to people with normal fat 
distribution, the plasma concentrations of inflammatory mediators are up to ~50% higher 
in centrally obese individuals [30]. Direct comparison of cytokine production using adipose 
tissue explants in vitro revealed that visceral fat released higher concentrations of pro-
inflammatory cytokines including IL-6, IL-8 and TNF-alpha as compared to subcutaneous 
fat [31, 32]. Using adipose tissue-conditioned media, we provided direct evidence for 
visceral fat induction of insulin resistance in skeletal muscle in vitro [33]. Individual pro-
inflammatory cytokines, specifically IL-6 [33] IL-1beta [34] and TNF-alpha [35], have 
been shown to inhibit insulin signalling. Further, our data suggest that the sequential 
activation of nuclear factor kappa B (NFκB) and mammalian target of rapamycin complex 
1 (mTORC1) may be the common pathway which mediates visceral fat-induced insulin 
resistance [33]. Briefly, pro-inflammatory cytokines phosphorylates inhibitor of kappa B 
kinase (IKK) and activates mTORC1. Ribosomal S6 kinase 1, a downstream effector of 
mTORC1, phosphorylates insulin receptor substrate-1 and inhibits its interaction with 
the insulin receptor and/or p85 subunit of phsophatidylinositol 3-kinase. Also, activated 
IKK degrades inhibitor protein inhibitor kappa B. The subsequent nuclear translocation of 
NFκB induces the transcription of pro-inflammatory cytokines and therefore provides a 
positive feedback to the inflammation cascade. 

Macrophage infiltration in adipose tissue

Ameliorating fat inflammation has thus become a major focus in both prevention and 
treatment of type 2 diabetes. It is now recognised that in adipose the majority of cytokines 
originate from ‘non-fat’ cells [36]. Obesity is characterised by an increased accumulation 
of adipose tissue macrophages (ATMs) [37] which have been identified as the major 
contributor of both pro- and anti-inflammatory cytokines. Further, Harman-Boehm et 
al. [38] reported that the number of ATM was approximately two- to fourfold higher in 
omental (a major visceral fat depot in human) as compared to subcutaneous fat irrespective 
of levels of adiposity. A causal relationship between ATM infiltration and insulin resistance 
has been demonstrated in animal studies. Attenuating ATM infiltration, by genetic 
modification or pharmacological treatment, partially improved glucose homeostasis 
and insulin sensitivity in diet-induced obese mice, an effect associated with reduced 
expression of pro-inflammatory cytokines [39]. Conversely, over-expression of MCP-1, a 
major chemokine which promotes macrophage infiltration, in adipocytes increased ATM 
abundance and induced insulin resistance without affecting adipose tissue weight [40]. 

Mechanisms of macrophage infiltration

The mechanisms by which ATM infiltration occurs, however, are not entirely clear. It has 
long been proposed that macrophage infiltration is part of an immune response to adipose 
dysfunction in obesity. A credible hypothesis is that chronic energy excess and increased 
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lipid accumulation leads to adipocyte hypertrophy. Limited lipid storage capacity then 
induces oxidative stress, which results in necrotic-like cell death and subsequently triggers 
an inflammatory response [41].

The increased susceptibility of visceral adipocytes to cell death may lead to differential 
ATM infiltration. The majority of ATMs aggregate around dead adipocytes and form the 
characteristic ‘crown-like structures’ (CLS). In genetically (ob/ob and db/db) and diet-
induced obese mice, both dead adipocytes and CLS are more abundant in visceral as 
compared to subcutaneous fat [42, 43]. A linear correlation between adipocyte size and 
CLS density has been demonstrated in all fat depots, suggesting that visceral adipocytes 
may have a smaller critical size triggering death and therefore promotes the migration of 
macrophages into this fat depot [43].

Adipocyte hypertrophy: the role of extracellular matrix

It is tempting to hypothesise that ATM infiltration, and therefore the associated deleterious 
metabolic consequences, may be preventable if the fat depots could expand indefinitely. The 
ability of adipocytes to expand is partly restricted by the extracellular matrix (ECM) and 
the abundance of ECM proteins determines the physical limit to cell growth. An increased 
area of fibrosis has been shown in adipose tissue from obese individuals as compared to 
lean controls [44]. More importantly, the mRNA (Messenger RNA) expression of collagen 
VI alpha3-subunit, the predominant ECM component in adipose tissue, is positively 
correlated with visceral fat content but no such relationship exists with the subcutaneous 
depot [45]. Khan and colleagues [46] used a genetic model of collagen VI disruption and 
demonstrated that the weakening of ECM structure allowed ‘stress-free’ expansion of 
adipocytes during high-fat feeding, an effect associated with a reduction in ATM infiltration 
and an improvement in glucose tolerance. In support, correlation between collagen VI 
and macrophage expression in adipose tissue and their inverse relationship with insulin 
sensitivity has also been recently demonstrated in humans [46]. 

The fact that obesity is characterised by both an increase in adipocyte size and ECM 
protein abundance in the adipose tissue, however, is intriguing and appears to work against 
the above-mentioned hypothesis. It is possible that, in the case of obesity, the increase 
in ECM component is a secondary effect from the already hypertrophic adipocytes in an 
attempt to restrict further lipid accumulation in the tissue. Mere adipocyte expansion is 
not physiologically viable in the long term due to excessive demands on the endoplasmic 
reticulum (ER) for protein folding, lipid esterification and nutrient-sensing results in ER 
stress [47]. This triggers an inflammatory response including the activation of the mitogen-
activated protein kinase (MAPK) signalling pathway which has been linked to insulin 
resistance [48]. Further, unresolved ER stress and elevated intracellular levels of free fatty 
acids generate oxidative stress in the mitochondria which further impairs cellular function 
of adipocytes and may eventually induce apoptotic and/or necrotic cell death [49]. 

ECM regulates adipocyte size, and there is some evidence that ‘healthy’ hypertrophy 
may ameliorate adipose inflammation and obesity-associated insulin resistance. Thus, 
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modulating ECM may provide some benefits during early obesity – when intervention 
precedes the stage at which adipocyte expansion becomes dangerous. However, such an 
approach would only achieve maximal long-term benefits when treatments to prevent 
further energy surplus and adipose expansion are in place. 

Phenotypic switching of macrophages

The metabolic effects of ATMs are specific to their phenotypes. Macrophages are broadly 
classified as M1 (classically activated) or M2 (alternatively activated) based on the expression 
of cell surface markers. M1 macrophages produce primarily pro-inflammatory cytokines, 
eg IL-1beta, IL-6 and TNF-alpha, whereas M2 macrophages (which may be further 
subdivided into M2a, M2b and M2c) are generally responsible for tissue remodelling and 
down-regulation of an inflammatory response [50]. Obese mice exhibited an increased 
M1:M2 ATM ratio in visceral as compared to subcutaneous fat [51] and similar findings 
have also been reported in humans [52], suggesting the predominant effect of M1 ATMs 
in the pro-inflammatory nature of visceral fat. Recent data, however, challenge the simple 
M1/M2 classification system. For instance, CD11c has long been recognised as a typical 
M1 marker. In a study by Li and colleagues [50] in which mice were switched from a high-
fat to a normal chow diet, the abundance of CD11c+ ATMs remained unchanged despite 
a reduction in the release of pro-inflammatory cytokines. Similar alterations in gene 
expression profile of CD11c+ ATMs have also been observed during the course of high-fat 
feeding [53], suggesting that such macrophages may exhibit a spectrum of functionality. 
Accordingly, the increased ATM infiltration in visceral fat does not necessarily, by itself, 
result in a ‘pro-inflammatory’ fat depot. 

What further complicates our understanding of ATMs is their plasticity. The secretory 
function of macrophages is dependent on the specific microenvironment. It has been 
shown that macrophages activation, as defined by the expression of both cell surface 
markers and chemokines, is plastic and fully reversible depending on the presence and 
withdrawal of specific stimuli [54]. As in the case of chronic systemic inflammation in 
viscerally obese individuals, this would implicate the presence of factors that activate and 
maintain the ATMs in the pro-inflammatory phenotype. The nature and range of these 
factors is currently only poorly understood. 

The role of gut in metabolic dysfunction

From leaky gut to visceral adipose expansion

The role of the gut in adipose physiology has long been recognised in patients with Crohn’s 
disease (a condition characterised by severe gut inflammation). These patients have an 
increased ratio of intra-abdominal to total abdominal fat as compared to healthy individuals 
[55]. The excess accumulation of mesenteric fat around the inflamed gut, known as ‘fat 
wrapping’, is associated with the prognosis of the disease [56] and is characterised by the 
increased infiltration of immune cells (eg macrophages and T-cells) and production of pro-
inflammatory factors (eg IL-6 and MCP-1) [57]. Data from experimental models suggest 
causality between gut inflammation and mesenteric fat dysfunction – rats with induced 
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colitis have 35% more mesenteric fat as compared to controls [58]. Using a similar model, 
Thomaz and colleagues [59] showed that mesenteric fat in the colitis animals had increased 
expression of F4/80 (a macrophage marker) and TNF-alpha. Importantly, it has been 
shown that the effect of gut inflammation on adipose tissue is localised [58] and therefore 
implicates anatomical proximity as important for gut-visceral fat interactions. 

Indeed, there is some evidence suggesting that gut-induced adipose dysfunction may be a 
consequence of the direct ‘leakage’ of luminal antigens, microbiota and their metabolites 
through the gut wall into the adjacent mesenteric fat. Gut barrier integrity is normally 
maintained by multiple mechanisms. First, tight-junction proteins (eg zona occludens 
[ZO]-1, occludins and claudins) form multi-protein complexes to seal the space between 
neighbouring epithelial cells and therefore act as a physical barrier [60]. Second, intestinal 
epithelial cells produce a wide range of anti-microbial peptides, including defensins and 
cathelicidins, which serve as an immunological barrier to protect the mucosal surface 
from microbial pathogens [61]. Inflammation impairs gut barrier function, as evident by 
the increased gut permeability in patients with Crohn’s disease [62] and animal models of 
induced inflammation [63]. In vitro, activation of the inflammatory NFκB pathway (eg by 
TNF-alpha [64] and IL-1beta [65]) has been shown to disrupt tight-junction integrity by 
increasing the expression and activity of myosin light chain kinase, leading to the contraction 
of peri-junctional actin-myosin filaments and opening of the tight-junctions. This may 
result in a ‘leak’ of bacteria and their products, as demonstrated by the translocation of 
bacteria into the mesenteric fat in mice with induced-gut inflammation [63]. 

Mesenteric fat, therefore, is left to cope with an increased microbial load from the ‘leaky’ gut. 
Lipopolysaccharides (LPS), a major bacterial cell component derived from the cell wall of 
Gram-negative bacteria, induce insulin resistance in adipocytes [66]. Further, LPS induces 
the release of MCP-1 and pro-inflammatory cytokines in adipocytes [67, 68] and promotes 
the ‘pro-inflammatory’ polarisation of macrophages (ie increase production of IL-1, IL-6 
and TNF-alpha and reduce that of the anti-inflammatory IL-10 [69]) and, therefore results 
in an inflamed fat depot. The chronic stimulation from the bacterial antigens also leads to 
activation and the subsequent enlargement of lymph nodes [70, 71], which together with the 
direct effect of bacterial stimuli on activating peroxisome proliferator-activated receptor-γ 
and then on to adipogenesis [71], results in mesenteric hypertrophy and/or hyperplasia. 
Mesenteric fat expansion as a consequence of the microbial leak from the inflamed gut 
however, may be an important defensive mechanism to prevent further translocation of 
bacteria and/or their products into the visceral cavity, which in extreme cases, can be fatal. 

From leaky gut to systemic dysfunction

Unfortunately the metabolic consequences of a leaky gut do not stop at visceral adipose 
dysfunction. Following on from the inflamed and hypertrophic mesenteric fat, more pro-
inflammatory factors and free fatty acids (as a result of increased lipolysis of insulin-resistant 
adipocytes) enter the portal circulation and subsequently lead to an inflamed, steatotic 
and insulin-resistant liver [72]. The deleterious effects of a diseased liver on carbohydrate 
and lipid homeostasis are obvious – reduced glucose uptake, impaired suppression of 
postprandial glucose release and over-production of fatty acids [73]. 
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There is also the effect of bacterial components and metabolites on systemic host metabolism 
when they enter the circulation. Under normal circumstances, only a very small amount 
of endotoxins (primarily LPS) pass through the gut barrier and reach the liver in which 
they are detoxified [74]. An impaired gut barrier function, however, will see an increased 
delivery of LPS into the liver. This may saturate the hepatic detoxification capacity and result 
in an ‘overflow’ of LPS into the systemic circulation [75]. A study by Pastor Rojo et al. [76] 
showed that 48% of patients with Crohn’s disease had an increased serum concentration 
of endotoxins. Recently, there is also some evidence for an elevated circulating level of 
endotoxins in overweight/obese individuals [77] and patients with type 2 diabetes [78]. 
This phenomenon, often referred to as ‘metabolic endotoxemia’, is associated with insulin 
resistance, chronic systemic inflammation and increased cardiovascular risk [79]. The 
metabolic consequence of endotoxemia is directly demonstrated in a study by Mehta and 
co-workers [80], in which intravenous LPS administration in healthy humans resulted in 
elevated plasma concentrations of inflammatory markers and a 35% reduction in insulin 
sensitivity. The molecular pathways by which LPS induces inflammation are detailed in 
a comprehensive review by Lu and colleagues [81]. Briefly, LPS is first recognised in the 
circulation by the LPS-binding protein and is then transported to the target cells, where LPS 
binds to CD14 and the toll-like receptor (TLR)-4/MD-2 receptor complex. After interacting 
with a series of adaptor proteins including myeloid differentiation primary response gene 
(MyD)-88, the net response to LPS is activation of both the NFκB and the MAPK signalling 
pathways and subsequently induction of the expression of pro-inflammatory cytokines. It 
should be noted that TLR4 is ubiquitously expressed in insulin-targeting tissues, eg adipose 
tissue, liver, skeletal muscle and pancreatic beta-cells, and there is evidence for TLR4-
induced inflammation to inhibit insulin signal transduction (for details please refer to a 
review by Kim and Sears [82]). 

In summary, the initially ‘localised’ inflammation of the gut may have deleterious 
consequence on whole-body metabolism. Inflammation and the associated insulin 
resistance, eg in liver, adipose tissue and skeletal muscle, will then stimulate insulin 
secretion from the beta-cells and subsequently results in peripheral insulin resistance and 
a vicious cycle of systemic metabolic dysfunction. This inflammatory response involves 
interaction with the gut microbiota.

Gut microbiota

Available evidence indicates that gut microbiota influence metabolic health in a variety of 
ways. The gastrointestinal tract (GIT) harbours a large microbial community (total of ca 1014 
cells) with very high microbial cell densities in the ileum and large intestine [83, 84]. Many 
of the processes that occur in the GIT are either encoded by microbial genomes, or strongly 
influenced by microbial activity, and our physiology is a convergent of human and microbial 
traits [85, 86]. Accordingly, we need to consider the role of gut microbial community in 
the pathogenesis of metabolic disorders. Each individual’s gut microbiota is unique. While 
80%–90% of the gut bacteria belong to the phyla Firmicutes and Bacteroidetes, the species 
involved and their relative abundances vary from person to person [87]. This variation in 
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microbiota composition is widely accepted to be a contributing factor to differences in host 
physiological outcomes. 

Gut microbiota and barrier function

Functional disruptions to the epithelial lining of GIT is characterised by an altered 
microbial community. In fact, epithelial cells and resident bacteria are thought to be 
synergistic partners in modulating gut barrier function. Gut microbiota contributes to 
barrier function through three different mechanisms. Firstly, normal mucosal resident 
bacteria competitively exclude other, potentially pathogenic bacteria, from attachment 
to the epithelial mucosa. Secondly, some gut bacteria have been shown to promote tight-
junction integrity by inducing the expression levels of tight-junction-related genes [88] 
and/or by promoting the localisation of proteins (eg ZO-1 and occludin) in the tight-
junctions [89]. Thirdly, gut bacteria produce substrates for the maintenance of enterocytes. 
Butyrate, for example, is the primary energy source for colonic epithelial cells. In germ-
free mouse models, the absence of microbial butyrate resulted in the depletion of ATP 
level and induced autophagy, an effect reversed by introducing exogenous butyrate or by 
colonising germ-free mice with butyrate-producing bacteria [90]. These data support the 
notion that gut microbes are directly involved in the normal functioning of epithelial cells 
and maintenance of gut barrier integrity.

It has long been postulated that the beneficial effect of gut bacteria is not universal but 
is confined to specific species with other species being detrimental. To date only very 
few species are thoroughly investigated. Initial studies focused on organisms commonly 
isolated from the gut epithelium, eg Lactobacillus and Bifidobacterium. In gnotobiotic 
studies, Lactobacillus acidophilus has been shown to inhibit cell association and the 
invasion of flagellated bacteria, therefore ameliorating inflammation and improving gut 
barrier function [91]. Similarly, Bifidobacterium infantis increased epithelial integrity 
and was protective against inflammation-induced impaired gut barrier function both in 
vitro and in an experimental model of spontaneous colitis [92]. The effect of the described 
species (and strains) on maintaining epithelial barrier integrity in simple models (eg mono-
associated gnotobionts), however, does not necessarily translate to physiological benefits 
in the natural gut system with its complex community. Lactobacillus and Bifidobacterium 
only account for a small proportion of the gut microbial community and therefore their 
metabolic effects may be relatively minor as compared to that of the more abundant genera 
such as Clostridium. 

Recent studies have focused on investigating the function of gut microbiota at a systems 
level. Using real-time quantitative polymerase chain reaction (PCR), Cani and colleagues 
[93] measured gut bacterial populations in ob/ob mice which also exhibited impaired gut 
permeability. They demonstrated an association between systemic metabolic dysfunction 
(including endotoxemia and inflammation) and alternations in the abundances of 
Bifidobacterium, Lactobacillus and Clostridium coccoides-Eubacterium rectale cluster. 
Importantly, this study identified the relationship between Clostridia and metabolic 
dysregulation, which has not been previously noted in monocolonisation studies. The 
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role of Clostridia in gut inflammation and barrier function is further substantiated by 
metagenomic analysis which examines the genomic profile of the entire gut microbial 
community. Metagenomic studies of gut microbiota showed that patients with 
inflammatory bowel disease had a lower relative abundance of Clostridial cluster IV and 
XIVa as compared to healthy controls [94]. This suggests that the absence of these Clostridial 
clusters may enhance gut permeability and subsequently increase host susceptibility to 
chronic inflammation. There is also some evidence suggesting that bacteria in Clostridial 
cluster IV and XIVa are potent inducers of gut regulatory CD4 T cells, which are important 
modulators in the initiation of immune responses [95].

In summary, numerous studies revealed the role of certain gut microbes in modulating 
intestinal permeability. The effect of bacteria on gut health appears to be highly species- 
and even strain-specific. Identifying beneficial strains will be important for developing 
nutraceutical, and even pharmaceutical, interventions to improve gut health.

Gut microbiota and energy homeostasis

Gut microbiota influence host energy metabolism by modulating nutrient absorption and 
energy storage. There is some evidence suggesting that gut bacteria stimulate angiogenesis 
in the small intestine epithelium and therefore increase the efficiency of nutrient absorption 
[96]. It is also well documented that gut microbiota ferments dietary compounds, which 
are otherwise indigestible by the host, and therefore increases energy harvest.

The effect of gut microbiota on host energy homeostasis is primarily a consequence of 
short-chain fatty acids (SCFAs) production. Bacterial enzymes, eg glycoside hydrolases, 
break down dietary polysaccharides to SCFAs such as butyrate, acetate and propionate 
[97]. While butyrate is the primary energy substrate for colonocytes and is important for 
fortification of the GIT epithelial barrier, acetate and propionate are delivered to the liver 
for de novo lipogenesis through acetyl-CoA carboxylase and fatty acid synthase. The direct 
effect of gut microbiota on hepatic lipid metabolism is demonstrated in conventionalisation 
studies, in which the colonisation of germ-free mice with cecal content of conventionally 
raised animals increased fatty acid and triglyceride synthesis in the liver and promoted 
peripheral fat storage [98]. Bacterial SCFAs may also directly modulate the signalling 
pathways involved in host fat storage. SCFAs are specific ligands for at least two G protein 
coupled receptors, GPR 41 and GPR 43, which when deficient ameliorate microbe-
associated energy harvest [99] and diet-induced obesity [100]. 

It is important to note that the interactions between gut microbiota, GIT and liver are 
part of the normal physiological processes in the host. Disturbances or alterations to the 
microbial community (collectively known as microbial dysbiosis) however, are likely to 
shift the energy balance in favour of nutrient recovery and storage. This notion is best 
illustrated in a series of studies by Turnbaugh, Gordon and colleagues. Germ-free mice 
receiving an obesity-associated microbiota (OAM, from diet-induced obese mice) 
had increased fat deposition as compared to those transplanted with a lean-associated 
microbiota (LAM) [101]. Further, it has also been shown that OAM is enriched for genes 
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that encode enzymes involved in starch, sucrose, and galactose metabolism to breakdown 
otherwise indigestible polysaccharides [102]. These data suggest that OAM has a higher 
energy harvesting potential. The increased influx of SCFAs into the systemic and, more 
importantly, the portal circulation may increases lipid load in the liver and predispose 
hepatic insulin resistance. 

The research of gut microbiota currently focuses on unravelling microbial populations 
affected in microbial dysbiosis and the associated metabolic sequelae. A feature of many 
human [103] and experimental models of obesity [104], is that an OAM is characterised 
by a lower Bacteroidetes:Firmicutes ratio as compared to an LAM. Whether this is a generic 
trend across the obesity-associated metabolic disorders is not entirely clear. For example, 
patients with type 2 diabetes have been shown to have similar Bacteroidetes:Firmicutes ratio 
as healthy controls but the proportion of bacteria represented within Bacteroidetes differed 
in the two cohorts [105]. To date there is limited evidence suggesting the predominant role 
of a particular microbe or a specific group of bacterial species in the events leading up to 
metabolic disorders. Experimental data however, strongly indicate that the composition of 
gut microbiota is an important aspect of host metabolic phenotype. Microbial dysbiosis, 
therefore, should be considered as an additional risk factor in the pathogenesis of insulin 
resistance and systemic metabolic dysregulations. 

Future directions: focus on immune and gut systems

The discovery of the involvement of the immune and gut systems in obesity-related 
metabolic dysfunctions identify a subset of at-risk individuals who would benefit from 
novel immune- and gut-targeted therapies to improve metabolic health. Here we highlight 
some recent data to identify potential therapeutic targets. 

Immunomodulators

A logical approach to prevent inflammation-associated metabolic sequelae is to block 
the initiation of an immune response. The chronic use of agents which non-selectively 
antagonise the key pro-inflammatory pathways (eg glucocorticoids), however, are often 
associated with immunosuppression-related side effects [106]. Attempts to develop 
interventions to reduce localised inflammation have also proven to be impractical. In the 
gut system, inhibiting the signalling of specific TLRs interferes with mucosal repair [107] 
and has even been shown to induce ‘hallmark features of metabolic syndrome’ including 
insulin resistance, hyperlipidemia and increased adiposity [108, 109]. It then becomes 
apparent that a specific TLR functional deficiency is compensated by the activation of other 
TLRs [108]. Further, this feedback loop appears to modulate gut microbiota profile [109] 
and therefore may subsequently lead to metabolically deleterious phenotypes. 

Promoting resolution has recently been appreciated as an alternative way to minimise the 
deleterious effects of inflammation. Rather than directly interfering with the inflammatory 
signalling pathways, pro-resolving mediators reduce the infiltration and, at the same time, 
enhance the clearance of immune cells at the site of inflammation [106]. Accordingly, 
these mediators promote tissue recovery and therefore prevent unnecessarily prolonged 
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inflammation. Resolvins are a family of endogenous pro-resolution molecules which 
have received much of the attention. N-3 polyunsaturated fatty acids have long been 
recognised as anti-inflammatory due to the preferential production of less inflammatory 
eicosanoids [110]. The recent discovery of the D- and E-series of resolvins, derived 
from docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) 
respectively, suggests that the pro-resolving nature is another important aspect of n-3 
polyunsaturated fatty acids to modulate inflammation. Human clinical trials of resolvins 
to treat inflammatory diseases including rheumatoid arthritis and inflammatory bowel 
disease are already underway. Consistent with the further role of inflammation in obesity/
diabetes, resolvin D1 administration has recently been shown to reduce CLS-localised 
ATMs in visceral adipose tissue and improve insulin sensitivity in db/db mice [111]. Taken 
with the protective effect of fish oil feeding against LPS-induced inflammation and insulin 
resistance [112], these results also point to the potential of resolvins as a pharmacological 
target for obesity and diabetes. 

Probiotics, prebiotics and resistant starches

The compelling evidence of the role of gut microbiota in gut functions and energy 
metabolism clearly indicates manipulating the microbial community as an important avenue 
to improve metabolic health. Probiotic supplementation, which involves the ingestion 
of live micro-organisms, is the most direct way to introduce specific beneficial bacteria 
into the gut system. Strains of several species of Lactobacillus and Bifidobacteria, eg L. 
plantarum [113] and B. bifidum [114] are probiotics with consistently demonstrated health 
benefits. There is an emerging literature supporting the use of probiotics supplementary 
to standard treatment for inflammatory bowel disease [115] and irritable bowel syndrome 
[116]. Dietary probiotic supplements and food fortified with probiotics (eg dairy products 
and infant formulas) are also widely available for general consumption. There have been 
concerns however, about the efficacy of probiotic supplementation as the effective dose of 
beneficial bacteria reaching the GIT may be highly variable and it is likely to account for 
only a relatively small proportion of the entire microbial population. Also little is known 
about the duration of effect so dosage may be critical for long-term health benefits.

Supplementation of prebiotics in combination with resistant starch is an alternative way to 
manipulate gut microbiota profile. Prebiotics are oligosaccharides which serve as substrates 
for specific gut microbes. For example inulin is a fructan preferentially used by Lactobacillus 
and Bifidobacteria [117]. Resistant starch is defined as starch and/or products of starch 
degradation, which are not absorbed in the small intestine, and therefore enters the colon 
with butyrate as a predominant product from microbial fermentation [118]. While each 
bacterial genus or species has its own preferential substrates, prebiotics and resistant starch 
promote the growth of specific beneficial bacterial populations and subsequently shifts the 
balance of microbial communities in a way that favours gut and metabolic health. 

The use of food ingredients to manipulate gut microbiota composition is advantageous 
to probiotics supplementation. Bioavailability becomes less of an issue, but perhaps what 
makes prebiotics and resistant starch a really appealing option is their ability to modify, 
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long term, autochthonous microbial communities and therefore increase the likelihood 
of having persisting health benefits. There is also the possibility of engineering dietary 
components to facilitate colonisation of specific microbial populations and/or to produce 
specific species of SCFAs to serve particular therapeutic purposes. Rats fed with diet 
containing 10% butyrylated high-amylose maize starch, for example, had increased total 
SCFAs and in particular butyrate content in the colon as compared to those which consumed 
non-butyrylated carbohydrates [119]. Finally, the notion of synbiotics (a combination of 
probiotics and prebiotics), which potentially introduce and, at the same time, maintain 
beneficial microbes in the gut system, may well be the most promising intervention to 
modify gut microbiota profile and achieve maximal health benefits.

Gut mucosal defence

Strengthening the innate defence mechanisms against pathogens is critical to maintain 
gut health. The gastrointestinal tract is coated with a mucus layer, as the first line of 
defence, to protect the epithelium from both physical and chemical damage. Mucins, the 
major component of the overlaying mucus layer, are glycoproteins produced primarily 
by goblet cells. The highly complex oligosaccharide side-chains of mucins form a viscous 
lining which interacts with and trap microbes and subsequently prevent direct contact of 
epithelial surface with pathogens [120]. The interaction between mucins and bacteria has 
also been shown to facilitate specific patterns of bacterial colonisation [134]. A study by An 
et al. [121] provided direct evidence for the role of mucins in gut function, in which mice 
deficient in the biosynthesis of core 3 O-glycans (the predominant component of mucins) 
had increased gut permeability and were more susceptible to experimental colitis and 
colorectal adenocarcinoma. Similarly, mice deficient in Muc2 (the most abundant mucin) 
exhibited signs of spontaneous colitis and growth retardation [122]. 

Dietary supplementations to induce mucins expression may be important to ameliorate 
metabolic sequelae associated with gut inflammation. Probiotics (eg specific strains of 
Lactobacillus) have been shown to increase mRNA levels of mucins in colonic cells in 
vitro [123, 124]. There is also some evidence for the ability of probiotic administration 
to induce gene expression of mucins in animal models of colitis [125]. Similarly, dietary 
supplementation of amino acids specific to mucins production restores the colonic 
protein level of mucins to that in the controls and promotes epithelial repair in rats with 
experimental colitis [126]. 

Trefoil factors (TFF) are another group of important proteins involved in the maintenance 
of the mucosal barrier. Among this family of small peptides, TFF3 is one of the most 
abundant secretory products from goblet cells. TFF3 works synergistically with mucins 
to strengthen the structural integrity of the intestinal mucosal barrier [120]. TFF3 is also 
critical in aiding epithelial repair following injury by promoting epithelial restitution via 
the TGF-beta-dependent pathway [127]. When subjected to experimental colitis, mice 
deficient in TFF3 are more susceptible to mortality and exhibit delayed mucosal healing as 
a consequence of inhibited anti-apoptosis during acute inflammation [128]. 
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TFF3 serves as a critical molecular link between microbiota and intestinal integrity. 
Commensal bacteria activate many members of the TLR family (eg TLR2 and TLR4), 
which subsequently induce the expression of TFF3 via the Ras/MEK/MAPK and PI3K/Akt 
pathways [120]. Accordingly, TFF3 is the downstream effector of the microbiota-initiated 
innate immune response. Manipulating TLRs, as we have argued earlier, might be a 
dangerous impairment of the innate immune system. However, modulating TFF3 may offer 
an alternate opportunity to develop interventions to improve gut health while bypassing 
the upstream effects of microbiota and inflammatory and/or stress-activated pathways on 
epithelial function. This notion is best-illustrated in a study by Podolsky and colleagues 
[128], in which administration of a TLR2 agonist in TFF3-/- mice and oral supplementation 
of recombinant TFF3 in TLR2-/- mice both confer protection of the intestinal mucosa 
during experimental colitis. 

Figure 2. The role of gut in the development of systematic inflammation and metabolic 
dysfunctions.



60 • A modern epidemic

Conclusion

Insulin resistance is central to obesity-associated metabolic dysfunctions. The little 
success we have in reversing the insulin-resistant state clearly suggest the need to focus 
on preventative measures to achieve maximal metabolic health. Recent advances in 
understanding the metabolic sequelae of visceral fat deposition and gut dysfunction, 
summarised in Figure 2, provide unprecedented opportunities to both prevent and 
treat metabolic disorders. What is critical now is to develop biomarkers for large-scale 
population screening to identify individuals with high metabolic risk and offer early 
preventative interventions. Dietary modifications via the development of fortified and 
functional foods, perhaps in combination with novel pharmaceuticals, are also promising 
avenues to improve metabolic health at the population level.
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