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ABSTRACT 

 

This thesis considerably expands our understanding of hydraulic architecture in 

the genus Eucalyptus. 

The major finding is that xylem vessels in eucalypts taper at variable rates from 

the base of the stem to the top of the tree, depending on species and environment. 

The systematic assessment of changes in the structure of vessel tapering 

(reduction in xylem vessel diameter per unit length of stem, from the base to the 

apex) across a gradient of increasing aridity uncovers that the degree of taper is 

not a function of plant height but for coping with prevalent limitations like water 

or light. In some tall species from mesic climates (e.g. Eucalyptus regnans F. 

Muell.) vessel taper may be close to zero for the great majority of the stem, before 

increasing rapidly within the apical region of the canopy. For other species, such 

as those from semi-arid environments (e.g. Eucalyptus gracilis F. Muell.), 

tapering begins much further towards the base of the stem. These findings are 

highly novel and contradict some major theories (e.g. Metabolic Scaling Theory, 

MST). Yet, they are entirely in keeping with the general thrust of the „cohesion-

tension‟ theory of water movement in trees. 

This thesis includes several supporting studies for the above. A glasshouse study 

suggested thateven at seedling stage, environmental conditions such as 

temperature and moisture and nutrient availability, play roles in xylem formation 

(xylogenesis). Despite these suggestions, research in the glasshouse was 

inconclusive. This was most likely due to the relatively slow response of major 

biophysical processes, such as the development of structural entities like xylem 

vessels, when compared to faster responses to environmental conditions of 

biochemical processes such as those involved in photosynthesis and respiration. A 

field study of the potential role of water storage in heartwood (i.e. capacitance) in 

water transport, was hampered by prevailing environmental conditions and 

uncertainty around the sources of water being used by the study tree. Nonetheless, 

the data and the knowledge gained by both experiments add to current 

understanding how functionality of xylem tissues can be maintained under 

different environmental conditions, including elevated temperatures and water 

shortage. 
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However, the major body of work in this thesis rests with analysis of xylem 

vessels at a microscopic scale. This work required significant development of 

techniques suitable for use with eucalypts that contain some of the hardest wood 

of all trees. The research also required development of software scripts capable of 

quantification of properties in large numbers (>150,000) of vessels across a dozen 

or so species, and multiple field sites. Additionally, the work reported here 

includes a rigorous assessment of climate across field sites and then use of that to 

interpret xylem structure. The resultant phase analysis of rates of tapering within 

trees, is both an Australian and world first. Adopting methodology widely used in 

other fields of biology, this thesis employs a phase analysis of tapering of xylem 

vessels to highlight: 

 

1. That the insertion point of vessel taper towards the top of trees differs 

largely among eucalypt species. 

 

2. That regardless of species and location, vessel diameter at the apex does 

not differ widely among species – this, at least, accords with MST. 

 

3. That rates of taper within the apical region of canopies where the risk of 

cavitation is greatest are closely related to environmental conditions, 

particularly the availability of water and competition for light. 
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Chapter 1 – Literature review and general introduction 

 

1.1 Background 

 

The genus Eucalyptus dominates many of Australia‟s ecosystems. This genus 

includes over 800 species, and forms the dominant canopy in many forests and 

woodlands across the Australian continent (Boland et al., 1984; Merchant et al., 

2007). Apart from their ecological significance in native forests, woodlands and 

savannas, eucalypts are worldwide the most common plantation tree in the tropics, 

with >10 million hectares planted (Brown and Ball, 2000). Plant species of economic 

significance are often the subject of research into effects on plant structure and 

function of major environmental events, like droughts (Clark et al., 2002; 

Guarnaschelli et al., 2003; Tausz et al., 2008; Ryan et al., 2010) and heatwaves and 

freezing conditions (IPCC, 2007; Woldendorp et al., 2008). Similarly, effects of 

long-term changes in atmospheric CO2 concentrations on structure of economically 

important plant species have been well studied (Atwell et al., 2009; Ghannoum, 

2009; Luo and Polle, 2009). Despite their ecological and economic significance, 

there have been few studies of environmental effects on the hydraulic architecture of 

either plantation or non-plantation Eucalyptus species. Recent global analyses (e.g. 

Choat et al. 2012) include relatively few members of the genus.   

The climate of south-eastern Australia is predicted to become warmer and mostly 

drier (IPCC, 2007). Changes in precipitation, surface runoff, solar UV radiation, 

temperature, and evaporation are some of the predicted outcomes of climate change 

and ozone depletion. A combination of decreased rainfall, increased solar radiation 

and decreased cloud cover will likely increase evaporation and decrease plant water 

availability (Soh et al., 2008). As regional and continental changes in climatic 

conditions are predicted to clearly modify plant growth and survival (IPCC, 2007) it 

becomes increasingly important to understand the „plasticity‟ of the hydraulic 

architecture of eucalypt species. This knowledge is required to form the foundation 

for decision-making by land managers in relation to identify tree species for future 

plantation, rehabilitation and urban panning projects. Overall, the lack of quantitative 

analysis of wood structure and architecture in relation to environmental and climatic 

variables for Eucalyptus spp. severely limit our ability to predict structural and 

functional outcomes of growth under any given set of conditions (Bleby et al., 2009). 
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The field of hydraulic architecture of plants, and trees in particular, is receiving 

increased scientific attention. This is in part due to effects of climate change (e.g. 

Williams et al., 2010). Tree express not only wide inter-, but also substantial intra-

species specific variation in features and mechanisms influencing their water use 

strategy, xylem anatomy and drought tolerance (e.g. Roderick and Berry, 2001; 

Thomas et al., 2004, Choat et al. 2102). 

Plant scientists have studied the transport of water in plants for more than a century, 

shaping current theories of plant hydraulics (e.g. Dixon and Joly, 1895; Huber, 1928; 

van den Honert, 1948; Huber, 1956; Scholander, 1972). Reviews by Zimmermann 

(1983) and Boyer (1985) provided a comprehensive platform for research in the past 

25 or so years. Today, the basic mechanisms that govern water transport are widely 

accepted and descriptive theories and mathematical models have been proposed 

(Chapter 1.4). As just one example of this acceptance and its development, 

researchers have more recently been investigating mechanistic and structural features 

of trees that might explain variation in maximum height. As another, linking plant 

water transport to biomass accumulation is important to increase our ability to 

accurately calculate the carbon storage capacity of natural and managed forest 

ecosystems (Woodruff et al., 2008). Broadly speaking, we now know that structural 

features of xylem are closely related to site-specific conditions such as seasonal 

climate, soil water and nutrient availability, landscape geomorphology and even 

species competitiveness for available resources (e.g. Thomas et al., 2007; Sperry, 

2008; Petit et al., 2010). While the functional significance of changes in xylem 

structure for water transport are obvious, they are also important to the properties of 

wood as a commercial product – for example, properties related to wood strength. As 

a consequence there is a separate body of knowledge that comes from investigations 

of the microscopic structure of wood as an engineering material. 

Taken together, there is now a considerable body of knowledge of relations between 

climate and wood anatomy. Even so, we lack models (of any description – 

conceptual, mechanistic and empirical) that properly describe the development of 

wood anatomy under changing climates (Aber et al., 2001; Swenson and Enquist, 

2007).  
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Changes in hydraulic architecture, maximum tree height and, arguably, maximum 

tree biomass, can have a very significant impact on local, regional and global water 

and carbon cycles, as well as species composition (Gitlin et al., 2006). Despite our 

currently limited understanding of the structure of xylem in eucalypts, it is feasible to 

study tree hydraulic architecture across different ecosystems. Such an approach is 

required to elucidate how sapwood features like its density and vessel anatomy relate 

to environmental conditions, and ultimately to allow us to predict how these changes 

may affect ecosystems at a range of scales (Zanne et al., 2010).  

 

1.2 Transporting water in trees 

 

As fundamental elements of our ecosystems, trees have long been of scientific 

interest. A broad range of specific knowledge about principles of hydraulic operation 

has therefore been accumulated over the last centuries. Even though some of the 

following underlying principles might not be of necessary importance to understand 

the central subject of the present thesis, Chapters 1.2.1 to 1.2.4 intend to provide a 

comprehensive overview of hydraulic design of trees as well as basic physical, 

chemical and anatomical factors influencing the ascent of water in trees.  

 

1.2.1 The root 

 

Plant roots are a logical starting point for consideration of the hydraulic system of 

plants. Roots facilitate uptake of water from the soil before it enters the xylem tissue 

from where it is distributed throughout the plant. The movement of water from soil to 

the xylem - and subsequently to leaves - is driven by negative hydrostatic pressure in 

the root (water potential) generated by plant transpiration. A model structure of a 

root formed by dicotyledonous plants is shown in Figure 1.1. 
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Figure 1.1: Anatomical structure of a dicotyledonous root (www.http://mandevillehigh 

.stpsb.org/teachersites/laura_decker/ap_roots_stems_and_leaves_diagrams.htm;accessed: 

10.03.2014) 

 

The outer layer or epidermis of roots characteristically feature microscopic 

extensions of epidermal cells known as hair roots, which expand the root surface and 

enlarge the soil area accessible for resource extraction by the plant. The driving force 

for water into the root/hair root is the difference in water (Ψw) and solute (Ψπ) 

potential between root and soil. After passing the epidermis, water crosses the root 

cortex. The cortex consists of layers of starch-grain-rich parenchyma cells 

surrounding the vascular cylinder. Water can pass these tissue layers either via a 

symplastic (within cells) or apoplastic (water filled space outside of cells) pathway. 

A combination of pathways is common and termed „transmembrane‟. The diffusion 

of water through membranes is effectively provided through aquaporins. These 

membrane proteins facilitate and regulate water movement in response to cell 

internal physiological parameters such as pH, [Ca
2+

] and osmotic gradients (Tyerman 

et al., 2002; Shao et al., 2008). After passing the cortex, water reaches the 

endodermis that bounds the vascular cylinder. Endodermis cells, like cortex cells, 

contain starch granules as well as mineral ions. These ions form part of the 

osmoregulatory capacity of plants. For example, they can be actively loaded into 

xylem vessels to maintain turgor and root pressure. Furthermore, the radial walls of 

endodermis cells contain high concentrations of suberin that acts as a barrier against 

apoplastic flow of water and solutes into the vascular cylinder. This safety feature is 

termed the „Casparian strip‟, and its primary function is now thought to be forcing of 

water to enter the vascular cylinder via the symplast pathway, thus providing the 

http://www.http/mandevillehigh%20.stpsb.org
http://www.http/mandevillehigh%20.stpsb.org
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plant with greater control of water (and nutrient) influx. After water has passed the 

symplast of endodermis cells, it again moves towards the xylem, passing the 

pericycle. The pericycle consists of one or more layers of thin-walled parenchyma 

cells. In the primary body of the root, the pericycle directly borders phloem and 

xylem strands. In some plants the xylem strands may be in separate units in the 

periphery of the vascular cylinder or they may extend into the centre. Once water 

reaches the xylem, negative hydrostatic pressure forces water into xylem vessels 

from where it is transported towards the transpiring surfaces of the plant.  

 

1.2.2 The stem  

 

Within a tree stem, different types of tissues can be distinguished. The outer bark, or 

periderm, protects the trunk from biotic and abiotic stresses. The meristem 

responsible for radial growth is termed „cambium‟. In the initial stages of tree 

growth, the pro-cambium is responsible for the production of primary xylem and 

primary phloem. At more advanced stages of development, a vascular cambium 

arises between these two primary tissues, producing secondary xylem and secondary 

phloem. The vascular cambium is responsible for secondary growth as it 

continuously produces (during the growing period) secondary phloem cells towards 

the bark and secondary xylem cells towards the heartwood of the trunk. Phloem is 

predominantly a transport system for assimilates from photosynthesis (source) to 

places of consumption or storage (sink). Phloem cells are short-lived and transform 

into cork, becoming part of the protective and insulating outer bark (Fig. 1.2). 

Secondary xylem is a complex axial system of capillary tubes. They are responsible 

for water and solute transport from roots towards leaves. Heartwood in the centre of 

a stem primarily provides mechanical support. It consists of inactive cells that are 

chemically and physically different from sapwood (xylem) cells as they contain 

greater amounts of cellulose, lignin and polyphenols. Heartwood formation begins 

with increased cellulose deposition in water transporting pipes. This process is 

known as „tylosis‟. Increasing amounts of secondary compounds, including tannins 

and resins, will further increase wood strength and resistance against abiotic (e.g. 

wind) and biotic stresses (e.g. insect attack) and block any upward movement of 

water.  
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Figure 1.2: Schematic view of tissue structures commonly found in a tree trunk (Wesolowski, 

2010).  

1.2.3 The crown 

 

The appearance of a mature tree crown depends on genetic code and environmental 

circumstances (Barthelemy et al., 1989). The latter is easily recognised in the 

obvious plasticity in crown architecture of most tree species (i.e. narrow crown shape 

when growing in stands, wide crown shape when growing alone). The distribution of 

leaves as photosynthetic surfaces within tree crowns is one of the most important 

functional characteristic of trees inasmuch that their orientation determines the light 

capturing capacity of a tree and its intra-specific competitiveness (Goulet, 2000; 

Nikinmaa et al., 2003). Leaves also play a key role in maintaining the balance 

between transpiration and carbon uptake (Outlaw, 1983; Talbott and Zeiger, 1998; 

Stern, 2000; Shimazaki et al., 2007). This balancing act represents a driving force for 

hydraulic conductance within the vessel network of trees and determines water use 

efficiency at the tree scale (Koch et al., 2004; Johnson et al., 2009). Given the laws 

of thermodynamics that govern the movement of water, the large gradient in water 

potential between the mostly dry atmosphere (relatively low Ψa), and more moist 

conditions inside leaves (higher Ψl), water moves from the air spaces inside leaves to 

the atmosphere via stomata. In similar fashion, water moves along the gradient from 

higher water potential within leaf xylem cells to the lower water potential of the cell 

walls of the mesophyll (Fitter and Hay, 1987). In addition to the continuous gradient 

in water potential from the leaf xylem to the atmosphere, water in leaves undergoes a 

phase-change - from liquid to gaseous – as it moves from cell walls into intercellular 
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spaces and the sub-stomatal cavity. The amount of water lost via stomata (transpired) 

can be described according to the difference in vapour pressure between the 

intercellular spaces and the atmosphere surrounding the leaf (Buckley and Mott, 

2013). Small amounts of water (generally <5%) can also be lost through the waxy 

cuticle (Taiz and Zeiger, 2002). Each stomata is bordered by guard cells that can 

increase or decrease the stomatal aperture. Asymmetric positioning of microfibrils in 

guard cell walls provide capacity for plants to quickly respond to changes in turgor 

pressure. Guard cells function as multisensory valves and react to environmental 

factors such as light, temperature, relative humidity and intracellular CO2 

concentrations (Taiz and Zeiger, 2002). During photosynthesis, guard cells use 

energy to acquire K
+
 ions from neighbouring epidermal cells. Increased K

+
 and/or 

sugar content reduce water potential in the vacuoles of guard cells and increases 

turgor pressure (via osmosis). This leads to swelling of vacuoles and widening of 

stomatal aperture. As guard cells shrink and apertures close, triggered by decreasing 

Ψl, intakes of K
+
 and/or sugars decline as a result of reduced rates of carbon fixation. 

A key safety mechanism of plants is that stomata remain closed under conditions of a 

dry atmosphere and low soil water potential (Ψs), as leaves cannot provide sufficient 

amounts of water for building turgor pressure in guard cell vacuoles. This effectively 

decouples plants from the atmosphere and prevents large negative water potentials in 

the xylem, that could potentially lead to xylem failure via cavitation (Chapter 1.3.3) 

(Blackman et al., 2010). A consequence is that CO2 cannot be taken up by leaves, 

reducing production of photosynthates and ultimately leading to leaf abscission. 

Beside stomatal resistance (rs), which is proportional to stomatal frequency and 

inversely proportional to the diameter of stomatal aperture, the resistance of the 

„boundary layer‟ (rb) also limits water diffusion from the leaf to the atmosphere 

(Fitter and Hay, 1987; Taiz and Zeiger, 2002). Boundary layers are defined as the 

space immediately adjacent to leaf surfaces, and are enriched in water vapour 

compared to turbulent air. The extent of any given boundary layer is determined by 

wind speed and the shape of leaves and canopy roughness  (Fitter and Hay, 1987). A 

principal function of boundary layers is that of buffering vapour pressure deficits 

(VPD) between stomata and the atmosphere (Daudet et al., 1999; Taiz and Zeiger, 

2002). Boundary layers can indirectly reduce stomatal conductance (Aphalo and 

Jarvis, 1993). In agreement with the hydraulic limitation hypothesis (Chapter 1.4.1), 

there is good evidence that stomatal conductance is usually coordinated with overall 
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hydraulic conductance of the pathway from roots to canopy (Meinzer and Grantz, 

1990; Bond and Kavanagh, 1999; Rust et al., 2002). A net result is that 

photosynthetic activity is often inversely related to tree height, regardless of soil 

water status or VPD. 

Branch junctions also serve to reduce the hydraulic conductivity of a tree crown. 

Depending on branch position, additional resistance may be introduced by the branch 

collar (Aloni et al., 1997; Eisner et al., 2002). Vessels or tracheids in branch 

junctions may be shorter and narrower compared to their counterparts in stems 

(Eisner et al., 2002). Since conduit end walls provide significant resistance to flow, 

shorter vessels/tracheids generally reduce hydraulic conductance (Zimmermann, 

1983). Vessel orientation and changes therein further affect conductance (Tyree and 

Ewers, 1991; Rust et al., 2002). Axially orientated branches may have less resistance 

to water movement than those oriented perpendicularly, and it is worthwhile noting 

that each junction from the main axis may introduce a change in vessel structure and 

orientation (Rust et al., 2002). 

 

1.2.4 Differences between gymnosperms and angiosperms 

 

Sapwood anatomy in gymnosperms differs strongly from that in angiosperms, while 

the two groups share similar features in their xylem networks. Gymnosperm wood is 

composed mostly of single-celled tracheids that function both as a conduit for water 

flow and mechanical stabilizer (Hacke et al., 2004). Tracheids vary in length (0.5 

to11 mm) and diameter (10 to 40 μm) within and between species (Zimmermann, 

1983; Pittermann and Sperry, 2003). According to the Hagen-Poiseuille formula 

(Equation 1.6) the increase of specific conductivity of water flow in a xylem conduit 

increases by the fourth power of the conduit diameter (Zimmermann, 1983; 

McCulloh et al., 2003; Sperry et al., 2006). As tracheids are usually smaller in 

diameter compared to vessel elements of angiosperms, their hydraulic resistance is 

generally greater. Tracheids are slender tapered cells with multiple pits 

(Zimmermann, 1983; Amritphale and Sharma, 2010). They are organized in bundles 

and water passes from cell to cell via pits. Pairs of pits are usually separated by a 

torus-margo pit membrane (Fig. 1.3)  (Bauch et al., 1972; Zimmermann, 1983). 

Inter-vessel pits act as valves, allowing water to pass under a given tensile strength. 

If a vessel is embolized due to formation of an air bubble, the pit membrane will be 
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pushed against the torus of the neighbouring cell, effectively sealing off the air-filled 

tracheid and preventing spread of embolism. Overall resistance to water flow in 

conifers would increase if pit structures were not present (Pittermann et al., 2005). 

Compared to gymnosperms, organisation of sapwood in angiosperms is more 

complex. Angiosperm sapwood is divided into vessels for water transport and 

lignified fibre cells for mechanical strength. Conducting vessels are constructed from 

numerous consecutive vessel elements, forming a continuous pipe-like structure. 

Perforated end walls, so called sieve plates, separate vessel elements (Dickison, 

2000) and can differ between species. Plates can be simple or multiple, they can be 

scalariform (ladder like arrangement), forminate (circular in shape and grouped 

together) or reticulate (numerous and small, separated by a network of secondary 

wall thickening) (Cutter, 1978). Vessels are surrounded by living parenchyma cells 

for storage purposes and fibre cells for mechanical strength. Single vessel elements 

are usually shorter than tracheids but their greater diameter (10 to 500 μm) 

permitting greater rates of water to pass (Zimmermann, 1983; Amritphale and 

Sharma, 2010). Conduit pipes can vary in length from a few mm to more than 10 

meters in vines and ring porous trees  (Hacke and Sperry, 2001; Amritphale and 

Sharma, 2010).  

The lateral walls of vessel elements can have pits. Inter-vessel pits of angiosperms 

are mostly less efficient in water transport and less complex in structure when 

compared to the inter-tracheid pits of gymnosperms (Fig. 1.3). Inter-vessel pits are 

uniformly microporous, homogenous in thickness and porosity and pose greater 

resistance to flow of water than intertracheid pits (Hacke et al., 2004; Pittermann et 

al., 2005). Some investigations have shown that angiosperm pit membranes can be 

responsible for 50% or more of the hydraulic resistance in the xylem (Wheeler et al., 

2005; Choat et al., 2006; Hacke et al., 2006; Jansen et al., 2009) and architectural 

features of pit membranes such as thickness and porosity have significant influence 

on total hydraulic resistance in trees (Jansen et al., 2009). Nevertheless, the smaller 

the pit, the better the protection against cavitation (Choat and Pittermann, 2009). 

Despite differences in the water transporting system of angiosperms and 

gymnosperms, their hydraulic efficiency to transport water appears roughly similar 

for a given vessel diameter, including branches and leaves (Becker et al., 1999; 

Pittermann et al., 2005).  
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Figure 1. 3: Pit structures in angiosperms and conifers.Left: a homogeneous pit membrane of an 

angiosperm species, Acer negundo. Right: a torus-margo type pit membrane of a conifer, 

Calocedrus decurrens (Choat and Pittermann, 2009). 

 

1.3 Hydraulic architecture  

 

1.3.1 Parameters and matrices to describe hydraulic architecture 

 

Water potential (Ψ)  

 

The ascent of water is a passive process within the xylem driven by different 

chemical potentials of water (μ) within different systems (e.g. atmosphere and leaf). 

µ describes the energy state of water, and is often expressed in J mol
-1 

(Tyree and 

Zimmermann, 2002). The water potential (Ψ) of a system can be determined by 

comparing its potential for chemical work with a reference potential.  For liquid 

water, the reference is pure water at atmospheric pressure : Ψ = 0 Pascal (Pa) (Boyer, 

1995; Tyree and Zimmermann, 2002). Mathematically, this is expressed as (µw-µ0) 

where µw is the measured chemical potential and µ0 is the chemical potential of pure 

water. Converting J mol
-1

 to the equivalent units of pressure (Pa), requires that µ be 

divided by the partial molar volume of water at atmospheric pressure (Vw), as first 

proposed by Slayter and Taylor (1960):  

 

        (Equation 1.1) 

 

Ψ can also be expressed as the sum of pressure (P) and the osmotic potential (π):  

Vw

w 0 

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        (Equation 1.2) 

 

The Cohesion-Tension Theory 

 

The Cohesion-Tension (C-T) theory was first proposed by Dixon and Joly (1894) 

and describes the biophysics of the ascent of sap. The low water potential of the 

atmosphere drives evaporation of water from cell walls in substomatal chambers, 

leading to curvature in the menisci of apoplastic water within cellulosic microfibril 

pores of cell walls. This in turn increases xylem pressure and lowers the water 

potential of adjacent tissues (protoplasts and cell walls). Due to the tensile strength of 

water (created by hydrogen bonding), a continuous column of water is „pulled‟ 

towards substomatal chambers. Negative tension is thus transferred through the 

entire length of xylem.  As a consequence, the water potential of roots  is generally 

lower than that of soil and water uptake by roots is literally driven by transpiration of 

water from leaves (Tyree, 1997; Tyree and Zimmermann, 2002).  The rising water 

column can withstand tensile stress without rupturing due to inherent stability of a 

liquid when mechanically stretched, and the additional stability conferred by the 

minutely subdivided structure of conducting tissue, which renders the stressed liquid 

stable even in the presence of free gas (Dixon and Joly, 1894). The C-T theory was 

transferred to a quantitative basis by van den Honert (1948) who used an analogue of 

Ohm's law. 

 

Ohm's Law 

 

According to van den Honert (1948), water flow through plants can be regarded as a 

catenary process, as formulated for the flow of electrons by Ohm. Van den Honert 

suggested each element in this catenary process has its own hydraulic conductance, 

with the total conductance being calculable via considering  the series and parallel 

conductances of roots, stems, and leaves (van den Honert, 1948; Tyree, 1997; Tyree 

and Zimmermann, 2002). Water potential gradients as the driving force for sap flow 

must therefore decline along the segments of conducting tissue arranged in series. If 

the endodermis of the root, for example, represents the greatest resistance, the 

decline in water potential must also be greatest at this point (Steudle and Peterson, 

1998).  

 P
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The pressure gradient of any point of the tree can thus be calculated as: 

 

       (Equation 1.3) 

 

Where  is the pressure gradient, F is the rate of water flow in the considered 

stem segment with the hydraulic conductivity (k) and   is the gravitational 

potential gradient and represents the gravitational influence at a chosen height; ρ is 

the density of water, g is the acceleration due to gravity and dh/dx the height 

achieved per unit of distance (dh) and travelled by water in the stem segment (dx).  

This analogue of Ohm‟s law leads to two major assumptions for water flow in trees 

(Tyree and Zimmermann 2002):  

 

1. Driving force of sap is a continuous decrease in xylem pressure in the 

direction of sap flow. 

2. Evaporative flux density from leaves is proportional to the pressure gradient 

at any given point (cross section) along the transpiration stream (Tyree and 

Zimmermann, 2002). 

 

Darcy’s Law 

 

Originally, Darcy (1856) investigated the infiltration of water through saturated sand 

and formulated a general law: 

 Conductivity = Flux/Pressure Gradient (Siau, 1984).  

Principal assumptions for Darcy‟s law, as formulated by Siau (1984), are: 

 

1. Flow is viscous and linear. Linear velocity and volumetric rates of flow are 

then directly proportional to the applied pressure differential.  

2. The fluid is homogeneous and incompressible. 

3. The porous medium is homogeneous. 

4. Permeability is independent of the length of the specimen in the direction of 

flow.  

dx

dh
g
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Assumptions three and four clearly fail for water transport through wood.  Even so, 

Darcy‟s law has been widely applied to the relationship between the rate of flow and 

the pressure gradient for porous media (Siau, 1984; Reid et al., 2005).  

 







A

QL

L

AQ
k

/

/
       (Equation 1.4) 

 

where k is conductivity, Q is flow per unit time (cm
3
s

-1
) through a column of porous 

material of cross sectional area A (cm
2
) and length L (cm); △Ψ is the water potential 

gradient.  

 

The Hagen-Poiseuille Equation and its implications  

 

In the 19
th

 century, Hagen and Poiseuille developed an equation describing the rate 

and velocity of flow of a fluid through a circular tube. They showed that velocity of 

water increases towards the centre of a tube and that water remains nearly stationary 

at side walls (Roderick and Berry, 2001; Tyree and Zimmermann, 2002). The 

mathematical equation describing the water flow in a conduit with certain diameter 

can be expressed as:  

 

        (Equation 1.5) 

 

where k is the hydraulic conductivity of a tube, r is the radius and η is the dynamic 

fluid viscosity.  

By using diameter instead of radius and adding a pressure gradient for a certain tree 

height we have:   

 

          (Equation 1.6) 

 





8

4r
k 

x

pD
k










128

4



 

   14 
 

where D is the diameter of a circular conduit, η is the viscosity of water, and △p/△x 

is the pressure gradient. The negative sign indicates the direction of flow from high 

to low pressure (Lewis and Boose, 1995). 

1.3.2 Radial and tangential transport 

 

Two architectural features influence the transport of water in radial directions. These 

are the generic inter-vessel- or inter-tracheid pit structures in the conduit network, 

and wood rays. Wood rays are aggregations of parenchyma cells that extend radially 

between the vertical tracheary elements from the center of the stem outward to the 

cambium. They are the only living cells in the xylem of woody plants and are 

connected to adjacent water-conducting tracheary elements by means of pit pairs in 

their side walls (Salisbury and Ross, 1992; Dickison, 2000). Normally, those pits are 

half bordered involving a simple pit on the ray parenchyma side while the pit on the 

tracheary element side is bordered. However in dicotyledonous trees, rays are scarce 

and ray transport of water and conduction through rays is usually slow, owing to the 

high density of parenchyma cells that hinders water transport (Dickison, 2000 ; Tyree 

and Zimmermann, 2002). Consequently, inter-vessel or inter-tracheid pits arguably 

provide a quicker and more direct means of radial water transport. Unfortunately, 

such transport is difficult to quantify and most investigations ignore radial/tangential 

deviation of sap from the axial path (Kitin et al., 2004; Domec et al., 2006).  

Three-dimensional scanning of the vessel structure of Fraxinus lanuginosa and 

Machilus thunbergii illustrated interconnections between vessels in radial and 

tangential directions, even across the borders of annuli (Fujii et al., 2001; Kitin et al., 

2004). Many studies have described radial sap flow in ring-porous and conifer 

species  

The majority of studies of conifers, ring- and diffuse-porous species detect the 

greatest sap flow in outer xylem, close to the cambium, and decreasing sap flow 

towards heartwood (Granier et al., 1994; James et al., 2003; Delzon et al., 2004; 

Domec et al., 2005; Domec et al., 2006; Gebauer et al., 2008). While fewer in 

number, studies have also described relatively even distribution of sap flow over the 

entire cross-sectional area of sapwood in diffuse-porous species (Jiménez et al., 

2000; Cermák et al., 2002).  

Decreasing efficiency of xylem elements closer to the heartwood may be genetically 

programmed (earlywood- and latewood formation) or induced by formation of 
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incipient tyloses in conducting conduits (McElrone et al., 2010). Reducing pit 

density per conduit and thicker pit chambers (e.g. Panshin and de Zeeuw 1980) 

theoretically increases resistance to water transport in radial direction (Calkin et al., 

1986; Domec et al., 2005). Acting in the opposite direction (increasing radial 

transport) are smaller conduits with more inter-vessel / inter-tracheid connections 

and greater pressure gradients (Canny, 1991; Larson et al., 1994) . Domec (2006) 

calculated for a small Pseudotsuga menziesii that radial sap flow was about 100 times 

smaller than axial sap flow at breast height, but increased to about 10% of axial sap 

flow at a height of 10 m. This finding suggests water may move more freely in radial 

directions in the canopy of trees.  

Similar to radial transport, tangential transport is facilitated by greater densities of 

vessels (Zimmermann and Tomlinson, 1966). Given that wood rays are radially 

orientated, water that is transported tangentially may have to pass through ray tissue. 

Such transport could be facilitated by inter-vessel / inter-tracheid pits.  

There would appear to be several advantages of tangential transport. Most notable 

would be improved capacity of trees to take up water from localized sources and then 

distribute it to the whole canopy. Furthermore, if sections of conducting xylem in 

roots or trunks are damaged or embolized, water supply for the crown might still be 

guaranteed (Tyree and Zimmermann, 2002).  

 In partial support, dye-flow experiments have shown that sap usually ascends 

following a helical pathway within a growth ring and along a tree stem, indicating 

well-developed conduit connections in tangential direction (Chaney and Kozlowski, 

1977; Kitin et al., 2004; Tyree and Zimmermann, 2002). Even so, in conifers the 

total number of inter-tracheid pits responsible for tangential flow was found to be 10
3
 

times less than the number involved in axial flow (Petty, 1970; Flynn, 1995; Fujii et 

al., 2001).  

It is clear that based on present knowledge, assumptions of uniform transport of 

water over the entire cross-sectional area of xylem can lead to biased estimations of 

total tree water use.  Far more data about radial and tangential water transport are 

required to fully understand the hydraulic architecture of trees (Delzon et al., 2004).  
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1.3.3 Cavitation and refilling of conduit embolism  

 

The underlying principle for the C-T theory is the chemical composition of water 

which is characterised by intermolecular hydrogen bonds. Fundamental dynamical 

process of liquid water is the making and breaking of these hydrogen bonds (Slayter, 

1967; Zimmermann, 1983; Luzar and Chandler, 1996). Vapour pressure of water is 

2.3 kPa at 20 °C, below this point xylem sap is in a metastable state (Zimmermann, 

1983; Linton et al., 1998). However, water in xylem conduits is exposed to immense 

negative pressure, usually of -1 to -2 and sometimes as low as -10 MPa (Tyree and 

Sperry, 1989). Exposed to such negative pressures, hydrogen bonds in the uprising 

water column can break and gas filled voids develop. Vaporisation of water induced 

by the release of energy too high to dissipate otherwise is commonly called 

“cavitation”.  Under tension, these gas bubbles expand and may finally embolise the 

entire vessel. Embolised vessels are dysfunctional. As a result hydraulic conductance 

declines and negative pressure within the remaining functional vessels may increase. 

In severe cases this might lead to an uncontrollable chain reaction (termed „runaway 

embolism‟) which can potentially kill plants (Zimmermann, 1983; Tyree and Sperry, 

1988; Tyree and Ewers, 1991).  

Spreading of embolism can be triggered by two major processes. „Air seeding‟ is 

defined as the spread of air through the pit membrane between an embolised and 

adjacent functional vessel. A higher negative pressure within the functional vessel 

forces the pit membrane to stretch and the adjacent air-water meniscus is pulled 

through the widened membrane pores (Fig. 1.4) (Zimmermann, 1983). „Freezing-

induced cavitation‟ is caused by gas bubbles, which are formed when gas dissolves 

within freezing sap (Fig. 1.4). 
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Figure 1.4: Mechanism of freezing-induced and drought-induced cavitation in Angiosperms as 

consequence of air seeding (Hacke and Sperry 2001) 

 

How plants refill embolised vessels is not fully understood yet. Since water in plants 

is saturated with air at atmospheric pressure, dissolving air bubbles the in embolised 

vessels will require plant internal pressure to be greater than atmospheric pressure 

(Tyree et al., 1999). Surface tension at the air/water interface of voids allows the gas 

to be at a higher pressure than the liquid (Tyree et al., 1999; Hacke and Sperry, 

2003). To calculate the pressure of gas within an embolised conduit (Pg) Tyree et al. 

(1999) suggested the „capillary equation‟:  

 

                  (Equation 1.7) 

 

where Px is the threshold xylem pressure, T is the surface tension of water in the 

vessel and r is the radius of curvature of the air/water interface. Positive xylem 

pressure must therefore at least exceed -2T/rv (where rv is the radius of the vessel 

lumen containing the gas bubble) to overcome atmospheric pressure and collapse the 

bubble (Tyree et al., 1999; Hacke and Sperry, 2003). Several authors suggested that 

short plants could develop the required positive pressure in roots during nighttime 

(Ewers et al., 1991; Fisher et al., 1997) . However, for tall plants like trees a 

nightime refill via positive root pressure appears very unlikely as the necessary 

pressure would have to be maintained against gravity over a long distance (Tyree et 

r

T
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al., 1999). Consequently, the ability of larger trees to refill embolized vessels 

requires different mechanisms. Several theories address this problem. Grace (1993) 

suggested that embolism could be reversed by export of solutes or salt from adjacent 

living parenchyma cells into vessels (Grace, 1993). Salleo et al. (1996) suggested a 

similar movement of solutes from the phloem. Movement of water due to osmotic 

differences may be sufficient to increase positive pressure above the -2T/rv threshold 

(Clearwater and Goldstein, 2005). Yang and Tyree (1992) suggested that time 

necessary for dissolution of voids will increase with increasing vessel cross-sectional 

area, increasing stem diameter, decreasing xylem pressure potential and increasing 

conduit diameter (Yang and Tyree, 1992). Species with small vessel diameters are 

therefore not only able to cope with greater negative xylem pressure, but they also 

might refill the embolised vessels quicker and more efficiently.  

 

1.4 Descriptive models and theories  

  

1.4.1 The Hydraulic Limitation Hypothesis 

 

 The Hydraulic Limitation Hypothesis (HLH) aims to explain physical limitations 

within hydraulic architecture and possible impacts on maximum tree height (Ryan 

and Yoder, 1997; McDowell et al., 2002). It provides a theoretical framework which 

describes a decline in height growth with age of any tree species. In their original 

hypothesis Ryan and Yoder (1997) stated that total resistance to water flow in trees 

varies with both path length (l) and conductivity, resulting in increasing hydraulic 

resistance (R) with increasing tree height. A result is that the rate of water flow is 

assumed to be analogue to Ohm‟s law and equal to the potential difference between 

the roots and the leaf divided by the total hydraulic resistance (Rtot) along the 

hydraulic pathway (Ryan and Yoder, 1997). With increasing negative pressure 

towards the apical region of trees, the likelihood of cavitation events increases 

simultaneously. As pointed out earlier, trees have a certain capacity to regulate 

negative tension in xylem vessels as stomata react on reduced leaf water potentials 

with passive closing of guard cells. This mechanism effectively reduces water loss to 

the atmosphere but restricts the uptake of CO2. Therefore photosynthetic activity 

decreases. The closure of stomata with increasing tension in the xylem is nowadays 

widely accepted as a common safety feature of trees against increasingly negative 
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water potentials and possible hydraulic failure. This mechanism was observed in 

many species  (Bond and Kavanagh, 1999; Koch et al., 2004; Ambrose et al., 2009). 

Even though several studies provided evidence for reduced wood growth under 

limited carbon supply (Waring and Pitman, 1985; Ryan and Waring, 1992; 

Mencuccini and Grace, 1996; Ryan and Yoder, 1997), the line of argument as 

provided in the original HLH appears incomplete. However, other compensatory 

mechanisms improve the prediction power of the original hypothesis (Burgess et al., 

2006). For example the ratio between leaf- and sapwood-area (Huber Value) was 

identified as being another important driver for hydraulic efficiency of trees (Meinzer 

and Grantz, 1990; Pataki et al., 1998; Becker et al., 2000). HLH completely ignores 

vessel network structure, possibly the most powerful „tool‟ of trees to adapt to 

environmental conditions. Vessel sizes on different sites are taken into account when 

Ryan and Yoder (1997) speculate about maximum achievable tree height on different 

sites. On nutrient-poor sites for example they expect low rates of stomatal 

conductance, slower wood growth, smaller vessels and as a result higher resistance to 

conducting water and shorter trees (Ryan and Yoder, 1997). Overall, HLH cleverly 

combines multiple cross-species observations and it creates a rudimentary framework 

of driving forces and physical restrictions on uprising sap. Even if HLH represents a 

simplistic approximation to a far more complex phenomenon (Mencuccini and 

Magnani, 2000),  its  combination of a range of simultaneous processes makes it a 

valuable starting point in order to explain limits of tree height growth.  

 

1.4.2 The Metabolic Scaling Theory – original and modified  

 

The original Metabolic Scaling Theory (MST) first developed by West et al. (1999) 

is a comprehensive model approach describing optimal plant architecture including 

hydrodynamics, biomechanics and branching geometry based on the application of a 

universal theory of resource distribution through hierarchical branching networks of 

vascular plants. Assumed is an average idealized plant that may not reference to 

reality (Anfodillo et al., 2006). Individual habitus features such as site-specific 

branching architecture or compression- and tension wood are not taken into account. 

For simplification purposes whole tree is hypothetically subdivided into segments, 

which are connected in series. Both, branch diameters and conduit diameters are 

assumed to follow a continuous hierarchical network. In-between internal and 
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external network segments (k), conduit ( r ) and branch (r) radii should scale 

according to:    

 

       (Equation 1.8) 

 

where  is scaling of xylem conduits among adjacent segments, βk is the scaling of 

branch to daughter branch segments, and n is the number of branches/conduits (West 

et al., 1999; Anfodillo et al., 2006). MST for average idealised plant suggests, a = 1 

(the branching architecture is area-preserving, as suggested by Leonardo da Vinci); a 

= 1/6 (hydrodynamic resistance is minimized); and n = 2 (plant is bifurcated). In this 

case βκ = 0.70 (the daughter segment is 70% the diameter of the parent one) and,  

= 0.94 (the daughter xylem conduit is 94 % the diameter of the parent one) (West et 

al., 1999; Anfodillo et al., 2006). 

Approximation assumes a universal scaling of sap flow and all other metabolic 

processes with tree mass and biomass growth rate. The underlying power function to 

explain most tree size-related variations is minimalised and follows allometric 

scaling laws:  

 

         (Equation 1.9) 

 

where Y is the variable of interest (conductivity, flow rate, rates of metabolism or 

growth), Y0 is a normalization constant, M is biomass and b is the scaling exponent 

(West et al., 1999; Sperry et al., 2012). Focusing on the structure of xylem networks, 

MST suggests that plant evolution favoured individuals with a hydraulic system 

capable to fully compensate for increasing R with increasing l (West et al., 1999; 

Anfodillo et al., 2006). Conduits within sapwood are assumed to run parallel from 

roots to leaf; the vessel diameter is taken to be constant within a single branch 

segment (k); Rtot of whole path length can therefore be calculated as 
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where l is total path length, lN and RN are the length and hydraulic resistance of the 

terminal elements, a and n are parameters characterizing the plant architecture (West 

et al., 1999; Petit and Anfodillo, 2009). Full compensation for increasing resistance 

with increasing tree height is theoretically achieved when ā equals 1/6 ≈ 0.17 (West 

et al., 1999; Savage et al., 2010). The value of R of each segment, calculated by the 

Hagen-Poiseuille equation for laminar flow should be conserved and independent 

from k. However, a perfect conduit tapering structure to fully compensate path length 

resistance can be approximated as 

 

         (Equation 1.11) 

 

where Dh is the hydraulically weighted diameter, Y0 is a allometric constant, L is the 

distance from the apex and b is the tapering exponent which for MST is estimated as 

ā/0.84 (≈ 0.2) (Anfodillo et al., 2006; Petit and Anfodillo, 2009; Petit et al., 2010). 

Recent investigations aiming to identify a taper exponent that is able to compensate 

optimally for increasing R resulted in inconsistent findings. For tall angiosperms 

such values for b ranged between 0.199 and 0.31(Anfodillo et al., 2006; Weitz et al., 

2006; Mencuccini et al., 2007; Petit et al., 2010). The change of Dh in an ideal plant 

is assumed to be size invariant within single segments. Tapering only occurs between 

segments while vessel numbers remain constant. Complexity of 

conductance/resistance within realistic vessel networks, for example by incorporating 

inter-vessel pit resistance (Becker et al., 2003) or dynamic tapering independent from 

segmental fragmentation is not yet included in these calculations. However, even 

though MST simplifies and/or ignores a variety of wood-/tree structural features, the 

revolutionary idea of replacing conductivity as the focus point of former hydraulic 

models with an optimised allometrical scaling approach sparked numerous scientific 

discussions (Kozlowski and Konarzewski, 2004; Brown et al., 2005; Kozlowski and 

Konarzewski, 2005; Zaehle, 2005; Anfodillo et al., 2006; Mäkelä and Valentine, 

2006; Petit and Anfodillo, 2009). Recently, Savage et al. (2010) introduced a 

„packing function‟  (Savage et al., 2010) to the MST, allowing to account for 

increasing conduit numbers with decreasing conduit diameters. The packing function 

bLYDh  0
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used follows the allometric scaling approach, where vessel density (VD, mm
-2

) is 

calculated from conduit diameter (DC; µm) (Sperry et al., 2008): 

 

         (Equation 1.12) 

 

where b is the packing exponent and k4 (mm
-2

 µm
-b

) is the multiplier which expresses 

the fraction of the total wood area occupied by xylem conduits (Savage et al., 2010; 

Sperry et al., 2012). Especially with these more recent refinements, MST provides an 

effective conceptual basis for modelling biomass accumulation, optimal resource 

distribution and design of hydraulic networks by assuming optimal allometric 

scaling. MST provides a framework for mathematical interpretation of the 

architectural complexity of trees.  

 

1.5 Importance of study – aims and research questions    

 

Considering the dominance of the genus Eucalyptus within Australian ecosystems, 

far too little is yet known about the majority of the 800 or so Eucalyptus spp.. 

Species-specific adaptation to the environment and the resilience of Australian plant 

communities against changing climatic conditions are not yet understood.  

To date, there have been few investigations of how changes in climate might affect 

hydraulic architecture of the genus Eucalyptus, its water use and rates of mortality 

(O‟Grady et al., 2009). There is consensus that investigated species align with global 

inter-species comparisons of environmental adaptation, so that wood structure such 

as wood density and the relation of wood area to conduit area, is positively related to 

temperature and negatively related to elevation and precipitation (Wiemann and 

Williamson, 2002 ; Searson et al., 2004; Thomas et al., 2004; Swenson and Enquist, 

2007).  

However, little is known about the structure of the conduit network in eucalypts or 

other angiosperm and gymnosperm species and genera worldwide. Nowadays 

approaches mainly lack the necessary amount of empirical data to achieve high-

resolution information of vessel tapering within species and the existing models 

appear incomplete (Chapter 1.4). 

This thesis will investigate a range of anatomical features of eucalypt species 

growing under a wide range of environmental conditions.  It addresses several 

b
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important and unresolved questions: Is the hydraulic architecture in Eucalyptus spp. 

the key to the species‟ successful domination of most Australian ecosystems? And if 

so, will species ranges shift with climate change due to alteration of water 

availability? More specifically, the current thesis will address the following research 

questions: 

 

1. How do temperature and water availability alter wood structure and conduit tapering 

in Eucalyptus species? 

2. Does a universal conduit tapering strategy exist in the genus Eucalyptus? 

3. Is the water transporting vessel system a result of environmental conditions or tree 

height? 

4. How variable is the construction of vessel networks when the same species is grown 

under variable environmental conditions? 

5. Can isotopic markers be used successfully to study the pathway of water in tall trees, 

particularly highlighting the location of water stores that are used to reduce the risk 

of embolism within the vessel network?  

 

Following four chapters should be read by keeping in mind that emphases of chapters 

differed. Chapter two constitutes the most important, by far most work intensive and 

from a research perspective most powerful part of this thesis. The remaining three 

chapters were designed to support findings with additional information. Figure 1.5 

provides a visual impression of varying importance of subsequent research chapters.  
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Figure 1.5: Visual representation of the relative importance of each thesis chapter, i.e. the larger 

the box the more important the chapter 
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Chapter 2 – Xylem conduit structure and adaptation to environmental 

conditions in 12 Eucalyptus spp.  

 

2.1 Introduction 

 

Australia encompasses an extraordinary diversity of ecosystems. This diversity is 

based on the continent‟s size and topography, stretching over six Kӧppen climate 

zones. Climate zones range latitudinally from equatorial and wet-dry tropics in the 

north to alpine and cool temperate areas in the mountainous regions of the south-east 

(Hadwen et al., 2011). Independent of climate conditions, trees of the genus 

Eucalyptus dominate many terrestrial Australian ecosystems. Adaptation to, and 

evolution with, diverse climatic conditions over millennia has led to a wide variety of 

species (~800), many of them displaying strong endemism and only found within 

restricted geographic ranges. Approximately 50% of species have ranges spanning 

less than 3 °C of mean annual temperature, 40% have a range of <2 °C, and 25% a 

range of <1 °C (Hughes et al., 1996). The genus Eucalyptus is one of the most 

widespread and diverse representatives of the angiosperms.  

Highly developed hydraulic systems are a critical part of adaptation of trees to 

environmental conditions. In addition to structural adaptations of leaves (e.g leaf 

area) and roots (e.g. root diameter; Grier and Running, 1977; Norby and Jackson, 

2000), the majority of recent investigations confirm a strong link between wood 

structure and environmental conditions. A substantial body of literature now 

describes vessel sizes of different species in different environments as well as vessel 

size adaptation of trees raised under different environmental conditions (e.g.Villar-

Salvador et al., 1997; Aber et al., 1998; Van der Willigen and Pammenter, 1998; 

Carlquist, 2001; Thomas et al., 2004, 2007; Chave et al., 2009). The range of 

reported vessel diameters in different species, and at different heights within trees, is 

substantial, roughly from 10 – 500 µm. Generally, small trees from xeric 

environments have comparatively dense wood with relatively small vessels, while 

tall trees from mesic environments produce lighter wood and have larger vessels (e.g. 

Chave et al., 2009; Campelo et al., 2010). Furthermore, vessel density is closely 

linked to vessel diameter in that trees with large vessels have fewer vessels (per unit 

area) than trees with small vessels. All these trends have been observed on a global 

scale and for a wide variety of genera (e.g. Preston et al., 2006; Sperry et al., 2008; 

Chave et al., 2009). 
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Partly triggered by possible consequences of climate change to the world‟s 

ecosystems, publications of innovative theories and models within the last two or so 

decades (e.g. Hydraulic Limitation Hypothesis (HLH); Chapter 1.4.1 and Metabolic 

Scaling Theory; Chapter 1.4.2) has renewed attention on wood and tree structure, and  

has sparked a flourishing discussion about influences of environmental factors on 

xylem structure, water use efficiency and biomass accumulation, i.e. wood density 

and maximum tree height (e.g. Ryan and Yoder, 1997; Wiemann et al., 1998; 

Wiemann and Williamson, 2002; Koch et al., 2004; Thomas et al., 2004, 2007; 

Preston et al., 2006; Swenson and Enquist, 2007; Martínez-Cabrera et al., 2009).  

Most work, however, has been focused on species of the northern hemisphere and of 

the tropics, such as the rainforest species of Central- and South-America (e.g. Hacke 

and Sauter, 1995; Goldstein et al., 1998; González and Eckstein, 2003; Hacke and 

Sperry, 2003; Gea-Izquierdo et al., 2012) . Eucalyptus has received little attention in 

the overall dialogue. In view of the obvious potential of the genus Eucalyptus to 

adapt to prevalent environmental conditions, as well as their ecological significance 

within Australia and substantial economic value as a plantation tree, it is surprising 

that our understanding of the hydraulic architecture of this genus is limited. There are 

thus compelling reasons to study xylem adaptation to environmental conditions 

within the Eucalyptus genus.  

 One of the biggest limitations to research on whole-tree xylem structure is the 

workload, i.e. the microscopic examination of vessel structure, for example, is time 

consuming. As a result, most publications have concentrated on either the vessel 

structure at the base of tree trunks or a rudimentary sample extraction scheme spread 

over the entire height of trees  (e.g. Martínez-Vilalta et al., 2002; Campelo et al., 

2010; Poorter et al., 2010). Very few studies have investigated the tapering structure 

of vessels throughout the entire tree (e.g. Petit et al., 2010; Petit and Anfodillo, 

2011). As a result, widely used models developed to explain water use efficiency of 

trees appear weak because modules accounting for vessel tapering structure along 

tree trunks remain basic and simplified.  

So far, one of the key assumptions of the Metabolic Scaling Theory (Chapter 1.4.2), 

that vessels taper homogeneously along the entire height of trees, has been proven 

wrong. Investigations into tapering structures over whole path lengths have revealed 

different tapering intensities at different heights (e.g. Anfodillo et al., 2006; Petit et 

al., 2010; Petit and Anfodillo, 2011). Assuming the Hagen-Poiseuille Equation (Eq. 
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1.6) and the Cohesion-Tension Theory (Chapter 1.3) as underlying principles for 

effective transport of water, it could be expected that the tapering structure of vessels 

has evolved to counteract the internal rise of xylem water potentials, particularly 

under conditions where soil water availability is limited. At the same time water 

transport needs to be sufficient to support transpirational demands and the effects of 

increasing resistance and gravity with increasing tree height need to be overcome. 

All these factors are dependent on environmental conditions and influence the size of 

vessels. If we assume that (a) vessel size at the base of trees is adapted to climatic 

conditions and (b) tree size according to the HLH is dependent on conductivity of the 

vessel network (i.e. according to MST), it follows that whole-tree tapering structure 

of vessels is also the result of environmental adaptation. The few investigations that 

have assessed whole-tree tapering structure support this line of arguments, but no 

specific links to environmental conditions have been identified.  

Climatic changes in Australian ecosystems are evident (e.g. Hughes, 2003; IPCC, 

2007; Murphy and Timbal, 2008; Risbey et al., 2009; Taschetto and England, 2009; 

Lavender and Abbs, 2013). Australia has warmed ~0.8 °C over the last century and 

annual average temperatures are, relative to 1990, predicted to increase by 0.4 – 2.0 

°C until 2030 and 1.0 – 6.0 °C by 2070 (Plummer et al., 1999; Hughes, 2003). High 

quality precipitation (P) data for Australia has only become available since the early 

1900‟s. Those data indicate that annual distribution and total amounts of P are more 

variable than could be expected from similar climates elsewhere in the world 

(Nicholls et al., 1997; Murphy and Timbal, 2008). The high complexity of 

influencing factors (i.e. ENSO) complicates accurate forecasting of precipitation. 

With the possibility of regional variations, tentative estimates predict increasing 

amounts of P for northern Western Australia, while P in eastern Australia is expected 

to decrease on average (Smith, 2004; Taschetto and England, 2009; Lavender and 

Abbs, 2013).  

Rising temperatures and changes in annual amounts of precipitation seem likely to 

ensure that existing relationships between Eucalyptus spp. and their site may be 

subject to considerable evolutionary pressure over relatively short time frames. A 

corollary to this is that the ability of any given eucalypt species to physcially 

„migrate‟ to sites with more favorable conditions is limited and slow  (Hughes et al., 

1996). As a result of rapid change in the environment to warmer and possibly drier 
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conditions, crown dieback and/or adjustment of hydraulic architectural systems 

appear to be likely reactions.  

Before we can forecast with any certainty adaptations of vessel and tapering 

structure, and related whole ecosystem impacts such as maximum tree heights, water 

use patterns and carbon storage capacities, broader knowledge of hydraulic 

architecture and vessel tapering appears crucial.  

As the main component of this thesis, this chapter reports investigations of the 

tapering structure of vessels in different Eucalyptus species across a range of 

environments. Vessel and tapering traits of twelve different species were compared 

over the entire length of tree trunks. Study species were selected to represent a 

climatic gradient of increasing aridity from eastern to western Victoria. Additionally 

to the transect, one species from the arid Pilbara region, Western Australia and one 

species from the sub-alpine region in south-eastern New South Wales were included.  

All tree- and vessel structural traits were related to climate indices calculated for 

long-term (100 years), mid-term (20 years) and short-term (5 years) periods, as well 

as for the very recent period (365 days prior to sample collection). These analyses are 

used to investigate the degree of plasticity of individual species to adjust their 

hydraulic architecture to climate of different time scales. This will help assess if 

Eucalyptus species display a similar or a different capacity to adjust their hydraulic 

architecture particularly to short-term variation of prevalent environmental 

conditions similar to what has been reported previously for ring-porous species from 

the northern hemisphere (e.g. Fonti et al., 2007; Campelo et al., 2010). The work 

conducted included development of a novel technique that allowed assessment of 

vessel tapering as consequence of environmental drivers.  

The main research questions that are addressed are: 

 

1. How do vessels of Eucalyptus spp. taper over the entire length of trees, from 

base to apex? 

2. How do tapering structures vary in different Eucalyptus species? 

3. How are vessel sizes and tapering structures of Eucalyptus spp. linked to 

climatic conditions? 

4. What is the main factor controlling vessel tapering structure of species along 

the current theme of discussion on „height versus climate‟? 
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2.2 Materials and methods  

 

2.2.1 Species and field site descriptions 

 

South-eastern mainland Australia is characterized by a pronounced altitudinal 

gradient from around 2000 m a.s.l. at the top of the Great Dividing Range in the east, 

to low-lying sand plains (approx. 50 m a.s.l.) several hundred km to the west. This 

altitudinal gradient corresponds with decreasing annual rainfall (P) and increasing 

average temperatures, from east to west. Accordingly, tall eucalypt forests dominate 

the mesic, mountainous region in the east.  Moving west, the height of the eucalypt 

overstorey gradually declines, and tall, closed forests give way to open woodlands in 

the western semi-arid areas. High-elevation woodlands of Eucalyptus pauciflora are 

an exception along this gradient as they are of short stature but grow at the highest 

elevations with high amounts of annual precipitation.  

 

Eleven species of the genus Eucalyptus were sampled along this environmental 

gradient reaching from subalpine, southern New South Wales to areas of low 

elevation in north-western Victoria (Fig. 2.1). To contrast the mainly temperate 

origins of sampled species, one eucalypt species (E. victrix) from a tropical, semi-

arid environment in northern Western Australia was included. Location of sampling 

sites and species are shown in Table 2.1. Sampled forest types included semi-arid 

riparian woodlands, open mallee-type woodlands, box-ironbark forest, tall closed 

eucalypt forests, and sub-alpine woodlands.  Together, these woodlands and forests 

cover an elevation gradient of >1500 m (Table 2.1). Although species in Fig. 2.1 and 

Table 2.1 are listed according to their distribution from east to west, the remaining 

section of the current chapter will list them according to the Aridity Index (AI, see 

below) of the site where species were sampled. In the State of Victoria, sample 

locations and species were also contingent upon access to logging activities and site 

permits, provided by VIC Forests and the Department of Sustainability and 

Environment (DSE).  
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Figure 2.1 Satellite image of the state of Victoria, Australia, illustrating sample locations and species. Sample location 1 denotes the Snowy Mountain area 

in New South Wales, sample location 12 denotes the Pilbara (Port Hedland region) in Western Australia. 
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Table 2.1: Species name, eucalypt type and location of sampled Eucalyptus species. Information of ecosystem type were extracted from the Virdans 

Biological Databases (www.virdans.com, accessed 12.02.2013). Numbers before species names correspond with species locations shown in Fig. 2.1. 

species common name sampling date type ecosystem sample location 
latitude 

(DD) 

longitude 

(DD) 

elevation 

(m.a.s.l.) 

1 - E. pauciflora Snow Gum 12.-13.12.2011 Gum Sub-alpine open Woodland Snowy Mountains, NSW -36.11
o
 148.54

o
 1562 

2 - E. obliqua Messmate 21.-22.10.2010 Stringybark Wet Sclerophyll Forest Black Range State Forest, VIC -37.34
o
 145.60

o
 753 

3 - E. delegatensis Alpine Ash 18.-20.10.2010 Stringybark Wet Sclerophyll Forest Rubicon State Forest, VIC -37.38
o
 145.88

o
 1000 

4 - E. viminalis Manna Gum 22.-23.11.2010 Gum Wet Sclerophyll Forest Rubicon State Forest, VIC -37.39
o
 145.87

o
 920 

5 - E. regnans Mountain Ash 26.-27.10.2010 Gum Wet Sclerophyll Forest Marysville State Forest, VIC -37.61
o
 145.66

o
 480 

6 - E. polyanthemos Red Box 17.-18.06.2011 Box Box-Ironbark Forest Pyrenees State Forest, VIC -36.67
o
 143.29

o
 248 

7 - E. microcarpa Grey Box 16.-17.06.2011 Box Box-Ironbark Forest Pyrenees State Forest, VIC -36.66
o
 143.30

o
 261 

8 - E. melliodora Yellow Box 10.11.2011 Box Dry Sclerophyll Forest Grampians State Forest, VIC -37.11
o
 142.17

 o
 218 

9 - E. baxteri Brown Stringybark 08.-09.11.2011 Stringybark Heathland Kealys State Forest, VIC -36.94
o
 141.25

o
 153 

10 - E. socialis Red Mallee 14.11.2011 Mallee Mallee wood- and shrubland Mildura State Forest, VIC -34.33
o
 142.09

 o
 52 

11 - E. gracilis White Mallee 13.-14.11.2011 Mallee Mallee wood-and shrubland Mildura State Forest, VIC -34.33
o
 142.09

 o
 52 

12 - E. victrix Smooth-barked coolibah 15.-16.05.2010 Box Semi-arid woodlands Port Hedland Area, WA -20.54
 o
 118.17

 o
 19 

 

http://www.virdans.com/
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2.2.2 Climate data 

 

Climate descriptors for each sample location were obtained from SILO Data Drill 

(State of Queensland, Department of Environment and Resource Management). 

Descriptors included daily maximum air temperature (Tmax, °C), precipitation (P, 

mm) and evapotranspiration (FAO56, mm) recorded between 1911 and 2011. These 

climate data were interpolated from surrounding weather stations using an anomaly 

interpolation method for CLIMARC data. Interpolation procedures used in DATA 

DRILL are described in Jeffrey et al. (2001). 

Using short- (5-year), mid- (20-year), and long-term (100-year) data from each 

sample location provided a means of assessing temporal trends in climate for each 

sample location. For this analysis, annual values for T, precipitation and AI were 

calculated and averaged for the interval of interest. Then, T, precipitation and AI 

were calculated for the 365-day interval prior to collection of sapwood samples. 

These 1-year data were compared to average climate indices for the 100-year 

interval, in order to evaluate if anatomy of most recently formed sapwood was 

influenced by the mesic conditions recorded for some, but not all, sites. 

 

Aridity Index  

 

The AI signifies the degree of dryness of an ecosystem and is a means of classifying 

regions according to their water deficit. A high index denotes a humid climate, while 

a low index denotes arid conditions. Potential evapotranspiration was calculated 

following the FAO Penman-Monteith method (i.e. FAO56; Allen et al., 1998) as a 

more precise estimator than the simpler Thornthwaite approach (Kafle and Bruins, 

2009). The index itself was calculated as:  

 

56FAO

P
AIUN          (Equation 2.1) 

 

where P is annual precipitation and „FAO56‟ is annual potential evaptoranspiration. 

Following the classification provided by the United Nations, a „Climate Class‟ can be 

assigned to an ecosystem, ranging from hyper-arid to wet (Table 2.2).  
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Table 2.2: Classification scheme of global aridity indices (UNEP, 1997). 

Value climate class 

<0.03 Hyper-arid 
0.03 – 0.2 Arid 

0.2 – 0.5 Semi-arid 

0.5 – 0.65 Dry sub-humid 

0.65 – 0.75 Sub-humid 

0.75 – 1.25 Humid 

1.25 – 2.5 Very humid 

>2.5 Wet 

 

2.2.3 Collection of sapwood samples 

 

Three mature trees per species were sampled between May 2010 and December 

2011. All trees were felled shortly before sample collection. Target trees were 

selected according to visual assessment of the following criteria: 

Each target tree:  

I)  was mature, 

II) represented average stand diameter at breast height, 

III) had a regular crown shape, 

IV)  had a straight basipetal stem section, 

V)  did not show physical damage from former logging operations. 

 

After felling, tree length (to stem base) along the main axis was recorded, starting 

from the most terminal shoot (apex). Measurement tapes were attached to the tree, 

which allowed accurate marking of extraction points for sapwood samples, using 

permanent marker or spray paint. Sapwood samples were only collected from branch 

and stem sections that were uninfluenced by compression or tension wood (i.e. 

omitting branch junctions). The point of crown insertion (i.e. first green branch from 

base) was recorded. Diameters of extraction points along the shoot-twig-branch-

trunk continuum were recorded using a vernier calliper (diameter <5 cm) or diameter 

tape (diameter >5 cm). A forestry calliper was used if branches or trunks (diameter 

>5 cm) had ground contact that prevented the use of a measuring tape. Digital images 

were taken of fallen and where possible, standing trees (see Appendix – Chapter 2). 

All samples were collected from the apex towards the base and along the axial 

pathway of xylem vessel on one side of the tree only. The distance between 

consecutive sample positions was increased with distance from the apex. With the 

apex as the reference point, sapwood was extracted from approximately identical 
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positions along all trees. This sampling strategy facilitated sample comparability 

independent of tree height and species. A guide to sampling frequency at varying 

positions along the tree is given in Table 2.3. For trees of short to medium stature 

(height ≤25 m; e.g. E. microcarpa and E. pauciflora), the maximum distance 

between sample points along the basipetal section of the bole was 200 cm. This 

distance increased to 500 cm along boles of tall trees (height ≥25 m; e.g. E. 

delegantensis and E. regnans). Sapwood samples were extracted from marked 

positions using secateurs and a hand- or chain saw. All samples were packed into 

labelled envelopes or paper bags and left to dry under ambient conditions. 

 

Table 2. 3: Guideline to determine position of extraction points for sapwood samples. 

distance from apex (cm) distance between extraction points (cm) 

0 – 30 2 
30 – 50 5 

50 – 100 10 

100 – 200 20 

200 – 500 50 

500 – 1000 100 

1000 – base 200 or 500 

 

 

2.2.4 Sample preparation  

 

Two different methods of sample preparation were applied. Twig samples from 

apical regions were often too small to be placed into the vice-like sample holder of 

the rotary microtome. Consequently, the strategy to prepare samples differed 

between small and large samples. 

 

Preparation of samples with small diameters 

 

Samples from the apical region with a diameter of approximately 0.1 to 0.3 cm were 

mounted in paraffin blocks using plastic embedding cassettes, as commonly used in 

histological studies. Prior to embedding, specimens of E. delegatensis, E. obliqua, E. 

regnans, E. victrix and E. viminalis were perfused with paraffin using an automated 

tissue processor (Shandon Excelsior Series, Thermo Scientific, USA). During initial 

analyses of sapwood anatomy it became obvious that this procedure was 

inappropriate for woody tissues as they became too fragile and paraffin wax 
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obstructed xylem vessel structures when viewed under a microscope. Consequently, 

apical sapwood samples of all remaining species were directly embedded without 

perfusion.  

 

All sapwood samples were fixed into paraffin using an embedding station (Microm 

EC 350-1, Thermo Scientific, USA). Each sample was positioned vertically with its 

cut-side facing the bottom of the base mould. Samples were stabilised using a small 

amount of liquid paraffin. After positioning the embedding cassette over the sample, 

the moulds were filled with liquid paraffin. Prepared moulds were placed on a 

cooling surface to hasten the hardening process. After complete hardening, moulds 

were removed.  

 

Prior to sectioning of apical samples with a rotary microtome (Leica RM2255, Leica 

Microsystems, Germany) surfaces of apical samples were trimmed and than soaked 

in water for two hours to soften woody tissues. Three to five sections (40 – 60 μm) 

were cut from each softened sample. After slicing, sections were transferred to a 

flotation bath (45 °C) to ease mounting onto glass slides. Paraffin was removed by 

placing slides into Bioclear (Bioworld, USA), for at least half an hour. All sections 

were stained with safranin (0.8% in H2O). Excess stain was washed off after 1 

minute using H2O and then carefully padded dry with a paper towel. Following this 

procedure, sections were permanently mounted on glass slides using Eukitt (Sigma-

Aldrich, Germany), protected with a glass cover slip and left to dry overnight under 

ambient conditions.  

 

Preparation of samples with large diameters 

 

Wood cubes (transverse cross section <0.5 cm
2
) were prepared from the region 

adjacent to cambium (approximately 1 – 1.5 cm). Cubes were transferred into 

labelled embedding cassettes and submerged in boiling water for two hours before 

being soaked in water for 12 hours at room temperature. Three to five sections (35 – 

45 μm) were prepared from each cube using a rotary microtome (Leica RM2255, 

Leica Microsystems, Germany). Staining and mounting of sapwood sections from 

wood blocks was identical to the procedure described for small samples.  
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2.2.5 Measurement of sapwood density 

 

Following preparation of slides for microscopic analyses, sapwood cubes from tree 

bases were fully rehydrated by soaking them in 25 °C warm water for 72 hours. After 

soaking, each cube was blotted dry before recording its fresh weight to three decimal 

points. Volume of cubes (V, cm
3
) was determined by Archimedes‟ principle of water 

displacement. Subsequently cubes were dried for 72 hours at 105 °C before their dry 

weight (DW, g) was recorded. Density of sapwood (WD, g cm
-3

) was calculated as 

quotient of DW over V. 

  

2.2.6 Measurement of sapwood anatomical traits 

 

Prepared glass slides were placed under a transmissive light microscope (Leica 

DM2500M, Leica Microsystems, Germany) equipped with a high-resolution digital 

camera (Leica DFC 500, Leica Microsystems, Germany). Three images per glass 

slide (one image per sapwood section) were taken at either 5X, 10X (stem or branch 

samples) or 20X (apical samples). 

Digital images were used to analyse characteristics of xylem vessels. A software for 

automated image analysis (Leica Application Suite (LAS), V3.8, Leica 

Microsystems, Germany) was used to identify these characteristics, which were 

vessel density (VD), n per cm
2
 of sapwood) and equivalent circular diameter of 

vessels (d, µm). The relative fraction of void space to wood (VtW, %) was calculated 

for each image by summing the relative contribution of each void space to the total 

image area. Several manual correction procedures were used to ensure correct 

identification of vessel characteristics. These procedures included reconstruction of 

disrupted vessel walls, exclusion of large parenchymal cells and elimination of tissue 

fragments visible in vessels. If a section did not fill the entire image plane, as was the 

case for many apical and some branch sections, a manual correction procedure was 

implemented. This procedure included identification of the relevant area of sapwood 

and measurement of this area using the freeware Image J (V1.25s, National Institute 

of Health, USA).  

Special care was taken to produce high-quality glass slides for microscopic 

assessment of sapwood characteristics. This included minimizing the following 

potential sources of error during sample preparation, image collection and also 
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during image analyses, including reconstruction of vessels: 

 

I) Cutting thick slices during microtoming; this may reduce mechanical 

damage to vessel walls but will lead to substantial underestimation of 

true vessel dimensions due to strong shading effects. 

II) Cutting slice from non-horizontal sapwood surface during 

microtoming; this can lead to overestimation of actual vessel 

dimensions. 

III) Producing slices with non-planar surfaces during microtoming; this 

results in blurred images as substantial variation in the z-stage cannot 

be accounted for; this results in either over- or underestimation of true 

vessel dimensions. 

IV) Leaving residues of paraffin wax within woody tissue of samples 

from apical branch; this results in either over- or underestimation of 

true vessel dimensions and can potentially affect VD as only a small 

area of sapwood is assessed. 

V) Inaccuracy during reconstruction of vessel perimeter; this results in 

either over- or underestimation of true vessel dimensions.  

 

2.2.7 Calculation and modelling of basic hydraulic properties  

 

Automated measurements described above were used to calculate additional 

hydraulic characteristics of vessels identified in each digital image. The statistical 

software package R (Version 2.15.1, R Foundation for Statistical Computing, 

Austria) was used to program a customized script (see Supplementary Materials) for 

calculation of the hydraulic properties.  

The mean hydraulic diameter (Dh) was computed according to Sperry et al. (1994): 

 

       (Equation 2.2) 

 

where d is the diameter of a vessel conduit. For this calculation vessel conduits are 

assumed to have a perfect circular shape. The Dh weights the importance of diameter 
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in proportion to the estimated hydraulic conductance of the conduits, since an 

increase in vessel diameter leads to a disproportionally larger increase of the vessels‟ 

hydraulic conductance (Sperry et al., 1994). Hence, the larger the vessel diameter, 

the greater its influence on total hydraulic transport capacity.  

The hydraulic resistance (R) of individual vessel sections (to the transport of water) 

was calculated using the respective Dh of vessels. According to fluid-dynamics, R of 

a capillary tube is proportional to its length (l) and inversely proportional to its 

diameter (d) raised to the fourth power (i.e. Choat et al., 2006):  

 

         (Equation 2.3) 

 

where η is the dynamic viscosity of water, which is temperature-dependent and was 

individually calculated for 100 year average maximum temperature conditions as 

identified for each sample sites. In this case, length of the conduits was assumed to 

be 1 cm. In a second step R of individual 1 cm vessel sections was extrapolated to 

estimate R for an idealized conduit section (termed Rsec) that extends towards the 

mid-points of the adjacent sample positions above and below. Even though it was 

suggested that resistance of water moving through pit membranes may represent 80 – 

87% of total hydraulic resistance, this model focusses only on the lumen resistance 

of tubes and assumes an ideal tube model without additional resistances of neither 

perforation plates nor pit membranes (Shinozaki et al., 1964; Choat et al., 2006). 

Relative hydraulic resistance (Rrel) was defined as quotient of Rsec to resistance of the 

entire water conducting pathway from the base towards the apex of trees (Rtot) 

according to the following formula:  

 

         (Equation 2.4) 

 

Vessel density was calculated as the average of total vessel counts (VC) from three 

images per individual sapwood sample according to the formula: 

 

      (Equation 2.5) 
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where SA is the scanned area of sapwood in a given image. The factor of 100 Mio. is 

required to scale from µm
2
 to cm

2
.  

 

2.2.8 Analysis of conduit taper  

 

As tapering of vessel conduits towards the apex plays a major role in understanding 

hydraulic architecture and related changes of Rtot in trees, a novel analysis of the 

degree of taper was developed. For this analysis the relationship of Dh to relative 

height of each tree was investigated and results of this analyses were assessed against 

climatic conditions of the species‟ habitat. 

The relation between the two parameters is commonly curvilinear, and best described 

by a power function.  

 

The varying degree of taper along l was separated into three distinct „Phases‟, 

separating the lower stem section where taper is nearly absent (Phase 1), a section of 

reduced taper within the lower crown region containing the point of inflection of the 

curvilinear relation (Phase 2) and the final steep and linear increase of taper in the 

apical region (Phase 3). Accordingly, the section of the tree best characterised by 

Phase 1 might have the lowest slope and greatest intercept if a linear regression was 

applied. The opposite applies to Phase 3 where the greatest slope and least intercept 

would be found when relating Dh to height of the respective sample position.  

 

Linear regressions were used as a tool to explore how the relationship transitioned 

from one phase into the next. Phase 3 was defined to begin where the fitted trend line 

showing a steep linear slope would, in case of adding the respective next 

measurement to the group (downwards the stem), deviate towards a clearly lower 

angle. Conversely, Phase 1 was defined to end where the trend line of none or 

shallow incline would, in the case of adding the respective next measurement to the 

group (upwards the stem), deviate towards a clearly steeper slope. Finally, Phase 2 

was appointed to consist of remaining measured Dhs, which did neither belong to 

Phase 1 nor to Phase 3. Mean points between the last measurement belonging to 

Phase 1 and the first measurement identified as being Phase 2 and vice versa between 

the last measurement belonging to Phase 2 and the first measurement identified as 

being Phase 3 were calculated and defined as being both, start and end of the 
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respective adjacent phases.  

 

 

Figure 2.2: Conceptual design of “3-Phase Taper Analysis”. Three trend lines indicating three 

different tapering intensities referred to as Phase 1, Phase 2 and Phase 3. Circles denote 

calculated means between the two adjacent measurements of Dh that initiate phase change. 

 

A tapering exponent (b) was calculated to examine the tapering structure of conduits 

as suggested by the Metabolic Scaling Theory (see Chapter 1.4.2). Based on the 

assumption of (i) homogeneous tapering of vessels (from base to apex) and (ii) 

comprehensive compensation for steadily increasing resistance, the tapering 

exponent expresses the slope of a linear log-log regression line of all measured Dhs 

over the entire path length of a tree bole. Comparisons to former investigations will 

be provided by assessing changes in packing exponents (see Chapter 1.4.2; Sperry et 

al., 2008).  

 

2.2.9 Statistical analysis  

 

The software “R” was used to calculate average traits for vessels, based on analyses 

of three digital images of sapwood per sample. Used script is shown in Appendix – 

Chapter 2; Fig. S2.85. To test observed trends of changing climatic conditions on 

sampled sites, averages of AI were calculated for each year. Groups of averages for 

the considered time periods (i.e. 100, 20 and 5 years) were tested against each other 

by using a Kruskal-Wallis ANOVA with a significance level of p <0.05.  
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Sapwood density per species (WD) was calculated as an average of three 

measurements from DBH samples (n = 3), one from each considered individual tree.   

Basic vessel traits (d, VD) for samples from the most basipetal sections of trees were 

calculated for individual trees based on averaged values from three analysed images. 

Average values per species encompass therefore nine (3 x 3) measurements for a 

considered sample or variable. Bonferroni-Dunn test was used to evaluate if d 

differed significantly in sapwood extracted from the base of individual trees of the 

same species. Distribution of d within these samples was tested for normality and 

related skewness (τ) and kurtosis (κ) using the Shapiro-Wilks Test with a 

significance level of p <0.05. To assess if size and distribution of d varied 

significantly among species, all measurements of d per species were pooled and 

differences among species were tested using Kruskal-Wallis ANOVA with a 

significance level of p <0.05. For a pairwise comparison of means, conducted to 

identify differences in Rtot among species, a Bonferroni test with a significant level of 

p <0.05 was used. Microsoft Excel 2010 was used for standard mathematical 

computations such as average values and standard deviations. Following software 

packages were used for statistical analysis: Sigma Plot Version 11 (SPSS Inc., 

Chicago, U.S.A), SPSS Version 21 (SPSS Inc., Chicago, U.S.A), JMP Version 10.0 

(SAS Institute Inc., Cary, U.S.A). 

 

2.3 Results  

 

2.3.1 Site climate  

 

There were large climatic differences among sites along the sample transect. . Sites at 

higher elevation in eastern Victoria and in southeast New South Wales are more 

mesic than those sampled in central- and western Victoria and in Western Australia 

(Table 2.4). According to classification of aridity index (AI) (see Chapter 2.2.1), 

climates of sample sites are based on the respective climatic zones:   

 

Very humid sites 

 

Sites at higher elevation in eastern VIC and in NSW received the most rainfall (P). 

Estimated 100-year averages were with 1804 mm year
-1

 (± 36; ± 1 standard 

deviation) highest in the Marysville State Forest. The Black Range State Forest 



    

   42 
  

received with 1246 mm year
-1

 (± 24), fully one third less precipitation. All other sites 

sampled within the very humid climate zone received annual amounts of P between 

these two extremes, but mostly well above 1400 mm year
-1

 (Table 2.4). Ecosystems 

of the very humid type had, compared to all other ecosystem types, the lowest long-

term averages of maximum daily temperatures. The coolest site was the 

mountainous, open woodland site in the Snowy Plains. Here, estimated average 

maximum temperatures did not exceed 10.8 ºC (± 0.1). The site located in the 

Marysville State Forest showed comparably high average maximum temperatures of 

17.2 ºC (± 0.1) and all other „very humid‟ sites ranged between those two values. 

Overall, low actual evapotranspiration rates of 827 mm year
-1

 (± 50) to 94 mm year
-1

 

(± 50) and high precipitation rates resulted in aridity indices between 1.93 

(Marysville State Forest) and 1.35 (Black Range State Forest). See Table 2.4 for site-

specific averages. 

 

Dry sub-humid and semi-arid sites  

 

In the dry sub-humid and semi-arid climate zones most sites received relatively 

similar amounts of precipitation. Averages varied between 581 mm year
-1

 (± 12) in 

the Grampians State Forest (dry sub-humid) and 490 mm year
-1

 (± 13) in Pyrenees 

State Forest (semi-arid). Average maximum daily temperatures differed marginally, 

being 20 ºC (± 0.1) for the Grampians and 21 ºC (± 0.1) for the Pyrenees. Mildura 

State Forest was exceptional and clearly more xeric than the other semi-arid sites.  

Average annual precipitation at this site was 334 mm year
-1

 (± 9) while average 

maximum daily temperature was 23 ºC (± 0.1)., Despite obvious similarities of both 

zones, potential evapotranspiration was less within the dry sub-humid sites where it 

ranged from 1077 mm year
-1

 (± 50) to 1080 mm year
-1

 (± 53). Consequently, the AI 

was slightly higher with values of 0.53 – 0.54 when compared to that of the semi-arid 

sites where the AI varied between 0.44 (± 0.01) Pyrenees State Forest and 0.25 (± 

0.01) in the Mildura State Forest. The lower AIs were driven strongly by greater 

rates of potential evapotranspiration - 1164 mm year
-1

 (± 55) to 1344 mm year
-1

 (± 

57). See Table 2.4 for site-specific averages.  
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Arid sites 

 

According to the AI classification, the Port Hedland region in north Western 

Australia represented the only arid site within this study. Average precipitation was 

both the least 310 mm year
-1

 and most variable (± 179).  Mean daily maximum 

temperatures of 33 ºC (± 0.1) combined with fast rates of evapotranspiration (2110 

mm year
-1

 ± 73) resulted in the lowest AI of 0.15.  

 

 



 

 

4
4 

 

 

 

Table 2.4: Averages of annual rainfall (P), maximum daily temperatures (Tmax), potential evapotranspirations (FAO56) and aridity indices (AI) estimated 

for the last 100 years and each sample site. Standard deviations for individual datasets are shown in parenthesis.  Sampling sites classified into climatic 

zones according to the AI classification provided in Chapter 2.2.2. Data are sorted according to 100-year averages of AI.  

Sample Site Species 
P 

 (mm year
-1

) 

Tmax  

(ºC) 

FAO56  

(mm year
-1

) 
AI climatic zone 

Marysville State Forest, VIC E. regnans 1805 (± 360) 17.2 (± 0.6) 942 (± 50) 

 

1.93 (± 0.46) very humid 

Snowy Mountains, NSW E. pauciflora  1484 (± 336) 10.8 (± 0.7) 827 (± 50) 

 

1.82 (± 0.48) very humid 

Rubicon State Forest 1, VIC E. viminalis 1484 (± 333) 13.8 (± 0.6) 868 (± 47) 

 

1.73 (± 0.45) 

 

very humid 

Rubicon State Forest 2, VIC E. delegatensis 1448 (± 323) 13.6 (± 0.6) 861 (± 47) 

 

1.70 (± 0.44) very humid 

Black Range State Forest, VIC E. obliqua  1246 (± 242) 15.9 (± 0.6) 934 (± 48) 

 

1.35 (± 0.31) very humid 

Grampians State Forest, VIC E. melliodora 581 (± 120) 19.9 (± 0.7) 1080 (± 53) 

 

0.54 (± 0.13) dry sub-humid 

Kealys State Forest, VIC E. baxteri 567 (± 116) 20.2 (± 0.6) 1077 (± 50) 

 

0.53 (± 0.12) dry sub-humid 

Pyrenees State Forest 1, VIC E. microcarpa 502 (± 134) 20.5 (± 0.7) 1164 (± 56) 

 

0.44 (± 0.13) semi-arid 

Pyrenees State Forest 2, VIC E. polyanthemos 490 (± 130) 20.6 (± 0.7) 1164 (± 55) 

 

0.43 (± 0.13) semi-arid 

Mildura State Forest, VIC E. gracilis/E. socialis 334 (± 95) 23.3 (± 0.6) 1344 (± 57) 

 

0.25 (± 0.08) semi-arid 

Port Hedland Area, WA E. victrix  310 (± 179) 33.3 (± 0.8) 2110 (± 73) 

 

0.15 (± 0.09) arid 
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2.3.2 Climate trends  

 

For most sampling sites, average AI (on an annual basis) did not differ (p >0.05) 

among time periods (i.e. 100-, 20- and 5-year periods). Even so, there were some 

obvious overall trends, especially for the very humid ecosystems (Fig. 2.3).  

 

Precipitation (P) 

 

There has been a clear reduction in P of 17% in the Marysville State Forest if 

medium-term (past 20 years) data are compared to long-term data (past 100 years).  

This contrast is even stronger (a 22% reduction) if data for the past 5 years were 

compared to long-term data. Annual P also declined by 12% (20 year / 100 year 

comparison) at the Rubicon State Forest and by 16% (20 / 100) at the Snowy 

Mountains.  The medium term comparisons yielded reductions of 12% (5 / 100) for 

the Rubicon State Forest and 20% (5 / 100) for the Snowy Mountains.  In the Black 

Range State Forest precipitation was relatively constant, irrespective of the basis for 

comparison. 

 

Declines in precipitation were less pronounced in forests classified as dry sub-humid 

than those in very humid areas. Generally, annual precipitation for dry sub-humid 

sites declined by between 3 and 8% depending on the calculation basis. The 5-year 

averages for these sites were strongly influenced by above average P in 2010 and 

2011, resulting in a reduction of annual precipitation at the Kealys State Forest of 

just 4% and an increase of 5% in the Grampians The sites classified as being semi-

arid showed similar trends where due to the generally low amounts of annual 

precipitation, the wet years of 2010 and 2011 significantly increased the 5-year 

averages (by up to 11%).  

 

Very wet years clearly induce greater bias in calculated mid- to short-term average P 

for arid areas than for other zones. In the Port Hedland region, for example, short-

term increases in P were considerably greater than those observed in the semi-arid 

forests. On average, the Port Hedland region received 19% more P when the past 20 

years data were compared to the 100 year data, and 13% more P if the past 5-year 

data were used as the basis for comparison.  
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Maximum air temperature (Tmax) 

 

Average maximum air temperature has increased (e.g. past 5 years, past 20 years) at 

all sites compared to the long run data. At very humid sites, the last 20 years showed 

moderate increases ranging from 0.1 °C in the Rubicon State Forest to 0.4 °C in 

Marysville State forest. If the calculation is based on the latest five-year data then, 

again, the Marysville State Forest showed the largest increase of 1.0 °C while the 

smallest increase was at Rubicon State Forest with 0.5 °C.  

This pattern was repeated, more or less, in dry sub-humid zone and semi-arid zone. 

 

Aridity index (AI) 

 

Changes in AI generally followed the patterns described for precipitation. In very 

humid forests of the Great Dividing Range, AI changed most according to mid- and 

short-term weather observations. However, none of those changes resulted in re-

classification. Figure 2.3 illustrates the changes in AI for each sample site.  
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Figure 2.3: Long- (100-year), mid- (20-year), short- (5-year) term, and most recent year (1-year; 

2011) averages of aridity indices (AI) estimated for all sample sites. A indicates the group of 

sampling sites that are in the „very humid‟ climatic zone, B in the „dry sub-humid‟ climatic zone, 

C in the „semi-arid‟ climatic zone and D in the „arid‟ climatic zone. Bars are mean values and 

error bars denote standard deviations.  

 

2.3.3 Tree structural traits 

 

The tallest tree sampled was a Eucalyptus regnans with a total height of 70.3 m, 

while an E. gracilis at 6.5 m was the shortest. Crown insertion was exponentially 

related to tree height (y = 0.73x-436.23; R
2
 = 0.96; linear model excluded E. victrix). 

Largest diameter at breast height (DBH) of 69 cm and highest crown insertion of 

50.9 m was found for E. regnans, while the smallest DBH of 9 cm and lowest crown 

insertion of 1.1 m was measured for E. gracilis. Table 2.5 shows basal diameter, total 

height and heights of crown insertion points for study trees.  
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Table 2.5: Basal diameter at 1.3 m above ground (DBH), total tree height and insterion point of 

tree crowns (measured from base) of all trees. Abbreviation used: t.n. = tree number per species. 

Species are sorted according to long-term (100-year) average aridity indices at sample sites. 

Height of crown insertion was not recorded for Eucalyptus victrix.  

species t.n. DBH 

(cm) 

height 

(cm) 

crown insertion 

(cm) 

E. regnans 1 61.7  6625 4705 

E. regnans 2 61.5 7030 5090 

E. regnans 3 69.0 6908 4558 

E. pauciflora 1 27.7 1172 272 

E. pauciflora 2 45.4 1090 550 

E. pauciflora 3 34.5 1265 555 

E. viminalis 1 56.8 5400 3690 

E. viminalis 2 40.2 5000 4040 

E. viminalis 3 62.2 4760 3590 

E. delegatensis 1 54.3 5034 2734 

E. delegatensis 2 65.3 5859 3559 

E. delegatensis 3 89.8 5739 3339 

E. obliqua 1 71.5 4065 1985 

E. obliqua 2 54.5 3650 2020 

E. obliqua 3 52.0 3720 1990 

E. meliodora 1 24.5 1736 986 

E. meliodora 2 42.2 1872 1072 

E. meliodora 3 26.5 1795 1185 

E. baxteri 1 27.2 1525 895 

E. baxteri 2 17.0 1410 890 

E. baxteri 3 29.3 1435 635 

E. microcarpa 1 37.4 1930 750 

E. microcarpa 2 38.5 1920 490 

E. microcarpa 3 37.6 1910 770 

E. polyanthemos 1 28.0 1420 450 

E. polyanthemos 2 18.0 1200 420 

E. polyanthemos 3 26.7 1370 490 

E. gracilis 1 26.2 1110 360 

E. gracilis 2 13.3 830 257 

E. gracilis 3 9.0 645 111 

E. socialis 1 17.9 917 237 

E. socialis 2 13.5 695 165 

E. socialis 3 18.5 915 305 

E. victrix 1 25.5 1702 - 

E. victrix 2 30.0 2005 - 

E. victrix 3 29.5 1515 - 
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All main climate parameters (T, precipitation and AI) were significantly linearly 

related to tree structural characteristics. Tall trees, with large DBH and a high crown 

insertion were found on very humid sites. Table 2.6 shows the strength of linear 

regressions (R
2
) of individual tree structural traits plotted against 100-year averages 

of climate parameters. 

Table 2.6: Coefficients of determination (R
2
) between individual tree structural traits and long-

term (100-year) averages of site-specific aridity indices (AI100), precipitation (P100) and daily 

maximum temperatures (Tmax100). All linear regression models excluded E. pauciflora and E. 

victrix.  

 R
2 equation 

AI100   
Tree height 0.96 y = 3189.20x + 32.64 

DBH 0.77 y  = 28.19x + 13.92 

Crown insertion 0.94 y  = 2362.30x –433.58 

P100 (mm year
-1

)   
Tree height 0.97 y  = 3.92x – 495.02 

DBH 0.76 y  = 0.03x + 9.58 

Crown insertion 0.95 y  = 2.91x – 828.56 

Tmax100 (°C)   
Tree height 0.72 y  = -530.20x +12925 

DBH 0.73 y  = -5.25x + 138.40 

Crown insertion 0.67 y  = -383.10x +8935.20 

  

On a per-species basis (n = 3), tree height and DBH were strongly correlated to AI100. 

In both cases an increase in AI100 resulted in an increase of the tree-related parameter 

(Fig. 2.4).  
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Figure 2.4: Relationships between long-term (100-year) average aridity indices (AI100) of sample 

sites and (A) average heights (n = 3 species
-1

) and (B) average DBHs (n = 3 species
-1

) of sampled 

Eucalyptus species. Error bars represent standard deviations. Data for E.pauciflora and 

E.victrix are represented by circles; these data were excluded from the regression models. 

Coefficient of determination for the linear regression (solid lines; A) y = 3183.16x+34.91, B) y = 

28.11x+13.96) are shown in figure. 

 

2.3.4 Basic sapwood traits 

 

The bases for all subsequent analyses were a total of 1254 collected and processed 

sapwood samples. Microscopic analyses of these samples produced a total of 3762 

digital images. Within this set of images, the characteristics of 154368 vessels were 

determined. 

 

Sapwood density (WD) 

  

Sapwood density in samples taken from stem base varied between and within species 

(Table 2.8). On the species level, and excluding Eucalyptus pauciflora and E. victrix, 

WD showed clear correlation with all main long-term climate parameters such as 

AI100 (y = -0.12x+0.74; R
2
 = 0.58), P100 (y = 2.66x

-0.22
; R

2
 = 0.70) and Tmax100 (y = 

0.02x+0.21; R
2
 = 0.54). WD was least at 0.47 g cm

-3
 (± 0.05) in E. pauciflora. Other 
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species from very humid environments ranged in density from 0.49 g cm
-3

 (± 0.05) in 

E. obliqua to 0.59 g cm
-3

 (± 0.05) in E. delegatensis. Of the species grown under dry 

sub-humid conditions E. baxteri had a remarkably low WD of 0.55 g cm
-3

 (± 0.11) 

compared to E. melliodora 0.62 g cm
-3

 (± 0.02) within the same climatic zone. 

Species from semi-arid and arid conditions had greater WD ranging between 0.67 g 

cm
-3

 (± 0.04) in E. polyanthemos and 0.79 g cm
-3

 (± 0.06) in E. gracilis. E. victrix 

had an unexpectedly low WD of 0.64 g cm
-3

 (± 0.02). Vessel size descriptors such as 

average vessel diameter (y = -2.6E-03x+0.94; R
2
 = 0.79), average hydraulically 

weighted diameter (y = -2.3E-03x+0.97; R
2
 = 0.83) and average vessel density (y = 

8.0E-05x+0.51; R
2
 = 0.66) had an obvious influence on WD. Tall species with large 

vessels had less dense wood than small species with a lot of small vessels.   

 

Vessel diameter (d)   

 

Vessel diameter varied greatly within single trees and among species. Basic tree 

structural features were strongly related to d. An exponential increase of tree height 

(y = 285.40e
0.02x

; R
2
 = 0.78) and DBH (y = 8.11e

0.01x
; R

2
 = 0.62) was observed with 

increasing d. Independent of species, the larger the average d, the fewer vessels were 

detected per square centimetre.  

Figure 2.5 illustrates an exponential increase of average vessel density with 

decreasing average d. Individual tree examination supported the overall trend in 

vessel sizes being exponentially related to AI100 (y = 0.08e
0.02x

; R
2
 = 0.83) and P100 (y 

= 129.11e
0.01x

; R
2
 = 0.82) and linearly to Tmax100 (y = -0.07x + 27.74; R

2
 = 0.72); 

E.pauciflora and E. victrix did not fit into described patterns and were excluded from 

models.  

 

The widest vessel across all species was in the bole of an E. obliqua and was 338 µm 

in diameter. At the other end of the scale, the smallest vessel measured just 4 µm in 

diameter and was found close to the apex of an E. melliodora. In all trees average d 

was larger at the base of trees and declined with height. Analysis of the most 

basipetal sample of each individual tree was used as the foundation of inter-tree and 

inter-species comparisons. The largest average vessel diameter of basipetal samples 

of all considered trees was 317 µm in E. viminalis, whilst the smallest was 14 µm in 

E. polyanthemos. Across species, tall trees from the Great Dividing Range had the 
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largest vessel diameters, for example 171 µm (± 24) in E. regnans and 139 µm (± 19) 

in E. obliqua.  E. pauciflora (110 µm, ± 13) was a clear outlier among species in the 

very humid zone. Less variation was detected in diameters of basipetal vessels in E. 

melliodora (126 µm, ± 4) and E. baxteri (125 µm, ± 8) from the dry-subhumid 

climate. Significantly smaller vessels were detected in species from the semi-arid 

ecosystems where d varied between 99 µm (± 9) in E. polyanthemos and 59 µm (± 8) 

in E. gracilis.  

 

E. victrix, the only species sampled in an arid environment had surprisingly large 

vessel diameters in the lower stem (129 µm, ± 12).  

 
Figure 2.5: Relationship between average vessel diameter (d) and vessel density (VD) (n = 3) as 

measured in basipetal samples of all sampled individual trees. Coefficient of determination for 

the curvilinear decrease (solid line; y = 2795968.68*x
-1.65

) is shown in Graph. 

 

Vessel sizes in basipetal samples were normally distributed. Skewness of their 

distribution spanned values between -0.5 and 0.5 for most species, which is defined 

as being approximately symmetric. In E. regnans, E. melliodora and E. baxteri 

vessel distribution was moderately skewed towards a higher percentage of smaller 

vessels. Only E. victrix showed a highly skewed distribution (<-1) and proportionally 

had the highest proportion of small vessels among all study species. Platykurtic 

peakedness was found in the majority of species. Leptokurtic distributions were 

observed only in three species, namely E. regnans, E. gracilis and E. victrix. For all 

species, values of skewness and kurtosis of vessel size distributions are shown in 

Table 2.7. 
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Table 2.7: Skewness (τ) and kurtosis (κ) of vessel diameter distribution per species with respect 

to Gaussian “normal” Distributions. Reference images were taken at most basipetal samples. τ 

and κ are calculated values, commonly used interpretations (int.) are shown as abbreviations 

where „a.s.‟ stands for approximately symmetric, „m.s.‟ for moderately skewed, „h.s.‟ for highly 

skewed, „l.c.‟ for leptokurtic and „p.c.‟ for platycurtic distributions. 

Species skewness kurtosis 
 τ int. κ int. 

E. regnans -0.54 m.s. 0.03 l.c. 

E. pauciflora -0.34 a.s. -0.17 p.c. 

E. viminalis -0.03 a.s. -0.33 p.c. 

E. delegatensis -0.41 a.s. -0.55 p.c. 

E. obliqua 0.04 a.s. -0.70 p.c. 

E. melliodora -0.66 m.s. -0.18 p.c. 

E. baxteri -0.63 m.s. -0.16 p.c. 

E. microcarpa 0.03 a.s. -0.81 p.c. 

E. polyanthemos -0.29 a.s. -0.71 p.c. 

E. gracilis 0.17 a.s. 0.07 l.c. 

E. socialis 0.08 a.s. -0.52 p.c. 

E. victrix -1.03 h.s. 0.26 l.c. 

   

Vessel density (VD) 

 

Vessel density varied greatly along path length (l) within individual trees and among 

tree species. In individual trees, VD from basipetal sapwood samples correlated well 

with tree structural traits such as tree height and DBH (Fig. 2.6). Vessel densities 

were less in species from humid environments compared to species from semi-arid 

environments (y = 911.75x
-0.72

; R² = 0.77; excluding E. pauciflora and E. victrix). 

Values for individual trees are presented in Table 2.8. The greatest VD (49025 

vessels cm
-2

) was recorded in sapwood 22 cm below the apex of an E. socialis. 

Sapwood from the main trunk of an E. viminalis had just 360 vessels cm
-2

.   

 

In all trees and regardless of prevailing environmental conditions, basipetal samples 

had low VD. VD then increased with tree height, commonly following curvilinear 

trajectories (see Fig. 2.9 as an example). Basipetal sapwood of trees at very humid 

sites had between 525 vessels cm
-2

 (± 66) (E. delegatensis) and 783 vessels cm
-2

 (± 

107) (E. regnans). These densities increased towards tree apices where they reached 

densities of between 13680 vessels cm
-2

 (± 109) in E. viminalis and 20341 vessels 

cm
-2

 (± 723) in E. delegatensis. Sapwood collected from the base of trees growing 

under dry-subhumid conditions had almost twice as many vessels when compared to 
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their humid counterparts.  E. melliodora, for example, had a VD of 946 vessels cm
-2

 

(± 175) while E. baxteri showed a density of 1049 vessels cm
-2

 (± 164). Moving 

upwards in these trees, maximum VD was not greater than for taller tees in humid 

environments, and ranged from 17435 vessels cm
-2

 (± 2348) in E. baxteri to 23497 

vessels cm
-2

 (± 5193) in E. melliodora.  

 

Vessel density varied most in sapwood of species from semi-arid environments. For 

E. microcarpa, VD ranged from 1728 vessels cm
-2

 (± 268) to 29133 vessels cm
-2

 (± 

3379) in E. gracilis the range was from 4217 vessels cm
-2

 (±1201) vessels at the base 

to 36289 vessels cm
-2

 (± 3569) at the apex. Sapwood of E. victrix had a VD similar to 

that of trees from dry-subhumid sites and did not exceed 1028 vessels cm
-2

 (±143) at 

the base or 19129 vessels cm
-2

 (±7908) in the apical region.  

 

Across all sampled trees, VD was curvi-linearly related to tree height and DBH. As 

sample height declined from 70 to <10 meters and as sample DBH declined from 90 

to <20 cm, VD increased strongly (Fig. 2.6). Table 2.8 shows all basic sapwood traits 

measured in individual trees. 
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Table 2.8: Characteristics of sapwood collected from the base of Eucalyptus trees that grew 

along an environmental gradient of increasing aridity. Abbreviated descriptors are: t.n. = tree 

number per species; VC = vessel counts, d = average vessel diameter, dmin and dmax = smallest 

and widest vessel diameters measured, n.d. = normal distribution of vessel sizes (with n for no 

and y for yes), VD = vessel density and WD = sapwood density. Standard deviations are shown 

in parenthesis. Different superscripted letters indicate significant differences of d among three 

individuals of one species (Bonferroni-Dunn test; p <0.05). 

species t.n. VC  
d 

(µm) 

dmin 

(µm) 

dmax 

(µm) 
n.d 

VD 

(n cm
-2

) 

WD 

(g cm
-3

) 

E. regnans 1 154 151 (± 48)
a
 35 240 n 879 (± 60) 0.49 

E. regnans 2 88 165 (± 40)
a
 59 236 n 803 (± 104) 0.53 

E. regnans 3 117 197 (± 46)
b
 36 276 n 668 (± 149) 0.48 

E. pauciflora 1 161 95 (± 27)
a
 32 143 n 919 (± 20) 0.52 

 
E. pauciflora 2 108 120 (± 34)

b
 32 193 n 617 (± 17) 0.47 

E. pauciflora 3 124 116 (± 25)
b
 51 156 n 708 (± 133) 0.42 

E. viminalis 1 125 133 (± 50)
a
 36 239 n 714 (± 69) 0.60 

E. viminalis 2 129 159 (± 58)
b
 37 303 y 736 (± 51) 0.51 

E. viminalis 3 95 195 (± 52)
c
 59 317 y 542 (± 26) 0.61 

E. delegatensis 1 80 163 (± 55)
a
 44 245 n 457 (± 10) 0.59 

E. delegatensis 2 103 157 (± 57)
a
 26 257 n 588 (± 26) 0.63 

E. delegatensis 3 93 151 (± 39)
a
 48 234 n 531 (± 157) 0.54 

E. obliqua 1 118 159 (± 65)
a
 31 301 n 674 (± 97) 0.53 

E. obliqua 2 37 122 (± 44)
b
 23 195 n 845 (± 79) 0.51 

E. obliqua 3 35 137 (± 59)
ab

 30 260 y 799 (± 241) 0.44 

E. melliodora 1 192 128 (± 53)
a
 23 215 n 1096 (± 75) 0.63 

E. melliodora 2 173 123 (± 34)
a
 31 182 n 988 (± 86) 0.60 

E. melliodora 3 132 129 (± 30)
a
 31 197 n 754 (± 75) 0.63 

E. baxteri 1 152 122 (± 32)
a
 25 174 n 868 (± 77) 0.68 

E. baxteri 2 208 134 (± 42)
b
 26 217 n 1187 (± 40) 0.48 

E. baxteri 3 191 119 (± 43)
a
 25 200 n 1090 (± 60) 0.49 

E. microcarpa 1 89 83 (± 26)
a
 35 135 n 2032 (± 241) 0.72 

E. microcarpa 2 71 104 (± 39)
b
 26 181 n 1621 (± 788) 0.78 

E. microcarpa 3 67 105 (± 36)
b
 27 170 y 1530 (± 456) 0.76 

E. polyanthemos 1 69 89 (± 39)
a
 17 170 y 1576 (± 137) 0.64 

E. polyanthemos 2 356 104 (± 42)
b
 14 185 n 2032 (± 183) 0.65 

E. polyanthemos 3 317 103 (± 39)
b
 26 169 n 1810 (± 275) 0.71 

E. gracilis 1 213 53 (± 16)
a
 19 95 n 4864 (± 1140) 0.82 

E. gracilis 2 124 68 (± 26)
b
 19 118 n 2832 (± 105) 0.72 

E. gracilis 3 217 56 (± 16)
a
 16 89 n 4955 (± 933) 0.82 

E. socialis 1 98 75 (± 29)
a
 16 134 n 2238 (± 285) 0.72 

E. socialis 2 405 66 (± 23)
b
 23 133 n 2312 (± 140) 0.76 

E. socialis 3 88 76 (± 29)
a
 19 142 y 2009 (± 259) 0.78 

E. victrix 1 47 143 (± 40)
a
 34 189 n 1073 (± 79) 0.63 

E. victrix 2 50 118 (± 48)
b
 24 119 n 1142 (± 40) 0.63 

E. victrix 3 38 127 (± 32)
ab

 31 183 n 868 (± 143) 0.67 
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Figure 2.6: Relationships between vessel density (VD) of basipetal sapwood from individual 

trees and (A) tree height and (B) tree diameter at breast height (DBH). E. pauciflora and E. 

victrix are represented by circles; these data were excluded from the regression models. 

Coefficients of determination for the curvilinear trends (solid lines; A) y = 1079194.78x
-0.88

, B) y 

= 5381x
-0.72

) are shown.  

Basic sapwood traits and climate 

 

Long-term climate (i.e. 100 year climate data) was the better predictor of d or VD of 

individual trees when compared to recent (i.e. 1 year climate data, Table 2.9). This 

analysis revealed further that both sapwood traits were better correlated with AI100 

(d: R
2
 = 0.83; VD: R

2
 = 0.77) than with either precipitation or temperature.  

 

Table 2.9: Coefficients of determination and related quadratic and power functions that 

describe the relation between average basal vessel diameter (d) or vessel density (VD) of 12 

Eucalyptus species (n = 3 species
-1

) and long-term (100-year; R
2
100) or short-term (1 year; R

2
1) 

climate descriptors. 

d R
2

100  equation R
2

1  equation 

AI 0.83 y  =  45.94ln(x) + 137.61 0.79 y = 117.99x
0.64

 

P (mm year
-1

) 0.82 y  =  56.81ln(x) - 253.83 0.75 y  = 0.46x
0.80

 

Tmax (°C) 0.80 y =  -1.15x
2
 + 32.58x - 70.80 0.72 y = -1.04x

2
 + 28.63x - 36.94 

VD R
2

100  equation R
2

1 equation 

AI 0.77 y  = 911.75x
-0.72

 0.75 y = 1119.36x
-1.11

 

P (mm year
-1

) 0.74 y = 380002.28x
-0.87

 0.71 y  = 15764706.04x
-1.38

 

Tmax (°C) 0.77 y  = 55.16e
0.16x

 0.73 y  = 45.10e
0.17x
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2.3.5 Hydraulic sapwood traits 

 

Hydraulically weighted diameter (Dh) 

 

Hydraulically weighted vessel diameter (Dh) and VD are widely accepted descriptors 

of the capacity of trees to conduct water. Both, Dh and VD varied considerably 

among species. As expected, and similar to d, Dh decreased with increasing height 

between base and apex.  

 

To make full use of this unique dataset, where sapwood was analysed over the full 

height of trees, Dh and VD at the base of trees (Dhb and VDb, respectively), and 

absolute maximum Dh (Dhmax) and absolute minimum VD (VDmin), were examined 

in relation to environmental factors. Absolute maximum and minimum values may 

not necessarily be found at the base of trees, as they are strongly influenced by the 

size distribution of vessels in the case of Dhmax, and by the packing of vessels in 

sapwood in case of VDmin.  

 

Table 2.10 illustrates this analysis.  First the data show clearly that Dhb and Dhmax as 

well as VDb and VDmin do not necessarily coincide with the base of trees. Data for 

VDb is equivalent to values shown in Table 2.8.  

Regression models provided clear evidence that Dhmax and VDmin were more 

powerful descriptors for both tree structural and climate parameters than Dhb and 

VDb (Table 2.10). Based on these results Dhmax and VDmin were examined in greater 

detail.  

 

 



 

    
  

5
8 

Table 2.10: Coefficients of determination between vessel characteristics of sapwood from 10 Eucalyptus species (n = 3 species
-1

) sampled across a strong gradient of 

aridity in south-eastern Australia and tree structural traits. Abbreviations used: AI100 = average aridity index of the last 100 years, DBH = Diameter at breast 

height, Dhb = hydraulically weighted vessel diameter at stem base, Dhmax = largest indentified hydraulically weighted vessel diameter, VDb = vessel density at stem 

base and VDmin = lowest identified vessel number. Resulting equations are shown for each of the regression models. Data for E. pauciflora and E. victrix were 

excluded in regression analyses. 

 

 

 

 

 

 

 

 

 

 

 

 R
2 

(AI100) 

equation R
2 

(tree height ) 

equation R
2 

(DBH) 

equation 

Dhb 0.83 y = 55.92ln(x)+176.11 0.76 y = 54.63ln(x)-266.12 0.62 y = 63.40ln(x)-68.03 

Dhmax  0.88 y = 63.24ln(x)+192.62 0.80 y = 61.61ln(x)-306.19 0.68 y = 73ln(x)-88.05 

VDb 0.77 911.75x
-0.72

 0.71 y = 271692x
-0.70

 0.65 y = 25215x
-0.87

 

VDmin 0.81 752.40x
-0.77

 0.76 y = 362511x
-0.76

 0.68 y = 26774x
-0.93
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Maximum hydraulically weighted vessel diameter (Dhmax) 

 

Largest Dhmax were recorded for the tall species from the humid foothills of the Great 

Dividing Range. Here, average diameters of species (n = 3) ranged from 247 µm (± 

7) (E. viminalis) to 207 µm (± 17) (E. regnans). In dry-subhumid and semi-arid 

environments Dhmax were considerably smaller and varied between 167 µm (± 3) in 

E. baxteri to much smaller value for E. socialis and E. gracilis. In E. socialis Dhmax 

was with 106 µm (± 5) 20% wider than that of E. gracilis (84 µm, ± 16).  

 

Across all species, Dhmax related well to Tmax100 as well as to AI100 (Fig. 2.7). E. 

pauciflora and E. victrix were clear outliers and their Dhmax did not fit model 

predictions.  
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Figure 2.7: Relationships between (A) average long-term (100-year) maximum temperatures 

(Tmax100), (B) average long-term (100-year) aridity indices and average maximum hydraulically 

weighted vessel diameters (Dhmax; n = 3 species
-1

) of 12 sampled Eucalyptus species. Error bars 

depict standard deviations. Data for E. pauciflora and E. victrix is represented by circles; these 

data were excluded from the model. Coefficients of determination for linear regression and 

exponential rise (solid lines; A: y = -14.55x+443.12, B: y = 63.514ln(x) + 192.54) are shown in 

figures.    

 

Minimum vessel density (VDmin) 

 

Sapwood from species at very humid sites had VDmin in the range from 431 vessels 

cm
-2

 (± 64) in E. viminalis to 681 vessels cm
-2

 (± 76) in E. regnans. Sapwood of E. 

baxteri (VDmin = 862 vessels cm
-2

, ± 101) and E. melliodora (993 vessels cm
-2

, ± 
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171) from dry-subhumid regions contained twice as many vessels as E. viminalis. 

Sapwood sampled from species originating from semi-arid environments showed a 

further increase - E. microcarpa had a VDmin of 1307 vessels cm
-2

 (±131) while E. 

gracilis had a density of 3616 vessels cm
-2

 (± 1090). These densities are 

approximately five times those found in sapwood of tall species from the Great 

Dividing Range. Once more, sapwood of E. victrix did not follow generally observed 

patterns of increasing VDmin with decreasing AI100 (VDmin = 875 vessels cm
-2

 (± 171). 

Analogus to the strong correlation between d and VD (Fig. 2.5), the smallest VDmin 

were found in species with a large Dhmax and vice versa. Figure 2.8 illustrates a 

strong correlation between VDmin and Dhmax.  

 

 

Figure 2.8: Relationship between average maximum hydraulically weighted vessel diameter 

(Dhmax; n = 3 species
-1

) and average minimum vessel density (VD; n = 3 species
-1

) of sampled 12 

Eucalyptus species. Standard deviations are shown by error bars. Data for E. pauciflora and E. 

victrix is represented in by circles; these data were excluded from the model. Coefficient of 

determination for the power function (solid line; y = 19175156.84x
-1.94

) is shown in figure.  

 

In the same fashion as Dhmax, VDmin was strongly correlated to environmental and 

tree structural attributes such as AI100 (R
2
 = 0.85; 758.87x

-0.78
), tree height (R

2
 = 

0.80; 427306.01x
-0.78

) and DBH (R
2 

= 0.81; 51627.16x
-1.11

). All models describing 

the relationship of VDmin to environmental and tree structural parameters excluded E. 

pauciflora and E. victrix. 
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Table 2.11: Hydraulic characteristics of sapwood collected along the stems of 12 Eucalyptus 

species. Abbreviations: t.n. = tree number per species, Dhb = hydraulically weighted vessel 

diameter at the base of stems, Dhmax = maximum hydraulically weighted vessel diameter and 

VDmin = minimum vessel density per square centimetre of sapwood. All locations were either 

Dhb, Dhmax or VDmin were located are shown as inverse tree heights (i.e. 6000 cm indicates that 

the relevant parameter was detected in sapwood that was 60 m below the tree‟s apex).  

species t.n. 
Dhb 

(µm) 

height 

Dhb 

(cm) 

Dhmax 

(µm) 

height 

Dhmax 

(cm) 

VDmin 

(n cm
-2

) 

height  

VDmin 

(cm) 

E. regnans 1 188 6000 196 3000 662 5000 

E. regnans 2 189 6000 198 4500 765 6000 

E. regnans 3 227 5000 227 5000 617 4000 

E. pauciflora 1 115 1000 121 800 634 400 

E. pauciflora 2 145 1000 145 1000 628 1000 

E. pauciflora 3 131 1100 137 1000 605 390 

E. viminalis 1 180 5000 250 3000 360 3000 

E. viminalis 2 223 4500 239 3000 445 3000 

E. viminalis 3 238 4500 252 3000 485 3000 

E. delegatensis 1 205 4500 205 4500 457 4500 

E. delegatensis 2 206 5400 238 4900 520 4900 

E. delegatensis 3 180 5500 229 3490 411 4500 

E. obliqua 1 224 3700 242 2200 617 900 

E. obliqua 2 155 3500 191 3500 708 3000 

E. obliqua 3 205 3500 205 2500 548 1000 

E. melliodora 1 172 1600 172 1600 953 1400 

E. melliodora 2 145 1800 156 1600 879 1600 

E. melliodora 3 147 1600 151 1200 754 1600 

E. baxteri 1 141 1400 170 1200 879 1400 

E. baxteri 2 166 1200 168 1000 1187 1200 

E. baxteri 3 154 1200 163 1000 925 1000 

E. microcarpa 1 106 1800 140 1200 1176 1200 

E. microcarpa 2 139 1800 139 1800 1439 900 

E. microcarpa 3 138 1800 138 1800 1307 1000 

E. polyanthemos 1 131 1200 141 800 1421 900 

E. polyanthemos 2 144 1000 149 800 1964 1000 

E. polyanthemos 3 140 1200 158 900 1267 598 

E. gracilis 1 67 1000 68 800 4636 400 

E. gracilis 2 93 700 100 250 2466 830 

E. gracilis 3 68 500 84 600 3745 600 

E. socialis 1 103 800 105 270 2238 800 

E. socialis 2 89 600 102 500 2375 350 

E. socialis 3 107 800 111 915 1576 915 

E. victrix 1 165 1500 168 900 1073 1500 

E. victrix 2 155 1900 176 1500 776 1100 

E. victrix 3 147 1374 179 1273 776 1273 
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Vessel tapering structure  

 

Within all trees, vessel sizes changed little for at least half the length of the bole ( l, 

measured from the base).  That is, there was no obvious tapering. Tapering began in 

the upper half of trees, and thereafter Dh continuously declined, with the rate of 

tapering increasing towards the apex.  

 

Smallest vessels identified in the apical regions were relatively similar within 

different species and were typically around 20 – 30 µm. Hence, the major differences 

in taper were between tall trees, that had initially large vessels at around half bole 

height, and shorter trees with that had much smaller vessels at the equivalent point. 

The distance from the base to the point where tapering became apparent was much 

greater in tall compared to shorter trees. Vessel numbers showed an identical pattern, 

remaining low in the lower part of stems and increasing with ongoing vessel tapering  

towards the tree‟s apex. A power function described well this increase of VD with 

height . The ratio of apical VD to basal VD varied markedly across species.  For tall 

trees this ratio was around 20 while in short trees it was closer to 9. 

 

Both tree height (y = 0.52x
0.44

; R
2
 = 0.63) and DBH (y = 1.54x

0.67
; R

2
 = 0.66) were 

moderately good predictors of VD.  Figure 2.9 shows an example how tapering and 

VD developed in a tall (E. regnans) and a short (E. gracilis) eucalypt tree.  
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Figure 2.9: Vessel tapering structure in (A) a Eucalyptus gracilis and (B) a E. regnans. 

Illustrated are the relationships between hydraulically weighted vessel diameters (Dh) and 

inverse tree height (from apex to base). Inserted panels show the change of vessel density (VD) 

with inverse tree heights. Figures showing changes of vessel density (VD) with inverse tree 

height for each tree considered within this thesis are illustrated in Appendix – Chapter 2. 

 

Void to wood fraction (VtW) 

 

Average values of VtW (%) (n = three per species
-1

) calculated for samples at stem 

base showed neither significant correlation with climate descriptors such as AI100 (y 

= 1.43x + 12.57; R
2
 = 0.15) Tmax100(y = -0.15x + 16.66; R

2
 = 0.04) or P100 (y = 0.01x 

+ 12.13; R
2
 = 0.19) nor with basic sapwood traits such as d (y = 0.03x + 10.03; R

2
 = 

0.22) or VD (y = 0.00x + 14.82; R
2
 = 0.08). Surprisingly, even WD at DBH (y = 

0.32x + 11.35; R
2
 = 0.11) was not correlated with VtW. Individual trees displayed 

wide variability over the majority of l, and VtW declined only slightly towards apical 

regions. Exemplary Figure 2.10 illustrates VtW structure over l of an E. gracilis from 

a semi-arid environment and a tall E. regnans from the very humid forests of south-

eastern Victoria.  
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Figure 2.10: Void to Wood fraction (VtW) plotted against inverse tree height in (A) a Eucalyptus 

gracilis and (B) a E. regnans with a tapering structure as shown in Figure 2.9 and Figure 2.12 

and total hydraulic resistance as shown in Figure 2.11. Coefficients of determination for (A) a 

power function (solid line; y = 5.05x
0.15

) and (B) logarithmic decline (solid line; y = 2.34ln(x) + 

1.98) are shown in pictures.  

 

Total resistance (Rtot)  

 

Total resistances varied among single trees and also among species. The greatest Rtot 

was detected in an individual of E. gracilis with 6.48 e-3 cm
-3

 MPa s
-1

, while the 

smallest Rtot was associated with E. victrix at 4.49 e-4 cm
-3

 MPa s
-1

. The remaining 

species varied between these two values. Table 2.12 shows Rtot as calculated for 

individual trees and averaged for each species. 

 

Table 2.12 (next page): Total resistance (Rtot) to water flow in sapwood of 12 Eucalyptus species. 

Abbreviation used: t.n. = tree number per species. Standard deviations are shown in 

parentheses. Different lower case letters indicate significant differences among species 

demonstrating results of pairwise comparisons of species means conducted with a Bonferroni t-

test with a p <0.05 level of significance.   
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species t.n. 
Rtot 

(cm
-3

 MPa s
-1

) 

average Rtot 

(cm
-3

 MPa s
-1

) 

E. regnans 1 1.44e-3 2.01e-3 (± 5.03 e-4)
a
 

E. regnans 2 2.41 e-3  

E. regnans 3 2.18 e-3  

E. pauciflora 1 1.63 e-3 2.17e-3 (± 9.58 e-4)
a
 

E. pauciflora 2 3.27 e-3  

E. pauciflora 3 1.60 e-3  

E. viminalis 1 1.64 e-3 1.40e-3 (± 3.23 e-4)
a
 

E. viminalis 2 1.53 e-3  

E. viminalis 3 1.04 e-3  

E. delegatensis 1 1.91 e-3 2.05e-3 (± 2.40 e-4)
a
 

E. delegatensis 2 2.33 e-3  

E. delegatensis 3 1.92 e-3  

E. obliqua 1 3.44 e-3 2.82e-3 (± 1.23 e-3)
ab

 

E. obliqua 2 3.62 e-3  

E. obliqua 3 1.40 e-3  

E. melliodora 1 1.25 e-3 1.53e-3 (± 5.78 e-4)
a
 

E. melliodora 2 1.16 e-3  

E. melliodora 3 2.20 e-3  

E. baxteri 1 1.18 e-3 8.77e-4 (± 2.66 e-4)
a
 

E. baxteri 2 7.13 e-4  

E. baxteri 3 7.33 e-4  

E. microcarpa 1 4.83 e-3 2.71e-3 (± 1.84 e-3)
ab

 

E. microcarpa 2 1.78 e-3  

E. microcarpa 3 1.52 e-3  

E. polyanthemos 1 1.53 e-3 1.06e-3 (± 4.44 e-4)
a
 

E. polyanthemos 2 6.41 e-4  

E. polyanthemos 3 1.02 e-3  

E. gracilis 1 6.48 e-3 5.22e-3 (± 1.16 e-3)
b
 

E. gracilis 2 5.00 e-3  

E. gracilis 3 4.19 e-3  

E. socialis 1 2.05 e-3 2.30e-3 (± 3.30 e-4)
a
 

E. socialis 2 2.17 e-3  

E. socialis 3 2.67 e-3  

E. victrix 1 1.10 e-3 7.95e-4 (± 3.28 e-4)
a
 

E. victrix 2 8.35 e-4  

E. victrix 3 4.49 e-4  

 

Hydraulic resistance to sapflow increased with l in all trees. Within all trees R 

followed a similar pattern to vessel tapering structure, where based on insignificant 

changes in vessel sizes for ~50% of l, R remained uniformly low. Apical regions 

contributed most to Rtot. All pairwise comparisons of species means indicated few 

differences in Rtot among species. Only E. gracilis was significantly different for Rtot 

compared to other species (p <0.05), although even then, Rtot was not different to 

values for E. microcarpa and E. obliqua (Table 2.12). There was no obvious 

relationship between total resistance, measured tree structural- or sapwood traits 

and/or environmental conditions. An example of how R developed in one tall and 
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one short tree along l is shown in Figure 2.11. The same two individuals as shown in 

Figures 2.9, 2.10 and 2.12 are used for this comparison. The shape of the relation 

between R and tree height was similar in all trees and species, regardless of their 

stature or origin.  

 

Figure 2.11: Total hydraulic resistance (Rtot) as a function of inverse tree height in (A) a 

Eucalyptus gracilis and (B) a E. regnans with a tapering structure as shown in Figure 2.9 and 

2.12 and with a void to wood structure as illustrated in Figure 2.10. The inserted panels depict 

the identical data plotted as log–log plot, where solid lines indicate linear regressions, long 

dashed lines indicate 95% confidence intervals, and short dashed lines indicate 95% prediction 

intervals. Coefficients of determination are shown in pictures. Log-log plots of hydraulic 

resistance (Rtot) as a function of inverse tree height for all individual trees considered within this 

thesis are illustrated in Appendix – Chapter 2. 

 

2.3.6 Three Phase Taper Analysis  

 

Patterns of tapering of vessels are perhaps the most distinctive result in this thesis.  A 

new approach to assessing these patterns was developed – and will be described as a 

Three Phase Taper Analysis (TPTA).  This approach illustrated the similarities and 

differences of hydraulic architecture in Eucalyptus spp.  

 

Analyses of Dh from the base towards the apical region of all trees (n = 36) showed 

general trends: 
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1.  Independent of species, tree height or environmental conditions, little or no 

changes in d could be observed within 50% to 70% (P1) of l.  

2. Within the last 25% to 50% of l, the tapering structure (i.e. the relative 

change in Dh or d to VD) differed strongly, especially in terms of P3 insertion 

point.  

3. Due to its unusual tapering structure, E. pauciflora did not fit the general 

trend and was excluded from the following analyses.  

 

Calculation of relative distance from the tree base to the point where tapering 

commenced (P1) shows that vessels did not taper for between 56% (±7) (E. 

polyanthemos) and 75% (±5) (E. obliqua) of l. Generally, tall trees showed by far the 

longest P1-section with no taper (73% ±12 of l).  

 

Tapering in stems of trees from dry sub-humid to arid ecosystems thus began earlier 

(Table 2.13).  

The relative length of the section that tapered steeply (P3) ranged from 0.4% (±0.04) 

in E. regnans to around 12% (±1.9) in E. victrix. Relative lengths of P3 were short in 

tall tree species and increased when environments became progressively more arid 

(Table 2.13). Hence, P3 was around to 2% (±0.5) of l in E. obliqua, 3% (±0.5) in E. 

baxteri and 5% (±0.6) in E. melliodora. In the two Mallee species (E. gracilis and E. 

socialis) sampled in Mildura State Forest, vessels tapered rapidly over the remaining 

5 to 10% of l before the apex (Table 2.13). 

Table 2.13 (next page): Relative proportion of stem sections to total path length (l) identified in 

the Three Phase Taper Analysis (TPTA) that showed no (Phase 1), moderate (Phase 2) and 

rapid tapering (Phase 3) of hydraulically weighted vessel diameters in sapwood of 12 Eucalyptus 

species (n = 3 species
-1

). Standard deviations are shown in parentheses. Phase 1 represents the 

lower, Phase 2 the mid- and Phase 3 the apical section of trees.  
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species 
Phase 1 

l (%) 

Phase 2 

l (%) 

Phase 3 

l (%) 

E.regnans 72.96 (±11.97) 27.04 (±11.97) 0.39 (±0.04) 

E.pauciflora 44.91 (±3.98) 55.09 (±3.98) 2.97 (±0.19) 

E.viminalis 74.30 (±3.21) 25.70 (±3.21) 1.08 (±0.19) 

E.delegatensis 74.30 (±8.33) 25.70 (±8.33) 0.86 (±0.38) 

E.obliqua 75.24 (±5.36) 24.76 (±5.36) 2.09 (±0.48) 

E.melliodora 64.84 (±7.38) 35.16 (±7.38) 4.89 (±0.63) 

E.baxteri 72.45 (±5.11) 27.55 (±5.11) 3.33 (±0.53) 

E.microcarpa 70.07 (±8.42) 29.93 (±8.42) 4.34 (±0.89) 

E.polyanthemos 55.80 (±7.11) 44.20 (±7.11) 2.96 (±0.18) 

E.gracilis 62.24 (±9.12) 37.76 (±9.12) 5.18 (±0.27) 

E.socialis 68.69 (±6.24) 31.31 (±6.24) 9.65 (±1.80) 

E.victrix 62.44 (±4.60) 37.56 (±4.60) 11.69 (±1.94) 

 

Figure 2.12 provides examples of three phase taper analyses produced for E. gracilis 

and E. regnans. Figures of TPTA for all individual trees considered within this thesis 

are illustrated in Appendix – Chapter 2. 

 

 

 

 

 

 

 

 



 

   69 
  

 

Figure 2.12: Two exemplars of Three Phase Taper Analysis (TPTA). (A) Eucalyptus gracilis, (B) 

E. regnans. Black dots are measured values and are averages of three analysed images. Circles 

are calculated medians in-between measured values. They were not part of linear regression 

analysis and they do express relative tree heights of phase changes. Pictures of trees are not 

scaled, and are inserted to provide an impression of general tree structure and intercept length 

of different phases. Blue boxes indicating Phase 2 (moderate tapering) blue numbers describing 

tapering starting point expressed as relative inverse tree height, red boxes and red numbers 

indicating Phase 3 (steep tapering). Coefficients of determination for linear regressions are 

shown in figures in the respective colours, while black Coefficients of determination are assigned 

to Phase 1.  

Following identification of the degree of tapering in individuals, relationships of 

relative length of each of the three Phase-sections to environmental variables, namely 

Tmax100, P100 and the AI100 were assessed. Of all variables, AI100 was the best 

predictor of the relative length of taper phases. Even though P100 were a marginally 

better predictor for P3 intervals, P1 and P2 were better related to AI100. Correlation 

analysis, however, indicated that the relative length of the region within the stem that 

tapered rapidly increased with decreasing aridity and with declining amounts of 

annual precipitation (Fig. 2.13A). When moving downward the stem (from apex to 

base) the strength of the predictive character diminished (Fig. 2.13B), leaving the 

relative length of the P1-section with a relatively weak correlation to AI100 (Fig. 

2.13C).  
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Figure 2.13: Correlation between average long-term (100-year) aridity indices (AI100) and 

relative lengths of stem sections that showed (A) rapid tapering (or „Phase 3‟), (B) moderate 

tapering (or „Phase 2‟) and (C) no tapering (or „Phase 1‟) in 12 Eucalyptus species (n = 3 species
-

1
). Data for E. pauciflora is represented by circles; these data were excluded from the model. 

Error bars indicate standard deviations. Coefficients of determination for curvilinear and linear 

regressions (solid lines; A: y = 1.39x
-0.80

, B: y = 91239x
-3.47

, C: y = 0.08x - 4.39) are shown. 

 

Table 2.14 illustrates the strength of all considered environmental descriptors.  
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Table 2.14: Coefficients of determination for relationships of different phases of vessel taper to 

long-term (100-year) averages of rainfall (P100) and maximum daily temperatures (Tmax100).  

 R
2 

 
(P100) 

equation R2  

(Tmax100) 

equation 

Phase 3 0.88 y = 1260.4x
-0.60

 0.68 y = 15.79x
0.20

 

Phase 2 0.56 y = 5e+06x
-2.58

 0.49 y = 0.7744x
0.94

 

Phase 1 0.48 y = 1e-06x
4.78

 0.41 y = 28342x
-1.72

 

 

The relative dimensions of the P3-section of individual trees also related well to 

structural traits of trees. These analyses showed that the length of the apical section 

where vessel tapering was most rapid, correlated strongly to crown insertion point (y 

= 6.32e
-6E-04x

; R
2
 = 0.85), WD (y = 0.45e

0.09x
; R

2
 = 0.84) and total tree height (y = 

10.04e
-5E-04x

; R
2
 = 0.82).  However the same length was only weakly related to DBH 

(y = 13.34e
-0.04x

; R
2
 = 0.64). As in previous analyses, values for E. pauciflora were 

excluded from all models. Due to missing data, the relationship of the relative length 

of the P3-section to crown insertion points could not be evaluated for E. victrix. 

Similar to the relationship of AI100, the relative length of the P3-section showed a 

strong correlation with overall tree height, particularly for tall species from humid 

environments (Fig. 2.14). 
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Figure 2.14: Relationship between total tree heights and relative length of stem sections that 

showed rapid tapering (or „P3-section‟). Data of four species was used in this analysis, namely 

Eucalyptus delegatensis, E. obliqua, E. regnans and E.viminalis. Coefficient of determination for 

curvi-linear trajectory (solid line; y = 8913244206x
-2.69

) is shown. 
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Relative resistance of identified vessel taper phases  

 

Dissection of tree stems into three regions of different degrees of tapering allowed 

further analysis of resistance to water flow (Rrel). Clearly and not surprisingly, the 

P3-section (i.e. rapid, steep vessel taper structure within the apical region) is the part 

of the stem where most of Rrel is concentrated. Across all species Rrel in P3-sections 

was greater than that calculated for the P2-section. The P3-section contributed at 

least 47% (±2.60) of Rtot in E. regnans and up to 85% (±5.07) in E. victrix (Table 

2.15). A very strong linear relationship (y = -0.94x+87.53; R
2
 = 0.94) was found 

between Rrel of the P2- and P3-section, indicating that when less Rrel was assigned to 

the P3-section, more Rrel was assigned to the P2-section. The P1-section contributed 

at most 14% Rrel to Rtot (Table 2.15).  

 

Table 2.15: Relative contributions among stem segments (Phases 1 to 3) to resistance to water 

flow (Rrel) for 12 Eucalyptus trees sampled along an environmental gradient. Rrel is based on 

segment lengths of the TPTA where P1 represents the tree stem where vessels did not taper, P2 

the section of the stem with moderate vessel taper and P3 the remaining, apical segment where 

vessels tapered rapidly. Values presented in the table are species averages (n = 3 species
-1

); 

standard deviations are shown in parentheses. 

species 
P1-segment 

Rrel (%) 

P2-segment 

Rrel (%) 

P3-segment 

Rrel (%) 

E.regnans 9.15 (±5.35) 43.63 (±4.70) 47.22 (±2.60) 

E.pauciflora 5.98 (±3.11) 34.06 (±9.80) 59.96 (±12.84) 

E.viminalis 5.22 (±0.44) 19.69 (±6.14) 75.09 (±6.40) 

E.delegatensis 7.00 (±2.94) 28.71 (±12.92) 64.29 (±14.15) 

E.obliqua 6.13 (±4.96) 12.20 (±7.92) 81.67 (±12.78) 

E.melliodora 6.89 (±4.12) 11.58 (±4.61) 81.53 (±1.63) 

E.baxteri 9.68  (±4.29) 22.22 (±6.75) 68.09 (±8.44) 

E.microcarpa 13.22 (±7.11) 20.68 (±10.08) 66.10 (±17.19) 

E.polyanthemos 7.52 (±2.01) 39.08 (±10.43) 53.40 (±10.88) 

E.gracilis 13.93 (±8.48) 24.59 (±10.60) 61.47 (±18.56) 

E.socialis 11.04 (±3.92) 12.23 (±3.46) 76.73 (±1.80) 

E.victrix 7.69 (±3.07) 7.41 (±2.50) 84.90 (±5.07) 
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2.3.7 Remarks on Metabolic Scaling Theory (MST) 

 

Tapering exponent 

  

Tapering exponents for all species were similar and averages (n = 3) varied from 

0.30 in Eucalyptus gracilis to 0.38 in E. viminalis and E. obliqua. The very low value 

calculated for E. gracilis, however, was strongly influenced by a single tree that had 

a tapering exponent of 0.22 (see Appendix Fig. S 2.104 for details).   

Due to similarities of exponents, neither climate variables nor tree structural features 

were linked with these findings. Tapering exponents for all individual trees and 

species can be found in Table 2.16. Figures for each individual tree are provided in 

the Appendix – Chapter 2.  

Packing exponent 

 

Packing exponents differed within and among Eucalyptus spp. At the species level, 

packing exponents varied between -1.42 in E. polyanthemos and -1.92 in E. 

pauciflora (Table 2.16). According to information generated here, the genus 

Eucalyptus spp. have, on average, a lower packing exponent than suggested by 

available models, including those developed for angiosperms in general or those that 

are based on optimal hydraulic functioning (Chapter 2.4). 
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Table 2.16: Tapering exponents and packing exponents for 12 species of Eucalyptus for 

individual trees and for each species. Abbreviation used: t.n. = tree number per species. 

species t.n. 
tapering 

exponent 

tapering exponent 

per species 

packing 

exponent 

packing exponent 

per species 

E. regnans 1 0.33 0.35  -1.49 -1.47 

E. regnans 2 0.34  -1.48  

E. regnans 3 0.37  -1.45  

E. pauciflora 1 0.29 0.33 -2.08 -1.92 

E. pauciflora 2 0.39  -1.87  

E. pauciflora 3 0.30  -1.83  

E. viminalis 1 0.38 0.38 -1.59 -1.58 

E. viminalis 2 0.37  -1.65  

E. viminalis 3 0.37  -1.50  

E. delegatensis 1 0.34 0.35  -1.65 -1.58 

E. delegatensis 2 0.35  -1.53  

E. delegatensis 3 0.35  -1.50  

E. obliqua 1 0.42 0.38 -1.39 -1.51 

E. obliqua 2 0.37  -1.58  

E. obliqua 3 0.35  -1.71  

E. melliodora 1 0.36 0.35  -1.62 -1.75 

E. melliodora 2 0.32  -1.96  

E. melliodora 3 0.38  -1.77  

E. baxteri 1 0.37 0.35  -1.59 -1.57 

E. baxteri 2 0.35  -1.43  

E. baxteri 3 0.33  -1.72  

E. microcarpa 1 0.37 0.31 -1.56 -1.68 

E. microcarpa 2 0.30  -1.89  

E. microcarpa 3 0.27  -1.82  

E. polyanthemos 1 0.35 0.33  -1.51 -1.42 

E. polyanthemos 2 0.30  -1.50  

E. polyanthemos 3 0.35  -1.31  

E. gracilis 1 0.22 0.29 -1.63 -1.51 

E. gracilis 2 0.38  -1.44  

E. gracilis 3 0.31  -1.53  

E. socialis 1 0.33 0.34  -1.52 -1.50 

E. socialis 2 0.34  -1.46  

E. socialis 3 0.36  -1.56  

E. victrix 1 0.40 0.35 -1.77 -1.79 

E. victrix 2 0.33  -1.77  

E. victrix 3 0.32  -1.78  
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2.4 Discussion 

 

According to available literature, the data presented here comprise the most 

comprehensive study yet of the principle water conducting systems in the stems of 

Eucalyptus ssp.. The detailed information about tree structure, sapwood and xylem 

vessels of 12 species of Eucalyptus, provide for the first time, the basis for analysis 

of how this genus adapts to climatic conditions. The Three Phase Taper Analysis 

(TPTA) developed here is a novel means of interpreting changes in vessel tapering in 

response to environmental cues, particularly the availability of water. By applying 

TPTA, I identified shared attributes as well as inter-specific differences in tree 

hydraulic architecture.  

 

Climate  

 

Climate data presented here provide evidence for changing climatic conditions over a 

wide range of Australian ecosystems. Temperatures (T) increased steadily at all 

investigated sites. The average rise of  +0.77 °C over the last century is in accordance 

with predictions of  increases in temperature on both a global and an Australian scale 

(Plummer et al., 1999; Broecker, 2002; Hughes, 2003; Hansen et al., 2006). With the 

exception of the Snowy Plains, the last decade was the warmest recorded across all 

research sites for the past 100 years. The data further confirms the widely noted 

warming pattern of 0.1 – 0.4 °C/ decade since the 1950s (e.g Suppiah et al., 2001; 

Hughes, 2003). The generally lesser increases in temperature at the higher-elevation 

sites stand in contrast to predictions that forecast accelerated warming for Australia‟s 

mountain compared to lowland systems (Nogués-Bravo et al., 2007).  

 

Changes in annual precipitation, however, were inconclusive when climate 

parameters for research sites were compared with more regional- and continental-

scale trends reported in the literature. Several authors have reported an increase in 

precipitation of 8.1 mm per decade across the Australian continent (Smith, 2004; 

Murphy and Timbal, 2008). For Victoria and NSW, precipitation during the last 

century increased by 14 – 15% (Hennessy et al., 1999; Hughes, 2003; Murphy and 

Timbal, 2008). However, at the majority of sampled sites considered within the 

present study, there has been a reduction in annual rainfall rather than an increase, if 

compared using decadal averages. The analysis provided here suggests a decrease of 
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9.9 – 136.5 mm per decade. Only the Pilbara region in Western Australia showed 

moderate increases. It is noteworthy that in contrast to apparent long-term reductions 

in precipitation, the years 2010 and 2011 (when sapwood samples were collected) 

were unusually wet, emphasising the importance of the stronger correlation between 

wood traits and long-term climate, when compared to such correlations for short-

term climate data.  

 

Tree- and wood traits 

 

Tree structural traits such as height, DBH and crown insertion point of Eucalyptus 

spp. were clearly linked to climate parameters such as precipitation (P), T and aridity 

index (AI).  These traits also followed global patterns of tree form, where size and 

height increases when water availability increases (Fig. 2.4). This relation has been 

identified as the most important driver for maximum tree height among tree species 

from around the world and is in line with the widely discussed Hydraulic Limitation 

Hypothesis (Chapter 1.4.1) (Ryan and Yoder, 1997; Moles et al., 2009). Diameter of 

Eucalyptus species sampled for the current project was strongly correlated with tree 

height, a relationship documented for countless other species (e.g. Curtis, 1967; 

Larsen and Hann, 1987; Wang and Hann, 1988; Hasenauer, 1997; Wonn and 

O‟Hara, 2001; Soares and Tomé, 2002; Avsar, 2004; Amritphale and Sharma, 2010). 

Height of crown insertion points differed among species but was strongly correlated 

with overall tree height. This can be explained ecologically where trees in closed 

stands generally have a high crown insertion point relative to tree height as 

competition for light requires increased height growth and concentration of foliage at 

tree top to avoid shading by competitors. In contrast, solitary trees appear to invest 

available resources in a wide and low crown and an overall lower height (Iwasa et 

al., 1985).  

 

Sapwood density (WD) is a function of cell wall thickness and the summed cross-

sectional area of individual vessels. Within a tree WD varies in both radial and axial 

directions (Swenson and Enquist, 2007; Pfautsch et al., 2011). Sapwood, which was 

exclusively considered here, has been described as not as dense as heartwood, and 

wood at tree bases has notionally greater density compared to wood from crown 

regions  (Swenson and Enquist, 2007; Chave et al., 2009). Pioneer- and other fast 
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growing species normally have lighter wood with wider vessels, which in turn is 

associated with an increased risk of hydraulic failure. Wood density of slow growing 

species is usually greater, providing increased mechanical support associated with 

the tendency to have a greater resistance to xylem vessel implosion or rupture (Hacke 

et al., 2001).  

 

Wood density of species investigated here matches this general description. Tall 

species from very humid environments had less dense sapwood compared to trees 

from dry sub-humid to arid conditions (Table 2.8). The range of WDs reported here 

is within the range previously described for eucalypts (Kingston and Risdon, 1961; 

Attiwill, 1979; Dye, 1996; Ilic, 2001; Ilic, 2002; Pfautsch et al., 2011).  

 

Sapwood density of gymnosperms and angiosperms is responsive to long-term T 

(e.g. Antonova and Stasova, 1993, 1997; Roderick and Berry, 2001; Thomas et al., 

2004, 2007). Roderick and Berry (2001) developed a model that links WD of 

gymnosperms with tree growth and environment, based on the sensitivity of water 

viscosity to T (Roderick and Berry, 2001). The underlying assumption of their model 

is that water with low viscosity (i.e. at high Ts) can be sufficiently conducted in 

small or few vessels compared to water of high viscosity (i.e. cool Ts).  This model 

requires vessel diameters (d) to be of a sufficient size to facilitate required 

conductivity. In support of this hypothesis, Thomas et al. (2007) showed that 

Eucalyptus grandis developed thicker fibre cell walls with smaller lumen diameters 

when grown at greater Ts. Others have shown that WD is better correlated with P and 

aridity than with T, and to be independent of vessel traits. This might suggest that 

WD is in fact independent of vessel characteristics and rather determined by fibre 

traits.  Overall, it would suggest that wood density, per se, does not impose 

limitations to the conduction of water  (Martínez-Cabrera et al., 2009).  

 

Trends for Eucalyptus spp. reported here provide a means of examining these 

suggestions and hypotheses. Wood density was well correlated with T, P, AI and d. 

Viscosity of water at different Ts may contribute to processes of vessel formation, 

but both vessel size itself and water availability are more likely to be influenced by P 

and AI.  
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As proposed by Pfautsch et al. (2011), wood formation in Eucalyptus spp., and 

especially WD, is likely a result of the essential trade-off with hydraulic safety, and is 

therefore mostly determined by water availability. High WDs may reflect a large 

investment of structural carbon for cell wall formation, slow growth rates, and 

smaller vessels that have limited conductivity (Searson et al., 2004; Pfautsch et al., 

2011). Wood is mostly more dense in semi-arid to arid environments as result of 

reductions in the fibre lumen component accompanied by increasing axial 

parenchyma that have water storage capacity  (Martínez-Cabrera et al., 2009).  

The combined results of WD and ds reported here provide evidence that both 

parameters are negatively related.  The data are also not supportive of the hypotheses 

of Martínez-Cabrera et al. (2009). More knowledge of fibre- and vessel structure in 

different Eucalyptus species grown under different environmental conditions is 

required for a definitive analysis. 

 

Sapwood- and vessel traits 

 

There are few published studies of d and vessel densities (VD) for mature eucalypts. 

Direct intra-specific comparison of results from existing studies is highly 

problematic as vessel structure continuously changes according to changes in tree 

height and age and crown characteristics (Bamber and Curtin, 1972; Hudson et al., 

1998; England and Attiwill, 2007). In a study of E. delegatensis, Mokany et al. 

(2003) reported maximum d (dmax) of up to 270 µm, while individuals of the same 

species studied here showed average dmax of between 234 – 257 µm.  England and 

Attiwill (2007) reported that different-aged E. regnans trees averaged dmax of 210 – 

237 µm, while individuals of the same species studied here had dmax of 236 – 276 

µm.  In similar fashion, while Ilic (2002) reported that dmax in E .baxteri ranged 

between 140 – 210 µm, individuals of the same species studied here had dmax of 174 

– 217 µm. These comparisons highlight that although dmax varies widely among 

individuals of the same species, the range of dmax reported here agrees well with the 

limited previously available data. 

 

At 668 – 879 vessels cm
-2

 (Table 2.8), vessel densities for E. regnans were slightly 

greater than those reported by England and Attiwill (2007; 520 – 670 vessels cm
-2

). 

Wesolowski (2010) studied sapwood structure of five species from very humid sites 
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of eastern Victoria (namely: E. delegatensis, E. obliqua, E. pauciflora, E. regnans 

and E. viminalis) and found similar VDs to those reported here for the same species 

(Wesolowski, 2010).  In general, tall eucalypts in humid environments showed a 

comparatively low amount of large vessels and d decreased while VD increased 

towards environments with lower AI.  Surprisingly, VDs for E. delegatensis are 

remarkably small when compared to VD of other eucalypt species from very humid 

environments (Table 2.8). This is an obvious topic for future research.  

 

A long history of research shows that water availability influences vessel anatomy of 

trees. Knigge and Schulz (1961), for example, convincingly demonstrated the 

relationships of vessel size of Fagus sylvatica, F. moesiaca, and Quercus robur to 

water supply. Similar results were obtained by Eckstein and Frisse (1979) and by 

Carlquist (1975).  

 

For eucalypts such as those species studied here, vessel size reflected the climate 

gradient, confirming that construction of sapwood in Eucalyptus spp. follows a 

universally applicable scheme of hydraulic architecture documented for a number of 

tree genera from different environments (e.g. Wiemann et al., 1998; Wheeler et al., 

2007; Zanne et al., 2010). The stronger correlation of vessel traits with long-term, 

rather than short-term environmental parameters suggests that hydraulic architecture 

is the result of long-term adaptation with limited capacity for modifications to short-

term changes in prevailing weather. This stands in contrast to observations for ring- 

and diffuse porous species from Europe and North America that are exposed to 

extreme seasonal and annual variation of weather conditions, for example sub-zero 

conditions during winter (e.g. Knigge and Schulz, 1961; Carlquist, 1975; Eckstein 

and Frisse, 1979). Results of the present study provide evidence that changes in 

climate during the past decade have only marginally affected vessel structure.  

 

Skewness (τ) and Kurtosis (κ) (Table 2.7) help describe curve shapes based on the 

concept of Gaussian “Normal Distribution” - in this case proportional occurrence of 

different d classes detected in images taken from basipetal samples. Negative values 

of τ imply a longer tail of Gaussian distribution curve towards left (a greater than 

normal fraction of small vessels), while positive τ indicates the opposite (greater than 

normal fraction of larger vessels). Kurtosis is a measure of the "peakedness" of the 
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distribution - negative values imply a platykurtic shape („flattened‟ peak), and 

positive values a leptokurtic shape (a „pointed‟ peak). Positive kurtosis suggests 

predominance of a particular class (or classes) of ds while flat curves suggest broad 

homogeneity of different size classes.  

 

Images of sapwood taken adjacent to the cambium show an almost normal 

(symmetric) distribution of vessel sizes for the majority of species. Hence, most 

vessels were „medium sized‟. Mostly distributions were platykurtic, suggesting 

relatively homogeneous, medium diameter vessels dominated. The skewness of 

distribution curves for most species were negative - more narrower and fewer wider 

vessels than predicted by a strictly normal distribution. Studies of vessels in semi-

ring porous Prunus serotina have reported similar patterns, while strongly negative τ 

was reported for diffuse porous Fagus sylvatica.  (Zimmermann and Jeje, 1981; Sass 

and Eckstein, 1995).  

 

As diameter class allocations are relative to measured diameters, i.e. a „medium‟ 

sized vessel in an E. gracilis is clearly smaller than a „medium sized vessel of e.g. E. 

regnans, τ and κ have different implications across species and ecosystems. For 

example, Mallee species had the smallest ds of all studied species. Consequently, the 

bulk of medium sized vessels were comparatively small. In environments like the 

Victorian Mallee, where rainfall events are spasmodic, a few wider vessels could 

allow transport of greater amounts of water for short periods, before cavitating 

during times where water is scarce and transport of water is facilitated by the 

dominant narrow vessels that are more resistant to cavitation.  

 

Except for E. obliqua, all tall species from very humid environments had negative τ.  

Clearly, vessel diameter was skewed toward narrow vessels. That said, the majority 

of vessels in these tall species were relatively large and able to transport water 

efficiently. The slight bias to smaller vessels contributes to hydraulic safety for tall 

species during times of limited water availability, where the risk of cavitation is high.  

 

Assessing the results for both τ and κ, across all species, there was no uniform 

pattern that could be related to either long- or short-term environmental conditions. 

To date very few researchers have linked the distribution of vessel sizes to 
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physiological functioning.  Even so cambial age influences this anatomic 

characteristic which is mostly under genetic control  (Sass and Eckstein, 1995; Leal 

et al., 2007) .  

 

 The ratio (or proportion) of total vessel area to wood area (VtW) measured at DBH 

was surprisingly unrelated to wood density.  This finding contrasts with the close 

relationship of WD with d and VD (Chapter 2.3.4).  Relationships between vessel 

area and wood density have often been reported (e.g. Thomas et al., 2004, 2007; 

Naidoo et al., 2006; Moya and Tomazello, 2007; Martínez-Cabrera et al., 2009).  On 

the other hand, and within a similar sized body of work, there are only marginal 

influences of VtW fraction on wood density (e.g. Preston et al., 2006; Martínez-

Cabrera et al., 2009; Poorter et al., 2010; Zanne et al., 2010). It follows that if void 

space within the wood matrix does not influence WD, then the wood matrix (e.g. 

thickness of cell walls) must be a major influence on WD. Arguably, WD of itself is a 

minor influence on water conduction.  

 

Given similar VtW across species, independent of vessel size, reductions in VtW 

within apical regions of trees is deserving of comment. Declining VtW within apical 

regions, where negative tension and risks of cavitation are greatest, may have 

advantages for the trees. In particular, this pattern might represent a strategy to 

mitigate runaway embolism due to air seeding (Chapter 1.3.3).  A corollary of 

declining VtW is less vessel inter-connections. Reduced numbers of vessel inter-

connections might partly compensate for the reduced conductivity attributable to the 

sharply declining number of very small vessels. Inter-vessel pits can account for 80% 

of Rtot in Fraxinus and even 87% in Ulmus (Choat et al., 2006). A reduced number of 

vessels with thicker walls at the very apex of trees could help reduce the risk of 

catastrophic xylem implosion by negative pressure (e.g. Hacke et al., 2001). Hence a 

pattern of lengthening vessels of smaller diameter, with fewer inter-connections, help 

compensate for reduced conductivity associated with end wall resistances (e.g. 

Sperry et al., 2005).  
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Tapering structure  

 

The „Three Phase Taper Analysis‟ presented here provides impetus to further 

research to expand our understanding of vessel tapering - for the genus Eucalyptus 

but also for other tree genera. Negative tension within conduit systems is generated 

by gravity and the gradient in water potential of the soil and that of the atmosphere, 

and exacerbated by the many resistances within the plant.  

 

Metabolic scaling models use scaling exponents to explain the widening of vessels 

towards the base of trees. These models explain the widening of vessels from the 

apex downwards, as being an evolutionary adaptation that optimizes conductance 

and at the same time compensating for resistance to the transport of water. Earlier 

approaches such as the Hydraulic Limitation Hypothesis, Cohesion-Tension Theory, 

and Ohm‟s and Darcy‟s Law explain hydraulic architecture in accordance to 

direction of flow (base-to-apex).  

 

Data presented here stimulate further consideration of base-to-apex flow. The 

defined „tapering initiation point‟ (TIP, the transition from P1 to P2), can be 

considered the location within the total path length where tapering must begin to 

ensure that the combined effects of gravity and resistance do not lead to catastrophic 

cavitation under prevalent environmental conditions. 

At very humid sites in mountainous forests of the Great Dividing Range, sufficient 

availability of soil water (hence high soil water potentials) and generally low VPD 

allowed trees to develop a highly efficient vessel system that consisted of mostly 

wide vessels over the majority of path length. Vessels only began to taper in the 

apical 10 – 17 m of 40 – 70 m tall trees. In other words, for 75% of the path length, 

conduits do not change at all in diameter (Table 2.13 and Fig. 2.12, 2.13). When 

availability of soil water is reduced and average VPD increased, tension in the 

network of vessels is likely to increase. Under such environmental conditions a 

network that consists of narrower vessels minimises the risk of cavitation events but 

increases resistance to water flow. Moreover, negative pressures in such a network 

increase the risk of collapse of vessel walls. The lower TIP in smaller trees from 

drier sites can be interpreted as a trade-off of safety with efficiency. Results for a 

range of eucalypt species across a number of ecosystem types support this widely 
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discussed „safety-versus-efficiency concept‟ (Wheeler et al., 2005; Burgess et al., 

2006; Hacke et al., 2006; Sperry et al., 2008; Woodruff et al., 2008; Meinzer et al., 

2010).  

 

More importantly, the results in this thesis describe a previously undescribed 

adaptation of the genus Eucalyptus to long-term environmental conditions. With 

respect to Metabolic Scaling Theory (MST) and its derivatives, none of the sampled 

eucalypts showed a uniform taper from the base to the apex. Even short Mallee 

species from semi-arid northwest Victoria showed no obvious tapering within the 

first 62 – 69% of total path length (Table 2.13). Considering the importance of vessel 

size to conductivity and resistance of water (Eq. 1.6), this novel insight can refine our 

understanding of hydraulic architecture and tree water transport. It provides further 

detail for the tapering module within MST and allows a more accurate calculation of 

hydraulic networks of trees.   

 

In addition to the TIP correlating well with long-term environmental conditions, the 

rate (per unit height) of taper changed dramatically with increasing overall tree 

height (expressed as decreasing relative proportion for P3 with overall tree height; 

see Table 2.13 and Fig. 2.13). The latter phenomenon has previously been described 

for eucalypts (Petit et al., 2010) and other angiosperms, as well as for gymnosperms 

such as Larix decidua and Fraxinus excelsior (Anfodillo et al., 2006; Mencuccini et 

al., 2007; Petit et al., 2010). These results highlight that rapid tapering of vessels at 

the top of trees (from TIP to apex) could well be a function of both maximum tree 

height and AI and not only the result of compensating for gravitational forces and 

associated resistance to embolism. Other physiologically- or ecologically-driven 

explanations may be possible. 

 

As previously mentioned, the widest vessels were not necessarily located in sapwood 

at the base of trees. Although this phenomenon seems unexpected as it contradicts 

continual widening of vessels with distance from the apex, it has been observed in 

stems of several species here and also in other studies (e.g. Fig. S.2.25, S.2.69; Petit 

et al., 2010). Two explanations for this observation seem likely: 1) a greater number 

of annuli – and hence sapwood area – is actively involved in water transport at the 

base of tree boles; the greater area of conductive sapwood makes construction of 
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wider conduits redundant; 2) increased mechanical strain at the base of stems lead to 

conduits with smaller diameters (personal communication with T. Anfodillo).  

 

An interesting observation is that the WBE and subsequently refined models for 

vessel tapering (West et al., 1999; Savage et al., 2010; Sperry et al., 2012) assume 

that close to the apex, d is size-invariant. Results presented here support this 

assumption. The majority of sampled eucalypt trees had a minimum Dh of 20 to 30 

µm close to the apex, with E. gracilis being an outlier at the low end of minimum Dh 

(16 µm) and E. victrix at the wide end (40 µm). Similar sizes from apical- and petiole 

regions of between 19.3 to 30.6 µm were found in both ring-porous and diffused-

porous species (Coomes et al., 2008). Could therefore the minimum d be a 

mechanical consequence of connecting vessels from branches to those of leaf 

petioles? Future research may resolve this and other questions about hydraulic 

architecture of trees.  

 

Resistance 

 

According to TPTA the majority of resistance (R) to uprising sap was provided by 

the P3 section that incorporated a steep tapering structure over a relatively short 

distance (Table 2.15). In 11 of the 12 investigated eucalypt species, the P3 section 

contributed more than 50% R to total resistance (Rtot). In contrast, R within the P1-

section, where tapering was negligible, contributed only 5 – 14% to Rtot (Table 2.15). 

Similar observations were made by Petit et al. (2010). In mature E. regnans, nearly 

all resistance was contributed by the first meter or so beneath the apical section. 

Consistent with overall smallest size of vessels, Rtot was greatest in E. gracilis. 

Patterns of R are in agreement with earlier observations in E. regnans and other 

angiosperm species such as Fraxinus excelsior, inasmuch as they support vessel size 

and the degree of tapering the most important hydraulic constraint to rising sap, 

followed by pit resistance (Anfodillo et al., 2006; Domec et al., 2008).  

In most species, Rtot was independent of tree height (Table 2.12), a result that 

supports theories and models describing an almost complete compensation of 

resistance by a highly optimized vessel system and a possible contribution of 

changing water viscosity in different T (e.g. West et al., 1999; Roderick and Berry, 

2001; Anfodillo et al., 2006; Petit et al., 2010; Savage et al., 2010). Similar Rtot 
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across species, independent of height (or path length) also supports declining 

conductivity of sapwood with decreasing tree height as described in the MST (Ryan 

and Yoder, 1997).  

 

Remarks on the Metabolic Scaling Theory  

 

To understand competition-driven and site-specific growth habits of trees, current 

mathematical models consider multiple interacting factors. Such factors include 

branching architecture, mass allometry, xylem architecture, water use allometry and 

metabolic isometry (Sperry et al., 2012). Within the WBE model, vessel tapering is 

described using a „taper exponent‟ (for a power function) and assuming a uniform 

optimal tapering structure along the entire vertical axis of the tree, often referred to 

as „whole path length‟.  

 

Importantly, results presented here underline the importance of developing more 

refined tools to accurately analyse changes in whole-tree hydraulic architecture. The 

current approach, using log-log transformed data appears limited as it fails to account 

for non-linearity of vessel widening by producing a singular value („tapering 

exponent‟) and artificially implies a “stable behaviour” of tapering  (e.g. Mencuccini 

et al., 2007; Petit et al., 2010). Despite the shortfall of using log-log transformed data 

and assuming linear relations of vessel widening and path length, MST is widely used 

as tool for comparing hydraulic architecture of genera and species (e.g. Mencuccini 

et al., 2007; Enquist and Bentley, 2012; Sperry et al., 2012; von Allmen et al., 2012). 

According to the original WBE model, full compensation for Rtot must be reached 

and theoretically can be achieved when the tapering exponent equals 1/6 (0.167) 

(West et al., 1999). Values lower than 1/6 indicate that the vascular network is not 

optimized and that the upper parts of the tree will experience water-stress conditions 

(Anfodillo et al., 2006). A decade later Savage et al. (2010) suggested the optimum 

tapering exponent to be 1/3 (0.33).  

As mentioned above, MST assumes constant basipetal widening of vessels as an 

adaptation to increasing tree height. This feature is presumed to be most flexible 

during early growth stages of trees when increments in high are proportionally far 

greater to those made in widening of stems (Anfodillo et al., 2006; Bond, 2000). The 

vascular system of mature (i.e. approaching maximum height) or overmature (i.e. 
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reached maximum height) trees is expected to slowly turn into a non-optimal 

structure, as taper exponents are likely to diminish with increasing tree height 

(Anfodillo et al., 2006; Midgley, 2003). This assumption is in overall agreement with 

the HLH (Chapter 1.4.1). Simplified, tapering exponents are expected to be small for 

tall trees and bigger for smaller trees (Eq. 1.11; Chapter 1.4.2). Results presented 

here do not support these assumptions. All trees had tapering exponents >1/6, which 

fits model expectations for highly adapted hydraulic architecture that compensates 

for Rtot. As described in Chapter 2.2.3 all sampled trees were mature and were part of 

the dominant canopy at each sampled site. It can be excluded that height growth > 

diameter growth. Also, tall species from humid environments showed higher taper 

exponents (from 0.33 to 0.38) when compared to species from more arid 

environments (from 0.29 to 0.35; see Table 2.16). Although not statistically 

significant, this finding can be seen as yet another piece of evidence that eucalypts do 

not fit the above described  theory of decreasing taper exponents with increasing tree 

heights. However, all findings strongly support the revised model of Savage et al. 

(2010). The suggested universal tapering exponent of 1/3 does fit Eucalyptus spp., 

independent of species and height. According to MST, all sampled trees were highly 

adapted to their environment and maintained a hydraulically optimized network of 

vessels even at their mature age. Hydraulic structure models based on the principles 

of allometric scaling place great emphasis on the relation between vessel size and 

vessel density (e.g. Savage et al. 2010; Chapter 1.4.2) and the related concept of 

optimal space filling, expressed (again) as an exponent of a power function (the 

„packing exponent‟; see also Enquist and Bentley, 2012). Packing functions (Chapter 

1.4.2, Eq. 1.12) rely on VtW, i.e. the fraction of the total wood area occupied by 

xylem conduits, and a packing exponent. In combination with square packing (one 

vessel per square of space; packing exponent = -2) recent suggestions for an optimal 

VtW were 10
6
 mm

-2
 µm

-2
, which in turn assumes VtW to be constant from twig to 

trunk (or pith to cambium), which is not the case for Eucalyptus spp. (Savage et al., 

2010; Sperry et al., 2012). 

 

 Different genera have different packing exponents. Savage et al. (2010) reported the 

following exponents:  Quercus = -1.44, Acer = -2.37, Pinus = -1.67 and generally 

angiosperms = -2.36 and conifers = -1.64 (Savage et al., 2010). Identified packing 

exponents for eucalypts were different for both individual trees and species (Table 
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2.16). When all samples are considered together, there were clear deviations from 

model assumptions.  

 

 

Figure 2.15: Relationship between average hydraulically weighted vessel diameters (Dh; n = 3) 

and average vessel densities mm
-2

 sapwood (VD; n = 3) of all analysed sapwood samples plotted 

on a log-log scale. Three inserted reference lines illustrate hypothetical increase of VD for given 

Dhs (original data of this study) according to metabolic scaling model predictions (packing 

function) with packing exponents determined in other investigations. „Packing Limit‟ (packing 

exponent: -1) assumes all the wood to be occupied by conduit lumens of the average diameter, 

„Packing Rule‟ (packing exponent: -2) suggests optimal vessel frequency versus vessel size for a 

hypothetical tree and packing structure identified in angiosperms (Savage et al., 2010).   

 

Findings in this thesis clearly show the proposed optimal multiplier (k4; Eq. 1.12) of 

10
6 

mm
-2

 µm
-2

 to be incorrect. Applied to Eucalyptus spp. it would lead to 

considerable overestimations of VD at any given Dh. An exponent of -2 did not apply 

to any species.  Exponents for some individual trees were close to -2 (Table 2.16). 

Differences among species were pronounced and exponents ranged from -1.4 to 

almost -2. Differences in packing exponents across eucalypt species from a wide 

range of environments suggests that the arrangement of vessels in sapwood of 

species from very different environments do not follow a universal rule. 

Consequently, using a „universal‟ model to estimate tree specific conductivity would, 

at least for Eucalyptus spp., likely lead to an overestimation. As the heights of 
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eucalypts increase, the changes in vessel diameter and density are not uniform and 

are largely restricted to the final ≈ 1/2 – 1/3 of tree height.  

 

Outliers – environmental reasons  

 

The vessel characteristics of two species, namely of E. pauciflora and E. victrix, 

differed significantly from all other species in as much that their characteristics did 

not fit climate-dependent relationships that could be developed for other species. 

Eucalyptus pauciflora dominates high elevation areas in south-eastern Australia. The 

AI for the respective study site in this thesis was 1.82; the second highest of all sites 

(Fig. 2.3). Given AI relies on annual precipitation and a large proportion of annual 

precipitation at the E. pauciflora site is deposited as snow. However much of 

snowmelt is generally not available to E. pauciflora but instead becomes runoff. In 

addition, these high mountain areas in south-eastern Australia often experience very 

dry summers. It thus appears that even though annual precipitation is large, vessel 

anatomy of E. pauciflora is adapted to withstand summer embolism and cavitation 

events. As pointed out by Zimmermann (1983) and also by Pockman and Sperry 

(1996) freezing-induced cavitation represents a significant problem particularly for 

evergreen trees.  

 

Eucalyptus victrix was sampled in the Pilbara, Western Australia; the only arid 

ecosystem in this study. According to the predictive models developed in Chapter 

2.3.3 (see Fig. 2.4A) and 2.3.5 (see Fig. 2.7B), height of E. victrix should have been 

less and Dh smaller than observed. However E. victrix is largely confined to riparian 

zones along ephemeral rivers and creeks, where groundwater tables sit relatively 

close beneath the surface. Most E. victrix likely have permanent access to 

groundwater (Pfautsch et al., 2011). Hence even though transpirational demands 

were high, water supply is independent of P and rates of evapotranspiration. The 

wider vessels of E. victrix can facilitate transport of larger quantities of water that 

will (a) allow to maximise growth due to leaving stomata open for a longer period 

and (b) more efficient transpirative cooling at the leaf level, reducing the risk of heat 

stress for photosynthetic tissues.  
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Chapter 3 – Testing the effect of temperature, water and nutrient availability on 

growth and vessel anatomy in saplings of two species of Eucalyptus  

 

3.1 Introduction 

 

Chapter 2 shows that the xylem structure (conduit- and wood structure) adjusted to 

climatic conditions across a range of mature Eucalyptus spp. (see Chapter 2).  The 

patterns observed for eucalypts are broadly similar to those recorded in other 

angiosperm and gymnosperm species (such as Quercus, Larix, Pinus, Ilex and many 

others; Antonova and Stasova, 1993; Antonova and Stasova, 1997; Wiemann et al., 

1998; Corcuera et al., 2004; Eilmann et al., 2009), albeit the quantitative 

relationships are distinctly different.  

 

The previous chapter focused on mature trees and on assessment of climatic 

influences on conduit structure.  A natural corollary to that assessment is the study of 

how prevailing and future environmental conditions will affect hydraulic architecture 

during the early phase of seedling development.  This is the focus of this chapter. 

 

Past research suggests that early xylogenesis is highly flexible and responsive to 

different water, temperature and nutrient regimes (Atkinson and Taylor, 1996; 

Harvey and van den Driessche, 1997; Maherali and DeLucia, 2000; Thomas et al., 

2004; Overdieck et al., 2007; Thomas et al., 2007; Goldstein et al., 2013). Clear 

effects on size and number of vessels or tracheids, as well as wood density, have 

been observed in early development stages of both angiosperms and gymnosperms. 

Tree hydraulic properties like conductivity and resistivity, together with their 

implications for above- and belowground growth patterns, are thus likely to be 

strongly influenced by one or more of the above mentioned environmental factors. 

There have been few studies of the conduit system for Eucalyputs seedlings. The 

available literature shows a concentrated focus on effects of temperature on early 

development of wood anatomy; and suggests it is highly plastic (Scurfield, 1961; 

February et al., 1995; Searson et al., 2004; Thomas et al., 2004, 2007).  For example, 

when supplied with sufficient water, seedlings of Eucalyptus spp. respond to 

increasing temperatures with increased biomass accumulation, increased wood 

density, increased stem diameter, and increased sapling height, but smaller diameter 

vessels (Scurfield, 1961; Thomas et al., 2004, 2007). In a detailed study, Thomas et 
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al. (2007) subjected seedlings of E. grandis to five different temperature treatments 

(10, 20,25,30 and 35 °C) and found that wood density increased 20% with increasing 

growth temperature to 436 kg m
-3 

at 30 °C before it declined to 410 kg m
-3

 when 

seedlings were grown at 35 °C. The same trend was observed for conduit structure, 

where the vessel number mm
-2 

/ vessel lumen fraction (%) continuously declined 

from 10 °C to 30 °C treatments (408 mm
-2

 – 169 mm
-2 

/ 17 % – 9.6 %) before rising 

again within the 35 °C temperature treatment (290 mm
-2

 / 10.4 %). Seedlings in 10 

°C and 35 °C treatments had low leaf areas, slow rates of carbon assimilation and 

thin fiber cell walls, which in turn helped explained reductions in wood density and 

increases in vessel number and lumen fraction in 35 °C.  

 

Compared to seedlings raised with sufficient supply of water, increased numbers of 

smaller vessels, smaller stem diameters and reduced plant mass was observed in two 

studies of the effects of water stress on seedlings of E. grandis, E. sideroxylon and E. 

occidentalis (February et al., 1995; Searson et al., 2004). For example, Searson et al. 

(2004) showed that at stem base, Eucalyptus grandis seedlings grown under well-

watered conditions had an average vessel lumen area of 778 µm
2
, while under water-

limited conditions lumen area declined to an average of 549 µm
2
.  

 

Our understanding of the process of adaptation of vessels to prevailing soil water 

availabilities is moderately good. Briefly, the rate of division of cambial cells (i.e the 

width of the cambial layer) dictates vessel expansion. External influences on vessel 

size are, obviously, restricted to the period of vessel ontogeny (Ford et al., 1978; 

Dodd, 1984; Sass and Eckstein, 1995) – once formed, vessels retain their size and 

shape for many years. Future vessel cell walls do not have a stiff cellulose skeleton 

and contain high proportions of hemicellulose, which allows cell expansion  

(Catesson, 1989; Sass and Eckstein, 1995). Driving vessel widening is low tugor 

pressure within the vessel, that forces water external to the vessel to enter, expanding 

the still soft cell walls (Ray et al., 1972; Boyer, 1985; Sass and Eckstein, 1995).  

 

There is broad agreement that forecast scenarios of climate change, characterized by 

changed of patterns of precipitation and temperature, influence activity of soil 

microbes which in turn affect ecosystem function and services such as N-

mineralization and nitrification, and hence the amount of nitrogen available for 
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plants (Murdoch et al., 1998; Leirós et al., 1999; IPCC, 2007; Castro et al., 2010; 

Bradbury and Firestone, 2012; Schaeffer et al., 2013). That said, the net effects of 

these forecast climatic conditions on activity of soil microbial communities and 

related N-mineralization processes, are poorly understood (Leirós et al., 1999; 

Schaeffer et al., 2013). Even small increases in soil temperature enhance biological 

processes including N mineralization.  Similarly, increased soil moisture increases 

soil hydraulic connectivity and facilitates transport of transformed N to plants.  A 

combination of both increased temperature and moisture reduced inorganic N 

availability in arctic soils due to net microbial immobilization of N (Schaeffer et al., 

2013). Gonçalves and Carlyle (1994) modeled the influence of soil moisture and 

temperature on N-mineralization in a forested sandy soil in South Australia and 

suggested a positive impact of both factors on inorganic N availability.  

 

To date, the impact of N availability on xylem structure and water use efficiency of 

mature trees and seedlings is inconclusive (Ingestad and Lund, 1979; Harvey and van 

den Driessche, 1999; Clearwater and Meinzer, 2001). Leaf area is responsive to 

additional nitrogen supply, but that is the only aspect of plant anatomy where we 

have conclusive evdience. Ingestad and Lund (1979) described strong and rapid 

effects of nitrogen availability on leaf development in birch seedlings. Clearwater 

and Meinzer (2001) reported that leaf area of Eucalyptus grandis saplings increased 

when plants were supplied with higher concentrations of N. However, a direct link 

between vessel structure and N availability is missing. Harvey and van den Driessche 

(1999) detected in different Populus clones an increasing vessel size from 36.6 µm at 

low-N supply to 45.2 µm at high-N and both, the tendency to cavitate and water-use 

efficiency increased when N supply was increased. In contrast, Clearwater and 

Meinzer (2001) found no changes in the hydraulic architecture of Eucalyptus grandis 

supplied with different levels of N. Taken together the effects of varying levels of N 

on hydraulic architecture of trees are yet to be established.  

 

The “Plant Allocation and Multiple Limitation Hypothesis” forecasts a superior 

influence of a single resource in lowest supply relative to demand. Therefore, one 

essential resource might have more influence on growth performance than a 

combination of multiple resources  (Gleeson and Tilman, 1992). Limited indirect 

evidence indicates that growth of the hydraulic system of trees can adversely affected 



 

   92 
  

by forecast, multi-factorial changes in environmental conditions, with consequences 

for ecosystem function and vitality of individuals therein (Aber et al., 2001). 

Experiments described in the current chapter address this problem, particularly the 

interaction of temperature, water availability and N-supply on the development of the 

hydraulic architecture in young eucalypt trees. Eucalyptus grandis and E. melliodora 

were chosen as test species for multiple reasons, most prominently because they 

prefer either mesic (E. grandis) or xeric (E. melliodora) environments (for full 

species description see chapter 3.2). Eucalyptus grandis develops moderately strong 

wood and due to its plasticity to environmental conditions and high yield in biomass 

it is of high importance to plantation forestry around the world (Boland et al., 2006; 

Trabado and Wilstermann, 2008; Hubbard et al., 2010). As a result of its high growth 

rate, E. grandis is assumed to be reliant on steady water supply (February et al., 

1995; Dye, 1996).  

 

Eucalyptus melliodora produces hard and durable wood. This species can cope with 

drier conditions than E. grandis and it was chosen because of its greater capacity to 

withstand water limitation when compared with E. grandis (Boland et al., 2006).  

 

The following three hypotheses will be addressed: (1) Limitation of water will lead 

to decreasing vessel sizes in species from mesic environments while xylem 

architecture in species from xeric environments remains unchanged; (2) increasing 

temperatures will lead to smaller xylem vessels, independent of a species‟ home 

environment; (3) changes in biomass accumulation and hydraulic architecture of tree 

seedlings follow a clear environmental signal (dominant effect of either water, N or 

temperature) and interactions can be neglected due to the “Plant Allocation and 

Multiple Limitation Hypothesis”. 

 

3.2 Materials and methods 

 

3.2.1 Tree species 

 

Eucalyptus grandis grows in moist environments (1000 – 3500 mm mean annual 

precipitation (MAP)) and grows well in fertile valleys and within rainforests of low 

to medium altitude (0 – 600 m above sea level (a.s.l.)) north of Newcastle (NSW) 
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and along the coastline towards Bundaberg (QLD). A second population centre can 

be found around Townsville (QLD). The species prefers well-drained, deep, loamy 

soils of alluvial or volcanic origin. While there are pure closed stands of E. grandis, 

mixed stands are more widespread. Eucalyptus grandis is a tall species of the gum-

type eucalypts, regularly reaching heights of around 55 m, and on sites of high 

quality up to 75 m. As a result of site quality, wood density of this species is variable 

(545 – 955 kg m
-3

), albeit the wood is of moderate durability (Boland et al., 2006).  

In contrast to E. grandis, E. melliodora has a wider distribution. The species grows 

on alluvial soils, loams and sandy loams and can be found in open woodlands on 

moderate slopes, foothills and ephemeral floodplains, stretching inland from NW 

Victoria to SE Queensland. These environments typically receive between 450 and 

1400 mm MAP and are mostly summer dry climates. Along the Great Dividing 

Range E. melliodora can grow at altitudes as high as 1200 m a.s.l., where frosts are 

frequent in winter. Trees of this species seldom exceed heights of 30 m and wood 

density of this species is high (910 – 1220 kg m
-3

; Boland et al., 2006).  

 

 

Figure 3.1: Geographical distribution of A) Eucalyptus grandis and B) E. melliodora. Source: 

www.florabank.org.au, accessed: 11.12.2013. 

 

3.2.2 Experimental design  

 

The experiment was completed in the Bosch Glasshouse at the University of Sydney 

between 1 July 2012 and 1 April 2013. The design was fully-factorial, incorporating 

the two above-described species, two growing temperatures, two rates of water 

supply (irrigation) and two rates of nitrogen supply. Ten commercially grown 

seedlings were used in each treatment combination. Seedlings were planted in 

A B 

http://www.florabank.org.au/
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standard round plastic pots with a diameter of 250 mm and a volume of 8.1 L. 

Potting soil was customised as an 80 % sand/ 20 % turf mixture enriched with 

Canadian peat to increase the water holding capacity to 0.53 g cm
-3

. Replicate sets of 

plants for both species were grown in two separate glasshouse bays (see description 

of bay environments below). Nutrient additions began 12 weeks after transplanting 

seedlings into pots and were applied fortnightly for a period of 6 months. Pots in 

each bay and from each treatment were positioned randomly and moved around 

during the experiment four times to prevent differences in tree growth due to 

microclimatic variation in the bays. Prior to the first application of nutrients, three 

seedlings per species were harvested to determine initial above- and belowground 

biomass, plant height and stem diameter, measured directly above soil level.  

The first growth chamber was programmed to a cycle of 25 °C daytime temperature 

(0530-1900 hours) and 19 °C at nighttime (1901 – 0529 hours). The second growth 

chamber was set at 15 °C for daytime and 9 °C for nighttime temperatures at 

identical time intervals. A weather station (Hobo, Onset Computer Corporation, 

Massachusetts, USA) equipped with a data logger and a photosynthetically active 

radiation (PAR) sensor was installed and moved between the rooms on a regular 

basis, recording environmental conditions in the 25 °C bay for a total of 64 days and 

in the 15 °C bay for 82 days. The weather station logged data at 30 minute-intervals 

 

 

Figure 3.2: Saplings of A) Eucalyptus grandis and B) E. melliodora in the 25 °C growth chamber  
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3.2.3 Determination and application of irrigation and nitrogen treatments  

 

To estimate evapotranspiration of glasshouse plants, soils of two to four average- to 

large-sized seedlings of each species were irrigated to water holding capacity and 

randomly placed in each room. At time intervals of every 15 min, 1 L of water was 

added until the point of oversaturation (constant dripping for 15 min) was reached. 

When dripping stopped, the outside surface of pots were dried and pots were 

weighed. Pots were reweighed every second day for 6 days. The mass loss measured 

was assumed to equal daily water loss (evaporation plus transpiration) of a seedling 

and soil under the prevailing conditions. Evaporation from soil surfaces alone was 

measured by applying the same method to three soil-filled pots for each temperature 

treatment over the same time period. Irrigation treatments were based upon initial 

estimates of the rate of evapotranspiration/water use. These procedures were repeated 

regularly and water supply was adjusted accordingly (see Table 3.1). 

The amount of water that satisfied 100% of evapotranspirational demand (hereafter 

referred to as „normal water‟, abbreviated as „W‟) was added to one set of plants; 

the amount of water equivalent to 70% of total daily evapotransipration (hereafter 

referred to as „limited water‟, abbreviated as „-W‟) was added to a replicate set of 

plants. Plants were watered every second day using twice the amount of water 

required. The amount of water required per day differed during different periods of 

the experiment (Table 3.1). 

 

Table 3.1: The variable amounts of water added (ml) to pots to maintain 100% and 70% of daily 

evapotranspiration demands of plants growing at 15 and 25 ºC during each of four time intervals 

throughout the experimental period. 

Species Temperature (ºC) Daily water requirement (100%/70%; ml) 

18 Jul to 

10 Oct 2012 

10 Oct to 

9 Nov 2012 

9 Nov 2012 

to 4 Mar 2013 

4 Mar to 

1 Apr 2013 

E. grandis         25 260/180 260/180 300/210 300/210 

E. melliodora  25 210/150 220/150 220/160 220/160 

E. grandis         15 170/120 200/140 200/140 200/140 

E. melliodora 15 160/110 160/110 160/110 160/110 

 

Macro- and micronutrients were supplied using a modified Hoagland‟s solution 

(Table 3.2). A standard N supply was defined based on recommendations from 

research staff of The University of Western Sydney. Based on these 

recommendations, 45 mg of Ca(NO3)2 and 144 mg of (NH4)2SO4 per seedling were 
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applied and assumed to represent a natural level of N availability (hereafter referred 

to as „normal N, abbreviated as „N‟). The concentration of N was increased by 50% 

for plants undergoing the „increased N‟ treatment, receiving 67.5 mg of Ca(NO3)2 

and 216 mg of (NH4)2SO4 (abbreviated as „+N‟). 

 

Stock solutions for all macronutrients were stored in individual flasks. 

Micronutrients were all mixed and stored in one flask. Hoagland solutions containing 

all nutrients except Ca(NO3)2 and (NH4)2SO4 were customized for different 

treatments, such that independent from the amount of provided water, seedlings 

received the same amounts of nutrients. Ca(NO3)2 and (NH4)2SO4 were added in the 

glasshouse according to the respective N application scheme.   

 

Table 3.2: Details of the macro- and micronutrients used in a modified Hoagland solution and 

amounts of N added to „normal N‟ and „increased N‟ (+50%) treatments. Asterisks mark the 

amount of „increased N‟ 

 

 

The aforementioned experimental design resulted in 16 different treatments. These 

treatments and their abbreviated codes are outlined in Table 3.3 below. 

 

 

Nutrient 

Molecular 

weight 

(g) 

Stock 

solution 

(g l
-1

) 

Amount in 

working solution 

(ml l
-1

) 

Amounts provided 

per plant (ml l-1
) 

100%/150%* 

Macronutrients     
Ca(NO3)2 

.
 4 H2O 236.16 118.08  0.7/1.1* 

(NH4)2SO4 132.13 132.13  4.0/6.0* 

MgSO4 
.
 7 H2O 246.46 246.46 0.50  

KH2PO4 136.09 68.40 0.25  

K2HPO4 174.17 87.10 0.25  

CaCl2 
.
 2H2O 147.02 147.02 0.50  

K2SO4 174.25 87.12 0.25  

Micronutrients   0.25  

Boric acid 61.83 2.86   

MnCl2 
.
 4 H2O  197.91 0.36   

ZnCl2 136.28 0.11   

CuCl2 
.
 2 H2O 170.48 0.05   

Na2MoO 205.92 0.03   

CoCl2 
. 
6 H2O 237.95 0.05   

Other     

Fe-Na-EDTA 367.05 34.47 0.25  
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Table 3.3: List of treatments in two glass house bays with two different temperature treatments 

and two different Eucalyptus species, where 25 
°
C and 15 

°
C were defined as maximum daytime 

temperatures, W for „normal‟ water supply, -W for „limited‟ water supply, N for „normal N‟ 

supply and +N for „increased N‟ supply.  

Eucalyptus grandis 

 

Eucalyptus melliodora  

treatment 1  (25 
°
C  W N) treatment 9  (25 

°
C W N) 

treatment 2 (25 
°
C –W N) treatment 10 (25 

°
C –W N) 

treatment 3 (25 
°
C W +N) treatment 11 (25 

°
C W +N) 

treatment 4 (25 
°
C –W +N) treatment 12 (25 

°
C –W +N) 

treatment 5 (15 
°
C W N) treatment 13 (15 

°
C W N) 

treatment 6 (15 
°
C –W N) treatment 14 (15 

°
C –W N) 

treatment 7 (15
 °
C W +N) treatment 15 (15 

°
C W +N) 

treatment 8 (15  
°
C –W +N) treatment 16 (15 

°
C –W +N) 

 

3.2.4 Sample collection and analysis 

 

Prior to the final harvest, all plants were measured a second time to determine their 

final height and stem diameter. Three plants with the largest diameter were selected 

from each treatment and their stems were cut at the soil surface. Fresh weight of the 

aboveground biomass was determined. A 4 cm long basal segment of each stem was 

collected using secateurs. These wood samples were sealed in plastic bags before 

stored at 4 °C where they awaited further processing. Roots were carefully washed 

free of soil and their fresh weight was determined after blotting rootstocks dry. The 

dry weight of above- and belowground fractions were measured after drying plant 

biomass in an oven at 70 °C for 10 days. Wood samples were processed and their 

xylem vessels analysed using methods following identical procedures as previously 

described in Chapter 2.2.4. Wood densities of sapling base samples were measured 

as described in Chapter 2.2.5. 

 

3.2.5 Statistical analyses 

 

A script written in “R” (Version 2.15.1, R Foundation for Statistical Computing, 

Austria) was used to calculate average vessel traits from three digital images of 

sapwood collected from each sapling (i.e. 3 for each of 3 saplings from the 16 

treatments = 144 images). Used script is shown in Appendix – Chapter 2; Script 

S2.97. This procedure was described in the Material and Methods section of Chapter 

2. Microsoft Excel 2010 was used for standard mathematical computations such as 
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calculating averages and standard deviations of all traits investigated for trees and 

vessels from each treatment. Three other statistical software packages were used in 

subsequent analyses (Sigma Plot Version 11, SPSS Inc., Chicago, U.S.A; SPSS 

Version 21,SPSS Inc., Chicago, U.S.A; JMP Version 10.0, SAS Institute Inc., Cary, 

U.S.A). 

 

Differences in environmental conditions between the two glasshouse bays, during 

day-time and night-time, were tested using a non-parametric Mann-Whitney Rank 

Sum Test with a significance level of p ≤0.001.  

 

Statistical analyses of tree and vessel traits followed two different approaches. First, 

differences of sapling- and vessel structural characteristics originating from the 

different water-, temperature-, or N-treatments were tested at the species-level. These 

individual comparisons included six saplings of two treatments were two influencing 

factors (water, temperature and/or N) were identical, while the factor of interest 

differed (e.g. same temperature and N treatment, but different water treatment). 

Means of traits, calculated from three saplings per treatment, were compared with 

either Mann-Whitney Rank Sum Test (for vessel diameter) or by one-way analysis of 

variance (ANOVA) (for all other tree- and vessel traits), both with a significance 

level of p ≤0.05. Secondly, to test overall influences of single treatment factors and 

all conceivable combinations on sapling- and vessel formation, values for all traits of 

a species were pooled as either „N‟, „water‟ or „temperature‟ effects. Average values 

for traits were compared against single and combined treatment factors by using 

either Wilcoxon signed-ranks test (for vessel diameter) or Univariate Analyses of 

Variances (UNIANOVA) for all other traits, both with a significance level of p 

≤0.05. 

 

3.3 Results  

 

3.3.1 Climate 

   

Throughout the experiment, environmental conditions varied in the growth chambers 

due to changing solar radiation. Room internal air conditioning systems were not 

capable to keep temperature (T) constant. Furthermore, in case of the 15 °C growth 
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chamber, they were unable to cool down to 9 °C nighttime temperatures. Average 

daytime temperatures were 26 °C (± 1) in the growth chamber set for 25 °C (n = 

1805) and 17 °C (± 3) in the growth chamber set for 15 °C (n = 2247). At nighttime, 

temperatures dropped to 19 °C (± 1) in the 25 °C growth chamber (n = 1307) and 

remained relatively constant within the 15 °C growth chamber (n = 1673; 16 ± 1 °C). 

However, comparing daytime and nighttime temperatures of respective treatments, 

even with insufficient air conditioning facilities in the 15 °C growth chamber, 

temperatures were significantly different (Mann-Whitney Rank Sum Test; p ≤0.001).  

In both rooms relative humidity was similar and generally lower during daytime 

compared to nighttime. Relative humidity in the 25 °C growth chamber averaged 

76% (± 9) during daytime and 89% (± 6) during nighttime. In the 15 °C growth 

chamber these averages were slightly lower during daytime (75% ± 11) and slightly 

higher throughout nighttime (89% ± 3). Photosynthetically active radiation (PAR) 

was very similar in the two rooms. Average daytime PAR was 386 µmol m
-2

s
-1

 in the 

25 °C growth chamber, and peak PAR was 1641 µmol m
-2

s
-1

. The same pattern was 

detected for the 15 °C growth chamber where average PAR was 394 µmol m
-2

s
-1

, but 

maximum PAR during midday was 1586 µmol m
-2

s
-1

. Table 3.3.1 summaries all 

measurements as averages for the entire duration of the experiment. 

Table 3.4: Temperature (T), relative humidity (rh) and photosynthetic active radiation (PAR) 

average values of all daytime data recorded in the respective growth chambers with standard 

deviations in parentheses. Room number 1 stands for the 25 °C growth chamber and 2 for the 

15 °C growth chamber.  

Room T (°C) rh (%) PAR (µmol m
-2

s
-1

) 

1 daytime 

 

26 (±1) 77 (±9) 386 

 1 nightime 20 (±1) 89 (±6)  

2 daytime 

 

17 (±3) 75 (±11) 394 

 2 nightime 16 (±1) 89 (±3)  

 

3.3.2 Description of tree structural- and basic sapwood traits 

 

Sapling height  

 

Regardless of treatment, E. grandis saplings were always taller compared to those of 

E. melliodora. Differences, however, were mostly not significant (Table 3.5). 

Nitrogen treatment had no significant influence on height. Only in the 25 °C growth 

chamber, and with sufficient water supply, did application of additional N lead to 
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significantly taller saplings of E. grandis (Table 3.5). Figure 3.3 shows that across 

temperature treatments, both species tended to be shorter when water was withheld, 

but these differences were not significant. On a species level (n = 24), water had a 

clear impact on height of E. grandis but no effect on E. melliodora. Temperature also 

influenced height (Table 3.14). Saplings grown at 25 °C were in most cases 

significantly taller compared to those grown at 15 °C (Fig. 3.3). All considered 

sapwood structural properties, such as average vessel diameter (d; y = 2.28x + 

981.29; R
2
 = 0.03), hydraulically weighted diameter (Dh; y = 0.05x + 41.53; R

2
 = 

0.04), vessel density (VD; y = 3.46x + 8271.8; R
2
 = 0.004) and void to wood fraction 

(VtW; y = 0.03x + 7.13; R
2
 = 0.08) showed no clear correlation with height (n = 3 

species
-1

 and treatments
-1

), neither on a species level, nor by pooling all saplings.   

                           
Figure 3.3: Average sapling height (cm; n = 3) of treatments (15 °C (15), 25 °C (25), normal 

water, limited water) and both species at normal nitrogen supply conditions. One-way ANOVAs 

with a p ≤0.05 level of significance were used for intra-species comparisons of temperature (T) 

and water effects, where lower case letters indicate significant differences in height as the result 

of different water treatments at the same growth temperature; capital letters indicate statistical 

differences of sapling height at the same water treatment but different growth temperatures 

where a,b (A,B) is dedicated to Eucalyptus grandis and c,d (C,D) to E. melliodora.  

 

Eucalyptus grandis 

The tallest saplings were those that grew under the normal water, additional N 

treatment (178 cm ± 12). These saplings were around 30 cm taller than saplings from 
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the limited water, increased N treatment, the second tallest (n = 3). This obvious 

trend of N effects was not confirmed in the 15 °C growth chamber (Table 3.5). 

Smallest saplings (limited W, normal N) reached only 90 cm (± 14). While saplings 

in the 15 °C growth chamber averaged around 100 cm of height, trees grown at 25 

°C were fully one-third taller.  

 

 

 

Eucalyptus melliodora 

The tallest saplings of this species reached 141 cm (± 33; normal W, normal N) in 

the 25 °C chamber. All other treatments in this chamber resulted in average sapling 

heights of 130 cm. At 15 °C growing temperatures, saplings were considerably 

shorter. The shortest saplings reached only 80 cm (± 17; 15 °C, limited W, normal 

N). Other treatments within the cooler growth chamber produced tree heights of 

around 92 cm (Table 3.5). On a species level, neither water nor N had a significant 

effect on height of E. melliodora (Table 3.14).  

 

Table 3.5: Average sapling height per species and per treatment (n = 3), standard deviations in 

parentheses and results of inter-species statistical comparison of sample means for the 

individual treatments conducted with one-way ANOVAs with a p ≤0.05 level of significance. 

Bold numbers indicate statistical significance. Abbreviations used: “EG” = Eucalyptus grandis, 

“EM” = E. melliodora, “15” = 15 °C, “25” = 25 °C, “W” = normal water, “-W” = limited water, 

“N” = normal N and “N+” = additional N supply. 

 

 

 

 

 

 

 

Above- and belowground dry mass 

 

Within all treatments Eucalyptus grandis saplings were, on average, larger and had 

more aboveground mass than E. melliodora. E. grandis saplings were larger in 

treatment EG height (cm) EM height(cm) EM*EG 

15WN  109 (±20) 93 (±13) 0.31 

15-WN  90 (±14) 80 (±17) 0.48 

15WN+ 109 (±13) 94 (±14) 0.25 

15-WN+ 99 (±6) 93 (±19) 0.62 

25WN  148 (±12) 141 (±33) 0.76 

25-WN  141 (±16) 126 (±4) 0.21 

25WN+ 178 (±12) 127 (±24) 0.03 

25-WN+ 149 (±13) 131 (±7) 0.11 
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diameter while Eucalyptus melliodora saplings had smaller diameters relative to 

height. 

 

Final aboveground dry mass of both species grown at 25 °C was significantly less 

under water limited conditions compared to those grown with adequate water (Fig. 

3.4). Saplings of both species grown at 25 °C had generally greater total mass 

compared to saplings grown at 15 °C (Table 3.6). However, this difference was only 

statistically significant for saplings of E. melliodora with normal water supply (Fig. 

3.4). At a species level, water and temperature had a major influence on biomass 

accumulation of both species while N treatment only affected E. grandis (Table 

3.14). Averages of above ground dry mass (n = 3 species
-1

 and treatment
-1

) were 

moderately well correlated with sapwood traits such as d (y = 0.05x
0.95

; R
2
 = 0.60), 

Dh (y = 7E-3x
2.23

; R
2
 = 0.64), VtW (y = 3.33x

1.07
; R

2
 = 0.55). 

 

Table 3.6: Average aboveground dry mass per species and per treatment (n = 3), standard 

deviations in parentheses and results of inter-species statistical comparison of sample means for 

the individual treatments conducted with One-way ANOVAs with a p ≤0.05 level of significance. 

Bold numbers indicate statistical significance. Abbreviations used: “EG” = Eucalyptus grandis, 

“EM” = E. melliodora, “15” = 15 °C, “25” = 25 °C, “W” = normal water, “-W” = limited water, 

“N” = normal N and “N+” = additional N supply. 

 

 

Similar to above ground dry mass, roots of E. grandis were bulky and rather few, 

while E. melliodora had a mass of comparatively thin roots. With an adequate water 

supply, belowground biomass of E. melliodora was mostly greater compared to E. 

grandis, albeit the difference was not significant (Table 3.7). N treatment had no 

treatment EG aboveground dry mass (g) 

 

EM aboveground dry mass (g)  EM*EG 

15WN  54.08 (±8.70) 30.71 (±3.86) 0.01 

15-WN  37.23 (±6.71) 21.11 (±6.05) 0.04 

15WN+ 70.70 (±5.82) 32.99 (±8.44) <0.01 

15-WN+ 32.82 (±3.66) 21.42 (±0.85) <0.01 

25WN  58.92 (±2.12) 42.17 (±3.05) <0.01 

25-WN  45.17 (±3.20) 26.75 (±4.88) <0.01 

25WN+ 71.93 (±2.32) 44.61 (±2.03) <0.01 

25-WN+ 50.90 (±8.04) 29.59 (±5.10) 0.02 
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effect on root mass. Withholding water reduced root mass, albeit not significantly 

(Fig. 3.4). Growth temperature had no detectable effect on root mass (Fig. 3.4, Table 

3.7, 3.14).    

 

Table 3.7: Average belowground dry weight per species and per treatment (n = 3), standard 

deviations in parentheses and results of inter-species statistical comparison of sample means  for 

the individual treatments conducted with One-way ANOVAs with a p ≤0.05 level of significance. 

Abbreviations used: “EG” = Eucalyptus grandis, “EM” = E. melliodora, “15” = 15 °C, “25” = 25 

°C, “W” = normal water, “-W” = limited water, “N” = normal N and “N+” = additional N 

supply. 

 

Eucalyptus grandis 

Independent of temperature, average aboveground dry weight was clearly greater in 

saplings raised with normal water and additional N. Aboveground biomass was least 

when water was withheld. The smallest aboveground biomass (32.82 g ± 3.66) was 

recorded for saplings that grew under water limited conditions, with increased N at 

15 °C. Belowground biomass was similar among all treatments. Only the amount of 

water as a single factor had a significant effect on root growth (Table 3.14). 

 

Eucalyptus melliodora 

Maximum average aboveground dry mass was associated with plants grown at 25 °C, 

receiving normal water and increased N. In treatments with limited water supply 

aboveground dry mass was roughly one fourth smaller. The same pattern was 

observed in saplings raised at 15 °C. Compared to E. grandis, changes in 

belowground biomass with changing water availability were more obvious. In both 

treatment EG belowground dry mass (g) EM belowground dry mass (g) EM*EG 

15WN  18.60 (±1.50) 20.44 (±7.52) 0.70 

70 
15-WN  14.93 (±1.80) 12.25 (±4.89) 0.42 

15WN+ 20.96 (±1.75) 19.18 (±4.92) 0.59 

15-WN+ 11.91 (±2.88) 16.07 (±1.93) 0.11 

25WN  18.96 (±2.69) 20.85 (±5.39) 0.62 

25-WN  17.68 (±4.50) 13.13 (±4.29) 0.27 

27 25WN+ 16.15 (±5.13) 18.08 (±5.32) 0.67 

25-WN+ 17.07 (±1.97) 15.32 (±4.78) 0.59 
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growth chambers, and independent of N treatment, saplings formed more root mass 

when supplied with sufficient water. Maximum average root mass was found in 

saplings raised at 25 °C, with comprehensive water and normal N supply. In contrast, 

minimum root biomass was associated with plants grown at 15 °C receiving limited 

water and normal N. Statistical analysis confirmed water was the only factor 

statistically influencing belowground biomass production of E. melliodora (Table 

3.14). 
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Figure 3.4 (previous page): Average aboveground and belowground dry mass (n = 3) of all 

treatments (15 °C (15), 25 °C (25), normal- and limited water) and both species receiving normal 

nitrogen supplies. One-way ANOVAs with a significance level of p ≤0.05 were used for intra-

species comparisons of temperature (T) and water effects, where lower case letters indicate if 

above- or belowground dry mass differ due to water treatments when grown at identical 

temperatures; capital letters indicate differences in above- and belowground dry mass of plants 

grown at identical water treatments but different growth temperatures, where a,b (A,B) is 

dedicated to Eucalyptus grandis and c,d (C,D) to E. melliodora. 

Sapwood density 

 

Across all treatments, sapwood density (WD) of E. melliodora saplings was greater 

compared to E. grandis. Apart from the saplings grown at 15 °C under limited water 

conditions, these differences were statistically significant (Table 3.8). Nitrogen had 

no effect on WD (Table 3.14). When grown at 25 °C with limited water, saplings had 

greater wood densities than those that received adequate water. Differences were not 

significant (Fig. 3.5).  

 

At a species level (n = 24), temperature had a clear effect on WD of E. grandis 

(Table 3.14). Sapwood densities (n = 3 species
-1

 and treatment
-1

) were clearly 

influenced by xylem structural features such as d (y = -2E-04x + 0.76; R
2
 = 0.73), Dh 

(y = -9.5E-03x + 1; R
2
 = 0.73) and VtW (y = -0.02x + 0.79; R

2
 = 0.76).   
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Figure 3.5 (previous page): Average sapwood density (WD) in sapwood of Eucalyptus grandis (n 

= 3) and E. melliodora (n = 3) saplings grown at 15 °C (15) and 25 °C (25), receiving normal or 

limited amounts of water. Nitrogen supply to these saplings was „normal‟. One-way ANOVAs 

with a significance level of p ≤0.05 were used to assess intra-specific differences in WD as a 

result of growth temperature or water supply. Lower case letters indicate differences in WD due 

to different water supply at identical growth temperatures; capital letters are used to indicate 

differences in WD at identical water treatments but different growth temperatures. 

 

Eucalyptus grandis 

Temperature had a significant effect on WD of E. grandis grown with sufficient 

water (Fig. 3.5). Independent of water and N treatments, WD of the majority of 

saplings grown at 15 °C were ≥0.5 g cm
-3

, while the majority of saplings grown at 25 

°C had WD ≤0.5 g cm
-3

. The greatest WD was 0.57 g cm
-3

. Average values of WD 

according to treatments are illustrated in Table 3.3.5. Neither water nor N had a 

significant effect on WD (Table 3.14).  

 

Eucalyptus melliodora 

Saplings of E. melliodora showed similar patterns of WD in response to treatment as 

observed for E. grandis. WD tended to increase when water was limited, but this 

difference was not significant (Table 3.14). When grown at 15 °C, water limitation 

had no effect on WD. Average values for WD and associated treatments are 

illustrated in Table 3.8. Univariate Analysis of Variance (Table 3.14) showed no 

significant effect of treatment on wood formation for this species.   

 

Table 3.8 (next page): Average sapwood density (WD) per species and per treatment (n = 3), 

standard deviations in parentheses and results of inter-species statistical comparison of sample 

means for the individual treatments conducted with One-way ANOVAs with a significance level 

of p ≤0.05. Abbreviations used: “EG” = Eucalyptus grandis, “EM” = E. melliodora, “15” = 15 °C, 

“25” = 25 °C, “W” = normal water, “-W” = limited water, “N” = normal N and “N+” = 

additional N supply. 
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3.3.3 Basic sapwood traits  

 

Vessel diameter 

 

Across all treatments, average vessel diameter (d) of Eucalyptus grandis was greater 

compared to E. melliodora. These differences were significant across all treatments 

(Table 3.9). 

 

Table 3.9: Total vessel counts (VC) per species and per treatment, average vessel diameter (d) 

per species and per treatment (n = 3), standard deviations in parentheses and results of inter-

species comparison of groups median values conducted with a Mann-Whitney Rank Sum Test 

using a significance level of p ≤0.05. Bold numbers indicate statistical significance. 

Abbreviations used: “EG” = Eucalyptus grandis, “EM” = E. melliodora, “15” = 15 °C, “25” = 25 

°C, “W” = normal water, “-W” = limited water, “N” = normal N and “N+” = additional N 

supply. 

 

 

 

 

 

 

 

  

 

Independent of species, average d was slightly smaller in saplings grown under 

water-limited conditions compared to those saplings that received sufficient water 

(Table 3.9). Furthermore, in the majority of treatments, average d was significantly 

greater (all treatment p ≤0.02) in saplings grown at 15 °C compared to 25 °C. The 

treatment EG WD (g cm
-3

) EM WD (g cm
-3

) EM*EG 

15WN  0.52 (± 0.03) 0.61 (± 0.02) <0.01 

15-WN  0.52 (± 0.03) 0.59 (± 0.07) 0.17 

15WN+ 0.52 (± 0.01) 0.63 (± 0.07) 0.05 

15-WN+ 0.50 (± 0.04) 0.63 (± 0.02) <0.01 

25WN  0.44 (± 0.02) 0.59 (± 0.03) <0.01 

25-WN  0.52 (± 0.05) 0.67 (± 0.06) 0.03 

25WN+ 0.46 (± 0.01) 0.59 (± 0.01) <0.01 

25-WN+ 0.50 (± 0.05) 0.61 (± 0.01) 0.03 

treatment EGVC EMVC EG d (µm) EM d (µm) EM*EG 

15WN  452 451 47 (±12) 38 (±12) <0.01 

15-WN  267 275 42 (±13) 31 (±10) <0.01 

15WN+ 471 405 43 (±12) 34 (±11) <0.01 

15-WN+ 374 282 39 (±12) 33 (±12) <0.01 

25WN  288 469 43 (±12) 36 (±12) <0.01 

25-WN  449 420 39 (±11) 26 (±9) <0.01 

25WN+ 481 260 42 (±11) 36 (±11) <0.01 

25-WN+ 290 376 40 (±12) 30 (±10) <0.01 
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only exception was that d did not differ between growth temperatures for E. grandis 

grown under water limited and additional N conditions.   

 

Table 3.10: Nonparametric comparisons of intra-species differences in median values of vessel 

diameters between WN treatments and modified treatments at identical growth temperatures 

using Mann-Whitney Rank Sum Test and a p ≤0.05 level of significance. Bold numbers are 

indicating statistical significance. Abbreviation used: “EG” = Eucalyptus grandis, “EM” = E. 

melliodora, “15” = 15 °C, “25” = 25 °C, “W” = normal water, “-W” = limited water, “N” = 

normal N and “N+” = additional N supply. 

  

Vessel density 

 

Vessel densities (VD) in stems of E. grandis and E. melliodora did not differ within 

treatments. Independent of species, VD increased when saplings were grown with 

limited water, albeit not significantly (Fig. 3.6). Saplings of both species grown at 25 

°C developed more vessels per unit sapwood compared to those grown at 15 °C, but 

again these differences were not significant (Table 3.11; Fig. 3.6).  

At a species level, water and temperature treatments had a significant effect on VD, 

whereas N-treatment had no effect (Table 3.14). 

 

Table 3.11 (next page): Total number of vessels counted (VC) and vessel density per unit 

sapwood area (VD) of Eucalyptus grandis (EG) and E. melliodora (EM; n = 3 per species and 

treatment). Standard deviations are shown in parentheses and results of inter-species 

comparison of sample means for individual  treatments using ANOVA (p ≤0.05) are shown. 

Abbreviations used: “EG” = Eucalyptus grandis, “EM” = E. melliodora, “15” = 15 °C, “25” = 25 

°C, “W” = normal water, “-W” = limited water, “N” = normal N and “N+” = additional N 

supply. 

 

treatment*treatment  EM15 EG15 EM25 EG25 

WN * -WN  <0.01 <0.01 <0.01 <0.01 

WN * WN+ <0.01 <0.01 0.65 0.03 

WN * -WN+ <0.01 <0.01 <0.01 <0.01 
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Eucalyptus grandis  

This species produced the largest VD when grown with limited water and normal N 

at 25 °C. In contrast, the least VD was calculated for sapwood from saplings grown 

with sufficient water supply and increased N at 15 °C. Except for limited water and 

increased N treatments VD was generally larger in sapwood of saplings grown at 25 

°C. Moreover, VD was always larger in sapwood of saplings that received less water 

(Table 3.11).  

 

Eucalyptus melliodora 

In Eucalyptus melliodora VD differed strongly between growth temperatures, being 

larger when grown at 25 °C and reaching higher numbers when water was withheld 

(Table 3.11). 

 

treatment EGVC EMVC EG VD (n cm
-2

) EM VD (n cm
-2

) EM*EG 

15WN  452 451 6866 (±1475) 7041 (±1188) 0.88 

15-WN  267 275 8129 (±1606) 8373 (±1572) 0.86 

15WN+ 471 405 6736 (±320) 7673 (±1198) 0.26 

15-WN+ 374 282 9370 (±1462) 8441 (±728) 0.38 

25WN  288 469 8769 (±556) 8388 (±3753) 0.87 

25-WN  449 420 10268 (±759) 12050 (±2382) 0.29 

25WN+ 481 260 8639 (±1361) 7916 (±2055) 0.64 

25-WN+ 290 376 8830 (±1101) 11448 (±2667) 0.19 
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Figure 3.6: Average vessel density (VD; n = 3) in sapwood of Eucalyptus grandis (n = 3) and E. 

melliodora (n = 3) saplings grown at 15 °C (15) and 25 °C (25), receiving normal or limited 

amounts of water. Nitrogen supply to these saplings was „normal‟. One-way ANOVAs with a 

significance level of p ≤0.05 were used to assess intra-specific differences in VD as a result of 

growth temperature or water supply. Lower case letters indicate differences in VD due to 

different water supply at identical growth temperatures; capital letters are used to indicate 

differences in VD at identical water treatments but different growth temperatures. 

 

Void to Wood fraction 

 

In most treatments the fraction of void to wood (VtW) in sapwood was significantly 

greater in E. grandis compared to E. melliodora (Table 3.12). Independent of 

species, average VtW was marginally less in sapwood of saplings grown with limited 

water supplies. The observed trends were statistically not significant (Fig. 3.7). 

Results of Univariate Analysis of Variance (UNIANOVA) showed that VtW was not 

significantly altered by any treatment combination (Table 3.14). 

 

Table 3.12 (next page): Average void to wood fraction (VtW) in sapwood of Eucalyptus grandis 

(EG) and E. melliodora (EM; n = 3 per species and treatment). Standard deviations are shown 

in parentheses. Results of inter-species comparisons (ANOVA; p ≤0.05) of VtW for saplings 

grown under identical conditions are shown. Abbreviations used: “EG” = Eucalyptus grandis, 

“EM” = E. melliodora, “15” = 15 °C, “25” = 25 °C, “W” = normal water, “-W” = limited water, 

“N” = normal N and “N+” = additional N supply. 
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treatment EG VtW (%) EM VtW (%) EM*EG 

15WN  13 (±2) 8 (±3) 0.11 

15-WN  13 (±1) 7 (±1) <0.01 

15WN+ 11 (±2) 7 (±1) 0.01 

15-WN+ 13 (±2) 7 (±2) 0.02 

25WN  14 (±2) 8 (±1) 0.01 

25-WN  13 (±3) 7 (±1) 0.02 

25WN+ 13 (±1) 9 (±1) 0.01 

25-WN+ 12 (±1) 9 (±2) 0.08 

 

Eucalyptus grandis 

Average VtW in sapwood of E. grandis ranged from 14% (±2) to 11% (±2). The 

saplings with the largest VtW were grown at 25 °C and received ample water and 

normal N, while the lowest VtW resulted from growing saplings at 15 °C, supplying 

them with ample water and additional N (Table 3.12). However, VtW did not differ 

significantly among treatments.  

 

 

Eucalyptus melliodora 

Although nearly a quarter less, average VtW in sapwood of E. melliodora did not 

vary due to different treatments. Maximum VtW (9% ±2) was detected in sapwood of 

plants grown at 25 °C, receiving limited water and additional N; minimum VtW (7% 

±1) was detected in sapwood of plants grown at 25 °C, receiving limited water and 

normal N (Table 3.12). As in E. grandis, the VtW did not differ significantly among 

treatments.  
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Figure 3.7: Average void to wood fraction (VtW) in sapwood of Eucalyptus grandis (n = 3) and E. 

melliodora (n = 3) saplings grown at 15 °C (15) and 25 °C (25), receiving normal or limited 

amounts of water. Nitrogen supply to these saplings was „normal‟. One-way ANOVAs with a 

significance level of p ≤0.05 were used to assess intra-specific differences in VtW as a result of 

growth temperature or water supply. Lower case letters indicate differences in VtW due to 

different water supply at identical growth temperatures; capital letters are used to indicate 

differences in VtW at identical water treatments but different growth temperatures. 

 

3.3.4 Hydraulic architecture  

 

Hydraulically weighted vessel diameter 

 

The hydraulically weighted vessel diameter (Dh) in sapwood of E. grandis was, 

regardless of growth treatments, wider compared to the Dh in sapwood of E. 

melliodora. These differences were always significant, except for sapwood that was 

produced in both species at 25 °C, receiving normal water and additional N supply 

(Table 3.13). When water supply was reduced, Dh generally became narrower. This 

trend was however not significant when comparing the same species grown at the 

same temperature and N-supply (Fig. 3.9). On the species level water availability 

proved to be major influencing factor and significantly impacted the dimensions of 

Dh (Table 3.14). 
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Table 3.13: Average hydraulically weighted vessel diameter (Dh) in sapwood of Eucalyptus 

grandis (EG) and E. melliodora (EM; n = 3 per species and treatment). Standard deviations are 

shown in parentheses. Results of inter-species comparisons (ANOVA; p ≤0.05) of Dh for 

saplings grown under identical conditions are shown. Abbreviations used: “EG” = Eucalyptus 

grandis, “EM” = E. melliodora, “15” = 15 °C, “25” = 25 °C, “W” = normal water, “-W” = limited 

water, “N” = normal N and “N+” = additional N supply. 

 

 

 

 

 

 

 

 

 

Both species exhibited a linear and negative relation between Dh and VD. Sapwood 

of saplings with a small Dh generally had a larger VD (Fig. 3.8). Similar VD but 

different Dh can explain differences in VtW among the two species where E. grandis 

> E. melliodora.  
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treatment EG Dh (µm) EM Dh (µm) EM*EG 

15WN  57 (±2) 46 (±10) 0.12 

15-WN  53 (±6) 40 (±5) 0.05 

15WN+ 55 (±3) 42 (±4) 0.02 

15-WN+ 51 (±8) 40 (±7) 0.14 

25WN  52 (±3) 45 (±6) 0.14 

25-WN  48 (±3) 35 (±7) 0.04 

25WN+ 53 (±4) 46 (±2) 0.63 

25-WN+ 50 (±5) 40 (±4) <0.05 
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Figure 3.8 (previous page): Average vessel density (VD) versus average hydraulically weighted 

vessel diameter (Dh) of Eucalyptus grandis (dots) and E. melliodora (circles) averaged for each of 

the eight growth treatments. Sapwood anatomy of three trees per treatment was analysed. Error 

bars represent standard deviations. Coefficients of determination are shown in the panel next to 

linear regression lines (E. grandis: f(x) = -405.37x+29675.48; E. melliodora: f(x) = -

379.15x+24788.63) 

 

Eucalyptus grandis  

Differences in Dh across growth treatments were marginal in sapwood of E. grandis. 

The widest average Dh was 57 µm (± 2) and belonged to sapwood that was produced 

at 15 °C where the plants received normal water and normal N supply. The smallest 

Dh (48 µm ± 3) was calculated for sapwood that was formed at 25 °C under limited 

water conditions and normal N supply (Table 3.13). Except for trees that were grown 

with limited water supply at 25 °C, Dh was generally >50 µm. However, there was 

no clear statistical evidence of effects of treatments on Dh (Table 3.14, Fig. 3.9). 

Sapwood of plants grown at the lower temperature generally had wider Dh.  

 

Eucalyptus melliodora 

The trends of Dh in sapwood of E. melliodora were not coherent. The largest Dh in 

this species was 46 µm (± 10) and belonged to sapwood of plants grown at 15 °C, 

receiving normal water and additional N; the most narrow average Dh was 35 µm (± 

7) and belonged to sapwood that was formed at 25 °C, receiving reduced amounts of 

water and normal N supply. The amount of water provided had a significant effect on 

Dh as saplings receiving comprehensive water supplies clearly developed wider 

vessels (Table 3.14). On an individual treatment level no effects of water, growth 

temperature and N-supply on Dh could be identified (Figure 3.9).  
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Figure 3.9: Average hydraulically weighted vessel diameter (Dh) in sapwood of Eucalyptus 

grandis (n = 3) and E. melliodora (n = 3) saplings grown at 15 °C (15) and 25 °C (25), receiving 

normal or limited amounts of water. Nitrogen supply to these saplings was „normal‟. One-way 

ANOVAs with a significance level of p ≤0.05 were used to assess intra-specific differences in Dh 

as a result of growth temperature or water supply. Lower case letters indicate differences in Dh 

due to different water supply at identical growth temperatures; capital letters are used to 

indicate differences in Dh at identical water treatments but different growth temperatures. 

 

3.3.5 Statistical analyses on a species level  

 

Differences in all investigated traits were analyzed against individual treatment 

factors and each conceivable combination of these factors using a univariate analyses 

of variance (UNIANOVA). This analysis was done for both species separately (n = 2 

× 24) and the combined data of both species (n = 48) and its results are presented in 

Table 3.1. These statistical results were previously presented at the end of each 

relevant section.  

 

Table 3.14 (next page): Results of Univariate Analysis of Variance (UNIANOVA) with a 

significance level of p ≤0.05. Sapling- and wood structural traits of Eucalyptus grandis (n = 24), 

Eucalyptus melliodora (n = 24) and the combination of both data sets (n = 48) are tested against 

individually against the following treatment factors: “T” = temperature (15 vs. 25 °C), “W” = 

water supply (normal vs. limited supply) and “N” = nitrogen supply (normal vs. elevated 

supply). Bold numbers indicate significant differences between treatment factors. 
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3.4 Discussion 

 

The two investigated Eucalyptus species differed markedly in phenotype, reflecting 

their natural habitat. After growing for nine months under controlled environmental 

conditions, E. grandis was taller, had greater biomass and basal stem diameters 

compared to E. melliodora in any of the eight treatments (Fig. 3.4).  

 

E. grandis also had fewer (Table 3.11) and wider (Table 3.9) vessels, a larger VtW 

ratio (Table 3.12) and a reduced sapwood density (Table 3.8) compared to those of E. 

melliodora. Consequently, sapwood of E. grandis had a greater capacity to transport 

water. E. grandis grows to considerably greater size than E. melliodora. Differences 

in sapwood anatomy between the two species and the resulting capacities to transport 

water can be interpreted as adaptation to prevailing environmental conditions in their 

natural habitats (high rainfall vs. low rainfall). Such adaptations are commonly 

reported across biomes and continents (e.g. Carlquist, 1975; Antonova and Stasova, 

1993; Corcuera et al., 2004; Campelo et al., 2010). It must be noted here that most 

observed differences in vessel traits were not significantly different at p ≤0.05.  

 

Impact of water availability on sapling development 

 

The amount of water supplied to tree seedlings clearly had the greatest effect on tree 

structure as well as on some xylem traits. At the end of the nine months of growth, 

well watered E. grandis were taller and both species had a greater above- and 

belowground biomass, regardless of growth temperatures (Fig. 3.4). This effect is 

 Eucalyptus grandis Eucalyptus melliodora All 

dependent variable T W N T W N T W N 

Dh 0.09 0.07 0.92 0.87 <0.05 0.81 0.40 <0.05 0.93 

VD 0.01 0.01 0.81 <0.05 <0.05 0.92 <0.01 <0.01 0.84 

WD 0.03 0.06 0.70 0.87 0.22 1.00 0.42 0.26 0.91 

VtW 0.42 0.86 0.34 0.26 0.47 0.50 0.43 0.72 0.90 

Final tree height  <0.01 <0.05 0.06 <0.01 0.43 0.89 <0.01 <0.05 0.25 

Aboveground dry mass  <0.05 <0.01 <0.05 <0.01 <0.01 0.33 <0.05 <0.01 0.22 

Belowground dry mass 0.50 <0.05 0.42 0.95 <0.05 0.81 0.76 <0.01 0.82 
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very well known (e.g. McAinsh, 1990; Davies and Zhang, 1991; Saliendra et al., 

1995; Sass and Eckstein, 1995; Aber et al., 1998). Limited soil water availability and 

low turgor pressure in root cells can lead to an increase in synthesis of abscisic acid 

(ABA) that in turn is transported to guard cells in leaves. The resulting cascade of 

processes includes declining concentrations of osmolytes, and declining turgor of 

guard cells, finally leading to closing of stomata. Closing of stomata in turn limits the 

diffusion of CO2 into the leaf, which in turn will reduce photosynthesis. Over a 

longer period, this mechanism results in decreased growth due to limits in 

carbohydrate synthesis (Raschke 1970). 

 

As shown by UNIANOVA, reductions in water availability affected vessel diameters 

and densities in both species. Adaptation of vessel traits to soil water availability is 

also a well understood phenomenon (Chapter 3.1). The principle of decreasing vessel 

sizes with increasing vessel numbers in limited water conditions is widely accepted 

as being universal. It has been quantified several times in Eucalyptus spp. (e.g. 

February et al., 1995; Hudson et al., 1998; Searson et al., 2004) and other genera 

(e.g. Villar-Salvador et al., 1997; Lovisolo and Schubert, 1998; Preston et al., 2006). 

In the present study, all saplings growing with limited water showed the expected 

clear tendency to develop sapwood with smaller vessel diameters (Fig. 3.9) and 

increasing vessel densities (Fig. 3.6). Eucalyptus grandis generally showed weaker 

adaptation than E. melliodora.  

 

Void to wood fraction also declined under water stress (Fig. 3.7), but the changes 

were slight and could not be specifically attributed to water (Table 3.14).  

 

Beside well-documented physiological reasons for cell development (Chapter 3.1), 

smaller vessels must, according to the Hagen-Poiseuille Equation (Eq. 6), be 

accompanied by decreasing hydraulic conductivity, i.e increased resistivity (Lovisolo 

and Schubert, 1998). Reduced conductivity can increase negative tension within the 

respective vessel networks that, in environments with high VPD and low soil water 

availability, might lead to increased cavitation. This would in turn reduce 

conductivity even further (Sperry, 1986; Meinzer and Grantz, 1990; Sperry and 

Pockman, 1993; Lovisolo and Schubert, 1998). Other authors suggest no self-evident 

link between vessel size and cavitation events and instead suggest vessel pit size and 
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occurrence are more responsible, as the probability of air seeding seemingly 

increases with total pit area (Wheeler et al., 2005; Hacke et al., 2006; Sperry, 2008). 

Reduced conductivity, whether intensified by possible cavitation events or not, might 

result in low rates of replenishment of leaf water (Davies et al., 1990; Lovisolo and 

Schubert, 1998). Reduced turgor in the guard cells might contribute to mitigation of 

the risk of cavitation (Meidner and Edwards, 1975). Clearly, small vessel sizes and 

high vessel numbers contribute to resistance to severe embolism events but there is 

still a remarkable gap between knowledge of anatomical detail and xylem function 

(Salleo et al., 1985; Sperry, 2008). Additional investigations into xylem function are 

required.  

 

Brought together, the first hypothesis, that the diameter of vessels in tree species 

from mesic environments would decrease when availability of water becomes limited 

while vessel diameters in species from xeric environments will remain unchanged, 

must be rejected. Results show clear flexibility of vessel structure in both species. 

 

Impact of temperature on sapling development 

 

After 9 months of growth, and independent of water and N treatment, the growth of 

the majority of saplings was increased by increased temperature (Table 3.14). 

Saplings in the 25 °C growth chamber were 27% – 36% taller. Increases in growth 

rates of plants with temperature is well described under glass house- (e.g. Thomas et 

al., 2004, 2007) and field conditions (e.g. Rehfeldt et al., 1999; Way and Oren, 

2010).  

 

Plant growth generally increases to reach a maximum at some temperature optimum. 

Reasons for increased growth rates at rising temperatures include enhanced 

biochemical processes, especially enzyme-mediated processes (Kattge and Knorr, 

2007; Way and Oren, 2010). Results in this study for the two eucalypt species 

confirm findings by Thomas et al. (2007) of a steady increase in biomass 

accumulation by seedlings of E. camaldulensis grown at different temperatures, 

ranging from 10 to 25 °C. A further increase in growth temperature resulted in a 

curvilinear decline in seedling biomass (Thomas et al., 2007).  
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Optimal growth temperatures differ among genera, species and habitats. For most 

tree species (gymnosperm and angiosperm) from the northern hemisphere this 

temperature ranges between 15 – 30 °C (e.g. Bonan and Sirois, 1992; Antonova and 

Stasova, 1997; Medlyn et al., 2002). For Eucalyptus spp, native to different habitats 

in Australia, several investigations noted optimal growth temperatures of between 20 

and 30 °C (Ferrar et al., 1989; Battaglia et al., 1996; Thomas et al., 2007).  In 

western North-America, Rehfeld et al. (1999) suggested growth would increase until 

air temperatures were 9 °C above average field temperatures for Pinus species. 

Tropical tree species often grow at temperatures in the field close to optimum, and 

further increases can result in declining photosynthetic activity (Doughty and 

Goulden, 2008). 

In the current study sapwood density decreased with increasing temperature, 

especially in E. grandis. At first glance these findings run counter to those of earlier 

investigations of E. grandis and E. camaldulensis, where sapwood density was 

reported to increase in parallel with temperature (Thomas et al., 2004, 2007). These 

studies, however, applied an overall wider temperature gradient and did not detect a 

significant difference in sapwood density between their 15 and 25 °C treatments. The 

observed trend of decreasing sapwood density may well have resulted from increased 

rates of growth. Available resources were seemingly invested to facilitate growth of 

aboveground biomass and overall plant height, rather than developing a more 

cavitation resistant and denser wood structure. This interpretation would support the 

trends observed in the present study, where height and aboveground biomass of 

plants were greater in the 25 °C treatment (Fig. 3.3, 3.4). 

 

While average vessel diameters and hydraulically weighted vessel diameters showed 

the generally declined under warmer conditions, the effect of increasing vessel 

density with increasing temperature was clear. The observed increase of vessel 

density is contrary to observations reported in Thomas et al. (2004, 2007), where 

vessel density only differed significantly between the cold and very warm treatments, 

but not when plants were grown at 20 and 25 °C.  

 

Roderick and Berry (2001) postulated that trees growing in increasingly warm 

environments form sapwood of declining vessel diameter, as the viscosity of water 

declines and similar amounts of water can be conducted through vessels of smaller 
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diameters. However, and in contrast to observations reported here, Roderick and 

Berry also suggest that vessel density would decline with increasing temperature, 

leading to increased sapwood density because of declining void space. The present 

study does not support these inferences as the void to wood ratio of both species 

remained relatively constant under the two temperature treatments. In contrast, 

however, their second hypothesis that increasing temperatures will lead to smaller 

xylem vessels, independent of genotype, was confirmed.   

 

Impact of nitrogen availability on sapling development 

 

The “Plant Allocation and Multiple Limitation Hypothesis” captures plant 

„strategies‟ for matching growth to the least available resource (Gleeson and Tilman, 

1992). In case of limited N availability, under conditions where water and light are 

not limiting, root growth increases facilitating exploration of larger volumes of soil 

for N. Conversely, reductions in root volume in environments where N is not limited 

can be associated with expansion of leaf and crown area (e.g. see Gleeson, 1993; 

Clearwater and Meinzer, 2001; Atwell et al., 2009).  This was not the case in the 

current study where root biomass did not increase with additional-N. The lack of an 

effect on aboveground biomass in the –WN+ compared to the –WN treatments 

observed in both species, suggests that N-availability was sufficient, relative to 

growth, in both N treatments.  There were no significant effects on vessel traits of N 

treatment. 

 

It has been frequently reported that the effects of N-availability on structural 

development on sapwood and other structural components of trees cannot be 

generalized. Different species and genera seem to respond differently to variation in 

N-availability (e.g. Clearwater and Meinzer, 2001; Bucci et al., 2006; Atwell et al., 

2009; Goldstein et al., 2013). Some reports show that additional N leads to an 

increase in leaf area (e.g. Brix and Mitchell, 1983; Clearwater and Meinzer, 2001) 

and a reduction in resource allocation to roots, resulting in a more shallow root 

system (e.g. Gleeson, 1993; Atwell et al., 2009). In Pinus tadea, additional N was 

reported to increase growth and as a „follow-on‟ to decrease wood density due to a 

more porous xylem tissue (Ewers et al., 1999; Goldstein et al., 2013).  
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The results of this study can only partly confirm for the above-mentioned tree- and 

wood structural changes. Leaf area was not investigated, and only the aboveground 

dry mass of E. grandis was clearly influenced by the variation of N supply (Table 

3.14). Changes of sapwood density due to different supply of N were not detected by 

UNIANOVA. Previous studies found a rather weak increase in wood density when 

E. grandis seedlings were supplied with increasing amounts of N (Clearwater and 

Meinzer, 2001). Wood density was not affected by increased growth rates which 

opposes the above mentioned assumption by Goldstein (2013) and is in line with 

observations by Harvey and van den Driessche (1999) where increased N-supply 

increased growth and water-use efficiency in poplar saplings through an increased 

rate of photosynthesis but not wood density. 

 

In the study by Harvey and van den Driessche (1999), xylem traits of poplar saplings 

were influenced by N in the way that d increased when plants were supplied with 

high amounts of N. Similarly, Goldstein et al. (2013) reported that hydraulic 

conductivity of vessels increased when N availability was increased. These results 

contrast with those reported in Atwell et al. (1999) for sapwood of E. pauciflora, 

where enhanced N-supply did not result in increased vessel diameters. Moreover, a 

decrease in vessel diameter, water transport efficiency, stomatal conductance and rate 

of carbon assimilation was recently reported for Pinus taeda that was grown in high 

N environments (Faustino et al., 2013).  

 

Taken together, the contribution of N to xylem ontogenesis appears controversial. 

Results of this study do not indicate a clear effect of changes in N-supply on vessel 

anatomy. Eucalyptus  grandis and E. melliodora tended to develop unchanged vessel 

sizes when receiving additional N (Table 3.9). In both species vessel density also did 

not respond to differences in N-supply (Table 3.11).  

 

Consequences under a changing climate 

 

Although not investigated, basic tree- and sapwood structural traits investigated in 

the present study seem to reflect co-evolution of species with climate, as suggested in 

studies of other plant species (Savidge, 1996; Paux et al., 2005). Furthermore, the 

majority of investigated traits were clearly reactive to experimental conditions as set 
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up in the two growth chambers. The strongest environmental signals that initiated 

changes in the anatomy of sapwood traits were the availability of water and the 

apparent growth temperature. This observation is in alignment with other studies 

(Aber et al., 2001; Thomas et al., 2004, 2007). Water availability is a key to plant 

function and dictates the quantity and quality of cell- and vessel development the rate 

of transpiration and amongst other important physiological and biochemical 

functions photosynthetic activity and CO2 assimilation (Gleeson and Tilman, 1992). 

Increases in temperature on the other hand will promote not only plant internal 

enzyme activity but affect abiotic factors as VPD, rates of transpiration and 

evapotranspiration and also the viscosity of water. Depending on the intensity of 

environmental changes, the impacting combination of both, water and temperature, 

can therefore be assumed to have different effects on trees of respective stands.  

 

The fact that water availability and temperature, rather than N, had major influence 

on xylem ontogenesis, strongly support suggestions of Clearwater and Meinzer 

(2001) that hydraulic architecture is partly responsible for tree structural traits such 

as leaf and crown physiology, rather than reverse (Clearwater and Meinzer, 2001). 

Results of this study indicate that young trees have a certain capacity to develop a 

hydraulic architecture in relation to the prevalent environmental conditions. 

According to Hydraulic Limitation Hypothesis (MST; Chapter 1.4.1) adaptation of 

vessel sizes are likely to affect habitus and growth performance of individual trees. 

However, changes in the availability of N due to climate change (see Chapter 3.1) 

seem not to affect hydraulic architecture and other tree structural traits in Eucalyptus. 

Additional research is required to disseminate if this observation is also true for other 

tree genera. 

 

Overall, the third hypothesis, that changes in biomass accumulation and hydraulic 

architecture of tree seedlings follow a clear environmental signal (dominant effect of 

either water, N or temperature) and that interactions can be neglected due to the 

“Plant Allocation and Multiple Limitation Hypothesis”, must be rejected. Tree and 

vessel structural traits which were significantly affected by environmental factors 

were often found to be simultaneously influenced by water and temperature.  
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Chapter 4 – Investigating water storage and circumferential variation in sap 

flow in mature, freestanding Corymbia maculata   

 

4.1 Introduction 

 

Trees are able to store water in woody tissues which, under conditions of 

increasingly negative water potentials in the xylem, can be used to support 

transpiration (Chapotin et al., 2006). For a mature Pseudotsuga menziesii for 

instance, Phillips et al. (2003) estimated that use of stored water could result in an 

increase of up to 18% in photosynthetic activity per day. Both location of reservoirs 

within stems, and mechanisms responsible for mobilizing and restoring this water 

source, are not fully understood. So far, three different water storage mechanisms 

have been proposed: capillary storage, elastic storage and/or cavitation release 

(Holbrook, 1995; Maherali and DeLucia, 2001; Tyree and Zimmermann, 2002). 

Dependence on stored water is determined by a combination of environmental and 

species-specific (genetic) attributes, including soil water availability, leaf-specific 

conductivity, xylem vulnerability to cavitation and stem and leaf capacitances 

(Chapotin et al., 2006). Capacitance (i.e. „elastic water storage‟) of tress is 

commonly defined as the ratio of change in water content to change in water 

potential (Phillips et al. 2003). It has been reported that capacitance is strongly linked 

to phenology and spatial distribution, i.e. soil water availability (Borchert, 1994; 

Phillips et al., 2003). There is increasing evidence water is stored in specialized 

parenchyma tissue, outside xylem vessels, where it can easily be released into the 

transpiration stream (e.g. Stratton et al., 2000; Domec and Gartner, 2001; Domec et 

al., 2005; Čermák et al., 2007). In Pseudotsuga menziesii stored water accounted for 

20 to 25% of total daily water use in large, and for 7% in small trees (Phillips et al., 

2003; Čermák et al., 2007). In Quercus garryana stored water accounted for 10 to 

23% of total daily water use in tall trees, and 9 to 13% in small trees (Phillips et al., 

2003). Goldstein et al. (1998) investigated capacitance in five broadleaf species from 

a tropical forest and surprisingly found a common relationship between storage 

capacity and sapwood area, suggesting that tree size and sapwood width, rather than 

genetic predisposition, determines the volume of water that can be withdrawn from 

sapwood.  
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In contrast to sapwood, capacitance of heartwood has received little attention. Low 

water content and occluded xylem conduits are commonly listed as major reasons to 

assume that heartwood is not ‟designed‟ to contribute significant amounts of water to 

the transpiration stream (Holbrook, 1995; Kravka et al., 1999; Maherali and 

DeLucia, 2001). Nevertheless, recent studies noted that the water content of 

heartwood in some angiosperm species, namely Polulus, Eucalyptus and Quercus, is 

similar or even greater than in sapwood (Yazawa, 2006; Pallardy, 2008). These 

authors named this phenomenon “wetwood” or “wet-heartwood”. Possible reason for 

wetwood formation, however, remains poorly understood (Sano et al., 1995; 

Yazawa, 2006). Reasons for wetwood could be bacterial infection and/or the influx 

of water through dead branches or mechanical injuries (Etheridge and Morin, 1962; 

Schink et al., 1981; Murdoch et al., 1983).  

 

 „Fibre Saturation Point‟ (FSP) is reached at approximately 30% of wood moisture 

content. Theoretically all water beyond 30% should be freely available for 

transpiration (Berry and Roderick, 2005). Pfautsch et al. (2012) reported that 

moisture content of heartwood in a range of Eucalyptus species can easily exceed 

30%, and in some species was even twice that. Pfautsch et al. showed that when only 

healthy trees were sampled and the „wetwood‟ resulting from damage or infection 

could be excluded, moisture content of heartwood increased from arid to mesic 

environments. Based on these results is reasonable to speculate that water stored in 

heartwood of eucalypt trees could represent a source of stored but potentially 

available water. Due to the novelty of the findings by Pfautsch et al. and the 

speculative nature of „heartwood capacitance‟, a more thorough investigation of 

possible functional aspects of water stored in heartwood of trees is required.  

 

Assuming heartwood can be used for water storage and stored water is used to 

support plant transpiration directly or has a refill function for embolised vessels, the 

cellular pathway of water movement between sap- and heartwood must be identified. 

Two possible pathways to move water radially in a tree have been described: 1. 

transport through wood rays (e.g. Zweifel et al., 2000; Dickison, 2000 ; Tyree and 

Zimmermann, 2002) and 2. transport through pits (e.g. Jansen et al., 2003; Gasco et 

al., 2006). Wood rays are aggregations of parenchymal cells that extend from the 

cambium through the sapwood into the heartwood. They are the only living cells in 
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the xylem of woody plants and are connected to the adjacent water-conducting 

vessels or tracheids via pit pairs in their sidewalls (Salisbury and Ross, 1992; 

Dickison, 2000).  

The capacity for radial conduction of water through wood rays, seem likely to be 

slow, because water has to transit many relatively small parenchyma cells that reduce 

the conductivity of rays (Dickison, 2000; Tyree and Zimmermann, 2002). 

 

 

 

Figure 4.1: Scanning electron micrograph of a vessel sidewall of Eucalyptus victrix showing pit 

connections between vessels and wood rays. The image was generated using a S-400 SEM 

(Hitachi, Tokyo, Japan). Scale of the micrograph is indicated by the sequence of dashes in the 

right bottom corner. 

 

Three-dimensional scanning of the vessel structure of Fraxinus lanuginosa and 

Machilus thunbergii revealed that vessels are interconnected in radial and tangential 

direction, even across year ring borders (Fujii et al., 2001; Kitin et al., 2004). In 

comparison to ray cells, water transport through inter-vessel or inter-tracheid pits is 

an effective way to transport water radially. However, the current lack of appropriate 

measurement techniques limits our ability to quantify sap interchange via pit 

connections (Kitin et al., 2004; Domec et al., 2006). 

 

To characterize the movement of water through woody plants, including the study of 

capacitance, some researchers have injected deuteriated water (also known as „heavy 
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water‟, 
2
H2O or D2O) into the transpiration stream (e.g. Meinzer et al., 2006). Heavy 

water is also frequently used to study soil hydraulic processes (e.g. Kendall and 

Caldwell, 1998; Hobson and Wassenaar, 1999). The isotopic composition of water 

varies depending on the position of water in the natural water cycle (Gat, 1996) and 

also on latitude and altitude, (Dansgaard, 1964).  

 

As an attempt to make measurements of the isotopic composition of water 

comparable across the globe, the International Atomic Energy Organization (IAEO) 

provides an internationally accepted reference standard water, termed “Vienna 

Standard Mean Ocean Water” (VSMOW). This reference or “ordinary water 

substance” contains 0.015574 atom% 
2
H (IAPWS, 2001) and when measured against 

this standard, the isotopic ratio between 
1
H and 

2
H in water extracted from plants can 

be positive („enriched‟) or negative („depleted‟). 

 

As noted above, heavy water has been used to identify water-related processes and 

function in trees, including the study of axial and radial water transport in sapwood 

as well as locating storage tissues (Kalma et al., 1998; Marc and Robinson, 2004; 

Meinzer et al., 2006). Most of these studies directly injected heavy water into the 

transpiration stream at the base of stems (Brooks et al., 2002; James et al., 2003; 

Meinzer et al., 2003; Meinzer et al., 2006). Injecting water into sapwood comes at 

the risk of introducing air bubbles into the xylem during both, the preparation of the 

injection whole and the actual injection. Once air enters the sapwood, the affected 

vessels embolize and loose their capacity to transport water upwards. Overall this can 

reduce the effective movement of the tracer, leading to underestimation of rates of 

water transport.  

 

This chapter describes a trial of a new method, where heavy water is applied to trees 

by watering the surrounding soil, leaving the tree undisturbed and allowing for the 

tracer to be taken up by roots under natural conditions.  The trial was conducted 

using a tall, mature Corymbia maculata tree. This study aims to shed light on the 

following hypotheses: 
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1. Enrichment of 
2
H in the transpiration stream of trees can be achieved by 

irrigating trees with heavy water, and hence, irrigating with heavy water is an 

ideal tool to study water movement within trees. 

2. If a tree accesses moisture stored in heartwood, this water needs to be 

restored and if heavy water is fed into the transpiration stream than 

enrichment of 
2
H in water extracted from heartwood will be detected. 

3. Concentrating irrigation with heavy water on one side of a tree provides the 

opportunity to detect patterns of radial and circumferential water transport. 

4. Tracer residence time will be longer in lower compared to upper branches 

due to lower rates of transpiration in lower branches.  

 

4.2 Materials and Methods 

 

4.2.1 Pilot study 

 

Plant material and irrigation method 

 

As „proof-of-concept‟, a pilot study tested if enrichment of 
2
H in xylem sap of 

eucalypt trees could be detected after irrigation with heavy water. Five potted 

Eucalyptus grandis saplings were used for this study. Saplings were approximately 

1.8 m tall (see section below; Table 4.1). All plants were of identical age and of 

similar crown dimensions and were planted in 8-L plastic pots. For one week prior to 

the irrigation with heavy water all plants were well watered each day. At the end of 

this period the base of each pot was sealed with a plastic bag to prevent draining of 

water. At 10am on day 0 all „Treatment‟ plants received 300 ml heavy water. Tracer 

strength of 
2
H was 1300‰, using a diluted stock solution that initially contained 70% 

deuterium oxide (Cambridge Isotope Laboratories, Andover, USA). A „Control‟ 

plant received 300 ml tap water without additional tracer. On Days 2 and 4, trees that 

were not already destructively sampled (see section below; Table 4.1) were irrigated 

with 300 ml tap water.   
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Sample collection and analysis 

 

After allowing trees to take up heavy water for 24 hours, one Control and one 

Treatment tree were harvested by cutting the stem 5 cm above its base using 

secateurs. One Treatment tree was then harvested each morning of Days 2, 3 and 4. 

Leaves of harvested trees were removed immediately after cutting the stem to 

prevent transpirational losses of water from the excised plants. Xylem sap was 

extracted from stems as described in Keitel et al. (2006). Silicon putty (Blu Tack, 

Bostic, Australia) was used to seal the basal 4 cm of the stem section and an inlet 

tube of a vacuum pump (PAV 2000, SDEC, Reignac sur Indre, France) in a Falcon 

vial (15 ml or 50 ml size, depending on sample diameter; Sarstedt, Ingle Farm, 

Australia). The bark and cambium of the base of the stem was removed prior to this 

procedure. By applying a mild vacuum (-0.8 bar), and repeatedly cutting small 

sections of stem, beginning at the apex and continuing towards the basal end, xylem 

sap was drawn into the Falcon vial. On average the extraction of xylem sap was 

completed within 1 – 2 minutes and the resulting sap was immediately transferred 

into 2 ml air-tight vials that contained a Teflon septa in their lids (Thermo Fisher 

Scientific, Scoresby, Australia), which was stored at 4 °C awaiting isotopic analyses. 

Details of analyses of 
2
H in extracted sap are provided below.  

 

4.2.2 Main study 

 

Study site 

 

The study was carried out in March 2012 at the John B. Pye Farm. The farm is 

located approximately 60 km southwest of Sydney in the Nepean River Catchment 

near the town of Cobbitty, NSW, Australia. Mature solitaire trees are scattered over 

the property; a mature Corymbia maculata (Hook.) K.D. Hill & L.A. Johnson was 

selected for the experiment and water from an adjacent dam was used for irrigation. 

The tree was 20 m tall and had a diameter at 1.3 m above ground of 61.5 cm. The 

crown was fully developed and had a uniform shape (Fig. 4.1). Environmental 

information (air temperature, relative humidity and rainfall) during the experiment 

was recorded by a weather station located at Mt. Annan Botanical Gardens. The 
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Botanical Gardens are in proximity to the experimental site. Vapour pressure deficit 

(VPD) was calculated from this data using the following formula: 

 

     (
                            

             
)    (   

  

   
)    (Equation 4.1)  

 

Corymbia maculata grows along the entire coastal area of New South Wales, and is 

found in isolated stands in east Victoria and south-east Queensland. The species 

prefers well-drained soils where it forms pure open stands or co-occurs in mixed 

species forests, growing up to 45 m tall. The species grows from near sea level to up 

to 650 m a.s.l where annual precipitation can vary from 680 – 1700 mm; 

temperatures of the hottest and coldest month in the distribution range of C. 

maculata vary from 25 – 26 °C and 4 – 6 °C, respectively (Boland et al., 2006). 

 

 

Figure 4.2: Solitary Corymbia maculata at the John B. Pye Farm used in the present study.  
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Irrigation 

 

Ground area around the tree was subdivided into four equally sized (approx. 4.5 m
2
) 

triangles, representing the four cardinal directions. Their tips pointed towards the 

tree. Triangles were marked on the ground using spray paint. The east-facing triangle 

was chosen to receive all isotopically enriched irrigation water. The same stock 

solution of heavy water used during the pilot study was used in the main experiment, 

preparing 2000 L of 
2
H2O (1300‰ 

2
H) using collected rainwater. Former studies 

provided evidence that the time required for 
2
H2O to reach the top of trees is size 

dependent and varies from two days in small trees to 21 days in mature trees (James 

et al., 2003; Meinzer et al., 2006). With these differences in mind, the irrigation 

treatment lasted for 10 days where 200 litres of 
2
H2O were watered into the soil at 

the eastern side of the tree every day during the early morning. 

 

Tree water use 

 

Sap flow was measured for 20 days (07.03.2012 – 26.03.2012). Within this period, 

sap flow measurements were made using the heat ratio method (HRM). 

Measurement principles and limitations of the method are detailed in Burgess et al. 

(2001). Briefly, HRM is a heat pulse-based method that allows estimation of water 

flux in stems by comparing the decline in temperature differences in wood below and 

above the source of the heat pulse (Burgess et al., 2001; Pfautsch et al., 2010).  

 

Sap flow was measured at DBH, with 4 sets of sensor probes (HRM30, ICT 

International, Armidale, Australia), one at each cardinal side. Each set of sensor 

probes consisted of two temperature probes and a line heater probe. All probes were 

made from stainless steel tubing (35 mm long, 1.25 mm outer diameter) and were 

installed symmetrically along the axial pathway of sap. Three vertically aligned holes 

(1.26 mm diameter) were drilled into the sapwood after removing a 5x8 cm bark 

window. Temperature probes were installed into conducting sapwood, 5 mm above 

(downstream) and below (upstream) the heater. Each temperature probe was 

equipped with two type-T thermocouples located at 5 and 15 mm from tip, which 

allowed simultaneous measurements at two different sapwood depths. Data was 

recorded at 30-minute intervals using a Smart Logger (ICT International) Power was 



 

   131 
  

supplied by a 12V car battery that was „trickle-charged‟ using a solar panel (Fig. 

4.3), 

 

 
Figure 4.3: Sample tree, equipped with sap flow sensors, solar panel and logger/battery unit 

encased in a waterproof casing. 

 

After installation all probes were insulated and shielded against thermal heating. The 

ratio of temperature increase above and below the heater was recorded for 40 

seconds after a lag-time of 60 seconds from the release of the heat pulse. Heat 

velocity (Vh; cm h
-1

) was calculated according to Marshall (1958): 
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Vh        (Equation 4.2) 

where k is thermal diffusivity of fresh wood, x is the distance (cm) between the 

heater and either temperature probe, and v1 and v2 are increases in temperature 

(from initial temperatures) at equidistant points downstream and upstream, 

respectively, from the heater (Marshall 1958, Burgess et al., 2001). 
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Raw heat velocity data were corrected for probe misalignment and wounding as 

described by Burgess et al.(2001) and sap velocity (Vs; cm h
-1

) was calculated by a 

modified version of Marshall‟s (1958) equation, as described by Barrett et al.(1995). 

Vs can be calculated for a certain area of sapwood as it includes wood to void (sap) 

ratio considerations and accounts for their different heat permeabilities: 

 

       (Equation 4.3) 

 

Where ρb is the basic density of wood (dry weight/fresh volume), cw and cs are 

specific heat capacities of the wood (cw) and the sap (cs), mc is the water content of 

sapwood and  s is the density of water at 20 °C. Total volumetric water use (Q) was 

estimated by multiplying Vs with the sapwood area (cm
2
) of a concentric band of 

sapwood. The width of this band was determined by extracting sapwood cores from 

each measurement position. Cores were stained with methyl orange (1% in H2O 

solution) to identify the width of the entire sapwood, before assigning the width of 

sapwood to outer and inner measurement points of the temperature probes (Pfautsch 

et al.2010). The border between inner- and outer sapwood was defined as being the 

mid-point between the two points. This procedure was repeated for each of the four 

measurement positions. Vs of the outer and inner sapwood band were averaged for 

each position before calculating the total volume of Q as the mean of the four 

measurement positions.  This procedure yields a representative measurement of Q 

that accounts for radial and circumferential variation of sap flow (Bleby et al., 2004). 

 

Four sapwood wedges were extracted adjacent to probe insertion holes at the end of 

water use measurements to determine moisture content and density of sapwood. 

From each wedge a cube of sapwood (approx. 3 cm
3
) was the taken and its volume 

(immersion technique) and fresh weight were measured immediately after extraction. 

Samples were oven dried at 90 °C for 5 days before measuring their dry weight. 

Wood density was calculated as dry mass divided by fresh volume. Wood water 

content was determined from the ratio of the difference between wet and dry mass to 

the wet mass, and expressed as a percentage (Osunkoya et al., 2007).  
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Wood collection 

 

Prior to felling, all cardinal sides of the tree were marked at the base of the stem 

using spray paint. After felling, total tree length was measured with a tape measure, 

sample locations were marked with lumber crayon and wood sections were extracted 

from the stem and four branches using a chainsaw. Wood sections were split with a 

cleaver into quarters to facilitate collection of sap- and heartwood from each cardinal 

direction, keeping the time of exposure of wood to the atmosphere to a minimum. 

Where heartwood was wide (i.e. in the lower trunk), samples were divided into inner 

and outer positions (Fig. 4.4). At positions where heartwood was absent and stem or 

branch diameters were small (upper stem and branches) sapwood was only extracted 

from eastern, western and central positions (e.g. Fig. 4.4). The radius of sapwood at 

sample locations and diameters of heartwood at all sample heights were recorded 

(Appendix – Chapter 4; Table S4.1 – 4.5). Care was taken to avoid cross-

contamination of samples. Each sample was extracted using a wood chisel that was 

triple-rinsed with deionized water after each extraction. All samples were 

immediately transferred into air-tight vials and stored in liquid N. A total of 91 wood 

samples were collected from the stem and 4 branches. 

 

 

Figure 4.4: Cardinal direction and locations of wood samples extracted from main stem of a 

Corymbia maculata tree. The area inside the dashed circle indicates the proportion of 

heartwood. Height of the extraction point is indicated below each cross section. Numbers 

indicate exact location of samples in sap- and heartwood. 



 

   134 
  

 

Figure 4.5: Cardinal direction and locations of wood samples extracted from a north-facing 

branch of a Corymbia maculata tree. The area inside the dashed circle indicates the proportion 

of heartwood. Distance from the base of the tree is indicated below each cross section. Numbers 

indicate exact location of samples in sap- and heartwood. 

 

 

Figure 4.6: Cardinal direction and locations of wood samples extracted from an east-facing 

branch of a Corymbia maculata tree. The area inside the dashed circle indicates the proportion 

of heartwood. Distance from the base of the tree is indicated below each cross section. Numbers 

indicate exact location of samples in sap- and heartwood. 
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Figure 4.7: Cardinal direction and locations of wood samples extracted from a south-facing 

branch of a Corymbia maculata tree. The area inside the dashed circle indicates the proportion 

of heartwood. Distance from the base of the tree is indicated below each cross section. Numbers 

indicate exact location of samples in sap- and heartwood. 

 

 

Figure 4.8: Cardinal direction and locations of wood samples extracted from a west-facing 

branch of a Corymbia maculata tree. The area inside the dashed circle indicates the proportion 

of heartwood. Distance from the base of the tree is indicated below each cross section. Numbers 

indicate exact location of samples in sap- and heartwood. 
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Water extraction 

 

Water extractions as well as isotopic analysis were completed at the research 

facilities of the Australian Nuclear Science and Technology Organisation (ANSTO). 

Water was extracted from wood samples using a cryogenic vacuum distillation 

technique similar to that described by West et al. (2006). In short, a vacuum pump 

was connected to a tube system which ended in two extraction modules. Each 

module consisted of one extraction cylinder connected with a pipe to a collection 

tube. To start water extraction from a sample, the relevant module was evacuated and 

then isolated from the vacuum manifold by closing an intermediate valve. The 

extraction cylinder was removed and an open glass vial containing a wood sample, 

was placed into the cylinder. Once reconnected, the extraction cylinder was 

immersed in a flask that contained liquid N to refreeze the sample and any 

evaporated water condensed on the inner surface of the vial. After approximately two 

minutes, the sample was frozen, and the entire module containing the extraction and 

collection cylinders were evacuated by opening the intermediate valve. A vacuum 

pump was used to create a vacuum of around 60 mTorr (7.99 Pa).  

 

Once the required vacuum was stable, the module was isolated to maintain the 

strength of the vacuum after which liquid N surrounding the extraction cylinder was 

replaced with a beaker filled with boiling water on a heat plate. For the duration of 

extraction water was kept at boiling point. At the other end of the module the 

collection tube was immersed in liquid N to immediately freeze incoming water 

vapour distilled from the sample. Time required for each extraction was around 90 

minutes. West et al. (2006) suggested an extraction time of 60-75 minutes for wood 

samples. However, extractions of water out of heartwood required more time. 

Commonly, the extraction process should continue until at least 98% of water is 

extracted from the sample to receive an unfractionated sample (Araguás-Araguás et 

al., 1995; West et al., 2006). Once the extraction was complete the vacuum was 

released, the collection tube removed and the water allowed to thaw before being 

pipetted into a storage vial that was sealed with wax. Samples were stored at room 

temperature awaiting further analysis. 
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Isotopic analysis of water 

 

Water samples were analysed using a combination of on-line combustion and a dual-

inlet isotope ratio mass spectrometer (IRMS). For this procedure water samples were 

introduced into the septum port of the H/Device with a PAL Autosampler. 1μL of 

water was injected into a chromium reactor at 900ºC where H
2
 is produced. The H

2
 

gas was then introduced into the IRMS (Delta V Advantage, Thermo Scientific, 

Waltham, U.S.A.), via a dual inlet system, and its isotopic composition was 

determined relative to pure Hydrogen gas, which is automatically loaded via 

reference refill into the dual inlet system. Each sample was injected in triplicate into 

the chromium reactor in order to prevent any memory effect. Results are reported in 

delta-format (δ) relative to the internationally used reference standard Vienna 

Standard Mean Ocean Water (VSMOW) for analyses of hydrogen. Results were 

normalized such that the 
2
H value of Standard Light Arctic Precipitation (SLAP) is -

428‰ relative to VSMOW using the following equation: 

 

   (Equation 4.4) 

 

where the P represents the specimen having it‟s delta value(s) determined. Internal 

ANSTO standards used in each run were calibrated against VSMOW2 and SLAP2, 

which allowed for the samples to be reported relative to VSMOW. Quality control 

reference standard was included in each run. Results are accurate to +/- 1‰ (Nelson 

and Dettman, 2001). 

 

Statistical analysis 

 

The relationship between Q and VPD and also een δ
2
H and tree height was tested 

using correlation analysis. Differences in δ
2
H of water extracted from sap- and 

heartwood extracted from different heights within the tree were assessed using a 

Wilcoxon Test with a significance level of p <0.05. Means and standard deviations 

were calculated using SPSS (V21,SPSS Inc., Chicago, U.S.A).  
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4.3 Results 

 

4.3.1 Pilot study 

 

Deuterium (
2
H) in xylem sap of the reference tree was depleted against the 

international standard by 28.4‰. Xylem sap of all trees that were irrigated with 

heavy water showed a significant enrichment of 
2
H. The initial concentration of 

2
H in 

water supplied to tree seedlings was 1300‰ and xylem sap of the tree extracted one 

day after application of heavy water remained enriched, containing δ
2
H of 500‰. 

Enrichment of xylem sap with 
2
H gradually declined, reaching an enrichment of δ

2
H 

of 264‰ after four days (Table 4.1). 

Table 4.1: Total height, base diameter and measured δ
2
H in all sapling sorted according to 

sampling day after key irrigation. Treatments are expressed as lower case letters where „c‟ 

stands for control and „d‟ stands for deuteriated. Standard deviations of measured 
2
H values are 

parenthesized.  

 

 

 

 

 

 

 

4.3.2 Main study 

 

Environmental conditions 

 

During the 20 days of the field experiment, the area received 86.4 mm rainfall. 

Average daytime temperature was 20.8 °C (±2.4), relative humidity was 69% (±11) 

and VPD 0.85 kPa (±0.32). At night average temperatures were 16.31 °C (± 2.27), 

relative humidity increased to 87% (±9) while VPD decreased to 0.23 kPa (± 0.15). 

VPD throughout the day was variable and reached a maximum of around 2 kPa 

during the afternoon.  

 

 

 

sampling day after 

irrigation  

height 

(cm) 

diameter 

(cm) 
treatment 

 δ
2
H VSMOW 

(‰) 

1 176 1.6 c -28.4 (±2.5) 
1 162 1.7 d 492.2 (±2.5) 

2 188 2.3 d 507.3 (±2.5) 

3 167 2.0 d 318.1 (±2.5) 

4 192 1.6 d 264.1 (±2.5) 
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Tree structural traits 

 

Sapwood area at the base of the Corymbia maculata tree was 844 cm
2
 (±61). Width 

of bark and sapwood was markedly greater at the southern and eastern side of the 

tree, reaching 5.6 cm (Table 4.2). These differences did not affect density of 

sapwood that had an average density of 0.72 g cm
-3

. 

 

Table 4.2: Structural traits of sapwood collected from the base (1.3 m above ground) of a 

Corymbia maculata tree. 

position bark width  

(cm) 

sapwood width  

(cm) 

moisture content 

(%) 

wood density  

(g cm
-3

) 

North 1.95 4.7 38.4 0.75 
West 1.75 4.8 41.2 0.70 

South 2.2 5.6 42.8 0.68 

East 2.5 5.5 38.2 0.75 

 

Tree water use 

 

Daily water use of the tree was stable during the three weeks of sap flow 

measurements (Figure 4.10). Across the three week period average daily water use of 

the tree was 425 L day
-1

 (±65), with a minimum of 258 L day
-1

 on 17.03.2012 and a 

maximum of 530 L day
-1

 during 24.03.2012 (Fig. 4.9).  

 

Figure 4.9: Total daily tree water use of a mature of a solitary Corymbia maculata tree expressed 

in litres per day (L d
-1

).   

 

Daily averages of water use were well correlated with daily sums of VPD, showing a 
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steep and curvilinear incline in Q when VPD increases from zero to 2 kPa (Fig. 

4.3.2). After this inflection point, the relationship between Q and VPD becomes 

more linear but continues to rise above a daily water consumption of the tree >500 L.  

 

Figure 4.10: Relationship between daily water use (in litre per day; L d
-1

) of a mature, solitary 

Corymbia maculata and the daily sum of vapour pressure deficit (VPD). Coefficients of 

determination for the exponential rise (solid line; y = 120.9 ln(x) + 36.38) is shown. 

 

Whole tree water use varied during the course of a day. During March in south-

eastern Australia, sunrise is around 7am and sunset around 7pm. Tree water use was 

generally slowest during the night before it increased rapidly around 7 – 8am, 

following the rising sun. During most of the day, water use of the tree remained 

relatively constant until the late afternoon from where it slowly declined (Fig. 4.11). 

During peak hours and depending on the day, water use varied between 15 and 30 

litres per hour. 
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Figure 4.11: Diurnal course of water use of a mature Corymbia maculata tree during in early 

March 2012, expressed in litres per hour (L h
-1

). 

 

Flux density of sap (Js) varied consideraby with both, stem circumference and depth 

of sapwood. Js was always fastest at the eastern side of the tree (Fig. 4.12 A) in both 

the outer and inner sapwood (Fig. 4.12 B). Water flux was relatively constant 

throughout the entire sapwood width at this side of the tree. The slowest Js was 

measured at the northern side of the tree where Js in the outer sapwood was always 

significantly faster compared to Js of the inner sapwood. This pattern was also 

detected at the western side of the tree where Js declined nearly 50% from 45 to 25 

cm h
-1

. 
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Figure 4.12: Patterns of sap flux density measured in the stem base of a solitary, mature 

Corymbia maculata tree at four cardinal directions in (A) the outer sapwood (10 mm below the 

cambium) and (B) the inner sapwood (25 mm below cambium). Data shown was recorded from 

12.03.2012 to 14.03.2012.  

 

Deuterium content of water in sap- and heartwood 

 

The application of heavy water to the ground around the eastern section of the trunk 

did not enrich water extracted from sap- or heartwood. All 91 wood samples varied 

in their natural abundance of 
2
H, and were always depleted in 

2
H. All values for δ

2
H 

tended to be similar to the „tap water‟ treatment of the pilot study. To simplify 

results, isotopic data is only presented for sap- and heartwood of the stem, omitting 

data generated for sapwood from branches as outlined in the Material and Methods 
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section. These data can be found in Appendix – Chapter 4; Table S 4.1 – 4.5.  

Depletion of 
2
H in water extracted from both wood types ranged from -24.3 to -

37.1‰. Water extracted from heartwood was increasingly less depleted when 

moving upwards in the tree (Fig. 4.13), having a delta value of -30‰ at the base 

from where 
2
H increased linearly to -28‰ at 12 m stem height. As heartwood was 

absent above that height, no further samples could be extracted from the stem. Water 

extracted from sapwood showed a distinctly different pattern of 
2
H along the height 

of the stem following a cubic function (Fig. 4.13). At the base, delta values for 
2
H 

were around -34‰ before they became enriched in 
2
H, reaching with -27‰ the 

highest concentration of 
2
H at around 12 m above the base of the tree. From this 

point 
2
H became increasingly depleted again and fell to -33‰ near the top of the 20 

m tall tree. 

 

 

Figure 4.13: Profiles of deuterium in delta notation (δ
2
H) in water extracted from sapwood (A; 

dots) and heartwood (B; circles) collected along the entire stem of a mature, solitaire Corymbia 

maculate.  Data are mean values of all sampled values per respective height and error bars 

denote standard deviations. Coefficients of determinations for cubic and linear trends (solid 

lines; A: f(x) = -0.01x
3
 + 0.13x

2
 - 0.19x - 34; B: f(x) = 0.14x - 29.95) are shown. 

 

Across all samples, 
2
H was significantly more depleted in water extracted from sap-, 

compared to that extracted from heartwood (p = 0.03; Table 4.3.3). The difference in 

depletion between water extracted from both wood types was with -4‰ particularly 
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pronounced at the base of the tree. This difference declined with height where at 12 

m the difference in δ
2
H was less than 1‰ (Table 4.3.3). 

 

Table 4.3: Change in the average depletion of Deuterium in water extracted from sap- and 

heartwood of Corymbia maculata. Water was extracted at different heights along the main stem. 

Standard deviations are shown in parenthesis. Raw data can be found in Appendix – Chapter 4; 

S 4.1 – 4.5. A Wilcoxon test (significance level of p ≤0.05) was used to assess differences between 

water extracted from both wood types.  

 

 

 

 

 

4.4 Discussion  

 

The absence of any isotopic enrichment of water in sapwood- and heartwood tissue 

of Corymbia maculata was unexpected. The pilot study clearly showed that irrigated 

heavy water was taken up by tree roots and could be located in trees. Previous 

studies have also shown that roots absorb heavy water and that the applied tracer can 

be tracked in ascending sap and also in water extracted from various types of tissues 

of different genera (e.g. Smart et al., 2005; Schoonmaker et al., 2007; Snyder and 

Williams, 2007; Zarebanadkouki et al., 2012). The tracer strength of 1300‰ applied 

in the present study has been used by other researchers and produced conclusive 

results (e.g. Brooks et al., 2002). In a recent study, even less than half the amount of 

2
H (600‰) was easily tracked (Schoonmaker et al., 2007). 

 

Tracer residence time in sapwood of mature gymnosperms and angiosperms is 

reported to depend on capacitance of sapwood and Js, and 
2
H was recovered in trees, 

days and even months after its application (Meinzer et al., 2006). The pilot study 

showed that in young saplings of Eucalyptus grandis 
2
H was clearly detectable four 

days after the irrigation with heavy water. The final irrigation treatment during the 

main study took place during the morning of the day prior to felling and although 

rates of transpiration during that day were high, which would have shortened the 

residence time, tracer should have been clearly identifiable in the tree.  

 

position sapwood  δ
2
H (‰) heartwood average δ

2
H  (‰) p 

all  -31.65 (±3.01) -29.40 (±1.71) 0.03 
base -33.85 (±2.10) -29.51 (±2.07) 0.01 

5 m -33.08 (±1.59) -29.58 (±1.14) 0.02 

8 m -30.15 (±4.50) -29.10 (±2.62) 0.77 

12 m -27.10 (±1.41) -28.00  - 
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The most parsimonious explanation for the absence of enrichment with 
2
H for water 

extracted from sap- and heartwood, is that surface roots at the eastern side of tree did 

not access soil water. This is puzzling, given that this side of the tree contained the 

widest sapwood and recorded the fastest Js. A possible explanation of the absence of 

2
H might be that all tree water was taken from depth and independent of surface 

water provided by rainfall or irrigation.  

 

Some tall trees can meet their water requirements by taking up water from deep in 

the soil profile or from acquifers (e.g. Dawson and Pate, 1996; Meinzer et al., 2001). 

Valentini et al. (1992) found that evergreen Mediterranean species rely largely on 

rainwater while deciduous species acquire most of their water almost exclusively 

from groundwater. Especially interesting are the results of Falkiner et al. (2006) that 

document a remarkable ability of Corymbia maculata roots to reach and use 

groundwater in ≈ 3m depth. However, even though the groundwater table at the 

sample site was relatively shallow (personal communication with the farm manager) 

and a water reservoir was in close proximity (Fig. 4.3), it is possible that the sampled 

tree did not take up water from these sources. Vertical „sinker‟ roots are common in 

Eucalyptus camaldulensis and other Australian genera (El-Lakany and Mohamed, 

1993; Dawson and Pate, 1996). Also, Acer species growing along streamsides were 

shown not to use stream water but water from deeper bedrock layers (Dawson and 

Ehleringer, 1991). Moreover, studies of Valentini et al. (1992) and Flakiner et al. 

(2006) both show that the dependency of trees on surface water declines with 

increasing age. It can therefore be speculated that the studied C. maculata 

exclusively acquired groundwater from deeper layers.  

Evaporation enriches δ
2
H in soil water towards the surface. Therefore δ

2
H is 

generally more negative and more similar to precipitation in deeper strata and ground 

water than in upper strata (Dawson, 1996). Former research used the difference in 

isotopic composition of soil- and groundwater to detect sources of tree water use 

(e.g. Dawson and Pate 1996). In addition to enrichment due to evaporation, variation 

in source water may be influenced by the isotopic composition of precipitation, 

which varies naturally with seasons (e.g. Dawson, 1996, Dawson and Pate 1996).  
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At the sample site in March, average δ
2
H values in precipitation range between -31 

and -24‰ (http://wateriso.utah.edu/waterisotopes; accessed: 23/10/2014). Most 

extracted xylem water samples were within or very close to this range (Table 4.3), an 

indication that water was not taken from the evaporative surface or upper soil strata. 

Soil water analysis out of different strata would have been beneficial for this 

experiment to confirm this assumption. More research into root systems of mature C. 

maculata is necessary to allow characterization of water sources utilized by this 

species. 

 

It remains difficult to accept that a daily dose of 200 L of highly enriched water was 

not sufficient to contaminate water in deeper soil layers and/or groundwater. 

Exclusive uptake of 100% water from groundwater appears questionable. Whatever 

the reason, the absence of the tracer in all water samples impeded the intended 

investigation of capacitance, including identification of tissues responsible for water 

storage.  

 

Further research is required to test Hypotheses 2, 3 and 4.  

 

The pilot study clearly confirmed the first hypothesis, showing that irrigation of roots 

with heavy water can be a useful technique to further study the movement of water 

within trees. This technique effectively reduces the risk of embolism in the hydraulic 

system that commonly accompanies other techniques.  

 

From the study of the mature tree, the following can be said. In heartwood, the 

abundance of δ
2
H was mostly greater compared to sapwood collected at the same 

height and increased with tree height. The abundance of δ
2
H in sapwood increased 

continuously from base of the stem to 12 m, after which it rapidly declined with 

additional height. Similar distribution patterns of δ
2
H were described after injecting 

2
H into stems of E. grandis (Kalma et al., 1998). Kalma et al. noted the greatest 

enrichment mid-canopy, and found that δ
2
H decreased with path length below and 

above this point. They were, however, unable to offer an explanation for the 

observed patterns.  
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With increasing tree height in the C. maculata investigated here, δ
2
H in water 

extracted from sapwood and heartwood continually converged until being relatively 

equal at 12 m height. Above 12 m the main stem and all investigated branches did 

not contain heartwood. The observed pattern could be interpreted as evidence of an 

increased exchange rate of water between sapwood and heartwood with decreasing 

dimension of the heartwood body – an age related function may explain the 

enrichment of 
2
H in water stored in heartwood. Future research might address this 

hypothesis in greater detail.  

Differences in average abundance of δ
2
H in water extracted from sap- and heartwood 

samples of the main stem were at most ± 5‰. With respect to the relative 

homogeneity of values over the entire path length (see Appendix – Chapter 4; Table 

S4.1 – 4.5) it remains uncertain whether or not observed patterns are a systematic 

trend, natural variation or caused by slight inconsistencies in measurement 

procedures. It has been shown that minor differences in δ
2
H in water extracted from 

Eucalyptus wood can originate from incomplete water extraction (Thorburn et al., 

1993). Once more, these questions have to be addressed by additional studies. 

 

Not surprisingly, sap flow (Q) of C. maculata was strongly driven by VPD. During 

the experiment the tree used around 450 liters of water per day. This seems rather 

high when compared to reports of water use in other eucalypt species of similar size 

(e.g. Zeppel and Eamus, 2008; Pfautsch et al., 2010) but have been shown to exist in 

very tall E. regnans (Vertessy et al., 1997) and other genera such as for instance 

Anacardium excelsum, Eperua purpurea or Ocotea spp. (Wullschleger et al., 1998). 

Overall, high Q of this solitaire C. maculata can be the result of access to sufficient 

water sources and the large leaf area of the fully developed large crown. Water flux 

varied with both, cardinal direction sapwood depth, a phenomenon that has been 

described for gymnosperm and angiosperm species regularly (e.g. Jimenez et al., 

2000; James et al., 2003; Cermak et al., 2004; Delzon et al., 2004). Most studies 

attribute the reduction of Js towards the sapwood-heartwood boundary to increasing 

loss of sapwood conductivity as a result of formation of tylosis or the fact that inner 

sapwood is supplying the lower and older branches of trees with water. Usually these 

branches have low rates of transpiration due to shading and other factors like leaf 

age. Other influential factors can be irregularities in the wood structure, caused by 

branching or mechanical injury to branches, stem or roots and even variation in sap 
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viscosity due to different rates of bark and stem heating by the sun (e.g. Hudler and 

Beale, 1981; Roderick and Berry, 2001; Arbellay et al., 2012).  

 

Taken together, the study proved that irrigation of heavy water is a valuable 

technique to study the movement of water in intact trees. Unfortunately the efforts to 

use this technique to study the water movement in a tall, evergreen tree did not yield 

any meaningful results. The interpretation of results is therefore limited. An analysis 

of the isotopic composition of soil- and groundwater in combination with xylem 

water may be necessary to establish which water sources trees access. This approach 

has been successfully used in the past (e.g. Dawson and Ehleringer, 1991; Kulmatiski 

et al., 2010) and would ideally be accomplished prior to irrigation of tree roots with 

heavy water.  

 

Chapter 5 – Synthesis  

 

The genus Eucalyptus dominates many terrestrial ecosystems in Australia. Unlike 

tree genera of similar latitudes in the northern hemisphere, the long uninterrupted 

process of speciation has seen members of the genus adapt to a wide range of 

climatic conditions. Today ~800 species are taxonomically described and these are 

botanically subdivided into 13 subgenera. Many examples species display a high 

degree of endemism. 

 

The Australian continent spans six Koeppen climate zones. Clear gradients of tree 

height can be observed across the continent.  Mature eucalypts no more than 6-10 m 

in height are the dominant stratum in parts of the arid center, while others that 

potentially reach more than 100 m can dominate humid regions in the southeast 

(Nevill et al., 2010). Eucalypts grow in all biomes from deserts to sub-alpine and 

have adapted to very dry, very hot and even sub-zero conditions.  Eucalyptus spp. are 

major components of, or dominate, closed or open forests, woodlands and savannas 

(e.g. Specht 1970).  They also grow as solitary trees. They cope with floods, cyclones 

and fire. The enormous diversity of species makes the genus an ideal candidate to 

study how evolution and adaptation manifest in tree form and function, including 

vessel anatomy and whole-tree hydraulic architecture. The current study was 

designed with this background. 
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In recent decades, structural traits and water transport in sapwood of trees have been 

intensively studied. The research in this thesis provides a deeper understanding of the 

structural attributes of the water transport system within the genus Eucalyptus (e.g. 

Schiller and Cohen, 1995; Loustau et al., 1996; Wullschleger et al., 1998).  It also 

illustrates the inter-connectedness of the factors that influence tree water use. The 

work described here sits at the intersection of studies describing the dependency of 

tree water use on stand structure and environmental conditions (e.g. Pfautsch et al., 

2010; Kozlowski, 2012), and those that have investigated relationships among xylem 

and traits like leaf mass, tree height and gross wood structure as guides to the safety 

and efficiency of water transport in trees (Ryan and Yoder, 1997; Tyree and 

Zimmermann, 2002).  

 

The term „hydraulic architecture‟ was coined in the late 1970‟s by M.H. 

Zimmermann and encases the theoretical and empirical assessment of plant tissues 

that conduct water from roots to leaves (Cruiziat et al., 2002). Hydraulic architecture 

comprises a multitude of single components connected in series, starting at the 

stomatal pore, through the xylem in leaves, petioles, twigs, branches, stems and 

down into the roots.  

 

Chapter 1 of this thesis summarized how the gradient in water potential between the 

soil and the atmosphere drives the passive conductance of water throughout this 

network of conduits. It is the complex interaction of individual components (i.e. 

vessels, pit membranes, stomata) and their characteristics (i.e. width, abundance and 

pore size, conductivity) that ultimately determine the „safety and efficiency‟ of the 

entire conduit system. 

  

Density of sapwood, as well as size and abundance of xylem vessels, respond to 

environmental cues (e.g. Sass and Eckstein, 1995; Wiemann and Williamson, 2002; 

Fonti and García-González, 2008). Commonly, small trees growing in xeric 

environments have more dense sapwood with relatively small vessels, when 

compared to trees from mesic environments that are much taller, have lower 

sapwood density and wider vessels (e.g. Chave et al., 2009; Campelo et al., 2010). 

Furthermore, vessel density is closely linked to vessel diameter - trees with wide 
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vessels have fewer vessels (per unit sapwood area) compared to trees that form more 

narrow vessels. These trends have been observed on a global scale and for a wide 

variety of genera (e.g. Preston et al., 2006; Sperry et al., 2008; Chave et al., 2009).  

Data reported here suggests these global patterns also apply to Eucalyptus (Chapter 2 

and 3). The prior absence of a significant data set for eucalypts has been at least 

partly corrected. 

 

Fine adjustment of plant hydraulic architecture to site conditions is critical if 

conductance of water is to be optimized without compromising safety. By far the 

majority of Eucalyptus spp. must cope with drought, either seasonally or long-term.  

That they do so without catastrophic cavitation (Sperry et al., 2008; see Chapter 1) 

speaks strongly to the processes of evolution and adaptation. Even so, most studies of 

hydraulic safety and efficiency have concentrated only on the basal section of the 

tree stem (e.g. Sass and Eckstein, 1995; Fonti and García-González, 2008; Campelo 

et al., 2010). The novel data recorded here, by studying entire tree stems, highlight 

that the tapering of vessels (reductions in diameter) throughout trees is influenced by 

environmental conditions and does not follow the previously suggested universal 

pattern – rates of taper varied strongly over the length of the stem, from effectively 

zero taper over long lengths, to rapid tapering within tree crowns.   

 

Conductivity of vessels depends largely on their diameter (Eqn. 6) and the degree of 

vessel tapering along the entire path length in stems contributes greatly to 

overcoming hydraulic resistances to water transport that compound with height. It 

remains surprising how few studies have investigated tapering (e.g. Anfodillo et al., 

2006; Petit et al., 2010; Petit and Anfodillo, 2011). Reasons for this lack of data and 

knowledge clearly include the large workload and costs of such studies. Due to the 

limited availability of empirical data, tapering as integral aspect of hydraulic 

architecture, and systematic changes within this trait due to growth conditions, has 

only been described at the genus level just once – here.  

 

When compared to the available literature, the results presented in Chapter 2 of this 

thesis represent the most comprehensive analysis of vessel tapering yet conducted. 

This analysis is based on 12 Eucalyptus spp. that grow along a pronounced gradient 

of temperature and rainfall in southern and southeastern Australia. A total of 36 trees 
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were felled and sapwood was systematically extracted from the apical region to the 

base. This resulted in 1,254 individual samples, which produced 3,762 digital 

images. Using these images allowed measurements of more than 154,000 individual 

vessels.  

 

It is important to highlight here that analysis of these vessels provides unequivocal 

evidence that hydraulic architecture, and specifically the tapering of vessels in 

Eucalyptus spp. do not comply with the supposed „universal trends‟ predicted by 

metabolic MST). While MST scaling theory (represents an intentionally simplified 

mathematical framework that allows modeling of highly complex patterns of water 

transport and tree growth, applying its predictions to Eucalyptus would lead to strong 

overestimation of vessel densities for any given vessel size. Furthermore, vessel 

tapering in Eucalyptus is not homogenous. Vessels do not taper at all over 

considerable lengths of stems. 

 

The development of a new approach (Three Phase Taper Analysis), that helps assess 

how varying rates of taper in the apical region of stems relate to dominant 

environmental conditions, is a major step forward in understanding hydraulic 

architecture in the context of evolution. This approach provides straightforward 

quantification of tapering, and reveals that, rather than follow a universal rule, 

tapering varies with both environment and tree height. Xylem vessels taper almost 

continuously throughout the stem in short trees growing in arid environments. In 

contrast, in tall trees from humid environments, vessels only taper much closer to the 

tree apex and vary little in diameter throughout much of the stem.  This allows for 

efficient upwards conduction of large quantities of water in tall trees. These results 

underscore the need for a detailed understanding of vessel tapering, including its 

sensitivity to environment, and its influence on water use efficiency.  Without such 

knowledge, predicting vulnerability and resilience of forests to changes in climate, 

particularly increasing frequency of drought and heatwaves, will be poorly based and 

likely inaccurate. Candidate species of future research may include other major 

Australian genera such as Acacia, Callitris, and Nothofagus but just as importantly 

we lack such knowledge for genera from the northern hemisphere like Pinus, Acer 

and Quercus.  

 



 

   152 
  

This important finding immediately opens the door to many interesting questions 

about the development of vessel networks. How does tapering develop while trees 

grow and age? Does this development differ among species according to 

environmental conditions? Does the tapering structure in widespread species change 

at the provenance level?  

 

Species such as Eucalyptus tereticornis and E. camaldulensis would seem ideal 

candidates as they grow under vastly different climatic conditions. Answering these 

questions is essential for developing models that are not only of interest to 

evolutionary ecologists and tree physiologists, but also to forest industry and land 

management agencies that all seek a better understanding of how trees will grow in 

future, how much water will come from forested catchments, and which species will 

be more/less vulnerable to changing climates.  

 

It will remain technically challenging to answer such questions if data is only 

collected in the field. The early stages of xylogenesis and its response to a range of 

environmental conditions are extraordinarily difficult to study under field conditions. 

Here, glasshouse experiments, where conditions can be tightly controlled, represent a 

good solution. In the case of eucalypts such studies have shown that early 

xylogenesis appears to be highly responsive to water and temperature regimes (e.g. 

Thomas et al., 2004; 2007). The glasshouse experiment described in Chapter 3 was 

designed to test if interspecific differences in early xylogenesis could be attributed to 

prevailing environmental conditions for a given species, and also if availability of N 

– a critical soil resource that is predicted to increase – would affect that process.  

 

There is broad consensus that under conditions of sufficient soil moisture and 

increased temperatures, soil microbial activity will increase which in turn will 

increase mineralization of N and nitrification, and hence the amount of N available 

for plants (Murdoch et al., 1998; Leirós et al., 1999; IPCC, 2007; Castro et al., 2010; 

Bradbury and Firestone, 2012; Schaeffer et al., 2013). To date, there are only a few 

studies of effects of increased N on development of vessel networks in seedlings. 

Even among these few, some studies suggest additional N will change conduit traits 

and wood density in angiosperms and gymnosperms (e.g. Harvey and van den 

Driessche, 1999; Beets et al., 2001), while others suggest there will be no such 
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change (Clearwater and Meinzer, 2001). Chapter 3 supports the contention that 

xylem development is strongly genetically controlled.  Notwithstanding this clear 

statement, Chapter 3 does provide some evidence that xylogenesis responds to 

environmental conditions. Of the tested conditions, limiting the availability of water 

had the strongest effect, followed by temperature. While provision of additional N 

slightly increased plant biomass, it did not affect vessel structure in either of the two 

tested species.  Studies over longer periods are required to confirm if observed trends 

in vessel traits develop into significant differences, both within and between species. 

Additional measurements of stomatal conductance and photosynthetic activity would 

help interpret how increasing availability of N affects physiological functioning as 

well as the development of the water transporting system in E. melliodora and E. 

grandis.  

 

In similar fashion, quantification of capacitance in mature trees, using the approach 

attempted here (i.e. using heavy water as a tracer), offers insights to structure and 

function. Numerous studies have shown that trees access stored water to support 

transpiration under conditions of increasingly negative water potentials in the xylem 

(e.g. Stratton et al., 2000; Domec and Gartner, 2001; Domec et al., 2005; Chapotin et 

al., 2006; Čermák et al., 2007). Pfautsch et al. (2012) reported moisture contents 

greater than 30% (fiber saturation point) in heartwood of a range of Eucalyptus 

species.  According to Berry and Roderick (2005), any water present in tissues above 

the fiber saturation point, should be available for transpiration. It seems highly likely 

that eucalypts utilize moisture stored in heartwood. Pfautsch et al. (2012) highlight 

questions, not only about water storage locations in stems, but also about radial and 

tangential transport pathways for water, and their implications for water stress and 

the refill of embolised vessels. While the pilot study outlined in Chapter 4 (and other 

studies; e.g. Meinzer et al., 2006) has shown that deuterated water can successfully 

be used to track the pathway of water in trees, the main experiment of Chapter 4 

failed. The approach of using deuterated water to trace capacitance in trees, including 

heartwood clearly deserves to be repeated. Repeat efforts should include detailed 

analysis of the isotopic composition of soil- and groundwater in combination with 

xylem water, in order to establish water sources used by target species (e.g. Dawson 

and Ehleringer, 1991; Kulmatiski et al., 2010). 
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Finally, it is worth recording a few words about future research in hydraulic anatomy 

of plants. Recent technological advances provide the means for studies of wood 

anatomy in unprecedented detail. In contrast to classic histology, a range of 

alternative methods require comparably little effort for sample preparation- and 

analysis. Examples include X-ray computed micro-tomography (microCT) (Steppe et 

al. 2004), confocal laser scanning microscopy (Kittin et al. 2003) and nuclear 

magnetic resonance imaging (Köckenberger, 2001; Jansen et al., 2008). In the 

present research, several new technologies were tested at the Center for Microscopy 

and Microanalysis at the University of Sydney, Australia.  In particular, their 

potential for visualizing vessel architecture, interconnectivity of vessels, and 

reconstruction of vessel networks. Although these trials were not further used in this 

thesis, a selection of products is a worthwhile means of documenting the potential of 

these technologies when investigating hydraulic architecture in Eucalyptus and other 

tree species. 

 

For example, microCT appears is a non-invasive method for imaging vessel 

structures and can be used to reconstruct scanned objects in three-dimensional space 

(Milien et al., 2012). Originally developed as a medical diagnostic tool in the 1970s 

microCT was first used for plant anatomical research in the late 1990s (Pierret et al., 

1999; Milien et al., 2012). To date this technology has been used to detect annual 

growth units and to locate branch knots in Picea abies (Longuetaud et al., 2005), to 

measure vessel diameters and compared results with those derived using classic 

histological methods (Steppe et al., 2004), or to create three-dimensional models of 

xylem vessels in Vitis vinifera (Brodersen et al., 2011, 2013). A combination of 

scanning electron microscopy (SEM) and microCT can provide new insights into 

hydraulic architecture that cannot be achieved by histological approaches alone (see 

Borderson et al., 2013; McElrone et al., 2013). New methods, however, will not 

replace classical histology, because size of specimens is limited by the capacity of 

the tomographic chamber and hence is restricted to short branch sections or wood 

cubes. These restrictions may be overcome in the future and entire vessel networks 

within plants, ultimately including tall trees, could be studied within the living 

organism at high resolution.  
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Figure 5.1: Scanning electron micrograph of sapwood in Eucalyptus delegatensis (A) and E. 

viminalis (B). Both images depict individual vessel elements (a) and the banded occurrence of 

bordered pits inside the vessel element (b) in the region of uniseriate ray parenchyma (c). Scale 

of each image is shown as dotted line at the lower right corner. 
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Figure 5.2: Three-dimensional reconstruction of an apical shoot (2.2 cm total length) of 

Eucalyptus victrix using microCT (Skyscan Model 1072; SkyScan, Antwerp, Belgium) at 3 µm 

increment resolution. The left image (A) illustrates the central pith, sapwood and bark at the cut 

surface. The right image (B) displays all xylem vessels with surrounding wood tissue removed by 

ScyScan internal tomographic reconstruction software.   

 

 

Figure 5.3: Three-dimensional reconstruction of xylem vessels in sapwood of an apical shoot in 

Eucalyptus victrix. The image was produced by „virtual stripping‟ of woody tissue from the 

three-dimensional model produced using microCT, visualizing only void spaces. A customised, 

unpublished “Virtual Soil software” was used for this process. 
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Major conclusions:  

1. Xylogenesis of Eucalyptus ssp. reacts on site-specific climate variables in the same 

way as reported for many other genera.   

 

2. When put into the mathematical framework of metabolic scaling, Eucalyptus ssp. fit 

assumptions of optimal vessel tapering as suggested by Savage et al. (2010).  

 

3. Tapering structure of vessel networks in Eucalyptus spp. are not linear and current 

modelling approaches should be refined to allow assessment of how environmental 

drivers impact the degree of tapering at relative path lengths of stems (i.e. zero vs. 

rapid narrowing of vessels).  

 

4. A glass house experiment suggested that water availability is the most important 

factor influencing xylogenesis.   
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Eucalyptus regnans  

  

 

Figure S2.1: Habitus of Eucalyptus regnans. Image illustrates one of three sampled trees.   

 

 
Figure S2.2: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals. Coefficient of determination for linear regression (y = 0.01x + 1.56) is shown in figure.  
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Tree 1  

 

 
Figure S2.3: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 61.43x + 19.17) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 8.82x + 62.32) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.04x + 182.99) indicate Phase 

1 (no clear vessel taper structure). 

 

Figure S2.4: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression 

(y = -0.28x - 4.08), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.5: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 15.26*x0.33), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Tree 2  

 
Figure S2.6: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 63.36x + 17.05) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 5.89x + 65.18) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.32x + 162.40) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.7: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.32x - 3.83), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.8: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.77*x0.34), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Tree 3  

 
Figure S2.9: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 63.43x + 17.43) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 4.52x + 68.84) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.26x + 198.63) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.10: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.46x - 3.56), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.11: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 11.75*x0.37), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Eucalyptus pauciflora 

 

 

Figure S2.12: Habitus of Eucalyptus pauciflora. Image illustrates one of three sampled trees.   

 

 
Figure S2.13: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals.  Coefficient of determination for linear regression (y = 0.04x - 1.14) is shown in figure. 
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Figure S2.14: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y =11.43x + 20.79) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.16x + 56.69) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.24x + 134.39) indicate 

Phase 1 (no clear vessel taper structure).  

 
Figure S2.15: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.18x - 4.04), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.16: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 17.52*x0.29), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Tree 2 

 
Figure S2.17: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y =10.55x + 13.58) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.78x + 48.39) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.21x + 111.35) indicate Phase 

1 (no clear vessel taper structure).  

 
Figure S2.18: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.62x - 3.10), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.19: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 10.64*x0.39), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.20: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y =11.65x + 21.09) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.18x + 63.42) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.45x + 169.24) indicate 

Phase 1 (no clear vessel taper structure).  

 
Figure S2.21: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.41x - 3.46), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.22: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 17.43*x0.30), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Eucalyptus viminalis  

 

 

Figure S2.23: Habitus of Eucalyptus viminalis. Image illustrates one of three sampled trees.   

 

 
Figure S2.24: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals.  Coefficient of determination for linear regression (y = 0.01x + 1.27) is shown in 

figure. 
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Figure S2.25: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 40.87x + 20.69) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 7.46x + 67.26) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.47x + 253.22) indicate 

Phase 1 (no clear vessel taper structure). 

 

 

Figure S2.26: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.58x - 3.49), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.27: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 12.38*x0.38), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.28: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 31.50x + 24.59) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 7.22x + 79.09) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.12x + 216.83) indicate Phase 

1 (no clear vessel taper structure). 

 

  
Figure S2.29: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.57x - 3.54), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.30: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.78*x0.37), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.31: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 41.38x + 19.16) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 5.31x + 92.28) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.10x + 152.29) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.32: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -3.65x - 0.51), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.33: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 14.45*x0.37), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Eucalyptus delegatensis  

 

 

Figure S2.34: Habitus of Eucalyptus delegatensis. Image illustrates one of three sampled trees.   

 

 
Figure S2.35: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals. Coefficient of determination for linear regression (y = 0.01x + 1.27) is shown in figure.  
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Figure S2.36: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 37.63x + 21.60) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 8.71x + 48.06) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.39x + 160.00) indicate Phase 

1 (no clear vessel taper structure). 

 

Figure S2.37: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.37x - 2.93), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.38: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.63*x0.34), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.39: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 46.63x + 16.41) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 4.58x + 82.32) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.58x + 166.13) indicate Phase 

1 (no clear vessel taper structure). 

 

Figure S2.40: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.42x - 2.89), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.41: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.34*x0.35), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.42: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 57.15x + 16.74) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 4.53x + 74.15) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.15x + 219.12) indicate 

Phase 1 (no clear vessel taper structure). 

 

Figure S2.43: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.40x - 2.95), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.44: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.69*x0.35), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Eucalyptus obliqua   

 

 

Figure S2.45: Habitus of Eucalyptus obliqua. Image illustrates one of three sampled trees.   

 

 
Figure S2.46: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals. Coefficient of determination for linear regression (y = 0.02x - 0.33) is shown in figure.  
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Figure S2.47: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 0.04x + 221.69) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 5.01x + 81.08) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 31.67x + 14.97) indicate Phase 

1 (no clear vessel taper structure).  

 
Figure S2.48: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.75x - 3.11), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.49: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 10.11*x0.42), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.50: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 17.46x + 21.02) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 3.83x + 67.22) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.34x + 139.67) indicate Phase 

1 (no clear vessel taper structure).  

 

Figure S2.51: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.51x - 3.31), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.52: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 11.17*x0.37), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and Coefficient of determination are shown in graph.  
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Figure S2.53: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 20.19x + 25.15) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 5.93x + 59.14) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.54x + 143.47) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.54: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.35x - 3.85), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.55: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.67*x0.35), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.56: Habitus of Eucalyptus melliodora. Image illustrates one of three sampled trees.  

 

 
Figure S2.57: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals.  Coefficient of determination for linear regression (y = 0.02x - 0.09) is shown in figure.  
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Figure S2.58: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 9.49x + 26.55) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 2.32x + 71.60) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.32x + 141.57) indicate 

Phase 1 (no clear vessel taper structure). 

  
Figure S2.59: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.44x - 2.94), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.60: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.71*x0.36), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   XL 
  

Tree 2 
 

 

Figure S2.61: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 11.41x + 27.05) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 0.25x + 117.43) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.17x + 132.98) indicate Phase 

1 (no clear vessel taper structure).  

 
Figure S2.62: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.28x - 3.31), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.63: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 17.03*x0.32), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.64: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 10.89x + 19.48) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 2.73x + 60.84) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.07x + 153.18) indicate 

Phase 1 (no clear vessel taper structure).  

 

Figure S2.65: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.54x - 2.55), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.66: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 10.99*x0.38), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.67: Habitus of Eucalyptus baxteri. Image illustrates one of three sampled trees.   

 

 

 
Figure S2.68: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals. Coefficient of determination for linear regression (y = 0.03x -1) is shown in figure. 
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Figure S2.69: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 12.15x + 22.08) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 2.97x + 57.25) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.31x + 181.56) indicate 

Phase 1 (no clear vessel taper structure). 

 
Figure S2.70: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.47x – 2.91), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.71: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 13.50*x0.37), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.72: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 14.42x + 24.80) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 4.24x + 46.07) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.31x + 181.56) indicate Phase 

1 (no clear vessel taper structure). 

 

Figure S2.73: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analysed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.39x – 3.23), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.74: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 16.23*x0.35), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.75: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 18.70x + 19.25) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 2.38x + 71.81) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.56x + 113.10) indicate Phase 

1 (no clear vessel taper structure). 

 

Figure S2.76: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analysed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -1.31x – 3.40), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.77: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 17.90*x0.33), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.78: Habitus of Eucalyptus microcarpa. Image illustrates one of three sampled trees.   

 

 
Figure S2.79: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals. Coefficient of determination for linear regression (y = 0.02x + 0.76) is shown in figure.  
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Figure S2.80: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 6.35x + 21.29) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 0.80x + 73.86) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.06x + 124.33) indicate 

Phase 1 (no clear vessel taper structure). 

 

Figure S2.81: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.47x - 3.16), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.82: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 9.81*x0.37), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.83: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 8.24x + 0.93) indicate Phase 3 (steep vessel taper structure); blue box, blue 

percentage value and blue coefficient of determination (y = 2.15x + 50.19) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.55x + 88.29) indicate Phase 

1 (no clear vessel taper structure). 

  
Figure S2.84: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.21x - 3.91), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.85: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 15.03*x0.30), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.86: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 13.51x + 26.60) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.72x + 63.01) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.49x + 91.47) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.87: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured values 

and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.12x - 4.27), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.88: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 19.34*x0.27), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.89: Habitus of Eucalyptus polyanthemos. Image illustrates one of three sampled trees.   

 

 
Figure S2.90: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals.  Coefficient of determination for linear regression (y = 0.02x - 0.44) is shown in figure.  
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Figure S2.91: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y =7.30x + 26.36) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 2.13x + 49.96) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.29x + 157.04) indicate 

Phase 1 (no clear vessel taper structure).  

  
Figure S2.92: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.40x - 3.57), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.93: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 12.91*x0.35), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.94: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 8.94x + 32.61) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.74x + 60.53) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.05x + 147.54) indicate 

Phase 1 (no clear vessel taper structure).  

 
Figure S2.95: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.15x - 4.42), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.96: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 19.64*x0.30), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Figure S2.97: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) with 

inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 14.67x + 19.65) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 2.56x + 55.39) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.16x + 159.24) indicate 

Phase 1 (no clear vessel taper structure).  

 
Figure S2.98: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.34x - 3.98), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.99: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log scaled 

graph, where the solid line indicates the power function (y = 14.95*x0.35), long-dashed lines indicate 95% 

confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph.  
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Eucalyptus gracilis 

 

 
Figure S2.100: Habitus of Eucalyptus gracilis. Image illustrates one of three sampled trees.  

 

 
Figure S2.101: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals.  Coefficients of determination for linear regression (y = 0.03x - 1) is shown in figure.  
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Figure S2.102: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 6.58x + 16.06) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 0.28x + 48.36) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.08x + 57.04) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.103: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression 

(y = -0.11x - 3.32), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.104: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 15.42*x0.22), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Tree 2 

 
Figure S2.105: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 6.25x + 11.69) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.87x + 32.90) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.06x + 96.57) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.106: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.67x - 2.52), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.107: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 9.04*x0.38), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Figure S2.108: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 4.04x + 26.55) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 0.68x + 39.47) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.08x + 67.96) indicate Phase 

1 (no clear vessel taper structure). 

 

Figure S2.109: Change of vessel densities (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.50x - 2.80), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.110: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 11.83*x0.31), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Eucalyptus socialis 

 

 

S 2.111: Habitus of Eucalyptus socialis. Image illustrates one of three sampled trees.   

  

 
Figure S2.112: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals.  Coefficient of determination for linear regression (y = 0.02x - 0.62) is shown in figure.  
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Figure S2.113: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 3.09x + 24.33) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 3.29x + 19.45) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.24x + 113.70) indicate 

Phase 1 (no clear vessel taper structure). 

 

Figure S2.114: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.44x - 3.18), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.115: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 12.20*x0.33), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Figure S2.116: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 4.40x + 18.56) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 0.84x + 52.82) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = -0.16x + 100.99) indicate 

Phase 1 (no clear vessel taper structure). 

 
Figure S2.117: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.38x - 3.42), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.118: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 12.08*x0.34), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Figure S2.119: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 4.19x + 20.75) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.69x + 39.62) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.15x + 95.12) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.120: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.62x - 2.78), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.121: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 10.59*x0.36), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Eucalyptus victrix 

 

 
Figure S2.122: Habitus of Eucalyptus victrix. Image illustrates one of three sampled trees.   

 

 
Figure S2.123: Stem and branch diameters measured at sample spots along tree main axes of all three 

sampled individuals.  Coefficient of determination for linear regression (y = 0.02x - 0.21) is shown in figure.  
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Figure S2.124: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 7.73x + 26.16) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.81x + 83.98) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.14x + 151.35) indicate Phase 

1 (no clear vessel taper structure). 

 

Figure S2.125: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.71x - 3.41), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.126: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 11.52*x0.40), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Figure S2.127: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 9.24x + 31.94) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 0.89x + 106.01) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.19x + 141.90) indicate Phase 

1 (no clear vessel taper structure). 

  
Figure S2.128: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression  

(y = -0.59x - 3.82), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.129: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 16.71*x0.33), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Figure S2.130: Three Phase Taper Analysis (TPTA) of changing hydraulically weighted diameters (Dh) 

with inverse tree height. Black dots illustrate measured values and are averages of three analysed images. 

Circles are calculated medians in-between two measured values. They were not part of linear regression 

analyses and they do express relative tree heights of phase changes. Red box, red percentage value and red 

coefficient of determination (y = 6.29x + 38.90) indicate Phase 3 (steep vessel taper structure); blue box, 

blue percentage value and blue coefficient of determination (y = 1.65x + 92.28) indicate Phase 2 (moderate 

vessel taper structure); black box and black coefficient of determination (y = 0.10x + 152.29) indicate Phase 

1 (no clear vessel taper structure). 

 
Figure S2.131: Change of vessel density (VD) with inverse tree height. Black dots illustrate measured 

values and are averages of three analyzed images. Inserted panel illustrates total hydraulic resistance (Rtot) 

plotted against inverse tree height in a log–log scaled graph, where solid line indicates linear regression 

(y = -0.52x - 4.03), long dashed lines indicate 95% confidence intervals, and short dashed lines indicate 

95% prediction intervals. Coefficient of determination is shown in figure. 
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Figure S2.132: Hydraulically weighted diameters (Dh) plotted against inverse tree height in a log–log 

scaled graph, where the solid line indicates the power function (y = 18.66*x0.32), long-dashed lines indicate 

95% confidence intervals and short-dashed lines indicate 95% prediction intervals. Black dots illustrate 

measured values and are averages of three analysed images. The degree of tapering (tapering exponent; 

T.E.) and coefficient of determination are shown in graph. 
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Customized script written with the statistical software package “R” 
 

Script S2.97: Customized script written with the statistical software package “R” (Version 2.15.1, R 

Foundation for Statistical Computing, Austria) which was used for calculations of a) averages of vessel 

traits measured in three analyzed images per sample and b) hydraulic properties of vessel traits.   

 

##### START READ AND CALCULATE PARAMETERS SCRIPT 

 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.delegatensis\\tree1\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.delegatensis\\tree2\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.delegatensis\\tree3\\reports") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.microcarpa\\tree1\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.microcarpa\\tree2\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.microcarpa\\tree3\\reports") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.regnans\\tree1\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.regnans\\tree2\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.regnans\\tree3\\reports") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.socialis\\tree1\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.socialis\\tree2\\reports") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.socialis\\tree3\\reports") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.baxteri\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.baxteri\\tree2") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.baxteri\\tree3") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.pauciflora\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.pauciflora\\tree2") 



 

   LXXXVII 
  

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.pauciflora\\tree3") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.gracilis\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.gracilis\\tree2") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.gracilis\\tree3") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.polyanthemos\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.polyanthemos\\tree2") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.polyanthemos\\tree3") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.meliodora\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.meliodora\\tree2") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.meliodora\\tree3") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.obliqua\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.obliqua\\tree2") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.obliqua\\tree3") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.victrix\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.victrix\\tree2") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.victrix\\tree3") 

 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.viminalis\\tree1") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.viminalis\\tree2") 

#setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.viminalis\\tree3") 

 

DIR <- dir() 

DIR <- na.omit(gsub("Thumbs.db", NA, DIR)) 

 

library(gtools) 

library(gdata) 



 

   LXXXVIII 
  

 

## Extract the view area of microscope 

 

view_area <- list() 

 

for(i in 1:length(DIR)){ 

                #i=33 

                sheet2 <- read.xls(DIR[i],sheet="Analysis Report", perl = 

"C:\\strawberry\\perl\\bin\\perl.exe") 

                view_area[[i]] <- data.frame(species_name = as.vector(sheet2[3,4]), 

view_area = as.numeric(as.vector(sheet2[5,7]))) 

} 

 

## Extract xylem area 

Xylem_Area <- list() 

 

for(i in 1:length(DIR)){ 

                #i=43 

                sheet1 <- read.xls(DIR[i], pattern = "Number",sheet="Feature Details", 

perl = "C:\\strawberry\\perl\\bin\\perl.exe") 

                names(sheet1) 

                temp <- sheet1$Area.µm². ## Extract appropriate column 

                temp1 <- as.numeric(as.vector(unlist(temp))) 

                 

                foo <- function( x ){ 

                                idx <- 1 + cumsum( is.na( x ) ) 

                                not.na <- ! is.na( x ) 

                                split( x[not.na], idx[not.na] ) 

 

                } 

 

                Data <- as.vector(foo(temp1)[[1]])  

                ## isolate species name 

                Sp1 <- sheet1$Images 

                Sp2 <- gregexpr("_pic",Sp1)[[1]][1]-1 

                Sp3 <- substr(Sp1, 1, Sp2) 

                Species_Name <- rep(Sp3[1], times=NROW(Data)) 

                 

                ## Create final data frame 

                Xylem_Area[[i]] <- data.frame(Species = as.character(Species_Name), 

Xylem_Area = Data, 

                Xylem_Diameter = sqrt(Data/pi)*2) 

                 

} 

 

## Calculate vessel fraction 

Xylem_Area2 <- Xylem_Area 

for(i in 1:length(Xylem_Area2)){ 

                Xylem_Area2[[i]]$Vessel_fraction <- 

as.vector(unlist(Xylem_Area[[i]][2])/unlist(view_area[[i]][2])) 
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                Xylem_Area2[[i]]$D5 <- Xylem_Area2[[i]]$Xylem_Diameter^5 

                Xylem_Area2[[i]]$D4 <- Xylem_Area2[[i]]$Xylem_Diameter^4   

} 

 

vessel_number <- list() 

void_to_wood <- list() 

for(i in 1:length(Xylem_Area2)){ 

                vessel_number[[i]] <- 

as.vector(nrow(Xylem_Area[[i]][2])/unlist(view_area[[i]][2]))*100000000 

                void_to_wood[[i]] <- 

as.vector(sum(Xylem_Area[[i]][2])/unlist(view_area[[i]][2]))*100 

} 

 

species_name2 <- do.call(rbind, view_area)[,1] 

species_name4 <- vector() 

for(i in 1:length(species_name2)){ 

                #i=43 

                species_name3 <- gregexpr("_pic",species_name2[i])[[1]][1]-1 

                species_name4[i] <- substr(species_name2[i], 1, species_name3)  

} 

species_name5 <- unique(species_name4) 

## Start constructing the final data frame 

Final_Data <- as.data.frame(do.call(rbind,strsplit(as.character(species_name5), "_"))) 

colnames(Final_Data) <- c("species", "tree_number", "sample_height") ## add or 

remove "tree type" after "species" for E.victrix 

 

## make heigh numeric 

Final_Data$sample_height <- 

read.table(textConnection(as.character(Final_Data$sample_height)), sep = "c")[,1]  

 

Xylem_Area3 <- do.call(rbind, Xylem_Area2)  

 

Final_Data$avg_diameter <- tapply(Xylem_Area3$Xylem_Diameter, 

Xylem_Area3$Species, mean) 

Final_Data$sd_diameter <- tapply(Xylem_Area3$Xylem_Diameter, 

Xylem_Area3$Species, sd) 

Final_Data$var_diameter <- tapply(Xylem_Area3$Xylem_Diameter, 

Xylem_Area3$Species, var) 

Final_Data$min_diameter <- tapply(Xylem_Area3$Xylem_Diameter, 

Xylem_Area3$Species, min) 

Final_Data$max_diameter <- tapply(Xylem_Area3$Xylem_Diameter, 

Xylem_Area3$Species, max) 

Final_Data$Dh <- tapply(Xylem_Area3$D5, Xylem_Area3$Species, 

sum)/tapply(Xylem_Area3$D4, Xylem_Area3$Species, sum) 

 

## Average vessel number per cm2 

vessel_number2 <- data.frame(species = species_name4, vessel_cm = 

unlist(vessel_number)) 

Final_Data$avg_vessel_number_cm2 <- tapply(vessel_number2$vessel_cm, 

vessel_number2$species, mean) 
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## void to wood ratio 

void_to_wood2 <- data.frame(species = species_name4, void_to_wood = 

unlist(void_to_wood)) 

Final_Data$void_to_wood <- tapply(void_to_wood2$void_to_wood, 

void_to_wood2$species, mean) ## need to check this calculation 

 

Final_Data$Rk <- (128*1.002*1)/(pi*(Final_Data$Dh^4)) 

Final_Data$percent_Rk <- Final_Data$Rk/sum(Final_Data$Rk)*100 

 

Final_Data1 <- Final_Data[order(Final_Data$sample_height),]  

 

tube_length <- vector(length = nrow(Final_Data1)) 

tube_length[1] <- (Final_Data1$sample_height[1] + 

Final_Data1$sample_height[2])/2 

tube_length[nrow(Final_Data1)] <- 

(Final_Data1$sample_height[nrow(Final_Data1)] 

-Final_Data1$sample_height[(nrow(Final_Data1)-1)])/2 

 

for(i in 2:(nrow(Final_Data1)-1)){ 

                tube_length[i] <- ((Final_Data1$sample_height[i]-

Final_Data1$sample_height[i-1])/2 

                +(Final_Data1$sample_height[i+1]-Final_Data1$sample_height[i])/2) 

} 

                 

##check 

ifelse(sum(tube_length)==Final_Data1$sample_height[nrow(Final_Data1)], "OK", 

"Not OK") 

 

Final_Data1$tube_length <- tube_length 

Final_Data1$Rk_tube_length <- Final_Data1$Rk * Final_Data1$tube_length 

Final_Data1$percent_Rk_tube_length <- 

Final_Data1$Rk_tube_length/sum(Final_Data1$Rk_tube_length )*100 

 

sum(Final_Data1$percent_Rk_tube_length) 

 

 

## write file 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.delegatensis\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", 

sep = "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.microcarpa\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", 

sep = "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 
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floris\\E.regnans\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", sep 

= "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.socialis\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", sep 

= "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.baxteri\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", sep = 

"")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.gracilis\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", sep 

= "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.pauciflora\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", 

sep = "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.polyanthemos\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], 

"_out.csv", sep = "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.meliodora\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", 

sep = "")) 

 

write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.obliqua\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", sep 

= "")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.victrix\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,3], "_out.csv", sep = 

"")) 

 

#write.csv(Final_Data1, 

paste("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\E.viminalis\\Output\\",Final_Data1[1,1], "_" ,Final_Data1[1,2], "_out.csv", 

sep = "")) 

 

###### END SCRIPT 
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## START RMA SCRIPT 

 

setwd("C:\\Users\\fvanogtrop\\Documents\\DATA\\Sebastian\\Marco\\data voor 

floris\\Combined") 

dir() 

combined_species <- read.csv("2013_Combined_species3.csv") 

head(combined_species) 

 

## log values 

combined_species$log_Dh <- log(combined_species$Dh, 10)  

combined_species$log_sample_height <- log(combined_species$sample_height, 10)  

 

require(lmodel2) 

 

modfun <- function(X) lmodel2(log_Dh ~ log_sample_height, data=X, 

"relative","relative",99) 

 

combined_list <- aggregate(cbind(combined_species$log_Dh, 

combined_species$log_sample_height), list(combined_species$species, 

combined_species$tree_number), as.list) 

 

model_out <- list() 

for(i in 1:nrow(combined_list)){ 

                logDh <- as.vector(unlist(combined_list[i,3])) 

                logSh <- as.vector(unlist(combined_list[i,4])) 

                DF <- data.frame(logDh, logSh) 

                model_out[[i]] <- lmodel2(logDh ~ logSh,data = DF, 

"relative","relative",99) 

} 

 

names_model_out <- paste(as.vector(unlist(combined_list[1])), "tree", 

as.vector(unlist(combined_list[2]))) 

names(model_out[[1]]) 

 

model_out2 <- list() 

for(i in 1:nrow(combined_list)){ 

                model_out2[[i]] <- data.frame(species=names_model_out[i], 

a=model_out[[i]]$regression.results[4,2], b=model_out[[i]]$regression.results[4,3] 

                , "a_2.5"=model_out[[i]]$confidence.intervals[4,2], 

"a_97.5"=model_out[[i]]$confidence.intervals[4,3], 

"b_2.5"=model_out[[i]]$confidence.intervals[4,4] 

                , "b_97.5"=model_out[[i]]$confidence.intervals[4,5], 

r_square=model_out[[i]]$rsquare) 

} 

 

 

final_data <- do.call(rbind, model_out2) 

 

##### END SCRIPT 
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Appendix – Chapter 4 
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Table S4.1: Deuterium contents (δ
2
H) measured in extracted water from wood tissue samples of 

specified locations in the main stem of a mature Corymbia maculata; heartwood diameter (hwd) 

and sapwood width (sww) for considered sample heights.  

n sample height 

(m) 

sample location  sample orientation   δ
2
H 

(‰) 

 

  hwd 

(cm) 

sww 

(cm) 

1 base sapwood north  -35.60   - 4.7 
2 base sapwood east  -32.80   - 5.5 

3 base sapwood south  -31.40   - 5.6 

4 base sapwood West  -35.60   - 4.8 

5 base outer heartwood north  -28.90   47 - 

6 base outer heartwood east  -29.70   - - 

7 base outer heartwood south  -31.20   - - 

8 base outer heartwood west  -31.60   - - 

9 base inner heartwood north  -30.70   - - 

10 base inner heartwood east  -29.70   - - 

11 base inner heartwood south  -30.10   - - 

12 base inner heartwood west  -25.00   - - 

13 5 sapwood north  -30.70   - 4 

14 5 sapwood east  -34.10   - 5.5 

15 5 sapwood south  -33.70   - 5.5 

16 5 sapwood west  -33.80   - 4.5 

17 5 outer heartwood north  -28.20   24 - 

18 5 outer heartwood east  -28.60   - - 

19 5 outer heartwood south  -29.00   - - 

20 5 outer heartwood west  -29.40   - - 

21 5 inner heartwood north  -30.20   - - 

22 5 inner heartwood east  -31.40   - - 

23 5 inner heartwood south  -28.90   - - 

24 5 inner heartwood west  -30.90   - - 

25 8 sapwood east  -26.90   - 3.5 

26 8 sapwood west  -33.40   - 3.5 

27 8 outer heartwood east  -28.40   13 - 

28 8 outer heartwood west  -26.90   - - 

29 8 inner heartwood center  -32.00   - - 

30 12 sapwood east  -28.10   - 4.5 

31 12 sapwood west  -26.10   - 3 

32 12 heartwood center  -28.00   8.5 - 

33 17 sapwood east  -30.30   - - 

34 17 sapwood west  -28.10   - - 

35 17 sapwood center  -30.70   - - 

36 20 sapwood east  -30.60   - - 

37 20 sapwood west  -31.60   - - 

38 20 sapwood center  -36.20   - - 
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Table S4.2: Deuterium contents (δ
2
H) measured in extracted water from wood tissue samples of 

specified locations in a northwards oriented branch of a mature Corymbia maculata; heartwood 

diameter (hwd) and sapwood width (sww) for considered sample heights. 

 

 

Table S4.3: Deuterium contents (δ
2
H) measured in extracted water from wood tissue samples of 

specified locations in an eastwards oriented branch of a mature Corymbia maculata; heartwood 

diameter (hwd) and sapwood width (sww) for considered sample heights. 

 

 

n sample height 

(m) 

sample location  sample orientation  δ
2
H 

(‰) 

 

hwd 

(cm) 

sww 

(cm) 39 5 inner heartwood center - - - 
40 8 sapwood east -32.90 - 4 

41 8 sapwood west -31.00 - 4.5 

42 8 outer heartwood east -28.00 13 - 

43 8 outer heartwood west -27.50 - - 

44 8 inner heartwood center -31.70 - - 

45 12 sapwood east -30.30 - 3 

46 12 sapwood west -31.10 - 3 

47 12 heartwood center -30.00 7 - 

48 17 sapwood east -35.20 - - 

49 17 sapwood west -31.30 - - 

n sample height 

(m) 

sample location  sample orientation  δ
2
H 

(‰) 

 

hwd 

(cm) 

sww 

(cm) 50 5 sapwood north -32.50 - 5.5 
51 5 sapwood east -35.00 - 5 

52 5 sapwood south -32.40 - 4 

53 5 sapwood west -30.10 - 5 

54 5 outer heartwood north -26.80 30.1 - 

55 5 outer heartwood east -28.40 - - 

56 5 outer heartwood south -33.90 - - 

57 5 outer heartwood west -28.30 - - 

58 5 inner heartwood north -27.70 - - 

59 5 inner heartwood east -37.10 - - 

60 5 inner heartwood south -27.20 - - 

61 5 inner heartwood west -28.70 - - 

62 9 sapwood east -30.10 - 3.5 

63 9 sapwood west -30.20 - 5.5 

64 9 heartwood east -30.70 11 - 

65 9 heartwood west -28.20 - - 

66 12 sapwood east -33.10 - 5 

67 12 sapwood west -31.80 - 5 

68 12 heartwood center -30.10 6 - 

69 16 sapwood east -32.20 - - 

70 16 sapwood west -32.30 - - 

71 16 sapwood center -32.20 - - 
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Table S4.4: Deuterium contents (δ
2
H) measured in extracted water from wood tissue samples of 

specified locations in a southwards oriented branch of a mature Corymbia maculata; heartwood 

diameter (hwd) and sapwood width (sww) for considered sample heights. 

 

 

Table S4.5: Deuterium contents (δ
2
H) measured in extracted water from wood tissue samples of 

specified locations in a westwards oriented branch of a mature Corymbia maculata; heartwood 

diameter (hwd) and sapwood width (sww) for considered sample heights. 

 

 

 

 

 

n sample height 

(m) 

sample location  sample orientation  δ
2
H 

(‰) 

 

hwd 

(cm) 

sww 

(cm) 72 8 sapwood east -28.50 - 4.5 
73 8 sapwood west -31.40 - 4 

74 8 outer heartwood east -29.20 13 - 

75 8 outer heartwood west -28.30 - - 

76 8 inner heartwood center -33.80 - - 

77 12 sapwood east -27.90 - 3 

78 12 sapwood west -32.40 - 3 

79 12 heartwood center -29.40 7 - 

80 17 sapwood east -24.30 - - 

81 17 sapwood west -23.90 - - 

82 17 sapwood center - - - 

n sample height 

(m) 

sample location  sample orientation  δ
2
H 

(‰) 

 

hwd 

(cm) 

sww 

(cm) 83 8 sapwood east -31.30 - 3 
84 8 sapwood west -33.3 - 5 

85 8 heartwood center -31.60 10.5 - 

86 12 sapwood east - - 4.5 

87 12 sapwood west -31.20 - 4 

88 12 heartwood center -31.90 4 - 

89 17 sapwood east -30.60 - - 

90 17 sapwood west -31.10 - - 

91 17 sapwood canter -28.00 - - 


