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Abstract

Collisionless shocks are ubiquitous throughout the Universe. Shocks are

nonlinearly steepened waves which cause plasmas to undergo dramatic changes

in their density, temperature, flow velocity, and magnetic field. A plasma is

called collisionless when the frequency of collisions between charged particles

is substantially lower than the natural frequencies of the plasma, such as the

electron plasma frequency or the electron gyrofrequency. The presence of a

magnetic field in collisionless plasmas leads to a rich collection of different

shock types and furthermore a wide variety of wave phenomena and particle

dynamics are supported at such shocks. The unique physical behaviors and

properties of magnetized collisionless shocks, compared to those of the classical

gasdynamic shock, make them one of the most extensively studied nonlinear

classes of phenomena in plasmas.

In this thesis we study several different but connected problems in collision-

less shock physics. In Chapter 1 we present an overview of basic plasma theory,

particularly of collisionless shocks in plasmas described using magnetohydro-

dynamic (MHD) theory. In Chapter 2, detailed quantitative evidence for shock

reformation (a temporal variability of the shock structures) is presented from

the Voyager 2 spacecraft’s encounter with the Uranian bow shock. This evi-

dence is based on finding very good agreement between Voyager observations of

the Uranian bow shock and results from a standard 1-D hybrid simulation code

run with similar plasma parameters. Specifically, the multiple large localized

magnetic field enhancements B/B1 ∼ 16 observed downstream by Voyager 2,

where B1 = 0.19 nT is the upstream magnetic field, are quantitatively consis-

tent with the reforming shock found in the simulation.

Chapter 3 develops a new analytic model for the reflection and transmis-

sion of ions at quasiperpendicular (the angle between the shock normal and

upstream magnetic field is between 45◦ − 90◦) shocks. We show, using 1-D

hybrid and test-particle simulations, that ions reflected at the shock ramp are

decelerated by magnetic field effects, herein referred to as “magnetic deflec-

tion”, in addition to the cross-shock electrostatic potential. We quantify the
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contribution of magnetic deflection to ion reflection and in doing so resolve a

discrepancy between the predicted ion reflection efficiency (based on the elec-

trostatic potential jump alone) and numerical values calculated in our hybrid

simulations. Moreover, an analytic expression for the reflection cutoff of ions

reflected by the cross-shock potential and magnetic deflection is derived. We

find excellent agreement between the simulations and the new model for ion

reflection by the shock front, and show that both the electrostatic potential

and magnetic field effects are vital in the ion reflection process.

Chapter 4 proposes a new classification scheme at perpendicular shocks for

the classes of ion trajectories across the different shock regions of the foot,

ramp, overshoot, and downstream plasma. For each particle class we calcu-

late its energization, fractional population, and source region in initial velocity

phase space using multiple test-particle simulations. We find that particle en-

ergization is mostly sensitive to the thickness of the shock and the magnitude

of the electrostatic potential. Mild energy gains are observed for shocks with

an overshoot whereas including a foot structure only changes the source re-

gions for certain particle classes. Furthermore, we develop and test two new

analytic reflection conditions for: (1) particles that are initially reflected by the

electrostatic potential, complete half a gyro-orbit upstream, and finally escape

downstream, and (2) particles that are initially transmitted downstream but

return to the shock as part of their downstream gyromotion, complete half a

gyro-orbit upstream, and finally escape downstream. In the former case, we

find excellent agreement between analytic and numerical results; however, in

the latter case we find good agreement only in simulations with thin shocks.
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Chapter 1

Introduction and

Literature Review

In this Chapter we provide a brief review of basic plasma and shock theory.

We begin in Section 1.1 with a basic description of plasmas and their physical

properties. In Section 1.2 we introduce orbit theory and common particle

drifts. Kinetic and fluid theory are outlined in Section 1.3 followed by a brief

discussion of magnetohydrodynamic theory in Section 1.4. Magnetosonic waves

and their characteristics are described in Section 1.5. Section 1.6 discusses the

governing physics of shocks waves and the different types of simulations used

to model shock phenomena. We then examine the ion dynamics at shocks

in Section 1.7 and review the different models and observational evidence for

shock reformation in Section 1.8.

1.1 Plasmas

A plasma is gas which has been at least partially ionized, by removing some

or all of each atom’s electrons to travel through the medium separately and

interact with the ionized atoms (or “ions”). On a local scale, plasmas consist

of roughly equal numbers of free electrons and ions whence a plasma looks

electrically neutral to the outside. This is known as quasineutrality, whereby

the electric fields of the randomly distributed particles mutually cancel. The

Debye length λD is the characteristic length at which balance is achieved be-

tween the thermal particle energy, which correspond to motions that tend to

perturb charge neutrality, and the electrostatic potential energy resulting from

charge separation, which tends to restore charge neutrality. For a plasma with

singly charged ions, similar electron and ion temperatures Te ≃ Ti, and similar

electron and ion number densities ne ≃ ni, the Debye length is equal to (e.g.
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Ch. 1 INTRODUCTION

Kivelson and Russell [1995])

λD =

(

ǫ0kBTe

nee2

)1/2

(1.1)

where ǫ0 is the permittivity of free space, kB is Boltzmann’s constant, and e is

the electric charge.

If some external force disturbs quasineutrality the electrons, which are more

mobile than the heavier ions, are accelerated and then attempt to restore

quasineutrality. The electrons will oscillate back and forth around an equi-

librium position at the electron plasma frequency (e.g. Kivelson and Russell

[1995]),

fpe =

(

nee
2

4π2meǫ0

)1/2

(1.2)

where me is the electron mass.

In a fully ionized plasma, electrons and ions interact via their electric

Coulomb fields; the rate at which this occurs is known as the Coulomb col-

lision frequency, and is given by (e.g. Baumjohann and Treumann [1999])

νei ∼ fpe
ln Λ

Λ
(1.3)

where Λ = neλ
3
D and ln Λ is known as the Coulomb logarithm. It is appropriate

to distinguish between two types of plasmas based on their relative Coulomb

collision frequency to electron plasma frequency: if νei ≫ fpe the plasma is

collisional and if νei ≪ fpe the plasma is collisionless. In the latter, collisions

are so infrequent compared to any relevant variations in the fields or particle

dynamics that they can be safely neglected. On the other hand, in collisional

plasmas, collisions are sufficiently frequent that they play a vital role in the

behavior of the plasma. Most space plasmas, including those we will be dealing

with, are collisionless and support phenomena that are unique to them.

1.1.1 Solar Wind

One of the most important plasmas observed in nature is the solar wind gen-

erated by the Sun [Kivelson and Russell , 1995]. The solar wind is a hot colli-

sionless plasma which expands radially outward from the Sun. Near the Earth

the solar wind has typical values of the ne ≈ 5 cm−3 and Te ≈ 105 K re-

spectively. The solar wind carries with it what is known as the interplanetary

2



magnetic field B (IMF) because of the frozen-in theorem: in an ideal MHD

plasma the magnetic field lines along a single flux tube remain linked as they

convect through space. As a result the IMF B spreads throughout the entire

solar system; its value is typically 5 nT near Earth.

1.1.2 Magnetosphere

When the solar wind encounters the Earth’s magnetic field, it cannot penetrate

it, but is slowed and deflected around it (because the plasma conductivity is

large enough that B is “frozen-in” to the plasma). The magnetosphere is the

region of space in which charged particles are influenced by the terrestrial

magnetic field. The boundary separating the solar wind to the magnetospheric

plasma is known as the magnetopause. On the nightside of the Earth the

magnetosphere extends out into a long magnetotail far beyond the lunar orbit.

The plasma in the magnetosphere consists mainly of electrons and ions but

includes small fractions of He+ and O+ ions extracted from Earth’s ionosphere.

1.2 Orbit Theory

The motion of a plasma is determined by the interaction between charge carri-

ers and the electric E and magnetic B fields. Moving charge carriers generate

electric currents and thus magnetic fields which feed back onto the overall

dynamics of the plasma. In general the future motion of the plasma can be de-

termined by solving the equation of motion for each individual particle subject

to the internal fields generated by every other moving particle. Obtaining such

a full solution is not only extremely difficult but impractical and so several the-

oretical approaches are employed depending on the type of problem studied.

Nevertheless, the study of single particle motion can be useful in describing

the overall plasma motion when the internal fields are unimportant compared

with the macroscopic fields (e.g., the convected solar wind across its magnetic

field). Orbit theory is also important in understanding the motion of energetic

particles which often act as test particles.

1.2.1 Single Particle Motion

Charged particles are subject to the Coulomb force

F = qE (1.4)

3



Ch. 1 INTRODUCTION

due to the electric field E and the Lorentz force

F = q(v × B) (1.5)

due to the magnetic field B.

Now consider a particle of charge q in a uniform magnetostatic field B = Bẑ

but with E = 0; it will have an acceleration of

dv

dt
=

q

m
(v × B) (1.6)

with individual components

dvx

dt
=

qB

m
vy, (1.7a)

dvy

dt
= −qB

m
vx, (1.7b)

dvz

dt
= 0. (1.7c)

The velocity component parallel to the magnetic field is constant, v‖ = vz.

Taking the time derivative of (1.7) yields

d2vx

dt2
= −Ω2

cvx, (1.8a)

d2vy

dt2
= −Ω2

cvy. (1.8b)

This implies that the particle undergoes circular motion with an angular fre-

quency of

Ωc =
qB

m
(1.9)

called the gyrofrequency. The particle’s gyroradius or Larmor radius is given

by

rL =
v⊥
Ωc

(1.10)

where v⊥ = (v2
x + v2

y)
1/2 is the magnitude of the particle’s velocity perpendic-

ular to the magnetic field. One can now write the solution for the particle’s

trajectory as

x(t) = x0 + rL sin Ωct (1.11a)

y(t) = y0 + rL cos Ωct (1.11b)

z(t) = z0 + v‖t (1.11c)

where (x0, y0, z0) is the center of the orbit called the guiding center.
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1.2.2 Particle Drifts

In general, a particle’s motion can be written as a combination of velocity

parallel to the magnetic field v‖, its gyromotion vg, and its drift velocity vD

perpendicular to the magnetic field, with

v = v‖ + vg + vD. (1.12)

Particle drifts are important in understanding plasma motion in space physics.

Here we discuss several important drift mechanisms and their relevance to

shocks.

Let us assume that an electrostatic field E is present. The electric field

parallel to the magnetic field simply accelerates the particle along the same

axis with

m
dv‖
dt

= qE‖. (1.13)

Parallel electric fields in geophysical plasmas are difficult to sustain since elec-

trons are extremely mobile along magnetic fields and can cancel these fields

almost immediately.

However, if a perpendicular electric field is present along the x axis (E⊥ =

Exx̂), the particle acceleration is now

dvx

dt
= Ωcvy +

q

m
Ex, (1.14a)

dvy

dt
= −Ωcvx. (1.14b)

Taking the second derivative gives

d2vx

dt2
= −Ω2

cvx, (1.15a)

d2vy

dt2
= −Ω2

c

(

vy +
Ex

B

)

. (1.15b)

and making the substitution v′
y = vy + Ex/B recovers (1.7) where the particle

is gyrating about the guiding center but now drifts in the −y direction with a

drift velocity of (e.g. [Baumjohann and Treumann, 1999])

vE×B =
E ×B

B2
. (1.16)

known as the E ×B drift; this velocity is charge-independent meaning that

both ions and electrons will drift in the same direction.
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Ch. 1 INTRODUCTION

Often the magnetic field can vary as a function of time or space, causing

particles to change their perpendicular kinetic energy. Moreover, magnetic gra-

dients perpendicular to the direction of the magnetic field can cause particles to

experience a ∇B drift if the gyroradius is much smaller than the characteristic

length scale L of the magnetic gradient, i.e. rL ≪ L.. This drift velocity is

given by (e.g. [Baumjohann and Treumann, 1999])

v∇B =
1

2
v⊥rL

B×∇B

B2
. (1.17)

The ∇B drift speed depends on the charge so this drift can therefore cause

currents and charge separations in the plasma.

Another important drift related to the topology of the magnetic field lines

is curvature drift. If Rc is the radius of curvature, then a particle’s curvature

drift velocity is (e.g. [Baumjohann and Treumann, 1999])

vcurvature =
mv2

‖

qR2
c

Rc ×B

B2
. (1.18)

Again, curvature drifts depend on the electric charge and therefore can generate

currents and charge separation in plasmas.

1.3 Fluid Theory

In fluid theory, a plasma is characterized by macroscopic plasma parameters

such as the number density n, kinetic temperature T and flow velocity u. The

evolution of these parameters are obtained by taking moments of the Vlasov

equation [Vlasov , 1968]

∂f(x,u, t)

∂t
+ u · ∇xf(x,u, t) +

q

m
(E + u× B) · ∇uf(x,u, t) = 0, (1.19)

which is the kinetic equation for a collisionless plasma. Here f(x,u, t) is the

seven-dimensional phase space distribution function, ∇x is the vector deriva-

tive with respect to the position vector, and ∇u is the vector derivative with

respect to the velocity vector. By taking the zeroth order moment of the Vlasov

equation we obtain

∂nα

∂t
+ ∇ · (nαuα) = 0, (1.20)

the continuity equation for particle species α. Equation (1.20) implies that in

the absence of sources the number density is conserved during the motion of

6



the fluid. Taking the first order moment of the Vlasov equation (1.19) gives

the momentum equation

nαmα

[

∂uα

∂t
+ (uα · ∇)uα

]

= −∇ · Pα + qαnα(E + uα × B), (1.21)

where P is the pressure tensor. It is equivalent to the Navier-Stokes equations

on including an electromagnetic Lorentz force but neglecting dissipative effects.

The motions of charged particles are also the source of the fields E and

B themselves. The fundamental equations that govern the evolution of the

electric and magnetic fields in a plasma are given by Maxwell’s equations,

∇× E = −∂B

∂t
, (1.22a)

∇× B = µ0j + µ0ǫ0
∂E

∂t
, (1.22b)

∇ · E =
ρ

ǫ0

, (1.22c)

∇ · B = 0, (1.22d)

where µ0 is the permeability of free space and the source terms ρ and j are the

charge density and current density, respectively. In fluid theory, ρ and j are

defined as

ρ = e(ni − ne), (1.23a)

j = e(niui − neue). (1.23b)

Taking the second order moment of the Vlasov equation results in the heat

transport equation

3

2
nαkB

(

∂Tα

∂t
+ uα · ∇Tα

)

= Pα∇ · uα −∇ · Qα − (P′
α · ∇) · uα, (1.24)

where P is the scalar pressure, Q is the heat flux vector, and P′ denotes the

stress tensor part of the full pressure tensor P. However, (1.24) does not close

the system of equations since the evolution of the heat flux vector is not known.

Taking another order moment of the Vlasov equation will only introduce a next

order quantity to be determined. Therefore, these sets of equations are typically

truncated by introducing an equation of state and assuming an isotropic distri-

bution which yields an isotropic pressure and zero heat flux. For an isotropic

pressure tensor, there are two important equations of states. The most simple

equation of state is the ideal gas law under isothermal conditions.

Pα = nαkBTα. (1.25)

7



Ch. 1 INTRODUCTION

The other case deals with time variations that are so fast that no heat exchange

can occur, corresponding to the adiabatic equation of state

Pαn−γ
α = C. (1.26)

Here C is a constant and γ is the specific heat ratio, which for an ideal 3-D

collisionless plasma is γ = 5/3.

1.4 Magnetohydrodynamic Theory

Magnetohydrodynamics is a one fluid theory which combines two separate elec-

tron and ion fluids into a single fluid [Kivelson and Russell , 1995]. A fully

ionized plasma has electrons with mass me and charge qe = −e, and ions of

mass mi and charge qe = Ze. For simplicity we assume the ions are protons

and hence Z = 1. New fluid variables which are combinations of the densities

and velocities of the individual components are introduced:

n =
mene + mini

me + mi
(1.27a)

m = me + mi = mi

(

1 +
me

mi

)

(1.27b)

u =
meneue + miniui

mene + mini

. (1.27c)

Also, one typically assumes quasineutrality which demands that the charge

density ρ = 0, which from (1.23a) yields n = ne = ni.

From these assumptions and (1.20) we can derive the MHD continuity equa-

tion

∂n

∂t
+ ∇ · (nu) = 0. (1.28)

Note that the continuity equation in this form no longer discriminates between

particle species. The MHD momentum equation is derived by adding proton

and electron forms of (1.21) and using the definitions (1.27) of the new fluid

variables. We take advantage of the smallness of the electron mass me ≪ mi

to arrive at the equation

nm

[

∂u

∂t
+ (u · ∇)u

]

= −∇P + ρE + j ×B, (1.29)

where P = Pe + Pi. To determine the current density j in (1.29), we need

to introduce the generalized Ohm’s law. It is obtained by subtracting the
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fluid momentum equations (1.21) for the electrons and ions and introducing a

resistivity η due to effective particle collisions via fluctuations in E and B via

a resistive term ηj to give

E + u× B = ηj +
1

ne
j× B − 1

ne
∇Pe +

me

ne2

∂j

∂t
. (1.30)

Typically, the generalized Ohm’s law can be approximated by omitting different

terms [Baumjohann and Treumann, 1999]. Finally, the MHD energy continuity

equation is given by

∂

∂t

(

1

2
nmu2 +

P

γ − 1
+

B2

2µ0
+

1

2
ǫ0E

2

)

+

∇ ·
(

1

2
nmu2u +

γ

γ − 1
Pu +

1

µ0
E × B

)

= 0. (1.31)

1.5 Plasma Waves

A variety of rich wave phenomena can be supported in plasmas. The approx-

imations made in MHD require the time scales for variation to be larger than

the ion time scales. Hence equations (1.28) to (1.31) are valid for wave modes

in the low frequency regime, which are referred to as MHD waves. These wave

modes are derived by linearizing the MHD equations and assuming a plane

wave solution e−i(ωt−k·x) where ω and k are the wave angular frequency and

wave vector, respectively. It is convenient to express the set of linear equations

in the fluid displacement vector ξ which is defined such that its time derivative

is the fluid velocity, i.e. one writes u = −iωξ. Doing this and making the

replacements ∂/∂t → iω and ∇ → ik we obtain (e.g. Melrose [1986])

Γijξj = 0, (1.32)

where the matrix of coefficients is given as

Γij = ω2δij − k2c2
sκiκj − k2v2

A

[

κiκj − cos θ(κibj + biκj) + cos2 θδij

]

(1.33)

and δij is the Dirac delta function, b = B/B is the normalized magnetic field

vector, κ = k/k is the normalized wave vector, and θ is the angle between the

wave vector k and the magnetic field B. The parameter cs is the familiar sound

speed in an adiabatic gas, given by

cs =

(

γkBT

mi

)1/2

, (1.34)

9



Ch. 1 INTRODUCTION

and vA is the Alfvén speed given by

vA =
B√

µ0nmi
. (1.35)

The dispersion relations for MHD waves are found by setting the determinant

of (1.33) equal to zero, i.e.,

∆Γij = 0. (1.36)

The first wave mode that will be discussed is called the Alfvén wave which

has a linear dispersion relation

ω = kvA| cos θ|. (1.37)

Alfvén waves are shear waves which rely on the magnetic pressure of the plasma

as a restoring force. The speed at which Alfvén waves propagate is the Alfvén

speed vA and is the speed at which magnetic signals propagate in a plasma

with negligible thermal pressure.

Two additional solutions obtained from the general dispersion relation are

referred to as the fast (+) and slow (−) magnetosonic waves. Their phase speed

satisfy the following relation

v2
± =

1

2

(

v2
A + c2

s

)

± 1

2

[

(v2
A + c2

s)
2 − 4v2

Ac2
s cos2 θ

]1/2
. (1.38)

To interpret the nature of these waves let us consider taking the limit as cs

goes to zero. Observe that the phase speed v− of the slow magnetosonic mode

goes to zero whereas the fast magnetosonic wave has the dispersion relation

ω = kvA. (1.39)

This shows us that the fast mode is in fact the Alfvén wave being modified by

contributions from the thermal pressure. Taking another limiting case where

cs ≪ vA reduces the dispersion relation for the slow mode to

ω ≃ kc2
s cos θ. (1.40)

Thus slow modes are sound waves modified by the presence of a magnetic field.

10



Figure 1.1: An example of a shock where regions such as the shock foot, ramp

and overshoot are defined [Wu et al., 1984].

1.6 Shocks

In a gas or neutral fluid, any disturbance causes a wave to propagate through

the fluid at the speed of sound cs. If the cause of the disturbance is moving

slower than the speed of sound, then the wave will propagate ahead of the

disturbance and the medium has time to respond to it. However, if the source

of the disturbance moves faster than the speed of sound, then it will eventually

overtake the wave-front with the result that the fluid experiences a sudden,

non-adiabatic, change of state. This is known as a shock wave [Tidman and

Krall , 1971; Greenstadt and Fredricks, 1979]; an example of a simulated shock

wave is in Figure 1.1. Shocks are nonlinearly steepened waves which involve

irreversible processes, such as the conversion of kinetic energy into thermal

energy and the creation of entropy at the shock transition.

In a collisionless plasma, the collisional coupling between molecules is absent

and so plasma waves are important for the transfer and dissipation of energy

and momentum. There are numerous examples of shocks in space physics and

astrophysics [Tsurutani and Stone, 1985]. Shocks surround planets with mag-

netospheres, appear in supernovae explosions, and are created in front of coro-

nal mass ejections (CME) from the solar corona. One of the most widely studied

example is the Earth’s bow shock [Kivelson and Russell , 1995], which forms

through the interaction between the supersonic solar wind and the Earth’s mag-

netosphere; its location in the solar-terrestrial environment is shown in Figure

11
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Figure 1.2: The interaction between the supersonic solar wind and the terres-

trial magnetic field creates the Earth’s bow shock, which is well described as a

parallel, perpendicular, quasiparallel, or quasiperpendicular shock in different

locations [Baumjohann and Treumann, 1999].
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1.2. As the solar wind encounters the magnetosphere it is slowed and deflected

at the bow shock, giving the parabolic shaped surface of the bow shock seen in

Figure 1.2. The bow shock is a fast mode shock since the density and magnetic

field strength both increase as the solar wind traverses through, as explained

more below.

1.6.1 The Rankine-Hugoniot relations

The jump conditions or the Rankine-Hugoniot relations seeks to relate proper-

ties of the shocked downstream medium to the unshocked fluid in the upstream

region (Figure 1.3). The Rankine-Hugoniot relations are derived from the con-

servation of mass, momentum, energy, and normal magnetic field and tangential

electric field [de Hoffmann and Teller , 1950; Tidman and Krall , 1971; Kennel

et al., 1985]. For a magnetized plasma, three independent variables are needed

to define these conditions. They are the Alfvén Mach number MA, the angle

between the shock normal direction and the upstream magnetic field θBn and

the plasma beta β. The Alfvén Mach number is the ratio between the upstream

speed of the fluid and the Alfvén speed (1.35)

MA =
u

vA
. (1.41)

The plasma beta describes the relative importance of the thermal pressure

Pth and magnetic pressure PB = B2/2µ0 on the plasma dynamics and is defined

as

β =
Pth

PB
=

2µ0Pth

B2
. (1.42)

On eliminating all downstream variables and introducing the three independent

variables given above, the Rankine-Hugoniot relations lead to the following

equation [Melrose, 1986]:

(

aM2
A

r
− β

)(

M2
A

r
− cos2 θBn

)2

−

M2
A

r
sin2 θBn

[

M2
A

r

(

a − 1 − r

2

)

− a cos2 θBn

]

= 0, (1.43)

where a = 1
2
[γ + 1 − r(γ − 1)] and the density compression ratio r across the

shock is

r =
n2

n1
. (1.44)
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Figure 1.3: The shock normal frame where boundary of the shock is perpendic-

ular to the upstream fluid velocity. Subscripts one and two denote upstream

and downstream regions respectively [Ball and Melrose, 2001].

Subscripts 1 and 2 denote upstream and downstream quantities respectively.

Equation (1.43) supports a wide range of different solutions, not all of which

are shocks. In general, (1.43) is cubic in M2
A and hence has three solutions. On

taking the limit as r → 1, (1.43) reduces to the dispersion equation for MHD

waves (1.36). Thus the three solutions are classified as Alfvénic, fast or slow

mode shocks according to the MHD wave modes derived previously.

In space physics and astrophysics, the fast mode shock is by far the most

frequently observed type of shock [Stone and Tsurutani , 1985] and will be

discussed here. The fast shock corresponds to the fast magnetosonic wave

mode after evolving to large amplitude. In a fast shock, the magnetic field

strength, pressure and number density all increase across the shock transition.

Depending on the value of θBn, shocks can be classified as parallel (θBn = 0◦),

perpendicular (θBn = 90◦) or oblique shocks (0◦ < θBn < 90◦). We refer to

shocks with normals close to the perpendicular and parallel directions (relative

to B1) as quasiperpendicular and quasiparallel, respectively.

Figure 1.4 shows the evolution of the magnetic profile as a function of θBn.

Low Mach-number quasiperpendicular shocks are usually laminar shocks be-

cause they have a smooth transition from upstream conditions to downstream

conditions [Russell et al., 1982; Livesey et al., 1982]. Quasiparallel shocks

typically have a turbulent magnetic field profile with short wavelength oscilla-
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Figure 1.4: A schematic illustration of the evolution of a turbulent parallel

shock to a laminar perpendicular shock [Greenstadt and Fredricks, 1979].

tions appearing before and after the shock [Gosling et al., 1982; Burgess , 1989;

Winske et al., 1990].

In the high-Mach number limit, MA ≫ 1, the solution of (1.43) is a = 0

which means the compression ratio satisfies

r =
γ + 1

γ − 1
. (1.45)

For a collisionless ideal plasma with γ = 5/3 (1.45) yields a maximum r = 4.

The magnetic enhancement ratio B2/B1 is also equal to the compression ratio,

B2/B1 = r, and therefore cannot be arbitrarily large. However, both the

downstream pressure and temperature can increase without bound since the

pressure jump is (e.g. [Tidman and Krall , 1971])

P2

P1
= 1 +

2M2
A

β

(

1 − 1

r

)

+
1 − r2

β
, (1.46)

which scales with M2
A.
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1.6.2 Simulations

Three types of simulation codes are typically used to model shock phenomena

in collisionless plasmas, with the choice depending on the physical problem.

Each method varies in the type of physics included or neglected.

The first method models a plasma as a MHD fluid using the MHD equations

(1.27)–(1.31), Maxwell’s equations (1.22), and an equation of state [see e.g.,

Ledvina et al., 2008]. This is a popular approach for modelling large scale

phenomena in the solar-terrestrial environment or interplanetary medium [Wu

et al., 2001; Ofman, 2009].

The second method is referred to as the particle-in-cell (PIC) model and

relies on tracking each individual particle, electrons and ions, in phase space

(x,v, t) [see e.g., Pritchett , 2003]. A finite mass ratio µ = mi/me is used that

is generally much lower than the real value due to computational limits. The

spatial resolution of PIC codes must be on the order of the electron gyroradius

or Debye length, with time resolutions greater than the minimum of the inverse

electron cyclotron or inverse electron plasma periods in order to resolve the

electron physics.

The third method is a hybrid of the two previous models. The standard

hybrid model treats ions as inertial particles but electrons as a massless fluid

[see e.g., Winske et al., 2003]. Hence all space and time scales for the electrons

are neglected. The evolution of the macroscopic fields and parameters of the

electrons are governed by fluid equations but ion trajectories are determined

by integrating their equations of motion. Hybrid codes model phenomena that

occur on shorter spatial-temporal scales than can be treated by MHD and yet

do not resolve processes that occur on electron scales [Winske et al., 2003]. The

relevant distance and time scales are then the ion gyroradius and the inverse

ion gyrofrequency, respectively.

1.7 Ion Dynamics

1.7.1 Specular Reflection

Quasiperpendicular shocks can possess a variety of spatial structures depending

on MA and β. Figure 1.1 shows spacecraft observations of a high MA shock and

indicates the different spatial regions. These structures arise from considering

the kinetic aspects of the shock and deal with the microphysics of the system

[Gosling and Robson, 1985]. The ramp of the shock corresponds to the (ide-
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ally) discontinuous shock front. Solar wind ions and electrons encountering the

abrupt change in the magnetic field will have differing gyroradii. The electrons

complete numerous gyrations as they pass the shock ramp. However, ions with

a much larger gyroradius than the ramp see it as an abrupt change in their mo-

tion but can penetrate deeper into the ramp. This creates a charge separation

between the ions and electrons, which generates an electric field which points in

the direction of the shock normal. This self-consistent electrostatic field is of-

ten referred to as the cross-shock potential [Gosling and Robson, 1985]: it slows

and deflects ions but acts to accelerate and capture electrons downstream.

Ions with normal kinetic energy less than the cross-shock potential are

slowed and reflected; this process is historically known as specular reflection

[Gosling et al., 1982; Leroy , 1983] and the magnetic force is often neglected

in this idealization of the reflection. These ions then gyrate half a gyroradius

upstream before being convected back through the shock. This localized re-

gion of gyrating ions in front of the shock ramp establishes a current which

in turn generates a “bump” in the magnetic field. This localized perturbation

in the magnetic field upstream of the shock ramp is known as the foot of the

shock. Ideally, the combination of specular reflection and the E×B drift down-

stream causes the reflected ions to develop a new gyrospeed equal to twice the

perpendicular component of the solar wind velocity [Gosling et al., 1982]. As

the foot is intrinsically associated with the gyration of an upstream reflected

ion, the length of the foot is typically about of half an ion gyroradius. Ion

reflection causes a notable difference in ion and electron temperatures further

downstream and has been observed at the Earth’s bow shock [Sckopke et al.,

1983].

In the region just behind the shock ramp, the gyrating specularly reflected

ions at first amplify the local magnetic field, causing it to “overshoot” the

predictions of the Rankine-Hugoniot conditions. This amplified magnetic field

is known as the overshoot of the shock. Further downstream the gyrating

ions cause undershoot-overshoot oscillations before settling down to an average

downstream value. Although the overshoot can violate the Rankine-Hugoniot

prediction [Tiu et al., 2011], the shock transition must satisfy the jump condi-

tions on a macroscopic level (meaning averaged over the downstream region).

Coroniti [1970] showed that for a fast mode shock if resistivity is the only

dissipation process, then the shock cannot remain steady above a critical Mach

number M∗
A. Shocks having Mach-numbers above and below the critical Mach

number are called subcritical and supercritical, respectively. He speculated that

ion reflection becomes important for supercritical shocks MA > M∗
A, providing
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the necessary dissipation for the shock to remain steady. Since ion reflection

is responsible for the creation of the foot and overshoot features at quasiper-

pendicular shocks, the appearance of these structures is widely used as an

operational definition of a supercritical shock. Subcritical shocks which do not

possess foot or overshoot features closely resemble the ramp-only shock profiles

of an ordinary gas. Put another way, subcritical shocks typically have a smooth

laminar monotonic transition from upstream to downstream. A parametric

survey by Edmiston and Kennel [1984] found that the critical Mach-number

is M∗
A ∼ 2.7 for θBn = 90◦ and decreases with decreasing θBn. The Earth’s

bow shock has values of MA ∼ 1− 10 and so both subcritical and supercritical

shocks have been observed [Russell et al., 1982; Livesey et al., 1982; Scudder

et al., 1986].

Ion reflection also plays an important role in the heating of the downstream

plasma [Biskamp and Welter , 1972; Forslund et al., 1984; Burgess et al., 1989;

Sckopke et al., 1990; Gedalin, 1997]. In an ordinary fluid, heating or dissipation

is due to the viscosity provided by collisions between molecules. However, in a

collisionless plasma the source of shock heating is not so obvious, since collisions

are unimportant, and remains a major problem in space physics today [Lembège

et al., 2004; Bale et al., 2005; Krasnoselskikh et al., 2013]. Indeed, while the

total amount of heating must be prescribed by the Rankine-Hugoniot relations,

the heating may be due to a single process or to multiple processes.

One possible heating mechanism involves the production of the so called

“ring” distribution downstream [Sckopke et al., 1983, 1990]. Specularly re-

flected ions which are accelerated by the convective electric field upstream are

predicted to emerge downstream with a perpendicular speed of twice the in-

coming fluid speed [Gosling et al., 1982; Burgess et al., 1989], i.e. v⊥ ≃ 2u.

This eventually forms the ring distribution downstream which can be the source

of free energy for waves to grow and scatter particles, generating dissipation

and heat. Figure 1.5 shows observational evidence for a ring distribution at a

supercritical shock from ISEE-2 spacecraft data [Sckopke et al., 1983]. Contour

plots of the upstream and downstream ion distribution in perpendicular veloc-

ity phase space clearly show some particles with larger perpendicular speed

than the thermal core. Qualitatively, we would then expect most of the down-

stream ion temperature to reside with the ion ring population [Sckopke et al.,

1990].
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Figure 1.5: Contour plots of the ion distribution in perpendicular velocity phase

space as a function of time for an inbound shock crossing observed by ISEE-2

[Sckopke et al., 1983].

1.7.2 Acceleration and Energization

Shocks are efficient instruments by which particles undergo acceleration and

energization. Several theories have been proposed on how electrons and ions

are accelerated at shocks; in this Section we focus on ion acceleration.

Shock drift acceleration (SDA) [see e.g., Armstrong et al., 1985] involves

ions gaining energy by drifting parallel to the convective electric field by ∇B

or curvature drifts for extended periods of time. (Electrons gain energy by

drifting anti-parallel to the convective electric field.) Transmitted particles can

also gain energy through this mechanism but the largest energy gains occur

for reflected particles. In its simplest form SDA predicts that the maximum

energy increase for a reflected particle is

Emax

E
=

1 + (1 − 1/r)1/2

1 − (1 − 1/r)1/2
(1.47)

which for a strong shock with r = 4 means a reflected particle can only increase

its original energy by a maximum factor of 13.93 [Ball and Melrose, 2001].

Shock drift acceleration is most efficient for thin shocks [Lever et al., 2001]

where the ramp thickness Lr is much smaller than the ion inertial length λi =

vAΩci, i.e. Lr ≪ λi. Indeed, Cluster spacecraft measurements of the ramp

thickness at the terrestrial bow shock suggest Lr is on the order of the electron

inertial length λe = c/ωce ≪ λi [Mazelle et al., 2010; Hobara et al., 2010]. Under

these conditions, ions can be reflected multiple times off the shock which is
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known as multiply reflected ion (MRI) acceleration [Zank et al., 1996] or “shock

surfing” [Lee et al., 1996]. With each reflection the particle is accelerated and so

can reach energies several to many times larger than the incoming ram energy

[Zank et al., 1996; Lee et al., 1996].

Diffusive shock acceleration (DSA) [see e.g., Lee and Fisk , 1982] is a form

of first order Fermi acceleration associated with particles being scattered by

waves on either side of the shock. Since the fluid velocity decreases across

the shock, a particle travelling upstream from the downstream region, or vice-

versa, will approach the scattering centers of the waves head on and so cause

the particle’s energy to increase. Provided that particles cross the shock many

times, which is highly likely since scattering is a diffusive process, DSA is an

efficient acceleration mechanism. Eventually particles diffuse away from the

shock. Quantitatively, one can show that diffusive shock acceleration leads

to a downstream spectrum of accelerated particles that follows a power law

distribution f(p) ∝ pb, where b is the power-law index and depends solely on

the compression ratio of the shock: b = 3r/(r − 1) [Lee and Fisk , 1982].

1.8 Shock Reformation

So far we have only considered shock structures that are stationary in time.

However, early laboratory experiments of collisionless shock waves in a plasma-

wind-tunnel showed nonstationary structures, oscillating with a time scale close

to the ion gyroperiod [Morse et al., 1972]. This phenomena is called shock ref-

ormation or shock nonstationarity [see e.g., Bale et al., 2003; Chapman et al.,

2005; Burgess et al., 2012; Krasnoselskikh et al., 2013]. An example of a re-

forming shock from a numerical simulation is shown in Figure 1.6.

This dynamic shock behavior was suggested in early PIC simulations [Biskamp

and Welter , 1972; Leroy et al., 1982; Lembège and Dawson, 1987] and hybrid

simulations [Quest , 1985; Burgess , 1989; Winske et al., 1990] of high MA shocks

which showed spatial structures disappearing and reappearing on time scales

close to the ion gyroperiod. Quest [1985] modelled a high MA ∼ 22, low

β = 0.1, perpendicular shock using a 1-D hybrid simulation. He noted the ion

reflection process was periodic, with intervals of 100% transmission and 100%

reflection in the absence of electron resistivity [Quest , 1986]. Furthermore, the

growing time-dependency of the shock was also evident with increasing MA.

Lembège and Dawson [1987] studied in detail the field patterns and ion dy-

namics of perpendicular supercritical shocks using a 1-D PIC simulation code.
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Figure 1.6: Contour plot of the spatial-temporal normalized magnetic field

B/B1 of a reforming shock in our 1-D hybrid simulation with shock parameters

MA ∼ 6.1, βe = βi = 0.5, and θBn = 85◦.

They found successive stages of ion acceleration-trapping-detrapping in their

simulations. The dominating magnetic field structures of the trailing wave

train, foot, and ramp were also shown to have length scales dictated by the ion

dynamics at the shock front.

Lembège and Savoini [1992] confirmed and extended these results with 2-D

PIC simulations of supercritical perpendicular shocks. They found evidence

for a critical angle θr, below which reformation in their simulations would

disappear. They argued that dispersive effects which become stronger for angles

further away from θBn = 90◦ stabilize the foot and overshoot and hence any

nonstationary effects.

Yuan et al. [2007] examined the dynamics of low beta (β = 0.05) high MA (∼
4 − 5) quasiperpendicular (θBn = 87◦) shocks using a 1-D hybrid simulation

with electron mass and pressure tensor effects. They found the shock reformed

with a period of 1.8Ω−1
ci and the addition of electron dissipation led to strong

ion thermalization and phase space mixing between upstream incoming and

reflection ions via plasma wave interactions in the foot.

Evidence for shock reformation occurring in nature has so far been limited.

For a single-spacecraft shock encounter, the challenge remains in separating
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temporal fluctuations to spatial variations observed in the shock structure. So

far most evidence for reformation has been from the Cluster mission [Kras-

noselskikh et al., 2013], a group of four spacecraft which fly in tetrahedron

formation around Earth. This makes it suitable for studying nonstationary

effects by comparing magnetic and electric field data between each four space-

craft but requires careful analysis of the shock motion and location. Here we

outline previous evidence for shock reformation, most of which are based from

Cluster spacecraft data.

Horbury et al. [2001] analyzed magnetic field data of a low β ≈ 0.1 high

MA ≈ 5 quasiperpendicular θBn ≈ 89◦ terrestrial shock. By combining data

from the four spacecraft they estimated the bow shock orientation and velocity.

Thus by examining the residual magnetic field variations, i.e. through removing

the average field profile from each synchronized time series, they concluded that

compressive temporal fluctuations of significant amplitude were observed in the

foot which are not phase standing and are not present in the ramp. Lobzin et al.

[2007] also analyzed Cluster spacecraft data of a high MA ≃ 5 quasiperpen-

dicular θBn ≈ 81◦ terrestrial shock. Their measurements of the magnetic field

structure, spectra of electric field fluctuations, and ion distributions suggested

a highly nonstationary shock. On the other hand, Mazelle et al. [2010] per-

formed a statistical analysis of the ramp thickness Lr from 24 terrestrial close to

perpendicular shocks with very similar upstream conditions observed between

the four spacecraft. They found variation in ramp thickness between each four

spacecraft, most being a few electron inertial lengths wide Lr ∼ λe = c/ωe but

some reaching just under the ion inertial length Lr . λi. They interpreted the

variability of the ramp scales, observed for the same upstream conditions, as a

clear signature of reforming shocks. Recently, Sundberg et al. [2013] examined

magnetic field measurements across a quasiparallel θBn ∼ 45◦ shock in Mer-

cury’s magnetosphere from MESSENGER spacecraft data. Over a 25-minute

interval they documented a sustained period of magnetic field pulsations with

an average period of 10 s which they interpreted as being caused by magnetic

pressure fronts connected to a reforming shock.

There are many proposed causes of shock reformation and the suggested

mechanisms vary between quasiparallel and quasiperpendicular shocks. One

possible explanation involves the time-varying particle dynamics at the shock

front, in particular due to ion reflection at quasiperpendicular shocks [Leroy ,

1983; Sckopke et al., 1983; Quest , 1986]. The idea is that when the density

of the reflected ions is large enough the magnetic field at the upstream edge

of the foot, where the reflected ions turn around, can ignite the emergence
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of a new shock foot [Lembège and Dawson, 1987]. This shock foot grows in

amplitude until it becomes the new shock ramp and reflects ions itself, leaving

the previous ramp to decay.

Wave-particle interactions are also a popular explanation for shock nonsta-

tionarity. Matsukiyo and Scholer [2003] investigated the modified two stream

instability (MTSI) driven by the relative drift between electrons and ions across

the magnetic field. They found evidence for MTSI in the foot region of super-

critical quasiperpendicular shocks in 1-D PIC simulations with the real mass

ratio µ = 1836. The instability results in small scale vortices in vx − x phase

space of the incoming ions in the foot and phase mixing between the incoming

and specularly reflected ions. Subsequently, a new shock front is created at the

upstream edge of the foot [Scholer and Matsukiyo, 2004]. Matsukiyo and Sc-

holer [2006] extended their investigation to include the electron cyclotron drift

instability (ECDI) [Forslund et al., 1970] and Buneman instability [Buneman,

1958]. Nonetheless they concluded from their 2-D PIC simulation results that

the most dominant instability was still MTSI.

Finally, Krasnoselskikh et al. [2002] suggested that shock reformation at

quasiperpendicular shocks was associated with the nonlinear whistler wave be-

ing no longer balanced by the effects of the dispersion and dissipation. For

oblique shocks the whistler wave train, which stands in front of the shock

ramp, is an intrinsic feature of the shock structure. Krasnoselskikh et al. [2002]

derived a theoretical Mach number, called the nonlinear whistler critical Mach

number Mnw, above which the stationary nonlinear wave train cannot exist any-

more within the shock front. The authors argued that MA = Mnw corresponds

to the transition between stationary and nonstationary temporal behavior of

the shock. Using 1-D PIC simulations they performed shocks with Mach num-

bers above and below Mnw, and confirmed the disappearance of the whistler

wave train and the appearance of shock nonstationarity above this threshold.

Recently, Lembège et al. [2009] recovered the occurrence and disappearance of

the nonlinear whistler waves in both 2-D PIC and 2-D hybrid simulations.
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Chapter 2

Evidence for Reformation of the

Uranian Bow Shock:

Hybrid Simulations and

Comparisons with Voyager Data

[Published as D. Tiu et al., J. Geophys. Res. 116, A04228 (2011)]

2.1 Abstract

The cyclic reformation of shock structures is still a major unresolved issue for

collisionless shock physics. We investigate the Voyager 2 spacecraft’s encounter

with the Uranian bow shock and present detailed quantitative evidence that

the bow shock was reforming. This evidence is based on finding very good

agreement between Voyager observations of the Uranian bow shock and results

from a standard 1-D hybrid simulation code run with similar plasma param-

eters. Specifically, the multiple large localized magnetic field enhancements

B/B1 ∼ 16 observed downstream by Voyager 2, where B1 = 0.19 nT is the up-

stream magnetic field, are quantitatively consistent with the reforming shock

found in the simulation. Moreover, the variability and large enhancement fac-

tors for B and the number density, as well as the variations of the plasma

velocity, and ion temperature over an almost 2-hour period including and after

the shock crossing, are consistent with Voyager being very close to the reform-

ing bow shock and with the Uranian bow shock receding planetwards with

the spacecraft. Additional simulations show the magnetic overshoot factor to

increase approximately linearly with Alfvén Mach number and to be robust

against changes in magnetic field orientation (from quasiparallel to quasiper-
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pendicular). These large overshoots may be important in applications involving

particle acceleration and type II solar radio bursts. In addition, we estimate

the effective numerical resistivity of our code by comparing simulations with

varying applied resistivity. The estimated numerical resistivity found is consis-

tent with estimates inferred from observations of Earth’s bow shock by Scudder

et al. [1986].

2.2 Introduction

A shock is a nonlinearly steepened wave, ideally with an abrupt discontinuity

in the plasma parameters at the shock front [Tidman and Krall , 1971; Rus-

sell , 1985]. Shocks are present in numerous physical situations across multiple

fields of physics such as space physics and astrophysics. They are important

as they generate heat and entropy across the shock interface, accelerate parti-

cles, and signal supersonic flows and energy releases [Tidman and Krall , 1971;

Biskamp and Welter , 1972; Knock et al., 2001]. Planetary bow shocks are

formed through the interaction between the Sun’s supersonic solar wind and

a planet’s magnetosphere or ionosphere [Russell , 1985; Scudder et al., 1986;

Bagenal et al., 1987].

The time-averaged jumps in plasma parameters across the macroscopic

shock are governed by the Rankine-Hugoniot (R-H) conditions, which are based

on time-invariance (neglect of time derivatives in the MHD equations) and the

conservation of mass, energy, momentum, normal magnetic field, and tangential

electric field across a planar discontinuity with infinitesimal thickness [de Hoff-

mann and Teller , 1950; Tidman and Krall , 1971; Kennel et al., 1985; Russell ,

1985]. In realistic applications the effects of waves, periodic variations, and

other temporal and spatial variations are assumed to be removed by suitable

temporal and spatial averaging of the upstream and downstream plasmas, and

the R-H conditions are applied to the averaged upstream and downstream states

[Russell , 1985]. The R-H conditions for a magnetized plasma are defined by

three independent parameters: the Alfvén Mach number MA, the angle θBn be-

tween the upstream magnetic field and the shock normal, and the plasma beta

β [Tidman and Krall , 1971]. In the limit of a high MA shock, these relations

predict a maximum magnetic enhancement (or compression) ratio of B/B1 = 4

where B1 is the upstream magnetic field strength [Kennel et al., 1985; Russell ,

1985].

The detailed structure of quasiperpendicular shocks (45◦ < θBn < 90◦) in-
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clude regions called the foot, ramp and overshoot. The shock ramp is often

idealized as a discontinuous jump, and typically has an almost linear increase

in magnetic field strength. The foot is the region in front of the ramp that

is commonly associated with a mildly enhanced magnetic field and wave phe-

nomena driven by ions specularly reflected (specular meaning the reversal of

the normal component of the incoming ion velocity) by the cross-shock elec-

trostatic potential and magnetic ramp. These ions gyrate upstream for half

an ion gyroperiod and then move downstream. The overshoot is associated

with the return of the gyrating ions, thereby enlarging the maximum magnetic

field near the ramp. The gyrating ions cause additional undershoot-overshoot

patterns in B downstream, which disappear as the ions are thermalized. The

downstream plasma is expected to have the (fluid) characteristics predicted by

the R-H conditions sufficiently far downstream from the shock.

Shock reformation is the cyclic variation of shock structures in time – specif-

ically the shock foot, ramp, and overshoot form, disappear, and reform on time

scales on the order of the upstream ion gyroperiod [Morse et al., 1972; Leroy

et al., 1982; Quest , 1986; Hellinger et al., 2002; Krasnoselskikh et al., 2002;

Yuan et al., 2009]. One picture of reformation is that the gyrating ions re-

flected by the cross-shock potential generate a wave which steepens and grows

to the magnitude of the previous shock, becoming the new shock while the

previous ramp then disappears [Quest , 1986; Lembège and Savoini , 1992; Kras-

noselskikh et al., 2002; Lembège et al., 2004]. An alternative picture is that the

shock foot, ramp and overshoot do not disappear entirely, but rather fluctuate

in strength about a characteristic equilibrium value [Lembège et al., 2004]. This

phenomenon of a cyclic shock structure has long been found in particle-in-cell

(PIC) and hybrid simulations of collisionless plasmas. Reformation of quasiper-

pendicular shocks was reported in some early 1-D [Biskamp and Welter , 1972;

Leroy et al., 1982; Lembège and Dawson, 1987] and 2-D [Lembège and Savoini ,

1992] PIC simulations. Leroy et al. [1982] performed 1-D hybrid simulations

which showed temporal variations of the magnetic field strength on timescales

of the order of the ion gyroperiod. In addition, they found that for MA = 10

and βi = βe = 0.1 up to 30% of the incoming ions were periodically reflected.

Simulations have indicated that the onset of reformation is typically associated

with emerging shock structures such as the shock foot, the overshoot, and with

large amplitude whistler waves [Krasnoselskikh et al., 2002; Hellinger et al.,

2002, 2007; Yuan et al., 2007; Lembège et al., 2009].

Evidence for shock reformation occurring in nature has so far been limited.

The earliest evidence of reformation is often attributed to Morse et al. [1972]
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in the laboratory and [Horbury et al., 2001] in space. Morse et al. [1972] inter-

preted low frequency fluctuations on the order of the ion cyclotron frequency

upstream of the shock as evidence for cyclic reformation. Horbury et al. [2001]

analyzed magnetic field data aboard the four Cluster spacecraft and pointed

out that large amplitude fluctuations near and upstream of the ramp may be

signatures of reformation or instead whistler waves. More recently Lobzin et al.

[2007] found bursty ion reflection and quasiperiodic variations of Langmuir-like

waves observed upstream of Earth’s bow shock, both with periods of the order

of Ω−1
ci . These waves were speculated to be caused by bursts of electrons re-

flected off a nonstationary shock, as found in recent simulations [Yuan et al.,

2008a]. However, the observational evidence for shock nonstationarity is pri-

marily in terms of temporal variations of plasma parameters on timescales of

the ion gyroperiod.

To this end we provide strong evidence of shock reformation occurring in

nature through direct analyses of the Voyager 2 spacecraft’s data for the Ura-

nian bow shock. This paper focuses on the very high magnetic compression

ratios B/B1 ∼ 20 observed at the immediate shock ramp and for 2 hours down-

stream, much greater than the R-H predictions (which apply properly only to

the final averaged downstream state and not the shock microstructure), found

in both our 1-D hybrid simulations and the Voyager 2 data. Very good agree-

ment between the simulations and observations is found for the magnetic field,

plasma density, flow velocity, and temperature. Additional simulations ad-

dress the magnitudes of the overshoots, progressing beyond the observations

of Livesey et al. [1982] and Russell et al. [1982]. The localized magnetic com-

pression (enhancement) factor increases linearly with MA and is robust against

changes in θBn. This paper is organized as follows. In section 2 we examine

and analyze Voyager 2 observations of the Uranian bow shock. Section 3 briefly

outlines our simulation methods. Section 4 outlines our results and the evi-

dence for shock reformation. Sections 5 and 6 discuss the results and conclude

the paper, respectively.

2.3 Voyager 2 Data

Voyager 2 encountered the Uranian bow shock on 24 January 1986, under the

conditions of high Alfvén Mach number (MA ∼ 23) and high plasma beta

(β ∼ 3) [Bagenal et al., 1987]. Voyager 2 spacecraft was inbound to Uranus

and moving close to the planet-Sun line, as shown in Figure 2.1 (reproduced
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Table 2.1: Observed plasma parameters at Earth’s bow shock as measured by

ISEE 1 [Scudder et al., 1986].

Parameter Up Down

ne, cm−3 9.87 32.2

θBn, ◦ 76.1 ± 4

βi 0.8 5.7

βe 1.6 1.5

B, nT 5.49 0.7

vA, km s−1 37.8 67.1

MA 7.7 1.1

fci, Hz 0.082 0.27

Figure 2.1: The trajectory of the Voyager 2 spacecraft at the Uranian bow

shock crossing, reproduced from Bagenal et al. [1987]. The vector n̂ is the

shock normal. The heliographic coordinate system with unit vectors R̂, T̂ and

N̂ define a spherical polar coordinate system (N̂ is out of the page).
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from Bagenal et al. [1987]). The heliographic coordinate system is a spherical

polar coordinate system defined by the set of unit vectors (R̂, T̂ , N̂), with R̂

and T̂ in the solar equatorial plane. Half an hour before the bow shock crossing,

Bagenal et al. [1987] showed that the observed (averaged into 9.6 s samples)

upstream magnetic field was 60.5◦±9◦ from the radial direction and −26◦±6◦

from the (R̂, T̂ ) plane with a magnitude of 0.19 nT. Thus, with the spacecraft

∼ 25◦ from the Uranus-Sun line at the crossing, the angle between the shock

normal and the magnetic field was θBn ∼ 85◦ ± 9◦ [Bagenal et al., 1987].

Figure 2.2 shows Voyager 2 observations of the magnetic field strength B,

velocity components, plasma number density n, and ion and electron temper-

atures as a function of the spacecraft event time (SCET), as published by

Bagenal et al. [1987]. The magnetic field samples have a 9.6 s cadence. On

closer examination the regions typical for super-Alfvénic quasi-perpendicular

shocks, such as the foot (near 0715-0720 SCET), ramp and overshoot (near

0725 and 0730 SCET), are identifiable. The magnetic field increased to a max-

imum value Bmax ∼ 3.2 nT at the overshoot and oscillated strongly for ∼ 1

hour, before settling down towards an average value of 0.7 nT [Bagenal et al.,

1987]. In addition, the velocity components and the ion temperature reached

downstream values after only one overshoot-undershoot cycle, yet show consid-

erable fluctuations immediately afterwards. Upstream parameters (B1 = 0.19

nT, n1 = 5 × 104 m−3) were taken at 0716 SCET, just before the magnetic

field, density and temperature began to increase [Bagenal et al., 1987].

Figure 2.3 shows the mean magnetic field, the direction angles (λ, δ), and

the root mean squared (RMS) magnitude of the field about the mean during

Voyager 2’s encounter with the Uranian bow shock, using vector magnetic

data with a cadence of 1.92 s. These data were obtained from the Planetary

Data System (PDS). The angle λ is defined as tanλ = BT /BR and the angle δ

defined as sin δ = BN/B (subscripts denote the magnitude of B in unit vectors).

The magnetic angles exhibit high variability, particularly downstream from the

shock. The variability of the magnetic field is evident upon examining the

RMS magnitude, as large deviations from the mean are observed well past the

nominal shock crossing.

Three major points are emphasized here. First, the maximum observed

compression ratio Bmax/B1 ∼ 16, corresponding to the initial overshoot, ex-

ceeds by a factor of four the maximum value of 4 predicted by the R-H con-

ditions. Note that this ratio is even greater for the 1.92 s averaged data set,

with Bmax/B1 ∼ 25. Second, the field increases multiple times up to values

near Bmax for ∼ 1.5 hours after the initial shock crossing. Peaks near Bmax are
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Figure 2.2: Profiles of the magnetic field (9.6 s cadence), velocity components,

temperature and density as a function of the spacecraft event time (SCET)

observed during Voyager 2’s encounter with the Uranian bow shock [Bagenal

et al., 1987]. Horizontal lines denote the Rankine-Hugoniot prediction for a

high MA quasiperpendicular shock. Figure reproduced from Bagenal et al.

[1987].
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Figure 2.3: Mean magnetic field, RMS magnetic field and magnetic direc-

tion angles (λ, δ) at a 1.92 s cadence as a function of spacecraft event time

(SCET) observed during Voyager 2’s encounter with the Uranian bow shock.

The dashed line in panel (a) denotes the R-H prediction for the downstream

magnetic field strength.
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found specifically at about 0725, 0730, 0800, and 0845 SCET. Furthermore, for

much of the period downstream from the initial shock crossing, the maximum

magnetic enhancement ratios exceed by a factor of 4–6 the maximum asymp-

totic value Bmax/B1 ≈ 4 predicted by the R-H conditions (Figure 2.3). These

anomalies do not appear to have been addressed in previous investigations of

Voyager 2 observations and have been left unexplained. Third, the field takes

≈ 2 hours to settle down to the average downstream value of 〈Bdown〉 ≈ 0.7

nT, regarded by Bagenal et al. [1987] as the downstream state for their R-H

calculations. With 〈Bdown〉/B1 = 3.7, Bagenal et al. [1987] found good agree-

ment with the observed magnetic and plasma parameters. A detailed analysis

of Uranus’s bow shock motions by Xue et al. [1996], using upstream Langmuir

waves and magnetic connection conditions, gave strong evidence that the bow

shock was in fact moving away from the Sun, towards Uranus, just before the

Voyager 2 encounter. Below we specifically address and interpret all three of

these points, finding that shock reformation and the planetwards shock motion

provide a consistent interpretation of the Voyager data.

2.4 Simulation Code and Setup

In this paper, we use a standard 1-D hybrid simulation code [Winske et al.,

2003] developed by Yuan et al. [2007]. The simulation code calculates the

plasma velocity and electromagnetic fields in 3-D. Electrons are treated as a

massless fluid whereas ions are treated as massive particles whose trajectories

are followed using the standard PIC method. The electromagnetic fields are

calculated in 3-D using Maxwell’s equations in the Darwin approximation, with

currents and charge densities summed over the electrons and ions. A small but

nonzero resistivity (η = 1.0 × 10−2 µ0v
2
AΩ−1

ci ) is incorporated into the code

to ensure it runs smoothly, via the resistive term ηj in Ohm’s law. Below

the code’s effective numerical resistivity is estimated and found to be within

an order of magnitude of estimates inferred from observations of Earth’s bow

shock by Scudder et al. [1986]. The simulation grid has a spatial resolution of

dx = 0.3 vA/Ωci, 103 particles per cell, and a time step of dt = 1.0× 10−5 Ω−1
ci .

The shock is induced by injecting a high speed plasma from the left-hand

boundary of the simulation cell, which is then specularly reflected off the in-

finitely conducting right-hand wall. In our simulations we chose plasma pa-

rameters very similar to those observed by Voyager 2 upstream of Uranus, as

estimated by Bagenal et al. [1987]: MA ∼ 23, θBn = 85◦, βe = 1.0 and βi = 2.1.
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The simulation frame is transformed into the shock normal incidence frame by

a Lorentz transformation. Furthermore, a Lorentz transformation and rota-

tion transforms the simulation frame into the heliographic coordinates of the

Voyager 2 spacecraft.

2.5 Results

Figure 2.4 is a contour plot of B/B1 in the simulation’s space-time domain

for the upstream parameters assumed for the Uranian bow shock. A shock

is visible moving upstream from the top-left to the mid-right, as seen from

the leftmost contours of high B/B1. At a glance several crucial results are

clear. First, maximum localized compression ratios of Bmax/B1 ∼ 20 are found.

Second, the shock reforms periodically as evidenced by the high B/B1 contours

occurring in discrete segments along the shock locus. The high B/B1 regions

occur approximately every Tci ∼ 1.8 Ω−1
ci . Third, several overshoot-undershoot

oscillations occur downstream of the shock, but this region is spatially bounded.

Thus Figure 2.4 predicts that Uranus’s bow shock should be reforming for the

parameters inferred by Bagenal et al. [1987], and should have high values of

Bmax/B1 close to those observed.

Now consider trajectories on which an observing (virtual) spacecraft moves

through the simulation domain towards Uranus. A trajectory moving rapidly

parallel to the shock normal will move immediately across the shock and

through the downstream region, likely seeing no reformation but only a large

magnetic compression ratio. In contrast, a trajectory moving slowly relative to

the shock will see many shock reformations and stay close to the ramp for a

long time. Figure 2.4 illustrates these two classes of trajectories (from here on

referred to as the fast and slow trajectories), while Figures 2.5 and 2.6 show

the two corresponding B[x(t)] and plasma profiles. The slow trajectory, cor-

responding to a slow planetwards shock motion similar to that of Xue et al.

[1996], would qualitatively correspond to a spacecraft trajectory similar to the

red trajectory in Figure 2.4.

The magnetic field, ion flow velocity, ion temperature, and ion density pre-

dicted along the two trajectories are shown in Figures 2.5 and 2.6. Qualita-

tively, Figures 2.2 and 2.6 demonstrate the same trends in plasma parameters

across the shock. These plasma parameters are averaged over a simulation

time (0.03 Ω−1
ci ) equivalent to the 9.6 s time averages given in Bagenal et al.

[1987]. The simulated time in Figures 2.5, 2.6, and 2.7 corresponds to 1 hour
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Figure 2.4: The magnetic enhancement profile B(x, t)/B1 as a function of

space and time of a simulation using similar plasma parameters (MA ∼ 23,

θBn = 85◦, βe = 1.0 and βi = 2.1) to those observed at Uranian bow shock.

Large magnetic enhancements (B/B1 ∼ 20) above the R-H predictions are

clearly observed. The green and red lines show two test spacecraft trajectories,

one moving rapidly relative to the shock (green) and one moving slowly relative

to shock (red).
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Figure 2.5: The simulated (a) magnetic field, (b)–(d) velocity components,

(e) ion temperature and (f) number density along the fast (green) trajectory in

Figure 2.4 with the downstream averaged values (dashed lines) predicted by the

R-H conditions. Note the rapid transition of the plasma parameters to steady

downstream values after only one to two overshoot-undershoot oscillations.
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temperature and (f) number density along the slow (red) trajectory in Figure

2.4, using the same format as Figure 2.5.
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Figure 2.8: Scatter plot of the normalized number density n/n1 versus the

magnetic enhancement ratio B/B1 along the fast trajectory (•) in Figure 2.5
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SCET, while the corresponding speeds for the observing point are v ∼ 10vA

and v ∼ −5.7vA for the fast/green and slow/red trajectories, respectively.

The velocity components and temperature in Figures 2.5 and 2.6 show rapid

transitions to the predicted downstream values, even before the observing lo-

cation is more than two overshoot-undershoot oscillations downstream of the

nominal location of the shock front. Due to it being determined almost ex-

clusively by the ring distribution of the specularly reflected ions, the ion tem-

perature achieves the downstream value in the foot, and is essentially constant

once the ramp is crossed for the first time. The flow velocity does oscillate

as reformation events occur, but quickly reaches downstream averaged values
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of order those predicted by the R-H conditions (as shown in Figure 2.5). In

contrast, the density shows large oscillations with reformation events and also

attains compression ratios n/n1 ∼ 20 comparable to those for the magnetic

field. Indeed, it is striking how well n and B track each other across the shock

(Figures 2.2, 2.5, and 2.6). This is further evident upon examining Figure 2.8,

which is a scatter plot of n/n1 and B/B1 for both trajectories.

Figure 2.6 shows very large magnetic compression ratios B/B1 ∼ 10 − 20

persisting for . 30 minutes and occurring in oscillations with periods ∼ 10

minutes along the nominal slow trajectory chosen. This is qualitatively very

similar to the Voyager observations but quantitatively slightly different since

the observed peaks occur 20 minutes apart. This is plausibly due to Voyager’s

trajectory being slightly different from that chosen in the simulation.

The magnetic increase near 0725 SCET in the Voyager data (Figures 2.2(a)

and 2.3(a)) might sometimes be regarded as the magnetic foot of the shock.

However, upon further examination, the maximum magnetic enhancement ratio

of this event is B/B1 ∼ 7.4. This value exceeds the maximum R-H prediction

by almost a factor of two and is much larger than typical enhanced factors for a

magnetic foot (≤ 30%). Another interpretation is that this event is associated

with reformation of the shock: Voyager is observing a partial reformation of the

shock that is similar to the one near time 35 minutes in Figure 2.6 for the red

trajectory in Figure 2.4. On detailed inspection, then, additional reformation

events when Voyager is very near the shock (within several vA/Ωci) are believed

to occur near times 0725, 0730, 0800, 0805, 0822, 0830–0840, and 0925 SCET

in Figures 2.2 and 2.3. The rapid transitions for the whole period 0720–0930

SCET in B between B1 and values well above the R-H predictions, as well as

enhanced values of n, are considered strong evidence of Voyager being near a

reforming shock for the whole period 0720–0930 SCET.

On the other hand, it is recognized that some of the observed oscillations

in B occur much faster (Figure 2.2) than predicted by the simulations shown

in Figures 2.5 and 2.6, requiring us to either appeal to other waves or else

to more rapid back-and-forth movements of the shock. The existence of such

back-and-forth motions appears consistent with the observed radial velocities,

which fluctuated significantly between values of −100 km s−1 and 100 km s−1

for a period ∼ 1 hour past the shock. Furthermore, the observed perturbations

in ion density, ion flow velocity, and ion temperature downstream from the

shock support such variable motions and are more plausible than slow one-way

transitions like that in Figure 2.5 for the green trajectory in Figure 2.4.

In summary, comparisons of Figures 2.2, 2.3, 2.6, and 2.7 show that good
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agreement exists between the simulation and observations. The high com-

pression ratios of the reforming shock in the simulations account naturally and

convincingly for the observations of B/B1 ∼ 20 and n/n1 ∼ 15 seen in the Voy-

ager observations. Thus, the simulation provides simple explanations of these

long unanswered questions and provides strong evidence that the Uranian bow

shock was undergoing reformation during the Voyager encounter.

Furthermore, comparisons between the simulation and observations also

provide evidence that the shock moved planetwards and remained very close

(several vA/Ωci) to the spacecraft during the period 0730–0900 as Voyager ap-

proached Uranus. However, it is recognized that the simulation results for the

magnetic field’s direction angles (Figure 2.7) do not exhibit the extreme vari-

ability shown in the Voyager observations (Figure 2.3). These differences may

be attributed to the neglect of particular wave physics not incorporated into

our hybrid simulation model (note that the electron parameters could not be

determined due to the assumption of an electron fluid in the hybrid simula-

tions). Nevertheless, the predicted RMS magnitudes do correspond relatively

well to spacecraft observations, as seen by comparing Figures 2.3(b) and 2.7(b).

2.6 Discussion

Shocks routinely produce magnetic compression ratios at the overshoot greater

than the maximum downstream compression ratio of 4 predicted by the R-H

conditions [Livesey et al., 1982; Russell et al., 1982; Russell , 1985], although

this is not widely known. Likewise, large magnetic compression ratios B/B1 ≫
4 are commonly exhibited in high MA reforming shocks in our simulations.

Therefore, one can ask more generally what is the degree of correlation between

large magnetic enhancements and the existence of reformation? The previous

work makes it unclear if large magnetic compression ratios can be used to

infer the existence of a reforming shock. It is emphasized here, though, that

the simulations show that the downstream plasma density, flow velocity, and

magnetic field rapidly approach the R-H prediction. That is, in Figure 2.5 the

large magnetic and density enhancements are found only in the near vicinity

of the ramp and first overshoot.

Currently, there is no convincing theory which accounts for the existence of

the large magnetic enhancement ratios observed in simulations and spacecraft

data. One possible model is that these large ratios in n and B arise from de-

tailed balance between upstream ram pressure Pram and the magnetic pressure
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Figure 2.9: Scatter plot of Bmax/B1 versus MA for multiple simulations with

various βi and βe, but a single θBn = 85◦. The dash-dot line represents the line

of best fit for βe = βi = 0.5. The corresponding values observed by Voyager

2 at the Uranian bow shock are plotted with triangle symbols (△) and labels

(a) and (b) for 1.92 s and 9.6 s cadence data, respectively. Label (c) denotes

Figure 2.4’s simulation run with a square symbol (�). The dashed and dotted

lines show the predictions from (2.1) and (2.2) respectively.
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PB at the overshoot. Given that Pram = ρ1v
2
1 and PB = B2

max/2µ0, equating

the two pressures and simplifying we find:

Bmax

B1

=
√

2MA. (2.1)

Equation (2.1) implies a linear relationship between the magnetic overshoot

and the Alfvén Mach number. Figure 2.9 is a scatter plot between Bmax/B1

and MA derived from multiple simulations with a range of plasma beta. The

observations at the Uranian bow shock of Voyager 2 are also plotted in Figure

2.9. The simulation results conform relatively well to the theoretical line at

low MA ∼ 4 − 10. However, at much larger MA ∼ 23, the simulated and

observed results depart significantly from the predicted value. Recognizing that

the simulation results for high ion beta βi lie routinely below the simulation

results for the lower βi, the best fit line for βi = 0.5 is obtained: Bmax =

0.87MA + 1.1. This line lies close to the Voyager 2 results and associated

simulation for Uranus. Thus, Figure 2.9 provides strong evidence that (1) the

simulation results of Figures 2.4-2.10 are not atypical and (2) the strength of the

maximum magnetic overshoot increases approximately linearly with MA with

a gradient that depends on βi. It also suggests that models involving balance

of the magnetic pressure and ram pressure are attractive for explaining the

strength of the magnetic overshoot of the shock.

Earlier, Leroy [1983] investigated the macrostructure of perpendicular shocks

in the supercritical regime and derived an expression for the magnetic overshoot

as a function of MA:

Bmax

B1
=

M
7/6
A

4β
1/4
R

[

10(β
1/4
R /M

1/2
A ) − 2

4 + (M
1/2
A /β

1/4
R )

]1/3

, (2.2)

where βR is proportional to the upstream ion beta (βR ≈ 3
2
βi). Leroy [1983] and

Bagenal et al. [1987] both approximated (2.2) to leading order as Bmax/B1 ∝
M

7/6
A . Nevertheless, we retain the original expression as plotted in Figure

2.9. We find that (2.2) underestimates the magnetic overshoot for large MA

compared to the simulation results and observations. Moreover, (2.2) turns over

for high MA and is not directly proportional to M
7/6
A , so that consideration of

the leading order term alone, as done by Leroy [1983] and Bagenal et al. [1987],

is not correct at high enough MA (& 5).

Basic shock theory and observations suggests that the transition from per-

pendicular shocks to parallel shocks induces turbulence in the magnetic field
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Figure 2.10: Simulated (a) average magnetic overshoot 〈Bos〉/B1 and (b) max-

imum magnetic enhancement ratio Bmax/B1 as functions of MA and θBn. The

contour plots reveal the relative insensitivity of 〈Bos〉/B1 and Bmax/B1 to vary-

ing θBn.
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and also affects the magnetic compression ratio [Russell , 1985]. In the con-

text of reformation, it has also been unclear how variations in θBn affect the

dynamics of nonstationarity, although Yuan et al. [2009] did not find a strong

dependence in the range θBn ∼ 80− 90◦. We have therefore performed a para-

metric study of θBn between the values of 45◦ and 90◦ using multiple simulation

runs. Figures 2.10(a) and 2.10(b) show the spatio-temporal average (between

and including the first two overshoots) of the normalized magnetic overshoot

〈Bo〉/B1 and Bmax/B1, respectively, as functions of θBn. The results show that

reformation is relatively insensitive to varying θBn, in particular in the range

of values θBn ∼ 85◦ ± 9◦ found by Bagenal et al. [1987] at Voyager 2’s inbound

Uranian bow shock crossing. Thus our claim for evidence of reformation is

robust for changes in θBn = 85◦ ± 9◦, both within and well outside the range

of measurement uncertainty.

Hybrid simulations have both an effective numerical resistivity and an ap-

plied resistivity. We have estimated the effective numerical resistivity in our

code using a qualitative approach and found a value ηs ∼ 0.1− 1 µ0v
2
A/Ωci; de-

tails are in the Appendix. This is comparable with the value ηs ∼ 0.5 µ0v
2
A/Ωci

observed by Scudder et al. [1986] for Earth’s bow shock. This implies that our

simulation should produce reasonable results for the Uranian bow shock pro-

vided η does not scale significantly with heliocentric distance. Note that this

effective numerical resistivity includes the physical resistivity associated with

included wave interactions, as well as numerical resistivity associated with the

code algorithm and implementation.

These findings have numerous applications in fields of space physics. In

particular, the theory for type II solar and interplanetary radio bursts [Knock

et al., 2001, 2003a,b; Knock and Cairns, 2005] relies explicitly on the magni-

tude of the maximum magnetic compression. This is because type II emissions

depend on electron beams produced by the shock wave via the mechanism of

shock drift acceleration, so the number of reflected electrons and their distri-

bution function depend on the compression ratio B/B1, as then do the levels

of Langmuir waves and radio emission. Yuan et al. [2008b] test-particle cal-

culations demonstrate that magnetic overshoots significantly affect electron

reflection and should not be neglected. In addition, test-particle simulations

of electrons reflected from reforming and non-reforming shocks [Yuan et al.,

2008a] show that reformation gives rise to bursty electron reflection events and

that the electron characteristics are substantially different from those predicted

using a simple linear shock with no overshoot and a compression ratio given

by the R-H conditions. Thus our simulations, specifically their demonstrations
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Ch. 2 EVIDENCE OF SHOCK REFORMATION

of both reformation and the dependence of the maximum overshoot on MA,

suggest that the predicted intensities of type II bursts could be significantly

underestimated, since the theory currently includes neither the magnetic over-

shoot nor enhanced magnetic compression, but instead uses the R-H prediction.

2.7 Conclusions

Extensive analyses of Voyager data at the Uranian bow shock showed localized

magnetic and density enhancements a factor of 4−6 above the asymptotic pre-

dictions of the R-H relations near the initial shock ramp and for the following

2 hours downstream. We performed simulations using a 1-D standard hy-

brid code with similar plasma parameters observed at the Uranian bow shock.

Our simulation results provide strong evidence that the Voyager observations

(particularly the extremely high and long-duration magnetic and density com-

pressions) can be explained simply in terms of the bow shock reforming and

receding planetwards with the spacecraft. This interpretation is further sup-

ported by the rapid spatial transition (within one or two undershoot-overshoot

cycles) in the simulations and observations of the velocity components, and ion

temperature into the R-H downstream values. Hence, the results of this paper

show very strong evidence that the Uranian bow shock was undergoing refor-

mation. Additional simulations showed that the magnetic overshoot increased

approximately linearly with MA and is robust against variations in magnetic

field orientation. These large overshoots may be important in applications in-

volving particle acceleration and type II solar radio bursts. Future work could

investigate the existence of reformation in other planetary bow shocks and the

heliosphere termination shock using a similar analysis to the one developed in

this paper.

Appendix: Effective resistivity in the code and

at Earth’s bow shock

At low MA resistivity is typically believed [Coroniti , 1970; Kennel et al., 1985]

to provide the main dissipation source for a collisionless quasiperpendicular

shock. However, at higher MA an additional dissipative effect is required in

order to satisfy the R-H conditions. This extra mechanism is the reflection of a

substantial fraction of the upstream ions at the shock front, known as specular
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reflection. At a sufficiently high resistivity, we would expect damping of high

frequency waves and the tendency for the shock structures to smooth out.

In standard hybrid simulations, a small finite resistivity is typically included

to ensure the simulation runs smoothly. This applied resistivity is incorporated

by including the resistive term ηj in the Ohm’s law:

E + u× B = ηj +
1

ne
j× B − 1

ne
∇Pe +

me

ne2

∂j

∂t
. (2.3)

A qualitative approach is used to estimate the numerical resistivity η by

varying the applied resistivity and observing the evolution of the magnetic

profile: the profiles will become smoother once the applied resistivity exceeds

the numerical resistivity and a reforming shock may stop reforming.

We performed simulations of reforming (MA = 9.7) and non-reforming

(MA = 2.7) shocks for applied values of η in the range 0.001 − 10 µ0v
2
A/Ωci.

For each simulation θBn = 85◦ and βe = βi = 0.5. Figures 2.11 and 2.12 depict

the magnetic profiles of the nonstationary and stationary shocks respectively

for various η. Each profile is taken at the same elapsed computation time.

On inspection, Figures 2.11 and 2.12 show that a large applied η tends

to smooth out the shock structures, as expected. Specifically, the ramp length

increases and the upstream waves and under-overshoot oscillations in the down-

stream region are less apparent at high η. In the high MA case reformation is

affected by η, with the η = 1 run only marginally reforming and the η = 10

run not reforming. For non-reforming and reforming shocks Figures 2.11 and

2.12 imply η ∼ 1 µ0v
2
A/Ωci and η ∼ 0.1 − 1 µ0v

2
A/Ωci respectively.

A corresponding observational estimate comes from Scudder et al. [1986]

analyses of an ISEE-1 crossing of Earth’s bow shock on November 7, 1977. Ta-

ble 2.1 lists the observed plasma parameters. Scudder et al. [1986] determined

an empirical value of the effective resistivity by performing a regression anal-

ysis between the measured current density j and electric field E. They found

η = 1.8 × 103 Ω m−1 for Earth’s bow shock. Converting Scudder et al. [1986]

resistivity into simulation units yields η = 0.5 µ0v
2
A/Ωci. Comparing the effec-

tive resistivity of the simulation code implies that the observed value agrees to

within an order of magnitude.

An anomalous resistivity is one greater than the Spitzer resistivity,

ηspitz =
1

64πǫ1ωpe

ln Λ

Λ
, (2.4)

where ωpe and Λ = neλD (λD is the Debye length) are the plasma frequency

and plasma parameter, respectively. This may be the case in plasmas in which

47



Ch. 2 EVIDENCE OF SHOCK REFORMATION

1

2

3

1

2

3

1

2

3

B
/B

1

1

2

3

80 90 100 110 120

1

2

3

x/(vA/Ωci)

(e)

(d)

(c)

(b)

(a)

Figure 2.11: Evolution of the simulated magnetic profile for a stationary shock

(MA = 2.7, θBn = 85◦, βe = βi = 0.5) as a function of applied resistivity (a)

η = 10−3, (b) η = 10−2, (c) η = 10−1, (d) η = 1, and (e) η = 10.
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Figure 2.12: Evolution of the simulated magnetic profile for a nonstationary

shock (MA = 9.6) as a function of applied resistivity (a) η = 10−3, (b) η = 10−1,

(c) η = 1, and (d) η = 10 for the same θBn, βe, and βi as Figure 2.11.
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collective interactions, such as wave-particle interactions, have superseded colli-

sions in scattering the electrons. Using the plasma parameters in Table 2.1, the

Spitzer resistivity for Earth’s bow shock is estimated to be η ∼ 10−9 in simula-

tion units. Clearly the resistivity in Earth’s bow shock and in our simulations

are strongly anomalous.

To some extent, the effective numerical resistivity in the hybrid simulation

code is physical. This is because the code includes wave-particle interactions

due to the modelling of ion particle dynamics. Specifically, specularly reflected

ions develop ring distribution functions at the shock and generate waves in the

vicinity of the shock front as they complete their gyromotion. These waves can

subsequently interact and scatter other incoming particles. The fraction of the

code’s effective numerical resistivity that is due to wave-particle interactions is

not currently known.

In conclusion, the effective numerical resistivity determined for the simula-

tion code is consistent with Scudder et al. [1986] observations of Earth’s bow

shock. The numerical resistivity and that observed at Earth’s bow shock are

anomalous, being much larger than the Spitzer resistivity. Hence, we can be

quite confident in applying the code to planetary bow shocks, as done in this

paper.
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Chapter 3

New Model for the Initial

Reflection and Transmission of

Thermal Ions at Quasi-

Perpendicular Collisionless Shocks

3.1 Abstract

It is widely believed that the electrostatic potential ∆φE is primarily respon-

sible for the reflection of thermal ions at the ramps of quasiperpendicular col-

lisionless shock waves, and so for associated heating downstream. Specifically,

ions with insufficient kinetic energy to overcome the electrostatic potential bar-

rier are specularly reflected. However, measurements from our 1-D hybrid sim-

ulations indicate that ∆φE is typically smaller than the kinetic energy of the

incoming thermal ions, implying that very few ions will be reflected for a purely

electrostatic specular reflection model. Nevertheless, we still observe up to 70%

of the initial population being reflected in our hybrid simulations. We inves-

tigate this issue in detail by exploring the forces acting on the ion particles

along their trajectories, and propose a new analytic model for the ion reflec-

tion process which includes magnetic field effects. Specifically, we calculate

analytically the magnetic deflection of the ion distribution antiparallel to the

convection electric field and the associated slowing along the normal direction

due to the Lorentz force. We then derive an expression for a total effective

potential which is the sum of the electrostatic potential plus the net work done

along the normal direction by magnetic field effects. The reflection efficiency as

a function of Mach-number is predicted using the total effective potential and

an analytic expression for the reflection cutoff and its rotation is also derived.

We find excellent agreement between the simulations and the new model for
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Ch. 3 NEW MODEL FOR ION REFLECTION

ion reflection by the shock front, and show that both the electrostatic potential

and magnetic deflection are vital in the ion reflection process.

3.2 Introduction

More than one mechanism or process exists for ion reflection at shocks, e.g.,

shock drift acceleration, magnetic mirror reflection, diffusive shock acceleration,

and specular reflection. The mechanism by which thermal ions are specularly

reflected off quasiperpendicular shocks is widely attributed to an electrostatic

potential ∆φE across the shock layer that essentially reverses the incident nor-

mal velocity (the so-called specular reflection) [Leroy et al., 1982; Gosling et al.,

1982]. The potential’s magnitude and variation are vital in determining the

fraction α of the incoming ion distribution that is initially reflected at the

shock. This is important to the thermalization of the plasma because ions that

are initially reflected and then gyrate downstream are believed to carry most

of the thermal energy in the downstream distribution. Therefore ion reflection

is an important dissipation process which can redistribute energy between the

total electromagnetic field energy and the total kinetic and thermal energy of

the ion distribution. The focus of the present Chapter is the reflection of ions

at the shock front and their gyration downstream (e.g. “specular reflection”),

not the production of upstreaming particles by shock drift acceleration [e.g.

Armstrong et al., 1985] or diffusive shock acceleration [e.g. Scholer , 1985], or

the reflection of particles downstream of the shock ramp [e.g. Gedalin, 1996].

The time-averaged jumps in plasma properties between the upstream and

downstream regions of a macroscopic shock are governed by the Rankine-

Hugoniot (R-H) conditions [e.g., Scudder et al., 1986]. The R-H conditions

are derived from the conservation of mass, energy, momentum, transverse elec-

tric field, and normal magnetic field, and depend on the Alfvén Mach number

MA, angle θBn between the upstream magnetic field and normal flow direc-

tion, and plasma beta β. The Alfvén Mach number is defined as the upstream

normal fluid speed ux1 (we define the normal direction to be along x) divided

by the upstream Alfvén speed vA. The plasma beta β is the ratio of the

upstream thermal pressure Pth = n1kBT1 to the upstream magnetic pressure

PB = B2
1/2µ0 where n1 is the upstream number density, kB is Boltzmann’s

constant, T1 is total upstream temperature, B1 is the upstream magnetic field

strength, and µ0 is the magnetic permeability. We define the upstream ion

gyrofrequency as Ωci = eB1/mi where e is the electric charge and mi is the
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proton mass.

The stable formation of collisionless shocks in space plasmas is due to the

balance between non-linear wave dispersion and energy dissipation. Coroniti

[1970] showed that for a fast mode shock, if resistivity is the only dissipation

process, then the shock cannot remain steady above a critical Mach number

M∗
A. Several mechanisms have been suggested to provide this additional source

of dissipation. Krasnoselskikh et al. [2002] proposed that the generation and

emission of whistler waves from the shock could redistribute the necessary

energy from the shock for stability. Another proposed dissipation process is

ion reflection by the shock [Coroniti , 1970; Gosling et al., 1982].

Spacecraft observations of subcritical (MA < M∗
A) quasiperpendicular (θBn >

45◦) shocks show that the magnetic field profile is typically laminar [Livesey

et al., 1982], i.e., the spatial profile increases monotonically from its upstream

value to its downstream value, at the so called “ramp” of the shock. In com-

parison, spatial profiles of supercritical (MA > M∗
A) quasiperpendicular shocks

contain local structures upstream and downstream of the magnetic ramp where

the magnetic field strength is enhanced, due to the accumulation of reflected

ions there, known as the foot and overshoot respectively. Livesey et al. [1982]

analyzed measurements of the overshoot from ISEE-1 and -2 spacecraft data

for multiple subcritical and supercritical terrestrial bow shocks, with measure-

ments of M∗
A varying between 2 and 3. They discovered that the magnitude of

the overshoot Bo = max(B) relative to B1 increases dramatically for MA > M∗
A,

as confirmed with hybrid simulations [Burgess et al., 1989; Tiu et al., 2011],

suggesting that ion reflection as an important dissipation process for super-

critical shocks. On the other hand, Leroy et al. [1982] performed 1-D hybrid

simulations of MA between 2 and 10, finding that Bo/B1 is correlated with α,

increasing steadily with MA (see also [Tiu et al., 2011]).

For a narrow shock width L ≪ λi, where λi = vA/Ωci is the ion inertial

length, one usually assumes that the magnetic field is unimportant in the ion

dynamics, and therefore that the v ×B force can be neglected [Gosling and

Thomsen, 1985]. This model of ion reflection, where only the ion’s velocity

normal to the shock interface is reversed, is known as specular reflection and

depends only on ∆φE [Leroy et al., 1982; Gosling et al., 1982]. We define the

particle’s velocity v1 = (vx1, vy1, vz1) at the leading edge of the foot or ramp,

where the magnetic field strength B(x) is first larger by a factor of χ than B1,

or B(x) > χB1. The initial gyrophase angle θ1 and initial thermal speed v⊥1
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are then

θ1 = tan−1

(

vy1

vx1 − ux1

)

(3.1)

v⊥1 =
√

(vx1 − ux1)2 + v2
y1 (3.2)

The ion equation of motion is

F = mi
dv

dt
= e(E + v × B), (3.3)

which cannot be solved analytically [Leroy , 1983]. If the v × B force is small

compared to the electric force eE, then (3.3) simplifies to the expression dv/dt =

eE/mi, leading to the trivial condition that ions satisfying

vx1 ≤ vE
c (3.4)

will be reflected, where vE
c =

√

2e∆φE/mi is the specular cutoff speed, and

∆φE = max(
∫

−Exdx) is the maximum value of the electrostatic potential.

Reflected ions can travel upstream for half a gyro-orbit, drifting along the

convective electric field, thereby gaining enough energy to now cross the elec-

trostatic cross-shock potential into the downstream plasma. Shock drift accel-

eration (SDA) [Armstrong et al., 1985] involves similar physics for longer time

periods: particles drifting parallel (for ions) or antiparallel (for electrons) to

the convective electric field are energized and either transmitted downstream

or reflected upstream for good. Under certain conditions multiply reflected ion

(MRI) acceleration or “shock surfing” can occur, where ions can be reflected

multiple times off the shock, with each reflection accelerating the particle and

so reaching energies several to many times larger than the incoming ram energy

[Zank et al., 1996; Lee et al., 1996].

However, Gosling et al. [1982] acknowledged that the presence of a mag-

netic field can augment the electrostatic force, and therefore alter the overall

reflection process. We hereafter refer to the effect of the magnetic field on the

dynamics of the ion reflection process as “magnetic deflection” (We note that

particle paths and the associated reflection and transmission must be frame

independent, whereas the E and B fields are frame-dependent. We work in the

shock normal frame unless otherwise stated). Magnetic deflection has been in-

vestigated previously but in limited ways [Leroy et al., 1981, 1982; Leroy , 1983;

Lever et al., 2001; Burgess et al., 1989; Gedalin, 1996]. Leroy [1983] proposed

a model for the ion motion across a shock by analyzing the ion trajectory in

separate regions of the foot and ramp, and having the ions specularly reflected
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at the top of the ramp. The model predicts that α increases with MA, in con-

trast to the purely specular reflection model which would predict the opposite

behavior, i.e. α decreasing with increasing MA, due to ∆φE decreasing with

increasing MA [Dimmock et al., 2012]. This anti-correlation between α and

∆φE is well known [Gosling and Robson, 1985; Goodrich, 1985] but an ana-

lytic model to explain this discrepancy has yet been proposed. Leroy [1983]

also acknowledged that magnetic deflection plays an important role in the ion

dynamics at supercritical shocks and was likely responsible for this discrepancy.

It is important to distinguish these reflected thermal ions that are initially

reflected at the shock front and then transmitted downstream, a generalization

of specularly reflection ions, from another class of reflected particles, namely

ions that are initially transmitted through the shock by overcoming the elec-

trostatic potential barrier but subsequently return to the shock due to their

downstream gyromotion. We refer to this class of particles as “returning ions”

and note that their properties have been studied in detail by Gedalin [1996];

they are not analyzed in this Chapter. Nor are nonthermal ions subject to

shock-drift acceleration or diffusive shock acceleration considered here. The

problem of the anti-correlation between α and ∆φE relates only to ions imme-

diately reflected at the shock ramp and not to returning ions.

The evolving dynamics of the ion motion through the shock with increasing

MA has also been noted. Lee et al. [1996] stated that for supercritical shocks,

the ion motion is no longer a specular reflection, but is rather a “turning” mo-

tion until it is either reflected or transmitted. This turning motion is evidenced

by the deceleration of the ion velocity in vy across the foot, observed in both

1-D hybrid and PIC simulations [Leroy et al., 1981, 1982; Burgess et al., 1989;

Gedalin, 1996; Yuan et al., 2007]. Leroy et al. [1981] explained this deceleration

by considering the fluid equation of motion for ions including the v × B force,

mi
dvy

dt
= e(ux − vx)Bz (3.5)

where mi is the ion mass, ux is the local fluid speed and vx is the particle’s

normal speed. The presence of any reflected ions in the region of the shock

foot would reduce ux locally, resulting in ux < vx and therefore from (3.5)

a negative force in the y direction would be applied to the incoming ions.

However, it was not determined whether this turning motion would reduce or

enhance the reflection process.

This Chapter develops and proposes a new model for the initial reflection

or transmission of thermal ions at collisionless shock fronts. Specifically we
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(1) derive the reflection condition using the new model, (2) quantify and in-

vestigate magnetic deflection using the new model and both test-particle and

1-D hybrid simulations, (3) show that particle gyromotion causes the reflection

cutoff to rotate in velocity phase space depending on MA and the overall shock

thickness, (4) demonstrate the new model’s applicability, (5) present 1-D hy-

brid simulation measurements of a new effective potential ∆φ and of α with

MA, (6) show that magnetic deflection is a vital aspect of the ion reflection

process and shock behavior for large MA, and (7) explain the anti-correlation

of α and φE.

The Chapter is organized as follows. In Section 2 we outline relevant ana-

lytic theory. The new reflection model is developed and compared in Section 3

with test-particle simulations in Section 4. We test the model with 1-D hybrid

simulations in Section 5. Sections 6 and 7 discuss the results and conclude the

Chapter, respectively.

3.3 Theory

A theoretical expression for φE(x) can be derived from the electron momentum

equation in the normal incidence frame (NIF) [Leroy et al., 1981, 1982] where

the shock is at rest and the normal direction is defined to be along the upstream

plasma flow velocity. For a perpendicular shock,

eφE(x) = e

∫ x

−∞

uy(x
′)Bz(x

′) dx′+

γ

γ − 1

Pe(x)

n(x)
+

B1

µ0n1
[B(x) − B1] (3.6)

where Pe(x) is the local electron pressure and γ is the specific heat ratio. Zank

et al. [1996] simplified this prediction by introducing a free parameter ηf to

include the maximum contribution of first two terms to the last, and so the

potential jump is

e∆φE ≃ ηfmiv
2
A

(

B2

B1

− 1

)

(3.7)

where B2 is the downstream magnetic field strength. Kuncic et al. [2002] also

derived a similar expression for ∆φ but in the de Hoffmann-Teller frame (HTF),

e∆φHTF
E ≃ βe⊥,1miv

2
A

(

B2

B1

− 1

)

(3.8)
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where βe⊥,1 is the upstream perpendicular electron beta. The difference be-

tween the electric potential in the HTF and the NIF is due to the noncoplanar

component of the magnetic field [Goodrich and Scudder , 1984],

eφHTF
E = eφNIF

E − ux1

c
tan θBn

∫ ∞

−∞

By dx (3.9)

where c is the speed of light. Accordingly if By = 0, φHTF
E = φNIF

E and then

(3.7) and (3.8) can be equated. Normalizing (3.7) to the upstream ram energy

gives the normalized electrostatic potential jump ∆ϕE = e∆φE/(1
2
miu

2
x1),

∆ϕE ≃ 2ηf

M2
A

(r − 1). (3.10)

Here r is the R-H compression ratio, which for quasiperpendicular shocks

asymptotes to 4 as MA → ∞. However the denominator can grow without

bound, implying ∆ϕE → 0 as MA → ∞. Recent Cluster spacecraft obser-

vations [Dimmock et al., 2012] of multiple terrestrial bow shock encounters

between MA ∼ 2 − 10 suggest a similar trend to (3.10).

The reflection efficiency for a specular reflection model αE can be derived

assuming a Maxwellian distribution [Zank et al., 1996],

αE =
1

2
erfc

(

ux1 − vE
c√

2vth1

)

(3.11)

where erfc(x) = 1 − 2/π1/2
∫ x

0
e−t2dt = 1 − erf(x) is the complementary error

function and vth1 ≡ (kBTi1/mi)
1/2 is the upstream ion thermal speed where Ti1

is the upstream ion temperature. In normalized parameters,

αE =
1

2
erfc

[

MA

β
1/2
i

(

1 −
√

∆ϕE

)

]

(3.12)

since the upstream ion beta βi = 2v2
th1/v

2
A and

√
∆ϕE = vE

c /ux1.

3.4 New model for ion reflection and transmis-

sion

To analyze the dynamics of the ion reflection process, we examine the change

in an ion’s normal kinetic energy across the shock layer, WTx, in terms of the
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work done in the x direction by the electric field WEx and the magnetic field

WBx along its trajectory,

WTx = WEx + WBx =

∫ L

0

Fx dx, (3.13)

for a perpendicular shock with width L. Here

Fx = e(E + v × B) · x̂, (3.14)

WTx =
1

2
mi

[

v2
x2 − v2

x1

]

, (3.15)

WEx = e

∫ t2

0

dt vx(t)Ex[x(t)] ≤ −e∆φE , (3.16)

WBx = e

∫ t2

0

dt vx(t)vy(t)Bz[x(t)], (3.17)

where the transmission time, t2, is the time it takes for the ion, entering the

shock with initial velocity v1, to reach the downstream edge of the shock having

a final velocity of v2 = (vx2, vy2, vz2). Note the total work done (summed

over all 3 directions) by the magnetic field is zero since the velocity is always

perpendicular to the direction of the magnetic force, i.e., v · (v ×B) = 0 or

WBy = −WBx. However, we recognize here that the motion in the x direction

is of primary importance for understanding the reflection process. We now

derive a generalized model for specular reflection which includes magnetic field

effects. We then use the new model to derive a modified reflection condition

and show that it depends on the parameters, the maximum reflection time and

total effective potential.

3.4.1 A magnetic deflection mechanism

In order for (3.17) to correspond to a net deceleration of the ion distribution,

meaning a magnetic deflection mechanism, we require that the average contri-

bution of WBx for the ion distribution is negative, i.e.,

〈WBx〉 =

∫ ∞

−∞

dvx1

∫ ∞

−∞

dvy1 WBx(vx1, vy1)f(vx1, vy1) < 0 (3.18)

where f(vx1, vy1) is the distribution function. Here we derive predictions for

the average deflections in vx and vy due to magnetic and electric forces, which

leads to a prediction for 〈WBx〉.
Consider an ion at the center of the distribution entering the shock at the up-

stream fluid velocity u1 = (ux1, 0, 0). Let X(t) and V(t) = (Vx(t), Vy(t), Vz(t))
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be this particle’s position and velocity through the shock, respectively. We

choose linear profiles of the magnetic field and normal velocity along the ion’s

trajectory across the shock as a function of time,

Bz[X(t)] = B1

[

(rB − 1)
t

T2
+ 1

]

(3.19)

Vx(t) = ux1

[(

1

rv
− 1

)

t

T2
+ 1

]

(3.20)

where T2 is its transmission time and its downstream magnetic field strength

and downstream normal velocity are related to their upstream quantities through

the magnetic enhancement ratio rB and normal velocity ratio rv respectively,

i.e., Bz[X(T2)] = B2 = rBB1 and Vx(T2) = ux1/rv. A justification for (3.20) is

provided in Section 5 below. Integrating (3.20) from t = 0 to t = T2 yields

T2 = 2L

(

ux1 +
ux1

rv

)−1

. (3.21)

We can now obtain an expression for Vy(t) using the ion equation of motion in

y,

Vy(t) =
e

mi

∫ t

0

dt′ [ux1B1 − Vx(t
′)Bz[X(t′)]] (3.22)

where Ey = ux1B1. Substituting (3.19) and (3.20) into (3.22) and writing

C1 = rB − 1 and C2 = 1/rv − 1 yields,

Vy(t) =
e

mi

∫ t

0

dt′
[

ux1B1−

ux1B1

(

C1
t′

T2
+ 1

)(

C2
t′

T2
+ 1

)]

(3.23)

= −eB1

mi
ux1

∫ t

0

dt′
[

C1C2
t′2

T 2
2

+ (C1 + C2)
t′

T2

]

= −ux1Ωci

[

C1C2
t3

3T 2
2

+ (C1 + C2)
t2

2T2

]

. (3.24)

For a cold plasma we can approximate the downstream fluid velocity u2 =

(ux2, uy2, uz2) as this ion’s downstream velocity, i.e., u2 = V(T2). Thus substi-

tuting t = T2 in (3.24) gives

uy2 = −ux1ΩciT2

[

C1C2

3
+

C1 + C2

2

]

. (3.25)
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We can obtain a normalized expression for (3.25) by substituting in (3.21),

yielding

uy2

vA

= − l

3

[

2rB + rBrv + 1 − 4rv

rv + 1

]

(3.26)

where l = L/λi is the normalized shock width. Eq (3.26) can be rewritten as

uy2

vA
= − l(rv − 1)2

3(rv + 1)
(3.27)

for rB = rv so that uy2 ≤ 0 for rv ≥ 1. In general, one can show (3.26) is

always less than zero if rB ≥ rv, given rB > 1 and rv > 1. This implies that

the ion distribution is accelerated in the negative vy direction, in agreement

with previous hybrid simulations [Leroy , 1983; Burgess et al., 1989; Yuan et al.,

2007]. This deflection in vy arises because in the shock layer Bz[X(t)] and Vx(t),

in general, are monotonically increasing and decreasing functions, respectively,

and therefore the time-integrated v × B force in the y-direction is no longer

balanced by the convection electric field E. The local maximum of (3.26) occurs

at rB = rv, meaning that the ion distribution is deflected more if rB > rv. This

is important since the maximum magnetic enhancement ratio measured in 1-D

hybrid simulations is much larger than the R-H prediction in the shock layer,

specifically rB ≃ Bo/B1 ∝ MA [Tiu et al., 2011].

We now consider how this acceleration in vy can be translated into a decel-

eration in vx via the v ×B force, with

∆uB
x =

e

mi

∫ T2

0

dt Vy(t)Bz[X(t)]. (3.28)

The average velocity shift in vx can be estimated by applying the trapezoidal

rule to (3.28), yielding

∆uB
x ≃ e

mi

uy2B2
T2

2
(3.29)

≃ 1

2
ΩcirBT2uy2 (3.30)

and showing that the average velocity shift in x is proportional to uy2 and

therefore is negative for rB ≥ rv. In normalized units (3.30) is

∆uB
x

vA

≃ −rBrvl
2

3MA

[

2rB + rBrv + 1 − 4rv

(rv + 1)2

]

. (3.31)
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Figure 3.1: The ion distribution is decelerated from its upstream flow velocity

(ux1, 0, 0) to its downstream flow velocity (ux1/rv, uy2, 0) where the spatially-

varying fluid velocity moves along the solid curve in vx − vy phase space. The

deceleration of the ion distribution can be decomposed into a combined decel-

eration in vx by electrostatic deceleration, ∆uE
x , and magnetic deflection, ∆uB

x ,

and an acceleration uy2 in vy due to magnetic deflection.

Therefore the total velocity shift in x

∆ux = ux2 − ux1 = ∆uE
x + ∆uB

x (3.32)

consists of the deceleration associated with the velocity shift in y via (3.31),

plus the deceleration from the electrostatic potential ∆φE , with

∆uE
x =

(

u2
x1 −

2e∆φE

mi

)1/2

− ux1. (3.33)

The deceleration of the ion distribution is represented schematically in Figure

3.1 in vx−vy phase space which can be decomposed into a combined deceleration

in vx by electrostatic deceleration (∆uE
x ) and by magnetic deflection (∆uB

x ),

and an acceleration in vy due to magnetic deflection (uy2).
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3.4.2 A total effective potential

Consider now the change in the average kinetic energy of the ion distribution

in terms a total effective potential

e∆φ = e∆φE − 〈WBx〉 (3.34)

where 〈WBx〉 corresponds to magnetic deflection effects. We estimate

〈WBx〉 = e

∫ T2

0

dt Vx(t)Vy(t)Bz[X(t)]. (3.35)

This can be approximated using the trapezoidal rule as

〈WBx〉 ≃ eux2uy2B2
T2

2
(3.36)

≃
(

1

2
miu

2
x1

)

rB

rv

ΩciT2
uy2

ux1

(3.37)

≃ −
(

1

2
miu

2
x1

)

rB

rv
Ω2

ciT
2
2

[

C1C2

3
+

C1 + C2

2

]

. (3.38)

In normalized units

〈WBx〉
1
2
miu2

x1

≃ − 2l2

3M2
A

[

2r2
B + r2

Brv + rB − 4rBrv

(rv + 1)2

]

(3.39)

depends only on rB, rv and l. For finite l > 0 and rB ≥ rv, 〈WBx〉 < 0 and so

the magnetic deflection mechanism always enhances the total effective potential

∆φ > ∆φE. For strong shocks MA ≫ 1, rv → 4 and rB ∝ MA [Tiu et al.,

2011] and so the leading term in (3.39) scales as −l2. However, for a thin shock

l ≈ 0, 〈WBx〉 ≈ 0 and so magnetic deflection has little to no effect on the ion

reflection process.

Suppose that across the shock layer the normal kinetic energy of the plasma

is changed as stipulated by the R-H jump conditions. We then equate this

change in bulk normal kinetic energy across the shock to an effective potential

e∆φ =
1

2
miu

2
x1

(

1 − 1

r2

)

, (3.40)

and in normalized units

∆ϕ = 1 − 1

r2
, (3.41)

where ∆ϕ = e∆φ/(1
2
miu

2
x1) is the normalized effective potential. Equation

(3.41) also places an upper bound for the effective cutoff speed

vc =

√

2e∆φ

mi

= ux1

(

1 − 1

r2

)1/2

< ux1 (3.42)
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3.4.3 A new reflection cutoff

Now consider a thermal particle in an upstream ion distribution with initial

velocity v1 = (vx1, vy1, 0). We assume its motion can be decoupled into a de-

celeration due to the effective potential and a continued upstream gyromotion,

i.e.,

vx(t) = Vx(t) + v⊥1 cos(Ωcit − θ1) (3.43)

vy(t) = Vy(t) − v⊥1 sin(Ωcit − θ1). (3.44)

The change in its normal kinetic energy as a function of time is

WTx(t) =
1

2
miv

2
x(t) −

1

2
miv

2
x1 (3.45)

=
1

2
mi

[

V 2
x (t) − u2

x1

]

+
1

2
mi

[

u2
x1+

2Vx(t)v⊥1 cos(Ωcit − θ1)+

v2
⊥1 cos2(Ωcit − θ1)

]

− 1

2
miv

2
x1. (3.46)

Using the result 1
2
mi[V

2
x (t) − u2

x1] ≥ −e∆φ from (3.41), (3.46) implies

WTx(t) ≥ −e∆φ +
1

2
mi

[

u2
x1 + 2Vx(t)v⊥1 cos(Ωcit − θ1)

+ v2
⊥1 cos2(Ωcit − θ1)

]

− 1

2
miv

2
x1 (3.47)

& −e∆φ +
1

2
miv

2
xu(t) −

1

2
miv

2
x1 (3.48)

where

vxu(t) = ux1 + v⊥1 cos(Ωcit − θ1) (3.49)

is the particle’s normal upstream gyromotion in the absence of the shock. If

the work done during this gyromotion by the magnetic field in the x direction

is

wBx(t) =
1

2
mi

[

v2
xu(t) − v2

x1

]

(3.50)

then (3.48) becomes

WTx(t) & −e∆φ + wBx(t). (3.51)
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In other words, we assume that during the period between when an ion first

encounters the shock and its reflection or transmission (1) the work done by the

magnetic field is WBx(t) & 〈WBx〉 + wBx(t) and (2) the electric field modifies

vx in the usual unmagnetized manner, i.e., WEx(t) ≈ wEx(t) where

wEx(t) ≤ −e∆φE (3.52)

is the work done by the electric field in the absence of the magnetic field. An ion

is reflected if along its trajectory the work done by the fields in the x direction

is equal to or greater than its initial normal kinetic energy, i.e.,

−e∆φ + wBx(tr) . −1

2
miv

2
x1 (3.53)

where the reflection time tr depends on vx1 and vy1. Eq (3.53) is the theoretical

reflection condition; substituting (3.50) and (3.49) into (3.53) yields

vxu(tr) . vc. (3.54)

In the electrostatic case where B = 0 one can show, through conservation of

normal kinetic energy, that tr ∝ vx1. This implies that ions with the maximum

reflection time τ = max(tr) are found at the specular reflection cutoff vx1 = vE
c .

Likewise, we assume that

vxu(τ) ≃ vc (3.55)

is the theoretical separatrix for reflection, meaning the boundary between re-

flected and transmitted particles in initial phase space vx1 and vy1. Using (3.1),

(3.49) and vy1 = v⊥1 sin θ1, (3.54) can be rearranged into an equation for the

reflection condition in terms of vx1 and vy1,

vy1 ≃ − cot(Ωciτ)(vx1 − ux1) + csc(Ωciτ)(vc − ux1) (3.56)

If the origin is (ux1, 0), then the parameters m = − cot(Ωciτ) and b = csc(Ωciτ)(vc−
ux1) describe the slope and intercept of the reflection cutoff, respectively. Note

the important physical point that in general the reflection condition is not

vx1 ≤ vE
c but is rotated to be dependent on vy1.

In the case of an infinitesimally thin shock l = 0 (3.39) gives 〈WBx〉 = 0,

implying that vc = vE
c . Furthermore τ = 0, and so (3.56) reduces to the familiar

specular reflection condition (3.4). For τ > 0, (3.56) predicts an enhancement

to the specular cutoff speed vc > vE
c as well as the anticlockwise rotation about

the origin by an angle Ωciτ of the reflection cutoff vx1 = vc. This implies that
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the ion dynamics across the shock can be modeled as a deceleration that is due

to the electrostatic potential and magnetic deflection combined with a rotation

due to its initial gyromotion.

Physically this rotation of the cutoff just corresponds to the particles gyrat-

ing about B as they move into the shock and are reflected. The perpendicular

distance h = b sin(Ωciτ) = vc − ux1 from the reflection cutoff to the origin

remains constant regardless of τ . If the initial ion distribution f(vx1, vy1) is

radially symmetric then the effective reflection efficiency is

αT =

∫ ∞

−∞

∫ h

−∞

f(vx1, vy1)vx1vy1. (3.57)

For a Maxwellian distribution, (3.57) reduces to the specular reflection predic-

tion (3.12) but using ∆ϕ instead of ∆ϕE ,

αT =
1

2
erfc

[

MA

β
1/2
i

(

1 −
√

∆ϕ
)

]

. (3.58)

3.5 Test-particle simulation

We now test our new model with test-particle simulations in which the ion

trajectories and velocities are integrated along a 1-D shock profile that is con-

stant in time but has spatially varying 3-D electric and magnetic fields. The

axes of the simulation are set up with the normal velocity and spatial profiles

along x̂, the convective electric field along ŷ, and the upstream magnetic field

in the x− z plane and primarily along ẑ. The simulations are conducted in the

NIF with a stationary shock profile and fixed MA = 6 and θBn = 85◦. Figure

3.2 shows the 3 different spatial profiles of B(x) we use in our test-particle

simulations (these profiles are generalized and simplified from those of Gedalin

[1996]). The magnetic field vector is given by B(x) = B(x)(cos θBn, 0, sin θBn)

where we ignore the out of plane component of B since its magnitude is small

compared with B2 or Bo [Yuan et al., 2008a].

Firstly we use a laminar profile with a ramp only, represented in Figure

3.2(a), increasing monotonically from B1 for x ≪ 0 to B2 at x ≫ 0,

B(x) = B1 +
1

2
(B2 − B1)

[

1 + tanh

(

6x

Lr

)]

. (3.59)

Here Lr is the ramp width and also the total shock width, defined to be the

distance between the leading edge of the ramp (x = −Lr/2) and the trailing
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Figure 3.2: Profiles of the magnetic field used in the test-particle simulations:

(a) ramp only, (b) a foot and ramp, and (c) a foot, ramp, and overshoot.
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edge of the ramp (x = Lr/2). Figure 3.2(a) plots (3.59) for Lr/λi = 0.1, 0.9, 2.5

and 4.9.

Secondly, we use a profile with foot and ramp structures, shown in Figure

3.2(b) with

B(x) = B1 +
1

2
(B2 − Bf − B1)

[

1 + tanh

(

6x

Lr

)]

+

1

2
Bf

[

1 + tanh

(

6(x + Lf/2)

Lf

)]

. (3.60)

Here Lf and Bf are the length scale and magnitude of the foot, respectively,

and the spatial regions of the profile are divided into the foot (x = −Lf to

x = 0) and the ramp (x = 0 to x = Lr). Therefore the total shock width is

L = Lf + Lr, which is the distance from the leading edge of the foot to the

trailing edge of the ramp. Figure 3.2(b) plots (3.60) for Lf = 1.0 λi and 2.0 λi

and Bf = 0.5 B1 and 1.0 B1.

Thirdly, we use a profile with a foot, ramp, and overshoot, shown in Figure

3.2(c) and modelled with

B(x) = B1 +
1

2
(B2 − B1)

[

1 + tanh

(

6x

Lr

)]

+

Bf exp

(

−3x2

L2
f

)

(3.61)

where the maximum magnetic field strength is Bo = B2 + Bf . Likewise, the

spatial profile is divided between the foot (x = −Lf to x = 0), ramp (x = 0

to x = Lr) and overshoot (x = Lr to x = Lf ), and the total shock width is

L = Lf + Lr, the distance from the leading edge of the foot to the end of the

overshoot. Figure 3.2(c) plots (3.60) for values of Lf = 1.0 λi and 2.0 λi and

Bf = 0.5 B1 and 1.0 B1.

In each simulation the profile of the electrostatic potential mimics B(x) via

φE(x) = ∆φE

(

B(x) − B1

B2 − B1

)

, (3.62)

for instance by analogy with Kuncic et al. [2002], and the electric field has

components E(x) = (−dφE(x)/dx, ux1B1 sin θBn, 0). The parameters ∆φE and

τ are varied in this investigation, where the former is directly controlled and

the latter is controlled indirectly by varying the total shock width L. The

upstream ion distribution has initial velocities between θ1 = 0◦ and 360◦ and

v⊥1 = 0 and 2 vA and is injected at the leading edge of the foot or ramp.
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3.5.1 Analysis for a ramp only

For the laminar profile we performed simulations with fixed Bd = 4B0 but

varying ∆φE corresponding to cutoff speeds vE
c /vA = 5, 6, and 7, and lr =

Lr/λi = 0.1, 0.4, 0.9, 1.6, 2.5, 3.6, and 4.9. In Section 3’s derivation of our new

model we considered first the trajectory of a particle at the drift center of the ion

distribution. In the same way we study test-particles entering the shock with

v1 = (6vA, 0, 0) for simulations with MA = 6, vE
c = 6vA and lr = 0.1, 0.9, 2.5,

and 4.9. For each particle we calculate WTx(t) using vx(t), WEx(t) and WBx(t)

from the prescribed electric and magnetic fields, and wBx(t) from vx1 and vy1,

using (3.15), (3.16), (3.17), and (3.50) respectively. We also calculate wEx(t)

in a separate test-particle simulation for which E is the same but B = 0. We

normalize WTx(t), WBx(t), WEx(t), wBx(t), and wEx(t) to the particle’s initial

normal kinetic energy 1
2
miv

2
x1 and plot them as a function of time in Figure 3.3.

We see that WEx is very well approximated by its unmagnetized counterpart

wEx through the shock. The time tp indicated by the dashed vertical line is

when WTx(tp) = −0.98(1
2
miv

2
x1). Given that this particle has v⊥1 = 0 and so

wBx = 0 and WBx ≈ 〈WBx〉; the final value of WBx(t), taken to be WBx(tp),

represents the work done by the magnetic deflection mechanism.

For the same input parameters as these test-particle simulations, rv = rB =

B2/B1 = 4 and MA = 6, (3.39) yields

〈WBx〉
1
2
miu2

x1

≃ −2l2r
75

(3.63)

when we assume l = lr, and

〈WBx〉
1
2
miu2

x1

≃ − l2r
150

(3.64)

for l = lr/2. By way of contrast we plot WBx(tp) as a function of lr against (3.63)

and (3.64) in Figure 3.4. We see that (3.63) greatly overpredicts the work done

by magnetic deflection but (3.64) gives comparable values to the test-particle

results. The substitution l = lr/2 is justified by noting that the linear portion

of the magnetic profiles in Figure 3.2(a) are primarily between x = −Lr/4 and

x = Lr/4 and also that Bz(−Lr/4)/B0 ≈ 1.14 and Bz(Lr/4)/B0 ≈ 3.86. Using

the values of WBx(tp) to calculate ∆φ from (3.34) and therefore vc from (3.42)

shows that the effective cutoff speed will be little modified from the specular

cutoff speed for lr ≤ 2.5; specifically vc ≤ 1.04vE
c .

We now test how well (3.56) matches the true reflection cutoff in initial

phase space for varying ∆φE and lr ≤ 2.5 where vc ≃ vE
c in these simulations.
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Figure 3.3: For an ion at the initial fluid speed (ux1, 0, 0) entering a laminar

shock profile of various lr (Figure 3.2), the quantities WTx(t), WEx(t), WBx(t),

wBx(t) and wEx(t) are plotted along its trajectory. The dashed vertical line

indicates when WTx = −0.98(1
2
miu

2
x1).
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Figure 3.4: The normalized work done by magnetic deflection for the particle

in Figure 3.3 as a function of lr. This is compared to the theoretical predictions

(3.63) (dashed line) and (3.64) (solid line).
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Figure 3.5: Multiple scatter plots of reflected (red) and transmitted (black)

ions in test-particle simulations with only a ramp and varying lr and vE
c . The

blue lines plot (3.56), the theoretical reflection cutoff from our model.
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In the test-particle simulations, reflected ions are identified as those which have

a positive change in their normal kinetic energy, i.e. WTx(t) > 0, across the

shock profile. The maximum reflection time τ is calculated from this sample

of reflected ions. Figure 3.5 plots the reflected (red) and transmitted (black)

particles as a function of their initial velocities vx1 and vy1 for different ∆φE

and Lr. From left to right ∆φE increases in magnitude, corresponding to

specular cutoff speeds vE
c /vA = 5, 6, and 7. From bottom to top the shock

width increases, with Lr/λi = 0.1, 0.9 and 2.5. Qualitatively, Figure 3.5 shows

that h, the perpendicular distance from the origin (ux1, 0) to the reflection

cutoff, is constant for fixed ∆φE but varying Lr. Specifically h ≈ −vA, 0 and

vA, for test-particle simulations with vE
c /vA = 5, 6, and 7, respectively. This

is consistent with the theoretical prediction h = vc − ux1. Figure 3.5 also

shows that the angle of rotation Ωciτ increases with Lr but is independent

of ∆φE . This suggests that the location and rotation of the reflection cutoff

are independent of each other, consistent with the theoretical reflection cutoff

derived in (3.56).

As a comparison, we plot (3.56) in Figure 3.5 (indicated by the blue lines)

using the empirically determined τ and vc = vE
c , showing extremely good agree-

ment with the test-particle results except at large Lr = 2.5 λi where extra re-

flected particles occur. This confirms that vE
c is little modified for these values

of Lr. Analysis of the motions of the extra reflected particles (not shown) sug-

gests that they are returning ions, that is, these particles are firstly transmitted

through the shock into the downstream region and then return back upstream

as part of their downstream gyromotion.

3.5.2 Analysis for profiles with a foot and ramp

Recent Cluster spacecraft measurements of the ramp thickness at the terrestrial

bow shock suggest Lr is on the order of the electron inertial length λe = c/ωce

[Mazelle et al., 2010; Hobara et al., 2010]. At these scales magnetic deflection

and the rotation of the reflection cutoff would be unimportant, as shown by

the test-particle simulation for Lr = 0.1λi in Figure 3.5. However, calculations

of the foot length from hybrid and PIC simulations [Gedalin, 1996; Gosling

et al., 1982; Schwartz et al., 1983] and older spacecraft measurements [Livesey

et al., 1984; Balikhin et al., 1995] suggest Lf & λi, which could increase τ and

therefore produce an observable rotation.

We test this hypothesis by using a narrow ramp profile, Lr = 0.1 λi, fixed

B2 = 4 B1 and vc = 6vA, but varying foot length (Lf = 0.5 λi and 1.0 λi)
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and magnitude (Bf = 0.5 B1 and 1.0 B1). Figure 3.6 plots the initial phase

space of reflected (red) and transmitted (green and black) ions using these foot

and ramp profiles. Qualitatively, we observe a rotation in the reflection cutoff

due to the finite width of the foot, since the degree of rotation increases with

Lf . Moreover, the theoretical prediction (3.56) with vc = vE
c (blue lines) is

consistent with the reflection cutoff that is observed. However, increasing Bf

has no noticeable effect on the reflection cutoff for the same Lf , as expected

since this quantity does not enter the prediction (3.56). These results show

that the finite width of the magnetic profile, regardless of whether it be in the

foot or the ramp, produces an appreciable rotation in the reflection cutoff.

3.5.3 Analysis for profiles with a foot, ramp and over-

shoot

We use the same parameters for the foot and ramp cases in Section 4.2 but

add an overshoot with the same magnitude and length as the foot. In the same

manner, we vary the length (Lf = Lo = 0.5 λi and 1.0 λi) and magnitude

(Bf = Bo = 0.5 B1 and 1.0 B1) of the foot and overshoot. Figure 3.6 plots

the initial phase space separated into reflected (red and green) and transmitted

(black) particles from these foot, ramp and overshoot profiles. On inspection,

the rotation of the cutoff remains unchanged compared to the foot and ramp

profiles, as evidenced by the slopes being the same for the foot-ramp and foot-

ramp-overshoot cases. Clearly the rotation depends only on the distance from

the leading edge of the foot to the location of the overshoot; in this case L =

Lf + Lr. However, the location of the cutoff has shifted to the right, since

∆φE increases by a factor of (B2 + Bo − 1)/(B2 − 1) because of the overshoot,

from (3.62). Accordingly, we account for this change when calculating the

theoretical cutoff (blue lines) and once again find excellent agreement with the

true reflection cutoff in Figure 3.6.

3.5.4 Analytic expression for τ

Does τ , and therefore the rotation, depend only on the total shock width L?

Ignoring the magnetic field, let xr be the distance a specular reflected particle

travels from the leading edge of the foot or ramp until its reflection, defined as

when vx < 0. Then

xr =

∫ tr

0

vx(t) dt ≃ 1

2
vx1tr. (3.65)
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Figure 3.6: Scatter plots of reflected (red) and transmitted (green and black)

ions in test-particle simulations with a foot and ramp profile and varying Lf

and Bf . Adding an overshoot gives reflected (red and green) and transmitted

(black) ions. The blue lines show (3.56), the theoretical reflection cutoff from

our model without (left) and with (right) an overshoot.
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If φE(x) is a linear function from φE(0) = 0 to φE(L) = ∆φ, i.e., φE(x) ≈
∆φEx/L, then energy conservation implies ∆φExr/L ≈ 1

2
miv

2
x1, whence

xr ≈
(

vx1

vE
c

)2

L. (3.66)

Equating (3.65) and (3.66) and solving for tr gives

tr =
2vx1

(vE
c )2 L, (3.67)

implying that in the source region of reflected particles, vx1 < vE
c , the maximum

reflection time τ must occur at the specular reflection separatrix vx1 = vE
c , with

τ =
2L

vE
c

. (3.68)

For test-particle simulations with the laminar profile (3.59) we measured τ

as a function of L, vE
c and B2. We find τ ∝ mτL/vE

c with mτ a function of the

magnetic profile. The values of mτ are summarized in Table 3.1 for different

values of vE
c and B2. A regression analysis of mτ in B2 shows

mτ ≃ A1
B2

B1
+ A2 (3.69)

where A1 ≈ 0.33 ± 0.01 and A2 ≈ 0.47 ± 0.03, where the errors are 95%

confidence bounds. For B2 = 4B1, (3.69) gives mτ ≈ 1.8 ± 0.1 which is close

to the value of 2 in the electrostatic case in (3.68). Thus (3.68) is a reasonable

prediction for τ , thereby providing an analytic prediction for the rotation of

the reflection separatrix (3.56).

3.6 1-D hybrid simulation

Although the test-particle simulations show excellent agreement with the the-

oretical reflection cutoff (3.56), values for ∆φE and L need to be specified. In

this section we perform 1-D hybrid simulations to obtain self-consistent values

of ∆φE and 〈WBx〉 as a function of MA and as a result examine the relative

importance of each mechanism in the total ion reflection process. Similarly

we compare the theoretical reflection cutoff (3.56) with the hybrid simula-

tion results. We use a 1-D hybrid simulation code [Yuan et al., 2007, 2008a]
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Table 3.1: mτ recorded for test-particle simulations with a ramp only profile

(the errors are 95% confidence bounds).

vE
c /vA B2/B1 mτ

5 1 0.79 ± 0.04

6 1 0.79 ± 0.03

7 1 0.80 ± 0.03

5 2 1.13 ± 0.03

6 2 1.10 ± 0.02

7 2 1.12 ± 0.02

5 3 1.44 ± 0.03

6 3 1.45 ± 0.02

7 3 1.44 ± 0.05

5 4 1.71 ± 0.11

6 4 1.77 ± 0.07

7 4 1.83 ± 0.04

with time step ∆t = 10−4Ω−1
ci , grid spacing ∆x = 0.05λi, applied resistivity

η = 0.01µ0v
2
AΩ−1

ci , βe = βi = 0.5, and θBn = 85◦. We performed multiple

simulations with MA ∼ 1.8, 2.3, 3.4, 4.0, 4.7, 5.4, 6.2, 6.8, 7.6, 8.9, and 10.4.

The axes of the simulation are set up in the same manner as the test-particle

simulations and the shock is initiated by reflecting the injected plasma off an

infinitely conducting wall.

3.6.1 Determining the reflection cutoff

Figure 3.7(a) is a histogram of tr for ions which are reflected either at the shock

or in the downstream region, for the simulation with MA ∼ 3.4. We observe two

ion populations: those with 0.5Ω−1
ci . tr . 1.0Ω−1

ci are immediately reflected

by the shock, and those with tr & 1.0Ω−1
ci are “reflected” from downstream of

the overshoot due to their downstream gyromotion. Panels (b), (c), (d), and

(e) represent the initial phase spaces for ions with tr < t∗ (red) and tr > t∗

(black), with Ωcit
∗ = 0.6, 1.0, 1.4, and 1.8, respectively.

We also observe two histogram peaks near tr ≈ 1.4Ω−1
ci and ≈ 2.8Ω−1

ci which

are explained as follows: the electrostatic potential decelerates the directly

transmitted ions nonlinearly in vx, i.e., vx2 = (v2
x1 − ∆ϕE)1/2, whereas mag-

netic deflection decelerates ions linearly in vy, i.e., vy2 = vy1 − uy2. This would

produce an anisotropic distribution of the directly transmitted ions with a
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Figure 3.7: (a) Histogram of the reflection time tr of ions reflected at or down-

stream from the shock for the hybrid simulation of MA ∼ 3.4. Panels (b), (c),

(d), and (e) are the initial phase space described by ions reflected at tr < t∗

(red) and tr > t∗ (black) for t∗Ωci = 0.6, 1.0, 1.4, and 1.8, respectively.

77



Ch. 3 NEW MODEL FOR ION REFLECTION

greater spread in vx than in vy immediately behind the shock. However, due

to the natural gyromotion of the ions through the finite width of the shock,

the distribution is rotated ≈ 90◦ in vx − vy phase space and as a result the dis-

tribution has a larger spread in vy rather than in vx. Now as the distribution

gyrates about the downstream gyrocenter particles with v⊥2 & ux2 will reach

vx < 0 as part of their downstream gyromotion and so are tallied in the his-

togram count. However, since the distribution has a greater spread in vy, more

particles are tallied when the distribution gyrates through another ≈ 90◦ and

≈ 270◦, therefore producing the two peaks observed. This is consistent with

the fact that the two peaks differ in time by exactly one-half of the calculated

downstream gyroperiod ≈ 2.7Ω−1
ci (note that rB ≈ 2.3 for this shock).

Panels (b) and (c) show that ions immediately reflected by the shock come

from a similar phase space domain to that predicted by the model and the

test-particle simulations; that is, a reflection boundary indicated by a line in

vx1 and vy1 space. In comparison, panels (c) and (d) show that the ions re-

flected downstream originate from a shell region in the initial phase space with

−70◦ . θ1 . 100◦ and vA . v⊥1 . 2 vA; these ions have a source region which is

consistent with the returning ions identified previously in the test-particle sim-

ulations (Figure 3.5). However, in the present analysis it is not identified which

of the ions in this shell region actually do return to the foot and ramp as part

of their downstream gyromotion, and so are classified as returning particles.

We can now determine τ empirically as equal to the smallest t∗ for which

the source region prescribed by tr < t∗ contains only the ions reflected in the

ramp. For example, from Figure 3.7 we find τ ∼ 0.96 Ω−1
ci for the simulation

with MA ∼ 3.4. This empirical method to determine τ is used to distinguish

between reflected and transmitted particles in the hybrid simulations.

3.6.2 Determining the effective potential

Here we examine the work done on ions entering the shock at approximately

the incoming flow velocity u1 = (ux1, 0, 0) for the simulation case MA ∼ 2.8. A

sample of 138 ions is identified using the criterion v⊥1 < 0.02vA at the upstream

release point. Figure 3.8’s panels (a), (b), (c), and (d) show how ∆vx, ∆vy,

WBx, and WEx, respectively, vary as a function of time for each of these 138

ions (black lines). Furthermore, each quantity is averaged over the sample (red

lines) and compared to the average over the entire ion distribution of 28,358

particles (dashed green lines). Figure 3.8 shows excellent agreement between

the red and dashed green lines, meaning that the quantities averaged the en-
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tire distribution agree very well with the averages for the incoming particles

very near to the incoming flow velocity. This result supports the model as-

sumptions in Section 3, where we approximate the downstream fluid velocity

as the downstream velocity of particles entering at the incoming flow velocity.

Furthermore, Figure 3.8 shows that the average deceleration of these ions de-

creases almost linearly with time, supporting the use of linear dependencies in

our model. Panel (a) compares the normal velocity shift predicted for deceler-

ation by the electrostatic potential (blue line). Clearly the electrostatic result

underpredicts the actual deceleration of the ion distribution, demonstrating

that the contribution of magnetic deflection to the deceleration must also be

considered.

We now investigate how the effective potential varies as a function of MA.

We measure ∆φE directly from the hybrid simulations as the electrostatic po-

tential averaged over the total simulation run. The magnetic deflection con-

tribution (3.38) is calculated by taking rB as the time averaged maximum

magnetic enhancement ratio 〈Bo(t)/B1〉, rv as the time averaged ratio of the

downstream to upstream fluid speed, and T2 as the average transmission time

estimated by examining the phase space evolution of the ion distribution from

analyses of Figure 3.7. Time averaging is needed because for MA & 4 the

shock undergoes shock reformation and does not have a time stationary profile

[Lembège and Savoini , 1992; Yuan et al., 2007, 2008a; Lembège et al., 2009;

Tiu et al., 2011].

Figure 3.9 plots the normalized quantities ∆ϕE , −〈WBx〉/(1
2
miu

2
x1), and the

prediction (3.34) for ∆ϕ as a function of MA. Qualitatively, the simulations

predict that ∆ϕE attains a maximum value around MA ≈ 3 and then decreases

steadily with increasing MA. We compare this with the analytic theory (3.7)

for ηf = 2 [Zank et al., 1996], plotted as the dashed line, which also predicts

the same trend. However, it is unclear in the hybrid simulations if ∆ϕE reaches

zero, as predicted by (3.7), since ∆ϕE appears to saturate at a value of ≈ 0.5.

The magnetic deflection term is found to be proportional to MA, reaching values

that are comparable to ∆ϕE at the maximum MA ∼ 10.3. This demonstrates

the increasing importance of magnetic deflection to the ion reflection process

as MA increases. In addition, we plot the predicted potential (3.41) for the

case where the normal kinetic energy is exactly conserved. Figure 3.9 shows

that the simulation results for ∆ϕ closely match the prediction (3.41). This

suggests that the magnetic deflection contribution can be simply estimated by

subtracting ∆ϕE from (3.41). More importantly, the approximate conservation

of the particle’s kinetic energy in the normal direction on average suggests that,
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Figure 3.8: For the hybrid simulation MA ∼ 2.8, a line series plot of (a) ∆vx/vA,

(b) ∆vy/vA, (c) WBx/(1
2
miu

2
x1), and (d) WEx/(1

2
miu

2
x1), as functions of time

for 138 particles entering the shock at approximately the upstream flow speed

(v⊥1 < 0.02vA). In each panel, the solid red line plots the quantity averaged

over these 138 ions whereas the dashed green line plots the quantity averaged

over the entire ion distribution of 28,358 particles. Panel (a) also plots the

average deceleration of the ion distribution considering only the work done

by the electrostatic potential (blue line) and the normal fluid velocity shift

ux2/ux1 − 1 ≈ −0.54 (pink line).
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Figure 3.10: Scatter plots of the initial phase space of reflected versus trans-

mitted ions for (a) MA ∼ 2.3, (b) MA ∼ 3.4, (c) MA ∼ 4.7, and (d) MA ∼ 6.2.

The blue lines show the theoretical prediction (3.56) using ∆φE (dashed) and

∆φ (solid).

at least in the shock layer, the plasma is heated primarily in the ±y directions

and not parallel to B (in the x-z plane but very close to the z direction) or in

the normal direction.

3.6.3 Comparisons between the new model and the re-

flection cutoff

The phase space distributions of reflected (red) versus transmitted and re-

turning (black) particles are compared in Figure 3.10 for (a) MA ∼ 2.3, (b)

MA ∼ 3.4, (c) MA ∼ 4.7, and (d) MA ∼ 6.2. Clearly, the hybrid simula-

tions predict the same anticlockwise rotation in the reflection cutoff, even at
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MA ∼ 2.3, predicted by (3.56). Furthermore, the rotation appears to saturate

at a constant angle as MA increases, since the same slope is observed in the

cutoff in panels (b), (c), and (d).

The theoretical cutoff (3.56) depends on vc and τ which determine the lo-

cation and rotation of the cutoff, respectively. In Figure 3.10 we plot (3.56)

by calculating τ as outlined in Section 5.2 but calculate vc in two ways: using

first the electrostatic potential ∆φE (dashed blue line) and second the total ef-

fective potential ∆φ (solid blue line). The electrostatic prediction agrees very

well with the simulations in panels (a) and (b), consistent in both the rotation

and the location in phase space. However, in panels (c) and (d) the electro-

static prediction, despite having the correct rotation, lies mostly left of the ion

distribution and fails to account for the observed separatrix between reflected

and transmitted particles. However, the total effective potential leads to ex-

tremely good agreement between the theoretical cutoff and the hybrid results

for all MA considered. It is also clear from Figure 3.10 that the contribution

from magnetic deflection grows with MA, as also suggested by the increase in

−〈WBx〉/(1
2
miu

2
x1) with MA in Figure 3.9.

3.6.4 The reflection efficiency

We can also predict the reflection efficiencies. Figure 3.11 predicts αE and αT

as functions of MA from ∆ϕE in (3.12) and ∆ϕ in (3.58), respectively, using

the hybrid simulation results. We also calculate the reflection efficiency di-

rectly from the hybrid simulations, plotting the temporal average 〈α〉 and its

minimum and maximum values as error bars, in Figure 3.11 as a function of

MA. Overall αE shows the opposite behavior to 〈α〉: αE reaches a maximum

of ∼ 40% at MA ∼ 3 but then steadily decreases to zero with MA whereas

〈α〉 increases steadily with MA to an average value of ≈ 19% and a maximum

value of ≈ 70% at MA ∼ 10.3. Our values of 〈α〉 are consistent with previous

calculations of 〈α〉 ≈ 10 − 30% reported in other hybrid simulations [Leroy

et al., 1982; Quest , 1986; Lembège and Savoini , 1992]. Leroy [1983] also noted

this anti-correlation between 〈α〉 and αE as measured in his 1-D hybrid simu-

lations for large MA, and attributed this difference to the growing importance

of magnetic effects in the ion dynamics as a function of MA.

We propose that this discrepancy between 〈α〉 and αE is due to neglecting

the contribution (3.39) of magnetic deflection to the total effective potential.

Now including magnetic deflection, the predicted reflection efficiency αT reaches

larger but comparable values ∼ 20 − 30% to 〈α〉 ∼ 10 − 20% at the maximum
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Figure 3.11: Scatter plot of the time-averaged reflection efficiency 〈α〉 calcu-

lated from the hybrid simulations, together with its maximum and minimum

values shown as errorbars. This is compared with the electrostatic prediction

αE from (3.12) and the prediction using the effective potential αT from (3.58).
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Mach numbers, although having a nominal discrepancy of αT − 〈α〉 ∼ 20% for

MA . 5. This is a major improvement over αE which predicts that no ions will

be reflected at all at high-Mach numbers. Put another way, the time-averaged

reflection efficiencies from hybrid simulations are consistent within the error

bars with the predictions of our new analytic model, given by (3.58).

A possible explanation as to why αT > 〈α〉 is because in Figure 3.10 not

all of the transmitted ions lie to the right of the reflection cutoff, i.e., there

are some transmitted ions which also occupy the same source region as the

reflected ions. This is most likely due to temporal variations in ∆φ when ∆φE

is weakened or similarly when L or rB is small so that magnetic deflection is

weak. These temporal variations will cause the reflection cutoff to drift to the

left causing the transmitted ions to overlap in initial phase space with ions

reflected at other times. Therefore, since αT is calculated assuming a reflection

cutoff which is independent of time, (3.58) would overpredict the actual value

of the reflection efficiency.

3.6.5 Source of the rotation

As demonstrated in the test-particle simulations, the rotation of the reflection

cutoff can be attributed to particle gyromotion through the finite width of

the magnetic foot and ramp. However, is the foot or the ramp the primary

source of the rotation in the hybrid results? Figure 3.12 shows how the shock’s

magnetic profile evolves with MA and time. The magnetic profile is plotted

at times when Bo(t) is maximized and minimized as solid and dashed lines,

respectively. For the simulations with MA = 1.8 and 2.3 the two profiles are

very similar in magnitude and shape, showing a shock that is stationary in

time. However, for MA & 3 the profiles for maximum Bo(t) exhibit clear foot

and overshoot structures while the profiles for minimal Bo(t) closely resemble

laminar profiles.

This shows that for MA & 3 the shock profile is significantly variable in time,

so that the features of the foot and ramp may disappear and reappear, varying

the overall width of the shock and therefore the rotation in the reflection cut-

off. Importantly, Figure 3.12 shows that the ramp thickness is approximately

constant with MA, with Lr ≈ 0.2λi, consistent with spacecraft measurements

[Mazelle et al., 2010; Hobara et al., 2010]. This is compared to the foot which

increases up to Lf ≈ 1.5λi. Since Lf > Lr, we conclude that the magnetic foot

is primarily responsible for the rotation of the reflection cutoff in the hybrid

simulations.
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3.7 Conclusions

In this Chapter we demonstrated that magnetic field effects are vital for the

reflection of thermal ions at and upstream of the shock overshoot. Specifi-

cally, we developed an accurate new analytic model for a magnetic deflection

mechanism which enhances the electrostatic reflection process and is dominant

for MA & 3. The magnetic deflection mechanism arises because in the shock

layer the time-integrated v ×B force in the y-direction is no longer balanced

by the convection electric field E, thus inducing a net deceleration of the ion

distribution in the negative y direction. This is then translated into a deceler-

ation in the negative x direction via the v ×B force. Our model predicts that

the average work done 〈WBx〉 by magnetic deflection on the ion distribution is

determined by the magnetic enhancement ratio rB in the shock layer, the R-H

compression ratio r, and the total width L of the shock. Therefore we proposed

a new effective potential (3.34) which is the sum of the electrostatic potential

∆φE and work done by magnetic deflection −〈WBx〉.
A theoretical reflection cutoff (3.56) was derived and shown to depend on

the maximum reflection time τ and the effective cutoff speed vc, which deter-

mine the rotation and location of the reflection cutoff respectively. Equation

(3.56) was compared extensively with test-particle and 1-D hybrid simulations.

The theoretical model agreed remarkably well with the test-particle simula-

tions, being able to accurately predict which ions will be reflected as a function

of L and ∆φE . We also found that in the simple case of a laminar shock profile,

the maximum reflection time τ is proportional to L, with a gradient depending

on B2 and vc. This will allow us to predict the rotation of the reflection cutoff

using the parameters L, B2, and vc, without empirically determining τ in future

analyses.

Furthermore, 1-D hybrid simulations of quasiperpendicular shocks with a

wide range of MA ∼ 1.8−10.3 showed that the electrostatic potential decreases

with MA whereas the work done by magnetic deflection increases with MA.

However, the combination of these processes seems to conserve normal kinetic

energy, as indicated by their combined effective potential agreeing extremely

well with (3.41) as a function of MA. This suggests that the thermalization

of the ion distribution occurs primarily in the vy component. Overall, our re-

sults show that magnetic deflection must be included in descriptions of the ion

reflection process at quasiperpendicular shocks, especially at high-Mach num-

bers where its contribution to the ion deceleration becomes dominant. Conse-

quently a purely specular reflection model is inadequate in explaining the ion
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motion across shocks of finite width. Failing to include the magnetic deflection

contribution leads to an incorrect reflection cutoff and underpredicts the true

reflection efficiency.

Future work includes linking the new understanding of ion reflection de-

veloped here with previous work on reflection immediately downstream of the

magnetic shock overshoot [e.g. Gedalin, 1996]. Extensions of magnetic deflec-

tion to nonthermal particles, especially those subject to shock drift acceleration

should also be considered. In addition, the contributions to shock thermaliza-

tion from magnetic deflection needs to be quantified and related to that required

by the Rankine-Hugoniot conditions.
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Chapter 4

Source Regions, Energization, and

Populations of Different Classes

of Ion Trajectories at

Perpendicular Collisionless Shocks

4.1 Abstract

There exist multiple classes of particles that are reflected at perpendicular

shocks but have markedly different trajectories across the shock. We propose a

new classification scheme that distinguishes these different classes of reflected

particles and calculate their energization, fractions, and source regions in ini-

tial phase space using multiple test-particle simulations. We first simulate the

same shock parameters and field profiles as Gedalin [1996] and Lever et al.

[2001], recovering and extending their results. We then investigate changes in

the particle source regions and energization as functions of the shock thick-

ness, electrostatic potential, and spatial variations in the electromagnetic field

profile. We find that multiply reflected ions (MRI), particles reflected multiple

times off the shock front, are more strongly energized for thin shocks. Mild

energy gains are observed for shocks with an overshoot, whereas the addition

of a foot structure dramatically changes the MRI source region. Moreover, we

determine that particle energization is primarily by particle drifts along the

upstream convective electric field and compare the relative importance of each

particle class by calculating their fractional population as functions of the up-

stream thermal speed. In general we find that particle populations and their

energization are difficult to predict in detail since they depend on shock pa-

rameters such as the electrostatic potential and the shock thickness which are

not a priori predictable. Finally, we develop and test new analytic reflection
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conditions for particles that are: (1) initially reflected by the electrostatic po-

tential, complete half a gyro-orbit upstream, and finally escape downstream,

and (2) initially transmitted downstream but return to the shock as part of

their downstream gyromotion, complete half a gyro-orbit upstream, and finally

escape downstream. We find in most cases the first reflection condition agrees

extremely well with numerical results, whereas in the latter case we only find

good agreement for shocks with a thin ramp.

4.2 Introduction

Particles can travel along markedly different trajectories across a shock layer.

These trajectories depend on the detailed spatio-temporal structure of the

shock’s electromagnetic field and the initial particle velocity. As a result several

different (and perhaps overlapping) models are used to describe the reflection

and acceleration of ions at collisionless shocks. These include but are not lim-

ited to: shock drift acceleration (SDA) [e.g. Armstrong et al., 1985], specular

reflection [e.g. Gosling et al., 1982], multiply reflected ions (MRI) [e.g. Zank

et al., 1996; Lee et al., 1996], and ions that are initially transmitted but are

“reflected” in the downstream region, return upstream, and are then eventually

transmitted [e.g. Gedalin, 1996]. These classes of reflected and accelerated par-

ticles are important for the overall redistribution of energy between the total

electromagnetic field energy and the total kinetic and thermal energy of the

ion distribution.

We define the shock geometry as follows: the normal flow velocity is in

the +x direction, the upstream convective electric field is along the y axis,

and the magnetic field vector is in the x− z plane with angle θBn between the

upstream magnetic field B1 and normal direction −x̂. The Alfvén Mach number

is MA = ux1/vA where ux1 is the incoming flow speed, vA = B1/(µ0nimi)
1/2 is

the upstream Alfvén speed, ni is the upstream ion number density, mi is the ion

mass, and µ0 is the permeability of free space. For quasiperpendicular shocks

(45◦ < θBn < 90◦), spatial regions with enhanced magnetic field strength can

arise upstream and downstream of the shock ramp due to the local presence of

reflected ions [Livesey et al., 1982]; these spatial structures are called the foot

and overshoot, respectively. The shock ramp is idealized as a discontinuous

jump in the magnetic field strength but typically has an almost linear increase

in magnetic field strength. The foot upstream of the ramp is associated with

ions reflected by the cross-shock electrostatic potential [Gosling et al., 1982]
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and magnetic deflection [e.g. Chapter 2]. The overshoot is associated with the

gyromotional return of initially reflected ions that now have larger gyrospeed,

thereby enlarging the maximum magnetic field near the ramp. The gyrating

ions cause additional undershoot-overshoot patterns in B downstream, which

disappear as the ions are thermalized and spread out in x − v phase space.

Historically, the term “specular reflection” involves ions that are initially re-

flected by an electrostatic barrier (the cross-shock electrostatic potential ∆φE)

in the shock layer. The term “specular” is given because if the ramp thickness

is small compared to the ion gyroradius and inertial length λi = vA/Ωci, i.e.

Lr ≪ λi, then these ions will have the normal component of their incoming

velocity reversed and so have a “mirror-like” reflection [Gosling et al., 1982].

After reflection these ions travel upstream for half a gyro-orbit (or possibly

multiple orbits) while drifting along the convective electric field, thereby gain-

ing sufficient energy to now cross the electrostatic barrier into the downstream

region. Here the distinction between single or multiple orbits describes parti-

cles that undergo shock drift acceleration (SDA) versus multiply reflected ion

(MRI) acceleration [Zank et al., 1996] (sometimes called “shock surfing”) [Zank

et al., 1996; Lee et al., 1996], respectively. In principle both mechanisms involve

particle energization by drifting along the upstream convective electric field.

These reflected particles with large v⊥ start their final transmission down-

stream and develop into a ring distribution, historically with a downstream gy-

rospeed of twice the incoming flow speed, i.e. v⊥ ≈ 2ux1 sin θBn for a quasiper-

pendicular shock. However, analyses of particle trajectories from 1-D hybrid

simulations in Chapter 2, in particular for large MA shocks, show that ions

reflected at the ramp undergo a significant deflection in vy through the shock

and hence the particle trajectory can no longer be described as “specular” but

rather a turning motion until the ion reaches vx < 0. Furthermore, this mag-

netic deflection leads to a significant normal deceleration of the ion distribution

at the shock, quantitatively supplementing the electrostatic deceleration by the

cross-shock potential. On the other hand, there are ions that are initially trans-

mitted through the shock but are then “reflected” in the downstream region

and return upstream via their downstream gyromotion. Presumably they can

then undergo either SDA or MRI before being finally transmitted downstream.

Thus there are several models which describe the reflection and/or acceler-

ation of incident ions at quasiperpendicular shocks. However, does reflection

necessarily imply energization? Or vice-versa: can a particle be accelerated

without being reflected? This Chapter seeks to distinguish between the mul-

tiple types of particles at perpendicular shocks that are generally classified as
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“reflected” in order to definitively determine their energization mechanism and

to compare their properties with analytic theory. Note that limiting our dis-

cussion to only perpendicular shocks means that no ions escape upstream since

all particles will have their guiding centers directed downstream [Gosling et al.,

1982].

This Chapter is outlined as follows. Section 1 introduces the simple criteria

to classify different ion trajectories across a perpendicular shock, discussing

the new classification scheme in the context of Lever et al.’s [2001] similar

classification scheme. Section 2 develops new analytic predictions for the source

regions of certain particle classes, specifically, extending the previous prediction

of Gedalin [1996] and the “specular” reflection condition found in Chapter

3. In Section 3 we analyze multiple test-particle simulations, investigating

the particle source regions and associated energization by the shock. Finally,

Section 4 presents and discusses calculations of fractional populations of each

class of particle and their relative importance.

4.3 Classifying reflected and transmitted ions

We identify different classes of reflected and transmitted ions by considering the

various trajectories that a particle can take across the shock layer. We work in

the normal incidence frame (NIF) where the shock is at rest, unless otherwise

stated. First we define the ramp region to be between x = 0 and x = Lr,

where Lr is the ramp thickness. A particle’s initial velocity is defined to be

v1 = (vx1, vy1, vz1) as it enters the shock front at the leading edge of the foot at

x = −Lf at time t = 0. We consider thermal and mildly superthermal particles

that have vx1 > 0 at all locations upstream of the shock foot. If a particle is

reflected, meaning that it has vx < 0, then let the time of first reflection be

t = tr and the x-position along its 3-D trajectory be xr = x(tr). The particle

will then turn around, i.e. have vx > 0, along its subsequent trajectory at

position x = xt at a time tt, where tt > tr.

We first categorize particles by their initial reflection location: particles

reflected before xr < Lr, particles reflected in the overshoot or downstream

region xr > Lr, and particles which are never reflected. These groups can then

be divided further by considering their subsequent turnaround locations using a

similar criterion: particles turnaround in the upstream and foot region xt < 0,

particles turnaround in the ramp region 0 < xt < Lr, and particles turnaround

in the overshoot or downstream region xt > Lr. Therefore we can identify 7

92



possible trajectories and using the following labelling scheme: Each uppercase

letter indicates the region in which the particle is first reflected. These are: S

(ramp), D (downstream), and NR (not reflected). Superscripts “u”,“r”, and

“d” indicate the particle’s turnaround location in either the upstream, ramp,

or downstream region, respectively, while “MRI” indicates that the particle

is reflected multiple times off the shock front. Table 4.1 lists these 7 possible

trajectories and their description across the shock profile in detail. To illustrate

the differences in trajectories, Figures 4.1 and 4.2 plot example trajectories of

these particle classes in x − y and x − vx phase space, respectively, where the

ramp region is indicated by the two dashed vertical lines.

Lever et al. [2001] classified 3 types of reflected ions in test-particle simu-

lations by recording at each time step from a particle’s initial shock encounter

until its first reflection: (1) Ex < vyBz, i.e., “dominating electric force” (2)

Ex > vyBz, i.e., “dominating Lorentz force”, or (3) if the particle has crossed

from the downstream region into the upstream region. Those particles having

a majority count in either of the first two groups were labelled as “Surfing” or

“Drifting” ions, respectively, although Drifting and Surfing particles are both

associated with shock drift acceleration. Any particles with any counts in the

third group were called “Crossing” ions. From Lever et al.’s [2001] Figure 3,

which shows particle trajectories in x − y space, Surfing/Drifting particles are

initially reflected at the ramp and have their turnaround location upstream

but Crossing particles are initially transmitted, reflected in the downstream

region, and then turn around upstream. Therefore in our classification, Surf-

ing/Drifting particles are Su particles and Crossing particles are Du particles.

Gedalin [1996] also investigated ion reflection using an analytic model and

test-particle simulations. Specifically, he studied the classes of Dr and Du ions,

investigating how the reflection efficiencies of these particles vary with the cross-

shock potential ∆φE and magnetic enhancement ratio B2/B1 where B2 is the

downstream magnetic field strength. He found from test-particle calculations

that the reflection efficiencies of Dr and Du particles are correlated with B2/B1

but have little to no dependence on ∆φE .

4.4 Theory

4.4.1 Reflection cutoff for Su and Sr particles

The reflection cutoff for ions that are initially reflected at the potential ramp (by

either electrostatic reflection and/or magnetic deflection) and not transmitted
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Table 4.1: Particle classes based on trajectories through the shock layer. Each

uppercase letter indicates the region in which the particle is first reflected: S

(ramp), D (downstream), and NR (not reflected). Superscripts “u”,“r”, and

“d” indicate the particle’s turnaround location in either the upstream, ramp,

or downstream region, respectively, while “MRI” indicates that the particle is

reflected multiple times off the shock front.

Particle label Particle trajectory

NR The ion is transmitted through the shock and is never

reflected.

Su The ion is reflected in the shock ramp 0 < xr < Lr,

it turns around in the upstream region xt < 0, it drifts

along the upstream convective electric field and is subse-

quently transmitted through the shock and not reflected

again.

Sr The ion is reflected once in the ramp 0 < xr < Lr

but does not enter the upstream region; instead it turns

around within the ramp region 0 < xt < Lr, and is not

reflected again.

MRI The ion is reflected multiple times in the upstream and

ramp region x < Lr.

Du The ion is first transmitted through the shock, then

reflected downstream beyond the ramp xr > Lr, its

turnaround location is in the upstream region xt < 0,

and it is eventually transmitted.

Dr The ion is first transmitted through the shock, then re-

flected downstream where xr > Lr, its turnaround lo-

cation is in the ramp region 0 < xt < Lr, and it is

eventually transmitted.

Dd The ion is first transmitted through the shock, then

reflected in the downstream region at xr > Lr, turns

around in the downstream region at xt > Lr, and is

transmitted downstream.
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directly, i.e. Su or Sr particles, is derived in Chapter 2:

vy1 ≃ − cot(Ωciτ)(vx1 − ux1) + csc(Ωciτ)(vc − ux1) (4.1)

where τ is the maximum reflection time, which determines the rotation of the

reflection cutoff in vx1 − vy1 phase space. We will now refer to (4.1) as the

S-separatrix. The effective cutoff speed vc is defined as

vc =

√

2e∆φ

mi

(4.2)

where ∆φ is the effective potential that equals the sum of the electrostatic

potential ∆φE and the work −〈WBx〉 done by magnetic deflection, i.e.,

e∆φ = e∆φE − 〈WBx〉, (4.3)

where 〈WBx〉 is estimated from (3.39) in Chapter 3 to be

〈WBx〉
1
2
miu2

x1

≃ − 2l2

3M2
A

[

2B2
o + B2

oB2 + Bo − 4BoB2

(B2 + 1)2

]

. (4.4)

Here Bo is the magnetic overshoot strength, B2 is the downstream magnetic

field strength, and l = L/λi is the normalized shock thickness. In Chapter 3

an analytic prediction for the maximum reflection time was derived,

τ = 2
L

vE
c

(4.5)

assuming a shock with an electrostatic potential but with a constant back-

ground magnetic field, where vE
c = 2e∆φE/mi is the electrostatic cutoff speed.

In general, the fractional population of a particle class Σ can be calculated

as follows

αΣ =

∫ ∞

0

∫ π

−π

δΣ(v⊥1, θ1)v⊥1f(v⊥1, θ1) dv⊥1dθ1

∫ ∞

0

∫ π

−π

v⊥1f(v⊥1, θ1) dv⊥1dθ1

(4.6)

where

f(v⊥1, θ1) =
1

πv2
th1

exp
(

−v2
⊥1/v

2
th1

)

(4.7)

is the 2-D Maxwellian distribution in polar coordinates, vth1 ≡ (kBTi1/mi)
1/2 is

the upstream ion thermal speed, Ti1 is the upstream ion temperature, and δΣ
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is the Dirac delta function which equals unity for all elements of phase space

(v⊥1, θ1) that are identified as a Σ particle. The fractional population for Su

particles, αSu , was derived in Chapter 3,

αSu =
1

2
erfc

(

ux1 − vc√
2vth1

)

(4.8)

where erfc(x) = 1 − 2/π1/2
∫ x

0
e−t2dt = 1 − erf(x) is the complementary error

function.

The 1-D hybrid simulation results in Chapter 3 show that the downstream

ion fluid velocity is comparable to the downstream E × B drift velocity im-

mediately behind the shock ramp, independent of the size of the electrostatic

potential. This implies that the total effective potential can also be written

as the change in the normal kinetic energy of the plasma stipulated by the

Rankine-Hugoniot jump conditions; i.e.

∆ϕ =
e∆φ

1
2
miu

2
x1

= 1 − 1

r2
, (4.9)

where r is the Rankine-Hugoniot compression ratio.

4.4.2 Reflection cutoff for Du and Dr particles

Gedalin [1996] showed that particles reflected downstream of the ramp will

return to the ramp as part of their downstream gyromotion, i.e. be Du or Dr

particles, if they satisfy the condition

v⊥2 sin θ2 −
(

v2
⊥2 − w2

x2

)1/2

+wx2

[

π + θ2 + cos−1

(

wx2

v⊥2

)]

< 0. (4.10)

Here w2 = (wx2, wy2) is the downstream gyrocenter and

v2
⊥2 = (vx2 − wx2)

2 + (vy2 − wy2)
2 (4.11)

θ2 = tan−1

(

vx2 − wx2

vy2 − wy2

)

, (4.12)

are the downstream gyrospeed and gyrophase of transmitted ions, respectively.

For convenience, (4.10) will be referred to as the D-separatrix.

To calculate (4.10), we require an analytic prediction for the velocity of

transmitted particles v2 = (vx2, vy2) at the trailing edge of the ramp. Gedalin
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[1996] followed the thin ramp approximation by Leroy [1983] to write

vx2 =
(

v2
x1 − ∆ϕE

)1/2
(4.13)

vy2 = vy1 − uy2 (4.14)

where ∆ϕE = 2e∆φE/mi is the normalized electrostatic potential, uy2 is the

velocity shift in vy due to magnetic deflection and vx2 takes the electrostatic de-

celeration into account. Gedalin [1996] predicted the velocity shift by magnetic

deflection to be

uy2 = Lr(B2 − 2B1)/2 (4.15)

whereas in Chapter 2 we found

uy2 =
Lr(B2 − 1)2

3(B2 + 1)
, (4.16)

where Lr is the ramp thickness. By substituting (4.11)-(4.12) into (4.10) one

can predict the source region of Du and Dr ions in initial phase space. However,

(4.13) and (4.14) neglect the normal deceleration by magnetic deflection and

the rotation of the distribution by its natural gyromotion through the finite

width of the foot and ramp. Accordingly, following the analysis in Chapter 2,

we modify (4.13) and (4.14) to

vx2 =
(

v2
xg − ∆ϕ

)1/2
(4.17)

vy2 = vyg − uy2 (4.18)

where ∆ϕ = 2e∆φ/mi is the normalized total potential and

vxg = ux1 + v⊥1 cos(Ωciτ − θ1) (4.19)

vyg = −v⊥1 sin(Ωciτ − θ1). (4.20)

That is, we replace the initial velocity components vx1 by vxg and vy1 by vyg,

respectively, as so to include the deceleration by magnetic deflection and an

anticlockwise rotation by an angle Ωciτ due to the gyromotion through the foot

and ramp. The prediction (4.10) with (4.11), (4.12), and (4.17)-(4.20) is then

the revised prediction for the D-separatrix in vx1 − vy1 phase space.

4.4.3 Particle energization

In the normal incidence frame an ion in its upstream gyromotion has

vxg(t) = ux1 + v⊥1 cos(Ωcit − θ1) (4.21)

vyg(t) = −v⊥1 sin(Ωcit − θ1), (4.22)
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having a total perpendicular energy of

U(t) =
1

2
mi

[

v2
xg(t) + v2

yg(t)
]

(4.23)

=
1

2
mi

[

u2
x1 + 2ux1v⊥1 cos(Ωcit − θ1)+

v2
⊥1 cos2(Ωcit − θ1) + v2

⊥1 sin2(Ωcit − θ1)
]

(4.24)

=
1

2
mi

[

u2
x1 + 2ux1v⊥1 cos(Ωcit − θ1) + v2

⊥1

]

. (4.25)

using (4.19)-(4.20). Its perpendicular energy thus varies periodically about the

average energy

U1 =
1

2
miu

2
x1 +

1

2
miv

2
⊥1, (4.26)

consisting of the kinetic energy corresponding to its upstream convective mo-

tion and its perpendicular thermal energy. Likewise its average downstream

perpendicular energy is

U2 =
1

2
miu

2
x2 +

1

2
miv

2
⊥2. (4.27)

If the downstream convective speed is ux2 = ux1/r, where r is the Rankine-

Hugoniot compression ratio, then the change in a particle’s total perpendicular

energy across the shock is

U2 − U1 =
1

2
mi

(

u2
x2 − u2

x1

)

+
1

2
mi

(

v2
⊥2 − v2

⊥1

)

(4.28)

=
1

2
miu

2
x1

(

1

r2
− 1

)

+
1

2
mi

(

v2
⊥2 − v2

⊥1

)

. (4.29)

We define the energization factor

ε =
U2

U1
− 1 (4.30)

as the fractional increase in an ion’s average energy, so ions that are energized

by the shock have ε > 0. If (4.9) is satisfied then from (4.29) the condition

ε > 0 corresponds to

v2
⊥2 > v2

⊥1 + v2
c (4.31)

since v2
c = u2

x1(1 − r−2) = 2e∆φ/mi from (4.9).

Equation (4.31) predicts that all particles that are energized have v⊥2 >

v⊥1, but that not all particles with v⊥2 > v⊥1 are energized, i.e., v⊥2 > v⊥1
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is a necessary but not sufficient condition for energization. This is because

all particles will lose an energy of at least −e∆φ through the shock before

considering other acceleration or heating effects.

On the other hand, taking into account the cross-shock potential and drift

along the convection electric field, the energization factor ε can also be ex-

pressed independently of (4.30) as

ε = U−1
1 (Ey∆ygc − e∆φ) . (4.32)

Here Ey = ux1B1 is the convective electric field and ∆ygc = ygc2 − ygc1 is the

particle’s displacement of its guiding center in y, where ygc1 and ygc2 are the

y-positions of the upstream and downstream guiding centers, respectively.

4.5 Test-particle simulations

4.5.1 Confirmation and extension of Gedalin’s [1996] test-

particle simulations

Gedalin [1996] used a supercritical shock profile with foot and overshoot regions

for the magnetic field, as shown in Figure 4.3(a), and the initial distribution

is injected at x1 = −4.275λi. We perform a test-particle simulation with the

same parameters and field profiles as Gedalin [1996]: MA = 7.5, lr = 0.225,

B2/B1 = 3.2, and ∆ϕE = 0.5 where lr = Lr/λi is the normalized ramp thick-

ness. However, we examine a larger area of initial phase space vx1 − vy1 in

our simulation, specifically investigating the range max(v⊥1) = ux1 whereas

Gedalin’s [1996] range was max(v⊥1) = 0.2ux1.

Figure 4.4 displays our simulation results with Gedalin’s [1996] shock pa-

rameters. Panel (a) plots the source region for each particle class in initial

phase space. We find most of the phase space domain corresponds to particles

reflected downstream of the ramp (Du and Dd): approximately 50% of the

initial domain corresponds to Dd particles. A small region of NR particles

exists within the domain of the Dd particles. MRI particles are found to be a

subset of the Su particles, both covering significant domains. Since the ramp

region is relatively thin (lr = 0.225) no Sr or Dr ions are found in the simu-

lation. By way of contrast, Gedalin’s [1996] domain of interest lies within the

red dashed circle, meaning that only Dd and Du particles were detected in his

test-particle simulation. This is because the electrostatic cutoff speed is much

smaller than the incoming flow speed (vE
c ≪ ux1) and therefore lies outside his
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Figure 4.3: The magnetic field profile used in (a) Gedalin’s [1996] test-particle

simulation, and (b) Lever et al.’s [2001] test-particle simulation. Here the

region between the dashed vertical lines is the ramp region used to classify the

different ion trajectories in Table 4.1.
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Figure 4.4: For the test-particle simulation using Gedalin’s [1996] shock pa-

rameters MA = 7.5, lr = 0.225, B2/B1 = 3.2, and ∆ϕE = 0.5: plots in vx1−vy1

phase space of (a) the particle source regions, (b) the energization profile and

ε = 0 contour, (c) Gedalin’s [1996] original simulation results identifying Du

particles (+) and all other particles (·) where open circles mark Du and Dr par-

ticles theoretically predicted by (4.10), and (d) each particle’s guiding center

displacement in y, ∆ygc.
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initial phase space range, i.e., vE
c < 0.8ux1. Comparing panel (c) with panel

(a) it is clear that we recover Gedalin’s [1996] results: we also extend them to

a larger domain of phase space and consider the energy gains in panels (c) and

(d).

In Figure 4.4(a) the MRI particles have a relatively large initial normal

speed close to incoming flow speed, i.e. vx1 ≈ ux1. However, due to the rotation

of the ion distribution through the foot (given its large thickness lf ≈ 4.1) these

particles still enter the shock ramp with a normal velocity close to zero which

is a necessary condition for MRI [Zank et al., 1996; Lee et al., 1996].

Panel 4.4(b) is a contour plot of the energization factor of the final transmit-

ted ion distribution. Clearly the particles that are most energized undergo MRI

(ε & 3) followed by Du particles (ε ∼ 2− 3) and then Su particles (ε ∼ 1− 2).

Classes Dd, Su, and NR all suffer net losses of energy, with ε < 0. No Dr or Sr

particles were found. The particles that are least energized surround the local

minimum located at v1 ≈ (−0.56, 0) corresponding to the NR source region.

Panel 4.4(c) presents Gedalin’s [1996] original figure that identifies ions that

are initially transmitted but are then reflected in the downstream region, i.e.

Du or Dr particles. This is compared to our simulation in Figure 4.4(a), which

shows a very similar source region for these downstream reflected particles: the

D-separatrix is consistent in rotation angle and has a gradient of approximately

unity in both panels. Figure 4.4(b) shows clearly that the distinction between

classes Dd and Du is that the latter group are energized when returning to the

upstream region.

Qualitatively the trajectories in Figures 4.1-4.2 suggest that energization is

due to drifts parallel to the upstream convective electric field. Figure 4.4(d), a

contour plot in initial phase space of the particle displacement ∆ygc, shows that

in general particles which have a positive displacement in their guiding center

in y do indeed gain energy. However, the boundary ∆ygc = 0 does not exactly

match the energization boundary ε = 0, particularly for the MRI particles

and for the Dd and Du boundary at large vx1/ux1 & 0.8. This is because

even though some particles drift along the convective electric field they end up

losing more energy through the shock because of the electrostatic potential, as

described by (4.32).

Figure 4.5 compares these source regions to the analytic predictions derived

in Section 4.4. Firstly, panel (a) plots the S-separatrix (4.1) using three values

of the rotation angle Ωciτ : zero rotation Ωciτ = 0◦ (red), Ωciτ ≃ 70◦ (green)

determined empirically from the simulation in the restricted phase space do-

main v⊥1/ux1 < 0.4, and Ωciτ ≃ 94◦ (blue) using the theoretical prediction
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Figure 4.5: For the test-particle simulation using Gedalin’s [1996] shock pa-

rameters MA = 7.5, lr = 0.225, B2/B1 = 3.2, and ∆ϕE = 0.5: (a) the observed

S-separatrix (black) and the predictions of (4.1) for three values of the rotation

angle Ωciτ : zero rotation Ωciτ = 0◦ (red), Ωciτ ≃ 70◦ (green) determined empir-

ically from the simulation in the restricted phase space domain v⊥1/ux1 < 0.4,

and Ωciτ ≃ 94◦ (blue) using the theoretical prediction (4.5); (b) the observed

D-separatrix (black) and the predictions of (4.10) with value of uy2 predicted

theoretically by (4.15) and with rotation angles corresponding to the same col-

ors as in panel (a). The dotted pink circles in panels (a) and (b) show the limit

of Gedalin’s [1996] vx1 − vy1 phase space range.
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(4.5). These are to be contrasted with the numerical S-separatrix highlighted

in black. Clearly the empirical value of Ωciτ ≃ 70◦ is the best prediction for the

rotation of the reflection cutoff. In general the Su source region is not bounded

by a simple line in vx1 − vy1 space; instead it is a complicated curve. Nonethe-

less, if we consider ions close to the thermal core with v⊥1 . 0.4ux1, then the

empirical prediction (green) is a good approximation for the true source region.

Secondly, panel (b) plots the theoretical D-separatrix (4.10) using the input

values wx2 = −0.9vA, wy2 = 1.5vA, ∆ϕE = 0.5, and uy2 ≃ −0.72vA, calculated

from the relevant equations in Gedalin’s [1996] paper but not explicitly stated

there, and the same rotation angles as in panel (a): Ωciτ = 0◦ (red) and

Ωciτ ≃ 70◦ (green). In this panel, the black line describes the numerical D-

separatrix. The S-separatrixes from panel (a) are also shown as dashed lines in

the same colors. Gedalin’s [1996] original calculations did not take into account

the rotation by the distribution’s natural gyromotion across the shock and

therefore is equivalent to the red solid curve. Both this prediction and the green

solid prediction which includes the gyromotion agree poorly with the simulation

results, lying outside the original domain of interest (highlighted within the pink

dotted circle). This is in contrast to Gedalin’s [1996] claimed results in Figure

4.4(c): he finds perfect agreement between the analytic prediction (4.10) and

his test-particle simulations.

We find that we can produce a similar result to Gedalin’s [1996] if we ne-

glect rotation and increase the magnitude of the deflection speed |uy2|; the

latter shifts the D-separatrix vertically upwards while preserving its shape. By

trial and error, a deflection speed of uy2 = −3vA produces a reflection sepa-

ratrix (blue) that is consistent with the simulation results. Nevertheless, this

prediction is unphysical since it neglects the rotation by the distribution’s natu-

ral gyromotion across the shock foot and ramp. Furthermore, the applicability

of (4.10) at the trailing edge of the ramp is questioned: the spatial magnetic

field still varies extensively in the overshoot region x/λi ≃ 0.1 − 2.5 from Fig-

ure 4.3(a), and therefore the local gyrocenter, gyrospeed, and gyrophase of

the particle are no longer constant. Rather, (4.10) should be applied at the

trailing edge of the overshoot x/λi ≃ 2.5 where these parameters reach their

downstream constant values. Indeed we find that we can exactly recover the

observed D-separatrix analytically (not shown here) by substituting the actual

values of v2 and w2/vA = (2.35, 0) taken at the trailing edge of the overshoot

x = 2.5λi in (4.10).
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4.5.2 Confirmation and extension of Lever et al.’s [2001]

test-particle simulations

Lever et al. [2001] performed multiple 1-D test-particle simulations using piece-

wise linear field profiles for the spatial magnetic field and electric potential

(Figure 4.3b). They extracted these field profiles as functions of MA from their

1-D hybrid simulations, finding

∆ϕE,max = 0.775 − 0.024MA, (4.33a)

∆ϕE,2 = 0.644 − 0.047MA, (4.33b)

Bo

B1
= 0.294 + 0.799MA, (4.33c)

B2

B1
= r (4.33d)

where r is the Rankine-Hugoniot compression ratio. These profiles have a

shock ramp and overshoot but no shock foot. Lever et al. [2001] calculated

the source regions for Su, Du, and MRI particles for a MA = 5 shock with

lr = 0.6, B2/B1 = 2.6, ∆ϕE,max = 0.655, and ∆ϕE,2 = 0.409.

Performing test-particle simulations on a shock with the same field profiles

and shock parameters as Lever et al. [2001] leads to the results shown in Figure

4.6. The source regions for each particle class are shown in Figure 4.6(a). Pop-

ulations of NR, Su, MRI, Dd, and Du are found, as well as a small population

of Dr particles that turn around in the ramp region. These source regions are

qualitatively consistent with Lever et al.’s [2001] original results except those

authors only identified Su, Du, and MRI particle groups in their test-particle

simulations.

Figure 4.6(b) shows that MRI particles are highly energized (ε & 3) and

that (in this case) Su and Du particles achieve lower but comparable gains

in energy (ε ∼ 1 − 3). Interestingly, there are some Su particles which lose

energy through the shock, located in the phase space range vx1/ux1 = [0, 0.3]

and vy1/ux1 = [−0.7, 0] near to the MRI domain. Note that Dd and NR

particles lose energy on crossing the shock. Figure 4.6(d) is a contour plot of

∆ygc showing that most particles which drift along the convective electric field

are energized. Moreover the energization boundary ε = 0 and the displacement

boundary ∆ygc = 0 differ because for some particles the energy gain by drifting

along the convective electric field is still less than the energy loss they suffer

on traversing the electrostatic potential, i.e. 0 < Ey∆ygc < −e∆φE .

Figure 4.6(c) compares the S- and D-separatrixes to the source regions
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Figure 4.6: Panels (a), (b), and (d) are the same plots as Figure 4.4(a), 4.4(b),

and 4.4(d), respectively, but for the test-particle simulation having Lever et al.’s

[2001] shock parameters: MA = 5, lr = 0.6, B2/B1 = 2.6, and ∆ϕE = 0.655.

Panel (c) compares the theoretical S-separatrix (4.1) in pink to the combined

boundary of Su and MRI particles in black. The blue, red, and green lines

plot the D-separatrix (4.10) for three values of the velocity shift in vy: those

predicted theoretically in (4.15) and (4.16), and zero, respectively. This is

compared to the combined boundary of Dr and Du particles in black.
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predicted numerically in the test-particle simulation. Black lines mark the

combined regions of (1) Su, Sr, and MRI particles and (2) Du and Dr parti-

cles. The S-separatrix (4.1) accurately describes the boundary between initial

reflection (Su, Sr, and MRI) versus initial transmission (NR, Du and Dd) ex-

cept at vx1/ux1 ≈ [0.35, 0.65] and vy1/ux1 ≈ [0.3, 0.7] where the true boundary

lies to the left of the predicted cutoff. The green, red, and blue lines plot the D-

separatrix (4.10) using velocity shifts predicted by (4.15), (4.16), and uy2 = 0,

respectively. Given the relatively thin nature of the shock ramp lr = 0.6, little

deflection is predicted by (4.15) and (4.16), with uy2 ≈ 0.68vA and ≈ 0.41vA

respectively. Hence the difference in these reflection cutoffs is minimal. How-

ever from inspection, it appears that the green curve using Gedalin’s [1996]

prediction for the deflection (4.15) best matches the true boundary.

4.5.3 Subcritical shock profile

Here we run test-particle simulations using a subcritical laminar profile, with a

ramp but no foot or overshoot, to examine the changes in particle source regions

and associated energization as a function of ramp thickness and electrostatic

potential. The magnetic field profile B(x) increases monotonically from B1 for

x ≪ 0 to B2 at x ≫ 0 according to

B(x) = B1 +
1

2
(B2 − B1)

[

1 + tanh

(

6x

Lr

)]

. (4.34)

In each simulation the profile of the electrostatic potential mimics B(x) via

φE(x) = ∆φE

(

B(x) − B1

B2 − B1

)

, (4.35)

for instance by analogy with Kuncic et al. [2002], and the electric field has

components E(x) = (−dφE(x)/dx, ux1B1, 0). The parameters ∆φE and Lr

are varied from run to run, where the latter indirectly controls the maximum

reflection time τ . The upstream ion distribution has initial velocities between

θ1 = 0◦ and 360◦ and v⊥1 = 0 and ux1 and is injected at the leading edge of

the foot or ramp.

In our simulations we use the same MA = 6 and downstream magnetic field

strength B2/B1 = 4 but vary lr = 0.9, 1.6, 2.5 and vE
c /vA = 4 or 5, the latter

meaning ∆ϕE ≃ 0.44 or 0.69. The spatial magnetic field profiles (4.34) are

shown in Figure 4.7(a).
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Figure 4.7: The magnetic field profile used in our test-particle simulations with

(a) only a ramp of varying thickness, and (b) a ramp of fixed thickness lr = 0.9

but the additional spatial features of a foot and/or overshoot. The ramp region

in panel (a) is defined to be between x = −lr/2 and x = lr/2.
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Substituting Bo = B2 = 4B1 and MA = 6 into (4.4) yields the predicted

work done by magnetic deflection

〈WBx〉
1
2
miu

2
x1

≃ 2l2r
75

. (4.36)

However in Chapter 3 the replace lr by lr/2 was found to be a better approxi-

mation, giving

〈WBx〉
1
2
miu

2
x1

≃ l2r
150

. (4.37)

This is justified by noting that the linear portion of the magnetic profiles in Fig-

ure 4.7(a) are primarily between x/λi = −lr/4 and x/λi = lr/4 and also that

B(−lrλi/4)/B0 ≈ 1.14 and B(lrλi/4)/B0 ≈ 3.86. Hence 〈WBx〉/(1
2
miu

2
x1) ≃

0.0054, 0.017, and 0.042 for our chosen values of lr = 0.9, 1.6 and 2.5, mean-

ing that magnetic deflection is unimportant for these shock parameters and

therefore vc ≃ vE
c .

Figure 4.8 plots the particle source regions (left column), energization con-

tours (middle column), and theoretical reflection cutoffs (right column) for test-

particle simulations with these profiles for ∆ϕE ≃ 0.69 and varying lr = 0.9, 1.6,

and 2.5. The MRI domain decreases as lr increases, disappearing for lr = 2.5;

complementing this an Sr class develops for lr & 1.6, cannibalizing the MRI

domain, for increasing lr. Moreover, the Su domain changes significantly as lr
increases, decreasing the Du domain. The Dr domain increases with increasing

lr.

Comparing the particle source regions with the energization boundary ε = 0

suggests that primarily Su and Du particles are energized (and MRI for small

lr), corresponding to ions being energized mostly in the upstream region after

reflection. This is particularly evident for the simulations with lr = 0.9 and

lr = 1.6, where the phase space region ε > 0 accurately coincides with the

source regions of Su and Du particles. However, for lr = 2.5 this is no longer

the case since Dr and Sr particles are now also enclosed within the energization

region ε > 0. This is because the shock ramp is now sufficiently thick for

particles that are reflected and turn around in the ramp to drift far enough

along the convective electric field that they gain more energy than they lose

from the electrostatic potential. Curiously, the boundary between Dr and

Du appears to remain fixed and independent of the ramp thickness in these

simulations.

From inspection, the fractional energy gain of Su particles depends on vx1,

being most evident for the lr = 0.9 case. For Du ions the local maximum at
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Figure 4.8: Results of test-particle simulations with varying ramp thickness

lr = 0.9 (1st row), lr = 1.6 (2nd row), and lr = 2.5 (3rd row) but common

shock parameters MA = 6, B2/B1 = 4, and ∆ϕE ≃ 0.69: (left column) particle

source regions, (middle column) energization profile and ε = 0 contour, and

(right column) the analytic S- and D-separatrixes compared to the numerical

source regions using the same colour coding as in Figure 4.6(b).
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v1/ux1 ≃ (1.7,−0.4) appears to remain fixed regardless of the ramp thickness.

Furthermore, the energization contours about the local maximum have the

same variations and magnitudes for all three values of lr. MRI particles are

most strongly energized for small lr but disappear altogether for lr = 2.5.

Finally the right column of Figure 4.8 plots the same analytic predictions

as in Sections 4.5.1 and 4.5.2. For lr = 0.9 and 1.6, we find excellent agreement

between the theoretical S-separatrix (4.1) using (4.5) and the numerical results.

However, for lr = 2.5 the true boundary is a complex curve and deviates from

the linear separatrix at large perpendicular speeds v⊥1/ux1 & 0.7. The situation

is different to the D-separatrix (4.10): for lr = 0.9 there is reasonable agreement

between the analytic and numerical results but for lr & 1.6 the agreement is

poor except for the blue curve at small v⊥1/ux1 . 0.2. Note that the analytic

predictions show that shape of the reflection separatrix (4.10) is the same for

varying uy2 but that increasing uy2 moves the separatrix left and upwards.

Moreover the three reflection cutoffs converge to the same curve as lr → 0

since uy2 → 0 in (4.15) and (4.16).

Figure 4.9 shows the same 3 cases as Figure 4.8 but for a lower cross-shock

potential ∆ϕE ≃ 0.44. The phase space domains are very similar for the

particle classes, although the MRI domain is smaller even for lr = 0.9 and the

reduction in the electrostatic cutoff speed from vE
c = 5vA to vE

c = 4vA decreases

the phase space regions of Su and MRI particles while increasing the domain

of class D particles. Furthermore, for lr = 0.9 the energization factor for MRI

has noticeably dropped from ε & 4 to ε ≃ 1 − 2 and similarly for Du particles

from ε & 3 − 4 to ε ≃ 2 − 3. These trends are also evident for lr = 1.6 and

2.5 simulation cases. Thus reducing ∆ϕE and so vE
c from 5vA to 4vA decreases

the number and energization of MRI and Su particles even for small lr, while

increasing the domain but decreasing the energy of D particles.

4.5.4 Supercritical shock profile

Now we investigate the effects on the particle source regions and associated

energization due to spatial variations in the electric and magnetic field profiles.

Specifically we add supercritical shock features to the laminar shock profile

such as the foot and the overshoot regions.

Firstly, we use a profile with foot and ramp structures, shown in Figure
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Figure 4.9: Same as Figure 4.8 but with ∆ϕE ≃ 0.44.
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4.7(b) with

B(x) = B1 +
1

2
(B2 − B1 − Bf )

[

1 + tanh

(

6x

Lr

)]

+

1

2
Bf

[

1 + tanh

(

6(x + Lf/2)

Lf

)]

. (4.38)

Here Lf and Bf are the length scale and magnitude of the foot, respectively,

and the spatial regions of the profile are divided into the foot (x = −Lf to

x = 0) and the ramp (x = −Lr/2 to x = Lr/2). Therefore the total shock

width is L ≈ Lf +Lr/2, which is the distance from the leading edge of the foot

to the trailing edge of the ramp. Figure 4.7(b) plots (4.38) for Lf = 1.0 λi and

Bf = 0.5 B1.

Secondly, we use a profile with ramp and overshoot structures, shown in

Figure 4.7(b) with

B(x) = B1 − Bo +
1

2
(B2 − B1 + Bo)

[

1 + tanh

(

6x

Lr

)]

+

1

2
Bo

[

1 + tanh

(

6(−x + Lo/2)

Lo

)]

. (4.39)

Here Lo and Bo are the length scale and magnitude of the overshoot, re-

spectively, and the spatial regions of the profile are divided into the ramp

(x = −Lr/2 to x = Lr/2) and the overshoot (x = 0 to x = L0). Therefore the

total shock width is L ≈ Lo +Lr/2, which is the distance from the leading edge

of the ramp to the trailing edge of the overshoot. Figure 4.7(b) plots (4.39) for

Lo = 1.0 λi and Bo = 0.5 B1.

Finally, we use a profile with a foot, ramp, and overshoot, shown in Figure

4.7(b) and modelled with

B(x) = B1 − Bfo +
1

2
(B2 − B1)

[

1 + tanh

(

6x

Lr

)]

+

1

2
Bfo

[

2 + tanh

(

6(x + Lfo/2)

Lfo

)

+

tanh

(

6(−x + Lfo/2)

Lfo

)]

. (4.40)

Here Lfo and Bfo are the length scale and magnitude of the foot or overshoot

and the maximum magnetic field strength is B2 +Bfo. As for the spatial profile

is divided between the foot (x = −Lfo to x = −Lr/2), ramp (x = −Lr/2

to x = Lr/2) and overshoot (x = Lr/2 to x = Lfo), and the total shock
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width is L ≈ 2Lfo, the distance from the leading edge of the foot to the end

of the overshoot. Figure 4.7(b) plots (4.40) for values of Lfo = 1.0 λi and

Bfo = 0.5 B1.

We run test-particle simulation using the spatial profiles from Figure 4.7(b)

and with the common shock parameters: MA = 6, B2 = 4B1, lr = 0.9, and

vE
c = 5vA or equivalently ∆ϕE ≃ 0.44. Likewise, in the test-particle simulations

with subcritical shock profiles, the spatial profile of the electrostatic potential

∆φ(x) is given by (4.35). Figure 4.10 plots the energization profiles from these

test-particle simulations and labels the source regions of the major particle

classes: Su, MRI, and Du.

Each panel is qualitatively similar, showing similar variation and magnitude

in the energization of Su and Du particle groups. However the energization of

MRI particles is markedly different across the various shock profiles. The pres-

ence of the foot significantly alters the scope and shape of the MRI domain

in phase space; the domain is now reduced in size and its shape more compli-

cated. Furthermore, particles that are most energized (ε > 4) are now localized

in phase space with a small but finite vx1 rather than an almost zero initial

normal velocity vx1 ≈ 0 in simulations without a foot. The foot also rotates

the profile anti-clockwise and is particularly evident when comparing the Su

separatrix with and without the foot. With the inclusion of an overshoot re-

gion there is marginal change in the particle energization; little difference is

observed between the bottom and top panels for simulations with and without

an overshoot, respectively. While class Su particles are somewhat further ener-

gized by the addition of an overshoot structure, presumably due to the increase

in the electrostatic potential, Du particles do not have noticeably increase en-

ergy gains. In conclusion, Figure 4.10 shows that shocks with an appreciable

foot have significantly reduced MRI energization domains, while the addition

of an overshoot region does not affect the Du particles but does increase the

energization factor and domain for Su particles.

4.6 Discussion

4.6.1 MRI energization

The detailed structure of the energization contours for MRI particles are fur-

ther examined in Figure 4.11. Here we see that the energization profiles have

layered contours which is tempting to associate with an additional “kick” a

particle receives from every reflection. This suspicion is confirmed by calcu-
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lating, independently, the number of times a particle is reflected before final

transmission. The reflection count is overlay as contour lines in Figure 4.11; it

closely matches the boundaries between the fractional energy gains of the MRI

particles.

4.6.2 Fractional populations of particle classes

Figure 4.12 presents the fractional populations of each particle class (4.6) as

functions of the upstream ion thermal speed vth1 for (a) Gedalin’s [1996] test-

particle simulations, and (b) Lever et al.’s [2001] test-particle simulations. (Ex-

plicitly plotted are the fractional contributions to the cumulative reflection frac-

tion.) The theoretical fractional population (4.8) of Su particles is also plotted

in each panel. The studied thermal range is restricted to vth1/ux1 = [0.05, 0.4]

since for vth1/ux1 & 0.4 the total number density is no longer conserved, i.e.

(4.6) integrated over the entire phase space domain is less than unity. For a cer-

tain particle class its population fraction can be extracted from these Figures

by subtracting the cumulative total without its contribution from the cumula-

tive total with its contribution. Population fractions from here on are stated

as their explicit values not their cumulative values.

For Gedalin’s [1996] test-particle simulations the distribution is mainly com-

prised of Du and Dd particles, where αDu ≃ 41 − 62% and αDd ≃ 43 − 46%

as vth1/ux1 varies. The next largest group are Su particles, increasing from

αSu = 0% to αSu ≃ 9.8% with increasing vth1, and then Dr particles, which

decrease from αDr ≃ 5.6% to αDr = 0% with increasing vth1. We find that the

predicted αSu agrees well with the numerical results in the range vth1/ux1 . 0.25

but above vth1/ux1 ≈ 0.25 the theoretical value slightly overpredicts the true

fractional population. This can be easily explained by examining Figures 4.4(a)

and 4.5(a): the lower sector bounded by the S-separatrix (green) in Figure

4.5(a) consists of Su particles as well as MRI and Dd particles, so as vth1

increases the actual population will be less than the population calculated if

the sector consisted solely of Su particles. There are very few MRI particles,

with their maximum fractional population of αMRI ≃ 0.9% occuring at the

maximum thermal speed vth1/ux1 = 0.4; this is because MRI particles are

largely nonthermal with initial gyrospeeds of v⊥1/vth1 & 2. Thus we find that

for the shock profile and parameters of Gedalin [1996] the Du particles have

the greatest contribution to the total energization of the ion distribution given

their large fractional population and energization factor.

In Lever et al.’s [2001] test-particle simulations the fractional populations
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Figure 4.12: The calculated reflection efficiencies α of each particle class are

color-coded as functions of the upstream thermal speed vth1 in (a) Gedalin’s

[1996] test-particle simulations, and (b) Lever et al.’s [2001] test-particle sim-

ulations. The pink curve in each panel is the theoretical reflection efficiency
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of each particle class in descending order for 0.05 ≤ vth1/ux1 ≤ 0.4 are: αDd ≃
57−73%, αNR ≃ 15−35%, αSu ≃ 0−26%, and αDu ≃ 0−2%. All other particle

classes have negligible populations. Similar to Gedalin’s [1996] simulation,

there are very few MRI particles; their maximum fractional population is

αMRI ≈ 0.1% at vth1/ux1 = 0.4. On the other hand, the prediction (4.8) for

αSu agrees very well with the numerical results for all values of vth1. Therefore,

for Lever et al.’s [2001] test-particle simulation and chosen shock parameters the

Su particles (not the Du particles) have the greatest contribution to the total

energization of the ion distribution because of their large fractional population

and energization factor. This is important because Lever et al.’s [2001] shock

profiles and parameters are derived from hybrid simulations whereas those of

Gedalin [1996] are not.

Figure 4.13 is analogous to Figure 4.12 but for the test-particle simulations

in Figures 4.8. At a glance the results are more similar to the shock profiles

of Lever et al. [2001] than Gedalin [1996], at least for lr = 0.9 and 1.6, but

major differences are apparent from both for lr = 2.5. Panels (a) and (b)

correspond to the simulation cases lr = 0.9 and lr = 1.6, respectively, and

are qualitatively similar; the distribution is mainly comprised of Du and NR

particles for small vth1/ux1 . 0.15, but makeup of the distribution changes

noticeably with increasing vth1 as the fractional populations of Su, Sr, Dr, and

Du particles increase. Panel (c), corresponding to the lr = 2.5 simulation case,

is markedly different from the simulation results in panels (a) and (b). Class Sr

and Dr particles now constitute a significant population of the ion distribution

for all ranges of vth1; specifically αSr + αDr ≃ 90% at vth1/ux1 = 0.05 whereas

αSr + αDr ≃ 38% at vth1/ux1 = 0.4. Furthermore, there is little variation

between the particle populations above vth1/ux1 ≃ 0.25. Thus the fractional

populations of each particle class are sensitive to the ramp thickness lr.

Figure 4.14 now examines the calculated fractional populations for the same

profiles as Figure 4.13 but with a lower potential ∆ϕE ≃ 0.44. Major differ-

ences in particle populations are again apparent. As expected, more particles

now surpass the lower electrostatic potential; populations of initially transmit-

ted particles, i.e. D class particles, constitute at least & 63% of the particle

distribution over the entire thermal range in panels (a), (b), and (c). As a re-

sult, the population of Su particles is reduced but still agrees with the analytic

prediction (4.8).

Figure 4.15 plots the explicit fractional populations of MRI, Su, and Du

particles from the test-particle simulations with varying spatial profiles in Fig-

ure 4.7(b). Qualitatively, Figure 4.10 shows reduction of the MRI domain for
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Figure 4.13: Same as Figure 4.12 but for the test-particle simulations in Figure
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spatial profiles including a foot. Quantitatively, this is confirmed in Figure

4.15(a) which shows αMRI is smaller for profiles with a foot region. Also MRI

particles still constitute a very small fraction of the entire population, with a

maximum value of 1.2% at vth1/ux1 = 0.4 for the ramp and overshoot profile.

Figure 4.15(b) reveals that the addition of a foot or overshoot increases the

Su domain with small (∼ 1%) and large (∼ 10%) percentage gains in αSu ,

respectively. This is in contrast to values for αDu in Figure 4.15(c): the Du

population is slightly larger (∼ 1%) for profiles with a foot but is significantly

smaller for profiles with an overshoot, decreasing the Du population by as much

as ∼ 10%.

It is apparent from Figures 4.12, 4.13, 4.14, and 4.15 that the fractional

populations of each particle class are sensitive to certain shock parameters,

namely the electrostatic potential ∆φE , shock thickness lr, and the spatial

profiles of the electric and magnetic fields. Therefore in general it is difficult

to ascertain a priori the importance of any particle class. Put it another way,

based on these calculations it should not be assumed that Du particles always

correspond to the majority of the ion heating at shocks, as might be inferred

from the emphasis on Du particles [e.g. Gedalin, 1996]. It is important to

note, however, that the results from our test-particle simulations and those of

Gedalin [1996] and Lever et al. [2001] are not self-consistent, although Lever

et al.’s [2001] shock parameters were extracted from 1-D hybrid simulations.

4.7 Conclusions

In this Chapter we proposed a new classification scheme that distinguishes be-

tween different classes of reflected particles based on their trajectories across

a shock. This scheme was applied to test-particle simulations using the same

shock parameters and field profiles as Gedalin [1996] and Lever et al. [2001].

Furthermore, we performed our own test-particle simulations which varied nor-

malized ramp thickness lr, electrostatic potential ∆φ, and spatial profiles of

the electric and magnetic field.

We found that multiple classes of “reflected” particles typically exist at

perpendicular shocks, with population fractions that depend on multiple shock

parameters. Test-particle simulations show for lr . 1 the ion distribution

comprises of mainly Su, Du, and Dd particles. If the shock ramp is sufficiently

thick, there exist particles that can now be reflected and turned-around in the

ramp region, namely Sr and Dr particles. In addition, we found that particles
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with almost zero incoming normal speed vx1/ux1 ≈ 0 are reflected multiple

times off the shock front, i.e. undergo MRI acceleration.

For each particle class we calculated its source region and compared them

to two analytic separatrixes: one for Su particles (4.1) and one for Du and Dr

particles (4.10). The S-separatrix depends on two parameters: the electrostatic

cutoff speed vE
c and the maximum reflection time τ (4.5), from which the

latter gives the rotation angle Ωciτ of the reflection separatrix. In all but one

simulation, the Su separatrix agreed extremely well with numerical simulations,

being consistent in angle of rotation and location in phase space. The only

exception was for Gedalin’s [1996] situation where the empirical value for τ

produced a rotation angle that was consistent with the true separatrix found

in the test-particle simulation.

The D-separatrix (4.10), which describes the source region of Du and Dr

particles, depends on several parameters: the downstream gyrocenter w2 and

the velocity v2 of transmitted particles at the trailing of the ramp, where the

latter parameter further depends on the electrostatic potential ∆φ, angle of

rotation Ωciτ , and the velocity shift uy2 due to magnetic deflection. Our test-

particle simulations show that the D-separatrix is relatively insensitive to ∆φ

but depends strongly on Ωciτ and uy2; specifically, a more negative value of

uy2 shifts the separatrix vertically upwards in velocity phase space. For thicker

shocks, the D-separatrix agreed poorly with numerical results; the challenge is

being able to predict an accurate value for v2 across a thicker shock. However,

in our revised prediction for the D-separatrix, (4.10) with (4.19) and (4.20), we

confirmed the necessity of including a rotation angle Ωciτ due to the natural

gyromotion of the distribution through the foot and ramp.

We also investigated the energization of the different particle groups. In

all cases we found that MRI particles have the greatest energization fac-

tor with, ε & 3. This was followed closely by either Du or Su particles

which had ε ∼ 1 − 3. In general, particles are energized by drifting along

the convective electric field; this fact was confirmed by calculating a parti-

cle’s y-displacement between their upstream and downstream guiding centers.

However, test-particle simulations do not account for other energization mech-

anisms, such as wave-particle interactions, which could possibly contribute to

the net energization of the ion distribution.

Spatial variations in the magnetic and electric field profiles have modest

effects on particle energy gains and their source regions. The most pronounced

effect is due to the addition of a foot region; MRI energization and its particle

source region are weaker and smaller, respectively. Including an overshoot
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region provides small energy gains for Su and MRI particles and significantly

increases the Su population but significantly reduces the Du population.

Finally, fractional populations of each particle class were calculated as func-

tions of the upstream ion thermal speed vth1, electrostatic potential ∆φE , ramp

thickness lr, and spatial variations in the magnetic and electric field profiles.

Significant variation in particle populations are found between Gedalin’s [1996]

simulation, Lever et al.’s [2001] simulation, and our model profiles with and

without shock feet and overshoots. However, the values of αSu and αDu were

comparable between our simulations and Lever et al.’s [2001] results. Note,

however, that it is not currently possible to predict in detail the population

and energization of each particle class since they depend on ∆φE , lr, and the

electromagnetic spatial profile which are not a priori predictable. This im-

plies that Du particles are not always the most important class of particles in

terms of number fraction and energization, contrary to simulation results in

Gedalin [1996]. Likewise Su particles are unimportant if the difference between

the electrostatic cutoff speed and upstream flow speed is much larger than the

upstream thermal speed, i.e. |vE
c − ux1| ≫ vth1. Therefore, self-consistent cal-

culations of these fractional populations and their energization are needed to

truly determine the relative importance of each particle class.

Future work will quantify the energization fraction between different parti-

cle groups and study the MRI process in detail, for example, comparing the

theoretical energy gains predicted in Lee et al. [1996] and Zank et al. [1996] to

our numerical results.
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Chapter 5

Concluding remarks and future

directions

In this thesis we have addressed several outstanding problems in collisionless

shock physics. In Chapter 2 we presented strong evidence from Voyager 2 data

that the Uranian bow shock was reforming. Observations of extremely high

and long-duration magnetic and density compressions by Voyager 2 can be ex-

plained simply in terms of the bow shock reforming and receding planetwards

with the spacecraft. This interpretation was supported by a detailed analysis

of Uranus’s bow shock motions by Xue et al. [1996], using upstream Langmuir

waves and magnetic connection conditions, which gave strong evidence that

the bow shock was in fact moving away from the Sun, towards Uranus, just

before the Voyager 2 encounter. This explanation was examined in detail using

results from a 1-D hybrid simulation with similar plasma parameters to those

observed at the Uranian bow shock. For a test spacecraft along a trajectory

which remained close to the shock front, we found localized magnetic and den-

sity enhancements a factor of 4 − 6 above the asymptotic predictions of the

Rankine-Hugoniot relations, consistent with observations by Voyager 2. These

results support the growing evidence for shock reformation occurring in nature

[Horbury et al., 2001; Lobzin et al., 2007; Mazelle et al., 2010; Sundberg et al.,

2013], and in particular for reformation appearing at extraterrestrial planetary

shocks. Future work could investigate the existence of reformation for other

planetary bow shocks and the heliospheric termination shock using a similar

analysis to the one developed in Chapter 2.

Additional simulations showed that the relative magnetic overshoot Bmax/B1

increases approximately linearly with MA and is mostly insensitive to varia-

tions in magnetic field orientation. These large overshoots may be important

in applications involving shock drift acceleration (SDA) and type II solar ra-

dio bursts. The reason is that if MA ≫ 1 then the maximum energy increase
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for a reflected particle under SDA, Emax/E = 2r + 2r
√

1 − 1/r − 1 [Ball and

Melrose, 2001], can be much larger and unbounded if the compression ratio is

r = Bmax/B1 rather than r = B2/B1 ≤ 4 which gives the conventional bounded

limit Emax/E ≤ 13.93. Future test-particle simulations for reforming shocks

should be used to test this idea.

Chapter 3 provided the first quantitative treatment of the magnetic de-

flection process for thermal ions at quasiperpendicular shocks. We derived

an analytic expression for the work done by magnetic deflection, WBx, which

scales with the shock thickness squared and magnitude of the magnetic over-

shoot. In 1-D hybrid simulations of quasiperpendicular shocks with a wide

range of MA ∼ 1.8 − 10.3, we found that the electrostatic potential ∆φE

decreases with MA whereas the work done by magnetic deflection increases

with MA. Therefore, a purely electrostatic model for specular ion reflection

would predict little to no ions being reflected at the maximum Mach-number.

However, calculations of the average ion reflection efficiency 〈α〉 in the same

simulations showed a growing population of reflected ions with increasing MA,

specifically 〈α〉 increasing steadily from ∼ 2% at MA ∼ 1.8 to a maximum

of ∼ 20% at MA ∼ 10.3. This apparent discrepancy between theoretical and

numerical values of the reflection efficiency was first acknowledged by Leroy

et al. [1982]. Revised predictions of 〈α〉, based on a total effective potential

e∆φ = WBx−e∆φE which includes the work done by magnetic deflection in ad-

dition to the electrostatic potential, recovered good agreement to the numerical

values found in simulations, consistent in magnitude and variation with MA.

Chapter 3 also investigated the source region of initially reflected ions. The

separatrix in initial phase space between initially reflected ions and initially

transmitted ions was derived analytically assuming ion reflection by (1) the

electrostatic potential alone, and (2) the electrostatic potential plus the work

done by magnetic deflection. Excellent agreement was found between both sep-

aratrixes and the source regions in numerical simulations of low MA (∼ 1.8−3.4)

shocks, which were consistent in rotation angle and location. However for

stronger shocks with MA & 3.4, the separatrix derived under purely electro-

static effects deviated significantly from the true source region, whereas the

separatrix which included magnetic deflection maintained excellent agreement

to the simulation results. Thus it is clear from the results of Chapter 3 that

magnetic field effects are vital for the reflection of thermal ions at and upstream

of the shock overshoot, and for accurately predicting the reflection efficiency

of ions at high Mach-number shocks. Future research should investigate the

contribution of magnetic deflection to shock thermalization, which needs to be
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quantified and related to that required by the Rankine-Hugoniot conditions. In

addition the new prediction for the separatrix should be compared with results

from 2-D and 3-D hybrid and PIC simulations.

Chapter 4 addressed the need for a consistent and logical classification

scheme for reflected particles. Our classification scheme is based on particle

trajectories across the shock layer, specifically categorizing particles by identi-

fying their reflection and turn-around locations in either the upstream, ramp,

or downstream regions. For each particle class we determined its energization

ε and source region in initial phase space. In general, we found MRI par-

ticles are most energized (ε & 3) followed by either Su or Du particles with

ε ∼ 1 − 3, but depending on the shock parameters and field profiles. Each

particle source region is sensitive to different shock parameters. For instance,

MRI particles are mostly sensitive to the shock thickness and the addition

of a foot region whereas Du particles are sensitive to the shock thickness and

magnetic jump factor but are insensitive to the electrostatic potential. These

source regions were compared to two analytic reflection separatrixes: one pre-

dicting the Su source region and the other predicting the Du and Dr source

region. In the former case we found excellent agreement between the predic-

tions and the test-particle results whereas for the latter case the predictions

only performed well for thinner shocks. Fractional populations of each particle

class was also calculated; significant variation exists between simulations with

differing upstream ion thermal speed, electrostatic potential, ramp thickness,

and spatial variations in the electromagnetic field profile.

An important general result is that it is difficult to determine the source

regions, energization, and fractional populations of each particle class because

they depend on shock parameters which cannot be determined a priori. Future

work should quantify and compare the relative energizations of the different

particle groups and their contributions to the heating required by the Rankine-

Hugoniot conditions. Additionally, comparisons should be made between the

predicted energy gain of MRI particles (e.g. in Lee et al. [1996] and Zank

et al. [1996]) and test-particle simulations similar to those in Chapter 4. As

for Chapter 4, comparisons of the source regions, energization, and fractional

populations of those classes should be made with 2-D and 3-D hybrid, test-

particle, and PIC results.
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Krasnoselskikh, V. V., B. Lembège, P. Savoini, and V. V. Lobzin (2002), Non-

stationarity of strong collisionless quasiperpendicular shocks: Theory and

full particle numerical simulations, Physics of Plasmas, 9, 1192.

Kuncic, Z., I. H. Cairns, and S. Knock (2002), Analytic model for the electro-

static potential jump across collisionless shocks, with application to Earth’s

bow shock, Journal of Geophysical Research: Space Physics, 107 (A8), 1218.

Ledvina, S. A., Y. J. Ma, and E. Kallio (2008), Modeling and simulating flowing

plasmas and related phenomena, Space Science Reviews, 139 (1-4), 143–189.

Lee, M. A., and L. A. Fisk (1982), Shock acceleration of energetic particles in

the heliosphere, Space Science Reviews, 32 (1-2), 205–228.

Lee, M. A., V. D. Shapiro, and R. Z. Sagdeev (1996), Pickup ion energization

by shock surfing, Journal of Geophysical Research: Space Physics, 101 (A3),

4777–4789.
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