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Summary 
Both feline coronavirus (FCoV) and feline calicivirus (FCV) are common infections in 

domestic cats, and are an important cause of morbidity and mortality in this species.  Whilst 

most FCoV infections are asymptomatic, or result in mild self-limiting gastrointestinal 

disease, infection with virulent mutant FCoV biotypes can result in the development of feline 

infectious peritonitis (FIP), an invariably fatal immune mediated disease for which there is 

currently no effective therapy.  Similarly, whilst many FCV infections result in only mild self-

limiting oro-respiratory disease, more severe disease manifestations, such as the newly 

recognised FCV-associated virulent systemic disease, can occur with a significant impact on 

the health and wellbeing of affected cats.  As with FCoV, a lack of effective antiviral agents 

limits treatment of FCV-associated disease to supportive therapy.  The aim of the studies 

described in this thesis was to begin to address this therapeutic shortfall by identifying 

effective antiviral therapeutics for the treatment of these two important feline viruses. 

Chapter 1 reviews the pertinent literature on the inherent difficulties associated with antiviral 

chemotherapy across all animal species, the different classes of antiviral therapeutics, with a 

particular emphasis on nucleic acid based therapies, and the process of antiviral drug 

development.  The chapter culminates in a systematic review of the two viruses which are 

the focus of this work in terms of their importance in feline medicine, aspects of their physical 

structure and biology relevant to therapeutics, and places into context the unmet need for 

effective and safe treatments.  

Chapter 2 describes some of the general methods used throughout the studies in this thesis, 

including general cell and viral culture methods, molecular biology methods, and imaging 

methods. 

Veterinary practice, and in particular feline therapeutics, has a long history of therapeutic 

‘trial and error’ in which drugs with proposed or theoretical benefit have been trialled in 

patients, with variable success. Advances in available in vitro methods, higher expectations 

of the profession and the public, industry support for the companion animal sector, and the 

concerns regarding ‘off label’ use of drugs has seen a shift towards a more rigorous and 

structured approach to drug development and testing.  In light of this, Chapter 3 describes 

the development of cytopathic effect inhibition assays for screening compounds for antiviral 

efficacy against FCoV and FCV.  Two different assay formats were optimised and tested for 

each virus, a resazurin-based assay which detects viable cells through their reduction of the 

substrate resazurin to fluorescent resorufin, and a sulforhodamine B-based assay which 

provides a measure of cell biomass, and thus an indirect indication of cell viability.  Both 
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assay formats demonstrated excellent performance for FCoV and FCV, and based on the 

calculated Z’-factors would be suitable in their current form for high throughput screening.  

Although the SRB-based assay resulted in slightly higher Z’-factors for both viruses, the 

resazurin-based assay was selected for subsequent screening due to significant practical 

advantages, including low cost and assay simplicity.  The development of this economical, 

robust, and reliable screening assay opens up avenues for small and large scale compound 

screening, allowing a physiologically relevant assessment of the efficacy of potential antiviral 

compounds. 

Chapter 4 describes the use of the optimised resazurin-based CPE inhibition assay to screen 

a focused panel of nineteen compounds for antiviral activity against FCoV.  Compounds 

were selected for inclusion in the panel based on published demonstration of antiviral effects 

against coronaviruses or other RNA viruses.  Three compounds, chloroquine, mefloquine, 

and hexamethylene amiloride were demonstrated to markedly inhibit CPE (> 75% inhibition) 

in the screening assay and were confirmed to be potent antiviral agents at low micromolar 

concentrations in orthogonal confirmatory assays.  Preliminary investigation into the 

mechanism of action of the compounds demonstrated chloroquine and hexamethylene 

amiloride were effective only when present in the early stages of viral replication, while 

mefloquine remained effective when added as late as 5 h post infection suggesting a 

different mechanism of action.  As replication of virulent biotypes of FCoV is a triggering and 

perpetuating factor in the pathogenesis of FIP, the successful clinical application of these 

results would likely provide a critical missing piece of the therapeutic puzzle.  Given two of 

the compounds identified, mefloquine and chloroquine, are commonly available antimalarial 

compounds with a long history of prophylactic and therapeutic use in humans, if 

demonstrated effective in vivo these treatments should be rapidly accessible and eminently 

affordable, avoiding some the practical barriers seen with the introduction of a therapeutic 

based on a new molecular entity. 

RNA interference (RNAi) provides a promising new approach to antiviral therapy.  

Preliminary studies on the efficacy of this approach against FCoV, using synthetic small 

interfering RNAs (siRNAs), are presented in Chapter 5.  All of the eight designed siRNAs had 

some inhibitory effect on FCoV replication, two of which were highly effective, resulting in > 

95% reduction in extracellular viral titre.  Further characterisation of these demonstrated 

them to be effective at low nanomolar concentrations, when used in combination, and when 

used against high viral challenge.  Serial passage of virus through siRNA treated cells 

highlighted a weakness of the RNAi-based approach, with antiviral resistance rapidly 

emerging; however combination therapy with three siRNAs was able to considerably delay 
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this.  A structural siRNA variant, Dicer-substrate siRNA, was tested and shown to provide 

similar or better efficacy, depending on the target, over canonical siRNAs targeted at the 

same motif.  In addition to demonstrating the efficacy of an antiviral RNAi approach for 

inhibiting FCoV, the results of this study also informs its potential therapeutic application, with 

combinatorial therapy with a minimum of three siRNAs needed to minimise the development 

of viral resistance when used in vivo.  The successful therapeutic application of these results 

for FIP however, will require an appropriate and affordable systemic delivery system.  Based 

on the results reported, the benefits of this potent and specific antiviral approach should 

encourage further research to enable the translation of the results into a clinical setting for 

further evaluation. 

Chapter 6 reports the identification and characterisation of a small molecule antiviral effective 

against feline calicivirus.  Antiviral screening of the compound panel used in Chapter 4 with 

the optimised resazurin-based CPE inhibition assay identified only a single compound, 

mefloquine, displaying marked inhibitory effects against FCV.  Orthogonal testing with virus 

yield reduction assays and plaque reduction assays confirmed the antiviral effects at low 

micromolar concentrations.  Mefloquine, a commonly available antimalarial, was shown to be 

effective against a panel of recent Australian FCV isolates, with greater potency 

demonstrated against these field isolates than the reference strain.  The seven field isolates 

tested were taken from cats with a range of typical FCV-associated clinical disease and from 

two geographically distinct regions, and thus represent an unbiased sample of circulating 

viruses.  Demonstration of efficacy against a broad range of circulating viruses is important 

when considering the therapeutic application of mefloquine against a virus as genetically 

diverse as FCV, as treatment will only be clinically useful if effective against relevant field 

viruses.  Combination treatment with mefloquine and recombinant feline interferon omega 

demonstrated additive effects and may be a clinically useful approach. Based on these data, 

consideration should be given to in vivo trials of mefloquine in cats with severe FCV-

associated disease.  Given the paucity of antiviral treatments available for caliciviruses in 

other species, the identification of a well characterised pharmaceutical with antiviral 

properties against feline calicivirus should prompt further investigation into its use against 

other related viruses. 

The final experimental chapter (Chapter 7) reports on the use of RNAi against FCV.  Despite 

the small length and highly variable nature of the FCV genome, four short highly-conserved 

regions were identified as suitable target regions for siRNA design.  Three of the eight 

siRNAs designed demonstrated a marked antiviral effect with a greater than 99% reduction 

in extracellular viral titre.  Titration of these effective siRNAs demonstrated a clear 
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concentration-response relationship, with IC50 values of approximately 1 nM, and 

combination treatment with multiple siRNAs demonstrated additive or synergistic effects.  To 

assess the likely usefulness of the compounds in a clinical setting, siRNAs were screened 

against a panel of six recent Australian FCV isolates.  Efficacy against currently circulating 

viruses was broadly reflective of that demonstrated against the reference strain FCV F9, 

although pre-existing resistance was noted for one isolate.  The results presented in this 

chapter, support the further investigation into antiviral RNAi for treating severe FCV-

associated disease. 

The findings and limitations of the studies presented in this thesis are discussed in Chapter 

8.  Avenues for future research, including both in vitro studies and the in vivo therapeutic 

application of the antivirals identified in the previous chapters are proposed. 
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1 
1 Literature review 

1.1. INTRODUCTION 

Viral diseases are a significant cause of morbidity and mortality in domestic cats.  The two 

primary approaches in managing viral diseases are vaccination and antiviral 

chemotherapeutics. Vaccination is, and will remain the most important weapon in the feline 

practitioner’s antiviral armamentarium, and whilst it has proven effective at controlling or 

minimising the impact of a number of important feline viral diseases, there remain significant 

pathogens, such as feline coronavirus, that have thus far proved intractable to the 

development of a disease preventing vaccine (Pedersen, 2009).  Furthermore some 

vaccines, such as those used for feline calicivirus, provide variable protection in the face of a 

heterogeneous population of circulating strains (Radford et al., 2006).  Whilst the 

development of suitable vaccines is clearly the optimal long term solution, there exists an 

unmet need for safe and efficacious antiviral drugs for use in cats.  Even with effective 

vaccines, antiviral drugs would be of benefit to treat the inevitable cases that arise in 

unvaccinated cats, or those in which vaccination has failed.  

1.2. ANTIVIRAL THERAPEUTICS 

1.2.1. The challenges of antiviral therapeutics 

A recent review listed approximately 50 approved antiviral drugs for use in humans in the 

United States (De Clercq, 2010).  Despite this impressive number, collectively they are 

effective against only a limited number of viruses, with over half being antiretroviral drugs for 

the treatment of human immunodeficiency virus (HIV) infections, and the remainder effective 

for the treatment of influenza virus, hepatitis B virus (HBV), hepatitis C virus (HCV), or 

several herpesvirus infections.  Consequently, many viral infections in humans have no 

effective treatments.  In feline medicine the situation is more pressing with no direct acting 

antivirals approved for clinical use, although a number of human antivirals are used off-label 

with variable success (Hartmann et al., 1995; Thomasy et al., 2011). 

The limited number of antivirals available reflects the difficulties of developing therapeutics to 

treat viral diseases, both at a practical and financial level.  As obligate intracellular parasites, 
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the replication of viruses is intricately linked to normal cell processes and thus many 

compounds that interfere with viral replication are inherently toxic to host cells and present a 

low therapeutic index.  The timely administration of treatment also poses a problem for 

antiviral therapeutics, particularly for treating acute infections.  Such a challenge is likely 

greater in veterinary medicine where non-specific prodromal clinical signs associated with 

acute viral infections in humans (e.g. headache, malaise, myalgia) are less likely to be 

noticed by pet owners, delaying the possibility of therapeutic intervention until after viral 

replication has peaked, and therefore limiting the potential efficacy of treatment.  Advances in 

rapid cage-side diagnostics may go some way in overcoming this obstacle; however it will 

likely remain a significant challenge. 

Another challenge encountered is the development of drug resistance during treatment, a 

problem so inherent with antiviral chemotherapy that Herrmann and Herrmann (1977) 

proposed the development of resistance to be an indicator of specific antiviral activity.  The 

combination of short replication cycles, large numbers of progeny, and error prone replication 

provides a pool of mutant viruses, allowing for the rapid emergence of resistant phenotypes 

under the selection pressure imposed by antiviral drug treatment.  The problem of resistance 

is particularly acute for RNA viruses owing to the poor fidelity of viral RNA dependent RNA 

polymerase (Domingo et al., 1996; Figlerowicz et al., 2003).  The rapidity with which 

resistance can develop is demonstrated by the antiretroviral drug nevirapine, where 

resistance is seen in 35% of mothers and 52% of infected children following a single 

peripartum dose given to HIV positive pregnant women (Arrive et al., 2007).  Combination 

therapy using two or more mechanistically distinct antiviral drugs can delay or prevent the 

emergence of resistance (Ribeiro and Bonhoeffer, 2000) and may also work synergistically, 

enhancing the clinical outcome and reducing host toxicity and associated side effects 

(Govorkova and Webster, 2010).  The benefits of combination antiviral therapy are well 

documented for HIV and HCV infections in humans (Kanda et al., 2013; Shafer and Vuitton, 

1999).   

The difficulty facing antiviral drug development is a pragmatic one.  From a financial 

perspective, the development of antiviral drugs for treating acute infections may not have the 

same potential windfall as those involved in treating chronic diseases, both infectious and 

non-infectious, as treatment is of short duration.  This limits the chance for a return on the 

significant investment required to bring a drug to market, making them less financially 

attractive than other therapeutic categories.  

1.2.2. Classes of antiviral therapeutics 

Antiviral therapeutics can be divided into three groups based on their broad mechanism of 

action: virucides, biological response modifiers, or direct acting antivirals.  Virucides are 
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chemical or physical agents that are capable of physically inactivating a virus.  Owing to 

problems with toxicity, agents in this class are used primarily as disinfectants for inanimate 

objects, although virucides with more acceptable toxicity profiles, such as nonoxynol-9 or 

sodium dodecyl sulfate, have been investigated as a prophylactic therapy in humans for a 

number of sexually transmitted diseases including HIV and herpes simplex virus type 2 

(Cutler and Justman, 2008; Howett et al., 1999). 

Biological response modifiers (BRMs) are a diverse group of agents with the common 

property of modulating the host immune response.  BRMs include substances produced 

naturally in the body like cytokines, other non-endogenous biologicals such as bacterial cell 

wall extracts, or synthetically produced compounds (Ford, 1986).  These drugs can also have 

an indirect antiviral effect by stimulating the host’s innate or adaptive immune response.  

Type I interferons are the most commonly used BRM for antiviral therapy in humans 

(Bergman et al., 2011).  Interferons modulate the transcription of hundreds of interferon 

stimulated genes (ISG), the translation products of which activate intrinsic cellular pathways 

to inhibit viral replication by blocking transcription and translation and degrading viral RNA 

(recently reviewed by Sadler and Williams, 2008).  Interferons can also promote apoptosis in 

infected cells (Clemens and Jeffrey, 2006) and have immunomodulatory effects that enhance 

other aspects of the innate and adaptive immune response and therefore facilitate viral 

clearance (Guidotti and Chisari, 2001).  In small animal medicine, interferons have a long 

history of use with variable success.  The mixed results seen with veterinary use of 

interferons may in part be due to the necessary use of human interferon owing, until recently, 

to the lack of available appropriate animal interferons.  Although cross reactive, interferons 

are species specific (Gifford, 1963), and the use of heterologous interferons is associated 

with the production of neutralising antibodies which limit the longevity of their effectiveness 

(Zeidner et al., 1990).  A recombinant feline type I interferon, interferon omega (rFeINF-ω) is 

now available and has reported clinical efficacy in controlled trials in treating canine 

parvovirus (Martin et al., 2002; Minagawa et al., 1999) and feline retroviruses (FIV/FeLV) 

(Doménech et al., 2011; Mari et al., 2004). 

The largest and most important class of antiviral therapeutics are the direct acting antivirals.  

These drugs exert their antiviral effect by targeting essential viral or cellular factors involved 

in replication (De Clercq, 2002).  Traditionally the former has been the primary focus, 

however an increased appreciation and understanding of the role of specific host factors in 

viral replication has resulted in the development of antivirals directed against host cell targets 

(Liang, 2008; Maeda et al., 2004).  This approach is appealing in the context of minimising 

the development of viral resistance; however drugs targeting host factors are more likely to 

be intrinsically toxic due to the potential interruption of essential host cell functions.  A further 

potential benefit is that a drug targeting cellular factors may provide a broader spectrum of 
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activity if the target pathway is utilised by diverse virus families.  Conversely, drugs targeting 

virus specific factors, particularly those with no cellular homologue, are less likely to be toxic 

to the host, but are more likely to rapidly select for resistant viral mutants and be active 

against a narrow spectrum of viruses.  Due to the specificity of the molecular interaction 

between the drug and target, the currently available antivirals, with the exception of ribavirin, 

all have a narrow spectrum of activity.  Small molecule drugs comprise the bulk of the current 

antiviral armamentarium, however a number of promising novel antiviral approaches have 

recently emerged.  At this time, many of these have not progressed beyond in vitro proof of 

principle studies, and it remains to be seen whether such success can be translated into a 

viable therapeutic.  

1.2.2.1. Small molecule antivirals 

The replication cycle of the virus and its reliance on host cell factors determine the potential 

targets for a small molecule antiviral.  Whilst, theoretically at least, it is possible to block 

replication at each stage from viral attachment and entry through to assembly and release, 

most of the currently available small molecule antivirals target a small number of specific viral 

enzymes, primarily viral polymerases and proteases (De Clercq, 2010).  Antiviral molecules 

directed against non-enzymatic targets have also demonstrated efficacy, such as the drug 

pleconaril which inhibits viral replication by binding to specific sites on the capsid of 

picornaviruses to prevent attachment and uncoating  (McKinlay et al., 1992).   

1.2.2.2. Oligonucleotide antivirals 

Oligonucleotide (ON) antivirals are a diverse class of therapeutic agents with differing 

mechanisms of action but which share the common structural feature of being composed of 

nucleic acids.  Drugs within this class have demonstrated excellent antiviral efficacy in cell 

culture, and in some cases animal models.  Thus far their clinical application in human or 

veterinary medicine has been limited however, with only fomivirsen, used for the treatment of 

cytomegalovirus retinitis, being approved for clinical use in humans (de Smet et al., 1999).  

ON-based drugs can interact with proteins and nucleic acids, and can be broadly categorised 

based on whether that interaction is by virtue of the specific nucleotide sequence of the ON, 

or due to its three-dimensional shape. 

The largest group of ON antivirals function by interacting with viral or cellular transcripts via 

Watson-Crick base pairing and, through a variety of pathways, result in transcriptional arrest 

or a degradation of the targeted genomic or messenger RNA.  Included in this group are 

antisense oligonucleotides, ribozymes, and the RNA interference (RNAi)-based mechanisms 

of short interfering RNAs (siRNAs), Dicer-substrate siRNAs (DsiRNAs), short hairpin RNAs 

(shRNAs) and short interfering DNAs (siDNAs).  Although these different technologies share 

the same underlying targeting mechanism, they have different effector mechanisms as 
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illustrated in Figure 1.1.  Of relevance to this thesis are the RNAi-based mechanisms, in 

particular synthetic siRNA mediated RNAi, discussed further below. 
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Figure 1.1: Mechanism of action of oligonucleotide antivirals interacting via Watson-Crick base pairing.  (a) Antisense and (b) phosphorodiamidate 

morpholino oligomers (PMOs) are single-stranded DNA oligomers with sequence complementary to the target mRNA.  Binding of antisense 

oligomers results in the RNase H-mediated degradation of the target.  PMOs are modified antisense reagents in which the deoxyribose ring of the 

nucleotide backbone is replaced by a morpholine ring.  The modified backbone of PMOs is unable to interact with RNase H, and hence the target 

is not degraded.  Instead PMOs work through steric hindrance of mRNA translation or processing.  (c) Ribozymes are catalytic RNAs capable of 

cleaving target RNA by virtue of their intrinsic enzymatic properties. (d) RNA interference involves the incorporation of siRNAs into RISC (RNA 

induced silencing complex).  Binding of the activated RISC to the complementary sequence results in target cleavage. 
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1.2.2.2.1. RNA interference (RNAi) 

The mechanism of RNAi was first described by Fire et al. (1998) as a highly potent gene 

silencing mechanism in the nematode Caenorhabditis elegans.  Such silencing, thought 

previously to act via the antisense mechanism of a single-stranded RNA hybridising with its 

target, was shown instead to be mediated by double-stranded RNA. Subsequent to this initial 

finding in worms it was demonstrated that the RNAi mechanism is an evolutionarily 

conserved pathway found in most eukaryotes (Cerutti and Casas-Mollano, 2006).  RNAi is 

involved in cellular gene regulation via the action of short endogenous non-coding RNAs 

known as microRNAs (miRNAs) (He and Hannon, 2004).  Additionally, in some organisms 

RNAi plays a role as an innate antiviral defence mechanism via short interfering RNAs 

(siRNAs), ≈ 21 nt RNA duplexes with characteristic 2 nt 3’ overhangs (Figure 1.2) derived 

from the cleavage of longer double-stranded RNA molecules by the cellular enzyme Dicer.  

Although the question is not completely resolved, the general consensus is that RNAi does 

not play a role in the innate antiviral defences of veterbrates.  The prevailing hypothesis is 

that the antiviral function of RNAi in vertebrates was supplanted by the interferon response 

during the course of evolution, with dsRNA recognised instead by sequence independent 

pattern recognition receptors such as TLR3 and RIG-I triggering a cascade of cellular events 

to create an antiviral state (Parameswaran et al., 2010; Sidahmed and Wilkie, 2010; Umbach 

and Cullen, 2009).  Recent results in embryonic stem cells and neonatal mice appear to 

challenge the hypothesis that RNAi plays no role in antiviral responses in vertebrates, 

however these results remain to be validated (Li et al., 2013; Maillard et al., 2013).  

Regardless of whether RNAi is an innate defence mechanism in mammals, the 

demonstration by Elbashir et al. (2001a) that this pathway could be harnessed in mammalian 

cells by the direct introduction of exogenous siRNAs triggered considerable interest in the 

therapeutic potential of RNAi. 

 

Figure 1.2: Structure of a canonical short interfering RNA (siRNA).  Upon incorporation in a 

RNA induced silencing complex (RISC) the passenger strand is cleaved.  Watson-Crick base 

paring between the guide strand in the activated RISC and its complimentary RNA target 

provides exquisite sequence specificity to this gene silencing mechanism. 
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The RNAi pathway is shown in Figure 1.3.  A key step involves the assembly of the 

multiprotein RNA-induced silencing complex (RISC) incorporating a siRNA.  In mammalian 

cells the incorporated siRNAs may be directly introduced into the cell, or they may be derived 

from Dicer mediated cleavage of endogenously expressed shRNAs or exogenously 

introduced DsiRNAs.  Activation of RISC involves the cleavage and subsequent removal of 

one of the strands of the duplex (Leuschner et al., 2006).  The preferential retention of the 

guide (or antisense) strand over the passenger (sense) strand in the activated RISC is based 

on the relative thermodynamic stability of their 5’ ends (Khvorova et al., 2003).  The activated 

RISC binds complementary RNA sequences via Watson-Crick base pairing between the 

guide strand and the target site and mediates cleavage of the target RNA.   
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Figure 1.3: Antiviral RNAi mechanism of action.  Exogenous siRNAs can be introduced 

directly into the cytoplasm.  Alternatively siRNAs can be produced endogenously via the 

cleavage action of Dicer on exogenously introduced Dicer-substrate siRNAs (DsiRNAs) or on 

endogenously expressed short hairpin RNAs (shRNA).  Irrespective of their origin, siRNAs 

are incorporated into RISC.  The passenger strand is cleaved allowing the guide strand to 

bind the target sequence.  The targeted viral RNA is subsequently cleaved by the 

endonuclease activity of RISC.  



 

10 

The potential antiviral application of sequence specific RNA cleavage afforded by RNAi was 

quickly realised.  Multiple studies have demonstrated the viability of an RNAi-based antiviral 

strategy in vitro against a range of viruses of medical and veterinary significance from 

diverse viral families including Retroviridae, Picornaviridae, Flaviviridae, Orthomyxoviridae, 

Paramyxoviridae, Herpesviridae, and Coronaviridae (Hu et al., 2002; Jun et al., 2008; 

Kahana et al., 2004; Kapadia et al., 2003; McSwiggen and Seth, 2008; Shi et al., 2011; 

Wilkes and Kania, 2009; Wu et al., 2011).  For a few viruses, such as hepatitis B virus, SARS 

coronavirus (SARS-CoV), influenza A virus, and HCV this success has been extended to in 

vivo models (Hean et al., 2010; Li et al., 2005a; Tompkins et al., 2004; Wang et al., 2005).  

Despite these early promising results, no antiviral RNAi-based therapeutic has been 

approved for clinical use.  The failure to translate the in vitro success of RNAi into a practical 

therapeutic is mostly due to difficulties associated with delivery, stability, off-target effects, 

and viral escape from inhibition, however solutions to these problems are currently being 

actively researched and determined. 

The ubiquitous presence of ribonucleases in serum and in cells rapidly results in the 

degradation of naked single- or double-stranded RNA and is a significant barrier to the use of 

synthetic siRNAs in vivo (Hong et al., 2010).  Two main approaches have been considered to 

address the problem of the short serum half-life of siRNAs.  Encapsulation of siRNAs in a 

nanoparticle delivery vehicle can provide protection by providing a physical barrier to serum 

nucleases (Buyens et al., 2008; Katas and Alpar, 2006).  Alternatively, siRNAs can be made 

intrinsically more resistant to nucleases through the use of chemical modifications to the 

base, sugar, or backbone of the RNA (Choung et al., 2006).  Unfortunately chemical 

modification of siRNAs may reduce efficacy and increase toxicity, however such reductions 

in efficacy appear to be related to the type, location, and number of modified bases, with the 

guide strand showing less tolerance to significant modifications (Bramsen et al., 2009).  

Although chemical modifications are generally thought to reduce the efficacy of the modified 

siRNA, a few studies have demonstrated an increase in potency, which in most cases relates 

to an alteration in the thermodynamic properties of the siRNA such that the guide strand is 

preferentially incorporated into the RISC (Allerson et al., 2005; Bramsen et al., 2009; Elmen 

et al., 2005). 

To be effective, siRNAs must reach their target cells and enter the cytoplasm; however 

naked unmodified siRNAs are polar and too large (approximately 13 kDa) to cross cell 

membranes (Whitehead et al., 2009).  In vitro, this problem is relatively easily overcome, 

most commonly using lipid-based transfection reagents.  For in vivo use similar approaches 

have been successful for topical applications (Li et al., 2005a), however successful systemic 

delivery of siRNAs to distant sites poses additional challenges.  Systemically delivered 

siRNA must avoid serum degradation and uptake and clearance by non-target tissues prior 
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to reaching their desired site of action (Huang et al., 2011).  Furthermore, to minimise off-

target effects it is desirable to direct siRNAs to specific target cells rather than more 

widespread uptake.  Chemical modifications, conjugation to small molecules or peptides, or 

encapsulation in nanoparticle delivery vehicles have successfully increased the half-life of 

injected siRNAs and facilitated cell entry (Geisbert et al., 2006; Shim and Kwon, 2010).  

Furthermore conjugation of the siRNAs or their delivery vehicles with antibodies (Kumar et 

al., 2008), aptamers (Zhou and Rossi, 2011), or peptides (Kim et al., 2010) has been shown 

to selectively biodistribute siRNAs to a particular cell type.  

Although RNAi can provide specific gene silencing, there is an increasing recognition that it 

is also associated with a range of off-target effects.  Three types of off-target effects are 

recognised: (1) sequence dependent regulation of non-target transcripts, (2) activation of 

immune responses, and (3) effects on microRNAs due to saturation of the RNAi machinery 

(Jackson and Linsley, 2010).  Sequence dependent off-target effects primarily occur as a 

result of partial complementarity, often but not exclusively between 5’ end of the siRNA guide 

strand and the 3’ UTR of the “off-target” transcripts (Jackson et al., 2006b; Tschuch et al., 

2008).  Given that this can occur with as little as 8 nucleotides of complementarity within the 

seed region (Tschuch et al., 2008) it is likely impossible to avoid this type of off-target effect, 

although it can be minimised by using pools of multiple siRNAs such that the concentration of 

each individual siRNA is minimised (Kittler et al., 2007) or by introducing position specific 

chemical modifications into the siRNA guide strand (Jackson et al., 2006a).  Although the 

magnitude of sequence specific off-target effects is usually less than twofold (Jackson et al., 

2006b), they may produce phenotypically relevant effects in experimental systems and in 

vivo.   

Saturation of RNAi machinery by highly expressed shRNAs has the potential to cause 

significant off-target effects by interfering with the normal processing and function of 

endogenous microRNAs (Grimm et al., 2006).  It is unclear whether this type of off-target 

effect occurs with exogenous siRNAs, as the interference in the case of highly expressed 

shRNAs is thought due to saturation of a nuclear export factor, a point upstream of the entry 

of siRNAs into the RNAi pathway (Grimm et al., 2006).  It is known that transfection of 

multiple siRNAs may antagonise each other, suggesting competition between the siRNA 

species for the RNAi machinery (Bitko et al., 2005), however there is conflicting data as to 

whether this competition has a significant effect on endogenous microRNA function (John et 

al., 2007; Khan et al., 2009).  

The presence of dsRNA within mammalian cells is considered a hallmark of viral infection 

(Jacobs and Langland, 1996), and consequently the immune system has evolved a complex 

network of intrinsic mechanisms to detect and respond the presence of foreign RNA 



 

12 

(Koyama et al., 2008).  Activation of endosomal (TLR3, 7, 8) or cytoplasmic (PKR, RIG-I, 

MDA-5) innate immune sensors by foreign double- or single-stranded RNA triggers a cellular 

signalling cascade resulting in the production of cytokines that mediate acute inflammatory 

and antiviral responses (Koyama et al., 2008).  Early studies utilising synthetic siRNAs in 

mammalian cells suggested these short RNA duplexes were non-immunostimulatory 

(Elbashir et al., 2001a) as they were shorter than the 30 nucleotides thought needed to 

stimulate an interferon response (Manche et al., 1992; Minks et al., 1979).  It is now clear 

however that siRNAs are able to activate the innate immune response in both a sequence 

specific (Judge et al., 2005) and a non-sequence specific manner (Marques et al., 2006).  

Furthermore it has been demonstrated that the choice of siRNA delivery system can 

influence the degree of immunostimulation (Judge et al., 2005), with systems that require 

endosomal processing, such as liposomes, potentially triggering enhanced immune 

responses due to activation of TLRs (Sioud, 2005). 

Several strategies have been devised to abrogate immunological off-target effects.  Chemical 

modifications to the siRNA can reduce structurally mediated immune system activation 

(Sioud and Furset, 2006), however as with chemical modifications to address other off-target 

effects, these have the ability to significantly reduce siRNA potency.  Reducing sequence-

dependent immunostimulation can be achieved by designing siRNAs that do not include 

specifically identified immunostimulatory motifs (Hornung et al., 2005; Judge et al., 2005) or 

by chemical modification of the siRNAs (Hornung et al., 2005; Kariko et al., 2005).  Whilst 

stimulation of the innate immune response has the capacity to complicate the interpretation 

of experimental data (Robbins et al., 2008), and may cause deleterious toxic effects for many 

in vivo gene silencing applications, this “off-target” effect may actually be beneficial for 

antiviral RNAi in vivo where the induction of an interferon response may enhance viral 

clearance and hence the therapeutic effect of the treatment (Gantier et al., 2010; Stewart et 

al., 2011). 

Of specific concern to the antiviral application of RNAi is the emergence of viral resistance 

during treatment.  Whilst this is a concern with any antiviral regimen, the exquisite sequence 

specificity of RNAi means that a single nucleotide mutation in the seed region of the target 

site can dramatically reduce the efficacy of RNAi-based viral inhibition by impairing base 

pairing between the guide strand and its target (Boden et al., 2003; Gitlin et al., 2005).  An 

analogous problem is encountered in designing siRNAs against highly divergent viruses that 

exist as multiple circulating strains.  Targeting highly conserved regions of the viral genome 

may help to reduce the chance of viral escape mutants developing, as mutations in these 

structurally or functionally constrained regions are more likely to compromise viral function 

and thus be deleterious.  Unfortunately, mutations at sites distant to the target may allow for 

viral escape by altering the secondary or tertiary structure of viral RNA in such a way as to 
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sterically hinder RISC access (Berkhout et al., 2005).  Alternatively, a mutation in a viral 

promoter or enhancer element distant from the target site may also allow for viral escape if 

such a mutation results in increased transcription of the siRNA target which can overwhelm 

the RNAi machinery (Schaffer et al., 2008).  Combinatorial therapy with two or more siRNAs 

targeting distinct sites can minimise the chance of escape mutants by increasing the size of 

the evolutionary leap required for the resistant phenotype (Liu et al., 2009b; Schubert et al., 

2005).  As with traditional small molecule antivirals, an alternative approach to minimise the 

development of resistance is to target more genetically stable cellular genes encoding factors 

essential for viral replication (Novina et al., 2002; Zhang et al., 2004), however this approach 

has an increased potential for host related toxicity. 

Despite these substantial challenges to the in vivo application of antiviral siRNA therapeutics, 

they do offer a number of advantages over conventional small molecule drugs.  Theoretically 

at least, the specificity of RNAi allows for the specific knockdown of viral genes without 

affecting cellular genes and without the cellular toxicity that is often associated with 

traditional small molecule antivirals.  The ease and speed of design is a considerable 

advantage of RNAi-based antiviral approaches. Effective siRNAs can be designed with no 

more information than a viral sequence, which with the advent of advanced sequencing 

methodologies is becoming less expensive and simpler (Seto, 2010), particularly when 

contrasted to the degree of structural, biological, and chemical knowledge required for the 

rational design of small molecule antivirals (see Section 1.2.3.1).  For this reason RNAi-

based antivirals may be particularly useful in treating emerging and less well studied viruses.  

The number of potential targets is also significantly greater for RNAi-based drugs compared 

to small molecule antivirals.  Targets for traditional antivirals are primarily limited to the 

functional domains of viral, and to a lesser extent cellular proteins.  In contrast, as RNAi-

based antivirals target only short regions of viral RNA, there are many potential targets, 

including non-coding regions, even in viruses with the smallest of genomes. 

1.2.3. Antiviral drug development 

The process of antiviral drug discovery consists of a number of sequential phases as shown 

in Figure 1.4 (Kramer et al., 2007).  The initial preclinical stage begins with the process of 

identifying “hit” compounds that demonstrate antiviral effects in in vitro screening assays.  

Initial hits are validated (the so called “hits to leads” stage), before suitable lead compounds 

are further optimised and developed to improve their efficacy, safety profile, and 

pharmacokinetics.  Suitable candidates that emerge from this process can enter the clinical 

development stage to assess safety and efficacy in the target species.  This process is both 

expensive and time consuming, with the estimated cost of developing a new molecular entity 

for humans, from initial screening through clinical trials to final market approval being 
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approximately US $1.8 billion and taking 13.5 years (Paul et al., 2010).  Whilst no similar 

figures are available for the development of veterinary therapeutics, it is likely that the costs 

and time involved, although considerably lower, would be nonetheless substantial.  Given the 

high cost of the drug discovery process, particularly as it relates to the clinical development 

phases, an attractive alternate strategy is drug repurposing, that is the development of novel 

uses for existing drugs.  In addition to the obvious cost savings, identifying efficacious lead 

compounds with known pharmacokinetic and toxicity profiles, particularly drugs with a well-

established safety profile in the field, can shorten the drug development time, giving greater 

potential for improved health outcomes in veterinary and human medicine.  This is 

particularly important when dealing with a viral diseases for which there are no alternate 

therapies. 

 

 

Figure 1.4: Outline of drug discovery testing scheme.  Reprinted by permission from 

Macmillan Publishers Ltd: Nature Reviews: Drug discovery, (Kramer et al., 2007), copyright 

2007.  

1.2.3.1. Empirical or rational antiviral drug development 

There are two general approaches to the development of drugs: empirical screening or 

rational, or targeted drug design (Adam, 2011).  These approaches are not mutually 

exclusive and are in many cases complementary.  The empirical approach is an unbiased 

one, making no assumptions and requiring no prior knowledge of molecular targets or the 

mechanism of action of potential lead compounds.  Historically, antiviral drug discovery was 
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based on the empirical screening approach, from which emerged drugs that are still in 

clinical use today (Bauer, 1985).  In contrast, rational drug design is a directed process to 

identify drugs interacting with a specific molecular target.  Inherent in this definition is a 

requirement for an in depth knowledge of the viral replication cycle, the structure and function 

of specific viral proteins, and their interactions with host cell factors to enable identification of 

an appropriate target.  This process has resulted in the development of a number of 

important antiviral molecules, including HIV protease inhibitors (Wlodawer and Vondrasek, 

1998) and influenza virus neuraminidase inhibitors (von Itzstein, 2007).  These rational 

design success stories target two of the most intensively studied human viruses.  Clearly, our 

current level of knowledge for most companion animal viruses is vastly lower than that for 

HIV and influenza.  Given this, and the complexities of the rational design process, the use of 

this methodology may be prohibitively costly for the comparatively modest funding available 

for companion animal antiviral research. 

1.2.3.2. Antiviral drug screening 

Irrespective of the drug development paradigm involved, an antiviral screening system of 

some type is required to assess efficacy in a specific context.  The different assay formats 

utilised in antiviral screening can be broadly grouped into target based biochemical or in 

silico assays, and cell-based assays.  

Biochemical assays are a more reductionist approach and require the identification, isolation, 

and purification of a suitable viral target, and thus, almost by definition can only be used as 

part of a rational drug design program.  This approach requires considerable background 

knowledge of the viral replication cycle to identify a suitable target, in addition to advanced 

molecular biology techniques to produce sufficient quantities of pure, stable, and 

enzymatically active protein for screening.  Biochemical-based screening allows for an 

uncomplicated assessment of the interaction between a drug and a target protein, resulting 

in assays that are highly reproducible and amenable to miniaturisation and automation.  The 

downside of the reductionist approach is that biochemical efficacy may not translate into 

efficacy in a cell model or in vivo due to problems associated with membrane permeability, 

cytotoxicity, and the requirement for cellular cofactors (An and Tolliday, 2010).  An alternative 

or adjunct to biochemical screening in the rational drug design process is the in silico 

approach of ligand-based or receptor-based virtual screening (Sousa et al., 2010).  

Advances in computational power now make it possible to virtually screen antiviral targets 

against molecular libraries containing millions of compounds.  This process can identify likely 

lead candidates for subsequent biochemical or cell-based screens, thus reducing the cost 

and time involved in the random screening approach.  In addition the in silico approach, 

using appropriate models, can be used to predict pharmacokinetic and toxicological 



 

16 

properties of candidate drugs, allowing unsuitable leads to be eliminated and thus minimise 

an important cause of potentially costly late stage drug failure (van de Waterbeemd and 

Gifford, 2003). 

Cell-based screening, whilst still several steps removed from the complexities of in vivo 

studies, provides a more physiologically relevant model for assessing antiviral molecules.  A 

significant benefit of cell-based antiviral screens is that a precise knowledge of mechanism of 

inhibition is not needed, as is exemplified in the case of the anti-influenza drug amantadine, 

for which the antiviral mechanism of action was elucidated almost 30 years after its discovery 

and following many years of clinical use (Davies et al., 1964; Pinto et al., 1992).  Cell-based 

approaches are therefore suitable for less well studied viruses, a group which includes most 

of the viruses affecting companion animals, in addition to newly emerged human pathogens. 

Additional advantages of cell-based assays are the ability to screen for compounds affecting 

all stages of the replication cycle and the facility to gather concurrent data regarding the 

cytotoxicity of tested compounds. 

The choice of assay system for a cell-based antiviral screen is in large part dependent on the 

nature of the virus.  For viruses that induce cytopathic effect (CPE), the simplest 

determination of antiviral activity in cell culture is protection from virus induced CPE.  

Assessment of protection from CPE can be based on a simple qualitative morphological 

assessment of cell monolayers or can be a quantitative measure such as cell number, 

plaque number reduction, or cell viability / cytotoxicity measurements (Green et al., 2008).  

This latter approach, utilising a variety of different assay formats is the most commonly used 

due to its sensitivity, relative simplicity, and its suitability for medium to high throughput 

screening.  Additionally, these assays are generally based on a gain-of-signal endpoint which 

can help to minimise false positive hits caused by toxic compounds, an important factor to 

consider when screening large numbers of compounds with limited replicates (Green et al., 

2008).  Alternative readouts of efficacy, which can also be used for non-cytopathic viruses, 

include quantification of infected cells using antiviral antibodies (Shum et al., 2010) or 

reporter viruses / cell lines (Li et al., 2009; White et al., 2007), or the measurement of viral 

genetic material or viral enzyme activity (Tanabe and Yamamoto, 2001).  For viruses that do 

not grow in culture, a surrogate virus (Buckwold et al., 2003), pseudotyped virus (Larson et 

al., 2008), or a replicon system (Horscroft et al., 2005) may be used for screening.  These 

approaches can also be used to alleviate biosecurity concerns when performing antiviral 

screening for highly pathogenic viruses that would ordinarily require PC3 or PC4 containment 

(Talekar et al., 2012). 
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1.3. FELINE CORONAVIRUS 

“A peculiar entity with a definite predilection for cats is chronic fibrinous 

peritonitis, in which the fibrin deposited on the abdominal organs, especially 

the liver and the spleen, gradually organises into a tough, pale fibrous coating.  

The liver and spleen may become contracted into barely recognisable forms.  

Clinical signs are persistent fever, gradual loss of weight and appetite, and 

enlarging of the abdomen with a more or less clear fluid.  The condition is 

seen most often, but not invariably in young cats, often several in a household 

or cattery. Respiratory infections and lavish dosing with various antibiotics 

appear in many of the histories.  To date no causative organism has been 

isolated or any effective treatment found.”  (Holzworth, 1963) 

The above quote, taken in entirety from a paper entitled “Some important disorders of cats” is 

the first recorded reference to feline infectious peritonitis (FIP), an invariably fatal immune 

mediated disease.  Unknown at the time, this condition is triggered by infection with virulent, 

mutant forms of feline coronavirus (FCoV), an extremely common viral infection of cats.  True 

to the title of this initial paper, FIP is arguably one of the most important diseases of both 

domestic and wild felids, and is a common cause of infectious disease mortality in pet cats 

(Rohrbach et al., 2001).  Since its first description as a ‘peculiar entity’ almost 50 years ago, 

considerable research effort has gone into understanding this unique disease and its 

causative virus, and yet despite significant advances, FIP remains somewhat of an enigma, 

thus far eluding any satisfying unifying description of its pathogenesis (Kipar and Meli, 2014).  

Perhaps more importantly, treatment options for this devastating disease remain extremely 

limited, and in most cases are at best palliative (Hartmann and Ritz, 2008).  The 

development of effective antiviral therapeutic against FCoV may provide hope in treating this 

devastating disease. 

1.3.1. Virology of feline coronavirus 

1.3.1.1. Taxonomy – groups, serotypes, and biotypes 

The family Coronaviridae includes a number of important human and veterinary pathogens.  

A recent taxonomic reorganisation of this family has placed feline coronavirus, along with 

canine coronavirus, porcine respiratory coronavirus, and porcine transmissible gastroenteritis 

virus, in the species Alphacoronavirus 1, the type species of the genus Alphacoronavirus, 

subfamily Coronavirinae, family Coronaviridae, order Nidovirales (see Table 1.1) (de Groot et 

al., 2012).  The grouping of these coronaviruses with disparate hosts into a single species is 

based upon analysis showing greater than 96% amino acid sequence homology in 
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conserved regions of replicase polyprotein 1ab, a value significantly higher than the species 

demarcation threshold of 90% (Carstens and Ball, 2009).   

Table 1.1: Coronaviridae taxonomy adapted from the Ninth Report of the International 

Committee on Taxonomy of Viruses (de Groot et al., 2012). * indicates type species.  

Taxonomy of the order Nidovirales 
• Family Arteriviridae 

• Family Roniviridae 

• Family Coronaviridae 

o Subfamily Torovirinae 

o Subfamily Coronavirinae 

 Genus Alphacoronavirus 

• Alphacoronavirus 1 * 

o Feline coronavirus, canine coronavirus, porcine 

transmissible gastroenteritis virus  

• Porcine epidemic diarrhoea virus 

• Human coronavirus 229E 

• Human coronavirus NL63 

 Genus Betacoronavirus  

• Betacoronavirus 1 

• Severe acute respiratory syndrome associated coronavirus (SARS-

 • Human coronavirus OC43 

• Murine coronavirus * 

 Genus Gammacoronavirus 

• Avian coronavirus *  

• Beluga whale coronavirus 

 

1.3.1.1.1. FCoV serotypes 

Feline coronaviruses cluster in two distinct serotypes (type I and type II) distinguished on the 

basis of virus neutralisation assays with type-specific sera (Pedersen et al., 1984) or spike 

protein monoclonal antibodies (Hohdatsu et al., 1991b), or on sequence analysis of the spike 

protein open reading frame (ORF) (Herrewegh et al., 1998).  The two serotypes differ in their 

origin and relation to canine coronavirus (CCoV), in vitro growth characteristics, and natural 

distribution (see Table 1.2).  Type I FCoV is considered a wholly feline virus, while type II 

FCoV most likely arose through a double recombination event between type I FCoV and 

CCoV (Herrewegh et al., 1998).  Because of this, type II FCoV are neutralised by CCoV 
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specific antibodies, while type I FCoV are not neutralised, or poorly neutralised by CCoV 

antibodies (Pedersen, 1995). 

The serotypes differ markedly in their in vitro growth characteristics (Pedersen et al., 1984). 

Type I FCoVs grow poorly in cell culture and produce a slowly developing cytopathic effect, 

while type II FCoVs grow well in culture and show a pronounced cytopathic effect (Pedersen, 

1995).  The difference in in vitro growth characteristics has been shown, at least in part, to be 

due to differences in receptor utilisation (see 1.3.1.4.1) (Dye et al., 2007; Regan and 

Whittaker, 2008; Tekes et al., 2010; Van Hamme et al., 2011).   

The worldwide distribution of type I versus type II FCoV has been shown to vary, however in 

all reported studies type I FCoV is clearly the most prevalent (Addie et al., 2003b; Benetka et 

al., 2004; Hohdatsu et al., 1992; Kummrow et al., 2005).  Despite this, type II viruses are the 

more intensively studied due primarily to the ease with which they can be cultured. 

Table 1.2: Comparison of type I and type II feline coronavirus (FCoV).  

 Serotype I Serotype II 

Origin Feline virus Recombinant FCoV/CCoV  

Neutralisation by CCoV 
antibodies 

No / poor neutralisation Neutralise to high titres 

Cellular receptor(s) fDC-SIGN (CD209), ? fAPN (CD13), fDC-SIGN, ? 

Growth in cell culture Poor Good 

Optimal cell line  Fcwf-4 CRFK 

CPE in cell culture Slowly developing CPE Marked CPE (24-38 hours) 

Worldwide prevalence  High Low 

Isolated from cases of FIP Yes Yes 

Examples isolates UCD1 
Black 

FIPV-1146 
FECV-1683 

 

1.3.1.1.2. FCoV biotypes 

In addition to the two serotypes, two biotypes or pathotypes of FCoV have been 

demonstrated.  These biotypes are referred to as feline enteric coronavirus (FECV) and 

feline infectious peritonitis virus (FIPV). Infection with FECV typically results in subclinical or 

mild enteritis (Addie and Jarrett, 1992b; Hickman et al., 1995; Mochizuki et al., 1999; 

Pedersen et al., 1981).  In contrast, infection with FIPV biotypes is associated with significant 

disease, which for the more virulent strains, such as FIPV WSU 79-1146 (FIPV1146), is 

invariably fatal (Pedersen, 2009). A number of studies have confirmed both type I and II 

FCoVs can cause FIP as well as mild or inapparent enteric infections (Benetka et al., 2004; 
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Hohdatsu et al., 1992).  The clear in vivo difference in the behaviour of the biotypes is 

mirrored in in vitro studies in primary feline monocytes and macrophages where FECV 

strains demonstrate a reduced ability to infect and replicate (Dewerchin et al., 2005; Stoddart 

and Scott, 1989).  The difference in in vitro properties of the biotypes is not seen in 

continuous cell lines, where the growth characteristics of the biotypes are similar (Dewerchin 

et al., 2005; McKeirnan et al., 1987). 

Two alternative hypotheses have been proposed to explain the origin of virulent biotypes and 

hence the development of FIP – the internal mutation hypothesis and the circulating virulent / 

avirulent hypothesis.  The internal mutation hypothesis is the more widely accepted and 

supported, and postulates that virulent viruses arise within an infected cat during the 

replication of avirulent biotypes (Chang et al., 2011; Pedersen et al., 2009; Poland et al., 

1996; Vennema et al., 1998).  It is posited that mutations arise during the error prone 

replication of FCoV that enhance its macrophage tropism, resulting in the FIPV biotype, and 

that the manifestation of FIP is dependent upon the subsequent immune response to the 

increased replication of the macrophage tropic virus (Groot-Mijnes et al., 2005).  If true, an 

obvious corollary of the internal mutation theory is that virulent coronaviruses isolated from 

individual cats with FIP should be unique, a feature challenged by the alternative hypothesis 

of circulating virulent / avirulent strains proposed by Brown et al. (2009).  This alternative 

hypothesis was based on phylogenetic analysis of FCoVs from 46 healthy cats and 8 cats 

with FIP in a small geographically localised study that showed viral sequences clustered by 

disease state, with viruses from healthy cats distinct from those from cats with FIP.  

Subsequent studies from different locales, and which included a greater number of FIPV 

sequences, have failed to show similar clustering by biotype (Chang et al., 2011; Pedersen 

et al., 2012). 

A number of different mutations have been suggested as being responsible for the 

acquisition of virulence.  Mutations in the spike gene (Rottier et al., 2005) or the accessory 

genes 3c (Chang et al., 2010; Pedersen et al., 2009; Vennema et al., 1998), 7a (Kennedy et 

al., 2001), and 7b (Vennema et al., 1998) have all been suggested.  Loss of function 

mutations in the 3c gene are found in a majority, but not all FIPVs suggesting its role as a 

contributor to or alternatively as a marker of virulence (Chang et al., 2010; Pedersen et al., 

2012).  Loss of function mutations in the 3abc ORF have been demonstrated to result in 

enhanced replication in primary feline monocytes, suggesting it is more likely to be the 

former (Bálint et al., 2012).  More recent studies by this group examined the in vivo effects of 

loss of function mutations in ORF 3abc and showed that restoration of an intact 3abc ORF in 

FIPV DF-2 (a virulent type II FCoV) through targeted recombination is associated with in vivo 

biological behaviour similar to that of a FECV, with an attenuated clinical phenotype, 

absence of viraemia, and high titre faecal shedding (Bálint et al., 2014).  Recently, it has also 
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been reported that mutations in the spike ORF are frequently identified in FCoV isolates from 

cats with FIP (Chang et al., 2012; Licitra et al., 2013).  These findings may account for the 

enhanced macrophage tropism and support the earlier results of Rottier et al. (2005) which 

demonstrated, using a chimeric viruses, that enhanced macrophage replication in vitro is 

associated with mutations in the spike protein.  From these combined results it appears likely 

that multiple mutations may be involved in the acquisition of the FIPV biotype.  If multiple 

mutations are required, this may provide an explanation for the discrepancies previously 

reported between the internal mutation hypothesis and the circulating virulent / avirulent 

hypothesis (O'Brien et al., 2012).  The result of Brown et al. (2009), interpreted in a different 

light, would support the hypothesis that some circulating strains may be more prone to 

mutations or be closer to acquiring the critical mutations required for the FECV to FIPV 

transition.  A modified version of the circulating virulent / avirulent hypothesis may therefore 

be compatible with the internal mutation hypothesis, and the weight of data that support it. 

1.3.1.2. Coronavirus structure and morphology 

Morphologically, coronaviruses are enveloped, spherical or pleomorphic in shape, between 

80-120 nm in size, with a helical nucleocapsid (Masters, 2006).  Projecting from the surface 

of the virion are large (approximately 20 nm) club shaped peplomers responsible for its 

characteristic “crown-like” appearance in electron micrographs (Neuman et al., 2006), and 

from which they derive their name (de Groot et al., 2012).  Coronaviruses have a monopartite 

linear positive-sense single-stranded RNA genome that encodes four major structural 

proteins, S, M, E, and N, in addition to a number of non-structural proteins (Masters, 2006). 

1.3.1.2.1. Non-structural proteins 

1.3.1.2.1.1. Replicase protein 

Translation of the replicase gene is the initial step in viral replication.  In common with other 

coronaviruses (and all known members of the order Nidovirales) the replicase gene of FCoV 

consists of two large ORFs (1a and 1b) which overlap, and which contain a ribosomal 

frameshift element consisting of a “slippery” sequence and an adjacent downstream 

pseudoknot structure (Brierley, 1995; Dye and Siddell, 2005, 2007).  The ribosomal 

frameshifting element results in a proportion of the ribosomes translating ORF1a to shift into 

the -1 reading frame, resulting in a failure of protein synthesis to terminate at the ORF1a stop 

codon.  Continued translation beyond the ORF1a stop codon results in the production of the 

large pp1ab replicase polyprotein, in addition to the smaller pp1a polyprotein produced 

without the frameshift.  Extensive post translational proteolytic processing of pp1a/ab by 

three autoproteinases encoded by ORF1a result in a predicted 16 mature non-structural 

proteins (Figure 1.5) (Dye and Siddell, 2005, 2007; Tekes et al., 2008; Ziebuhr and Snijder, 

2007).   
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1.3.1.2.1.2. Accessory proteins 

The number and configuration of the coronavirus accessory protein ORFs is highly variable 

among the genera (Masters, 2006).  FCoV encodes for five accessory proteins  – 3abc and 

7ab in two clusters (Dye and Siddell, 2005).  The FCoV accessory protein genes have been 

demonstrated to be non-essential in vitro (Haijema et al., 2003; Haijema et al., 2004), as is 

the case for all other examined coronaviruses (Masters, 2006).  The role of the FCoV 

accessory proteins remains to be determined.  An intact 3c gene appears important for 

intestinal but not systemic replication, however the mechanism through which it acts is 

unclear (Chang et al., 2010; Pedersen et al., 2012).  It has been suggested that mutations in 

the accessory genes is associated with increased virulence however complete deletion of the 

3abc and 7ab gene clusters resulted in an attenuated phenotype in vivo (Haijema et al., 

2004).   

1.3.1.2.2. Structural proteins 

1.3.1.2.2.1. Spike protein (S) 

The spike protein, a class 1 fusion protein with a large ectodomain and a small endodomain, 

is the largest coronavirus structural protein (Dye and Siddell, 2005).  Heavily glycosylated 

spike protein monomers combine to form a mature homotrimers, which protrude from the 

surface of the viral envelope to form the distinctive petal shaped peplomers (Masters, 2006).  

The coronavirus S protein is divided into two domains, S1 and S2.  S1 comprises the amino 

terminal globular head at the tip of the peplomer and is responsible for cellular attachment 

and therefore cell tropism.  Supporting this is data showing murine, but not feline cells are 

permissive to recombinant FCoV bearing the S protein ectodomain of mouse hepatitis virus 

(MHV) (Haijema et al., 2003).  The S2 subunit includes the stalk of the peplomer, in addition 

to the transmembrane and endodomains.  A fusion peptide located on S2 mediates and 

virus-cell and cell-cell fusion (Wentworth and Holmes, 2007).  The peplomers present 

important humoral (Gonon et al., 1999) and cell mediated antigenic determinants (Groot-

Mijnes et al., 2005) involved in viral clearance. 

1.3.1.2.2.2. Envelope protein (E) 

The E protein is the smallest and least abundant of the coronavirus structural proteins 

(Masters, 2006).  For several coronaviruses this protein has been shown to form ion 

channels (viroporins) in cell membranes (Wilson et al., 2006a).  The envelope protein 

mediates viral assembly and morphogenesis, although the mechanism through which it 

achieves this is unclear (Fischer et al., 1998; Vennema et al., 1996; Ye and Hogue, 2007).  

The E protein is poorly conserved across coronavirus genera (Masters, 2006).   
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1.3.1.2.2.3. Membrane protein (M) 

The M protein is the most abundant viral protein and is thought to play the primary role in 

virion assembly through both homotypic and heterotypic interactions (de Haan et al., 2000; 

Masters, 2006).  It is a multispanning integral membrane protein, with a small amino-

terminus ectodomain located on the outside of the virion, three transmembrane domains, and 

a large endodomain in the interior of the virion.  The M protein is moderately well conserved 

among coronaviruses, with the most highly conserved region being a stretch of 

approximately 25 aa comprising the end of the third transmembrane domain and the start of 

the endodomain (Masters, 2006).  The amino terminal ectodomain expressed on the virion 

surface is the least conserved region (Lai and Cavanagh, 1997; Masters, 2006), likely owing 

to increased selection pressure from host immune responses. 

1.3.1.2.2.4. Nucleocapsid protein (N) 

The N protein is a multifunctional protein that has both structural and non-structural roles.  As 

a structural element, the N protein binds to the single-stranded RNA genome, in both a 

sequence-specific and non-specific manner (Cologna et al., 2000), to form a helical 

nucleocapsid, that is packaged to form an infectious virion in a process mediated by 

interactions with the M protein (Narayanan et al., 2000).  Additional to this structural role, 

there is considerable evidence that the N protein serves functions in viral replication, 

transcription, and translation.  A proportion of the N protein co-localises with the membrane 

bound replication-transcription complexes (RTCs) in the early stages of infection, supporting 

the idea of its role in RNA replication (Denison et al., 1999).  It has been demonstrated using 

TGEV replicons that the presence of the nucleocapsid protein is required for efficient 

coronavirus replication (Almazan et al., 2004), and using anti-nucleocapsid antibodies it was 

demonstrated that synthesis of genome sized RNA was decreased by greater than 90% 

using an in vitro MHV replication system (Compton et al., 1987).  Although the N protein has 

a significant effect on the viral replication and transcription, the concentration of free 

nucleocapsid proteins in MHV infected cells is relatively high, suggesting it is unlikely to be a 

rate-limiting factor for RNA synthesis (Perlman et al., 1986).  The overall N protein homology 

between coronavirus groups is low however there are stretches of high amino acid homology 

within the N protein, suggesting the presence of structurally or functionally constrained 

elements (Lapps et al., 1987). 

1.3.1.3. Genome 

At 27.3 to 31.3 kb in size, the coronavirus genome is the largest RNA genome yet identified, 

being approximately 3 to 4 times larger than other typical RNA viruses (Masters, 2006).  This 

increased coding capacity has enabled the evolution of considerable genomic complexity 

within the coronaviruses.  The genome of FCoV is approximately 29 kb in size (Dye and 
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Siddell, 2005, 2007), and in common with all other coronaviruses the genome contains 

multiple ORFs as depicted in Figure 1.5.  The replicase gene, at over 20 kb, consists of two 

ORFs (ORF1a and ORF1b), and occupies the proximal two-thirds of the 5’ end of the 

genome.  The remaining structural and accessory genes are located in the 3’ one-third.  As 

with all other known coronaviruses, the spatial organisation of the FCoV genome shows the 

four canonical structural genes are fixed in the order S,E, M, and N (de Groot et al., 2012).  

Located between the structural genes are the genes encoding the accessory proteins – 3abc 

located between S and E, and 7ab located at the 3’ most end of the genome downstream 

from N ORF.  FCoV possesses a 5’ untranslated region (UTR) of approximately 300 nt, and 

a 3’ UTR of a similar size, followed by a poly(A) tail.  Both the 5’ and 3’ UTRs contain 

putative cis-acting structures (Dye and Siddell, 2005).  The 5’ UTR contains the leader 

sequence, a 92 nt sequence that is important for viral transcription and translation (Dye and 

Siddell, 2005).  Immediately downstream of the leader sequence is the transcription-

regulatory sequence (TRS) [5’-CUAAAC-3’] (De Groot et al., 1988; Dye and Siddell, 2005), 

sometimes referred to as the intergenic sequence.  Identical “body” TRS motifs are located at 

the 5’ end of most ORFs (Dye and Siddell, 2005), and are responsible for determining the 

fusion sites of the 5’-leader and  3’-body segments during the discontinuous transcription 

process (Sawicki et al., 2007) . 
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Figure 1.5: Feline coronavirus genome.  Schematic of FCoV genome (a) and predicted 

cleavage map of FCoV replicase polyproteins (b) according to Dye and Siddell (2005).  

Proteolytic processing of replicase polyprotein 1a (pp1a) gives rise to non-structural proteins 

(nsp) 1 to 11 while processing of replicase polyprotein 1ab (pp1ab) produced by ribosomal 

frameshifting gives rise to nsp 1 to 10 and nsp 12 to 16.  Putative functions have been 

ascribed to a number of the nsp which are listed in the figure.  E, envelope; M, membrane; N, 

nucleocapsid; PLpro, papin-like proteinase; ADRP, ADP-ribose 1”-phosphatase; 3CLpro, 3C-

like proteinase;  ssRNA, single-stranded RNA; RdRp, RNA-dependent RNA polymerase; 

HEL, helicase; ExoN, exonuclease; EndN, endonuclease; MT, 2’-O-methyltransferase.  

Like all RNA viruses, coronaviruses are prone to high mutation rates due to the inherent low 

fidelity of the RNA dependent RNA polymerase (Domingo et al., 1996; Holland et al., 1982).  

Unlike other known RNA viruses however, coronavirus nsp14 likely functions with a 

proofreading mechanism that can regulate replication fidelity (Denison et al., 2011; Minskaia 

et al., 2006).  It is speculated that this improved fidelity may have allowed for the evolution of 

the exceptionally large coronavirus genome (Holmes, 2009).  In addition to deletions and 

mutations contributing to genetic diversity, homologous recombination occurs frequently in 

coronaviruses (Lai, 1996) and has been demonstrated in FCoV (Herrewegh et al., 1998).  

The resulting high levels of genetic diversity result in a heterogeneous population of viruses, 

a feature which has been demonstrated for FCoV in vitro and in vivo (Gunn-Moore et al., 

1999; Kiss et al., 1999).  The quasispecies nature of FCoV replication is thought to have 

important implications for viral persistence and pathogenesis, as the resultant swarm of 

mutant viruses provides a large reservoir of potentially advantageous phenotypes in the face 

of external change, including the development of resistance to antiviral therapeutics (Lauring 

and Andino, 2010).  The error prone replication of FCoV also increases the likelihood of 

virulent macrophage tropic mutants arising, and thus the occurrence of FIP. 
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1.3.1.4. FCoV life cycle 

1.3.1.4.1. Attachment and entry 

Details of interactions between FCoV and host cells are only partly understood and differ 

between serotype I and II viruses.  In vitro studies have identified two potential receptors 

involved in FCoV attachment and entry, although it is clear from these results that additional 

factors are involved.  The first receptor identified, feline aminopeptidase N (fAPN) [CD13] 

(Tresnan et al., 1996), is a glycoprotein expressed on the surface of numerous cell types, 

including granulocytic and monocytic haematopoetic cells and epithelial cells of the intestinal 

brush border, and highly expressed on the commonly used CRFK cell line (Van Hamme et 

al., 2011).  Using immortalised cell lines and primary feline monocytes/dendritic cells fAPN 

has been demonstrated to act as a receptor for serotype II viruses but not type I viruses (Dye 

et al., 2007; Hohdatsu et al., 1998; Regan and Whittaker, 2008; Tekes et al., 2010; Van 

Hamme et al., 2011).  The second identified receptor, feline dendritic cell specific intracellular 

adhesion molecule grabbing non-integrin (fDC-SIGN) [CD209] (Regan et al., 2010; Regan 

and Whittaker, 2008; Van Hamme et al., 2011), is involved in viral entry for both type I and II 

viruses (Regan et al., 2010; Van Hamme et al., 2011), but for type I FCoV it is thought to be 

involved in the replication cycle at a point after virus binding (Van Hamme et al., 2011).  

Following receptor binding, cell entry for both type I and II FCoVs in primary monocyte 

cultures occurs via endocytosis (Van Hamme et al., 2007).  Using the serotype II FCoV 

FIPV1146, this receptor mediated endocytic pathway was shown to be dependent on 

dynamin, but independent of both caveolae and clathrin  (Van Hamme et al., 2008).   

In addition to these classical mechanisms of cell entry, FCoV can also enter monocytes / 

macrophages via Fc receptor mediated uptake (Hohdatsu et al., 1991a).  This process, 

known as antibody-dependent enhancement (ADE) of infection occurs following opsonisation 

of viral particles by non-neutralising antibodies directed towards the S or M proteins (Corapi 

et al., 1995; Hohdatsu et al., 1991a).  ADE has been documented to occur in vitro (Olsen et 

al., 1992; Takano et al., 2008a) and experimentally in vivo (Scott et al., 1995; Takano et al., 

2008b; Weiss and Scott, 1981b), however its occurrence in natural infections has been 

questioned (Addie et al., 2003b; Addie et al., 1995b).   

1.3.1.4.2. Viral RNA synthesis  

The coronavirus genome performs a dual role, functioning as a mRNA for the translation of 

viral replicative proteins and as a template for genomic and mRNA synthesis.  RNA synthesis 

takes place in double membrane vesicles via the action of virally induced replication-

transcription complexes (RTCs) (Gosert et al., 2002).  Non-structural proteins (nsp) produced 

by cleavage of the large polyproteins 1a/1ab, viral nucleocapsid protein, and viral RNA have 

been demonstrated to co-localise in RTCs (van der Meer et al., 1999).   
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Coronavirus transcription produces a set of mRNAs that have a common 3’ end followed by 

a poly(A) tail, a defining feature of viruses in the order Nidovirales (de Groot et al., 2012).  

FCoV produces a set of seven mRNAs which by convention are named mRNA1 to 7 in order 

of decreasing size, as shown in Figure 1.6 (Dye and Siddell, 2005).  mRNA1 is a full length 

genome transcript, while the remainder are subgenomic in size.  The mRNA species are 

produced in different quantities throughout the course of infection, however their molar ratio 

remains constant, with a relative abundance that is in general inversely proportional to their 

length (Van Marle et al., 1995). All coronavirus mRNAs, in addition to 3’ nesting, also contain 

an identical 5’ leader sequence derived from the 5’ end of the genome.  To achieve this, 

coronaviruses possess a unique discontinuous transcription mechanism.  It was initially 

hypothesised that discontinuous transcription was a leader-primed mechanism that occurred 

during positive-sense RNA transcription (Lai, 1986).  There is now a general, although not 

unanimous, consensus that the discontinuous transcription takes place during the synthesis 

of subgenomic negative-sense intermediates (Sawicki et al., 2007).  In this model, proposed 

by Sawicki and Sawicki (1995), transcription of the negative-sense strand begins at the 3’ 

end of the positive-sense genome template and progresses until a body TRS is encountered.  

Through mechanisms unknown, a fixed proportion of RTCs suspend transcription at the 

TRS, while the remainder continue through to the next body TRS, where a similar “decision” 

is made.  If transcription is suspended at a body TRS, the nascent negative-sense strand is 

relocated to the 5’ end of the template, where transcription is resumed and the leader 

sequence is synthesised.  The negative-sense subgenomic and genomic mRNA strands 

produced are used as templates for the synthesis of functioning positive-sense subgenomic 

mRNAs and full genome copies respectively.   
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Figure 1.6: Schematic of FCoV genome and subgenomic mRNA species.  The 

discontinuous nature of FCoV transcription results in the production of a nested set of seven 

subgenomic mRNA species with a common 5’ leader sequence and 3’ UTR.  

1.3.1.4.3. Translation of viral proteins 

Although coronavirus mRNAs are structurally polycistronic, in most cases they are 

functionally monocistronic, with only the 5’ terminal ORF translated.  However, as not all 

coronavirus genes are located 5’-terminal on an mRNA species, some mRNAs must act as 

polycistronic messengers. In the case of FCoV, multiple ORFs are translated from mRNA 1 

(ORF1a and b), mRNA3 (ORF3a, 3b, and 3c), and mRNA7 (ORF7a and b) (Dye and Siddell, 

2005).  Translation of the 5’ most ORF of an mRNA is thought to occur by a standard cellular 

5’ cap-dependent ribosome entry mechanism (Lai et al., 1982), with several non-structural 

viral proteins identified as being involved in the capping process (Decroly et al., 2011; 

Decroly et al., 2008).  Alternative mechanisms of translation are utilised for internal ORFs.  

Translation of the internal ORF1b of mRNA1 occurs via a programmed -1 ribosomal 

frameshift (Brierley, 1995; Dye and Siddell, 2005, 2007).  The mechanism of translation for 

other FCoV internal ORFs (3b, 3c, and 7b) is unknown, although a cap-independent internal 

ribosomal entry mechanism and a leaky scanning mechanism have been demonstrated for 

similar internal ORFs in IBV, TGEV, and MHV (reviewed by Lai and Cavanagh, 1997).    

Translation of coronavirus proteins has been shown to be positively regulated by the 

common 5’ leader sequence which acts in cis to enhance translation of viral mRNA and the 

nucleocapsid protein with which it interacts (Tahara et al., 1994; Tahara et al., 1998).  This 

enhancement, although incompletely understood occurs in the face of a generalised 

shutdown of host cell protein synthesis (Hilton et al., 1986; Raaben et al., 2007).   
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1.3.1.4.4. Virus assembly and release 

Assembly of coronavirus virions occurs in the endoplasmic reticulum and the vesicular-

tubular cluster in a process driven primarily by the M protein (de Haan et al., 2000; Neuman 

et al., 2011). The S protein has been shown to be non-essential for the production of virus-

like particles, however such particles are unable to bind cellular receptors and are therefore 

non-infectious (Bos et al., 1996).  The E protein, although a minor structural component, 

appears to play an important role in determining the site of viral assembly and budding, and 

along with the M protein have been shown to be the minimum necessary elements for the 

production of virus like particles (Vennema et al., 1996).  Selective encapsidation and 

packaging of viral genomic RNA over viral and cellular mRNAs present in the cytoplasm is 

mediated via a packaging signal present only on the genomic RNA.  For porcine 

transmissible gastroenteritis virus (another alphacoronavirus) the packaging signal maps to 

the 5’ most end of the genome, incorporating the 5’ UTR and the start of ORF1a (Escors et 

al., 2003).  Interactions between the M protein and the encapsidated genome result in its 

selective incorporation into virions (Narayanan and Makino, 2007).  The process of viral 

budding and exit has not been fully elucidated, however it is thought the virus is released by 

exocytosis (Masters, 2006).  

1.3.2. Epidemiology of FCoV 

FCoV has a worldwide distribution, affecting both domestic and wild felids. Infection is 

extremely common in domestic cats, and is considered enzootic in areas with high feline 

population densities, such as catteries and animal shelters.  In multicat environments it is 

estimated that greater than 80% of cats will have FCoV antibodies (Herrewegh et al., 1997; 

Pedersen, 1976; Sparkes et al., 1992), while in single cat households seropositivity is 

estimated at between 10-50% (Addie and Jarrett, 1992a; Bell et al., 2006; Holst et al., 2006; 

Kiss et al., 2000; Kummrow et al., 2005; Pedersen, 1976). 

The high rate of seropositivity seen, particularly in situations of high population density, likely 

results from a number of factors: (1) husbandry conditions that promote the spread of the 

virus between susceptible animals (Foley et al., 1997a), (2) the relative environmental 

resilience of the virus under certain conditions (Scott, 1988), (3) the presence of 

asymptomatic carrier cats which act as a continuous source of infection and reinfection 

(Foley et al., 1997a), and (4) and the tenuous nature of the immune response to FCoV 

(Pedersen et al., 2008).  FCoV is transmitted primarily through direct contact with faeces, or 

faecally contaminated fomites, so husbandry conditions that impose close contact between 

cats, especially where litter trays or toileting areas are shared, greatly facilitate the spread of 

the virus through a susceptible population. In these situations, infection and reinfection with 

FCoV is extremely common, and the virus becomes enzootic.  The fastidious grooming 
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habits of cats also likely facilitate continued faeco-oral cycling.  The ease with which FCoV 

transmission takes place in areas with high feline population density was highlighted in a 

study by Pedersen et al. (2004) in which over half of cats initially PCR-negative upon 

entering an animal shelter were found to be shedding FCoV within a week of entry.  

Conversely, feral cats, which typically live in small colonies and have a more expansive 

toileting area, or in households with one, or a few cats, there is less exposure to FCoV 

infected faeces resulting in a correspondingly lower seroprevalence (Bell et al., 2006; Luria et 

al., 2004).  

Despite the high prevalence of FCoV infection, the occurrence of FIP is relatively rare.  Addie 

et al. (1995a) have suggested that between 5-10% of FCoV infected cats will go on to 

develop FIP based on longitudinal survey that followed 820 cats in 73 households over a 

period of 6 years.  The reported 10% incidence of FIP is somewhat controversial and may be 

artificially elevated by high number of multicat households, a known risk factor for FIP, 

included in this study, and a figure of less than 5% is quoted by many, including the original 

author (Addie, 2012).  Multiple risk factors have been identified for the development of FIP.  

FIP most frequently occurs in young cats (Foley et al., 1997b; Kass and Dent, 1995; Norris et 

al., 2005; Pesteanu-Somogyi et al., 2006; Rohrbach et al., 2001; Worthing  et al., 2012).  In 

general FIP is more common in purebred cats compared to outbred animals (Norris et al., 

2005; Pesteanu-Somogyi et al., 2006; Rohrbach et al., 2001; Worthing  et al., 2012).  Whilst 

part of this increased susceptibility is undoubtedly related to environmental factors such as 

domicile in a multicat household and increased risk of FCoV exposure when young (Foley et 

al., 1997b; Kass and Dent, 1995), a number of studies have demonstrated specific breeds 

are overrepresented, whilst others are underrepresented among FIP cases suggesting 

additional factors, most likely genetic are involved (Foley and Pedersen, 1996; Norris et al., 

2005; Pesteanu-Somogyi et al., 2006; Worthing  et al., 2012).  This is supported by a study 

by Foley and Pedersen (1996) which showed that susceptibility to FIP was a partially 

heritable trait in Persians, with close relatives of FIP affected cats significantly more likely to 

die of FIP than unrelated cats.  Further evidence of a genetic component to FIP susceptibility 

is the reported increased occurrence of FIP in cheetahs (Evermann et al., 1988) most likely 

due to a loss of genetic diversity, particularly at the MHC loci, following natural population 

bottlenecks (O'Brien et al., 1985; O'Brien et al., 1987).  A recent genome wide association 

study with Birman cats, known to be overrepresented among FIP cases, identified five 

candidate genes which may influence the susceptibility to FIP (Golovko et al., 2013).  Male 

(Norris et al., 2005; Pesteanu-Somogyi et al., 2006; Rohrbach et al., 2001; Worthing  et al., 

2012) and sexually intact animals (Pesteanu-Somogyi et al., 2006; Rohrbach et al., 2001) 

have been reported at greater risk in some studies. 
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1.3.2.1. Transmission 

FCoV is transmitted horizontally by the faecal-oronasal route with cats exposed through 

contact with FCoV infected faeces or faecally contaminated fomites.  For enveloped viruses, 

FCoV are relatively stable in the environment, with dried virus remaining infectious for up to 

seven weeks (Scott, 1988). 

1.3.2.2. Shedding of FCoV 

FCoV is primarily shed via the faeces. Transient shedding of FCoV in saliva and respiratory 

secretions has been documented early in the course of infection (Addie and Jarrett, 2001; 

Stoddart et al., 1988) however transmission via this route is thought to be uncommon, likely 

due to the short time in which virus is shed in these secretions.  Faecal shedding of FCoV 

has been extensively investigated under both experimental laboratory conditions and also 

within natural environments (Addie and Jarrett, 2001; Addie et al., 2003b; Foley et al., 1997a; 

Harpold et al., 1999; Herrewegh et al., 1997; Stoddart et al., 1988). In these studies faecal 

shedding can be detected as soon as 2 days post infection, and faecal shedding can, and 

typically does precede seroconversion.  Three distinct groups of cats can be identified based 

on their faecal shedding pattern: resistant cats, transiently infected cats, or chronically 

infected (carrier) cats.   

Only a small percentage of cats appear to be resistant to infection and never shed FCoV.  In 

the study by Addie and Jarrett (2001), 4 of 136 cats living in different multicat households 

and mixing freely with FCoV shedding cats, either failed to seroconvert or else had very low 

FCoV antibody titres, and never shed virus in their faeces.  The mechanism of intrinsic 

resistance is unknown.  In vitro host related differences in monocyte permissivity have been 

previously demonstrated (Dewerchin et al., 2005) and it is possible similar host related 

differences in enterocyte permissivity could explain the existence of these resistant cats.  

Addie and Jarrett (2001) suggested the innate resistance may be due to the lack of, or the 

presence of mutant coronavirus receptors, as has been reported for some laboratory mice 

strains resistant to MHV infection (Yokomori and Lai, 1992). 

The majority of cats naturally exposed to FCoV are transiently infected and shed virus in their 

faeces, continuously or intermittently, for a variable period of time before clearing the 

infection.  The duration of faecal shedding is typically in the order of several months, with 

95% of cats that eventually stop shedding, doing so within nine months of the primary 

infection (Addie and Jarrett, 2001).  Immunity to FCoV following viral clearance is transitory, 

with recovered cats susceptible to re-infection with the same, or different viral strain (Addie et 

al., 2003b; Pedersen et al., 2008).  
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Approximately 13% of FCoV infected cats fail to mount a sterilising immune response and 

remain persistently infected, shedding virus continuously or intermittently for a prolonged 

period, and in some cases for life (Addie and Jarrett, 2001; Addie et al., 2003b).  Utilizing 

highly sensitive RT-PCR techniques, viral RNA has been demonstrated in various organs in 

asymptomatic carrier cats (Herrewegh et al., 1997; Kipar et al., 2010) however 

immunohistochemical demonstration of FCoV infected cells is restricted primarily to the distal 

gastrointestinal tract, suggesting that this is likely the primary site of viral persistence.   

FCoV RNA has been detected in the faeces and intestinal contents of cats with naturally 

occurring FIP (Addie et al., 1996; Chang et al., 2010; Pedersen et al., 2009).  It has long 

been thought that virus shed by cats with FIP is of the parental enterotropic biotype in line 

with the observation that FIP is infrequently spread horizontally (Hartmann, 2005).  Pedersen 

et al. (2012) recently demonstrated faecal shedding of FIPVs containing an intact 3c gene 

from cats with FIP, however this shed virus was not infectious for other cats via natural 

routes of exposure.  Although this study involved a limited number of cats the results suggest 

that even for virulent viruses containing an intact 3c gene, and thus capable of intestinal 

replication and faecal shedding, additional changes associated with virulence reduce the 

infectivity of these viruses and therefore the chance of horizontal spread.  Clearly, as faecal 

shedding of infective virulent virus is an essential precondition for the circulating virulent / 

avirulent theory as proposed by (Brown et al., 2009), these findings cast further doubt over 

that hypothesis. 

1.3.3. Pathogenesis and clinical disease 

1.3.3.1. Non-FIP FCoV disease 

Infection with FECV is typically asymptomatic, or may result in mild self-limiting 

gastroenteritis, mild upper respiratory tract signs, or stunted growth in kittens (Addie and 

Jarrett, 1992b; Hickman et al., 1995; Mochizuki et al., 1999; Pedersen et al., 1981).  Clinical 

manifestations of FECV infection, including the FECV to FIPV mutation are more likely to 

occur in kittens (Addie and Jarrett, 1992b; Foley et al., 1997b; Hickman et al., 1995).  Rarely 

more severe disease associated with FECV has been reported (Kipar et al., 1998b; 

McKeirnan et al., 1981), however despite this, the significance of FECV infection lies not in 

its inherent pathogenicity, but rather in its ability to mutate to more virulent FIP-causing 

biotypes. 

The primary site of viral replication of FECV is within enterocytes, principally in mature 

columnar epithelial cells in the upper third of the villi (Pedersen et al., 1981).  Viral replication 

occurs in the cytoplasm, and can result in destruction of infected cells.  Histopathological 

changes in acutely infected kittens with enteritis were present from the distal duodenum to 

the terminal ileum and consisted of patchy areas of villous atrophy, commonly with fusion of 
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adjacent epithelial cells (Pedersen et al., 1981).  Mature enterocytes on the tips of the villi 

frequently become separated from the underlying basement membrane resulting in sloughing 

of the villous tip.  Similar histopathological changes were reported in a case series of five 

older cats with severe coronaviral enteritis (Kipar et al., 1998b).  Histopathological changes 

seen in kittens with asymptomatic FCoV infection are limited to generalised T and B cell 

hyperplasia in the spleen and mesenteric lymph nodes (Haagmans et al., 1996; Kipar et al., 

1999; Kipar et al., 2001; Meli et al., 2004).  Changes in lymphatic tissue are thought due to 

generalised activation of the immune system, although the demonstration of FCoV RNA in 

the bone marrow, spleen, and mesenteric lymph nodes of asymptomatic FCoV infected cats 

by Meli et al. (2004) suggest some of the changes may be due to a direct effect of FCoV 

replication. 

It was initially hypothesised that FECV was restricted to the intestine, and possibly regional 

lymph nodes, and that systemic spread was seen only with, and was a defining feature of 

infection with the more virulent FIPVs (Pedersen et al., 1981).  It is now clear that intestinal 

compartmentalisation is not absolute, with systemic spread is seen in 80-90% of cats 

infected with FCoV and viral RNA detectable in almost all parenchymal organs (Gunn-Moore 

et al., 1998; Herrewegh et al., 1997; Kipar et al., 2006a; Meli et al., 2004).  Systemic spread 

of FCoV is thought to occur via a monocyte-associated and cell-free viraemia (Meli et al., 

2004).  In vitro studies have shown that FCoV virions are released from the basolateral 

surface (away from the intestinal lumen) of polarised epithelial cells (Rossen et al., 1995; 

Rossen et al., 2001), a finding if representative of natural infection, suggests systemic spread 

is an inevitable consequence of FCoV infection and replication.  Although genomic RNA is 

detected in a high proportion of healthy FCoV infected cats, quantitatively, the viral load of 

these healthy asymptomatically infected cats is significantly lower than seen in cats with FIP 

(Kipar et al., 2006a), indicative of reduced or inhibited viral replication.  Supporting this are 

the findings of Simons et al. (2005) who detected viral mRNA in blood samples of 

approximately 5% of healthy FCoV infected cats, compared to 93% of cats with histologically 

confirmed FIP.  Thus it would appear that there are qualitative and quantitative differences in 

FCoV replication in cats with FIP compared to healthy infected cats. 

1.3.3.2. Feline infectious peritonitis 

FIP manifests clinically as either the effusive (wet) or non-effusive parenchymatous (dry) 

form (Pedersen, 2009).  The characteristic finding in the more common effusive form of the 

disease is the accumulation a protein rich exudate in the peritoneal space, (approximately 

60% of cases), thoracic cavity (pleural and/or pericardial space) (approximately 20%), or 

both (approximately 20%) (Figure 1.7) (Hartmann, 2005).  Non-specific signs such as mild 

pyrexia, anorexia, and weight loss are often the first manifestation of the disease.  Signs 
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referrable to fluid accumulation in wet FIP vary depending on the location and volume of the 

effusion, and can include dyspnoea, tachypnoea, muffled heart sounds, and abdominal and 

scrotal enlargement (Addie, 2012).  Non-effusive FIP is more variable in its presentation, with 

specific clinical signs referrable to the presence of granulomatous lesions within tissues.  

Ocular or CNS involvement is common in non-effusive disease, with over 60% of cats 

showing signs referrable to involvement of these systems (Pedersen, 2009).  Irrespective of 

the form of the disease and the nature of the clinical signs, FIP is generally considered a 

terminal disease. 

 

Figure 1.7: Cat with effusive FIP.  Note the pot-bellied appearance typical of the effusive 

form of the disease (a).  The opened abdominal cavity (b) reveals an accumulation of yellow 

tinged fluid.  

The histopathological changes in FIP are heterogeneous, consisting of diffuse inflammation 

on serosal surfaces, granulomas (with or without areas of necrosis), focal and perivascular 

lymphoplasmacytic infiltrates, and granulomatous necrotising vasculitis (Berg et al., 2005; 

Kipar et al., 1998a).  Despite the obvious clinical demarcation between effusive or non-

effusive forms of FIP, the distinction is not as clear at the cellular level, with vasculitis lesions 

typically associated with effusive FIP being seen in non-effusive cases, and similarly 

demarcated granulomas more commonly associated with non-effusive FIP present in 

effusive cases (Berg et al., 2005). 
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Monocytes and macrophages are the primary target cell for virulent FCoV biotypes (FIPV), 

playing an important role in systemic viral dissemination and the immunopathological 

processes associated with FIP.  To enable replication in these cells FIPV have evolved a 

number of strategies to avoid or negate the host’s innate and adaptive immune response.  

Dewerchin et al. (2005) demonstrated that approximately 50% of FIPV infected monocytes 

do not display viral antigens on the plasma membrane, and those that do, internalise these 

proteins in the presence of antiviral antibodies (Dewerchin et al., 2006), making them 

essentially invisible to the immune system.  Further experiments have shown that FIPV 

infected cells are resistant to antibody-dependent complement-mediated lysis, even in cells 

in which antigen internalisation has been blocked (Cornelissen et al., 2009).  The formation 

of viral quasispecies during error prone viral replication is an important immune evasion 

mechanism for some viruses through the process of antigenic drift (Domingo et al., 1998).  

Given the short clinical course of FIP the role of quasispecies as an immune evasion strategy 

may be more significant for persistent FECV infections compared to FIPV infections.  Virus 

induced lymphopaenia seen in FIP is a further mechanism through which FIPVs can 

minimise the hosts adaptive immune response (Dean et al., 2003; Takano et al., 2007a).  

FIP is an immunopathological disease, the pathogenesis of which is complex and 

incompletely understood.  A necessary step in the pathogenesis of FIP is infection by a FIPV, 

however the development of disease and its clinical manifestation is critically dependent on 

the nature of the host immune response to that infection.  The nature of the immune 

response to non-virulent biotypes also likely influences the risk of FIP, as increased viral 

replication associated with a suboptimal immune response to FECV will increase the 

likelihood of a virulent mutant being generated. 

It is generally accepted that cell mediated immunity (CMI) is essential for control and 

clearance of the virus and that a humoral immune response is ineffective and possibly 

deleterious (Pedersen, 2009).  Evidence for the protective role of CMI in the development of 

FIP is demonstrated by the increased incidence of FIP in cats concurrently infected with FIV, 

a known suppressor of CMI (Poland et al., 1996).  In vitro production of the Th1 cytokine INF-

γ is greater in peripheral blood mononuclear cell (PBMC) cultures from healthy FIPV infected 

cats compared to cats with FIP when stimulated with inactivated FIPV (Satoh et al., 2011).  

Furthermore it has been shown that thymectomised cats develop more severe disease 

(Hayashi et al., 1983) and that cats with a strong delayed-type hypersensitivity response 

against FCoV antigen have prolonged survival times (Weiss and Cox, 1989). 

FIPV replication in macrophages results in increased expression of B-cell differentiation and 

survival factors (IL-6, CD40L, B-cell-activating factor) which promote the differentiation of B-

cells into antibody secreting plasma cells (Takano et al., 2009), contributing to the robust 
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humoral response and hypergammaglobulinaemia seen in FIP (Paltrinieri et al., 1998).  In 

contrast to CMI, the humoral immune response is generally considered ineffectual at 

controlling the disease, as evidenced by the high FCoV antibody titres often seen in cats with 

FIP (Pedersen, 1976) and the lack of significant differences between the kinetics and titres of 

antiviral antibody responses in surviving and non-surviving cats following experimental 

exposure to FIPV (Groot-Mijnes et al., 2005).  This blanket statement however belies the 

complexity and heterogeneity of the antibody response to FCoV, as it has been shown that 

antibody responses to specific viral targets may be involved in viral clearance (Gonon et al., 

1999), and it is known that maternally derived antibodies provide some protection in kittens 

(Addie and Jarrett, 1992b).  There is evidence that the humoral response may be deleterious 

by contributing to the immunopathological lesions seen in effusive FIP through the formation 

and deposition of immune complexes and a subsequent type III hypersensitivity reaction 

(Jacobse-Geels et al., 1980; Pedersen and Boyle, 1980).  The humoral response may also 

contribute to the disease process by facilitating viral entry in monocytes/macrophages 

through the process of ADE of infection (see 1.3.1.4.1). 

Two general mechanisms have been proposed for the development of disease following 

infection with a virulent biotype (Hartmann, 2005).  Historically, the pathogenesis of FIP has 

been attributed primarily to a classical type III hypersensitivity reaction based on the 

demonstration of viral antigen, antiviral antibody, and complement proteins associated with 

lesions (Jacobse-Geels et al., 1980; Pedersen and Boyle, 1980) and the accelerated onset of 

disease in seropositive compared to seronegative kittens in experimental studies (Weiss and 

Scott, 1981a).  More recently a study by Kipar et al. (2005) has shown that whilst an Arthus 

type reaction almost certainly plays a role in the development of FIP vasculitis, the 

morphology, distribution, and cellular composition of vasculitis lesions in FIP differ 

significantly from reported type III hypersensitivity vasculitidies.  The authors propose a 

model whereby infected activated monocytes are the primary trigger for the development of 

FIP.  FIPV infection of monocytes results in the rapid activation of the p38 mitogen-activated 

protein kinase (MAPK) pathway resulting in an upregulation of proinflammatory cytokines 

TNF and IL-1β (Regan et al., 2008a).  According to the model proposed by Kipar et al. (2005) 

the adhesion of activated monocytes to endothelial cells results in a positive feedback cycle 

whereby cytokines elaborated by the adhering monocytes act in an autocrine and paracrine 

fashion to promote further adhesion and activation.  Endothelial cells also play an active part 

in the development of FIP vasculitis with venous, and to a lesser extent arterial endothelial 

cells, displaying an activated morphology and upregulation of MHCII independent of the 

presence of local inflammatory lesions, most likely as a result of a systemic tumour necrosis 

factor α (TNF- α) cytokine response (Kipar et al., 2005). 



 

37 

Pan-lymphopaenia is a common finding in cats with FIP, particularly in the terminal stages of 

the disease (Groot-Mijnes et al., 2005; Paltrinieri et al., 2003).  Lymphoid depletion is also 

prominent in both primary and secondary lymphoid organs (Dean et al., 2003; Kipar et al., 

2001).  Lymphopaenia and lymphoid depletion in FIP occurs as a result of apoptosis (Dean 

et al., 2003; Haagmans et al., 1996; Kipar et al., 2001; Takano et al., 2007a), most likely 

induced indirectly by increased TNF-α from virally infected macrophages, as FCoV does not 

infect lymphocytes (Dean et al., 2003; Takano et al., 2007a; Takano et al., 2007b).  A 

longitudinal infection study by Groot-Mijnes et al. (2005) demonstrated reductions in 

circulating CD4+ and CD8+ T-cells is temporally correlated with viral replication and the 

occurrence of non-specific clinical signs such as fever and weight loss, while the converse 

was true during periods of apparent clinical recovery.  As proposed by the authors, these 

findings suggest the pathogenesis and outcome of FIPV infection is determined by the 

opposing forces of virally induced T-cell depletion and antiviral T-cell responses.  

1.3.4. Current treatment options 

“You may know the intractability of a disease by its long list of remedies” 

(Garrison, 1925) 

In reviewing the literature pertaining to the treatment of FIP, the above quote, attributed to 

19th century physician Dr Alonzo Clark, seems particularly relevant.  The impressive roll call 

of drugs listed in Table 1.3 and detailed in a recent review of FIP treatment by Hartmann and 

Ritz (2008) is testament to this.  Despite a multitude of reportedly successful treatments, FIP 

remains for the most part a fatal disease.  This apparent contradiction can be reconciled by 

examining the quality of the studies supporting these treatments, many of which contain 

serious methodological flaws, including inadequate controls, poor case definitions, and a 

failure to definitively diagnose the condition.  For this reason much of the literature regarding 

the treatment of FIP should be interpreted with caution.  

With a lack of antiviral drugs, treatment of FIP has traditionally focused on the use of 

immunomodulatory agents, primarily immunosuppressive therapies.  In light of the 

immunopathological nature of FIP there is a clear rationale for the use of immunomodulating 

agents to control clinical signs, however these treatments fail to address the underlying 

problem of viral replication, a triggering and perpetuating factor in disease pathogenesis.  It is 

unsurprising therefore that these treatments provide at best little more than short term 

symptomatic relief.  In fact, given that a robust cell-mediated immune response is essential 

for viral clearance and that FIP is associated with profound T-cell depletion (Groot-Mijnes et 

al., 2005), the use of immunosuppressive agents that cause further T-cell suppression may 

actually be deleterious. 
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The use of biological response modifiers and immunostimulatory drugs has been considered 

a promising approach to the treatment of FIP; unfortunately however results have generally 

been disappointing.  As an example, recombinant feline interferon-ω (rFeINF-ω) generated 

considerable interest after demonstrating efficacy in vitro against FCoV (Mochizuki et al., 

1994; Truyen et al., 2002) and beneficial effects in a small scale clinical trial conducted in 

Japan (Ishida et al., 2004).  Ishida et al. (2004) reported complete remission (survival over 2 

years) in four of 12 cats treated with rFeINF-ω and prednisolone, and partial remission (2 to 

5 months) in a further four cases.  A subsequent randomised placebo controlled study 

conducted in Germany failed to demonstrate any difference in survival time or quality of life 

between rFeINF-ω treated cats or their placebo treated cohorts (Ritz et al., 2007).  Although 

a number of potential explanations have been put forward to account for the discrepancy 

between the results of the two studies, it appears that rFeINF-ω provides little or no benefit 

for the majority of cats with FIP. 

Polyprenyl immunostimulant is a mixture of phosphorylated, linear polyisoprenols which 

according to US patent 6,525,035 has been demonstrated in vitro to upregulate mRNA 

expression for IL-1 and IL-2 and inhibit the constitutive transcription of TNF mRNA (Danilov 

et al., 2003).  This patent also claims an efficacy of 50% in treating FIP in twelve kittens, 

however there is no additional data to support this claim and it therefore must be treated with 

scepticism.  A recent peer reviewed publication has reported the use of polyprenyl 

immunostimulant as a treatment for non-effusive FIP in three cats (Legendre and Bartges, 

2009).  Definitive diagnosis of FIP was made in only one cat; however clinicopathological 

findings were strongly suggestive in the remaining cases.  Two cats, including the cat 

definitively diagnosed with FIP, remained alive and well 2 years after diagnosis, while the 

third cat survived for 14 months.  Although no control group is available for comparison, the 

survival times reported with polyprenyl immunostimulant exceed those typically associated 

with non-effusive FIP (Addie, 2012).  Although promising results have been demonstrated 

with dry FIP, the authors report that “treatment of wet form FIP with Polyprenyl 

Immunostimulant has been dismal” (Legendre and Bartges, 2009).  More recently preliminary 

data published on the use of polyprenyl immunostimulant in a larger number of cats with non-

effusive FIP was less impressive, with only 25% of cats surviving for more than 6 months 

(Legendre, 2012).  Given its purported mechanism of action of promoting a Th1 cytokine 

profile and inhibiting TNF it is feasible that this drug may still find a role as an adjunct 

treatment for FIP in conjunction with appropriate antiviral therapy. 

There are currently no direct acting antivirals used in the treatment of FIP, despite a number 

of compounds demonstrating in vitro inhibitory effects against FCoV (Barlough and Scott, 

1990; Barlough and Shacklett, 1994; Hsieh et al., 2010; van der Meer et al., 2007).  For most 

of these potential antiviral compounds it is unknown whether the reported in vitro inhibitory 
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activity would translate to clinical efficacy as appropriate trials have not been conducted or 

reported.  Ribavirin is an exception, being the only direct acting antiviral drug reported to be 

tested in cats with FIP thus far.  Ribavirin is a synthetic nucleoside analogue of guanine 

which has demonstrated a broad spectrum of in vitro and in vivo activity against a variety of 

DNA and RNA viruses (Snell, 2001).  The mechanism of action of ribavirin is not fully 

understood but may be the result of (1) inhibition of cellular inosine monophosphate 

dehydrogenase resulting in decreased viral protein synthesis, (2) immunomodulation through 

the inhibition of IL-10, (3) inhibition of viral capping, or (4) effects as an RNA mutagen 

resulting in lethal mutagenesis (Crotty et al., 2002; Leyssen et al., 2005).  The existence of 

multiple alternate antiviral mechanisms may explain the broad spectrum of activity of 

ribavirin. 

Ribavirin is known to be inhibitory to FCoV replication in cell culture, albeit with a small 

selectivity index (SI) (Barlough and Scott, 1990; Weiss and Oostrom-Ram, 1989).  The small 

SI is reflected in vivo, and is of particular concern in cats as they are especially sensitive to 

the haematological adverse effects of the drug (Weiss et al., 1993a). To assess the efficacy 

of ribavirin in treating FIP, Weiss et al. (1993b) used a free form of the drug as well as a 

liposome-encapsulated form in 50 kittens following experimental exposure to FIPV.  

Liposome encapsulation was performed to enable targeting of the drug directly to the 

mononuclear phagocytes, and therefore reduce the drug dose needed and associated 

toxicity.  Neither the free nor encapsulated ribavirin protected cats against the development 

of FIP.  High doses of ribavirin resulted in more severe clinical signs and reduced survival 

times suggestive of toxicity.  Cats treated with the lower doses had slightly longer survival 

times indicating the drug may have had some antiviral effects in vivo.  Whilst ribavirin is 

clearly not an appropriate treatment for FIP, the demonstration of a positive, albeit small, 

effect in vivo suggests safe and efficacious antiviral drugs may be of use in treating this 

disease.  

Most recently, following the completion of the studies described in this thesis, a small in vivo 

experimental study on the efficacy of chloroquine in treating FIP was reported by Takano et 

al. (2013).  In this study treatment of cats infected with the highly virulent FCoV FIPV1146 

with chloroquine was associated with an improvement in clinical scores and a slightly 

increased, but not statistically significant, survival time compared with control cats.  In this 

case it is unclear whether the small in vivo benefits of chloroquine are derived from a direct 

antiviral effect or from its immunomodulatory properties (Savarino et al., 2003).  Again this 

study provides tantalising evidence that effective antiviral therapy would be beneficial in 

treating FIP.  
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Table 1.3: Antiviral and immunomodulatory agents evaluated against feline infectious peritonitis (FIP).  

Drug Comments References 

Ribavirin Good efficacy demonstrated in vitro.  In vivo use associated with significant toxicity and poor 
efficacy. 

(Weiss et al., 1993b) 

Prednisone / 
dexamethasone 

Immunosuppressive doses are current treatment of choice with anecdotal evidence of 
improved survival time and quality of life.  Published studies on use as a monotherapy limited 
to control groups in two placebo controlled studies which demonstrated a median survival 
time of approximately 8 days. 

(Fischer et al., 2011; Ritz et 
al., 2007) 

Propentofylline Randomised placebo controlled trial demonstrated no beneficial effect.  Single published 
case report of efficacy of related drug pentoxifylline in combination therapy with rHuINF-α and 
prednisolone in treating FIP.  FIP likely in this case but not definitively diagnosed. 

(Fischer et al., 2011; Kang et 
al., 2011) 

Ozagrel hydrochloride Thromboxane synthetase inhibitor.  Case report detailing two cats treated with improved 
survival time in one cat and apparent cure in the other.  FIP likely based on case description 
but not definitively diagnosed. 

(Watari et al., 1998) 

Cyclophosphamide Alkylating agent.  Use reported in combination with glucocorticosteroids and antibiotics in a 
large study involving 151 “suspect” FIP cases.  Of these, 76 were reported as healthy 
following therapy.  FIP not definitively diagnosed and no control group. 

(Bilkei, 1988) 

rFeINF-ω Uncontrolled study with 12 cats showed complete response (>2 year survival) in 33% and 
partial response (2- 5 month survival) in 33%.  Cases not definitively diagnosed as FIP.  
Subsequent placebo controlled trial demonstrated no effect on survival time or quality of life.  
Single long term survivor (200 days) in treatment group. 

(Ishida et al., 2004; Ritz et 
al., 2007) 

Melphalan Alkylating agent.  Reported to increase survival time in a single case report but FIP not 
definitively diagnosed. 

(Madewell et al., 1978) 

Tylosin Macrolide antibiotic with immunomodulatory properties.  Improved survival times reported in 
two of three cats treated but FIP not confirmed. 

(Colgrove and Parker, 1971) 

Promodulin Biological response modifier.  Uncontrolled trial in 52 cats reported favourable response in 38 
cats.  No details on inclusion criteria or follow up provided.  

(Ford, 1986) 
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 Table 1.3 cont.: Antiviral and immunomodulatory agents evaluated against feline infectious peritonitis (FIP). 

 

 

 

 

 

 

 

 

Drug Comments References 

Polyprenyl 
immunostimulant 

Single report of treatment of 3 cats with non-effusive FIP. Prolonged survival in all three cats 
(14 months, and two cats > 2 years).  Ineffective in treating non-effusive FIP.  FIP definitively 
diagnosed in one (long term survivor) cat.  Preliminary data from larger study showed 
approximately 25% of treated cats survived for greater than 6 months. 

(Legendre and Bartges, 
2009; Legendre, 2012) 

Levamisole Anthelminthic with immunostimulatory properties.  No beneficial effect seen in pilot study.  (Weiss, 1995) 

Recombinant human INF-
α 

In vitro efficacy against FCoV.  Experimental trial with control group demonstrated no 
reduction in mortality.  Slight increase in mean survival time when given with 
Propionibacterium acnes. 

(Weiss et al., 1990; Weiss 
and Oostrom-Ram, 1989) 

Chloroquine Antimalarial compound.  Experimental trial with control group.  Cats infected with highly 
virulent FCoV FIPV1146.  Improvement in clinical signs and slight increase in survival time 
(not statistically significant) reported.   

(Takano et al., 2013) 
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1.4. FELINE CALICIVIRUS 

Feline calicivirus (FCV), previously feline picornavirus, was first reported by Fastier (1957) 

wherein it was described as “a filterable agent in search of a disease” in reference to its 

apparent apathogenic nature in experimental studies.  Whilst it is now well recognised that 

FCV often results in inapparent infections in cats, sadly the virus is no longer “in search of a 

disease”, with a number of important, and in some cases fatal, disease syndromes 

associated with infection.  Although FCV vaccination has been widely practiced for several 

decades, it continues to be a significant cause of disease in cats due to the limitations of 

currently available vaccines, and due to the inherent genetic plasticity of the virus allowing 

the emergence of more virulent strains. 

1.4.1. Virology of feline calicivirus 

1.4.1.1. Taxonomy 

Feline calicivirus belongs to the genus Vesivirus, family Caliciviridae (Clarke et al., 2012). 

Despite high levels of sequence diversity amongst FCV isolates, all belong to a single 

diverse serotype (Radford et al., 2007).  Two genotypes of FCV have been identified based 

on phylogenetic analysis of capsid sequences of isolates from diverse geographical locations 

around the world (Sato et al., 2002).  Genotype I predominates worldwide while genotype II 

has only been identified to date in Japan (Ohe et al., 2006; Sato et al., 2002).  Recently a 

second calicivirus belonging to the genus Norovirus has been isolated from faecal samples 

from kittens with diarrhoea, however the pathological significance of this virus is unclear 

(Pinto et al., 2012).  
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Table 1.4: Caliciviridae taxonomy adapted from the Ninth Report of the International 

Committee on Taxonomy of Viruses (Clarke et al., 2012). * indicates type species.  

Taxonomy of the Family Caliciviridae 
Family Caliciviridae 

• Genus Vesivirus 

o Vesicular exanthema of swine virus * 

o Feline calicivirus 

• Genus Lagovirus 

o Rabbit haemorrhagic disease virus * 

o European brown hare syndrome virus 

• Genus Norovirus 

o Norwalk virus * 

o Feline Norovirus (not an official species designation) 

• Genus Sapovirus 

o Sapporo virus * 

• Genus Nebovirus 

o Newbury-1 virus * 

 

1.4.1.2. Structure and morphology 

Viruses in the family Caliciviridae have a monopartite linear positive-sense single-stranded 

RNA genome surrounded by a small (27-40 nm) non-enveloped icosahedrally symmetrical 

capsid (Clarke and Lambden, 1997).  The virion presents characteristic cup-shaped 

depressions on its surface, a unique morphology from which the viral family derives its name 

(from the Latin calix meaning cup or goblet) (Clarke et al., 2012).  The capsid is assembled 

from 180 copies (90 homodimers) of the main structural protein VP1 (Prasad et al., 1994).  A 

second protein, VP2 is present in smaller numbers (1 to 8 copies per virion) (Luttermann and 

Meyers, 2007; Sosnovtsev and Green, 2000). 

1.4.1.3. Genome 

The RNA genome of FCV has a 5’ covalently bound protein, VPg (viral protein, genome 

linked), and a polyadenylated 3’ terminus (Herbert et al., 1997).  The genome is 

approximately 7.7 kb and encodes three ORFs as shown in Figure 1.8 (Carter et al., 1992a; 

Carter et al., 1992b).  ORF1 encompasses the proximal two-thirds of the genome and 

encodes a large polyprotein that is processed to produce the non-structural proteins involved 

in viral replication.  ORF2 encodes the major capsid protein (VP1) precursor and ORF3 

encodes the minor capsid protein (VP2).  ORF2 is separated from ORF 1 by a two nucleotide 
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non-coding region (GC), while ORF2 and ORF3 overlap by four nucleotides.  A 19 nt UTR 

precedes ORF1 at the 5’ end, and a 3’ UTR of approximately 50 nt follows ORF3.  Overall 

FCV isolates exhibit significant genetic variability, with different isolates showing 

approximately 80% homology (Thumfart and Meyers, 2002). 

The FCV genome contains two identified cis-acting elements.  Sosnovtsev et al. (2005) 

reported a cis-acting sequence overlapping with the 3’ end of ORF3 important for viral 

replication, possibly through promoting RNA-protein interactions.  The second sequence, the 

termination upstream ribosomal binding site (TURBS), a 69 nt sequence located at the 3’ end 

of ORF 2, is needed for efficient translation of VP2 from the bicistronic subgenomic mRNA 

(Herbert et al., 1996; Luttermann and Meyers, 2007). 

 

Figure 1.8: Feline calicivirus genome. (a) Schematic of FCV genome and subgenomic 

mRNA.  (b) Non-structural proteins produced by co- and post-translational cleavage of 

replicase polyprotein.  NTPase, nucleoside triphosphatase; VPg, viral protein genome linked; 

ProPol, proteinase polymerase.  

1.4.1.4. Replicase protein 

The replicase polyprotein is translated from ORF1 of full length genomic RNAs. The protein 

is co- and post-translationally cleaved by a virus-encoded proteinase to yield six mature 

proteins: named from the amino terminus, p5.6, p32, p39, p30, p13, and p76, and shown in 

Figure 1.8 (Sosnovtsev et al., 2002).  The functions of p5.6, p32, and p30 are unknown.  p39 

is thought to possess NTPase activity analogous to that of the p37 protein of rabbit 

haemorrhagic disease virus with which it shows significant sequence homology (Meyers et 

al., 2000).  p13, also known as VPg, is a 13 kDa protein found covalently linked to the 5’ end 

of genomic and subgenomic viral RNA.  VPg likely has a role as a “cap analogue” to initiate 

translation of viral RNA, as proteinase treatment to destroy VPg reduces the translatability of  
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viral RNA (Herbert et al., 1997).  The C-terminal end of the ORF1 polyprotein gives rise to a 

large 76 kDa protein (ProPol) that includes both proteinase and polymerase domains, similar 

to the 3CD Pro-Pol precursor of picornaviruses.  Unlike the picornavirus 3CD ProPol and the 

ProPol of some caliciviruses, the ProPol precursor of FCV is a bifunctional proteinase-

polymerase complex and is the primary active form (Sosnovtsev et al., 2002; Wei et al., 

2001).  

1.4.1.5. Major capsid protein (VP1) 

Translation of ORF2 from the 5’ end of the subgenomic mRNA produces the 73 kDa major 

capsid protein precursor (Carter et al., 1992b; Neill et al., 1991).  The overall nucleotide 

sequence homology of ORF2 between FCV isolates is approximately 78% while the 

homology of deduced amino acid sequences is 89% (Thumfart and Meyers, 2002).  Based 

on the degree of amino acid conservation, this protein has been divided into six regions, A to 

F (Neill, 1992; Seal et al., 1993).  Region A, also known as the leader of the capsid protein 

(LC), is cleaved by a viral encoded protease to produce the mature VP1 capsid protein 

(Sosnovtsev et al., 1998).  The cleaved 125 aa LC protein may act in trans to enhance viral 

replication (Chang et al., 2008). 

The mature VP1 protein consists of two defined domains: the shell (S) domain which forms 

the inner shell of the capsid and the protruding (P) domain which projects from the surface of 

the capsid giving rise to the characteristic morphology of caliciviruses (Bhella and 

Goodfellow, 2011).  Region B makes up the S domain, while regions C to F make up the P 

domain, which is further divided into two subdomains, P1 and P2.  The P2 subdomain, which 

contains regions C, D, and F, is inserted into the P1 domain, containing region E.  The P1 

subdomain (region E) is the least conserved region of the protein, encoding two 

hypervariable regions thought to contain important neutralising epitopes (Geissler et al., 

2002; Radford et al., 1999).   

1.4.1.6. Minor capsid protein (VP2) 

Translation of the 3’ terminal ORF produces the 106 aa minor capsid protein VP2.  This 

translation occurs from the bicistronic subgenomic RNA through a termination/reinitiation 

mechanism (Luttermann and Meyers, 2007).  It is unclear whether VP2 has a structural role 

in FCV, however it has been demonstrated to be involved in the formation of virus like 

particles (Di Martino and Marsilio, 2010) and is necessary for the formation of infectious viral 

progeny (Sosnovtsev et al., 2005).  
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1.4.1.7. Viral replication cycle 

1.4.1.7.1. Attachment and entry 

Feline junctional adhesion molecule A (fJAM-A) is a functional receptor for FCV as 

demonstrated by studies showing productive infection in non-susceptible cells transfected 

with the fJAM-A gene and successful blocking of infection in susceptible cells using fJAM-A 

antibodies (Makino et al., 2006).  Binding of the P2 domain of VP1 to the membrane distal 

D2 region of fJAM-A induces conformational changes in the FCV capsid resulting in a loss of 

icosahedral symmetry that may be important in uncoating of the viral genome (Bhella et al., 

2008; Bhella and Goodfellow, 2011; Ossiboff et al., 2010).  fJAM-A is widely distributed in 

feline tissues, being present on feline endothelial and epithelial cells, particularly 

concentrated around tight intercellular junctions, as well as on platelets and leukocytes 

(Pesavento et al., 2011).  With the exception of some virulent FCV strains, FCV-associated 

disease is typically restricted to the oral cavity/upper respiratory tract, meaning the tissue 

distribution of fJAM-A is not the sole determinant of viral tropism.  Tissue distribution of α2,6-

sialic acid may play a role in determining tropism in the natural host as studies have 

demonstrated binding of FCV to α2,6-sialic acid, suggesting it may serve as a co-receptor for 

viral attachment (Stuart and Brown, 2007).  Furthermore, sequential treatment of susceptible 

cells with neuraminidase and O-glycanase to remove O-linked glycans results in a 30% 

reduction in FCV binding supporting the hypothesis that carbohydrate moieties may act as 

co-receptors to enhance interaction between FCV and fJAM-A (Kreutz et al., 1994). 

Following attachment the virus is taken into the cell via receptor mediated endocytosis in 

clathrin-coated vesicles (Stuart and Brown, 2006). Release of the viral genome into the 

cytoplasm requires acidification of the endosome as shown by blocking of the process using 

endosomal acidification inhibitors (Stuart and Brown, 2006). 

1.4.1.7.2. Viral RNA synthesis 

As a Baltimore group IV virus, FCV replication takes place within the cytoplasm associated 

with intracellular membranes (Green et al., 2002).  Translation and proteolytic cleavage of 

ORF1 from viral genomic RNA produces the non-structural replicase proteins involved in 

RNA synthesis.  Using genomic RNA, a negative-sense RNA strand is produced by the viral 

replicase enzymes in concert with host cellular factors (Green, 2007; Karakasiliotis et al., 

2006).  The negative-sense strand in turn serves as a template for the production of full 

length genomic and a 2.4 kb subgenomic mRNA (Herbert et al., 1996). 

1.4.1.7.3. Translation of viral proteins 

Translation of mRNA is dependent on the presence of cis-acting factors, most commonly a 5’ 

cap and a 3’ poly(A) tail, involved in recruiting and assembling the translation initiation 
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complex (Kapp and Lorsch, 2004).  For FCV, which lacks a 5’ cap, VPg covalently linked to 

the 5’ end of genomic and subgenomic RNA acts as a cap substitute to enable initiation of 

translation of ORF1 from genomic RNA and ORF2 from subgenomic mRNA (Goodfellow et 

al., 2005).  ORF3 is translated from the 3’ end of the subgenomic mRNA through a 

termination/reinitiation process (Luttermann and Meyers, 2007).  TURBS, located at the 3’ 

end of ORF2, is essential for translation of ORF3, acting to bind the post-termination 

ribosome following translation of ORF2 and therefore increase the chance of reinitiation 

(Luttermann and Meyers, 2007, 2009).  

1.4.1.7.4. Assembly and release 

The major capsid protein VP1 has been demonstrated to assemble spontaneously into virus 

like particles (VLPs) in the absence of other viral proteins, however these particles often lack 

cup shaped surface depressions (Di Martino et al., 2007).  Co-expression of VP2 with VP1 

results in the formation of VLPs with a similar size and morphology to native FCV virus 

particles (Di Martino and Marsilio, 2010).  Isopycnic separation of purified virus demonstrates 

a dual population of morphologically identical virus particles with differing densities with the 

higher density population consisting of viral particles containing the full length genome while 

the low density particles contain the sub-genomic mRNA (Neill, 2002).  The sequence 

directing RNA packaging is unknown, however given the encapsidation of subgenomic RNA 

it likely located within ORF2, ORF3 or the 3’ UTR. The mechanisms of viral release are 

likewise incompletely understood. 

1.4.2. Epidemiology 

FCV is a ubiquitous viral pathogen of domestic cats, with a prevalence reported to range 

from 10 to 75% depending on the nature of the study population (Bannasch and Foley, 2005; 

Binns et al., 2000; Coutts et al., 1994; Coyne et al., 2006a; Zicola et al., 2009).  Although 

there are some conflicting epidemiological associations, FCV prevalence, as determined by 

virus isolation and/or PCR, has been shown to be higher in young animals (Coutts et al., 

1994; Coyne et al., 2006a; Pedersen et al., 2004; Porter et al., 2008; Wardley et al., 1974), 

conditions of poor husbandry or (Bannasch and Foley, 2005; Harbour et al., 1991; Helps et 

al., 2005) high population density, (Bannasch and Foley, 2005; Porter et al., 2008; Wardley 

et al., 1974), and in animals with upper respiratory tract infections. (Binns et al., 2000; Helps 

et al., 2005; Porter et al., 2008).  Additionally, FCV is also more prevalent in healthy cats 

from environments (e.g. catteries) with a recent history of upper respiratory tract disease 

(Helps et al., 2005).  Breed related differences in FCV prevalence have been reported, 

however these studies did not take into account potential confounding factors such as 

environment and management practices (Coutts et al., 1994; Wardley et al., 1974).  Several 

studies have shown vaccination status does not have a significant effect on whether FCV is 
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isolated (Binns et al., 2000; Coyne et al., 2006a), findings consistent with data showing 

prevalence prior to the introduction of vaccination is comparable to modern prevalence rates 

(Coutts et al., 1994; Wardley et al., 1974). 

1.4.2.1. Transmission 

Transmission of FCV is primarily via the oral, nasal, or conjunctival route through direct 

contact with infected cats or indirectly via contaminated fomites (Radford et al., 2007).  The 

virus is relatively hardy in the environment and has been demonstrated to remain infectious 

for several weeks in a dried state (Doultree et al., 1999).  A study by Wardley and Povey 

(1977a) failed to detect infectious aerosols from acutely infected cats suggesting that, under 

conditions of normal respiration, true aerosol transmission of FCV is unlikely. A potential role 

for fleas as mechanical vectors of FCV was reported by Mencke et al. (2009) as infectious 

virus was recovered from fleas and their faeces after feeding on blood spiked with FCV.  It is 

unclear whether this is a significant route of exposure as the magnitude and duration of FCV 

viraemia in naturally affected cats may be insufficient for effective transmission. 

1.4.2.2. Shedding 

FCV is shed primarily in oronasal and ocular secretions where it can be detected as early as 

24 hours post infection (Wardley and Povey, 1977b).  Analysis of shedding patterns show 

most cats shed virus for at least 30 days following infection after which the proportion of viral 

carriers follows an exponential decline with a half-life of approximately 75 days (Wardley and 

Povey, 1977b).  The primary site of viral persistence in FCV infected cats is the mucosa of 

the tonsil and adjacent fossa (Dick et al., 1989).  A longitudinal study of FCV shedding in 

multiple catteries revealed shedding patterns of individual cats similar to those of FCoV, with 

some cats shedding consistently, some intermittently, and others never shedding the virus 

(Coyne et al., 2006a).  Although Coyne et al. (2006a) identified continually shedding cats, it 

is unclear whether these are true persistent infections or a consequence of continual 

infection and reinfection with the same or different strain of FCV, a situation that would not be 

unexpected given the tenuous nature of immunity to FCV.  FCV has also been isolated from 

urine (Rice et al., 2002) and faeces (Mochizuki, 1992), however shedding via these routes is 

not thought to be epidemiologically important. 

1.4.3. Pathogenesis and clinical disease 

Infection with FCV typically involves the oral cavity and upper respiratory tract and is 

associated with disease of moderate morbidity and low mortality (Gaskell et al., 2012).  Many 

infected cats remain asymptomatic, while in those that do display clinical signs the most 

common finding is fever, oropharyngeal ulceration, and mild upper respiratory tract disease.  

In addition to the classical presentation of FCV infection, a number of distinct disease 
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syndromes have been associated with FCV.  In some cases these syndromes have been 

experimentally reproduced using specific FCV isolates, suggestive of the existence of distinct 

biotypes.  In addition to strain variations, the type and severity of clinical manifestations 

following FCV infection have also been shown to be dependent on the route of infection 

(Poulet et al., 2000; TerWee et al., 1997), challenge dose (Povey and Hale, 1974), and the 

age of infection, with more severe disease typically being seen in kittens. 

1.4.3.1. Oral and upper respiratory tract disease 

Clinical signs of oral and upper respiratory disease are commonly reported in cats with FCV, 

particularly in young animals.  Oral lesions can be present anywhere within the oral cavity 

(Figure 1.9a and b) but are most common on the margins of the tongue.  Lesions may 

appear as vesicles, however they are most often visualised as ulcers/erosions following 

necrosis of the overlying epithelium (Radford et al., 2007).  Histologically the ulcers show 

marked inflammatory cell infiltrate with a fibrinopurulent exudate (Povey and Hale, 1974).  

Clinical signs of upper respiratory disease such as sneezing and nasal discharge may be 

seen in infected cats, however the severity of these signs is typically less than that 

associated with feline herpesvirus infection (Gaskell et al., 2012). 

 

Figure 1.9: Oral lesions associated with feline calicivirus infection.  Asymptomatic 

uncomplicated tongue ulcer in a kitten (a).  Tongue ulcer (b) and inflamed palatoglossal folds 

(c) in a cat with FCGS.  Severe gingivitis (disproportionate to the amount of tartar on the 

teeth) associated with a FCV infection (d). Images courtesy of Dr Anne Fawcett.  
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1.4.3.2. Lower respiratory tract disease 

FCV has been documented to cause lower respiratory tract disease alone, or in combination 

with other pathogens (Foley et al., 2002; Hoover and Kahn, 1975).  Experimental studies 

have demonstrated FCV stains of different virulence vary greatly in their ability to cause 

pneumonia using aerosol challenge (Hoover and Kahn, 1973, 1975).  These studies utilising 

artificially generated aerosols have likely overestimated the significance of FCV induced 

pneumonia in natural infections where true aerosol transmission of high titres of FCV is 

unlikely due to the cats limited ability to produce infectious aerosols during normal respiration 

(Wardley and Povey, 1977a).  The significance of FCV as a cause of lower respiratory tract 

disease under field conditions, where oronasal exposure is likely, is unclear. 

1.4.3.3. Limping syndrome 

FCV has been associated with a transient acute febrile lameness syndrome in cats following 

natural or experimental infection, and following modified live virus vaccination (Bennett et al., 

1989; Dawson et al., 1994; Pedersen et al., 1983; Willoughby, 1989).  FCV-associated 

lameness was the most commonly reported adverse vaccine reaction according to a study by 

Dawson and colleagues (1993), however as reporting of adverse vaccine reactions in cats is 

typically dependent on owners observing and recognising the problem, an outwardly obvious 

clinical sign such as lameness may be overrepresented when compared to more subtle or 

difficult to observe changes such as pyrexia or oral ulceration. The condition is classically 

described as a shifting leg lameness that occurs contemporaneous with the onset of fever 

with a typical duration of 48 to 72 h (Pedersen et al., 1983).  No long term adverse sequelae 

have been reported. 

An early study by Pedersen et al. (1983) failed to demonstrate any histopathological changes 

or immunohistochemical evidence of virus in affected joints, however later work 

demonstrated gross and microscopic evidence of acute synovitis (Dawson et al., 1994).  

Immunohistochemistry of affected joints has demonstrated the presence of viral antigen 

within macrophage like cells in the synovium (Bennett et al., 1989; Dawson et al., 1994), and 

infectious virus has been isolated from the joints of affected cats following natural contact 

exposure (Dawson et al., 1994).  The presence of IgG, IgM, and complement within synovial 

macrophages as reported by Bennett et al. (1989) suggests that viral antigen may be present 

in the joints in the form of immune complexes.  No evidence of synovial membrane vasculitis 

has been reported however, making it unlikely that a type III hypersensitivity is responsible 

for the reported clinicopathological changes (Dawson et al., 1994). 
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1.4.3.4. Virulent systemic disease 

Pedersen and colleagues reported an outbreak of FCV-associated haemorrhagic-like fever in 

cats in Northern California (Pedersen et al., 2000).  This clinical syndrome, now referred to 

as FCV-associated virulent systemic disease (FCV-VSD), has subsequently been reported 

from a number of geographically isolated regions (Hurley et al., 2004; Meyer et al., 2011; 

Schorr-Evans et al., 2003; Schulz et al., 2011).  Analysis of FCV isolates from different 

epizootics has shown each to be genetically unique suggesting they evolved locally from less 

pathogenic viruses (Abd-Eldaim et al., 2005; Foley et al., 2006; Hurley et al., 2004; Ossiboff 

et al., 2007; Schulz et al., 2011). Most reported cases have occurred as outbreaks in a 

shelter or veterinary hospital setting, however sporadic individual cases have been reported 

(Meyer et al., 2011). It is unclear whether FCV-VSD represents a recent emergence of more 

virulent biotypes into the cat population, or whether the increased incidence of epizootics is 

simply a reflection of increased recognition of severe manifestations of FCV disease which 

have previously been reported to occur sporadically (Ellis, 1981; Love and Baker, 1972).  If it 

is the former it remains to be determined what has changed in the host-pathogen-

environment balance to allow the sudden and continued emergence of VSD strains. 

Clinically, FCV-VSD commonly manifests with signs typical of those associated with 

oral/respiratory FCV disease, usually with a more marked and prolonged pyrexia.  Additional 

signs may include facial and limb oedema, jaundice, coagulopathies, pneumonia, and a 

crusting or alopecic dermatoses primarily involving the face, feet, or ears (Radford et al., 

2007).  Case mortality rates of greater than 50% has been reported in naturally and 

experimentally infected cats, and ominously vaccination with the current generation FCV 

vaccines provides little or no protection (Coyne et al., 2006b; Hurley et al., 2004; Pedersen et 

al., 2000; Schulz et al., 2011).  Adult cats are more severely affected than kittens (Coyne et 

al., 2006b; Hurley et al., 2004; Pedersen et al., 2000; Reynolds et al., 2009; Schulz et al., 

2011), a finding reminiscent of another calicivirus, rabbit haemorrhagic disease virus, that 

has a mortality rate greater than 90% in adult European rabbits, but which causes 

asymptomatic or mild disease in young kits (Ward et al., 2010).  Recent studies have 

implicated differences in the innate immune response between adult rabbits and kits to viral 

infection as the cause of the age related resistance, based on the finding that 

immunosuppressed kits died from RHDV infection similarly to naïve adult rabbits (Marques et 

al., 2014).  These findings may provide clues to unravelling the pathogenesis of FCV-VSD. 

The molecular basis for increased virulence in VSD isolates is not known.  Sequence 

analysis of VSD isolates has shown all to be genetically distinct and has failed to identify 

consistent mutations associated with increased virulence (Abd-Eldaim et al., 2005; Foley et 

al., 2006; Hurley et al., 2004; Ossiboff et al., 2007; Schulz et al., 2011).  A limited study of the 
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antigenic properties of two VSD isolates based on virus neutralisation assays revealed they 

shared a degree of homology at the neutralising epitope level (Abd-Eldaim et al., 2005).  In 

vitro, VSD isolates demonstrate more rapid cytopathic effect and higher viral yields indicating 

more efficient infection and replication in CRFK cells (Ossiboff et al., 2007).  These findings 

may in part account for the increased virulence seen in vivo with these viruses.  

1.4.3.5. Feline chronic gingivostomatitis syndrome (FCGS) 

Feline chronic gingivostomatitis syndrome (FCGS), estimated to account of up to 0.7% of all 

first opinion feline cases (Healey et al., 2007), is characterised by chronic and often marked 

inflammatory lesions affecting both gingival and non-gingival oral mucosa (White et al., 

1992).  The aetiopathogenesis of FCGS is incompletely understood, however it is generally 

considered multifactorial.  Alterations in local cytokine expression (Harley et al., 1999) and 

salivary and serum immunoglobulin concentrations (Harley et al., 2003) are seen in cats with 

FCGS suggesting an immunological basis to the condition.  A number of viral and bacterial 

agents have also been implicated in the pathogenesis of FCGS, along with non-infectious 

factors such as diet, breed predisposition, and stress (Diehl and Rosychuk, 1993).  Increased 

CD8+:CD4+ ratio is seen in lesions, a finding consistent with a cell-mediated antiviral 

response (Harley et al., 2011).  Of the viruses suggested to be involved in the pathogenesis 

of FCGS, the greatest evidence, albeit circumstantial, is for a role of FCV.  Numerous studies 

have shown a higher prevalence of chronic FCV infections amongst cats with FCGS 

compared to control cats (Belgard et al., 2010; Dowers et al., 2010; Knowles et al., 1989; 

Lommer and Verstraete, 2003; Martijn, 2009; Reubel et al., 1992; Thompson et al., 1984).  

Cessation of FCV shedding has been reported to be coincident with a complete resolution of 

clinical signs in two case reports, providing further circumstantial support for a role of FCV in 

FCGS (Addie et al., 2003a; Southerden and Gorrel, 2007).  Experimental infection of cats 

with FCV isolated from cats with FCGS can result in acute gingivitis/stomatitis, however 

chronic disease reminiscent of FCGS has not been experimentally recreated (Knowles et al., 

1991; Reubel et al., 1992; Truyen et al., 1999).  Given these results, it is likely that for FCV to 

be a primary cause of FCGS requires additional cofactors, for example a genetic 

predisposition or an environmental trigger.  Alternatively, it may be that the chronicity of FCV 

infection in cats with FCGS is attributable to the virus exploiting the altered microenvironment 

created by the mucosal inflammation triggered by another disease process.  In this case FCV 

may represent a perpetuating factor for the disease rather than a primary cause. 

1.4.4. Current management and treatment options 

Prophylactic vaccination is the most important tool in the control of FCV disease in domestic 

cats.  The vaccination guidelines group of the World Small Animal Veterinary Association 

currently list the FCV vaccine as a core vaccine (Day et al., 2010).  FCV vaccines, both 
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modified live and inactivated, generally provide protection against or reduce the severity of 

clinical disease, but do not prevent infection nor the development of a carrier state (Kahn et 

al., 1975; Knowles et al., 1991; Pedersen and Hawkins, 1995).  Antigenic variability of FCV is 

problematic for vaccine design, although some strains such as F9 or 255 are more broadly 

cross protective than others (Porter et al., 2008).   

Treatment of FCV disease is symptomatic, consisting primarily of nutritional and fluid support 

and good nursing care (Gaskell et al., 2012).  In severe cases of FCV-associated respiratory 

disease prophylactic antibacterial therapy may be indicated to control or prevent secondary 

bacterial infection (Gaskell et al., 2012).  Specific antiviral treatment options for FCV are 

extremely limited despite several agents demonstrating in vitro efficacy against FCV 

replication (Fulton and Burge, 1985; McCann et al., 2003; Povey, 1978b; Taira et al., 2005; 

Truyen et al., 2002).  In many cases of FCV infection the lack of effective antiviral 

therapeutics is not a significant concern due to the mild and self-limiting nature of the 

associated disease.  For more severe FCV disease manifestations however, such as virulent 

systemic disease, lower respiratory tract disease, and perhaps FCGS, the lack of efficacious 

antiviral drugs is problematic.  

Ribavirin was demonstrated to markedly inhibit FCV replication in culture (Povey, 1978b) 

however in vivo use of this drug in a challenge experiment was associated with a lack of 

clinical efficacy (Povey, 1978a).  Ribavirin treatment did not alter the clinical course of 

disease, nor did it shorten the duration of viral shedding.  Additionally the use of ribavirin in 

cats is associated with significant toxicity, particularly haematologic toxicity resulting in 

thrombocytopaenia, leukopaenia, and anaemia (Povey, 1978a; Weiss et al., 1993a).   

McCann et al. (2003) reported an antiviral activity of bovine lactoferrin on FCV replication in 

vitro.  There are no controlled in vivo clinical studies of lactoferrin on FCV disease, although 

there are anecdotal reports of its use in cats.  Addie and colleagues (2003a) reported a 

single case study in which topical bovine lactoferrin was used as part of a treatment regimen, 

along with dietary modification, antioxidant supplementation, and thalidomide treatment, for a 

cat with chronic gingivostomatitis.  Long term treatment in this case resulted in complete 

resolution of clinical signs which was coincident with cessation of FCV shedding. Given the 

uncertain role of FCV in the pathogenesis of FCGS, the multiple simultaneous therapeutic 

interventions, and the natural history of FCV clearance, it is difficult to ascribe any effect of 

lactoferrin on FCV replication in this case. 

Both feline and human interferons have demonstrated in vitro antiviral effects against FCV 

(Fulton and Burge, 1985; Taira et al., 2005; Truyen et al., 2002).  A small experimental study 

showed some benefit in terms of reducing the duration and severity of typical oral/respiratory 

FCV disease in cats treated intravenously with recombinant feline interferon omega (rFeINF-
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ω) (Ninomiya et al., 1991), however the expense of rFeINF-ω and the typically mild and 

acute nature of oral/respiratory FCV disease will likely preclude the widespread use of this 

treatment for this disease manifestation.  A recently conducted randomised double-blinded 

study demonstrated an improvement in clinical parameters (lesions scores and pain 

reduction) in FCV positive cats with refractory stomatitis treated with oral rFeINF-ω 

compared to prednisolone treated control cats (Hennet et al., 2011).  Unfortunately, despite 

current FCV infection being an inclusion criterion, this study did not perform follow up viral 

testing, leaving open the possibility that clinical improvement was due to the 

immunomodulatory effects of interferon treatment rather than an antiviral effect.  Southerden 

and Gorrel (2007) reported the successful resolution of refractory chronic gingivostomatitis 

associated with clearance of FCV in a cat following SC and oral rFeINF-ω treatment.  

Clarification of the role of FCV in the pathogenesis of FCGS is needed to expound the 

mechanism, be that immunomodulatory or antiviral effects, through which rFeINF-ω may 

benefit affected cats. 

The emergence and continued appearance of virulent systemic feline calicivirus disease in 

the last decade has spurred the development of a novel ON-based anti-calicivirus 

therapeutic.  Smith et al. (2008) recently reported on the use of a feline calicivirus specific 

antiviral phosphorodiamidate morpholino oligomers (PMO) in three naturally occurring 

outbreaks of FCV-VSD.  PMOs were highly efficacious; with 47/59 PMO treated cats 

surviving compared to only 3/31 non-PMO treated cats.  PMO treatment cats also 

demonstrated reduced viral shedding and a more rapid clinical recovery.  Therefore the use 

of PMO in VSD shows considerable promise as a first line treatment for future outbreaks to 

minimise morbidity and mortality, and also highlights the potential benefits of the timely 

administration of efficacious antivirals for FCV-associated disease. 

1.5. SCOPE OF THIS THESIS 

Feline coronavirus and feline calicivirus are two important viral pathogens of domestic cats.  

In many cases infection with either of these viruses results in mild or sub-clinical disease, 

however more severe, and potentially fatal disease manifestations are seen.  As discussed, 

there are currently no specific antiviral therapeutics for FCoV or FCV-associated disease.  

The overriding aim of the work presented in this thesis was to address this shortfall by 

identifying antiviral compounds capable of inhibiting FCoV and FCV in vitro, as the first step 

towards developing therapeutic options that are clinically useful for treating these common 

infections of cats. 

To achieve this aim we tested two antiviral strategies.  The first of these was to identify and 

characterise small molecule compounds capable of inhibiting FCoV or FCV in vitro, from a 
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panel of compounds previously demonstrated to have antiviral properties against other 

viruses.  To perform the screening required the development and optimisation of robust and 

reliable cell-based CPE inhibition assays suitable for assessing the antiviral efficacy of 

compounds against FCoV and FCV.  Whilst the primary goal was to develop an assay for low 

to medium throughput screening, a secondary objective of assay development was to 

develop a “high throughput ready” assay for potential future studies.  The antiviral effects of 

the candidate compounds identified during screening were confirmed with orthogonal testing 

and their antiviral effects further characterised with a series of studies to examine features 

relevant to their in vivo application, including efficacy against different strains (FCoV and 

FCV), the effect of time of addition (FCoV), and the effect of combination therapy with 

rFeINF-ω (FCV). 

The second strategy tested was antiviral RNA interference.  siRNAs targeting conserved 

regions of the FCoV and FCV viral genomes were designed and tested for antiviral efficacy.  

Again effective candidate siRNAs were further characterised to inform their potential in vivo 

use.  The effect of siRNA concentration and combination therapy was examined for both 

FCoV and FCV.  For FCoV, experiments were conducted to investigate the ability of 

combination therapy to delay or prevent the emergence of resistant variants during 

treatment.  A structural siRNA variant, Dicer-substrate siRNAs, were also tested to determine 

if they provided benefits in terms of potency and duration of action over canonical siRNAs 

targeted at the same motif for FCoV.  For FCV experiments were performed using a panel of 

recent field isolates to determine if they are likely to be useful against currently circulating 

viruses. 
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2 

2 General materials and methods 

2.1. BUFFERS AND SOLUTIONS 

The following reagents were used within experiments described throughout this thesis and 

are noted in the text by their abbreviated name in the left hand column below.  Further details 

of reagent preparation are provided in Appendix A for those reagents marked with an 

asterisk (*). 

Agarose plaque 

assay overlay 

media * 

1% (w/v) agarose (Amresco, Salon, OH, USA) and 2% (v/v) FBS 

(Sigma-Aldrich, Castle Hill, NSW, Australia) in DMEM (Sigma-Aldrich) 

 

CMC plaque 

assay overlay 

media * 

0.9% (w/v) high viscosity (1500 ± 400 cP) carboxymethylcellulose 

(BDH Lab Reagents, Poole, England) and 2% (v/v) FBS in DMEM  

 

Cryopreservation 

media 

20% (v/v) FBS, 10% (v/v) glycerol (Sigma-Aldrich) in DMEM 

DMEM Dulbecco’s modified eagles medium, with 1000 mg.L-1 glucose, L-

glutamine and sodium bicarbonate (Sigma-Aldrich)   

 

DMEM-10 10% FBS (v/v) in DMEM 

 

DMEM-2 2% FBS (v/v) in DMEM 

 

FA gel running 

buffer  

20 mM 2-[N-morpholino] propanesulfonic acid (Sigma-Aldrich), 5 mM 

sodium acetate (Sigma-Aldrich), 1 mM EDTA (Sigma-Aldrich), 2% (v/v) 

formalin (Sigma-Aldrich) in nuclease-free water (Amresco) 
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FBS Foetal bovine serum (Sigma-Aldrich) 

 

Methanol-free 

10% formalin * 

 

4% (w/v) paraformaldehyde (Polysciences, Warrington, PA, USA) in 

PBS 

PBS * Calcium and magnesium free phosphate buffered saline: 136.9 mM 

NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4 

(Sigma-Aldrich) 

 

Plaque assay 

fixation media 

 

20% (v/v) formalin (Sigma-Aldrich) in PBS, pH 7.4 

Plaque assay 

staining solution 

 

1% (w/v) crystal violet (Merck, Kilsyth, Australia) in R/O water 

Resazurin stock 

solution (4 x)  

 

1.76 mM resazurin sodium salt (Sigma-Aldrich) in DMEM 

SRB destain 

solution 

 

10 mM tris (Sigma-Aldrich) in R/O water, pH 10 

SRB fixation 

solution  

 

10% (w/v) trichloroacetic acid (Univar, Auburn, Australia) in R/O water 
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SRB staining 

solution 

 

0.2% (w/v) sulforhodamine B (Sigma-Aldrich) in 1% (v/v) acetic acid in 

R/O water 

SRB wash 

solution 

 

1% (v/v) acetic acid (Biolab Scientific, Australia) in R/O water 

TAE buffer * 

 

0.04 M Tris-acetate (Sigma-Aldrich), 0.001 EDTA (Sigma-Aldrich) in 

nuclease-free water 

TE buffer 10 mM tris; 1 mM EDTA, pH 7.4 (Sigma-Aldrich) 

 

Trypan blue 

 

0.4% (w/v) trypan blue (Sigma-Aldrich) in PBS 

Trypsin/EDTA 0.25 % (w/v) Trypsin, 0.02% (w/v) EDTA in PBS (Sigma-Aldrich) 

 

Ultrapure water Generated with a MilliQ PF plus ultrapure water purification system 

(Millipore) with the following specifications: resistivity = 18.2 MΩ-cm at 

25°C; total organic carbons < 10 parts per billion; endotoxin log 

reduction = 5log; bacteria , < 1 colony forming unit.ml-1  

 

Viral transport 

media 

1% (v/v) FBS, 100 IU penicillin (Sigma-Aldrich), 0.5 mg.ml-1 

streptomycin (Sigma-Aldrich) in DMEM 

 

2.2. CELL CULTURE METHODS 

2.2.1. Cell line 

Crandell Rees Feline Kidney cell line (CRFK) was acquired from the Faculty of Veterinary 

Science, The University of Melbourne at passage number 35.  CRFK cell line, initiated in 

1964, is a immortalised epithelial-like cell line derived from renal cortical tissue of a healthy 

10 to 12 week old female domestic shorthaired kitten (Crandell et al., 1973).  For routine 

passaging cells were grown in standard tissue culture treated plastic flasks (Sarstedt, 
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Numbrecht, Germany) in DMEM-10, a growth/maintenance medium consisting of low 

glucose Dulbecco’s Modified Eagles Medium (Sigma-Aldrich, Castle Hill, NSW, Australia) 

supplemented with 10% FBS (Sigma-Aldrich).  Cells were cultured in a humidified incubator 

at 37°C in 5% CO2 in air.  All sterile manipulations were performed in a class II biosafety 

cabinet using sterile dedicated cell culture glassware and pipettes or sterile disposable 

plastic consumables.  To minimise the risk of contamination, the biosafety cabinet was 

disinfected with 70% (w/v) ethanol in water and exposed to UV radiation for 20 min before 

and after use.  As a further precaution against viral contamination the biosafety cabinet was 

disinfected with 1% solution of Virkon S (DuPont, Sudbury, Suffolk, UK) with a 10 minute 

contact time following cell culture work involving viruses or clinical samples. 

2.2.2. Cell bank 

To ensure a ready supply of healthy low passage cells, a cell bank system consisting of 

master and working stocks was implemented.  The initial aliquot of cells was extended by 

routine passage in 75 cm2 flasks and cells subsequently cryopreserved as described in 

Section 2.2.5 to produce the master cell stock.  Aliquots of master cell stock were similarly 

expanded and cryopreserved as required to produce aliquots of working cell stocks.  The 

expanded working cell stocks were designated as working passage zero. All experiments 

were conducted with cells between working passage 4 and 15. 

2.2.3. Cell propagation 

Cells were harvested and passaged when approximately 90 to 95% confluent.  To harvest 

cells, culture media was discarded and the monolayers washed with calcium- and 

magnesium-free phosphate buffered saline (PBS) (1 ml per 5 cm2).  PBS was discarded and 

0.25% trypsin / 0.02% EDTA solution (Sigma-Aldrich) (0.5 ml per 25 cm2) added and allowed 

to stand for 30 s.  Trypsin / EDTA solution was subsequently discarded and the flasks 

incubated at room temperature for approximately 2 min.  Once the cells had rounded up and 

detached they were resuspended in fresh DMEM-10 and the solution gently triturated several 

times with a graduated pipette to ensure a single cell suspension.  For routine passaging, 

cells were split at a ratio of 1:3-1:8 depending on experimental requirements.  For 

experiments requiring seeding with precise cell numbers the harvested cells were quantified 

as detailed in Section 2.2.4 and diluted to the appropriate concentration in DMEM-10. 

2.2.4. Cell quantification and assessment of viability 

Cells were quantified and assessed for viability using the trypan blue exclusion method and 

manual counting with a haemocytometer.  To perform this test an equal volume of cell 

suspension and 0.4% trypan blue were mixed and 10 µl of this suspension was loaded onto 

an improved Neubauer haemocytometer (Weber, England).  Cells were visualised using an 
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Olympus BH2 light microscope (Olympus, Melville, NY, USA) with 100 x magnification, and 

the number of viable (bright refractile cells) and non-viable (non-refractile blue cells) counted 

in the four 1 mm2 corner squares (volume = 0.1 µl per square).  To improve the accuracy of 

counting, the original cell suspension was diluted in PBS as required to result in 

approximately 50 to 100 cells per large corner square.  The concentration of the original cell 

suspension was then calculated according to the following formula: 

𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑐𝐶𝐶𝐶𝑐.𝑚𝐶−1) =
𝑐𝑐𝑐𝑐𝐶 𝑐𝐶𝐶𝐶𝑐 𝑐𝑐𝑐𝑐𝑐𝐶𝑐

4
 ×  𝑐𝑐𝐶𝑐𝑐𝑐𝑐𝑐 𝑓𝑐𝑐𝑐𝑐𝑐 × 10,000 

The viability of the cell suspension was calculated as follows: 

% 𝑣𝑐𝑐𝑣𝑐𝐶𝑐𝑐𝑖 =
𝑣𝑐𝑐𝑣𝐶𝐶 𝑐𝐶𝐶𝐶𝑐 𝑐𝑐𝑐𝑐𝑐𝐶𝑐
𝑐𝑐𝑐𝑐𝐶 𝑐𝐶𝐶𝐶𝑐 𝑐𝑐𝑐𝑐𝑐𝐶𝑐

 ×  100 

2.2.5. Cryopreservation 

For cryopreservation cells were harvested in the log phase of growth.  Prior to 

cryopreservation the quantity and viability of harvested cells was determined as in Section 

2.2.4 to ensure greater than 90% viability prior to freezing.  The cell suspension was 

centrifuged at 400 x g for 5 min and the pellet resuspended in cryopreservation media 

consisting of 20% FBS and 10% glycerol in DMEM to a concentration of 4 x 106 cells.ml-1.  

Aliquots were frozen at controlled cooling rate of approximately -1°C.min-1 by placing 

cryovials (Corning Inc., Corning, NY, USA) in a 5100 Cryo 1°C Freezing Container, “Mr 

Frosty”, (Nalgene, Penfield, NY, USA) at -80°C overnight.  Cryovials were subsequently 

transferred to the vapour phase of liquid nitrogen for long term storage.  For quality control, a 

vial of cryopreserved cells from each batch was revived as detailed below after 24 h storage 

in liquid nitrogen to test viability of cryopreserved cells.  

To recover cells, cryovials were removed from liquid nitrogen storage and transferred 

immediately to a water bath at 37°C for rapid thawing.  The cell suspension was transferred 

to a sterile 10 ml centrifuge tube (Sarstedt) and diluted with pre-warmed DMEM-10.  To 

minimise osmotic shock, 2 ml DMEM-10 was added dropwise, with stirring of the suspension 

between each drop.  A further 7 ml DMEM-10 was added to suspension, and sample 

centrifuged at 200 x g for 8 min at room temperature.  The supernatant was discarded, the 

cells resuspended in fresh DMEM-10, and transferred to a tissue culture flask.  Post-thawing 

trypan blue cell viability staining was performed as in Section 2.2.4 and only samples with 

post-thaw viability >80% were used for subsequent experiments. 
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2.3. VIROLOGICAL METHODS 

2.3.1. Feline coronavirus (FCoV) 

Two strains of FCoV, FIPV WSU 79-1146 (FIPV1146) and FECV WSU 79-1683 

(FECV1683), acquired from the American Type Culture Collection (Virginia, USA), were used 

in this study.  FCoV FECV1683 was originally isolated from mesenteric lymph nodes and 

intestinal washes of a 1 ½ year old female domestic shorthaired cat that died of acute 

haemorrhagic gastroenteritis (McKeirnan et al., 1981).  FCoV FIPV1146 was originally 

isolated from the liver, spleen, and lungs from a case of neonatal death in a 4-day-old male 

Persian kitten (McKeirnan et al., 1981).  Pathogenicity studies of these two isolates have 

shown that FIPV1146 is highly virulent and reliably causes signs of classic FIP in cats 

following oronasal inoculation, while FECV1683 causes a low grade fever and, in some cats, 

mild enteritis, but no signs of FIP (Pedersen, 2009; Pedersen et al., 1984).  Despite the 

dissimilar in vivo biological properties of the two isolates, a number of studies have shown 

that the two have quite similar in vitro properties in immortalised cell lines (Boyle et al., 1984; 

Dewerchin et al., 2005; McKeirnan et al., 1987). 

2.3.1.1. Propagation of FCoV 

Working stocks of FCoV were produced in CRFK using 75 cm2 or 175 cm2 tissue culture 

flasks (Sarstedt).  Tissue culture media was removed prior to addition of viral inoculum to 80 

to 90% confluent CRFK cells.  Virus was allowed to adsorb for 90 min prior to adding fresh 

DMEM-10.  Flasks were incubated at 37°C until monolayers showed > 80% CPE, wherein 

virus was harvested by scraping the remaining adherent cells and collecting the cell 

suspension.  The cell suspension was centrifuged at 1000 x g for 5 min and the supernatant 

transferred to a sterile centrifuge tube (Sarstedt) and temporarily stored at 4°C.  The cell 

pellet was resuspended in residual media and subjected to three freeze-thaw cycles.  The 

lysed cell pellet suspension and reserved supernatant were combined and centrifuged at 

2000 x g for 20 min at 4°C.  The clarified viral media was aliquoted to sterile 1.5 ml 

microtubes (Sarstedt) and stored at -80°C until use.  Fourth passage virus stocks of both 

FCoV FIPV1146 and FECV1683 were used in this study. 

2.3.1.2. Quantification of FCoV 

2.3.1.2.1. Plaque assay 

Plaque assays were performed in either 6- or 12-well plates (Sarstedt; Corning).  Plates were 

prepared by seeding 2 x 105 cells.well-1 in 2 ml DMEM-10 (6-well plate) or 6 x 104 cells.well-1 

in 1 ml DMEM-10 (12-well plate) and incubating for approximately 60 h at 37°C in 5% CO2 in 

air.  Serial log dilutions of virus prepared in DMEM were added to approximately 90% 

confluent monolayers of CRFK cells following the aspiration of culture media from the wells.  
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Virus was allowed to adsorb for 90 min, during which time the plates were gently rocked 

every 15-20 min to ensure an even spread of the viral inoculum and to prevent the 

monolayers from drying out.  After 90 min the viral inoculum was removed and cells overlaid 

with DMEM containing 2% FBS and either 0.9% carboxymethylcellulose (1 ml.well-1 in 12-

well plates) or 1% agarose (2 ml.well-1 in 6-well plates).  After 48 h cells were fixed by adding 

1 ml (12-well plate) or 2 ml (6-well plate) per well of 20% formalin in PBS for one hour at 

room temperature.  Following fixation the overlay media/formalin was discarded and the 

monolayers gently rinsed with tap water and immediately stained with 500 µl (12 well plate) 

or 1 ml (6 well plate) of 0.1% (w/v) crystal violet for 10 min.  Plates were thoroughly rinsed in 

tap water and air dried at room temperature prior to manual counting of plaques.  An 

example of a FCoV FIPV1146 plaque assay is shown in Figure 2.1. 

 

Figure 2.1: Example plaque assay of FCoV FIPV1146 using a carboxymethylcellulose 

overlay in 12-well plates.  The titre for this plate was based on the 1:104 well and was 

calculated at 1.4 x 106 pfu.ml-1.  

2.3.1.2.2. Tissue culture infective dose 50% (TCID50) assay 

Cell culture supernatant stored at -80°C was thawed at 37°C in a water bath and centrifuged 

at 1000 x g for 3 min to pellet cells/debris prior to performing the assay.  Serial log dilutions 

of clarified supernatant in DMEM were added to subconfluent monolayers of CRFK cells in 

96-well plates (Sarstedt), with four or six replicate wells per dilution. Wells were scored for 

the presence of absence of CPE 72 hpi using an Olympus CKX41 inverted phase-contrast 

microscope.  Wells showing any evidence of CPE were scored as positive.  TCID50 endpoint 

values were calculated according to the method of Reed and Muench (1938).  Examples of 

positive and negative wells are shown in Figure 2.2. 
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Figure 2.2: Feline coronavirus TCID50 assay.  Examples of (a) negative and (b) positive 

wells.  Obvious CPE consisting of cell rounding and detachment, as well as the formation of 

multinucleated syncytia are seen in positive wells.  [100 x magnification].  

2.3.2. Feline calicivirus (FCV) 

Three field isolates of feline calicivirus and the vaccine strain F9 were kindly provided as a 

gift from Professor James Gilkerson of The University of Melbourne, Faculty of Veterinary 

Science.  The field isolates were provided as a second passage while strain F9 was provided 

at an unknown passage number.  The field isolates from Melbourne have been shown to be 

phylogenetically distinct with regards to their capsid sequences (personal communication: Ms 

Natalie Job, The University of Melbourne).  Additional field isolates from Sydney, Australia, 

were collected as described in Section 2.3.2.1.  Details of the FCV isolates used in this study 

are shown in Table 2.1. 
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Table 2.1: Details of FCV isolates used in experimental studies in this thesis. * indicates 

passage 2 within our laboratory, as original passage number unknown.  

Strain Disease manifestation / site of isolation Location of 
isolation 

Passage Stock titre 

F9 Vaccine strain USA P2 * 8.85 x 108 

83E Conjunctival swab from cat with oro-
respiratory disease 

Melbourne, 
Australia 

P3 2.60 x 109 

131M Oropharyngeal swab from cat with oro-
respiratory disease 

Melbourne, 
Australia 

P3 5.25 x 108 

178N Nasal swab from cat with oro-respiratory 
disease 

Melbourne, 
Australia 

P3 3.55 x 109 

IW1E Pharyngeal swab from cat with FCGS Sydney, Australia P2 4.50 x 108 

IW10 Pharyngeal swab from cat with oro-
respiratory disease 

Sydney, Australia P2 4.35 x 108 

IW16 Swab from tongue ulcer noted as incidental 
finding during pre-general anaesthetic 
examination 

Sydney, Australia P2 3.05 x 108 

IW25 Oropharyngeal swab from a cat with 
stomatitis 

Sydney, Australia P2 4.55 x 108 

 

2.3.2.1. Isolation of FCV from clinical samples 

Oral or oropharyngeal samples were taken using sterile cotton tipped swabs moistened with 

a sterile isotonic crystalloid solution (0.9% saline or Hartmann’s solution).  Swab tips were 

immediately placed into cryovials containing 1 ml viral transport media.  Samples were stored 

at 4°C if a delay of less than 24 h occurred prior to transport to the lab, otherwise they were 

stored at -20°C until submission.  The maximum storage time at -20°C was less than one 

month, which we have previously demonstrated in our lab does not result in a loss of 

infectivity for FCV. 

Cryovials containing swab tips were vortexed for 1 min and the transport media transferred to 

a sterile 1.5 ml microtube.  Samples were centrifuged at 1000 x g for 3 min and the 

supernatant (approximately 1 ml) added to subconfluent monolayers of CRFK cells in 6- or 

12-well plates (Sarstedt / Corning).  Virus was allowed to adsorb for 2 h.  Viral inoculum was 

subsequently removed and replaced with fresh DMEM-10 supplemented with 100 units.ml-1 

penicillin and 0.1 mg.ml-1 streptomycin (Sigma-Aldrich).  Wells were monitored daily for five 

days for the development of CPE. 

To confirm FCV as the causative agent in wells showing CPE, an indirect 

immunofluorescence assay was performed.  Cells were harvested by scraping and trituration 

and 100 μl of cell suspension was used to make cytospin preparations on untreated glass 

slides using a Shandon Cytospin 2 Cytocentrifuge (Shandon Southern Products, Cheshire, 
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UK) at 63 x g (750 rpm) for 5 min.  Slides were subsequently air-dried for 30 min and the cell 

deposit outlined using a hydrophobic slide marker pen (PAP pen, Sigma-Aldrich).  Cells were 

fixed in methanol-free 10% formalin (Polysciences) in PBS for 10 min, permeabilised in 0.2% 

Triton X-100 (Sigma-Aldrich) in PBS for 5 min, and blocked with 10% FBS in PBS for 30 min 

prior to staining, with slides rinsed two times in PBS between each step.  The primary mouse 

anti-FCV monoclonal antibody clone S1-9 (Custom Monoclonals International, Sacramento, 

USA) was used at a concentration of 2 µg.ml-1 and the secondary antibody goat anti-mouse 

IgG (H/L):FITC (AbD Serotec, Kidlington, UK) used at a concentration of 6.6 µg.ml-1.  Both 

antibody staining steps were performed at 37°C in a humid chamber for 30 min with the 

slides washed three times with PBS between each step.  Finally cells were counterstained 

with 2 μg.ml-1  4’,6-diamidino-2-phenylindole (DAPI) (Invitrogen, Mulgrave, VIC, Australia) in 

PBS for 60 s, washed three times with PBS, and the slides mounted with a coverslip using 

Citifluor AF1 antifadent (Citifluor Ltd, London, UK).  Images were acquired using a BX-60F-3 

epifluorescence microscope (Olympus) with attached DP70 camera (Olympus) at 200-400 x 

magnification.  To serve as a negative control a well of mock infected CRFK cells was 

harvested and processed in parallel to the clinical isolates.  An example IFA showing (a) 

negative control cells and (b) FCV clinical isolate IW1E is shown in Figure 2.3. 

 

Figure 2.3: IFA for clinical isolates of FCV.  Panel (a) shows uninfected negative control 

cells.  Panel (b) shows FCV clinical isolate IW1E with infected cells displaying diffuse green 

(FITC) cytoplasmic staining.  Cell nuclei counterstained with DAPI are blue and appear 

normal in panel (a) while in (b) there is evidence of nuclear degeneration associated with 

viral infection [bar = 100μm]. 

2.3.2.2. Propagation of FCV 

Working stocks of FCV were prepared as described for FCoV in Section 2.3.1.1.  The 

passage number of the FCV strains used in this study is shown in Table 2.1. 
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2.3.2.3. Quantification of FCV 

2.3.2.3.1. Plaque assay 

FCV plaque assays were performed as described for FCoV in Section 2.3.1.2.1 with the 

exception that assays were only performed in 6-well plates (Sarstedt) with CMC overlays and 

the plates were fixed and plaques visualised at 36 hpi.  An example FCV plaque assay is 

shown in Figure 2.4. 

 

Figure 2.4: Example plaque assay for FCV strain F9.  Considerable variability in plaque size 

was seen for all FCV isolates tested.  In this case viral titre was determined using the 1:107 

wells.  Calculated viral titre for this plate was 8.0 x 108 pfu.ml-1 (mean 16 plaques.well-1 in 

1:107 dilution wells, 200 μl virus suspension added). 

 

2.3.2.3.2. Tissue culture infective dose 50% assay 

FCV TCID50 assays were performed as described for FCoV in Section 2.3.1.2.2.  Examples 

of positive and negative wells are shown in Figure 2.5. 
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Figure 2.5: Feline calicivirus TCID50 assay.  Examples of (a) negative and (b) positive wells.  

Obvious CPE was seen in positive wells and consisted in most cases of widespread 

destruction of the monolayer with floating dead cells often forming large aggregates [40 x 

magnification]. 

2.4. MOLECULAR BIOLOGY METHODS 

2.4.1. siRNA\DsiRNA transfection 

siRNAs were transfected into CRFK cells using the cationic lipid based transfection reagent 

Lipofectamine 2000 (Invitrogen).  Both forward and reverse transfection methods were 

utilised in this study. 

For forward transfection 6 x 104 cells.well-1 were added to 12-well tissue culture plates 

(Corning) 24 h prior to transfection.  For experiments involving immunofluorescence studies 

and for monitoring transfection efficacy, cells were plated into wells containing preplaced 

sterile 13 mm glass coverslips (ProSciTech, Thuringowa, QLD, Australia).  Transfection of 

the approximately 40-50% confluent cells was performed as per the manufacturer’s protocol.  

Briefly, using the reagent volumes detailed in Table 2.2, Lipofectamine 2000 was diluted in 

Opti-MEM I (Invitrogen) and allowed to stand for 5 min.  The dilute Lipofectamine 2000 was 

mixed with siRNAs diluted to the appropriate concentration in Opti-MEM I and the resulting 

mixture incubated at room temperature for 15 min to allow complex formation.  After 15 min 

the siRNA complexes were added to the wells and mixed by gently rocking the plate.  Cells 

were incubated at 37°C for the 6 h transfection period, following which the culture media was 

removed and the cells washed once with DMEM prior to infection.  

Reverse transfection was conducted in both 24- and 96-well plates (Sarstedt, Greiner Bio-

One) essentially as per the manufacturer’s guidelines.  siRNA / Lipofectamine 2000 

complexes were prepared as for forward transfection using the optimised reagent volumes 

detailed in Table 2.2.  The pre-prepared complexes were added to wells followed 

immediately by 1 x 104 cells.well-1 in 100 µl (96-well plate) or 8 x 104 cells.well-1 in 500 µl (24-
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well plate) cell suspension.  Plates were rocked gently to ensure mixing and even distribution 

of cells and incubated at room temperature for 30 min to minimise edge effect prior to being 

placed in an incubator at 37°C for a further 6 h.  At the end of the transfection period the 

culture media was removed by decanting (96-well) or aspiration (24-well) and the cells 

washed once with DMEM prior to infection.  The transfection protocol for DsiRNA was 

identical to that for siRNAs.  

Table 2.2: Reagent volumes per well for forward and reverse transfection protocols.  

Method Plate 
format 

Final well 
volume (µl) 

Lipofectamine 
2000 (µl) 

OptiMEM 
(µl) 

Dilute 
siRNA 

Forward 12-well 1000 2 98 100 

Reverse  24-well 1000 1.25 48.75 50 

Reverse 96-well 150 0.3 24.7 25 

 

Experiments were conducted to examine the effect of siRNA transfection on cell viability. Cell 

viability was assessed 24 h post transfection for both forward and reverse transfection 

methods using the trypan blue viability assay (Section 2.2.5) and a modification of the 

resazurin-based cell viability assay (Section 4.3.2) respectively.  For both methods the 

transfection of 100 nM siRNA was associated with no significant reduction in cell viability 

compared to mock transfected cells. 

2.4.2. Quantitative real time reverse transcriptase PCR (qRT-PCR) 

2.4.2.1. Cellular RNA extraction 

Cells were lysed in situ in Buffer RLT (QIAGEN, Doncaster, VIC, Australia), homogenised by 

vortexing for 60 s, and stored at -80°C prior to extraction.  Total RNA was extracted using 

RNeasy Mini spin columns (QIAGEN) as per manufacturer’s protocol, including an on-

column RNase-free DNase I (QIAGEN) treatment.  An aliquot of extracted RNA was diluted 

1:25 in TE buffer (Sigma-Aldrich) and optical density measured at 260 and 280 nm using a 

Beckman DU640 spectrophotometer (Beckman Coulter, Fullerton, CA, USA).  Sample purity 

was assessed via OD280/OD260 ratio, and RNA yield was calculated according to the 

following formula: 

[𝑅𝑅𝑅] 𝑐𝑛. µ𝐶−1 =  𝑂𝑂260 × 𝑐𝑐𝐶𝑐𝑐𝑐𝑐𝑐 𝑓𝑐𝑐𝑐𝑐𝑐 × 40 

RNA integrity was assessed by formaldehyde agarose (FA) denaturing gel electrophoresis.  

Horizontal slab gels were prepared at a concentration of 1.2% agarose in FA running buffer.  

To prepare the gel, agarose was added to FA running buffer without formalin and dissolved 

by heating in a microwave for approximately 1 min.  After cooling to approximately 65°C 

formalin was added (2% v/v) and the gel cast.  Samples (approximately 1 µg RNA) were 
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mixed with RNA sample loading buffer containing ethidium bromide (Sigma Aldrich) and 

incubated at 70°C for 10 min, and placed on ice for 1 min prior to loading.  RNA markers 

(Promega, Alexandria, NSW, Australia) were processed in an identical manner to the 

samples and included in each run.  Electrophoresis was carried out at 90 V for 60 to 90 min.  

Samples were visualised and imaged using a UV transilluminator (Geldoc XR, Biorad, 

Hercules, CA, USA).  Non-degraded samples demonstrate two sharp bands representing the 

28S and 18S ribosomal subunits, with the 28S/18S intensity ratio approximately two. 

2.4.2.2. Reverse transcription 

cDNA was generated from purified RNA using Superscript III (Invitrogen), a modified 

Moloney Murine Leukemia Virus reverse transcriptase in a final reaction volume of 20 µl.  For 

cellular RNA the reaction consisted of 1 µg purified RNA, 100 ng random hexamer primers 

(Promega), 2.5 µM of each dNTP (Promega), and RNase-free water (Amresco) to a final 

volume of 14.5 µl.  Samples were incubated at 65°C for 5 min to denature the RNA and 

cooled on ice for 1 min.  To this was added 5.5 µl of a mix consisting of 4.5 µl First Strand 

Buffer (Invitrogen), 20 units RNasin Plus RNase Inhibitor (Promega), and 100 units of 

Superscript III.  Using a thermal cycler (Eppendorf), tubes were incubated at 50°C for 60 min 

followed by 15 min at 70°C to inactivate the reverse transcriptase.  cDNA was stored at -

80°C until use. 

2.4.2.3. PCR primers 

Primers were designed using Primer3 software (Rozen and Skaletsky, 2000) using the 

published sequences of FCoV FIPV1146 (Accession number DQ010921) and feline GAPDH 

mRNA (Accession number AB038241) and are shown in Table 2.3.  Desalted oligonucleotide 

primers were purchased from Sigma-Aldrich in the lyophilised form.  Primers were 

reconstituted as 50 µM solutions in nuclease-free water (Amresco) and stored at -20°C.  

Working stocks of forward and reverse primers were made up as 2.5 µM solutions in 

nuclease-free water and stored at -20°C. 
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Table 2.3: Primers for FCoV qRT-PCR.  FCoV primers designed based on reported 

sequence of FCoV FIPV1146 (accession number DQ010921).  GAPDH primers designed 

based on sequence of feline GAPDH mRNA (accession number AB038241). 

Target  Primer Sequence Product size (bp) 
GAPDH   

 Forward 5’- GCGTGAACCACGAGAAGTATG-3’ 236 

 Reverse 5’- GCCAGTAGAAGCAGGGATGA-3’ 

FCoV Genome   

 Forward 5’- CGGACACCAACTCGAACTAAA-3’ 171 

 Reverse 5’- GAACCGCCGCAGCTAATAC-3’ 

Membrane mRNA   

 Forward 5’- CTTCGGACACCAACTCGAAC-3’ 274 

 Reverse 5’- GCCATAAACGAGCCAGCTAA-3’ 

Nucleocapsid mRNA   

 Forward 5’- CTTCGGACACCAACTCGAAC-3’ 202 

 Reverse 5’- GGAACAAGGTCTCTCGGACAT-3’ 
 

2.4.2.4. Quantitative real time PCR 

Each unknown sample or standard was amplified in a separate 10 µl reaction in 

quadruplicate.  The PCR reaction consisted of 1 µl of a 1:10 dilution of cDNA, 2 µl 5 x GoTaq 

Colorless Reaction Buffer (Promega), 2.5 pmol forward and reverse primers, 2.5 nmol of 

each dNTP, 0.25 units GoTaq DNA polymerase (Promega), 1 µl 1:1000 SYBR Green 

(Invitrogen), and 25 µmol (GAPDH and FCoV genome targets) or 10 µmol (membrane and 

nucleocapsid mRNA targets) MgCl2.  qRT-PCR reactions were performed using a Rotor-

Gene 3000 cycler (Corbett Life Science, Mortlake, NSW, Australia) with SYBR green signal 

acquisition using 470/20 (excitation) and 510/10 (emission) band-pass filters.  Cycling 

conditions for GAPDH, FCoV genome, and nucleocapsid mRNA were as follows: initial 

denaturation of DNA at 95°C for 2 min, 30 cycles of 30 s at 95°C, 30 s at 62°C, and 30 s at 

72°C, followed by a final extension at 75°C for 30 s.  Cycling conditions for amplifying 

membrane mRNA were identical with the exception of a 45 s annealing time during cycling.  

A post amplification melt curve analysis was performed from 74°C to 96°C at 10 s per degree 

to confirm product specificity for all reactions. 

2.4.2.5. Preparation of PCR standards for quantification 

PCR products were produced in 50 µl reactions using the optimised conditions described in 

Section 2.4.2.4 with the exception that SYBR Green was replaced by additional nuclease-
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free water.  Amplified products were purified using the QIAquick PCR purification kit 

(QIAGEN) according to the manufacturer’s protocol.  A 2% (w/v) horizontal gel slab, 

containing 0.25 μg.ml-1 ethidium bromide (Sigma-Aldrich), was prepared in TAE buffer.  A 

sample of the purified PCR product and a 100 bp DNA ladder (Promega) was 

electrophoresed for 60 to 90 min at 100 V to confirm a single band of the appropriate size.  

The concentration and purity of the PCR standards was determined spectrophotometrically 

(Beckman DU640).  DNA concentration was calculated according to the following formula: 

[𝑂𝑅𝑅] 𝑐𝑛. µ𝐶−1 =  𝑂𝑂260 × 50 

Individual PCR products were diluted in nuclease free water to give a stock concentration of 

50 ng.µl-1 and stored in aliquots at -20°C until use. 

For absolute quantification the starting copy number of the standards, prior to serial dilution, 

was calculated according to the equation. 

𝐶𝑐𝐶𝑖 𝑐𝑐𝑚𝑣𝐶𝑐. µ𝐶−1 =
𝑅𝐴  × 𝑂𝑅𝑅 𝑐𝑐𝑐𝑐𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑚𝑣𝐶𝑐 𝑐𝑓 𝑣𝑐𝑐𝐶 𝐶𝑐𝑐𝑐𝑐 × 660
 

Where NA is the Avogadro constant which equals 6.022 x 1023 and the DNA concentration, 

determined from spectrophotometric analysis is given in g.µl-1.  The constant 660 in the 

denominator represents the average weight (in Daltons) of a single base pair of double-

stranded DNA. 

Five serial log dilutions of purified PCR product were amplified in quadruplicate under 

identical conditions during each PCR run.  To minimise the risk of cross contamination the 

standard PCR reactions were prepared in a separate laboratory space to unknown and no-

template control samples.  To minimise the risk of PCR product degradation, fresh standard 

dilutions were produced daily. 

2.4.2.6. qRT-PCR data analysis 

Absolute quantification of viral genomic or messenger RNA copy number was performed 

using the inbuilt functions of Rotor-Gene software (Version 6.1).  Briefly a standard curve 

was produced by plotting starting template copy number against Ct using the “auto-find 

threshold” function to maximise R2.  For reactions with appropriate R2 (>0.98) and efficiency 

values (>90% <110%) the copy number of experimental samples was interpolated from the 

standard curve.   

Viral copy number was divided by the copy number of the endogenous reference gene 

GAPDH to give a normalised target value for each sample.  Outliers within the PCR 

quadruplicates, defined as values > 3 standard deviations from the mean of the remaining 

replicates, were excluded from analysis. To calculate the relative inhibition due to treatment 
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effects this normalised value was divided by the normalised mean of the untreated sample 

and expressed as percentage inhibition. 

2.4.3. Viral sequencing 

2.4.3.1. RNA extraction 

Tissue culture supernatant was thawed at 37°C in a water bath and clarified by centrifugation 

at 2000 x g for 3 min.  RNA was extracted using the QIAamp Viral RNA mini kit (QIAGEN) as 

per the manufacturer’s protocol.  RNA was eluted in 60 µl Buffer AVE (QIAGEN) and stored 

at -80°C prior to use. 

2.4.3.2. RT-PCR 

Primers were designed using Primer3 software (Rozen and Skaletsky, 2000) to flank the 

target sites of siRNAs L2 and N1 (Table 2.4).  Reverse transcription was as described in 

Section 2.4.2.2 with the exception that a fixed volume (13 µl) of RNA was used instead of a 

fixed mass.  Conventional PCR was performed in an Eppendorf Mastercycler Gradient 

thermal cycler in 50 µl reactions containing 10 µl 5 x GoTaq Colorless Reaction Buffer, 12.5 

nmol of each dNTP, 12.5 pmol forward and reverse primers, 125 μmol MgCl2, 1.25 units 

GoTaq DNA polymerase, 2 μl cDNA, 22.75 μl nuclease-free water.  Cycling conditions were 

as follows: initial denaturation of DNA at 95°C for 5 min, 35 cycles of 30 s at 95°C, 45 s at 

58°C, and 60 s at 72°C, followed by a final extension at 72°C for 5 min. 

2.4.3.3. DNA Sequencing 

PCR products were purified prior to sequencing using the Wizard SV Gel and PCR Clean-

Up System (Promega) as per the manufacturer’s protocol.  Prior to purification 1 µl of PCR 

product was electrophoresed for 60 to 90 min at 100 V on a standard 2% (w/v) agarose 

horizontal gel slab, containing 1 μl.100 ml-1 GelRed (Biotium, Hayward, CA, USA), in TAE 

buffer.  Gels were visualised by UV transillumination (Dolphin View, Wealtec, Sparks, NV, 

USA) to confirm a single band of the appropriate size.  The optical density of the purified 

product was measured at 260 and 280 nm using a NanoDrop ND-1000 spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA).  Sample purity was assessed via 

OD280/OD260 ratio (target range 1.8-2.0) and DNA concentration was calculated according 

to the formula in Section 2.4.2.5.  Purified PCR products resuspended to 50 ng.µl-1 in 

nuclease-free water were submitted to Macrogen Inc. (Seoul, South Korea) for sequencing in 

both directions using an ABI 3730xl DNA Analyser.  Resultant electropherograms were 

aligned and edited using Geneious (Version 4.6 Biomatters Ltd, Auckland, NZ) and Bioedit 

Sequence Alignment Editor (Version 7.2.0, http://www.mbio.ncsu.edu/bioedit/bioedit.html) 

software. 
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Table 2.4: Primers for sequencing L2 and N1 target sites.  FCoV primers designed based on 

reported sequence of FCoV FIPV1146 (accession number DQ010921). 

Target Primer sequence Product size (bp) 

Leader2   

 Forward AAAGTGAGTGTAGCGTGGCTAT 452 

 Reverse AGGTCACGACGGTATTCAGG  

Nucleocapsid1   

 Forward TCGCTGAGAGGTGGTTCTTT 461 

 Reverse CTTGCCTGCAGTTTTCTTCC  

 

2.5. FLUORESCENT IMAGING METHODS 

2.5.1. Antibodies, secondary detection reagents, and cell stains 

Details of the antibodies, secondary detection reagents, and cells stains used in this thesis 

are shown in Table 2.5. 

Table 2.5: Antibodies, secondary detection reagents, and cell stains used in this thesis.  

Description Supplier Specificity 

FITC conjugated anti-FCoV antiserum 
(feline and porcine origin) 

VMRD (Pullman, WA, USA) FCoV  

Biotinylated mouse anti FCoV monoclonal 
antibody (Clone CCV2-2) 

Custom Monoclonals International 
(Sacramento, CA, USA) 

FCoV 

Mouse anti FCV monoclonal antibody 
(Clone S-19) 

Custom Monoclonals International FCV 

Streptavidin Alexa Fluor 555 Invitrogen (Mulgrave, VIC, Australia) Biotin 

Goat anti-mouse IgG  (H/L):FITC  AbD Serotec, (Kidlington, UK) Mouse IgG (H/L) 

DAPI Invitrogen DNA 

HCS CellMask Blue Invitrogen Whole cell stain 

 

2.5.2. FCoV IFA on glass coverslips 

2.5.2.1. Fixation and staining protocol 

For some experiments imaging was performed on cells grown directly on glass coverslips.   

Glass coverslips (13 mm diameter) were sterilised by dry heat (161°C for 90 min) prior to use 

and pre-placed into 12-well plates prior to cell seeding.  Details of fixation, permeabilisation, 

and staining for intracellular FCoV antigen is shown in Table 2.6. 
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Table 2.6: Details of immunofluorescence staining protocol for FCoV antigen in cells grown 

on glass coverslips (all steps at room temperature unless otherwise indicated).  

Step Details 

Fixation 10% methanol-free formalin in PBS for 10 min (coverslips fixed in situ) 

Washing x 1 in PBS 

Permeabilisation 0.2% Triton X-100 (Sigma-Aldrich) in PBS for 5 min 

Washing x 2 in PBS, stand for 5 min between rinses  

Blocking 10% FBS in PBS for 30 min at room temperature  

Primary antibody Transfer coverslips to new 12 well plates.  FITC conjugated anti-FCoV 
antiserum (50 μl.coverslip-1) for 30 min at 37°C in humid chamber 

Washing  x 2 in PBS, stand for 5 min between rinses  

Nuclear staining 2 μg.ml-1 DAPI in PBS for 60 s 

Washing x 2 in PBS, stand for 5 min between rinses 

Preparation for imaging Add 10 μl Citifluor AF1 antifadent (Citifluor Ltd, London, UK) and mount 
coverslip on glass slide.  Seal coverslip with nail varnish 

 

2.5.2.2. Image acquisition 

Mounted coverslips were imaged using a Zeiss LSM 510 Meta Confocal microscope (Carl 

Zeiss, Jena, Germany) in multi-track mode at 200 x magnification using the 488 nm line of an 

argon laser (excitation) with a 505 nm long pass filter (emission) for FITC and a 405 nm 

diode laser (excitation) with a 420-480 nm band-pass filter (emission) for DAPI as shown in 

Figure 2.6. 
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Figure 2.6: Excitation and emission spectra of fluorochromes used for imaging FITC/DAPI 

stained cells.  Blue dotted and solid lines represent excitation and emission spectra of DAPI 

respectively.  Green dotted and solid lines represent excitation and emission spectra of FITC.  

Laser source and emission optics for each fluorochrome are shown.  Image produced using 

Fluorescence Spectraviewer (Life Technologies, Mulgrave, VIC, Australia.  Em, emission; 

LP, long-pass.  

2.5.3. FCoV IFA in 96-well plates 

2.5.3.1. Fixation and staining protocol 

For some experiments cells grown in 96-well plates were fixed and stained in situ for FCoV 

antigen expression.  Imaging of 96-well plates was performed using a BD Pathway 855 

Bioimager (BD Bioscience, Franklin Lakes, NJ, USA). 

Preliminary experiments identified problems with cell loss during staining.  An experiment 

was conducted to optimise fixation and permeabilisation methods.  Fixation methods tested 

were 10% methanol-free formalin in PBS, 20% formalin in PBS, and 100% methanol.  

Permeabilisation methods tested were Triton X-100 (0.2% and 0.1% in PBS) and 100% ice-

cold methanol.  The effect of drying cells at room temperature between fixation and 

permeabilisation/staining was also tested.  As shown in Figure 2.7 different 

fixation/permeabilisation methods resulted in significant differences in cell loss.  The optimal 

method was determined to be fixation with 20% formalin for 30 min at 4°C followed 

immediately by permeabilisation with 100% ice-cold methanol for 5 min.  The different 

fixation/permeabilisation methods were demonstrated not to have a significant effect on 

antibody staining with anti-FCoV monoclonal antibody clone CCV2-2. 
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Figure 2.7: Comparison of fixation methods for staining in 96-well plates: (a) fixation with 

20% formaldehyde/permeabilisation with 100% ice-cold methanol, (b) fixation with 20% 

formaldehyde/permeabilisation with 0.2% Triton X-100.  Following fixation cells were mock 

treated with the multiple staining/washing steps to simulate the final staining procedure.  

Finally cells were stained with DAPI and imaged as a 2x2 montage with a 4 x objective using 

the BD Pathway 855 Bioimager.  Wells permeabilised with Triton X-100 (b) displayed 

significant cell loss in a peripheral ring (white arrow).  The annular nature of the cell loss 

likely reflects the effect of fluid shear forces on cells poorly fixed to the plate during the 

staining / washing procedures.  

The FCoV staining protocol for 96-well plates is detailed in Table 2.7.  To enable accurate 

cell segmentation, cells were stained with HCS CellMask Blue, a whole-cell stain, in addition 

to the nuclear stain DAPI.  Although DAPI and HCS CellMask Blue have similar excitation 

and emission spectra (Figure 2.8a) and were imaged in the same channel, differentiation of 

nuclei and cytoplasm was possible due to clear differences in staining intensity (Figure 2.8b). 
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Table 2.7: Details of immunofluorescence staining protocol for FCoV antigen in cells grown 

in 96-well plates (all steps were performed at room temperature unless otherwise indicated).  

Step Details 

Fixation 20% formaldehyde in PBS for 30 min at 4°C (100 μl.well-1) 

Permeabilisation 100% ice-cold methanol for 5 min (100 μl.well-1) 

Washing x 2 in PBS, stand for 5 min between rinses (200 μl.well-1) 

Blocking 10% FBS in PBS for 30 min (30 μl.well-1) 

Primary antibody Biotinylated CCV2-2 at 3 μg.ml-1 in 10% FBS in PBS (30 μl.well-1) for 1 h 

Washing  x 2 in PBS, stand for 5 min between rinses (200 μl.well-1) 

Detection reagent Streptavidin conjugated Alexa Fluor 555 10% FBS at 5 μg.ml-1 in PBS (30 
μl.well-1) for 1 h 

Washing x 1 in PBS, stand for 5 min between rinses (200 μl.well-1) 

Whole cell staining 1 μg.ml-1 HCS Cell Mask Blue stain (50 μl.well-1) in PBS for 1 h, with 50 μl 
of 4 μg.ml-1 DAPI in PBS (for final concentration in well of 2 μg.ml-1) added 
for the final 1 min 

Washing x 2 in PBS, stand for 5 min between rinses (200 μl.well-1) 

Preparation for imaging 100 μl PBS added per well – store plates at 4°C prior to imaging 
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Figure 2.8: Nuclear/cytoplasmic staining for image segmentation.  Cells were stained with 

HCS CellMask Blue and DAPI.  Panel (a) shows the excitation (dotted lines) and emission 

(solid lines) spectra of HCS CellMask Blue (dark blue) and DAPI (light blue).  Despite 

imaging in the same channel, identification of nuclei and cytoplasm was possible due to clear 

differences in intensity between these cellular compartments, as shown in Panel (b). Panel 

(a) produced using Fluorescence SpectraViewer (Life Technologies).  

2.5.3.2. Image acquisition 

Fluorescent imaging of cells in 96-well plates was performed using the BD Pathway 855 

Bioimager.  Images of wells were acquired using a 10 x objective (NA 0.4) using a 3 x 3 or 4 

x 4 montage with laser autofocus performed for each montage frame.  HCS Cell Mask Blue / 

DAPI, images were acquired with Ex 380/10 BP and Em 435 LP filters, and Alexa Fluor 555 

images acquired with Ex 548/20 BP and Em 570 LP filters as shown in Figure 2.9. 
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Figure 2.9: Excitation and emission spectra of fluorochromes used for imaging in 96-well 

plates.  Blue dotted and solid lines represent excitation and emission spectra of DAPI/HCS 

Cell Mask Blue respectively.  Yellow dotted and solid lines represent excitation and emission 

spectra of Alexa Fluor 555.  Excitation and emission optics for each fluorochrome are shown.  

Image produced using Fluorescence SpectraViewer (Life Technologies).  Ex, excitation; Em, 

emission; LP, long pass. 

2.5.3.3. Post-acquisition image analysis 

Image analysis was performed using the free open-source image analysis software 

CellProfiler (R11710, www.cellprofiler.org) (Carpenter et al., 2006).  Using the available 

computer resources, memory errors were encountered using CellProfiler to process the large 

montage images acquired.  To overcome this, original images were reduced in size using 

Adobe Photoshop CS5 12.0.3 x32 (Adobe, San Jose, California, USA) to a maximum X-Y 

dimension of 1500 pixels, and saved using the lossless tif format prior to analysis. 

A CellProfiler pipeline was constructed to measure whole cell fluorescent intensity, the 

outline of which is shown schematically in Figure 2.10.  Accurate cell segmentation was 

achieved with a two-step process using images acquired in the DAPI/HCS CellMask Blue 

channel. Firstly, nuclei were identified with the “IdentifyPrimaryObjects” module using manual 

thresholding and separation of adjacent nuclei based on shape. As each primary object is 

associated with a single secondary object, accurate segmentation of the nuclei in the first 

step was essential.  Using the identified nuclei as seeds, the cytoplasmic boundaries for 

each cell were identified using the “IdentifySecondaryObjects” module, with manual 

thresholding and an image based watershed method to separate connecting cells.  The final 

step of the pipeline was to measure fluorescence intensity in the Alexa Fluor 555 channel 

within the previously determined cell boundaries.  CellProfiler data was exported to FCS 

http://www.cellprofiler.org/
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Express Image Cytometry (De Novo Software, Los Angeles, CA, USA) for analysis.  

Calculation of the percentage of infected cells was performed by placing a region marker on 

fluorescence intensity histograms to exclude negative cells as defined by uninfected control 

samples. 

Segmentation of multinucleated syncytia, as can occur with FCoV infection is challenging.  

For syncytia, accurate identification of the nuclei resulted in cytoplasm being divided into a 

number of individual “cells”. In this way, calculations involving the number of infected cells 

remain accurate, and given the intensity of staining throughout a syncytium is relatively 

homogenous, calculations involving mean intensity also likely remain valid.  An example of 

segmentation of syncytium is shown in Figure 2.11. 
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Figure 2.10: Schematic of CellProfiler pipeline used for image analysis. Panel (a) shows the 

merged images from DAPI / CellMask Blue (b) and Alexa Fluor 555 (f) images.  Image 

segmentation was performed using the DAPI / CellMask Blue image (b).  The initial step 

involved identifying nuclei (c) to act as seeds for the subsequent identification of whole cell 

boundaries (d and e).  Fluorescent intensity measurements were made using the Alexa Fluor 

555 images (f) within the cell boundaries previously identified (g).  Fluorescent intensity data 

for each identified cell was exported to for analysis using FCS Express Image Cytometry (h).  
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Figure 2.11: Segmentation of images containing feline coronavirus associated syncytia.  

Panel (a) shows the merged image of a syncytium containing five nuclei.  Segmentation 

performed on the DAPI/CellMask Blue image (b) results in the identification of all five nuclei 

and the segmentation of the syncytium into five individual cells (c), with red lines showing the 

cytoplasmic boundaries.  The Alexa Fluor 555 image (d) showing viral antigen staining is 

overlain with the cytoplasmic boundaries of the identified cells (e).  
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3 

3 Development and optimisation of 
antiviral screening assays for feline 

coronavirus and feline calicivirus 

3.1. ABSTRACT 

Cell-based antiviral assays are commonly used for the initial screening of potential antiviral 

drugs.  Demonstration of inhibitory properties in a cell-based system is an essential step prior 

to animal testing.  Such assays provide not only an indication of antiviral properties, but can 

also provide important information about the potential toxicity of a candidate compound. This 

chapter describes the development of low to medium throughput resazurin- and 

sulforhodamine B-based (SRB) cytopathic effect inhibition assays for feline coronavirus and 

feline calicivirus.  Both assays were shown to be robust and suitable in their current form for 

high throughput screening, with Z’-factors for FCoV of 0.70 (resazurin) and 0.86 (SRB) and 

for FCV of 0.76 (resazurin) and 0.91 (SRB).  This study also demonstrates that these assays 

can be performed sequentially, with the SRB-based assay performed following the resazurin-

based assay without any loss in performance. 

3.2. INTRODUCTION 

Cell-based screening assays are commonly performed in the initial stages of the antiviral 

drug discovery process to identify effective candidate compounds for further study.  Such 

tests offer advantages over assays utilising isolated viral proteins or enzymes, as 

compounds can be identified that interfere with viral replication at all stages of the replication 

cycle.  Cell-based assays may also provide a first screen to identify and eliminate 

compounds that display undesirable pharmacological properties, such as cytotoxicity or poor 

membrane permeability at the tested concentrations.  Elimination of these compounds in the 

initial phases of screening prevents the unnecessary allocation of resources on further 

investigation of compounds unlikely to be of clinical use due to unacceptable 

pharmacokinetic properties. 
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A range of cell-based assays are available for antiviral screening.  The most suitable 

approach for a specific virus depends both on the inherent biological properties of the virus, 

in addition to practical considerations including the number of compounds to be tested, and 

the facilities and equipment available.  For viruses displaying in vitro cytopathic effect, plaque 

reduction assays (PRA) have long been considered the gold standard in assessing inhibition 

due to antiviral compounds.  Whilst technically simple, PRA are time consuming and 

laborious, and thus are not well suited for screening purposes.  Similarly, virus yield 

reduction assays, requiring initial incubation of cells with test compounds followed by titration 

of harvested culture media for viral infectivity, are impractical for screening even modest 

numbers of compounds.  These tests are therefore primarily used for testing small numbers 

of compounds or for confirmatory testing of compounds identified using alternative assays. 

For screening large numbers of compounds, assays amenable to use in a microtitre plate 

format (96-well or higher density plates) are preferred.  The cytopathic effect (CPE) inhibition 

assay is a commonly used screening test for cytopathic viruses.  The simple premise of a 

CPE inhibition assay is that an effective antiviral compound will result in a reduction in virus-

induced CPE within the culture system, an effect that is quantifiable using various detection 

systems.  Simple visual morphological assessment of the degree of CPE can be performed 

(Tan et al., 2004), however frequently additional biochemical assays are used (Baba et al., 

2005; Green et al., 2008; Paragas et al., 2004).  The endpoints and markers used in these 

assays vary, however they can be broadly categorised as assays that detect viable cells 

(viability assays) and those that detect dead and/or damaged cells (cytotoxicity assays). 

Viability assays are generally based on detecting the metabolic activity of living cells, such as 

their ability to reduce substances including tetrazolium salts (e.g. MTT, XTT) or resazurin, to 

accumulate substances (e.g. neutral red assay), or produce ATP.  Assays that measure total 

biomass with a protein binding dye (e.g. sulforhodamine B assay) or a DNA intercalating dye 

(e.g. bisbenzimide) detect both dead and live cells, however when used with adherent cell 

lines such assays can perform as functional viability assays as non-viable cells typically 

detach and are removed during washing and fixation steps prior to staining.  Cytotoxicity 

assays on the other hand measure substances such as lactate dehydrogenase which are 

released from dead or dying cells or increased concentrations of proteins such as caspase 

enzymes associated with cell death.  In this study two commonly used viability assays, 

utilising resazurin and sulforhodamine B, were investigated for their suitability as detection 

reagents for FCoV and FCV CPE inhibition assays. 

Resazurin (7-Hydroxy-3H-phenoxazin-3-one-10-oxide) is a redox dye which has been used 

in biological research for over 80 years for applications such as assessing milk and semen 

quality, and more recently for cellular toxicity and proliferation studies (Niles et al., 2008; 
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Twigg, 1945).  Resazurin-based assays have been used to screen for bioactive compounds 

effective against a variety of microorganisms including bacteria (Sarker et al., 2007), fungi 

(Monteiro et al., 2012), protozoa (Bowling et al., 2012), and viruses (Cruz et al., 2013).  The 

assay is based on the principle that living cells metabolise resazurin, a blue, weakly-

fluorescent substrate into resorufin, a highly fluorescent product via the reaction shown in 

Figure 3.1.  The reduction reaction occurs intracellularly, most likely via the action of a 

number of different mitochondrial, cytosolic, and microsomal redox enzymes (O'Brien et al., 

2000).  The rate and extent of enzymatic conversion is dependent on the metabolic activity of 

the cell and has been shown to be cell line dependent (Nakayama et al., 1997). 

 

 

Figure 3.1: Mechanism of reduction of resazurin to resorufin.  The reduction reaction occurs 

intracellularly most likely via the action of a number of different mitochondrial, cytosolic, and 

microsomal redox enzymes (O'Brien et al., 2000). 

The sulforhodamine B (SRB) assay was originally developed by Skehan et al. (1990) for 

large scale anti-cancer drug discovery screening, and since this time the SRB assay has 

been used extensively for cytotoxicity testing.  Sulforhodamine B (2-(3-diethylamino-6-

diethylazaniumylidene-xanthen-9-yl)-5-sulfo-benzenesulfonate: Figure 3.2) is an anionic dye 

that binds electrostatically in a pH dependent manner to basic amino acid residues of cellular 

proteins.  Under mildly acidic conditions SRB binds to basic amino acids in fixed cells.  

Following washing and drying, bound dye can be solubilised with a weak base.  The optical 

density of the unbound dye has been shown to be proportional to cell number for a number 

of cell types and over a broad range of cell concentrations (Skehan et al., 1990).  In addition 

to cytotoxicity screening, SRB has been used in CPE inhibition assays for a number of 

different viruses (Choi et al., 2009b; Park et al., 2011; Rocha Martins et al., 2011). 
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Figure 3.2: Chemical structure of sulforhodamine B (SRB).  SRB binds electrostatically to 

basic amino acid residues in cellular proteins under acidic conditions.  Measurement of 

optical density following solubilisation of bound SRB under basic conditions provides an 

assessment of the cellular protein content, and by extension cell number (chemical structure 

taken from Sigma-Aldrich).  

The aim of the studies detailed in this chapter was to optimise and assess the performance 

of resazurin- and SRB-based CPE inhibition assays to screen compounds for antiviral activity 

against FCoV and FCV.  Assay optimisation is critical for the success of a screening program 

to ensure reliable and reproducible results.  Whilst this is particularly the case with high 

throughput screening (HTS), where there is usually just a single measurement of each 

compound’s activity, it is also important for lower throughput screens.  Due to the limited 

number of compounds required to be tested in this thesis, the primary goal was to develop 

an assay suitable for low to medium throughput, with multiple replicates per compound.  In 

light of potential future studies however, a secondary goal was to develop a high-throughput 

capable assay for screening large chemical libraries for effective compounds. 

3.3. MATERIALS AND METHODS 

3.3.1. Optimisation of a resazurin-based CPE inhibition assay 

3.3.1.1. Cell distribution 

Uneven distribution of cells between or within wells can increase experimental variability.  

Preliminary experiments showed a non-uniform distribution of cells, particularly in the 

peripheral wells of 96-well plates.  Initial incubation of plates at room temperature for a short 

period has been suggested as a simple method of minimising this edge effect (Lundholt et 

al., 2003).  To investigate this, two 96-well plates (Sarstedt) were seeded with CRFK cells at 
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6.0 x 104 cells.well-1 in 150 μl DMEM-10.  One plate was incubated at 37°C in 5% CO2 in air 

immediately following seeding, while the other plate was kept at room temperature for 30 min 

prior to placing in the incubator.  Plates were subsequently incubated for 6 h, the culture 

media discarded, and cells fixed with 100 μl.well-1 20% (v/v) formalin in PBS for 20 minutes.  

Fixed cells were stained with 1% crystal violet for 10 min, rinsed in tap water, and allowed to 

air dry.  Assessment of cell distribution was made both macroscopically, with stained plates 

placed on a light box and images acquired using a Canon EOS 600D digital camera (Canon, 

Tokyo, Japan), and microscopically using an Olympus CX41 inverted microscope at 100 x 

magnification. 

3.3.1.2. Optimisation of resazurin incubation time and method of detection 

Prolonged incubation with resazurin is associated with an increased signal-to-background 

(S/B) ratio and provides greater sensitivity at low cell numbers; however it can result in a loss 

of signal linearity due to further reduction of pink fluorescent resorufin to the non-fluorescent 

colourless substrate hydroresorufin (O'Brien et al., 2000).  The optimal incubation time of 

resazurin in culture therefore is a trade-off between maintaining a linear correlation between 

signal and cell number and reduced assay sensitivity, and must be determined 

experimentally for each cell type and culture system. 

To determine the optimal resazurin incubation time and method of detection, CRFK cells 

were plated at 11 different initial seeding densities from 1.25 x 103 to 6.0 x 104 cells.well-1 in 

150 μl DMEM-10, with eight replicates per density, in duplicate 96-well plates.  To minimise 

autofluorescence and fluorescent signal crosstalk between adjacent wells, clear-bottomed 

black-walled 96-well plates (μClear ®, Greiner Bio-One, Frickenhausen, Germany) were 

used for all experiments involving fluorometric data acquisition.  Eight wells containing media 

only were included on each plate as blanks.  Plates were incubated at room temperature for 

30 min and then at 37°C in 5% CO2 in air for a further 1 h prior to the addition of 50 µl of a 

1:10 dilution of 4 x stock resazurin in DMEM (final resazurin concentration in media of 44 

μM).  Plates were subsequently incubated at 37°C in 5% CO2 in air and data acquired at 

various time points from 2 to 24 h post seeding, both fluorometrically (535(25) Ex / 590(20) Em) 

using a Tecan Polarion fluorescent microplate reader (Tecan Group Ltd., Mannedorf, 

Switzerland) and colorimetrically (OD570-OD600) using a SpectraMax 250 microplate reader 

(Molecular Devices, Sunnyvale, CA, USA).  Data was exported to Microsoft Excel (Microsoft, 

Seattle, WA, USA) and the linearity of response with cell number was determined by 

performing a linear regression analysis in GraphPad Prism (GraphPad Prism V5.03 for 

Windows, GraphPad Software, San Diego, CA, USA).  The signal-to-background ratio was 

calculated according to the following formula: 
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𝑆/𝐵 =  
𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆
𝑅𝑅𝑅𝐵𝑆𝑆𝑆𝐵

 

where 𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆  is the mean signal value (relative fluorescence units) at a particular cell 

density and 𝑅𝑅𝑅𝐵𝑆𝑆𝑆𝐵 is the mean value of the background signal measured in wells 

containing no cells.  The theoretical limit of detection, defined as the cell number giving a 

signal equal to the zero cell (media only) signal plus three standard deviations, was 

calculated by manual interpolation. 

3.3.1.3. Cell seeding density optimisation 

The initial seeding density is an important variable to optimise in cell-based assays.  Seeding 

at too low a cell density may result in poor cell growth and reduced signals, leading to a 

correspondingly low S/B ratio.  Conversely, seeding cells at too high a density may lead to 

cell overgrowth which may result in a plateauing of the signal, obscuring the true results.  To 

determine the optimal seeding density for different incubation times, 96-well plates (μClear ®, 

Greiner Bio-One) were seeded with nine different cell densities from 2.5 x 103 to 3.0 x 104 

cells.well-1 in 150 µl DMEM-10, with six replicates per density.  Due to the lengthy incubation 

time and the associated excessive evaporation from outer wells, only the centre 60 wells 

were used for experimental samples, with the outer wells containing 200 µl PBS.  Plates 

were incubated at 37°C in 5% CO2 in air for 6, 18, 30, 54, or 78 h prior to analysis, with 50 μl 

of 1:10 dilution of 4 x stock resazurin in DMEM (final well concentration of resazurin 44 nM) 

added for the final 3.5 h.  Plates were removed from the incubator for the final 30 min to 

allow the plates and media to equilibrate to room temperature.  Fluorescent signals were 

measured with a FLUOstar Omega microplate reader (BMG Labtech, Mornington, VIC, 

Australia) using a 544 nm excitation filter and 590 nm emission filter with 8 flashes per well in 

bottom reading mode.  Data were exported to Microsoft Excel and GraphPad Prism for 

analysis.  Data represent Mean ± SD from a single experiment. 

3.3.1.4. Optimisation of infection conditions 

The primary variables to assess in optimising the infection conditions are the infective dose 

of virus and the incubation time.  The aim of this stage of optimisation is to achieve a suitable 

separation band between the infected and uninfected cells, a function of the degree of virus 

induced CPE and the assay detection system.  The degree of CPE is dependent on the MOI 

and incubation time, the optimal values for which depend on the virus and culture system.  In 

general a low MOI is preferable for CPE inhibition based antiviral assays as it allows for 

multiple rounds of viral replication, and therefore enables the identification of compounds that 

act at any stage of the replication cycle.  Consequently incubation times corresponding to 

several replication cycles are typically used. 
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3.3.1.4.1. Feline coronavirus 

To determine the optimal infective dose and incubation time, CRFK cells were infected with 

FCoV FIPV1146 at MOIs ranging from 1 to 3.2 x 10-4 for a period of 24, 48, or 72 h.  The 

initial cell seeding density varied with the duration of infection.  For 24 h infection, 96-well 

plates (μClear ®, Greiner Bio-One) were seeded with 2.5 x 104 cells.well-1 in 100 µl of 

DMEM-10, while for 48 h and 72 h infection periods the initial seeding density was reduced 

to 1.25 x 104 and 5.0 x 103 cells.well-1 respectively.  All plates were initially incubated at room 

temperature for 30 min to reduce edge effects and then incubated at 37°C in 5% CO2 in air 

for 6 h prior to infection.  Serial half-log dilutions of FCoV FIPV1146 were made in DMEM 

and added to the wells in 50 µl, with six replicates per MOI per infection time.  Cells mock 

infected with DMEM were included in each plate as negative controls.  Plates were incubated 

for 24, 48, or 72 hpi prior to analysis.  Addition of resazurin and data acquisition, and data 

analysis were as previous described in Section 3.3.1.3.  Cell viability was calculated 

according to the following formula: 

𝐶𝐶𝐶𝐶 𝑣𝑐𝑐𝑣𝑐𝐶𝑐𝑐𝑖 (%) =  
(𝑅𝑅𝑅𝑉(+) − 𝑅𝑅𝑅𝐵𝑆𝑆𝑆𝐵)
(𝑅𝑅𝑅𝑉(−) − 𝑅𝑅𝑅𝐵𝑆𝑆𝑆𝐵)

 × 100 

Where RFUV(+) and RFUV(-) are the fluorescent signals from the virus infected and mock 

infected cells respectively, and RFUBlank is the mean signal from control wells containing 

media only.  Data represent Mean ± SD of a single experiment. 

3.3.1.4.2. Feline calicivirus 

Optimisation of infection conditions for FCV was performed as described for FCoV in Section 

3.3.1.4.1 except plates were read at 24, 36, and 48 hpi due to the more rapid CPE induced 

by FCV.  The seeding density for the 24 h and 48 h plates were as reported in Section 

3.3.1.4.1, while the seeding density for the 36 h infection plate was 2.0 x 104 cells.well-1 in 

100 µl.  Cells were infected with FCV F9 in half-log dilutions from MOI 1 to MOI 3.2 x 10-4, 

with six replicates per MOI per infection time.  Data represent Mean ± SD of a single 

experiment. 

3.3.1.5. Effect of DMSO 

DMSO is an amphipathic solvent frequently used to dissolve chemicals for drug screening 

assays.  Despite its usefulness as a solvent it is well recognised that even at low 

concentrations DMSO can be cytotoxic or have a significant effect on cell structure and 

function (Yu and Quinn, 1994).  It is therefore important to minimise the effects of DMSO on 

an assay system.  To assess any cytotoxic or cytostatic effects of DMSO on CRFK cells, cell 

viability was assessed following 72 h exposure to various concentrations of DMSO.  Cells 

were seeded at 5.0 x 103 cells.well-1 in 100 µl DMEM-10 in 96-well plates (μClear ®, Greiner 
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Bio-One).  Plates were incubated at room temperature for 30 min and then at 37°C in 5% 

CO2 in air for 5 h prior to the addition of 50 μl of various concentrations of DMSO, from 4.5% 

to 0% (v/v) in DMEM, resulting in a final in well concentration of DMSO from 1.5% to 0% 

(mock treated cells).  Plates were incubated for a further for 72 h at 37°C in 5% CO2 in air 

prior to analysis.  Addition of resazurin, data acquisition, and data analysis were as previous 

described in Section 3.3.1.3.  Data represent Mean ± SD of a single experiment. 

The effect of DMSO on virus replication was also investigated. Cells were seeded at 5.0 x 

103 cells.well-1 (for FCoV) and 1.25 x 104 cells.well-1 (for FCV) in 96-well plates (μClear ®, 

Greiner Bio-One) for 5 h prior to the addition of DMSO to a final concentration of 0.33%.  

Cells not exposed to DMSO were included as controls.  Cells were incubated for a further 

hour prior to infection (or mock infection) with FCoV FIPV1146 or FCV F9 at MOI 0.01.  Cell 

viability was assessed at 72 hpi and 48 hpi for FCoV and FCV respectively.  Addition of 

resazurin, data acquisition, and data analysis were as previous described in Section 

3.3.1.4.1.  Each treatment was performed in triplicate and repeated in two independent 

experiments. 

3.3.1.6. Determination of assay robustness 

Although the primary aim of this project was to perform low throughput benchtop screening of 

a limited number of candidate chemicals, a secondary aim during the optimisation phase was 

to develop a “HTS ready” assay for future use.  To this end, a series of experiments were 

conducted to determine the robustness and suitability for HTS of the optimised screening 

assays. 

3.3.1.6.1. Feline coronavirus 

CRFK cells were seeded at 5.0 x 103 cells.well-1 in 100 µl DMEM-10 in 96-well plates (μClear 

®, Greiner Bio-One) using the centre 60 wells only.  Wells on the perimeter of the plate 

contained 200 μl PBS.  Plates were incubated at room temperature for 30 min and then at 

37°C in 5% CO2 in air for 5 h prior to the addition of 30 μl of DMEM (to simulate the addition 

of test compounds).  Cells were infected (or mock infected) 1 h later with FCoV FIPV1146.  

For infection, plates were divided into four quadrants, with quadrants I and III the positive 

controls being mock infected with DMEM, and quadrants II and IV the negative controls 

infected with FCoV FIPV1146 in DMEM at MOI 0.01.  Plates were incubated for a further 72 

h at 37°C in 5% CO2 in air prior to analysis.  Addition of resazurin, data acquisition, and data 

analysis were as previous described in Section 3.3.1.3.  Cell viability was calculated as 

described in Section 3.3.1.4.1.  The experiment was performed in duplicate plates and 

repeated in two independent experiments to assess both intra-run and inter-run variation.  

The Z’-factor was calculated by the method of Zhang et al. (1999) according to the formula 

below: 
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𝑍′ = 1 −  
(3σ𝑚 + 3σ𝑆)

|µ𝑚  −  µ𝑆|
 

Where σm and σi represent the standard deviation of the mock infected control cells and the 

infected control cells respectively. µm and µi represent the mean of the mock infected and 

infected cells respectively.  Thus the numerator in this equation takes into account the data 

variation while the denominator is a measure of the signal dynamic range. 

3.3.1.6.2. Feline calicivirus 

The determination of assay robustness for FCV was performed as described for FCoV in 

Section 3.3.1.6.1 except plates were seeded with 1.25 x 104 cells.well-1 and infected with 

FCV F9 at MOI 0.01 for a 48 h infection period.  The experiment was performed in duplicate 

plates and repeated in two independent experiments. 

3.3.1.7. Examination of the suitability of in-house prepared resazurin reagent 

A range of commercially available resazurin reagents are available for in vitro use.  In 

addition to resazurin these commercial reagents contain a poising agent to maintain the 

redox potential of the solution and enhance its stability (Sittampalam et al., 2013), and thus 

may offer advantages over the in-house prepared resazurin solution.  To monitor the stability 

of the in-house produced resazurin, mapping of the optimal gain setting for control wells from 

sequential experiments was performed throughout this study to assess any systematic drift 

that may be associated with degradation of the stock solution. 

The cost benefit of using the in-house reagent versus a commercial reagent was also 

determined.  To this end the cost price of two commercial resazurin reagents, Alamar Blue 

(Life Technologies) and CellTitre Blue (Promega) were sourced from the manufacturer’s 

websites. For the in-house reagent the cost price of resazurin powder, culture media for 

dilution, and 0.22 μm filters for sterilisation were sourced from the supplier (Sigma-Aldrich).  

To standardise the comparison between products the price per plate was calculated 

assuming all wells of a 96-well plate are used, a sample volume of 150 μl per well, and the 

manufacturers recommended protocol for reagent volume was followed. 

3.3.2. Optimisation of a sulforhodamine B (SRB) assay 

3.3.2.1. Fixation method 

The SRB assay requires the fixation of cells to the well prior to staining.  Poor fixation may 

result in loss of viable cells, and thus an underestimation of cell biomass, and hence an 

underestimation of antiviral effect or overestimation of the toxicity of a tested compound.  A 

number of fixation methods using trichloroacetic acid (TCA) have been described in the 
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literature (Papazisis et al., 1997; Vichai and Kirtikara, 2006; Voigt, 2005), three of which were 

examined to determine the most effective protocol for our assay system. 

CRFK cells were seeded in 96-well plates (μClear ®, Greiner Bio-One) at various densities, 

ranging from 1.25 x 103 to 6.0 x 104 cells.well-1 in in 200 µl DMEM-10, with eight replicates 

per density.  One plate was set up per fixation method.  Cells were incubated for 30 min at 

room temperature and then at 37°C in 5% CO2 in air for 4 h prior to fixation.  Cells were fixed 

by either (1) adding 50 µl cold 50% TCA to culture media (final in well TCA concentration of 

10%), or by removing media by (2) decanting by inverting and flicking plate, or (3) aspirating 

media with multichannel pipette, followed by addition of 100 µl cold 10% TCA. For all plates, 

cells were fixed for 1 h at 4°C, rinsed 5 times with running tap water, and allowed to air dry.  

Plates were stained with 0.4% (w/v) SRB in 1% acetic acid for 30 min, rinsed 5 times in 1% 

acetic acid to remove unbound dye, and air dried.  Once dry, SRB was solubilised by adding 

150 µl 10 mM tris (pH 10) per well.  Absorbance (OD510) was measured after 30 min using a 

SpectraMax 250 microplate reader (Molecular Devices). 

3.3.2.2. SRB concentration 

Several SRB concentrations have been reported in the literature (Vichai and Kirtikara, 2006; 

Voigt, 2005).  To assess the effect of SRB concentration three plates were set up and 

processed as detailed in Section 3.3.2.1 using the optimised decant method of fixation.  

Plates were stained using 0.4%, 0.2%, or 0.057% (w/v) SRB in 1% acetic acid for 30 min.  

Washing, drying, solubilisation, and data acquisition were as described in Section 3.3.2.1.  

Data represent Mean ± SD. 

3.3.2.3. Sequential resazurin and SRB assays 

To assess the effect of performing a resazurin viability assay prior to the SRB assay, 

duplicate plates were prepared with serial dilutions of CRFK cells as described in Section 

3.3.2.1 with the exception that plating volume was reduced to 150 µl.  Plates were incubated 

for 4 h to allow cells to attach after which 50 µl of a 1:10 dilution of 4 x stock resazurin in 

DMEM was added to the wells of the dual sequential treatment plate and 50 µl of DMEM 

added to the single treatment plate.  Plates were incubated for a further 3 h at 37°C followed 

by 30 min at room temperature prior to fluorescence data acquisition as described in Section 

3.3.1.3.  Both plates were fixed using the optimised decant method.  SRB staining, washing, 

drying, and solubilisation were performed as described in Section 3.3.2.2 using an SRB 

concentration of 0.2% (w/v).  Absorbance (OD510) was measured 30 min after solubilisation 

using a FLUOstar Omega microplate reader.  Data represent Mean ± SD. 
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3.3.2.4. Determination of assay robustness 

To determine the performance of the SRB-based assay, plates used to determine the 

robustness of the resazurin-based assay as described in Section 3.3.1.6.1 for FCoV and 

3.3.1.6.2 for FCV were processed according to the optimised SRB protocol as detailed in 

Section 3.3.2.3. 

3.4. RESULTS 

3.4.1. Optimisation of resazurin assay 

3.4.1.1. Cell distribution 

Incubation of plates at 37°C immediately following seeding resulted in an uneven distribution 

of cells in the outer wells, with an increased cell density on the perimeter of the wells closest 

to the edge of the plate.  This can be seen in Figure 3.3 on both the image of the entire plate 

(a), and more clearly on a closer image showing only the corner wells (b).  In contrast, 

incubation for 30 min at room temperature immediately post seeding resulted in an even 

distribution of cells as shown in Figure 3.3 (c and d).  For all subsequent experiments, cells 

were allowed to adhere for 30 min at room temperature prior to incubation to minimise 

variations in cell distribution across wells. 
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Figure 3.3: Effect of pre-incubation at room temperature on cell distribution.  6.0 x 104 

cells.well-1 in 150 μl were plated in duplicate 96-well plates. One plate was placed 

immediately in the incubator at 37°C (panels a and b) and the other kept at room 

temperature for 30 min (panels c and d) prior to transferring to the incubator.  Cells were 

fixed in 20% formalin in PBS 6 h post-seeding and stained with 1% crystal violet.  Uneven 

distribution of cells in outer wells is evident on the plate placed in the incubator immediately 

post seeding.  Arrows (panel b.) show areas of increased cell density located at the periphery 

of the edge wells closest to the edge of the plate.  Images taken with a Canon EOS 600D 

digital camera. 

3.4.1.2. Optimisation of resazurin incubation time 

Resazurin incubation times of 2 to 24 h were examined using both fluorometric and 

colorimetric analysis.  Using both analyses, signal linearity with cell number was greatest 

with incubation times < 4 h (R2 > 0.98 for fluorescent > 0.99 for colorimetric) and dropped 

sharply at 12 and 24 h (R2 = 0.93 and R2 = 0.70 respectively for fluorometric and R2 = 0.93 

and R2 = 0.71 for colorimetric readouts) (Figure 3.4).  Both analyses provided similar results 

with simple linear regression of the mean RFU and mean OD values giving an R2 value 

greater than 0.99 for all time points tested (Figure 3.5) except for the 2 h incubation, for 

which an R2 = 0.98.  As expected, the theoretical limit of detection, calculated as the cell 

number giving a signal equal to the zero cell (media only) signal plus three standard 

deviations decreased with increasing incubation times.  Using fluorometric readout the limit 

of detection decreased from approximately 200 cells at 3 h to approximately 60 cells 
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following a 24 h incubation (Figure 3.6a).  Colorimetric detection was less sensitive, with a 

limit of detection of approximately 3300 cells at 3 h reducing to approximately 500 cells at 24 

h (Figure 3.6b).  The increased sensitivity of the fluorescence readout compared to 

colorimetric is also demonstrated by the higher S/B ratio seen at all cell numbers (Figure 

3.7).  Based on these results a 3.5 h incubation period with fluorometric analysis was used 

for further studies. 

 

Figure 3.4: Effect of resazurin incubation time on signal linearity.  Varying cell densities from 

1.25 x 103 to 6.0 x 104 cells.well-1 were seeded in duplicate 96-well plates with eight 

replicates per density per plate.  Cells were incubated at 37°C in 5% CO2 for 4 h to allow 

adherence prior to the addition of resazurin.  Signals were measured both fluorometrically 

and colorimetrically at the times indicated.  Data shown is from fluorescence analysis.  Data 

are Mean ± SD.  RFU, relative fluorescence units.  
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Figure 3.5: Correlation of fluorometric or colorimetric determination of resazurin signal.  

Varying cell densities from 1.25 x 103 to 6.0 x 104 cells.well-1 seeded in duplicate 96-well 

plates with eight replicates per density per plate.  Cells were incubated at 37°C in 5% CO2 for 

4 h to allow adherence prior to the addition of resazurin. Signals were measured both 

fluorometrically and colorimetrically at various times post resazurin addition.  Data shown are 

mean colorimetric and fluorometric values measured following a 3 h resazurin incubation 

time.  
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Figure 3.6: Effect of resazurin incubation time on the limit of detection using (a) fluorometric 

or (b) colorimetric readout.  Varying cell densities from 1.25 x 103 to 6.0 x 104 cells.well-1 

were seeded in duplicate 96-well plates with eight replicates per density per plate.  Cells 

were incubated at 37°C in 5% CO2 for 4 h to allow adherence prior to the addition of 

resazurin.  Signals were measured both fluorometrically and colorimetrically at various times 

from 2 h to 24 h after the addition of resazurin.  Theoretical limit of detection, defined by the 

zero cell number fluorescence intensity plus three standard deviations is shown for 3 h 

resazurin incubation (blue dashed line) and 24 h resazurin incubation (red dashed line).  *, 

limit of detection at 3 h; **, limit of detection at 24 h.  Data represent Mean ± SD.  
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Figure 3.7: Comparison of signal-to-background (S/B) ratios using fluorometric and 

colorimetric analyses. Varying cell densities from 1.25 x 103 to 6.0 x 104 cells.well-1 were 

seeded in duplicate 96-well plates with eight replicates per density per plate.  Cells were 

incubated at 37°C in 5% CO2 for 4 h to allow adherence prior to the addition of resazurin.  

Signals were measured both fluorometrically and colorimetrically at various times from 2 to 

24 h post addition of resazurin.  S/B ratios were calculated from the mean signal (fluorescent 

or colorimetric) at a particular cell density divided by the mean signal (fluorescent or 

colorimetric) of wells containing media only.  Data represent mean values following 3 h 

incubation with resazurin.  

3.4.1.3. Optimisation of cell seeding density 

The fluorescent signal from plates incubated for less than 30 h showed no evidence of cell 

growth plateauing (Figure 3.8).  In contrast the signal from plates incubated for 54 h and 78 h 

began to plateau at an initial cell seeding density of greater than 1.5 x 103 cells.well-1 and 1.0 

x 103 cells.well-1 respectively, suggesting cell overgrowth or nutrient depletion under these 

conditions.  Morphological assessment of wells grown under these conditions showed 

confluent monolayers, with the higher density wells appearing hyperconfluent.  Based on 

these results initial seeding densities of 2.5 x 104, 2 x 104, 1.25 x 104 and 5.0 x 103 cells.well-1 

were used for experiments requiring infection periods of 24, 36, 48, and 72 h respectively. 
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Figure 3.8: Optimisation of cell seeding density.  CRFK cells were plated at different initial 

seeding densities from 2.5 x 103 to 3.0 x 104 cells.well-1 in 96-well plates and incubated for 6, 

18, 30, 54, or 78 h, with resazurin added for the final 3.5 h.  Fluorescent signal intensity was 

measured immediately following incubation.  Data represent Mean ± SD.  

3.4.1.4. Optimisation of infection conditions 

Two general, but not unexpected trends were apparent from the infection condition 

optimisation data for both FCoV (Figure 3.9a) and FCV (Figure 3.9b).  Firstly, the viability of 

infected cells decreased with a longer duration of infection and secondly, increased initial 

MOI was associated with lower cell viability.  A clear difference was apparent in the onset 

and magnitude of CPE between FCoV and FCV in the CPE inhibition assay, with infection 

with FCV resulting in a more rapid and greater reduction in cell viability.  These finding are 

consistent with morphological assessment of CPE induced by both viruses. 

The optimal infection conditions for CPE inhibition assays for antiviral screening are those 

that result in a wide signal difference window with a low MOI.  Infection at very low MOI 

resulted in increased signal variability as depicted by the larger error bars seen in Figure 3.9.  

Based on these results a 72 h infection time using MOI 0.01 for FCoV and a 48 h infection 

time with MOI 0.01 for FCV was chosen for further experiments.  
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Figure 3.9: Optimisation of infection conditions for (a) FCoV and (b) FCV.  CRFK cells were 

seeded in 96-well plates and incubated for 6 h at 37°C prior to infection with either FCoV 

FIPV1146 or FCV F9 at various MOIs from MOI 1 to MOI 1 x 10-4, with 6 replicates per MOI, 

for a period of 24, 48, or 72 h (FCoV) or 24, 36, or 48 h (FCV).  The initial cell seeding 

density for each plate varied depending on the required duration of infection, with 2.5 x 104 

cells.well-1 in 100 µl of DMEM-10 used for 24 h infection period, while for 36 h, 48 h, and 72 h 

infection periods the density was reduced to 2 x 104, 1.25 x 104 and 5.0 x 103 cells.well-1.  

Resazurin was added to the cells for the final 3.5 hours of incubation and signals were 

acquired fluorometrically (Ex:544 nm, Em:590 nm).  Data represent Mean ± SD of a single 

experiment.  

3.4.1.5. Determination of maximum DMSO concentration 

The addition of DMSO to actively dividing CRFK cells resulted in a concentration-dependent 

decrease in cell viability at concentrations greater than 0.375% (v/v) as illustrated in Figure 

3.10.  Based on this 0.33% DMSO was set as the maximum DMSO concentration for this 

assay.  This concentration was demonstrated to have no effect on virus replication for either 
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FCoV or FCV as determined by the resazurin-based CPE inhibition assay (data not 

presented). 

 

Figure 3.10: Effect of DMSO on cell viability.  Cells were seeded at 5.0 x 103 cells.well-1 in 

96-well plates and incubated at room temperature for 30 min and then at 37°C in for 5 h prior 

exposure to concentrations of DMSO from 1.5% to 0% (mock treated cells) for 72 h.  

Resazurin was added to the cells for the final 3.5 h of incubation and signals were acquired 

fluorometrically (Ex:544 nm, Em:590 nm).  Data represent Mean ± SD of a single experiment.  

3.4.1.6. Determination of assay robustness 

Using the optimised assay conditions described above the resazurin-based CPE inhibition 

assays for both FCoV and FCV proved to be robust and suitable for screening purposes.  

Figure 3.11 shows data from a representative plate for (a) FCoV and (b) FCV.  The 

calculated mean assay parameters are detailed in Table 3.1.  Intra- and inter-run variation 

was within acceptable limits. The Z’-factor for FCoV was 0.71 and 0.64 for run 1 and 0.73 

and 0.71 for run 2 while for FCV, the Z’-factor was 0.75 and 0.69 for run 1 and 0.87 and 0.71. 
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Figure 3.11: Representative plate data from Z’-factor assessment of resazurin-based CPE 

inhibition assay for (a) FCoV and (b) FCV.  Duplicate plates for each virus were set up to 

assess intra-run variation and the experiment repeated to assess inter-run variation.  Plates 

were setup and processed using the optimised resazurin-based assay parameters.  Plates 

were divided into quadrants with quadrants I and III being mock infected (positive control) 

and quadrants II and IV infected (negative control).  Red lines indicate mean values of 

positive and negative controls and dotted lines indicate three SD from these mean values.  

Z’-factor was calculated according to the method of Zhang et al. (1999).  Z’-factor shown is 

the mean value from four plates.  An assay with a Z’-factor > 0.5 is considered an excellent 

assay and suitable for HTS. 
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Table 3.1: Performance of the optimised resazurin-based assay.  Results represent mean 

values of four plates.  CV, coefficient of variation; S/B, signal to background ratio.  

Parameter FCoV assay FCV assay 

Z’-factor 0.70 0.76 

CV – mock infected 4.69% 5.59% 

CV – infected  9.59% 21.91% 

S/B 3.66 11.75 

 

3.4.1.7. Examination of the suitability of in-house prepared resazurin reagent 

Storage of the 4 x stock resazurin solution at -20°C for 6 months was not associated with any 

obvious decrease in performance, with the automatic optimal gain settings, calculated based 

on the positive control wells on each individual plate, demonstrated not to drift in any 

systematic way during the course of these studies.  Similarly, there was no significant 

difference in the optimal gain setting obtained using freshly prepared or stored stock 

resazurin solutions. 

Comparison of the reagent cost per plate demonstrated that the in-house produced resazurin 

solution was significantly less expensive that the commercially available products, with a cost 

price of a few cents per plate compared to $15 or $28 per plate for the commercial reagents 

(Table 3.2). 

 



 

104 

Table 3.2: Cost comparison of some commercially available resazurin-based reagents 

versus in-house prepared resazurin.  Prices listed were obtained from the manufacturer’s 

website as at December 2013 and are reported in Australian dollars.  For in-house resazurin 

the price includes the cost of culture media for dilution and 0.22 μm filters for sterilization.  

Price per plate is calculated assuming all wells of a 96-well plate are used, a sample volume 

of 150 μl per well, and the manufacturers recommended protocol for reagent volume is 

followed.  

Product Price of reagents  Cost per plate 
(AU $) 

Alamar Blue (Life 
Technologies) 
 

$271 for 25 ml $15.66  

CellTitre-Blue 
(Promega) 
 

$196 for 20 ml $28.24 

In-house prepared 
resazurin solution 
(Sigma-Aldrich) 

Resazurin = $44.50 for 1 g 
DMEM = $13.50 for 500 ml 
500 ml 0.22μl filter = $16.67 per filter 
Total $195.33 

$0.04 

 

3.4.2. Optimisation of SRB assay 

3.4.2.1. Fixation method 

Results of the different fixation strategies are shown in Figure 3.12.  All fixation methods 

showed good linear correlation between OD510 and cell number with R2 values greater than 

0.99.  The mean coefficient of variation (CV) differed between the fixation methods, being the 

lowest for the decanting method, while the overlay method and the aspirate method had CV 

almost twice as large.  Microscopic examination of the SRB stained plates prior to 

solubilisation showed large round pink stained structures that were present in significant 

numbers in wells fixed by overlaying TCA and not seen in wells fixed by alternative methods, 

providing a likely explanation for the increased CV with the overlay method.  These 

structures were many times larger than single cells and microscopically they did not appear 

cellular in nature.  Given that these inclusions were also present in media only control wells 

they likely represent aggregations of media components such as serum proteins, which 

become fixed to the plate.  The presence of these inclusions results in an increased 

background with a correspondingly low S/B ratio in plates fixed with this method.  The 

increased CV seen with the aspiration fixation method may be due to dislodging of cells 

during the aspiration procedure.  Based on these results the decanting fixation method was 

chosen for further assays.  
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Figure 3.12: Effect of fixation strategies on SRB assay performance.  Three 96-well plates 

were seeded with CRFK cells at various densities, ranging from 1.25 x 103 to 6.0 x 104 

cells.well-1, with eight replicates per density.  Eight media only control wells were included on 

each plate.  Cells were incubated for 4 h to allow attachment and then fixed using one of 

three methods: (a) addition of 50% (w/v) TCA to culture media, or by adding 10% (w/v) TCA 

after (b) decanting or (c) aspirating culture media.  Cells were fixed for 1 h at 4°C prior to 

SRB staining.  
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Figure 3.13: Effect of cell fixation method on SRB staining.  Micrographs showing large SRB 

staining aggregates seen with the overlay fixation method.  Panel (a) shows the several large 

aggregates (arrowheads) with a background of cells [40 x magnification].  Panel (b) shows 

these aggregates at a higher magnification from a well containing media only [100 x 

magnification].  Note the presence of both small and large inclusions.  

3.4.2.2. SRB concentration 

To examine the effect of SRB concentration on assay performance identical plates were 

stained with three different concentrations of SRB.  There was a good linear correlation 

between cell number and signal, with R2 = 0.995 for all tested concentrations as illustrated in 

Figure 3.14.  There was a decrease in signal in plates stained with lower SRB concentrations 

and a corresponding decrease in S/B ratio, although the higher background OD seen in 

plates stained with 0.4% SRB in part negated this effect.  In all cases the mean coefficient of 

variation was low.  Based on the minimal improvement in signal seen at the highest tested 

concentration, and potential cost savings using lower concentrations, the intermediate SRB 

concentration of 0.2% (w/v) was selected for further experiments. 
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Figure 3.14: Effect of SRB concentration on assay performance. Three 96-well plates were 

seeded with CRFK cells were at various densities, ranging from 1.25 x 103 to 6.0 x 104 

cells.well-1, with eight replicates per density.  After 4 h incubation culture media was 

decanted by inverting and flicking the plate and cells fixed with cold 10% (w/v) trichloroacetic 

acid for 1 h at 4°C.  Cells were washed and allowed to dry prior to staining with SRB at a 

concentration of 0.4%, 0.2% or 0.057% in 1% acetic acid for 30 min.  Cells were washed with 

1% acetic acid to remove unbound dye and allowed to air dry. SRB was solubilised with 10 

mM Tris (pH 10) and absorbance at 510 nm measured.  Data represent Mean ± SD from a 

single experiment.  

3.4.2.3. Sequential assays 

Prior performance of a resazurin-based assay had little effect on the results of subsequent 

SRB assay performed on the same plate.  Overall there was a slight decrease in signal from 

the dual assay plates compared to the single assay plate (Figure 3.15), however the R2 value 

for both plates was 0.999, and the mean CV was similar (2.5% for dual plate versus 2.6% for 

single plate).  Based on these results the use of sequential resazurin-based and SRB-based 

assays is a suitable approach for performing two-step dual-parameter viability assessment. 
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Figure 3.15: Effect of prior resazurin treatment on SRB assay. Two 96-well plates were 

seeded with CRFK cells at various densities, ranging from 1.25 x 103 to 6.0 x 104 cells.well-1, 

with eight replicates per density.  For the dual assay plate, resazurin in DMEM was added to 

wells 4 h after seeding, while for the single assay plate DMEM was added.  Fluorescent 

readout (Ex:544 nm, Em: 590 nm) from the dual assay plate was acquired following a 3.5 

hour exposure to resazurin, following which cell in both plates were fixed in 10% TCA and 

stained with 0.2% SRB.  SRB was solubilised with 10mM Tris (pH 10) and OD510 measured.  

Data represent Mean ± SD from a single experiment.  

3.4.2.4. Determination of assay robustness 

Using the optimised assay conditions described above the SRB-based CPE inhibition assay 

for both FCoV and FCV proved to be a robust assay suitable for screening purposes.  The 

calculated assay parameters and example data from representative plates are shown in 

Table 3.3 and Figure 3.16 respectively.   

Table 3.3: Performance of the optimised SRB-based assay.  Results represent mean values 

of four plates.  CV, coefficient of variation; S/B, signal-to-background ratio.  

Parameter FCoV assay FCV assay 

Z’-factor 0.86 0.91 

CV – mock infected 1.85% 2.05% 

CV – infected  8.14% 13.84% 

S/B 4.59 15.61 
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Figure 3.16: Representative plate data from Z’-factor assessment of SRB-based CPE 

inhibition assay for (a) FCoV and (b) FCV.  Duplicate plates for each virus were set up to 

assess intra-run variation and the experiment repeated to assess inter-run variation.  Plates 

were setup and processed using the optimised SRB-based assay parameters.  Plates were 

divided into quadrants with quadrants I and III being mock infected (positive control) and 

quadrants II and IV infected (negative control)  Red lines indicate mean values of positive 

and negative controls and dotted lines indicate three SD from these mean values.  Z’-factor 

was calculated according to the method of Zhang et al. (1999).  The Z’-factor shown 

represents the mean value from four individual plates.  An assay with a Z’-factor > 0.5 is 

considered an excellent assay and suitable for HTS.  
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3.5. DISCUSSION 

Here we report the development of resazurin- and SRB-based CPE inhibition assays for 

screening compounds for antiviral properties against two important feline pathogens, FCoV 

and FCV.  For all assays, in particular cell-based assays with their inherent variability, 

optimisation of assay parameters is critical to provide reliable, robust, and repeatable data.  

In this study various assay conditions were successfully optimised in a step-wise manner 

through a series of isolating experiments for each important variable.  A schematic of the 

final optimised resazurin-based assays for both FCoV and FCV are provided in Figure 3.17 

and Figure 3.18 respectively, while details of the SRB-based assay are illustrated in Figure 

3.19. 

The initial stage of optimisation was directed at optimising the performance of the detection 

reagents, resazurin and SRB.  For resazurin this involved determination of the ideal 

incubation time and method of detection, while for the SRB this involved optimising the cell 

fixation and staining protocol. 

The optimal resazurin incubation time has been reported to vary for different cell lines and 

culture conditions (Nakayama et al., 1997).  The optimal incubation time was that which 

maximised the linearity of signal with cell number, and signal to background ratio.  In this 

case signal linearity was high for incubation times out to 4 h, and decreased thereafter.  

Signal to background ratios increased with longer incubation times, therefore to maximise 

both parameters a 3.5 h incubation period was chosen for further studies.  Preliminary 

experiments demonstrated non-uniform fluorescent signal strength across the plate, with 

outer wells on the periphery of the plate having lower signals than identical wells in the 

centre.  This uneven spatial distribution occurred even with short incubation periods 

suggesting excessive evaporation from outer wells was an unlikely cause (Irwin et al., 2008).  

As the fluorescent signal of resazurin has been shown to be temperature dependent 

(Anonymous),  it was hypothesised that the non-uniform signals across the plate were due to 

temperature differentials across the plate arising from more rapid cooling of the outer wells 

compared to those in the centre on removal from the incubator prior to data acquisition.  To 

address this, the final 30 min of incubation was performed at room temperature to allow well 

temperatures to equilibrate prior to reading, which eliminated the edge effect. 

As expected, both colorimetric and fluorometric detection methods gave suitable results for 

the resazurin-based assay, with a strong linear correlation (R2=0.998) demonstrated between 

the two analyses.  There are several benefits of the fluorometric method however that make 

it the preferred option.  Firstly the overlap between the absorbance spectra of resazurin and 

the reduced resorufin results in reduced assay sensitivity when measured colorimetrically 

(Czekanska, 2011).  This was confirmed in the current study where the calculated theoretical 
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limit of detection was greater than 10-fold lower with fluorometric (200 cells.well-1) compared 

to colorimetric detection (2300 cell.well-1).  Given the large signal differences between 

positive and negative controls for both FCoV and FCV assays, improved sensitivity at low 

cell numbers is not critical in the current 96-well plate format, however may become 

important if the assay were miniaturised to higher cell density plates with a correspondingly 

lower cell number per well.  The second benefit of fluorometric over colorimetric readout is 

the former is relatively insensitive to slight variations in well media volume, while the OD 

values of colorimetric readout are directly proportional to path length, and hence well volume 

(Gribbon and Sewing, 2003). 

The most critical feature of the SRB assay for optimisation was the method of fixation.  

Proper fixation of cells to the plastic substratum is essential to achieve accurate results with 

the SRB assay, as loosely or non-attached cells will be lost during the staining and multiple 

washing steps, resulting in an underestimation of the number of cells in a well.  Several 

different fixation methods have been reported for this assay using TCA.  In the original 

method of Skehan et al. (1990) concentrated TCA (50%) was overlaid on culture media, 

resulting in a final in well TCA concentration of 10%.  Papazisis et al. (1997) reported an 

optimised procedure involving aspiration of the culture media before addition of 10% TCA.  

Both of these methods, as well as the method of decanting culture media prior to the addition 

of 10% TCA were assessed in this study.  All tested fixation methods showed a strong linear 

correlation between the cell number and OD510, with R2 values greater than 0.99, however 

there were clear differences in the S/B ratio and the CV between the methods.  In this study, 

although the optimised aspirate method gave the highest S/B ratio, the CV using this method 

was almost twice as high as the decant method.  The increased CV in this study may reflect 

the fact that aspiration was performed manually with a multichannel pipette rather than an 

automated plate washer as described by Papazisis et al. (1997).  For further studies the 

decant method was utilised based on its superior CV, high S/B ratio, and practical 

convenience.  

The next stage of optimisation involved determining the cell culture and infection conditions 

of the assay.  A multicycle assay strategy, involving infection at low MOI with a long 

incubation period, enables the detection of antiviral compounds acting at all stages of the 

replication cycle.  The reported single cell cycle for FCoV is approximately 12 to 14 h 

(Dewerchin et al., 2005; Rottier et al., 2005), and for FCV is 10 to 12 h (Ossiboff et al., 2007), 

meaning 72 and 48 h incubation periods for FCoV and FCV respectively allow for multiple 

rounds of viral replication.  Too low a MOI results in a narrow dynamic range with a resultant 

reduction in the Z’-factor for the assay.  Further at very low MOIs there is increased signal 

variation in infected cells, most likely a reflection of variability in the small number of input 
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virions at these MOI.  For this study MOI 0.01 was selected for both FCoV and FCV, with a 

72 h incubation period for the former, and a 48 h incubation period for the latter 

Determination of the DMSO sensitivity of a cell-based screening assay is important given its 

almost ubiquitous nature as a solvent in compound screening.  Unlike biochemical based 

assays, which can tolerate high concentrations of DMSO, for cell-based assays it is 

recommended that DMSO concentration does not exceed 1% (Iversen et al., 2012), however 

DMSO has been documented to have a range of negative effects on cell function even when 

used at concentrations lower than this (Yu and Quinn, 1994).  The deleterious effects of 

DMSO have been shown to vary with cell type (Bentrivedi et al., 1990; Da Violante et al., 

2002) and culture conditions (Bentrivedi et al., 1990), highlighting the need to optimise 

DMSO concentrations under specific assay conditions.  Under conditions identical to the final 

assay, DMSO was demonstrated to have a negative effect on cell viability as determined by 

the resazurin-based assay at concentrations greater than 0.375% (v/v), with a marked 

reduction in viability at concentrations greater than 0.75% (v/v).  In addition to its effect on 

cells, DMSO has been shown to have a concentration-dependent effect on the replication of 

a number of different viruses, with low doses resulting in enhancement of viral replication, 

and high doses suppressive of replication (Scholtissek and Müller, 1988).  DMSO at the 

maximum concentration used for screening in this study had no effect on FCoV or FCV 

replication as determined using the CPE inhibition assay. 
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Figure 3.17: Schematic of optimised resazurin-based CPE inhibition assay for feline 

coronavirus.  
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Figure 3.18: Schematic of optimised resazurin-based CPE inhibition assay for feline 

calicivirus.  
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Figure 3.19: Schematic of the optimised SRB-based assay.  
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Although the primary goal of this study was to develop an assay suitable for low to medium 

throughput screening of a limited number of compounds, a secondary aim was to develop a 

“HTS ready” assay for future studies.  One of the most commonly used measures of assay 

performance in HTS is the Z’-factor.  The Z’-factor is a dimensionless number that can take 

any value less than or equal to one (1 ≥ Z’ > - ∞).  According to Zhang et al. (1999) a perfect 

(idealised) assay has a Z’ = 1, an excellent assay 1 > Z’ ≥ 0.5, and a marginal assay 0.5 > Z’ 

> 0.  At Z ’= 0 the positive and negative control populations begin to overlap, and thus assays 

with Z’ < 0 are considered unsuitable for screening.  For HTS a Z’ > 0.5 is recommended (An 

and Tolliday, 2010).  The mean Z’-factor for the resazurin-based assays was 0.70 for FCoV 

and 0.76 for FCV.  Based on these results these assays are suitable in their current form for 

adaptation to HTS.  These values compare favourably to other reported assays used for 

HTS, including a HTS screen for SARS-CoV using a luminescent ATP based detection 

system which demonstrated a Z’-factor of 0.68 (Severson et al., 2007).  The optimised SRB-

based assay demonstrated higher Z’-factors than the resazurin-based assay, at 0.86 and 

0.91 for FCoV and FCV respectively.  Inter- and intra-day variation in Z’-factors were low, 

and in all cases Z’-factors were > 0.60 demonstrating the reliability and repeatability of both 

assays. 

In addition to showing each assay performed well independently, this study demonstrated 

that the SRB-based assay could be performed sequentially with the resazurin-based assay, 

with no loss of sensitivity.  Although both assays provide information on whole-well cell 

viability, the variables measured by the assays differ, and thus sequential use of these 

assays provides an opportunity for orthogonal testing on the same samples.  Orthogonal 

testing is recommended in screening programs to rule out false positive results that can 

occur, for example, if a tested compound interferes with the readout of the primary assay 

(Iversen et al., 2012).  For resazurin-based assays, such a result could occur with 

compounds displaying intrinsic fluorescence in the same wavelengths as resorufin, or for 

compounds with inherent reducing activity (Sittampalam et al., 2013). 

Whilst there are several benefits of the SRB-based assay as described, including a higher Z’ 

factor, higher S/B ratio, and the ability to fix plates and store indefinitely prior to staining and 

data acquisition, the resazurin-based assay was selected as the primary screening assay for 

further experiments based on practical considerations.  The SRB-based assay, although 

technically simple to perform, does require multiple steps prior to data acquisition.  In the 

absence of automation, the requirement for multiple manual handling steps increases the 

chance of operator error.  In contrast, although the resazurin-based assay had a slightly 
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lower Z’-factor for each virus, the simple single-step protocol prior to assay readout offered 

considerable practical benefits and minimised the opportunity for human error. 

A number of resazurin-based assays are commercially available.  A comparison of the cost 

per plate of some commercially available reagents and the in-house produced resazurin 

solution demonstrated that the latter is considerably more economical.  With a price of only a 

few cents per plate, the in-house prepared reagent is orders of magnitude cheaper than the 

commercially available reagents.  A potential benefit of the commercially available reagents 

is the inclusion of a poising agent to maintain the redox potential of the solution and enhance 

its stability.  When stored in single use aliquots at -20°C, no deterioration of the in-house 

prepared reagent was noted in this study. The in-house produced resazurin reagent 

therefore offers significant benefits, particularly for less well funded fields of research. 

In conclusion, this study describes the successful development and optimisation of two 

alternative CPE inhibition assays suitable for screening compounds for antiviral activity 

against FCoV and FCV.  Validation using control plates of positive and negative controls 

demonstrated minimal intra- and inter-day variability, with Z’-factors demonstrating suitability 

for HTS in the current format.  Although the SRB-based assay provided slightly better 

performance, the resazurin-based assay was selected for subsequent screening studies 

based on benefits in terms of cost and convenience.  The demonstration that the resazurin 

and SRB assays could be performed sequentially enables orthogonal testing to be performed 

on the same plate during initial screening, providing a convenient method to identify 

compounds which due to their inherent properties may interfere with the resazurin assay. 
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4 
4 Identification and characterisation of 

small molecule inhibitors of feline 
coronavirus replication 

4.1. ABSTRACT 

The prognosis for cats with feline infectious peritonitis (FIP) remains poor despite clinical 

intervention.  Current treatment options are directed primarily at modulating the host immune 

response and are, at best, palliative in nature.  The use of direct acting antivirals effective 

against feline coronavirus, the causative agent of FIP, would address the underlying root 

cause of the pathology and, in combination with immunomodulatory therapy, likely provide 

significant therapeutic benefit.  This chapter describes the in vitro screening and evaluation 

of a panel of nineteen candidate compounds for antiviral activity against FCoV.  Three 

compounds, chloroquine, mefloquine, and hexamethylene amiloride demonstrated marked 

inhibition of virus induced CPE at low micromolar concentrations.  Orthogonal assays 

confirmed inhibition of CPE was associated with significant reductions in viral replication.  

Selectivity indices calculated based on in vitro cytotoxicity screening and reductions in 

extracellular viral titre were 217, 24, and 20 for chloroquine, mefloquine, and hexamethylene 

amiloride respectively.  Preliminary experiments performed to inform the possible antiviral 

mechanism of the compounds demonstrated all three acted at an early stage of viral 

replication.  Taken together these results suggest that these compounds, or their derivatives, 

warrant further investigation for clinical use in cats with FIP. 

4.2. INTRODUCTION 

Infection with feline coronavirus (FCoV) is extremely common in domestic cats, with 

seroprevalence as high as 100% when cats are housed in situations of high population 

density (Pedersen, 1995).  Fortunately, infection results in little, if any, morbidity in the 

majority of cats, however in a small proportion infection with mutated virulent FCoV can 

result in the development of FIP.  Current treatment options for FIP are generally considered 

palliative, with a median life expectancy following diagnosis typically measured in days or 
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weeks.  Although the pathology of FIP is immune mediated in nature, the triggering and 

perpetuating event is the increased replication of FCoV in cells of the monocyte lineage 

(Kipar et al., 2006a; Kipar et al., 2005; Kipar et al., 2006b; Regan et al., 2008a; Simons et al., 

2005).  It is likely therefore that an antiviral effective against FCoV would be beneficial in 

treating this disease. 

Historically, treatment for FIP has primarily focused on immune modulating drugs.  There are 

a limited number of reports in the literature of purportedly successful treatments for FIP using 

immunomodulatory therapy (Table 1.3), however despite the sometimes impressive results 

reported, these initial positive findings have not been borne out with subsequent clinical 

experience, or drugs have been shown to be ineffective when larger, and well controlled 

studies have been conducted (Fischer et al., 2011; Hartmann and Ritz, 2008; Ritz et al., 

2007).  The incongruity between initial reports and the subsequent studies is most likely due 

to methodological flaws in the former, particularly relating to inadequate criteria for 

diagnosing FIP. 

Less has been reported regarding the use of direct acting antivirals against FCoV.  A number 

of compounds have demonstrated an inhibitory effect on the virus in vitro (Barlough and 

Scott, 1990; Barlough and Shacklett, 1994; Hsieh et al., 2010; Keyaerts et al., 2007), 

however for most of these there is little or no published data regarding their clinical use in 

treating FIP.  The broad spectrum antiviral ribavirin, which had demonstrated efficacy in vitro 

(Barlough and Scott, 1990; Weiss and Oostrom-Ram, 1989), provided limited clinical benefit 

and was associated with significant toxicity in cats with FIP (Weiss et al., 1993b).  In the 

absence of an effective vaccine or treatment, further research is clearly needed to address 

the unmet need for effective and safe antiviral therapeutics for the treatment of FIP. 

The initial stage in modern antiviral drug discovery often involves high throughput screening 

of vast chemical libraries, sometimes containing in excess of one million compounds.  In 

many cases the screening is unfocused, with libraries containing an essentially random 

collection of potentially bioactive compounds.  The expected hit rate during such screening is 

typically low, and given many reported hits are false positive results or have unsuitable 

pharmacokinetic or toxicity profiles, large numbers of compounds must be screened to 

identify suitable candidate compounds.  These large scale unfocused screens are also 

expensive (An and Tolliday, 2009), an important consideration for the less well funded areas 

of antiviral research.  One alternative approach is to utilise a more focused screening 

strategy, enriching the compound library by selecting and testing compounds considered 

likely to have an antiviral effect.  Selection of compounds for screening based on an a prior 

knowledge of their pharmacodynamics and the viral lifecycle will likely increase the hit rate 

considerably, allowing a reduction in the number of compounds tested, and the associated 
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costs.  These more focused screening panels may consist of compounds of a particular class 

known to be effective against the challenge virus, a panel of derivative compounds of a 

known effective antiviral, or compounds shown previously to be effective against closely 

related viruses.  In the latter regard, FIP researchers can benefit significantly from the 

increased interest in the study of antiviral chemotherapeutics for coronaviruses triggered by 

the emergence and global spread of the highly pathogenic SARS-CoV in 2002/2003. 

A number of direct acting antivirals were used to treat patients during the SARS pandemic, 

however the short duration of the outbreak limited information regarding their use.  Ribavirin, 

the most commonly used antiviral drug, offered inconsistent results, although in some studies 

it appeared to confer benefits in reducing mortality and intensive care unit admissions, and 

improving symptoms (Momattin et al., 2013).  These benefits were reduced with delays in 

initiating treatment and were frequently associated with significant adverse events (Momattin 

et al., 2013).  The use of retroviral protease inhibitors lopinavir and ritonavir, with or without 

ribavirin, was also associated with a favourable clinical response (Momattin et al., 2013).  

Despite the end of the SARS pandemic, a significant research effort continued focusing on 

identifying compounds effective against this newly recognised pathogen.  In the immediate 

aftermath of the pandemic, from May 2003 to November 2005, more than 190 of the 982 

papers published on SARS-CoV were therapeutics related (Wu et al., 2006).  A number of 

review articles have subsequently been published detailing compounds showing anti-

coronavirus activity (De Clercq, 2006; Pyrc et al., 2007; Tong, 2009a, b; Wu et al., 2006). 

Although the SARS pandemic ended a little over six months after it was declared, this 

outbreak highlighted that cross species transmission of coronaviruses remains an ever 

present threat.  The recent emergence of a novel coronavirus in Saudi Arabia known as 

Middle East respiratory syndrome coronavirus (MERS-CoV) has again exemplified this risk of 

cross species transmission. With a reported case fatality rate of 43% [82 deaths from 189 

laboratory confirmed cases] (ProMED, 2014) there clearly remains an urgent need for 

chemotherapeutics effective against coronaviruses (Chan et al., 2013). 

In the current study we screened a panel of nineteen compounds with previously 

demonstrated antiviral activity against coronaviruses or other RNA viruses for antiviral 

activity against FCoV using the optimised resazurin-based CPE inhibition assay described in 

Chapter 3.  Cytotoxicity of compounds was determined prior to screening using sequential 

resazurin- and SRB-based assays to determine the optimal minimally toxic test concentration 

and to enable calculation of selectivity indices.  The antiviral effects of compounds identified 

during screening were confirmed with plaque reduction and virus yield reduction assays.  

Virucidal suspension assays and time of addition assays were performed to provide initial 
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information as to the stage of viral replication targeted and the potential antiviral mechanism 

of action. 

4.3. MATERIALS AND METHODS 

4.3.1. Test compounds 

Details of the compounds tested in this study are shown in Table 4.1.  Compounds were 

selected for inclusion based on their reported in vitro antiviral properties against 

coronaviruses or other RNA viruses (referenced in Table 4.1).  Stock solutions were 

prepared by dissolving compounds in ultrapure water or DMSO (Sigma-Aldrich) to the 

concentrations listed.  Compounds were sterile filtered with a 0.22 µm regenerated cellulose 

filter (Corning), aliquoted into sterile single use microtubes (Sarstedt), and stored at -80 °C 

until use.  Compounds were used within six months of suspension. 
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Table 4.1: Compounds selected for antiviral screening. Superscripts indicate compound supplier: *, Sigma-Aldrich; †, Santa Cruz Biotechnology; 

‡, Virbac.  

Compound Stock 
concentration 

Antiviral effects reported against (not a complete list) 

Chloroquine diphosphate* 100 mM in water SARS-CoV (Keyaerts et al., 2004; Vincent et al., 2005), hepatitis C virus (HCV) (Mizui et al., 

2010), human coronavirus OC43 (Keyaerts et al., 2009), human immunodeficiency virus 

(HIV) (Savarino et al., 2001) 

Quercetin* 100 mM in DMSO HCV (Bachmetov et al., 2012), porcine epidemic diarrhoea virus (Choi et al., 2009a), 

dengue virus (Zandi et al., 2011) 

Curcumin† 100 mM in DMSO Influenza A (Chen et al., 2010), SARS-CoV (Wen et al., 2007) 

Rutin trihydrate† 100 mM in DMSO Canine distemper virus (CDV) (Carvalho et al., 2013), parainfluenza virus 3 (Orhan et al., 

2010) 

Indomethacin† 100 mM in DMSO SARS-CoV (Amici et al., 2006), HIV (Bourinbaiar and Lee-Huang, 1995) 

Glycyrrhizic acid* 100 mM in DMSO SARS-CoV (Cinatl et al., 2003). HIV (Fiore et al., 2008) 

Hesperidin† 200 mM in DMSO Human rotavirus (Bae et al., 2000), CDV (Carvalho et al., 2013) 

Aurintricarboxylic acid* 100 mM in DMSO SARS-CoV (He et al., 2004), influenza A (Hashem et al., 2009) 

Hesperetin† 100 mM in DMSO SARS-CoV (Lin et al., 2005), Sinbis virus (Paredes et al., 2003) 

Mefloquine hydrochloride* 100 mM in DMSO JC virus (Brickelmaier et al., 2009) 
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Table 4.1 cont.: Compounds selected for antiviral screening. Superscripts indicate compound supplier: *, Sigma-Aldrich; †, Santa Cruz 

Biot

echn

olog

y; ‡, 

Virb

ac. 

 

 

 

 

 

 

 

 

 

 

Compound Stock 
concentration 

Antiviral effects reported against (not a complete list) 

Artesunate* 65 mM in DMSO SARS-CoV (Li et al., 2005b) 

Ribavirin* 31 mM in DMSO FCoV (Weiss and Oostrom-Ram, 1989), FCV (Povey, 1978b) 

Baicalin hydrate† 100 mM in DMSO SARS-CoV (Chen et al., 2004) 

Hexamethylene amiloride† 50 mM in DMSO SARS-CoV (Wilson et al., 2006a), HCV (Premkumar et al., 2004) 

Cinanserin† 25 mM in DMSO SARS-CoV (Chen et al., 2005) 

Artemisinin* 100 mM in DMSO Bovine viral diarrhoea virus (Romero et al., 2006), HCV (Paeshuyse et al., 2006) 

Niclosamide† 20 mM in DMSO SARS-CoV (Wu et al., 2004), human rhinovirus (Jurgeit et al., 2012) 

Lactoferrin* 10 mg.ml-1 in DMEM FCV (McCann et al., 2003), feline herpes virus (Beaumont et al., 2003) 

Recombinant feline interferon ω‡ 10x106 units.ml-1 in 

water 

FCoV (Mochizuki et al., 1994; Truyen et al., 2002) 
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4.3.2. Cytotoxicity screening of test compounds 

Cytotoxicity screening was performed using a modification of the resazurin- and SRB-based 

CPE inhibition assays described in Chapter 3 (summarised in Figure 3.17 and Figure 3.19).  

Clear-bottomed black-walled 96-well plates (μClear ®, Greiner Bio-One) were set up as in 

Figure 4.1 with 5 x 103 cells.well-1 in 100 µl DMEM-10 (or 100 µl DMEM-10 for control wells 

containing no cells).  Plates were held at room temperature for 30 min post-seeding then 

incubated then at 37°C in 5% CO2 in air for 5 h prior to compound addition.  Nine serial half-

log or one-third log dilutions of test compounds were prepared in DMEM, and 50 µl.well-1 

added in triplicate wells per concentration.  Fluorometric controls were included to assess 

potential interference from compounds on assay performance.  These controls identify 

compounds with intrinsic fluorescence in the same range as resazurin, or those with inherent 

reducing activity that could artefactually increase signals, resulting in an underestimation of 

cytotoxicity or an overestimation of antiviral effects.  Fluorometric controls consisted of the 

highest tested concentration of compound in wells containing no cells.  Sodium dodecyl 

sulfate (SDS) was included as a positive toxicity control at a concentration of 0.1% (w/v).  

Negative control (cell only), vehicle control (0.33% DMSO), and media only (no cell) controls 

were also included in triplicate on each plate.  Cell viability was determined after 72 h 

exposure to the test compounds using sequential resazurin- and SRB-based assays as 

described in Chapter 3.  Data were exported to Microsoft Excel and GraphPad Prism for 

analysis.  Cell viability for the resazurin-based assay was calculated according to the 

following formula: 

𝐶𝐶𝐶𝐶 𝑣𝑐𝑐𝑣𝑐𝐶𝑐𝑐𝑖 (%) =
𝑅𝑅𝑅𝑇𝑇

𝑅𝑅𝑅𝐶𝐶𝑆𝐶𝐶𝐶𝑆
 × 100 

Where RFUTx is the mean fluorescence intensity of treated cells and RFUControl is the mean 

fluorescence intensity in untreated cells.  For the SRB-based assay, cell viability was 

calculated similarly, with OD510 values rather than RFU values used in calculations.  Two 

independent experiments were performed and the results represent Mean ± SE.  Test 

compound concentrations selected for subsequent antiviral screening were those resulting in 

viability of at least 80% or greater (≥ CC80) based on manual interpolation of graphs. 
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Figure 4.1: Plate layout for cytotoxicity testing.  Cytotoxicity testing was performed on two 

compounds per plate. 

4.3.3. Antiviral screening using CPE inhibition assay 

Antiviral screening of compounds listed in Table 4.1 was performed using the optimised 

resazurin-based CPE inhibition assay described in Chapter 3 and summarised in Figure 

3.17.  Plate setup was as shown in Figure 4.2, with CPE inhibition and cytotoxicity screening 

performed on the same plate.  Test compound concentration was as determined in Section 

4.4.1.  Data analysis was performed in Microsoft Excel and GraphPad Prism.  The 

percentage inhibition of virus induced CPE was calculated by: 

𝐶𝐶𝐶 𝑐𝑐ℎ𝑐𝑣𝑐𝑐𝑐𝑐𝑐 (%) =
𝑅𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑅𝑉(+)

𝑅𝑅𝑅𝑉(−) − 𝑅𝑅𝑅𝑉(+)
 × 100 

Where RFUTx is the mean fluorescence intensity of treated infected cells; RFUV(+) is the mean 

fluorescence intensity in untreated infected cells; and RFUV(-) is the mean fluorescence 

intensity of untreated uninfected cells.  Cell viability of the uninfected cells was determined as 

detailed in Section 4.4.1.  Each treatment was performed in triplicate and repeated in three 

independent experiments. Results represent Mean ± SE.  Compounds showing marked, 

moderate, or mild antiviral effects were defined as those showing 75-100%, 50-74%, and 25-

49% inhibition of CPE respectively.  Compounds demonstrating marked CPE inhibition were 

selected for further characterisation. 
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Figure 4.2: Plate setup for antiviral screening.  Each compound was tested at a single 

concentration in triplicate (as indicated by letters A I) for both antiviral effect (Rows B,C, 

and D) and also cytotoxicity (Rows E, F, and G).  

4.3.4. Titration of effective compounds and determination of selectivity index 

Using the optimised FCoV CPE inhibition assay a concentration-response experiment was 

conducted with serial dilutions of identified candidate compounds (nine concentrations per 

compound).  To enable calculation of the selectivity index, a repeat cytotoxicity screen was 

performed concurrently.  The cytotoxicity screen was performed as per the CPE inhibition 

assay (Figure 3.17) except that cells were mock infected with 20 µl DMEM.  Each treatment 

was performed in triplicate and repeated in three independent experiments.  Data were 

exported to Microsoft Excel for calculation of cell viability and CPE inhibition according to the 

formulae in Sections 4.3.2 and 4.3.3 respectively.  Data analysis were conducted in 

GraphPad Prism, with the 50% inhibitory concentration (IC50) and 50% cytotoxic 

concentration (CC50) values calculated using the inbuilt non-linear curve fitting functions 

following log10 transformation of compound concentrations.  The selectivity index (SI) for 

each compound was calculated according to the following formula: 

 

𝑆𝑆 =
𝐶𝐶50
𝑆𝐶50

 

4.3.5. Confirmatory assays 

Plaque reduction and virus yield reduction assays were performed to confirm antiviral effects 

of candidate compounds identified using the CPE inhibition assay. 
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4.3.5.1. Virus yield reduction assay 

Virus yield reduction assays were performed in 24-well plates (Sarstedt).  Wells were seeded 

with 4.0 x 104 cells.well-1 in 400 µl DMEM-10.  Plates were kept at room temperature for 30 

min and then at 37°C in 5% CO2 in air for 5 h prior to the addition test compounds.  

Compounds were diluted in DMEM to the required concentrations (five or six concentrations 

per compound) with 75 μl added to each well.   Cells were incubated at 37°C in 5% CO2 in 

air for an additional 1 h prior to infection with FCoV FIPV1146 at MOI 0.1 in 25 μl DMEM.  

Cells were incubated for a further 48h at 37°C in 5% CO2.  At 24 and 48 hpi cell monolayers 

were visually assessed for CPE using an Olympus CKX41 inverted phase-contrast 

microscope and culture media was collected and stored at -80°C for virus titration.  Untreated 

infected cells, untreated uninfected cells, and treated uninfected cells were included as 

controls.  This latter control was included to allow assessment of morphological changes to 

cells due to compound treatment.  Titration of extracellular virus harvested at 24 and 48 hpi 

was performed using the TCID50 method described in Section 2.3.1.2.2.  The relative viral 

titre was calculated for each treatment, with the titre of untreated control cells defined as 

100%.  Data were analysed in GraphPad Prism.  Each treatment and time point was 

performed in triplicate and repeated in two independent experiments, with results 

representing Mean ± SE. 

4.3.5.2. Plaque reduction assay 

Plaque reduction assays were performed in 12-well plates (Corning) using a modification of 

the standard plaque assay for FCoV virus titration as described in Section 2.3.1.2.1.  Cells 

seeded at a density of  6 x 104 cells.well-1 in 1 ml DMEM-10 were held at room temperature 

for 30 min prior to incubation at 37°C in 5% CO2 in air for 60 h, by which time monolayers 

were approximately 90% confluent.  Culture media was discarded and replaced with 400 µl 

DMEM-2 plus 75 µl of various concentrations of test compounds in DMEM (or 75 µl DMEM 

only for control wells) using five or six concentrations per compound.  After exposure to the 

compound for 1 h, cells were infected with approximately 30 pfu.well-1 FCoV FIPV1146 in 25 

µl DMEM.  Virus was allowed to adsorb for 90 min with plates rocked every 15 min to ensure 

an even distribution of inoculum.  Culture media was discarded after 90 min and cells 

overlaid with 1 ml CMC plaque assay overlay media containing the same concentration of 

compound as present prior to and during infection.  Incubation, fixation, staining, and 

counting of plaques was as previously described in Section 2.3.1.2.1.  The relative plaque 

number was calculated for each treatment, with the value of untreated control defined as 

100%.  Each treatment was performed in duplicate, and repeated in three independent 

experiments, with data representing Mean ± SE. 
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4.3.6. Virucidal suspension assay 

A virucidal suspension assay was performed to assess virucidal effects of test compounds.  

The assay was performed as per the standard 12-well FCoV plaque assay described in 

Section 2.3.1.2.1 with the exception that virus was mixed and incubated with test compounds 

prior to infection.  Stock FCoV FIPV1146, diluted in DMEM to 2 x 106 pfu.ml-1, was mixed 

with an equal volume of test compound diluted in DMEM to 2 x the test concentration used 

during screening in Section 4.3.3.  The control virus suspension was mixed with DMEM 

containing an equal concentration of DMSO as the test samples.  Virus suspensions were 

incubated for 1 h at room temperature before serial dilution in DMEM to infect cells with 

approximately 25 pfu.well-1 in 100 μl.  Following serial dilution of the virus, cells were 

exposed to test compounds at concentrations greater than 4 log10 lower than concentrations 

previously shown to have no antiviral effect.  Virus was allowed to adhere for 90 min 

following which the viral inocula was discarded and cells overlaid with 1 ml CMC plaque 

assay overlay media.  Incubation, fixation, staining, and counting of plaques was as 

previously described.  The experiment was performed in triplicate and repeated in two 

independent experiments.  Data represent Mean ± SE. 

4.3.7. Time of addition assay 

4.3.7.1. CPE inhibition 

A modification of the resazurin-based CPE inhibition assay was performed to assess the 

effect of time of compound addition on the antiviral efficacy of identified compounds.  The 

CPE inhibition assay was performed as detailed in Section 4.3.3 with the exception that test 

compounds were added at various time points before and after infection.  The selected time 

points were 1 h prior to infection, concurrent with infection, and 1, 3, or 6 h post infection.  

Treatments were performed in triplicate and repeated in three independent experiments.  

Data represent Mean ± SE. 

4.3.7.2. Immunofluorescence assay 

To further elucidate the stage of viral replication affected by each compound the effect of 

time of addition on viral antigen expression was examined.  Cells were seeded at a density of 

5.0 x 103 cells.well-1 in 100 μl DMEM-10 in 96-well plates (μClear ®, Greiner Bio-One).  A 

lower cell density was used for this experiment for ease of cell segmentation during post 

acquisition image analysis.  After seeding plates were kept at room temperature for 30 min 

and then incubated at 37°C in 5% CO2 in air for 5 h prior to the first time-point of compound 

addition.  Compounds were added in 30 µl to duplicate wells at different time points prior to, 

concurrent with, or post infection as shown in Figure 4.3.  Cells were infected with FCoV 

FIPV1146 at MOI 0.5 in 20 µl or mock infected with 20 µl DMEM for an infection period of 1 
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h.  At 12 hpi (measured from the end of the infection period) cells were fixed, stained, and 

imaged as described in Section 2.5.3.  The 12 h duration was selected based on the reported 

one step growth curve of FCoV (Dewerchin et al., 2005; Rottier et al., 2005).  Image analysis 

was performed using CellProfiler with data exported to FCS Express Image Cytometry for 

analysis as described in Section 2.5.3.3. 

 

Figure 4.3: Schematic of compound exposure during time of addition studies.  Individual 

compounds were added to duplicate wells at different time points prior to, concurrent with, or 

post infection.  Individual bars represents the duration and timing of compound exposure for 

each treatment.  

4.3.8. Strain variation 

To assess efficacy against different FCoV strains, identified candidate compounds were 

tested against FCoV FECV1683 using the resazurin-based CPE inhibition assay.  The assay 

was performed as previously described in Section 4.3.3, excepting that cells were infected 

with either FCoV FIPV1146 or FECV1683 at MOI 0.01.  Each treatment was performed in 

triplicate and repeated in three independent experiments, with data representing Mean ± SE. 

4.4. RESULTS 

4.4.1. Cytotoxicity screening of test compounds 

Cytotoxicity screening was performed to determine the concentration of test compounds to 

be used for antiviral screening.  Dual resazurin- and SRB-based assays were performed for 

all compounds with the exception of lactoferrin and rFeINF- ω, which due to technical 

problems, were assessed using only the resazurin-based assay.  Results of the screening 

are shown in Figure 4.4.  In general there was good agreement between cell viability 
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calculated with the two different assays.  There was no evidence of interference by the test 

compounds with the resazurin-based assay as fluorometric controls gave similar signals to 

media only controls.  Concentrations resulting in cell viability greater than 80% (> CC80) 

were used for subsequent antiviral screening, and are indicated by the dotted lines on Figure 

4.4.   
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Figure 4.4: Results of cytotoxicity screening. Cells were treated with serial half-log or third-

log concentrations of test compounds 5 h post seeding.  Effects on cell viability were 

determined after a 72 h exposure period using sequential resazurin- and SRB-based assays.  

Each treatment was performed in triplicate and repeated in two independent experiments.  

Results represent Mean ± SE.  Dotted lines indicate selected test concentration of compound 

used for subsequent antiviral screening.  
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Figure 4.4 cont.: Results of cytotoxicity screening.  
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Figure 4.4 cont.:  Results of cytotoxicity screening. 

4.4.2. Antiviral screening using CPE inhibition assay 

Based on the previously defined criteria, three of nineteen tested compounds showed 

marked inhibition of virus induced CPE and were selected for further characterisation.  Pre-

treatment with chloroquine at 25 µM, mefloquine at 10 µM, and hexamethylene amiloride at 

10 µM resulted in 93.3%, 89.8%, and 77.6% inhibition of CPE respectively.  A further two 

compounds, glycyrrhizic acid at 25 µM and cinanserin at 20 µM displayed a mild antiviral 

effect with a 26.7% and 34.0% reduction in CPE respectively.  All other compounds 

demonstrated limited or no inhibitory effect on CPE.  Included among these ineffective 

compounds was ribavirin, a broad spectrum antiviral compound that had previously shown in 

vitro (Barlough and Scott, 1990; Weiss and Oostrom-Ram, 1989), and to a limited extent in 

vivo efficacy against FCoV (Weiss et al., 1993b), as well as rFeINF-ω which had similarly 

shown previous in vitro efficacy against FCoV (Mochizuki et al., 1994; Truyen et al., 2002). 
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Figure 4.5: Results of FCoV antiviral screening experiment.  Cells were pre-treated with compounds for 1 h prior to infection with FCoV FIPV1146 

at MOI 0.01.  Antiviral efficacy was determined 72 hpi using the resazurin-based CPE inhibition assay.  A concurrent cytotoxicity screen was 

performed using the same protocol with the exception that cells were mock infected.  Each treatment was performed in triplicate and repeated in 

three independent experiments.  Results represent Mean ± SE. ATA, aurintricarboxylic acid; HMA, hexamethylene amiloride.  Red dotted line = 

75% inhibition. 
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4.4.3. Titration of candidate compounds 

To confirm and further characterise the antiviral properties of candidate compounds identified 

during initial screening, a concentration-response study was conducted with chloroquine, 

mefloquine, and hexamethylene amiloride.  A repeat cytotoxicity screen was concurrently 

performed for these compounds to allow calculation of selectivity indices.  All compounds 

demonstrated a clear concentration-response effect over the tested range (Figure 4.6).  

Calculated IC50, CC50, and SI values for the compounds are shown in Table 4.2. 

 

Table 4.2: IC50, CC50, and SI values for chloroquine, mefloquine, and hexamethylene 

amiloride as determined using the resazurin-based CPE inhibition assay.  IC50 and CC50 

values given with 95% confidence intervals.  

Compound IC50 (μM) CC50 (μM) SI 

Chloroquine 16.63 (14.44-19.15) 82.31 (76.66-88.38) 4.95 

Mefloquine 7.89 (7.50-8.31) 15.13 (13.69-18.05) 1.92 

Hexamethylene amiloride 9.38 (8.99-9.79) 26.50 (25.42-27.63) 2.82 
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Figure 4.6: Results of antiviral titration for (a) chloroquine, (b) mefloquine, and (c) 

hexamethylene amiloride using resazurin-based CPE inhibition assay.  Cells were pre-

treated with serial dilutions of compounds for 1 h prior to infection with FCoV FIPV1146 at 

MOI 0.01.  Antiviral efficacy was determined after a 72 hpi.  A concurrent cytotoxicity screen 

was performed using the same protocol with the exception that cells were mock infected.  

Each treatment was performed in triplicate and repeated in three independent experiments.  

Results represent Mean ± SE.  
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4.4.4. Virus yield reduction assay 

Virus yield reduction assays confirmed the CPE inhibition identified during screening was 

associated with a marked reduction in extracellular viral titre.  Determination of extracellular 

virus titre was performed at 24 and 48 hpi with results shown in Figure 4.7.  For chloroquine 

and mefloquine there was a considerable difference in the resulting concentration-response 

curves at 24 and 48 hpi, while for hexamethylene amiloride the shape of the curve was 

similar at both time points. Differences in concentration-response curves between the two 

time points is reflected in the IC50 values, with increased IC50 values for chloroquine and 

mefloquine at 48 hpi compared to 24 hpi, while for hexamethylene amiloride IC50 values 

were similar at both time points (Table 4.3). 

Table 4.3: Calculated IC50 and SI values for chloroquine, mefloquine, and hexamethylene 

amiloride using the virus yield reduction assay.  IC50 values given with 95% confidence 

intervals.  

 24 hpi 48 hpi 

Compound IC50 (μM) SI  IC50 (μM) SI 

Chloroquine 
 

0.38 (0.096-1.50) 217.60 28.87 (25.17-33.12) 2.85 

Mefloquine 
 

0.74 (0.32-1.73) 20.45 5.71 (4.43-7.36) 2.65 

Hexamethylene amiloride 
 

1.07 (0.66-1.73) 24.77 1.23 (0.71-2.14) 21.54 

 

During the virus yield reduction assay cells were monitored for the development of CPE 

using phase contrast microscopy.  It was noted that cells treated with chloroquine, 

mefloquine, or hexamethylene amiloride displayed characteristic morphological changes.  

These changes consisted of a large number of variably sized cytoplasmic (predominantly 

perinuclear) inclusions in addition to the presence, in some cells, of an increased number of 

cytoplasmic vacuoles (Figure 4.8).  To investigate the nature of the inclusions staining with 

neutral red was performed.  Neutral red is a vital dye that is known to accumulate in 

lysosomes.  A separate experiment was conducted in which uninfected cells were treated 

with the candidate compounds at the previously calculated minimally toxic concentration 

(detailed in Section 4.4.1), or mock treated with DMSO, for 24 h prior to staining 33 μg.ml-1 

neutral red in DMEM for 2 h.  Cells were washed in PBS and imaged with an inverted phase 

contrast microscope (Olympus CKX41).  For all three compounds the cytoplasmic inclusions 

appeared red following neutral red staining suggesting the inclusions were likely dilated 

endosomes / lysosomes. 
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Figure 4.7: Results of virus yield reduction assay for chloroquine, mefloquine, and 

hexamethylene amiloride.  Cells were pre-treated with various dilutions of compounds for 1 h 

prior to infection with FCoV FIPV1146 at MOI 0.1.  Extracellular virus titres were calculated at 

24 (blue circles) and 48 hpi (red squares) with a TCID50 end point assay.  Titre of untreated 

control is defined as 100%.  Each treatment was performed in triplicate and repeated in two 

independent experiments. Data represent Mean ± SE.  
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Figure 4.8: Representative micrographs of morphological changes induced by treatment with 

chloroquine, mefloquine, and hexamethylene amiloride.  Treated cells showed increased 

numbers of variably sized cytoplasmic (predominantly perinuclear) inclusions which 

accumulated the vital dye neutral red. Images acquired at 200 x magnification.  

4.4.5. Plaque reduction assay 

Plaque reduction assays confirmed the findings of the CPE inhibition and virus yield 

reduction assays.  Pre-treatment with chloroquine, mefloquine, or hexamethylene amiloride 
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resulted in a concentration-dependent decrease in plaque number, with high concentrations 

completely inhibiting macroscopic plaque formation.  For all compounds plaque morphology 

was similar between treated and untreated wells however plaque size was smaller in treated 

versus untreated wells as shown in Figure 4.9.  The calculated IC50 and SI values are 

shown in Table 4.4. 

Table 4.4: IC50 and SI for chloroquine, mefloquine, and hexamethylene amiloride using 

plaque reduction assay.  IC50 values given with 95% confidence intervals.  

Compound IC50 (μM) SI 

Chloroquine 
 

2.58 (1.96-3.31) 31.90 

Mefloquine 
 

2.30 (1.98-2.68) 6.58 

Hexamethylene amiloride 
 

2.90 (2.49-3.37) 9.14 
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Figure 4.9: FCoV plaque reduction assays for chloroquine, mefloquine, and hexamethylene 

amiloride.  Cells were pre-treated with various concentrations of compounds for 1 h prior to 

infection with approximately 30 pfu.well-1 FCoV FIPV1146.  Virus was allowed to adsorb for 

90 min and the cells overlaid with culture media containing 0.9% CMC and an equivalent 

concentration of test compounds.  Cells were fixed and stained 48 hpi and plaques manually 

counted.  Data expressed relative to plaque number of untreated control.  Each treatment 

was performed in duplicate and repeated in three independent experiments.  Data represents 

Mean ± SE.  
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4.4.6. Virucidal suspension assay 

Virucidal properties of selected compounds were tested by incubating FCoV FIPV1146 with 

compounds for 1 h prior to titration of residual infectivity by plaque assay.  Serial dilution of 

the virus-compound suspension prior to infection resulted in exposure of the test cells to the 

compounds at concentrations greater than 4 log10 lower than that previously demonstrated to 

have no effect.  As shown in Figure 4.10, no virucidal effects were seen for chloroquine, 

mefloquine, or hexamethylene amiloride, with the infectivity of virus suspensions exposed to 

the compounds not significantly different from virus incubated with media alone. 

 

Figure 4.10: Virucidal suspension assay for chloroquine, mefloquine, and hexamethylene 

amiloride.  FCoV FIPV1146 was exposed to chloroquine (CQ), mefloquine (MQ), or 

hexamethylene amiloride (HMA) for 1 h prior to titration of residual infectivity using the 

standard FCoV plaque assay.  Each treatment was performed in triplicate and repeated in 

three independent experiments.  Data represent Mean ± SE.  

4.4.7. Effect of time of addition 

The effect of time of addition on the antiviral activity of selected compounds was assessed 

using a modification of the resazurin-based CPE inhibition assay and through IFA of viral 

protein expression.  Based on the CPE inhibition assay maximum antiviral effect was seen 

when compounds were added prior to or concurrent with infection, following which there was 

a time-dependent reduction in CPE inhibition (Figure 4.11).  For all tested compounds CPE 

inhibition remained greater than 50% when compounds were added at the latest tested time 

point of 6 h post infection. 
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Figure 4.11: Effect of time of addition on CPE inhibition for chloroquine, mefloquine, and 

hexamethylene amiloride.  Compounds were added 1 h prior to infection, concurrent with 

infection, and 1, 3, or 6 h post infection with FCoV FIPV1146 at MOI 0.01.  CPE inhibition 

was determined after 72 hpi using the resazurin-based CPE inhibition assay.  Each treatment 

was performed in triplicate and repeated in three independent experiments.  Data represent 

Mean ± SE.  

The CPE inhibition assay encompasses multiple rounds of viral replication.  To further 

elucidate the stage of viral replication affected by test compounds a single replication cycle 

IFA-based assay was conducted, the results of which are shown in Figure 4.12.  These 

results confirm that, based on viral antigen expression, all three compounds possess antiviral 

properties when added prior to, or at the time of infection.  Furthermore all compounds 

displayed a time of addition dependent reduction in antiviral effect; however the extent and 

timing of this reduction varied. 

The inhibitory effect of chloroquine was reduced, based on an increase in the percentage of 

FCoV antigen positive cells, when added at any time post infection.  A similar result was 

seen for hexamethylene amiloride, although in this case a significant increase in the number 

of infected cells was not seen until compound addition was delayed until 1 hpi.  In contrast, 

mefloquine remained effective when added up to 5 hpi suggesting it may act at a later stage 

of viral replication than chloroquine and hexamethylene amiloride. 
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Figure 4.12: Effect of time of compound addition on viral antigen expression for chloroquine, 

mefloquine, and hexamethylene amiloride.  Cells were treated pre-, concurrent with, or post-

infection with chloroquine, mefloquine, or hexamethylene amiloride.  Cells were infected with 

FCoV FIPV1146 at MOI 0.5.  The infection period was 1 h, following which cells were 

washed and culture media replaced. Results represent Mean of duplicate wells ± SD.  For 

ease of visualisation, samples treated with compounds only for the pre-infection period are 

not shown by connecting lines and are marked with an asterisks (*).  For all other treatments 

the added compounds remained for the duration of the experiment.  

4.4.8. Strain variation 

The efficacy of the three identified candidate compounds was tested against FCoV 

FECV1683, a serotype II enteric biotype FCoV.  Comparison of the virus control (no 

treatment) wells showed FCoV FIPV1146 infection resulted in more pronounced CPE over 

the 72 h infection period compared to FCoV FECV1683.  As shown in Figure 4.13, pre-

treatment with chloroquine, mefloquine, or hexamethylene amiloride provided a degree of 

protection against strain FCoV FECV1683.  Pre-treatment with hexamethylene amiloride 

provided protection against virus induced CPE that was similar for the two strains, with a 

reduction in CPE of 89.5% and 86.0% for FCoV FIPV1146 and FECV1683 respectively.  

Both chloroquine and mefloquine however were more effective against FCoV FIPV1146 than 

FECV1683, with CPE inhibition for chloroquine of 76.9% for versus 63.8%, and for 

mefloquine 79.0% versus 67.5% for strains FIPV1146 and FECV1683 respectively. 
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Figure 4.13: Efficacy of chloroquine, mefloquine, and hexamethylene amiloride against 

FCoV FIPV1146 and FECV1683.  Cells were pre-treated with compounds for 1 h prior to 

infection at MOI 0.01.  Antiviral efficacy was determined 72 hpi using the resazurin-based 

CPE inhibition assay.  Each treatment was performed in triplicate and repeated in three 

independent experiments.  Data represent Mean ± SE.  

4.5. DISCUSSION 

In this study we have reported the identification of three compounds demonstrating a marked 

inhibitory effect on FCoV replication in vitro.  These compounds, chloroquine, mefloquine, 

and hexamethylene amiloride demonstrated significant reductions in virus induced CPE and 

viral titres at low micromolar concentrations when present during the early stages of viral 

replication.  Given these in vitro findings, the in vivo use of these compounds for the 

treatment of FIP warrants further consideration and research. 

In this study a directed antiviral screening approach was utilised, with compounds selected 

for inclusion based on previously demonstrated in vitro antiviral efficacy against other 

coronaviruses or, in a few cases, RNA viruses from other families.  The screening strategy 

employed was to initially identify a suitable minimally-toxic test concentration for each 

compound based on cytotoxicity screening.  This approach, practical in this case due to the 

relatively small number of tested compounds, has the benefit of minimising false negative 

results due to testing effective compounds at either cytotoxic concentrations or 

concentrations significantly below their therapeutic range.  Pre-test cytotoxicity screening and 

the optimisation of individual test concentrations like this is impractical for modern high 

throughput screening methodologies that can test chemical libraries containing millions of 

compounds (Macarron et al., 2011).  In these situations compounds are typically tested at a 

fixed concentration, commonly 10 μM.  Of the compounds tested in this study, seven were 
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tested at concentrations less than 10 μM, six tested at 10 μM, and five tested at 

concentrations greater than 10 μM.  Thus the optimum test concentration for two thirds of the 

compounds used in this study was different than that typically used in screening experiments 

confirming this as a useful approach. This enabled an accurate calculation of the optimal 

antiviral effect of all compounds to be determined during initial screening. 

Extended duration cytotoxicity screening was performed on actively replicating cells in order 

to identify and exclude compounds that are both cytotoxic and/or cytostatic. Screening was 

performed using sequential resazurin- and SRB-based assays which provided the 

opportunity for orthogonal testing on the same samples.  A multiparametric approach to 

cytotoxicity testing has been recommended to overcome some of the inherent limitations of 

individual assay formats, and may inform the mechanism of toxicity of tested compounds 

(Niles et al., 2009).  In general there was good agreement between the cytotoxicity 

concentration-response curves generated using the two assays for all compounds tested.  

For several compounds (hesperidin, chloroquine) an increase in cell viability at sub-toxic 

concentrations was noted with the resazurin-based assay that was not reflected in the SRB-

based assay.  Concentration-response relationships like this, characterised by stimulation at 

low-concentrations and inhibition at high-concentrations, are known as hormetic responses 

(Calabrese, 2008), and may reflect a compensatory increase in cellular metabolism at sub-

toxic concentrations. 

The antiviral screening assay identified three compounds demonstrating marked inhibition of 

virus induced CPE: chloroquine, mefloquine, and hexamethylene amiloride, the molecular 

structures of which are shown in Figure 4.14.  Two compounds, glycyrrhizic acid and 

cinanserin, demonstrated mild inhibition of CPE in the screening assay, and may warrant 

further investigation either in their native form, or as the basis for designing structural 

analogues, however these avenues were not pursued in this study.  Interestingly, two 

compounds included in the screen, ribavirin (Barlough and Scott, 1990; Weiss and Oostrom-

Ram, 1989) and rFeINF-ω (Mochizuki et al., 1994; Truyen et al., 2002), which had previously 

demonstrated in vitro efficacy against FCoV, failed to demonstrate significant inhibition of 

CPE in the current study.  In both cases the lack of antiviral effect was most likely due to 

testing at concentrations below the therapeutic range for these compounds. 

Additional testing of highly effective compounds identified during screening, using different 

assay formats and endpoints, confirmed their antiviral effects when used at low micromolar 

concentrations.  The IC50 value, and corresponding selectivity index, for each compound 

varied with the assay method utilised.  This is not unexpected given the assays measured 

different endpoints, and has been reported for other antiviral drugs such as the retroviral 

protease inhibitor saquinavir where the reported IC50 calculated based on production of viral 
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p24 antigen is approximately 30-fold lower than that based on production of mature virions 

(Buss and Cammack, 2001).  Similarly, variation in assay conditions can result in the 

calculation of significantly different IC50 values, as demonstrated by Keyaerts et al. (2004) in 

a study on the efficacy of chloroquine against SARS-CoV.  Using a PCR-based virus yield 

reduction assay, the concentration-response curve was shifted considerably to the right, with 

a corresponding increase in the IC50 value, when efficacy was determined 72 hpi compared 

to 24 hpi.  A similar finding was noted in the current study, with differences in potency 

reported with the TCID50 based virus yield reduction assay performed at 24 and 48 hpi.  For 

chloroquine and mefloquine there was a 76- and 7-fold reduction in the reported potency, 

respectively, between these time points.  Interestingly, there was no significant difference in 

the potency of hexamethylene amiloride between the two time points which may suggest a 

prolonged duration of action for this compound. 

 

Figure 4.14: Chemical structures of effective compounds identified during primary antiviral 

screening: (a) chloroquine, (b) mefloquine, and (c) hexamethylene amiloride (Sigma-Aldrich).  

It is interesting to note that all three compounds showing marked antiviral efficacy against 

FCoV in this study resulted in similar morphological changes in cells treated at sub-toxic 

concentrations.  The presence of increased numbers of variably size cytoplasmic inclusions 

that accumulate the viral dye neutral red suggests the compounds resulted in perturbation of 

the normal endocytic pathway in CRFK cells.  Alterations in the endocytic pathway have 
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previously been reported for chloroquine (Dean et al., 1984), mefloquine (Labro and Babin-

Chevaye, 1988), and for amiloride and some of its derivatives (Dutta and Donaldson, 2012).  

These data suggests a common physiological effect on treated cells for all three candidate 

antivirals and possibly a shared mechanism of action.  Viruses are known to usurp a variety 

of host endocytic pathways for cell entry and intracellular movement (Marsh and Helenius, 

2006) and inhibition of these pathways may be a useful therapeutic approach.  Although 

targeting a cellular pathway may be associated with an increased risk of toxicity, if that 

pathway is critical for viral replication this approach may have the benefit of slowing or 

limiting the development of resistance.  This has been demonstrated for the compound 

niclosamide, which by neutralising endosomal pH, has been shown to be effective against a 

number of pH dependent viruses (Jurgeit et al., 2012).  In a study by Jurgeit et al. (2012), 

serial passage of human rhinovirus, a picornavirus, through cells treated with various 

concentrations of niclosamide showed no evidence of escape mutants.  In contrast, other 

anti-picornavirus compounds targeted at viral proteins, particularly structural proteins, rapidly 

select for drug resistance due to the high mutation rate of these RNA viruses (Thibaut et al., 

2012). 

Time of addition studies demonstrated all compounds were most effective when added prior 

to infection, suggesting a mechanism of action involving early stages of viral replication.  The 

CPE inhibition based time of addition assay involved infection at low MOI with a 72 h 

infection period, allowing for multiple rounds of viral replication.  As a result of this, even with 

the delayed addition of compounds, cells uninfected by the original inoculum are effectively 

pre-treated prior to challenge with progeny virions produced during the primary replication 

cycle.  Using an IFA-based time of addition study involving a single replication cycle we were 

able to further clarify the effect of time of addition, and refine the possible stage of the viral 

life cycle targeted by each compound.  Based on the IFA results chloroquine was effective 

only if present at the time of infection, while hexamethylene amiloride and mefloquine 

provided significant antiviral effects when compound addition was delayed for up to 1 and 5 

hpi respectively.  An IFA-based assay was selected to further investigate the effect of time of 

addition in this study, as the results of earlier CPE-based experiments suggested all 

compounds acted early in the replicative cycle. A limitation of this approach is that the anti-

FCoV antibody (clone CCV2-2) used in this study targets viral nucleocapsid protein (Poncelet 

et al., 2008) and therefore compounds acting at times after the translation of N protein would 

appear ineffective using this single-cycle assay.  Similarly, it is also possible that mefloquine 

may remain active when added more than five hours post infection.  This seems unlikely 

given the results of the CPE-based time of addition assay, however the use of alternative 

assays involving quantification of extracellular viral titres could help to clarify this matter.  For 

chloroquine and hexamethylene amiloride, pre-treatment and removal of the compound prior 
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to infection resulted in no inhibitory effect on viral replication, however under these same 

conditions mefloquine remained partly efficacious.  This may be due to the strong binding or 

accumulation of mefloquine within CRFK cells resulting in a therapeutic concentration of the 

compound remaining despite multiple washing steps.  Virucidal suspension assays showed 

no evidence of inactivation of virions by any of the compounds, confirming their effects were 

due to limiting viral replication.  Taken together these data suggest that despite a likely 

common effect on components of endocytic pathway in CFRK cells, the nature and 

consequences of this effect and its result on viral replication may be different for each 

compound.  Alternatively, different or additional antiviral mechanisms may account for the 

observed antiviral activity, and will be discussed in further detail for each compound. 

4.5.1. Chloroquine 

Chloroquine (Figure 4.14a.) is a 4-aminoquinoline used prophylactically and therapeutically 

as an antimalarial since 1946 (Jensen and Mehlhorn, 2009).  In addition, chloroquine has 

long been known to possess anti-inflammatory and antiviral properties (Inglot, 1969; Shimizu 

et al., 1972).  The antiviral effects of chloroquine are broad spectrum, with in vitro inhibition 

demonstrated against a range of diverse viruses including influenza A virus (Ooi et al., 2006), 

HIV (Savarino et al., 2001), HCV (Mizui et al., 2010), and a number of coronaviruses 

including SARS-CoV (Keyaerts et al., 2004), HCoV OC43 (Keyaerts et al., 2009), and FCoV 

(Takano et al., 2008a; Takano et al., 2013).  Despite good in vitro efficacy, the results of in 

vivo studies on antiviral efficacy have in general been poor, and in some cases contradictory.  

Chloroquine showed no positive effect in ferret and mouse models of influenza A virus 

infection (Vigerust and McCullers, 2007) and was ineffective at preventing influenza infection 

in humans in a randomised, double-blind, placebo controlled trial (Paton et al., 2011).  

Similarly, antiviral efficacy was poor in animal models of Hendra and Nipah virus infection 

(Freiberg et al., 2010), and human studies of chikungunya virus (Lamballerie et al., 2008) 

and dengue virus infection (Tricou et al., 2010).  Positive in vivo results of chloroquine as an 

antiviral agent have however been demonstrated in newborn mice infected with HCoV OC43 

(Keyaerts et al., 2009) and, in a paper published following the conclusion of the experimental 

studies reported in this thesis, in cats infected with highly virulent FCoV FIPV1146, where 

chloroquine treatment was associated with minor improvements in clinical scores (Takano et 

al., 2013).  Given the multiple physiological effects of chloroquine, a careful analysis of in 

vivo data is required to determine whether reported therapeutic benefits can be ascribed to 

its antiviral properties or to its immunomodulatory effects. 

Several mechanisms have been proposed to account for the antiviral effects of chloroquine, 

including inhibition of glycosylation of viral proteins (Savarino et al., 2004) or cellular 

receptors for viral attachment (Vincent et al., 2005), inhibition of glycoprotein expression 
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(Dille and Johnson, 1982), or inhibition of endosome mediated viral entry (Savarino et al., 

2003).  Many of these mechanisms likely stem from the property of chloroquine, as a weak 

base, to accumulate within compartments of the endocytic pathway.  The accumulation of 

lysosomotropic agents such as chloroquine within endocytic vesicles results in increased 

intravesicular pH (Ohkuma and Poole, 1978).  Many viruses that enter via endocytosis 

require a low pH environment to trigger membrane fusion/penetration (Grove and Marsh, 

2011).  Although feline coronavirus is known to enter cells via receptor mediated endocytosis 

(Van Hamme et al., 2007), there is conflicting information regarding the pH dependency of 

cell entry.  Takano et al. (2008a) reported concentration-dependent inhibition of FCoV type II 

(strain FIPV1146) in feline alveolar macrophages and monocytes by lysosomotropic agents 

(chloroquine and ammonium chloride) suggesting a pH dependent mechanism of entry.  In 

contrast, Regan et al. (2008b) reported differential pH dependency for type II strains, with 

entry of FECV1683 highly pH dependent while strain FIPV1146 was only partially dependent 

on pH in the three continuous cell lines tested.  This study also showed that the two strains 

differed in the use of cellular proteases during cell entry, with FCoV FECV1683 dependent 

on both cathepsin B and L in addition to an acidic environment, while FIPV1146 was 

dependent only on cathepsin B.  This is interesting given the proposed antiviral mechanism 

of action of chloroquine against Hendra and Nipah viruses is through inhibition of cathepsin L 

(Porotto et al., 2009).  Based on viral antigen expression we have demonstrated that 

treatment with chloroquine is associated with an inhibition of viral replication only when the 

compound is present at the earliest stages of viral replication.  These results support the 

hypothesis that chloroquine acts during cell entry for FCoV FIPV1146, possibly through 

inhibition of endosomal pH, supporting the findings of Takano et al. (2008a).  With these 

results it is important to differentiate effects at a single cell level from those in an animal 

when considering the potential therapeutic use of chloroquine.  For a single cell chloroquine 

is effective as an antiviral only when present prior to infection, however this does not 

necessarily limit its in vivo efficacy to prophylactic use.  In an infected animal at any time, 

only a proportion of susceptible cells are infected, thus the therapeutic use of chloroquine, 

even after the development of clinical signs, could still act to preventing further viral spread 

and infection.  Clearance of already infected cells in this case would require a functional 

immune response, which given the lymphopaenia and immune dysregulation seen in FIP 

may potentially be difficult, and is another reason why combination therapy with antiviral and 

immunomodulatory drugs will provide the best chance for a successful therapeutic outcome 

in FIP. 

In addition to its antiviral effects against FCoV, the anti-inflammatory properties of 

chloroquine may also provide therapeutic benefits in the treatment of FIP given that the 

disease is associated with significant immune dysregulation (Perlman and Dandekar, 2005).  
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Increased TNF-α appears to be central to the pathogenesis of FIP, with increased TNF-α 

produced by infected macrophages thought to be responsible for lymphocyte apoptosis and 

the resulting lymphoid depletion and lymphopaenia (Dean et al., 2003; Takano et al., 2007a).  

The anti-inflammatory properties of chloroquine arise in part due to antagonism of TNF-α, 

with reduction in both TNF-α  production and a decrease in TNF-α receptor expression 

resulting in an impairment of TNF signalling (Savarino et al., 2003).  A reduction in TNF-α 

production has been documented in chloroquine treated FCoV-infected feline monocytes and 

in cats with FIP (Takano et al., 2013).  In both of these cases, reductions in TNF-α were 

associated with decreased virus replication as determined by extracellular viral titres and 

viral N gene expression respectively.  From these studies it is unclear whether reductions in 

TNF-α are a direct result of the anti-inflammatory effect of chloroquine or secondary to its 

antiviral actions resulting in reduced viral replication and subsequent reduced TNF-α 

production from virus infected cells.  Similarly, the apparent in vivo antiviral actions of 

chloroquine may stem from its antagonism of TNF-α resulting in less pronounced 

lymphopaenia, leading to enhanced immune control of viral replication.  Further, as TNF-α 

has been shown to increase the expression of fAPN, a viral receptor for type II FCoV 

(Takano et al., 2007b), it is possible inhibition of TNF-α by chloroquine may have indirect 

antiviral effects via an alteration of fAPN expression.  Chloroquine treatment of Vero cells 

has been shown to impair terminal glycosylation of ACE2, the cellular receptor for SARS-

CoV, and it has been suggested that the antiviral effects of chloroquine against this virus 

may in part be due to a reduced affinity between the viral spike protein and the modified 

surface expressed ACE2 (Vincent et al., 2005).  Alteration of APN glycosylation has been 

demonstrated to be an important determinant of cell tropism and viral entry for viruses in the 

genus Alphacoronavirus (Wentworth and Holmes, 2001), and thus it is possible that 

chloroquine induced alterations in fAPN glycosylation may play a role in the antiviral effect 

demonstrated against type II FCoV.   Whilst fAPN has been demonstrated as the major 

receptor for type II FCoV in CRFK cells, in a study examining entry of type II FCoV into 

monocytes cells only 60% of bound virus co-localised with this receptor, suggesting the 

involvement of an alternative receptor on the primary target cells (Van Hamme et al., 2011).  

Thus if alterations in fAPN glycosylation were responsible for the anti-FCoV effect of 

chloroquine,  it would be expected antiviral efficacy in monocytes would be lower than that in 

cell lines in which fAPN the sole receptor.  Supporting this idea, the in vitro studies by 

Takano et al. (2013) demonstrated reduced antiviral potency of chloroquine in monocytes 

compared with Fcwf-4 cells, a cell line which type II FCoV entry is thought to be almost 

entirely due to binding fAPN (Hohdatsu et al., 1998).  It should be noted if alterations in fAPN 

glycosylation were an important antiviral mechanism of chloroquine, the compound may be 

completely ineffective against the more prevalent type I FCoV, as fAPN is thought not to play 

a significant role in the entry of these viruses (Van Hamme et al., 2011). 
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In the current study we report the IC50 of chloroquine as 0.38 µM based on reduction in 

extracellular viral titre at 24 hpi and 16.63 μM based on CPE inhibition, similar in magnitude 

to inhibitory concentration reported for other coronaviruses.  The IC50 concentration for 

SARS-CoV was reported as 8.8 μM based on CPE inhibition assay (Keyaerts et al., 2004), 

and against HCoV-OC43 of 0.306 μM based on reductions in viral genome copies (Keyaerts 

et al., 2009).  To be an effective clinical antiviral, compound pharmacokinetics must allow an 

inhibitory concentration to be achieved at the site of infection and, in most cases, within 

target cells.  As a human approved pharmaceutical there is significant data on the 

pharmacokinetics of chloroquine in multiple species, however there are no published 

pharmacokinetic studies of chloroquine in the cat, despite several reports of its use in this 

species. In studies to assess the toxic effect of chloroquine on the retina in a feline model, 

Gregory et al. (1970) reported using doses of 50 mg.kg-1 (dose frequency not reported) for 2 

years in cats without documenting any ill effects, while Kuhn et al. (1981) reported a dose of 

25 mg.kg-1 five days per week resulted in the death of six study cats after 33 to 39 weeks of 

treatment.  In the latter study, a reduction of the daily dose to 20 mg.kg-1 resulted in the 

survival of all remaining cats.  Unfortunately, detailed monitoring of clinical, haematological, 

or biochemical parameters of treated cats was not reported in either of these studies, so it is 

possible, and perhaps likely given the known toxicological profile of chloroquine (Taylor and 

White, 2004), that although the reported doses were not lethal, they may have been 

associated with significant adverse effects in treated cats.  In the recent small scale trial by 

Takano et al. (2013) a lower dose of 10 mg.kg-1 was given subcutaneously every three days.  

Significant detail regarding the acceptability of this treatment or the nature of possible side 

effects was not provided, except to state without qualification that when “the chloroquine 

concentration is increased a severe side effect may be induced”.  If chloroquine toxicity in 

cats is similar to humans the above statement is not surprising as although chloroquine is 

generally a well-tolerated drug in humans it has a narrow therapeutic index, with lethal acute 

toxicosis reported with doses of only 30 mg.kg-1, compared to the reported therapeutic dose 

of 25 mg.kg-1 (total) divided over three days and the lower dose of 5 mg.kg-1 once weekly 

used prophylactically (Taylor and White, 2004). 

In the absence of feline pharmacokinetic studies, data from other species must be 

extrapolated to the feline patient, an exercise fraught with danger (Court, 2013).  Peak 

plasma concentrations for chloroquine in humans following a single oral dose are reported to 

be approximately 1 μM (Mackenzie, 1983; Pussard and Verdier, 1994), which is higher than 

the IC50 value determined in this study based on extracellular viral titre at 24 hpi.  In all 

species studied however, chloroquine has a large volume of distribution with extensive tissue 

accumulation (Moore et al., 2011).  In rats and monkeys chloroquine has been shown to 

accumulate in leukocytes, and in in vitro studies with isolated human leucocytes drug 
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accumulation was highest in monocytes (French et al., 1987).  Drug concentration in 

leukocytes may be two orders of magnitude greater than plasma concentration (Mackenzie, 

1983) and thus therapeutic concentrations may be attained in the target cells of virulent 

biotype FCoVs at relatively low plasma concentrations, minimising the risk of dose-

dependent adverse effects. 

4.5.2. Mefloquine 

Mefloquine (Figure 4.14b.) is a synthetic analogue of quinine, a naturally occurring 

antimalarial compound found in the bark of the cinchona tree.  Initially synthesised during the 

Vietnam War as part of a large scale antimalarial development campaign conducted by the 

US Army, mefloquine became commercially available under the trade name Lariam in 1989 

(Croft, 2007).  It has since been used widely for malaria treatment and prophylaxis.  In 

addition to its potent schizonticidal effects, in vitro antiviral effects of mefloquine have been 

reported against HIV (Owen et al., 2005) and against JC virus (Brickelmaier et al., 2009), a 

polyomavirus responsible for progressive multifocal leukoencephalopathy (PML) in 

immunosuppressed humans.  No studies examining the effectiveness of mefloquine against 

coronaviruses have been reported.  In vivo data on the use of mefloquine as an antiviral 

agent is limited.  Adachi et al. (2012) described a single case report in which mefloquine and 

antiretroviral therapy resulted in resolution of clinical signs in an AIDS patient with PML, 

however a small multicentre controlled study failed to confirm this finding, with mefloquine 

demonstrating no antiviral activity against JC virus in PML patients, as determined by CSF 

viral loads, nor any positive effects on clinical or laboratory parameters in treated patients 

compared to controls (Clifford et al., 2013).  The reason for the lack of in vivo antiviral effects 

in this study is not known, however the authors suggest it was not due to an inability to 

achieve therapeutic concentrations in target tissue, as brain mefloquine concentration 

determined in one patient post mortem was more than 20 times the in vitro IC50 reported by 

Brickelmaier et al. (2009).  Nor is it likely that the in vitro effect was an artefact as a result of 

the use of non-representative cell lines or viruses, as antiviral efficacy was demonstrated in 

multiple cell types, including primary target cells against multiple viral strains. 

The antiviral mechanism of action of mefloquine demonstrated in vitro is not known, nor is it 

clear whether the effects demonstrated against viruses with such different lifecycles (from 

two different Baltimore groups) is due to different mechanisms of action, or represents a 

single broad-spectrum effect.  From an analysis of structure-activity relationships 

Brickelmaier et al. (2009) suggest that the antiviral activity of mefloquine may be due in part 

to its function as an adenosine mimetic based on it having a similar 3D conformation to 

several known adenosine analogues with demonstrated anti-JC virus activity.  Adenosine 

analogues have previously shown no significant antiviral activity against SARS-CoV, 
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suggesting coronaviruses may not be susceptible to compounds acting via this mechanism 

(Barnard et al., 2004)  Alternatively, as a lysosomotropic agent (Glaumann et al., 1992), the 

mechanism of inhibition may be though interference with normal endocytic pathways 

required for viral replication.  In the current study the single cycle time of addition assay 

showed that mefloquine remained effective when added as late as 5 hpi suggesting, if 

antiviral effects arise through perturbation of endosomal function, the effect occurs after viral 

entry and uncoating.  An effect post viral entry for JC virus was reported by Brickelmaier et 

al. (2009), as a delay in compound addition to of up to 24 h was not associated with 

decreased efficacy.  Antivirals that act at post-entry steps may be more clinically useful, as 

they are effective against established infections in cells rather than just preventing new cells 

being infected, as occurs with agents acting only during virus entry. 

There are no published pharmacokinetic data on the use of mefloquine in cats or any reports 

of its use in this species.  In humans plasma concentrations of approximately 4 μM have 

been reported using prophylactic dosing regimens (Kollaritsch et al., 2000), while at the 

higher therapeutic doses plasma concentrations up to 23 μM may be achieved (Simpson et 

al., 1999).  The compound is highly lipophilic with wide tissue distribution (Karbwang and 

White, 1990).  Due to is long half-life, lipophilic nature, and its inhibition of P-glycoprotein 1 

(Riffkin et al., 1996), mefloquine is known to concentrate within the brain parenchyma, with 

tissue concentrations of up to 50 μM reported (Jones et al., 1994; Pham et al., 1999).  

Mefloquine may therefore be particularly useful in the treatment of dry (non-effusive) FIP, 

where CNS lesions are common (Pedersen, 2009).  Combined, these data show that in 

species for which the pharmacokinetics of mefloquine have been studied it is possible to 

obtain drug concentrations in blood approximating the in vitro IC50 of FCoV, and more 

importantly concentrations in excess of the IC50 in tissues. 

4.5.3. Hexamethylene amiloride 

Hexamethylene amiloride (HMA) [5-(N,N-hexamethylene amiloride)] (Figure 4.14c.) is a 

derivative of the potassium sparing diuretic amiloride, and like its parent compound, 

hexamethylene amiloride inhibits a variety of cellular sodium transport mechanisms 

(Kleyman and Cragoe, 1988).  Amiloride and its derivatives have also demonstrated antiviral 

effects against a range of viruses from multiple viral families including canine parvovirus 

(Suikkanen et al., 2003), coxsackievirus B3 (Harrison et al., 2008), HIV (Ewart et al., 2004), 

FCV (Stuart and Brown, 2006), and a number of coronaviruses including SARS-COV, MHV, 

and HCoV-229E (Wilson et al., 2006a).   

A variety of mechanisms have been suggested to account for the antiviral properties of 

amiloride and its derivatives, and it may be given the diverse range of viruses affected, that 

the nature of the antiviral effects are virus dependent.  Antiviral effects against members of 
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the family Picornaviridae have been ascribed to inhibition of viral RNA replication by 

competitive inhibition of the viral RNA polymerase [coxsackievirus B3] (Gazina et al., 2011; 

Harrison et al., 2008), inhibition of viral release through an unknown mechanism [human 

rhinovirus 2] (Gazina et al., 2005), and via an indirect mutagenic effect [coxsackievirus B3] 

(Levi et al., 2010).  Whilst this later effect is interesting, the susceptibility of coronaviruses to 

lethal mutagenesis is unclear given they appear relatively refractory to the effects of RNA 

mutagens, most likely through the actions of the virus encoded 3′-to-5′ exoribonuclease in 

maintaining replicative fidelity (Smith et al., 2013).  An antiviral effect of amiloride derivatives 

due to interference with virus encoded ion channels, or viroporins, has been demonstrated 

for a number of viruses.  In planar lipid bilayer studies amiloride derivatives have 

demonstrated antagonism of isolated HCV p7 (Premkumar et al., 2004), HIV Vpu (Ewart et 

al., 2004), and coronavirus E protein viroporins (Wilson et al., 2006a, b), and for the latter 

two this has been demonstrated to be associated with antiviral effects in cell culture.  

Conformation of the E protein as the target for antiviral effects in culture was demonstrated 

against the coronavirus MHV by showing the antiviral effect is abrogated against 

recombinant MHV with the E protein ORF deleted (Wilson et al., 2006a).  While viroporin 

activity has not been demonstrated for the FCoV E protein, it has been shown to function as 

an ion channel for representative Alpha-, Beta-, and Gammacoronaviruses (Wang et al., 

2011).  The E protein is thought to be involved in virion assembly and release (Ye and 

Hogue, 2007), however the role of the ion channel, and the mechanism, if any, by which it 

mediates this is not clear.  If the E protein viroporin plays a role in viral morphogenesis as 

hypothesised, the results of the current study do not support a mechanism of action of 

hexamethylene amiloride against FCoV involving antagonism of this ion channel, as 

inhibitory effects were seen only when the compound was present during the initial stages of 

infection, most likely during viral entry. Amiloride and it derivatives are inhibitors of 

macropinocytosis (Koivusalo et al., 2010), a documented route of entry for some viruses 

(Mercer and Helenius, 2009), and thus inhibition of this endocytic pathway may account for 

the observed antiviral effects, although utilisation of this pathway of entry has not been 

reported for coronaviruses. 

Whilst amiloride is a relatively safe human approved pharmaceutical, there is very little 

information regarding the in vivo use of its more potent derivative hexamethylene amiloride.  

In a mouse tumour model doses of 20 μg.g-1 intraperitoneally resulted in a peak plasma 

concentration of 8 μM (Luo and Tannock, 1994), which approximates the IC50 as determined 

by CPE inhibition assay, and is eight and three times greater than the IC50 values 

determined by virus yield reduction and plaque assays respectively.  This paper does not 

provide any details of adverse effects related to hexamethylene amiloride treatment in mice 

except to state the maximum tolerable dose is approximately 30 μg.g-1.  The reported half-life 
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of hexamethylene amiloride in mice in this study was approximately 35 min, which if 

representative of the situation in cats could present a practical barrier to the therapeutic use 

of this compound given time of addition studies showed hexamethylene amiloride was only 

efficacious when present at an inhibitory concentration during the initial stages of the 

replicative cycle. 

Limitations of the current study include a lack of ex vivo testing in primary feline cells and 

testing against only two FCoV isolates.  FCoV FIPV1146 and FECV1683 used in this study 

are both type II viruses.  A bias towards studies with type II FCoV is evident in the literature, 

despite the higher prevalence of type I strains worldwide (Benetka et al., 2004; Hohdatsu et 

al., 1992; Kummrow et al., 2005), due to the relative ease with which former can be grown in 

culture.  At a genetic level the primary difference between type I and type II FCoV is within 

the spike protein, with the type II viruses thought to have arisen due to a recombination event 

with another alphacoronavirus, canine coronavirus.  Using chimeric FCoVs, Tekes et al. 

(2010) demonstrated that the differences in the in vitro phenotype between type I and II 

FCoV is attributable solely to the spike protein.  Differences in receptor usage have been 

demonstrated between type I and II FCoVs (Van Hamme et al., 2011) and there may be 

differences in virus entry steps further downstream (Regan and Whittaker, 2008; Takano et 

al., 2008a).  As all three identified candidate compounds appear to act early in the replication 

cycle through an unidentified mechanism of action, it is possible that these reported antiviral 

effects may be unique to type II FCoV and may not extend to the more common type I 

viruses.  In a similar vein it is possible that the mechanism of viral entry into CRFK cells as 

used in this study is different to that in feline monocytes, or that the latter possesses an 

alternate entry pathway.  The presence of cell line dependent or alternative viral entry 

pathways is not without precedent (Aleksandrowicz et al., 2011).  If this were the case for 

FCoV, the reported antiviral effects may not extend to provide therapeutic benefit in a clinical 

setting.  To address some of these issues ex vivo testing in primary feline 

monocytes/macrophages against a diverse range of FCoV isolates should be conducted. 

In conclusion this study has identified three compounds demonstrating marked in vitro 

inhibition of FCoV in an immortalised cell line at low micromolar concentrations. These 

preliminary studies open the way for further investigation and potential optimisation of these 

compounds as antiviral agents.  Two of the effective compounds, chloroquine and 

mefloquine, are commercially available pharmaceuticals with an extensive body of 

supporting literature regarding their pharmacokinetics and safety in non-feline species.  

Considerably less is known about the in vivo effects hexamethylene amiloride; however there 

are reports of its application in mice.  Given the current poor prognosis and dire lack of 

effective antivirals for FCoV, in light of the presented results, consideration should be given 

to a small scale clinical trial of these compounds in cats with FIP.  Such a study was 
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published for chloroquine during the writing of this thesis and demonstrated a positive, but 

limited effect of treatment following experimental infection with highly virulent FCoV 

FIPV1146. 
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5 

5 In vitro inhibition of feline coronavirus 
using RNA interference 

Some of the content of this chapter has been published in McDonagh, P., Sheehy, P.A., and 

Norris, J. In vitro inhibition of feline coronavirus by small interfering RNA. (2011) Veterinary 

Microbiology 150 (3-4) 220-229.  A copy of this paper is included as Appendix 3.  This 

chapter includes additional results from subsequent experiments. 

5.1. ABSTRACT 

Infection with virulent biotypes of feline coronavirus (FCoV) can result in the development of 

feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is 

currently no effective antiviral treatment.  In this study we report on the in vitro efficacy of 

synthetic siRNA mediated RNA interference (RNAi) against a highly virulent FCoV strain in 

an immortalised cell line.  A panel of eight siRNAs targeting four regions of the FCoV 

genome were screened for antiviral effects using qRT-PCR of viral messenger and genomic 

RNA, extracellular virus titres, and direct IFA for viral protein expression.  All siRNAs 

demonstrated an inhibitory effect in vitro, with the two most effective, siRNAs L2 (targeting 

the leader sequence in the 5’ UTR) and N1 (targeting the nucleocapsid ORF), resulting in 

greater than 95% reduction in viral titre.  Further characterisation of these two siRNAs 

showed they remained effective when used at low concentrations, in cells challenged with 

high viral loads, and when used in combination.  Serial passage of virus through siRNA 

treated cells highlighted one of the major challenges of RNAi-based antivirals, with a rapid 

acquisition of resistance due to mutations in the target site demonstrated when cells were 

treated with a single or a combination of two siRNAs.  Treatment with three siRNAs was 

however able to prevent viral escape over the course of five passages.  Finally, a 

comparison of the efficacy of canonical versus Dicer-substrate siRNAs for targets L2 and N1 

showed equivalent or better potency for the latter depending on the target site.  Combined, 

these data provide important preliminary information to inform the potential therapeutic 

application of antiviral RNAi against feline coronavirus. 
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5.2. INTRODUCTION 

In 2006 Professors Andrew Fire and Craig Mello were awarded the Nobel Prize in Physiology 

or Medicine for “discovering a fundamental mechanism for controlling the flow of genetic 

information” (Nobelprize.org, 2006). Less than 10 years prior, the seminal work of Fire and 

Mello, building upon observations in plants (Napoli et al., 1990), fungi (Romano and Macino, 

1992), and nematodes (Guo and Kemphues, 1995), demonstrated potent sequence specific 

suppression of gene expression following the introduction of double-stranded RNA (dsRNA) 

homologous to target genes (Fire et al., 1998).  This method of gene regulation, termed RNA 

interference, has subsequently been shown to be a highly evolutionarily conserved 

mechanism, present in almost all eukaryotes (Cerutti and Casas-Mollano, 2006), and thought 

to have evolved initially as an immune defence against viruses and transposons (Shabalina 

and Koonin, 2008).  In plants, insects, and worms RNAi remains an important defence 

mechanism, however its role in innate immunity in vertebrates remains unclear (Li et al., 

2013; Maillard et al., 2013; Parameswaran et al., 2010; Sidahmed and Wilkie, 2010; Umbach 

and Cullen, 2009).  The triggering substrate of RNAi, double stranded RNA, is formed during 

the replication of viruses from diverse viral families (Weber et al., 2006).  In organisms where 

RNAi functions as an antiviral defence, this long dsRNA is cleaved by the enzyme Dicer into 

small interfering RNAs (siRNAs), ≈ 21 nt RNA duplexes with a characteristic 2 nt 3’ 

overhangs, which are subsequently incorporated into the RNA induced silencing complex 

(RISC) to direct the sequence specific cleavage of viral messenger or genomic RNA.  In 

mammalian cells the introduction of long dsRNA, either artificially or during viral replication, 

primarily triggers an interferon response, resulting in a cascade of cellular events and a 

general shutdown in host cell protein synthesis (Jacobs and Langland, 1996).  Elbashir and 

colleagues (2001a) demonstrated that the RNAi pathway could be harnessed in mammalian 

cells via the direct introduction of exogenous siRNAs without triggering an interferon 

response, a finding that made available important tools for basic biological research and 

opened up exciting avenues for therapeutic intervention. 

Following its discovery, the potential of siRNA mediated RNAi as an antiviral therapeutic was 

quickly realised.  Efficacy has been demonstrated in vitro against numerous pathogens from 

diverse viral families including human respiratory syncytial virus [Paramyxoviridae] (Bitko and 

Barik, 2001), HIV [Retroviridae] (Martinez et al., 2002), influenza A virus [Orthomyxoviridae] 

(Ge et al., 2003), feline herpesvirus [Herpesviridae] (Wilkes and Kania, 2009), Ebola virus 

[Filoviridae] (Geisbert et al., 2006), poliovirus [Picornaviridae] (Gitlin et al., 2002), and SARS-

CoV [Coronaviridae] (Wu et al., 2005a).  In vivo efficacy has also been demonstrated against 

a number of these, including against influenza A virus (Tompkins et al., 2004), Ebola virus 

(Geisbert et al., 2006), and HIV (Kumar et al., 2008). 
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The efficacy of RNAi against different coronaviruses has been studied in vitro and in vivo, 

spurred by the emergence of SARS-CoV in 2002.  Using synthetic siRNAs targeted at the 

replicase gene, the first report of antiviral RNAi against SARS-CoV was published in 

November 2003 (He et al., 2003), only eight months after the identification of the new virus in 

patients with SARS (Drosten et al., 2003). This rapid development, facilitated by advances in 

molecular biology techniques that enabled researchers to completely sequence the almost 

30 kb genome of the newly identified pathogen within a month of its isolation (Marra et al., 

2003), highlights a major benefit of RNAi-based therapeutics in combatting emerging 

diseases.  Subsequent studies have shown effective inhibition of SARS-CoV in vitro through 

targeting sequences encoding structural proteins (He et al., 2009), non-structural proteins 

(He et al., 2006), and accessory proteins (Akerstrom et al., 2007), in addition to the UTRs 

located at both the 5’ (Li et al., 2005c) and 3’ (Wu et al., 2005a) end of the genome.  

Successful RNAi-based inhibition has also been demonstrated in vitro against other 

coronaviruses including human coronavirus NL63 (Pyrc et al., 2006), porcine transmissible 

gastroenteritis virus (TGEV) (He et al., 2012; Zhou et al., 2007), and avian infectious 

bronchitis virus (Meng et al., 2007).  There are limited reports of the in vivo use of RNAi 

against coronaviruses.  The effectiveness of both prophylactic and therapeutic antiviral RNAi 

against SARS-CoV was demonstrated in a primate model, with treatment resulting in a 

reduction in viral load and associated tissue pathology (Li et al., 2005a).  In mini-pigs, 

prophylactic treatment with anti-TGEV shRNA expressing plasmids demonstrated positive 

effects in clinical, pathological, and virological parameters following viral challenge (Zhou et 

al., 2010).  Thus, although there are significant challenges to the clinical use of antiviral 

RNAi, these in vitro and in vivo studies against coronaviruses suggest this may be useful 

approach for FCoV. 

As discussed in Chapter 1, feline coronavirus is an important pathogen of domestic cats for 

which there are currently no effective antiviral treatments.  In this study we investigated the 

potential of RNAi-based therapeutics as an antiviral approach for FCoV by screening a panel 

of eight siRNAs targeting four different regions of the FCoV genome for antiviral effects in 

vitro.  The most effective siRNAs were further characterised by examining the effect of 

multiplicity of infection and siRNA concentration on their efficacy.  Given one of the major 

challenges of antiviral chemotherapy is the development of resistance, studies were 

conducted to determine the efficacy of combinatorial siRNA therapy and its ability to delay or 

prevent the emergence of resistance.  Finally, we examined the effectiveness of a siRNA 

structural variant, Dicer-substrate siRNA, that has been reported to result in increased 

efficacy when compared to canonical siRNAs (Kim et al., 2005).  The efficacy of canonical 

and Dicer-substrate siRNAs, in terms of potency and duration of inhibition, was assessed for 

two different FCoV targets. 
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5.3. MATERIALS AND METHODS 

5.3.1. siRNA design 

siRNAs were designed to target conserved regions of the leader sequence of the 5’ UTR, 

and the replicase, membrane, and nucleocapsid ORFs.  To identify conserved regions full- 

and partial-length FCoV sequences were retrieved from GenBank (accessed April 2009) and 

aligned using Geneious software (Version 4.6 Biomatters Ltd, Auckland, NZ) using the 

proprietary Geneious alignment tool with default settings.  Details of the sequences are 

shown in Appendix 2.  Prospective siRNAs targeting the visually identified conserved regions 

were designed using Block-iT™ RNAi designer (Invitrogen) using the consensus sequence 

of FCoV FIPV1146 (Accession number DQ010921).  Criteria for final siRNA selection were 

(1) high Block-iT™ RNAi designer ranking, (2) maximum sequence homology to other 

reported type I and type II FCoV strains, and (3) minimum homology to known feline 

sequences based on a BLAST search.  Using these selection criteria the two highest ranking 

siRNAs targeting each region were selected.  A siRNA (NSC-GFP) was selected targeting 

green fluorescent protein mRNA to act as a non-silencing control (Tschuch et al., 2008).  The 

5’ end of the sense strand of NSC-GFP was conjugated to fluorescein isothiocyanate (FITC) 

to enable transfection efficacy to be monitored with fluorescence microscopy.  siRNA 

sequences are shown in Table 5.1 and Figure 5.1.  Deprotected and desalted custom 

siRNAs were purchased from Sigma-Aldrich in the lyophilised form.  siRNAs were 

resuspended in nuclease-free water (Amresco) at 20 μM and stored in single use aliquots at 

-20°C. 
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Figure 5.1: Schematic of FCoV genome based on reported sequence of FCoV FIPV1146 

(Accession number DQ010921).  The location of siRNAs targeting the leader sequence (L1, 

L2) and the replicase (R1, R2), membrane (M1, M2), and the nucleocapsid (N1, N2) ORFs 

are shown.  E, envelope; M, membrane; N, nucleocapsid; RFS, ribosomal frameshift 

element; 3ab and 7abc, accessory genes; TRS, transcription regulatory sequence.  
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Table 5.1: Sequence of siRNAs targeting FCoV and their position in FCoV FIPV1146 

genome (Accession number DQ010921).  Sequence of non-silencing control siRNA (NSC-

GFP) targeting GFP is also shown (Tschuch et al., 2008). 

siRNA Sequence Position in 
genome 

Leader1 (L1)   

 Sense 5’-GCUAGAUUUGUCUUCGGACdTdT-3’ 64-82 

 Antisense 5’-GUCCGAAGACAAAUCUAGCdTdT-3’  

Leader2 (L2)   

 Sense 5’-GGACACCAACUCGAACUAAdTdT-3’ 79-97 

 Antisense 5’-UUAGUUCGAGUUGGUGUCCdTdT-3’  

Replicase1 (R1)   

 Sense 5’-GCACGUAAGGAUCUUACAAdTdT-3’ 12479-12497 

 Antisense 5’-UUGUAAGAUCCUUACGUGCdTdT-3’  

Replicase2 (R2)   

 Sense 5’-GCUGAUUACCGCAUGGCUUdTdT-3’ 8673-8691 

 Antisense 5’-AAGCCAUGCGGUAAUCAGCdTdT-3’  

Membrane1 (M1)   

 Sense 5’-CCUAGUAGAACCAUCGUUUdTdT-3’ 26611-26629 

 Antisense 5’-AAACGAUGGUUCUACUAGGdTdT-3’  

Membrane2 (M2)   

 Sense 5’-GCUGGCUCGUUUAUGGCAUdTdT-3’ 26210-26228 

 Antisense 5’-AUGCCAUAAACGAGCCAGCdTdT-3’  

Nucleocapsid1 (N1)   

 Sense 5’-GGAGUCUUCUGGGUUGCAAdTdT-3’ 27112-27130 

 Antisense 5’-UUGCAACCCAGAAGACUCCdTdT-3’  

Nucleocapsid2 (N2)   

 Sense 5’-GGCAUACACAGAUGUGUUUdTdT-3’ 27885-27837 

 Antisense 5’-AAACACAUCUGUGUAUGCCdTdT-3’  

Non-silencing control 
(NSC-GFP) 

  

 Sense 5’-[FITC] CAAGCUGACCCUGAAGUUCdTdT-3’  

 Antisense 5’-GAACUUCAGGGUCAGCUUGdTdT-3’  
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5.3.2. Screening of siRNAs 

An initial screening experiment was conducted to identify siRNAs with an inhibitory effect on 

FCoV replication.  Cells were forward transfected (or mock transfected) in 12-well plates 

(Corning) using 100 nM siRNA as described in Section 2.4.1.  At the end of the transfection 

period cells were infected with FIPV1146 at a MOI of 0.2 for 60 min following which the viral 

inoculum was replaced with fresh DMEM-10.  As controls, untreated cells (infected and mock 

infected), cells treated with transfection reagents without siRNAs (Lipo), and cells transfected 

with an irrelevant non-silencing control siRNA (NSC-GFP) were included.  Cells were 

incubated at 37°C in 5% CO2 in air.  At 24 hpi efficacy was determined by qRT-PCR of 

intracellular viral RNA (detecting viral genomic and membrane (M) and nucleocapsid (N) 

mRNA) (Section 2.4.2), TCID50 infectivity assay of extracellular virus (Section 2.3.1.2.2), and 

direct IFA staining for viral antigen in cells grown on glass coverslips (Section 2.5.2).  

Additional wells were monitored for virus induced CPE out to 50 hpi using an Olympus 

CKX41 inverted phase contrast microscope with attached Moticam 2300 digital camera 

(Motic, Causeway Bay, Hong Kong).  All treatments were performed in triplicate and 

repeated in three independent experiments.  Relative viral titres and copy numbers were 

calculated by dividing individual treatment values by the mean of the untreated samples.  

Data represent Mean ± SE. 

5.3.3. Titration of effective siRNAs 

To assess the effect of siRNA concentration on viral replication a concentration-response 

study was conducted using highly effective anti-FCoV siRNAs (defined as those showing > 

80% reduction in viral genome copies and extracellular virus titre) identified in the screening 

study.  Transfection and infection conditions were identical to those of the screening 

experiment (Section 5.3.2) with the exception that siRNA concentration was varied from 200 

nM to 5 nM.  Efficacy was determined by TCID50 assay of extracellular virus as previously 

described (Section 2.3.1.2.2).  All treatments were performed in triplicate and repeated in 

three independent experiments.  Data represent Mean ± SE. 

5.3.4. Effect of multiplicity of infection on siRNA efficacy 

To assess efficacy of RNAi against high viral challenge, cells treated with highly effective 

siRNAs were challenged with FIPV1146 at increasing MOIs.  Transfection and infection 

conditions were identical to those of the screening experiment (Section 5.3.2) with the 

exception that cells were challenged using a MOI of 0.2, 2, or 20.  Preliminary experiments 

showed that infection of CRFK cells with FIPV1146 at high MOI was associated with 

significant cytopathic effect and cell loss by 24 hpi.  To allow assessment of intracellular viral 

loads, cells were harvested at 18 hpi, prior to the development of significant CPE.  Efficacy 

was determined at this time by measuring extracellular virus titres and intracellular viral 
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genome copies (Section 2.3.1.2.2 and 2.4.2 respectively).  All treatments were performed in 

triplicate and repeated in three independent experiments.  Data represent Mean ± SE. 

5.3.5. Combinatorial siRNA treatment 

To assess the efficacy of combination treatment CRFK cells were reverse transfected in 96-

well plates (μClear ®, Greiner Bio-One) using single or a combination of multiple effective 

anti-FCoV siRNAs as described in Section 2.4.1.  The total concentration of siRNA per 

treatment was held constant at 30 nM, meaning for treatment involving two, three, or four 

siRNAs the concentration or each siRNA was 15 nM, 10 nM, and 7.5 nM respectively.  

Following transfection, cells were infected with FIPV1146 at MOI 0.2 and incubated at 37°C 

in 5% CO2 in air.  At 36 hpi efficacy was assessed via titration of extracellular virus using the 

TCID50 protocol (Section 2.3.1.2.2) and by in situ IFA staining for viral antigen (Section 

2.5.3).  Image acquisition and analysis was as previously described in Section 2.5.3.2 and 

2.5.3.3. 

5.3.6. Viral escape from siRNA mediated inhibition 

5.3.6.1. Serial passage of virus through siRNA treated cells 

To investigate the ability of FCoV to evolve resistance to RNAi mediated inhibition an 

experiment was conducted in which virus was serially passaged in the presence of one or a 

combination of effective anti-FCoV siRNAs.  CRFK cells were reverse transfected in 24-well 

plates (Sarstedt), as described Section 2.4.1, using one, or a combination two or three 

siRNAs, with four wells per treatment.  Cells transfected with a NSC siRNA and untreated 

cells were included as controls.  The total siRNA concentration per treatment was kept fixed 

at 30 nM irrespective of the number of different siRNAs used per treatment.  For the first 

passage infection (P1) cells were infected with original stock virus (P0) at MOI 1 and wells 

were monitored every 8 h (beginning 24 hpi) for the development of CPE.  When three or 

more wells of a particular treatment showed greater than 80% CPE, the culture media from 

all four wells was harvested, pooled, and stored at -80°C.  For subsequent passages (P2 to 

P5) cells were transfected as described above and infected with 50 µl of culture media from 

identically treated cells of the previous passage which had been clarified by centrifugation at 

1000 x g for 3 min.  At the conclusion of the experiment all serially passaged viruses were 

titrated using the standard FCoV plaque assay (Section 2.3.1.2.1), and consensus 

sequencing performed as described in Section 2.4.3. 

5.3.6.2. Phenotypic assessment of FCoV serially passaged in siRNA treated cells  

An experiment was conducted to determine if mutations identified in viruses serially 

passaged in siRNA treated cells conferred a resistant phenotype.  Cells were transfected or 

mock transfected in 96-well plates (μClear ®, Greiner Bio-One) (Section 2.4.1) using single 
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or multiple siRNAs, with a total siRNA concentration per treatment of 30 nM.  At the end of 

the transfection period cells were infected at MOI 0.2.  For each siRNA treatment (or control) 

duplicate wells were infected with P0 (original stock virus) and P1 to P5 viruses from 

identically treated cells.  Additionally P1 to P5 viruses from cells treated with a single siRNA 

(either siRNA L2 or N1) were also tested in duplicate in cells transfected with the other single 

siRNA to which the virus had not previously been exposed. Untreated and uninfected control 

wells were included on each plate.  Cells were fixed and stained for viral antigen expression 

40 hpi (Section 2.5.3.1).  Image acquisition and analysis was performed as previously 

described in Sections 2.5.3.2 and 2.5.3.3. 

5.3.7. Comparison of Dicer-substrate versus canonical siRNAs 

The canonical siRNA structure described by Elbashir et al. (2001b) consists of a 19 bp RNA 

duplex with 2 nt 3’ overhangs.  A range of structural variants of this classical siRNA have 

been described, many of which are purported to offer benefits in terms of increasing potency 

and duration of action, and decreasing off-target effects and non-specific immune stimulation 

(Chang et al., 2007; Kim et al., 2005; Rose et al., 2005; Salomon et al., 2010).  In this study 

we compared the performance of one of these structural variants, Dicer-substrate siRNA 

(DsiRNA), against canonical siRNAs targeted against the same motif.  DsiRNAs, based on 

highly effective anti-FCoV siRNAs and the non-silencing control siRNA, were designed 

according to the design rules outlined by Amarzguioui et al. (2006).  DsiRNA sequences 

shown in Table 5.2.  Custom synthesised DsiRNAs and a transfection control DsiRNA duplex 

conjugated to TYE™ 563 were purchased from Integrated DNA Technologies (IDT, 

Coralville, IA, USA) in the lyophilised form and resuspended to 5 μM in nuclease-free duplex 

buffer (IDT) containing 100mM potassium acetate and 30mM HEPES.  Resuspended 

DsiRNAs were stored at -20°C in single use aliquots until required.  
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Table 5.2: Dicer-substrate siRNA sequences used in this thesis.  RNA bases are uppercase, 

DNA bases are lower case.  Previously tested siRNA sequences are shown shaded in grey 

(the central 19mer duplex).  Dicer-substrate siRNAs designed based on the reported 

sequence of FCoV FIPV1146 (Accession number DQ010921). 

DsiRNA Sequence 

Leader (DsiRNA-L2)  

 Sense 5’    GGACACCAACUCGAACUAAACGAaa  3’ 

 Antisense 3’  AGCCUGUGGUUGAGCUUGAUUUGCUUU  5’ 

Nucleocapsid (DsiRNA-N1)  

 Sense 5’    GGAGUCUUCUGGGUUGCAAGGGAtg  3’ 

 Antisense 3’  UACCUCAGAAGACCCAACGUUCCCUAC  5’ 

NSC-GFP (DsiRNA-NSC)  

 Sense 5’    CAAGCUGACCCUGAAGUUCAUCUgc  3’ 

 Antisense 3’  CCGUUCGACUGGGACUUCAAGUAGACG  5’ 

 

A concentration-response experiment was performed to compare the antiviral effect of 

canonical and Dicer-substrate siRNAs. Cells were reverse transfected in 96-well plates 

(Sarstedt) with half-log dilutions from 10 nM to 0.1 nM of single siRNA or DsiRNA as 

described in Section 2.4.1.  The potency of combination treatment was also compared by 

transfecting cells with 5 nM, 1.5 nM, or 0.5 nM combinations of two canonical or Dicer-

substrate siRNAs.  Cells transfected with NSC siRNA and DsiRNA, in addition to untreated 

cells, were included as controls.  At the conclusion of the transfection period cells were 

infected (or mock infected) with FCoV FIPV1146 at MOI 0.2.  Culture media was harvested 

at 40 hpi for titration of extracellular virus by TCID50 endpoint assay (Section 2.3.1.2.2).  

Relative viral titre was calculated for each treatment, with the no treatment control titre 

defined as 100%.  Each treatment was performed in triplicate and repeated in three 

independent experiments.  Data represent Mean ± SE. 

A further experiment was conducted to assess the duration of antiviral action of canonical 

versus Dicer-substrate siRNAs against FCoV FIPV1146 using single and combination 

treatment.  Cells were reverse transfected in 96-well plates (Sarstedt) with single or dual 

combination siRNAs or DsiRNAs with a total concentration of 5 nM as described in Section 

2.4.1.  At the conclusion of the transfection period cells were infected with FCoV FIPV1146 at 

MOI 0.5 and incubated at 37°C in 5% CO2 in air.  Culture media was harvested at 20, 40, 60, 

and 80 hpi for titration of extracellular virus by TCID50 endpoint assay (Section 2.3.1.2.2).  

Each treatment was performed in triplicate and repeated in two independent experiments.  

Data represent Mean ± SE. 
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5.4. RESULTS 

5.4.1. siRNA design 

At the time of siRNA design (April 2009) there were five full-length genome sequences of 

FCoV available on GenBank (Appendix 2), however two of these were independently derived 

full length sequences of FCoV FIPV1146. Additionally, there were two full-length membrane 

ORF and three full-length nucleocapsid ORF sequences available for analysis.  Alignment of 

these sequences revealed a number of short regions in the targeted ORFs displaying 

minimal sequence variation against which siRNAs could be designed.  For each targeted 

region (the 5’ UTR and the replicase, membrane, and nucleocapsid ORFs) two siRNAs were 

selected for screening.  The details of these are shown in Table 5.1  Subsequent to the 

siRNA design stage a considerable number of full-length FCoV sequences have been 

published.  Alignment of all full-length sequences available as of July 2013 confirms that the 

originally identified regions are well conserved and that the designed siRNAs display a high 

degree of homology to published type I and type II strains (Table 5.3). 
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Table 5.3: Degree of conservation of FCoV siRNA target sites.  Reported sequences were 

accessed in April 2009 (full and partial sequences) and July 2013 (full length sequences 

only) from GenBank.  Results show the number of sequences with different degrees of target 

site homology.  Accession numbers shown in Appendix 2. 

Target region Target Degree of conservation 
(accessed April 2009):  
Matching nucleotides – 
number of sequences 

Degree of conservation 
(accessed July 2013): 
Matching nucleotides – 
number of sequences 

5’ UTR L1 19/19 – 5 19/19 – 31 
18/19 – 2 
17/19 – 2 
1 - 1 insertion 

 L2 19/19 – 5 19/19 – 34 
18/19 – 1 

Replicase ORF R1 19/19 – 5 19/19 – 33 
18/19 – 1 
17/19 – 1 

 R2 19/19 – 5 19/19 – 29 
18/19 – 1 
17/19 – 2 
16/19 – 3 

Membrane ORF M1 19/19 – 6 
18/19 – 1 

19/19 – 27 
18/19 – 8  

 M2 19/19 – 6 
17/19 – 1 

19/19 – 28 
18/19 – 5 
17/19 – 2 

Nucleocapsid ORF N1 19/19 – 6 
18/19 – 2 

19/19 – 26 
18/19 – 9 

 N2 19/19 – 8 19/19 – 24 
18/19 – 9  
17/19 – 2 

 

5.4.2. Effect of siRNAs on FCoV replication 

All anti-FCoV siRNA duplexes tested in the initial screening experiment demonstrated an 

inhibitory effect on FCoV replication as determined by qRT-PCR of viral genomic and 

messenger RNA and extracellular viral titre; however the magnitude of the inhibition varied 

greatly between the different siRNAs.  Reduction of viral genomic RNA in siRNA treated cells 

ranged from 23.1% to 90.7% (Figure 5.2a).  Similar results were seen with viral mRNA, with 

membrane mRNA knockdown ranging from 27.7% to 92.3% (Figure 5.2b) and nucleocapsid 

mRNA knockdown ranging from 23.1% to 93.8% (Figure 5.2c).  Reduction in extracellular 

viral titres paralleled the PCR data, ranging from 59.6% to 97.0% (Figure 5.2d), confirming 

viral gene knockdown is associated with a significant reduction in the production of progeny 

virions.  In contrast treatment with the non-silencing control siRNA or mock transfection with 

Lipofectamine 2000 alone had no significant effect on viral replication confirming the 
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sequence specificity of siRNA mediated viral inhibition. The results of direct IFA further 

confirm these findings.  A qualitative assessment of viral protein expression showed that 

treatment with FCoV specific siRNAs was associated with a reduction in the number of 

antigen positive cells, a finding most obvious for the highly efficacious siRNAs L2 and N1.  

Representative micrographs are shown in Figure 5.3.  Additionally, phase contrast 

microscopy showed that virus specific siRNAs provided some protection from virus induced 

CPE, in the case of siRNAs L2 and N1 out to 50 hpi (Figure 5.3).  Based on these data, 

siRNAs L2 and N1 were identified as being highly efficacious in showing greater than 80% 

inhibition in both extracellular viral titre and intracellular viral copy number, and were selected 

for further studies. 
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Figure 5.2: Results of FCoV siRNA screening experiment. Cells were transfected (or mock transfected) with 100 nM siRNA prior to infection with 

FIPV1146 at MOI 0.2.  At 24 hpi intracellular (a) FCoV genome, (b) FCoV membrane mRNA, and (c) FCoV nucleocapsid mRNA copy number 

were determined by qRT-PCR and extracellular viral titres (d) were determined by TCID50 assay.  Value of the untreated control sample is defined 

as 100%.  Data expressed as Mean ± SE from three independent experiments. No Tx, no treatment control; Lipo, Lipofectamine only control; NSC, 

non-silencing control. 
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Figure 5.3: Viral antigen expression and cytopathic effect micrographs from FCoV siRNA 

screening experiment. Cells were transfected (or mock transfected) with 100 nM siRNA prior 

to infection with FCoV FIPV1146 at MOI 0.2.  Representative direct IFA and phase contrast 

micrographs showing results from healthy uninfected and untreated samples (uninfected 

control), infected cells with no prior siRNA treatment (virus control), and samples treated with 

siRNAs L2 or N1 prior to infection.  Virus infected cells demonstrate diffuse and punctate 

green (FITC) cytoplasmic staining in IFA micrographs.  Cell nuclei counterstained with DAPI 

appear blue.  Direct IFA = 100 x , Phase contrast = 200 x.  
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5.4.3. Effect of siRNA concentration on FCoV replication 

Titration of siRNAs L2 and N1 from 200 nM to 5 nM demonstrated a clear concentration-

response relationship with significant inhibition even at the lowest tested concentration 

(Figure 5.4).  Reductions in extracellular virus titres at 200 nM were 93.2% and 96.4% for L2 

and N1 respectively, decreasing to 80.6% and 83.1% at 5 nM concentration. 

 

Figure 5.4: Concentration-dependent inhibition of FCoV replication by siRNA L2 and N1.  

Cells were transfected (or mock transfected) with (a) siRNA L2 or (b) siRNA N1 at 

concentrations from 200 nM to 5 nM prior to infection with FCoV FIPV1146 at MOI 0.2.  The 

value of the untreated control sample (concentration 0 nM) is defined as 100%.  Each 

treatment was performed in triplicate and repeated in three independent experiments.  Data 

are expressed as Mean ± SE. 

5.4.4. Effect of the magnitude of viral challenge on siRNA efficacy 

Given the high viral loads seen in cats with FIP, we sought to determine if anti-FCoV siRNAs 

remained effective at inhibiting viral replication in the face of a high viral challenge.  Both 

tested siRNAs remained efficacious at all tested MOI, demonstrating greater than 75% 
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inhibition at higher MOI when compared to viral titres.  This difference was most marked for 

siRNA N1 which demonstrated a reduction in viral genome copy number of only 31.3% at 

MOI 20 as compared to 85.2% reduction in extracellular viral titre. 

 

Figure 5.5: Efficacy of FCoV siRNAs in cells challenged with different MOI.  Cells were 

transfected (or mock transfected) with 100 nM siRNA prior to infection with FCoV FIPV1146 

at MOI (a) 0.2, (b) 2, or (c) 20.  Extracellular viral titres and intracellular viral genomic RNA 

were measured 18 hpi.  The value of the untreated control sample is defined as 100%.  Each 

treatment was performed in triplicate and repeated in three independent experiments.  Data 

are expressed as Mean ± SE.  No Tx, no treatment control. 
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5.4.5. Effect of combination treatment on siRNA efficacy 

Based on extracellular viral titre and intracellular viral antigen expression, pre-treatment with 

multiple siRNAs was highly effective at inhibiting viral replication, with no evidence of 

antagonistic effects noted at the concentrations tested.  Interestingly, although the cell 

culture and infection conditions were different, the reduction in relative viral titre using the 

reverse transfection protocol was significantly greater than that previously seen in forward 

transfected cells, particularly for siRNAs M1 and N2.  Pre-treatment with single siRNAs at 30 

nM using reverse transfection resulted in a reduction of extracellular viral titres of 99.7%, 

99.6%, 93.9%, and 91.4% for siRNAs L2, N1, M1, and N2 respectively (Figure 5.6a).  Pre-

treatment with a combination of two, three, or four siRNA, at a total concentration of 30 nM, 

resulted in a reduction in viral titre of greater than 99.5% for all tested combinations.  

Analysis of viral antigen expression supported these findings.  Combination treatment with 

multiple siRNAs was highly effective, resulting in a greater reduction in the percentage of 

infected cells compared to treatment with a single siRNA (Figure 5.6b).  Interestingly, the 

percentage of infected cells following single treatment with siRNAs M1 or N2 (92.5% and 

66.1% respectively) was significantly higher than would be expected given the degree of 

inhibition of extracellular virus (93.9% and 91.4%  reduction respectively).  This large 

difference was not apparent for cells treated singly with siRNAs L2 and N1, or cells treated 

with siRNA combinations, where significant inhibition of extracellular viral titre was 

associated with a similarly large reduction in the percentage of infected cells.  
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Figure 5.6: Efficacy of combination siRNA treatment against FCoV.  Cells were reverse 

transfected with 30 nM of single or multiple siRNAs prior to infection with FCoV FIPV1146 at 

MOI 0.2.  Efficacy was determined 36 hpi by (a) TCID50 titration of extracellular virus and (b) 

assessment of intracellular viral antigen expression by IFA.  Value of untreated control 

samples is defined as 100%.  Each treatment was performed in triplicate and repeated in 

three independent experiments.  Data represent Mean ± SE. No Tx, no treatment control; 

NSC, non-silencing control. 
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identified first at P2 and P4 respectively.  No mutations were detected in the siRNA L2 or 

siRNA N1 target sites when virus was serially passaged through untreated cells or cells 

treated with a NSC siRNA [Figure 5.7 (e and f)]. 

As shown in Figure 5.7 (a, c, and d), mutations were identified at two separate locations 

within the L2 target site. The first of these was a C-to-U transition at position ten (in virus 

passaged through cells treated with siRNA L2 alone and with siRNA combination 

L2+N1+M1) and the second, a C-to-A transition at position six (in virus passaged through 

cells treated with siRNA combination L2+N1).  As siRNA L2 targets the leader sequence in 

the 5’ UTR there are no associated amino acid changes as a result of these mutations.  The 

L2 target site is however located within the putative leader-TRS hairpin, thought to be an 

important cis-acting element (Dye and Siddell, 2005), as well as incorporating several 

nucleotides of the proximal end of the TRS. 

For the N1 target site [Figure 5.7(b, c, and d)], mutations were also identified at two 

locations.  At position nine two polymorphisms were noted: a C-to-A transition (in virus 

passaged through cells treated with siRNA N1 alone) and a C-to-G transition (in virus 

passaged through cells treated with siRNA combinations L2+N1 and L2+N1+M1).  The 

second mutation was a G-to-C transition at position seventeen.  This mutation was seen only 

in virus passaged through cells treated with siRNA combination L2+N1+M1.  All of the 

nucleotide substitutions within the N1 target site were associated with amino acid changes.  

Although position nine of the target site corresponds to the wobble position of the codon for 

phenylalanine in the original sequence, both identified polymorphisms at this location 

resulted in an amino acid change to leucine.  Position seventeen corresponds to the middle 

base of the codon for alanine in the original sequence, and the G-to-C transition results in an 

amino acid substitution to valine. 

Based on the inhibition of viral antigen expression, the identified mutations resulted in the 

acquisition of a fully or partially resistant phenotype (Figure 5.8).  When treated with a single 

siRNA the acquisition of a mutation at the target site was associated with an almost complete 

loss of inhibition.  For siRNA N1, although the C-to-A transition was not noted until P2, a 

highly resistant phenotype was apparent from P1.  Analysis of the P1 electropherogram at 

this site shows a small adenine peak in addition to cytosine suggesting a subpopulation of 

the P1 viruses had undergone this mutation during the first passage.  Given the 40 h 

infection period used in this study encompasses multiple replication cycles, the presence of 

even a low-prevalence resistant sub-population would likely result in the appearance of a 

highly resistant phenotype in this study.  The development of resistance to siRNA mediated 

inhibition was demonstrated to be sequence dependent rather than mechanism dependent 
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as viruses with mutations in the L2 target site remained susceptible to RNAi mediated 

inhibition by siRNA N1 and vice versa (data not shown).   

Mutations were not apparent until P2 for virus passaged through dual combination siRNA 

treated cells.  A partially resistant phenotype was noted at P1 with relative viral antigen 

expression increasing from 3.3% at P0 to 27.7% at P1.  By P2 mutations were present in 

both L2 and N1 target sites, with an accompanying increase in relative viral antigen 

expression to 91.1%.  Interestingly relative viral antigen expression for P3 and P4 dual 

treated viruses remained at approximately 90% despite the presence of the apparently fixed 

mutations in both target sites, with complete resistance not seen until P5. 

Virus passaged through triple combination siRNA treated cells remained susceptible to RNAi 

mediated inhibition for all five passages, although low level resistance was apparent from P1.  

Despite this early appearance of low level resistance, mutations were not identified in the L2 

or N1 target regions until P4.  At P4, a C-to-U transition was identified at position ten of the 

L2 target and a possible C-to-G transition was identified at position nine of the N1 target, 

although the electropherogram at this latter site showed two almost equal peaks.  At P5 the 

mutation in the L2 target site remained and position nine of the N1 target had reverted to a C, 

although a small G peak was evident suggesting a subpopulation of viruses retained this 

mutation.  A second novel mutation in the N1 target, a C-to-U transition at position 

seventeen, was identified at P5.  None of the mutations present from P4 onwards appeared 

to confer a significant increase in resistance compared to earlier passages. 
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Figure 5.7: Viral escape from siRNA mediated inhibition. FCoV FIPV1146 was serially passaged five times through siRNA treated (or mock 

treated) cells.  Consensus sequencing was performed for the target sites for siRNAs L2 and N1 of original stock virus (P0) and each passage (P1 

to P5).  Red rectangles on electropherograms highlight nucleotide substitutions compared to P0 sequence.  Viruses were tested for a resistant 

phenotype by infecting cells pre-treated (or mock treated) in the same manner at MOI 0.2 with serially passaged viruses. At 40 hpi in situ IFA 

staining was performed and viral antigen expression quantified.  Histograms show normalised mean cell intensity for each passage with the solid 

blue line representing siRNA treated cells and the filled grey histogram untreated control cells.  Marker on P0 histogram shows gate for antigen 

positive cells.  
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Figure 5.7 cont.: Viral escape from siRNA mediated inhibition. 
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Figure 5.7 cont.: Viral escape from siRNA mediated inhibition. 
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Figure 5.7 cont.: Viral escape from siRNA mediated inhibition.  
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Figure 5.7 cont.: Viral escape from siRNA mediated inhibition.   
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Figure 5.7 cont.: Viral escape from siRNA mediated inhibition. 
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Figure 5.8: Effect of target site mutations on the inhibitory effect of antiviral siRNAs against 

FCoV FIPV1146.  FCoV FIPV1146 was serially passaged five times through cells pre-treated 

with one or a combination of siRNAs previously shown to have antiviral effects, through cells 

pre-treated with a NSC siRNA, or through untreated cells.  Virus from each passage and 

treatment was subsequently tested for the development of resistance by infecting cells pre-

treated in the same manner at MOI 0.2 with serially passaged virus.  Viral antigen expression 

was determined 40 hpi.  The percentage of infected cells was calculated with the value of the 

no treatment control defined as 100%.  Results represent Mean of duplicate wells.  No Tx, no 

treatment; NSC, non-silencing control. 

5.4.7. Comparison of Dicer-substrate siRNAs and canonical siRNAs  

The efficacy of two different exogenous RNAi triggers, canonical and Dicer-substrate siRNAs 

targeting the same region, were examined via a concentration-response study, the results of 

which showed the relative potency of these RNAi triggers was dependent on the target.  For 

the L2 target site DsiRNA was more potent than siRNA, with IC50 values of 0.31 and 1.18 

nM respectively (Figure 5.9; Table 5.4).  For target N1 the IC50 values for DsiRNA and 

siRNA were similar at 2.00 and 1.76 nM respectively.  Dual combination DsiRNAs were 

considerably more potent than dual combination siRNAs, with an almost 10-fold reduction in 

IC50 value (0.28 nM compared to 2.65 nM). 
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Figure 5.9: Comparison of antiviral efficacy of siRNAs and DsiRNAs targeting L2 and N1.  

Cells were reverse transfected (or mock transfected) with single siRNAs or DsiRNAs (a) L2 

or (b) N1 at half-log concentrations from 10 nM to 1 nM or dual combination siRNAs or 

DsiRNAs targeting (c) L2 + N1 at concentrations of 5 nM to 1 nM.  Cells were infected with 

FCoV FIPV1146 at MOI 0.2.  Extracellular viral titres were determined 40 hpi. Value of the 

untreated control sample (concentration 0 nM) is defined as 100%.  Each treatment was 

performed in triplicate and repeated in three independent experiments.  Data are expressed 

as Mean ± SE. 
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Table 5.4: IC50 values (with 95% confidence intervals) for single and dual combination 

treatment with siRNAs and DsiRNAs targeting L2 and N1. 

 siRNA DsiRNA 

Target IC50 (nM) IC50 (nM) 

L2 1.18 (0.49-2.55) 0.31 (0.22-0.43) 

N1 1.76 (0.96-3.25) 2.00 (1.07-3.87) 

L2+N1 2.65 (1.54-4.57) 0.28 (0.13-0.63) 

 

To assess the effect of the structural form of the triggering molecule on the duration of the 

antiviral response, extracellular viral titres were determined at four time points post infection 

in cells pre-treated with 5 nM canonical or Dicer-substrate siRNA.  Based on the shape of the 

time-response curves generated, the duration of antiviral response was similar between 

siRNAs and DsiRNAs designed against the same target (Figure 5.10) and overall the 

duration of antiviral response appeared related to siRNA potency.  For target L2, pre-

treatment with DsiRNA resulted in almost complete inhibition of viral replication out to 40 hpi, 

followed by a rapid rise in extracellular viral titre, to reach a maximum titre approximately 

equal to that of untreated cells at 60 hpi.  Pre-treatment with siRNA L2 resulted in a similar 

response, although in this case the degree of inhibition at 40 hpi was lower than that seen 

with DsiRNA pre-treatment.  By comparison extracellular viral titres of untreated cells, and 

cells pre-treated with NSC siRNAs and DsiRNAs (data not shown), were similar, rising 

rapidly at 20 hpi and peaking at 40 hpi, before declining.  A similar picture was seen for cells 

pre-treated with dual combination siRNA or DsiRNA against L2 and N1, although in this case 

the magnitude of the peak viral titre of treated cells was lower than in untreated cells (or NSC 

siRNA/DsiRNA treated cells).  Molecules targeted at N1, which had previously been 

demonstrated to be less potent that those against L2, demonstrated a shorter duration of 

action, with peak viral titre occurring at 40 hpi. 
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Figure 5.10: Duration of antiviral activity of canonical and Dicer-substrate siRNAs.  Cells 

were reverse transfected with 5 nM single or dual combination siRNAs or DsiRNAs prior to 

infection with FCoV FIPV1146 at MOI 0.5.  Culture media was harvested at 20, 40, 60, and 

80 hpi for titration of extracellular virus titre.  Each treatment and time-point was performed in 

triplicate and data represent Mean ± SE of duplicate experiments.  
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5.5. DISCUSSION 

The current study has demonstrated the effectiveness of synthetic siRNA mediated inhibition 

of FCoV replication in an immortalised cell line.  Further characterisation of the antiviral 

effects of these highly active compounds demonstrated they possess several characteristics 

that are likely essential for a useful therapeutic, including good efficacy at low nanomolar 

concentrations, when challenged with high viral loads, and when used in combination. In 

regards to the latter, combination therapy with three siRNAs targeting different regions of the 

viral genome was able to prevent viral escape, thus overcoming one of the greatest 

challenges of RNAi-based antiviral therapy.  Taken together, these results provide in-

principle proof of the effectiveness of specific siRNA mediated RNAi in substantially inhibiting 

FCoV replication in vitro, leading the way for an extension into in vivo use as a potential 

therapeutic agent for the deadly disease FIP, for which there is currently no effective 

treatment. 

The selection of appropriate targets is a critical first step in using RNAi as an antiviral 

therapeutic. As a Baltimore group IV virus, the lifecycle of FCoV theoretically enables the 

simultaneous degradation of both viral genomic and messenger RNA via RNAi. Additionally, 

the unique discontinuous transcription mechanism of coronaviruses, resulting in a nested set 

of subgenomic mRNAs (Masters, 2006), enables targeting of multiple viral mRNA species as 

well as viral genomic RNA with a single siRNA.  A common leader sequence, which plays a 

critical role in coronavirus gene expression, is present on the 5’ end of each viral mRNA 

(Masters, 2006) and provides an additional highly conserved target present on all viral RNA 

species.  In the current study a panel of eight siRNAs targeting four different regions of the 

FCoV genome were designed and tested.  siRNAs were designed to target structural genes 

(M1, M2, N1, N2), non-structural genes (R1, R2), and the 5’ UTR (L1, L2).  The effectiveness 

of RNAi-based therapeutics targeting these regions has previously been demonstrated using 

an in vitro SARS-CoV model (He et al., 2003; He et al., 2006; Li et al., 2005c). 

The design of successful siRNAs targeting viral sequences poses additional challenges 

compared to designing siRNAs to knock down cellular genes.  This challenge arises due to 

the high mutation rates and short replicative cycles of viruses, a consequence of which is 

that within an infected animal, and also amongst viruses circulating within the broader 

population, there exists a significant degree of genetic heterogeneity.  The term quasispecies 

is often used to refer to this phenomenon whereby genetic variation results in a population of 

related viruses that are closely distributed around a consensus sequence.  The viral mutation 

rate, and hence the magnitude of the challenge, vary amongst different viruses.  In general 

mutation rates are higher for RNA viruses than DNA viruses (Sanjuán et al., 2010) and there 

is an inverse correlation between mutation rates and genome length (Bradwell et al., 2013).  
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The higher mutation rate in RNA viruses is generally considered to be due to the poor fidelity 

of the virally encoded RNA dependent RNA polymerase and, in most cases by the lack of 

any proof reading or error correction machinery (Lauring et al., 2013).  Unique among RNA 

viruses, it has been shown that coronaviruses encode a proofreading exoribonuclease that is 

essential for maintaining replication fidelity (Denison et al., 2011; Minskaia et al., 2006), 

however even with this, mutation rates are thought to be similar to that of other RNA viruses 

(Sanjuán et al., 2010). 

To be clinically useful an antiviral therapeutic must be efficacious against all, or at least the 

majority of field isolates.  This is a considerable challenge particularly against viruses as 

genetically variable as coronaviruses, given that just a single nucleotide mismatch between 

an siRNA and its target site can render it ineffective (Du et al., 2005).  Targeting conserved 

regions of the viral genome is one way to maximise coverage of field isolates (Naito et al., 

2006).  Such a strategy may also help to limit the development of escape mutants during 

treatment as highly conserved regions are more likely to be structurally or functionally 

constrained.  During the siRNA design phase only a limited number of FCoV sequences 

were available.  Conserved regions of the genome were identified for targeting using simple 

alignment and visual assessment.  Based on the data available at the time, five of the eight 

siRNAs displayed 100% homology to all reported FCoV sequences.  For two of the 

remaining siRNAs, a single nucleotide mismatch was seen in a single sequence, and for the 

final siRNA two mismatches in the target site were seen, again for a single sequence.  Since 

the time of siRNA design a considerable number of FCoV sequences have become 

available.  Analysis of siRNA target sites in the 35 full-length sequences available at the time 

of writing, confirmed that the target sites were highly conserved, with the percentage of 

strains showing complete target site homology ranging from 97% (siRNA L2) to 69% (siRNA 

N2).  These results highlight the success of the simple approach utilised in this study for 

identifying suitable targets, however it is possible a more advanced approach for identifying 

appropriate siRNA targets in highly divergent viruses, such as that applied by Naito et al. 

(2006) or Lee et al. (2009), may identify additional, or better siRNA targets. 

For initial screening, the effectiveness of siRNAs was assessed at the genetic level, 

measuring viral genomic and messenger RNA, and downstream, by a qualitative assessment 

of viral protein synthesis and quantification of the production of progeny virions. All of the 

siRNAs tested demonstrated an inhibitory effect on FCoV replication; however the magnitude 

of inhibition varied significantly. The highly effective siRNAs L2 and N1 were able to reduce 

extracellular virus titres by more than 95%, while less effective siRNAs such as L1 resulted in 

a reduction of approximately 60%. Such variability in potency between different siRNAs has 

been frequently encountered in RNAi studies, even when they target closely associated 

regions (Holen et al., 2002). This was demonstrated in the current study where the 
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extracellular virus titre for siRNA L2 was more than 10-fold lower than for siRNA L1, despite 

the two targeting contiguous regions of the genome.  

Key to successful RNAi mediated gene knockdown, is the delivery of the triggering duplex 

into the cytoplasm.  For chemically synthesised siRNAs in cell culture this is most commonly 

performed using a forward transfection protocol in which transfection complexes are added 

to pre-seeded cells.  An alternative protocol, referred to as reverse transfection, involves 

simultaneously transfecting and plating cells, and is used frequently for high throughput 

screening of RNAi libraries (Echeverri and Perrimon, 2006).  For the initial screening 

experiments a standard (forward) transfection protocol was used, however in some later 

studies performed, due to miniaturisation into a 96-well plate format, a reverse transfection 

protocol was utilised.  Based on these studies a direct comparison of antiviral efficacy 

between transfection methods is not possible, as other assay parameters, including siRNA 

concentration, MOI, and duration of infection varied between experiments.  Despite this, the 

level viral inhibition seen in later experiments using reverse transfection, based on a 

reduction in relative and absolute viral titres, was greater than would be expected based on 

the results from the screening experiment for all siRNAs tested using both methods.  These 

results suggest that reverse transfection is more efficient in delivering siRNAs in CRFK cells, 

in agreement with the findings of Reid et al. (2009).  Whilst the delivery of siRNAs to cells 

growing in culture is far removed from the practicalities of in vivo treatment, these results 

highlight the critical dependence of optimised siRNA delivery for therapeutic use to maximise 

antiviral efficacy. 

For each siRNA treatment, the magnitude of inhibition determined by measurement of 

extracellular virus titre was greater than the inhibition seen in viral genome copy number. 

Although these two assays are looking at different endpoints, the consistent discrepancy may 

be in part explained by the fact that the qRT-PCR for viral genome is able to detect cleaved, 

and therefore non-infectious viral genomes, that have not yet been degraded, and thus likely 

underestimates the potency of the siRNAs. Viral mRNA was also assayed by qRT-PCR. For 

siRNAs targeting structural genes, the knockdown of the respective mRNA was greater than 

the knockdown of viral genome. This finding may be due to the viral genome being at least 

partially protected from the effects of these siRNAs, perhaps due to their association with 

viral proteins. A critical step in virus assembly is genome encapsidation by the nucleocapsid 

protein to form a helical nucleocapsid (Masters, 2006). The tight genome – nucleocapsid 

protein interaction may serve to partially protect progeny genomes from RNAi mediated 

degradation through steric hindrance of RISC access to the target site, as has been 

suggested for other viruses (Bitko and Barik, 2001; Hu et al., 2002). Differences in RNA 

secondary structure between the smaller viral mRNA and the full length genomic copies may 

also limit target site accessibility (Shao et al., 2007). Alternatively, the difference may be 
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attributed to the smaller mRNAs being degraded more rapidly following RISC mediated 

cleavage than the larger full length genome copies. 

In this study we demonstrated that siRNAs L2 and N1 inhibit FCoV replication in a 

concentration-dependent manner. Importantly, both of these highly effective siRNA were still 

able to significantly inhibit FCoV replication at the lowest tested concentration.  From a 

potential therapeutic point of view, efficacy at low concentrations is important as off-target 

effects associated with RNAi are in part concentration dependent (Behlke, 2006), and thus 

may be minimised by using low concentrations of highly potent siRNA. 

In the screening and titration experiments cells were infected at a relatively low MOI (0.2). To 

assess the usefulness of the siRNAs in a therapeutic setting siRNAs L2 and N1 were tested 

at higher MOIs: 0.2, 2, and 20. The development of FIP is associated with high viral loads, 

and it was considered that the higher MOI would more accurately mimic the findings in a 

natural infection (Kipar et al., 2006a). Both siRNAs remained effective, showing greater than 

75% inhibition of extracellular virus compared to the control samples even when challenged 

with a 100-fold increase in virus. As with the earlier experiments the reduction demonstrated 

in viral genome copies was less than the reduction in extracellular virus production. Again, a 

likely explanation is that qRT-PCR detects non-infectious cleaved genomic RNA prior to its 

degradation.  This hypothesis would explain the significantly increased N1 qRT-PCR results 

compared with L2 results, as the target site and the location of the PCR primers in the former 

are separated by over 25 kb.  

The development of antiviral resistance was proposed by Herrmann and Herrmann (1977) as 

a defining feature of a compound demonstrating specific antiviral effects, highlighting that the 

development of resistance to antiviral drugs during treatment is almost inevitable (Pillay and 

Zambon, 1998).  This problem is particularly acute for nucleic acid based therapeutics that 

rely on Watson-Crick base pairing between the molecule and target for specificity.  In 

contrast to small molecule antivirals, where the acquisition of resistance is often associated 

with conformational changes to viral proteins, and which may be associated with negative 

phenotypic effects, for RNAi-based antiviral therapeutics, resistance may be acquired by a 

single synonymous mutation in the target site, with no fitness cost to the virus.  The 

acquisition of resistance has been shown to occur in vitro following short duration exposure 

to highly effective siRNAs for RNA viruses such as poliovirus (Gitlin et al., 2002; Gitlin et al., 

2005), HIV (Boden et al., 2003; Das et al., 2004), and HBV (Wu et al., 2005b).  In the current 

study we have similarly shown a rapid emergence of resistance following siRNA treatment, 

particularly in the case of monotherapy, where a resistant population was identified following 

a single passage in cells treated with siRNA L2 or N1, although in the latter case, based on 

sequencing, the resistant population was a minority. 
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Strategies for preventing or delaying the development of resistance include targeting siRNAs 

to conserved regions of the viral genome, targeting siRNA against cellular factors involved in 

viral replication or other factors that have the potential to effect viral fitness, or combination 

therapy with multiple siRNAs (or siRNAs and direct acting antivirals).  Targeting conserved 

regions of the viral genome, in addition to increasing the likelihood of providing broad 

spectrum effects against circulating strains, may delay the development of resistance as 

such sites may be structurally or functionally constrained.  It must be considered however 

that in many cases such constraints are at the protein level and that due to redundancy in the 

genetic code, synonymous mutations at the target site may occur with no effect on the 

structure of the encoded protein and therefore no fitness cost to the virus.  Targeting cis-

acting RNA elements may be a more appropriate target, as constraints for these sites may 

arise due to the primary or secondary structure of the RNA (Liu et al., 2009a), however high 

degrees of secondary structure may limit the access of RISC to such target sites.  Dye and 

Siddell (2005) reported a number of putative cis-acting elements within the 5’ and 3’ UTRs of 

FCoV.  One of these, the leader-TRS hairpin located within the 5’ UTR was targeted by 

siRNAs L1 and L2 in the current study.  Although the target site of L2 is highly conserved 

among published FCoV sequences, and it is entirely located within what is purported to be 

an important cis-acting element, antiviral resistance developed within a single passage when 

siRNA L2 was used as monotherapy in the current study, highlighting that additional methods 

are required to minimise the development of resistance. 

Targeting siRNAs against cellular genes essential for viral replication is an alternative 

strategy for minimising the risk of resistance developing during treatment.  Whilst viral 

escape is possible when targeting cellular cofactors, the evolutionary leap required is 

considerable, particularly when compared to the single nucleotide substitution required for 

viral mutational escape using traditional RNAi targeted at viral sequences (Leonard and 

Schaffer, 2005a).  This approach has been successful in vitro against a number of viruses 

including HIV (Anderson et al., 2003; Eekels et al., 2011), HCV (Korf et al., 2005), and 

influenza A virus (Sun et al., 2010).  In vivo success with this strategy has been shown for 

HIV, where siRNA mediated knockdown of CCR5, a co-receptor used for viral entry, was 

shown to protect humanised mice from HIV challenge (Kim et al., 2009).  Targeting cellular 

cofactors significantly increases the risk of adverse events related to treatment, as cellular 

cofactors co-opted during viral replication may be essential for normal cell function.  

Identification of a suitable cellular target for knockdown is a critical first step for this 

approach.  Further elucidation of the details of FCoV replication, in particular the cellular 

receptors/co-receptors may be informative in this regard.  Recently published data by Harun 

et al. (2013) on the transcriptional profile of FCoV infected cells may also provide information 
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on novel cellular targets, as has occurred for other viruses using a similar approach 

(DeFilippis et al., 2003). 

Treatment with a combination of siRNAs may be effective in delaying or preventing the 

emergence of resistant viruses, in the same manner that highly active antiretroviral therapy 

(HAART) using small molecule antivirals is used in HIV infected patients.  HARRT, currently 

the recommended gold standard treatment, involves concurrent treatment with a combination 

of three or more small molecule antivirals, which when applied can significantly hinder the 

emergence of resistant viruses and is associated with reductions in morbidity and mortality 

(Shafer and Vuitton, 1999).  Such combination therapy may act to minimise the development 

of resistance in a probabilistic sense due to the requirement for multiple simultaneous 

mutations to occur, or may act by causing a more rapid and pronounced reduction in the viral 

replication rate, resulting in an attendant reduction in the formation of mutant, and potentially 

resistant viruses (Hodge and Field, 2010).  Regardless of the mechanism involved, 

experimental data, including that presented in the current work, confirms that combinatorial 

therapy with siRNAs can significantly delay the emergence of resistance (Gitlin et al., 2005; 

ter Brake et al., 2008; ter Brake et al., 2004; Wilson and Richardson, 2005). 

The number of antivirals required to successfully inhibit the development of resistance is 

dependent upon factors related to the nature of the compounds, and the ease with which 

resistance can develop (the so called genetic barrier), in addition to the biological properties 

of viral replication, including the viral mutation and replication rates.  Unfortunately for siRNA 

based antivirals the genetic barrier is low, with resistance easily developing with just a single 

synonymous nucleotide mismatch, meaning multiple siRNAs targeting independent sites 

would be needed.  Whilst theoretically each additional antiviral added to a treatment regimen 

will further reduce the likelihood of resistance occurring during treatment, this must be 

balanced against the potential for increased toxicity or antagonistic effects that can arise with 

combination therapy.  For RNAi-based therapeutics, each additional siRNA will compete for 

access to the RISC machinery, and thus combination therapy with multiple siRNAs may 

result in highly potent siRNAs being diluted by the presence of less potent molecules (Bitko 

et al., 2005; Castanotto et al., 2007).  Similarly, competition for incorporation into RISC 

between siRNAs and endogenous microRNAs may increase the risk of off-target effects.   

Mathematical modelling can be performed to optimise combination therapy by estimating the 

probability of acquiring resistance using different numbers of antiviral compounds.  Using a 

model for HIV that incorporated specific mechanistic features of RNAi-based inhibition, in 

addition to details regarding the biology of HIV replication in vivo, Leonard and Schaffer 

(2005b) showed that a combination of four siRNAs targeting independent regions of the 

genome would be sufficient to prevent the emergence of escape variants in vivo.  These 

results are similar to those obtained using models for small molecule antivirals, where the 
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probability of acquiring resistance to a triple drug combination therapy (based on the 

probability of generating all possible 3-base mutations) during the course of an influenza A 

virus infection was in the order of 1 x 10-7 while for HIV, a slightly lower probability of 

approximately 1 x 10-8 (per day) was reported (Hoopes et al., 2011).  The results of the 

current study support these theoretical calculations, in that it would appear for FCoV, that 

combination therapy with siRNAs targeting at least three independent regions would be 

required to minimise the development of resistance. 

An interesting extension of the combinatorial therapy approach to minimising the emergence 

of resistance during treatment is to use a combination containing a highly effective siRNA in 

addition to number of siRNAs designed to recognise and inhibit the most likely escape 

sequences for that targeted region, a so-called second generation of siRNAs (Schopman et 

al., 2010).  For this approach to be practical requires only a limited number of possible viral 

escape routes.  Targeting highly conserved regions will maximise the probability of this 

occurring as mutations in these sites are more likely have deleterious effects on viral fitness 

leading to replication incompetent progeny.  In the current study, despite targeting conserved 

regions, selection pressure due to siRNA treatment resulted in the generation of two unique 

mutations for L2 and three unique mutations for N1.  Further large scale screening for 

escape sequences would be required to determine whether the mutations identified in the 

current small scale study represent the most likely route of viral escape, and also whether 

such an approach is practical for these targets based on the overall number of escape 

sequences possible.  Recent studies using this approach with HIV have shown that although 

viral escape via mutations targeted by the second generation of siRNAs are inhibited, 

selection pressure results in the development of resistance via alternate routes (Schopman 

et al., 2010). 

Whilst the previous discussion has focused on combinatorial therapy using multiple siRNAs, 

combination therapy with small molecule inhibitors and siRNAs has been reported to provide 

similar benefits (Vigne et al., 2009).  In this regard combination therapy with effective siRNAs 

and one or more of the small molecule inhibitors identified in Chapter 4 may be a useful 

approach, however given that all are known to have an effect on aspects of the endocytic 

pathway, their use may affect the uptake and processing of exogenous nucleic acids (Khalil 

et al., 2006).  Interestingly, chloroquine has been shown to increase the efficacy of RNAi and 

the uptake of siRNAs in vitro when using cell penetrating peptides for delivery (Veldhoen et 

al., 2006), and thus it may possible to achieve synergistic effects in vivo via this novel 

mechanism of enhancing cellular delivery.  Conversely, antagonistic effects may be seen if a 

co-administered small molecule inhibitor results in reduced cytoplasmic entry of siRNAs. 
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The structure of the double-stranded RNA molecule responsible for mediating RNAi is a 21 

nucleotide duplex hybridised to result in two nucleotide overhangs at the 3’ end of each 

strand, often referred to as the “19 + 2” structure (Elbashir et al., 2001a).  Chemically 

synthesised siRNAs are traditionally designed to mimic this structure, with a central 19 

nucleotide duplex complementary to the target sequence, and with the overhangs commonly 

deoxythymidines.  In the search for improved efficacy and reduced off-target effects, a range 

of non-classical siRNA structural variants have been investigated, some of which appear to 

offer advantages over the canonical “19 + 2” structure (Chang et al., 2007; Kim et al., 2005; 

Rose et al., 2005; Salomon et al., 2010).  One of these, a 27 nt duplex referred to as a Dicer-

substrate siRNA, was shown by Kim et al. (2005) to be 10 to 100 times more potent than its 

sequence matched canonical siRNA, without inducing interferon or protein kinase R.  In 

addition to improved potency, DsiRNAs were reported to have an enhanced duration of 

action.  Further refinement of the originally blunt-ended 27-mer duplex resulted in the 

DsiRNA structure used in the current study: a 25 nucleotide sense strand in which the two 3’ 

terminal nucleotides are replaced with DNA, and a 27 nt antisense strand hybridised to give 

a blunt ended sense 3’ terminus and 2 nt overhang at the sense 5’ terminus (Amarzguioui et 

al., 2006; Amarzguioui and Rossi, 2008; Rose et al., 2005).  Asymmetry and the 

incorporation of DNA bases into the DsiRNA structure results in the preferential incorporation 

of the antisense strand into RISC, improved complex formation with proteins known to be 

important for RNAi, as well as minimising the activation of the innate immune response 

(Amarzguioui et al., 2006; Snead et al., 2013).  Not all published data however supports the 

contention that Dicer-substrate siRNAs offer any advantage over the canonical siRNAs on 

which they are based.  Foster et al. (2012) compared the performance of DsiRNA and siRNA 

against a range of targets and found no class effect, with both canonical and Dicer-substrate 

siRNAs comparable in terms of potency and duration of activity, both in vitro and in vivo in 

this study.  Dicer-substrate siRNA were also reported to be less tolerant of chemical 

modifications and more immunostimulatory, however in regards to antiviral therapy, the latter 

may actually be a desirable feature (Stewart et al., 2011).  

In the current study the relative efficacy of canonical and Dicer-substrate siRNAs varied with 

target site.  For monotherapy against target L2, and combination treatment for L2 and N1, 

DsiRNA were more potent, while there was little difference between siRNA and DsiRNA for 

monotherapy targeted at N1. Increased potency was greatest for combination therapy, with 

the IC50 of dual combination DsiRNA almost 10-fold lower than that for dual siRNA therapy.  

The duration of action appeared related to the potency of the molecule, with increased 

potency resulting in increased duration of activity.  Previous studies investigating the duration 

of activity of canonical versus Dicer-substrate siRNAs have targeted cellular genes.  In these 

cases the cessation of silencing is thought related to a reduction of intracellular siRNA due to 
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the activity of ribonucleases or through a dilution effect caused by cell division (Takahashi et 

al., 2012).  In the current study the apparent cessation of antiviral effect may also be due to 

the emergence of resistant isolates or through a simple overwhelming of the RNAi 

machinery, as cells are exposed to progressively higher MOI as viral replication proceeds.  

Both of these hypotheses fit with the experimental data showing that prolonged duration of 

activity correlated with increased potency.   

A potential limitation of this study is the lack of testing against a diverse range of FCoV 

isolates.  The virus used in the current study was a type II FCoV.  The prevalence of type II 

FCoV varies worldwide, however in all reported studies infection with type I viruses is more 

common (Pedersen, 2009).  It is unlikely that the higher prevalence of type I infections would 

invalidate any therapeutic application of the siRNAs tested in this study, as the primary 

difference between type I and II FCoVs is the spike protein, a region not targeted by any of 

the tested siRNAs. Furthermore, siRNAs were selected in part based on homology to 

reported FCoV strains, including both type I and type II FCoVs, and subsequent alignment of 

siRNA targets against the most recently published sequences confirmed a high degree of 

conservation among both types. 

In conclusion, whilst significant challenges remain to be overcome in the translation from in 

vitro to in vivo use of RNAi therapeutics, the preliminary information from the current study 

suggest that siRNA or DsiRNA mediated RNAi may be a useful therapeutic option for FIP.  It 

is however unlikely that antiviral siRNA therapeutics, or any antiviral therapeutic for that 

matter, will be effective as a monotherapy in treating FIP. While increased viral replication is 

a triggering and perpetuating event in the disease pathogenesis, the characteristic 

pathological lesions of widespread serositis, vasculitis, and pyogranuloma formation, and the 

attendant clinical signs are immunopathological in nature. Thus effective treatment of FIP will 

likely require immunomodulatory therapy in addition to antiviral therapy. The results of this 

current study demonstrate that siRNA mediated RNAi may be an appropriate choice in 

fulfilling the latter requirement.  Although not investigated in the current work, an RNAi-based 

approach directed at modulating the host immune response may offer a more targeted 

approach in addressing the former. 
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6 
6 Identification and characterisation of a 

small molecule inhibitor of feline 
calicivirus 

6.1. ABSTRACT 

Feline calicivirus (FCV) is an important viral pathogen of domestic cats causing clinical signs 

ranging from mild or inapparent oral ulceration or upper respiratory tract disease through to a 

severe virulent, and often fatal systemic disease.  Additionally, FCV is implicated in the 

pathogenesis of feline chronic gingivostomatitis syndrome, an intractable condition resulting 

in high morbidity and a significant reduction in quality of life.  Current therapeutic options are 

limited, with no direct acting antivirals available for the treatment of FCV.  To begin to 

address this shortfall, this chapter describes the in vitro screening of a panel of nineteen 

candidate compounds for antiviral activity against FCV strain F9.  Of the compounds tested, 

only mefloquine, a potent schizonticidal drug used for the prevention and treatment of 

malaria, demonstrated a marked inhibitory effect, with an IC50 value of 6.94 µM based on 

CPE inhibition and a selectivity index of 3.18.  Orthogonal assays confirmed inhibition of CPE 

was associated with a significant reduction in viral replication, with IC50 values as low as 

0.79 µM based on reductions in extracellular viral titre.  Mefloquine exhibited a strong 

inhibitory effect against a panel of seven recent FCV isolates from Australia, with calculated 

IC50 values for the field isolates approximately 50% lower than against the reference strain 

FCV F9.  In vitro combination therapy with recombinant feline interferon-ω, a biological 

response modifier currently registered for the treatment of FCV, demonstrated additive 

effects with a concurrent reduction in the IC50 of mefloquine.  These results are the first 

report of antiviral effects of mefloquine against a calicivirus and support further in vitro and in 

vivo evaluation of this compound as an antiviral therapeutic for FCV. 

6.2. INTRODUCTION 

A number of viruses in the family Caliciviridae are of medical and veterinary importance.  

Worldwide, human norovirus (genus Norovirus) is the major viral cause of gastroenteritis 
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(Wilhelmi et al., 2003). In veterinary medicine, rabbit haemorrhagic disease virus (genus 

Lagovirus) emerged in China in the mid-1980s as a highly virulent pathogen of lagomorphs.  

This virus, which typically results in a rapidly fatal systemic disease in susceptible rabbits, 

has subsequently spread worldwide, both through natural movements and, in the case of 

Australia and New Zealand, through intentional release as a biological control agent against 

the wild rabbit population (Abrantes et al., 2012).  In domestic cats, feline calicivirus (FCV) 

(genus Vesivirus) is a common and important pathogen (Radford et al., 2007).  Infection with 

FCV typically results in upper respiratory tract signs (often referred to as “cat flu”) or 

ulcerative oral lesions.  The majority of presentations are mild, although in young kittens 

disease may be more severe, and in some cases fatal.  Less frequent disease 

manifestations associated with FCV include a lameness syndrome, pneumonia, and more 

recently the recognition of FCV-associated virulent systemic disease (FCV-VSD), a condition 

associated with high morbidity and mortality, even in previously vaccinated adult cats (Hurley 

and Sykes, 2003; Pedersen et al., 2000; Radford et al., 2007).  FCV is also suspected in the 

pathogenesis of feline chronic gingivostomatitis syndrome (FCGS), a condition involving 

chronic inflammation of the oropharyngeal mucosa; however its role as a primary or 

perpetuating factor in this condition is unresolved (Lyon, 2005).  

Both inactivated and modified live FCV vaccines are available to help control calicivirus-

related disease in cats.  Whilst generally effective at reducing the severity and duration of 

clinical signs, they do not prevent infection or shedding (Radford et al., 2007).  Furthermore, 

due to the high level of antigenic variability amongst FCV isolates there are some concerns 

regarding the level of cross protection afforded by some the older vaccines (Radford et al., 

2006).  Of particular concern regarding vaccine efficacy is the observation that many cats 

with virulent systemic disease had been vaccinated (Hurley and Sykes, 2003).  Whether lack 

of protection against VSD strains in vaccinated cats is due to antigenic variability and 

resulting poor cross neutralisation, or is due to other altered biological properties of the 

virulent strains remains unresolved, however regardless of the cause it is clear that 

therapeutic options are clearly needed for this rare, but devastating condition.  Similarly, an 

effective and safe antiviral therapeutic for the more severe cases of oro-respiratory disease 

and chronic infections would be a significant advance for feline medicine. 

There are currently no direct acting antiviral drugs registered for the treatment of FCV, 

although the immune modulating drug rFeINF-ω, which likely has indirect antiviral properties, 

has a registered indication for the treatment of FCV.  Efficacy of both human and feline 

interferons has been demonstrated in vitro against FCV (Fulton and Burge, 1985; Mochizuki 

et al., 1994; Taira et al., 2005; Truyen et al., 2002) and it has been reported that the use of 

rFeINF-ω has a positive therapeutic effect in FCV infected cats in experimental and field 

efficacy trials (Ninomiya et al. 1991, Uchino et al. 1991, cited in Ohe et al. (2008)).  
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Treatment with rFeINF-ω was also associated with an improvement in clinical signs in cats 

with refractory FCGS in a double-blinded placebo-controlled study, however no attempt was 

made to monitor FCV shedding, and thus it is unclear whether the improvement was due to 

the antiviral or immunomodulatory properties of interferon (Hennet et al., 2011).  The small 

molecule antiviral ribavirin markedly inhibits FCV in vitro (Povey, 1978b), however the drug 

was demonstrated to be ineffective in an experimental challenge where treatment had no 

effect on the course of disease or shedding, and was associated with significant toxicity 

(Povey, 1978a).  Bovine lactoferrin has demonstrated antiviral effects against FCV in cell 

culture (McCann et al., 2003), and in a single case report in which the resolution of clinical 

signs of FCGS and the cessation of FCV shedding was attributed by the authors to bovine 

lactoferrin despite additional concurrent therapies (Addie et al., 2003a).  Recently, feline 

calicivirus specific antiviral phosphorodiamidate morpholino oligomers (PMO) were tested in 

naturally occurring outbreaks of FCV-VSD (Smith et al., 2008).  The oligonucleotide antivirals 

were highly efficacious, with treatment resulting in improved survival, reduction in shedding, 

and a more rapid clinical recovery. 

The aim of this study was to screen a panel of compounds for antiviral activity against FCV 

using the optimised resazurin-based CPE inhibition assay described in Chapter 3.  The 

compounds tested in this study had demonstrated antiviral effects, in many cases broad 

spectrum effects, against a number of RNA viruses.  The antiviral effects of compounds 

identified during screening were confirmed with plaque reduction and virus yield reduction 

assays.  Effective compounds were tested against a panel of recent FCV field isolates from 

Australia to confirm their effectiveness against more clinically relevant viruses.  Effective 

compounds were also tested in combination with rFeINF, currently the only licenced 

treatment for FCV in Australia. 

6.3. MATERIALS AND METHODS 

6.3.1. Antiviral screening using CPE inhibition assay 

Antiviral screening was performed with a resazurin-based CPE inhibition assay using the 

optimised assay parameters for FCV detailed in Chapter 3 (summarised in Figure 3.18).  

Test compounds and screening concentrations were as described in Sections 4.3.1 and 

4.4.1 respectively, and plate layout was as shown in Figure 4.2.  Each treatment was 

performed in triplicate and results represent Mean ± SE of three independent experiments.  

Compounds showing marked, moderate, or mild antiviral effects were defined as those 

showing 75-100%, 50-74%, and 25-49% inhibition of CPE respectively.  Compounds 

demonstrating marked CPE inhibition were classified as candidate compounds and were 

selected for further characterisation. 
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6.3.2. Titration of candidate compounds and determination of selectivity index 

Using the optimised FCV CPE inhibition assay (Figure 3.18), a concentration-response 

experiment was conducted with serial dilutions of candidate compounds identified during 

screening.  To enable calculation of the selectivity index a repeat cytotoxicity screen was 

performed concurrently.  The cytotoxicity screen was performed as per the CPE inhibition 

assay with the exception that cells were mock infected with DMEM.  Each treatment was 

performed in triplicate and repeated in three independent experiments, with results presented 

as Mean ± SE.  IC50, CC50, and SI values were calculated as described in Section 4.3.4.  

6.3.3. Confirmatory assays 

6.3.3.1. Virus yield reduction assay 

Virus yield reduction assays were performed in 24-well plates (Sarstedt) seeded with 6.0 x 

104 cells.ml-1 in 400 µl DMEM-10.  Plates were incubated at room temperature for 30 min and 

then 37°C in 5% CO2 in air for 6 h prior to the addition of 75 μl test compound diluted to the 

appropriate concentration in DMEM.  Five concentrations of test compound were assessed.  

After 1 h of compound exposure, cells were infected with FCV F9 at MOI of 0.05 in 25 μl 

DMEM.  At 12 and 24 hpi cellular morphology was assessed for CPE using an inverted 

phase contrast microscope (CKX41, Olympus) and supernatant was harvested and stored at 

-80°C prior to titration of extracellular virus (Section 2.3.2.3.2).  The relative viral titre was 

calculated for each treatment with the value of untreated control defined as 100%.  Each 

treatment and time point was performed in triplicate and repeated in two independent 

experiments.  Results represent Mean ± SE. 

6.3.3.2. Plaque reduction assay 

Plaque reduction assays were performed in 6-well plates (Sarstedt) using a modification of 

the standard plaque assay for FCV titration (Section 2.3.2.3.1).  Cells seeded at 1.2 x 104 

cells.well-1 in 2 ml DMEM-10 were incubated for 60 h until approximately 90% confluent.  

Culture media was discarded and replaced with 700 µl DMEM-2 plus 75 µl of five different 

dilutions of test compounds in DMEM (or 75 µl DMEM for control wells).  After exposure to 

the compound for 1 h cells were infected with approximately 60 pfu.well-1 FCV F9 in 25 µl 

DMEM.  Virus was allowed to adsorb for 90 min with plates rocked every 15 min to ensure an 

even distribution of inoculum.  After 90 min culture media was discarded and cells overlaid 

with 2 ml 0.9% CMC plaque assay overlay media containing the same concentration of 

compound as present prior to, and during infection.  Incubation, fixation, staining, and 

counting of plaques was as previously described in Section 2.3.2.3.1.  The relative plaque 

number was calculated for each treatment with the value of untreated control defined as 
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100%.  Each treatment was performed in duplicate, and the results represent Mean ± SE of 

three independent experiments. 

6.3.4. Antiviral efficacy against field isolates of FCV 

Given the known genetic variability of FCV and the unknown passage history of the tested 

FCV F9 strain we sought to determine whether compounds identified as effective against 

FCV F9 were also efficacious against currently circulating field isolates.  Using the optimised 

FCV CPE inhibition assay (Figure 3.18) cells were pre-treated with identified candidate 

compounds for 1 h prior to infection with FCV isolates 83E, 131M, 178N, IW1E, IW10, IW16, 

IW25, or F9.  Details of these viruses have been previously reported in Table 2.1.  Untreated 

cells were also infected with the different isolates as virus controls and uninfected and 

untreated cells included as positive controls.  Each treatment was performed in triplicate 

wells for each virus, and repeated in three independent experiments.  Percentage inhibition 

of virus induced CPE was calculated using the following formula: 

𝐶𝐶𝐶 𝑐𝑐ℎ𝑐𝑣𝑐𝑐𝑐𝑐𝑐 (%) =
𝑅𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑅𝑉(+)

𝑅𝑅𝑅𝑉(−) − 𝑅𝑅𝑅𝑉(+)
 × 100 

Where RFUTx is the mean fluorescence intensity of treated cells infected with a specific FCV 

isolate; RFUV(+) is the mean fluorescence intensity in untreated cells infected with the same 

isolate; and RFUV(-) is the average fluorescence intensity of untreated uninfected cells.  Data 

expressed as Mean ± SE. 

To further investigate the antiviral efficacy against different isolates a concentration-response 

study was conducted using field isolates 178N and IW1E.  The concentration-response 

experiment was conducted as detailed in Section 6.3.2 with the exception that cells were 

infected with field isolates.  Each treatment was performed in triplicate and results represent 

Mean ± SE of three independent experiments.  Calculation of IC50, CC50, and SI values was 

performed as described in Section 4.3.4. 

6.3.5. Combination treatment with mefloquine and rFeINF-ω 

Recombinant feline interferon omega is currently registered for the treatment of feline 

calicivirus infections.  Using the optimised FCV CPE inhibition assay (Figure 3.18) cells were 

pre-treated with varying combinations of rFeINF-ω and mefloquine at concentrations from 0 

to 1000 units.ml-1 and 0 to 12 μM respectively prior to infection with FCV F9 at MOI 0.01.  

Each treatment was performed in triplicate and repeated in three independent experiments 

with data presented as Mean ± SE.  IC50 values were calculated as described in Section 

4.3.4. 
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6.4. RESULTS 

6.4.1. Antiviral screening using CPE inhibition assay 

Mefloquine, at a concentration of 10 μM, was the only compound of the nineteen tested that 

demonstrated marked inhibition (88.6%) of virus induced CPE (Figure 6.1).  All other 

compounds demonstrated a limited, or no inhibitory effect on CPE.  Included among these 

are four compounds – ribavirin, lactoferrin, chloroquine, and rFeINF-ω – that had previously 

demonstrated in vitro efficacy against FCV (Kreutz and Seal, 1995; McCann et al., 2003; 

Povey, 1978b; Truyen et al., 2002). 
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Figure 6.1: Results of FCV antiviral screening experiment.  Cells were pre-treated with various compounds for 1 h prior to infection with FCV F9 at 

MOI 0.01.  Antiviral efficacy was determined 48 hpi using the resazurin-based CPE inhibition assay.  A concurrent cytotoxicity screen was 

performed using the same protocol with the exception that cells were mock infected.  Each treatment was performed in triplicate and repeated in 

three independent experiments.  Results represent Mean ± SE. ATA, aurintricarboxylic acid; HMA, hexamethylene amiloride. Red dotted line = 

75% inhibition of CPE.  

C
hl

or
oq

ui
ne

Q
ue

rc
et

in

C
ur

cu
m

in

R
ut

in

In
do

m
et

ha
ci

n

G
ly

cy
rr

hi
zi

c 
ac

id

H
es

pe
rid

in

A
TA

H
es

pe
re

tin

M
ef

lo
qu

in
e

A
rt

es
un

at
e

R
ib

av
iri

n

B
ai

ca
lin

H
M

A

C
in

an
se

rin

A
rt

em
is

in
in

N
ic

lo
sa

m
id

e

La
ct

of
er

rin ω
In

te
rf

er
on

 

0

50

100

C
PE

 in
hi

bi
tio

n 
(%

)

0

50

100

Vi
ab

ili
ty

 (%
)



 

205 

6.4.2. Titration of candidate compounds and determination of selectivity index 

To confirm and further characterise the antiviral properties of compounds identified during 

initial screening, a concentration-response study was conducted with mefloquine.  A repeat 

cytotoxicity screen was also performed to allow calculation of the selectivity index under 

identical conditions.  The inhibition of CPE demonstrated a clear concentration-response 

relationship, with almost complete inhibition at the highest tested concentrations reducing to 

zero inhibition at lowest tested concentration (Figure 6.2).  Calculated IC50, CC50, and SI 

values are shown in Figure 6.2. 

 

Figure 6.2: Titration of mefloquine against FCV using the resazurin-based CPE inhibition 

assay.  Cells were pre-treated with serial dilutions of mefloquine for 1 h prior to infection with 

FCV F9 at MOI 0.01.  Antiviral efficacy was determined 48 hpi using the resazurin-based 

CPE inhibition assay.  A concurrent cytotoxicity screen was performed using the same 

protocol with the exception that cells were mock infected.  Each treatment was performed in 

triplicate and repeated in three independent experiments.  Results represent Mean ± SE.  

Calculated IC50, CC50, and SI values are shown in the accompanying table.  

6.4.3. Confirmatory assays 

6.4.3.1. Virus yield reduction assay 

Virus yield reduction assays confirmed that CPE inhibition identified using the resazurin-

based screening assay was associated with a marked reduction in extracellular viral titre.  

Extracellular viral titres at 12 and 24 hpi demonstrated a concentration-response relationship 

(Figure 6.3). At high concentrations reductions in viral titre at 24 hpi was greater than 3 log10, 

while at 12 hpi this reduction was reduced to between 1-2 log10. Calculated IC50 and SI 

values for at 12 and 24 hpi are shown in Figure 6.3. 
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Figure 6.3: Virus yield reduction assay for mefloquine against FCV. Cells were pre-treated 

with various dilutions of mefloquine for 1 h prior to infection with FCV F9 at MOI 0.05.  

Extracellular virus titre was calculated at 12 (blue circles) and 24 hpi (red squares) with a 

TCID50 end point assay.  Titre of untreated control is defined as 100%.  Each treatment was 

performed in triplicate and repeated in two independent experiments. Data represent Mean ± 

SE.  Calculated IC50 and SI values for each time point are shown in the accompanying table.  

6.4.3.2. Plaque reduction assay  

Plaque reduction assays confirmed the findings of the resazurin-based CPE inhibition assay.  

Pre-treatment with mefloquine resulted in a concentration-dependent reduction in plaque 

number (Figure 6.4).  Plaque size and morphology varied considerably in both treated and 

untreated cells, however in general plaque size was smaller and plaque morphology more 

consistent in wells treated with higher concentrations of mefloquine.  Calculated IC50 and SI 

values are shown in Figure 6.4. 
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Figure 6.4: Plaque reduction assay for mefloquine against FCV.  Cells were pre-treated with 

various concentration mefloquine for 1 h prior to infection with approximately 60 pfu.well-1 

FCV F9.  Virus was allowed to adsorb for 90 min and the cells overlaid with culture media 

containing 0.9% CMC and an equivalent concentration of test compound.  Cells were fixed 

and stained 36 hpi.  Each treatment was performed in duplicate and repeated in three 

independent experiments.  Panel (a) shows a representative plate demonstrating in the 

concentration-dependent inhibition of plaque formation and the variation in plaque 

size/morphology.  Panel (b) shows relative plaque number for mefloquine treated wells 

compared to untreated control wells. Results represent Mean ± SE. Plaque number of 

untreated wells defined as 100%.  Calculated IC50 and SI values are shown in the 

accompanying table.  
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6.4.4. Antiviral efficacy against field isolates 

To assess the potential usefulness of mefloquine in a clinical setting an experiment was 

conducted to determine its antiviral efficacy against a panel of recent field isolates.  

Mefloquine demonstrated greater than 90% inhibition of virus induced CPE against all tested 

isolates at a concentration of 12.5 μM (Figure 6.5). 

 

Figure 6.5: Antiviral efficacy of mefloquine against recent Australian field isolates of FCV.  

Cells were pre-treated with 12.5 μM mefloquine for 1 h prior to infection at MOI 0.01.  

Antiviral efficacy was determined 48 hpi using the resazurin-based CPE inhibition assay.  

Each treatment was performed in triplicate and repeated in three independent experiments.  

Results represent Mean ± SE.  

To assess any quantitative difference in the efficacy of mefloquine against different field 

isolates a concentration-response experiment was conducted using two field isolates, IW1E 

and 178N.  Mefloquine demonstrated concentration-dependent inhibition of both isolates, 

with similar shaped dose-response curves and IC50 values (Figure 6.6).  Calculated IC50 

and SI values for these isolates, in addition to the previously calculated values for FCV F9 

are shown in Figure 6.6.  These data confirm that mefloquine was more potent against field 

isolates than the reference strain, with IC50 values for the field isolates less than half of that 

for FCV F9.  
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Figure 6.6: Antiviral titration of mefloquine against Australian field isolates of FCV.  Cells 

were pre-treated with serial dilutions of mefloquine for 1 h prior to infection with FCV isolate 

178N or IW1E at MOI 0.01.  Antiviral efficacy was determined 48 hpi using the resazurin-

based CPE inhibition assay.  Each treatment was performed in triplicate and repeated in 

three independent experiments.  Results represent Mean ± SE.  Results of previous titration 

of mefloquine against FCV F9 and cytotoxicity screening reported in Section 6.4.2 are 

included for comparison.  

6.4.5. Combination treatment with mefloquine and rFeINF-ω 

As shown in Figure 6.7, rFeINF-ω exerted concentration-dependent additive antiviral effects 

in vitro when combined with mefloquine.  Increasing the rFeINF-ω concentration from 0 to 

500 units.ml-1 resulted in a shift of the concentration-response curve to the left with a 

corresponding decrease in the calculated IC50 value.  The additive effect of rFeINF-ω on the 

antiviral efficacy of mefloquine appeared to peak at 500 units.ml-1 as increasing the 

concentration above this was not associated with a reduction in the IC50 value. 
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Figure 6.7: Effect of combination treatment with mefloquine and rFeINF-ω against FCV F9.  

Cells were pre-treated with varying combinations of rFeINF-ω and mefloquine prior to 

infection with FCV F9 at MOI 0.01.  Antiviral efficacy was determined 48 hpi using the 

resazurin-based CPE inhibition assay.  Each treatment was performed in triplicate and 

repeated in three independent experiments.  Results represent Mean ± SE.  IC50 values for 

mefloquine were calculated for each rFeINF-ω concentration.  

6.5. DISCUSSION 

In this study we have demonstrated a marked inhibitory effect of mefloquine on the 

replication and associated cytopathic effects of FCV in cell culture.  Initial screening and 

confirmatory assays were performed with the culture adapted vaccine strain F9; however 

subsequent testing against a panel of seven currently circulating Australian field isolates 

demonstrated the antiviral efficacy remained excellent against potentially more relevant 

viruses, with concentration-response studies confirming that mefloquine is a more potent 

inhibitor of field isolates than the vaccine strain.  Combination treatment with rFeINF-ω 

resulted in additive effects with a reduction in the IC50 value for mefloquine.  These data 

provide important preliminary information into the use of mefloquine as an antiviral 

therapeutic for the treatment of FCV-associated diseases. 

In this study the panel of nineteen compounds previously screened for inhibitory effects 

against FCoV (Table 4.1) were tested for antiviral efficacy against FCV.  Given the 

essentially infinite nature of the small molecule chemical space, as well as practical and 
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financial considerations relating to testing large numbers of compounds, a rational approach 

to compound selection was used to define this panel to increase the likelihood of identifying 

effective molecules.  Criteria for selection were based on previously documented antiviral 

efficacy against RNA viruses, with the panel including several compounds that had 

previously demonstrated in vitro antiviral effects against FCV.  Unlike compound selection for 

FCoV, which has benefited from many years of successful research into antiviral therapy for 

human coronaviruses (particularly SARS-CoV), the field of calicivirus antiviral research is 

extremely limited, and did not provide a similar large pool of potential candidates.  Therefore 

the finding that only a single compound from this panel, mefloquine, demonstrated marked 

inhibition of virus induced CPE during the screening study, compared to the three highly 

effective compounds identified for FCoV in Chapter 4, is not surprising given the compound 

panel tested was enriched for potentially effective anti-FCoV antivirals. 

The marked inhibitory effect of mefloquine demonstrated in the CPE inhibition assay was 

confirmed with orthogonal testing using virus yield reduction and plaque reduction assays.  

As was shown for FCoV in Chapter 4, the IC50 value calculated using the virus yield 

reduction assay was significantly lower than that calculated with the CPE inhibition assay.  

Although the virus yield reduction assay therefore appears more sensitive, its use in 

screening, particularly involving large numbers of compounds, is limited due to practical 

difficulties of performing the assay on a large scale. 

Initial screening and the orthogonal confirmatory assays were performed with FCV F9, a well 

characterised strain originally isolated in 1958 (Glenn et al., 1999).  FCV F9 was chosen for 

screening purposes due to its well characterised in vitro growth properties, however it is 

unclear whether FCV F9 used in the current study is representative of currently circulating 

viruses, due to natural viral evolution of circulating field viruses over the last half century 

(including evolution in the face of vaccination with F9 based vaccines), and perhaps more 

importantly, in light of the unknown passage history of our particular F9 strain.  Cell culture 

adaptation, as can occur with high passage levels, may significantly alter the biological 

properties of a virus.  It is therefore possible that results obtained against FCV F9 may not be 

representative of efficacy against circulating strains, particularly given the known genetic 

heterogeneity of FCV (Coyne et al., 2012) .  To overcome this limitation and to ascertain the 

likely spectrum of coverage and potency against field isolates, additional antiviral screening 

was performed against a panel of seven recent FCV isolates from Australia.  Such a study 

provides important information as it is well recognised that antiviral efficacy can vary against 

different circulating strains.  Variation can arise rapidly due to viral evolution in response to 

selection pressures imposed by the use of an antiviral drug in a population, however 

variation in sensitivity may also pre-exist in a treatment naive population.  This was 

demonstrated, for example, in a study by Ferraris et al. (2005) which showed significant 
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variability in the sensitivity of influenza A viruses to the neuraminidase inhibitors zanamivir 

and oseltamivir, even in viruses isolated prior to the widespread use of these drugs.  In 

contrast, in the current study all tested FCV isolates were susceptible to the inhibitory effects 

of mefloquine based on the CPE inhibition assay.  A concentration-response study 

demonstrated a greater than two-fold increase in potency against the field isolates compared 

to the reference virus FCV F9.  Although further studies are required to determine whether 

this is a general feature of field isolates, or whether unique to the two tested isolates, it does 

highlight that consideration must be given to the viral strain used for screening. 

Combination antiviral therapy offers several potential theoretical benefits over monotherapy 

including a more rapid and complete inhibition of replication, a reduction in the likelihood of 

viral escape, and may also potentially allow a reduction in the dose of individual drugs, and 

thereby minimise adverse effects.  Combination therapy is not without risk however, and 

therefore combination therapy should be tested to investigate the potential for antagonism 

between the agents and overlapping toxicities.  The use of combination antiviral therapy is 

common practice in significant human viral infections such as HIV and HCV (Feld and 

Hoofnagle, 2005; Shafer and Vuitton, 1999).  For HCV, combination therapy of ribavirin, a 

direct acting antiviral, and interferon has for a long time been the standard of care, and has 

demonstrated good clinical success (Feld and Hoofnagle, 2005).  As rFeINF-ω is an 

approved therapeutic in cats we sought to investigate its use in combination with mefloquine.  

Interferon monotherapy has previously demonstrated small antiviral effects against FCV in 

vitro with Mochizuki et al. (1994) reporting a reduction in extracellular viral titre of 0.2 log10 

when CRFK cells were pre-treated for 24 h with 100 units.ml-1 rFeINF-ω, while Truyen et al. 

(2002) demonstrated a 0.1 log10 reduction in titre when cells were treated with 5 x 104 

units.ml-1 at 1 hpi.  In vivo efficacy has also been reported in experimental and field studies of 

FCV (Ninomiya et al. 1991, Uchino et al. 1991, cited in Ohe et al. (2008)).  At the 

concentration used in the current study however, monotherapy with rFeINF-ω provided 

limited protection from CPE.  Combination therapy with rFeINF-ω and mefloquine 

demonstrated additive effects, with increasing concentrations of interferon resulting in a 

reduction in the IC50 of mefloquine.  This combination may prove a useful therapeutic option 

for FCV infections, particularly if it allows a reduction in the dose of mefloquine. 

The results of this study further expand the known antiviral spectrum of mefloquine.  Efficacy 

against HIV and JC virus has been previously reported (Brickelmaier et al., 2009; Owen et 

al., 2005) and from the previous work in this thesis (Chapter 4) we demonstrated efficacy 

against FCoV.  The mechanism of action of mefloquine against this diverse group of viruses 

is not known, nor is it clear whether antiviral efficacy against these viruses is due to a 

common broad spectrum mechanism of action.  Investigations into the likely mechanism of 

action of mefloquine against FCV were not conducted in the current study.  Given the 
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documented effects of mefloquine on endocytosis, and the morphological changes 

suggestive of alterations in these pathways in CRFK cells previously reported in Section 

4.4.4, it is tempting to speculate that the antiviral effects against FCV may arise through 

perturbation of these pathways.  Cellular entry of FCV occurs via receptor mediated 

endocytosis following binding to the cellular receptor fJAM-A (Stuart and Brown, 2006).  

Treatment with known inhibitors of different steps of viral entry, including inhibitors of 

endocytosis, revealed FCV entry involves clathrin coated pits and that endosome 

acidification was required for infection, in agreement with a previous report by Kreutz and 

Seal (1995) that showed that chloroquine inhibited viral replication.  As previously mentioned, 

under the assay conditions of the current study chloroquine provided no protection against 

virus induced CPE, suggesting that if viral inhibition was arising though the lysosomotropic 

effects of mefloquine (Glaumann et al., 1992), this effect is considerably more potent for 

mefloquine than for chloroquine.  Alternatively, a mechanism unrelated to its accumulation in 

lysosomes, such as an action as an adenosine analogue as hypothesised for JC virus 

(Brickelmaier et al., 2009), may account for the observed antiviral effects. 

As considered in Section 4.5.2, although mefloquine is a human approved pharmaceutical 

with a significant body of literature regarding its pharmacokinetics and safety, its use in cats 

has not been reported.  It is well recognised that due to deficiencies in a number of drug 

metabolism pathways, the pharmacokinetics of certain drugs in cats can be quite different to 

those of other species, a fact which should be borne in mind when extrapolating human 

pharmacokinetic data to this species (Court, 2013).  The IC50 value calculated for the field 

isolates, based on inhibition of CPE, was approximately 3 μM which is lower than plasma 

concentrations of mefloquine reported in human studies (4 to 23 μM depending on dosing 

regimens) (Kollaritsch et al., 2000; Simpson et al., 1999).  Thus, extrapolating from the 

available data, it would appear that it may be possible to achieve in vivo concentrations of 

mefloquine within the therapeutic range. 

In addition to the marked inhibitory effect of mefloquine, three additional compounds, 

lactoferrin, rFeINF-ω, and hexamethylene amiloride demonstrated small reductions in CPE 

(24.4%, 13.6% and 13.2% respectively) during screening.  The antiviral effect of these 

compounds as monotherapies was not further investigated in this study. 

The in vitro efficacy of lactoferrin against FCV was previously reported by McCann et al. 

(2003), with a reduction in virus induced CPE reported when cells were exposed to 

concentrations of 1 mg.ml-1 for 1 h concurrent with infection.  A restricted window of exposure 

was used in this study as the authors reported concentrations as low as 0.1 mg.ml-1 resulted 

in significant cytotoxicity when cells were exposed for the entire 24 h duration of the 

experiment.  In contrast, under the conditions of our screening assay, that is continuous 
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exposure for 48 h, significant cytotoxicity was not evident at concentrations below 0.5 

mg.ml-1.  Using this concentration however resulted in limited efficacy in our assay system.  

The therapeutic benefit of topical lactoferrin for FCGS associated with FCV has been 

reported in a single case report, where topical treatment (200 mg sprinkled directly onto oral 

lesions), in addition to thalidomide given orally, was associated with a resolution of clinical 

signs and cessation of FCV shedding (Addie et al., 2003a).  Lactoferrin had previously been 

shown to have positive effects on clinical signs in FIV-positive and FIV-negative cats with 

intractable stomatitis, however the calicivirus status of these cats was unknown (Sato et al., 

1996).  In both of these reports it is possible that the therapeutic benefit derived from 

lactoferrin was due to its immunomodulatory properties (Conneely, 2001; Weinberg, 2003), 

with the cessation of calicivirus shedding in the report by Addie et al. (2003a) possibly 

attributable to an enhanced immune response due to lactoferrin rather than specific anti-

calicivirus effects.  Regardless of the cause, the results from the current study, in addition to 

the possibility that significantly higher concentrations of lactoferrin can be achieved with 

topical therapy without any apparent ill effects, do not exclude a potential therapeutic role for 

lactoferrin in treating FCV-positive FCGS. 

Similar to lactoferrin, topical use of interferon has been proposed as a treatment for FCGS.  

In a study by Hennet et al. (2011) daily oromucosal treatment with 1 x 105 units rFeINF-ω 

has been shown to improve clinical lesions and reduce pain scores, however its effect on 

calicivirus shedding was not studied, and again the clinical improvement seen may have 

been due immunomodulatory rather than antiviral effects.  Despite the limited antiviral 

efficacy of rFeINF-ω demonstrated in the current study, given that high local concentrations 

are attainable with topical therapy, and the pleiotropic effects of interferons, rFeINF-ω may 

be a useful therapeutic option for FCGS associated with FCV. 

Amiloride, and its more potent derivative 5-(N-Ethyl-N-isopropyl) amiloride have also 

demonstrated inhibitory effects on FCV (Stuart and Brown, 2006), however in this study 

hexamethylene amiloride did not provide any protection against CPE.  As discussed 

previously, this may be due to the different assay conditions or testing at sub-therapeutic 

concentrations, or it may be due to differential antiviral effects of amiloride derivatives as has 

been previously described (Wilson et al., 2006b). 

The lack of effect of two of the other tested compounds is worth mentioning.  In studies to 

elucidate the mechanism of FCV entry, chloroquine has previously been shown to inhibit viral 

replication based on reduction in extracellular viral titres and viral protein expression when 

present at the time of infection (Kreutz and Seal, 1995; Stuart and Brown, 2006).  In the 

study by Kreutz and Seal (1995) pre-treatment with 25 μM chloroquine, the same 

concentration used in the current screening assay, resulted in a 50% reduction in 
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extracellular virus titres determined 8 hpi.  It is not therefore surprising that chloroquine 

demonstrated no protective effect against CPE in the screening assay, given that the CPE 

inhibition assays appear less sensitive to small antiviral effects and that the infection period 

of the current study was six times longer than that previously tested.  Finally, ribavirin 

demonstrated no inhibitory on FCV, contrary to previous reports (Povey, 1978b), however 

similar to the lack of efficacy reported against FCoV in Chapter 4, this was most likely due to 

screening at a sub-therapeutic concentration. 

In conclusion this study has identified mefloquine as a potent inhibitor of FCV in vitro when 

present at low micromolar concentrations.  This represents the first report of the antiviral 

activity of mefloquine against a calicivirus.  Testing against a panel of recent Australian FCV 

isolates demonstrated the antiviral effects of mefloquine against the reference strain FCV F9 

extend to more clinically relevant isolates, and there was no evidence of antagonism when 

used concurrently with rFeINF-ω.  Based on these results further investigation is warranted 

into the therapeutic use of mefloquine for treating the more serious manifestations of FCV 

infection.  Consideration should also be given to investigating the effectiveness of mefloquine 

against other members of the family Caliciviridae. 
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7 
7 In vitro inhibition of feline calicivirus 

using RNA interference 

7.1. ABSTRACT 

Feline calicivirus is a common infection of domestic cats.  In most cases infections are mild 

and self-limiting; however the recent identification of a severe systemic form of the disease, 

associated with a high mortality rate, has highlighted the lack of effective treatments for feline 

calicivirus related diseases. In this study, a panel of eight siRNAs were designed targeting 

four conserved regions of the feline calicivirus genome.  siRNAs were screened for in vitro 

antiviral efficacy against FCV F9 by determination of extracellular virus titres and 

morphological assessment of protection from cytopathic effect.  Three of the tested siRNA 

(FCV3.7, FCV4.1, and FCV4.2) demonstrated a marked antiviral effect with a greater than 

99% reduction in extracellular viral titre.  Titration of these effective siRNAs demonstrated a 

clear concentration-response relationship, with IC50 values of approximately 1 nM, and 

combination treatment with multiple siRNAs demonstrated additive or synergistic effects.  To 

assess the likely usefulness of the compounds in a clinical setting, siRNAs were screened 

against a panel of six recent Australian FCV isolates.  The siRNAs shown to be effective 

against the reference strain FCV F9 were broadly active against the majority of the isolates 

tested, although some variability was noted.  Taken together these results suggest that an 

RNAi-based approach may be a useful therapeutic option for treating severe FCV-associated 

disease in cats. 

7.2. INTRODUCTION 

Feline calicivirus is a highly prevalent pathogen in domestic cats.  As a Baltimore group IV 

virus, replication of feline calicivirus is dependent upon a virally encoded RNA dependent 

RNA polymerase (RdRp).  Due to the poor replicative fidelity of this enzyme, FCV is a 

genetically diverse virus.  One consequence of this genetic variation is the existence of viral 

biotypes that differ in the nature and the severity of the disease they induce.  Many FCV 

infections are mild and self-limiting, or result in no overt signs of disease, however more 

severe, and sometimes fatal manifestations do occur.  The most notable of these, referred to 
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as FCV-associated virulent systemic disease (FCV-VSD), was first reported in 2000 in the 

United States (Pedersen et al., 2000), although descriptions of sporadic cases of severe 

multisystemic calicivirus disease pre-date this report (Ellis, 1981; Love and Baker, 1972).  

The role of FCV in the pathogenesis of VSD is unquestioned given the condition can be 

experimentally recreated with viruses isolated from infected cats (Pedersen et al., 2000).  

Subsequent to the initial report, FCV-VSD outbreaks have now been seen in many countries 

with mortality rates in excess of 50% reported (Hurley et al., 2004; Pedersen et al., 2000; 

Radford and Gaskell, 2011; Reynolds et al., 2009; Schorr-Evans et al., 2003; Schulz et al., 

2011).  The current generation of calicivirus vaccines appears to offer minimal protection 

against FCV-VSD (Coyne et al., 2006b; Reynolds et al., 2009; Schulz et al., 2011).  A newer 

inactivated vaccine containing a VSD-FCV isolate from the original outbreak has been 

developed, and its use in a dual strain preparation been shown to result in broader cross 

neutralisation against non-VSD and VSD-associated FCV isolates and protection against 

homologous challenge (Huang et al., 2010).  Given that hypervirulent FCV strains associated 

with each VSD outbreak are thought to have arisen independently from a unique local 

circulating isolate (Coyne et al., 2006b; Schulz et al., 2011), it is questionable whether this 

vaccine, or any other, will provide protection against all VSD isolates, highlighting the need 

for a safe and efficacious feline calicivirus antiviral.  Currently, treatment for cats with VSD, or 

for that matter any FCV-associated disease, is symptomatic, with no direct acting antiviral 

drugs commercially available.  A novel oligonucleotide based approach using 

phosphorodiamidate morpholino oligomers (PMOs) was investigated in a series of field 

outbreaks of VSD-FCV (Smith et al., 2008).  Using a PMO targeting the 5’ UTR of FCV, a 

highly conserved region of the genome, 47 of 59 treated cats survived, in comparison to only 

3 of 31 of the untreated controls.  These data illustrate the benefits of timely administration of 

effective antivirals in treating severe calicivirus disease.  

Another serious disease manifestation that may be associated with chronic feline calicivirus 

infection is feline chronic gingivostomatitis syndrome (FCGS).  In contrast to VSD, the link 

between FCV and FCGS is less clear.  Numerous studies have shown a higher prevalence 

of chronic FCV infections in cats with FCGS than matched controls (Dowers et al., 2010; 

Knowles et al., 1989; Thompson et al., 1984) however, whilst acute gingivitis/stomatitis has 

been reported following experimental infection with FCV isolates, it has not been possible to 

recreate FCGS-like chronic disease experimentally (Knowles et al., 1991; Reubel et al., 

1992).  A role for FCV, either as primary cause or perpetuating factor, in the 

aetiopathogenesis of FCGS is supported by immunophenotyping of lesions suggesting a viral 

aetiology based on a preponderance of CD8+ over CD4+ lymphocytes (Harley et al., 2011).  

Considering the likely link between FCV and FCGS, it is possible that an effective FCV 

antiviral could provide a useful therapeutic option for this difficult to treat condition.  Further, 
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an effective antiviral may also help to unravel the role of FCV in the pathogenesis of this 

condition. 

As discussed in Chapter 5, harnessing the RNAi pathway as a therapeutic antiviral approach 

has garnered significant interest since the first description of the mechanism by Fire et al. 

(1998).  The efficacy of this approach has been demonstrated against numerous viruses, 

including the caliciviruses Tulane virus (Fan et al., 2013), RHDV (Ghareeb, 2008), and FCV 

(Rohayem et al., 2010; Taharaguchi et al., 2012).  In this chapter we investigate the 

effectiveness of synthetic siRNA mediated RNAi in inhibiting FCV in vitro.  The results 

presented herewith provide important information regarding the potential therapeutic 

application of RNAi for treating FCV-associated diseases. 

7.3. MATERIALS AND METHODS 

7.3.1. siRNA design 

FCV specific siRNAs were designed as reported for FCoV (Section 5.3.1).  Briefly, full-length 

FCV genome sequences were extracted from GenBank and aligned using the Geneious 

alignment function of Geneious bioinformatics software (v5.3.6).  Details of sequences are 

shown in Appendix 2.  Conserved regions were visually identified and prospective siRNAs 

targeting these regions designed using Block-iT RNAi designer.  Criteria for final siRNA 

selection were (1) high Block-iT RNAi designer ranking, (2) maximum sequence homology to 

other reported FCV strains, and (3) minimum homology to known feline sequences based on 

a BLAST search.  Deprotected and desalted custom siRNAs were purchased from Sigma-

Aldrich in the lyophilised form.  siRNAs were resuspended in nuclease-free water (Amresco) 

and stored in single use aliquots at -20°C. 

7.3.2. Screening of siRNAs for anti-FCV activity 

An initial screening experiment was conducted to identify siRNAs with an inhibitory effect on 

FCV replication.  siRNAs were reverse transfected (or mock transfected) in 96-well plates 

(Sarstedt) using 100 nM siRNA and 10000 cells.well-1 (Section 2.4.1).  Following the 

transfection period the culture media was replaced with fresh DMEM-10 and cells were 

infected with FCV F9 at MOI 0.05 in 50 μl DMEM.  Cells were incubated at 37°C in 5% CO2 

in air.  Cells were monitored for virus induced CPE using an Olympus CKX41 inverted phase 

contrast microscope at various magnifications and images were acquired using a Moticam 

2300 digital camera (Motic).  Culture media was harvested at 24 hpi and stored at -80°C prior 

to titration of extracellular virus (Section 2.3.2.3.2).  Each treatment was performed in 

triplicate and repeated in three independent experiments.  The relative viral titre was 
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calculated for each treatment with the titre of untreated control cells defined as 100%.  Data 

represents Mean ± SE. 

7.3.3. Efficacy of anti-FCV siRNAs against field isolates of FCV 

siRNA efficacy against different field isolates of FCV was assessed using a modification of 

the resazurin-based CPE inhibition assay (Chapter 3, summarised in Figure 3.18).  Cells 

were reverse transfected with 100 nM siRNA as described in Section 2.4.1 in 96-well plates 

(μClear ®, Greiner Bio-One).  At the conclusion of the transfection period the culture media 

was replaced with 100 μl DMEM-10 and the cells infected at a MOI of 0.05 with different FCV 

field isolates or FCV F9.  Details of the field isolates have been previously described (Table 

2.1).  Untreated infected cells (for each isolate) and untreated mock infected cells were 

included as controls.  Plates were incubated at 37°C in 5% CO2 in air for a further 20.5 h 

prior to the addition of 50 µl of a 1:10 dilution of 4 x stock resazurin in DMEM (final in well 

resazurin concentration of 44 µM).  Plates were returned to the incubator for 3 h and read at 

24 hpi using a FLUOstar Omega microplate reader after allowing the culture media to 

equilibrate to room temperature for 30 min.  The percentage inhibition for each siRNA was 

calculated according to the following formula: 

𝐶𝐶𝐶 𝑐𝑐ℎ𝑐𝑣𝑐𝑐𝑐𝑐𝑐 (%) =
𝑅𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑅𝑉(+)

𝑅𝑅𝑅𝑉(−) − 𝑅𝑅𝑅𝑉(+)
 × 100 

Where RFUTx is the mean fluorescence intensity of cells treated and infected with a particular 

FCV isolate; RFUV(+) is the mean fluorescence intensity in untreated cells infected with the 

same FCV isolate; and RFUV(-) is the average fluorescence intensity of untreated uninfected 

cells.  Each treatment was performed in triplicate and repeated in two independent 

experiments.  Data expressed as Mean ± SE. 

7.3.4. Titration of effective anti-FCV siRNAs 

A concentration-response experiment was performed using siRNAs identified as highly 

effective in the screening assay (defined as > 80% reduction in extracellular viral titre).  

Experimental conditions were identical to those of Section 7.3.2 with the exception that 

siRNA concentration was varied from 100 nM to 1 nM in half-log dilutions.  Each treatment 

was performed in triplicate and repeated in three independent experiments.  The relative viral 

titre was calculated for each treatment with the titre of untreated control cells defined as 

100%.  Data expressed as Mean ± SE. 

7.3.5. Combination treatment 

To assess the efficacy of combination treatment CRFK cells were reverse transfected in 96-

well plates (Sarstedt) using single or a combination of multiple anti-FCV siRNAs as described 
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in Section 2.4.1.  The total concentration of siRNA per treatment was held constant at 10 nM, 

meaning for those treatments involving two or three siRNAs the concentration per siRNA was 

5 nM and 3.33 nM respectively.  Following transfection, cells were infected with FCV F9 at 

MOI 0.05 and incubated at 37°C in 5% CO2 in air.  Cells were examined for CPE and cell 

culture media harvested and stored at -80°C for titration of extracellular virus at 24 hpi. Each 

treatment was performed in triplicate and repeated in two independent experiments.  The 

relative viral titre was calculated for each treatment with the titre of untreated control cells 

defined as 100%.  Data expressed as Mean ± SE. 

7.4. RESULTS 

7.4.1. siRNA design 

At the time of siRNA design there were 14 full length FCV sequences (Appendix 2) available 

on GenBank.  Alignment of these sequences revealed four short regions displaying minimal 

sequence variation.  Details of the identified regions are shown in Table 7.1. 

Table 7.1: Details of conserved regions in FCV genome. Position given relative to FCV F9 

(Accession number M86379.1). 

Region Size 
(nt) 

Position* Region encompassed Degree of conservation 
(Matching nucleotides – number 
of sequences) 

1 45 1-45 5’ UTR and proximal ORF1 45/45 for 14 sequences 
 

2 29 2420-2448 ORF1 (p30 non-structural 
protein) 

29/29 for 12 sequences 
28/29 for 2 sequences 
 

3 58 5288-5345 3’ end ORF 1, short UTR, 
and 5’ end ORF2 

58/58 for 11 sequences 
57/58 for 2 sequences 
55/58 for 1 sequence 
 

4 25 7555-7579 ORF3 25/25 for 12 sequences 
24/25 for 2 sequences 
 

 

Two siRNAs were designed targeting each identified region (Figure 7.1 and Table 7.2).  Due 

to the short length of the targeted regions there was considerable overlap between the two 

siRNAs used to target each of regions 1, 2, and 4. With the exception of siRNAs targeting 

region 2, selected siRNAs displayed 100% homology with the published FCV F9 sequence.  

siRNAs FCV2.1 and FCV2.3 contained a single nucleotide mismatch (GA) compared to 

FCV F9 at position 13 and 9 respectively of the sense strand (Table 7.2).  The degree of 
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conservation for each siRNA, at both the time of design and the time of writing, is shown in 

Table 7.3. 

 

 

Figure 7.1: Schematic of FCV genome based on reported sequence of FCV F9 (Accession 

number M86379.1).  The location of siRNAs targeting each of the four identified conserved 

regions are shown with double ended arrows.  
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Table 7.2: Sequence of FCV specific siRNAs and their location within the FCV F9 genome 

(Accession number M86379.1). Adenine (A) marked with asterisk in siRNA FCV2.1 and 2.3 

is a guanine (G) in FCV F9.  Sequence for the non-silencing control siRNA used in these 

studies is shown in Table 5.1. 

siRNA Sequence Position in genome 

FCV 1.1   

 Sense 5’-UGAGACAAUGUCUCAAACUdTdT-3’ 13-31 

 Antisense 5’-AGUUUGAGACAUUGUCUCAdTdT-3’  

FCV 1.3   

 Sense 5’-UGUCUCAAACUCUGAGCUUdTdT-3’ 21-39 

 Antisense 5’-AAGCUCAGAGUUUGAGACAdTdT-3’  

FCV 2.1   

 Sense 5’-ACCCGCCAAUCAA*CAUGUGdTdT-3’ 2425-2443 

 Antisense 5’-CACAUGUUGAUUGGCGGGUdTdT-3’  

FCV 2.3   

 Sense 5’-GCCAAUCAA*CAUGUGGUAAdTdT-3’ 2429-2447 

 Antisense 5’-UUACCACAUGUUGAUUGGCdTdT-3’  

FCV 3.3   

 Sense 5’-GUGUUCGAAGUUUGAGCAUdTdT-3’ 5297-5313 

 Antisense 5’-AUGCUCAAACUUCGAACACdTdT-3’  

FCV 3.7    

 Sense 5’-CCUGCGCUAACGUGCUUAAdTdT-3’ 5324-5342 

 Antisense 5’-UUAAGCACGUUAGCGCAGGdTdT-3’  

FCV 4.1    

 Sense 5’-GGUUGACCCUUACUCAUACdTdT-3’ 7556-7574 

 Antisense 5’-GUAUGAGUAAGGGUCAACCdTdT-3’  

FCV 4.2    

 Sense 5’-GACCCUUACUCAUACACAAdTdT-3’ 7560-7578 

 Antisense 5’-UUGUGUAUGAGUAAGGGUCdTdT-3’  
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Table 7.3: Degree of conservation of FCV siRNA target sites.  Reported sequences were 

accessed in July 2011 and February 2014 from GenBank.  Data shows the number of 

published sequences showing different degrees of target site homology.  

Target region Target Degree of conservation 
(accessed Jul 2011):  
Matching nucleotides – number 
of sequences 

Degree of conservation 
(accessed Feb 2014):  
Matching nucleotides – number 
of sequences 

5’ UTR and proximal 
ORF1 

FCV1.1 19/19 – 14 19/19 – 28 
 

 FCV1.3 19/19 –14 19/19 – 28 
 

ORF1 (p30 non-
structural protein) 

FCV2.1 19/19 – 12 
18/19 – 2 

19/19 – 26 
18/19 – 2 
 

 FCV2.3 19/19 – 12 
18/19 – 2 

19/19 – 26 
18/19 – 2 
 

3’ end ORF 1, short 
UTR, and 5’ end 
ORF2 

FCV3.3 19/19 – 13 
16/19 – 1 

19/19 – 27 
16/19 – 1  
 

 FCV3.7 19/19 – 13 
18/19 – 1 

19/19 – 27 
18/19 – 1 
 

ORF3 FCV4.1 19/19 – 12 
18/19 – 2 

19/19 – 25 
18/19 – 3 
 

 FCV4.2 19/19 – 13 
18/19 – 1 

19/19 – 26 
18/19 – 2 
 

 

7.4.2. Effect of siRNAs on FCV replication 

Based on extracellular viral titres, three of the tested siRNAs, FCV3.7, FCV4.1, and FCV4.2 

had a marked inhibitory effect on FCV replication in cell culture (Figure 7.2).  For these highly 

efficacious siRNAs the extracellular viral titres were reduced greater than 99%, from a mean 

titre of 1.7 x 107 TCID50.ml-1 in untreated wells to 3.93 x 104 TCID50.ml-1 (FCV3.7), 1.13 x 

105 TCID50.ml-1 (FCV4.1), and 4.00 x 104 TCID50.ml-1 (FCV4.2) in wells pre-treated with 100 

nM siRNA.  siRNAs FCV2.1 and FCV2.3 also demonstrated a mild inhibitory effect with a 

reduction in extracellular viral titre of 71.5% and 40.4% respectively.   

Phase contrast microscopy confirmed that cell monolayers pre-treated with siRNAs FCV3.7, 

FCV4.1, or FCV4.2 were largely protected from CPE, with only occasional scattered small 

areas of rounded up cells (Figure 7.3).  In contrast untreated infected wells, and wells pre-
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treated with other siRNAs displayed complete destruction of the cell monolayer with rounding 

up and detachment of cells.  This included monolayers pre-treated with siRNAs FCV2.1 and 

FCV2.3, which despite demonstrating some inhibition of viral replication based on 

extracellular viral titres, showed marked CPE and were morphologically indistinguishable 

from untreated infected wells. 

 

Figure 7.2: Results of FCV siRNA screening experiment.  Cells were transfected with 100 

nM siRNA (or mock transfected) prior to infection with FCV F9 at MOI 0.05.  Extracellular 

viral titres were determined by TCID50 infectivity assay.  Value of the untreated control 

sample (No Tx) is defined as 100%.  Each treatment was performed in triplicate.  Values are 

expressed as Mean ± SE from three independent experiments.  No Tx, untreated control 

cells; NSC, non-silencing control siRNA.  
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Figure 7.3: Representative phase contrast micrographs showing the effect of siRNAs on 

virus induced CPE.  Cells were transfected with 100 nM siRNA (or mock transfected) prior to 

infection with FCV F9 at MOI 0.05.  (a) untreated and uninfected control cells (b) untreated 

and infected control cells, and infected cells pre-treated with (c) FCV3.7, (d) FCV4.1, (e) 

FCV4.2, and (f) FCV2.1.  Images taken at 100 x magnification.  
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7.4.3. Efficacy of anti-FCV siRNAs against field isolates of FCV 

The eight candidate siRNAs were tested at a fixed concentration against six different FCV 

field isolates (IW1E, IW10, IW16, IW25, 131M, and 178N) in addition to the vaccine strain 

F9.  The field isolates were taken from cats with diverse clinical manifestations and from two 

geographically distinct regions, and thus represent an unbiased, albeit small, sample of 

circulating viruses (Table 2.1).  

Using the CPE inhibition assay, the efficacy of the siRNAs against various field isolates was 

broadly reflective of the results obtained against the reference strain FCV F9 as determined 

by titration of extracellular virus titres and detailed in Section 7.4.2.  The three previously 

identified effective siRNAs displayed a range of efficacy against the field isolates tested.  

siRNA FCV3.7 was highly efficacious against all isolates with cell viability greater than 70% 

for all tested strains (Figure 7.4).  siRNAs FCV4.1 and FCV4.2 were more variable in their 

inhibitory effect, although both resulted in greater than 50% inhibition in five or three of six 

tested isolates, respectively.  Of particular interest is isolate IW10 which appeared partially 

resistant to the antiviral effects of siRNA FCV4.1 and completely resistant to FCV4.2.  That a 

single strain displayed resistance to both siRNA FCV4.1 and 4.2 is not surprising given their 

overlapping target sites are shifted by only four nucleotides.  Also of interest were the results 

obtained with siRNAs FCV2.1 and FCV2.3 against field isolates.  Based on the published 

sequence of FCV F9 there was a single nucleotide mismatch (GA) in the sense strand of 

FCV2.1 and FCV2.3.  For FCV2.3 there was some inhibition of CPE for all field strains 

tested, with cell viability ranging from 13.7% (IW1E) to 35.6% (131M) compared with no 

effect on F9, which is in agreement with the morphological assessment for this siRNA in the 

screening study.  For FCV2.1 significant CPE inhibition was only demonstrated against a 

single field isolate (131M) with a cell viability of 27.6%. 
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Figure 7.4: Efficacy of siRNAs on field isolates of FCV.  Cells were pre-treated with 100 nM 

siRNA prior to infection with FCV isolates at MOI 0.05.  Cell viability was determined 24 hpi 

using a resazurin-based CPE inhibition assay.  Each treatment was performed in triplicate 

and data represent Mean ± SE from duplicate experiments.  
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7.4.4. Titration of effective siRNAs 

Titration of siRNAs from 100 nM to 1 nM demonstrated a clear concentration-response 

relationship for the three effective siRNAs identified in the screening experiment.  Reductions 

in extracellular viral titres at 100 nM were 99.0%, 99.0%, and 99.7% for siRNAs FCV3.7, 

FCV4.1 and FCV4.2 respectively, decreasing to 64.7%, 56.8%, and 46.3% at 1 nM, as 

shown in Figure 7.5. 

7.4.5. Combination treatment 

Treatment with two or three siRNAs demonstrated additive or synergistic interactions, with no 

evidence of antagonistic effects noted at the concentrations tested (Figure 7.6).  Treatment 

with single siRNAs at 10 nM resulted in 97.5%, 96.9%, and 98.1% inhibition for siRNAs 

FCV3.7, FCV4.1, and FCV4.2 respectively.  Dual treatment with two siRNAs at 5 nM (10 nM 

total) resulted in inhibition of 99.0% (FCV3.7 and 4.1), 98.7% (FCV3.7 and 4.2), and 97.6% 

(FCV4.1 and 4.2).  Combination treatment with three siRNAs (FCV3.7, 4.1, and 4.2) at 3.33 

nM (10 nM total) resulted in inhibition of 98.7%.  Morphological assessment of pre-treated 

cells confirmed the reduction in extracellular viral titre was associated with significant 

protection from virus induced CPE. 
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Figure 7.5: Concentration-dependent inhibition of FCV replication by siRNAs (a) FCV3.7, (b) 

FCV4.1, and (c) FCV4.2.  Cells were reverse transfected with siRNAs at concentrations from 

100 nM to 1 nM in half-log dilutions prior to infection with FCV F9 at MOI 0.05.  Value of the 

untreated control sample (concentration 0 nM) is defined as 100%.  Values are expressed as 

Mean ±SE from three independent experiments.  
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Figure 7.6: Effect of combination siRNA treatment on FCV replication.  Cells were pre-

treated with 10 nM of a single siRNA or a combination of two or three siRNAs (total 

concentration 10 nM) prior to infection with FCV F9 MOI 0.05.  Extracellular virus was 

quantified with a TCID50 infectivity assay 24 hpi. The value of the untreated control well (No 

Tx) is defined as 100%.  Each treatment was performed in triplicate and repeated in three 

independent experiments.  Data are expressed as Mean ± SE.  No Tx, no treatment; NSC, 

non-silencing control.  

7.5. DISCUSSION 

In this study we have demonstrated the effectiveness of siRNA mediated RNAi against FCV 

in cell culture.  Screening of the initial panel of eight siRNAs identified three molecules 

showing marked inhibition of viral replication based on extracellular virus titres and a 

reduction in virus induced CPE.  This protective effect was shown to be concentration-

dependent, with IC50 values, calculated based on reductions in extracellular viral titres, in 

the low nanomolar range for all three effective siRNAs.  Importantly, the performance of 

these siRNAs against range of field isolates demonstrated efficacy that was broadly 

representative of the performance against the reference strain.  These results suggest that 

an RNAi-based therapy may be a valid approach for the treatment of serious FCV-related 

disease. 
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The selection of appropriate targets for RNAi-based antivirals is critical for success, as 

previously discussed for FCoV (Chapter 5).  For RNA viruses, such as FCV, that are known 

to exist as a quasispecies (Radford et al., 1998) this is a greater challenge, as the 

development of a useful therapeutic is dependent upon targeting a region that is well 

conserved across isolates.  One of the benefits of an RNAi-based approach, given the short 

region of nucleic acid targeted, is the large number of potential targets, even in viruses with 

short genomes (Leonard and Schaffer, 2005a).  That said, restricting potential target sites to 

those showing only limited genetic diversity does significantly reduce the number of potential 

targets, particularly for a small genetically diverse virus such as FCV. The design approach 

used in the current study was to first identify conserved regions based on visual assessment 

following alignment.  Using this method four regions spanning a total of 157 nt, or 

approximately 2% of the genome was identified as being highly conserved, and considered 

appropriate for targeting. 

Initial screening, performed against FCV F9, demonstrated a significant variation in efficacy 

between siRNAs.  siRNA FCV3.7, FCV4.1, and FCV4.2 were identified as being highly 

effective, with a reduction in viral titre of greater than 99% and an associated reduction in 

virus induced CPE.  In comparison, targeting the highly conserved 5’ end of the genome was 

completely ineffective in the current study, in contrast to a previous report by Rohayem et al. 

(2010).  The two overlapping siRNAs targeting this region were located further upstream than 

the target site reported to be effective by Rohayem et al. (2010), although there was an 11 nt 

overlap between siRNA FCV1.3 and the previously reported effective site.  The reason for 

the poor performance of siRNAs targeting this region in the current study is not known.  The 

5’ UTR is extremely well conserved, not only at the species, but also at the genus level.  

Thus, whilst possible, it is unlikely that the particular FCV isolates used in the current study 

harboured mutations that rendered ineffective the two 5’ UTR targeted siRNAs.  

Inaccessibility of the target site to RISC due to local secondary structure or genome 

association with viral proteins may limit siRNA efficacy.  The 5’ end of the calicivirus genome 

is covalently bound to the VPg protein which is essential for the initiation of translation 

(Goodfellow et al., 2005).  It is possible that VPg, with or without bound cellular initiation 

factors, may act to sterically hinder the access of RISC to target sites immediately 

downstream.  Alternatively, secondary RNA structure may interfere with access to the target 

site.  The 5’ UTR and the proximal end of ORF1 of caliciviruses are suspected to contain a 

number of structural elements (Simmonds et al., 2008) which may prevent RISC access. 

The results obtained with siRNAs FCV2.1 and FCV2.3 are interesting in that, based on 

published sequence data for FCV F9, both siRNAs contained a single mismatched 

nucleotide at position 7 and 11 of the antisense strand respectively.  Despite the mismatch 

pre-treatment with both siRNA resulted in a reduction in extracellular viral titre of 71.5% and 
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40.4% for siRNAs FCV2.1 and FCV2.3 respectively.  It is reported that target 

complementarity within the seed region, corresponding to nucleotides 2 to 8 of the antisense 

strand, is most important for target binding as this region contributes the majority of the 

target-binding energy (Haley and Zamore, 2004).  It is interesting therefore that siRNA 

FCV2.1 was more effective than siRNA FCV2.3 despite the former containing a mutation in 

the seed region, and may indicate a degree of tolerance for mismatches in this region. 

Concentration-response and combination therapy studies demonstrated siRNAs FCV3.7, 

FCV4.1, and FCV4.2 to be highly potent, with no evidence of antagonistic effects when used 

in combination.  These results are important when considering the therapeutic application of 

RNAi.  Host toxicity is a significant challenge for traditional small molecule antiviral 

therapeutics.  As obligate intracellular parasites, viruses harness numerous normal cell 

processes during replication, and therefore small molecule compounds affecting viral 

replication may be inherently toxic to the host cell.  Theoretically at least, RNAi provides the 

opportunity to specifically target only viral genomic or messenger RNA, however it is now 

recognised that significant off-target effects can occur due to only limited sequence 

complementarity between siRNAs and cellular transcripts (Jackson et al., 2006b).  These off-

target effects are concentration-dependent, and can therefore be minimised, although not 

eliminated, through the use of highly potent siRNAs.  Combination therapy may also act to 

further reduce the occurrence of off-target effects if the siRNAs act in a synergistic or additive 

manner.  In this case equivalent or enhanced potency may be achieved using a lower 

concentration of each individual siRNA, which will reduce the occurrence of sequence 

dependent off-target effects.  In a clinical setting combination therapy, perhaps with the small 

molecule compounds discussed in Chapter 6 may help to delay the emergence of resistant 

isolates (Hodge and Field, 2010).  In Chapter 5 we showed that a minimum of three siRNA 

were required to prevent the emergence of resistance in FCoV over five passages.  Using 

modelling for RNAi-based inhibition of HIV, Leonard and Schaffer (2005b) reported that four 

siRNAs would likely be sufficient to prevent the emergence of resistance in vivo.  The 

primary method by which combination antiviral therapy can delay the emergence of 

resistance is through raising the so-called “genetic barrier” to resistance.  Combination 

therapy with siRNAs FCV4.1 and 4.2 may not provide such a benefit, as due to the 

considerable overlap of their target sites (15 nt) it is possible that a single mutation in this 

shared region may simultaneously render both siRNAs ineffective.  Despite this overlap, a 

benefit of this combination may be seen in terms of reducing off-target effects, as the critical 

seed region of these siRNAs is more than 50% different. 

Importantly, for the clinical application of RNAi, the effective siRNAs in this study were shown 

to be broadly protective against currently circulating field isolates.  In common with many 

RNA viruses, FCV is genetically diverse, a fact highlighted by the limited amount of 



 

233 

conserved regions identified during siRNA design.  Highly diverse viruses pose a particular 

problem for a nucleic acid based therapy like RNAi that requires Watson-Crick base pairing 

for target recognition and antiviral action, as sequence variation of as little as one nucleotide 

may render a siRNA inactive (Boden et al., 2003; Gitlin et al., 2005). To be clinically useful 

an antiviral therapeutic must provide protection against a significant number of circulating 

isolates.  In this regard there is a risk using only a reference virus such as FCV F9 for 

screening, as this virus, which was isolated more than half a century ago, and which has 

likely undergone numerous passages in cell culture since that time, may not be 

representative of the field viruses against which efficacy is sought.  Whilst published 

sequence data can be used to identify the likelihood of an siRNA providing broad spectrum 

coverage, based on sequence conservation at the target site, it is possible that mutations 

outside of this site may influence efficacy (Westerhout et al., 2005), and thus such in silico 

assessment may not provide the entire picture. 

There are several additional features of interest to arise from the screening of all siRNAs 

against the panel of field isolates.  Firstly, the efficacy of siRNAs targeting ORF3, siRNAs 

FCV4.1 and FCV4.2, was quite variable against field isolates, with isolate IW10 appearing 

partially resistant to siRNA FCV4.1 and completely resistant to siRNA FCV4.2.  Based on 

prior sequence analysis the target sites in ORF3 were highly conserved, with greater than 

90% of published sequences demonstrating 100% homology at the target sites.  The finding 

that one of six field isolates was resistant to the siRNAs directed at this site, most likely 

through harbouring a pre-existing mutation, suggests that this region may not be as 

conserved as initially thought. 

Secondly the efficacy of siRNA FCV2.3 appears to be greater against field isolates than FCV 

F9.  This is not surprising as although it was identified during siRNA design that the region 

targeted by this siRNA within ORF1 was highly conserved, there was a single nucleotide 

mismatch for FCV F9.  Based on CPE inhibition, the efficacy of siRNA FCV2.3 was not as 

great as that for the highly potent siRNAs, and therefore this siRNA may not be suitable for 

monotherapy.  Given the limited number of conserved regions available for targeting, it may 

however be useful for combination therapy to raise the genetic barrier to delay the 

development of resistance. 

The current study is not the first to report the efficacy of siRNA-based RNAi for feline 
calicivirus.  In a review paper discussing antiviral strategies for caliciviruses, Rohayem et al. 

(2010) briefly reported on the preliminary testing of two siRNAs against FCV,  targeting the 5’ 

ends of ORF1 and ORF2.  This latter siRNA was identical to FCV3.7 used in the current 

study.  Whilst limited details of the experimental parameters are provided, the authors report 

both siRNAs were effective in vitro when used prophylactically against FCV strain 
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Dresden/2006/GE, with an EC50 value of 0.44 μM reported for the siRNA targeting ORF1.  A 

patent application by the same author, for a novel siRNA design displaying increased 

thermodynamic stability at the 3’ end of the guide strand, also references RNAi-based 

experiments against FCV targeting the ORF1 (Rohayem, 2010).  In this patent application, 

as with the published work, only limited detail is provided regarding the transfection and 

infection conditions.  Given the paucity of information regarding experimental details provided 

it is difficult to make meaningful comparisons between the results reported by Rohayem and 

the current study. 

The second report of RNAi against FCV was published during the conduct of the 

experiments described in this chapter  (Taharaguchi et al., 2012).  In this study siRNAs 

targeting ORF1, in the region encoding the 76 kDa ProPol protein (siRNA-pol), and the 5’ 

end of OFR2, in the so called leader of the capsid region (siRNA-LC) were assessed for in 

vitro efficacy against FCV (Taharaguchi et al., 2012).  The siRNAs were designed based on 

the partial sequence of FCV-B, an isolate from Japan taken from a cat displaying 

neurological signs (Sato et al., 2002).  In the study by Taharaguchi et al. (2012) siRNA-LC 

was reported to be ineffective at inhibiting viral replication using FCV-B as the challenge 

virus.  The target site of FCV-LC begins 2 nt downstream from that of siRNA FCV3.7 used in 

the current study, which was shown to be highly effective against FCV F9, in addition to a 

panel of recent field isolates.  Although this lack of efficacy for siRNA-LC may represent a 

genuine difference in performance between itself and FCV3.7, it may also reflect differences 

in the assay conditions chosen, as efficacy was determined by a morphological assessment 

of CPE 48 hpi compared to the 24 h infection period in the current study.  The siRNA 

targeting the proteinase-polymerase region of ORF1 was reported to be effective against 

FCV-B based on morphological assessment of CPE, and subsequent determination of 

extracellular viral titre and intracellular viral RNA.  This siRNA was however shown to be 

completely ineffective when tested against three additional isolates.  This result highlights a 

limitation of the approach used by Taharaguchi et al. (2012) in basing siRNA design on a 

single sequence.  Alignment of the target sequence reported for siRNA-pol with full-length 

FCV sequences (Appendix 2) revealed that no published isolate shared 100% homology with 

siRNA-pol, with most sequences revealing multiple nucleotide mismatches.  Thus although 

this previous work demonstrated in principle that RNAi could be a useful approach for 

calicivirus, targeting the siRNA at a variable region of the genome means that the therapeutic 

utility of the tested siRNA is extremely limited. 

Translation of the in vitro results of the current study to a clinical setting requires an 

appropriate delivery system.  In this regard it is important to consider the different FCV 

disease manifestations for which siRNA therapy may be appropriate.  Given the likely high 

cost associated with a nucleic acid based therapy, in addition to the mild and self-limiting 
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nature of many infections, such treatment is unlikely to be used, and nor is it needed, for the 

majority of infected cats.  For more severe disease manifestations however, such as virulent 

systemic disease, pneumonia, or FCGS, the application of this therapy may be warranted.  

Due to the pathogenesis of disease in each of these cases, the optimal delivery method to 

obtain therapeutic concentrations at the required target site will vary. 

Delivery is considered the greatest challenge facing the therapeutic application of RNAi.  The 

major issues to be resolved are threefold: improving biological stability, maximising 

cytoplasmic delivery, and maximising uptake by the appropriate cell type.  These challenges 

are relevant to all delivery methods, topical, local, or systemic, however the magnitude of the 

challenge varies for each.  Given the extraordinary potential of RNAi-based therapeutics in 

treating a range of infectious and non-infectious diseases, optimisation of delivery methods 

to meet these challenges is an active area of research (Gao and Huang, 2013; Shim and 

Kwon, 2010).  Systemic delivery is potentially the most challenging, and would be required 

for FCV-VSD due to the more widespread viral replication of hypervirulent strains (Pesavento 

et al., 2008).  Successful systemic delivery for antiviral applications has been reported for 

highly virulent Ebola virus using a non-human primate model (Geisbert et al., 2010), 

demonstrating the feasibility of the method for treating FCV-VSD despite the considerable 

challenges. 

For treating FCV-associated pneumonia, siRNA delivery to the site of infection, the lower 

airways and lung parenchyma, is possible via either systemic or local delivery.  In general 

local delivery offers a number of advantages over systemic delivery, such as a reduction in 

the dose required, the potential for higher bioavailability, and reduced systemic adverse 

effects (Shim and Kwon, 2010; Whitehead et al., 2009).  Local delivery to the lungs does 

however present its own unique challenges.  As the most common route of infection, the 

respiratory tract has evolved a series of overlapping mechanical, physiological, and innate 

immune barriers to prevent the deposition of, or to remove foreign particles (Lam et al., 

2012). Despite these barriers successful pulmonary delivery of both modified and naked 

siRNA has been demonstrated in animal studies, and local administration has been shown to 

be effective in animal models of SAR-CoV (Li et al., 2005a), parainfluenza virus (Bitko et al., 

2005), and human respiratory syncytial virus (RSV) infections (Bitko et al., 2005; Zhang et 

al., 2005).  Successful human studies have also been conducted for RSV using an 

unmodified intranasally administered anti-RSV siRNA (DeVincenzo et al., 2010).  In these 

studies the most common method of administration for pulmonary delivery has been via the 

intranasal route; however delivery via inhalation, through nebulisation or the use of inhalers, 

may result in enhanced delivery (Lam et al., 2012). Given the reported success with local 

delivery, even when using unmodified naked siRNAs, an siRNA-based approach for FCV-

associated pneumonia warrants consideration. 
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Local mucosal delivery of siRNAs to inflamed tissue in FCGS may represent the least 

challenging delivery option from a technical point of view, although practically speaking the 

mercurial nature of cats, their lightning fast reflexes, and their frequent intolerance of oral 

manipulation may pose a challenge.  Topical mucosal application of antiviral siRNAs has 

been studied in the context of sexually transmitted infections (Katakowski and Palliser, 

2010).  Successful antiviral effects have been demonstrated in mouse models of herpes 

simplex virus 2 infection using a commercially available lipid-based transfection reagent 

(Palliser et al., 2006), however care must be taken with this delivery approach for antiviral 

applications as high doses of lipid reagent have been reported to facilitate viral infection, 

possibly through enhancing fusion of the viral envelope with the cell membrane or by 

inducing mild inflammation (Wu et al., 2009).  A number of alternative delivery methods have 

been reported for topical administration, including conjugation to cholesterol, chemical 

modification to improve stability, and encapsulation in biodegradable polymer nanoparticles 

(Katakowski and Palliser, 2011).  Specific studies with these, or any other technique, on the 

delivery of siRNAs to the oropharyngeal mucosa have not been reported.  In vitro stability 

studies have demonstrated naked siRNAs are rapidly degraded in saliva, with an associated 

loss of function (Hickerson et al., 2008), and thus structural modifications or encapsulation 

would be required to maximise efficacy.  The presence of saliva and mucous overlying the 

oropharyngeal tissues may also present a barrier to the cellular uptake of siRNAs.  The 

concurrent use of mucolytics, such as N-acetylcysteine, or muscarinic antagonists such as 

atropine, may be useful to reduce saliva and mucous secretion, and thereby increase the 

interaction between siRNAs and target cells to facilitate cellular uptake. Again, despite these 

challenges, given the excellent in vitro efficacy demonstrated in the current study, 

investigation of delivery options for topical siRNA therapy should be considered for the 

treatment of FCV-positive FCGS. 

The current study has focused on an RNAi-based approach, however an alternative nucleic 

acid based antiviral therapy, namely phosphorodiamidate morpholino oligomers (PMO), has 

already demonstrated excellent efficacy in field conditions against VSD-FCV (Smith et al., 

2008).  Whilst both siRNAs and PMOs bind specifically to RNA via Watson-Crick base-

pairing, gene silencing occurs through different mechanisms.  For siRNA inhibition occurs 

through association with RISC and cleavage of target sequences.  PMOs, a third-generation 

antisense oligonucleotide, bind to RNA and sterically hinder translation or RNA processing.  

Due to their modified backbone they do not interact with, or function via, an RNase H 

mechanism (Summerton, 1999) (see Figure 1.1).  For PMOs that function via blocking 

translation (as opposed to inhibiting splicing), effective target sites are effectively limited to 

those located between the 5’ cap and approximately 25 nt downstream of the initiation codon 

(Summerton, 1999).  This requirement limits the available number of target sites for 
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inhibition, particularly in the case of viruses with small genomes, such as FCV, that have only 

a small number of ORFs.  A previous study with two different vesiviruses demonstrated that 

only PMOs targeted against ORF1 resulted in viral inhibition, with PMOs targeted at ORF2 

and ORF3 showing no-effect or, in the case of the later, resulting in a significant increase in 

viral titre (Stein et al., 2001).  This limitation may have consequences for antiviral 

applications as combination therapy may be required to delay the almost inevitable 

emergence of resistance when using monotherapy, however as the indications for FCV 

antivirals are primarily for acute infections, the importance of this may be limited.  Further, 

although combination PMO therapy may not be possible, concurrent treatment with a small 

molecule inhibitor, potentially mefloquine as described in Chapter 6, or siRNAs as described 

herein, could be used to help delay the emergence of resistance. 

FCV is a very common infection in domestic cats, however only a relatively small percentage 

of cases result in severe disease.  It is this subset of infections, including FCV-VSD, 

calicivirus pneumonia, severe refractory oral ulceration, and possibly FCGS, where the lack 

of a calicivirus antiviral is conspicuous.  In the current study we demonstrated the successful 

inhibition of FCV using synthetic siRNAs.  Although this is not the first report of successful 

inhibition of FCV with RNAi, the current work does address some of the critical basic 

questions regarding possible therapeutic application of this technology.  The effective 

siRNAs in this study were demonstrated to be highly potent and were efficacious against a 

panel of currently circulating field isolates, in contrast to a previous report.  The successful 

translation of these in vitro results into a clinical setting will likely provide a useful tool in the 

treatment of severe FCV-associated diseases. 
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8 
8 Conclusions and future directions 

Viral disease is a significant cause of morbidity and mortality in domestic cats.  Fortunately, 

for several of the important pathogens, safe and effective vaccines are available.  Whilst the 

aphorism “prevention is better than cure” certainly holds true, there remain viruses, such as 

feline coronavirus (FCoV), the causative agent of FIP, for which the quest for an effective 

vaccine remains elusive.  In the case of feline calicivirus (FCV), although vaccines provide 

good immunity in the majority of cases and can reduce the severity of clinical signs post 

challenge, current vaccines appear to provide little protection against recently emerged 

hypervirulent strains associated with VSD (Coyne et al., 2006b; Reynolds et al., 2009; Schulz 

et al., 2011).  Current treatment options for FIP and severe FCV-associated disease are 

essentially supportive rather than specific, with no direct acting antiviral agents currently in 

use.  The overarching aim of the work presented within this thesis was to begin to address 

this shortfall by investigating new antiviral strategies for FCoV and FCV.  The studies 

contained herein provide vital preliminary information regarding the in vitro effectiveness of a 

number of compounds against these pathogens.  It is hoped that the successful clinical 

application of the principles established within these studies may provide feline practitioners 

with viable treatment options for diseases caused by these two common and problematic 

viruses. 

8.1. ANTIVIRAL DRUG DISCOVERY 

In this study two strategies were utilised to identify inhibitory compounds.  The first involved 

screening a panel of small molecule compounds which had previously demonstrated 

inhibitory effects against other, in most cases related, viruses.  Enriching the test panel for 

compounds in this way increases the likelihood of identifying an effective compound.  

Furthermore, as a number of the small molecules tested are human approved 

pharmaceuticals, or have significant in vivo toxicology and safety data, this approach 

maximises the likelihood that effective compounds will be suitable for therapeutic use.  

Unfortunately, safety in humans, or other species does not necessarily equate to safety in 

cats, due to well-recognised differences in feline drug metabolism, particularly in relation to 

several conjugation pathways (Court, 2013).  This process of finding new indications for 
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existing drugs, commonly referred to as drug repurposing, is a growing area of human 

pharmaceutical research, owing to considerable savings in time and resources compared to 

de novo drug development. (Muthyala, 2012).  Given the relatively poorly funded world of 

companion animal veterinary research, this approach has considerable merit.  Drug 

repurposing also offers the benefit of a more rapid translation into clinical use, an important 

feature when considering severe diseases which currently have no effective therapies, and 

will also likely provide a more affordable and accessible treatment option than a new 

molecular entity.  

The second approach was based on harnessing the cellular mechanism of RNAi through the 

use of chemically synthesised siRNAs.  In contrast to the empirical approach of the small 

molecule screen, which requires no a priori knowledge of the molecular target or mechanism 

of action of a compound, the RNAi-based approach could be considered a simplified rational 

approach to drug development, given that siRNAs are designed specifically to target unique 

viral sequences.  This antiviral approach has been demonstrated effective in vitro against a 

diverse range of pathogens of medical and veterinary importance (Ge et al., 2003; Martinez 

et al., 2002; Wilkes and Kania, 2010), however challenges relating to in vivo delivery has 

limited the therapeutic application of this technology. 

The translation of the in vitro results for siRNAs presented in Chapters 5 and 7 will be 

dependent on the development of effective and affordable delivery options.  In contrast 

effective small molecule inhibitors identified in Chapters 4 and 6 may be suitable for 

immediate use.  This is highlighted by the recent small scale study reported on the in vivo 

efficacy of chloroquine, a compound identified in Chapter 4 as effective against FCoV, in 

treating FIP (Takano et al., 2013). 

8.2. SMALL MOLECULE INHIBITORS OF FCOV AND FCV 

In Chapter 3 we described the development and optimisation of low to medium throughput 

resazurin- and sulforhodamine B (SRB)-based CPE inhibition assays for screening 

compounds for antiviral effects against FCoV and FCV.  Both assay formats proved robust, 

with Z’-factors, a commonly used measure of assay performance, indicating an “excellent 

assay” according to the criteria of Zhang et al. (1999).  Whilst the SRB-based assay gave a 

superior Z’-factor, the resazurin-based assay was selected for compound screening due to 

practical advantages relating to assay simplicity and cost.  In regards to the latter, the in-

house prepared resazurin reagent, with a cost price of only a few cents per plate, provides 

an economical choice, particularly if screening large numbers of compounds. 

Using this assay, three compounds – chloroquine, mefloquine, and hexamethylene amiloride 

– were identified during screening as possessing marked antiviral effects against FCoV 
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(Chapter 4), whilst for FCV (Chapter 6) only mefloquine displayed marked inhibitory effects 

during screening.  The lower hit rate for FCV compared to FCoV was not surprising as the 

panel of compounds screened was biased towards molecules with previously demonstrated 

efficacy against coronaviruses.  These effective compounds demonstrated concentration-

dependent inhibition that was confirmed with orthogonal testing, with IC50 values in the low 

micromolar range.  Whilst the demonstration of in vitro efficacy is important, it in no way 

guarantees that an identified compound will be therapeutically useful.  Attrition of candidate 

compounds during drug development frequently occurs due to poor pharmacokinetic or 

safety profiles (Hughes et al., 2011; van de Waterbeemd and Gifford, 2003).  The 

pharmacokinetics and safety profile of chloroquine and mefloquine, as human approved 

pharmaceuticals, have been extensively studied in humans and other species, including in 

the case of chloroquine some limited work on toxicity in cats.  Based on these data, and the 

calculated IC50 values, it would appear, if the pharmacokinetics in cats is similar to other 

species, that therapeutic concentrations of these compounds may be attainable with doses 

used in humans, although as previously mentioned peculiarities of feline drug metabolism 

must always be considered.  In contrast to chloroquine and mefloquine there is considerably 

less reported regarding the in vivo use of hexamethylene amiloride, and thus the potential 

usefulness of this compound is more difficult to assess. 

For FCoV, investigations were conducted to determine the stage of infection and possible 

mechanism of action of the three identified compounds.  Interestingly, treatment of 

uninfected CRFK cells with all three compounds resulted in similar morphological changes 

that were not seen in mock treated cells.  These changes, consisting of an increased number 

of cytoplasmic inclusions that accumulated the vital dye neutral red, suggest the compounds 

result in a perturbation of the normal endocytic pathways.  Despite what appears to be a 

common physiological effect, a common antiviral mechanism of action for all three 

compounds against FCoV is unlikely based on the finding that mefloquine, unlike chloroquine 

and hexamethylene amiloride, remained effective when added after the period of viral 

attachment and entry.  Whilst compounds effective only prior to cell entry are able to limit the 

spread of infection within an animal, they will have no effect on cells once infected.  In these 

cases a functional innate or adaptive immune response would be required to stop viral 

replication and mediate viral clearance.  With the documented immune dysregulation that 

occurs in FIP (Perlman and Dandekar, 2005), and the endemicity of FCoV within feline 

populations, the use of an antiviral effective after cell infection (such as mefloquine is likely to 

be) is preferable.  Similar studies were not conducted for FCV, however given that 

mefloquine was effective against two unrelated viruses, it would be interesting to determine 

whether a single common mechanism of action was responsible for these broad spectrum 

effects. 



 

241 

A limitation of the current study is that antiviral effects were tested only in a single cell type.  

The use of an immortalised cell line, in this case the well characterised Crandell Rees feline 

kidney cell line, is important for reproducibility during screening assays.  It is possible 

however that such a cell line may not provide a physiologically relevant target if viral 

replication in these cells is different than that in the natural target cells of the virus in vivo.  In 

light of the apparent broad spectrum antiviral effect of mefloquine, studies with alternate cell 

types could be used to demonstrate the documented antiviral effect is not a laboratory 

artefact due to some unique property of reference cell line chosen. 

To be clinically useful, an antiviral therapeutic must be effective against a broad a range of 

circulating field isolates.  In this study mefloquine was demonstrated to be effective against a 

panel of recent field isolates of FCV.  Testing of different FCoV isolates in addition to the 

reference strain FIPV1146, was limited to another type II FCoV, strain FECV1683.  Given 

that two of the compounds demonstrating antiviral effects against FCoV appear to act during 

viral entry, and that there appear to be differences in cell entry between type I and type II 

FCoV, testing efficacy against the more common type I viruses would be indicated. 

8.3. RNAI FOR INHIBITING FCOV AND FCV 

Chapters 5 and 7 described the investigation of siRNA mediated RNAi as an antiviral 

strategy against FCoV and FCV respectively.  These studies demonstrated some of the 

significant benefits of this antiviral approach, however the results also highlighted some of 

the challenges to its therapeutic application. 

Appropriate selection of siRNAs is critical for antiviral RNAi.  To maximise the potential for 

siRNA target recognition against diverse field isolates and to minimise the potential for viral 

escape during treatment, conserved regions of the viral genome were targeted.  The number 

and size of conserved regions for FCoV was greater than for FCV, a fact that reflects the 

larger genome size and complexity of the former.  Although four independent conserved sites 

were identified in FCV, the target motifs of the two siRNAs designed for some of these 

regions overlapped considerably.  In a therapeutic setting this limited number of independent 

conserved motifs may have implications given that combinatorial therapy with multiple 

independent siRNAs is one of the primary strategies to delay the emergence of viral 

resistance. 

Overall the results of these studies demonstrate that appropriately designed siRNAs can 

have a potent inhibitory effect on the replication of FCoV and FCV at low nanomolar 

concentrations in cell culture. For FCV, siRNAs were tested against a panel of recent field 

isolates, with the antiviral effects demonstrated against these relevant viruses broadly 

reflective of those seen against the reference strain FCV F9.  For FCoV, only efficacy against 
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the reference strain FIPV1146 was assessed, however a bioinformatics approach using 

published sequences suggests that the designed siRNAs would be effective against the 

majority of field isolates. 

A significant challenge for RNAi-based antivirals is the emergence of resistance during 

treatment.  The exquisite sequence specificity of the mechanism, coupled to the high 

mutation rate and rapid replicative cycles of RNA viruses, has been shown, for a number of 

different viruses, to result in the rapid emergence of resistance (Boden et al., 2003; Gitlin et 

al., 2005).  In the current study, despite targeting highly conserved regions of the FCoV 

genome, viral escape occurred within a single passage when siRNAs were used as 

monotherapy.  Combination therapy with multiple siRNAs showed no evidence of 

antagonistic effects (for both FCoV and FCV), and in the case of FCoV was shown to delay 

the emergence of resistance.  In this regard one of the strengths of the RNAi-based 

approach, that is the relative ease and rapidity with which multiple independent antiviral 

molecules can be designed for combinatorial therapy, was able to overcome the challenge of 

antiviral resistance inherent in this approach.   

A number of different structural siRNA variants have been described, many of which are 

purported to offer benefits over canonical siRNAs regarding potency, off-target effects, and 

duration of action.  We investigated one of these, the Dicer-substrate siRNA, and compared 

it to canonical siRNAs targeting the same motifs in the FCoV genome.  The results of our 

study showed that both canonical and Dicer-substrate siRNAs were effective, with superior 

performance, in terms potency and duration of action, for DsiRNA demonstrated for one 

target, and approximately equivalent performance demonstrated for the other target tested.  

It would appear from these results, and other recently published data (Foster et al., 2012), 

that the differences between canonical and Dicer-substrate siRNAs are target dependent, 

and that therefore the most appropriate structural form should be empirically determined in 

each case. 

8.4. POTENTIAL FURTHER RESEARCH 

Whilst the results of the current study provide important information regarding potential 

antiviral therapies for FCoV and FCV, there is significant scope for further investigations into 

the identified antivirals, both in vitro and in vivo, which are described below. 
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8.4.1. In vitro studies 

8.4.1.1. Confirmation of antiviral efficacy in different cell types and against 
different viral isolates 

As previously discussed a limitation of the current work is that all antiviral testing was 

performed in CRFK cells, and in the case of FCoV, with culture adapted viruses that may not 

be representative of those encountered in the field.  It is important to address these issues to 

determine whether the compounds identified are likely to be of therapeutic use.  In this 

regard ex vivo testing in relevant target cells would confirm whether the observed antiviral 

effects are cell line dependent.  This is more critical for the small molecule inhibitors than for 

siRNAs, as in the case of the latter there is unlikely to be significant mechanistic differences 

between different cell types.  Differences in transfection efficacy between cell lines may 

impact the apparent antiviral efficacy; however the therapeutic relevance of this would be 

difficult to interpret as the complexity of in vivo siRNA delivery is far removed from the culture 

dish.  For small molecule inhibitors however the effect of the cell line on efficacy may be 

more dramatic as features of the viral replication cycle, for example the cellular receptors 

used for entry, may vary between cell types.  

For FCoV, further studies investigating the antiviral efficacy against different field isolates is 

warranted, however such studies are hampered by difficulties in propagating the more 

common type I FCoV in cell culture.  The immortalised cell line Fcwf-4 or primary monocytes 

and macrophages can support the growth of these viruses and would be a suitable choice for 

additional testing (Pedersen, 2009).  Desmarets et al. (2013) recently reported on the 

development of immortalised cell lines derived from feline ileocytes and colonocytes that 

support the replication of both type I and type II enteric FCoV biotypes.  Whilst enteric 

biotypes are in themselves essentially avirulent, based on our current understanding of the 

pathogenesis of FIP, infection and continued replication of these viruses, may lead to FIP 

following the acquisition of specific mutations.  In a purely probabilistic sense, the likelihood 

of a mutation arising, and therefore the risk of FIP, is related to the magnitude and duration 

of viral replication.  An antiviral that can limit or eliminate replication of enteric biotypes may 

therefore reduce the incidence of FIP.  At this time this approach is likely to be prohibitively 

expensive for RNAi-based therapeutics, but it may be suitable for the small molecule 

compounds identified.  Studies on the efficacy of the identified compounds using these cell 

lines and field isolates may be the first step in the development of a novel prophylactic 

strategy for controlling FIP. 

For FCV, additional testing against VSD isolates may be warranted as all the isolates tested 

in the current study were from cases of classical oro-respiratory disease or FCGS.  This is 

particularly important given that neither the mechanism of action of mefloquine nor the 
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biological basis for the expanded tissue tropism and hypervirulent nature of VSD isolates is 

currently understood.  This additional testing is not as critical for anti-FCV siRNAs as an 

analysis of the target site motifs from published sequences demonstrated a high degree of 

conservation for both VSD and non-VSD isolates however testing may still be beneficial as 

other aspects of the molecular biology of the hypervirulent strains may impact on the efficacy 

of RNAi mediated inhibition. 

8.4.1.2. Determining the mechanism of action of candidate small molecule 
inhibitors of FCoV and FCV 

Determining the mechanism of action of the small molecule antivirals identified in these 

studies may be beneficial in informing their clinical application.  This knowledge may also 

allow for the identification or development of alternate antiviral agents that may act via a 

similar mechanism.  Time of addition experiments, as performed in the current study for 

FCoV, can help to determine the stage of the viral replication cycle at which a compound 

acts and is often the first step to determining a mechanism of action.  It would be interesting 

to compare the results of similar studies performed for mefloquine on FCV to determine 

whether the antiviral effects displayed against two unrelated viruses occur due to a common 

mechanism of action.  Beyond the relatively simple time of addition assays to determine the 

stage of infection targeted, further assays would be required to define the mechanism by 

which the compounds acted.  Studies on plaque purified resistant isolates generated 

following in vitro exposure to the compound may be beneficial in this regard. 

8.4.1.3. Effect of combination therapy 

The development of resistance is considered an almost inevitable consequence of antiviral 

treatment.  The current work demonstrated resistance developed rapidly for FCoV when 

siRNA monotherapy or dual combination therapy was used, however it was delayed 

considerably with a combination of three siRNAs targeting independent sites.  It is possible, 

but would appear unlikely based on these results and published literature, that viral escape 

from siRNA mediated inhibition would be any less likely with the target sites chosen for FCV.  

For FCV, although three siRNAs were shown to be highly efficacious, the target site for two 

of these, siRNA FCV4.1 and FCV4.2, overlapped considerably meaning a single nucleotide 

mutation could render both ineffective.  Thus combination therapy with the three effective 

anti-FCV siRNAs in this study, in reality could be considered to only target two independent 

sites.  Given the rapidity with which resistance can develop with even with dual combination 

therapy, alternative strategies should be investigated to minimise this risk.  In this regard 

additional siRNAs could be tested targeting the identified conserved regions, however the 

limited size of these regions and the fact that siRNAs targeting these areas have already 

been demonstrated to be of limited efficacy, suggest that this approach may not be 
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successful.  Thus combination therapy with other, non-siRNA based antivirals, may be 

appropriate.  Combination treatment with an siRNA and interferon-α was demonstrated to 

have synergistic effects in culture against SARS-CoV (He et al., 2009), and thus 

investigations into combination therapy with rFeINF-ω would be a logical next step, for both 

FCoV and FCV.  Investigation into combination therapy with the small molecule inhibitors 

identified in the current study may also provide a useful, and cost effective, therapeutic 

option against both viruses. 

8.4.1.4. Chemical and structural modifications of siRNAs 

A variety of chemical and structural modifications have been suggested to improve the 

performance of siRNAs in terms of enhanced efficacy, reduced off target effects and non-

specific immune stimulation, reduced susceptibility to nuclease degradation, and improved 

pharmacokinetics and cell delivery (Behlke, 2008).  Chemical modifications affecting the 

phosphate backbone, the ribose moiety, and nucelobase have all been reported (reviewed 

by Bramsen et al. (2012)).  Chemical modification, such as the use of locked nucleic acids 

(Elmen et al., 2005; Fluiter et al., 2009), of the effective siRNAs described in this thesis may 

improve their in vivo biological properties, making them more likely to be successfully 

translated into clinical use.  As chemical modifications can have a negative impact on 

efficacy it is important that efficacy is verified in vitro first.   

In addition to the canonical siRNA structure described by Elbashir et al. (2001a), a range 

alternate structures have been reported (Bramsen et al., 2012).  One of these, the Dicer-

substrate siRNA, has been demonstrated in the current study to perform as well as, or in 

some cases better than its equivalent siRNA.  Further investigation into the use of DsiRNA, 

or alternate structures such as those reviewed by Bramsen et al. (2012) may provide more 

potent RNAi-based inhibitors. 

A number of the modifications described above are designed to reduce non-specific 

immunostimulation following treatment.  Whilst this is clearly desirable for in vitro studies, in 

order to avoid confounding effects of treatment, and likely a good thing in many in vivo gene 

silencing applications, in the context of antiviral therapy a degree of immunostimulation 

triggered by the siRNA or its delivery vehicle could have a positive therapeutic effect.  

siRNAs designed specifically to result in immunostimulation have shown good efficacy in 

antiviral applications in vitro (Gantier et al., 2010).  Investigation of these immunostimulatory 

siRNAs may be beneficial in the context of the current studies, however it should be 

considered that in the case of FCoV, given FIP is associated with significant immune 

dysregulation, it is possible these modifications may have untoward effects in vivo. 
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8.4.1.5. Further antiviral screening using the CPE inhibition assay 

In addition to specific extensions of the work described herein, additional avenues for future 

research may arise from some of the methods and techniques developed during the course 

of this study.  Perhaps the most important of these is the work in Chapter 3 describing the 

development of a robust and reliable CPE inhibition based assay for assessing compounds 

for antiviral effects against FCoV and FCV.  In addition to excellent performance, the assay 

offers several practical benefits including minimal handling steps, low cost, and suitability for 

either fluorescence or colorimetric readout.   In addition to screening for inhibitors of FCoV 

and FCV, the current assay could be easily modified, using the optimisation procedures 

outlined in Chapter 3, to screen for inhibitors of other viruses that replicate in CRFK cells 

such as canine and feline parvovirus, canine coronavirus, and feline herpesvirus.  

Against FCoV and FCV there are a number of possibilities for the application of this assay in 

future research.  Given the continually expanding field of antiviral research, particularly in the 

case of coronaviruses spurred by the emergence of MERS-CoV (Chan et al., 2013), this 

assay could be used for further directed screening using compounds with demonstrated 

antiviral properties against related viruses.  Alternatively, a directed screening approach 

using chemical derivatives of the candidate compounds identified in this study may be useful 

to identify compounds with improved efficacy and toxicity profiles.  This assay may also have 

a place in larger-scale screening, as based on the calculated Z’-factors the assay in its 

current form is amenable to HTS.  Although expensive, screening of large compound 

libraries may identify additional novel agents for further research. 

8.4.2. Therapeutic applications 

The ultimate goal of the work described within this thesis is to develop safe and efficacious 

antiviral therapeutics for the treatment of FIP and serious FCV-associated disease.  Whilst 

the studies presented herein have identified a number of potent antivirals, the decision as to 

when, and how to transition from in vitro to in vivo testing is complex.  For animal welfare 

reasons there should be a body of evidence supporting the use of a drug prior to its 

therapeutic use, but this must be balanced against the current paucity of therapeutic options, 

especially considering the severity of the diseases to be treated.  The drug development 

pathway for human therapeutics is well defined, with rigorous in vitro and animal model 

studies conducted prior to clinical trials in humans.  In veterinary medicine the route from 

laboratory to clinical use is less clear; with the off-label use of compounds a commonly 

accepted practice in the absence alternative effective therapies. 

The severity of the disease and the efficacy of currently available therapies may influence the 

rapidity and urgency with which the translation from in vitro to in vivo testing is made.  For 

FIP, effectively an untreatable, uniformly fatal disease, there is clearly a large unmet need 
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which justifies the rapid clinical assessment of these compounds.  Similarly, for more serious 

FCV-associated diseases, the current lack of effective therapeutics would argue for the 

testing of compounds identified in this thesis.  For less serious disease manifestations, such 

as mild FCV-associated oro-respiratory disease or asymptomatic enteric FCoV infections, or 

for a condition such as FCGS in which a pathogenic role for chronic FCV infection is 

unproven, a risk benefit analysis may suggest a more cautious approach to in vivo testing. 

Therapeutic testing will require studies in cats, as non-feline animal models of FCoV and 

FCV-associated disease are not available.  Studies in experimentally infected laboratory cats 

would provide a well-controlled environment, however such studies are unlikely to perfectly 

mimic natural infections in terms of the viral strain, route of infection, and challenge dose 

used.  It could also be argued from an ethical perspective that, in the case of FIP for 

example, given that the disease is currently untreatable and terminal, it would more 

appropriate to conduct studies in naturally infected cats.  Testing in naturally infected cats 

clearly provides the most important and relevant measure of efficacy however it would be 

associated with increased experimental variability.  This increased variability may arise due 

to animals presenting at various stages of disease and also the potential presence of co-

morbidities.  As a consequence, minor changes associated with treatment may be missed, 

however this is unlikely to be a problem in the first instance as changes of this magnitude are 

unlikely to be of therapeutic consequence.  Without prior target animal safety studies in 

healthy cats, it would be difficult to assess the safety profile of the compounds when they are 

tested in diseased animals as it may not be possible to distinguish treatment-related and 

disease-related clinical signs. 

8.4.2.1. Small molecule inhibitors 

Chloroquine, one of the three small molecule inhibitors of FCoV identified in this study, has 

recently been tested in vivo in cats with FIP (Takano et al., 2013).  This study, published 

following the conclusion of the experimental work described herein, used cats experimentally 

infected with FCoV FIPV1146.  Overall the results of this study were disappointing, although 

chloroquine treatment did result in improved clinical scores and slightly prolonged, although 

not statistically significantly different, survival times.  Whether the results reported by Takano 

et al. (2013) are an accurate reflection of the likely efficacy of chloroquine in the field is 

unclear.  The challenge virus used, FCoV FIPV1146, is exceptionally virulent and may not be 

reflective of the viruses encountered in natural cases (Pedersen, 2009).  The treatment 

regimen of 10 mg.kg-1 every three days used in this study may have been insufficient to 

achieve therapeutic concentrations.  Higher doses, and more frequent dosing of chloroquine 

has been reported in cats, with 50 mg.kg-1 given for two years (dosing frequency not 

reported) (Gregory et al., 1970) and 20 mg.kg-1 given five days per week for one year (Kuhn 
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et al., 1981).  Unfortunately, as there was no detailed reporting of adverse effects at these 

doses, it is not possible to say how well they were tolerated.  Additional testing in naturally 

infected cats, potentially using more frequent dosing, may provide a better indication of the 

antiviral efficacy of this drug.  Drug monitoring during treatment would be helpful to determine 

the optimum treatment regimen, and to rule out sub-therapeutic concentrations as the cause 

of treatment failure.  It is important to note that even in the absence of significant antiviral 

effects in vivo, chloroquine may have a role to play in the treatment of FIP, in combination 

with an effective antiviral, due to its immunomodulatory effects, in particular its antagonism of 

TNF-α (Savarino et al., 2003). 

The other two small molecule inhibitors of FCoV, mefloquine and hexamethylene amiloride, 

have not been used in cats to the authors knowledge, and thus choosing an appropriate 

treatment regimen for studies is difficult.  Simple allometric scaling may provide a reasonable 

starting point for calculating appropriate doses, but this approach does not take into account 

species differences in metabolism (Sharma and McNeill, 2009).  Pharmacokinetic studies in 

cats to determine the maximum tolerable dose would provide the best information on which 

to base dosing.  Whilst these studies are best performed in healthy animals, to avoid the 

confounding effects of disease on the measured parameters, pharmacokinetic studies in 

animals with FIP, or simple drug monitoring during treatment, would also provide useful 

information.  

The same considerations detailed above are relevant for the use of mefloquine in treating 

serious FCV-associated disease.  Additionally, given the in vitro results demonstrating 

concurrent treatment with rFeINF-ω and mefloquine results in additive effects, consideration 

should be given for combination therapy to potentially reduce the dose of mefloquine 

required, and therefore the risk of associated adverse effects.  For FCGS, as an alternative 

to systemic therapy, topical application of mefloquine may provide therapeutic concentrations 

to infected tissue without the risk of systemic adverse effects, however the absorption of 

mefloquine from oral tissues has not been studied.  Mefloquine is sparingly soluble in water, 

however as used in the current study, is soluble in DMSO.  The successful use of DMSO as 

a drug delivery vehicle for topical antiviral therapy has been reported (Spruance et al., 1983) 

and thus formulation in DMSO may be appropriate.  DMSO is also known to have 

antiinflammatory effects which may provide additional benefits in treating FCGS (Brayton, 

1986). 

8.4.2.2. siRNA 

The results presented in this thesis clearly demonstrate potent and specific inhibition of viral 

replication for both FCoV and FCV by siRNAs.  To harness this for therapeutic use requires 

the development of a suitable strategy for delivery to the target cells, perhaps the greatest 
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challenge facing the therapeutic application of RNAi.  Systemic delivery would be required in 

many cases; however for FCGS topical mucosal delivery would likely be more suitable.  

Chemical or structural modifications as described in Section 8.4.1.4 may help to overcome 

some of the challenges associated with delivery, however for systemic applications, 

formulation with a delivery system is likely to provide the greatest efficacy.  A variety of 

strategies have been used to encapsidate siRNAs into nanoparticles to facilitate delivery, 

using lipid or cationic-polymer based systems (Gao and Huang, 2009; Huang and Liu, 2011; 

Nguyen et al., 2008).  Conjugation of siRNAs to cholesterol, antibodies, ligands, or aptamers 

has also been shown to facilitate delivery (Burnett and Rossi, 2012; Nguyen et al., 2008).  An 

advantage of some of these approaches is that siRNAs can be targeted to specific tissue or 

cell types.  This selective biodistribution to specific cells is the ultimate challenge of siRNA 

delivery.  Delivery targeted in this manner maximises siRNA concentration in the desired 

cells to enhance efficacy, while minimising exposure, and therefore unwanted effects, in non-

target cells.  For treating FIP siRNAs should be targeted to monocytes and macrophages for 

maximum effect.  Targeted in vivo delivery to monocytes has been demonstrated in mice 

using lipid nanoparticles (Leuschner et al., 2011), and a similar approach may be suitable in 

cats.  If such selective targeting can be achieved in feline monocytes and macrophages, it 

may be possible to incorporate additional siRNAs targeting cellular factors, to modulate 

cytokine production from infected cells, and potentially minimise virus induced immune 

dysregulation.  

Topical siRNA therapy using the anti-FCV siRNAs identified in this thesis may be a novel 

way to investigate the role of FCV in the aetiopathogenesis of FCGS, in addition to providing 

information on its potential as a therapeutic option for this common and difficult to treat 

condition.  Such studies would need to be performed in naturally affected cats, as 

experimental recreation of the disease has not been possible.  A placebo-controlled 

experiment, using topical application of either a combination of anti-FCV siRNAs or a 

combination of scrambled NSC siRNA, would be required to control for the potential off-

target and immunostimulatory effects of siRNA treatment.  As most cases of FCGS are 

bilateral, it is possible that a cat could act as its own control, with one side of the oral cavity 

treated with the active and the other treated with the scrambled NSC siRNAs.  This approach 

would only be feasible if siRNAs were formulated into a gel or ointment that could remain 

localised once applied. 

8.5. CONCLUSION 

At the time of commencing the studies reported in this thesis there were no effective direct 

acting antiviral molecules for FCoV and FCV in clinical use.  Sadly, as the concluding 

sentences are written, this situation has not changed.  The identification, in this thesis, of a 
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number of potent small molecule and nucleic acid based antivirals provides important 

preliminary information on potential treatment options for infections associated with these 

viruses. In regards to FCoV, it is questionable as to whether antiviral therapy alone will be 

sufficient to control or cure FIP, given the immunopathological nature of the disease.  As 

replication of virulent mutant FCoV is a triggering and perpetuating factor in the disease, 

there is little doubt that effective antiviral therapy will be a critical component of any 

successful therapeutic regimen.  For FCV on the other hand, experience in experimental 

studies with antisense oligonucleotides has shown that antiviral therapy alone is sufficient to 

cure many infected cats (Smith et al., 2008).  Thus, the successful translation of the in vitro 

success reported herein into a clinical setting would be significant advance for feline 

medicine, and have a dramatic effect on the treatment of these common infections.  The 

potential benefits, in terms of feline health and welfare, should therefore encourage 

subsequent studies required to explore the potential of the identified compounds as antiviral 

therapeutics in treating FIP and FCV-associated disease. 
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Appendix 1 
 

2% carboxymethylcellulose (CMC)  CMC 4g 

 Ultrapure water 200 ml 

Add 4 g CMC to 100 ml ultrapure water and mix thoroughly.  Autoclave to sterilise.  Once cool add 100 

ml sterile ultrapure water to bring concentration to 2%.  Store at 4°C for maximum time of 6 weeks. 

 

2 x DMEM  DMEM powder (D5523) 10 g 

 NaHCO3 3.7 g 

 Sterile ultrapure water 500 ml 

 HCl / NaOH To pH 

Add reagents to approximately 400 ml ultrapure water.  Once dissolved make up volume to 500 ml 

with ultrapure water.  pH at 7.15 (pH rises 0.2 to 0.3 units after filtration).  Filter sterilise with 0.22 µm 

filter (Corning #431118).  Store at 4°C in the dark for maximum time of 6 weeks. 

 

CMC plaque assay overlay  2X DMEM 48 ml 

 FBS 2 ml 

 2% CMC  45 ml 

 Sterile ultrapure water 5 ml 

Warm all reagents to room temperature prior to mixing.  Warm to 37°C prior to adding to wells. 

 

Agarose plaque assay overlay  2X DMEM 48 ml 

 FBS 2 ml 

 2% agarose  50 ml 

Warm DMEM / FBS to 40°C in water bath.  Microwave 2% agarose to melt and equilibrate to 40°C in 

water bath.  Immediately prior to use mix agarose and DMEM/FBS.  Allow to cool slightly prior to 

adding to wells. 
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10 x PBS (Calcium and magnesium free)  NaCl 80 g 

 KCl 2 g 

 Na2HPO4 14.4 g 

 KH2PO4 2.4 g 

 Ultrapure water Made up to 1 L 

 HCl / NaOH To pH 

Dissolve reagents in approximately 800ml ultrapure water.  Once dissolved make up to 1 L with 

ultrapure water. pH at 7.4.  Autoclave to sterilise and store at room temperature. 

 

1 x  PBS (Calcium and magnesium free) 10X PBS 100 ml 

 Ultrapure water  900 ml 

 HCl / NaOH To pH 

pH at 7.4.  Autoclave to sterilise and store at room temperature. 

 

TAE buffer 50 x Tris base 121 g 

 Glacial acetic acid 28.55 ml 

 0.5M EDTA 50 ml 

 R/O water  Made up to 500 ml 

Add reagents to 400 ml R/O water.  Once dissolved make up to 500 ml with R/O water. Store room 

temperature. 

 

TAE buffer 1 x 50X TAE buffer 20 ml 

 R/O water 980 ml  
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Methanol-free 10% formalin in PBS Paraformaldehyde 4 g 

 10X PBS 10 ml 

 R/O water Made up to 100 ml 

 HCl / NaOH To pH 

Add 4 g paraformaldehyde to approximately 80 ml R/O water.  In fume cupboard heat to 59°C in water 

bath for 30 min.  Add NaOH dropwise to dissolve and allow to cool to room temperature.  Add 10 ml 

10 x PBS and make up to 100 ml with R/O water.  pH 7.4.  Short term storage at 4°C (< 1 week).  

Long term storage aliquot and store at -20°C.  
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Appendix 2 
FCoV – full and partial genome sequences accessed April 2009 

Full: EU186072, DQ848678, DQ010921, AY994055, NC_002306 

Partial: AB086902 (M and N ORF), Y13901 (M and N ORF), AB086881 (N ORF) 

 

FCoV – full genome sequences accessed July 2013 

EU186072, FJ938051, DQ286389, JQ408980, GQ152141, DQ848678, DQ010921, 

JN634064, FJ938060, FJ938061, FJ938054, FJ938056, FJ938053, FJ938055, FJ938062, 

FJ938059, FJ938052, FJ938057, FJ938058, HQ012367, HQ012368, HQ392470, 

HQ392471, HQ012369, GU553361, GU553362, HQ012370, HQ392472, HQ012371, 

HQ012372, HQ392469, JN183882, JN183883, AY994055, JQ408981 

 

FCV – full genome sequences accessed July 2011 

NC_001481, M86379, U13992, D31836, AY560118, AY560116, AY560117, AY560113, 

AY560114, AY560115, AF109465, AF479590, DQ424892, GU214989 

 

FCV – full genome sequences accessed February 2014 

JN210890, JN210889, NC_001481, JN210886, JN210885, JN210884, JN210887, 

JN210888, M86379, U13992, D31836, JX519214, JX519209, JX519210, JX519211, 

JX519212, JX519213, AY560118, AY560116, AY560117, AY560113, AY560114, AF109465, 

AF479590, KC835209, DQ424892, GU214989, L40021 
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Appendix 3 
 

McDonagh, P., Sheehy, P.A., and Norris, J. In vitro inhibition of feline coronavirus by small 

interfering RNA. (2011) Veterinary Microbiology 150 (3-4) 220-229 
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