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Summary

Functional neuroimaging aims to noninvasively characterize the dynamics of the

distributed neural networks that mediate brain function in healthy and pathological

states. Over recent decades a number of imaging modalities have emerged that

allow brain dynamics to be probed on different spatiotemporal scales. This thesis

focuses on one such technique, electroencephalographic (EEG) source localization,

which solves the EEG inverse problem to estimate the location, magnitude, and

time course of the neuronal sources that produce the observed scalp voltages. In

particular, this work investigates using the Kalman filter (KF) — a flexible and

robust model-based estimation algorithm — to solve this inverse problem.

Chapter 1 begins by introducing EEG source localization and its core compo-

nents. This is followed by an overview of the KF and subsequently a discussion

of how this algorithm can naturally combine these components to solve the EEG

inverse problem.

A recently developed spatially whitened Kalman filter (SWKF) that solves the

EEG inverse problem for a realistic head model is introduced in Chapter 2. This fil-

ter employs a spatial whitening transformation to reduce its computational burden.

A telegrapher’s equation describes the dynamics of the current dipoles, or more

precisely that of their spatial Laplacian. This equation represents a suitable start-

ing point for modeling large-scale brain activity. Likelihood maximization is used

to fit spatially uniform model parameters and noise covariances to simulated and

clinical EEGs. The resulting inverse solutions are found to accurately reconstruct

the underlying source dynamics. This study also applied standard diagnostic tests

to objectively evaluate KF performance. These tests compute the statistical proper-

ties of the innovation sequences and subsequently identify spatial variation in filter

performance which could potentially be improved by spatially-varying model pa-

rameters.

Chapter 3 investigates the SWKF using one-dimensional (1D) simulations to

ix



reduce the complexity of the inverse problem. Simulated EEG is generated using a

telegrapher’s equation and a simplified volume conductor model. Motivated by the

findings of Chapter 2, two model parameters in both the simulated data and SWKF

are given spatial profiles of a simple functional form (Gaussian) which better re-

flects true brain dynamics. Unlike Chapter 2, the optimization step here explicitly

constrains model parameters to ranges consistent with the process model being a

telegrapher’s equation. These constraints ensure the estimated model parameters

maintain a clear biophysical interpretation. The Courant condition, which places an

upper bound on observable wave velocity values for a given spatiotemporal grid, is

also introduced. For the purposes of comparison, inverse solutions are also com-

puted using the optimal linear Kalman filter (LKF). This study finds that both filters

produce accurate state estimates, with the SWKF and LKF exhibiting similar per-

formance. Standard diagnostic tests show that both filters are well-tuned for all sce-

narios in the 1D study. Spatially varying parameter profiles are able to be correctly

identified from the datasets with transient dynamics, while parameter estimates for

the driven datasets are less reliable, because they are degraded by the unmodeled

drive term. Temporal undersampling, which occurs when the Courant condition im-

poses an upper bound on wave velocity estimates that is below the wave velocity’s

true value, is also found to distort parameter estimates.

Chapter 4 returns to the whole-brain EEG inverse problem and applies several

features of the 1D simulation study to the SWKF investigated in Chapter 2. Fol-

lowing the method of Chapter 3, spatially varying model parameters of a known

functional form (sinusoidal) are introduced into the simulated EEG and SWKF to

reproduce the typical anterior to posterior variation of the alpha rhythm. Compared

to Chapter 2, more realistic simulated EEG is generated which exhibits wave-like

patterns and spatially varying dynamics. As in Chapter 3, the optimization step con-

strains model parameters to ranges consistent with the telegrapher’s equation def-

inition, and also imposes the Courant condition on wave velocity estimates. State

estimation was again found to be reliable for both simulated and clinical EEG. How-

ever, the introduction of spatially varying parameters did not improve state estima-

tion for any dataset. In fact, parameter estimation was unreliable for both simulated

and clinical EEG. A consistent finding across all datasets is the underestimation

of the wave velocity. Several likely contributing factors are identified, including:

the use of low density EEG recordings; and the effect of the Courant condition.
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Approaches to overcome this limitation are discussed.

Finally, Chapter 5 summarizes the main findings of the thesis and outlines poten-

tial directions for future work, including emerging applications for Kalman filtering

in computational neuroscience.
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Chapter 1

Overview

The human brain is a truly remarkable structure. Approximately 1011 neurons form

up to 1015 synapses [63, 74, 130] to produce a multiscale dynamic network which

performs a multitude of complex and diverse functions ranging from maintaining

homeostasis (e.g., circadian rhythms and thermoregulation) through to conscious

experience and its associated cognitive abilities — many of which are unique to

humans.

The primary goal of neuroscientific research is to determine how the human

brain performs this constellation of roles. An important outcome of an increasing

understanding of brain function is the ability to: (i) potentially prevent; (ii) more

reliably diagnose; and (iii) better treat disorders of the central nervous system —

both neurological and psychiatric. This will help reduce the considerable burden

of disease on both the individual and society associated with these conditions. For

example, major depression is estimated to have the second highest disease burden

as measured using disability-adjusted life years in Organisation for Economic Co-

operation and Development (OECD) countries, being responsible for approximately

7% of the total burden [100]. The ability to record large-scale brain activity has been

recognized as a vital component of any effective attempt to understand, and subse-

quently combat, complex maladies like mental illness. The increasing importance

of whole-brain functional data is supported by the growing evidence that the brain’s

cognitive functions arise from the dynamic interactions of distributed brain areas

operating in large-scale networks [17]. Dysfunction of these networks has already

been identified in psychopathological states such as depressive illness [111]. These

large-scale interactions can be probed through functional neuroimaging, which is a
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group of techniques able to noninvasively record neural activity, either directly or

indirectly, across the entire brain.

This thesis focuses on the functional imaging modality known as electroen-

cephalographic (EEG) source localization, which through solving the EEG inverse

problem is able to estimate the underlying neuronal activity responsible for a given

EEG recording. Over the past two decades numerous techniques have been ap-

plied to the EEG inverse problem. The work presented here investigates using the

Kalman Filter (KF), which is a model-based estimation algorithm successfully ap-

plied to similar inverse problems in other fields. Throughout this thesis, the spatially

whitened KF (SWKF), which is a KF implementation specifically designed for the

EEG inverse problem, is applied to simulated and clinical EEG for both realistic

head models and a simplified one-dimensional (1D) cortex. The performance of the

filter is then studied and recommendations for improvements are made and subse-

quently investigated.

This overview chapter provides the background information upon which the

work described in this thesis is built. Section 1.1 introduces functional neuroimag-

ing and summarizes the key modalities, including electroencephalography. An

overview of EEG source localization is provided in Sec. 1.2. In Sec. 1.3, the KF

is discussed. Section 1.4 brings together the two previous topics to introduce KF-

based EEG source localization. In Sec. 1.5 the work undertaken in the remainder of

this thesis is outlined.

1.1 Functional Neuroimaging

Up until the 1970s investigation of human brain function was largely restricted to

clinical studies of patients with brain lesions (secondary to disease or injury), or

recording or stimulating brain activity during neurosurgical procedures. However,

the field completely changed when advances in physics, mathematics and com-

puting led to the development of modern three-dimensional (3D) imaging tech-

niques, and allowed brain structure and function to be probed with unprecedented

fidelity [52]. These advances gave rise to the field of functional neuroimaging which

uses various neuroimaging modalities to noninvasively characterize the dynamics

of the large-scale distributed neural networks that mediate brain function in healthy

and pathological states. Over recent decades a number of imaging modalities have
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Figure 1.1: Spatiotemporal resolution of some widely used functional neuroimaging

modalities. The resolution of electrocorticography (ECoG) — an invasive technique

that provides better spatial resolution by placing electrodes directly onto the cerebral

cortex — is shown here for comparison.

emerged that allow brain dynamics to be probed on different spatiotemporal scales.

Some commonly used techniques include functional magnetic resonance imaging

(fMRI), positron emission tomography (PET), and source localization techniques

using EEG and magnetoencephalographic (MEG) data. A short description of the

these modalities is now provided and their spatiotemporal resolutions are summa-

rized in Fig. 1.1.

1.1.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging is arguably the most well known and widely

used functional neuroimaging modality. It is based upon the observation that blood

flow within brain tissue is correlated with neural activity [86]. In the early 1990s

it was discovered that these changes in blood flow could be detected using MRI,

through a phenomenon known as the blood oxygen level dependent (BOLD) effect.

This effect arises from changes in blood flow to a particular brain region altering

the ratio of oxyhemoglobin to deoxyhemoglobin; since deoxyhemoglobin is para-

magnetic it induces local distortions in the MRI signal which can be imaged with
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a spatial resolution of several millimeters. The time course of the BOLD signal,

which has a temporal resolution of approximately 2 s, can be sampled for the entire

brain volume by taking a series of images at short intervals (≈ 2 s). The resulting

volumetric time series is then analyzed to identify brain regions whose activity is

correlated with the experimental conditions. The ability of fMRI to image the entire

brain in vivo, means it can observe the distributed networks involved in cognitive

processes. However, fMRI’s relatively poor temporal resolution limits its ability to

resolve neural activity at cognitive timescales (see Fig. 1.1).

1.1.2 Positron Emission Tomography

Positron emission tomography belongs to the group of imaging modalities that use

radioisotopes [52]. This category also includes single photon emission computed

tomography (SPECT) and regional cerebral blood flow (rCBF). Positron emission

tomography uses a positron-emitting isotope to label a biochemical substance that

is used by the brain (e.g., water, glucose, neurotransmitter or a drug). When injected

into the body the emitted positrons collide with electrons and a pair of gamma rays

are given off in opposite directions. These rays are detected by rings of gamma

detectors surrounding the head. This information can then be used to construct

images which reflect the brain’s activity as a function of the labeled substance. PET

is able to image the entire brain volume with a spatial resolution of approximately

5 mm, and a temporal resolution in the order of minutes (see Fig. 1.1). It is the

imaging modality of choice for in vivo investigation of brain chemistry and drug

receptor activity.

1.1.3 Electroencephalography

The EEG uses electrodes placed on the scalp to record the voltages that result from

the electric fields associated with the currents induced by neural activity. These

voltages are measured relative to some reference electrodes. EEG has a long history,

it was first recorded in rabbits and monkeys by Richard Caton in 1875 [19], and in

humans by Hans Berger, approximately 50 years later [14]. The reader is referred

to [101] for a detailed history of EEG.

The EEG arises from the extracellular currents that are induced by synaptic ac-

tivity [102]. When activated, ions flow in and out of synapses, altering a neuron’s
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transmembrane potential and subsequently its probability of firing an action poten-

tial. These ion flows create either a current sink or current source, which causes

widespread currents in the extracellular space, linking the source and sink regions

on each neuron. The contribution of these post-synaptic currents to the EEG also

depends on the alignment of the neurons. Many cortical neurons are randomly

aligned, so their contribution to the EEG is small. This is because scalp voltages are

due to the linear superposition of the fields from the individual current sources, and

if these sources are randomly aligned they will largely cancel each other out. How-

ever, cortical pyramidal cells have large, well-separated source and sink regions, and

are aligned perpendicular to the cortical surface, which means their current dipole

moments can summate to produce a measurable scalp EEG.

The apical dendrites of the pyramidal cells, which are closer to the scalp possess

mainly excitatory synapses, which means excitatory post-synaptic potentials are a

major contributor to the EEG. In contrast, the inhibitory post-synaptic potentials,

resulting from inhibitory interneurons that predominately synapse onto the basal

dendrite near the soma, are much less effective at generating an extracellular cur-

rent. Hence their contribution to the EEG is minimal. Action potentials also induce

extracellular currents, but since they are further away from the scalp, are short-lived

(1-2 ms) and spatially narrow, their synchronicity is low. Hence their contribution

to the EEG is minimal [101].

A similar arguments holds for the relative contribution of synchronous and asyn-

chronous sources. Synchronous sources make a much larger contribution to the

EEG, while asynchronous sources will tend to cancel each other out. A single scalp

electrode measures the net voltage signal from neural masses containing 10 million

to 1 billion neurons. It is estimated that 1 to 10 percent of neurons under a given

electrode need to be synchronously active to produce a measurable scalp voltage.

EEG has high temporal resolution (milliseconds), but lower spatial resolution

(centimeters) as shown in Fig. 1.1. The poorer spatial resolution results from the

extracellular currents being volume conducted from their source and smeared by

the different electrical resistances of the brain tissue, skull and scalp.
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1.1.4 Magnetoencephalography

Magnetoencephalography is the magnetic counterpart of EEG. This modality records

the magnetic fields associated with the currents generated by neural activity [59].

Compared to electrical currents, magnetic fields are not volume conducted or blurred

by biological tissue. Instead, they fall off rapidly and predictably from their source,

and therefore emerge from the skull largely undistorted. Hence MEG can provide

slightly better spatial resolution than EEG, with similar temporal resolution (see

Fig. 1.1). However, recording MEG data is much more technically demanding than

EEG. In order to detect the minuscule magnetic fields, a superconducting quantum

interference device (SQUID) coupled to a sensor coil (gradiometer) must be placed

just above the scalp. This has restricted its use to mainly research applications.

1.2 EEG Source Localization

EEG source localization solves the EEG inverse problem to estimate the location,

magnitude, and time course of the neuronal sources that produce the observed scalp

voltages. This task presents a considerable challenge since, unlike the forward prob-

lem (prediction of scalp voltages for a given source configuration), which has a

unique solution, the inverse problem is non-unique due to the relatively small num-

ber of spatial measurements (� 256) and volume conduction effects. To make the

problem tractable, a priori assumptions (mathematical, anatomical, and physiolog-

ical) are imposed on the sources and head model. The variety of methodologies

being employed has seen a proliferation of source localization techniques in recent

years. For a comprehensive review of these see [9, 32, 54, 62, 97, 143].

In general, all EEG source localization techniques consist of several core com-

ponents. These are shown in Fig. 1.2 and listed below:

• An EEG recording. Electrode montages containing at least 100 electrodes

have been recommended for source localization [97], although, as seen in the

work presented in this thesis, lower density EEG can produce both reliable

and informative results.

• A solution space, which is usually a gray matter mask extracted from a struc-

tural MRI scan. If solving the inverse problem using a dynamic technique, a

model describing the dynamics of the current sources within this space is also
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Figure 1.2: The major components of EEG source localization. As outlined in Sec. 1.2,

solving the dynamic EEG inverse problem requires: (i) an EEG recording; (ii) a solu-

tion space, and, if using a dynamic inverse solution, a mathematical model describing

the current dynamics within this space; (iii) a forward model linking the sources to the

scalp voltages; and (iv) an inverse solution. This figure has been taken from [143].

required.

• A forward model linking the sources to the scalp voltages. This model, which

is often referred to as the lead field matrix, incorporates the geometric and

conductive information of the various tissue compartments in the human head

(i.e., the brain tissue, cerebrospinal fluid, skull, and scalp), and is computed

using quasi-static approximations of Maxwell’s equations [90,102]. See [58]

for a detailed review of forward modeling for EEG source localization.

• An inverse solution, which is an algorithm that estimates the underlying cur-

rent sources by applying some conditions on possible solutions. If using a

dynamic inverse solution, an algorithm that combines the EEG measurements

with dynamic model predictions is used.

Solutions to the EEG inverse problem can be classified based on a number of key

features. One of the most important is the type of source model an inverse solution

employs; these typically fall into two main categories [9, 97]. The first type are

dipole-fitting approaches (also known as ‘parametric’ or ‘equivalent current dipole’

methods), in which the activity is modeled by a relatively small number of focal
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sources at locations assumed a priori or estimated from the data. Examples include

least-squares source estimation [123], beamformer techniques [140], and multiple

signal classification methods [87, 99]. However, a drawback is that the equivalent

sources can misrepresent actual activity, especially when spatially extended [104].

The second group of techniques, which this thesis is concerned with, are ‘linear

distributed’ approaches (also known as ‘imaging’ methods), in which the sources

are modeled by a 3D grid of dipoles throughout the head volume.

Distributed source models present a highly ill-posed inverse problem, particu-

larly due to the mismatch between the small number of measurements (≈ 102) and

the number of states to be estimated (≈ 104). This necessitates the use of constraints

to identify an ‘optimal’ inverse solution. Numerous classes of constraints have been

applied to the EEG imaging problem, and the type of constraints used represents an-

other important feature by which inverse solutions can be categorized. Of particular

importance to the work undertaken in this thesis is the distinction between instan-

taneous and dynamic inverse solutions. Instantaneous inverse solutions calculate

each source estimate using only the data available at the current instant of time, in-

dependent of all other estimates except for the regularization parameter required in

these solutions, which is usually computed by optimization over the entire dataset.

Examples of instantaneous inverse solutions include: minimizing the norm of the

current distribution [60]; variations of weighted minimum norm constraints as im-

plemented in the low-resolution electromagnetic tomography (LORETA) [107]; and

focal underdetermined system solution (FOCUSS) [53] algorithms. Since EEG data

has temporal structure and is produced by physical processes, this assumption of

temporal independence is certainly false and instantaneous techniques ignore much

additional information which could further constrain the inverse solution. Incorpo-

rating information from previous times into the estimation process yields dynamical

EEG inverse solutions, which is the focus of this thesis.

A variety of approaches for solving the dynamical EEG inverse problem have

been investigated [4,8,11,23,24,26,29,30,42,45–47,49–51,78,88,116,126,129,137,

147]. One commonly used technique is the introduction of a temporal smoothness

term, which has been successfully applied to regularization [23, 126] and Baye-

sian estimation [8, 26] methods. Another strategy is to use dynamic models for

describing source behavior, which can then be used in various estimation schemes.

Recent examples include; a particle filter using a random walk model for inverting
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magnetoencephalographic (MEG) data [129], a modified LORETA algorithm which

generalizes the temporal smoothness constraint into the form of an autoregressive

(AR) model, allowing more complex dynamics to be modeled [147], and an inverse

solution for evoked responses which uses a neural mass model within a dynamic

causal modeling framework [78]. The following section will introduce the Kalman

filter, which is an algorithm that can solve dynamic inverse problems, such as the

one faced in EEG source localization.

1.3 Kalman Filtering

The Kalman filter is an estimation algorithm proposed by Rudolf Kalman in 1960

[73]. It was originally developed for spacecraft navigation (e.g., Apollo and Voy-

ager [18]) but over the past 50 years has been widely used in the autonomous sys-

tems and control engineering communities [33,131]. For a comprehensive overview

of Kalman filtering the reader is referred to the following standard texts [10, 55, 56,

92].

A Kalman filter recursively estimates the states and/or parameters of a dynami-

cal system from indirect and uncertain measurements. The state variables are mod-

eled as Gaussian random variables, and their estimates are optimal in the sense that

they minimize the variance of the error between the estimated and true state variable

values (i.e., the KF minimizes the mean squared error). While many variants of the

Kalman filter have been developed, they all share several common features:

• A mathematical model describing the dynamics of the system (states) being

estimated in terms of first-order differential equations in the state variables

with one or more parameters. This is known as the process model.

• Observations (measurements) of the system, which are related to the states

being estimated via a ’measurement function’, which is often referred to as

the observation model.

• Two noise parameters, both with a zero-mean Gaussian distribution, known as

the process and measurement noise. The process noise models random inputs

into the dynamic model, as well as compensating for any modeling errors

and/or unmodeled dynamics by injecting uncertainty into the state covariance

matrix. The effect of this is to make the Kalman filter place greater weight on
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the measurements relative to the model predictions. The measurement noise

models any noise in the measurement process (e.g. from the sensor(s) being

used), as well as compensating for any errors in the observation model by

injecting uncertainty into the measurement covariance matrix.

The original KF formulation, known as the linear Kalman filter (LKF), assumes

that both the process and observation models are linear. All KF variants operate by

performing a series of mathematical operations each time a new measurement (or set

of measurements) becomes available. Broadly speaking these operations fall under

two headings, namely the time-update (prediction) phase and the measurement-

update (correction) phase, which are performed sequentially at each time instant.

In the prediction phase, the vector of state variables at the current time instant is

predicted from its value at the previous time instant. In the correction phase, the

predicted state vector is corrected using the measurement vector at the current time

instant. The reader is referred to Fig. 1.3 which shows the equations and data flow

for one cycle of the discrete-time LKF. The predictor-corrector structure of this

algorithm is clearly visible in this figure.

There are now a large number of KF variants and related algorithms that relax

some of the assumptions of the LKF to varying degrees. A snapshot of these is now

provided. For instance, filters such as the extended and unscented KFs [61, 141]

and the local linearization filter [69], have been developed to handle non-linear pro-

cess models and perform simultaneous state and parameter estimation. Square root

filters are available that provide improved numerical stability, while particle filters

relax the assumption of Gaussian uncertainties [5, 34]. For offline applications, the

Kalman smoother [55] becomes available. This algorithm uses all available data,

past and future, to compute each estimate. Other KFs, like the ensemble KF [36],

have been designed to handle high dimensional state spaces, such as those seen in

weather models. Another attractive feature of the Kalman filter, which is applicable

to all implementations of this algorithm, is its ability to perform multisensor data

fusion by combining asynchronous measurements from multiple sensors to estimate

a single set of states.
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Figure 1.3: One cycle of the discrete-time linear Kalman filter performing state esti-

mation on a linear system. This figure has been adapted from [10]. The process and

observation models are denoted by F(k) and H(k+1), respectively. The process noise

term is v(k) and the observation noise term is w(k+1). The process and observation

noise covariance matrices are denoted by Q(k) and R(k+1), respectively. The input

gain matrix is G(k). All other terms are defined in the diagram itself.

1.4 Kalman-Filter-Based EEG Source Localization

There is considerable overlap between the core components of EEG source local-

ization techniques and the features of the Kalman filter (see Secs 1.2 and 1.3).

Firstly, the EEG is an indirect and noisy measurement of a dynamic state of in-

terest, namely the underlying neuronal sources generating the observed scalp volt-

ages. Secondly, the forward model (or lead field matrix) performs the role of the

KF’s observation model. Finally, the KF’s process model provides an avenue for

dynamic models describing neural activity to be introduced into EEG source lo-

calization. The KF is becoming an increasingly important tool for solving inverse

problems in spatiotemporal systems. For instance, it has already been used to solve

dynamic inverse problems in a variety of biomedical imaging areas including: elec-

trical impedance tomography (EIT) [72], inverse electrocardiography (ECG) [15],
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single photon emission computed tomography (SPECT) [76], diffuse optical tomog-

raphy (DOT) [31], fMRI [64], diffusion MRI [112], and neural tractography [89].

Recently, a number of studies using KF-based EEG source localization have ap-

peared [11, 29, 30, 45–47, 50, 88], and related particle [129] and local lineariza-

tion [116] filters have also been investigated.

1.5 Thesis Outline

This opening chapter has introduced the concept of EEG source localization and

identified the Kalman filter as a promising technique for solving the EEG inverse

problem. The remainder of this thesis aims to build upon the initial forays into

Kalman-filter-based EEG source localization described in Sec. 1.4. This will be

done through a detailed investigation of the SWKF, which is an existing algorithm

from this family. This filter’s performance is studied and recommendations for

improvements are made and subsequently investigated.

Chapter 2 introduces the recently developed SWKF that solves the EEG inverse

problem for a realistic head model. This algorithm employs a telegrapher’s equation

to describe the spatiotemporal dynamics of the current dipoles. Likelihood maxi-

mization is used to fit spatially uniform model parameters and noise covariances to

simulated and clinical EEGs. Performance of the SWKF is objectively evaluated

using standard diagnostic tests that compute the statistical properties of the innova-

tion. The findings of the filter performance evaluation are used to guide the work

undertaken in subsequent chapters.

Chapter 3 investigates the SWKF using one-dimensional (1D) simulations to

reduce the complexity of the inverse problem. Simulated EEG is generated using

a telegrapher’s equation, for both transient and driven dynamics, and a simplified

volume conductor model. Motivated by the findings of Chapter 2, two parameters

of the telegrapher’s equation, in both the simulated data and SWKF, are given spa-

tial variation of a simple functional form which better reflects true brain dynamics.

Unlike Chapter 2, constrained optimization is used to restrict model parameters to

ranges consistent with the process model being a telegrapher’s equation. These con-

straints ensure the estimated model parameters maintain a clear biophysical inter-

pretation. The Courant condition, which places an upper bound on observable wave

velocity values for a given spatiotemporal grid, is also introduced and its impact
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on inverse solution performance is investigated. For the purposes of comparison,

inverse solutions are also computed using the optimal linear Kalman filter (LKF).

Detailed assessments of filter performance, for a variety of simulated EEG datasets,

are undertaken by comparing estimated and simulated parameter values, and using

the aforementioned standard diagnostic tests. The impact of adding spatial varia-

tion of model parameters to the KF process model, in the cases of both transient and

driven dynamics, is also discussed.

Building on the approaches used and the results obtained in the preceding chap-

ters, Chapter 4 returns to the whole-brain EEG inverse problem and applies several

features of the 1D simulation study to the SWKF investigated in Chapter 2. Fol-

lowing the method described in Chapter 3, spatially varying model parameters of

a simple functional form are introduced into the simulated EEG and SWKF to re-

produce typical spatial variation of the alpha rhythm. Compared to Chapter 2, more

realistic simulated EEG is generated which exhibits wave-like patterns and spatially

varying dynamics. As done in Chapter 3, constrained optimization is used again to

restrict model parameters to ranges consistent with the telegrapher’s equation defi-

nition, and to also impose the Courant condition on wave velocity estimates. Inverse

solution performance is evaluated through a detailed assessment of state and param-

eter estimates, and the application of standard diagnostic tests. Comments regarding

the interpretation of these results are made, and potential options for improving the

performance of the SWKF are discussed.

Besides summarizing the main findings of this thesis, Chapter 5 outlines po-

tential directions for future work, focusing on: improvements to the SWKF algo-

rithm; more general extensions to Kalman-filter-based EEG source localization; and

emerging applications for Kalman filtering in computational neuroscience.
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Chapter 2

Evaluating the Performance of

Kalman-Filter-Based EEG Source

Localization

Abstract

Electroencephalographic (EEG) source localization is an important tool for nonin-

vasive study of brain dynamics, due to its ability to probe neural activity more di-

rectly, with better temporal resolution than other imaging modalities. One promis-

ing technique for solving the EEG inverse problem is Kalman filtering, because

it provides a natural framework for incorporating dynamic EEG generation mod-

els in source localization. Here a recently developed inverse solution is introduced

which uses spatiotemporal Kalman filtering tuned through likelihood maximization.

Standard diagnostic tests for objectively evaluating Kalman filter performance are

then described and applied to inverse solutions for simulated and clinical EEG data.

These tests, employed for the first time in Kalman-filter-based source localization,

check the statistical properties of the innovation, and validate the use of likelihood

maximization for filter tuning. However, this analysis also reveals that the filter’s

existing space- and time-invariant process model, which contains a single fixed-

frequency resonance, is unable to completely model the complex spatiotemporal

dynamics of EEG data. This finding indicates that the algorithm could be improved

by allowing the process model parameters to vary in space.
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2.1 Introduction

Functional neuroimaging aims to noninvasively characterize the dynamics of the

distributed neural networks that mediate brain function in healthy and pathological

states. A number of imaging techniques have emerged over the past 20 years, pro-

viding insights into brain dynamics on different spatiotemporal scales. Functional

magnetic resonance imaging (fMRI) and positron emission tomography (PET) use

hemodynamic and metabolic fluctuations induced by neural activity to probe brain

dynamics with high spatial (millimeters), but only low temporal (seconds to min-

utes), resolution [133]. Electroencephalographic (EEG) source localization is a

complementary imaging technique which accesses, through scalp voltages, a more

direct, albeit spatially blurred, measure of the brain’s electrical (neural) activity.

Typically, the images generated by EEG inverse solutions have a lower spatial reso-

lution (centimeters), but possess a much higher temporal resolution (milliseconds),

and are thus important for studying brain dynamics, as they probe neural processes

on cognitive timescales [9].

Solving the EEG inverse problem to estimate the location, magnitude, and time

course of the neuronal sources that produce the observed scalp voltages presents a

considerable challenge. Unlike the forward problem (prediction of scalp voltages

for a given source configuration), which has a unique solution, the inverse problem

is non-unique due to the relatively small number of spatial measurements (� 256)

and volume conduction effects. To make the problem tractable, a priori assumptions

(mathematical, anatomical, and physiological) are imposed on the sources and head

model. The variety of methodologies being employed has seen a proliferation of

source localization techniques in recent years. For a comprehensive review of these

see [9, 97].

Solutions to the EEG inverse problem fall into two main categories. The first

type are dipole-fitting approaches (also known as ‘parametric’ or ‘equivalent cur-

rent dipole’ methods), in which the activity is modeled by a relatively small number

of focal sources at locations assumed a priori or estimated from the data. Exam-

ples include least-squares source estimation [123], beamformer techniques [140],

and multiple signal classification methods [87,99]. However, a drawback is that the

equivalent sources can misrepresent actual activity, especially when spatially ex-

tended [104]. The second group of techniques, which this chapter is concerned with,

are ‘linear distributed’ approaches (also known as ‘imaging’ methods), in which the
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sources are modeled by a three-dimensional (3D) grid of dipoles throughout the

head volume.

Distributed source models present a highly ill-posed inverse problem, particu-

larly due to the mismatch between the small number of measurements (≈ 102) and

the number of states to be estimated (≈ 104). This necessitates the use of constraints

to identify an ‘optimal’ inverse solution. Numerous classes of constraints have been

applied to the EEG imaging problem, such as minimizing the norm of the current

distribution [60] and variations of weighted minimum norm constraints as imple-

mented in the low-resolution electromagnetic tomography (LORETA) [107], and

focal underdetermined system solution (FOCUSS) [53] algorithms. It is important

to note that these inverse solutions [53, 60, 107] are instantaneous; i.e., each source

estimate is calculated using only the data available at the current instant of time, in-

dependent of all other estimates except that the regularization parameter required in

these solutions is usually computed by optimization over the entire dataset. Since

EEG data has temporal structure and is produced by physical processes, this as-

sumption of temporal independence is certainly false and instantaneous techniques

ignore much additional information which could further constrain the inverse so-

lution. Incorporating information from previous times into the estimation process

yields dynamical EEG inverse solutions, which is the focus of this chapter.

Several approaches for solving the dynamical EEG inverse problem have been

investigated. One commonly used technique is the introduction of a temporal smooth-

ness term, which has been successfully applied to regularization [23,126] and Baye-

sian estimation [8, 26] methods. Another strategy is to use dynamic models for de-

scribing source behavior, which can then be used in various estimation schemes.

Recent examples include; a particle filter using a random walk model for invert-

ing magnetoencephalographic (MEG) data [129], a modified LORETA algorithm

which generalizes the temporal smoothness constraint into the form of an autore-

gressive (AR) model, allowing more complex dynamics to be modeled [147], and

an inverse solution for evoked responses which uses a neural mass model within a

dynamic causal modeling framework [78].

This chapter investigates another model-based approach, the application of Kal-

man filtering to solving the dynamical EEG inverse problem. The Kalman filter

(KF) is a widely used technique for the estimation of unobservable states in dy-

namical systems [10, 55, 92]. It has been used to solve dynamic inverse problems
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in several biomedical imaging areas including, electrical impedance tomography

(EIT) [72], single photon emission computed tomography (SPECT) [76], and dif-

fuse optical tomography (DOT) [31, 114]. An attractive feature of the KF is that

it provides a natural framework for introducing predictive models for EEG genera-

tion into source localization techniques. These models can be inferred from signal

analysis, as done here, or derived from physiology (e.g., [80, 117, 119]). Despite

these attributes, Kalman filtering has not been widely explored in the EEG inverse

mapping field and its potential remains largely untapped, although a few studies

have appeared [29, 46, 47, 88], and the related particle [129], and local lineariza-

tion [116] filters have also been used. A major reason for this is that the high di-

mensionality of the underlying state-space makes the application of a standard KF

challenging, due to the inability to accurately model the spatiotemporal interactions

between all voxels and the high computational costs of running such an algorithm.

However, a recently developed KF-based inverse solution [47] avoids these prob-

lems and shows considerable promise. It proposes a modified KF algorithm which

reduces the high dimensionality of this problem by reformulating it as a coupled

set of low-dimensional KFs running in parallel. Using a single telegrapher’s equa-

tion to model the global source dynamics and likelihood maximization to estimate a

small number of model and noise parameters, this technique offers improved source

localization over existing instantaneous solutions (e.g., LORETA).

In this chapter the application of Kalman filtering to source localization is exam-

ined through a detailed study of the KF-based inverse solution described above [47].

The study aims to characterize, validate, and identify ways to improve the algo-

rithm’s performance. To achieve this, several new contributions are made; (i) stan-

dard diagnostic tests for objectively evaluating KF performance are introduced to

EEG source localization, (ii) the application of these tests is demonstrated, (iii)

results for this particular filter whose performance has not been previously evalu-

ated formally are shown and discussed for both simulated and clinical EEG data,

and (iv) the outcomes are used to direct future work. These tests have not been

discussed in the growing literature on KF-based EEG source localization, despite

their proven utility and widespread use in other fields where Kalman filtering is em-

ployed [10, 12, 144]. All such tests check the statistical properties required of the

innovation sequence, which is the only indicator of KF performance available for

real data [10]. Numerous tests, for both off- and on-line applications, have been

18



developed for this purpose [10, 12, 43, 57, 92, 95, 144]. Using these tests we can

determine objectively whether the filter tuning step results in a well-tuned filter, as

defined in Sec. 2.5. This analysis is repeated for several process models, so the rel-

ative contributions of spatial and temporal components to the inverse solution can

be ascertained. Resonant behavior in the process model is then examined to provide

the basis for discussing potential improvements to the algorithm.

In Sec. 2.2 the linear distributed EEG inverse problem is described. Section 2.3

outlines the KF-based inverse solution and the likelihood maximization technique

used for parameter estimation. In Sec. 2.4 inverse solutions for both simulated and

clinical EEG data are presented. Section 2.5 describes the tests for evaluating KF

performance and discusses their results. Process model resonance is explored and

discussed in Sec. 2.6, which closes by outlining ways to improve both the process

model and the filter itself.

2.2 EEG Inverse Problem Formulation

To set up the EEG inverse problem, we define a continuous current vector field

j(r, t), where r and t denote space and time, respectively. The solution space is

discretized into Nv grid points (voxels) rv, v = 1, ..., Nv, restricted to the cortical

gray matter of the brain, where the majority of the EEG signal is generated [104].

Time is discretized intoNk points tk, k = 1, ..., Nk. Discretized points are indicated

by v and k here, rather than rv and tk. At each voxel the state vector is

j(v, k) = [jx(v, k), jy(v, k), jz(v, k)]
T . (2.1)

The global state vector for the entire system has dimensionNJ = 3Nv and is written

J(k) = [j(1, k)T , . . . , j(Nv, k)
T ]T . (2.2)

The currents j(v, k) produce the EEG signal which is recorded on the scalp at

Nc electrode sites. If the EEG voltage at a single electrode is denoted by y(c, k),

where c is an electrode label, the observation vector containing the scalp voltages at

all EEG channels is

Y (k) = [y(1, k), . . . , y(Nc, k)]
T . (2.3)

Here voltages refer to average reference (the average voltage is subtracted from each

channel).
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The observation equation that relates the current vectors to be estimated to the

EEG signal is

Y (k) = KJ(k) + ε(k), (2.4)

where theNc×NJ matrix K, often referred to as the lead field matrix (LFM) or the

observation model, maps the current vectors to voltages at the scalp electrodes. In

this study the LFM is approximated for the International 10-20 System [67] by solv-

ing the vector Laplace equation for a 3-shell spherical head model via the boundary

element method [115]. The term ε(k) is a Nc-dimensional vector of observational

noise, which is assumed to be white, Gaussian, and unbiased, with covariance ma-

trix Cε, and uncorrelated between all pairs of sensors, with equal variance σ2
ε at

every electrode, so

Cε = σ2
εINc , (2.5)

where INc is the Nc ×Nc identity matrix.

Equation (2.4) cannot be inverted directly, due to the large ratio of solution

points to measurements. Hence, the inverse problem can only be solved by intro-

ducing additional constraints.

2.3 Spatiotemporal Kalman Filtering

In this section, we summarize a recently developed KF-based source localization

technique [47] which provides the motivation and basis for the present work. We

begin by introducing a model to describe the source dynamics, and a state-space

transformation which reduces the filter’s computational costs. The spatiotemporal

KF algorithm is then outlined. Parameter estimation is then discussed and a method

to tune the filter by likelihood maximization is proposed.

2.3.1 Spatiotemporal Models

A key component of any dynamical inverse solution is a model of the system dy-

namics (i.e., a process model), in this case one which describes the spatiotemporal

evolution of the current vectors. For this task we propose a telegrapher’s equa-

tion [110] of the form(
∂2

∂t2
+ 2ζωn

∂

∂t
+ ω2

n − b2∇2

)
j(r, t) = η(r, t), (2.6)
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where ωn is the natural frequency, ζ the fractional damping coefficient, b the wave

velocity, and η(r, t) is a dynamical (process) noise term. This equation is selected

for several reasons: (i) it is the continuous form of the discrete model used here

and in [47], (ii) it contains an explicit temporal resonance, which is a key feature of

EEG data, (iii) it allows physically meaningful parameters to be determined through

the estimation step, and (iv) in previous work using mean-field modeling [119],

an equivalent equation successfully described the spatiotemporal propagation of

neuronal activity. To implement a KF, Eq. (2.6) is discretized with respect to space

and time to give

j(v, k) = AL1j(v, k − 1) +AL2j(v, k − 2)

+BL1[LJ(k − 1)]v + ηL(v, k), (2.7)

at each voxel where L is a discrete 3D spatial Laplacian operator of dimensions

NJ × NJ which arises from the discretization of the second spatial derivative in

Eq. (2.6) and is defined

L =

(
INv −

N

6

)
⊗ I3, (2.8)

where ⊗ indicates Kronecker multiplication and N is a Nv × Nv matrix with ele-

ment N (v, v′) = 1 if v′ is immediately adjacent to v (maximum of 6 neighbors per

voxel in a 3D rectangular grid) and N(v, v′) = 0 otherwise. Boundary conditions

are applied which restrict sources to the grey matter mask, i.e., if a voxel location

lies outside of this mask its value is set to 0. The construction of N takes this

boundary condition into account by setting to 0 any matrix elements correspond-

ing to an immediately adjacent voxel that lies outside of the grey matter mask.

The [J ]v operator selects the column vector composed of the three elements of J

that correspond to grid point v. Restricting attention to classes of process models

(e.g., [47]) in which the local current components in each voxel are approximated as

behaving independently of each other and only interacting with the corresponding

current vectors in neighboring voxels, gives the following local parameter matrices

in Eq. (2.7)

AL1 = a1I3, AL2 = a2I3, BL1 = b1I3. (2.9)

From discretization of Eq. (2.6), the model parameters in Eq. (2.9), assumed to be

space and time invariant, are

a1 =
2− (ωnΔt)

2

1 + ζωnΔt
, (2.10)
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a2 =
ζωnΔt− 1

1 + ζωnΔt
, (2.11)

b1 = − 6(bΔt)2

(Δx)2(1 + ζωnΔt)
. (2.12)

where Δt and Δx are the time step and voxel size (assuming cubic voxels). From

Eq. (2.7) we write the global process model as a second-order multivariate AR

model:

J(k) = AG1J(k − 1) +AG2J(k − 2) + ηG(k), (2.13)

where the NJ ×NJ global parameter matrices are

AG1 = a1INJ
+ b1L, AG2 = a2INJ

. (2.14)

The NJ -dimensional vector ηG(k) is a dynamical noise term which is assumed

white, Gaussian, and unbiased, with covariance matrix CηG
. To decompose this

high-dimensional problem into a set of coupled low-dimensional, voxel-centered,

local filtering problems, as described in the next section, requires this dynamical

noise covariance matrix to be diagonal. However, for the process noise, assump-

tion of a diagonal covariance matrix is typically not justified, due to nonvanishing

instantaneous correlations between neighboring voxels. So to diagonalize this ma-

trix, a switch to a transformed (Laplacianized) state-space J̃(k) was proposed [47]

where

J̃(k) = LJ(k). (2.15)

Assuming the same form of dynamics govern the Laplacian of J , the process model

is

J̃(k) = AG1J̃(k − 1) +AG2J̃(k − 2) + η̃G(k). (2.16)

As a result of this transformation, the dynamical noise covariance matrix C η̃G
is

closer to diagonal since applying the Laplacian operator L to the state vector J re-

duces spatial correlations between neighboring voxels through (second-order) spa-

tial differentiation. Assuming the process noise covariance σ2
η̃ to be fixed in space

and time, the covariance matrix is

C η̃G
= σ2

η̃INJ
. (2.17)

We can substitute Eq. (2.15) into Eq. (2.16) to obtain

J(k) = L−1AG1LJ(k − 1) +L−1AG2LJ(k − 2) + L−1η̃G(k). (2.18)
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By equating the process noise term in Eq. (2.18) with the one in Eq. (2.13), we

find ηG(k) = L−1η̃G(k), which yields the process noise covariance matrix in the

original space

CηG
= L−1E(η̃η̃T )(L−1)T = σ2

η̃(L
TL)−1. (2.19)

This state-space transformation is called ‘spatial whitening’, and allows decompo-

sition of the filtering problem, as described in the next section. From now on we

will operate in this Laplacianized state-space by replacing J(k) with J̃(k) and CηG

with C η̃G
. To obtain actual current densities and covariances we simply apply the

inverse of the spatial whitening transformation; as seen shortly, this step requires

one-off inversion of a very large (≈ 104 × 104) matrix.

2.3.2 Kalman Filter Algorithm

At this point we could apply standard Kalman filtering to this problem in the original

or Laplacianized state-space. However, given the high dimension NJ of the state-

space usually seen in EEG inverse problems, the computational time and memory

usage for such a filter is large enough to make the numerical estimation of model pa-

rameters performed in Sec. 2.4 impractical. To overcome this problem, a modified

KF was introduced in [47] which reduces this NJ -dimensional filtering problem to

a set of Nv coupled 6-dimensional KFs, one at each voxel in Laplacianized state-

space, governed by the local process model Eq. (2.7). This modification requires

that CηG
be diagonal, which explains the need for spatial whitening.

We now outline the modified KF used here. The reader is referred to [47] for

further details regarding its development. Before describing the algorithm, a nota-

tional convention is defined. The term x(k1|k2) will indicate an estimate of some

quantity x computed at time k1, based on all observations available at time k2, where

k1 � k2. Also due to the application of spatial whitening, we will replace the LFM

K with K̃ = KL−1 henceforth. We start by augmenting the local state vector, as

the KF requires the local process model Eq. (2.7) be in the form of a first-order AR

model. To achieve this, we define a new 6-dimensional local state vector j̃KF (v, k)

as follows

j̃KF (v, k) = [j̃(v, k)T , j̃(v, k − 1)T ]T , (2.20)
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so the new local parameter matrices become

AKF =

(
AL1 AL2

I3 0

)
, BKF =

(
BL1 0

0 0

)
. (2.21)

Rewriting Eq. (2.7), we obtain the local state prediction equation

j̃KF (v, k|k − 1) = AKF j̃KF (v, k − 1|k − 1)

+BKF

(
[LJ̃(v, k − 1|k − 1)]v

0

)
. (2.22)

The local predicted state covariance is approximated as

P̃ (v, k|k − 1) = AKF P̃ (v, k − 1|k − 1)AT
KF +C η̃L

, (2.23)

where Cη̃L
is the 6× 6 local dynamical noise covariance matrix given by

C η̃L
=

(
σ2
η̃I3 0

0 0

)
. (2.24)

The contribution of the second (neighborhood) term in Eq. (2.22) to the predicted

state covariance Eq. (2.23) is ignored [47], since it is expected to be small, relative

to the first (local) term, and therefore will not contribute significantly to the state

covariance.

Once the local prediction equations (2.22) and (2.23) have been applied at all

voxels, we predict observed scalp voltages from the global state vector:

Y (k|k − 1) = K̃J̃(k|k − 1). (2.25)

The innovation sequence is the difference between observed and predicted EEG

measurements:

ΔY (k) = Y (k)− Y (k|k − 1). (2.26)

The associated innovation covariance is approximated by

R(k|k − 1) =

Nv∑
v=1

Q(v)P̃ (v, k|k − 1)Q(v)T +Cε, (2.27)

where the Nc × 6 matrix Q(v) is defined as

Q(v) = ([K̃]v 0). (2.28)
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The [K̃]v term denotes the 3 columns from K̃ that correspond to the vth voxel, and

the 0 matrix on the right has dimensions Nc × 3. The 6 × Nc Kalman gain matrix

for voxel v is then

G(v, k) = P̃ (v, k|k − 1)Q(v)TR(k|k − 1)−1. (2.29)

The filtering cycle is then completed by calculating the local state estimate and the

corresponding local state estimate covariance matrix,

j̃KF (v, k|k) = j̃KF (v, k|k − 1) +G(v, k)ΔY (k), (2.30)

P̃ (v, k|k) = [I6 −G(v, k)Q(v)]P̃ (v, k|k − 1), (2.31)

respectively. Applying Eqs (2.30) and (2.31) to all voxels generates the inverse

solution for time point k. To obtain actual current density estimates, we then undo

the spatial whitening transformation Eq. (2.15) via:

J(k|k) = L−1J̃(k|k). (2.32)

The associated NJ ×NJ covariance matrix for the actual current densities at every

voxel is given by

P (k|k) = L−1P̃ (k|k)(LT )−1, (2.33)

where P̃ (k|k) denotes the Laplacianized NJ ×NJ covariance matrix for all voxels,

the diagonal of which consists of the P̃ (v, k|k) matrices (only the first 3 columns

of the first 3 rows) given by Eq. (2.31) for each voxel. The remaining elements of

P̃ (k|k) are filled with zeros as a result of spatial whitening, which removes off-

diagonal covariances.

2.3.3 Parameter Estimation

Since no detailed prior knowledge of parameter values is usually available, a strat-

egy for selecting optimal values for the process model parameters (a1, a2, and b1),

and noise covariances (σ2
ε and σ2

η̃) is required. In [47] it was proposed that the

filter parameters should be estimated directly from the data using the widely ap-

plied technique of likelihood maximization [2, 6, 94, 127]. Following [2], filter pa-

rameters are selected by numerically minimizing the Akaike Information Criterion

(AIC). The AIC, closely related to the logarithm of the likelihood, estimates the

distance between the process model and the unknown true model. Its calculation
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allows different model structures and parameter values to be compared objectively,

so the best combination can be identified. We begin by defining a parameter vector

ϑ = (a1, a2, b1). The log-likelihood (logL) for the entire EEG time series is

logL(ϑ, σ2
ε , σ

2
η) = −1

2

Nk∑
k=1

[loge |R(k|k − 1)|+ΔY (k)TR(k|k − 1)−1ΔY (k)

+Nc loge(2π)], (2.34)

where |.| denotes absolute value of the matrix determinant. The AIC is then

AIC(ϑ, σ2
ε , σ

2
η) = −2 logL(ϑ, σ2

ε , σ
2
η) + 2[dim(ϑ) + 2], (2.35)

where dim(ϑ) indicates the number of parameters in ϑ, which is increased by two

as we need to fit the noise covariances from the data. Every component of this

algorithm is implemented in Matlab [91] and run on an IBM ThinkPad R51 (In-

tel Pentium 1.6 GHz, 1 GB RAM). The AIC minimization is performed by Mat-

lab’s ‘fminunc’ function which finds the minimum of an unconstrained nonlinear

multivariable function using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-

Newton method with a mixed quadratic and cubic line search procedure. For further

details regarding the BFGS algorithm, the reader is referred to the Matlab docu-

mentation [91] for the ‘fminunc’ function, and the following standard optimization

texts [38, 48]. The convergence criterion used by the optimization algorithm con-

siders an AIC minimum to be reached, and therefore terminates the optimization

routine, when the change in the AIC at the next step is less than 1 × 10−10. The

maximum number of filter runs per optimization is set to 500; with each filter itera-

tion taking approximately 2 minutes to complete, this means optimized parameters

can be computed within 42 hours. However, in practice, convergence is typically

achieved much sooner.

2.4 Results of Inverse Solution

The spatiotemporal KF and parameter estimation technique are now applied to both

simulated and clinical EEG data. For each dataset we computed inverse solutions

for three process models: (i) full model (discretized telegrapher’s equation), (ii) no

spatial coupling (b1 = 0), and (iii) random walk (a1 = 1, a2 = 0, b1 = 0). This

allows the relative contribution to filter performance of different parts of the process

model to be assessed.
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The following applies to all simulated and clinical EEG studies in this chapter.

Prior to computing an inverse solution, we define a discretized solution space con-

sisting of 3564 (Nv) 7×7×7 mm gray matter voxels. These voxels cover the cortex

and basal ganglia and were taken from the Probabilistic MRI Atlas produced by the

Montreal Neurological Institute [93]. At each voxel the 3D local current vector is

mapped to the 19 electrode sites for the 10-20 system through the LFM introduced

in Sec. 2.2. However, due to the choice of a reference out of the set of electrodes,

we exclude one of the electrode sites from the analysis [47], so the number of chan-

nels is Nc = 18; in this case Pz is chosen. After referencing, both datasets were

normalized to unit variance.

The filter requires initial values j̃KF (v, 1|1) and P̃ (v, 1|1) be given, although

the value for P̃ (v, 1|1) is not critical [47]. Here the filter is initialized by setting

j̃KF (v, 1|1) to a 0 column vector, and P̃ (v, 1|1) to an identity matrix for all voxels.

If it converges, the filter is sensitive to initialization only in the short term, up to 0.5

s. The initial parameter values for the optimization algorithm, when run on both

simulated and clinical EEG, were selected by the author. A number of parameter

initializations were chosen for each EEG dataset, which allowed the solution space

to be explored. However, for almost all reasonable starting points, the optimiza-

tion algorithm consistently converged on the same parameter sets for each of the

simulated and clinical EEG recordings.

2.4.1 Simulated EEG Recording

A major problem with all inverse solutions is obtaining meaningful evaluations of

the algorithm’s results and performance, because true sources are not available for

comparison when working with real data. One solution is to use simulated EEG

data, where underlying sources are known. To generate a simulated EEG dataset for

this purpose requires us to select a model for the brain dynamics, which displays

complex spatiotemporal behavior. Here we propose a highly simplified approxima-

tion, similar to the one used in [134], based on the observation that oscillations can

be widely distributed but are often strongest in a local region; e.g., alpha activity in

the visual cortex.

The temporal dynamics are modeled using a linear combination of sine func-

tions whose components are evenly spaced in the alpha band (8 - 12 Hz). The alpha
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band was selected since the clinical data used in the following section displays

prominent alpha activity. The amplitude of the oscillations follows a Gaussian cen-

tered at f0 = 10 Hz, so the simulated current density is

j(k) =

Nf∑
i=1

A(i) sin[2πf(i)kΔt + ψ(i)], (2.36)

where Nf is the number of frequency components, f(i) is the frequency of oscilla-

tion [8 Hz � f(i) � 12 Hz], ψ(i) is a random phase offset [−π � ψ(i) � π], and

A(i) is the Gaussian scaling coefficient with variance σ2
f , and

A(i) =
1

σf
√
2π

exp

(
− [f(i)− f0]

2

2σ2
f

)
. (2.37)

The spatial distribution of the simulated source is modeled by the following 3D

Gaussian function,

B(va) =
1

(2π)3/2|Ω|1/2 × exp

[
−(V a − V c)

TΩ−1(V a − V c)

2

]
, (2.38)

centered at voxel vc, with coordinatesV c = (xc, yc, zc)
T and evaluated at each voxel

va in the activation zone, with coordinates V a = (xa, ya, za)
T . The activation zone

comprises the gray matter voxels within a certain radius of vc; elsewhere B = 0.

The spatial Gaussian’s covariance matrix is Ω = σ2
sI3, where σ2

s is the variance.

Finally, to produce the simulated current densities, the current density (2.36) is

multiplied by the spatial coefficient mask (2.38).

For our simulated data, we selected an active region centered in the right oc-

cipital pole. The full-width half-maximum (FWHM) values for the frequency and

spatial Gaussian distributions were 2 Hz (component spacing 0.25 Hz) and 75 mm,

respectively (activation zone radius 100 mm). In this simulation, all current vectors

were oriented in the z-direction (coronal axis) to maximize the scalp voltages at

the occipital electrodes (i.e., O1 and O2). The simulated brain dynamics were then

generated for 512 (Nk) time points, assuming a sampling rate of 256 Hz. Two sec-

onds of synthetic EEG data, according to the 10-20 system, was generated from the

simulated current densities by multiplication with the LFM, and average reference

was applied. Next, white Gaussian observation noise was added to the data to give

a signal to noise ratio (SNR) of 20:1 in terms of standard deviations. The resulting

EEG data is shown in Fig. 2.1, and displays high amplitude alpha oscillations in the

occipital electrodes, which are largest at O2.
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Figure 2.1: Two seconds of simulated EEG data generated for the 10-20 system (Pz is

omitted) sampled at 256 Hz with an activation center in the right occipital lobe. Elec-

trode abbreviations are on the vertical axis. The EEG potential uses average reference

of all 19 electrodes (including Pz).

We begin by applying the full model inverse solution to the simulated data.

Using likelihood maximization to estimate the unknown filter parameters yields

a1 = 1.85, a2 = −0.91, b1 = −1.88× 10−3, σ2
ε = 1.94× 10−3, σ2

η̃ = 1.71× 10−8,

and a minimized AIC = −13960. The AIC is computed from the 130th time point

onwards (after ≈ 500 ms) for all simulations to allow transients to pass.

By looking at the parameters whose values we know from the simulated data, we

immediately gain insight into the optimization’s performance. The estimated value

of the spatial coupling term is very small, which agrees with the simulated data

which contained no spatial interactions (i.e., b1 = 0). The estimated measurement

noise covariance σ2
ε is also close to the actual value of 2.5 × 10−3. These findings

provide preliminary support for using AIC minimization to tune the filter.

Figures 2.2 and 2.3 illustrate the inverse solution for the simulated data. Figure

2.2 shows the spatial distribution of the current’s coronal component when the acti-

vation center is maximal. We have displayed the coronal component in Figs 2.2 and

2.3 as the simulated current vectors were restricted to this direction. We see that the

algorithm correctly locates the region of alpha activity and its approximate spatial
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Figure 2.2: Axial slice from the gray matter mask showing the spatial distribution

of the coronal component of the local current vectors at a fixed point in time for the

simulated data. (a) Original current vectors used in the simulation. (b) Estimated

current vectors from the inverse solution.

extent, but slightly underestimates the current densities.

Figure 2.3 shows the time series of the coronal current density component for the

simulated data and the inverse solution at two voxels; one in the right occipital pole,

at the center of the alpha activity, and the other in the right medial frontal lobe where

no simulated activity was present. At the occipital voxel, the simulated current

exhibits a large alpha oscillation. This is accurately reconstructed by the inverse

solution but, as observed in the spatial data, the current amplitude is marginally

underestimated. The frontal voxel is inactive during the simulation (current density

is zero throughout). This lack of activity is also identified by the algorithm, where

only a very low amplitude oscillation, which lies inside the error interval, is present

in the estimated time series.

In Fig. 2.4 the innovation sequence for each electrode is plotted; these should be

white in a properly tuned KF (see Sec. 2.5). Here we see that, once filter transients

pass, most innovation sequences are near-white, aside from a small alpha oscillation

present in some channels. Even in the occipital electrodes, where remaining alpha

activity is more pronounced, it is significantly reduced in magnitude relative to the

data (by a factor ≈ 10).

We then computed the inverse solution for the case of no spatial coupling, which

gave almost identical parameters (a1 = 1.85, a2 = −0.91, σ2
ε = 1.94× 10−3, σ2

η̃ =

1.72×10−8), AIC = −13962, estimated current density, and innovation values. This
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Figure 2.3: Coronal current density component for a voxel in the right occipital pole

[(a) and (c)] and the right medial frontal lobe [(b) and (d)] vs. time for simulated data.

Frames (a) and (b) display the simulated current vectors, while (c) and (d) show the esti-

mated currents from the inverse solution. Solid lines represent the simulated/estimated

currents, while dashed lines indicate 95% confidence intervals.

is expected, as the simulated data assumed no spatial interaction between voxels.

These results imply that in both cases a well-tuned filter and accurate process model

have been selected to satisfactorily describe the simulated alpha resonance.

Finally, we examined the effect of setting the dynamical model to a random

walk, which reduces the process model to a temporal smoothness constraint, and

forces the filter to rely largely on the observations and estimation step. However,

the optimization step was unable to find a minimized AIC with the following nec-

essary features: realistic noise covariance values; corresponds to a well-tuned filter;

reaches steady state by the end of the dataset; and produces an accurate inverse so-

lution. Therefore, the only comments we make about this inverse solution are: (i)

the random walk process model functions very poorly for this dataset, resulting in a

parameter space where no optimal AIC value exists that corresponds to a well-tuned

KF; and (ii) this finding implies the temporal component of the process model is re-

quired for the filter to operate soundly. For these reasons, the random walk case is

excluded from further analysis, here and for modeling the clinical data.
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Figure 2.4: Innovation sequences for the simulated data shown in Fig. 2.1. The vertical

voltage scale of the traces has been expanded by a factor of 9 relative to Fig. 2.1.

2.4.2 Clinical EEG Recording

We now estimate inverse solutions for a time series chosen from a normal EEG

recording collected during routine clinical practice (Neuropediatric Clinic, Univer-

sity of Kiel). The data was recorded from a healthy male child aged 8.5 years, in

awake resting state with eyes closed. Electrodes were placed according to the 10-20

system and the data was collected at a sampling rate of 256 Hz. The resolution of

the AD conversion was 12 bit. A 2 s time series was selected from the recording

for analysis and is shown, using average reference, in Fig. 2.5, which shows charac-

teristic alpha oscillations which are most prominent in the occipital electrodes, and

attenuate posterior to anterior.

The full model inverse solution for this EEG recording was computed using

likelihood maximization, selecting the following filter parameter values (a1 = 1.60,

a2 = −0.65, b1 = 3.08 × 10−2, σ2
ε = 2.17 × 10−11, σ2

η̃ = 7.00 × 10−7). The

minimized AIC = −2922, and is calculated from the 20th time step onward (after

≈ 75 ms) for all three process models.

Figure 2.6 shows the spatial distribution of the inverse solution at a fixed mo-

ment in time. This figure shows an area of activity at the right occipital pole, as
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Figure 2.5: Two seconds of awake, eyes-closed EEG recorded from a child aged 8.5

years in the same format as Fig. 2.1.

expected for prominent occipital alpha activity. Figure 2.7 displays the time series

for the coronal component of the inverse solution at two voxels, one in the right oc-

cipital pole and the other in the right medial frontal lobe. Once again, as expected,

we see a large amplitude alpha oscillation in the occipital voxel’s time series and

very little activity in the frontal voxel. These observations are consistent with an

eyes-closed EEG recording.

Innovation sequences are shown in Fig. 2.8. This shows that while the existing

dynamical model explains much of the data structure, some of the dynamics still

remain uncaptured, especially alpha activity in the occipital electrodes. Relative to

the data, these oscillations are approximately five times smaller in magnitude, but

twice the size of the corresponding ones in the simulated data.

The inverse solution was then recomputed with spatial interactions removed; the

parameters (a1 = 1.61, a2 = −0.66, σ2
ε = 4.77 × 10−11, σ2

η̃ = 6.49 × 10−7), AIC

= −2645, reconstructed currents, and innovations remained essentially unchanged.

This indicates that the spatial coupling term makes only a small contribution to the

inverse solution.
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Figure 2.6: Axial slice from the gray matter mask showing the spatial distribution

of the coronal component of the local current vectors at a fixed point in time for the

clinical recording as estimated by the inverse solution.
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Figure 2.7: Estimated coronal current density component for a voxel in the right oc-

cipital pole (a) and the right medial frontal lobe (b) vs. time for the clinical recording.

Solid lines represent estimated current vectors from the inverse solution, while dashed

lines indicate 95% confidence intervals.

2.5 Analysis of Filter Performance

This section focuses on evaluating the performance of the KF itself. In any real

application, validating and optimizing filter performance is difficult because, unlike

a simulation study, the true states are unknown and the only information available

is contained in the observations of the states. As a result, analysis of the innovation

is the principal means of evaluating KF performance [10]. The AIC, which is a

function of the innovation and its covariance, has already been used as a relative

measure, but we now apply a series of standard diagnostic tests widely used for

objectively evaluating and tuning KF performance [10]. These are applied after the
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Figure 2.8: Innovation sequences for the clinical data shown in Fig. 2.5. The vertical

voltage scale of the traces has been expanded by a factor of 5 relative to Fig. 2.5.

likelihood maximization step, and allow us to determine the overall (rather than

relative) quality of the filter, something which is difficult to ascertain from the AIC

alone. The tests focus on the properties of the innovation sequence, which should

be normally distributed, unbiased (zero mean), uncorrelated (white), and have the

correct magnitude (i.e., actual and filter-predicted innovation covariances should

be the same). The testing procedure uses the recommendations of the standard

reference [10], which are similar to many diagnostic tests described in the literature,

and consists of the following five steps:

(i) Using a single sample Kolmogorov-Smirnov (KS) goodness-of-fit hypothesis

test [113], we determine if the innovation sequence is normally distributed

(innovation non-Gaussian if P < 0.05). The tests in Steps (ii) and (iii) assume

the innovation is Gaussian.

(ii) To determine if the innovation is unbiased, a one-sample t-test [108] is used

(innovation has non-zero mean if P < 0.05). The innovation must be unbiased

for Steps (iii) and (iv).

(iii) We determine whether the actual and filter-predicted innovation covariances

are the same. A mismatch indicates that overall filter noise levels (i.e., the pro-
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cess and/or observation noise covariances) have been set incorrectly, which

can degrade filter performance, and requires further analysis to ascertain its

cause. An inaccurate process model can also result in discordance between

the innovation covariances. Assuming (i) and (ii) hold, noise levels can be in-

vestigated by checking that approximately 95% of innovation values lie within

two standard deviations of zero.

A more precise means of assessing filter noise levels, again requiring that

(i) and (ii) hold, is to carry out a χ2 test on the normalized square of the

innovation

ΔY N (c, k) =
[ΔY (c, k)]2

Rc(k|k − 1)
, (2.39)

whereRc(k|k−1) denotes the innovation covariance for channel c at time k. If

(i) and (ii) hold, ΔY N will be a χ2 random variable (resulting from squaring

a Gaussian random variable), with a mean of 1 if the actual and filter-predicted

covariances match. To compare these, a test statistic

ΔY N(c) =
1

Nk

Nk∑
k=1

ΔY N (c, k), (2.40)

for each channel is used, whence we obtain 95% confidence intervals from

which we can determine whether the noise levels are correct. If the average

normalized innovation lies below these bounds, the assumed noise levels are

too high, and vice versa.

(iv) The innovation sequence should be white. Any correlations are due to the

presence of unmodeled process dynamics or the ratio of observation to process

noise being too high. We computed the innovation’s time-averaged (biased)

autocorrelation r for each channel c by calculating the inverse Fourier trans-

form (FT) of the power spectral density (PSD) [92]. The resulting autocorrela-

tion is equivalent to that obtained via the following time-domain equation [92]

r(c, τ) =
1

Nk − τ

Nk−τ∑
i=1

ΔY (c, i)ΔY (c, i+ τ), (2.41)

where τ indicates a discrete time shift ranging from 0 to Nk − 1. The au-

tocorrelation was normalized so r(c, 0) = 1. The number of points in the

autocorrelation is halved due to the FT, and is denoted by Na. The auto-

correlation for each channel can be used as a test statistic, which should be
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approximately normally distributed with a mean of 0 and standard deviation

1/
√
Na if the innovation is unbiased and white. Therefore, we can approxi-

mate the 95% confidence intervals by ±2/
√
Na. If approximately 95% of the

autocorrelation does not lie within these bounds, then the innovation is not

white.

Finally we calculated the innovation PSD S for each channel c using Welch’s

method [142]. The PSD allows the innovation’s frequency content to be ex-

amined, and this should be flat for an uncorrelated signal [55]. From these

PSDs we computed the spectral entropy HS [65] for each channel c

HS(c) =
−∑Nf

f=1 S(c, f) loge S(c, f)

logeNf
, (2.42)

where f is the frequency bin number and Nf is the number of bins in the

PSD. Spectral entropy is a compact measure of a power spectrum’s ‘peaked-

ness’ (or conversely ‘flatness’), ranging from 0 for a monochromatic signal,

to 1 for a completely random one. This is useful for comparing the overall

‘whiteness’ of the innovation sequences between channels and different filter

configurations.

(v) It can be difficult to distinguish the relative contributions of process and mea-

surement errors to the innovation, so it is important to look at the error between

the state estimate and prediction when evaluating KF performance, because it

relates only to process errors, and should be approximately uncorrelated and

bounded by its covariance.

We stress that the measurement of KF performance is best thought of as a con-

tinuum, spanning from filters that are optimal (i.e., pass the above tests by wide

margins) to ones that cannot be tuned to provide any useful estimates. The innova-

tion tests here provide a very strict measure of KF performance, and filters which

pass these are close to optimal. However, as stressed in [10] many KFs in real appli-

cations lie between these two extremes, and while they may not satisfy all of these

rigorous tests all of the time, they do provide useful results, as we will see with the

filter here. We term such filters ‘well-tuned’. In this situation, the aim of filter tun-

ing is to make the KF as close to optimal as possible, and evaluation of the filter’s

performance will require a degree of ‘engineering judgement’.
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We now apply this procedure to the simulated and clinical EEG inverse map-

pings described in Sec. 2.4. Steps (i) to (iv) are applied to all 18 channels used by

the inverse solution, and Step (v) is performed by looking at the error between the

state estimate and prediction for voxels of interest in each analysis. Due to some

intrinsic short-term filter behavior, and the filter receiving inaccurate initial values,

the performance analysis begins, like the AIC calculation, at the 130th and 20th time

steps for the simulated and clinical data, respectively, to allow filter transients to

pass.

2.5.1 Simulated EEG Recording

When the filter is applied to the simulated data using the full process model, the

KS test finds all 18 innovation sequences are normally distributed, while the t-test

shows that the 18 innovations are unbiased. However, when we apply Steps (iii) and

(iv), a χ2 test found that the actual innovation covariances did not match the filter-

predicted ones at any of the 18 channels. The results at 16 electrode sites indicated

that overall filter noise levels were set too high (on average by a factor of 3.0), while

the remaining channels (O1 and O2) suggested noise levels were too low. However,

the two occipital channels are discounted since the actual innovation covariance

value is inflated by a small amount of residual alpha activity (see Fig. 2.4). These

tests imply that AIC minimization has selected conservative noise values that will

not adversely affect the filter’s performance.

Turning our attention to the detection of correlations in the innovation sequences,

we computed the PSD for both the recorded data and innovation at each channel, as

well as the innovation’s autocorrelation. Figure 2.9 shows the PSD and autocorrela-

tion for two typical channels, O2 and P3, and demonstrates that the process model

selected through optimization describes the alpha activity present in the simulated

data quite well, although a small alpha peak remains in all innovations, particularly

O1 and O2, due to the inverse solution underestimating the source magnitudes.

This residual alpha activity means that 17 channels have greater than 10% of their

autocorrelation lying outside the 95% confidence bounds. From the data and in-

novation PSDs, the spectral entropy was calculated for each channel and plotted

in Fig. 2.11(a). This figure shows that the innovation sequences are significantly

whiter than the simulated data across all channels. The dip in the innovation curve

at O1 and O2 is due to the alpha activity still present at the occipital electrodes.
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Figure 2.9: Temporal properties of the innovation sequence at channel O2 [(a) and (c)]

and P3 [(b) and (d)] for the simulated data. Frames (a) and (b) display the PSD of the

data (solid) and innovation (dashed), while (c) and (d) show the autocorrelation of the

innovation (solid) and its 95% confidence bounds (dashed).

We completed our filter evaluation by looking at the error between the state

estimate and the state prediction for selected voxels. It was found that some alpha

activity was present in this error, mainly in the z-component of voxels at or near the

center of the simulated activation. However, this appears to result from the inverse

solution spatially blurring the reconstructed activation and thus underestimating the

current densities, rather than a process model deficiency, and is most likely due to

the small number of electrodes. The predicted and estimated current densities being

in phase, along with the data and predicted observations, support this explanation.

The performance analysis was repeated for the inverse solution computed with

no spatial interaction between voxels. Very similar results were obtained, as ex-

pected since the simulated data assumed no spatial coupling.

2.5.2 Clinical EEG Recording

The filter performance analysis is now repeated for the clinical data, starting with

the full process model. The KS test found that all innovation sequences are Gaus-
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Figure 2.10: Temporal properties of the innovation sequence at channel O2 [(a) and

(c)] and F4 [(b) and (d)] for the clinical data. Frames (a) and (b) display the PSD of the

data (solid) and innovation (dashed), while (c) and (d) show the autocorrelation of the

innovation (solid) and its 95% confidence bounds (dashed).

sian, and the t-test identified 11 out of 18 channels to be unbiased. We then applied

the χ2 test which found that the actual innovation covariances were smaller than

the filter-predicted covariances for all 18 channels. This indicates that filter noise

levels, selected via AIC minimization, were set too high (on average by a factor

of 4.1). However, as the results for the clinical data demonstrate, these somewhat

conservative noise values are compatible with correct filter operation.

We then checked whether the innovations were white by computing the PSD and

autocorrelation at each channel. Results are shown for illustrative channels, O2 and

F4, in Fig. 2.10. This shows that the filter can handle the low-pass characteristic of

the EEG recording, as the flatter PSD indicates, but what does remain in the inno-

vation sequence of some channels is a considerable alpha resonance, which is most

prominent in the occipital electrodes. The autocorrelations confirm this, as they

are clearly not white, and all channels have greater than 10% of the autocorrelation

outside the confidence intervals. Despite the unmodeled alpha activity, the filter’s

ability to significantly whiten the innovation relative to the signal is clear when the

spectral entropy for each channel is plotted in Fig. 2.11(b). The small decrease in

40



FP1 F3 C3 P3 O1 F7 T3 T5 Fz

0.5

1  

sp
ec

tr
al

 e
nt

ro
py

(a)

FP2

0

F4 C4 P4 O2 F8 T4 T6 Cz
FP1 F3 C3 P3 O1 F7 T3 T5 Fz

0.5

1  

sp
ec

tr
al

 e
nt

ro
py

(b)

FP2

0

F4 C4 P4 O2 F8 T4 T6 Cz

Figure 2.11: Spectral entropy of the EEG recording (solid) and innovation sequence

(dashed) at each channel for the simulated (a) and the clinical (b) data.

the innovation spectral entropy is from the alpha activity remaining at the occipital

electrodes.

Finally, we looked at the error between the state estimate and prediction for a

number of voxels. As with the simulated data, we found alpha oscillations present

in this time series, particularly in voxels around the occipital poles. However, unlike

the simulated data, this appears to result from a deficiency in the process model, as

the predicted current density lags the estimated one. More precisely, the process

model is unable to reproduce the alpha activity accurately.

The performance analysis was repeated for the process model without spatial

coupling. As seen with the inverse solutions themselves in Sec. 2.4, the performance

of this filter is nearly identical to the one using the full model. This again indicates

that, while the filter inverts the clinical data quite well, the spatial part of the process

model does little to enhance its performance.

2.5.3 Preliminary Overview of Filter Performance

The inverse solutions and the validation tests have shown this tuning technique pro-

duces well-tuned filters, although some potential improvements have also become

apparent. We found for both simulated and clinical data that the innovations were

generally Gaussian and unbiased, while the optimization step selected slightly con-

servative values for the noise parameters. Similarly, the process models selected

for the two datasets modeled the EEG data satisfactorily, as demonstrated by the

spectral entropy increasing by ≈ 0.3 (between the data and the innovations) across

nearly all channels in both datasets (see Fig. 2.11). However, the correlation anal-

ysis and the error between the state estimate and prediction revealed residual al-
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pha activity in the innovation sequences of the simulated and clinical data, but for

different reasons. The low-amplitude alpha oscillations present in the simulation

innovations (most prominent at O1 and O2) appear to result from the filter under-

estimating the current density’s magnitude, which was caused by spatial blurring

due to the small number of electrodes used. While this issue is still present in the

clinical study, the major reason for the (larger) alpha waveforms in the innovations

is the process model being unable to fully capture the alpha resonance; this issue is

examined in the next section.

We also found that dropping the spatial coupling from the process model had

surprisingly little effect on the filter’s performance for the clinical data (although

expected for the simulation study). This discovery further indicates that, in its cur-

rent implementation, the filter’s major deficiency most likely lies in the temporal

part of the process model, which overshadows any influence the spatial term might

have. Alternatively, it is possible that the model’s spatial component is inaccurate,

and the optimization step seeks to remove it from the inverse solution by selecting

b1 ≈ 0, or its impact is nullified by spatial whitening. Further analysis is required

to resolve this issue.

Finally, a random walk process model was investigated. This model so signifi-

cantly degraded performance that an optimal, well-tuned, filter could not be found

for either dataset. These results imply that the temporal component of the process

model, which performs better for the simulated data, is necessary for the filter to

function properly. However, the findings of the filter performance analysis, espe-

cially for the clinical data, indicate that the modeling part of this estimation tech-

nique could be substantially improved. Possible modeling improvements, along

with resonant behavior in the process model, are the subject of the next section.

2.6 Resonant Behavior of the Process Model

Here we investigate the process model’s resonant behavior, particularly for the clin-

ical data where model deficiencies have been identified. We focus on the model’s

temporal aspects, as Sec. 2.5 revealed the spatial term has minimal impact on the

inverse solution. We begin by obtaining expressions for the parameters describing

the model’s resonant behavior, which provides additional insight into the resonant

properties of the inverse solutions generated in Sec. 2.4 and why the alpha resonance
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was modeled better in the simulated data. Then the inverse solution is computed for

a series of process models, each containing an explicit alpha resonance to capture

the posterior alpha activity present in the clinical data. Suggestions for potential

future improvements to both the dynamical model and the filter algorithm are then

made.

2.6.1 Resonant Process Model

The equations for the temporal AR parameters, Eqs (2.10) and (2.11), can be ma-

nipulated to give expressions for ωn and ζ as functions of a1 and a2:

ωn =

√
2(1− a1 − a2)

(Δt)2(1− a2)
, (2.43)

ζ =

(
1 + a2
1− a2

)√
1− a2

2(1− a1 − a2)
. (2.44)

These expressions convert a1 and a2 into parameters from the original telegrapher’s

equation that have a clear physical interpretation, and allow us to better characterize

the resonant behavior of the process model selected by likelihood maximization.

From the simulated data model parameters, we find ωn = 62.2 s-1 (9.9 Hz)

and ζ = 0.20, while ωn = 63.5 s-1 (10.1 Hz) and ζ = 0.86 for the clinical data.

To further illustrate the model’s temporal characteristics, the frequency response

for the model’s temporal component is shown in Fig. 2.12 for both datasets. The

process model selected for the simulation has resonant properties which closely

match the data itself, as the estimated natural frequency of 9.9 Hz lies near the

center of the Gaussian frequency envelope and ζ is also close to its actual value of

zero for undamped sine waves. As expected, the model has a sharp resonance at ≈
10 Hz, which can be seen in Fig. 2.12. However, the process model for the clinical

data has ζ ≈ 1, so it displays no discernible resonant behavior, as is clear from the

absence of any peak in the frequency response in Fig. 2.12.

If we recall that the AIC minimization step identifies the global (space- and

time-invariant) process model which best explains the data, these results are to be

expected. In the case of the simulated data, which was generated by a single source

centered in the right occipital lobe, the dynamics can be described sufficiently by a

single, globally resonant, process model. This is not the case for the clinical data,
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Figure 2.12: PSD of the process model’s temporal component as selected by likelihood

maximization for the simulated (solid) and clinical (dashed) datasets.

where the recording’s dominant alpha resonance shows considerable spatial depen-

dence (diminishing in amplitude frontally) which cannot be accurately captured by

a process model with spatial and temporal uniformity. Instead, the optimization step

identified the one global feature of the clinical EEG, its low-pass filter characteris-

tic. As a result, the alpha activity seen in the innovation of some channels (e.g., O1

and O2) is expected, as the alpha resonance is unmodeled.

2.6.2 Inverse Solution With an Explicit Resonance

With the selection of appropriate values for ωn and ζ , the process model can de-

scribe resonant features of the EEG, as seen for the simulated data. However, due to

the space- and time-invariant process model, the parameter estimation step selected

a non-resonant model for the clinical data, despite the presence of posterior alpha

activity. So we now examine the effect on filter performance of applying a process

model with an alpha resonance to the clinical data, to provide further insight into

how the filter could be improved.

We began by fixing the process model’s natural frequency ωn = 56.5 s-1 (9

Hz) to match the alpha frequency at O2. The strength of the resonance was varied

across four filter runs by setting ζ = 0.2, 0.3, 0.4, 0.5. To find the optimal filter for

each run AIC minimization was used. Due to the spatial term’s minimal impact on

the inverse solutions for the clinical data it was ignored (i.e., b1 = 0), so only the

two noise covariances needed to be estimated. To allow transient filter behavior to

pass, the AIC was calculated from the 130th time step onwards for each case. For

the purposes of comparison the full model filter was reoptimized over this segment

of clinical data, giving ωn = 36.4 s-1 (5.8 Hz), ζ = 0.75, b1 = 1.11 × 10−2,
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σ2
ε = 1.27× 10−9, σ2

η̃ = 1.25× 10−7, and AIC = −3307.

We find that introducing an explicit resonance degrades the filter’s overall per-

formance; for instance, AIC values increased from -2091 to 2408 as ζ was decreased

from 0.5 to 0.2. The spectral entropy of the innovations, which are plotted for each

run in Fig. 2.13, tell a similar story: they generally decrease (innovations become

less white) as the model is made more resonant, although resonant behavior, up to a

point, does marginally whiten the innovation of channel O2; the site with the most

significant alpha activity. This is shown in Fig. 2.13, where the spectral entropy

increases slightly in channel O2 for ζ = 0.3 and 0.4. However, this small improve-

ment comes at a considerable cost, as the global resonance distorts (with decreasing

ζ) the modeling of the low (sub-alpha) frequencies, which can be seen in the inno-

vations of the other channels, and results in poorer filter performance. This is not

surprising since the alpha resonance is not present at all sites in the clinical data.

From this analysis we conclude that, overall, the ‘optimal’ non-resonant pro-

cess model outperforms the model with an explicit uniform alpha resonance, as

expected, although neither of these space- and time-invariant models can accurately

describe the spatiotemporal complexity of clinical EEG data. Therefore, improved

dynamical models are required.

2.6.3 Future Directions

Guided by our filter analysis, we now discuss options for improving the inverse

solution, focusing particularly on the process model. The first issue is what form the

dynamical model should take. Given that resonant behavior is a key feature of EEG

data, the existing telegrapher’s equation, which contains a single resonance, would

be a reasonable choice, although physiology-based models of brain dynamics, such

as those presented in [80,117,119], are also attractive, because estimated parameters

are physiologically meaningful, increasing the information provided by the inverse

solution. Furthermore, these models could better describe the spatial interactions

between voxels, an issue that warrants further investigation.

As noted, a uniform global model of brain dynamics is unrealistic, so regardless

of what form of model is selected, its behavior will require spatiotemporal varia-

tion, e.g., to model the spatial properties of the alpha rhythm seen in the clinical

data. This issue was previously investigated for this filter using generalized au-

45



FP1FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 Fz Cz
0

0.5

1

sp
ec

tr
al

 e
nt

ro
py

EEG Data
Innov. − Optimal
Innov. − ζ = 0.2
Innov. − ζ = 0.3
Innov. − ζ = 0.4
Innov. − ζ = 0.5

Figure 2.13: Innovation spectral entropy as the damping coefficient in the process

model is varied (ζ = 0.2, 0.3, 0.4, 0.5) at a fixed natural frequency (9 Hz) for the

clinical data. The spectral entropy for the optimized filter innovations and the clinical

data itself are also shown, as labeled.

toregressive conditional heteroskedasticity (GARCH) modeling of covariance [46],

which was found to enhance performance. In that study, the same homogeneous

model was used, but the process noise (which measures our confidence in the dy-

namical model) was allowed to vary in space and time, as a function of how well the

process model was performing at a particular voxel. We propose the alternative ap-

proach of letting the process model parameters (e.g., ζ and ωn) have spatiotemporal

variation, which opens the possibility of parametric imaging, but poses a more diffi-

cult parameter estimation task than in this chapter, although for systems with spatial

variation described by a relatively small number of parameters it may be possible

to apply the likelihood maximization technique used here. Another strategy is to

estimate the parameters within the KF itself, with the added benefit of providing

the quality of each parameter estimate via the state covariance matrix. This pro-

duces a nonlinear filtering problem which can be solved using algorithms such as

the extended Kalman filter (EKF) [10], or the unscented Kalman filter (UKF) [71].

In other fields, both the EKF [120, 148] and UKF [128] have been successfully

applied to system identification for spatiotemporal systems modeled by partial dif-

46



ferential equations. Another option, which also permits estimation inside a KF, is to

extend the state-space and model each parameter as a Gaussian random field [22].

However, as discussed in [47], regardless of what technique is used, the estimation

problem must be observable [10] (i.e., the states must be estimable from the mea-

surements), which is of increasing concern as the number of quantities estimated

from the data rises.

A difficulty inherent to the EEG inverse problem, and of particular significance

to the KF, is its high dimensionality. Typically, this necessitates simplification of

the filter algorithm to reduce memory consumption and achieve practical run times.

Here spatial whitening is used for this purpose, reducing the algorithm to a set of

low-dimensional KFs. A filter that operates in the full untransformed state-space

would offer two key advantages: (i) removal of any distortions introduced by the

‘strong’ whitening transformation, which will allow its effect on the inverse solu-

tion to be properly assessed, and (ii) the process model will describe the state of

interest; i.e., the current density, rather than its second spatial derivative, which is

especially important for physiology-derived models. The gap between the full fil-

ter and the single voxel centered, spatially whitened version could potentially be

bridged by partitioned filters [128]. These filters divide the state-space into local

filtering neighborhoods, and allow the trade-off between computation time/memory

usage and filter performance to be examined.

Finally, it is worth mentioning that the inverse solution could be further con-

strained by introducing additional information. High density EEG recordings could

be used to provide extra observations (up to 256 channels), which will improve

the spatial resolution of the inverse mappings. When the inverse solution is com-

puted off-line, the Kalman smoother [55] becomes available. This algorithm uses

all available data, past and future, to compute each estimate, and has recently been

applied to the EEG inverse problem [29, 88]. Using the KF to fuse EEG data

with other imaging modalities, particularly fMRI, is a natural extension of this

work [10, 29, 116] that could improve spatial resolution beyond what is possible

with EEG alone.
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2.7 Summary and Conclusion

We have investigated the application of dynamical inverse solutions to EEG source

localization. Dynamical techniques are of particular interest because they provide a

natural framework for introducing the growing number of models describing brain

dynamics [80, 117, 119] into inverse solutions. The KF is an example of a model-

based estimation technique that is well suited to solving inverse problems, but has

only lately been applied in this field. Motivated by its potential, we introduced a

recently proposed KF-based source localization technique [47]. Key features of

this algorithm are: the process model is a space- and time-invariant telegrapher’s

equation, a spatial whitening transformation is used to reduce its computational

burden, and the filter is tuned using likelihood maximization.

Inverse solutions for simulated and clinical data, both containing alpha activity

in the occipital lobe, were computed and presented for three process models. The

optimized filters were then analyzed in detail using standard diagnostic tests for

evaluating KF performance. Following this, the resonant properties of the process

model were examined and the effect of introducing an explicit alpha resonance into

the filter was explored for clinical data. The major findings are:

(i) The AIC minimization step selects appropriate model parameters, and noise

covariances, which result in a well-tuned filter as indicated by the recon-

structed current densities and diagnostics. This shows that likelihood maxi-

mization is effective for filter tuning, but tuning still requires an appropriate

process model to be chosen. For instance, the simulated and clinical data could

be modeled by either the full model, or the model without spatial coupling, al-

though these models performed better for the simulated data, and the spatial

term made only a small contribution to the clinical data’s inverse solution. In

contrast, a random walk model could not be optimized for either dataset.

(ii) The process model is a telegrapher’s equation, which contains a resonance

whose properties were examined. It was found that AIC minimization, which

finds the space- and time- invariant model that best describes the data, se-

lected a process model containing an alpha resonance for the simulated, but

not the clinical, EEG. This makes sense as the model chosen should capture

any spatially and temporally uniform features of the time series, which for the

simulated data is the alpha activity (the only salient feature), and for the clini-
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cal recording is the low-pass characteristic. Thus, these findings explain why

(a) the innovations for the clinical data (especially the occipital electrodes)

contain unmodeled alpha activity of a higher magnitude than in the simulated

EEG, and (b) the predicted and estimated current densities are out of phase

only in the clinical study.

(iii) The introduction of an explicit alpha resonance into the process model for the

clinical data degraded filter performance. This is due to a mismatch between

the globally resonant dynamical model and the data, where the alpha activity

is confined predominantly to the occipital electrodes. However, introduction

of a resonance did improve the modeling of the posterior alpha rhythm.

(iv) We demonstrated the utility of applying a battery of diagnostic tests to this

KF, as they provide numerous insights into filter performance, and a means

of validating the parameters selected by likelihood maximization. This step is

very important because a minimized AIC does not necessarily correspond to

a well-tuned filter.

From these results, a number of potentially rewarding future directions were

identified, which focused on selecting an appropriate process model, the need for

spatiotemporal variation of model parameters, handling the problem’s high dimen-

sionality, and introducing additional information to further constrain the inverse

solution.

49





Chapter 3

Kalman-Filter-Based EEG Source

Localization with a Spatially-Varying

Process Model: 1D Simulations

Abstract

Electroencephalographic (EEG) source localization enables the brain’s distributed

dynamics to be imaged with high temporal resolution. However, estimating the ac-

tual current sources requires the solution of an ill-posed dynamic inverse problem.

Recently, there has been growing interest in dynamic inverse solutions for source

reconstruction, as they can incorporate dynamical models that describe brain activ-

ity. The Kalman filter (KF) is one such algorithm currently receiving attention, and

is the focus of this chapter. Motivated by the need to better understand KF-based

EEG source localization, this study applies two KF algorithms — one a standard

linear filter, the other spatially whitened — to simulated EEG data generated using

a telegrapher’s equation and a simplified volume conductor model. To better reflect

true brain dynamics, the simulated EEG was given spatial variation by allowing

two parameters of the telegrapher’s equation to be functions of position. Estimation

of the spatial variations was incorporated into the filtering algorithm by allowing

the same parameters in the process model of both KFs to have spatial variations of

the same functional form. Both filters were found to reliably reconstruct the simu-

lated current vectors, while the accuracy of the estimated model parameter spatial

profiles was more variable. This is due to unmodeled inputs which can distort pa-
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rameter estimates, meaning that their values should be interpreted with caution.

Future algorithms will benefit from explicit handling of any inputs. Despite this

finding, this study demonstrates that spatially varying process models can improve

filter performance, and provides further validation of the spatially whitened Kalman

filter (SWKF) algorithm used in Chapters 2 and 4 (and elsewhere) to solve the EEG

inverse problem for a realistic head model. The importance of adequate temporal

sampling when using discretized damped wave process models was also identified.

These findings are directly applicable to other spatiotemporal systems where KFs

are used to solve inverse problems.

3.1 Introduction

Electroencephalography (EEG) measures the brain’s electrical activity through the

recording of scalp voltages. These measurements result from large-scale synchro-

nized activation of cortical pyramidal cells [104], and probe brain dynamics with

higher temporal resolution (milliseconds), but lower spatial resolution (centime-

ters), than other imaging techniques including functional magnetic resonance imag-

ing (fMRI) and positron emission tomography (PET) [133]. The spatiotemporal

resolution of various neuroimaging modalities was displayed in Fig. 1.1 in Chapter

1. A popular approach for processing EEG data is to apply source localization algo-

rithms. These techniques solve the EEG inverse problem to estimate the location,

magnitude, and time course of the neuronal sources that produce the observed scalp

voltages. However, solving this inverse problem is nontrivial as it is both dynamic

(the states to be estimated vary in time) and ill-posed (any given dataset could be

explained by an infinite number of source configurations). The non-uniqueness is

due to volume conduction effects and the mismatch between the small number of

spatial measurements (≈ 102) and the number of states to be estimated (≈ 104).

To obtain unique inverse solutions, additional constraints must be imposed on the

sources and head model. A variety of approaches have been used to solve the EEG

inverse problem. For a comprehensive review of these see [9, 32, 54, 62, 97, 143].

Solutions to the EEG inverse problem fall into two main categories. The first

type are ‘equivalent current dipole’ methods, in which the activity is modeled by

a relatively small number of focal sources at locations assumed a priori or esti-

mated from the data (see [39,77,99,123] for examples). The second group of tech-
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niques, with which this chapter is concerned, are ‘linear distributed’ approaches

(also known as ‘imaging’ methods), in which the sources are modeled by a three-

dimensional grid of dipoles throughout the head volume. The linear distributed

inverse solutions can be further categorized into two broad groups, namely instan-

taneous and dynamic techniques. Instantaneous methods calculate each estimate

using only the data available at the current instant of time. Examples include the

minimum norm algorithm and its variants (e.g., LORETA) [53, 60, 107]. More re-

cently, dynamic inverse solutions have been developed which incorporate informa-

tion from multiple times into the estimation process [4, 8, 11, 23, 24, 26, 29, 30, 42,

45–47, 49–51, 78, 88, 116, 126, 129, 137, 147]. These techniques are the focus of

this chapter, and have two important advantages over instantaneous methods: (i)

the additional information further constrains the inverse solution, and (ii) they pro-

vide a natural framework for introducing the growing number of dynamic models

describing brain activity (e.g., [7, 27, 66, 119]) into EEG source localization.

Several approaches for introducing dynamic constraints have already been in-

vestigated. One commonly used technique is the introduction of a temporal smooth-

ness term, which has been successfully applied to regularization [23,126] and Baye-

sian estimation [8, 26] methods. Another strategy is to use dynamic models, ei-

ther inferred from signal analysis or derived from physiology, for describing source

behavior. These can then be used in various estimation schemes. A number of

dynamic models of varying complexity have been employed including; random

walk [24, 129] and autoregressive [29, 30, 147] models, damped wave equations

[11, 45–47,50, 88], as used in this thesis, and neural mass models [78, 116].

To incorporate dynamic models into EEG source localization, we employ the

Kalman filter (KF), which is a widely used model-based technique for recursively

estimating states in dynamical systems from indirect and uncertain measurements

[10, 55, 92]. The KF is becoming an increasingly important tool for solving in-

verse problems in spatiotemporal systems; for instance, it has already been used

to solve dynamic inverse problems in a variety of biomedical imaging areas in-

cluding: electrical impedance tomography (EIT) [72], inverse electrocardiography

(ECG) [15], single photon emission computed tomography (SPECT) [76], diffuse

optical tomography (DOT) [31], fMRI [64], diffusion MRI [112], and neural trac-

tography [89]. Recently, a number of studies using KF-based EEG source localiza-

tion have appeared [4, 11, 29, 30, 45–47, 49–51, 88], and related particle [129] and
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local linearization [116] filters have also been investigated.

The work presented here is motivated by the findings of the study described in

Chapter 2 (published in [11]) which evaluated the performance of an existing KF-

based EEG source localization technique [47] using standard diagnostic tests. A

key issue identified in Chapter 2 stems from the fact that brain activity, and con-

sequently the EEG, exhibits spatiotemporal variation; e.g., the alpha rhythm typi-

cally increases in strength and frequency from anterior to posterior, and diminishes

when the eyes are opened [101]. However, many dynamic inverse solutions, in-

cluding [47], do not model such features of brain dynamics, using only space- and

time-invariant process models. In Chapter 2 this deficiency manifested itself as spa-

tial variation in the KF’s performance. We argue that allowing spatially varying

model parameters will improve both the accuracy of the inverse solution and mea-

sures of filter performance. The filter’s current method for system identification,

using likelihood maximization, could be expanded to accommodate more model

parameters, as demonstrated with a similar technique in [116].

A difficulty associated with KF-based inverse solutions operating in high dimen-

sional state spaces is their large computational cost. To overcome this, the algorithm

in [47] used a state-space transformation to reformulate the filtering problem as

a coupled set of low-dimensional KFs running in parallel. Methods like this are

important for reducing computational costs, but a thorough understanding of their

effects is needed. For instance, the inverse solution’s performance has not been

verified for spatially varying brain dynamics, for either simulated or clinical EEG

data. Furthermore, the accuracy of the parameter estimates needs clarification as the

transformation means the filter is not modeling the sources directly. This clearly has

implications for interpreting physically meaningful parameters, such as the model’s

spatial coupling term (which describes interactions between neighboring points),

which was consistently found to have a very small value in Chapter 2. Also the

effect of the temporal sampling rate, which sets an upper bound on wave velocity

estimates via the Courant condition [21], needs to be investigated.

In this chapter, we address the issues above using a one-dimensional (1D) sim-

ulation of the linear distributed inverse problem. The source dynamics are modeled

by a telegrapher’s equation with parameters whose spatial profile is based on phys-

iology [101], and of a known functional form. This reduces the complexity of the

problem, and offers several advantages over a whole-brain inverse solution, includ-
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ing: a modest-sized state-space, meaning that for the purposes of comparison, both

a standard linear KF (LKF) and the spatially whitened KF (SWKF) can be applied

to the data, simplified geometry and volume conductor model, and straightforward

introduction of spatially varying model parameters.

The remainder of this chapter is structured as follows. Section 3.2 introduces a

1D simulation of the linear distributed EEG inverse problem. In Sec. 3.3, the model

describing the current source dynamics is outlined. Section 3.4 presents the two KF-

based source localization algorithms used in this chapter. In Sec. 3.5, the simulation

studies are described, along with the likelihood maximization technique for filter

tuning, and the tests which evaluate filter performance. The results are presented in

Sec. 3.6. Section 3.7 discusses these results and makes some concluding remarks.

3.2 EEG Inverse Problem Formulation

We begin by outlining an EEG simulation, similar to those in [23, 126], to which

our KF-based inverse solutions will be applied. The simulation is set up by defining

a continuous current vector field j(r, t), where r and t denote space and time,

respectively. The solution space, which simulates the cortical surface, is modeled

as a 1D line of current dipoles, which is discretized into Nv grid points (voxels) rv,

v = 1, ..., Nv, with a spatial separation Δx, as shown in Fig. 3.1. Time is discretized

into Nk points tk, k = 1, ..., Nk, with time step Δt. Discretized points are indicated

by v and k here, rather than rv and tk. Each voxel contains a single current dipole

vector j(v, k) which is perpendicular to the voxel array. The state vector for the

entire system has dimension Nv and is written

J(k) = [j(1, k), . . . , j(Nv, k)]
T . (3.1)

The currents j(v, k) produce the EEG signal which is recorded at Nc electrode

sites. These electrodes are also arranged in a 1D array parallel to the voxels with an

interelectrode distance (IED) and voxel-to-electrode separation (VES) as shown in

Fig. 3.1. If the EEG voltage at a single electrode is denoted by y(c, k), where c is an

electrode label, the observation vector containing the voltages in all EEG channels

is

Y (k) = [y(1, k), . . . , y(Nc, k)]
T . (3.2)

Here voltages refer to average reference (the average voltage over all channels at k

is subtracted from each channel).
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Figure 3.1: Schematic diagram of 1D EEG simulation. An infinite, homogeneous

volume conductor is assumed, which maps the single current vector j(v, k) at each

voxel v to a voltage at each electrode c. The origin is at the leftmost voxel’s center, and

vectors rv, rc, and rc−rv, which are used to construct the Green function Eq. (3.4), are

shown for an arbitrary voxel and electrode pair. Periodic boundary conditions (BCs)

connect the terminal voxels.

For the spatially discretized model used here, the forward model for a single

electrode is [104]

y(c, k) =
Nv∑
v=1

G(c, v) · j(v, k), (3.3)

where G is the Green function that contains all the geometric and conductive in-

formation about the volume conductor, and weights the contribution of the current

vector at v to the voltage at electrode c. In this study, we assume the idealized case

of sources in an infinite, homogeneous medium of scalar conductivity γ, which has

the following Green function [58, 103]

G(c, v) =
rc − rv

4πγ|rc − rv|3 , (3.4)

where rc and rv are the position vectors from the origin to electrode c and voxel v,

respectively.

The observation equation that relates all the current vectors to be estimated to

all the measured EEG signals is

Y (k) = KJ(k) + ε(k), (3.5)

where the Nc × Nv matrix K, often referred to as the lead field matrix (LFM)
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or the observation model, maps the current vectors to voltages at the electrodes

and can be obtained from Eq. (3.4). The term ε(k) is a Nc-dimensional vector of

observational noise, which is assumed to be white, Gaussian, and unbiased, with

covariance matrix Cε, and uncorrelated between all pairs of sensors, with equal

variance σ2
ε at every electrode, so

Cε = σ2
εINc , (3.6)

where INc is the Nc ×Nc identity matrix.

Equation (3.5) cannot be inverted directly, due to the large ratio of solution

points to measurements. Hence, the inverse problem can only be solved by intro-

ducing additional constraints.

3.3 Dynamic Model

The process model describes the spatiotemporal evolution of the current vectors,

and takes the form of a telegrapher’s equation [110]. This equation was used in

Chapter 2 and [47], and is chosen again because: (i) it is physiologically plausi-

ble; (ii) contains an explicit temporal resonance; (iii) is consistent with experiments

demonstrating smooth waves of cortical activity [3,13,35,37,146]; and (iv) has suc-

cessfully described the spatiotemporal propagation of neuronal activity in a variety

of systems [119]. The process model is given by(
∂2

∂t2
+ 2ζ(r)ωn(r)

∂

∂t
+ [ωn(r)]

2 − b2∇2

)
j(r, t) = u(r, t) + η(r, t), (3.7)

where ωn = 2πfn is the natural frequency, ζ the fractional damping coefficient, b

the wave velocity, u(r, t) is a deterministic input and η(r, t) is a dynamical (pro-

cess) noise term. The parameters fn, ζ , and b are restricted to values greater than

zero as per the telegrapher’s equation definition [110]. Note that in Chapter 2, which

followed the approach used in [47], no bounds were imposed on the model param-

eters. To allow the investigation of spatially varying source dynamics, the model

parameters fn and ζ are given spatial dependences, whose forms are discussed in

Sec. 3.5. Note that the deterministic input u(r, t) is only used for driving the sim-

ulated cortex and is not known to, or explicitly modeled by, either KF in this study.

Conversely, the process noise η(r, t) is not used when generating simulated data,

but instead provides the KFs with a means of compensating for any process model
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inaccuracies and the unmodeled deterministic drive. These features are consistent

with the KFs used in Chapter 2 and [47]. To implement the KFs, we discretize

Eq. (3.7) with respect to space and time using finite difference approximations for

the derivatives, giving

j(v, k) = a1(v)j(v, k − 1) + a2(v)j(v, k − 2)

+ a3(v)[LJ(k − 1)]v + uL(v, k) + ηL(v, k), (3.8)

at each voxel, where L is a 5-point discrete 1D Laplacian operator of dimensions

Nv ×Nv defined as [1]

L =

(
INv −

N

κ

)
, (3.9)

where κ = 1.25, and N is a Nv × Nv matrix with element N(v, v ′) = 0.5 if v′

is immediately adjacent to v, or 0.125 if v ′ is located two voxels from v. All other

entries in N are 0. The [J ]v operator selects the element of J that corresponds to

grid point v. The terms uL(v, k) and ηL(v, k) denote the deterministic input and

process noise at v, respectively. The spatially dependent parameters in Eq. (3.8) are

a1(v) =
2− [ωn(v)Δt]

2

1 + ζ(v)ωn(v)Δt
, (3.10)

a2(v) =
ζ(v)ωn(v)Δt− 1

1 + ζ(v)ωn(v)Δt
, (3.11)

a3(v) = − 5(bΔt)2

4(Δx)2[1 + ζ(v)ωn(v)Δt]
. (3.12)

Periodic boundary conditions are imposed; i.e., voxels v = 1 and v = Nv are

considered to be adjacent to each other.

We also mention that for the discretized process model Eq. (3.8) to be stable,

the Courant number ν [21], which for a 1D hyperbolic equation is given by

ν =
bΔt

Δx
, (3.13)

should be less than νmax =
√
2 for a 5-point approximation of the Laplacian term

[98]. This constraint places an upper limit on the wave velocity that can be used in

the simulations or estimated from the data for a given spatiotemporal grid. To ensure

numerical stability in practice, ν must be below this value by an appreciable margin

— typically 10 − 20% in our experience. This issue is discussed and explored in

Sec. 3.5.
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3.4 Kalman-Filter-Based Inverse Solution

In this section, the two KF-based source localization algorithms used in this study

are introduced; one a standard LKF [10, 55, 92], and the other a SWKF [47]. The

inverse solutions from the optimal LKF serve as a reference when analyzing those

from the less accurate, but computationally more efficient, SWKF.

3.4.1 Linear Kalman Filter

We now outline the standard LKF equations. For more details, the reader should

consult [10, 55, 92]. Before describing the algorithm a notational convention is

defined: x(k1|k2) indicates an estimate of some quantity x computed at time k1,

based on all observations available at time k2, where k1 � k2. Due to the discretized

process model Eq. (3.8), we introduce an expanded state vector

J2(k) = [j(1, k), j(1, k − 1), . . . , j(Nv, k), j(Nv, k − 1)]T , (3.14)

which has dimension 2Nv and is used by both filters in this chapter. As a result, a

new LFM with dimensionsNc×2Nv is required for the LKF and defined as follows:

K2 = K ⊗ (1 0), (3.15)

where ⊗ indicates Kronecker multiplication.

The filtering cycle begins with the prediction equations

J2(k|k − 1) = FJ2(k − 1|k − 1), (3.16)

P 2(k|k − 1) = FP 2(k − 1|k − 1)F T +Cη, (3.17)

where F is the 2Nv × 2Nv state transition matrix, which can be obtained from

Eq. (3.8) when the deterministic and stochastic input terms are ignored, and P 2

is the 2Nv × 2Nv state covariance matrix. The process noise is assumed to be

white, Gaussian, and unbiased, and fixed in space and time, with covariance σ2
η,

and 2Nv × 2Nv covariance matrix Cη of the form suggested in [47]

Cη = σ2
η(L

TL)−1 ⊗
(

1 0

0 0

)
, (3.18)
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where L is given by Eq. (3.9), with κ = 1.26 to ensure L is not close to singular

[44]. The matrix (LTL)−1 in Eq. (3.18) was normalized so all elements on its

main diagonal are equal to unity. This covariance matrix was selected because: (i)

correlations between the activity of neighboring voxels are expected, and need to be

modeled, and (ii) it produces the diagonal process noise covariance matrix required

when the spatial whitening transformation is applied in Sec. 3.4.2.

The LKF’s next steps involve computing the predicted EEG Y , the innovation

ΔY , its covariance R, and the Kalman gain W as follows:

Y (k|k − 1) = K2J2(k|k − 1), (3.19)

ΔY (k) = Y (k)− Y (k|k − 1), (3.20)

R(k|k − 1) = K2P 2(k|k − 1)KT
2 +Cε, (3.21)

W (k) = P 2(k|k − 1)KT
2R(k|k − 1)−1. (3.22)

The filtering cycle is then completed by calculating the state estimate and its asso-

ciated covariance matrix:

J2(k|k) = J2(k|k − 1) +W (k)ΔY (k), (3.23)

P 2(k|k) = P 2(k|k − 1) +W (k)R(k|k − 1)W (k)T . (3.24)

3.4.2 Spatially Whitened Kalman Filter

The SWKF is now briefly described. Further details regarding its development can

be found in Chapter 2 and [47]. The SWKF decomposes the 2Nv-dimensional

filtering problem solved by the LKF into a computationally more efficient set of

Nv coupled two-dimensional (2D) KFs. However, this requires Cη to be diagonal;

an assumption that is typically not justified. Therefore, the SWKF operates in a

transformed (Laplacianized) state-space, J̃(k) = LJ(k), where κ = 1.26 for all L

in this filter. This transformation, known as ‘spatial whitening’, was selected since
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spatial differentiation reduces spatial correlations between neighboring voxels. It

also produces the required diagonal 2Nv × 2Nv process noise covariance matrix

Cη̃ = L2CηL
T
2 = σ2

η̃INv ⊗
(

1 0

0 0

)
, (3.25)

when Cη, as defined in Eq. (3.18), is switched to the Laplacianized state-space. In

Eq. (3.25), L2 = L⊗I2 is the 2Nv×2Nv Laplacian operator for the expanded state

vector Eq. (3.14), and σ2
η̃ denotes the process noise covariance in the transformed

state-space. Now the filtering problem can be reduced to a 2D KF running at every

voxel, with each local filter maintaining the state vector

j̃SW (v, k) = [j̃(v, k), j̃(v, k − 1)]T , (3.26)

and 2×2 state covariance matrix p̃(v, k) in the Laplacianized state-space. The same

form of dynamic model Eq. (3.8) is assumed to govern J̃ , which is a reasonable

assumption since J and J̃ have similar spatiotemporal properties, although J̃ has

less spatial structure.

Again, the filtering cycle starts with the prediction equations. Rather than apply-

ing the process model at each voxel individually, the smaller state-space, compared

to the whole-brain inverse solutions in Chapters 2 and 4, allows the predicted cur-

rent vectors to be computed at all voxels using F as follows:

J̃2(k|k − 1) = F J̃2(k − 1|k − 1), (3.27)

where J̃2(k) = L2J2(k) and contains j̃SW (v, k) for all voxels.

The local predicted state covariance is approximated as

p̃(v, k|k − 1) = ASW (v)p̃(v, k − 1|k − 1)ASW (v)T +C η̃L
, (3.28)

where the local temporal state transition matrix is

ASW (v) =

(
a1(v) a2(v)

1 0

)
, (3.29)

and C η̃L
is the local dynamical noise covariance matrix given by

C η̃L
=

(
σ2
η̃ 0

0 0

)
. (3.30)
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Once the predicted current dipoles and their covariances have been computed at

every voxel, we predict the observed scalp voltages from the global state vector:

Y (k|k − 1) = K̃2J̃2(k|k − 1), (3.31)

where K̃2 is the LFM for the SWKF, which undoes the spatial whitening transfor-

mation

K̃2 = KL−1 ⊗ (1 0). (3.32)

Next, the innovation ΔY is computed using Eq. (3.20) and its covariance is

approximated by

R(k|k − 1) =
Nv∑
v=1

Q(v)p̃(v, k|k − 1)Q(v)T +Cε, (3.33)

where Q(v) is the Nc × 2 LFM for v, consisting of the two columns from K̃2 that

correspond to the vth voxel. The 2×Nc Kalman gain matrix for voxel v is then

w(v, k) = p̃(v, k|k − 1)Q(v)TR(k|k − 1)−1. (3.34)

The filtering cycle is then completed by calculating the local state estimate and its

corresponding covariance matrix,

j̃SW (v, k|k) = j̃SW (v, k|k − 1) +w(v, k)ΔY (k), (3.35)

p̃(v, k|k) = [I2 −w(v, k)Q(v)]p̃(v, k|k − 1), (3.36)

respectively. Applying Eqs (3.35) and (3.36) to all voxels generates the inverse

solution for time point k. To obtain the actual current dipole estimates, we undo the

spatial whitening transformation via

J(k|k) = L−1J̃(k|k). (3.37)

The associated Nv × Nv covariance matrix for the actual current dipoles at every

voxel is given by

P (k|k) = L−1P̃ (k|k)(LT )−1, (3.38)

where P̃ (k|k) denotes the diagonal Nv ×Nv covariance matrix for all voxels in the

transformed state space. The diagonal of P̃ (k|k) is a vector containing the upper-

left element of p̃(v, k|k) for each voxel. The remaining entries in P̃ (k|k) are zeros

as a result of spatial whitening, which removes off-diagonal covariances.
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3.5 Details of Simulation Study

This section begins by outlining the simulated EEG datasets used in this study.

Then the maximum likelihood-based method for filter tuning is described and tests

for evaluating filter performance are summarized.

3.5.1 Simulated EEG Data

The evaluation of the whole-brain inverse solution presented in Chapter 2 identified

a number of factors affecting filter performance. The simulated datasets used in this

study were designed to investigate four of these factors believed to be particularly

important, namely: (i) unmodeled inputs; (ii) spatially varying dynamics and model

parameters; (iii) temporal undersampling; and (iv) the spatial whitening transforma-

tion. To perform this investigation six groups of simulated EEG data were generated

using the process model Eq. (3.8), with each group having its own source dynamics.

The first two groups (TU and TV) are produced by the system’s transient dynamics,

while the next two (DU and DV) are driven by a spatiotemporal input, and the final

groups (CU1 and CU2), which also have driven dynamics, are used to investigate

temporal undersampling. The letter U in a dataset’s name indicates the simulated

current dipoles were produced using spatially uniform model parameters, while the

letter V indicates spatially varying parameters.

Before introducing the simulated datasets individually, the parameters common

to all are discussed and summarized in Table 3.1. Firstly, the spatiotemporal dis-

cretization (Δx and Δt) was selected to match typical values from clinical source

localization studies, while Nv was chosen so the length of the simulated cortex is

similar to human anatomy. The model parameters fn and ζ , which are specified for

the simulations and estimated by the KFs, are given either a uniform or Gaussian

spatial profile. The uniform profile mirrors the one used in Chapter 2 and allows for

comparison with the Gaussian profile, which is selected for its ability to produce

source dynamics with realistic spatial variation. Furthermore, using a spatial pro-

file of a known functional form permits the investigation of spatially varying model

parameters using the existing filtering framework, with the addition of only a small

number of parameters. In contrast, the wave velocity is assumed to be spatially uni-

form for all datasets. This spatial invariance is a reasonable approximation [104],

and simplifies the investigation of temporal undersampling. The magnitude of b —
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which is 1 m s-1 for all datasets except CU2 where b = 4 m s-1 — was selected so

the Courant condition is satisfied for the spatiotemporal grids used. This is shown

in Table 3.1 where ν � 0.8 for all six datasets, which is comfortably below its max-

imum allowed value of
√
2. However, cortical activity is known to propagate at up

to 10 m s-1 [105, 119]. This discrepancy was present in Chapter 2, where the spa-

tiotemporal discretization restricted b to values well below 10 m s-1, and motivates

the temporal undersampling study outlined in Sec. 3.5.1.3.

We now introduce a generalized spatial Gaussian g(v) which is used throughout

the simulation study, where g = fn and g = ζ for the natural frequency and damping

coefficient spatial profiles, respectively, while g = i denotes the initial condition and

g = us for the spatial component of the deterministic drive. The Gaussian is given

by

g(v) = cg +
dgng

σg
√
2π

exp

(
− [(v − 1)Δx− μg]

2

2σ2
g

)
, (3.39)

where cg is a constant offset, ng is a scaling coefficient introduced for fn and ζ so

the Gaussian term’s amplitude is dg, while μg and σg are the mean and standard

deviation, respectively. Note that the periodic boundary conditions must be taken

into account when computing the distance between v and μg.

A final general comment concerns the magnitude of the simulated current dipoles

and scalp voltages in this study, which are much larger than physiological val-

ues [104]. This results from the initial conditions in Sec. 3.5.1.1, the drive terms

in Secs 3.5.1.2 and 3.5.1.3, and the conductivity in Sec. 3.5.1.4 not being scaled to

match physiology. However, the net effect of these features of the simulation on

both the current dipoles and scalp voltages is simply to introduce multiplication by

a constant, which does not alter the results or their interpretation.

3.5.1.1 Transient Source Dynamics

The first two sets of simulated current dipoles (TU and TV) are generated by the

source model’s transient response to spatial Gaussian initial conditions, with the

drive term set to zero. These datasets provide algorithm validation as both KFs

should perform well when the unmodeled drive term is absent. The first transient

dataset (TU) assumes fn and ζ are spatially uniform, so only cfn and cζ are required

[see Table 3.1 and Figs 3.2(g) and 3.2(h)], while the initial conditions are given by a

spatial Gaussian with parameters ci = 0, di = ni = 1, μi = 0.25 m, and σi = 0.01
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Figure 3.2: Results of inverse solution for transient source dynamics with uniform

parameters (TU), where IED = 0.02 m and SNR = 10. The simulated source dynamics

and associated EEG are shown in (a) and (b), respectively. The LKF’s inverse solution

when fitting a Gaussian profile for fn and ζ is shown in (c), and the innovations in (d).

Frames (e) and (f) show the same results for the SWKF. The vertical voltage scale of

the traces in (d) and (f) have been expanded by factors of 9.6 and 9.1 relative to (b),

respectively. Frame (g) shows the simulated (solid black line) and estimated spatial

profiles for fn. In (g) the red and blue lines indicate the LKF- and SWKF-selected

profiles, respectively, which are solid when uniform and dashed when Gaussian. The

spatial profile for ζ is shown in (h) using the same key as (g).

66



time (s)

po
si

tio
n 

(m
)

0 0.25 0.5

0

0.05

0.1

0.15

0.2

0.25 −117

0

194(a)

0 0.25 0.5

13
12
11
10
9
8
7
6
5
4
3
2
1

time (s)

E
E

G
 (

V
)

(b)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5

0

0.05

0.1

0.15

0.2

0.25 −117

0

194(c)

0 0.25 0.5

13
12
11
10
9
8
7
6
5
4
3
2
1

time (s)

in
no

va
tio

ns
 (

V
)

(d)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5

0

0.05

0.1

0.15

0.2

0.25 −117

0

194(e)

0 0.25 0.5

13
12
11
10
9
8
7
6
5
4
3
2
1

time (s)

in
no

va
tio

ns
 (

V
)

(f)

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

f n (
H

z)

position (m)
0.25

(g)

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

ζ 
(d

im
en

si
on

le
ss

)

position (m)
0.25

(h)

Figure 3.3: Results of inverse solution for transient source dynamics with spatially

varying parameters (TV), where IED = 0.02 m and SNR = 10. This figure uses the

same format as Fig. 3.2. The vertical voltage scale of the traces in (d) and (f) have been

expanded by factors of 9.8 and 7.9 relative to (b), respectively.
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m. For the second transient dataset (TV), fn and ζ have a Gaussian profile with the

parameters listed in Table 3.1 and plotted in Figs 3.3(g) and 3.3(h), while the initial

conditions are the same as TU, except μi = 0.125 m. The resulting current dipoles

for TU and TV are shown in Figs 3.2(a) and 3.3(a), respectively.

3.5.1.2 Driven Source Dynamics

The next pair of simulated current dipoles (DU and DV) are produced by driving

the dynamic model with a spatiotemporal input. This term simulates thalamic input

to the cortex and is similar to the one used in Chapter 2. The temporal component

of the drive ut(k) is modeled by a sum of randomly-phased sine functions evenly

spaced between 0 and 20 Hz, and is defined as

ut(k) =

Nf∑
m=1

sin[2πf(m)kΔt+ ψ(m)], (3.40)

where Nf is the number of frequency components, f(m) is the frequency of oscil-

lation [0 Hz � f(m) � 20 Hz], ψ(m) is a random phase offset [−π � ψ(m) � π],

and the frequency spacing is 0.1 Hz. The drive term’s spatial component us is mod-

eled by a Gaussian, and multiplied by ut to obtain the spatiotemporal drive from

Eq. (3.8)

uL(v, k) = us(v)ut(k). (3.41)

Note that all drive terms in this chapter have parameter values for us of cus = 0,

dus = nus = 1, and are multiplied by 0.01 so the simulated current dipoles for both

the transient and driven datasets are the same order of magnitude.

The first dataset with driven dynamics (DU) assumes fn and ζ are spatially

uniform [see Table 3.1 and Figs 3.4(g) and 3.4(h)], with one drive, where us has pa-

rameters μus = 0.25 m, and σus = 0.01 m. This produces a highly resonant source

of 10 Hz oscillations which spread over the cortex as shown in Fig. 3.4(a). The other

dataset (DV) uses Gaussian profiles for fn and ζ [see Table 3.1 and Figs 3.5(g) and

3.5(h)] to reproduce some typical features of the alpha rhythm, namely the spatial

variation of its frequency and strength [101]. In order to generate these dynam-

ics, the simulated cortex is driven by two inputs which excite regions with different

parameter values. This results in two alpha sources with different spatiotemporal

characteristics, which more closely models what is observed in real EEG record-

ings. To see an example of the spatiotemporal variation of clinical EEG, the reader
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Figure 3.4: Results of inverse solution for driven source dynamics with uniform pa-

rameters (DU), where IED = 0.02 m and SNR = 10. This figure uses the same format

as Fig. 3.2. The vertical voltage scale of the traces in (d) and (f) have been expanded

by factors of 6.2 and 3.5 relative to (b), respectively. In frames (g) and (h) the spatial

position of the drive term’s center is indicated by an asterisk.
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Figure 3.5: Results of inverse solution for driven source dynamics with spatially vary-

ing parameters (DV), where IED = 0.02 m and SNR = 10. This figure uses the same

format as Fig. 3.2. The vertical voltage scale of the traces in (d) and (f) have been

expanded by factors of 6.8 and 5.5 relative to (b), respectively. In frames (g) and (h)

the spatial position of each drive term’s center is indicated by an asterisk.
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is referred to the recording used in Chapters 2 and 4. The first drive term is centered

on the Gaussian peaks for fn and ζ , which generates a strong 10 Hz resonance, with

us specified by μus = 0.37 m and σus = 0.01 m. The second drive is located where

the parameter profiles are flat, with μus = 0.12 m and σus = 0.015 m, and pro-

duces a more damped 5 Hz oscillation. Figure 3.5(a) displays the spatially varying

dynamics present in DV.

3.5.1.3 Temporal Undersampling of EEG Data

As stated in Sec. 3.3, the Courant condition must be satisfied for the discretized

process model Eq. (3.8) to be stable. This means the maximum wave velocity bmax

for the spatiotemporal grid used in this 1D simulation study is

bmax =
νmaxΔx

Δt
. (3.42)

For the 3D whole-brain inverse solution used in Chapters 2 and 4, νmax =
√
3

which sets bmax ≈ 1 m s-1 for the spatiotemporal grid employed (see Chapter 4 for

further details regarding this calculation). This upper bound is well below the previ-

ously stated 10 m s-1 for the propagation of cortical activity and therefore prevents

b from being estimated correctly, and may even explain the small spatial terms seen

in Chapter 2. To facilitate further investigation, this simulation study attempts to

recreate this important scenario, which we referred to as temporal undersampling

— a name derived from the fact that b, and to a large extent Δx, are fixed, and hence

one possible solution is to increase the temporal sampling rate to satisfy the Courant

condition (see Sec. 3.7 for a more detailed discussion about potential solutions). To

examine the impact of temporal undersampling on inverse solution performance,

two simulated datasets (CU1 and CU2) were produced. These datasets have driven

dynamics, and assume fn and ζ are spatially uniform (see Table 3.1). CU1 and CU2

each possess one drive term of the form described in Sec. 3.5.1.2, with the spatial

parameters μus = 0.125 m and σus = 0.01 m being identical for both datasets.

While ν = 0.8 for both CU1 and CU2, the datasets display quite different dynamics

due to the choice of b. Like datasets DU and DV, the dynamics of the simulated

current densities in CU1 result primarily from the transient response of the teleg-

rapher’s equation to the drive term’s input. Contrastingly, the dynamics in CU2 —

owing to its higher b value — are more heavily dominated by the drive term, and

less so by the intrinsic dynamics of the telegrapher’s equation itself. Designing the
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datasets in this way allows the effect of temporal undersampling on inverse solution

performance to be assessed for two realistic scenarios: (i) where the dynamics are

well approximated by a telegrapher’s equation whose parameter values are simi-

lar to those used in the simulation (CU1), and (ii) the more complicated situation

where significantly different model parameters provide the best-fit to the source dy-

namics (CU2). The latter scenario provides important insight into inverse solution

performance when fitting a telegrapher’s equation to activity displaying dynamics

of a different form. Furthermore, these findings will help interpret the whole-brain

inverse solutions described in Chapters 2 and 4, since temporal undersampling and

a mismatch between the form of the proposed and actual dynamics will both affect

algorithm performance in this setting.

Finally, temporal undersampling was reproduced by creating six new datasets

which use only every second, third, or fourth time point from both CU1 and CU2.

This undersampling prevents correct estimation of b, as bmax falls below its true

value. Figures 3.6(a) and 3.7(a) display the current dipoles for CU1 and CU2, re-

spectively, when every time step is used.

3.5.1.4 Computing EEG Data

To produce the simulated EEG data, we simply multiply J by the LFM K and

apply average reference. For the volume conductor’s Green function Eq. (3.4) we

assumed unit scalar conductivity; i.e., γ = 1 S m-1, VES = 0.015 m [104], and

IED = 0.02 m, to match the high density electrode arrays recommended for source

localization [121]. We also produced EEG data with an IED = 0.05 m, which

is equivalent to the commonly used 10-20 system [121]. Next, white Gaussian

observation noise was added to the EEG to give signal to noise ratios (SNRs) of 2,

5, 10, and 20 in terms of standard deviations of the voltages. This means 8 EEG

datasets were constructed for each of the simulated current dipoles, TU, TV, DU,

and DV. However, only one EEG dataset (IED = 0.02 m, SNR = 10) was produced

from CU1 and CU2. In this chapter we focus largely on the high density data (IED

= 0.02 m), with a SNR = 10, which is typical for EEG recordings [121]. For the

IED = 0.02 m and SNR = 10 datasets, the number of electrodes Nc along with the

simulated observation noise covariance σ2
ε are listed in Table 3.1, and the EEG for

TU, TV, DU, DV, CU1, and CU2 is plotted in Figs 3.2(b), 3.3(b), 3.4(b), 3.5(b),

3.6(b), and 3.7(b), respectively.
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Figure 3.6: Results of inverse solution for the temporal undersampling study using

dataset CU1. To improve visualization all frames display the first second of data only.

The simulated source dynamics and associated EEG are shown in (a) and (b), respec-

tively. The inverse solutions for the LKF and SWKF when using all time points are

shown in (c) and (d), respectively. The remaining two rows follow the same format as

(c) and (d), except that (e) and (f) display the results when every second time point is

used, and (g) and (h) the results when every third point is supplied.

73



time (s)

po
si

tio
n 

(m
)

0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25 −884

0

1022(a)

0 0.25 0.5 0.75 1

13
12
11
10
9
8
7
6
5
4
3
2
1

time (s)

E
E

G
 (

V
)

(b)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25 −884

0

1022(c)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25 −884

0

1022(d)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25 −884

0

1022(e)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25 −884

0

1022(f)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25 −884

0

1022(g)

time (s)

po
si

tio
n 

(m
)

0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25 −884

0

1022(h)

Figure 3.7: Results of inverse solution for the temporal undersampling study using

dataset CU2. The simulated source dynamics and associated EEG are shown in (a) and

(b), respectively. The inverse solutions for the LKF and SWKF when using all time

points are shown in (c) and (d), respectively. The remaining two rows follow the same

format as (c) and (d), except that (e) and (f) display the results when every second time

point is used, and (g) and (h) the results when every third point is supplied.
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3.5.2 Parameter Estimation

To select optimal values for the process model parameters and noise covariances, we

used numerical minimization of the Akaike Information Criterion (AIC) [2]. The

AIC, which is closely related to the log-likelihood, estimates the distance between

the process model and the true one, and has been successfully employed for filter

tuning in Chapter 2 and [47]. To compute the AIC we begin by defining two param-

eter vectors; one for fitting spatially uniform parameters ϑu = (cfn, cζ , b), the other

for parameters with a Gaussian profile ϑg = (cfn, dfn, μfn, σfn , cζ, dζ, μζ, σζ , b).

The log-likelihood (logL) for the entire EEG time series is

logL(ϑ, σ2
ε , σ

2
η) = −1

2

Nk∑
k=1

[loge |R(k|k − 1)|+ΔY (k)TR(k|k − 1)−1ΔY (k)

+Nc loge(2π)], (3.43)

where |.| denotes absolute value of the matrix determinant. The AIC is then

AIC(ϑ, σ2
ε , σ

2
η) = −2 logL(ϑ, σ2

ε , σ
2
η) + 2[dim(ϑ) + 2], (3.44)

where dim(ϑ) indicates the number of parameters in ϑ, which is increased by two

as we need to fit the noise covariances from the data. Unlike Chapter 2 and [47],

constrained optimization is used here. This takes advantage of our knowledge of the

parameters, which are given bounds where possible, as displayed in Table 3.2. To

ensure numerical stability of the process model, the upper bound for b is restricted

to 80% of its absolute maximum bmax.

For each EEG dataset, the optimal parameters are estimated assuming spatially

uniform and spatial Gaussian model parameters for both the linear and spatially

whitened KFs. The filters’ state estimates are initialized by setting J(0|0) and

j̃SW (v, 0|0) to be 0 column vectors, and P (0|0) and p̃(v, 0|0) to be identity ma-

trices. Each model parameter’s starting value is randomly selected from an interval

spanning ±50% of the parameter’s simulated value. This interval is modified by

the parameter bounds in Table 3.2 where appropriate. To allow filter transients to

pass, the AIC is computed from the 50th time point onwards for all datasets. Ev-

ery component of this algorithm is implemented in Matlab [91] and run on an IBM

ThinkPad R51 (Intel Pentium 1.6 GHz, 1 GB RAM). The AIC minimization is per-

formed by Matlab’s ‘fmincon’ function which finds the minimum of a constrained

nonlinear multivariable function using a sequential quadratic programming (SQP)
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Table 3.2: Bounds for the KF parameters. These bounds are imposed on the parameter

estimates by the optimization step (see Sec. 3.5.2).

Parameter Lower Bound Upper Bound

cfn (Hz) 0 —

cfn + dfn (Hz) 0 —

μfn (m) 0 (Nv − 1)Δx

σfn (m) 0 —

cζ 0 —

cζ + dζ 0 —

μζ (m) 0 (Nv − 1)Δx

σζ (m) 0 —

b (m s-1) 0 0.8bmax

σ2
η (A2 m2) 0 —

σ2
ε (V2) 0 —

method. For further details regarding SQP, the reader is referred to the Matlab docu-

mentation [91] for the ‘fmincon’ function, and the following standard optimization

texts [38, 48]. The convergence criterion used by the optimization algorithm con-

siders an AIC minimum to be reached, and therefore terminates the optimization

routine, when the change in the AIC at the next step is less than 1 × 10−10. The

maximum number of filter runs per optimization is set to 2000; with each filter iter-

ation taking approximately 2 minutes to complete, this means optimized parameters

can be computed within 67 hours. However, in practice, convergence is typically

achieved much sooner.

3.5.3 Evaluating Kalman Filter Performance

Using simulated data means KF performance can be judged by directly comparing

simulated and estimated values for the current dipoles and model parameters. This

is done in Sec. 3.6. For the current vectors, this comparison can also be performed

by calculating the root-mean-squared error (RMSE) as follows:

RMSE =

√√√√ 1

NvNk

Nv∑
v=1

Nk∑
k=1

[j(v, k|k)− j(v, k)]2. (3.45)

76



However, as discussed in Chapter 2, evaluating KF performance in real applications

involves testing the statistical properties of the innovation sequence, which should

be Gaussian, unbiased, uncorrelated, and have the correct magnitude (i.e., actual

and filter-predicted innovation covariances should be the same). In this study the

diagnostic tests from Chapter 2 are applied to the innovations of the optimized fil-

ters. An additional test statistic ΔY N is also introduced, which replaces Step 3 in

Sec. 2.5 and encapsulates overall filter noise levels into a single number [10]. To

calculate ΔY N we begin by computing the normalized square of the innovation

ΔY N (k) = ΔY (k)TR(k|k − 1)−1ΔY (k), (3.46)

which will be a χ2 variable (resulting from squaring a Gaussian random variable),

with Nc degrees of freedom and E[ΔY N(k)] = Nc if ΔY is Gaussian, unbiased,

and the actual and filter-predicted covariances match [10]. The test statistic ΔY N

is then computed

ΔY N =
1

Nk

Nk∑
k=1

ΔY N(k), (3.47)

and 95% confidence intervals obtained for its expected value, from which we can de-

termine whether the filter’s noise levels are correct. If ΔY N is above these bounds,

noise levels are too low and the filter is termed ‘optimistic’, while if ΔY N is below

the lower bound, the noise levels are too high and the filter is known as ‘pessimistic’.

Such conservative noise covariances can help ensure the filter is robust [70].

3.6 Results

In this section the optimized inverse solutions for the transient (TU and TV), driven

(DU and DV), and temporal undersampling (CU1 and CU2) datasets are presented

for the LKF and SWKF, fitting both uniform and Gaussian spatial profiles for fn

and ζ . Note that only uniform spatial profiles are fitted to datasets CU1 and CU2.

While the inverse solutions were computed for each filter for two IEDs across a

range of SNRs (for TU, TV, DU, and DV, but not CU1 and CU2), we focus on the

results for the simulated EEG with IED = 0.02 m and SNR = 10, which are sum-

marized in Tables 3.3 – 3.9 and Figs 3.2 – 3.8. More general comments regarding

the algorithms and their performance are made in Sec. 3.7.
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3.6.1 Transient Dynamics

We begin by describing the performance of the filters when applied to the simulated

EEG resulting from TU [see Fig. 3.2(b) and Sec. 3.5.1.1]. As expected, the LKF

and the SWKF perform very well when fitting either uniform or spatially vary-

ing parameters. Hence the results of all four filters will be discussed as a single

group. Firstly, the inverse solutions estimated the underlying current dipoles very

accurately. This is demonstrated by the close agreement between the simulated

and estimated current dipoles, which can be observed by: (i) comparing Fig. 3.2(a)

with Figs 3.2(c) and 3.2(e), and (ii) looking at the time series shown in Fig. 3.8(a).

The small covariance and RMSE values for TU shown in Fig. 3.8(a) and Table 3.3,

respectively, also indicate an accurate inverse solution. Estimates of the spatial pro-

files for fn and ζ match the uniform parameters used in the simulation, with even the

Gaussian parameters selected resulting in uniform spatial profiles [see Figs 3.2(g)

and 3.2(h)]. The correct wave velocity was also identified by all four filters. As

the process model parameters were estimated very accurately, the process noise co-

variances have very small values (≈ 0), which indicates an extremely high level of

confidence in the selected process model. Each filter also estimated the true value

for the observation noise covariance.

To further assess the filters’ performance, the innovation sequences were ana-

lyzed. An initial assessment can be made from the appearance of the innovation

time series. For TU, the innovations shown in Figs 3.2(d) and 3.2(f) appear to be

white. To provide a quantitative evaluation, the statistical properties of the inno-

vation sequences were computed. As anticipated, these indicated very well-tuned

KFs, since the innovations were Gaussian, unbiased, white, and have the correct

magnitude (see Table 3.4). In conclusion, these results clearly demonstrate that the

LKF and SWKF perform well under favorable conditions. The results presented

from this point forward describe the performance of these algorithms as increas-

ingly more challenging scenarios are presented.

The second dataset investigating transient dynamics is TV, which introduces

spatial variation of the model parameters fn and ζ for the first time. Details of the

spatial profiles were provided in Sec. 3.5.1.1, and the simulated current dipoles and

EEG are shown in Figs 3.3(a) and 3.3(b), respectively. The results for dataset TV

are described in two parts; the LKF first, followed by the SWKF.

Overall the LKF performed well when fitting either the uniform or the Gaussian
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Figure 3.8: Current dipole time series for a voxel v in the datasets TU, TV, DU, and

DV with IED = 0.02 m and SNR = 10. Frame (a) displays the time series for TU at

v = 51. The solid black line indicates the simulated current vector, while the solid red

and blue curves represent the currents estimated by the LKF and SWKF, respectively,

when fitting the Gaussian parameter profiles. The dashed lines indicate the 95% CI for

the estimates using the same color coding. The CIs were computed from the estimated

state covariance matrix at each time step. Frames (b), (c), and (d) show the same

information for datasets TV (v = 26), DU (v = 51), and DV (v = 75), respectively.
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Table 3.4: Results of KF performance evaluation tests for the two EEG datasets dis-

playing transient dynamics with IED = 0.02 m and SNR = 10. The KF’s spatial profile

for fn and ζ is either uniform (U) or Gaussian (G) as indicated. The number of channels

whose innovation is Gaussian, and unbiased, according to Kolmogorov-Smirnov (KS)

and t-tests, respectively, are shown (i.e., P > 0.05). Also displayed is the overall noise

level statistic (NLS) Eq. (3.47) and the 95% confidence intervals (CI) for its expected

value. Innovation whiteness is characterized by: (i) counting the channels with < 90%

of their autocorrelation (AC) within the 2 standard deviations for a white signal; and

(ii) showing the range of the innovation spectral entropy (ΔY SE) across all channels.

Dataset Filter Profile KS t-test NLS (95% CI) AC ΔY SE

TU LKF U 26 26 27.7 (25.0-27.0) 1 0.974-0.994

TU LKF G 26 26 27.6 (25.0-27.0) 1 0.975-0.994

TU SWKF U 26 26 25.2 (25.0-27.0) 0 0.974-0.991

TU SWKF G 26 26 25.1 (25.0-27.0) 0 0.975-0.991

TV LKF U 13 13 13.0 (12.4-13.7) 1 0.958-0.992

TV LKF G 13 11 13.6 (12.4-13.7) 1 0.974-0.990

TV SWKF U 13 12 13.0 (12.4-13.7) 3 0.849-0.988

TV SWKF G 13 13 13.3 (12.4-13.7) 8 0.904-0.988
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parameter profiles, although as expected the filter with spatially varying parame-

ters performed slightly better. The LKF reconstructed the current dipoles accu-

rately, as shown by the concordance between the simulated current dipoles shown

in Fig. 3.3(a), and the estimated activity which is plotted for the Gaussian parame-

ter fit in Fig. 3.3(c). Looking at the LKF’s Gaussian fit further, the time series for

a single voxel shown in Fig. 3.8(b) confirms the agreement between the simulated

(black line) and estimated activity (red line), and also reveals small error covari-

ances (dashed red lines). When estimating the spatial profiles for fn and ζ using

a uniform profile, the optimization step would select a value between that parame-

ter’s maximum and minimum values, as shown in Figs 3.3(g) and 3.3(h). Pleasingly,

when fitting fn and ζ with Gaussian profiles, likelihood maximization chose param-

eters with an almost identical spatial profile to those from the simulation [again see

Figs 3.3(g) and 3.3(h)]. The exact parameter values can be read from Table 3.3. The

performance advantage offered by fitting Gaussian parameter profiles over uniform

parameters is further evidenced by the reduction of the RMSE, which dropped from

8.86 to 1.67. Both of the LKFs correctly estimated the simulated wave velocity.

Turning to the noise covariances; the observation noise was estimated accurately,

while the process noise covariance decreased by over four orders of magnitude

when fitting the Gaussian profiles rather than the uniform parameters. This find-

ing indicates a large increase in the filter’s confidence in the process model, and

was expected since this filter implementation selected parameter profiles matching

those in the simulated data. The innovations also revealed very well-tuned filters

for both the uniform and spatial Gaussian LKFs. The innovations for the LKF fit-

ting Gaussian parameters are shown in Fig. 3.3(d) and appear to be white. This is

confirmed by the statistical properties of the innovations for both LKFs which are

found to be Gaussian, unbiased, white, and have the correct magnitude (see Table

3.4).

When operating on the TV dataset, the SWKF also produced accurate inverse

solutions and reasonable parameter estimates. However, its overall performance

was not as good as the LKF; a finding which is plausible given the SWKF is an

approximation of the superior LKF algorithm. The inverse solution computed by

the SWKF when fitting the Gaussian parameter profile is plotted in Fig. 3.3(e)

and shows a fairly accurate reconstruction of the simulated current dipoles [see

Fig. 3.3(a)], although the LKF’s inverse solution which is displayed in Fig. 3.3(c)
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has better fidelity. This observation is supported by Fig. 3.8(b), where the SWKF’s

estimated time series (blue line) is slightly less accurate and the error covariances

larger than the LKF. As already seen with the LKF when estimating uniform spatial

parameters, the tuning step for the SWKF also selects values for fn and ζ that lie

between the parameter’s maximum and minimum values, albeit different values to

those chosen for the LKF [see Figs 3.3(g) and 3.3(h), and Table 3.3]. When fitting

Gaussian parameter profiles, the AIC minimization chose a spatial profile for fn

that closely approximates its true profile [see Fig. 3.3(g)]. However, the Gaussian

profile proposed for ζ is less accurate, and only captures the parameter’s spatial

trend, which is shown in Fig. 3.3(h). It may be possible to improve this parameter

estimate by running the optimization with a number of initial values, which will

generate a probability distribution for that parameter, rather than relying on a single

optimization, as done in this study. Such an approach was employed successfully

in [116], and could be used in future work. The RMSEs for the SWKF show only a

modest improvement when Gaussian parameter profiles are added, which is due to

the inaccurate ζ profile. Nonetheless, the RMSEs for the SWKF are similar to that

of the LKF when fitting spatially uniform parameters. Once more, the SWKFs cor-

rectly estimated the simulated wave velocity and the observation noise covariance.

Unlike the LKF, there was only a small decrease in the process noise covariance

when spatially varying parameters were introduced; a finding which is again due to

the inexact ζ profile. The SWKF fitting uniform parameters produced innovations

that were Gaussian, unbiased, of the correct magnitude, and largely uncorrelated,

although a decrease in the minimum spectral entropy to ≈ 0.85 was observed (see

Table 3.4). Looking at the SWKF with Gaussian parameter profiles, the discrepant

ζ profile appears to introduce correlations into some of the innovations plotted in

Fig. 3.3(f). This is supported by the quantitative analysis which reveals the innova-

tions to be Gaussian, unbiased, and to have the correct magnitude, although eight

channels exhibited significant temporal correlations (see Table 3.4). Overall, these

issues are relatively minor and we conclude that the two SWKFs are well-tuned,

and produce inverse solutions of a similar quality to the LKF.

In summary, the results presented in this section provide validation of both KF

algorithms, as they were found to be well-tuned and produced accurate estimates of

both states and parameters for a 1D simulation of the EEG inverse problem display-

ing transient dynamics. In particular, spatial variation of model parameters was able
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to be correctly estimated from the simulated EEG. These same KFs are now applied

to simulated EEG produced by driven dynamics. Their performance is described in

the following section.

3.6.2 Driven Dynamics

The first dataset investigating driven dynamics (DU) contains a single source and

uniform spatial parameters, as outlined in Sec. 3.5.1.2. The simulated current

dipoles and EEG for DU are shown in Figs 3.4(a) and 3.4(b), respectively. When

the two KFs were applied to the simulated EEG for DU, they were found to pro-

duce quite similar results, regardless of the parameter profile employed. Therefore,

the results for all four filters will be discussed together. Firstly, the filters esti-

mated the current dipoles very accurately. This is clearly illustrated for the LKF

and SWKF — when fitting Gaussian parameter profiles — by the close agreement

between the simulated and estimated current dipoles, which is evident when com-

paring Fig. 3.4(a) with Figs 3.4(c) and 3.4(e). The single voxel time series plotted in

Fig. 3.8(c) also demonstrates the accuracy of both algorithms, with the LKF’s error

covariances being smaller than the SWKF’s. Compared to the state estimates, the

parameter estimates of all four filters were less accurate (see Table 3.5). This stems

from the drive term(s) introduced into the simulated data, which are not explicitly

modeled by either filter, and lead to distorted parameter values as the optimization

step attempts to compensate for these inputs by maladjustment of the parameter val-

ues. This finding is not confined to DU alone, but is seen throughout this study when

investigating driven dynamics (see also the results for datasets DV, CU1, CU2). The

DU estimates for fn and ζ are plotted in Figs 3.4(g) and 3.4(h), respectively, and

show that both filters select uniform parameters close to the true simulation values,

with fn being estimated more accurately than ζ . As foreshadowed above, when

fitting Gaussians for fn and ζ , the optimization step selects parameter profiles that

differ significantly from the simulated ones, particularly around the drive term’s lo-

cation. This is a clear illustration of how unmodeled inputs can distort parameter

estimates.

All four filters estimated the wave velocity to within 10% of its actual value (see

Table 3.5 for all parameter estimates). Looking again at the accuracy of the inverse

solutions, the RMSEs show similar values for all four filters with only a small reduc-

tion conferred by spatially varying parameters. This finding further reinforces the
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Table 3.6: Results of KF performance evaluation tests for the two EEG datasets with

driven dynamics, where IED = 0.02 m and SNR = 10. This table uses the same format

as Table 3.4.

Dataset Filter Profile KS t-test NLS (95% CI) AC ΔY SE

DU LKF U 26 25 26.2 (25.0-27.0) 5 0.808-0.984

DU LKF G 26 25 25.7 (25.0-27.0) 9 0.834-0.983

DU SWKF U 26 16 26.4 (25.0-27.0) 18 0.638-0.988

DU SWKF G 26 20 26.6 (25.0-27.0) 23 0.658-0.982

DV LKF U 26 26 24.5 (25.0-27.0) 8 0.844-0.983

DV LKF G 26 24 24.6 (25.0-27.0) 7 0.858-0.989

DV SWKF U 26 18 24.4 (25.0-27.0) 17 0.611-0.988

DV SWKF G 26 11 24.9 (25.0-27.0) 12 0.699-0.990

view that the major source of inaccuracy is the unmodeled drive term, which cannot

be significantly overcome through spatially varying model parameters alone. The

process noise covariances confirm this conclusion, with only small decreases seen

when spatial variation of fn and ζ was added. Each filter estimated the observation

noise covariance correctly.

Turning to the innovation sequences plotted in Figs 3.4(d) and 3.4(f), there are

clearly temporal correlations in some channels, particularly those closest to the un-

modeled drive term. These correlations are larger and more widespread for the

SWKF. As shown in Table 3.6, the innovations for both filters were found to be

Gaussian, unbiased, and to have the correct magnitude. However, as indicated by

the time series plots, there are significant correlations present in 9 (out of 26) chan-

nels for the LKF, and 23 channels for the less optimal SWKF. This is supported by

a concomitant increase in the range of the innovation spectral entropies. Further-

more, employing spatially varying parameters does not improve these measures of

filter performance. Therefore, these results demonstrate how the unmodeled drive

term can affect algorithm performance, with the greatest impact felt by parameter

estimation, rather than state estimation.

The second dataset containing driven dynamics is DV. This dataset poses an even

greater challenge for the KFs, because it was produced using Gaussian parameter

profiles and two drive terms (see Sec. 3.5.1.2). Figures 3.5(a) and 3.5(b) show
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the simulated current dipoles and EEG, respectively. The results for DV follow a

similar pattern to DU, with the two KF algorithms producing comparable results

for either parameter profile. For this reason, the performance of the four filters

are reviewed together once more. Since the interpretation of the results for DV is

similar to DU, a detailed discussion is omitted here, and the reader is referred to the

earlier exposition for DU.

Starting with the inverse solutions for DV, all four filters were found to recon-

struct the current dipoles accurately. This is demonstrated by the concordance be-

tween the simulated current dipoles in Fig. 3.5(a) and their estimated counterparts

shown in Figs 3.5(c) and 3.5(e). The single voxel time series in Fig. 3.8(d) also

shows this close agreement between the simulated and estimated activity for both

filters. However, as seen previously for DU, the LKF’s error covariances are smaller

than the SWKF’s. As already seen with DU, parameter estimation is again found

to be less reliable than state estimation, with the optimization step choosing inex-

act parameter profiles for the two filters fitting spatial Gaussians. These discrepant

estimates are again due to the unmodeled drive terms. The DV estimates for the

fn and ζ profiles are shown in Figs 3.5(g) and 3.5(h), respectively. These figures

show that for both filters employing spatially uniform parameters, the optimiza-

tion step selects a value between that parameter’s maximum and minimum. As

intimated above, the estimated Gaussian profiles for fn and ζ differ from their sim-

ulated values for both the LKF and SWKF. However, these profiles do retain some

qualitatively similar features such as the location and approximate size of the Gaus-

sian’s peak or nadir. The wave velocity was estimated to within 15% of its actual

value by all four filters, with the discrepancy again due to the unmodeled inputs.

Once more, the RMSEs for all KFs have comparable values, with Gaussian param-

eters providing only a slight improvement. This result is supported by the limited

reduction in process noise covariance when spatially varying parameters are used.

These findings reconfirm the unmodeled drive terms as the main source of error.

The observation noise covariance was estimated correctly by all four filters.

Looking at the innovations shown in Figs 3.5(d) and 3.5(f), some temporal cor-

relations are clearly visible, especially in the channels nearest the unmodeled inputs.

Again, these correlations are more prominent for the SWKF than the LKF. Calcu-

lating the statistical properties of the innovations reveals some interesting features

(see Table 3.6). The innovations of all four KFs are found to be Gaussian and pos-
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sess noise levels larger than anticipated. A filter operating in this regime is termed

pessimistic (see Sec. 3.5.3), and can exhibit more robust performance [70]. The

innovations for both LKFs are unbiased, although the SWKF innovations are los-

ing this property, in particular the one fitting Gaussian parameters. Confirming the

observations from the innovation time series, significant correlations are found in 8

LKF channels, and 17 SWKF channels. The innovation spectral entropies show a

spread similar to dataset DU, with lower values for the SWKF yet again.

In conclusion, the results presented here have demonstrated the ability of two KF

algorithms to solve the EEG inverse problem for the more realistic case of driven

dynamics. For both driven datasets the filters produced accurate state estimates,

and generally positive results for the diagnostic tests; indicating that the filters are

indeed well-tuned. These findings notwithstanding, the less reliable parameter es-

timates — regardless of the parameter profile employed — and the considerable

correlations present in the innovations for DU and DV indicate the need to model

system inputs explicitly. Such a task will be the focus of future work, leading to

not only more precise parameter estimates, but further improvement of overall filter

performance.

3.6.3 Temporal Undersampling of EEG Data

The first study of temporal undersampling investigates the performance of the filters

when applied to CU1. The design of this dataset, which contains a single drive term

and uniform parameters, was described in Sec. 3.5.1.3, and the simulated current

dipoles and EEG are plotted in Figs 3.6(a) and 3.6(b), respectively. To begin, the

inverse solution with uniform parameters was computed for the EEG using all avail-

able time points. The results for both filters were similar to one another, and exhibit

a pattern much like those described for DU and DV. Therefore, the results for the

two algorithms will be discussed together. When using all observations, the filters

estimated the current dipoles accurately. This is demonstrated by the close agree-

ment between the simulated and estimated current dipoles, which is evident when

comparing Fig. 3.6(a) with Figs 3.6(c) and 3.6(d). As seen previously with DU and

DV, both filters selected slightly inaccurate values for the model parameters as a

result of the unmodeled drive term (see Table 3.7). However, this discrepancy in the

parameter values is relatively small, which indicates that the telegrapher’s equation

selected by each of the KFs display similar dynamics to the one used to generate the
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simulated data. Dataset CU1 — whose dynamics result largely from the transient

response of the telegrapher’s equation to the drive term — was designed to produce

this scenario. The reader is referred back to Sec. 3.6.2 for more detailed discussion

about the effect of unmodeled inputs on parameter estimates. The innovations for

the LKF and SWKF were found to be Gaussian, unbiased, and to have the correct

magnitude (see Table 3.8). Temporal correlations were present in the innovations of

both filters, although they were more widespread for the SWKF, where significant

correlations were found in 9 (out of 13) channels, compared to only 3 for the LKF.

The effect of temporal undersampling on KF performance will now be de-

scribed. When the data was undersampled, the quality of the state estimation de-

creased only marginally for both filters; even when up to three-quarters of the data

was discarded. This is demonstrated by the close agreement between the simulated

and estimated current densities [Figs 3.6(e) - 3.6(h)] when temporal undersampling

was applied. The RMSEs for both filters support this observation, since they only

displayed a small increase as less data was used. Conversely, parameter estimation

became significantly less accurate when the time series was undersampled.

One important source of this inaccuracy arises from the Courant condition which

imposes an upper bound (bmax) on the wave velocity estimable from the data. As Δt

is increased, bmax decreases (see Eq. 3.42) until it falls below b’s true value, where-

after b is unable to be estimated correctly through the optimization step — this was

the case for CU1 when every second, third, or fourth time point was used. In this

situation, we found both filters would select wave velocities equal or very close to

bmax (see Table 3.7).

In the setting of temporal undersampling, we would like to know how the filters

maintain the accuracy of their state estimates. One possibility is to adjust its esti-

mates of ζ and fn to maintain the system’s effective damping ζeff near its value for

the true model parameters. Effective damping can be approximated as follows:

ζeff ≈ ωnζ +
b

l
, (3.48)

where the spatial width of the drive term is l = 2σus . As bmax decreases, a compen-

satory rise in the ωnζ term of Eq. (3.48) could reasonably be expected. However,

no clear trend was observed for either filter, with the value of ωnζ remaining ap-

proximately constant as less data was used. This finding suggests the involvement

of another compensatory mechanism. The only parameter showing a reliable trend

was the process noise covariance, which consistently increased for both filters as
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Table 3.7: Estimated parameter values and performance metrics for temporal under-

sampling study with IED = 0.02 m and SNR = 10. The number in parentheses in

the leftmost column indicates that either all (1), or every second (2), third (3) or fourth

(4) time points from the original dataset are used in a particular filter run. An asterisk

next to a wave velocity estimate denotes its value is either at, or within 5%, of its upper

bound, as determined by the Courant condition with a 20% margin of safety. The caret

adjacent to the estimate of fn for CU1 (4) indicates its value is at the upper bound used

by the optimizer (see Sec. 3.6.3 for more details). For the purposes of comparison,

the simulated parameter values used to generate datasets CU1 and CU2 are displayed

in rows CU1sim and CU2sim, respectively. Note that all parameters estimated for the

SWKF (except σ2
ε) describe the spatially whitened current dipole J̃ , rather than J .

Dataset Filter cfn (Hz) cζ b (m s-1) σ2
η (A2 m2) σ2

ε (V2) AIC RMSE

CU1sim — 10.00 0.100 1.00 — 1.33× 107 — —

CU1 (1) LKF 11.07 0.070 0.829 47.4 1.33× 107 229053 7.37

CU1 (2) LKF 11.69 0.058 0.707* 260.0 1.33× 107 112402 9.30

CU1 (3) LKF 12.46 0.070 0.471* 835.8 1.33× 107 72852 9.76

CU1 (4) LKF 12.00ˆ 0.108 0.351* 1714.3 1.33× 107 52665 10.05

CU1 (1) SWKF 10.15 0.152 0.860 0.019 1.33× 107 257668 7.88

CU1 (2) SWKF 11.32 0.154 0.687* 0.294 1.33× 107 125189 9.25

CU1 (3) SWKF 12.28 0.136 0.471* 1.25 1.33× 107 80091 9.44

CU1 (4) SWKF 12.18 0.143 0.350* 2.86 1.33× 107 57350 9.93

CU2sim — 10.00 0.100 4.00 — 1.37× 109 — —

CU2 (1) LKF 16.71 0.041 1.368 10.23 1.37× 109 297492 38.29

CU2 (2) LKF 16.82 0.041 1.324 90.09 1.37× 109 141904 48.11

CU2 (3) LKF 16.16 0.039 1.773 302.97 1.37× 109 89864 46.62

CU2 (4) LKF 16.90 0.037 1.238 691.16 1.37× 109 64028 56.49

CU2 (1) SWKF 15.44 0.116 0.904 2.94× 10−3 1.37× 109 299114 46.79

CU2 (2) SWKF 16.21 0.107 0.631 0.03844 1.37× 109 142965 54.79

CU2 (3) SWKF 16.30 0.101 0.782 0.164 1.37× 109 90652 55.68

CU2 (4) SWKF 16.76 0.086 0.483 0.463 1.37× 109 64570 60.53
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Table 3.8: Results of KF performance evaluation tests for the temporal undersampling

study. This table uses the same format as Table 3.4.

Dataset Filter Profile KS t-test NLS (95% CI) AC ΔY SE

CU1 (1) LKF U 13 13 11.8 (12.7-13.3) 3 0.812-0.963

CU1 (2) LKF U 13 13 12.9 (12.5-13.5) 2 0.796-0.977

CU1 (3) LKF U 13 13 13.2 (12.4-13.6) 13 0.816-0.950

CU1 (4) LKF U 13 13 13.3 (12.4-13.7) 11 0.853-0.941

CU1 (1) SWKF U 13 10 12.8 (12.7-13.3) 9 0.649-0.943

CU1 (2) SWKF U 13 13 13.0 (12.5-13.5) 13 0.731-0.925

CU1 (3) SWKF U 13 13 13.3 (12.4-13.6) 13 0.793-0.905

CU1 (4) SWKF U 13 13 13.3 (12.4-13.7) 13 0.841-0.920

CU2 (1) LKF U 13 13 12.7 (12.7-13.3) 2 0.937-0.984

CU2 (2) LKF U 13 13 12.5 (12.5-13.5) 4 0.922-0.987

CU2 (3) LKF U 13 13 12.6 (12.4-13.6) 7 0.895-0.987

CU2 (4) LKF U 13 12 12.9 (12.4-13.7) 5 0.897-0.985

CU2 (1) SWKF U 13 13 12.3 (12.7-13.3) 10 0.812-0.981

CU2 (2) SWKF U 13 13 12.2 (12.5-13.5) 12 0.771-0.984

CU2 (3) SWKF U 13 13 12.5 (12.4-13.6) 13 0.763-0.979

CU2 (4) SWKF U 13 13 12.8 (12.4-13.7) 12 0.781-0.985
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more data points were discarded (see Table 3.7). This is typical behavior of a KF

when confronted with an increasingly less accurate process model, in this case due

to bmax decreasing and Δt increasing — the filter’s solution is to trust the data more

and the model less. The effectiveness of this strategy is clearly dependent on the

quality and quantity of the observations. The accurate and robust inverse solutions

seen for CU1 — and other driven datasets throughout this chapter — indicate that

the observations in these simulations are sufficient for this strategy to be effective.

In Sec. 3.7, some general comments regarding the impact of changing two observa-

tion parameters, namely the IED and SNR, will be made.

The innovations for both filters when temporal undersampling was applied were

Gaussian, unbiased and had the correct magnitude (see Table 3.8). This demon-

strates the ability of the LKF and SWKF to operate robustly under suboptimal con-

ditions. Significant correlations were present in nearly all innovations of both filters.

However, this is not surprising given the deficiencies of the process model.

A final comment regarding CU1 concerns the optimization step. We found that

as less time points from CU1 were made available to the LKF, the optimization al-

gorithm would increasingly select parameter sets that resulted in the covariance ma-

trices becoming singular, causing the filter to crash. This issue was associated with

the optimizer’s performance becoming increasingly sensitive to the parameters’ ini-

tial values and their associated bounds, and was particularly prominent when only

every fourth time point was used. To remedy this problem, parameters were initial-

ized closer to their likely estimated values and tighter bounds were imposed as well.

Evidence of this issue can be seen in Table 3.7 when the LKF is applied to dataset

CU1 (4); here cfn is at its maximum value of 12. Interestingly, no such problem was

observed for the SWKF.

We will now discuss the second temporal undersampling study which investi-

gates filter performance for dataset CU2. This dataset, which also contains a single

drive term and uniform parameters, was described in Sec. 3.5.1.3. The simulated

current dipoles and EEG are displayed in Figs 3.7(a) and 3.7(b), respectively. Once

more, we begin by computing the inverse solution with uniform parameters using all

available EEG time points. Again, both filters produced similar results; hence they

will be discussed together. When using all observations, the filters reconstructed

the current dipoles accurately. This is demonstrated by the concurrence between

the simulated [Fig. 3.7(a)] and estimated [Figs 3.7(c) and 3.7(d)] current densities.
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Unlike datasets DU, DV, and CU1, both filters selected parameter values that were

considerably different to those used in the simulation (see Table 3.7). For example,

both filters selected wave velocities which were well below the simulated value of

4 m s-1 despite the optimizer’s upper bound for b being above this value when all

time points were used. The mismatch indicates that the telegrapher’s equation se-

lected by each of the KFs exhibit significantly different dynamics compared to the

one used to generate the simulated data. This arises from the fact that the dynamics

of CU2 are dominated by the unmodeled drive term and less so by the transient dy-

namics of the telegrapher’s equation itself. Designing CU2 in this way allowed us

to investigate the situation where the filters must fit their process model (i.e., a tele-

grapher’s equation with no drive term) to current densities generated by a different

dynamic model. This scenario is important because it provides a simple simulation

of what happens for the clinical data (see Chapters 2 and 4), where a simplified dy-

namic model — potentially affected by temporal undersampling — is fitted to com-

plex spatiotemporal data. Despite the mismatched dynamic models, the innovations

largely maintained their desired properties for the LKF and the SWKF, as they were

found to be Gaussian, unbiased, and to have the correct magnitude (see Table 3.8).

Again, temporal correlations were observed in some of the innovations, and were

more pronounced for the SWKF, where significant correlations were found in 10

(out of 13) channels, compared to only 2 for the LKF.

The effect of temporal undersampling on KF performance for dataset CU2 is

now described. As seen previously with CU1, temporal undersampling again re-

sults in only a small decrease in state estimation accuracy for both filters. This is

illustrated by the concordance between the simulated and estimated current densi-

ties [Figs 3.7(e) - 3.7(h)] when temporal undersampling was applied. The RMSEs

for both filters support this observation, since they increased only marginally as

less data was made available. As expected, the model parameters selected are still

significantly different to their simulated values (see Table 3.7). Unlike CU1, the

Courant condition does not appear to restrict wave velocity estimation, as the opti-

mizer always chose values for b well below its upper bound for the datasets using

every second, third, or fourth time point. This is observed despite bmax falling below

b’s simulated value for these three datasets.

As done previously for CU1, we again searched for any mechanisms compen-

sating for temporal undersampling to maintain the accuracy of the state estimates.
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The process model’s effective damping ζeff was computed for both filters for each of

the datasets derived from CU2. Once again, no clear pattern could be observed for

either filter, with ωnζ remaining roughly constant as more data was discarded. How-

ever, the process noise covariance displayed the same trend seen in CU1 whereby it

increased for both filters as more data points were discarded (see Table 3.7). This

increases the filters’ confidence in the observations relative to the model predictions

and compensates for the growing discordance between the estimated and the sim-

ulated dynamics as Δt grows. Notwithstanding the simultaneous difficulties posed

by mismatched dynamic models and temporal undersampling, the innovations for

both filters were found to be Gaussian, unbiased, and to have the correct magnitude

(see Table 3.8). This is another demonstration of how these algorithms can main-

tain their statistical integrity despite suboptimal conditions. As seen throughout

this study, temporal correlations were again observed in many of the innovations of

both filters — the SWKF more so than the LKF. However, this is expected given the

shortcomings of the dynamic model.

In summary, the temporal undersampling study has shown that both filters can

produce accurate inverse solutions when the Courant condition is violated for source

dynamics dominated by either: (i) the dynamic model’s transient response (CU1);

or (ii) the drive term (CU2). The diagnostic tests revealed well-tuned filters for both

datasets, although temporal correlations were observed in the innovations. These

were due to the presence of unmodeled inputs, and were worsened by temporal

undersampling. As temporal undersampling was applied (i.e., Δt increased), the

process noise covariance rose to compensate for the growing inaccuracy of the pro-

cess model. Parameter estimation was much less accurate for both filters. In the

case of CU1, the Courant condition prevented the wave velocity from being es-

timated accurately. In contrast, this condition was less important for CU2 where

differences between the simulated and estimated model parameters were greater.

These findings demonstrate the robust nature of these algorithms, but also reaffirm

the need to model the drive terms better in order to improve the accuracy of param-

eter estimates. Finally, it is also important to be cognisant of the impact of temporal

undersampling on filter performance.
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3.7 Discussion and Conclusions

In this chapter, a detailed study of KF-based EEG source localization was under-

taken using 1D simulations. Two KF algorithms — one a standard linear filter, the

other spatially whitened — were applied to simulated EEG data generated using a

telegrapher’s equation and a simplified volume conductor model. To better reflect

true brain dynamics, the simulated EEG was given spatial variation by allowing

two parameters of the telegrapher’s equation to be functions of position. Estimation

of the spatial variations was incorporated into the filtering algorithm by allowing

the same parameters in the process model of both KFs to have spatial variations

of the same functional form. Model and noise parameters were selected through

AIC minimization. The KFs were applied to simulated data displaying both tran-

sient and driven dynamics. Temporal undersampling was also investigated. The

inverse solutions for each scenario were analyzed in detail. This analysis included

the application of standard diagnostic tests for evaluating KF performance. The key

findings of this study are discussed below:

(i) The combination of Kalman filtering with a likelihood maximization tuning

step can correctly estimate the spatial variation of model parameters from sim-

ulated EEG with transient dynamics. This leads to more accurate inverse solu-

tions and improved filter performance. It also provides a simple, preliminary

demonstration of parametric imaging.

(ii) The estimation of spatially varying model parameters is both less reliable and

less advantageous for the more realistic scenario of driven EEG dynamics.

This is because neither filter models the drive term(s) explicitly. Therefore,

estimated parameter values need to be interpreted with caution, and the mod-

eling of exogenous inputs introduced in future filter implementations.

(iii) Despite the difficulties experienced with parameter estimation, both filter al-

gorithms can accurately reconstruct the simulated current dipoles, with the

suboptimal, but computationally less burdensome, SWKF performing simi-

larly to the more optimal LKF, especially in terms of RMSE values, and in

the most part for the various tests evaluating KF performance. However, the

estimated state covariances for the SWKF are found to be consistently larger

for driven dynamics (see Table 3.9). This expected finding is due to the spa-

tial whitening transformation which removes correlation information between
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Table 3.9: Estimated [σe(v,Nk)] and predicted [σp(v,Nk)] standard deviations for the

current dipole at voxel v at time step Nk for the datasets TU, TV, DU, and DV, with IED

= 0.02 m and SNR = 10. These values are obtained from the estimated and predicted

state covariance matrices, P (k|k) and P (k|k−1), respectively. The distance of v from

the origin is indicated by x(v) = (v − 1)Δx.

Dataset Filter Profile v x(v) (m) σe(v,Nk) (A m) σp(v,Nk) (A m)

TU LKF U 51 0.25 0.608 0.611

TU LKF G 51 0.25 0.574 0.576

TU SWKF U 51 0.25 0.355 0.357

TU SWKF G 51 0.25 0.345 0.347

TV LKF U 26 0.125 5.65 6.97

TV LKF G 26 0.125 0.746 0.747

TV SWKF U 26 0.125 9.23 9.67

TV SWKF G 26 0.125 5.64 5.82

DU LKF U 51 0.25 4.10 6.44

DU LKF G 51 0.25 3.90 6.17

DU SWKF U 51 0.25 12.30 13.22

DU SWKF G 51 0.25 14.58 15.86

DV LKF U 75 0.37 6.75 10.04

DV LKF G 75 0.37 6.12 9.16

DV SWKF U 75 0.37 17.20 18.32

DV SWKF G 75 0.37 17.30 18.47

neighboring voxels, and can be observed in the smaller reductions of the state

covariance achieved through the update step of the SWKF compared to the

LKF (see Table 3.9). Importantly, these larger state covariance values are not

significant enough to affect the interpretation of the inverse solutions.

(iv) Hyperbolic partial differential equations, such as the telegrapher’s equation

used in this work, are an appropriate choice for modeling large-scale brain ac-

tivity. However, via the Courant condition, the spatiotemporal discretization

places an upper bound on the wave velocity, and therefore the spatial cou-

pling term. If this condition is ignored, filter performance can be degraded,
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although reliable state — but not parameter — estimates are still produced

even when b cannot be correctly estimated. This comes at the price of larger

state covariance estimates and less reliable optimization performance.

(v) The performance of both filters was found to be robust across SNRs ranging

from 2–20.

(vi) As expected the electrode spacing was found to affect inverse solution per-

formance. For instance, when less data was available to constrain the inverse

solution (IED = 10 voxels), the AIC minimum found through optimization be-

came dependent on parameter starting values. In this situation, there exists a

number of AIC minima with values similar to the ‘correct’ one. Such ambi-

guity can lead to state and parameter estimates which are inaccurate, yet still

describe the observed data.

(vii) More broadly, these findings are also applicable to other spatiotemporal sys-

tems where KFs are used to solve joint state and parameter estimation.

The above findings suggest several potential improvements and future directions

for this work:

(i) Perhaps the most significant finding from this study is the ability of both KFs

to reliably perform state estimation, even when challenged by driven dynam-

ics and temporal undersampling. Parameter estimation was found to be less

reliable, and was due to the unmodeled drive term, which needs to be han-

dled by the KFs. Several potential strategies are now proposed. One approach

is to estimate the drive term using basis functions (e.g., [116]). Another op-

tion is to employ a process model that contains an explicit cortical input, such

as [80, 117, 119] through its corticothalamic loop. An alternative approach is

to use a GARCH formulation of these algorithms, which could compensate

for the unmodeled drive term.

(ii) To accurately capture the spatial variation of brain dynamics, the algorithms

should ideally be able to estimate arbitrary spatial profiles for model parame-

ters.

(iii) Temporal undersampling issues must be overcome in order to accurately esti-

mate the wave velocity. If available, an obvious workaround is to collect the
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EEG data at a higher (temporal) frequency. A more practical solution is to run

the process model (i.e., the filter’s prediction step) at a faster rate, and assimi-

late the observations as they become available. This approach has already been

used when applying filtering algorithms to fMRI time series [30, 64, 69, 109].

Here, this strategy is needed because the time steps over which models de-

scribing BOLD signal dynamics can be reliably integrated are significantly

smaller than the time between consecutive scans.

(iv) Parameter estimates could be improved and local minima avoided if the op-

timization step was run from multiple starting points. This would produce a

probability distribution for the parameter values, as done in [116].
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Chapter 4

Kalman-Filter-Based EEG Source

Localization with a Spatially-Varying

Process Model: Whole-Brain EEG

4.1 Introduction

In this chapter the concepts and findings from the 1D simulation study described in

Chapter 3 are applied — through a pilot study — to the whole-brain inverse solution

analyzed in Chapter 2. This pilot study expands the analysis of the SWKF algorithm

to address the following issues:

• The accuracy and biophysical interpretability of process model parameters

estimated from both simulated and clinical EEG data.

• The effect on inverse solution performance of introducing simple spatial vari-

ation of model parameters.

• The impact of temporal undersampling — via the Courant condition — on

parameter estimation.

Focusing on these issues helps to achieve this study’s overall aim of providing fur-

ther insights into KF-based EEG source localization on two levels. Firstly, specific

comments regarding the application, performance, and enhancement of the SWKF

algorithm are made. Secondly, we provide a more general discussion about using

Kalman filters to solve the joint state and parameter estimation problem for func-

tional neuroimaging data. This is currently a very active and technically demanding
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area of research, and we outline some possible future directions that have emerged

from the work described in this thesis. The significant task of implementing these

recommendations will be the subject of future work. Since the two previous chap-

ters, both of which are self-contained papers, have already introduced much of the

background material and mathematics relevant to this chapter, we do not repeat it

here, and include only what is necessary to describe the motivation for this work,

along with any new material. Where necessary, the reader is referred to the relevant

parts of the previous chapters. We now briefly review Chapters 2 and 3 to provide

the context and motivation for the pilot study.

In Chapter 2, we introduced and evaluated a recently developed SWKF that

solved the EEG inverse problem for a realistic head model. The filter employed a

discrete spatiotemporal model, originally chosen as an ansatz, to describe the dy-

namics of the current dipoles — or more precisely their spatial Laplacian. Operating

in a Laplacianized state space significantly reduced the filter’s computational bur-

den. In this work it was recognized that for certain parameter ranges this dynamic

model’s continuous analog was the telegrapher’s equation, which is an appropriate

starting point for modeling large-scale brain activity for reasons that are outlined in

Secs 2.3.1 and 3.3. However, in Chapter 2 the coefficients a1, a2, and b1 [see Eqs

(2.10) – (2.12)] were estimated using unconstrained optimization, which meant they

could take on values that were inconsistent with the telegrapher’s equation defini-

tion, which requires the natural frequency fn, fractional damping coefficient ζ , and

wave velocity b to be � 0 (see Sec. 3.3). We also note that when estimated directly

— as was done in Chapter 2 — b1 should be � 0. The optimized values for the

temporal parameters (fn and ζ) were found to agree with the telegrapher’s equation

definition for both simulated and clinical data (see Sec. 2.6.1). In contrast, the spa-

tial term b1 [Eq. (2.12)] had the wrong sign for the clinical data (see Sec. 2.4.2). We

aim to remedy that here by estimating the wave velocity directly while imposing ap-

propriate constraints. Additionally, this study also applied standard diagnostic tests

to objectively evaluate KF performance. These tests identified spatial variation in

filter performance which could be improved by spatially-varying model parameters.

In Chapter 3, the SWKF algorithm was examined in detail using a 1D simula-

tion study. The simulated EEG data was generated using a telegrapher’s equation

and a simplified volume conductor model. Two of the model parameters (fn and

ζ) were also given spatial variation of a simple functional form to better reflect true
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brain dynamics (see Sec. 3.5.1). In the optimization step, model parameters were

explicitly constrained to ranges consistent with the process model being a telegra-

pher’s equation. For the purposes of comparison, inverse solutions were also com-

puted using the optimal LKF. This study found both filters produced accurate state

estimates, with the SWKF exhibiting performance similar to the LKF. Standard di-

agnostic tests also showed both filters to be well-tuned for all scenarios investigated

in the 1D study. However, parameter estimates for the SWKF and LKF were less

reliable, as they were degraded by both the unmodeled drive term and temporal

undersampling.

In this chapter, we return to solving the EEG inverse problem for both simu-

lated and clinical whole-brain EEG recordings. Following the method described in

Chapter 2, the SWKF is again applied to a realistic head model. Using the strategy

from Chapter 3, spatially varying model parameters (fn and ζ) are introduced into

the simulated EEG and optimization step using a known functional form. Unlike

Chapter 2, simulated whole-brain EEG is generated with non-zero wave velocities,

which means wave-like patterns of brain activity can be produced, and the SWKF’s

performance in this more realistic scenario can be studied in detail. Finally, at the

optimization step, model parameters are constrained to ranges consistent with the

process model being a telegrapher’s equation. The Courant condition, which places

an upper bound on stable estimates of the wave velocity, is also imposed by the opti-

mizer. These constraints were previously applied to parameter estimates in Chapter

3, but not Chapter 2.

The remainder of this chapter is structured as follows. Section 4.2 outlines the

pilot study. Here the whole-brain inverse problem is recapitulated, and the introduc-

tion of spatially varying model parameters into the gray matter mask is described.

Details of the simulated and clinical EEG datasets are also provided in this section,

along with a brief overview of the SWKF algorithm and the methods used to tune

and evaluate its performance. The results for the simulated and clinical EEG are

presented in Sec. 4.3. Section 4.4 discusses these results and makes some conclud-

ing remarks.
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4.2 Details of Pilot Study

The pilot study reinvestigates the EEG inverse problem described in Chapter 2.

Here the inverse solution’s core components — including the problem formulation,

the dynamic model, the SWKF, the gray matter mask, and the lead field matrix —

remain unchanged from Chapter 2. To avoid repetition, the reader is referred to

Secs 2.2 – 2.4 which contain the original introduction of the whole-brain inverse

problem.

One important modification in this chapter is the introduction of spatially vary-

ing model parameters to the whole-brain EEG inverse problem using the method

described in Chapter 3. This approach restricts each parameter’s spatial profile to

a known functional form, which allows the existing filtering framework to be used

with the addition of only a small number of parameters. For the pilot study we have

chosen to model the spatial variation of the alpha rhythm, which typically increases

in strength and frequency from anterior to posterior [101]. The spatial dependence

of alpha activity was selected for several reasons: (i) it is a robust and widely studied

feature of EEG data; (ii) it can be modeled by making the parameters that describe

the temporal resonance of the telegrapher’s equation (fn and ζ) a simple function

of space; and (iii) it allows the eyes-closed EEG recording from Chapter 2, which

displays the aforementioned spatial characteristics of the alpha rhythm, to be rein-

vestigated with spatially varying model parameters.

To achieve the desired anterior to posterior variation of the alpha rhythm, we

propose a sinusoidal function s(v) to describe the spatial profiles for the natural

frequency (s = fn) and damping coefficient (s = ζ) in this study. The sinusoid at

voxel v, with coordinates V = (x, y, z)T is given by

s(v) = cs + ds cos θ, (4.1)

where cs and ds are the sinusoid’s mean and amplitude respectively, and the co-

sine of the angle θ measured in the sagittal plane between the origin vo — whose

coordinates are Vo = (xo, yo, zo)
T — and voxel v is

cos θ =
zo − z√

(yo − y)2 + (zo − z)2
. (4.2)

Figure 4.1(a) shows how θ is constructed for the origin coordinates used in this

study [Vo = (11, 0, 13)T ]. We emphasize that θ is only a function of each voxel’s

axial (y) and coronal (z) — but not sagittal (x) — position, which means the choice
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Figure 4.1: Spatially varying model parameters for whole-brain gray matter mask.

The parameters fn and ζ are a function of θ [see Eq. (4.1)]. Frame (a) shows how θ

is constructed for the origin coordinates used in this study. Note that θ is independent

of sagittal (x) position. Frame (b) plots the general sinusoidal profile between θ = 0

(anterior) and θ = π (posterior). Frames (c) – (f) show the spatial profiles for dataset

DV (see Sec. 4.2.1.2). Frames (c) and (d) show the spatial profile for fn in the sagittal

and axial planes, respectively. The spatial profile for ζ is shown for the same planes in

frames (e) and (f). Note that for the sagittal slices, the letters A and P denote anterior

and posterior, respectively. Axial slices are shown using neurological convention; i.e.,

left is left and right is right.
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of xo is arbitrary. Therefore, fn and ζ exhibit no left-to-right variation, which is a

reasonable approximation for an initial model of the alpha rhythm’s spatial proper-

ties. More complex models could be introduced in the future. The general spatial

profile produced by this sinusoidal function is plotted in Fig. 4.1(b). A specific ex-

ample of the resulting spatial profiles for fn and ζ are shown for dataset DV in Figs

4.1(c)-4.1(f). The spatial variation of fn within the gray matter mask is displayed in

the sagittal and axial planes, in Figs 4.1(c) and 4.1(d), respectively, while the spatial

profile for ζ using the same planes is shown in Figs 4.1(e) and 4.1(f). Giving the

parameters fn and ζ spatial dependence means the coefficients for the discretized

3D telegrapher’s equation a1, a2, and b1 [Eqs (2.10) – (2.12)] must now be evaluated

at each voxel. This topic is discussed in Sec. 3.3 for the 1D simulation study.

4.2.1 Simulated EEG Data

To investigate various aspects of filter performance, four simulated EEG datasets

were generated using the process model Eq. (2.7), with each dataset having its own

source dynamics. The first two datasets (TU and TV) are produced by the system’s

transient dynamics, while the next two (DU and DV) are driven by a spatiotemporal

input. Following the convention from Chapter 3, the letter U indicates the simulated

current dipoles were produced using spatially uniform model parameters, while the

letter V indicates spatially varying parameters.

Before introducing the simulated datasets individually, the features common to

all are discussed. Firstly, the spatiotemporal discretization (Δx and Δt) matches

the one used in Chapter 2. The spatial discretization Δx = 7 mm is determined

by the gray matter mask (see Sec. 2.4). To mirror the clinical data, three of the

four simulated datasets — TU, DU, and DV — comprise 2 s of EEG generated at

a sampling rate of 256 Hz. Due to the stronger damping present in TV, this EEG

dataset is 1 s in length and sampled at 512 Hz.

The model parameters fn and ζ , which are specified for the simulations and

estimated by the KFs, are given either a uniform or sinusoidal spatial profile. The

model parameters are summarized in Table 4.1. The uniform profile was used in

Chapter 2 and allows for comparison with the sinusoidal profile, which is selected

for its ability to produce source dynamics with realistic spatial variation. Further-

more, using a spatial profile of a known functional form permits the investigation
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Table 4.1: Simulated current dipole parameters for transient (TU and TV) and driven

(DU and DV) datasets.

Dataset b (m s-1) ν cfn (Hz) dfn (Hz) cζ dζ σ2
ε

TU 0.8 1.34 10 — 0.01 — 9.76× 10−3

TV 1.6 1.34 9 −2 0.05 0.05 9.80× 10−3

DU 0.8 1.34 10 — 0.1 — 9.58× 10−3

DV 0.8 1.34 9 −2 0.1 0.1 9.81× 10−3

of spatially varying model parameters using the existing filtering framework, with

the addition of only a small number of parameters. In contrast, the wave velocity

is again assumed to be spatially uniform for all datasets. This spatial invariance

is a reasonable approximation [104]. The magnitude of b — which is 0.8 m s-1

for all datasets except TV where b = 1.6 m s-1 — was selected so the Courant

condition is satisfied for the spatiotemporal grids used. This is shown in Table 4.1

where ν = 1.34 for all four datasets, which is comfortably below its maximum

allowed value of
√
3. However, cortical activity is known to propagate at up to 10

m s-1 [105, 119]. This discrepancy was present in Chapter 2, where the same spa-

tiotemporal discretization was used and restricted b to values well below 10 m s-1.

Following the approach from Chapter 2, all current vectors in the simulated datasets

are oriented in the z-direction (coronal axis) to maximize the scalp voltages at the

occipital electrodes (i.e., O1 and O2).

4.2.1.1 Transient Source Dynamics

The first two sets of simulated current dipoles (TU and TV) are generated by the

source model’s transient response to spatial Gaussian initial conditions, with the

drive term set to zero. These datasets provide a baseline for assessing the SWKF’s

performance as the drive term was found to distort parameter estimates in Chapter 3.

The first transient dataset (TU), assumes fn and ζ are spatially uniform, so only cfn
and cζ are required [see Table 4.1 and Figs 4.2(g) and 4.2(h)]. The initial conditions

are defined by the 3D spatial Gaussian Eq. (2.38) introduced in Sec. 2.4.1. Here the

Gaussian has FWHM = 30 mm (activation zone radius 30 mm) and is centered in

the right occipital pole V c = (13, 7, 24)T . For the second transient dataset (TV), fn

and ζ have sinusoidal profiles with the parameters listed in Table 4.1 and plotted in
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Figure 4.2: Results of inverse solution for transient source dynamics with uniform

parameters (TU). A snapshot of the simulated source dynamics is shown on an axial

slice in frame (a). Frame (b) shows the simulated EEG. The SWKF’s inverse solution

when fitting a uniform profile for fn and ζ is shown in (c), and the innovations in (d).

Frames (e) and (f) show the same results when fitting sinusoidal profiles. Frames (a),

(c), and (e) are all shown at 1.21 s. The vertical voltage scale of the traces in (d) and

(f) have been expanded by factors of 6.1 and 6.0 relative to (b), respectively. Frame (g)

shows the simulated (black line) and estimated spatial profiles for fn. In (g) the red and

blue lines indicate the uniform and sinusoidal profiles, respectively. The spatial profile

for ζ is shown in (h) using the same key as (g).
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Figure 4.4: Results of inverse solution for transient source dynamics with spatially

varying parameters (TV). This figure uses the same format as Fig. 4.2. Frames (a), (c),

and (e) are all shown at 0.41 s. The vertical voltage scale of the traces in (d) and (f)

have been expanded by factors of 5.5 and 6.1 relative to (b), respectively.
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Figs 4.4(g) and 4.4(h). The initial conditions for TV comprise two 3D spatial Gaus-

sians. Two are required to produce transient dynamics which clearly demonstrate

spatial dependence. One Gaussian — located in the right occipital lobe — is the

same as used in TU, and the other is centered in the left frontal lobe V c = (6, 6, 4)T

with FWHM = 30 mm (activation zone radius 30 mm). A snapshot of the resulting

current dipoles for TU and TV are shown in Figs 4.2(a) and 4.4(a), respectively.

4.2.1.2 Driven Source Dynamics

The second pair of simulated current dipoles (DU and DV) is produced by driv-

ing the dynamic model with a spatiotemporal input. This term simulates thalamic

input to the cortex and is similar to those used in Chapters 2 and 3. Following

the approach outlined in Sec. 3.5.1.2, the temporal component of the drive ut(k) is

again modeled by the sum of randomly-phased sine functions defined by Eq. (3.40).

The sine functions have an even spacing of 0.1 Hz between 0 and 20 Hz. The drive

term’s spatial component us is modeled by the same 3D spatial Gaussian, Eq. (2.38),

that provided the initial conditions for the transient source dynamics in this study

(see Sec. 4.2.1.1). To compute the spatiotemporal drive term uL, the temporal ut

and spatial us components are multiplied together, as in Eq. (3.41). As done in

the 1D study, the deterministic drive uL is then added to the right hand side of the

discretized 3D telegrapher’s equation Eq. (2.7).

The first dataset with driven dynamics (DU) assumes fn and ζ are spatially uni-

form [see Table 4.1 and Figs 4.6(g) and 4.6(h)], with one drive, where us is the same

spatial Gaussian used for dataset TU. This produces a highly resonant source of 10

Hz oscillations in the right occipital lobe which spread over the cortex as shown in

Fig. 4.6(a). The other dataset (DV) uses sinusoidal profiles for fn and ζ [see Ta-

ble 4.1 and Figs 4.8(g) and 4.8(h)] to reproduce some typical features of the alpha

rhythm, namely the spatial variation of its frequency and strength [101]. In order to

generate these dynamics, the gray matter mask is driven by two inputs which excite

regions with different parameter values. This results in two alpha sources with dis-

tinct spatiotemporal characteristics, which more closely models what is observed in

real EEG recordings. The first drive term is the same as the one used for dataset

DU. Since it is centered in the right occipital lobe where fn ≈ 11 and ζ ≈ 0, it gen-

erates a strong 11 Hz resonance. The second drive term is comprised of the spatial

Gaussian from TV which was located in the left frontal lobe, and the same temporal
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Figure 4.6: Results of inverse solution for driven source dynamics with uniform pa-

rameters (DU). This figure uses the same format as Fig. 4.2. Frames (a), (c), and (e)

are all shown at 0.71 s. The vertical voltage scale of the traces in (d) and (f) have both

been expanded by a factor 4.4 relative to (b), respectively.
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Figure 4.8: Results of inverse solution for driven source dynamics with spatially vary-

ing parameters (DV). This figure uses the same format as Fig. 4.2. Frames (a), (c), and

(e) are all shown at 1.41 s. The vertical voltage scale of the traces in (d) and (f) have

been expanded by factors of 3.8 and 4.8 relative to (b), respectively.
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input used for the first drive term. Given this source is located where fn ≈ 7 Hz

and ζ ≈ 0.2, it produces a weaker 7 Hz resonance. Figure 4.8(a) shows a snapshot

of the resulting current densities for dataset DV.

4.2.1.3 Computing EEG Data

To produce the simulated EEG data, we multiply J by the LFM K and apply aver-

age reference. The LFM from Chapter 2 is used again. This matrix is computed for

the International 10-20 System (Nc = 19) by solving the vector Laplace equation

for a 3-shell spherical head model via the boundary element method [115]. White

Gaussian observation noise was added to the EEG to give a signal to noise ratio

(SNR) of 10 in terms of standard deviations of the voltages. This SNR is typical for

EEG recordings [121]. The simulated observation noise covariances σ2
ε are listed in

Table 4.1, and the EEG for TU, TV, DU, and DV, is plotted in Figs 4.2(b), 4.4(b),

4.6(b), and 4.8(b) respectively. Figures 4.3, 4.5, 4.7, and 4.9, show the PSD of the

EEG time series at each electrode. The spatial dependence of the EEG — which

reflects the spatial dependence of the underlying source dynamics — can be seen

for DV in Fig. 4.9 where the frequency and strength of the alpha rhythm displays

anterior to posterior variation.

4.2.2 Clinical EEG Data

In this study the clinical recording from Chapter 2 is used again (see Sec. 2.4.2).

This data was recorded from a healthy male child aged 8.5 years, in awake rest-

ing state with eyes closed. Electrodes were placed according to the 10-20 system

and the data was collected at a sampling rate of 256 Hz. A 2 s time series was

selected from the recording for analysis and is shown, using average reference, in

Fig. 4.10(a). This data displays characteristic alpha oscillations which are most

prominent in the occipital electrodes, and attenuate posterior to anterior. Figure

4.11, which shows the time series PSD at each electrode, clearly demonstrates the

spatial dependence of brain activity present within this dataset.
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Figure 4.10: Results of inverse solution for clinical EEG. Frame (a) shows the clinical

EEG. A snapshot of the SWKF’s inverse solution when fitting a uniform profile for

fn and ζ is shown on an axial slice in (b), and the innovations in (c). Frames (d)

and (e) show the same results when fitting sinusoidal profiles. Frames (b) and (d) are

both shown at 0.47 s. The vertical voltage scale of the traces in (c) and (e) have been

expanded by factors of 4.7 and 4.6 relative to (a), respectively. Frame (f) shows the

estimated spatial profiles for fn. In (f) the red and blue lines indicate the uniform and

sinusoidal profiles, respectively. The spatial profile for ζ is shown in (g) using the same

key as (f).
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4.2.3 Courant Condition

The Courant condition was introduced in Chapter 3 for the 1D telegrapher’s equa-

tion, where it was shown to impose an upper bound on the wave velocity that can be

used in simulations or estimated from the data for a given spatiotemporal grid (see

Secs 3.3 and 3.5.1.3). The 3D telegrapher’s equation used here, and previously in

Chapter 2, is also subject to this condition. To ensure stability of the 3D discretized

process model Eq. (2.7), the Courant number ν [21], which for a 3D hyperbolic

equation is given by

ν =
bxΔt

Δx
+
byΔt

Δy
+
bzΔt

Δz
, (4.3)

should be less than νmax =
√
3 for a nearest neighbor approximation of the Lapla-

cian term [132]. Here (bx, by, bz) and (Δx, Δy, Δz) are the wave velocities and

the spatial grid size in each of the three Cartesian coordinates, respectively. Given

the voxels are cubic (i.e., Δx = Δy = Δz) and the wave velocity is assumed to be

isotropic (i.e., bx = by = bz = b), the Courant condition becomes

bΔt

Δx
� 1√

3
. (4.4)

Compared to the 1D case [see Eq. (3.13)], the Courant condition in 3D more severely

restricts the maximum wave velocity bmax for a given spatiotemporal grid. For the

values of Δx and Δt used by the whole-brain inverse solution in Chapters 2 and

4, bmax = 1.03 m s-1, which is well below the 10 m s-1 cortical activity is known

to propagate at [105, 119]. Furthermore, to ensure numerical stability in practice,

bmax must be below this value by approximately 10 − 20%. Therefore, the Courant

condition can prevent the inverse solution from correctly estimating b — and as a

result other model parameters — from clinical EEG recordings. In Chapter 3 the

temporal undersampling study investigated this issue on a simulated 1D cortex and

found parameter estimation to be inaccurate, while state estimation remained ro-

bust. In this chapter, we extend this work into 3D to study the impact of temporal

undersampling on a whole-brain inverse solution.

4.2.4 Parameter Estimation

Owing to its success in Chapters 2 and 3, optimal values for the process model

parameters and noise covariances are once again selected through numerical min-

imization of the AIC. The reader is referred to Secs 2.3.3 and 3.5.2 for further
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information regarding this technique. Similarly to Chapter 3, we define two pro-

cess model parameter vectors; one for fitting spatially uniform parameters ϑu =

(cfn , cζ, b), and the other for parameters with a sinusoidal profile ϑs = (cfn , dfn, cζ,

dζ , b). Recall that the process and observation noise covariances (σ2
η and σ2

ε ) are

also estimated in this step. The AIC is calculated via Eqs (3.43) and (3.44). As

done in Chapter 3, constrained optimization is used here. The parameters are given

bounds consistent with the telegrapher’s equation definition; these are displayed in

Table 4.2. To ensure numerical stability of the process model, the upper bound for

b is restricted to 90% of its absolute maximum bmax. Since a reference was selected

from the set of electrodes, we again exclude one of the electrode sites from the anal-

ysis [47], so the number of channels is Nc = 18. As in Chapter 2, Pz is chosen to

be omitted. All datasets were normalized to unit variance after referencing.

For each of the five EEG datasets used in this study, the SWKF’s optimal param-

eters are estimated assuming the spatial profile for the model parameters is either

uniform or sinusoidal. The filter initialization follows the procedure employed in

Chapter 2 where j̃KF (v, 1|1) is set to a 0 column vector, and P̃ (v, 1|1) to an iden-

tity matrix for all voxels. For the simulated data, each model parameter’s starting

value is randomly selected from an interval spanning ±50% of the parameter’s sim-

ulated value. This interval is modified by the parameter bounds in Table 4.2 where

appropriate. The starting values for the clinical data are randomly chosen from an

interval covering the broadest possible range of permitted values. To allow filter

transients to pass, the AIC is computed from the 150th time point onwards. Once

again, all components of this algorithm are implemented in Matlab [91] and run

on an IBM ThinkPad R51 (Intel Pentium 1.6 GHz, 1 GB RAM). The AIC mini-

mization is performed by Matlab’s ‘fmincon’ function which finds the minimum of

a constrained nonlinear multivariable function using sequential quadratic program-

ming (see Sec. 3.5.2 for relevant references). The same convergence criterion used

in Chapters 2 and 3 is employed again; i.e, the optimization algorithm terminates

when the change in the AIC at the next step is less than 1 × 10−10. The maximum

number of filter runs per optimization is set to 500; with each filter iteration tak-

ing approximately 5 minutes to complete, this means optimized parameters can be

computed within 42 hours. However, in practice, convergence is typically achieved

much sooner.
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Table 4.2: Bounds for the KF parameters. These bounds are imposed on the parameter

estimates by the optimization step (see Sec. 4.2.4).

Parameter lower bound upper bound

cfn (Hz) 0 —

cfn − |dfn | (Hz) 0 —

cζ 0 —

cζ − |dζ | 0 —

b (m s-1) 0 0.9bmax

log10(σ
2
η) — —

log10(σ
2
ε) — —

4.2.5 Evaluating Kalman Filter Performance

The methods described in Chapters 2 and 3 for evaluating KF performance are again

employed in this study. For a detailed overview the reader is referred to Secs 2.1,

2.5, 3.5.3, and the references cited therein. As discussed previously, simulation

studies allow KF performance to be assessed through the direct comparison of sim-

ulated and estimated values for the current dipoles and model parameters. These

comparisons, including calculation of the RMSE, are performed for the datasets

with transient (TU and TV) and driven (DU and DV) dynamics in Secs 4.3.1 and

4.3.2, respectively. Once again, the diagnostic tests which evaluate the statistical

properties of the innovation sequence are applied to each of the optimized filters in

this study. The results of these tests are shown in Table 4.4 and discussed throughout

Sec. 4.3.

4.3 Results

In this section, the optimized inverse solutions for the transient (TU and TV), driven

(DU and DV) and clinical EEG are presented for the SWKF, fitting both uniform

and sinusoidal spatial profiles for fn and ζ . The results are summarized in Tables

4.3 and 4.4, and Figs 4.2 – 4.12. More general comments regarding the inverse

solution and its performance are made in Sec. 4.4.
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4.3.1 Simulated EEG Data: Transient Dynamics

We begin by describing the performance of the inverse solution when applied to the

EEG for dataset TU [see Fig. 4.2(b) and Sec. 4.2.1.1]. Since the SWKF exhibits

similar performance when fitting either uniform or spatially varying parameters,

the results for both filters will be discussed together. Firstly, the inverse solutions

estimated the underlying current dipoles quite accurately. This is demonstrated by

the agreement between the simulated and estimated current dipoles, which can be

observed by: (i) comparing Fig. 4.2(a) with Figs 4.2(c) and 4.2(e), and (ii) looking

at the time series shown in Fig. 4.12(a). The small covariance and RMSE values

for TU shown in Fig. 4.12(a) and Table 4.3, respectively, also indicate an accu-

rate inverse solution. As may be expected, the introduction of spatially varying

parameters does not significantly alter inverse solution accuracy. Estimates of the

spatial profile for fn are reasonably accurate [see Fig. 4.2(g)], while ζ is overesti-

mated [see Fig. 4.2(h)]. The wave velocity was underestimated for both uniform and

spatially varying parameters (see Table 4.3). Each filter estimated the observation

noise covariance reliably. To further assess the filters’ performance, the innovation

sequences were analyzed. On inspection both sets of innovations appear quite sim-

ilar [see Figs 4.2(d) and 4.2(f)]. To provide a quantitative evaluation, the statistical

properties of the innovation sequences were computed. These showed the inno-

vations to be Gaussian, unbiased, and have the correct magnitude (see Table 4.4).

However, the autocorrelations and the spectral entropy values indicate that signifi-

cant correlations are present in a majority of the innovations. This means some of

the source dynamics remain unmodeled, which is expected since the optimization

step ‘explained’ the data with a parameter set that differs from the true parameter

values.

The second dataset investigating transient dynamics is TV, which introduces

spatial variation of the model parameters fn and ζ for the first time. Details of the

spatial profiles were provided in Sec. 4.2.1.1, and the simulated current dipoles and

EEG are shown in Figs 4.4(a) and 4.4(b), respectively. The results for dataset TV

are now described.

Once again the filter displayed comparable performance when fitting either uni-

form or sinusoidal parameter profiles. The filter reconstructed the current dipoles

accurately, as shown by the concordance between the simulated current dipoles

shown in Fig. 4.4(a), and the estimated activity plotted in Figs 4.4(c) and 4.4(e).
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Figure 4.12: Current dipole time series for a voxel in the right occipital pole for the

simulated data (TU, TV, DU, and DV) and the clinical EEG recording. Frame (a)

displays the time series at this particular voxel for TU. The solid black line indicates the

simulated current vector (available for TU, TV, DU, and DV datasets only), while the

solid red and blue curves represent the currents estimated by the SWKF when fitting

uniform or sinusoidal parameter profiles, respectively. The dashed lines indicate the

95% confidence intervals for the estimates using the same color coding. Frames (b),

(c), (d), and (e) show the same information for datasets TV, DU, DV, and the clinical

EEG, respectively.

122



T
ab

le
4.

3:
E

st
im

at
ed

pa
ra

m
et

er
s

an
d

pe
rf

or
m

an
ce

m
et

ri
cs

fo
r

si
m

ul
at

ed
an

d
cl

in
ic

al
E

E
G

.T
he

as
te

ri
sk

ne
xt

to
th

e
es

tim
at

e
of

b
fo

r
th

e
cl

in
ic

al

E
E

G
w

he
n

fit
tin

g
sp

at
ia

lly
un

if
or

m
pa

ra
m

et
er

s
in

di
ca

te
s

its
va

lu
e

is
at

th
e

op
tim

iz
er

’s
lo

w
er

bo
un

d
(s

ee
Se

c.
4.

3.
3

fo
r

m
or

e
de

ta
ils

).
Fo

r
th

e

pu
rp

os
es

of
co

m
pa

ri
so

n,
th

e
si

m
ul

at
ed

pa
ra

m
et

er
va

lu
es

us
ed

to
ge

ne
ra

te
da

ta
se

ts
T

U
,T

V
,D

U
,a

nd
D

V
ar

e
di

sp
la

ye
d

in
ro

w
s

T
U

si
m

,T
V

si
m

,

D
U

si
m

,a
nd

D
V

si
m

,r
es

pe
ct

iv
el

y.
N

ot
e

th
at

al
le

st
im

at
ed

pa
ra

m
et

er
s

(e
xc

ep
tσ

2 ε
)

de
sc

ri
be

th
e

sp
at

ia
lly

w
hi

te
ne

d
cu

rr
en

td
ip

ol
e
J̃

,r
at

he
r

th
an

J
.

D
at

as
et

c f
n

(H
z)

d
f
n

(H
z)

c ζ
d
ζ

b
(m

s-1
)

σ
2 η

σ
2 ε

A
IC

R
M

SE

T
U

si
m

1
0
.0
0

—
0
.0
1
0

—
0
.8
0

—
9
.7
6
×
1
0
−
3

—
—

T
U

1
0
.4
2

—
0
.1
5
2

—
0
.3
7
3

3
.2
9
×
1
0
−
8

8
.3
0
×
1
0
−
3

−5
9
9
1

7
.5
4
×
1
0
−
3

T
U

1
0
.8
7

−0
.5
0
9

0
.1
5
0

−0
.0
2
4
0

0
.3
2
0

2
.9
4
×
1
0
−
8

8
.5
5
×
1
0
−
3

−6
4
1
4

1
.0
4
×
1
0
−
2

T
V

si
m

9
.0
0

−2
.0
0

0
.0
5
0

0
.0
5
0

1
.6
0

—
9
.8
0
×
1
0
−
3

—
—

T
V

7
.9
3

—
0
.4
8
6

—
1
.4
3

3
.8
2
×
1
0
−
9

8
.8
5
×
1
0
−
3

−6
9
7
9

7
.0
1
×
1
0
−
3

T
V

1
3
.0
4

1
.3
5

0
.2
7
4

−0
.0
4
0
0

0
.2
7
8

7
.7
1
×
1
0
−
9

9
.1
2
×
1
0
−
3

−7
3
1
5

1
.1
6
×
1
0
−
2

D
U

si
m

1
0
.0
0

—
0
.1
0
0

—
0
.8
0

—
9
.5
8
×
1
0
−
3

—
—

D
U

9
.9
8

—
0
.1
7
5

—
0.

09
83

1
.0
7
×
1
0
−
7

7
.0
1
×
1
0
−
3

−2
3
8
7

6
.4
6
×
1
0
−
3

D
U

1
4
.6
1

9
.1
3

0
.7
0
9

0
.6
4
0

0
.7
5
2

1
.1
6
×
1
0
−
7

8
.8
3
×
1
0
−
3

−5
9
8
0

2
.3
0
×
1
0
−
2

D
V

si
m

9
.0
0

−2
.0
0

0
.1
0
0

0
.1
0
0

0
.8
0

—
9
.8
1
×
1
0
−
3

—
—

D
V

8
.3
6

—
0
.2
4
7

—
0
.5
8
1

8
.6
0
×
1
0
−
8

7
.1
5
×
1
0
−
3

−2
5
8
5

7
.0
9
×
1
0
−
3

D
V

7
.4
0

−2
.3
9

0
.5
1
3

0
.4
6
1

0
.7
0
1

7
.1
6
×
1
0
−
8

7
.5
8
×
1
0
−
3

−3
4
8
0

1
.0
1
×
1
0
−
2

C
lin

.
5
.4
8

—
0
.8
1
1

—
1
.0
0
×
1
0
−
1
0
*

1
.1
5
×
1
0
−
7

3
.4
8
×
1
0
−
1
0

−3
1
1
3

—

C
lin

.
5
.4
5

−1
.3
6

0
.9
1
7

0
.7
0
0

5
.5
2
×
1
0
−
7

1
.0
8
×
1
0
−
7

6
.0
8
×
1
0
−
1
5

−3
3
1
7

—

123



Table 4.4: Results of KF performance evaluation tests for simulated and clinical EEG

data. The KF’s spatial profile for fn and ζ is either uniform (U) or sinusoidal (S)

as indicated. The number of channels whose innovation is Gaussian and unbiased

according to Kolmogorov-Smirnov (KS) and t-tests, respectively, are shown (i.e., P >

0.05). Also displayed is the overall noise level statistic (NLS) Eq. (3.47) and its 95%

confidence intervals (CI). Innovation whiteness is characterized by: (1) counting the

channels < 90% of its autocorrelation (AC) within the 2 standard deviations for a

white signal; and (2) showing the range of the innovation spectral entropy (ΔY SE)

across all channels.

Dataset Profile KS t-test NLS (95% CI) AC ΔY SE

TU U 18 17 17.6 (17.4-18.6) 16 0.647-0.974

TU S 18 18 17.6 (17.4-18.6) 15 0.682-0.974

TV U 17 17 17.8 (17.4-18.6) 14 0.840-0.974

TV S 18 18 17.8 (17.4-18.6) 16 0.647-0.979

DU U 18 17 18.0 (17.4-18.6) 12 0.724-0.974

DU S 18 18 17.9 (17.4-18.6) 18 0.689-0.930

DV U 18 17 18.0 (17.4-18.6) 17 0.683-0.960

DV S 18 18 17.8 (17.4-18.6) 16 0.667-0.964

Clin. U 18 11 18.0 (17.4-18.6) 15 0.777-0.984

Clin. S 18 12 18.0 (17.4-18.6) 15 0.793-0.981
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The time series for a single voxel is shown in Fig. 4.12(b) and confirms the agree-

ment between the simulated and estimated activity. Small error covariances are

also noted in Fig. 4.12(b). The RMSE values are small for both parameter profiles.

When fitting a uniform profile for fn the optimization step selected a value between

its simulated minimum and maximum values, as shown in Fig. 4.4(g). However,

when fitting the sinusoidal profile, we find that fn is slightly overestimated and the

spatial trend is not correctly identified. For ζ , both spatial profiles significantly over-

estimate its value; the uniform profile more than the sinusoidal one [see Fig. 4.4(h)].

The exact parameter values can be read from Table 4.3. The wave velocity for the

uniform profile was only 10% below its true value, while the sinusoidal profile’s b

value was underestimated by nearly a factor of six. Turning to the noise covariances;

the observation noise was estimated accurately, while the process noise covariance

had similar values for both spatial profiles.

The innovations also revealed well-tuned filters for the inverse solutions fitting

uniform and sinusoidal parameters. The diagnostic tests showed the innovations to

be Gaussian, unbiased and have the correct magnitude (see Table 4.4). As observed

in Figs 4.4(d) and 4.4(f), some structure is still present in the innovation sequences.

Formal statistical testing confirms the presence of correlations in most of the inno-

vations. Spectral entropy values also vary greatly between channels.

In summary, when the SWKF was applied to simulated EEG recordings with

transient dynamics, it was found to be well-tuned and produce accurate state esti-

mates. Parameter estimation was less reliable, particularly for ζ and b, these be-

ing consistently over- and under-estimated, respectively. Interestingly, this phe-

nomenon of fitting the EEG with parameter values significantly different from their

simulated ones was also observed in the 1D simulation study in Chapter 3 when

the electrode density was reduced (IED = 0.05 m), although the results were not

reported in detail (see Sec. 3.7). Returning to the whole-brain inverse solution, we

note that the parameters’ spatial trends were also not correctly identified. The rela-

tively poor performance of the parameter estimation seen here is in contrast to the

accurate parameter estimates produced by the SWKF when applied to EEG display-

ing transient dynamics in the 1D simulation study (see Sec. 3.6.1). This issue will

be discussed in Sec. 4.4. The SWKF is now applied to simulated EEG produced by

driven dynamics. Its performance is described in the following section.
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4.3.2 Simulated EEG Data: Driven Dynamics

The first dataset investigating driven dynamics is DU, which contains a single source

and uniform spatial parameters, as outlined in Sec. 4.2.1.2. The simulated current

dipoles and EEG for DU are shown in Figs 4.6(a) and 4.6(b), respectively. When

the two spatial profiles were applied to the simulated EEG for DU, they were found

to produce quite similar results. Therefore, the results for both spatial profiles

are discussed together. Firstly, the inverse solution estimated the current dipoles

quite accurately. This is illustrated for the two profiles by the close agreement

between the simulated and estimated current dipoles, which is evident when com-

paring Fig. 4.6(a) with Figs 4.6(c) and 4.6(e). The single voxel time series plotted

in Fig. 4.12(c) also demonstrates the accuracy of both profiles. We also note that the

RMSE values are small for both parameter profiles. In terms of parameter estima-

tion, the same inaccuracies observed for the simulated data with transient dynamics

are present here. Estimation of fn was again more reliable, with the uniform profile

almost exactly matching its simulated value [see Fig. 4.6(g)]. While cfn for the sinu-

soidal profile was similar to its true value, this profile introduced spatial variation of

fn that was not present in the simulated data. As already observed for datasets TU

and TV, ζ is again inflated by both spatial profiles [see Fig. 4.4(h)]. Furthermore,

the estimated sinusoidal profile displays significant, and incorrect, spatial variation

of ζ . Wave velocity estimation continues to be unpredictable. It was greatly under-

estimated for the uniform profile, while for the sinusoidal profile it was within 6%

of its true value. The process noise covariances have similar values for both spatial

profiles, and the observation noise was estimated accurately.

Turning to the innovation sequences plotted in Figs 4.6(d) and 4.6(f), there are

clearly temporal correlations in some channels, particularly O1 and O2, these being

closest to the unmodeled drive term. As shown in Table 4.4, the innovations for

both profiles were found to be Gaussian, unbiased, and to have the correct mag-

nitude. However, as indicated by the time series plots, there are significant small

amplitude correlations present in nearly all channels for both the uniform and sinu-

soidal profiles. This finding is consistent with the considerable variation seen in the

innovation spectral entropies.

The second dataset containing driven dynamics is DV. This dataset is the most

complex in the simulation study and was produced using sinusoidal parameter pro-

files and two drive terms (see Sec. 4.2.1.2). Figure 4.8(a) shows a snapshot of the
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simulated current dipoles while the EEG time series is displayed in Fig. 4.8(b).

The results for DV follow a similar pattern to DU, with the two parameter profiles

producing comparable results. Therefore, the performance of the two filters are

reviewed together once more.

Starting with the inverse solutions for DV, both filters were found to reconstruct

the current dipoles accurately. This is demonstrated by the concordance between

the simulated current dipoles in Fig. 4.8(a) and their estimated counterparts shown

in Figs 4.8(c) and 4.8(e). The single voxel time series in Fig. 4.12(d) also confirms

the close agreement between the simulated and estimated activity for both spatial

profiles. The RMSEs for both profiles have similar values, with the sinusoidal pa-

rameters not improving the inverse solution’s accuracy. As already seen with TU,

TV, and DU, parameter estimation is again found to be less reliable than state es-

timation, with the optimization step choosing inexact parameter profiles. The DV

estimates for fn are displayed in Fig. 4.8(g). This figure shows when fitting the uni-

form profile for fn the optimization step selects a value between the parameter’s true

maximum and minimum value. For the sinusoidal case, fn is slightly overestimated

and the sign of the amplitude is incorrect. Figure 4.8(h) shows that ζ is overesti-

mated again for both profiles, and the sign of amplitude for the sinusoidal profile

is reversed. The wave velocity was underestimated by 27.5% and 12.5% when fit-

ting uniform and sinusoidal parameters, respectively. The process noise covariance

values are small and similar to each other. The observation noise covariance is

accurately estimated for both profiles.

Looking at the innovations shown in Figs 4.8(d) and 4.8(f), some temporal cor-

relations are clearly visible, especially in the channels nearest the drive terms (FP1,

FP2, O1, and O2). The diagnostic tests show the innovations for both spatial profiles

to be Gaussian, unbiased and have the correct magnitude. Confirming the observa-

tions from the innovation time series, significant correlations are found in nearly all

channels for both profiles. The innovation spectral entropies show a spread similar

to those seen for TU, TV, and DU.

In conclusion, the results presented here have demonstrated the ability of SWKF

to solve the whole-brain EEG inverse problem for the more realistic case of driven

dynamics. For both driven datasets, the filters produced accurate state estimates,

and generally positive results for the diagnostic tests; indicating that the filters are

indeed well-tuned. As seen previously in the transient dynamics study, parameter
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estimates were found to be less reliable, particularly b and ζ , who are again under-

and overestimated, respectively. Once more the parameters’ spatial trends were not

correctly identified, and the addition of spatially varying parameters did not improve

filter performance measurably. Similarly to the transient study, widespread corre-

lations were consistently seen in a majority of the innovation sequences. Unlike

Chapter 3, where the introduction of unmodeled drive terms significantly affected

both state and parameter estimation, we find that the performance of the SWKF ap-

pears stable regardless of whether the EEG data displays transient or driven dynam-

ics, and irrespective of the spatial profile being fitted. This is a somewhat surprising

result and will be discussed further in Sec. 4.4.

4.3.3 Clinical EEG Data

We now review the performance of the inverse solution when applied to the clinical

EEG recording displayed in Fig. 4.10(a). The reader is referred to Sec. 4.2.2 for fur-

ther details regarding this dataset. Figures 4.10(b) and 4.10(d) show the spatial dis-

tribution of the inverse solution at the same time step for the uniform and sinusoidal

parameter profiles, respectively. These figures both show an area of activity at the

right occipital pole, which is consistent with an EEG recording displaying promi-

nent occipital alpha activity that is strongest on the right side. Figure 4.12(e) dis-

plays the time series for the coronal component of the inverse solution at a voxel in

the right occipital pole. As expected, a large amplitude alpha oscillation is observed

in the time series for both parameter profiles. These findings are consistent with

an eyes-closed EEG recording. As seen throughout the simulation study, the state

estimates are again similar regardless of the parameter profile employed. Turning to

the parameter estimates, we find that when fitting the uniform profile fn ≈ 5.5 Hz

and ζ ≈ 0.8 [see Figs 4.10(f) and 4.10(g)]. The high damping coefficient is similar

to the value selected in the KF evaluation study in Chapter 2. Section 2.6 contains a

discussion of this result. When fitting the sinusoidal parameter profile the optimizer

selected similar mean values to those chosen for the uniform profile (see Table 4.3).

Interestingly, the amplitude parameters are chosen so that fn increases anterior to

posterior and ζ does the opposite. These spatial trends match those typically seen

in an eyes-closed EEG recording [see Sec. 4.2 and Fig. 4.11]. However, given the

unpredictability of parameter estimates seen throughout the simulation study, we

would advise caution when interpreting the significance of these purported trends.
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In this chapter, the wave velocity b has been estimated directly to ensure parameter

values are consistent with the telegrapher’s equation definition. The Courant con-

dition has also imposed an upper limit on all wave velocity estimates which is well

below the speed at which cortical activity is known to propagate (see Sec. 4.2.3).

Here we find b ≈ 0 for both spatial profiles, which means the spatial component of

the process model does not contribute to the inverse solution. This finding was also

encountered and discussed in Chapter 2 (see Sec. 2.5.3). The process noise covari-

ance had similar values to those seen in the simulation study, while the observation

noise covariances were very small like the values selected for the clinical EEG in

Chapter 2 (see Sec. 2.4.2). The innovations shown in Figs 4.8(d) and 4.8(f) appear

quite similar, with some temporal correlations visible, particularly in channels O1

and O2. The diagnostic tests show the innovations for both spatial profiles to be

Gaussian and have the correct magnitude. Most of the innovations are unbiased.

Significant correlations are found in 15 out of the 18 channels for both profiles. The

innovation spectral entropies show a range of values consistent with a majority of

the innovation sequences being non-white.

4.4 Discussion and Conclusions

In this chapter, the whole-brain KF-based EEG source localization algorithm from

Chapter 2 has been reinvestigated with the introduction of spatially varying model

parameters. This scenario better reflects true brain dynamics and follows the method

from Chapter 3 where fn and ζ — which control the strength and frequency of the

telegrapher’s equation’s resonance — are a simple function of position. Estima-

tion of this spatial variation was incorporated into the filtering algorithm by allow-

ing the same parameters in the process model of the KF to have spatial variations

of the same functional form. Model and noise parameters were selected through

AIC minimization. The KFs were applied to simulated data, with uniform and

spatially varying parameters for both transient and driven dynamics, and a clinical

EEG recording. The inverse solutions for each scenario were analyzed in detail.

This analysis included the application of standard diagnostic tests for evaluating

KF performance. The key findings and future directions arising from this study are:

(i) The whole-brain simulation studies demonstrated that the SWKF reliably solves

the state estimation problem for wave-like patterns of brain activity generated
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by either transient or driven dynamics. This result is consistent with the find-

ings described in Chapter 3. The state estimates for the clinical EEG also ap-

peared to be accurate. The introduction of spatially varying model parameters

did not significantly improve the accuracy of state estimates for any dataset.

(ii) Parameter estimation was much less accurate, even for the transient datasets

where the drive term — which is known to distort parameter estimates — was

not present. This is unlike the 1D study where the parameter estimates for the

data with transient dynamics were very accurate (see Sec. 3.6.1). This obser-

vation suggests the involvement of other factors. A possible explanation may

be provided by the tendency for the inverse solutions for both simulated and

clinical data to underestimate b and overestimate ζ . This behavior was con-

sistently observed for both parameter profiles and may be due to the sparse

spatial sampling provided by the 10-20 system, which leads to — under AIC

minimization — the EEG data being best explained by a model where each

electrode time series is generated by its own source (‘region of influence’),

rather than each electrode observing a single spatiotemporal process (i.e., the

brain’s activity) from a different vantage point. Further investigation with

higher density EEG recordings will be required to adjudicate on this possibil-

ity. As mentioned in Sec. 4.3.1, this phenomenon was also observed in the

1D simulation study in Chapter 3 when the electrode density was reduced.

Estimates of fn were more accurate, but still occasionally introduced spatial

variations that were not present in the data. Finally, no clear trend was identi-

fied in the process noise covariance values, with similar values being selected

irrespective of parameter profile or EEG dataset (see Table 4.3). These results

mirror those seen for the driven datasets in Chapter 3 (see Sec. 3.6.2), and

show that the filter places a similar level of confidence in the predictions of

the process model regardless of the parameter profile employed.

(iii) An investigation of temporal undersampling was not undertaken for the sim-

ulated data in this pilot study. However, the inverse solutions for the clinical

EEG were temporally undersampled because the Courant condition restricted

the wave velocity in the gray matter to � 1 m s-1, which is up to an order of

magnitude below its true value. For both parameter profiles b ≈ 0 (see Table

4.3). This result is similar to that seen in Chapter 2 where the estimated spatial

interaction term b1 also had limited impact on the quality of the inverse solu-
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tion due to its small value (see Sec. 2.4.2). Several factors that are likely to

contribute to the low b estimates are: low density EEG, the Courant condition,

spatial whitening, and the form of the process model. Further investigation is

required to determine the relative contributions of these factors.

(iv) During this study we again found that the AIC minimization can be depen-

dent upon initialization. Hence in future work, we recommend running the

optimization step from multiple starting points, which would generate a prob-

ability distribution for the parameters, from which the most likely value could

be determined. As noted previously, this strategy has been implemented in

other inverse solutions such as [116].

In light of the above findings, any parameter estimates produced by this inverse

solution should be interpreted with caution. The issue of inaccurate parameter esti-

mates arising in KF schemes performing simultaneous state and parameter estima-

tion has recently been discussed in [20, 124]. Here the authors point out that this is

expected and acceptable in the setting of imperfect process models, where parame-

ters may lose some biophysical meaning/interpretability in the course of providing

more accurate state estimates; as we have witnessed in this study. Whether this is

acceptable depends upon the goals of the inverse solution. Regardless, future work

should aim to introduce more realistic dynamic models into estimation algorithms

such as the KF. The value of physiology-based models is evident in the model fitting

study presented in [118], which demonstrates how meaningful estimates of param-

eters that describe the spatiotemporal features of brain activity can be extracted

from EEG data. Future inverse solutions should incorporate dynamic models such

as these and introduce spatial and/or temporal variation of the relevant model pa-

rameters; something which is yet to be extensively investigated. However, work

in this field is already underway. For example, a recent study [122] investigated

the feasibility of using average parameter sets to represent spatially varying model

parameters in an experiment using a voltage-sensitive dye to probe brain dynamics.

Another promising study [75] fitted parameters from a physiology-based model to

ERPs recorded using an extended 10-20 system to produce spatial parameter maps

to compare depression and control groups.
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Chapter 5

Concluding Remarks and Future

Directions

This chapter provides a brief overview of the outcomes of the thesis. It begins with

an outline of the key findings and outstanding issues arising from the research, and

closes with a discussion of possible directions for future work. Since the individual

studies have already been discussed in detail in Chapters 2 – 4, this chapter presents

a summary of the major results and future directions.

This thesis has investigated EEG source localization using Kalman filtering,

which is a widely used and robust technique for estimating states in dynamical sys-

tems from indirect and uncertain measurements. The KF is an obvious candidate

for solving the dynamic EEG inverse problem since it naturally brings together the

four core components of the inverse problem that were described in Chapter 1 (see

Sec. 1.2). In Chapter 2 we began by introducing a Kalman filter algorithm (SWKF)

that solved the EEG inverse problem for a realistic head model. This filter employed

a discretized telegrapher’s equation to describe the dynamics of the current dipoles,

or more precisely that of their spatial Laplacian. Such an equation represents an

appropriate starting point for modeling large-scale brain activity. Furthermore, the

filter was operated in a Laplacianized state space to reduce its computational bur-

den. Spatially uniform model parameters were fitted to both simulated and clinical

EEG using AIC minimization. The resulting inverse solutions were found to accu-

rately reconstruct the underlying source dynamics. This study also applied standard

diagnostic tests to objectively evaluate KF performance. These tests compute the

statistical properties of the innovation sequences and subsequently identified spatial
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variation in filter performance which could potentially be improved by spatially-

varying model parameters.

In Chapter 3 the SWKF algorithm introduced in Chapter 2 was studied in detail

using 1D simulations which reduced the complexity of the inverse problem. The

simulated EEG data was generated using a telegrapher’s equation and a simplified

volume conductor model. Two of the model parameters were given spatial profiles

of a simple functional form (Gaussian) to better reflect true brain dynamics. To en-

sure the estimated model parameters maintained a clear biophysical interpretation,

the optimization step explicitly constrained their values to ranges consistent with

the process model being a telegrapher’s equation. This is in contrast to Chapter 2

where unconstrained optimization was used, and parameter estimates could take on

values that were discordant with the equation’s definition, and therefore potentially

lose their interpretability. For the purposes of comparison, inverse solutions were

also computed using the optimal LKF. This study found both filters produced ac-

curate state estimates, with the SWKF exhibiting performance similar to the LKF.

Standard diagnostic tests also showed both filters to be well-tuned for all scenarios

investigated in the 1D study. Spatially varying parameter profiles were able to be

correctly identified from the datasets with transient dynamics, while parameter es-

timates for the driven datasets were less reliable because they were degraded by the

unmodeled drive term. Temporal undersampling was also found to distort parameter

estimates. This occurred when the Courant condition — for a given spatiotempo-

ral grid — imposed an upper bound on wave velocity estimates that was below the

wave velocity’s true value.

Chapter 4 returned to the whole-brain EEG inverse problem using the SWKF

described in Chapter 2. As in Chapter 3 spatially varying model parameters of a

known functional form (sinusoidal) were introduced into the simulated EEG and

optimization step to reproduce the typical anterior to posterior variation of the al-

pha rhythm. Compared to Chapter 2, more complex simulated whole-brain EEG

was generated which displayed wave-like patterns and spatially varying dynam-

ics. Like Chapter 3, the optimization step constrained model parameters to ranges

consistent with the telegrapher’s equation definition, and also imposed the Courant

condition on estimates of b. State estimation was again found to be reliable for both

simulated and clinical EEG. However, the introduction of spatially varying param-

eters did not improve state estimation for any dataset. In fact, parameter estimation
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was unreliable for both the transient and driven simulated EEG, with b and ζ being

consistently under- and overestimated, respectively. For the clinical EEG, the esti-

mated wave velocity was very small, which means the spatial coupling term had a

negligible influence on the inverse solution, as was the case in Chapter 2. Several

factors that are likely to contribute to the low b estimates are: low density EEG,

the Courant condition, spatial whitening, and the form of the process model. Ap-

proaches to overcome this limitation were described throughout this thesis and are

summarized below. In light of these results, parameter estimates produced by this

inverse solution should be interpreted with caution.

The work presented in this thesis offers many potential directions for future

investigation. To conclude this thesis a selection of these are outlined under the fol-

lowing three categories: (i) improvements to the SWKF algorithm; (ii) more general

extensions to Kalman-filter-based EEG source localization; and (iii) emerging ap-

plications for Kalman filtering in computational neuroscience.

This thesis has focused on the SWKF algorithm as an example of Kalman-filter-

based EEG source localization. To improve its performance some simple steps can

be taken. Firstly, higher density EEG recordings — up to ≈ 100 electrodes —

should be used as these are known to improve inverse solution performance [97],

and will also help provide more accurate parameter estimates. To raise the upper

bound imposed on estimates of b by the Courant condition, we suggest running the

process model with a finer time step, and assimilating the observations as they be-

come available. Since AIC minimization is used to obtain optimal parameter values,

the reliability of these estimates could be improved, and local minimums avoided

if the optimization algorithm was run from multiple starting points and the most

likely parameter values selected from the resulting probability distributions. To al-

low broader comments about the SWKF’s performance to be made, the algorithm

also needs to be applied to multiple clinical EEG recordings.

The telegrapher’s equation process model employed by the SWKF does not ex-

plicitly model exogenous inputs, which was found to distort parameter estimates

in Chapter 3. Possible strategies for handling these inputs vary in complexity and

include: using a GARCH formulation of the SWKF algorithm to compensate for

the unmodeled drive term [45, 46]; estimating the drive term using basis func-

tions [116]; and/or employing a physiology-based process model that contains an

explicit cortical input [80, 117, 119]. In order to facilitate the introduction of the
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physiology-based models described in [80, 117, 119] we recommend that future

implementations of the SWKF use a two-dimensional (2D) surface model of the

cortex, rather than the 3D volumetric model employed currently. An example of

an EEG source localization algorithm employing a cortical surface model is de-

scribed in [139]. Recent advances in modeling and imaging, coupled with increases

in computing power has seen the emergence of large scale models of neural activity,

that utilize the connectivity information provided by diffusion tensor imaging [136]

and provide links to observed signals such as EEG and fMRI [66, 82, 138]. Such

models display complex nonlinear dynamics and represent the future of process

models for inverse solutions in functional neuroimaging. The need to perform joint

state and parameter estimation with increasingly large and complex dynamic mod-

els — not just in neuroimaging — is driving the parallel development of specialized

algorithms such as the UKF [49, 61, 71], ensemble KF [36], variational filtering

schemes [25, 40, 42], and those that apply multiple penalty terms [139]. Hence,

there is great potential for a cross-pollination of ideas and techniques between the

neuroimaging community and other fields where large-scale nonlinear spatiotem-

poral inverse problems are solved.

The introduction of model parameters with spatiotemporal variations is a further

extension of EEG inverse solutions that is motivated by observations of real brain

dynamics and structure, but is yet to be extensively investigated. The ability to im-

age the spatiotemporal variation of model parameters will provide more accurate

inverse solutions and additional insights into brain dynamics. This thesis undertook

a preliminary investigation of the topic through the introduction of spatially varying

model parameters. While this study identified several problems that still require

resolution; a combination of the improvements suggested above, coupled with the

ongoing development of neural models and estimation techniques, should unlock

the rich potential of this approach. Several recent studies have already demonstrated

that the introduction of either time-varying [49, 50] or spatially-varying [42] model

parameters can improve the performance of a Kalman-filter-based EEG inverse so-

lution. In [4], a novel technique for solving the EEG inverse problem was intro-

duced which uses the EKF framework to integrate multiple source models. Another

future direction that is already under investigation is combining the aforementioned

neural models with multiple observation models — most often EEG and fMRI — to

realize multimodal neuroimaging which further constrains the inverse problem and
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provides spatiotemporal resolution beyond what is possible with a single imaging

modality [7, 30, 138].

There is growing interest in using model-based closed-loop control of neural

dynamics to treat conditions such as epilepsy and Parkinson’s disease [68, 79, 81].

Such an approach would offer improved performance over current brain stimula-

tion methods which are all open-loop. The KF, with its ability to provide optimal

control of dynamic systems (see Sec. 1.3), is an obvious candidate for any attempt

at controlling brain activity. The algorithm’s potential has already been recognized

and investigated in several simulation studies. For instance, in [125] a KF was used

on a simulated cortex to control features of its spatiotemporal dynamics. The same

research group has recently expanded upon this work to investigate model-based

control of epilepsy [135] and Parkinson’s disease [124].

Another interesting and ongoing avenue of study arises from the observation

that the human brain and a Kalman filter must both assimilate internally generated

predictions, with uncertain and incomplete observations of the external environ-

ment in order to generate an optimal estimate of the state of the world. Perhaps

unsurprisingly, a number of studies have found that KFs accurately model how hu-

mans integrate information, learn, and make decisions [28, 83–85, 96, 145]. These

findings are further supported by the growing evidence that animal nervous systems

encode and manipulate probabilities [41,83]. Kalman filters have also been used to

model brain regions that represent space-time, such as the hippocampus [16] and

the entorhinal cortex [106].

In conclusion the Kalman filter and its variants provide a flexible approach to

model-based estimation whose scope extends well beyond EEG source localization.

The algorithm’s ability to combine dynamic models and measurements within a

sound statistical framework to provide reliable state and parameter estimates means

it will continue to have an important role in the fields of functional neuroimaging

and computational neuroscience for the foreseeable future.
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[60] HÄMÄLÄINEN, M. S., AND ILMONIEMI, R. J. Interpreting magnetic fields

of the brain - minimum norm estimates. Medical and Biological Engineering

and Computing 32 (1994), 35–42.

[61] HAYKIN, S., Ed. Kalman Filtering and Neural Networks. John Wiley &

Sons, New York, 2001.

[62] HE, B., AND LIAN, J. High-resolution spatio-temporal functional neu-

roimaging of brain activity. Critical Reviews in Biomedical Engineering 30

(2002), 283–306.

[63] HERCULANO-HOUZEL, S. The human brain in numbers: a linearly scaled-

up primate brain. Frontiers in Human Neuroscience 3 (2009), Article 31.

[64] HU, Z., ZHAO, X., LIU, H., AND SHI, P. Nonlinear analysis of the

BOLD signal. EURASIP Journal on Advances in Signal Processing (2009),

215409/1–13.

[65] INOUYE, T., SHINOSAKI, K., SAKAMOTO, H., TOI, S., UKAI, S., IYAMA,

A., KATSUDA, Y., AND HIRANO, M. Quantification of EEG irregularity

by use of the entropy of the power spectrum. Electroencephalography and

Clinical Neurophysiology 79 (1991), 204–210.

[66] IZHIKEVICH, E. M., AND EDELMAN, G. M. Large-scale model of mam-

malian thalamocortical systems. Proceedings of the National Academy of

Sciences (USA) 105 (2008), 3593–3598.

[67] JASPER, H. H. The ten twenty electrode system of the International Fed-

eration. Electroencephalography and Clinical Neurophysiology 10 (1958),

371–375.

[68] JOHNSON, M. D., LIM, H. H., NETOFF, T. I., CONNOLLY, A. T., JOHN-

SON, N., ROY, A., HOLT, A., LIM, K. O., CAREY, J. R., VITEK, J. L.,

AND HE, B. Neuromodulation for brain disorders: Challenges and opportu-

nities. IEEE Transactions on Biomedical Engineering 60 (2013), 610–624.

145



[69] JOHNSTON, L. A., DUFF, E., MAREELS, I., AND EGAN, G. F. Nonlinear

estimation of the BOLD signal. NeuroImage 40 (2008), 504–514.

[70] JULIER, S. J., AND DURRANT-WHYTE, H. F. On the role of process mod-

els in autonomous land vehicle navigation systems. IEEE Transactions on

Robotics and Automation 19 (2003), 1–14.

[71] JULIER, S. J., AND UHLMANN, J. K. Unscented filtering and nonlinear

estimation. Proceedings of the IEEE 92 (2004), 401–422.

[72] KAIPIO, J. P., KARJALAINEN, P. A., SOMERSALO, E., AND VAUHKO-

NEN, M. State estimation in time-varying electrical impedance tomography.

Annals of the New York Academy of Sciences 873 (1999), 430–439.

[73] KALMAN, R. E. A new approach to linear filtering and prediction problems.

Transactions of the ASME: Journal of Basic Engineering 82 (1960), 35–45.

[74] KANDEL, E. R., SCHWARTZ, J. H., AND JESSELL, T. M. Principles of

Neural Science, fourth ed. McGraw-Hill, New York, 2000.

[75] KERR, C. C., KEMP, A. H., RENNIE, C. J., AND ROBINSON, P. A.

Thalamocortical changes in major depression probed by deconvolution and

physiology-based modeling. NeuroImage 54 (2011), 2672–2682.

[76] KERVINEN, M., VAUHKONEN, M., KAIPIO, J. P., AND KARJALAINEN,

P. A. Time-varying reconstruction in single photon emission computed to-

mography. International Journal of Imaging Systems and Technology 14

(2004), 186–197.

[77] KIEBEL, S. J., DAUNIZEAU, J., PHILLIPS, C., AND FRISTON, K. J.

Variational Bayesian inversion of the equivalent current dipole model in

EEG/MEG. NeuroImage 39 (2008), 728–741.

[78] KIEBEL, S. J., DAVID, O., AND FRISTON, K. J. Dynamic causal mod-

elling of evoked responses in EEG/MEG with lead field parameterization.

NeuroImage 30 (2006), 1273–1284.

[79] KIM, J. W., ROBERTS, J. A., AND ROBINSON, P. A. Dynamics of epilep-

tic seizures: Evolution, spreading, and suppression. Journal of Theoretical

Biology 257 (2009), 527–532.

146



[80] KIM, J. W., AND ROBINSON, P. A. Compact dynamical model of brain

activity. Physical Review E 75 (2007), 031907/1–10.

[81] KIM, J. W., AND ROBINSON, P. A. Controlling limit-cycle behaviors of

brain activity. Physical Review E 77 (2008), 051914/1–4.

[82] KNOCK, S. A., MCINTOSH, A. R., SPORNS, O., KÖTTER, R., HAG-
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structural description of the human brain. PLoS Computational Biology 1

(2005), 245–251.

151



[131] SUKKARIEH, S., NEBOT, E. M., AND DURRANT-WHYTE, H. F. A high in-

tegrity IMU/GPS navigation loop for autonomous land vehicle applications.

IEEE Transactions on Robotics and Automation 15 (1999), 572–578.

[132] SULLIVAN, D. M. Exceeding the Courant condition with the FDTD method.

IEEE Microwave and Guided Wave Letters 6 (1996), 289–291.

[133] TOGA, A. W., AND MAZZIOTTA, J. C., Eds. Brain Mapping: The Methods,

second ed. Academic Press, London, 2002.

[134] TRUJILLO-BARRETO, N. J., AUBERT-VAZQUEZ, E., AND VALDES-SOSA,

P. A. Bayesian model averaging in EEG/MEG imaging. NeuroImage 21

(2004), 1300–1319.

[135] ULLAH, G., AND SCHIFF, S. J. Tracking and control of neuronal Hodgkin-

Huxley dynamics. Physical Review E 79 (2009), 040901/1–4.
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