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Thesis summary

This thesis is concerned with the generation of a framework for addressing soil data

needs, specifically for biophysical modelling. The soil system is an important ecosystem

actor, supporting most of the worlds’ food production and being the major terrestrial

carbon stocks, thereby information about it is crucial for management and policy

making. To provide this information, it is important to deliver information of the

highest possible quality; thus the need to define guidelines to standardise, not only the

methodologies, but the minimum requirements that information must meet.

In this project, providing soil data is addressed in two ways. The first scenario

investigates the use of soil information to predict other soil properties, using

pedotransfer function (PTFs).

Chapter 1 addresses a usual problem of soil data non-uniformity. Two major soil

textural classifications are used in the world, the International and the USDA/FAO

systems. The difference between these two systems is the limit between the silt and

sand particle sizes: 20µm for the International and 50µm for the USDA/FAO. A

conversion between both systems is proposed through the use of PTFs generated using

symbolic regressions (genetic programming technique). There are previous works on

this topic, but the decision of generating new PTFs lays on the availability of new soil

textural data, with measurements for both classification systems. The generated PTFs

outperform the previous ones, reducing the prediction error by 15%-24%.

Chapter 2 extends the method used in Chapter 1, using the fuzzy k-means with

extragrades (FKMex) algorithm to assess the uncertainty of the predictions. It is

stressed that quantifying uncertainty levels for any model (including PTFs) is essential

to evaluate risk involved in using the predictions for a decision-making process. The

chapter begins with a summary of the main soil properties used by biophysical models

in Australia. After identifying eight common soil properties, several PTFs related to

soil water content were generated, using symbolic regressions. The incompatibility

between field and laboratory measurements is also addressed, proposing PTFs to

correct the water content measured in laboratory conditions. Besides the fact of

obtaining the error magnitude of predictions, an important concept is integrated with

the uncertainty estimation method: end-users are capable of identifying when their

samples are too dissimilar compared with the datasets used to generate the PTFs.
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The FKMex algorithm penalises those samples scaling the error magnitude up to two

times, depending how far from the original dataset they are.

In the second scenario, it is assumed that the end-user does not have extra

information about the soil properties at a specific location. In this case, the use of

existing soil maps is a traditional solution, thus in Chapter 3 a framework for generating

maps at national/continental scale, using digital soil mapping (DSM) techniques, is

proposed.

Chapter 3 presents the spatial distribution of available water content (AWC) using

environmental covariates to make predictions over Australia’s wheatbelt. The aim

of this chapter is to reconcile model parsimony (number of covariates), accuracy

(numerical performance) and realism of the visual representations (maps). To achieve

this, several combination of covariates were used, varying the complexity of the model

inputs. Spatial predictions were made using three modelling techniques: symbolic

regression, Cubist, and support vector machines. The concept of model averaging was

also explored, trying to obtain an ensemble model that combines the best of all the

individual models. After a numerical and visual evaluation of maps generated with

all the combinations of covariates, modelling techniques and ensemble methods, the

ensemble model using all the available covariates showed the highest accuracy levels,

but it was incapable of realistically representing the spatial structure of AWC. From

this, it is stressed the need to consider the knowledge about the modelled process and

not only focus on the numerical performance in order to obtain a flexible and stable

model, but to also produce a realistic visual representation of it. The uncertainty

concept is reinforced in this chapter, delivering a map of uncertainty levels along with

the final map of AWC predictions.

Finally, Chapter 4 presents a synthesis of the previous chapters and main findings

of the project. There are always new opportunities for further work in how to provide

information due to the evolving nature of end-users, data availability and analytic

methodologies.
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General introduction

Undoubtedly, we are immersed in an era where data generation is much faster that it

used to be. Whole genome sequencing and astronomical data are some examples where

data flow in the last decade experienced an important change. Is it possible to achieve

a similar data volume in all the fields of science?

In soil science, most data collection must be conducted in the field, making difficult

to reduce the costs to produce more data. Two important techniques emerge to try to

overcome this issue: the use of pedotransfer functions (PTFs) and digital soil mapping

(DSM) with the use of spatial environmental data.

PTFs are models to estimate soil properties using other available or more easily

measured soil properties Bouma (1989). The use of PTFs is extensive, including filling

gaps in soil databases (Wösten et al., 2001), and soil mapping (Noble et al., 2002;

Scheinost et al., 1997). They have been included in computer software like Rosetta

(Schaap et al., 2001), and the inclusion of these kinds of models into expert systems

has also been discussed (McBratney et al., 2002).

DSM modelling estimates a soil property using diverse information, including other

soil properties at the same location, but also information related to soil forming factors.

These predictors are also known as scorpan factors (McBratney et al., 2003). Digital

soil maps are meant to be continuous representations of the planet surface (more-or-less

continuous depending on the map scale), hence data to generate them should try to

capture the intrinsic heterogeneity. So far, the use of spatial environmental data is

the most adequate alternative to represent this spatial (and temporal) heterogeneity,

specially at national/continental scales. Environmental data is generally derived from

sensors mounted on satellites, making it possible to detect a vast range of signals, from

the radio-waves to gamma-rays (McBratney et al., 2003). They have been widely used

to represent scorpan factors and to model the spatial distribution of soil properties

(Mulder et al., 2011; Singh and Dwivedi, 1986).

Interdisciplinary data requirements

The demand to increase soil data generation rate comes from soil scientist but also

from other disciplines where soil is an important factor. Need of soil data for soil

carbon assessment (Zhang et al., 2014), in ecology (Wigley et al., 2013), and climate
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studies (Khodayar et al., 2013; Khodayar and Schädler, 2013) are some examples of

areas where soil information is of critical importance. Soil scientists should not only

meet this demand of data, but also promote the use of soil information in new research

fields.

In response to the increasing demand of soil information, various research groups

and governmental organisations have decided to supply data in a more organised

manner. GlobalSoilMap (GSM, http://globalsoilmap.net/) is an initiative to

provide accurate, up-to-date and spatially referenced soil information demanded by

many stakeholders, including policymakers, the climate change community, farmers,

other land users, and scientists in the form of a digital soil map of the world. Another

example is the Terrestrial Ecosystem Research Network (TERN, http://tern.org.

au/) project in Australia. TERN aims to connect ecosystem scientists and enables

them to collect, contribute, store, share and integrate data across disciplines. One of

the areas covered by TERN is soil, whose aims parallel those of the GSM specifications

to generate maps of soil properties but with national coverage only.

Information quality

Soil information required by the scientific community is generated by different research

groups or individuals, using different methods and datasets. How to ensure uniformity

in the quality of the delivered models?

A key factor on how to properly deliver the new soil models is uncertainty

assessment. In every modelling exercise, it is recommended to estimate the uncertainty

associated with the predictions. It is important to understand how the errors propagate

through the model, but especially because it is a way of evaluating the risk involved

in using the predictions for a decision-making process (Goovaerts, 2001). In the soil

science literature, the Monte Carlo method (Minasny and McBratney, 2002) has been

most frequently used, and more recently empirical methods using the fuzzy k-means

algorithm to generate prediction intervals has been suggested (Tranter et al., (2010)

for PTFs and Malone et al., (2011) for DSM).

The aim of this thesis is to derive a framework for addressing soil data needs,

using as example drained upper limit (DUL) and crop lower limit (CLL) in Australia,

subdivided in two specific objectives:

2

http://globalsoilmap.net/
http://tern.org.au/
http://tern.org.au/


1. Propose a workflow to generate pedotransfer functions (PTFs)

2. Obtain a continuous spatial prediction of available water content over Australia’s

“wheatbelt”, using digital soil mapping techniques
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Chapter 1

Using genetic programming to

transform from Australian to

USDA/FAO soil particle-size

classification system

Summary

The difference between the International (adopted by Australia) and the USDA/FAO

particle-size classification system is the limit between silt and sand fractions (20 and

50µm respectively). In order to work with pedotransfer functions generated under the

USDA/FAO system with Australian soil survey data, a conversion should be attempted.

The aim of this work is to improve prior models using larger data sets and a genetic

programming technique, in the form of a symbolic regression. 2-50µm fraction was

predicted using a USDA data set which included both particle-size classification systems.

The presented model reduced the RMSE (%) in 14.96 - 23.62% (word-based data set

and Australian data set respectively), compared with the previous model.
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Chapter 1. Transformation between soil particle-size classification system

1.1 Introduction

Two major soil textural classifications are used in the world, the International and the

USDA/FAO systems. The difference between these two systems is the limit between the

silt and sand particle size: 20µm for the International and 50µm for the USDA/FAO.

This could be considered a problem when a pedotransfer function (PTF) generated

in one system is used with data of the other system, thus a conversion between both

systems is necessary. Several attempts to achieve this has been made (Rousseva, 1997;

Buchan, 1989; Shirazi et al., 1988; Marshall, 1947). Minasny et al., (1999) predicted

the fraction P20−50 to convert from 2-20 to 2-50µm fraction with the model:

P̂20−50(%) =48.4593− 0.2225P20−2000 − 0.0029(P20−2000)2

− 0.6952P<2 + 0.0018(P<2)2 (R2 = 0.76)
(1.1)

where P<2 and P20−2000 correspond to clay and sand (International) fractions

respectively.

In order to achieve better prediction, Minasny and McBratney (2001) used a larger

data set than that used for Model 1.1 (Eq. 1.1), and generated a model using a multiple

linear regression. The model was:

P̂2−50(%) =− 18.3914 + 2.0971P2−20 + 0.6726P20−2000 − 0.0142(P2−20)2

− 0.0049(P20−2000)2 (R2 = 0.823)

If P̂2−50 < 0 then P̂2−50 = 0.8289P2−20 + 0.0198P20−2000

(1.2)

This model was reported to produce unreasonable estimates at high clay and low

sand contents. It is also a two-part model that produces an unnatural “break”. The

aim of this work is to improve Model 1.2 (Eq. 1.2) with a new tool based on genetic

programming.

9
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1.2 Data sets

Three data sets were used in this work. How they were used and their size is shown in

Table 1.1.

Table 1.1: Data sets used in this work

Data set Reference N◦ of records Use

USDA/NRCS Soil Survey Staff (1995) 104,864 Calibration
Australian (CSIRO) - 758 Validation
IGBP-DIS Tempel et al., (1996) 55,282 Validation

The USDA/NRCS data set correspond to the National Soil Characterization

database. The samples had data on soil texture measurements at < 2, 2-20, 20-50,

50-100, 100-250, 250-500, 500-1000 and 1000-2000µm fractions. The Australian data

set contains data from soil profile observations collected by CSIRO from various

soil projects in Australia that had measurements of < 2, 2-20, 2-50, 20-200, and

200-2000µm. The IGBP-DIS data set contains global data of soil properties that can

be used for the development of pedotransfer functions with particle measurement at:

< 2, 2-20, 20-50, 50-100, 100-250, 250-500, 500-1000 and 1000-2000µm.

The USDA/NRCS and IGBP-DIS data sets were standardised to: < 2, 2-20,

2-50, 20-200, and 200-2000µm. Particles < 200µm were estimated from a log-linear

interpolation between < 100 and < 250µm.

All the outliers (outside the 2*inter-quartile range) and abnormal observations were

removed. In Table 1.2 statistics of particle fractions are presented.

1.3 Genetic programming

Genetic programming (GP) is a machine-learning method for evolving computer

programs, following the concepts of natural selection and genetics, to solve problems.

GP is generally used to infer the underlying structure of a natural or experimental

process in order to model it numerically. GP applications to soil science are

varied. They range from determining soil characteristics (Parasuraman et al., 2007b;

Makkeasorn et al., 2006), to water and nutrients management in agriculture (Sharma

10
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Table 1.2: Statistics of data sets by particle fractions

Data set Fraction Mean St. Dev. Min. Median Max

USDA/NRCS
< 2µm 23.14 16.35 0.00 20.60 97.90
2-20µm 21.19 12.76 0.00 20.30 93.80

20-2000µm 55.64 23.42 0.00 55.70 100.00

CSIRO1
< 2µm 31.21 17.34 3.20 27.00 77.70
2-20µm 18.01 8.56 0.60 22.00 58.90

20-2000µm 50.77 18.87 4.60 53.00 96.20

IGBP-DIS
< 2µm 23.07 16.30 0.00 20.50 95.00
2-20µm 20.98 12.60 0.00 20.10 93.80

20-2000µm 55.96 22.79 0.30 56.30 100.00

∗All statistics in percentage of mass basis
1 National soil database

and Jana, 2009; Ines et al., 2006), to development of PTFs (Parasuraman et al., 2007a;

Johari et al., 2006).

In a recent work, Selle and Muttil (2011) test the structure of a hydrological model

using GP and give a good description of how the GP process works.

GP works with a number of solution sets, known collectively as a “population”,

rather than a single solution at any one time; thus the possibility of getting trapped

in a “local optimum” is avoided. GP differs from the traditional genetic algorithms in

that it typically operates on “parse trees” instead of bit strings. A parse tree is built

up from a “terminal set” (the input variables in the problem and randomly generated

constants, i.e. empirical model coefficients) and a “function set” (the basic operators

used to form the GP model). The function set is user-defined and cannot only include

algebraic operators, such as {+,−, ∗,%} but can also take the form of logical rules

({IF,OR,AND}) or more complex operators ({sin, cos, exp}). An example of an

initial population of parse trees can be found in Fig. 1.1.

Once the initial population of random parse trees is generated, GP calculates their

fitness using the user-defined “fitness function”, e.g. absolute error, and subsequently

selects the better parse trees for reproduction and variation to form a new population.

This process of selection, reproduction and variation iterates until a user-defined

“stopping criterion” is satisfied. The solutions in each iteration are collectively known

11
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Fig. 1.1: Example of an initial population of four randomly created individuals
representing GP models: (a) x + 1, (b) x2 + 1, (c) 2 and (d) x. This representations
should be read from left to right and bottom to top.

as a “generation”. As the population evolves from one generation to another, new

solutions replace the older ones and are supposed to perform better. The solutions in

a population associated with the best-fit individuals will, on average, be reproduced

more often than the less-fit solutions. This is known as the Darwinian principle of

“natural selection”.

During each successive generation a proportion of the existing population is

“selected” to breed a new generation. Individual solutions are selected through a

fitness-based process, where fitter solutions are typically more likely to be selected.

The next step is to generate a second generation population of solutions from those

selected, through the two variation operators —crossover and mutation. Crossover is

the random swapping of sub-trees between the selected “parent” parse trees to generate

the new “children”. The crossover tends to enable the evolutionary process to move

toward promising regions of the solution space. In contrast to crossover, in mutation, a

single parent parse tree is selected and random changes are made to it. The mutation

operator is introduced to prevent premature convergence to local optima. A high

crossover rate is usually used so that useful sub-trees from the previous generations are

transmitted to the new generation. In contrast, the mutation rate is usually kept low

since a high mutation rate can cause a big loss of useful sub-trees evolved in previous

generations. This process of selection, reproduction and variation continues until a new

population of solutions of appropriate size is generated. From generation to generation,

the best solution evolved in previous generations is usually preserved, a process called

“elitism”.
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In this work we used a specific method called symbolic regression, which uses GP

to fit a function to a specific data set, going from simple functions like those in Fig. 1.1

to a complex function like the solution proposed (Eq. 1.4).

For further reading about genetic programming, see Koza et al., (1999) and Koza

(1994) and Koza (1992).

1.4 Particle-size conversion

In a routine soil survey in Australia, particle-size could be measured at clay, silt

and sand fractions (< 2, 2-20, 20-2000µm) or with an extra intermediate fraction

of fine sand (20-200µm). A symbolic regression was attempted (using the program

Formulize v0.96b) for both cases, using F = {+,−, ∗,%} as the function set for the

genetic programming routine, generating a model:

P2−50 = F (Pfrac) + ε

with Pfrac as the available particles fractions of the Australian classification system,

expressed in percentage, and ε as the error of prediction. Data was randomly split in

two groups (50% for training and 50% for internal validation) and, minimising the

absolute error as error metric, we obtained an approximate conversion as:

P̂2−50(%) = 2.26P2−20 +
5.55P2−20 + 1.513(P2−20)2

0.9966− 1.236P2−20 − 1.349P20−2000

(1.3)

for survey data without the 20-200µm fraction, presenting an R2 of 0.82 and a

root mean squared error (RMSE), which measures the average error of the prediction,

of 8.54% (internal validation). A surface plot of its predictions as a function of clay

(< 2µm) and sand (20-2000µm) is shown in Fig. 1.2a. For survey data with measured

20-200µm (fine-sand) fraction a different solution was generated:

P̂2−50(%) =1.561 + 0.9664P2−20 + 0.0003932P<2P2−20P20−200

+ 0.0003634P2−20(P20−200)2
(1.4)
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with an R2 of 0.91 and a RMSE of 5.91% (internal validation). A surface plot of its

predictions as a function of clay (< 2µm) and sand (20-2000µm) is shown in Fig. 1.2b.
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Fig. 1.2: Surface plot of 2-50µm fraction prediction at different clay (< 2µm) and sand
(20-2000µm) contents. Note that 20-200µm represents the fine-sand fraction.

The surface plot of Eq. 1.3 (Fig. 1.2a) shows decreasing predictions of the 2-50µm

fraction as the content of clay (< 2µm) or sand (20-2000µm) increases, with a slightly

higher responsiveness to changes in sand content. The model including the 20-200µm

fraction (Eq. 1.4; Fig. 1.2b) shows the same trend, but presenting some instability at

high silt contents, also evident in the surface plot of the residuals Fig. 1.2b.

Table 1.3 presents the RMSE and R2 between predicted and measured values in

the external validation sets and a comparison with the previous model (Eq. 1.2).

Comparing with the model of Minasny and McBratney (Eq. 1.2), this work has a

better performance when the 20-200µm fraction data is available. The model presents

some limitations (higher absolute error) at low clay and high sand contents as shown

in Fig. 1.3.

1.5 Conclusions

The use of a larger data set in conjunction with genetic programming techniques

reduced RMSE (%) by 14.96% (from 8.69 to 7.39) in the IGBP-DIS data set and

14



Chapter 1. Transformation between soil particle-size classification system

Table 1.3: External validation statistics of prediction quality

Data set Model R2 RMSE (%)

CSIRO
Minasny and McBratney (Eq. 1.2) 0.52 10.67
without 20-200µm (Eq. 1.3) 0.48 11.19
with 20-200µm (Eq. 1.4) 0.72 8.15

IGBP-DIS
Minasny and McBratney (Eq. 1.2) 0.81 8.69
without 20-200µm (Eq. 1.3) 0.81 8.66
with 20-200µm (Eq. 1.4) 0.86 7.39
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Fig. 1.3: Surface plot of residuals of Eq. 1.4, as a function of clay and sand content,
using IGBP-DIS data set.

23.62% (from 10.67 to 8.15) in Australian data set, compared with the previous model

of Minasny and McBratney (2001).
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Chapter 2

Provision of soil water retention

information for biophysical

modelling: an example for Australia

Summary

Soil is an important actor in ecosystem processes and data that represent soil processes

in system models are not always available due to the intrinsic complexity and variability

of soil over space. A frequently used method to overcome this problem is the use

of pedotransfer functions (PTFs). We suggest the use of domain-specific PTFs with

defined uncertainty levels to avoid erroneous predictions or extrapolation. PTFs with

detailed uncertainty assessment are not always available, most of the time providing

a single measurement (i.e.: standard error, variance), hence there is a necessity to

generate new ones, with more detailed uncertainty assessment, and to identify if a

PTF prediction is valid for a given soil domain. We selected Australia as example to

generate a set of pedotransfer functions which predict soil water retention properties

required by commonly-used biophysical models. PTFs were generated using symbolic

regression and the fuzzy k-means with extragrades algorithm was used to estimate the

uncertainty of prediction and identify when an observation is within the PTF data

domain.
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2.1 Introduction

Soil is a intrinsically complex system and an important component in ecosystem

processes. There are many dynamic soil properties and trying to measure all of them

would be a challenging task. This data collection activity is usually the most expensive

and time consuming step in the ecological modelling process. A frequently used method

to overcome this soil data availability problem is the use of pedotransfer functions

(PTFs), term coined by Bouma (1989) as “translating (soil) data we have into what

we need”, to estimate soil properties using other available or more easily measured soil

properties.

Natural systems, including soil, vary in time and space (Frank and Slatkin, 1990)

and a PTF should be able to consider this uncertainty. While many PTFs have been

generated (see reviews by McBratney et al., (2002) and Wösten et al., (2001)), it has

not been general practice to provide uncertainty levels for them. Taking in account this

intrinsic uncertainty, it is recommended that a given PTF should not be extrapolated

beyond the geomorphic region or soil type from which it was developed (McBratney

et al., 2002), since they may lose their validity (Minasny et al., 1999). Hence the

importance of having a domain-specific set of PTFs to prevent their misuse and avoid

erroneous predictions and extrapolation.

The aim of this work is to propose a workflow to address the two issues:

a) generation of PTFs with the corresponding uncertainty estimation, presented as

upper and lower prediction limits, and b) identification of observations outside the

data domain of the generated PTFs.

2.2 Soil data requirements of biophysical models

Soil intrinsic complexity and its interactions with the gaseous and liquid phases of

the ecosystem, and the biota, makes it a subject of study in different disciplines.

Biophysical models try to represent these interactions and we grouped them in the

following domains.

Crop growth: Crop-growth models try to represent the soil-plant-atmosphere system

taking into account this soil and water interaction, which depends on particle size,
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hydraulic characteristics, and morphological and chemical properties (Rawls et

al., 1991). Soil water content is critical for agricultural production, thus, the

amount of water stored in soil and its availability in time is an important factor

in the decision-making process.

Models developed in this area try to estimate the amount of soil water stored

in the soil and the nutrients extracted from soil solution into the plant. These

nutrients come from diverse processes, including rock weathering and organic

matter decomposition. The cycling of nutrients is governed by mass balances

between dissolution and precipitation happening in the aqueous phase (Garrels

and Mackenzie, 1967).

Watershed erosion: Topography is one of the factor involved in soil formation and

also determines the path for surface runoff. Depending on the erodibility,

infiltration rate and water retention capacity of the soil, a precipitation event

could start the erosion process, leading to the transport of soil material to lower

areas of the landscape or river basins. This soil loss has an tremendous impact in

agricultural productivity, economy, and environment and models try to simulate

different scenarios, including, for example, management practices and soil types.

Ecology: One of the areas covered by this discipline is associated with microbial

activity and the transformations they could generate within the soil. This

activity governs processes like biodegradation (pesticides), and carbon, nitrogen

and phosphorous cycles and depends on the presence of adequate environmental

conditions for microbial colonies growth (Han et al., 2007; Buchmann, 2000).

Other important issues covered by this discipline is ecotoxicity (heavy metals) and

the capacity of the soil to immobilise these compounds. Pampura et al., (2007)

highlight the importance of heavy metals (cadmium and lead) availability in the

soil solution compared with the total metal concentration. They propose that

this availability is ruled by soil properties like pH and organic matter content.

Kuo and Baker (1980) include the clay content of soil as an important factor in

the detoxification.

Climate: Is important to remember the constant interaction between soil and the

atmosphere. Soil is an important water stock and, for that reason, influences
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processes like evapotranspiration and the subsequent precipitation. Soil moisture

information has been shown to enhance the prediction of precipitation and

atmospheric circulations, modifying the distribution and intensity of precipitation

(Walker and Houser, 2001). This relation is implicit in models like the one

proposed by Rodriguez-Iturbe et al., (1991), explaining the influence in local

water recycling, or studies of mutual interaction (Entekhabi et al., 1996).

2.2.1 Australian biophysical models

We reviewed 17 biophysical models commonly used in Australia and identified the

soil properties required to successfully use them, either as inputs or internal values

(Table 2.1). These models were generated and calibrated within Australia, putting

into practice the previously mentioned precaution with model transportability. The

description and purpose of the models reviewed can be found in Appendix A.

For the following PTF generation, and fulfilling the principle of effort proposed

by McBratney et al., (2002), which states that the cost and the effort to obtain the

information on the predictor should be much less than that to obtain information on

the predicted, eight soil properties were selected also taking into account its occurrence

in the different models reviewed in this work (Table 2.2).

In the forthcoming sections we will demonstrate how to fill soil data hiatus using a

genetic programming method to generate PTFs, and the fuzzy k-means algorithm to

estimate the uncertainty of the generated PTFs. Undoubtedly, water is an important

component of the ecosystem and most of the models reviewed take in account its

presence as a regulator of chemical, biological and physical processes. That is the

reason why, as an example, we focus in the properties which describe the water holding

capacity of soils.

2.3 Prediction of soil water retention properties

Soil properties predicted in this work are drained upper limit DUL and CLL, both

corresponding to field measurements. Soil water holding capacity (i.e.: the difference

between DUL and CLL) is the main source of water for vegetation development and it is

related to the potential amount of water a soil could make available for the atmosphere
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Table 2.1: Some biophysical models commonly used in Australia and related soil
properties
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PERFECT
Hydrology X X X X X X
Mineralisation X X
Denitrification X X
Erosion X

SWAT
Infiltration X X X X
Percolation X X X X X
Nutrient cycle X X X X
Kerosion X X X X

SedNet
Kerosion X X X X

FullCAM
Carbon stock X X X X

APSIM
Water balance X X X X
Nutrient cycle X X X X X X X X

Mk3.5
Soil moisture X X X X
Soil temperature X

CENTURY X X X X X X X X X X X
DNDC X X X X X X X X X
CLASS

CGM X X X
PGM X X X
SA X
U3M-1D X X

DSSAT X X X X X X X X
OZCOT X X X
GDAY X X
BIOME4 X X X X X X X
LPX X X X X X X X
BC2C X

Ksat: saturated hydraulic conductivity; DUL: drained upper limit; AirD: water content after air drying
CLL: crop lower limit; Kerosion: soil erodibility factor; CEC: cation exchange capacity; BR: bedrock
WRC: water retention curve; SAT: water content at saturation; θ−10/−1500: water content at –10/–1500 kPa

through evapotranspiration (Dunne and Willmott, 1996).

DUL, a practicable field measure of soil field capacity, represents the volumetric

water content an initially saturated soil holds after draining for 2-3 days (Veihmeyer

and Hendrickson, 1949). One of the issues related to this “steady state” is that it
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Table 2.2: Soil properties commonly used in reviewed models and predictors mentioned
in literature

Property Predictors Reference

BD
clay, silt, sand,
OC, depth

Tranter et al., (2007)

θ−10, θ−1500
clay, silt, sand,
BD, OC

Rab et al., (2011), Selle et al., (2011), and Rawls
et al., (1982)

DUL, CLL PSD, BD Nemes et al., (2011) and Romano et al., (2011)

OC
clay, silt,
colour

Viscarra Rossel et al., (2006), Zinn et al., (2005),
and Schimel et al., (1994)

Ksat
clay, silt, sand,
BD

Minasny and McBratney (2000)

Kerosion
clay, sand, silt,
OC

Torri et al., (1997) and Williams (1995)

DUL: Drained upper limit; CLL: Crop lower limit; BD: Bulk density.
OC: Organic carbon; PSD: Particle size distribution
θ−10/−1500: Water content at –10/–1500 kPa.

Kerosion: soil erodibility factor; Ksat: Saturated hydraulic conductivity.

varies from soil to soil, strongly depending on soil properties like texture and structure

(i.e. soil pore system). In practice, the previously mentioned 2-3 day drained period

is only applicable to soils with uniform structure and texture, and that period may

be extended, for example, to 3-6 months in a clayey soil (accessory publication of

Dalgliesh et al., 2009). Nachabe (1998) defined it as an expression which depends on

water retention and hydraulic conductivity, field capacity is assumed when the water

flux is equal to 0.05 mm day−1. Meanwhile Twarakavi et al., (2009) estimated field

capacity based on Richards’ equation and developed an analytical equation to predict

field capacity from soil hydraulic parameters. Field capacity is assumed when the

drainage flux is equal to 0.1 mm day−1.

On the other hand, CLL corresponds to the volumetric soil water remaining in the

soil after a healthy crop, with uninterrupted root development, has reached maturity

under soil water-limited conditions (Hochman et al., 2001). It depends on the ability

24



Chapter 2. Provision of soil water retention information: Australia

of the crop to extract water, but in practice is assumed to be the minimum of a group

of crops. This concept is usually referred as permanent wilting point.

2.3.1 Data sets

The data set used correspond to a CSIRO Ecosystem Sciences (APSRU) compilation

of 806 soil profiles that includes field measurements of DUL and CLL for the

most commonly grown crops of Australia (Dalgliesh et al., 2012). Procedures for

determination of these properties are described in the accessory publication of the

article by Dalgliesh et al., (2009), “Procedures for determination of soil properties and

states relevant to crop simulation and farmer crop management decision making”. The

method is a modification of the techniques described by Ratliff et al., (1983). Briefly,

an area covering about 16 m2 of soil was wettened using a trickle system. The water

content and drainage were monitored using a neutron moisture meter at the access tube

at the centre of the site down to a depth of 180 cm. Once the soil was judged to be

thoroughly wet, it was allowed to drain until moisture monitoring indicated minimal

change in profile water status. Samples for gravimetric moisture content and bulk

density were taken. For CLL, crops were grown in the field, and a rain-exclusion tent

of 9 m2 was installed. At crop maturity, soil moisture were determined at different

depths.

The soil properties used to generate PTFs and their statistics are presented in

Table 2.3.

Table 2.3: Statistics of soil samples used for PTF generation of field measurements.

Mean S.D. Min. Median Max.

Clay (%) 35.20 16.76 0.80 35.40 80.20
Sand (%) 54.20 20.90 9.00 51.00 97.00
BD (Mg m−3) 1.45 0.18 0.73 1.45 2.09
OC (%) 0.47 0.47 0.01 0.30 7.26
DUL (%) 30.20 11.54 3.00 32.00 56.00
CLL (%) 16.90 8.61 0.40 18.00 53.00

The soil orders according to the Australian Soil Classification System in this

database correspond to Calcarosol (4.22%), Chromosol (4.96%), Dermosol (2.23%),

25



Chapter 2. Provision of soil water retention information: Australia

Ferrosol (0.99%), Kandosol (2.23%), Podosol (0.12%), Sodosol (5.21%), Tenosol

(0.87%), Vertosol (22.08%), and 57.07% of unclassified soils. Based on the location

of the unclassified soils and the dominant soil order map of Australia (ASRIS),

they correspond to Dermosol (10%), Ferrosol (0.87%), Hydrosol (1.09%), Kandosol

(32.61%), Kurosol (6.3%), Organosol (27.17%), Podosol (1.52%), Rudosol (0.87%),

Sodosol (11.09%), Tenosol (0.43%), and Vertosol (8.04%).

We also used an Australian soil hydraulic properties database, compiled by Minasny

et al., (1999), from laboratory measurements of soil hydraulic properties throughout

Australia. It includes 1403 soil samples collected using undisturbed soil cores, and

measured in the laboratory for water retention at –10 and –1500 kPa using the pressure

plate apparatus. These laboratory measurements of soil water content are usually

assumed as equivalencies of DUL/field capacity (–10 kPa is the standard in Australia)

and CLL/permament wilting point respectively (White, 2009), thus the interest in

comparing them in this work. The associated statistics are shown in Table 2.4.

Table 2.4: Statistics of soil samples used for PTF generation of laboratory
measurements.

Mean S.D. Min. Median Max.

Clay (%) 31.60 17.84 1.00 29.00 76.00
Sand (%) 50.50 22.11 6.49 50.40 97.90
BD (Mg m−3) 1.44 0.22 0.56 1.47 2.18
θ−10 (%) 33.20 9.60 8.00 33.00 70.00
θ−1500 (%) 18.40 9.07 1.80 18.00 48.10

External validation of the PTFs was performed using a database compiled by

Gardner et al., (1984). It contains properties of 628 horizons of soils located in Brisbane

and Darling Downs area (Table 2.5) where DUL and CLL were measured in the field.

2.3.2 PTF development

We used symbolic regressions to model soil properties related to water retention (using

the software Formulize v0.98.1b). Symbolic regression uses genetic programming (GP)

to fit a function to a specific data set. It is a machine-learning method for evolving

computer programs, following the concepts of natural selection and genetics, to solve
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Table 2.5: Statistics of soil samples used for PTFs’ external validation.

Mean S.D. Min. Median Max.

Clay (%) 47.90 17.01 7.84 51.60 83.50
Sand (%) 38.70 18.66 7.37 34.00 86.30
BD (Mg m−3) 1.42 0.16 0.90 1.45 1.74
DUL (%) 27.50 10.17 7.00 27.50 58.00
CLL (%) 19.30 7.76 3.00 19.00 40.00

problems. GP is generally used to infer the underlying structure of a natural or

experimental process in order to model it numerically. GP applications to soil science

are varied. They range from determining soil characteristics (Parasuraman et al.,

2007b; Makkeasorn et al., 2006), to water and nutrients management in agriculture

(Sharma and Jana, 2009; Ines et al., 2006), to development of PTFs (Parasuraman et

al., 2007a; Johari et al., 2006).

In genetic programming, possible solutions (individuals) are typically represented

as “parse trees” (Fig. 2.1), with nodes corresponding to basic algebraic operators

such as {+,−, ∗,%}, logical rules like ({IF,OR,AND}) or more complex operators

like {sin, cos, exp}, the input variables of the function, or numerical constants. An

initial random population of this individuals is generated and their fitness is assessed

using a user-defined “fitness function”, e.g. absolute error, and subsequently the best

individuals are selected to be the basis of the next generation. The “fittest” individuals

are subjected to a mutation and crossover processes (random change of a random node

and exchange of “branches” between individuals respectively) to introduce variation

into the population as it evolves.

For further reading about genetic programming, see Koza et al., (1999) and Koza

(1994) and Koza (1992).

2.3.3 Uncertainty estimation

To assess the uncertainty of our predictions, we used a modification of the method by

Shrestha and Solomatine (2006). The classic k-means clustering algorithm assumes

each observation belongs to only one cluster. This approach seems inappropriate

because, in a real world context, most ecosystem processes are continuous. Fuzzy
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Fig. 2.1: Example of an initial population of two randomly created individuals
representing GP models: (a) x + 2 and (b) 2. This representations should be read
from left to right and bottom to top.

k-means extends the classic approach allowing each observation to belong to more

than one cluster through a membership degree concept (Bezdek et al., 1984).

One of the limitations of fuzzy k-means is the inability to distinguish between points

very far from cluster centroids (extragrades) and those close to them. De Gruijter

and McBratney (1988) proposed a modified method whereby a new extragrade class

was introduced, leading to a membership degree dependent on the distance to cluster

centroids.

The membership for the observation i in the jth class (mij) and the membership

in the extragrade class (mi∗) are estimated using the following formulas:

mij =
d
−2/(φ−1)
ij

k∑
c=1

d
−2/φ−1
ic +

(
λ

k∑
c=1

d−2
ic

)−1/(φ−1)
(2.1)

mi∗ =

(
λ

k∑
c=1

d−2
ic

)−1/(φ−1)

k∑
c=1

d
−2/φ−1
ic +

(
λ

k∑
c=1

d−2
ic

)−1/(φ−1)
(2.2)

where dij correspond to the Mahalanobis distance between the observation i and

the centroid c of the jth class, k is the total number of classes (not including the

extragrade class), φ the degree of fuzziness or overlap of clusters, and λ = (1 − α)/α

(α: mean value of extragrade class membership of the observations).
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Data used to calibrate a PTF is a representative sample of an existent natural

process and every re-sample generates a fluctuation around the true, unknown value

of its properties, slightly changing the output of the model. Due to this phenomenon,

it is more appropriate to predict a range than a single value. To estimate that range

(from here on prediction interval (PI)), we used the fuzzy k-means with extragrades

algorithm, as described by Tranter et al., (2010). In the calibration process, the α/2

and 1−α/2 (α: significance level) quantiles of the prediction residuals by class (cluster)

were determined. Those values were weighted by the membership degree and added to

the predicted value.

The key concept of this approach is that assumptions and outcomes of PTFs are only

valid inside the domain of the calibration data. Any observation outside this domain

is assigned to the extragrade class and its PI penalised (extended). The prediction for

this observation is not necessarily wrong but the final user must be aware that the data

used to train the PTF is different.

To run the fuzzy k-means algorithm, we set the fuzziness parameter φ to 1.5, using

Mahalanobis distance metric. The α parameter was obtained by optimisation, aiming

to reach an expected extragrade proportion of 5%.

Data was partitioned in different number of clusters (2 to 15) and the optimal

number of them was determined calculating the prediction interval coverage probability

(PICP, Eq. 2.3), which is the proportion of observations that lie within the PI, and the

mean prediction interval (MPI, Eq. 2.4), both described by Shrestha and Solomatine

(2006), using the following equations:

PICP =
1

n
count(a)

a : PLLi ≤ pi ≤ PLUi

(2.3)

MPI =
1

n

n∑
i=1

[PLUi − PLLi ] (2.4)

where n is the total number of observations, pi is the ith observed value, PLLi and

PLUi are the ith lower and upper prediction limit respectively. To select the optimal
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number of clusters the value of PICP should be close to the confidence interval (95%

in this case) and the value of MPI should be minimum (i.e. if two possible number of

clusters have a similar PICP value, we must select the one with lower MPI value).

2.4 Results

2.4.1 Drained upper limit

We generated five PTFs to predict DUL (θ̂DUL), using different input variables, where

the less accurate ones correspond to simpler alternatives to be used (as described in

Section 2.5) when data availability is limited. The resulting PTFs are:

θ̂DUL (cm3/100cm3) = 0.2739 + 0.005033 clay + 3.158× 10−5 sandCEC

− 1.96× 10−5 sand2 − 0.00256 clay BD
(2.5)

with BD corresponding to bulk density, CEC to the cation exchange capacity, and

clay and sand to the < 2µm and 20-2000µm fraction of the soil respectively, with R2

value of 0.76 and root mean square error (RMSE) of 4.39 (%);

θ̂DUL (cm3/100cm3) = 0.2358 + 0.002572CEC + 0.001001 clay

− 1.70× 10−7 sand3
(2.6)

with an R2 of 0.75 and RMSE equal to 4.53 (%).

θ̂DUL (cm3/100cm3) = 0.374 + 0.01182BD + 0.00365 clay

+ 6.09× 10−5 sand clay

− 0.00339 sand− 0.00192BD2 clay

(2.7)

with R2 value of 0.75 and root mean square root (RMSE) of 4.63 (%);

θ̂DUL (cm3/100cm3) = 0.2082 + 0.02757OC + 0.002666 clay− 1.73× 10−7 sand3 (2.8)
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where OC correspond to the soil organic carbon content in percentage, with R2 and

RMSE values of 0.71 and 4.92 (%) respectively; and

θ̂DUL (cm3/100cm3) = 0.364 + 4.828× 10−5 sand clay

− 0.00296 sand
(2.9)

with R2 equal to 0.7 and RMSE of 4.98 (%). All the R2 and RMSE values

correspond to an internal validation.

2.4.2 Water content at –10 kPa

As with DUL, we generated PTFs with different input variables. The resulting PTFs

are:

θ̂−10 (cm3/100cm3) = 0.5255− 2.76× 10−5 sand2

− 0.05195BD2
(2.10)

with R2 and RMSE values of 0.67 and 5.37 (%) respectively; and a simpler version

using just particle size information:

θ̂−10 (cm3/100cm3) = 0.4795− 3.873× 10−5 sand2

− 6.701× 10−7 clay2 sand
(2.11)

with an R2 of 0.6 and RMSE equal to 5.96 (%).

2.4.3 Relation between DUL and –10

To establish the behaviour of these two “equivalent” water contents, we used Eq. 2.9

(θ̂DUL) and Eq. 2.11 (θ̂−10) and data described in Table 2.3. Both methods show a

similar behaviour with particle size changes, with a general over-prediction and slightly

higher dispersion of θ̂DUL (Fig. 2.2). Similar results were obtained when we calculated

water content at the flux of 0.1 mm day−1 as proposed by Twarakavi et al., (2009):
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θ̂fc (L3/L3) = n−0.6 log10(Ks)(θs − θr) + θr (2.12)

where θfc is the water content at field capacity (flux=0.01 cmday−1), n van

Genuchten’s shape parameter, Ks saturated hydraulic conductivity (in cmday−1), θs

the saturated water content and thetar the residual water content (Fig. 2.2d). The

results showed that water content at –10 kPa commonly used in Australia is too high

for the DUL estimate and depends also on the hydraulic conductivity of the soil.
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Fig. 2.2: Prediction comparison between: a-c θ̂DUL and θ̂−10 using field measurements
dataset (Table 2.3). Predictions were made using Eq. 2.9 and Eq. 2.11; d θ̂DUL and
predictions made with PTF proposed by Twarakavi et al., (2009).
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2.4.4 Crop lower limit

Following the same procedure than with the previous properties, we generated PTFs

to predict CLL (θ̂CLL). The resulting PTF is:

θ̂CLL (cm3/100cm3) = 0.1476 + 9.002× 10−5 clay2

− 0.00115 sand

− 9.752× 10−7 clay3

(2.13)

with R2 and RMSE values of 0.65 and 4.37 (%) respectively. We also derived a

relation with DUL due that it is easier to measure than CLL:

θ̂CLL (cm3/100cm3) = 0.6151 θDUL − 0.02192 (2.14)

were θDUL corresponds to the measured value of DUL, with a R2 value of 0.61 and

RMSE of 4.65.

2.4.5 Water content at –1500 kPa

For laboratory measurement at –1500 kPa we generated the following PTF:

θ̂−1500 (cm3/100cm3) = 0.1766 + 0.00255 clay

− 0.001487 sand
(2.15)

with R2 and RMSE values of 0.71 and 4.84 (%) respectively. As in the case of field

measurements, we also generated a PTF for laboratory measurements, and obtained:

θ̂−1500 (cm3/100cm3) = 0.814 θ−10 − 0.07996 (2.16)

with a R2 value of 0.65 and RMSE of 5.43 (%).
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2.4.6 Relationship between CLL and –1500

As in the previous comparison, laboratory measurements generated an over-prediction

of soil water content estimated in-situ (Fig. 2.3). This indicates that this measures also

depends on the plant and some of the plants here can survive at potentials dryer than

–1500 kPa.
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Fig. 2.3: Prediction comparison between θ̂CLL and θ̂−1500 using field measurements
dataset (Table 2.3). Predictions were made using Eq. 2.13 and Eq. 2.15.
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2.4.7 Uncertainty estimation

Following the workflow specified in the section 2.3.3, to assess the uncertainty, we need

to obtain the optimum number of clusters and prediction interval (PI) for every PTF.

This is achieved by calculating PICP and MPI for different number of clusters. As

an example, Fig. 2.4 shows values of PICP and MPI for as function of the number of

cluster for Eq. 2.9. As we attempt to predict 95% prediction interval, we select the

number of clusters that are the closest to the 95% confidence interval and the minimum

MPI value correspond. In this case 13 clusters seems appropriate.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

9
4

.6
9

5
.0

9
5

.4
9

5
.8

Cluster

P
IC

P
 (

%
)

0
.1

9
5

0
.2

0
0

0
.2

0
5

0
.2

1
0

M
P

I

PICP MPI 1 − α

Fig. 2.4: PICP and MPI behaviour with different number of cluster for Eq. 2.9. Dotted
circles highlight the optimum number of clusters.

2.4.8 External validation

Using the data described in Table 2.5 we performed an independent or external

validation of our PTFs. Table 2.6 shows the performance of different PTFs for DUL

and CLL. As in the prediction, we observed a decrease in RMSE when more relevant

inputs are used. For example, in DUL, Eq. 2.5 that used sand, clay, BD and CEC as

predictors has an R2 = 0.84, while Eq. 2.9 that only used sand and clay has a poorer
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result (R2 = 0.45). However the uncertainty is a bit narrow, as the PICP for Eq. 2.5 is

only 79% (expected to be 95%) and the PICP values also become smaller with simpler

models. It is worth noting that PICP depends on the number of observations (the

larger the number of observations, the closer the PICP to the nominal 95% confidence

interval) and the standard deviation of the prediction (Hwang and Ding, 1997).

Table 2.6: External validation statistics of prediction quality

R2 RMSE PICP MPI

%

θ̂DUL (Eq. 2.5) 0.84 7.89 78.97 23.84

θ̂DUL (Eq. 2.6) 0.79 8.56 66.55 22.96

θ̂DUL (Eq. 2.7) 0.77 8.36 55.18 18.28

θ̂DUL (Eq. 2.9) 0.45 8.75 63.55 20.56

θ̂CLL (Eq. 2.13) 0.44 5.83 91.97 18.53

θ̂CLL (Eq. 2.14) 0.78 5.91 83.55 16.18

θ̂-1500 (Eq. 2.15) 0.64 6.49 91.56 21.50

θ̂-1500 (Eq. 2.16) 0.84 5.88 77.70 20.08

2.5 Making predictions with new data

In order to utilise the PTFs, first is necessary to evaluate how much information is

available to perform predictions (step (1) in Fig. B.1). In an ideal case, many soil

properties would be available and it would be possible to utilise the PTF with lower

error. In this example we explore the use of a PTF when data is limited and just soil

sand and clay fraction are available to predict DUL (thus selecting Eq. 2.9).

Once a PTF has been selected, is necessary to calculate the membership of an

observation to each of the clusters using Eq. 2.1 and Eq. 2.2. This calculation also

determine whether the inputs belong to the domain of the data used to generate

the PTFs (step (2) in Fig. B.1). After calculating the memberships, the prediction

with the PTF could be performed. Similarly, the values of the lower PI (PIL) and

the upper PI (PIU) of the residuals of each cluster are weighted by the membership

values to obtain the corresponding prediction limits (PL, step (3) in Fig. B.1). As an
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illustration, Fig. 2.5 shows the plot of sand and clay content of the input variables

for three observation. The domain of the input variables used to generate the PTF

(Eq. 2.9) is illustrated by the convex hull, and the mean or centroid of 2 clusters are

also depicted.
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Fig. 2.5: Relative positioning of observations in relation of class centroids. Convex hull
represents the limit to consider an observation as an extragrade.

Table 2.7 shows the calculation in this example, where the memberships of the

observations in the two classes and the extragrade which was calculated using Eq. 2.1

and Eq. 2.2 respectively. Next, the prediction was calculated using Eq. 2.9 (in a example

with only 2 clusters) and the values of PIL and PIU were weighted and added to the

prediction to obtain the corresponding PL. The results are shown in Table 2.7. In a

real case, the values of PIL and PIU can be obtained from Appendix C.

The first observation (p1) is closer to the centroid of cluster 1 (point C1 in Fig. 2.5)

and it was effectively assigned to that class, as confirmed with the mC1 membership

value of 0.99 (Table 2.7). Likewise, the second observation (p2) was assigned to the

second class, represented by the centroid C2. The third point (p3) lies outside of the

data domain (represented by the convex hull in Fig. 2.5) therefore its membership with

the extragrade class is higher and its PI wider (0.36 compared with 0.22 and 0.18 for
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Table 2.7: Membership (m) in clusters C1, C2 and extragrade (*), prediction intervals
(PI), prediction limits (PL) and DUL prediction for example observations, using
Eq. 2.9.

Obs. sand clay mC1 mC2 m∗ PIL PIU PLL DUL PLU

p1 91.50 6.60 0.99 0.01 0.00 -0.09 0.13 0.03 0.12 0.25
p2 17.00 65.00 0.02 0.98 0.00 -0.09 0.09 0.28 0.37 0.46
p3 30.00 37.50 0.06 0.12 0.82 -0.19 0.18 0.14 0.33 0.51

p1 and p2 respectively).

2.6 Conclusions

We presented the need of soil data for Australia, reviewing biophysical models currently

used. We identified eight key soil properties consistently used in these models, including

bulk density, drainage upper limit, crop lower limit, water content at –10 and –1500

kPa, organic carbon, saturated hydraulic conductivity, and USLE soil erodibility factor.

We used a genetic programming technique to generate pedotransfer functions

(PTFs) specifically designed to be used in the Australian context. We also used

the fuzzy k-means algorithm to estimate their prediction intervals and to identify

observations outside of the calibration data domain. The latest gives the possibility to

use the PTFs in other locations with soils with properties within the range of Australian

soils properties.

We also proposed to present PTFs along with uncertainty levels and information

about the data used in the training process. Published PTFs usually lack this

information and we believe it is crucial to provide it, independent of the method used

to obtain it, to avoid PTFs misuse and extrapolation of the model to another data

domain where prediction validity is not guaranteed.
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Appendix A - Models investigated

PERFECT: Productivity Erosion Runoff Functions to Evaluate Conservation

Techniques (Littleboy et al., 1989). It predicts the effect of climate, soil type, crop

sequence and fallow management on the water balance, erosion, and productivity.

Developed for sub-tropical grain growing areas of Queensland.

SWAT: Soil and Water Assessment Tool (Arnold et al., 1994). It predicts the impact

of land management practices on water, sediment and agricultural chemical yields

in large complex watersheds.

SedNet: Sediment River Network (Wilkinson et al., 2004). It constructs sediment

and nutrient (phosphorus and nitrogen) budgets for regional scale river networks

to identify patterns in the material fluxes.

FullCAM: It is an activity-driven carbon accounting model capable of dealing with

multiple carbon pools for the National Carbon Accounting System established by

the Australian Government (Richards, 2001). It is a compendium of models like:

the physiological growth model for forests, 3PG (Landsberg and Waring, 1997);

the carbon accounting model for forests (CAMFor) developed by the Australian

Greenhouse Office (Richards and Evans, 2000b); the carbon accounting model

for cropping and grazing systems (CAMAg) (Richards and Evans, 2000a); the

microbial decomposition model GENDEC (Moorhead and Reynolds, 1991); and

the Rothamsted Soil Carbon Model (RothC) (Jenkinson et al., 1987).

APSIM: Agricultural Production Systems Simulator (McCown et al., 1996). It

simulate biophysical processes in farming systems, in particular where there is

interest in the production, economic and ecological outcomes of management

practice.

Mk3.5: Climate System Model (Gordon, 2002). A model developed by CSIRO, which

contains a comprehensive representation of the four major components of the

climate system (atmosphere, land surface, oceans and sea-ice). It is used to

investigate the dynamical and physical processes controlling the climate system,

for multiseasonal predictions, and for investigations of natural climatic variability

and climatic change.
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CENTURY: Is an agroecosystem model which simulates long-term changes in soil

organic carbon and nitrogen, nutrient cycling, and plant production for soil–plant

ecosystems. It was originally developed for its use in the U.S. Great Plains

grasslands (Parton et al., 1987) and has been ported to various ecosystems around

the world.

DNDC: Denitrification-Deconposition model (Li et al., 2000; Li et al., 1992). A

general model of carbon and nitrogen biogeochemistry in agricultural ecosystems

which assesses trace gas emissions of scenarios like changes of land use,

agricultural activities, mitigation options, etc.

CLASS: Catchment scale multiple Landuse Atmosphere Soil water and Solute

transport model (Tuteja et al., 2004). It consist in a group of tools for physically

based eco-hydrological modelling. It was designed for investigation of the effects

of landuse and climate variability on both paddock scale as well as the catchment

scale. It includes a Crop Growth Model (CGM), Pasture Growth Model (PGM),

Spatial Analysis (SA) and an Unsaturated Moisture Movement Model (U3M-1D).

DSSAT: Decision Support System for Agro Technology Transfer (Jones et al.,

2003). Developed to facilitate the application of crop models in a systems

approach to agronomic research, to integrate knowledge about soil, climate,

crops, and management for making better decisions about transferring production

technology from one location to others where soils and climate differed.

OZCOT: Originally developed by Hearn (1994) to assess the performance of cotton

crops under different environmental and management conditions.

GDAY: Generic Decomposition And Yield (Comins and McMurtrie, 1993). It is a

plant-soil model describing fluxes of carbon and nitrogen plant, litter and soil

compartments. It uses a simplified physiology-based canopy assimilation model to

calculate carbon uptake, and the CENTURY model for soil carbon decomposition

and nitrogen cycling.

BIOME4: It is a coupled carbon and water flux model that predicts global steady

state vegetation distribution, structure, and biogeochemistry, taking account of

interactions among these aspects (Kaplan et al., 2003). Its simulation are based
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on BIOME3 (Haxeltine and Prentice, 1996) and LPJ (Sitch et al., 2003) models.

It uses internal PTF to predict water retention parameters.

LPX: Land surface Processes and exchanges. It combines process-based, large-scale

representations of terrestrial vegetation dynamics and land-atmosphere carbon

and water exchanges. It is based on LPJ model (Sitch et al., 2003), adding

simulation of wildfires started by lightning ignition. It uses internal PTF to

predict water retention parameters.

BC2C: Biophysical Capacity to Change (Evans et al., 2004). It is a conceptual mass

balance model designed to simulate the long-term average salt and water yield of

whole catchments. Includes internal relations between water retention parameters

and evapotranspiration.

CMSS: Catchment Management Support System (Davis and Farley, 1997).Designed

to provide long term, broad area prediction of the impacts of different nutrient

management strategies on water quality in Australian catchments.

IHACRES: Identification of unit Hydrographs And Component flows from Rainfall,

Evaporation and Streamflow data (Jakeman et al., 1990). It is a catchment-scale

rainfall-streamflow modelling methodology whose purpose is to characterise the

dynamic relationship between rainfall and streamflow. It uses water retention

parameters to internally derive evapotranspiration.
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Appendix B - PTF use diagram

Fig. B.1: PTF use diagram
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Appendix C - PTF cluster information

Table C.1: Calibration cluster information for use with Eq. 2.5.

(a) Class centroids and prediction intervals (PI)

clay sand cec bd PIL Mean PIU

Cluster Centroids Cluster residuals

1 14.92 81.19 5.94 1.69 -0.08 0.00 0.11
2 34.07 45.75 15.15 1.55 -0.07 0.00 0.08
3 43.38 47.01 28.94 1.40 -0.10 0.00 0.09
4 51.72 36.83 19.95 1.49 -0.12 0.00 0.07
Ex – – – – -0.18 -0.01 0.22

(b) Variance-covariance matrix

clay sand cec bd

clay 0.03 0.02 -0.01 -0.26
sand 0.02 0.02 -0.00 -0.16
cec -0.01 -0.00 0.03 0.75
bd -0.26 -0.16 0.75 64.87
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Table C.2: Calibration cluster information for use with Eq. 2.6.

(a) Class centroids and prediction intervals (PI)

cec clay sand PIL Mean PIU

Cluster Centroids Cluster residuals

1 22.58 25.48 69.46 -0.10 0.00 0.13
2 22.71 57.16 32.94 -0.12 0.00 0.06
3 9.69 23.63 62.89 -0.08 0.00 0.11
4 3.79 11.18 86.07 -0.07 0.00 0.12
5 11.05 33.02 61.20 -0.16 0.01 0.09
6 12.50 30.74 46.03 -0.08 0.00 0.08
7 18.12 51.66 32.47 -0.05 0.00 0.07
8 34.04 53.26 37.10 -0.09 -0.01 0.06
9 24.66 45.10 40.60 -0.08 0.00 0.08
Ex – – – -0.19 0.00 0.19

(b) Variance-covariance matrix

cec clay sand

cec 0.02 -0.01 -0.00
clay -0.01 0.03 0.02
sand -0.00 0.02 0.02
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Table C.3: Calibration cluster information for use with Eq. 2.7.

(a) Class centroids and prediction intervals (PI)

bd clay sand PIL Mean PIU

Cluster Centroids Cluster residuals

1 1.54 25.98 52.30 -0.10 0.00 0.08
2 1.44 57.45 32.76 -0.04 0.01 0.03
3 1.59 10.42 86.96 -0.09 0.00 0.11
4 1.49 51.73 33.98 -0.10 0.00 0.12
5 1.32 54.01 35.06 -0.08 0.02 0.03
6 1.33 36.71 50.30 -0.07 0.02 0.16
7 1.64 45.85 44.11 -0.09 0.01 0.03
8 1.77 13.71 83.40 -0.16 -0.01 0.04
9 1.51 35.82 59.62 -0.11 -0.01 0.08
10 1.60 42.85 36.75 -0.09 0.00 0.04
11 1.53 24.52 63.06 -0.06 0.00 0.11
12 1.31 21.49 74.54 -0.12 0.00 0.10
Ex – – – -0.23 0.01 0.24

(b) Variance-covariance matrix

bd clay sand

bd 42.35 0.09 -0.04
clay 0.09 0.03 0.02
sand -0.04 0.02 0.02
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Table C.4: Calibration cluster information for use with Eq. 2.8.

(a) Class centroids and prediction intervals (PI)

oc clay sand PIL Mean PIU

Cluster Centroids Cluster residuals

1 0.50 15.77 80.63 -0.09 0.00 0.12
2 0.19 29.26 47.85 -0.07 0.00 0.09
3 0.15 49.47 42.24 -0.05 -0.01 0.11
4 0.20 47.00 32.39 -0.11 0.01 0.06
5 1.05 16.62 80.34 -0.09 0.00 0.12
6 0.15 10.82 86.80 -0.11 -0.02 0.08
7 0.19 56.60 29.11 -0.08 0.01 0.08
8 0.27 22.56 65.11 -0.11 -0.01 0.09
9 0.28 60.58 30.10 -0.06 0.00 0.06
10 0.75 48.45 39.33 -0.08 -0.01 0.13
11 0.99 25.60 55.68 -0.04 -0.01 0.17
12 1.38 35.92 51.89 -0.06 0.01 0.05
13 0.31 31.91 63.90 -0.08 -0.02 0.14
14 0.23 41.26 45.84 -0.10 0.00 0.06
Ex – – – -0.22 0.00 0.23

(b) Variance-covariance matrix

oc clay sand

oc 5.05 0.05 0.03
clay 0.05 0.03 0.02
sand 0.03 0.02 0.02
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Table C.5: Calibration cluster information for use with Eq. 2.9.

(a) Class centroids and prediction intervals (PI)

sand clay PIL Mean PIU

Cluster Centroids Cluster residuals

1 58.84 38.17 -0.16 0.00 0.10
2 76.52 21.31 -0.12 0.00 0.07
3 59.88 32.42 -0.05 -0.01 0.09
4 33.96 44.99 -0.09 0.02 0.07
5 52.08 26.85 -0.06 0.00 0.13
6 61.29 24.74 -0.07 -0.01 0.11
7 35.06 52.25 -0.11 0.00 0.13
8 44.92 41.26 -0.07 0.00 0.06
9 77.20 15.43 -0.10 0.00 0.09
10 28.74 61.74 -0.08 0.00 0.12
11 22.70 60.09 -0.08 -0.01 0.05
12 40.94 50.70 -0.10 0.00 0.07
13 88.75 9.29 -0.09 0.01 0.15
Ex – – -0.22 0.00 0.22

(b) Variance-covariance
matrix

sand clay

sand 0.02 0.02
clay 0.02 0.03
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Table C.6: Calibration cluster information for use with Eq. 2.10.

(a) Class centroids and prediction intervals (PI)

sand bd PIL Mean PIU

Cluster Centroids Cluster residuals

1 70.31 1.43 -0.10 -0.01 0.12
2 32.19 1.69 -0.12 0.03 0.09
3 41.00 1.26 -0.10 0.01 0.10
4 71.88 1.61 -0.10 -0.01 0.11
5 87.94 1.58 -0.10 0.02 0.08
6 21.66 1.13 -0.14 0.00 0.08
7 41.79 1.55 -0.06 0.01 0.09
8 78.79 1.30 -0.08 0.01 0.12
9 26.66 1.33 -0.11 -0.02 0.10
10 55.55 1.49 -0.11 0.01 0.06
11 19.33 1.49 -0.11 0.00 0.13
12 61.54 1.70 -0.08 -0.01 0.12
Ex – – -0.25 – 0.26

(b) Variance-covariance
matrix

sand bd

sand 0.00 -0.09
bd -0.09 23.77
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Table C.7: Calibration cluster information for use with Eq. 2.11.

(a) Class centroids and prediction intervals (PI)

sand clay PIL Mean PIU

Cluster Centroids Cluster residuals

1 64.25 17.35 -0.12 0.00 0.11
2 87.03 8.18 -0.13 0.00 0.13
3 45.54 43.45 -0.11 0.02 0.07
4 48.66 23.83 -0.08 0.03 0.14
5 23.64 65.36 -0.13 -0.01 0.08
6 44.25 35.92 -0.14 0.01 0.09
7 64.84 23.91 -0.10 0.00 0.17
8 75.62 11.21 -0.11 -0.02 0.08
9 22.89 39.51 -0.11 -0.01 0.11
10 26.37 56.15 -0.08 -0.01 0.14
11 25.57 46.27 -0.10 0.00 0.12
Ex – – -0.32 – 0.32

(b) Variance-covariance
matrix

sand clay

sand 0.01 0.01
clay 0.01 0.02
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Table C.8: Calibration cluster information for use with Eq. 2.13.

(a) Class centroids and prediction intervals (PI)

clay sand PIL Mean PIU

Cluster Centroids Cluster residuals

1 26.70 52.29 -0.06 -0.01 0.09
2 37.81 59.23 -0.03 -0.01 0.05
3 40.25 45.55 -0.12 -0.01 0.04
4 47.98 39.56 -0.06 0.00 0.09
5 50.44 41.40 -0.05 0.01 0.06
6 58.60 23.75 -0.06 0.00 0.08
7 44.37 34.32 -0.09 0.01 0.11
8 24.37 61.72 -0.07 -0.01 0.09
9 31.98 60.39 -0.10 0.00 0.08
10 9.27 88.80 -0.10 0.00 0.07
11 62.39 29.57 -0.07 0.01 0.08
12 21.22 76.64 -0.09 0.00 0.05
13 15.25 77.50 -0.07 0.00 0.14
14 58.15 29.72 -0.09 -0.01 0.07
Ex – – -0.21 0.00 0.26

(b) Variance-covariance
matrix

clay sand

clay 0.03 0.02
sand 0.02 0.02
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Table C.9: Calibration cluster information for use with Eq. 2.14.

(a) Class centroids and prediction intervals (PI)

dul PIL Mean PIU

Cluster Centroids Cluster residuals

1 0.44 -0.10 -0.01 0.09
2 0.21 -0.05 0.00 0.07
3 0.41 -0.10 -0.01 0.11
4 0.35 -0.07 -0.01 0.07
5 0.12 -0.07 0.00 0.08
6 0.49 -0.11 -0.01 0.10
7 0.25 -0.03 0.00 0.06
8 0.32 -0.06 -0.01 0.09
9 0.38 -0.10 -0.01 0.09
10 0.16 -0.11 0.00 0.11
11 0.29 -0.10 -0.01 0.10
Ex – -0.12 0.00 0.11

(b)
Variance-covariance
matrix

dul

dul 75.02
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Table C.10: Calibration cluster information for use with Eq. 2.15.

(a) Class centroids and prediction intervals (PI)

clay sand PIL Mean PIU

Cluster Centroids Cluster residuals

1 25.84 61.22 -0.08 -0.01 0.10
2 22.01 59.19 -0.09 0.00 0.08
3 10.83 71.92 -0.05 0.01 0.11
4 38.25 41.58 -0.09 -0.01 0.10
5 65.36 23.39 -0.10 0.02 0.12
6 43.86 45.21 -0.08 0.01 0.14
7 24.38 48.29 -0.05 0.01 0.02
8 11.81 75.89 -0.09 0.00 0.11
9 6.02 89.77 -0.11 0.00 0.13
10 56.12 26.62 -0.10 0.00 0.09
11 19.35 72.95 -0.10 -0.01 0.11
12 46.57 25.53 -0.05 -0.02 0.11
13 40.62 23.23 -0.03 -0.01 0.06
Ex – – -0.25 – 0.21

(b) Variance-covariance
matrix

clay sand

clay 0.02 0.01
sand 0.01 0.01
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Table C.11: Calibration cluster information for use with Eq. 2.16.

(a) Class centroids and prediction intervals (PI)

dul PIL Mean PIU

Cluster Centroids Cluster residuals

1 0.24 -0.08 0.00 0.06
2 0.45 -0.15 0.01 0.07
3 0.39 -0.13 0.00 0.10
4 0.17 -0.04 0.00 0.05
5 0.34 -0.11 0.01 0.10
6 0.28 -0.10 0.01 0.08
Ex – -0.29 – 0.11

(b)
Variance-covariance
matrix

dul

dul 108.98
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Chapter 3

Predicting and mapping the soil

available water capacity of

Australian wheatbelt

Summary

Soil available water capacity (AWC) is the main source of water for vegetation and

it is the potential amount of water available for atmospheric exchange. Studying its

spatial distribution is crucial for agricultural planning and management and for use in

biophysical modelling. The aim of this work is to obtain a continuous spatial prediction

of AWC over Australia’s wheatbelt, using digital soil mapping techniques. We used

a data set of 806 soil profiles which have field measurements of drainage upper limit

(DUL) and crop lower limit (CLL). We mapped AWC at five depth intervals (0-5, 5-15,

15-30, 30-60, and 60-100 cm) with the help of different combinations of environmental

information (topographic, climatic, soils, Landsat imagery, gamma-ray spectrometry)

as covariates. The modelling techniques used were symbolic regression (GP), Cubist,

and support vector machines (SVM). We also tried two averaging methods to generate

an ensemble model. We observed decreasing RMSE values with the addition of extra

covariates and also an expected performance decrease with soil depth. In general, SVM

produced the best accuracy. We were able to improve the predictions using one of the

ensemble techniques, based on a weighted average of GP, Cubist and SVM models. The
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map generated with the optimal ensemble model was an unrealistic representation of

AWC therefore we decided to present a sub-optimal model as the final map. We stress

the need to not only focus on the numerical performance in order to obtain a flexible

and stable model, and a realistic visual representation of it.
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3.1 Introduction

Soil available water capacity (AWC) is defined as the amount of water soil can store

between field capacity or drainage upper limit (DUL) and wilting point or crop lower

limit (CLL). It is the main source of water for vegetation development and is related to

the potential amount of water a soil could make available for the atmosphere through

evapotranspiration (Dunne and Willmott, 1996). Information about its distribution

in space is crucial for planning and management in agriculture, and for ecological

modelling.

To model the spatial distribution of AWC, digital soil mapping has been proposed

(McBratney et al., 2003). The scorpan model describes that soil properties can be

predicted from its predicting factors in the form of empirical regression equations.

The general steps in the modelling process involve: collection of a dataset of soil

observations over the chosen area of interest; compilation of relevant covariates for

the area; calibration or training of a spatial prediction function based on the observed

dataset; interpolation and/or extrapolation of the prediction function over the whole

area of interest; calculation of uncertainty; and finally validation using existing or

independent datasets.

Despite the importance of AWC, not many studies present a mapping methodology

at national scale. Hong et al., (2013) successfully predicted AWC for Korea based

on detailed soil series maps and modal profiles, also recognising the shortcomings

due to variability within mapping units. Poggio et al., (2010) used morphological

features as covariates, obtaining an optimal model selecting covariates using generalised

additive mixed models, to map AWC in Scotland. Ugbaje and Reuter (2013) used two

different covariates combinations (remote sensing data; terrain, climate, and vegetation

attributes) and pedotransfer functions (PTFs) to map AWC in Nigeria, not finding a

clear effect of number of covariates on model accuracy. Most of these studies used PTFs

to predict the AWC. Thus the uncertainty of the map depends also on the accuracy of

the PTFs.

In digital soil mapping, the visual representation of the product (map) depends

on the covariates and the models used. Several studies that looked at the selection

and parsimony of the covariates, and also studies have compared different data mining

prediction. However no work has looked at the effect of both covariates and models on
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the visual representation of the map.

A good digital soil map should have a balance of model parsimony (number of

covariates), accuracy (numerical performance) and realism of the visual representations

(maps). The aim of this work is to obtain a continuous spatial prediction of AWC over

Australia, based on field measured data, that reconciles these three aspects, exploring

the use of different covariates combinations and modelling techniques, and visually

inspecting the generated maps.

3.2 Materials and methods

3.2.1 Data sets and study area

The data set used is a CSIRO Ecosystem Science (APSRU) compilation of 806

soil profiles, containing field measured DUL and CLL values, mainly distributed in

productive soils (Dalgliesh et al., 2012), as shown in Fig. B.1. The details of the

measurement and data can be found in http://www.asris.csiro.au/.

A bioregion classification by Thackway and Cresswell (1995) was used to limit the

study area, selecting the bioregions which contained observations of the APSRU data

set. This selection, usually referred as “wheatbelt”, is represented as the greyed area

in Fig. B.1 and it is equivalent to about 1.75 million km2.

N

Fig. B.1: Location of soil profiles from APSRU database. Greyed area represents the
bioregion subset where predictions were made.
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3.2.2 Digital soil mapping model

In this study we used the scorpan approach (McBratney et al., 2003) as an empirical

quantitative descriptions of relationships between soil and other spatially referenced

factors. It is represented as S = f(s, c, o, r, p, a, n) + ε, where S: is the variable of

interest (DUL and CLL), s: stands for soil (other properties of the soil at a point), c:

climate (climatic properties of the environment at a point), o: organisms (vegetation

or fauna or human activity), r: topography (landscape attributes), p: parent material

(lithology); a: age (the time factor); n: space (spatial position); and ε correspond to

the spatially modelled residuals (usually by kriging).

Soil attribute: S

We predicted soil properties related to water holding capacity of a soil. DUL represents

the volumetric water content an initially saturated soil holds after draining for 2-3

days (Veihmeyer and Hendrickson, 1949). On the other hand, CLL corresponds to the

volumetric soil water remaining in the soil after a healthy crop, with uninterrupted root

development, has reached maturity under soil water-limited conditions (Hochman et

al., 2001). Both properties are measured in the field independently and were governed

by different processes, hence different sources of error, thus we decided to model them

separately.

Statistics of DUL and CLL measurements are presented in Table 3.1. We used the

equal-area spline function (Bishop et al., 1999) to convert the soil profile data into

standard depths (0-5, 5-15, 15-30, 30-60, and 60-100 cm).

Table 3.1: Statistics of soil samples used for model generation.

Mean S.D. Min. Median Max.

DUL (%) 30.20 11.54 3.00 32.00 56.00
CLL (%) 16.90 8.61 0.40 18.00 53.00

By definition, the predicted soil attribute S is delivered along with an uncertainty

measure. This point is further elaborated in Section 3.2.3.
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Factors: s, c, o, r, p, a, n

Environmental covariates are intended to explain scorpan factors and for each factor

there is an extensive list of possible covariates to use. The covariates used in this

work include: a) digital elevation model (DEM) and associated derivatives: slope

(percentage), topographic wetness index (TWI) and multi-resolution valley bottom

flatness (MRVBF) to try to explain factor r, as these attributes were found to

explain variation in soil moisture and texture (Malone et al., 2011); b) air maximum

temperature and rainfall (summer and winter means); potential evapotranspiration

(annual mean); and Prescott Index (Prescott, 1950) to try to explain factor c; and

c) remote sensing data (Landsat 7 imagery (2012 percentile composite), gamma-ray

spectrometry (40K, 232Th, and 238U), and weathering index (Wilford, 2012)) to try to

explain o and p factor.

We also used a bioregion classification (IBRA v6.1 ) to stratify the modelling

process. The use of this covariate might also be rationalised as the inclusion of

information to try to explain changes in all the scorpan factors, constraining the spatial

position n.

Function: f

The function f represents the connection between the soil attribute S and the scorpan

factors. In this study we used three modelling techniques (described below) with

different complexity. A randomly selected subset of the data (80%) was used for

calibration and the remaining 20% for cross-validation. The subsampling process

(cross-validation) was repeated 20 times to obtain an average error to compare the

different modelling techniques.

Support vector machines (SVM) A method originally proposed by Cortes and

Vapnik (1995) that looks for an optimal separating hyperplane between two

classes by maximising the margin between the closest points of each class (Meyer,

2012). In a ε-regression case (as used in this study), the observations lie in

between the two borders of the margin (supporting vectors), which are separated

from the hyperplane by ±ε (maximum error). More detailed explanations about

SVM can be found in Smola and Schölkopf (2004).
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We used the R package e1071 v1.6.1 (Meyer et al., 2012), training the model

with the default options.

Cubist A decision rule-based method where a tree is grown based on a succession of

rules and where the terminal nodes (leaves) represent linear regression models.

Originally proposed by Quinlan (1992) and Quinlan (1986), it has been widely

used to model soil properties (Henderson et al., 2005; Minasny et al., 2008).

We used the R package Cubist v0.0.13 (Kuhn et al., 2013), training the model

with the default options.

Genetic programming (GP) A machine-learning method for evolving computer

programs, following the concepts of natural selection and genetics, to solve

problems (Koza, 1992; Koza, 1994; Koza et al., 1999). In this specific case,

we used symbolic regression to fit a function to a specific data set. It application

to soil science is recent but expanding rapidly (Johari et al., 2006; Makkeasorn

et al., 2006; Parasuraman et al., 2007).

We used the software Formulize v0.98.2b, setting a stopping criteria of 25,000

generations and F = {+,−, ∗,%} as the function set to be used in the regression

functions (i.e.: building-blocks).

Residuals: ε

The scorpan approach implies the addition of the spatial correlation structure of the

model residuals to the predictions. The assumption of kriging is the stationarity in

the process (the residual have the same mean = 0 everywhere) At local scale, data

density is usually high and the distribution is more-or-less homogeneous, so kriging of

the residuals does not present further complications. This is not necessarily true for a

continental scale using legacy data. Data is usually clustered in space leaving extensive

areas without information. When the kriging method is applied to clustered data, the

resulting map usually presents artefacts due to interpolation between distant clusters

or extrapolation. In addition the stationary process may not hold. For these reasons

we decided to omit this step, which could be addressed in future studies.
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3.2.3 Prediction and mapping

Covariates selection

Due to complexity of the interactions between the soil attribute S and the scorpan

factors, the selection of covariates is an important part of the modelling process.

In general, the addition of covariates to the modelling process improves predictions,

but that depends on which and how many covariates are being included. For instance,

when covariates are highly correlated to each other, the addition of new covariates

does not produce better results (Ugbaje and Reuter, 2013). Another possible problem

is model overfitting, where the resulting model represents not only real relationships

but also relationships occurring by chance in the training data that may be absent in

other observations (Carr, 1988). An example of the latter could be found in Table 5 of

McBratney et al., (2000), where adding all the available covariates generated a model

with higher error compared with a model using a sub-set of them.

Two groups of method for covariate selection exist, the “filter” and the “wrapper”

approach (John et al., 1994). The filter approach consists in pre-processing the

covariates, identifying the relevant ones, via statistical procedure or expert knowledge

(Lark et al., 2007), and using selected covariates for the model calibration. On the

other hand, the wrapper approaches uses different sub-sets of covariates to calibrate

the model and the accuracy of the predictions using different combination of covariates

are compared.

To evaluate the effect of covariate selection on prediction quality, we used the

wrapper approach, grouping the covariates in sub-sets by categories, using the concept

of scorpan model, and to add them sequentially to the model, gradually increasing

the complexity. The data groups used correspond to: a) bioregion classification,

b) topographic attributes (slope, TWI and MRVBF), c) landsat imagery, d) gamma-ray

spectrometry, e) weathering index, and f) climate data (air temperature, rainfall,

evapotranspiration, Prescott Index).

The data was split into 80:20 for prediction and validation. The 3 models (GP,

Cubist and SVM) were calibrated for each of the covariate selection, and for each

model, 20 model cross-validation fittings were performed. An ANOVA/Tukey analysis

was computed to determine the difference of performance as a function of covariate

combinations.
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Ensemble Model

The “best model” is a subjective concept, usually defined as the model which produced

the lowest error (or RMSE) in a validation dataset. As an alternative to selecting

this “best model”, we suggest the use of model averaging. Model averaging consists

of creating multiple models and combining them to obtain a single final model. The

advantage of this method is that most of the time, the combined model performs better

that any of the individual models. It is a method used for almost 200 years as pointed

in an interesting review by Clemen (1989).

We tested the idea of model averaging for the 3 different prediction models (GP,

Cubist and SVM).

We used two averaging techniques, with different weighting criteria. First, an equal

weight average (EWA), where the final prediction is obtained assigning the weights

β̂EWA = { 1
k
, . . . , 1

k
}, where β̂ is vector of weights and k is the number of models.

The second corresponds to an averaging technique used by Granger and Ramanathan

(1984), where the weights correspond to the ordinary least squares estimates of a

multiple linear regression, β̂GRA = (XTX)−1XTy, where X and y stand for the

matrix of predicted values of the different models and the vector of observed values,

respectively (Diks and Vrugt, 2010).

Mapping and validation

All the covariates were available as raster files. As a pre-process, they were re-sampled

(average) to match a 500 m grid. In order to complement the numerical evaluation of

the models with a visual evaluation, we applied the fitted models of DUL and CLL to

the whole extent, for a grid spacing of 500 m, using all the covariate combinations and

modelling techniques. To validate the models we used the remaining observations (20%

randomly selected from the APSRU dataset) from the 20 iterations of the modelling

process.

Uncertainty assessment

As we mentioned in Section 3.2.2, the soil attribute S should have an associated

uncertainty level. This is a measure to evaluate the risk involved in using the predictions

for a decision-making process (Goovaerts, 2001). We estimated the uncertainty of the
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predictions using the fuzzy k-means with extragrades algorithm (Tranter et al., 2010).

This method classifies the covariates values at the observed points (observations used

in model training) in clusters. Each cluster has a central value (centroid), and an

associated range of error estimated from the α/2 and 1 − α/2 (α: significance level)

quantiles of the prediction residuals. When a new value is predicted, the distance

between values of its covariates and the centroids of the clusters is estimated and a

membership grade assigned (grade of “belongingness” to each cluster). Finally, the

error ranges of the clusters are weighted by the membership grades and added to the

prediction. The advantage of this method is that if the covariates of a new prediction

are too dissimilar to the ones used in the model training process (high distance from

centroids), the prediction is assigned to the extragrade class and its error penalised.

3.3 Results

3.3.1 Covariates selection

We generally observed that adding groups of covariates decreased the magnitude of the

cross-validated error (Fig. B.2).

As we mentioned in Section 3.2.3 in some studies the addition of extra covariates

does not yield better results. In other cases, a smaller number of covariates is preferred,

following parsimony and Occam’s razor principle (Blumer et al., 1987). In this study

we decided to select all the covariates for two reasons: there is not significant loss of

accuracy when using the maximum number of covariates, and all the covariates are

already available for future improvements of the models (with the addition of more

observations).

To clarify the analysis, we defined the analysis with three different combinations of

covariates which reflect the complexity: a) using bioregions and topographic attributes

(from hereon COV 1), b) using bioregions, topographic, weathering and climate data

(from hereon COV 2), and c) using bioregions, topographic, gamma-ray, Landsat,

weathering and climate data (from hereon COV 3).
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Fig. B.2: Boxplot of model cross-validated RMSE (20 iterations) trained with
different combinations of covariates. The prediction corresponds to DUL at 0-5 cm
depth. bio: bioregion; topo: slope, TWI and MRVBF; weathering: weathering index;
gamma: gamma-ray spectrometry; landsat: Landsat 7 bands; climate: air temperature,
rainfall, evapotranspiration, Prescott Index. Letter on the right margin represent mean
groups after an ANOVA/Tukey analysis.

3.3.2 Ensemble Model

Performance of individual models was consistent with SVM showing the best results,

followed by Cubist and GP (Table 3.2). Regarding the averaging method, the GRA

method tends to have a better performance, showing results which are as good or better

than the best of the three individual models. This error decrease in GRA indicates that

all the models produced unbiased predictions (Draper, 1995) leading in a reduction of
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the uncertainty. The superior performance of GRA is an expected result. This kind of

model averaging is widely used in machine learning (Hashem, 1997).

Analysing the effect of the number of covariates used in the modelling process,

this time with a different aggregation level (ANOVA/Tukey was performed on each

modelling technique), it is possible to observe a change in the tendency observed in

Fig. B.2. When we added all the covariates, the error tended to increase, a phenomenon

known within the statistical literature as Simpson’s paradox (Simpson, 1951). Due to

the error increase being non-significant, we decided to continue with all the covariates.

Table 3.2: RMSE values of DUL validation between 0 and 5 cm depth. Mean of 50
iterations by model and covariate combinations. RMSE range between brackets. Units
in m m−1).

GP Cubist SVM EWA GRA

COV 1 0.059
(0.051–0.07)

0.049
(0.044–0.055)

0.049
(0.044–0.054)

0.05
(0.045–0.055)

0.048
(0.043–0.053)

COV 2 0.052
(0.045–0.071)

0.046
(0.04–0.052)

0.044
(0.04–0.048)

0.045
(0.039–0.054)

0.043
(0.038–0.048)

COV 3 0.052
(0.045–0.063)

0.047
(0.042–0.053)

0.046
(0.041–0.05)

0.046
(0.041–0.052)

0.044
(0.04–0.049)

3.3.3 Visual evaluation

So far, we have explored several combinations of covariates, modelling techniques, and

ensemble methods. Results showed that increasing the complexity of the model and

complexity of the covariates will decrease the cross-validated error.

However, the approach that is usually overlooked is that the generated maps can

be different for different combinations of covariates and models. Which model should

be used? Should we aim for the model which produces the least error? Or should we

subjectively choose a model which is more realistic?

We recommend using expert knowledge to visually evaluate the generated maps

including but not limited to the criteria pointed in this section.
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Artefacts

Artefact is the name assigned to any error observed in a digital signal. Remote

sensing data and its derivatives correspond to representations of signal captured by

electronic sensors and processed by algorithms. All the equipment and techniques used

to generate this information is prone to introduce error, therefore is necessary to make

sure that the covariates used are artefact-free.

Fig. B.3 shows the map produced using COV 3 and GRA. The map showed

undesirable artefacts generated by one of the covariates (Fig. B.3a). Removing this

covariate (232Th data) did not significantly decrease the performance of the model and

allowed us to obtain a more realistic representation (Fig. B.3b). Although 232Th data

is indicative of the parent material (Wilford, 2012) the continental data can be noisy

in some parts of the country. We suggest that checking for anomalies and unrealistic

representations is a recommended step.

Longitude

L
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33°S

32.5°S

32°S

117°E 117.5°E 118°E 118.5°E

(a) (b)

Fig. B.3: Subarea showing artefact caused by 232Th data on DUL map. (a) Map with
artefact, and (b) map without artefact.

Models concordance

If more than one modelling technique is evaluated, a measure of concordance between

the models is a good indicator of areas where potential mapping problems could be
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found.

We estimated and mapped the standard deviation of the three modelling techniques

as a measurement of agreement between the models, using the three covariates

combinations mentioned in Table 3.2. Using COV 1 combination we could observe

an important discordance between the models, specifically by GP which only used

the bioregion classification as a predictor, generating a sharp contrasts observed in

Fig. B.4a. As we increased the number of covariates, the discordance between models

also increased, especially because SVM (and Cubist to a lesser extent) captured

more complex interactions in some bioregions. This was evident in areas like Cobar

Peneplain, central NSW (distinguished from most of the surrounding bioregions which

are relatively flatter landscapes); Esperance Plains, south-east WA, and South Eastern

Queensland (which present strong marine influence and limited by abrupt ranges);

or the highest areas of South Eastern Highlands, and Nandewar, NSW. Besides the

distinctiveness of these areas, they are also poorly represented by soil samples in the

dataset.

Out-of-range predictions

When the fitted models are applied to the whole extent, it is possible to find

combination of covariates absent in the training process, due to non-sampled or poorly

represented areas. This is the reason why a systematic sampling schema should be

used when possible. The modelling procedure is based on point soil observations and

if the modelling technique is not robust enough, that could lead to obtain predictions

beyond the expected limits of a soil property.

For instance, at South Eastern Highlands and South Easter Queensland bioregions,

GP predicts negative values of CLL in depth (60-100 cm), and the ensemble model

produces maps with anomalies (Fig. B.5). In Section 3.3.2 we remarked that GRA

ensemble-method generates the best numerical results, but after this final step, the

“best model” was discarded. We continued the analysis with the second-best model,

namely SVM with all covariates (excluding 232Th data, see Section 3.3.3)

76



Chapter 3. Predicting and mapping soil available water capacity: Australia

(a) (b)

(c)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

DUL (m m
-1

)

Fig. B.4: Standard deviation of DUL predictions, between 0 and 5 cm depth, of SVM,
Cubist, and GP models, with different combinations of covariates. (a) COV 1, (b)
COV 2, and (c) COV 3.

3.3.4 Validation

Based on the numerical and visual evaluation, we selected the DUL and CLL models

generated with SVM, using COV 3 and excluding the covariate 232Th, as our final map.

Table 3.3 shows model validation errors in depth. As expected, the performance of the

models decreased with depth. This has also been observed by Malone et al., (2011) who

predicted AWC in the agricultural district Edgeroi, NSW, Australia (30.32S, 149.78E),

and for other soil properties predictions like organic carbon (Minasny et al., 2006;

Jobbágy and Jackson, 2000). Deeper layers of soil are not as exposed to weathering
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Fig. B.5: Water content to 1 meter depth (mmm−1) based on ensemble model, using
COV 3. Red colour represents negative values. (a) Drainage upper limit, and (b) Crop
lower limit.

factors as the top layers, therefore the correlations with climatic and remote sensing

data (that mainly reflect the surface condition) tend to be lower.

Table 3.3: R2 values for validation of DUL and CLL in depth, using SVM and COV 3.

DUL CLL

0-5 cm 0.6710 0.6906
5-15 cm 0.6558 0.6772
15-30 cm 0.6090 0.6214
30-60 cm 0.5725 0.5640
60-100 cm 0.4906 0.4915

3.3.5 AWC map

The final step in the calculation of AWC is to estimate the difference between DUL

and CLL. We subtracted both values and used the lower and higher prediction limit of

CLL and DLL respectively to represent the uncertainty (Fig. B.6).

As we pointed in the visual evaluation (Section 3.3.3), models tended to have lower

performance in poorly sampled areas, specially the highest areas of the landscape. The
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Fig. B.6: Diagram of estimation of AWC based on DUL and CLL values with their
respective uncertainty levels.

uncertainty follows the same trend, presenting wider prediction intervals in these areas

(Fig. B.7).

The final map (Fig. B.8) shows a good representation of the AWC distribution

over the continent. The WA region presents the lower water contents, in concordance

with the sandy soil located in the area. The soil-heterogeneous VIC area seems well

represented as well, with the appearance of Vertosols in the southern region with higher

AWC associated with them. In the northern area of VIC, close to the border with NSW,

the sharp transition between the Cobar Peneplain, dominated by Kandosols, and the

north-eastern bioregions, dominated by Vertosols, is clearly represented. QLD area

generally presents high values of AWC in concordance with clayey textural classes, but

areas in Brigalow Belt North and South Eastern Queensland have a small number of

observations thus limited by the higher uncertainty levels.

3.4 Conclusions

We explored the use of digital soil mapping approach to model AWC in Australia,

balancing three important aspects of it, which are not discussed in previous studies:

model parsimony, accuracy and realism of the visual representations. We also explored
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Fig. B.7: Prediction interval width (mmm−1) based on SVM predictions, using COV 3,
to 1 meter depth.

the use of ensemble methods (i.e.: model averaging) as an alternative to single model

selection.

We used different combinations of environmental covariates to represent the various

process involved in soil formation. In many studies the use of multiple covariates does

not yield better results compared with simpler models. In our case the combination of

all the available covariates showed the best accuracy.

We tried three different modelling techniques, namely symbolic regression (GP),

Cubist and support vector machines (SVM). In general, SVM presented the best

accuracy. We were able to improve the predictions generating an ensemble model

(least squares or GRA method), based on a weighted average of GP, Cubist and SVM

models.

After visually evaluating the generated maps, we decided to present a sub-optimal

model, generated with SVM because it generated a more realistic representation

compared with the optimal GRA model. The final AWC map is a good representation

of the study area, except in poorly sampled areas, where the uncertainty levels increase

considerably.
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Fig. B.8: Available water content (mmm−1) based on SVM predictions, using COV 3,
to 1 meter depth.

Balance model parsimony, accuracy and realism of the visual representations is

a sensible aspect of the digital soil mapping approach that could be achieved in

different ways, but we stress the need to consider the knowledge about the modelled

process and not only focus on the numerical performance in order to obtain a flexible

and stable model, and a realistic visual representation of it. The main reason is

that model evaluation or validation is usually only based on the smallest error or

uncertainty. However the evaluation is based on point observations which do not reflect

the spatial representation. We should have a more objective way to evaluate the spatial

representation of digital soil maps.
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Chapter 4

General discussion, conclusions and

future research

4.1 General discussion

PTFs maintenance and centralisation

During the development of this project it was evident that a large number of PTFs

are currently available. PTFs try to represent a natural system, dynamic by nature.

Another evolving matter is the amount of information available for creating PTFs. Due

to these two factors, it is expected that PTFs also evolve. In Chapter 1, I generated

an improved version of a PTF first proposed by Minasny and McBratney (2001). This

improvement was possible using a bigger dataset. One may argue the novelty of this

approach, but it is undoubtedly important to “update” PTFs at some point, as new

data comes to hand.

This high availability of PTFs may be confusing for the end-users. It is the

end-user’s responsibility to: look for the appropriate PTF; compare the data used

in the PTF calibration process (when available) with the data he/she wants to predict;

and/or if the PTF is applicable in the region of interest. Presumably, the end-user is

capable of performing this process, but why not give him/her the means to facilitate

this process?. McBratney et al., (2002) have already discussed the potential benefits

of an inference system to predict other soil properties selecting the PTF with better

performance. I see a great benefit behind this idea, not just as an “oracle” but as a
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knowledge organisation system. It is the responsibility of the soil science community (or

any scientific community) to organise the information generated by them and prevent

its misuse. The framework proposed in Chapter 2 a step closer to standardisation of

information, and it could be easily implemented in an inference system like the one

described by McBratney et al., (2002).

“Big mapping” challenge

Initiatives like GSM and TERN aim to provide soil information to a wide audience in

form of soil maps. The efforts to map big areas date back to China (4,000 years ago) or

the Roman empire based on soil suitability for plant growth or other uses (McDonald,

1994). Modern efforts are based in more complex principles, aiming at detail never

seen before, which undoubtedly presents new challenges for the soil community.

As we mentioned in Chapter 3, methodologies to provide national/continental maps

are relatively new. Traditional approaches like Monte Carlo for uncertainty assessment

are still valid, but they become more restrictive due to the computation time/resources

used. Working with big maps implies working with more efficient methods, and

optimised code, things not always present in the “toolbox” of a soil scientist. Besides

this scale change, working with increasingly larger areas, the detail of the studies is

also an evolving matter. Increasing the details not only implies collecting more data,

which is a challenge in itself, but also increasing the computer resources. Duplicate the

detail of a digital map (e.g.: from 500 to 250 m resolution) means quadruplicate the

number of pixels and the time/resources associated.

Performance of extragrades class in PTFs

The extragrade class corresponds to marginal observations of each cluster, considering

a n-dimensional space defined by all the soil properties used to calibrate a PTF.

The concept is similar to the widely used bioclimatic envelope model, which uses

associations between aspects of climate (climate variables forming a n-dimensional

space) and known occurrences of species across landscapes of interest to define sets of

conditions under which species are likely to maintain viable populations (Araújo and

Peterson, 2012). The model defines a marginal bioclimate where the conditions are not

favourable for the development of the species (usually with fewer specimens compared
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with the core bioclimate). The limit between both bioclimate is defined by a threshold

(usually between 90-97%) that must be defined generally combining expert knowledge

and absence records (Carpenter et al., 1993), and, of course, varies within species.

This comparison presents interesting differences. In the envelope model, the

difference between marginal and the core bioclimate are notorious (with fewer

specimens in the marginal bioclimate). In this study, we could not find a significant

difference in the prediction error of observations in the extragrade class (marginal)

compared with the observations of any other cluster (core). PTFs are governed by

other processes, and some soil properties are strongly driven by physics, which tend to

be more universal, which may lead to differences compared with the envelope model.

Considering this, it is necessary to expand the concept of extragrade class to define

how far is possible to extrapolate the predictions of PTFs.

4.2 Overall research conclusions

The research presented here has been successful at creating a framework to address

soil data needs, using as example, soil properties related to water holding capacity

(drainage upper limit (DUL) and crop lower limit (CLL)) within Australia.

In the case when additional soil information is available, the use of pedotransfer

functions (PTFs) is recommended. I successfully generated a group of them, using

symbolic regressions, based on soil data availability. I used the fuzzy k-means with

extragrades algorithm to solve two important information delivery issues related to

PTFs, namely assessment of uncertainty levels and delineation of data domain.

When no extra soil information is available, the spatial location should be enough

to obtain information about DUL and CLL in the area of interest. I generated

a spatial model of AWC using a digital soil mapping approach. I balanced three

important aspects of it, which are not discussed in previous studies: model parsimony,

accuracy and realism of the visual representations. The predictions of this model are

also delivered with uncertainty levels and domain delineation, extending the approach

applied to PTFs generation to a spatial context.

The implementation of this framework should automatically deliver predictions with

uncertainty levels and, when using PTFs, information about the data domain used in

the training. Despite the specific methods used to make predictions and to assess
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uncertainty levels, I remark that the aim of the framework is not to enforce the use

of specific methodologies but to deliver detailed information to the end-users to avoid

erroneous interpretation of predictions.

4.3 Future work

There are many opportunities for future work and some of these have been briefly

mentioned in previous chapters. Opportunities include:

(i) Uncertainty levels for particle-size classification systems transformation:

Chapter 1 had an exploratory mission, specifically for the use of symbolic

regression. I extended the PTFs generation in Chapter 2 addressing uncertainty

level, thus this step has to be applied to the PTFs to transform from the

Australian to the USDA/FAO soil particle-size classification system.

(ii) Further development of uncertainty propagation: In Chapter 2 I estimated

DUL and CLL with their respective uncertainty levels to finally calculate AWC

(DUL - CLL). I kept the lower prediction interval of CLL and the upper prediction

interval of DUL as a measure of the uncertainty of AWC. This procedure assumes

that the total uncertainty calculus is fully compositional, thus it can be calculated

systematically from the uncertainty of its components. This simplification is not

necessarily true, and it is important to assess this issue, specially when including

PTFs on inference systems where using predicted variables as predictors is a

tempting alternative.

(iii) Further development of PTFs and maps for key properties: In this project I

focused in soil water retention properties but the need of soil data goes beyond this

group. As mentioned in Section 2.2.1, eight key soil properties are consistently

used by biophysical models in Australia, thus the obvious necessity of model the

remaining ones, namely BD, OC, Ksat, and Kerosion.

(iv) PTFs transportability: I mentioned that PTFs should not be used beyong the

geomorphic region or soil type from which it was developed, since they may lose

their validity. With the identification of the data domain proposed in Chapter 2,

using the fuzzy k-means with extragrades algorithm, it would be possible to
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identify if soils from another regions are within the data domain of the generated

PTFs. An evaluation of the predicting capabilities of the PTFs with information

of similar soils but from completely different geographic areas seems a logic future

step.

(v) Further development of methodology to add kriged error ε to scorpan model at

continental scale: As mentioned in Section 3.2.2, I omitted the step of adding

the spatial correlation structure of the model residuals to the predictions due to

the clustering observed in data at continental scale. It is complicated to overcome

the fact that big areas does not count with soil samples but a estimations of error

per cluster (subareas) could be considered, in addition to an estimate about the

behaviour of the error in poorly sampled areas.

(vi) Further development of visual evaluation of maps: A few general considerations

were followed in the development of this project, specifically in Section 3.3.3,

but it is still a methodology under development. It is necessary to condense the

traditional expert knowledge used in map visual evaluation, and find patterns of

error to create general rules and make the procedure more objective.
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