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ABSTRACT  

	  
The increasing prevalence of obesity in the community has major implications for cardiovascular 

disease. One of the major sequelae of obesity is hypertension; data suggest that obesity is 

implicated as a contributory factor in 60 to 70% of cases of essential hypertension.  It is thought 

that a maternal high fat (HF) diet, high sucrose (HSU) diet or obesity during pregnancy may cause 

adverse changes to the foetus during development and predispose the offspring to develop obesity 

and/or hypertension. However to date there is little understanding of exactly which facets of a HF 

diet, HSU diet or obesity are responsible for these programming effects in the offspring. In 

particular, there is uncertainty as to whether established obesity or simply a maternal diet high in 

fat or sucrose during pregnancy is the stimulus for programming.  Furthermore, the 

pathophysiological mechanisms underlying the development of maternal high fat-programmed 

hypertension are not clear.  It is thought that dysregulation of the autonomic nervous system (ANS) 

may be pivotal in the development of obesity related, HSU or high fat –related hypertension. 

Therefore in this study we tested the effects of a maternal HF diet and HSU diet without 

development of obesity, on cardiovascular and autonomic function during rest and in response to 

physiological and psychological stressors.  

	  
Rat dams were placed on either a HF (34% fat) or HSU (10% w/v) diet for one month before 

mating, until parturition. Control dams were fed a standard chow (4.8%) fat, and protein levels were 

maintained at 21% in all groups. At birth, litters were reduced to 8 pups to control for postnatal 

nutrition. At six months of age, the offspring were implanted with a telemetry blood pressure (BP) 

transmitter in the abdominal aorta. After a recovery period of two weeks, BP waveform was 

recorded (5min/hr, 24hr/day) over a 9-day protocol. This protocol comprised of three days 

baseline, three days of water deprivation and three days of recovery. Following a three-week 

recovery period from the 9-day dehydration protocol, the rats were subjected to an air jet stress 

(psychological stressor). The air jet protocol comprised of a series of air puffs (pressurised air) 

directed to the head of the rat. Various cardiovascular (systolic blood pressure (SBP), diastolic 

blood pressure (DPB) and heart rate (HR)), and autonomic (spontaneous baroreflex sensitivity 

(sBRS), baroreflex effectiveness index (BEI), dP/dtmax, heart rate variability (HRV) and blood 

pressure variability (BPV)) indices were determined. Comparisons between high fat, high sucrose 
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and control offspring’s were made at rest and in response to the psychological (air jet stress) and 

the physiological (dehydration) stressor.   

	  
Our data showed that a maternal high fat diet during pregnancy results in hypertension at rest, 

demonstrating that the risk of developing hypertension is increased in these offspring when 

compared to offspring from mothers given a control diet. In response to a psychological or 

physiological stressor, all animals showed an increase in cardiovascular variables. However 

despite the high fat rats having a higher blood pressure to start, the magnitude of increase in 

cardiovascular variables were similar between groups in both male and female rats. There were no 

obvious differences in autonomic responses to either air jet stress or dehydration between high fat 

and control animals, indicating that any increased susceptibility to hypertension in high fat 

programmed rats is unlikely to be due to heightened sympathetic responses to stress. Further 

studies are necessary to elucidate the pathophysiological mechanisms that underlie hypertension 

in our model of high fat programming.  

 
In our second model, a maternal high sucrose diet failed to program hypertension in the offspring 

at rest or in response to either a psychological or physiological stressor. There were also no 

differences in autonomic function between groups at rest or in response to a psychological or 

physiological stressor. Therefore this model failed to detect any detrimental effects of a maternal 

high sucrose intake on the cardiovascular or autonomic function in the offspring.  

 
Our results therefore indicate that a maternal diet high in fat during pregnancy, even in the 

absence of developed obesity, increases the risk of hypertension in adult offspring, although 

autonomic control of blood pressure does not appear to be significantly compromised.  In contrast, 

a diet high in sugar during pregnancy does not appear to have a major effect on blood pressure or 

blood pressure control in the offspring. 
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CHAPTER 1: INTRODUCTION  

1.1 OVERVIEW 

	  
Hypertension, a disease of blood pressure control, is a major risk factor for potentially fatal 

cardiovascular and cerebrovascular disease.  Due its high prevalence, it is one of the leading 

causes of death worldwide (WHO, 2012), and a major public health concern.  Despite decades of 

research, the underlying causes of hypertension remain unclear.  A major consequence of this is a 

failure of the treatment strategies currently used in the management of hypertension, whereby 

approximately half of all patients on anti-hypertensive medications fail to adequately control their 

blood pressure (Ausdiab report, 2012).  

	  
While the etiology of hypertension is yet to be elucidated, the major risk factors are becoming 

increasingly evident. Traditionally, these risk factors are divided into environmental and genetic, 

while more recently the importance of epigenetic risk factors has come to light (Chmurzynsk, 2010; 

Reik et al., 2001).  It is likely that complex interactions between these factors result in 

hypertension. The concept of developmentally programmed hypertension encompasses all of 

these risk factors. Programming in this context, is a process in which intrauterine factors 

permanently affect the developing foetus, including changes in gene expression, in a manner that 

predisposes it to develop disease as an adult. 

	  
Epidemiological studies indicate that a significant proportion of cases of primary hypertension may 

have a programmed or developmental origin (Barker et al., 1986; Woods et al., 2004). However, 

the in-utero insults that program a hypertensive phenotype are not fully understood and appear 

varied. The two most well studied animal models of programmed hypertension involve maternal 

undernutrition (including low calorie and low protein diet) and raised foetal exposure to 

glucocorticoids (Pladys et al., 2004; Vehaskari et al., 2001; Woods et al., 2001; Igosheva et al., 

2004; Celsi et al., 1998; Ortiz et al., 2001). Many reports indicate that raised levels of 

glucocorticoids may represent a common overarching causative factor in many animal models of 

programming. For example, there is evidence that maternal undernutrition increases the production 

and circulation of maternal glucocorticoids (Lesage et al., 2001), as well as increasing foetal 
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access of maternal glucorticoids (Lesage et al., 2001ref), which results in foetal glucocorticoid 

overexposure and altered development.  

	  
More recently, the rising severity of the worldwide obesity epidemic has led to an increasing 

interest in the impact of maternal overnutrition on the developing foetus and the subsequent long-

term consequences (Poston, 2012). Epidemiological evidence has highlighted that adults whose 

mothers were obese during pregnancy have increased incidence of metabolic syndrome, including 

hypertension (Gamborg et al., 2007) with a noteworthy report highlighting increased mortality rates 

from cardiovascular events and hypertension (Reynolds et al., 2013). Animal studies have shown 

that maternal obesity and/or diets high in fat produce offspring with metabolic dysfunction, 

including hyperphagia, adiposity and insulin resistance (Nivoit et al., 2009; Samuelsson et al., 

2008), impaired blood pressure regulation (Khan et al., 2003; Samuelsson et al., 2008; 2010), 

vascular problems (Khan et al., 2003; 2004) and disrupted circadian rhythm (Borengasser et al 

2014; Lemmer, 2006).  

	  
1.2 HYPERTENSION 

	  
1.2.1 A global public health concern 

Hypertension refers to a disease in which arterial pressure is chronically elevated. Clinically, it is 

defined as a blood pressure greater than or equal to 140/90 mmHg (WHO, 2013). It is a highly 

prevalent disease, affecting approximately 40% of the human population (WHO, 2013). In 

Australia, hypertension is the greatest attributor to cardiovascular diseases such as stroke and 

heart attack, accounting for 42.1% of all cardiovascular disease burden (National Heart Foundation 

of Australia, 2012).  Alarmingly, the prevalence of hypertension and the secondary complications 

associated with it appear to be increasing; over the past decade, age-adjusted rates of stroke have 

risen, while the incidence of end-stage renal disease and the prevalence of heart failure have also 

increased (Carretero and Oparil, 2000). This may be attributed to population growth, aging, and 

environmental risk factors such as obesity, stress and alcohol consumption (WHO, 2013; Hajjar et 

al., 2006). However, a major contributor is also the inadequate control of blood pressure in the 

hypertensive population. It has been estimated that almost 70% of hypertensive patients in 

Australia (Ausdiab report 2012, National Heart Foundation of Australia, 2012), and worldwide 
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(Roger et al., 2012) fail to adequately control their blood pressure, despite treatment with multiple 

anti-hypertensive medications. This outcome may be explained in part, by a poor understanding of 

the etiology of hypertension and therefore, sub-optimal treatment targets. 

	  
1.2.2 Current treatment strategies 

The initial approach to the management and treatment of hypertension involves changing lifestyle 

factors, including adjustment to the individual’s diet, exercise regime, alcohol consumption and 

tobacco use. In fact, a clinical trial on the effects of dietary patterns on blood pressure revealed 

that a diet rich in fruits, vegetables, low-fat dairy foods with reduced saturated and total fat, along 

with abstinence of alcohol and tobacco can be successful in lowering blood pressure by as much 

as 11 mmHg in hypertensive individuals (Appel et al., 1997). However, due to poor patient 

compliance to strict diets, and the complex, multi-factorial nature of hypertension, a pharmaceutical 

approach is often necessary to reduce blood pressure in hypertensive people. 

	  
Current anti-hypertensive medications have had limited success. In a global survey on the 

management of hypertension, the proportion of patients on treatment regimes achieving a blood-

pressure target below 140/90 mmHg ranged from a maximum of 27% in the USA to a minimum of 

less than 3% in Zaire (Mancia and Grassi, 1999). Further exacerbating this problem is the 

occurrence of resistant hypertension, a condition that describes the presence of hypertension 

despite the concurrent use of three anti-hypertensive agents from different classes (Calhoun et al., 

2008). Rates of resistant hypertension appear to be increasing, and is currently estimated to affect 

approximately 30% of hypertensive patients (Hajjar and Kotchen, 2003).  

	  
Since the current approach for the treatment of hypertension involves dietary, lifestyle and the use 

of multiple drugs, the problem of patient adherence inevitably arises. One study evaluating patient 

compliance to prescribed diets reported that only 13% of the patients were able to reduce their 

dietary fat intake as recommended (Hamalainen et al., 2000). It has also been reported that 

approximately 40% of patients prescribed anti-hypertensive medications will discontinue their 

treatments within the first year of the prescription, due to reasons such as inconvenience and 

intentional “drug holidays” (Speckman et al., 1999). These issues may be rectified with the 

development of novel anti-hypertensive agents, which entail more specific targets. Of course, this 

can only occur once the pathophysiology of hypertension has been better elucidated. 
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1.3 BLOOD PRESSURE REGULATION 

	  
Blood pressure is tightly regulated around two major requirements: blood pressure must remain 

high enough to maintain constant perfusion of various tissues and meet metabolic demands, while 

remaining low enough to avoid structural damage to the tissues (Boron and Boulpaep, 2012). Such 

regulation is achieved by interdependent adjustments of heart rate (HR), stroke volume (SV), and 

the total peripheral resistance of the vasculature (TPR). The mean arterial pressure (MAP) 

represents the average force propelling blood flow, and is defined mathematically as the product of 

cardiac output (CO- the product of HRxSV) and TPR. Homeostatic mechanisms regulate MAP 

around an optimal set point, which is largely dependent on levels of physical activity. For example, 

postural changes induce changes in MAP, which are buffered by reflex mechanisms. Short-term 

regulation involves the baroreceptor and chemoreceptor reflexes. The most important effector 

mechanisms are the parasympathetic and sympathetic divisions of the autonomic nervous system 

(Boron and Boulpaep, 2012).  

	  
1.3.1 Role of the autonomic nervous system 

The sympathetic nervous system is central to the control of blood pressure via direct adjustments 

to CO and TPR, and indirect adjustments to BV via changes in renal function. A neurogenic 

component to hypertension is becoming increasingly realised, as several lines of evidence in 

animal models and humans show convincingly that sympathetic over-activity plays a major role in 

the etiology of the disease.   

	  
Studies in the Spontaneously Hypertensive Rat (SHR) have been important in establishing the link 

between sympathetic over-activity and hypertension.  In one study, sympathetic nerve activity and 

blood pressure were shown to increase rapidly as SHR’s aged, and by 5 weeks of age, both blood 

pressure and sympathetic nerve activity were significantly higher than values observed in 

normotensive strains of rat (Judy et al., 1976). When sympathetic ganglionic transmission was 

reduced via hexamethonium administration in SHRs, both sympathetic nerve activity and mean 

arterial pressure were reduced to a level comparable with normotensive controls (Judy et al., 

1976). This evidence highlights the role of elevated sympathetic activity in producing hypertension 

in rats genetically predisposed to hypertension. Of interest, it has also been demonstrated that 
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transplantation of hypothalamus, a key region of blood pressure control, from embryonic SHRs into 

the hypothalamus of a normotensive strains of rat induces hypertension in the recipient (Eilam et 

al., 1991).  Although a rise in sympathetic nerve activity was not confirmed in these studies, they 

show convincingly that alteration in the function of the hypothalamus in the SHR is important for 

the development of hypertension in this model.  Related to this, blockade of glutamate or 

angiotensin II receptors in the rostral ventrolateral medulla reduces blood pressure to a much 

greater extent in the SHR than control rat (Sved et al., 2003; Ito et al., 2003) and this is believed to 

be due to increased excitatory drive from the hypothalamus to the rostral ventrolateral medulla in 

the SHR (Guyenet, 2006).  These data support the hypothesis that the pathophysiology of 

hypertension has a strong neurogenic component. 

	  
Data from human studies provides further evidence to support a major role for autonomic 

dysfunction in hypertension. Firstly, children with a familial history of hypertension, but who are 

normotensive according to clinical definition, have been shown to have an elevated blood 

pressure, heart rate, and plasma noradrenaline concentrations (Lopes et al 2010). These children 

also exhibit decreased baroreflex sensitivity (Lopes et al., 2000). This may underlie an increased 

risk of developing hypertension in adult life. Furthermore, there is convincing evidence from studies 

measuring noradrenaline spill over and from direct neural recordings in hypertensive patients that 

sympathetic over-activity is present in both overt hypertension and in borderline hypertension 

(Anderson et al., 1989; Esler, 2000; 2011; Grassi et al. 1998; Lambert et al., 2007; Smith et al., 

2004).  Indeed, such “neurogenic hypertension” has been reported to account for at least 50% of 

all cases of high blood pressure (Esler et al. 2010).  Taken together, these data indicate that 

sympathetic dysfunction plays a major role in the pathophysiology of hypertension.  

	  
1.3.2 Baroreceptor reflex  

The arterial baroreceptor reflex is a rapid, homeostatic reflex which buffers acute fluctuations in 

blood pressure that occur during every day behaviors such as postural changes, stress and 

physical activity (Guyenet , 2006; Heusser et al., 2005). Such buffering is crucial for maintaining 

regulation of blood flow and facilitating gas and nutrient exchange with the tissues. Changes in 

blood pressure are detected by specialized mechanoreceptors known as baroreceptors located in 

the carotid sinus and aortic arch. The reflex acts via adjustments to the level of sympathetic and 
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parasympathetic nerve activity in response to signals from the baroreceptors. For example, when 

blood pressure rises, vascular distension is sensed by the baroreceptors and the resulting 

baroreceptor afferent fibre activation triggers reflex parasympathetic activation and sympathetic 

inhibition, resulting in a reduction in cardiac output and vascular resistance, buffering the increase 

in blood pressure.  

	  
Although clearly of major importance in the short term regulation of blood pressure, the role of the 

baroreflex in the long term regulation of blood pressure remains controversial.  The consensus 

view is that the baroreceptors only play a role in the short-term regulation of blood pressure.  This 

stems from the work of Cowley in the 1970’s, who showed that denervation of the baroreceptors 

increased blood pressure lability but did not affect mean blood pressure over a period of days 

(Cowley, 1992).  This is believed to be due to the re-setting of the baroreceptors to a newly 

established blood pressure over a period of hours to days (Guyenet, 2006; Cowley, 

1992).  However, there is evidence that the baroreceptors can exert long-term control of blood 

pressure.  In dogs, unloading of the intact baroreceptors produces a sustained rise in blood 

pressure over a period of five weeks (Thrasher, 2004).  The difference in these results to those of 

Cowley’s may be due to neural remodeling effects following denervation (Schreihofer and Sved, 

1992).  In addition, in the rabbit, an increase in blood pressure from infusions of angiotensin II 

produces a sustained fall in renal sympathetic nerve activity over a period of 7 days (Barrett et al., 

2003), while chronic stimulation of the carotid baroreceptors reduces blood pressure for at least 7 

days (Lohmeier and Iliescu, 2011).  Thus, there is evidence that the baroreceptors are capable of 

exerting a long-term effect on blood pressure, at least in the medium term.  However, the question 

arises as to whether inhibition of the baroreceptors, or a decrease in baroreceptor reflex sensitivity 

may play a role in the etiology of hypertension. 

	  
1.3.3 Baroreflex function in hypertension 

Hypertensive individuals have often been shown to have normal, or frequently, an elevated heart 

rate (Heusser et al., 2005). This suggests that the baroreflex has either adapted to a higher blood 

pressure and has reset to operate around a higher set point, or reflects a primary dysfunction 

(Bristow et al., 1969).  One study calculated baroreflex sensitivity in hypertensive individuals via 

sudden intravenous injections of angiotensin and phenylephrine (to increase blood pressure) 
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(Bristow et al., 1969). The corresponding reflex changes in heart rate following these injections 

were determined and plotted against blood pressure. This revealed diminished baroreflex 

sensitivity in hypertensive patients compared to normotensive individuals, such that higher blood 

pressures were required to produce corresponding changes in heart rate in hypertensive patients 

(Bristow et al., 1969). This suggests that baroreflex dysfunction, such as a reduced sensitivity of 

the reflex, may play a permissive role in hypertension. 

	  
However, some recent evidence suggests that the baroreflex plays a more central role in 

hypertension. A study by Heusser et al., 2005 showed that two previously normotensive patients 

that presented with neck trauma and subsequent damage to carotid arteries became severely 

hypertensive after the trauma. Compensatory baroreflex-mediated changes in heart rate were 

severely reduced in these patients, most likely attributed to the loss of function of baroreceptors in 

the carotid sinus. Thus, since damage to the baroreceptors may result in extreme, chronic 

hypertension, it is likely that the reflex plays a crucial role in producing a hypertensive phenotype. 

	  
1.3.4 Chemoreceptor reflex 

Another short-term feedback system aimed at regulating blood pressure is the chemoreceptor 

reflex. Chemoreceptors are specialized receptors in the carotid and aortic bodies, which respond 

primarily to decreases in the partial pressure of oxygen (Dampney et al., 2001). The arterial 

chemoreceptor reflex serves an important regulatory role in the control of alveolar ventilation, but 

also exert a powerful influence on cardiovascular function and blood pressure control directly (by 

interacting with medullary vasomotor centers) or indirectly (via altered pulmonary stretch receptor 

activity) (Schultz, 2007). Stimulation of the chemoreceptors reflex evokes increases in the rate of 

respiration, and sympathetically mediated vasoconstriction. Both of these mechanisms are aimed 

at increasing and conserving oxygen, however, the increase in sympathetic vasoconstriction 

results in an increase in blood pressure (Dampney et al, 2001). 
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1.4 RISK FACTORS FOR HYPERTENSION 

	  
Over 95% of all cases of hypertension are of unknown etiology (WHO, 2013) and termed essential 

or primary hypertension.  Essential hypertension will be the sole focus of this thesis. Although the 

underlying causes of hypertension are yet to be elucidated, there are known risk factors. These 

risk factors can be classified into several categories: environmental, genetic, and epigenetic.  

	  
1.4.1 Environmental factors 

The modification of environmental risk factors is usually the first step in the prevention and 

management of hypertension. Common environmental risk factors include poor diet and 

psychological stress.  Modern diets are commonly high in fat, sugar, salt and alcohol. Salt and 

alcohol are independent risk factors for hypertension (Carretero and Oparil, 2000; Kotsis et al., 

2010) while increased consumption of fat and sugar can lead to obesity and insulin resistance. Of 

particular relevance to this thesis is obesity and the associated high fat and high sugar diets, which 

account for over 30% of the morbidity and mortality due to hypertension (WHO 2013).  

	  
The relationship between obesity and hypertension is well established in both humans (Hsueh and 

Buchanan, 1994; Nasser et al., 1999; Faloia et al., 2000) and animal models (Kamal et al., 2005; 

Kurtz et al., 1989; Dobrian et al., 2001), although the mechanisms behind this relationship are still 

unclear. However, there is good evidence that obesity-related hypertension has a strong 

neurogenic component. Evidence for this hypothesis has been provided from direct, 

microneurographic measurements of sympathetic activity in obese patients, which reveal elevated 

muscle sympathetic nerve activity (Grassi et al., 1995).  Similarly, diets high in fat have been 

shown to result in the stimulation of peripheral α1- and β-adrenergic receptors, resulting in an 

increase in sympathetic activity and subsequent hypertensive responses (Rocchini et al., 2004; 

Kotsis et al., 2010). The concept of sympathetic over-activity playing a central role in hypertension 

will be revisited later in the thesis. 

	  
In more recent studies, psychosocial stress has been highlighted as a major risk factor for 

hypertension. Chronic job strain, defined by high work demands, decision latitude and low reward, 

is a widely studied model of psychosocial stress in humans. Studies have shown that subjects who 

identified as having a high level of job strain are at greater risk of having sustained, elevated blood 
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pressure (Schwartz et al., 1996; Vrijkotte et al., 2000; Spruill, 2010). More recently, investigators 

reported 15.9% of a patient sample developed hypertension in response to laboratory-induced 

mental stressors over a 3-year follow-up period (Hamer et al., 2012). The notion of a relationship 

between a heightened cardiovascular response to stress and hypertension will be discussed later 

in the thesis. 

	  
1.4.2 Genetic factors 

It is widely accepted that individuals differ in their susceptibility to hypertension, and that this can 

be attributed, in part, to various genetic determinants.  For example, meta-analyses have shown 

that polymorphisms in the gene encoding angiotensinogen (Jeunemaitre et al., 1992; Sethi et al., 

2003) and the epithelial sodium channel γ subunit (Hansson 1995; Young, 2007) are associated 

with an increased risk of hypertension. Furthermore, familial aggregation studies highlight that 

these predispositions are inheritable (Fuentes et al., 2000; Fermino et al., 2009).  Although 

evidence from these studies have produced strong associations, the attributable risk of these 

polymorphisms has been described as minor, and only accounts for a fraction of actual occurrence 

(Gluckman et al., 2010). Epigenetic changes have been proposed as an explanation for this 

‘missing heritability. 

	  
1.4.3 Epigenetic factors  

The most plausible explanation for the predilections to hypertension that have been reported in the 

literature is that a complex interaction of both genetic and environmental factors produces the 

disease (Millis, 2010).  Epigenetics refers to gene-environment interactions, which ultimately result 

in changes in gene expression.  These changes are stable and long-term, and occur via DNA 

methylation or acetylation (Millis, 2010). If these processes occur during foetal development, the 

maturation of tissue types may be altered, resulting in an increased risk of developing chronic 

disease in adulthood (Thornburg et al., 2010). This concept is known as developmental 

programming. In the context of programmed hypertension, certain genes related to blood pressure 

regulation may be switched on or off via in utero environmental cues.  
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1.4.4 The Barker Hypothesis and programmed hypertension 

The in utero environment encountered in foetal life has a profound influence on foetal 

development. The Barker hypothesis states that sub-optimal in utero conditions may permanently 

alter the growth and maturation of foetal tissues, changing their structure and physiological 

function. These changes become harmful during adulthood when the insult is no longer present, 

increasing the risk of certain diseases in adult life (Jones et al., 2012; Langley Evans, 2006). 

	  
This concept first arose after Professor David Barker’s epidemiological studies in the 1980’s, which 

revealed that the geographical distribution of infant mortality in England and Wales closely 

matched the distribution of death rates from cardiovascular disease decades later (Barker and 

Osmond, 1986).  From this observation, Barker and colleagues deduced that in regions of high 

infant mortality, those babies that survived appeared to be at increase risk of developing 

cardiovascular disease in their adult lives. They also observed that the mean birth weights in these 

disadvantaged regions were significantly lower, highlighting that an inverse relationship existed 

between birth weight and cardiovascular disease (Barker and Osmond, 1986; Barker et al., 1989).  

	  
A low birth weight (<2.5 kg) can result from pre-term birth or intrauterine growth restriction (IUGR). 

IUGR is the failure of the foetus to reach its growth potential, due to placental abnormalities or 

factors related to maternal nutrition, disease and stress (Resnik, 2002). Barker and colleagues 

noted that disadvantaged regions had higher rates of maternal undernutrition, particularly in 

regards to protein and total caloric intake, as well as increased psychological stress during 

pregnancy. They hypothesized that these factors exerted a major influence on foetal development 

and were a cause of the low birth weights observed.  However, it is unlikely that low birth weight 

itself is the underlying cause of cardiovascular disease such as hypertension decades later, but 

rather is a surrogate observation reflecting foetal exposure to intrauterine stressors (Davis and 

Sandman, 2010). 

	  
1.5 ANIMAL MODELS OF PROGRAMMED HYPERTENSION  

	  
Beginning with David Barker’s theory of foetal origins of adult disease, epidemiological studies 

have shown that an adverse intrauterine environment may lead to adult hypertension in the 

offspring (Barker DJP, 1989; Denton et al., 2006; Langley-Evans, 2009; Nuyt, 2008). However, 
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there are a number of limitations with such epidemiological studies.  For example, not all 

epidemiological reports show an association between low birth weight and hypertension (Stanner 

et al., 1997). Moreover, most epidemiological studies have been criticized on the basis that they do 

not account for all confounding variables (Huxley et al., 2002), which is particularly significant in the 

field of programming due to the long time interval between the stimulus (during gestation) and the 

effect twenty to fifty years later (Langley-Evans, 2009).  Finally, criticism may be applied on the 

basis that human epidemiological studies do not provide a cause–effect relationship.  Thus, it is 

very hard to provide robust evidence for in utero programming in the human.  Properly designed 

prospective cohort studies would require 50-60 years to assess the impact of gestational stressors 

on adult blood pressure and cardiovascular disease, which is impractical to say the least (Langley 

Evans, 2009).  In an effort to overcome these issues, and develop a “proof of principle” foundation, 

animal models have been developed. Animal models serve two purposes; first, they eliminate the 

variation in genetic background and thereby other potential risk factors for hypertension. Second, 

animal models hold the key to unravelling the mechanisms involved in programmed hypertension 

due to the ability to investigate the physiology in a more invasive and more detailed manner 

(Vehaskari et al., 2005).   

	  
Most experimental models have aimed to duplicate foetal growth impairment because original 

reports of prenatally programmed hypertension were linked to intrauterine growth restriction 

(Alexander, 2006; Denton et al., 2006; Langley-Evans, 2009). Therefore prenatal manipulations 

can be divided into three categories; (1) Maternal under nutrition; (2) maternal glucocorticoid 

exposure; and, (3) obtrusion of placental function (Vehaskari et al., 2005). For the purposes of this 

thesis we will focus on maternal diet. Most animal models have used a variety of nutritional 

manipulations during gestation, these include; calorie-restricted diet, protein restricted diet, 

cafeteria-like diet, iron and other micronutrient-restricted diets; all of which have been shown to 

program hypertension in rats, pigs, sheep and guinea pigs (Nuyt et al., 2009).  

	  	  
1.5.1 Animal models of programmed hypertension using altered maternal diet 

Global food restriction: Studies of programming of hypertension by maternal nutritional 

manipulation have been conducted since the early 1990’s.  Woodall and colleagues (1996) showed 

in rats that severe food restriction, equivalent to only 30% of their normal food intake during 



21 
 

pregnancy programmed the offspring for hypertension. These results have been confirmed and 

extended such that in rats it has been shown that hypertension is induced in offspring with a 20-

30% reduction in maternal food intake during the latter part of pregnancy (Woods et al., 2005). In 

sheep, restricting maternal dietary intake by 15% during the first half of gestation increased the 

mean arterial pressure in offspring by approximately 10mmHg (Hawkins et al., 2000). Thus, it is 

evident that food restriction in the mother for all or part of gestation leads to increased blood 

pressure in the offspring, although the exact timing of the restriction varies, and is possibly species 

dependant. However, what is not clear from these experiments is if overall reduction in calories or 

a reduction in a specific nutrient is the important factor. One of the major nutrients that have been 

the focus of much attention in the field of programmed hypertension is protein. 

	  
Protein Restriction: a maternal low protein diet while maintaining a normal total calorie intake has 

been widely studied in the rat. The normal dietary intake of protein is approximately 19% (21% 

casein) of total calorie intake, with restricted levels ranging from 12% (mild) to 9% (modest) to 5% 

(severe) (Langley-Evans et al., 1994; 1996; 1999; Pladys et al., 2004; Vehaskari et al., 2001; 

Woods et al., 2001). It has been shown that arterial blood pressure in the offspring in adulthood is 

increased at all three levels of restriction (Langley et al., 1994).  In the pig, mean arterial pressure 

of adult offspring increased by 10-25mmHg when dams were fed a diet consisting of 1.0% protein 

(Bagby et al., 2001). In all the models described above, a normal protein diet is given after birth, 

highlighting the likelihood that it is low protein during foetal development that programmes 

hypertension 

	  	  
Manipulation of other maternal dietary factors: Supplementing a maternal low protein diet with 

glycine protects the offspring from the development of high blood pressure (Jackson et al., 2002), 

suggesting that the programming effects of nutrient restriction may be due to specific deficits.  

Glycine, in particular is important in the metabolism of methionine and homocysteine, which in turn 

play a crucial role in DNA methylation; thus suggesting a mechanism whereby maternal low protein 

diet may engender epigenetic changes (Rees, 2002).  Another study by Langley-Evans et al., 

(2000), compared the programming effects of two alternative maternal low protein diets: one with 

more fat and starch, the other with more sugar. Interestingly, only the low protein diet with high 

fat/starch produced increased systolic blood pressure in the offspring (compared to a control diet), 
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while low protein and high sugar failed to program for hypertension in the offspring (Langley-Evans 

et al., 2000). Therefore differences in the specific nutrient content of a diet, and not only the protein 

content may be important in programming of hypertension, and can potentially lead to confounding 

results when interpreting the results of different studies.  

	  
Recently there has been emerging evidence that numerous other dietary manipulations may 

program offspring for hypertension in later life.  These include both high and low sodium intake 

(Woods et al., 2001; Battista et al., 2002), water deprivation (Ross et al., 2005), iron deficiency 

(Lisle et al., 2003), and obesogenic diets, such as the high fat diet (Khan IY, 2003).  The 

overwhelming conclusion is that the foetus may be highly susceptible to maternal dietary 

influences that appear to alter development in such a way as to affect blood pressure homeostasis 

in later life.  Of these examples listed above, obesogenic diets, or diets high in fat are particularly 

interesting in light of the changes in diet in society, with greater intake of fat and sugars. 

	  
Evidence of maternal obesity or high fat diet-related hypertension in offspring: As described 

above, initial studies directed their focus on maternal/foetal under-nutrition and low birth weights. 

However, in light of the obesity epidemic, more attention has recently been directed towards 

maternal over-nutrition in programming of hypertension. There is now accumulating evidence from 

numerous animal studies supporting the hypothesis that maternal overweight, obesity or high fat 

dietary intake is associated with obesity and hypertension in the offspring (Khan et al., 2003; Elahi 

et al., 2009; White et al., 2010; Samuelsson et al., 2010).  

	  
There has been some controversy as to whether maternal high fat diet/obesity programmed 

hypertension is secondary to obesity or whether obesity and hypertension exist separately in 

programmed offspring. Sprague Dawley rats fed a lard rich diet 10 days prior to mating throughout 

pregnancy and during the suckling period produced offspring that became obese in adulthood, 

although only the female progeny became hypertensive (Khan et al., 2003). However, recently 

Samuelsson et al., (2010) showed that offspring from dams fed a highly palatable diet rich in 

saturated fat and sugar for 5 weeks prior to mating developed hypertension, had increased systolic 

blood pressure compared to control groups as early as at 3 months of age, hence prior to their 

development of obesity (Samuelsson et al., 2010). Consistent with this, in mice male offspring of 

fat fed dams had increased systolic blood pressure without elevated body fat, however litter 
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matched females developed obesity and hypertension (Elahi et al., 2009).  Thus, it is apparent 

that, at least in males, maternal high fat diet programming of hypertension can occur independently 

of obesity, although the two frequently do occur together. 

 

1.5.2 Programming vectors responsible for maternal obesity or maternal high fat diet-

related hypertension in offspring 

There are many facets of obesity (hyperleptinaemia, dyslipidaemia, hyperinsulinaemia, or 

hyperglycaemia) that could be responsible for programming of maternal obesity/high fat diet-

related hypertension in offspring. Indeed, it is unclear as to whether a high fat/hypercaloric diet per 

se, or established obesity is the stimulus for programming of hypertension. The identification of 

vectors that cross the placenta is of significant importance as it provides a target for potential 

therapeutic treatment or behavioural modification.  

	  
Maternal dietary imbalance, obesity or overweight; which is more important? Studies done 

on Japanese macaques suggest that a maternal diet high in fat is sufficient to establish 

programming effects and that maternal obesity is not required. Monkeys resistant to diet induced 

obesity were placed on a high fat diet during pregnancy, and the foetus was found to develop a 

fatty liver phenotype identical to monkeys that were obese (McCurdy et al., 2009). However other 

studies indicate a prerequisite of maternal obesity for programming; this was shown in rats fed a 

diet rich in fats during pregnancy and suckling, where the offspring developed hypertension only if 

their mothers were obese (White et al., 2010). Interestingly, a high fat obesogenic maternal diet 

programmed offspring for hypertension at rest (Samuelsson et al., 2010), while a high fat –

nonobesogenic maternal diet did not produce hypertension at rest, but did evoke a hypertensive 

response to stress (Rudyk et al., 2011). These results suggest that there may be a dose interaction 

between maternal high fat diet and obesity in programming the offspring phenotype, such that 

although hypertension may not be programmed at rest with maternal high fat diet alone, it may 

nevertheless increase the risk of developing hypertension when subjected to other environmental 

factors. Other studies done in sheep suggest that the mothers’ body condition before pregnancy 

may have programming effects irrespective of maternal condition during pregnancy (Rattanatray et 

al., 2010). To date there is no clear consensus as to whether maternal dietary imbalance, obesity 

or overweight is most likely to program hypertension in the offspring. A clearer understanding of 
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the differences in these factors for risk of programming is crucial to better understand the risk of 

programmed cardiovascular disease in society, considering that overweight and obesity is now 

present in 34% of the Australian obstetric population (Callaway et al., 2006). 

 

Importance of the type of fatty acid intake in pregnancy: Many studies have looked at 

manipulating saturated, polyunsaturated and omega-3 polyunsaturated fatty acid content during 

pregnancy.  Of these, it appears that maternal saturated fatty acid intake is deleterious to the 

health of offspring, while omega-3 polyunsaturated fatty acid consumption may be beneficial for 

offspring health.  Offspring of dams fed a diet rich in omega-3 fatty acids throughout pregnancy, 

suckling and 6 weeks post weaning had normal blood pressure despite the total fat content of the 

diet being high (10%), (Weisinger et al., 2001).  Furthermore, it was described by Weisinger et al., 

(2010), that a diet low in omega-3 fatty acids programmes hypertension and increased sodium 

appetite; and this is thought to be due to persistent changes in fatty acid composition of the 

hypothalamus (Weisinger et al., 2006). These data suggest that the type of fatty acid consumed 

during pregnancy may have profound implications for offspring heath, with a maternal diet high in 

saturated fatty acids rather than polyunsaturated fatty acids increasing the risk for programmed 

obesity or hypertension in offspring.  

	  
Is the amount of placental lipid transfer important? Lipid transfer from the mother to the foetus 

is vital, providing a crucial source of energy for the developing foetus. Placental lipases aid in the 

transportation of lipids from the maternal circulation to the foetus by liberating non-esterified fatty 

acids from triglycerides.  These non-esterified fatty acids are then transferred to the 

synctiotrophoblast via fatty acid binding proteins and fatty acid translocase.  Studies suggest that 

there is an association between excessive foetal growth rates and increased maternal plasma 

triglyceride and diglyceride concentration (Son et al., 2010), and that this may contribute to 

accelerated development of atherosclerosis in offspring of hypercholesterolaemic rabbits (Napoli et 

al., 2000). Studies done in sheep show overfeeding results in increased foetal plasma triglyceride 

concentration, and that this in turn causes an upregulation of fatty acid translocase expression 

allowing more fatty acid transport to the foetus (Zhu et al., 2010). The amount of fatty acids that 

transport to the foetus or neonate can be quantified using a fatty acid with a stable 13C isotope (Gil-
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Sanchez et al., 2010), however to date, it is unclear as to whether the kinetics would increase due 

to a maternal high fat diet, obesity or overweight.   

	  
Increases in inflammation and placental cytokines: Placental cytokines are undoubtedly 

important for normal conception, placentation, foetal growth, parturition, and immune cell activity 

(Szukiewicz, 2012).  Maternal obesity during pregnancy is linked to an exaggerated inflammatory 

response (Henry et al., 2012). However, it is unclear what the effects are of excess maternal 

inflammation on foetal development. It is known that women who are obese and have gestational 

diabetes during pregnancy release higher concentrations of leptin from the placentae, however it 

remains unclear as to how leptin may affect the foetus (Henry et al., 2012). Furthermore, 

macrophage recruitment to the placenta is increased during maternal obesity, which results in 

increased cytokine production and upregution of pro-inflammatory adipokines and cytokines such 

as leptin, interleukin-6 and tumour necrosis factor (Challier et al., 2008). Of interest, leptin 

increases sympathetic activity in the adult (Haynes et al., 1997), however the direct effect of leptin 

on autonomic function in the foetus is unclear. A gestational diet high in saturated fat produces 

hypertriglyceridemia and hyperleptinemia in both mothers and foetuses (Mazzucco et al., 2013).  

Moreover, the foetus exhibit increased body weight, increased leptin expression in the placenta 

and foetal liver and increased accumulation of lipds in the liver (Mazzucco et al., 2013).   This 

suggests the possibility that leptin may exert significant influence over the developing foetus. 

	  
Given the information above, it is likely that maternal obesity, over weight or a maternal diet rich in 

fats during pregnancy may results in obesity or high-fat related hypertension in offspring. There are 

many potential programming vectors described above. Identifying these vectors and understanding 

their potential programming effects on the developing foetus is of great importance in devising 

therapeutic and behavioural strategies to mitigate the development of programmed cardiovascular 

disease.  

	  
In addition to the increased prevalence of obesity and increased consumption of diets high in fat in 

the obstetric population, there is also a growing trend in the consumption of beverages high in 

sugar.  Maternal exposure to high sucrose intake may also have profound implications to offspring 

health in later life. A cohort study by Englund-Ogge, et al (2012) showed an increased risk of 

mortality and morbidity during preterm delivery in offspring from mothers with a high intake of 
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sugary drinks during pregnancy. We will now examine the literature on high sucrose intake during 

pregnancy and putative programming effects that may predispose the offspring to hypertension in 

later life.  

 

1.5.3 Evidence of a maternal high sucrose diet in programming hypertension 

Diets high in simple sugars result in a high glycemic load (GI) and are therefore a major risk factor 

for obesity and metabolic syndrome and it’s associated sequela (Brand-Miller et al., 2002). An 

increased GI diet during pregnancy is associated with an increased risk for gestational diabetes 

mellitus and maternal obesity (Zhang et al., 2006).  Conversely, a low GI diet during pregnancy 

may reduce gestational weight gain and improve glucose homeostasis in the mother (Walsh et al., 

2012). Despite the growing interest of a high GI diet and its role in obesity, exposure to a high 

sucrose diet during pregnancy and its effects in utero has not been extensively investigated.  It is 

unclear as to whether a maternal high sucrose diet causes hypertension as a result of obesity and 

its related sequela or if hypertension is a consequence of direct influence of a maternal diet high in 

sucrose. A study by Metzger et al., (2008) found a strong linear relationship between maternal 

glucose intake and increased infant adiposity, based upon direct measurement of infant skin-fold 

thickness. Fructose given to pregnant rats in drinking water (10% w/v) resulted in hyperglycemia in 

both the mother and foetus (Flynn et al., 2013). Moreover, such pups are found to have 

hyperinsulinaemia indicative of developing insulin resistance (Vickers et al., 2012). In pregnant 

mice, obesity induced by feeding a diet rich in both animal fat and sugars resulted in hypertension 

and increased fat mass in the offspring, however it was uncertain whether the programming effects 

were due to the high fat or high sugar (Samuelsson et al., 2008). These same investigators 

subsequently examined the effects of a gestational high sugar diet in isolation and found that a diet 

high in sugar (26% of total energy) but low in fat produced hypertension in both male and female 

offspring from the high sucrose group at three months of age (Sammuelsson et al., 2013).  

Furthermore, both male and female offspring showed increased low:high frequency ratio in their 

HRV, suggesting that the hypertension may be due to increased sympathetic tone.  

	  
In summary, high sucrose diets during pregnancy cause changes to maternal metabolic 

parameters that in turn affect foetal metabolic parameters and foetal development, ultimately 
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increasing the risk of chronic disease in later life. However, the mechanisms behind these 

metabolic changes and increased disease risk are not well understood.   

 

1.6 PROGRAMMED HYPERTENSION: PLAUSIBLE MECHANISMS 

	  
1.6.1 Kidney dysfunction  

Since the kidney plays an important role in the control of blood pressure by regulating water and 

salt excretion (Hall et al., 1991), it has been the subject of considerable investigation in studies 

aimed at determining the etiology of programmed hypertension. Extensive studies in the rat and 

sheep show windows of susceptibility to blood pressure programming that appear to occur during 

the early stages of kidney development (Vehaskari et al., 2001). A study by Zeman et al., (1968) 

reported that rats exposed to severely protein-restricted diets during thoughout gestation had 30-

45% fewer glomeruli than controls. Since then, several laboratories have confirmed this finding 

(Woods et al., 2001, Ortiz et al., 2001). Furthermore, rats born with reduced nephron numbers 

were shown to develop hypertension by 3 months of age (Vehaskari et al., 2005).  

The mechanism behind the inverse relationship between low nephron number and blood pressure 

is thought to arise due to a decrease in the total kidney filtration surface area. This decrease in 

filtration surface area may not meet the demands of a growing animal, thus resulting in sodium 

retention (Mackenzie et al., 1996; Brenner et al., 1988). Furthermore, a greater workload is placed 

on each nephron, resulting in glomerular and arterial hypertension and subsequent hyperfiltration. 

This can result in glomerular sclerosis and greater loss of nephron function (Mackenzie et al., 

1996; Brenner et al., 1988). Other studies of programmed hypertension including uterine artery 

ligation, food restriction, iron deficiency, glucocorticoid exposure and low protein diet have also 

observed reduced nephron numbers in programmed animals (Kett et al., 2004). It is therefore 

believed that a reduction in nephron number may play a role in prenatally programmed 

hypertension (Brenner et al., 1998). 

	  
However, there is conflicting evidence regarding the importance of a reduction in nephron number 

in producing a hypertensive phenotype. Studies has shown, when given a low protein diet with a 

combination of dietary supplements prevented any reduction in nephron number without affecting 
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the development of hypertension (Langley-Evans et al., 2003; Jackson et al., 2002). Furthermore, 

studies show hypertension in the absence of reduced nephron number (da Silva et al., 2003) and 

reduced nephron number with no apparent hypertension (Zimanyi et al., 2002). Although it is 

physiologically plausible that abnormalities in the kidney may be of importance to the etiology of 

programmed hypertension, the data indicate that while nephron deficit may play a permissive role, 

it is not the primary cause of programmed hypertension. 

	  
Another mechanism that may cause adult hypertension via increase sodium retention is thought to 

be due to programming of epithelial sodium co-transporters located in the renal tubles. Sodium co-

transport are located throughout the kidney from the proximal tubule to the collecting duct (Su and 

Menon, 2001). However, most of the sodium reabsorption occurs in the proximal tubule of the 

nephron while the fine control of reabsorption occurs in the collecting duct of the distal nephron 

(Schnermann, 2001; Schnermann, 2000). Only a few studies have looked at the direct effect of 

renal sodium transporter function in programming models. A study by Manning et al., 2002, looking 

at 4 week old offspring rats from mothers fed a low protein diet during the second half of gestation 

reported an increase in (mRNA and protein levels) of sodium co-transporters located in the thick 

ascending limb (302% compared to controls) and in the distal convoluted tubule (160% compared 

to controls). These changes in the kidney was manifested before the onset of hypertension, 

therefore already the foetal kidney was programmed inappropriately to retain sodium (Manning et 

al., 2002). Furthermore, at 8 weeks of age, sodium transporters in these rats were not down 

regulated with the onset of hypertension at 8 weeks of age (Manning et al., 2002). These findings 

are of significance, as down-regulation of sodium co-transporters in the distal convoluted tubule is 

known to be an important part of the normal pressure natriuresis response (Wang et al., 2001).  In 

spite of the large number of programming studies on the kidney, looking at both a decrease 

nephron number and prenatal programming of renal sodium co-transporters, to date there is no 

evidence of reduced nephron number or prenatal programming of renal sodium co-transporters 

and hypertension reported in offspring due to a maternal obesogenic or high fat diet.  

	  
1.6.2 Autonomic dysfunction  

Recent studies on humans and animal models have suggested that abnormalities in autonomic 

control may be pivotal in the development of obesity or high-fat related hypertension. 



29 
 

Measurements of noradrenaline spill over from sympathetic nerves and direct sympathetic nerve 

recordings show obese humans have increased sympathetic outflow to the blood vessels in 

skeletal muscles and increased sympathetic outflow to the kidneys (Esler et al., 2006). Animal 

models of diet-induced obesity also show a net increase in sympathetic activity. This has been 

demonstrated via adrenergic blockade, which attenuates elevated blood pressure in obese rabbits 

and dogs (Antic et al., 2000). Furthermore, a study by Samuelsson et al (2010), showed 

hypertension in juvenile offspring (30 days of age) and as young adults (90 days) from mothers fed 

an obesogenic diet during pregnancy. The increased blood pressure was accompanied by 

evidence of increased sympathetic activity, including an increase in the LF:HF ratio of HRV, 

indicative of increase sympathetic activity.  Moreover, administration of α- and β-adrenergic 

blockers reduced blood pressure to levels comparable to control rats.  Therefore, these results 

support the hypothesis that sympathetic overactivity may play a role in programmed hypertension. 

	  
It has been hypothesised that hormones such as leptin and insulin are responsible for the chronic 

stimulation of the sympathetic nervous system in obesity-related and programmed hypertension. 

These hormones play a crucial role in peripheral signalling involved in energy homeostasis 

control.  Leptin is primarily produced by white adipose tissue, and is often found to be elevated in 

people who are obese (Elmquist et al., 2004) and obverweight (Zhang et al. 1994). Leptin has 

been shown to increase blood pressure by increasing renal sympathetic nerve activity (Marsh et 

al., 2003 and Mark et al., 2009). A study by Franco et al., (2012) showed that offspring from 

mothers fed a high fat diet during pregnancy developed hyperleptinaemia and subsequent leptin 

resistance. It has been shown that leptin resistance appears to affect only the appetite-inhibitory 

aspects of leptin signalling, while the sympatho-excitatory aspects remain unchanged. This may 

result in inappropriately high appetite and persistent over activation of sympathetic nervous 

system, thus leading to the hypertension observed (Esler et al., 2008).  

	  	  
Baroreflex dysfunction has also been studied in animal models of programmed hypertension. For 

example, sheep exposed to dexamethasone (a synthetic glucocorticoid) in utero display altered 

baroreflex function prior to hypertension (Segar et al., 2006). The baroreflex curve, relating 

changes in HR to MAP, was found to be shifted toward a higher set-point in these animals. 

Similarly, rats programmed by either maternal protein restriction or maternal high fat diet have 
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displayed altered baroreflex responses that are pro-hypertensive (Pladys et al., 2004; Samuelsson 

et al., 2010). These data suggest that the baroreflex may indeed play an important role in long-

term blood pressure control, and play a permissive role in programmed hypertension. 

 

1.6.3 Heart and vasculature 

Changes to the cardiovascular system are associated with the development and maintenance of 

hypertension. Increased resistance in arteries and changes to myocardial contractility can impact 

cardiac output and total peripheral resistance. However there are limited studies available 

describing the effects of programming on the cardiovascular system.  

	  
Heart: intrauterine insults of hypoxemia (Murotsuki et al., 1997) and anemia (Broberg et al., 2003) 

are shown to have a significant effect on the foetal heart. A model of perinatal anemia in sheep 

showed remodelling of coronary vasculature whereby coronary reserve and conductance 

increased, resulting in a physiological advantage (Davis et al., 2003). However, maternal 

administration of dexamethasone resulted in increased cardiac output and hypertension in the 

offspring (Dodic et al., 2001). There have been no studies done investigating diet-induced 

programming changes in the offspring heart.  

	  
Vasculature: one of the primary vascular defects known to date is impaired endothelium-

dependent relaxation. This has been shown in offspring programmed by maternal protein 

restriction (Brawley et al., 2003), high fat intake (Koukkou et al., 1998) under nutrition (Franco et 

al., 2002) and placental insufficiency (Payne et al., 2003). It is unclear to as what is the underlying 

cause of reduced endothelium-dependent dilation; a potential mechanism might be impaired 

response in the vascular smooth muscle cells to nitric oxide (Lamireau et al., 2002) or impaired 

synthesis of nitric oxide (Payne et al., 2003). Another possibility could be increased 

responsiveness to vasoconstrictors (Ozaki et al., 2001).  

	  
There is some evidence for vascular dysfunction in offspring from mothers fed an obesogenic diet. 

Isolated femoral arteries of 15 day old rat pups from mothers fed a high fat diet (30% wt/wt) 

showed blunted responses to endothelium depended relaxation to acetylcholine. Furthermore, 60-

day-old offspring showed increased constrictor responses to norepinephrine (Koukkou et al., 

1998).  
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1.6.4 Epigenetic changes in programmed hypertension: evidence from animal models 

Very little is known about the epigenetic changes which orchestrate programmed hypertension. 

Recent studies on rats have shown that maternal protein restriction during gestation decreases 

methylation of the angiotensin II type 1β gene (Bogdarina et al., 2007) in the offspring. This may 

result in stable, elevated AT1β gene expression in the brain, and may cause hyper-responsiveness 

to angiotensin, a vasoconstrictor, in the offspring. Likewise, it has been observed that hypertensive 

offspring exposed to low protein diets during gestation have excessive brain angiotensin type 1 

(AT1) receptor binding (Pladys et al., 2004). Importantly, blockade of central AT1 receptors 

reduced blood pressure in the low protein group, but not controls (Pladys et al., 2004), indicating 

that increased expression of AT1 receptors in the brain may play a role in producing a 

programmed-hypertensive phenotype. Further studies into the epigenetic changes that precede a 

programmed hypertensive phenotype are required. 

	  
1.7 SEX DIFFERENCES ASSOCIATED WITH DEVELOPMENTAL ORIGINS 

OF CARDIOVASCULAR DISEASE  

	  
It is widely known that men tend to have higher blood pressures than age matched women (Li et 

al., 2010). However, aging decreases these sex differences (Kotsis et al., 2006) and increases the 

risk of cardiovascular diseases in women (Jousilahti et al., 1999). These sex differences are 

thought to be due to differences in sex steroids. There have been numerous programming studies 

that show sex differences, whereby males are worse off due to programming than age matched 

females. In a model of intrauterine growth restriction (IUGR) in the rat, hypertension in the male 

offspring was associated with a two-fold increase in circulating testosterone (Ojeda et al., 2007). In 

this model the importance of testosterone in the etiology of IUGR induced hypertension was shown 

by castration, whereby hypertension was abolished (Ojeda et al., 2007). In addition, the male IUGR 

rats show greater increases in blood pressure to acute Ang II injection than control rats, an effect 

that is also abolished by castration. Therefore these studies strongly indicate that testosterone acts 

as a pro-hypertensive factor in the male IUGR rat models (Ojeda et al., 2010). In comparison, 

female IUGR offspring are found to be normotensive after puberty (Alexander et al., 2003). 

Ovariectomy induces hypertension in these rats, and replacement of estradiol reverses the 



32 
 

increased blood pressure (Ojeda et al., 2007). Thus, loss of ovarian hormones in IUGR rats is 

associated with increases in blood pressure. Furthermore, ovariectomized IUGR females also 

show increased blood pressure sensitivity to Ang II in comparison to control females who have also 

been ovarectomized (Ojeda et al., 2011). The studies above suggest differences in sex hormones 

may be associated with differences in offspring health outcomes due to gestational stress. 

Consistent with this, protein restriction in the pregnant dam (9% vs 20%) elicits programming of 

hypertension in the male offspring (Woods et al., 2001) but not in the female (Woods et al., 2005).    

	  
In summary, many models of developmental programming show sex differences in blood pressure 

during baseline conditions.. An increased risk of high blood pressure is more often seen in male 

offspring compared to controls regardless of the method of insult (undernutrition, obesogentic diet, 

glucocorticoid exposure or protein restriction) or timing of insult (prenatal vs postnatal) (Alexander 

et al., 2014). However, it should be noted that not all studies indicate a role of sex hormones in the 

etiology of sex differences seen in foetal programming of hypertension (Alexander et al., 2014).  

	  
1.7.1 Sex differences implicating the renin-angiotensin-aldosterone system (RAAS) 

The RAAS plays a major role in blood pressure and volume homeostasis. Recent studies indicate 

that the vasodilatory arm of RAS is heightened in females compared to males (Sampson et al., 

2012) and that the RAAS is modulated in a different manner via sex steroids, which may contribute 

to sex differences in blood pressure control (Harrison-Bernard et al., 2003; Hinojosa-Laborde., 

2004). There are a number of differences in the RAS between male and females. Firstly, there is 

increased receptor density of renal angiotensin type 1 receptor (AT1R) in the male compared to 

female rats (Sandberg et al., 2003). Conversely receptor density of angiotensin type 2 receptor 

(AT2R) which opposes vasoconstrictor activity (non classical pathway), is increased in females 

compared to male rats (Sampson et al., 2008). Secondly, sex hormones have been implicated in 

the modulation of components of the RAAS. There is evidence that the classical vasoconstrictor 

arm of RAAS is augmented in males in way that is testosterone dependent (Yanes et al., 2009), 

while estrogen increases production of angiotensin-(1-7) peptide associated with the regulation of 

the non classical dilator pathway, acting as an anti-hypertensive hormones in females (Brosnihan 

et al., 1997). Therefore these studies suggest that the RAAS is implicated in sex specific 

developmental programming of hypertension.   
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The RAAS is also implicated in sex specific developmental programming of hypertension. 

Programming studies using a variety of maternal insults show female offspring in young adulthood 

are more protected from increases in blood pressure than their male counterparts during baseline 

conditions and in response to acute Ang II administration (Loria et al., 2013; Ojeda et al., 2007; 

Ojeda et al., 2011, Woods et al., 2005; Xiao et al., 2008). Moreover, placental insufficiency in the 

rat programmes marked increases in renal angiotensin converting enzyme (ACE) activity in the 

offspring (Grigore et al., 2007), indicating that endogenous levels of Ang II may be raised in these 

animals. However, the females in this model show a marked increase in renal ACE2 expression 

that is reduced by overiectomy (Ojeda et al., 2007). Ovariectomy also induces hypertension in the 

female IUGR rat (Ojeda et al., 2007). Consistent with this, bilateral uterine ligation in the rat causes 

up-regulation of renal AT1R in the male, but not female offspring  (Moritz et al., 2009; Wlodek et al., 

2007), while moderate protein restriction shows increased renal AT2R expression in female, but not 

male offspring (McMullen et al., 2004; McMullen et al., 2005). Finally, severe gestational protein 

restriction also causes an increase in expression of vascular AT1R in the male offspring by three 

months of age, whereas the in females, this is delayed until 6 months of age (Sathishkumar et al., 

2012). In summary, programmed hypertension in response to a number of different in utero insults 

is implicated with the up regulation of the vasoconstrictor arm of RAAS in male offspring, and up 

regulation of the vasodilatory arm of RAAS in female offspring.  This appears to play a significant 

role in delaying the development of programmed hypertension in the female. 

	  	  
Clearly sex differences are associated with developmental origins of cardiovascular diseases. 

Differences in the RAAS, renal nerve and the influence of sex steroids, contribute to differences in 

blood pressures of male and female offspring during young adulthood.  

	  
1.7.2 Sex difference implicating renal nerves in programmed models 

There has been a wide range of studies that show programmed hypertension is associated with 

changes to renal nerves and there is evidence for sex-specific differences associated with these 

changes (Alexander et al., 2014). In particular, programming changes in renal nerves appear to be 

present from birth in the male offspring, whereas in the female, a secondary insult may be needed 

to uncover programming of hypertension (Alexander et al., 2014). In IUGR, female offspring are 

normotensive during young adulthood but develop age dependent hypertension associated with 
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increased visceral fat and increased leptin levels (Alexander et al., 2003; Intapad et al., 2013). 

Renal denervation abolishes hypertension in these rats (Intapad et al., 2013).  This suggests that 

IUGR programmed hypertension in females is dependent on a leptin-mediated activation of the 

renal sympathetic nerve (DiBona et al., 2002). In contrast, in the male offspring, hypertension is not 

associated with increased fat mass and circulating leptin levels (Alexander et al., 2014). Thus, 

although both male and female offspring from programming models show hypertension in 

adulthood, the mechanism by which the renal nerves are activated in developmental programming 

of hypertension might be sex specific.   

	  
1.8 STRESS AND SYSTEMIC RESPONSE TO STRESS   

	  
1.8.1 What is stress?  

Stress can be broadly defined as a state of disharmony or threatened homeostasis; the stressor 

inflicted can be of biological (physiological) or psychological origin (Martinez- Lavin 2007). A 

Physiological stressor such as a pain, haemorrhage or cold cause direct harm to the body as the 

homeostatic regulation is challenged. Psychological stressors on the other hand do not cause 

direct harm to the body, but are perceived as a potential harmful insult by an individual.  Such 

stressors include feeling threatened, fear, confrontation and startle. Stress can also manifest due 

to unpleasant memories of stressors. However, both physiological and psychological stress cause 

marked cardiovascular and autonomic changes, preparing an organism to respond or escape from 

the challenge (Carrive, 2011).  

	  
1.8.2 Psychological stress 

 In the context of humans, there is concern over the adverse effects of increased psychological 

stress on health, in particular the risk of cardiovascular disease. An on going problem in today’s 

society is work related stress, (psychosocial stress). Such chronic stress is an ongoing stimulus for 

the stress response system. A prospective cohort study has shown that employees with increased 

job strain (defined by low salary, few career opportunities and lack of social approval) had a 2.2 

fold increased risk of cardiovascular mortality compared to employees with a low job strain 

(Kivimaki et al., 2002).  
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Acute psychological stressors have also been shown to increase risk of cardiovascular events, an 

example of this was shown in a study of the 1998 football world cup (Carroll et al., 2002). There 

was a 25% increase in admission for acute myocardial infarction on 30th June 1998 (when England 

lost to Argentina in a penalty shoot out) and for the two days following the loss (Carroll et al., 

2002). Patients who survive myocardial infarction usually report a triggering activity, that is most 

commonly identified as physical exertion or being emotionally upset (Tofler et al., 1990). Further 

evidence for health risks of acute stress comes from studies investigating adverse health outcomes 

surrounding catastrophic environmental events. An earthquake in 1994 at Northridge, southern 

California, saw a 35% increased admissions for myocardial infarction for a week following the 

earthquake compared to before the earthquake, and the proportion of hospitals reporting increased 

admissions were closer to the epicentre (Lear et al., 1996).  

	  
Other studies have shown significant increases in sympathetic nerve activity following catastrophic 

environmental events. For example, hospitalised patients showed increased heart rate and heart 

rate variability (HRV) following an earthquake in Taiwan (Huang et al., 2001).  The increase in the 

low-frequency:high-frequency ratio in HRV is indicative of increased sympathetic nerve activity, 

and the increased cardiovascular risk associated with acute psychological stress may in part be 

due to increased activity of the sympathetic nervous system (Huang et al., 2001). With regard to 

developmental programming, an increased sympathetic response to stress may play a significant 

role in the pathogenesis of cardiovascular diseases and may be responsible for the increased 

propensity to develop hypertension (O’Regan et al., 2010).  

	  
1.8.3 Physiological stress 

Physiological stress refers to the homeostatic responses to various environmental stressors such 

as predation, infection, injury, fasting, water loss and temperature extremes (Girod and Brotman, 

2004; Hindmarch et al., 2011).  The responses to a physiological stressor include specific 

responses particular to the stress stimulus and a more general response common to psychological 

stress, described below (Nesse and Young , 2000; Ulrich‑Lai and Herman, 2009).  It is important 

to note, however, that although there are very similar responses between physiological and 

psychological stressors, or even between different physiological stressors, the central pathways 

mediating the responses are not necessarily the same (Dampney et al., 2008).   
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The physiological stress used in the present study was dehydration.  Extended periods of water 

deprivation increase plasma osmolality and decrease blood volume (Toney and Stocker, 2010).  

This response is highly similar to that of high salt consumption (Toney and Stocker, 2010).  Despite 

the hypovolemia, blood pressure usually increases in the conscious rat due to hormonal and 

sympathetic activation (Veitenheimer et al., 2012).  There is accumulating evidence that 

exaggerated sympathetic responses to increased plasma osmolarity may contribute to salt 

sensitive hypertension (Adams, 2004; Brooks et al. 2005; O’Donaughy et al. 2006), although the 

mechanisms by which this occurs are not well elucidated (Toney and Stocker et al., 2010). 

	  
1.8.4 The stress response system 

When an organism experiences a psychological or physiological stressor, information related to the 

stressor from all sensory systems is conveyed to the brain, in response, the neural and 

neuroendocrine systems are activated (Ulrich-Lai and Herman, 2009). The autonomic nervous 

system (ANS) is the most immediate response system to the stressor; activation of the ANS, 

particularly the sympathetic branch provides rapid changes to the physiological state (Iversen et 

al., 2000). The activation of the hypothalamic pituitary-adrenal (HPA) axis, which is a 

neuroendocrine cascade, results in increased circulating glucocorticoids; it has been found that 

glucocorticoids levels peak 10 minutes after the initiation of a stressor (Droste et al., 2008). When 

activated by a stressor, these two systems together cause stereotypical changes such as 

piloerection, pupillary dilatation, sweating, increased blood pressure and heart and changes in 

metabolism. The brain responds to stress in proportion to the nature of the stressor.  

	  
During a psychological stressor, the limbic and thalamic nuclei are triggered in response to a 

cognitive interpretation of the stressor from the cortical and amygdaloid regions of the brain. This 

results in the activation of the ANS and HPA-axis via neuronal projections to certain structures in 

the hypothalamus (Ulrich-Lai and Herman, 2009). Physiological stressors such as dehydration also 

activate the ANS and HPA-axis via structures in the hypothalamus (Toney and Stocker, 2010).  

Thus the hypothalamus appears to be a key structure in mediating the stress responses to both 

psychological and physiological stressors.  
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1.8.5 The autonomic response to stress 

The autonomic nervous system serves as the most immediate responder to stress, resulting in 

rapid changes to the physiological state by neural activation of targeted organs such as the sweat 

glands, pupils, gut, heart and vasculature beds via its sympathetic and parasympathetic branches 

(Critchley et al., 2000; Carrive and Gorissen, 2008; Ulrich-Lai and Herman, 2009; Harrison et al., 

2010). For the purposes of this thesis, we will focus on stress-mediated changes in autonomic 

control of cardiovascular function. Animal models have shown, acute psychological stress such as 

air jet stress increases arterial pressure and heart rate, and has varied affects on vascular beds, 

including vasodilatation to skeletal muscles and vasoconstriction to skin.  These responses are 

typically a result of sympathetic activation (Alves et al., 2010; Brotman et al., 2007; Blessing et al., 

2003; and Schadt and Hasser, 1998), however this is not always the case.  There is evidence that 

the skeletal muscle vasodilatation may be due to stress-induced inhibition of sympathetic 

vasoconstrictor fibres to the skeletal muscle (Gebber et al., 2000). These coordinated responses 

help to mobilize the animal to respond appropriately to the environmental conditions that have 

evoked the stress.  However, if the autonomic nervous system responds inappropriately, or if the 

animal is unable to remove itself from the stress, a non-homeostatic or pathological response may 

develop. 

	  
Stress may have adverse effects on health and disease when there are exaggerated, sympathetic 

responses to a stressor or in response to long term exposure to a stressor, and this may lead to 

overt hypertension (Grassi et al., 2010; Razanski et al., 2005).  For example, a recent study 

reported that patients treated for chronic psychosocial stress had increased blood pressure as well 

as increased low frequency: high frequency heart rate variability, increased low frequency systolic 

blood pressure variability and decreased baroreflex sensitivity compared to control patients (Lucini 

et al., 2014). All of these signs of autonomic dysfunction are commonly associated with 

hypertension (Grassi et al., 2010). Animal studies have also shown changes in blood pressure in 

response to chronic stress.  Henry and coworkers (1993) showed psychosocial competitive 

behavior between group-housed aggressive male Long Evans rats increased basal blood pressure 

by approximately 20 mmHg (Henry et al., 1993), while chronic stress evoked by repeated foot 

shock in rats increased basal blood pressure and heart rate after only two weeks (Xiao et al., 

2013). With regard to physiological stress, the most common example is high salt diet, which is a 
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well-known risk factor for hypertension (Weinberger, 1996).  Studies show that increased 

consumption of salt raises sympathetic nerve activity in rats (Toney and Stocker, 2010), and that 

preventing the increase in sympathetic activity also prevents the development of hypertension 

(Brody, 1988).  These studies demonstrate a strong association between chronic stress and 

hypertension, however evidence for more mild stress eliciting hypertension via a sympathetic 

pathway is less robust.  

	  
Air jet stress is considered a mild psychological stress (Dampney et al., 2008).  A study in the 

borderline hypertensive rat, exposed to daily air jet stress for 8 weeks showed increased heart rate 

and basal arterial pressure, compared to controls (Mansi and Drolet, 1997). This study suggests 

that chronic mild stress may sensitise the sympathetic system and lead to hypertension. It should 

be noted that the borderline hypertensive rat has a genetic predisposition to develop hypertension 

when exposed to a stressor. Thus, some individuals may have increased sensitivity to chronic 

stress due to genetic and/or epigenetic factors, predisposing them to developing hypertension.  

	  
In the context of foetal programming, studies have shown heightened anxiety-like behavior from 

offspring of mothers exposed to a stressor such as raised glucocorticoids during pregnancy 

(Welberg et al., 2001; Welberg and Seckl, 2001). A study by Igosheva et al., (2004) showed, 

offspring rats exposed to gestational restraint stress had increased blood pressure when they 

themselves were exposed to restraint stress at 6 months of age. Furthermore, blood pressure 

remained elevated during the recovery phase in these rats, indicating that programming both 

increased the magnitude and extended the duration of the stress response (Igosheva et al., 2004; 

O’Regan et al., 2008). Similar results were obtained in an obesogenic high fat diet model of 

programming (Samuelsson et al., 2010).  Arterial pressure increased more and remained elevated 

for longer in the high fat offspring in response to restraint stressed (Samuelsson et al., 2010). 

These programming studies add to the complexity of understanding the development of 

hypertension, furthermore, they provide evidence that stressors or unfavorable environments 

experienced in early life may in fact predispose offspring to develop hypertension.  
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1.8.6 The endocrine response to stress 

Glucocorticoids (GC) are one of the main effectors of the endocrine response to stress, being 

released from the adrenal cortex after the hypothalamic-pituitary-adrenal-axis (HPA) is activated 

(De Kloet et al., 1998) (Figure 1.1) 

.The HPA-axis consists of three 

major endocrine glands; the 

hypothalamus, pituitary gland and 

the adrenal gland.  These interact 

with each other to produce a 

complex network of feedback that 

controls the amount of glucocorticoid 

release in response to stress 

(O’Connor et al., 2000). Activation of 

the HPA-axis begins with 

hypothalamus-stimulated release of 

corticotropin-releasing hormone 

from the paraventricular nucleus 

(PVN) (Bornstein et al., 2008). This 

results in the release of 

adrenocorticotropic hormone (ACTH) 

from the anterior pituitary, which then 

enters the circulation and acts on the 

adrenal cortex to stimulate the production of GCs (Bornstein et al. 2008). GCs in the circulation go 

on to act on a wide range of target organs, producing an array of biological responses, including 

glycogenesis and gluconeogenesis in the liver, lipolysis and proteolysis in adipose, muscle, 

lymphoid and connective tissue (Smith et al., 2006).  These biological responses all act to provide 

adequate substrate to overcome a challenging situation.  

	  
1.8.7 Central circulatory mediating control of psychological stress 

The integrated central pathway of the autonomic nervous system that responds to stress is highly 

complex and remains poorly understood, however there is convincing evidence that suggests that 

Figure: 1.1 Schematic representation of feedback 

mechanism of HPA axis, “+” represents positive feedback 

loop whilst “– “ represents negative feedback loop; 

corticotropin releasing hormone (CRH), adrenocorticotropic 

hormone (ACTH). Figure adapted from Hiller-Sturmhöfel and 

Bartke, 1998. 
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this response may be orchestrated within the hypothalamus. This became evident 70 years ago 

from studies done by Hess and Brugger.  Their experiments showed electrical stimulation of the 

hypothalamus in a conscious cat produced behavioural and autonomic responses that were 

identical to those of a cat exposed to a threatening stimulus. This response is known as the 

“defense reaction” described by hissing, growling and piloerection behaviours observed (Hess 

and Brugger, 1943). Although these studies provided good evidence implicating the hypothalamus, 

it was impossible to delineate the precise regions of the hypothalamus or identify pathways 

associated with the defense reaction due to technical limitations of the day. However, more recent 

studies that have used more precise and localised methodology have enabled the identification of 

key regions within the hypothalamus, these include the lateral areas surrounding the fornix as well 

as the ventromedial and dorsal areas of the hypothalamus, the collection of these areas is often 

termed the hypothalamic defense area (Hilton, 1965).  

	  
1.8.8 Key hypothalamic nuclei involved in stress response 

Studies with improved and more sophisticated techniques have confirmed previous experiments 

indicating the role of the hypothalamus in mediating autonomic responses to stress. These studies 

have been able to identify regions within the hypothalamic defense area that are important in 

producing cardiovascular and behavioral responses to stress. The three main regions identified 

include; the perifornical nucleus (PeF), the dorsomedial hypothalamus (DMH) and the 

paraventricular nucleus (PVN). Figure 1.2 shows a summary of these structures that mediate the 

cardiovascular responses to stress.    
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Figure 1.2: Key regions of the 
hypothalamus that are associated 

with cardiovascular responses to 

stress. A) Parasagittal section 

indicating the location of the 

hypothalamus in a rat. B) Show three 

coronal sections with key hypothalamic 

regions located at anterior, middle and 

posterior of the hypothalamus. 

Parventricular nucleus (PVN), 

dorsomedial hypothalamic nucleus 

(DMH), perifornical area (PeF). Figure 

adapted from Dampney, 2013.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PeF: is located in the middle of the hypothalamus, surrounding the fornix.  Stimulation of this 

area evokes defense reactions as described by Hess and Brugger, 1943, (Nakao, 1958; Smith et 

al., 1990). Further, studies by Dampney and coworker (2008); suggest that the PeF is important in 

producing cardiovascular and autonomic responses to contextual stressors. Contextual stressors 

are defined as a stimulus that is perceived by the animal as threatening due to prior experiences, 

whereas non-contextual stressors are unconditioned fear, they do not depend upon prior 

experience and so are intrinsically threatening, such as a loud noise (Dampney et al., 2008).  

Studies by Furlong and Carrive (2007) showed that lesions made in the PeF reduced 

cardiovascular and autonomic responses to an environment in which the rat had been conditioned 

to fear (i.e. a contextual stress), but no changes were seen in cardiovascular and autonomic 

responses to restraint stress (a non-contextual stress). This result indicates that the PeF may play 

an important role in mediating the cardiovascular responses to contextual stressors. In contrast, 

the DMH is thought to play a role in mediating responses to non-contextual stressors (Palmer and 

Printz, 2002; Dampney et al., 2008).  
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The DMH: regulates cardiovascular and autonomic responses to acute stress (Ulrich-Lai and 

Herman, 2009, Dampney et al., 2002; 2008) (Figure 1.3). Discrete stimulation of the DMH 

increases blood pressure, 

heart rate, respiratory rate and 

increases HPA-axis 

responses to a psychological 

stressor (Bailey and Dimicco, 

2001; Ulrich-Lai and Herman, 

2009; Dampney et al., 2008). 

In contrast, inhibition of the 

DMH by injection of 

neuroinhibitory compounds 

decreases the increase in 

blood pressure and heart rate 

following an acute 

psychological stress such as 

air restraint or jet stress 

(Morin et al., 2001; Stotz-

Potter et al., 1996; Ulrich- 

Lai and Herman 2009).  

Afferent projections from other hypothalamic, cortical and subcortical regions input into the DMH, 

these projections are known to be associated with the perception of stress (Stotz-Potter et al., 

1996). The afferent inputs that initiate cardiovascular responses to a psychological stress in the 

DMH, however, are currently unknown (Dampney et al., 2008). The efferent projections from the 

DMH are defined more clearly. With the activation of the DMH, a modulation of the baroreflex is 

observed (McDowall et al., 2006). This probably arises via a direct input from the DMH to the 

nucleus tractus solitaries (NTS), which is a site at which primary baroreceptor afferents terminate 

(Thompson et al., 1996) and well known to be an important site of baroreflex modulation (Boscan 

et al., 2002). Direct projections from the DMH to the raphe pallidus have also been identified and 

thought to play an important role in regulating heart rate in response to a stressor (Sarker et al., 

Figure 1.3: Flow diagram showing proposed central pathways 

subserving the autonomic, neuroendocrine and respiratory 
responses to psychological stress. DMH, dorsomedial hypothalamus; 

NTS, nucleus of the solitary tract; RVLM, rostral ventrolateral medulla, 

BAT, brown adipose tissue. Figure adapted from Dampney et al., 2008.  
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2007; Samuels et al., 2002). Furthermore, studies have shown a functional projection from the 

DMH to the sympathetic premotor neurons located in RVLM (Fontes et al., 2001), and these 

projections may be responsible for changes in sympathetic vasomotor activity and therefore 

increases in blood pressure associated with a psychological stressor (Horiuchi et al., 2004, 

Dampney et al., 2002). However this remains controversial (Furlong et al., 2014). The descending 

pathways that mediate the stress evoked respiratory changes have not yet been defined 

(Dampney et al., 2008). Finally, there is evidence that the DMH is involved in gating PVN activation 

during a psychogenic stressor, which may play a role in both sympathetic and glucocorticoid 

responses to stress (DiMicco et al., 2002).  

The PVN: Inputs from other hypothalamic regions converge at the PVN, which plays a crucial role 

in regulating numerous homeostatic function, including temperature, appetite and fluid regulation.  

In addition, the PVN is a principle integrator of stress signals to autonomic and HPA axis (Ulrich‐

Lai and Herman, 2009; Guyenet, 2006). 

The PVN is highly involved in the 

regulation of HPA-axis; the medial 

parvocellular subdivision of the PVN 

contains neuroendocrine neurons that 

synthesise and release corticotropin-

releasing hormone (CRH) via the 

pituitary gland (Ulrich‐Lai and Herman, 

2009). CRH then stimulates the 

secretion of adrenocorticotropic 

hormone (ATCH) producing 

glucocorticoid hormones from the 

adrenals (Figure 1.4).  In addition to 

their role in mobilizing glucose and fatty 

acids, glucocorticoids also play a major 

role in regulating the stress response, 

via negative feedback cycle inhibition of 

Figure 1.4: role of paraventricular nucleus (PVN) in 

response to stress, showing major projections from the 

PVN in modulating HPA-axis and sympathetic activity. 

Adapted from Benarroch, 2005.  
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the HPA-axis (Sawchenko et al., 2000; Ulrich‐Lai and Herman, 2009).  

The posterior subdivision of the PVN projects directly to autonomic nuclei in the brain stem and 

spinal cord, including the spinal intermediolateral cell column (IML) and the rostral ventrolateral 

medulla (RVLM).  These pathways are thought to mediate part of the autonomic responses to 

stress (Shafton et al., 1998; Coote et al., 1998; Dampney et al., 2002) (Figure 1.4).  

The PVN also plays a crucial role in mediating sympathetic and endocrine responses to 

dehydration- and osmotic stress 

(Brooks et al., 2005; Guyenet, 

2006).  Inhibition of PVN neurons 

significantly attenuates the 

sympathetic activation in response 

to acute hyperosmolality (Antunes 

et al. 2006; Chen and Toney, 

2001).  The increase in 

sympathetic nerve activity is also 

mediated by activation of 

presympathetic RVLM neurons 

(Brooks et al., 2005), suggesting 

that the pathway fro the PVN to 

the RVLM plays a crucial role in 

osmotic and possible volume-

dependent increases in 

sympathetic activity. 

The PVN receives both direct and indirect inputs from key cardiovascular regulatory sites such as 

the NTS and A1 neurons in the caudal ventrolateral medulla.  The exact pathways are not fully 

elucidated but do include a synapse in the pontine parabrachial nucleus (PBN) (Benarroch, 2005) 

(Figure 1.5). These inputs provide information on bood pressure, blood volume and oxygen 

saturation (Karim et al., 1972, Clement et al., 1972; Lovick and Coote, 1988; Reddy et al., 2005) 

and may play an important role in modulating sympathetic homeostatic responses such as during 

Figure 1.5: inputs to the parventricular nucleus (PVN). The 

PVN receive visceral and nociceptive inputs via the nucleus of the 

solitary tract (NTS), either directly or via a relay in the C1/A1 

groups of catecholaminergic nerurons of the ventrolateral medulla 

or the parabrachial nucleus (PBN). Adapted from Benarroch, 

2005.  
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dehydration.  

Finally, studies indicate that the PVN may play a crucial role in initiating the increase sympathetic 

activity associated with heart failure (Felder et al., 2003) and hypertension (Ito et al., 2002; Allen, 

2002; Guyenet, 2006; Toney and Stocker, 2010). To date the role of the PVN in programmed 

hypertension has not been investigated. 

	  
1.9 NON-INVASIVE MEASUREMENT OF AUTONOMIC FUNCTION 

	  
Traditionally, the assessment of autonomic function requires the use of invasive techniques, such 

as direct recording of sympathetic nerve activity from electrodes placed on nerve fibers. These 

measurements of autonomic function cannot be done easily in a conscious freely moving animal 

and usually require conducting experiments under anestheisa.  This makes it extremely difficult, if 

not impossible to determine the response to psychological stressors.  Similarly, in humans the 

assessment of autonomic function is ethically complicated by the use of invasive techniques. 

Therefore, several non-invasive techniques have been developed to measure indices of autonomic 

function without causing undue stress to the subject. In this thesis, autonomic function was 

assessed by the following techniques: (i) spontaneous baroreflex sensitivity (sBRS), (ii) baroreflex 

effectiveness index (BEI), (iii) frequency analysis of heart rate variability (HRV), (iv) frequency 

analysis of systolic blood pressure variability (BPV) and (v) determination of maximum rate of 

change of aortic pressure during ventricular systole (dP/dtmax). These measurements are all 

conducted post-hoc from the blood pressure waveform, without the need to manipulate 

cardiovascular variables, and therefore minimise the disturbance to the animal. 

	  
1.9.1 Spontaneous baroreceptor reflex sensitivity (sBRS)   

sBRS is a method of determining cardiac baroreflex function; this method has been used both 

clinically and in animal studies to identify problems in blood pressure control (La Rovere et al., 

1998; Polson et al., 2006; Tank et al., 2000; Waki et al., 2006). sBRS measures the relationship 

between pulse interval (or R-R interval from electrocardiogram) and systolic blood pressure during 

spontaneous fluctuations in blood pressure. Traditionally, baroreflex sensitivity is determined by 

injecting vasoactive drugs into the animal resulting in changes in blood pressure. The resultant 

heart rate or pulse interval response is then plotted against blood pressure; this relationship 
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provides a measure of the baroreflex sensitivity.  This method is known as the Oxford technique 

(Smyth et al., 1969). This technique has been used to show decreased baroreflex sensitivity in 

hypertensive patients and in animal models of hypertension (Bristow et al., 1969; Casto and 

Phillips, 1986; Pladys et al., 2004).  

	  
More recently, analysis of sBRS has been done using computer-based techniques without the use 

of vasoactive drugs. These computer based techniques scan the blood pressure waveform using 

an algorithm that identifies beat-to-beat fluctuations in blood pressure and heart rate. These 

techniques provide a low cost, noninvasive and simple way of measuring sBRS.  An advantage of 

this technique is that it allows for an assessment of the baroreflex function at its functional 

operating point and how it’s modulated in daily life (Parati et al., 1995). There are two basic 

approaches commonly used: the sequence method and the spectral method. The sequence 

method incorporates the identification of sequences of consecutive beats in which progressive 

increases in SBP (pressor ramps) are followed by a progressive lengthening of pulse interval or 

progressive decreases in SBP (depressor ramps) are followed by progressive shortening of pulse 

interval.  For each ramp, these values (SBP and PI) are plotted and fitted with a linear regression 

line, the slope of the regression between SBP and PI values in each sequence are indicative of 

baroreflex sensitivity (Di Rienzo et al., 2001; Waki et al., 2006). This technique has two major 

advantages; firstly measurement variability is decreased due to the automatic and standardized 

way of computing the data, secondly, different measurements are taken for increasing and 

decreasing blood pressure values, these account for any asymmetry of baroreceptor response (La 

Rovere et al., 2008). The sequence method was used for the analysis of baroreflex in our 

experiments.  

	  
Spontaneous BRS can also be determined by investigating SBP and pulse interval variability (or 

heart rate variability (HRV), see below) in the frequency domain, and is based on the assumption 

that a component of the HRV in a certain frequency range is dependent upon the baroreflex, and 

where HRV and BPV will display a high coherence (Persson et al., 2001).  In other words, where 

the oscillations in HR and SBP are linearly related. The gain of the transfer function between SBP 

and HRV provides a measure of the BRS.  In practice, this can be determined as the square root of 

ratio of HRV and BPV powers in the low frequency and high frequency ranges, respectively (La 
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Rovere et al., 2008).  Both the sequence method and the spectral method have been validated 

using a number of tests, including denervation of baroreceptors producing a loss of gain and 

correlation with the gain as determined by the Oxford technique (Persson et al., 2001; La Rovere 

et al., 2008). 

	  
1.9.2 Baroreflex effectiveness index (BEI)  

In healthy individuals the baroreflex is not always activated following every fluctuation in blood 

pressure, and this phenomenon can be quantified as the baroreflex effectiveness index. It is the 

ratio between the number of SBP ramps followed by the respective PI reflex response and the total 

number of SBP ramps observed for a given time period (Di Rienzo et al., 2001), calculated using 

the formula below:  

 

𝑩𝑬𝑰 =   
𝒕𝒐𝒕𝒂𝒍  𝒏𝒖𝒎𝒃𝒆𝒓  𝒐𝒇𝑷𝑰 𝑺𝑩𝑷 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝒔  

𝒕𝒐𝒕𝒂𝒍  𝒏𝒖𝒎𝒃𝒆𝒓  𝒐𝒇  𝑺𝑩𝑷  𝒓𝒂𝒎𝒑𝒔  
 

 

1.9.3 Heart rate variability (HRV) 

Measurements examine quantitatively how heart rate varies over time. The measures are usually 

performed over both long and short term and are an important quantitative marker of autonomic 

activity. The association of HRV as a function of autonomic activity is seen in experimental 

evidence as an inclination to lethal arrhythmias and either increased sympathetic or reduced vagal 

activity. Such evidence has therefore allowed the development of quantitative markers and HRV 

represents a promising marker of autonomic activity (Heart rate variability, 1996). There are a 

variety of techniques to measure quantitatively how heart rate varies over time 

	  
The frequency domain measures of HRV are determined by performing fast fourier transform (FFT) 

over a heart rate waveform that has previously been created from the raw blood pressure 

waveform or ECG trace. This enables the separation of the fluctuations into three pre-determined 

frequency components, very low frequency component (0-0.25 Hz), low- (0.25-0.75 Hz) and high 

frequency (0.75-3.3 Hz).  These frequency ranges in the rat have been previously determined 

(Waki et al., 2006). Two of the frequency bands have been shown to be related to autonomic 

function: low frequency reflects the level of sympathetic modulation and high frequency reflects the 
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parasympathetic modulation. Furthermore, there is evidence that the very low frequency 

component is associated with hormonal influences (Malik et al., 1996).  

 

1.9.4 Blood pressure variability (BPV) 

Blood pressure can differ significantly in an individual at different times, for example during night 

and day, changes in the beat to beat blood pressure variation during sleep and wakefulness and in 

response to physiological or psychological stimuli. Evidence suggests that if such representation of 

BPV is augmented, there is an increased cardiovascular risk (Floras, 2013). Similar to HRV, 

spectral analysis of the beat-to-beat fluctuations in SBP in the low frequency band corresponds to 

levels of sympathetic vasomotor activity (Waki et al., 2006). 

 
1.10 THE C-FOS TECHNIQUE FOR FUNCTIONAL-ANATOMICAL 

IDENTIFICATION OF NEURONAL POPULATIONS ACTIVATED BY A 

SPECIFIC STIMULUS 

	  
1.10.1 What is c-fos?  

C-fos is an immediate early gene, the mammalian homologue to the osteosarcoma-causing viral 

oncogene v-fos (Sagar et al., 1988; Curran et al., 1983).  These genes are the first to be activated 

following virus integration into an infected cell and are responsible for transcriptional 

reprogramming of the host to promote virus replication (Milde-Langosch, 2005).  C-fos is a part of 

the Fos family of transcription factors, including FosB, Fra-1 and Fra-2.  It encodes for the protein 

product Fos, which forms heterodimers with the protein product from another immediate early gene 

c-jun to form a protein complex known as Activator Protein-1 (AP-1).  AP-1 is a transcription factor: 

it binds DNA at AP-1 specific binding sites at the promoter and enhancer regions of target genes, 

thereby altering gene expression of other genes (Figure 1.6) (Rylski and Leszek Kaczmarek, 

2004).  Although AP-1 is involved in many aspects of the brain physiology, only a few downstream 

target genes have been identified.  Some of these include genes encoding for neurotransmitters or 

neuromodulators, such as tyrosine hydroxylase, corticotrophin releasing hormone and arginine 

vasopressin, while other encode for transmembrane protein and neurotrophine and cytokines 

(Hoffman et al., 1993; Icard-Liepklans et al., 1993; Rylski and Leszek Kaczmarek, 2004). 
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1.10.2 Stimulus for c-fos expression in neurons 

Fos expression was first identified in brain neurons in the late 1980s and the expression was 

shown to be increased by generalised seizure, noxious stimulus or electrical stimulation (Sagar et 

al., 1988; Dragunow and Faull, 1989; Dragunow and Robertson, 1988; Herrera and Robertson, 

1996).  In particular, the activation of c-fos appears to be dependent on increasing intracellular 

calcium concentrations, such as occurs during depolarisation-activated voltage dependent calcium 

channels (Dragunow and Faull, 1989; Haby et al., 1994; Herrera and Robertson, 1996; Sheng and 

Greenberg, 1990).  Thus, a major stimulus for c-fos expression is neuronal activation.   

	  
Following a stimulus, c-fos is expressed rapidly, within a few minutes, reaching peak mRNA levels 

within 30 minutes (Kovacs, 2008) and maximum protein expression by approximately 60-120 

minutes (Sheng and Greenberg, 1990; Kovacs, 2008).  Protein expression persists for 2-5 hours 

(Kovacs, 2008; Morgan et al., 1987).  Basal c-fos expression in most neurons is very low 

(Dampney and Horiuchi, 2003), indeed usually a strong and sustained stimulus is required before 

c-fos expression can be reliably induced (Dampney and Horiuchi, 2003; Dragunow and Faull, 

Figure 1.6: illustration of intracellular pathways leading to Fos 
expression.  
Adapted from Dampney et al., 2003 
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1989).  These simple expression characteristics have made the identification of c-fos mRNA levels 

using in situ hybridisation or Fos protein levels using immunohistochemistry one of the most 

powerful and reliable techniques for identification and mapping of neuronal populations that are 

activated by a specific stimulus (Dampney and Horiuchi, 2003; Ferrera and Robertson, 1996).  

Since these early studies, there have been hundreds of reports that have investigated c-fos 

expression in the central nervous system following specific stimuli (Dampney and Horiuchi, 2003; 

Ferrera and Robertson, 1996).  It is important, however, to be aware of the limitation of the c-fos 

technique when used as a tool for functional neuroanatomical identification. 

	  
1.10.3 The c-fos Technique as a tool for functional mapping of neuronal activity 

Identification of brain regions or neuronal populations responsible for a specific function is of 

crucial importance in neuroscience. Earliest techniques involved lesioning or electrical stimulation 

of brain regions of interest and observation of the evoked responses. Clearly these techniques 

were coarse in their nature and could not discriminate between effects on cell bodies or axons of 

passage (Dampney and Horiuchi, 2003; Dragunow and Faull, 1989). Electrophysiological recording 

of individual or small groups of neurons to identify neurons activated by a stimulus allowed for 

greater discrimination within brain regions, but at the expense of better understanding of more 

global effects. Such experiments could not identify more than a few neurons at any given time, and 

so were unable to provide useful information about populations of neurons that are activated by a 

stimulus (Dampney et a, 1995; Dampney and Horiuchi, 2003). 

	  
To obtain a more comprehensive picture of the distribution of neurons that are activated by a 

specific stimulus, it is necessary to use a functional mapping technique. An early method was the 

2-deoxyglucose method, which uses injected radioactive deoxyglucose to identify brain regions 

whose metabolic activity is altered as a consequence of the stimulus (i.e. because of increased 

neural activity) (Dampney et al., 1995; Dampney and Horiuchi, 2003).  The disadvantage of this 

technique is its lack of resolution. The incorporated radioactive glucose in the tissue is simply 

exposed onto photographic plates and so there is no microscopic magnification of the area under 

observation. Therefore, it is not possible to identify individual neurons, or even whether the 

radioactivity is in neuronal cell bodies or terminals.  Moreover, the basal level of metabolic activity 

is fairly high, meaning there is often a low signal to noise ratio that can make it difficult to identify 
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some activated regions (Dampney et al., 1995; Dampney and Horiuchi, 2003; Greenberg et al., 

1981). The c-fos technique is a more advanced functional mapping technique that overcomes 

many of the problems described above. 

	  
Fos protein can be stained for immunohistochemically, staining the nucleus of the neuron, and 

allowing the tissue to be examined under the microscope.  Therefore, the c-fos technique has the 

dual advantage of being able to identify activated (by the presence of Fos) populations of neurons 

at the cellular level. Moreover, Fos labelling can be combined with other neuroanatomical 

techniques, such as double labelling for retrograde tracers or neurotransmitters, allowing more 

information to be evaluated (Dampney et al., 1995; Dampney and Horiuchi, 2003).  

	  
Limitations:  There are a number of limitations to the c-fos technique that need to be considered.  

First, neurons differ in their capacity to produce Fos and the time course over which Fos is 

produced is not consistent between different cell populations. Therefore, absence of Fos 

expression does not necessarily mean that the neurons were not activated.  For example, following 

a raised blood pressure stimulus, no Fos was found in the nucleus ambiguous, the site of cardiac 

vagal preganglionic neurons, despite it being well reported that these neurons are activated by 

raised blood pressure (Dampney et al., 1995).  A second limitation is that Fos expression is 

affected by anaesthesia (Dragunow and Faull, 1989), making it complicated to carry out studies in 

anaesthetised animals (Dampney et al., 1995).  For example, barbiturates have been reported to 

inhibit Fos expression, while urethane increases baseline expression (Dragunow and Faull, 1989; 

Dampney et al., 1995).  Finally, because the expression of Fos is linked to neuronal activation, any 

stimulus that increases neuronal activation will likely cause Fos expression. Therefore, it is 

important to control the local environment in which the experiments are taking place: for example 

noise levels and smells may elicit Fos expression (Beckett et al., 1997). 

	  
1.10.4 The c-fos technique in psychological stress 

There are numerous reports describing neural activation in response to acute (Ceccatelli et al., 

1989; Furlong et al., 2014; Palmer and Printz, 1999; Porter and Hayward, 2011; Spencer and Day, 

2004; Spencer et al., 2005), and contextual (Carrive and Gorissen, 2008; Furlong et al., 2009) 

stress. Many of the regions reported to be activated include regions known to be involved in 

mediating sympathoexcitatory responses to stress, including the rostral ventrolateral medulla, 
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midbrain periaqueductal grey and several structures in the hypothalamus (Carrive and Gorissen, 

2008; Furlong et al., 2009; 2014; Palmer and Printz, 1999; Porter and Hayward, 2011; Spencer 

and Day, 2004; Spencer et al., 2005).  

 

Air jet stress, used in this study, is considered an acute stress of moderate intensity (Dampney et 

al., 2008).  Rats exposed to an air jet stress show significant increases in Fos expression in certain 

hypothalamic regions, including the DMH, PVN, and PeF, (Furlong et al., 2014; Palmer and Printz, 

1999; Spencer et al., 2005; Spencer and Day, 2004). As described in Section 1.8.9, these nuclei 

are crucial for the normal expression of sympathoexcitatory responses to stress.  There are no 

reports describing stress-evoked Fos expression in the hypothalamus in programmed 

hypertension, however increases in stress-evoked Fos expression in the hypothalamus have been 

described in the spontaneously hypertensive rat (Imaki et al., 1998; Palmer and Printz, 1999).  

Therefore, the exaggerated cardiovascular responses to stress in the spontaneously hypertensive 

rat (Palmer and Printz, 1999) may be due to increased activity in these hypothalamic regions. 

Investigation of Fos expression following acute stress in programmed hypertension is crucial to 

better understand the mechanisms underlying hypertension in this model. 
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1.11 HYPOTHESIS AND AIMS  

	  
1.11.1 Hypothesis  

1. Programmed rats (offspring of dams exposed to a high fat (HF) or high sucrose diet (HSU) 

during pregnancy) exhibit a hypertensive phenotype and altered autonomic function at rest 

2. Programmed rats exhibit altered cardiovascular and autonomic responses to physiological 

(dehydration) and psychological (air jet) stress 

3. Programmed rats have an increased number of activated neurons (as determined by c-fos 

expression_ in response to air jets stress  

 

1.11.2 Aims 

1. To compare blood pressure and derived cardiovascular and autonomic parameters in 

offspring at 6 months of age of dams fed a high fat (34% fat) or control (4.8% fat) diet non-

invasively using radiotelemetry.  The cardiovascular parameters include systolic and 

diastolic blood pressure, pulse pressure, heart rate and pulsue interval. The autonomic 

parameters include heart rate and systolic blood pressure variability, spontaneous 

baroreflex sensitivity, baroreflex effectiveness index and maximum rate of change of the 

rise in aortic pressure during systole (dP/dtmax, as an index of cardiac contractility).  

Parameters will be measured in the absence stress and during exposure to a physiological 

(dehydration) or psychological (air jet) stressor.   

2. To compare blood pressure and derived cardiovascular and autonomic parameters in 

offspring at 6 months of age of dams fed a high sucrose (10% sucrose) or control (0% 

sucrose) diet using radiotelemetry.  Parameters will be measured in the absence of stress 

and during exposure to a physiological (dehydration) or psychological (air jet) stressor.   

3. To determine whether the offspring of dams fed a high sucrose diet exhibit differences in 

Fos expression (as a marker of neuronal activation) in key hypothalamic structures 

(dorsomedial hypothalamus, perifornical area and paraventricular nuscleus) following a 

psychological (air jet) stress.  



54 
 

CHAPTER 2: METHODOLOGY 

	  
2.1 OVERVIEW  

	  
These experiments were designed to investigate the propensity for hypertension in the offspring of 

rat dams fed a high fat (HF) or high carbohydrate (sucrose, HSU) diet during pregnancy. Pregnant 

rats were fed either a standard chow (6% fat), high fat chow (34% fat) or high carbohydrate (10% 

sucrose solution in water) diet for a period of time (discussed in detail below). Protein levels were 

maintained similar at 20-26% energy in all feed, a difference that is unlikely to impact on foetal 

programming. The offspring were kept for 6 months before commencement of experiments.  

	  
Adult offspring rats (6 months old) were implanted with a radio telemetry probe under general 

anaesthesia, for blood pressure measurement in the awake, freely moving animal. Following a 

recovery period of approximately 7 days, blood pressure was recorded in the rat over a nine-day 

period, during which time they were subjected to dehydration (a physiological stressor) by 

removing access to water for three days. Following recovery, the rats were also subjected to an air 

jet stress (psychological stressor), which consisted of 15 minutes of repeated exposure to puffs of 

air. The rat was then perfused using paraformaldehyde to fix the brain. The brain was removed and 

prepared for c-fos staining of neurons using an immunohistochemical procedure.  

	  
The Animal Care and Ethics Committee at The University of Sydney approved all experimental 

protocols and all experiments were done in accordance with the NHMRC Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes (2004). Experiments were 

conducted in Sprague Dawley (SD) rats for all the experiments. A total of 23 males and 20 female 

SD rats were used for HF experiments and a total of 16 male SD rats were used for HSU 

experiments.  
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2.2 HIGH FAT AND HIGH SUCROSE MODELS OF PROGRAMMED 

HYPERTENSION  

	  
2.2.1 High fat diet 

Female Sprague-Dawley rats (age 5 weeks; approximate weight 157-173g) were maintained under 

light and temperature-controlled conditions and fed either a HF diet (34% fat omega-6 PUFA, 26% 

protein, energy 22.3 KJ/g) or control diet (6% fat, 23% protein, energy 13.9 KJ/g), by Specialty 

Feeds Services, Western Australia, commencing four weeks prior to mating. After mating, female 

pairs were established for the period of gestation.  Dietary interventions were maintained 

throughout gestation and switched to a standard diet on day one of lactation.  

	  
2.2.2 High sucrose diet 

A second group of rats (age 5 weeks; approximate weight (g) 249 -267.) were also maintained 

under controlled conditions and given either a high sucrose diet or a control diet. The high sucrose 

diet rats consumed a standard chow (4.8% fat, 20% protein, energy 14.0 MJ/Kg digestible energy, 

Specialty Feeds), but in addition to being provided with normal drinking water, they were also 

provided with drinking water that contained sucrose at 10% wt/vol (Coles white sugar; Victoria, 

Australia) concentration (Figure 2.1). The average daily amount of drink intake of sucrose drink 

was 112.5±17.3 mL and water was 29.9±6.8mL for the sucrose group (Figure 1 in Appendix). 

The control rats were fed the same control diet and normal drinking water only. The dietary 

interventions were the same as for HF rats: established four weeks prior to mating, one week 

during mating (where they were co-housed with a male rat), and subsequently for the 3 weeks of 

gestation. For both high fat and high sucrose protocols, female rats were housed separately and 

mated at night by introducing a male rat into the cage. The following morning vaginal swabs were 

performed to confirm mating by the presence of sperm on the swab.  If sperm was identified, this 

was taken as confirmation of pregnancy and as embryonic day zero. All rats were housed in The 

University of Sydney animal houses throughout gestation and lactation.  
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On the day of parturition, litters were culled to 8 pups per dam to ensure equal nutrition within the 

offspring.  At this stage, all dams were provided with a standard diet and pups remained with the 

mother until weaning at an age of three weeks. Post weaning, the pups were housed in-group 

cages of males and females until the commencement of experiments.  Prior to commencement of 

experiments rats were brought up to the laboratory and housed in an approved animal holding 

room within the laboratory. The room in which the rats were held was temperature controlled 

(approximately 25°C) with a 12:12 light: dark cycle and all rats had free access to water and chow. 

	  
2.3 MEASUREMENT OF CARDIOVASCULAR PARAMETERS IN THE 

OFFSPRING  

	  
2.3.1 Surgical implantation of radio telemetry probes 

At approximately 6 months of age the rats underwent a surgical procedure to implant a telemetry 

blood pressure transmitter (PAC11-40, Data Science International, St, Paul, MN, USA). Blood 

pressure was measured using a pressure-sensing catheter that was inserted in the upstream 

direction into the abdominal aorta. The catheter is connected to a pressure transducer that 

transmits the pressure signal via radio frequency signals. This radio frequency signal can be 

detected and recorded when the rat is placed on a receiver, which is connected to a computer. The 

Figure 2.1: Experimental design for high sucrose model 
Both maternal control and sucrose groups were provided with a chow diet and water. In adition to this the sucrose 

group was provided with a 10% sucrose solution (w/v). The dietary intervention period was implemented 4 weeks 

before mating, 1 week during mating and for thee weeks of gestation. Figure adapted from Ekayanti, 2013. 
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pulsatile arterial pressure signal was recorded at a sampling rate of 1000 Hz using DATAQUEST 

software. Cardiovascular variable (heart rate (HR) pulse interval (PI), systolic blood pressure 

(SBP), diastolic blood pressure (DBP) and pulse pressure (PP)) and autonomic indices 

(spontaneous baroreflex sensitivity (sBRS), baroreflex effectiveness index (BEI), heart rate 

variability (HRV), systolic blood pressure variability (BPV) and maximum rate of change of blood 

pressure (dP/dtmax)) were calculated post-hoc using Spike2 software (CED, Cambridge, UK). This 

method of recording blood pressure is considered a gold standard method whereby blood pressure 

waveforms can be measured in the conscious rat in its home cage without disturbing it or causing 

any unintended stress (Huetteman and Bogie, 2009).  

	  
2.3.2 Anesthesia 

The rat was anaesthetized via a two-step process; anaesthesia was first induced by inhalation of 

isoflurane (5%, Isoflo, Abbott Laboratories Inc.) by placing the animal in a box connected to a 

ventilator that pumped an isoflurane-air mixture into the box. Anesthesia was maintained by 

intraperitoneal injection of medetomidine hydrochloride (300-500 µg/kg) and ketamine 

hydrochloride (60-100 mg/kg). To ensure adequate anaesthesia, pinching of the hind paw was 

used to test withdrawal reflexes. The level of anesthesia was tested throughout the surgical 

procedure to ensure that the animal felt no pain and was not arousing from anaesthesia. 

Supplementary doses of medetomadine and ketamine were administered if the animal showed any 

withdrawal reflexes during the surgical procedure. Throughout the procedure, body temperature of 

the rat was monitored and maintained at approximately 36°C by a heating blanket placed under the 

animal. 

	  
2.3.3 Implantation procedure 

The surgical procedure was performed under aseptic conditions: all surgical instruments were 

washed overnight using a medical instrument detergent (Pyroneg, Suma) and water. Blood 

pressure transmitters were also sterilized in a 2% Glutaraldehyde solution H2O for up to three 

hours and soaked in saline overnight.  

	  
After appropriate anesthesia was acquired the animal was placed in a supine position and the 

abdomen was shaved and cleaned with saline solution. A midline incision was made through the 

skin and abdominal muscles; the intestines were carefully removed from the abdominal cavity to 
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expose the descending aorta at the level between the renal arteries and bifurcation of the iliac 

arteries. The intestines were kept moist by covering them with gauze soaked in saline.  

	  
A section of the aorta was cleared of overlaying connective tissue and fat using cotton tip 

applicators to allow good visualization of the aorta. A section of the aorta was isolated vascularly 

by temporarily ligating lateral vessels arising from the aorta using a suture. Vascular clamps were 

placed proximally and distally on the aorta from the site of catheter insertion. Using a 19G needle a 

small hole was made in the aorta to allow the insertion of the catheter. The catheter was inserted 

1cm into the abdominal aorta, in the direction of the heart (Figure 2.2), and glued in place using 

few drops of tissue adhesive (3M Vetbond), which also facilitated haemostasis. A small sheet of 

cellulose patch (Data Science International) was placed over the aorta at the site of cannula 

insertion to help tissue growth and to promote healing. Following successful implantation the 

vascular clamps were removed and intestines repositioned. The body of the transmitter was 

sutured to the abdominal muscles and the abdominal muscles sutured closed (Figure 2.3). The 

skin incision was closed using autoclips. The entire procedure took approximately one hour.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Vessel cannulation 

technique 
A small hole is made in the abdominal aorta using a 

needle and the catheter is inserted 1 cm into the 

aorta in the direction of the heart. Adapted from 

Huetteman and Bogi (2009).    

 

Figure 2.3: illustration of a rat implanted 

with a blood pressure telemetry device  
The catheter is glued in place with tissue adhesive. The 

body of the transmitter is sutured to the abdominal wall. 

Adapted from Huetteman and Bogi (2009).    
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2.3.4 Postoperative care 

Following the surgical procedure the rat was given fluids (5% glucose, subcutaneously), antibiotics 

(procaine penicillin, 30 mg/kg, subcutaneously), non-steroidal anti-inflammatory (Carprofen, 

4mg/kg subcutaneously) and an alpha-2 receptor antagonist (atipamazole, 1mg/kg) to reverse the 

actions of medetomidine. The animal was then placed in its home cage in a quiet room with a 

heating lamp and monitored until awake.  Following recovery from anaesthesia, the animal was 

monitored twice daily and weights checked to ensure no post-surgery complications. This 

comprised checking for hind limb weakness, signs of pain or distress and hydration status by 

following guidelines on animal monitoring forms.  If the weight of the rat was found to have reduced 

below 15% of the pre-operative weight, the rat was euthanized. Postoperatively, the rats were 

housed separately and left to recover for at least 7 days before commencements of experiments.  

	  
2.4 TEST PROTOCOLS (PHYSIOLOGICAL AND PSYCHOLOGICAL 

STRESSORS) 

	  
2.4.1 Physiological stressor (dehydration protocol) 

Dehydration produces hypovolaemia and hyperosmolarity, both of which activate the sympathetic 

nervous system, increase vasopressin release and increase blood pressure (Collister et al., 2014).  

There is evidence that the physiological response to dehydration is similar to that of a high salt 

diet, a known risk factor for hypertension (Toney and Stocker, 2010). Therefore this physiological 

test was performed both to increase sympathetic activity and according to the rationale that 

dehydration may mimic the effects of a high salt diet over a shorter time course.  

	  
Following the post-surgery recovery period, the rat was transferred in its home cage to the 

telemetry recording room. The telemetry room was arranged to allow recordings to take place with 

minimal external disturbances during the experimental protocol. The test room was temperature 

controlled (approximately 25 degrees) with a 12:12 light: dark cycle.  

	  
The dehydration protocol comprised three days of baseline recording, followed by three days of 

dehydration, where the animal was deprived of water, and then three days recovery, where access 

to water was returned. Therefore the dehydration protocol comprised a total of 9 days (baseline, 

dehydration and recovery). During this entire time recordings of blood pressure were made for 5 
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minutes each hour at a sampling rate of 1000 Hz. The animal was monitored throughout the 

protocol and body weight measured daily to ensure the dehydration was being managed 

adequately: dehydration was ceased and water returned to the rat if its body weight fell below 15% 

during the dehydration period. This did not occur in any of the animals studied. 

	  
2.4.2 Psychological stressor (air jet stress protocol) 

After a period of recovery from the dehydration protocol, the animal was subject to a psychological 

stressor. The air jet stress is commonly used and has been well characterized in studies done 

previously in rats (Spencer et al.,  2005; Furlong et al., 2014). The animal was left in its home cage 

in the telemetry room for baseline recording for 30 minutes before the air jet stress was performed.  

	  
The air jet protocol consisted of a series of air puffs (approximately 500 kPa pressure) blown 

towards the head of an unrestrained animal at a distance of approximately 10 cm. The air puffs 

were delivered via a metal nozzle trigger connected to a cylinder of medical oxygen via a plastic 

tube. The air jet stress consists of air puffs in blocks; each block consisted of three 2-second air 

puffs, each separated by a 10 second gap. In total 9 blocks of air puffs were administered to the rat 

with a rest period of 1 minute between each block. The total duration of the air jet stress protocol 

was approximately 15minutes (Figure 2.4). Following the air jet stress, the animal was left quietly 

for 2hours for further recording and to allow for c-fos expression before the animal was perfused 

with 4% paraformaldehyde solution (see below). 
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2.5 HISTOLOGICAL PROCESSING  

	  
2.5.1 Perfusion 

Rats were deeply anaesthetised using pentobarbital sodium (120 mg/kg, delivered 

intraperitoneally). A deep level of anaesthesia was confirmed by the total absence of any 

withdrawal response to a strong pinch of the hind paw and observation of a depressed respiratory 

rate. After adequate anaesthesia was established the animal was placed in a supine position and a 

large midline incision was made through the skin and abdominal muscles. The incision was 

extended up to the thorax and the diaphragm was exposed. Using scissors the ribs were cut to 

expose the heart and an injection of 500 units of heparin was made into the circulation, via the left 

ventricle. The perfusion of the rat was performed transcardially by inserting a 14 gauge needle into 

the ascending aorta via the apex the left ventricle. The needle was clamped in place using a 

Figure 2.4: Diagram representing the air jet protocol 
Data were recorded for 30 minutes before the commencement of air jet stress. The air jet stress 

consists of air puffs delivered in blocks with a total of 9 blocks. Each block consisted of three puffs, 10 

seconds apart.  Each block was 60 seconds apart. Each air puff was delivered for 2 seconds. At the 

end of the air jet stress, data were recorded for 30 minutes as the recovery period. Figure adapted 

from McDowall (2007).     
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hemostat.  Silicone tubing was connected to the needle and perfusion solutions were pumped 

through using a peristaltic pump (Masterflex model 7553-75 Cole Parmer Instruments Company 

Ltd) at a rate of 25ml/min. Initially, warmed 0.9% saline solution was pumped into the systemic 

circulation to wash away the blood. A small cut was made on the right atrium to allow for blood and 

saline to drain from the body. Whilst the saline was pumped through the body, the transmitter was 

removed and using a hemostat the aorta was clamped downstream.  

	  
When the fluid from the right atrium drained clear, the rat was perfused with cold, 4% 

paraformaldehyde (Sigma-Aldric Inc.) in phosphate buffer (0.1 M, pH 7.4) for approximately 20 

minutes. The brain was then carefully removed and post-fixed in 4% paraformaldehyde solution for 

up to 45minutes at 4°C, before the solution was replaced with 20% sucrose in phosphate buffer 

solution (PBS) and refrigerated at 4°C for a minimum of 24 hours.  

	  
2.5.2 Sectioning 

Using fine forceps any remaining pia mater surround the brain and brainstem was carefully 

removed, this allowed the smooth sectioning. The brain was divided into three separate blocks, cut 

transversely for sectioning. The first transverse cut was made at approximately the level of the 

colliculus and the other at the level of the optic chiasm. This region included most of the midbrain 

and the hypothalamus. Each block was carefully mounted on the stage of a carbon dioxide-

freezing microtome (model 1320, Leica) using 20% sucrose-PBS solution (0.1 M pH 7.4) and 

sections were cut at a 40 µm thickness. To ensure minimal damage to the brain whilst cutting, 

firstly a solid ice base was formed on the microtome stage using sucrose solution. The brain was 

carefully placed on the solidified solution base and a protective barrier was formed around the 

brain by freezing the sucrose solution, this allowed stable and protective layer during cutting. Five 

sequential series of brain sections were collected into sample containers with PBS (0.1M, pH 7.4) 

and refrigerated. The brain sections in series one were transferred into separate wells on a well 

tray (ProSciTech, HCE11) to maintain correct order of sections. Series two was used for 

immunohistochemical staining for Fos.  
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2.6 IMMUNOHISTOCHEMICAL STAINING  

	  
2.6.1 c-Fos immunohistochemistry 

c-Fos expression is used as a marker for neuronal activity throughout the neuraxis following 

peripheral stimulation (Bullitt). Fos is the protein product of the gene c-fos; Fos protein can be 

stained to allow for visualisation in a semi-quantitative manner by using methods of 

immunohistochemistry. The formation of a black precipitate in the nucleus of a neuron is a marker 

for Fos and is indicative of an activated neuron (Dragunow and Faull, 1989). There is evidence that 

Fos expression is greatest approximately two hours after a stimulus is applied (Nestler, 2001), 

therefore rats were perfused two hours after the air jet stress test to allow for maximum Fos 

expression.  

	  
One of the five series of sections were used for Fos staining; these sections were carefully washed 

and incubated three times with 50% ethanol in water for 10 minutes on an orbital mixer. Incubating 

the tissue in ethanol allows the lipid membrane to become more permeable, thereby facilitating the 

penetration of antibodies into the cell. To block non-specific antigen binding, sections were 

incubated with 20% normal horse serum (NHS) in PBS for 30-60 minutes using the orbital mixer. 

Sections were then incubated in the primary antibody at 4°C for 36-48 hours.  The primary 

antibody used was rabbit polyclonal anti-Fos IgG (sc-52, Santa Cruz Biotechnology Inc.) at a 

dilution of 1:1000 in a solution containing 20% NHS in 0.1M PBS.  

	  
After 48-36 hours sections were washed three times with 0.1M PBS for 10 minutes per wash on an 

orbital mixer. Following the three washes, sections were incubated in the secondary antibody, 

biotinylated donkey anti-rabbit IgG (1:400 dilution in PBS, GE Healthcare Australia Pty. Ltd.) 

overnight at 4°C.  

	  
Sections were washed again for 10 minutes (3 X 10min) with 0.1M PBS, and incubated in 

ExtrAvidin peroxidase conjugate (diluted 1:1000 with PBS, Sigma) at room temperature for one 

hour. At the end of the ExtrAvidin peroxidase incubation the sections were washed (3 X 10 min) 

with 0.1M Tris buffer and placed in a solution of 0.1 M Tris buffer containing: 3,3’ 

diaminobenzidinetetra-hydrochloride (DAB, 25µg/ml), D-glucose (0.5%), ammonium chloride 

(0.04%) and nickel sulphate (1%) for five minutes. Expression of Fos was then revealed by 
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reacting the tissue by adding 10µl of glucose oxidase to produce a black reaction product. The 

reaction was then stopped by washing in 0.1M PBS.  

	  
2.6.2 Mounting 

Following immunohistochemical staining, sections were placed in rostrocaudal order. Sections 

were mounted onto gelatinized slides (0.5% gelatin) and allowed to dry in room temperature for 24 

hours. Sections were dehydrated by dipping the slides in 100% alcohol, cleared in histolene and 

coverslipped.  

	  
	  

2.7 DATA ANALYSIS  

	  
2.7.1 Telemetry data 

Blood pressure waveform recordings were obtained using acquisition software (Data Sciences 

International Inc.). A sample rate of 1000 samples per second was used to allow for a high fidelity 

of construction of the digitized blood pressure waveform. Other measurements such as HR, SBP, 

DBP, PP, heart rate variability (HRV) and spontaneous baroreceptor reflex sensitivity (sBRS) were 

derived from the blood pressure waveform using a script within Spike2 software (Cambridge 

Electronic Design Ltd.). Any further statistical analysis was performed using Excel or Graphpad 

Prism version 6.  

	  
2.7.2 Data grouping 

The dehydration protocol consisted of scheduled recordings of blood pressure every hour for 5 

minutes. Each five-minute period was grouped into 12-hour blocks, consisting of 12-hour day and 

12-hour night cycles for each of the nine days. Each of these 12 hour blocks were then averaged 

and cardiovascular parameters were obtained.  

	  
The air jet protocol consisted of continuous recordings of blood pressure. Cardiovascular 

parameters were calculated for two 15 minutes periods immediately before the commencement of 

the air puff stress test to determine the baseline values, and for two 15 minute periods after air puff 

to determine the post-stress recovery values.  The data during the stress test were analysed during 

the one minute wait-period between each block of air puffs. It was not possible to measure blood 

pressure during the air puff because of the movement artifacts caused by the rat’s running.  Each 
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one-minute period was averaged to obtain cardiovascular parameters for the stress period, a total 

of nine, one-minute measurements were made.  

	  
2.7.3 Spontaneous baroreceptor reflex (sBRS) 

In the rat, for a given change in SBP there is a time delay before the reflex response in PI is 

initiated, this baroreflex delay has been calculated previously as a delay of 3-5 beats (Oosting et al. 

1997). To summarise, a sBRS sequence was accepted if there was a minimum of three beats of 

consecutive increasing or decreasing SBP (four SBP-PI pairs), the linear regression was positive 

and the correlation (r2) coefficient greater than 0.85 for each time delay (3, 4 and 5 beats). If these 

criteria were fulfilled, then the sBRS for each sequence was calculated as the average of the 

slopes for each time delay.    

	  
Baroreflex effectiveness index (BEI) is the ratio between the number of sBRS sequences (SBP 

ramps followed by the appropriate PI reflex response) and the total number of SBP ramps 

observed for a given time period (day/night or baseline, stress, recovery) (Di Rienzo et al., 2001). 

BEI is therefore an index of how frequently the baroreceptor reflex is initiated in response to a 

change in SBP.    

	  
2.7.4 Spectral analysis of heart rate and systolic blood pressure variability 

HRV and BPV were determined in spike2 software (CED) using customized scripts. A power 

spectral analysis was done by performing a fast Fourier transformation (FFT) on heart rate and 

SBP waveforms, which provides information on the distribution of power (variance) in different 

frequency components.  

	  
HRV: Measurements examine quantitatively how heart rate varies rhythmically over time (Task 

Force of The European Society of Cardiology and The North American Society of Pacing and 

Electrophysiology 1996).   

	  
BPV:  The analysis of the variation in beat-to-beat systolic blood pressure is very similar to that of 

HRV.  A systolic BP waveform is created at 10 Hz using a spline interpolation protocol and an FFT 

performed as described above.  The frequency ranges are identical to that of HRV.  The VLF (0-

0.25 Hz) and the LF (0.25-0.75 Hz) components similarly represent hormonal influences on total 
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peripheral resistance and sympathetic vasomotor modulation, respectively (Waki et al., 2006).  The 

HF component of BPV is unlikely provide any information about parasympathetic influence 

because there is no significant parasympathetic innervation of the blood vessels. 

	  

2.7.5 dP/dtmax 

In this study, dP/dtmax was used as an estimated index of left ventricular contractility; it is the 

maximum rate of left ventricular pressure rise during systole and is determined by the first 

differential of the ventricular contractility. This differential provides an estimate of the sympathetic 

inotropic state of the left ventricle 

	  
2.7.6 Statistical analysis  

All data were expressed as mean ± SEM. Birth weights, cardiovascular and autonomic parameters 

at rest and Fos-labelled neurons between groups were analysed by an unpaired student t-test. 

Cardiovascular and autonomic parameters during dehydration and air jet stress were statistically 

determined using two-way analysis of variance (ANOVA) with or without repeated measures, as 

necessary, and a Bonferroni’s correction for multiple comparisons (GraphPad Prism 6, GraphPad 

software). 

	  
2.8 IDENTIFICATION AND QUANTIFICATION OF FOS-LABELLED 

NEURONS   

	  
Microscopy and image analyses were carried out in the Bosch Advanced Microscopy Facility.   A 

comparison of the number of Fos-labelled neurons in response to air jet stress between control 

and high sucrose programmed rats was made in 3 key hypothalamic structures: the dorsomedial 

hypothalamic area (DMH), the perifornical area (PeF) and the paraventricular nucleus (PVN). 

Hypothalamic sections of interest were selected according to the location of these nuclei identified 

by their cytoarchitectural features, according to an atlas of the rat brain (Paxinos and Watson, 

2007).  The major identifying features were the shape and location of the optic tract, the distance 

between the fornix and the mammillothalamic tract and the third ventricle.  Sections were 

examined microscopically and photographed using an Olympus stereology microscope with a 

motorised xyz-stage. A high-resolution image montage at 200x magnification (“virtual slice”) was 
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created using Stereo Investigator software (MBF Bioscience, VT, USA) for 2D anatomical 

mapping.  The image montage was analysed using Metamorph (Molecular Devices Inc, CA, USA) 

to create a “mask” image that identified Fos-labelled nuclei according to the criteria of colour 

intensity and shape area.  Each region (DMH, PeF and PVN) was then selected and cell counts 

extracted via an automated process. This automated procedure for Fos identification minimises 

subjective bias as to the identification criteria for Fos labelling. Counts were done bilaterally for 

each area and then halved. Therefore an estimate of Fos-labelled neurons was determined for one 

side of the hypothalamus.  
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CHAPTER 3: RESULTS 

3.1 OVERVIEW 

	  
To investigate the propensity for programming of hypertension following a high fat diet (high fat 

model) or sucrose diet (high sucrose model), eight pregnant dams were given a high fat diet (HFD) 

and 12 dams were given a high sucrose diet (SUD). To compare these dietary interventions, 12 

pregnant dams were given a control diet (CD) of standard chow. The dietary intervention was 

established for eight weeks; first for four weeks prior to mating, one week during mating, and 

subsequently for three weeks of gestation. On the day of parturition, litters were culled to eight 

pups per dam to ensure equal nutrition within the offspring and all litters were treated identically - 

at this stage mothers were given a control diet. For the high fat model, male and female offspring 

were investigated while for the high sucrose model only male offspring were investigated. The HFD 

and SUD rats were kindly provided to us by Dr. Kieron Rooney from the Faculty of Health Sciences 

and Prof. Robert Boakes from the Faculty of Science, respectively.  

	  
Our hypothesis was that offspring rats exposed to a HFD or a SUD during pregnancy may exhibit 

elevated blood pressure, caused at least partly by altered autonomic function resulting in elevated 

cardiovascular sympathetic activity. We also hypothesised that these effects may be exaggerated 

when animals are exposed to certain physiological stressors (such as dehydration) or 

psychological stressors (such as air jet stress).  

	  
To investigate these hypotheses, we used the method of radio telemetry to measure blood 

pressure in the awake, freely moving animal.  From the blood pressure waveform, we derived a 

number of indices of autonomic function, including spontaneous baroreflex sensitivity (sBRS), 

baroreflex effectiveness index (BEI), heart rate variability (HRV), blood pressure variability (BPV) 

and maximum rate of change of aortic blood pressure during systole (dP/dtmax).  

	  
For the high fat model, both male and female offspring were investigated. Blood pressure probes 

were implanted in 12 control male offspring and 11 high fat (HFD) male offspring at six months of 

age. One control rat died during the implant whilst a further five HFD and four control rats did not 

recover adequately from surgery. Furthermore, the computer failed to record data on another two 
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HFD and two control rats. In addition, one control rat was excluded when a tumour was identified in 

the abdomen. Subsequently, data could only be obtained on four high fat and four control rats. 

Blood pressure probes were also implanted in 12 control and eight HFD female offspring at six 

months of age. Of these, four HFD and eight control rats did not recover adequately from surgery, 

leaving four control and four HFD female offspring from which data were obtained.  

	  
We are unclear as to why such a large number of rats did not recover well from the surgical 

procedure in the high fat model. Many of the rats exhibited rasping like breathing sounds pre-

surgically. This is indicative of mucous secretion in their airways and suggests the possibility of 

infections present in our rat colony. We believe this may have significantly increased the risk of 

postoperative complications such as wound healing and nerve damage in these rats. In addition, It 

was noticed that there was a large number of obese rats in the female control group, with an 

average weight of 513g ± 4.0g, with large amounts of abdominal fat. The high failure rate in this 

surgical procedure will be discussed in more detail in Section 4.2.1 of the discussion.  

	  
3.2  HIGH FAT MODEL 

	  
3.2.1 Offspring body weight 

Gestation lasted for 21-22 days and all pups were born approximately 22 days post conception. 

Total of 54 males were born, of these 32 were from mothers fed a standard chow diet and 22 from 

mothers fed a high fat diet. A total of 34 females were born, of these 25 were born from mothers 

fed a standard chow and 9 from mothers fed a high fat diet.  

	  
Birth weights of males and females were similar between HFD and control dams (Figure 3.2.1A). 

At day 24-weaning, females had reduced body weight compared to their litter matched male 

offspring: this was statistically significant only in the HFD rats (P=0.02), while approaching 

statistical significance in control rats (P=0.06) (Figure 3.2.1B). At this age, there was no difference 

in body weight between HFD and controls within each sex (Figure 3.2.1B). At 94 days, females 

remained lighter than their litter matched male siblings. This was observed in both HFD and control 

rats (P<0.01 for both groups). At this age, male HFD rats had a lower body weight than male 

controls (P=0.02) (Figure 3.2.1C), although no difference was observed in the female rats 

(P=0.15).  
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Finally, at six months of age (time of implantation of telemetry transmitter) male offspring were 

approximately 143g heavier, on average, than females in both control and HFD rats (P<0.01 for 

both groups) (Figure 3.2.1D). Males no longer indicated a statistically significant difference in 

weight between groups (P=0.26), while in females there was a tendency for HFD rats to be lighter 

(P=0.07).  

	  
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.2.1: Body weights of male and female offspring in HFD and control groups at 

birth, day 24, day 94 and at six months of age (mean ±   SEM) (unpaired t-test) 
(A) No significant difference in weight between male and female rats at birth. Further, there was no significant 

difference between HFD and control rats within each sex. (B) At day 24 there was a significant difference between 

male and female HFD rats (P=0.02). (C) At day 94 females rats had a significantly lower body weight compared to 

males, this was observed in both HFD (P<0.01) and control (P<0.01) rats. Furthermore, male, HFD rats had a 

significantly reduced body weight compared to controls. (D) At six months of age there were significant differences 

observed between sexes in HFD (P<0.01) and control (P<0.01) rats, however no differences were observed between 

groups within sexes.  

 

* 
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3.2.2 Data acquisition protocol for measurement of cardiovascular and autonomic 

parameters in the awake, freely moving rat 

Following a minimum of one week recovery from transmitter implantation surgery, blood pressure 

waveform was recorded at rest for each rat. Rats remained in their own home cage, which was 

transferred to the telemetry recording room. Recordings of blood pressure waveform (sampling rate of 

1,000 Hz) were made for five minutes per hour, 24 hours a day. This ensured that the rats 

acclimatised to the recording room, which allowed for any diurnal differences in blood pressure or 

other cardiovascular variables to be examined carefully. From the blood pressure waveform signal, 

several cardiovascular and autonomic variables were derived. These included, SBP, DBP, HR, PP, 

sBRS, BEI, HRV, BPV and dP/dtmax. In general, the blood pressure trace was satisfactory; however 

any major movement artifacts or signal dropouts that occurred during this period were excluded from 

the analysis. The blood pressure waveform was deemed satisfactory if BP and PP measures were 

similar to other recorded rats with no major signal dropouts or major movement artefact occurring for 

long durations.  

	  
Figure 3.2.2 illustrates an example of a blood pressure waveform recording and derived parameters 

over 24 hours in a control rat. Note the discontinuity in the recorded data with sudden increases or 

decrease in the blood pressure trace. This is indicative of variations in the blood pressure between 

recording periods at different hours throughout day and night. There was considerable variability 

observed, depending on the level of activity of the rat. These fluctuations appeared to be greatest at 

night during the active phase of a rat. At times, large increases were seen in the blood pressure signal 

that occurred as a result of sudden movements caused by the rat. These values pertaining to the 

sudden movements were identified as movement artefacts and therefore were not representative of 

the true blood pressure. As such, these areas of the trace were excluded from analysis. The hourly 

recordings of blood pressure measurements were averaged into a night phase (1900 to 0600) and a 

day phase (0700 to 1800) for comparison between groups.  
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3.2.3 Comparison of cardiovascular parameters in male and female control rats at rest 

To determine if it was feasible to combine data from males and females, a comparison of 

cardiovascular parameters (SBP, DBP, PP and HR) was made from litter-matched male and female 

offspring, from mothers given a control diet. 

	  
There was no difference in resting DBP or PP between male and female rats (Figure 3.2.3). However, 

there were significant differences in resting SBP and HR between male and female rats during both 

night and day. It was also noted that neither male nor female rats exhibited a diurnal rhythm in their 

cardiovascular measures. This was evident as there were no significant differences in any of the 

cardiovascular variables between night and day in either males or females (Figure 3.2.3). Based on 

the differences observed in SBP between sexes in the control rats, it was decided to separate males 

and females for further analysis when comparing control and HFD offspring. 

 

 
 
 
 

 
 
 
 
 

 
 

 

Figure 3.2.3: Resting baseline values for SBP, DBP, HR and PP in male and female rats (mean ±  

SEM) (unpaired t-test)  
A) SBP was significantly higher in female offspring compared to their litter-matched male offspring during both night (P=0.01) 

and day (P=0.04). B) HR was significantly higher in female offspring compared to their litter matched male offspring during both 

night (P=0.01,) and day (P=0.03). C) There was no difference in DBP observed between male and female rats during the night 

(P=0.24) or day (P=0.47) phases. D) There was no difference in PP observed between male and female rats during the night 

(P=0.26) or day (P=0.31) phases. 
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3.2.4 Comparison of cardiovascular and autonomic parameters between high fat and control 

rats at rest  

Cardiovascular parameters: Male and female data were separated in order to isolate the gender 

differences in cardiovascular and autonomic parameters. In males, SBP was approximately 23 mmHg 

higher, on average, in the HFD group than controls during night and day (Figure 3.2.4A). DBP was 

also higher in the HFD group during the night and close to significant during the day (Figure 3.2.4B), 

while HR was higher in the HFD group only during the night, by approximately 40 beats/min, on 

average (Figure 3.2.4C). There was no difference in PP between groups either during the night or day 

(Figure 3.2.4D).  

 
 

 
 

Figure 3.2.4: Comparison of cardiovascular parameters in HFD and control male rats during 

night and day (mean ±  SEM) (unpaired t-test) 
 A) There was a significant difference observed in male SBP between groups during night (P=0.02) and day (P=0.03). B) 
There was a significant difference in DBP observed between groups only during the night (P=0.03) and approaching 

statistical significance during the day (P=0.06). C) There was a significant difference in male HR observed between groups 

only during the night (P=0.04) and not during the day (P=0.35). D) There was no significant difference in PP between group 

either during the night (P=0.48) or day (P=0.59). 
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In females, SBP was higher in the HFD group than controls during both night and day, by 

approximately 10-15 mmHg (Figure 3.2.5A). However, other cardiovascular variables: DBP, HR. and 

PP did not indicate a significant difference at rest between the two groups (Figures 3.2.5B-D).   

 
 
Autonomic parameters: Measurement of autonomic function of a rat is quite complex and generally 

requires invasive techniques to be used. To measure autonomic function in the conscious, freely 

moving rat, we used a non-invasive methodology. This methodology provides indices of autonomic 

function by examination of certain components of the blood pressure waveform and their relationship 

to heart rate. In particular, power spectral analysis on HR and SBP waveforms provide information on 

cardiac and vasomotor autonomic function. In addition, we used a sequence technique for 

measurement of spontaneous baroreflex sensitivity (sBRS) and baroreflex effectiveness index (BEI), a 

Figure 3.2.5: Comparison of cardiovascular parameters in HFD and control female rats 

during night and day (mean ±  SEM) (unpaired t-test) 
A) There was a significant difference observed in SBP between groups at night (P=0.05) and approaching significance 

during the day (P=0.08). B) There was no significant difference observed in DBP between groups during the night (P=0.29) 

or day (P=0.26). C) There was no significant difference observed in HR between groups during the night (P=0.63) or day 

(P=0.38). D) There was no significant difference in PP between group either during the night (P=0.37) or day (P=0.38).     
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measure of how often the baroreflex is activated in response to changes in blood pressure. Finally, we 

measured dP/dtmax, which has been reported to provide an estimate of cardiac contractility (Brington 

et al., 1997) and therefore represents the level of sympathetic activity to the ventricular myocardium.  

	  
sBRS and BEI: There was no significant difference in resting sBRS (Figure 3.2.6A) or BEI (Figure 

3.2.6B) between control and HF offspring in either males (Figure 3.2.6) or females (Figure 3.2.7).  It 

was also noted that neither HF nor control rats exhibited a diurnal rhythm in the baroreflex measures 

in the males or the females.  
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Figure 3.2.6: Comparison of sBRS and 

BEI at rest in HFD and control male rats 

(mean ±  SEM) (unpaired t-test) 
A) There was no difference in sBRS observed between 

groups during night (P=0.16) or day (P=0.60). B) There 

was no difference in BEI observed between groups 

during night (P=0.26) or day (P=0.23). 
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Figure 3.2.7: Comparison of sBRS and 

BEI at rest in HFD and control female 

rats (mean ±  SEM) (unpaired t-test) 
A) There was no difference in sBRS observed 

between groups during night (P=0.23) or day 

(P=0.28). B) There was no difference in BEI observed 

between groups during night (P=0.57) or day 

(P=0.63).   
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HRV and BPV: Frequency domain analysis of HRV and BPV at rest did not indicate any differences 

between the groups at rest in either male (Table 3.2.1) or females (Table 3.2.2). Furthermore, neither 

HFD nor control rats exhibited a diurnal rhythm in any of the frequency ranges of HRV or BPV in the 

males or the females.  

	  
Table 3.2.1: Comparison of HRV at rest in male and female HFD and control rats  

  LF 
(bpm2) 

LF% LF:HF 
HF 

(bpm2) 
HF% 

TPWR 
(bpm2) 

Males       

Control (Day)  0.22 ± 0.0 0.25 ± 0.03 0.34 ± 0.05 0.70 ± 0.15 0.75 ± 0.03 2.94 ± 0.34 

Control (Night) 0.37 ± 0.09 0.25 ± 0.03 0.33 ± 0.05 1.31 ± 0.28 0.75 ± 0.03 5.17 ± 0.89 

HFD (Day) 0.26 ± 0.09 0.26 ± 0.01 0.37 ± 0.01 0.70+ ± 0.20 0.74 ± 0.01 4.19 ± 0.67 

HFD(Night)  0.37 ± 0.09 0.24 ± 0.02 0.32 ± 0.02 1.03 ± 0.18 0.76 ± 0.02 5.15 ± 1.05 

Females        

Control (Day)  0.65 ± 0.21† 0.40 ± 0.03† 0.31 ± 0.02 1.94 ± 0.43† 0.603 ± 0.028† 8.13 ± 2.05† 

Control (Night) 0.70 ± 0.24 0.37 ± 0.02† 0.36 ± 0.01 1.96 ± 0.72 0.633 ± 0.015† 8.57 ± 0.86† 

HFD (Day) 0.66 ± 0.20 0.25 ± 0.02 0.57 ± 0.10 1.17 ± 0.19 0.755 ± 0.016 5.73 ± 1.11 

HFD(Night)  0.80 ± 0.20 0.27 ± 0.01 0.55 ± 0.06 1.74 ± 0.52 0.727 ± 0.013 6.23 ± 1.44 

 
Note: † denotes difference between control male and female rats during either night or day.   

There were no observed diffrences between HFD and controls within each sex. However, differences in HRV were observed 

between male and female offspring from the control group during night and day, these gender differences were lost in the 

programmed rats. (mean ± SEM) (unpaired t-test).  
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Table 3.2.2: Comparisons of BPV at rest in male and female HFD and control rats  
  LF 

(mmHg2) 
LF% 

HF 
(mmHg2) 

HF% 
TPWR 

(mmHg2) 

Males      

Control (Day)  0.02 ± 0.00 0.56 ± 0.06 0.01 ± 0.00 0.34 ± 0.05 0.19 ± 0.01 

Control (Night) 0.02 ± 0.00 0.58 ± 0.08 0.02 ± 0.00 0.33 ± 0.05 0.23 ± 0.02 

HFD (Day) 0.03 ± 0.00 0.60 ± 0.03 0.02 ± 0.00 0.37 ± 0.01 0.19 ± 0.02 

HFD(Night)  0.04 ± 0.01 0.61 ± 0.04 0.02 ± 0.00 0.32 ± 0.02 0.21 ± 0.04 

Females       

Control (Day)  0.04 ± 0.00† 3.52 ± 0.30† 0.02 ± 0.00 0.64 ± 0.01 0.27 ± 0.05† 

Control (Night) 0.04 ± 0.01† 4.61 ± 0.90† 0.02 ± 0.00 0.63 ± 0.01 0.26 ± 0.04 

HFD (Day) 0.04 ± 0.01 4.59 ± 1.51 0.03 ± 0.00 0.56 ± 0.06 0.21 ± 0.04 

HFD (Night)  0.05 ± 0.01 4.37 ± 1.11 0.03 ± 0.00 0.61 ± 0.02 0.20 ± 0.03 

 
Note: † denotes difference between control male and female rats during either night or day where significant.   

Differences in BPV were observed between male and female offspring from the control group, these gender differences were 

lost in the programmed rats. Furthermore, there were no observed differences between HFD and controls within males or 

females. (mean ± SEM) (unpaired t-test).  

 

dP/dTmax: In this study, dP/dtmax was used as an estimated index of left ventricular contractility; it is the 

maximum rate of aortic pressure rise during systole and is determined by the first differential of the 

aortic blood pressure signal. This differential provides an estimate of the sympathetic inotropic state of 

the left ventricle (see Figure 3.2.8 for a graphical representation; Salo et al., 2009). There was no 

difference in dP/dtmax at rest between HFD and controls rats in either male or female offspring (Figure 

3.2.9A, B).  

Figure 3.2.8: dP/dtmax during a single cardiac cycle 
EDP: end of diastole, dP/dtmax: maximum rate of change of rise in pressure difference over time during systole, dP/dtmin: 

maximum rate of fall in pressure difference over time during diastole. Figure adapted from Salo et al., 2009.   
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3.2.5 Comparison of cardiovascular and autonomic parameters between high fat and control 

rats during dehydration  

Following a baseline recording of three days, the rats were subjected to three days of dehydration 

(physiological stressor). Water was removed from the cage and the rats were deprived of water for a 

period of three days, after which free access to water was re-established for a three-day recovery 

period. Thus, the dehydration protocol consisted of a total of nine days; three days baseline, three 

days dehydration and three days recovery. For purposes of statistical analysis of dehydration data, we 

have focused on the data acquired during the night phase, when rats are most active. This period was 

chosen, as there were no significant differences between night and day for cardiovascular and 

autonomic parameters. However, the night phase of the rats showed the greatest differences in 

cardiovascular and autonomic parameters between groups (HFD and controls).       

	  
Cardiovascular parameters: In males, SBP and DBP were consistently higher in HFD rats compared 

to controls throughout the entire protocol (SBP: P=0.02) and (DBP: P=0.05; Figure 3.2.10A, B). HR 

and PP indicated a trend towards being higher in the HFD rats. However, this was not statistically 

significant (HR: P=0.08 and PP: P=0.54; Figure 3.2.10C, D).  

	  
With the initiation of dehydration, both groups indicated a trend towards an increase in SBP and DBP 

of approximately 10 mmHg. However, this did not reach statistical significance (Figure 3.2.10A, B). 

During the recovery period SBP and DBP appeared to drop below baseline levels in both groups, 

although again this was not statistically significant (Figure 3.2.10A, B). HR and PP did not differ 
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Figure 3.2.9: Comparison of dP/dtmax between control and high fat rats during night and day 

(mean ±  SEM) (unpaired t-test) 
A) Male, dP/dtmax, there was no difference observed between groups during night (P=0.70) or day (P=0.78). B) Female, 

dP/dtmax, there was no difference observed between groups during night (P=0.57) or day (P=0.57). 
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significantly to baseline levels throughout the dehydration and recovery periods in either group (Figure 

3.2.10C, D). However, SBP and DBP were consistently higher in the HFD rats throughout the 

dehydration protocol. HFD rats responded to dehydration with a similar magnitude as the control rats 

(Figure 3.2.11).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.10: Cardiovascular parameters during dehydration protocol in the male rat (2-way 

ANOVA)  
The dehydration protocol is divided into three blocks, Baseline, Dehydration and recovery, the shaded area reflects the 

duration of dehydration and each data point signifies 12 hours of day or night.  A) There was a significant difference in SBP 

between groups (SBP: P=0.02), SBP remained higher in HFD rats throughout the dehydration protocol. B) There was a 

significant difference in DBP between groups (P=0.05) throughout the dehydration protocol. C) There was a trend for HR to 

by higher in the HFD group compared to controls throughout the protocol, however this was not statistically significant 

(P=0.08). D) There was no significant difference in PP between groups (P=0.54). 
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In females, SBP was higher in HFD rats compared to controls throughout the entire protocol (P=0.04). 

However there was no difference in DBP, HR or PP between groups (Figure 3.2.12). With the 

initiation of dehydration there was an increase in SBP of approximately 8 mmHg in both groups (HFD: 

P=0.02, control: P=0.06; Figure 3.2.12A). There was no significant change in DBP in response to 

dehydration (HFD: P=0.61, control: P>0.99; Figure 3.2.12B).      

	  
In contrast to males, dehydration caused a significant increase in PP from baseline in both groups of 

approximately 7 mmHg (control: P<0.01, HFD: P=0.01), although the magnitude of increase was 

similar between groups. There was no significant increase in HR in response to dehydration in either 

HFD or control rats (Figure 3.2.12C). Following re-introduction of water, SBP and DBP dropped below 

baseline levels by approximately 8 mmHg (HFD, SBP: P=0.01, DBP: P=0.01 and control, SBP: 

P<0.01, DBP: P<0.01; Figure 3.2.12A, B), this drop in SBP and DBP was similar between groups. 

There were no observable difference in HR or PP in either HFD or control rats from baseline (Figure 

3.2.12C, D).  

 

 

 

 

  

Figure 3.2.11: Change in SBP during 
dehydration protocol in the male rat (2-

way ANOVA) 
There was no significant difference in the change in 

SBP between groups in response to dehydration 

(P=0.68). 
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Autonomic parameters 
 

sBRS and BEI: In males, there was no significant difference in sBRS or BEI throughout the 

dehydration protocol (P=0.09 and 0.14, respectively). Furthermore, there was no significant difference 

in sBRS in response to dehydration in either group (control: P=0.90, HFD: P=0.10). Similarly, there 

was no difference in BEI in response to dehydration in either group (control: P=0.99, HFD: P=0.14).  

	  
In female HFD rats, sBRS was significantly higher throughout the dehydration protocol (P=0.05; 

Figure 3.2.13A). There was no change in sBRS in response to dehydration in control rats. However, 

in HFD rats, sBRS increased by approximately 40% (P=0.03). Furthermore, during recovery, sBRS 

remained unchanged in control rats (P=0.31), but remained elevated in HFD rats by approximately 

20% above baseline levels (P=0.03; Figure 3.2.13A). There was no significant difference in BEI 

Figure 3.2.12: Cardiovascular parameters during dehydration protocol in the female rat (2-way 
ANOVA)  
The dehydration protocol is divided into three blocks, Baseline, Dehydration and recovery, the shaded area reflects the 

duration of dehydration and each data point signifies 12 hours of day or night.  A) There was a significant difference in SBP 

between groups (P=0.04), SBP remained elevated in HFD rats throughout the dehydration protocol. B) There was a trend for 

DBP to be higher in the HFD group however this was not statistically significant (P=0.31). C) There was no significant 

difference in HR between groups during the protocol (P=0.40). D) There was a trend for PP to by higher in the HFD group 

compared to controls throughout the protocol although this was not statistically significant (P=0.14) 
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between groups throughout the dehydration protocol (P=0.65; Figure 3.2.13B).  There was no 

significant difference in BEI in response to dehydration in either group (control: P>0.99, HFD: P=0.65; 

Figure 3.2.13B).   

 

 

 
 

HRV: In males, dehydration produced no significant change in HRV in the VLF, LF and HF frequency 

ranges in either group (Table 3.2.3). The LF:HF ratio increased above baseline (resting) levels by 

approximately 45% in control rats (P=0.03), but not in HFD rats (P=0.35), despite this, there was no 

significant difference in LF:HF ratio between groups (P=0.47). During recovery, the LF:HF ratio 

returned to baseline levels, for both groups, upon re-introduction of water.  

 

 

 

 

 

 

 

  

Figure 3.2.13: sBRS and BEI during the dehydration protocol in females (2-way ANOVA) 
A) sBRS  was higher in the HFD rats throughout the protocol (P=0.05). B) There was no significant difference in BEI 

between groups (P=0.65) throughout the protocol).  
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Table 3.2.3: HRV in males during dehydration protocol (2-way ANOVA) 
  Night/Day 

Cycle 
VLF 

(bpm2) 
LF 

(bpm2) LF:HF 
HF 

(bpm2) 
Control  

Baseline 
7pm 3.50 ± 0.53 0.37 ± 0.09 0.33 ± 0.05* 1.31 ± 0.28 
7am 1.95 ± 0.26 0.22 ± 0.06 0.34 ± 0.05 0.70 ± 0.15 

Dehydration 
7pm 3.54 ± 0.47 0.44 ± 0.13 0.48 ± 0.07 1.16 ± 0.35 
7am 2.37 ± 0.13 0.20 ± 0.04 0.48 ± 0.05 0.53 ± 0.06 

Recovery  
7am 2.09 ± 0.22 0.29 ± 0.15 0.31 ± 0.05 1.26 ± 0.74 
7pm 2.52 ± 0.29 0.52 ± 0.26 0.31 ± 0.06 2.57 ± 1.69 

High Fat  

Baseline 
7pm 3.02 ± 0.46 0.37 ± 0.09 0.32 ± 0.02 1.03 ± 0.18 
7am 3.12 ± 0.45 0.26 ± 0.09 0.37 ± 0.01 0.76 ± 0.20 

Dehydration 
7pm 4.69 ± 1.01 0.55 ± 0.17 0.40 ± 0.02 1.43 ± 0.34 
7am 5.11 ± 1.30 0.58 ± 0.28 0.50 ± 0.10 1.83 ± 0.92 

Recovery  
7am 3.59 ± 1.26 0.41 ± 0.19 0.33 ± 0.01 1.34 ± 0.59 
7pm 3.95 ± 1.31 0.41 ± 0.21 0.29 ± 0.02 1.34 ± 0.49 

* Denotes comparison within groups where significant.   

	  
In females, there was no significant difference in LF and HF frequency ranges observed throughout 

the dehydration protocol (Table 3.2.4). However, the LF:HF ratio was significantly higher in the HFD 

rats (P=0.03; Figure 3.2.14) throughout baseline, stress and recovery.  

In addition, VLF increased by approximately 35% (P=0.01) in the HFD rats, with no difference 

observed in control rats (P=0.58). Upon replacement of water VLF returned to baseline levels.  
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Figure 3.2.14: Female LF: HF ratio 

component of HRV during dehydration 

protocol (2-way ANOVA) 
The LF: HF ratio was higher in high fat than controls 

thoughout the protocol (P=0.03).   
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Table 3.2.4: HRV in females during dehydration protocol (2-way ANOVA) 
  Night/Day 

Cycle 
VLF 

(bpm2) 
LF 

(bpm2) LF:HF 
HF 

(bpm2) 
Control 

Baseline 
7pm 3.37 ± 1.35 0.70 ± 0.24 0.33 ± 0.05 1.96 ± 0.72 
7am 2.69 ± 0.85 0.65 ± 0.21 0.31 ± 0.02 1.94 ± 0.43 

Dehydration 
7pm 3.87 ± 1.41 1.04 ± 0.54 0.41 ± 0.01 2.33 ± 1.03 
7am 3.07 ± 1.03 0.91 ± 0.42 0.43 ± 0.02 2.16 ± 0.88 

Recovery  
7am 3.35 ± 0.63 0.56 ± 0.28 0.25 ± 0.04 2.01 ± 0.43 
7pm 3.12 ± 0.34 0.47 ± 0.15 0.28 ± 0.04 1.72 ± 0.15 

High Fat  

Baseline 
7pm 4.37 ± 1.11 0.80 ± 0.20  0.55 ± 0.06† 1.74 ± 0.52 
7am 4.59 ± 1.51 0.66 ± 0.20 0.57 ± 0.10 1.17 ± 0.19 

Dehydration 
7pm 5.88 ± 0.82* 0.97 ± 0.16 0.69 ± 0.04† 1.41 ± 0.08 
7am 5.47 ± 1.37 1.07 ± 0.42 0.71 ± 0.11 1.38 ± 0.38 

Recovery  
7am 5.30 ± 0.54 0.79 ± 0.15 0.57 ± 0.02 1.32 ± 0.15 
7pm 4.29 ± 0.82 0.73 ± 0.21 0.57 ± 0.06† 1.39 ± 0.39 

*Denotes comparison within groups where significant and † between groups (HFD and control) where significant  

 

BPV: In males, there was no difference in VLF, LF and HF at any point during the dehydration 

protocol.  In response to dehydration, there were no significant differences observed in BPV in any of 

the frequency ranges (VLF, LF and HF) in either high fat or control rats. Furthermore there were no 

significant differences observed during recovery, all parameters remained unchanged from baseline 

levels.  (Table 3.2.5).  

 

Table 3.2.5: BPV in males during dehydration protocol 
  Night/Day 

Cycle 
VLF 

(mmHg2) 
LF 

(mmHg2) 
HF 

(mmHg2) 
Control  

Baseline 
7pm 0.19 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 
7am 0.16 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 

Dehydration 
7pm 0.19 ± 0.06 0.04 ± 0.01 0.02 ± 0.00 
7am 0.13 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 

Recovery  
7am 0.29 ± 0.13 0.02 ± 0.01 0.02 ± 0.01 
7pm 0.29 ± 0.12 0.03 ± 0.01 0.02 ± 0.01 

High Fat  

Baseline 
7pm 0.15 ± 0.03 0.03 ± 0.01 0.02 ± 0.00 
7am 0.13 ± 0.02 0.03 ± 0.00 0.02 ± 0.00 

Dehydration 
7pm 2.04 ± 1.89 0.30 ± 0.25 0.63 ± 0.60 
7am 2.26 ± 2.14 0.38 ± 0.34 1.14 ± 1.12 

Recovery  
7am 0.16 ± 0.03 0.03 ± 0.01 0.02 ± 0.00 
7pm 0.16 ± 0.02 0.03 ± 0.01 0.02 ± 0.00 
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In females, dehydration produced no significant change in BPV in the VLF or HF frequency ranges in 

either group, while LF increased by 75% in control rats only (P=0.01). On recovery, LF returned to 

baseline levels in controls while all other BPV variables remained unchanged from baseline (Table 

3.2.6).  

	  
Table 3.2.6: BPV in females during dehydration protocol 
  Night/Day 

Cycle 
VLF 

(mmHg2) 
LF 

(mmHg2) 
HF 

(mmHg2) 
Control  

Baseline 
7pm 0.15 ± 0.04 0.04 ± 0.01 0.02 ± 0.00 
7am 0.15 ± 0.07 0.04 ± 0.00 0.02 ± 0.00 

Dehydration 
7pm 0.13 ± 0.02 0.07 ± 0.01* 0.02 ± 0.00 
7am 0.12 ± 0.01 0.06 ± 0.00 0.03 ± 0.00 

Recovery  
7am 0.13 ± 0.03 0.03 ± 0.00 0.02 ± 0.01 
7pm 0.15 ± 0.06 0.03 ± 0.00 0.02 ± 0.01 

High Fat  

Baseline 
7pm 0.16 ± 0.03 0.05 ± 0.01 0.03 ± 0.00 
7am 0.16 ± 0.03 0.04 ± 0.01 0.03 ± 0.00 

Dehydration 
7pm 0.16 ± 0.02 0.06 ± 0.00 0.03 ± 0.01 
7am 0.12 ± 0.01 0.05 ± 0.01 0.03 ± 0.00 

Recovery  
7am 0.20 ± 0.02 0.04 ± 0.00 0.03 ± 0.00 
7pm 0.20 ± 0.04 0.04 ± 0.01 0.03 ± 0.00 

* Denotes comparison within groups where significant 

 

dP/dT max: In both males and females, there was no significant difference in dP/dTmax between HFD 

and control groups throughout the entire dehydration protocol (P=0.30 and 0.87, respectively).  

 

3.2.6 Comparison of cardiovascular and autonomic parameters between high fat and control 

rats during air-jet stress  

Figure 3.2.15 illustrates an example of a recording of blood pressure and derived parameters during 

the air jet stress protocol. During each burst of air, rats showed behavioural changes. These included 

jumping or running away from the jet of air or freezing. Consistent with this, measured cardiovascular 

parameters such as BP and HR, were increased indicating clear physiological changes during air jet 

stress.  

 

 

 

 

 



87 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fi
gu

re
 3

.2
.1

5:
 C

ar
di

ov
as

cu
la

r r
es

po
ns

es
 d

ue
 to

 a
ir 

je
t p

ro
to

co
l 

R
aw

 d
at

a 
re

co
rd

in
g 

of
 B

P
 a

nd
 d

er
iv

ed
 c

ar
di

ov
as

cu
la

r 
pa

ra
m

et
er

s 
du

rin
g 

30
 m

in
ut

es
 o

f 
ba

se
lin

e 
re

co
rd

in
g,

 1
5 

m
in

ut
es

 o
f a

ir 
je

t 
st

re
ss

 a
nd

 3
0 

m
in

ut
es

 o
f r

ec
ov

er
y.

 C
ar

di
ov

as
cu

la
r 

an
d 

au
to

no
m

ic
 m

ea
su

re
s 

du
rin

g 
th

e 
st

re
ss

 p
er

io
d 

w
er

e 
ta

ki
ng

 d
ur

in
g 

th
e 

60
-s

ec
on

d 
in

te
rv

al
s 

as
 s

ho
w

n 
on

 t
he

 il
lu

st
ra

tio
n.

 S
B

P
: s

ys
to

lic
 b

lo
od

 p
re

ss
ur

e,
 D

B
P

: 
di

as
to

lic
 b

lo
od

 p
re

ss
ur

e,
 H

R
: 

he
ar

t r
at

e,
 P

P
: p

ul
se

 p
re

ss
ur

e,
 B

P
: b

lo
od

 p
re

ss
ur

e.
   

 



88 
 

 

Cardiovascular parameters: In males, during the baseline period, SBP was higher in HFD rats than 

controls (P=0.04), while no difference was observed in DBP (P=0.13), HR (P=0.40) or PP (P=0.07) 

between groups (Figure 3.2.16).   

	  
With the initiation of the first series of air puffs, SBP, DBP, and HR all increased significantly from 

resting levels in all rats, while PP increased only in the HFD group, by approximately 10 mmHg 

(Figure 3.2.16). During the air jet protocol, SBP remained significantly higher in the HFD group than 

controls (P=0.02), although no difference was observed between groups in the change in SBP from 

baseline (P=0.77; Figure 3.2.16). There was no difference between groups in either the increase or 

absolute values of DBP and HR (Figure 3.2.16), while a higher observed PP of approximately 35% in 

HFD rats approached significance (P=0.06; Figure 3.2.16).   

	  
During the first 15 minutes of the recovery period, SBP remained significantly elevated (P<0.01) in 

both groups (Figure 3.2.16A), while PP returned to baseline (Figure 3.2.16D). At the end of recovery, 

HR returned to resting levels in both groups (P>0.99), DBP appeared to be elevated in both HFD and 

control rats, this was statistically significant only in the control group (P=0.04; Figure 3.2.16B). In 

addition, no difference was observed between groups in the change in SBP from baseline to the 

initiation of the first air jet (P=0.77; Figure 3.2.17). 
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In females, SBP (P=0.64), DBP (P=0.78) and HR (P=0.34) were not significantly different between 

HFD and control rats during baseline, while PP was approximately 20% higher in the HFD group 

(P=0.05; Figure 3.2.18). With the initiation of the first series of air puffs, SBP, DBP and PP all 

increased significantly from baseline (resting) levels in both groups, with similar magnitudes (Figure 

3.2.18). HR did not increase significantly from resting levels in the control groups but did so in the HFD 

rats by approximately 40 beats/min (P=0.02).   
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Figure 3.2.16: Male, cardiovascular parameters during air jet protocol (2-way ANOVA) 
The first two points indicate baseline values with two 15-minute averages. Each 9 points in the stress period are averages of 

each 60-second period following an air puff. The recovery period consists of two points, which are two 15 minute averages. A) 

Overall SBP remained significantly higher in the HF rats throughout the stress protocol (P=0.02). B) There was no difference in 

DBP between groups at any stage of the air jet protocol (P=0.29) C) There was no difference in HR between groups at any 

stage of the air jet protocol (P=0.79). D) There was a trend for PP to be elevated in the HF rats throughout the air jet protocol, 

although this was not statistically significant (P=0.06). 
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Figure 3.2.17: The initial change from 

baseline in systolic blood pressure 

immediately following the first air puff (mean 

±  SEM) (unpaired t-test) 
There was no significant difference observed in the change 

in SBP between groups (P=0.77).  
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During the recovery period SBP, DBP, HR and PP all returned towards baseline levels in both groups 

(Figure 3.2.18). In addition no difference was observed between groups in the change in SBP from 

baseline to the initiation of the first air jet (P=0.34; Figure 3.2.19).  
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Figure 3.2.18: Female cardiovascular parameters during air jet protocol (2-way ANOVA)   
The first two points indicate baseline values with two 15-minute averages. Each 9 points in the stress period are averages of 

each 60-second period following an air puff. The recovery period consists of two points, which are two 15 minute averages. 

A) There was trend for SBP to be elevated in HF rats throughout the air jet protocol, however this was not statistically 

significant (P=0.23) B) There was no statistical difference in DBP between groups at any stage of the air jet protocol 

(P=0.76). C) There was no difference in HR between groups at any stage of the air jet protocol (P=0.70). D) There was a 

trend for PP to be elevated in the HF rats throughout the air jet protocol, although this was not statistically significant 

(P=0.06).  

 

Figure 3.2.19: The initial change from 

baseline in systolic blood pressure 

immediately following the first air puff  

(mean ±  SEM) (unpaired t-test) 
There was no significant difference observed in the 

change in SBP between groups (P=0.57). 
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Autonomic parameters 
 

sBRS and BEI: in the male, in response to air jet stress sBRS decreased significantly in both groups 

(P<0.05) with no significant difference between groups (P=0.40). During recovery sBRS remained 

decreased and did not return to resting levels in either group (P<0.05; Figure 3.2.20A). BEI appear to 

decrease in response to stress in both groups, although this was not statistically significant, with no 

significant difference between groups (P=0.53). BEI returned to resting levels during the recovery 

period in both groups (Figure 3.2.20B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the female, in response to stress, sBRS did not change significantly from resting levels in either 

HFD (P=0.78) or controls (P=0.56), with no significant difference observed between groups (P=0.90). 

Furthermore, sBRS remained unchanged during recovery (Figure 3.2.21A). In response to stress BEI 

did not change significantly from resting levels in either group (P=0.10 for both HFD and control rats), 

with no significant difference observed between groups (P=0.70) and remained constant during 

recovery (Figure 3.2.21B).  

 

 

Figure 3.2.20: sBRS and BEI during the air jet protocol in males, each data point is indicative 

of averages for baseline, stress and recovery (2-way ANOVA)   
(A)There was a significant decrease in sBRS in HFD (P=0.04) and control (P=0.01) rats in response to stress, with no 

significant difference observed between groups (P=0.40). B) There was no significant difference in BEI between groups 

(P=0.53) in response to stress.  
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HRV: In response to stress, there was no significant difference observed in HF, LF or the LF: HF ratio 

in either HFD or control rats (Table. 3.2.7). However VLF decreased from resting levels by 

approximately 86% in the HFD rats (P<0.01) but not in the control rats. Similarly, total power 

decreased by approximately 90% in the HFD rats (P<0.01) but no change was observed in the control 

rats.  

	  
There was no significant difference observed during recovery. Total power and LF:HF returned to 

resting levels in HFD rats. All other frequency ranges (VLF, LF and HF for both groups and LF:HF ratio 

and total power for control rats) remained similar to baseline levels.  

	  
Table 3.2.7: HRV in males during air jet protocol (2-way ANOVA) 
  VLF 

(bpm2) 
LF 

(bpm2) LF:HF 
HF 

(bpm2) 
TPWR 
(bpm2) 

Control  

Baseline 1.16 ± 0.09 0.09 ± 0.01 0.31 ± 0.06 0.31 ± 0.08 1.64 ± 0.20 

Air jet 0.45 ± 0.27 0.45 ± 0.27 0.45 ± 0.27 0.45 ± 0.27 0.45 ± 0.27 

Recovery  1.86 ± 0.15 0.17 ± 0.04 0.38 ± 0.14 0.57 ± 0.20 2.73 ± 0.29 

High Fat  

Baseline 1.60 ± 0.37 0.13 ± 0.04 0.29 ± 0.06 0.36 ± 0.06 2.12 ± 0.48 

Air jet 0.22 ± 0.07* 0.22 ± 0.07 0.22 ± 0.07 0.22 ± 0.07 0.22 ± 0.07* 

Recovery  1.91 ± 0.23 0.15 ± 0.04 0.23 ± 0.05 0.68 ± 0.11 2.82 ± 0.33 
* Denotes comparison within groups where significant 

 

Figure 3.2.21: sBRS and BEI during the air jet protocol in females, each data point is 
indicative of averages for baseline, stress and recovery (2-way ANOVA)’ 
A) sBRS did not change significantly from resting levels in response to stress in either HFD (P=0.78) or control (P=0.56) 

groups with no observed difference between groups during stress (P=0.87). B) BEI did not change significantly from resting 

levels in response to stress in either HFD (P=0.10) or control (P=0.10) groups with no observed difference between groups 

during stress (P=0.53).  
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In females, stress elicited a decrease in HRV in all frequency ranges in control rats.  Total power was 

increased by 74% (P<0.01), VLF by 74% (P=0.01), LF by 87% (P=0.02) and HF by 73% (P<0.01). 

There were no significant differences in these variables observed in the HF rats. There was a 

significant decrease in LF:HF ratio in both control and HFD rats to a similar degree (control: P=0.04, 

HF: P<0.01). During recovery all HRV variables returned to resting levels, except for HFD in control 

rats, which decreased below resting levels by approximately 50% (P<0.01; Table. 3.2.8).  

	  
Table 3.2.8: HRV in females during air jet protocol (2-way ANOVA).  
  VLF 

(bpm2) 
LF 

(bpm2) 
LF:HF 

HF 
(bpm2) 

TPWR 
(bpm2) 

Control  

Baseline 4.84 ± 1.30 1.50 ± 0.69 0.48 ± 0.09 3.94 ± 0.98  10.48 ± 3.16 

Air jet 1.24 ± 0.20* 0.20 ± 0.09* 0.31 ± 0.07* 1.08 ± 0.28* 2.72 ± 0.66* 

Recovery  4.16 ± 1.11 0.76 ± 0.28 0.53 ± 0.09 1.98 ± 0.43# 7.08 ± 1.54 

High Fat  

Baseline 3.38 ± 0.98 0.54 ± 0.04 1.01 ± 0.29 0.72 ± 0.21 6.15 ± 2.01 

Air jet 1.44 ± 0.24 0.33 ± 0.07 0.46 ± 0.15* 1.04 ± 0.48 3.07 ± 0.30 

Recovery  3.45 ± 0.62 0.74 ± 0.17 0.76 ± 0.19 1.02 ± 0.29 5.94 ± 0.92 
* #denotes comparison within groups where significant.  

 

BPV: In response to stress, VLF and total power remained unchanged in both HFD and control rats.  

HF and LF increased in response to the stress in the control group (by 2150% and 1400%, 

respectively; P=0.03 for both), no difference was observed in HFD rats. These BPV variables returned 

to resting levels during the recovery period. There was no significant difference observed in BPV 

variables during the recovery period in comparison to resting values in either HFD or control rats.    

	  
Table 3.2.9: BPV in males during air jet protocol (2-way ANOVA). 

  VLF 
(bpm2) 

LF 
(bpm2) 

HF 
(bpm2) 

TPWR 
(bpm2) 

Control     

Baseline 0.12 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.17 ± 0.00 

Air jet 0.45 ± 0.27 0.45 ± 0.27* 0.45 ± 0.27* 0.45 ± 0.27 

Recovery  0.42 ± 0.08 0.09 ± 0.01 0.02 ± 0.01 0.55 ± 0.10 

High Fat     

Baseline 0.15 ± 0.02 0.04 ± 0.00 0.02 ± 0.00 0.22 ± 0.03 

Air jet 0.22 ± 0.07 0.22 ± 0.07 0.22 ± 0.07 0.22 ± 0.07 

Recovery  0.31 ± 0.06 0.11 ± 0.02 0.04 ± 0.01 0.46 ± 0.08 
 * denotes comparison within groups where significant.  
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In females, in response to stress, total power decreased significantly in HFD rats only, by 

approximately 61% (P=0.03). VLF remained unchanged in both groups, while LF decreased 

significantly in control rats by approximately 63% (P<0.01), but was unchanged in HFD rats (P>0.99). 

Finally, HF increased in control groups by approximately 50% (P<0.01) and in HF rats by 

approximately by 43% (P<0.01). Stress-induced changed in BPV all returned to resting levels during 

the recovery period, so that there were no significant difference observed in and frequency range 

during the recovery period compared to resting values in either HFD or control rats (Table. 3.2.10).   

	  
Table 3.2.10: BPV in females during air jet protocol (2-way ANOVA). 
  VLF 

(mmHg2) 
LF 

(mmHg2) 
HF 

(mmHg2) 
TPWR 

(mmHg2) 
Control     

Baseline 0.29 ± 0.10 0.16 ± 0.05 0.04 ± 0.01 0.52 ± 0.18 

Air jet 0.20 ± 0.08 0.06 ± 0.02* 0.02 ± 0.01* 0.27 ± 0.10 

Recovery  0.18 ± 0.03 0.10 ± 0.03 0.03 ± 0.01 0.32 ± 0.06 

High Fat     

Baseline 1.01 ± 0.23 0.13 ± 0.02 1.01 ± 0.23 0.61 ± 0.17 

Air jet 1.44 ± 0.25 0.04 ± 0.01 1.44 ± 0.25* 0.24 ± 0.09* 

Recovery  0.76 ± 0.15 0.12 ± 0.01 0.76 ± 0.15 0.39 ± 0.02 
* denotes comparison within groups where significant  

 

dP/dTmax: In males, there was a trend towards an increase in dP/dTmax immediately upon 

commencement of air jet, however the size of the increase between HFD and control rats was similar 

(P=0.77; Figure 3.2.20A). Furthermore there was no difference in dP/dTmax between groups at any 

time point during the air jet protocol (P=0.30; Figure 3.2.20A).  

	  
In females, there was a trend towards increase in dP/dTmax immediately upon commencement of air jet 

in the HFD group but not in controls, however the size of the increase between HFD and control rats 

was similar (P=0.32; Figure 3.2.20B). Similarly there was no difference in dP/dTmax between groups at 

any time point during the air jet protocol (P=0.87; Figure 3.2.20B).  
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Figure 3.2.22: dP/dTmax  between HF and control rats during air jet protocol (2-way ANOVA) 
A) In males, there was no difference in dP/dTmax between groups at any time point during the air jet protocol (P=0.30). B) In 

females, there was no difference in dP/dTmax between groups at any time point during the air jet protocol (P=0.87).  
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3.3 HIGH SUCROSE MODEL 

	  
For the high sucrose model (HSU), we had access to only male offspring, thus only males were 

investigated. Blood pressure probes were implanted in eight control offspring (six months of age) and 

eight sucrose offspring (six months of age). Of these, one sucrose rat and one-control rat did not 

recover adequately from surgery, leaving a total of seven control and seven high sucrose offspring 

from which data were recorded.   

	  
3.3.1 Offspring body weight 

As with HFD rats, gestation period of HSU rats lasted for 21-22 days with all pups born approximately 

after 22 days of conception. There was no significant difference in birth weights between control and 

sucrose rats (P=0.80; Figure 3.3.1A). Also, there was no difference in weights at day 10 between 

control and sucrose rats (P=0.72; Figure 3.3.1B). At time of implantation (approximately six months 

age), body weight did not differ significantly between groups (control: 625g ± 19g vs HSU: 605g ± 28g, 

P=0.50; Figure 3.3.1C).  

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1: Birth weights of male offspring in high sucrose and control groups 

(mean ±  SEM) (unpaired t-test) 
A) There was no significant difference in weight between high sucrose and control groups at birth (P=0.80). B) 

There was no significant difference in body weight at day 10 between groups. C) There was no significant 

difference in weights at six months of age between groups (P=0.50).  
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3.3.2 Comparison of cardiovascular and autonomic parameters between high sucrose and 

control rats at rest 

Cardiovascular parameters: There were few differences observed in baseline cardiovascular 

parameters between control and HSU offspring. Blood pressure (SBP, DBP and PP) was not different 

between groups during either night or day. Similarly, HR was not different during the day, although at 

night (during the active phase of the rat) HR was slightly higher (by approximately 20 bpm) in the HSU 

rat than controls (P<0.03; Figure 3.3.2). Surprisingly, the only evidence of diurnal rhythm in these rats 

(both HSU and controls) was observed in the HR, where both exhibited higher HR of approximately 50 

bpm at night (P<0.01 for both groups). Systolic BP, DBP and PP did not show significant differences 

between night and day within groups (Figure 3.3.2).  
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Figure 3.3.2: Comparison of cardiovascular parameters at rest in high sucrose and control 

rats (mean ±  SEM) (unpaired t-test)  
A) There was no significant difference observed in SBP between groups during night (P=0.93) or day (P=0.81). B) There was 

no significant difference in DBP between groups during night (P=0.32) or day (P=0.36). C) There was a significant difference in 

HR observed between groups only during the night (P=0.03) and not during the day (P=0.34). D) There was no significant 

difference in PP between groups during night (P=0.26) or day (P=0.42).    
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Autonomic parameters 
 

sBRS and BEI: There was no significant difference in resting sBRS between groups during night 

(P=0.91) or day (P=0.84).  Similarly there was no difference in resting BEI between groups during 

night (P=0.42) or day (P=0.52). Neither HSU nor control rats exhibited a diurnal rhythm in these 

autonomic measures: there were no significant differences in sBRS or BEI during the night and day 

within each group (Figure 3.3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

	  
HRV and BPV: Frequency domain analysis measurements of HRV and BPV at rest did not show any 

differences between the groups. There were also no differences observed between night and day 

within each group (Table 3.3.1 and Table 3.3.2).  

	  
Table 3.3.1: HRV in control and HSU rats at rest (unpaired t-test) (mean ±  SEM) 

  Night/Day 
Cycle 

VLF 
(bpm2) 

LF 
(bpm2) LF:HF HF 

(bpm2) 
Control  

Baseline 
7pm 3.26 ± 0.32 0.64 ± 0.19 0.33 ± 0.05 1.85 ± 0.43 
7am 2.92 ± 0.16 0.44 ± 0.09 0.40 ± 0.04 1.39 ± 0.19 

High Sucrose 

Baseline 
7pm 5.33 ± 1.10 0.87 ± 0.34 0.32 ± 0.05 2.80 ± 0.82 
7am 4.41 ± 1.02 0.64 ± 0.13 0.33 ± 0.05 2.82 ± 1.06 

 

 

 
 

 

 

	  

Figure 3.3.3: Resting values for sBRS and BEI of high sucrose and control groups (mean ±  

SEM) (unpaired t-test) (mean ±  SEM)  
A) There was no difference in sBRS observed between groups during night (P=0.91) or day (P=0.84). B) There was no 

difference in BEI observed between groups during night (P=0.42) or day (P=0.52).  
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Table 3.3.2: BPV in control and HSU rats at rest 

  Night/Day 
Cycle 

VLF 
(mmHg2) 

LF 
(mmHg2) 

HF 
(mmHg2) 

Control  

Baseline 
7pm 0.34 ± 0.04 0.04 ± 0.00 0.03 ± 0.00 

7am 0.31 ± 0.04 0.03 ± 0.00 0.03 ± 0.00 

High Sucrose 

Baseline 
7pm 0.37 ± 0.04 0.10 ± 0.04 0.05 ± 0.01 

7am 0.42 ± 0.02 0.09 ± 0.03 0.05 ± 0.01 

	  
	  

dP/dTmax: There was no difference observed in baseline dP/dtmax between control and HSU rats 

(Figure 3.3.4). Similar to other measures, there was no observed difference between day and night 

values of dP/dtmax.  

 

 

 

 

 

 

 

 

 

 

3.3.3 Comparison of cardiovascular and autonomic parameters between high sucrose and 

control rats during dehydration  

The dehydration protocol used here was identical to that used for the study on high fat-programmed 

rats described above (Section 3.2.5). For purposes of statistical analysis of the dehydration data, we 

have only considered data acquired during the night phase. This was because there were no 

significant differences between night and day for cardiovascular and autonomic parameters. 

	  
Cardiovascular parameters: With the initiation of dehydration there was a small, but consistent 

increase in SBP and DBP of approximately 5-10 mmHg (SBP: P<0.01 both groups, DPB: P<0.01 for 

HSU and P=0.03 for control rats). The increase in SBP and DBP in response to dehydration was 

similar between groups (Figure 3.3.5A, B). Dehydration produced no significant difference in HR or 

PP in either group in response to dehydration (PP: P=0.22 or HR: P=0.37), consistent with the males 

offspring in the HFD study described above (Figure 3.3.5C, D).  
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Control  High Sucrose  Figure 3.3.4: dP/dtmax between control 

and high sucrose rats during night and 

day (mean ±  SEM) (unpaired t-test) 

(mean ±  SEM)  
There was no observed difference in dP/dtmax, between 

groups during night (P=0.70) or day (P=0.95).  
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During the recovery period SBP fell below baseline levels by approximately 5 mmHg in both HSU 

(P=0.01) and control (P=0.02) rats.  In contrast, DBP fell below baseline only in the HSU rats (P=0.02), 

whereas in the control rat it returned to baseline levels (comparison of baseline to recovery in control, 

P=0.60). The changes in SBP during dehydration and recovery were similar between groups (Figure 

3.3.5A, B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Autonomic parameters 
 
sBRS and BEI: Consistent with the results in the HFD study, dehydration produced no effect on sBRS 

or BEI in either group (P>0.99 for both parameters and both groups;).  Similarly, there was no change 

in these parameters during the recovery phase, when water was returned to the cages.  Finally, there 

were no differences in the effects of dehydration and recovery on sBRS and BEI between groups 

(sBRS: P=0.84; BEI: P=0.65).  
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Figure 3.3.5: Cardiovascular parameters during dehydration protocol (2-way ANOVA) 
The dehydration protocol is divided into three blocks, Baseline, Dehydration and recovery, the shaded area reflects the 

duration of dehydration and each data point signifies 12 hours of day or night. A) There was no significant difference in SBP 

between groups during the dehydration protocol (P=0.93), B) There was no significant difference in DBP between groups 

during the dehydration protocol (P=0.25). C) There no significant difference in HR between groups during the dehydration 

protocol (P=0.37). D) There was no significant difference in PP between groups throughout the dehydration protocol (P=0.22).  
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HRV: In response to dehydration, there was no difference observed in HRV in all frequency ranges 

(VLF, LF and HF) in either high sucrose or control rats. However, the LF:HF ratio did increase 

significantly from baseline levels in response to dehydration in control rats (P=0.04), no difference was 

seen in the high sucrose rats (Table 3.3.3). Despite this, overall, there was no significant difference 

observed in HRV between HSU and control rats throughout the dehydration protocol in any of the 

frequency ranges (VLF, LF or HF or LF:HF ratio; Table. 3.3.3). Similarly, there was no significant 

difference observed in HRV between baseline and recovery in either HSU or control rats.  

	  
Table 3.3.3: HRV during dehydration protocol (2-way ANOVA) 

  Night/Day 
Cycle 

VLF 
(bpm2) 

LF 
(bpm2) LF:HF HF 

(bpm2) 
Control  

Baseline 
7pm 3.26 ± 0.32 0.64 ± 0.19 0.33 ± 0.05 1.85 ± 0.43 
7am 2.92 ± 0.16 0.44 ± 0.09 0.40 ± 0.04 1.39 ± 0.19 

Dehydration 
7pm 5.31 ± 1.01 1.34 ± 0.67 0.40 ± 0.03* 3.34 ± 1.24 
7am 3.97 ± 0.50 0.54 ± 0.05 0.37 ± 0.02 1.82 ± 0.17 

Recovery  
7am 4.76 ± 0.95 0.88 ± 0.22 0.38 ± 0.05 2.86 ± 0.75 
7pm 4.01 ± 0.67 0.71 ± 0.12 0.37 ± 0.02 2.57 ± 0.54 

High Sucrose 

Baseline 
7pm 5.33 ± 1.10 0.87 ± 0.34 0.32 ± 0.05 2.80 ± 0.82 
7am 4.41 ± 1.02 0.64 ± 0.13 0.33 ± 0.05 2.82 ± 1.06 

Dehydration 
7pm 7.03 ± 1.41 1.31 ± 0.24 0.34 ± 0.05 4.62 ± 1.16 
7am 5.99 ± 1.16 1.11 ± 0.20 0.34 ± 0.05 4.17 ± 1.07 

Recovery  
7am 6.26 ± 1.18 0.79 ± 0.08 0.31 ± 0.05 3.22 ± 0.51 
7pm 4.98 ± 0.84 0.81 ± 0.19 0.34 ± 0.05 3.90 ± 1.35 

* denotes comparison within groups where significant  

 

BPV: In response to dehydration, there were no significant differences observed in BPV in any of the 

frequency ranges (VLF, LF, and HF) in either HSU or control rats (Table 3.3.4). Furthermore there 

were no significant differences observed during recovery, all parameters remained unchanged from 

baseline levels. There was also no difference between HSU and control rats throughout the 

dehydration protocol in any of the frequency ranges (VLF, LF or HF; Table 3.3.4).  
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Table 3.3.4: BPV during dehydration protocol (2-way ANOVA) 

  Night/Day 
Cycle 

VLF 
(mmHg2) 

LF 
(mmHg2) 

HF 
(mmHg2) 

Control      

Baseline 
7pm 0.34 ± 0.04 0.04 ± 0.00 0.03 ± 0.00 
7am 0.31 ± 0.04 0.03 ± 0.00 0.03 ± 0.00 

Dehydration 
7pm 0.32 ± 0.03 0.04 ± 0.00 0.04 ± 0.01 
7am 0.32 ± 0.03 0.06 ± 0.01 0.06 ± 0.01 

Recovery  
7am 0.33 ± 0.04 0.04 ± 0.00 0.03 ± 0.00 
7pm 0.34 ± 0.04 0.05 ± 0.01 0.04 ± 0.01 

High Sucrose     

Baseline 
7pm 0.37 ± 0.04 0.10 ± 0.04 0.05 ± 0.01 
7am 0.42 ± 0.02 0.09 ± 0.03 0.05 ± 0.01 

Dehydration 
7pm 0.33 ± 0.04 0.09 ± 0.03 0.05 ± 0.02 
7am 0.42 ± 0.09 0.08 ± 0.02 0.06 ± 0.02 

Recovery  
7am 0.40 ± 0.06 0.05 ± 0.01 0.05 ± 0.01 
7pm 0.37 ± 0.01 0.04 ± 0.00 0.05 ± 0.01 

 

 dP/dtmax: There was no significant difference in dP/dTmax between groups throughout the entire 

dehydration protocol (P=0.98).  

	  
3.3.4 Comparison of cardiovascular and autonomic parameters between high sucrose and 

control rats during air-jet stress  

The air jet protocol used here was identical to that used for the study on high fat-programmed rats 

described above (Figure 3.2.2).  

 
Cardiovascular parameters: There was no difference in cardiovascular parameters (SBP: P=0.47; 

DBP: P=0.40; HR: P=0.57; PP: P=0.61) between groups throughout the air jet protocol (Figure 3.3.7). 

Baseline levels in all cardiovascular parameters were similar in control and HSU rats. With the 

initiation of the first series of air puffs, SBP, DBP and HR all increased significantly except for PP from 

baseline levels in both groups, to a similar level (Figure 3.3.7).  

	  
Similarly, during the recovery period SBP, DBP, PP and HR all returned towards baseline levels in 

both groups. In addition, no difference was observed between groups in the change in SBP from 

baseline to the initiation of the first air jet (P=0.58; Figure 3.3.8). 

 

 

 

 



103 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Autonomic parameters 

sBRS and BEI: In response to stress, sBRS remained unchanged in both control (P>0.99) and HSU 

rats (P>0.99; Figure 3.3.9A) with no significant difference between groups (P=0.93). Furthermore, 

sBRS during recovery was similar to baseline levels in controls (P>0.99) and HSU (P=0.79) rats 

(Figure 3.3.9A).  
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Figure 3.3.8: The initial change from 

baseline in systolic blood pressure 

immediately following the first air puff 

(unpaired t-test) (mean ±  SEM)  
There was no significant difference observed in the 

change in SBP between groups (P=0.76).  
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Figure 3.3.7: Cardiovascular parameters during air jet protocol (2-way ANOVA) 
The first two points indicate baseline values with two 15-minute averages. Each 9 points in the stress period are averages of 

each 60-second period following an air puff. The recovery period consists of two points, which are two 15mintues averages. 

A) There was no significant difference in SBP between groups (P=0.47) during the air jet protocol. B) There was no 

difference in DBP between groups at any stage of the air jet protocol (P=0.40). C) There was no difference in HR between 

groups at any stage of the air jet protocol (P=0.57). D) There was no difference in PP between groups at any stage of the air 

jet protocol (P=0.61).   
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In response to stress there was a significant fall (approximately 45%) in BEI in the HSU group 

(P=0.03) with no difference seen in control rats (P>0.99). During the recovery period, BEI returned to 

baseline levels in both control and HSU rats (Figure 3.3.9B).  

 

 
 

 

 

 

 

 

 

 
 

 

 

	  
 

HRV: There was no difference in HRV between HSU and controls throughout the air jet protocol in any 

of the frequency ranges (VLF, LF, HF or LF:HF Table 3.3.5).  Air jet stress produced no change in 

HRV in any frequency range in either control or HSU rats (Table 3.3.5). Likewise, there was no effect 

on HRV observed during recovery, all frequency ranges remained similar to baseline levels in both HF 

and control rats.  

	  
Table 3.3.5: HRV during air jet protocol (2-way ANOVA) 

  VLF 
(mmHg2) 

LF 
(mmHg2) LF:HF HF 

(mmHg2) 
Control  

Baseline 2.46 ± 0.55 0.36 ± 0.12 0.34 ± 0.04 1.33 ± 0.47 

Air jet 6.78 ± 2.68 1.77 ± 1.32 0.26 ± 0.06 5.82 ± 3.69 

Recovery  1.78 ± 0.26 0.76 ± 0.51 0.32 ± 0.06 4.31 ± 3.61 

High Sucrose 

Baseline 2.26 ± 0.56 0.17 ± 0.05 0.32 ± 0.04 0.48 ± 0.13 

Air jet 4.63 ± 1.77 1.78 ± 1.21 0.52 ± 0.26 2.18 ± 1.03 

Recovery  3.44 ± 0.36 0.55 ± 0.14 0.46 ± 0.12 1.44 ± 0.45 
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Figure 3.3.9: sBRS and BEI during the air jet protocol, each data point is indicative of 
averages for baseline, stress and recovery (2-way ANOVA) 
A) There was no significant difference in sBRS between groups in response to stress (P=0.93). B) In response to stress there 

was a significant decrease in BEI in the high sucrose rats (P=0.03) with no significant difference between groups (P=0.48)   
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BPV: As with HRV, BPV was not affected by air jet stress in either group of rats (Figure 3.3.6).  In 

response to stress, VLF, LF and HF remained unchanged in both high sucrose and control rats. There 

was no significant difference observed in VLF, HF or LF during the recovery period in comparison to 

baseline values in either high sucrose or control rats.  

	  
Table 3.3.5: BPV during air jet protocol (2-way ANOVA) 

  VLF 
(mmHg2) 

LF 
(mmHg2) 

HF 
(mmHg2) 

Control    

Baseline 0.27 ± 0.04 0.05 ± 0.01 0.03 ± 0.00 

Air jet 0.87 ± 0.32 0.21 ± 0.15 0.08 ± 0.05 

Recovery  0.36 ± 0.08 0.05 ± 0.01 0.03 ± 0.01 

High Sucrose   

Baseline 0.22 ± 0.05 0.03 ± 0.01 0.02 ± 0.00 

Air jet 0.68 ± 0.28 0.14 ± 0.07 0.04 ± 0.01 

Recovery  0.68 ± 0.24 0.08 ± 0.02 0.04 ± 0.00 

	  
	  

3.3.5 Fos immunohistochemistry 

Effects of air jet stress on Fos expression were examined in the hypothalamus using the DAB 

protocol. This process formed a black precipitate in the nucleus of Fos-positive neurons; these 

neurons could be distinguished from neurons that did not have Fos due to an absence of a black 

precipitate (Figure 3.3.10). Fos-positive neurons were identified in hypothalamic regions previously 

identified as containing Fos-positive labelling following air jet stress (Furlong et al., 2014), such as the 

DMH (Figure 3.3.11) PeF and PVN (Figure 3.3.12) in response to air jet stress (Figure 3.3.10). 

However, we did not find a difference in the number of Fos-positive neurons between high sucrose 

and control rats in any of these regions (Figure 3.3.10).  

 

	  
Figure 3.3.10: Fos labelling in 

different regions of the hypothalamus 

including DMH, PVN and PeF. 

(unpaired t-test) (mean ±  SEM)  The 

number of Fos positive cells located in the DMH 

(P=0.80), PVN (P=0.88) and PeF (P=0.67) was not 

different between groups.  
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Fos stained neurons         Fos stained neurons  

Figure 3.3.11: Photomicrograph 

indicating location of fos-

containing neurons in the DMH 

and PeF. Note: figure includes the mask 

for identified Fos-labelled nuclei 
DMH: dorsomedial hypothalamus; 

PeF: perifornical nucleus; mt: 

mammilothalamic tract; f: fornix. 

3V: 3rd ventical.  

Bregma -3.12mm 
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Bregma -1.92mm 

Figure 3.3.12: Photomicrograph 
indicating location of fos-

containing neurons in PVN 
Note: figure includes the mask for 

identified Fos-labelled nuclei  
PVN: paraventricular nucleus; f: 

fornix.  
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CHAPTER 4: DISCUSSION 

The broad aims of this study were to compare cardiovascular and autonomic function in rats exposed 

to either a high fat or high sucrose diet during gestation with control rats. Variables were compared at 

rest and in response to an unconditioned psychological stress (air jet stress) and a physiological 

stressor (dehydration).  

	  
Blood pressure was recorded using radio telemetry and measurements were made for 5 minutes each 

hour over a 9-day protocol.  This protocol consisted of three days of baseline recording, three days of 

water deprivation and three days of recovery. Following completion of this protocol, rats remained in 

their home cage for three weeks, before the acute air jet stress procedures were performed. For the 

air jet procedure, blood pressure was recorded continuously for 75 minutes, this included a 30 minute 

baseline period, a 15 minute stress period and a 30 minute recover period.  

	  
The primary findings were as follows.  Firstly, in the high fat model, SBP was significantly higher than 

controls during baseline conditions and during dehydration in both male and female rats. Differences 

in SBP in response to air jet stress was seen only in the male rats with no difference between groups 

in the female rats.  All animals showed an increased cardiovascular response during exposure to 

physiological and psychological stressors.  However, despite the hypertension observed in the high fat 

programmed rats, the magnitude of the increase in blood pressure and heart rate from baseline to 

stress was similar between groups in both male and female rats.  

	  
The sustained increased blood pressure observed in high fat programmed females was accompanied 

by a two fold increase in the low:high frequency ratio of heart rate variability. This ratio represents 

sympatho-vagal balance, and may be indicative of increased sympathetic modulation, or decreased 

vagal activity to the heart. This may partly explain the hypertension observed in high fat programmed 

females. However, there were no obvious differences in autonomic responses to either air jet stress or 

dehydration between high fat and control animals, indicating that any increased susceptibility to 

hypertension in high fat programmed rats is unlikely to be due to heightened sympathetic responses to 

stress. 
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Second, in the high sucrose model, there was no difference in blood pressure at rest compared to 

controls.  Moreover, there were also no differences in cardiovascular or autonomic variables observed 

between the two groups in response to either stressor, with both groups showing similar increases in 

cardiovascular variables in response to the stressors. Therefore the high sucrose model in our studies 

failed to detect any detrimental effects of maternal high sucrose intake on the cardiovascular or 

autonomic function in the offspring. 

  

4.1 LOW BIRTH WEIGHT PHENOTYPE 

	  
In programming studies, low birth weight is often used as a convenient, albeit simplistic marker for 

intrauterine adversity. However, in this study, birth weights did not differ significantly between rats 

programmed by either maternal high fat or high sucrose diets and controls.  It is important to note that 

although birth weight reflects systemic growth restriction in utero, it does not provide any information 

on more subtle, tissue specific growth restriction. 

	  
The focus on low birth weight is historical: the original reports on programmed hypertension were 

human epidemiological studies that relied on birth weight as the major indicator for adverse foetal 

development (Barker, 1998). Subsequently, the animal models developed to investigate the 

mechanisms underlying programming also focussed on low birth weight as a defining phenotypic trait 

of programmed animals (Persson and Jansson, 1992; Langley-Evans et al., 1998). However, 

accumulating evidence highlights there are many adverse events that affect the development of the 

foetus that have no effect on birth size (Gluckman and Hanson, 2004; Hanson, 2002; Oliver et al., 

2002; Pladys et al., 2004; Tamashiro et al., 2009).  

 

With regard to the effect of high fat and high sucrose maternal diets on birth weight, the data are 

inconclusive: some studies affirm our results, with no difference in the birth weight of offspring from a 

maternal high fat or high sucrose diet (Ainge et al., 2011; Ferezou-Viala et al., 2011), while others 

report reduced birth weight compared to controls (Couvreur et al., 2011; Howie et al., 2009; Khan et 

al., 2003).  Consistent with our results, in sheep a maternal obesogenic diet (high calorie rather than 

high fat) also has no impact on birth weight (Long et al., 2010; Ford et al., 2009).  Thus, possible 
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programming effects following a maternal high fat or high sucrose diet appear to be independent of 

birth weight 

 

4.2 METHODOLOGICAL CONSIDERATIONS  

	  
Firstly, the methodologies used in this project will be examined before discussing cardiovascular and 

autonomic results in high fat and high sucrose programmed rats at rest and in response to a stressor.   

	  
4.2.1 Low statistical power in the high fat model 

It is imperative to indicate that there was a low statistical power in our high fat model. The final total 

numbers of rats used in our high fat model for statistical analysis included 4 control and 4 high fat rats 

in the male and 4 control and 3 high fat rats in the female. Therefore the interpretation of the data of 

the high fat model must be made with caution, as it may not reflect a true effect. 

	  
The reason for the small n values was because of high mortality during the surgical implantation of the 

radio telemetry probe in our high fat study.  Because we had obtained the rats through a collaboration 

with another faculty, it was not possible for us to obtain more rats. The success rate in this study was 

only 40%, in comparison to the success rate of our high sucrose model, which was 88%.  We are 

uncertain as to the exact cause of the low success rate in the high fat study, although there could be a 

number of possibilities that may have contributed to it  

	  
One of the most obvious post surgical complications observed was a lower limb neurapraxia. If the 

rats persisted to drag their hind limbs for longer than 24-36 hours without signs of improvement, they 

were euthanized for ethical reasons. Similar incidence was observed in both male and female rats as 

well as between groups (HFD and control). Previous experiences by Dr Jaimie Polson and by our 

laboratory have indicated a strong correlation between the duration of occlusion of the aorta during the 

insertion of the catheter and incidence of neurapraxia.  Based on cumulative experience, we believe 

that clamping of the aorta for 2-3 minutes results in minimal risk of apraxia.  The aortic clamp period 

during the surgical implants in the high fat study was approximately 4-5 minutes, and this slightly 

extended time period may have contributed to post surgical complications. However, we do not 

believe that this was a significant factor, as we have had instances in the laboratory where the aorta 

was clamped for as long as 10 minutes with no major postsurgical complications. Indeed, we observed 
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good recovery in our high sucrose model in some rats when the occlusion of the aorta lasted 7 

minutes.  For this reason, other factors must also be considered. 

 

Another factor that may have impacted on post surgical survival was that many of the female rats were 

obese; surprisingly this was seen in our control group and not in the high fat group (Figure 4.1).  Post 

surgical recovery was diminished in these rats. Complications most commonly observed post 

surgically in these rats were that they were slow to rouse following administration of the alpha-2 

antagonist (taking approximately 1-2 hours compared to a normal period to waken of approximately 15 

minutes), remained sluggish for an extended period after waking, showed hind limb neurapraxia as 

described above, and exhibited porphyrin secretion from the nose and eyes. It is widely known that 

obesity is a major surgical risk factor and is associated with a number of post surgical complications, 

however the exact mechanism by which this occurs is not clear cut (Yvonne et al., 2014). Therefore, 

the adverse health outcomes seen in our obese rats post-surgically may be attributed to obesity 

related surgical complications, such as retarded wound healing and nerve damage, similar to that 

reported in humans (Yvonne et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Non-obese versus an obese rat following telemetry implant from 
our high fat rat colony.  Post-operative mortality was greatly increased in 
obese rats. A) Non-obese, female, control rat (11 months old) following telemetry 
implant. B) Obese, female, control rat (6 months) following telemetry implant. 

A B 
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A third factor in poor post-surgical recovery in the high fat study was the possible presence of bacterial 

or viral infection of the rat colony at the time.  It was noted that many of the rats exhibited rasping-like 

breath sounds pre-surgically, indicative of mucous secretion in their airways.  The likelihood of the rat 

colony being exposed to an infectious agent is highly plausible as these rats were raised by another 

investigator in another animal house before being moved to one of the University of Sydney main 

campus animal houses for our experiments. Therefore this move may have increased exposure to a 

potential infectious agent. Furthermore, it is well documented that immunity is altered under obese 

conditions (Macia et al., 2006; Meade et al., 1978). Therefore the combination of increased adiposity 

together with a potential infectious agent may explain the adverse post surgical consequences in 

these rats.  

	  
Finally, ascites was often observed in a number of these rats. It is unclear as to why such large 

amount of fluid accumulation was present in the abdominal cavity of these rats, although this 

commonly occurs with hepatic or cardiac disease.  Therefore, there is a possibility that some of these 

animals may have been suffering from underlying disease. 

	  
Therefore, although we are uncertain as to the exact reason, there are a number of possible 

explanations as to why we experienced low survival rates following surgery in the high fat study.  This 

was particularly problematic because we were unable to obtain additional rats and therefore had low n 

values in the study and subsequently low statistical power. Two power calculations were performed on 

DBP in female rats at night. The first calculation was done using: the population mean of controls for 

mu(0), the mean of our sample (high fat) for mu(1) and the known standard deviation for the 

population for sigma. The power calculation was based on two-sided criteria with 0.05 for the alpha 

value and 0.80 for power of the test. According to this power calculation a sample size of 16 is needed 

to be certain of the effect seen. Our second power calculation was done using; the population mean of 

controls for mu(0), the averages taken from the two highest DBP values for mu(1) and the known 

standard deviation for the population for sigma. Similar to the first power calculation, the power 

calculation was based on a two-sided criteria with 0.05 for the alpha value and 0.80 for power of the 

test. According to this power calculation a sample size of 12 is needed to be certain of the effect seen. 

Therefore a minimum sample size of 12 is required to be certain of the effect seen. Hence as 
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discussed in the thesis we had a low statistical power in the female high fat model.  In order to be 

more confident with the results, it will be necessary to breed animals and raise offspring according to 

the original protocol so that we can increase the n values. 

	  
4.2.2 The programming models used 

Maternal malnutrition during pregnancy can be defined as either a nutrient deficiency or overnutrition, 

with both types of maternal malnutrition during pregnancy associated with foetal programming and 

adverse consequence to the health of the offspring in later life. To investigate the effect of increased 

maternal intake of high fat or high sucrose diet on the offspring, we have developed two rodent 

models; a high fat model and high sucrose model.   

	  
Programming model one - high fat: A number of studies support the hypothesis that maternal 

overnutrition and or obesity is associated with obesity and hypertension in the offspring (Armitage et 

al., 2008, 2005; Samuelsson et al., 2007; Khan et al., 2003; Elahi et al., 2009). In most rodent models 

of maternal overnutrition, the females are maintained on an obesogenic diet, consisting of high 

carbohydrate and fat or high fat alone until they become significantly heavier than control animals. 

These diets are implemented throughout gestation and lactation. In these studies, the offspring are 

exposed to maternal obesity as well as maternal overnutrition during pregnancy and lactation; 

therefore, the effects of maternal obesity alone cannot be distinguished from maternal over nutrition. 

Hence, it is unclear if facets of obesity in the mother such as dyslipidaemia, hypeleptinaemia and 

hyperinsulinaemia may have on programming of hypertension in the offspring. Furthermore, what is 

yet to be established is whether programming of hypertension is a consequence of established obesity 

in the offspring (i.e. a secondary consequence of obesity) or if hypertension and obesity exist 

separately in programmed offspring. Given the increased prevalence of maternal overweight, without 

obesity, it is surprising to see only a few studies have investigated the programming effects of 

maternal overweight in the absence of obesity.  

	  
The high fat programming model in our study consisted of a diet composed of 34% fat from omega-6 

PUFA, 26% protein and with energy intake of 22.3 KJ/g, note, protein levels were maintained at 20-

26%, a difference that is unlikely to impact on foetal programming. The dietary interventions were 

established four week prior to mating, one week during mating (whilst co-housed with a male rat) and 

subsequently for three weeks of gestation.  
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It should be noted that in our study, the high fat mothers did not develop obesity at any stage of the 

dietary intervention, therefore our data support to reject the hypothesis that maternal obesity and its 

associated facets, such as hyperleptinemia, hyperinsulinemia and hyperglycaemia, as maternal 

factors that pre-dispose offspring to develop hypertension (Table 1 in Appendix). In addition, plasma 

leptin levels can be used as a surrogate to measure adiposity due to its association with fat mass 

(Hajer et al., 2008). In our study, although plasma leptin levels were significantly different between 

maternal groups pre-gestation, circulating leptin levels were found to be similar at gestation day 19 

(Table 1 in Appendix), hence indicating similar levels of maternal adiposity during gestation. 

Furthermore there was no significant difference in maternal weight pre-gestation or during gestation 

(Table 1 in Appendix).  

	  
At 6 months of age both control and high fat offspring had similar weights and frank obesity was not 

noted in the high fat offspring. However, without adequate measures of body composition, it is difficult 

to conclude if there was, in fact, a difference between offspring body composition at 6 months (time of 

blood pressure recording). Therefore it is impossible to determine if hypertension arises due to 

obesity, and its associated facets, in the offspring. To investigate if hypertension arises due to a direct 

consequence of maternal high fat diet in utero, experiments in the younger rats at 3 months of age 

should be done, before the onset of increased adiposity or obesity hyperleptinemia as seen in the 

adult rat.  

	  
The specific fats that make up a diet commonly used in programming studies of maternal overnutrition 

include; high saturated, monounsaturated and polyunsaturated fats (Khan et al., 2003; Menegon et al., 

2008; Armitage et al., 2008, 2005; Kirk et al., 2009) and since these diets are most often obesogenic, 

maternal obesity is induced. The high fat diet (34%) used in our study was purely composed of 

omega-6 PUFA and a non-obesogenic diet. However, this diet is characteristic of a commonly 

consumed diet in today’s society with an overall decrease in omega-3 PUFA intake (Simopoulos, 

2011). The consumption of the right ratio of omega-6: omega-3 fats has been thought to be important. 

An optimum ratio of omega-6: omega-3 is thought to be 1-4 : 1, however in a commonly consumed 

Western diet, this ratio has changed dramatically to range within 10: 1 (Olivier  et al., 2011). 

Coincidently, there is also an increase in the prevalence of inflammatory processes such as obesity, 

cardiovascular disease, neurodegenerative and psychiatric illness (Corsinovi et al., 2011) seen with 
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the consumption of these diets. Therefore a diet high in omega-6 PUFA and low in omega-3 PUFA is 

thought to shift the physiological state, toward proinflammatory and prothrombotic with increased 

blood viscosity, vasoconstriction and vasopasam, resulting in increased incidence of developing 

diseases (Patterson et al., 2012). Furthermore, a dietary imbalance of this ratio results in increased 

metabolic products with increased omega-6 PUFA. These metabolites include; thromboxanes, 

prostaglandins, leukotrienes, lipoxins and hydroxyl fatty acid forming in larger quantities, the net effect 

of this is an increased proinflammatory profile with increased lipids, inflammatory mediators and 

cytokines which may contribute to the development of inflammatory diseases (Simpopulos, 2002). As 

described in the introduction, excess maternal inflammation, increased placental cytokines and 

increased lipid transfer is thought to play a role in foetal programming (Mazzucco et al., 2013; Challier 

et al., 2008), however further studies need to be done to investigate this. In our studies, it can be 

concluded that this high fat model does program for hypertension in the offspring at rest (section 4.4) 

but not in response to stress. The failure of a hypertensive response to a stressor is discussed in 

sections 4.5 and 4.6 of the discussion. It is also inviting to speculate the effects increased pro-

inflammatory and lipid profiles (due to this high fat diet) may have on programming.  

	  
Programming model two - high sucrose: in addition to high consumption of a high fat or obesogenic 

diet in the western world, there has also been increased consumption of sugar sweetened beverages 

(SSB) (Ismali et al., 1997). Like many dietary insults to the intrauterine environment that alter foetal 

development, it is thought that maternal access to increased levels of sucrose may also alter foetal 

development and predispose them for diseases in later life (Metzger et al., 2008; Flynn et al., 2013; 

Vickers et al., 2012: Sammuelsson et al., 2008). However, exposure to a high sucrose diet during 

pregnancy and its effects in utero has not been extensively investigated. Similarly to our discussions 

above, it is unclear as to whether a maternal high sucrose diet causes hypertension as a result of 

obesity and its related sequela or if hypertension is a consequence of the direct influence of a 

maternal diet high in sucrose.  

	  
In our sucrose model, both control and sucrose rats received a standard chow (4.8% fat, 20% protein, 

energy 14.0 MJ/Kg digestible energy) and water.  In addition, the sucrose group was provided with 

drinking water that contained sucrose at 10% wt/vol. This dietary intervention was applied in the same 
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manner as the high fat model; established four weeks prior to mating, one week during mating and 

subsequently for the 3 weeks of gestation.  

	  
In most rodent models looking at a high sucrose diet during pregnancy, females are maintained on 

either a diet high in fructose (Vickers et al 2011), a high sucrose diet alone (Sammuelsson et al., 

2008) or a diet high in fructose (10%) and fat (45%), (Flynn et al., 2013). In all these studies there 

have been observed changes in the offspring compared to controls, these changes include; 

hypertension and increased fat mass (Sammuelsson et al., 2008), increased plasma leptin, fructose 

and blood glucose levels in female foetuses (Vickers et al., 2011) and hyperglycemia (Flynn et al., 

2013). The latter study by Flynn and colleagues (2013) may be confounding as the diet consisted of 

both a high fat and high sucrose component, therefore it is unclear as to what the effect of sucrose 

alone was on offspring health. Furthermore, it was noted that most of these studies do not keep fat 

and protein levels consistent between control and experimental (sucrose) groups, in most cases the 

control groups contained higher protein and lower fat levels whilst experimental rats had lower protein 

and higher fat percentages. This may be confounding as there is ample evidence to show that a low 

protein diet programs for disease in offspring (Langley-Evans et al., 1994; 1996; 1999; Pladys et al., 

2004; Vehaskari et al., 2001; Woods et al., 2001), hence it is unclear as to which component of the 

diet is having effects on the mother and foetus.  

	  
Although a person who consumes a high fat diet is likely to consume a high sucrose diet, 

differentiating the effect of a high fat diet relative to a high sucrose diet is important as this allows the 

dietary components that may or may not be detrimental to health outcomes to be teased out. 

Furthermore, a better phenotypic profile of altered physiological states due to different diets may be 

developed; allowing investigation of potential over-arching “vectors” (described in introduction section 

1.5.2) common to each dietary group that might be responsible for programming.  This will also allow 

the investigation of how these vectors may be influencing foetal programming, and therefore assist in 

identifying the possible pathophysiological mechanisms underlying programmed hypertension. In 

addition, the vectors common to maternal overnutrition studies may be compared to those in other 

models of programmed hypertension, such as low protein diet or increased maternal glucocorticoids 

(Denton et al., 2006; Langley-Evans, 2009).. 
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The sucrose model in our study consisted of high sucrose (10%) in the absence of high fat; levels of 

fat, protein and other macronutrients were consistent between controls and sucrose rats. Although 

some studies described above use a high fructose solution, our model did not. Sucrose is a 

disaccharide composed of two monosaccharides, glucose and fructose (Kanarek and Orthen-Gambil, 

1982). Most ingested food and sugar sweetened beverages are in the form of sucrose, which is later 

broken down into glucose and fructose during digestion, therefore the sucrose diet used in this model 

is more reflective of a commonly consumed diet. As described above increased plasma leptin levels, 

hyperglycaemia, hyperinsulimia and higher blood triglycerides are reported in most of the high sugar 

model studies (Vickers et al., 2011; Flynn et al., 2013; Rooney et al., 2013; Sammuelsson et al., 

2008). In our study it was found that dams exposed to high sucrose showed higher fasting blood 

glucose levels associated with glucose intolerance (Figure 2 in Appendix) and higher blood 

triglycerides (Figure 3 in Appendix), however maternal body weights between groups were similar 

(Figure 4 in Appendix).  

	  
In addition the studies mentioned above had different intervention periods for the diet; these included 

a diet implemented six weeks before mating (Flynn et al 2013), day one of pregnancy to postnatal day 

10 (Vickers et al., 2011), six weeks before conception and throughout pregnancy and suckling 

(Sammuelsson et al., 2008). The dietary intervention period for our study was for a total of 8 weeks; 

four weeks prior to mating, one week during mating and subsequently for the three weeks of gestation. 

Foetal programming is thought to be susceptible at different periods during gestation (Entringer et al., 

2012; Fisher et al., 2012;) and the effects of the diet on the mother are dependent on the intervention 

period. Therefore due to differences in the period of dietary intervention, interpreting results from 

different studies may confound each other.  

	  
Overall, the high sucrose model failed to detect any detrimental effects of a maternal high sucrose diet 

in the offspring. Therefore from this model, it is concluded that a diet consisting of high sucrose alone, 

in the absence of high fat does not cause adverse effects in the offspring.  

	  
4.2.3 Radiotelemetry 

Radiotelemetry is now considered the preferred method of blood pressure measurement in the rat. 

Earlier techniques of blood pressure measurement used methods of arterial cannulation and tail cuff to 

obtain blood pressure measurements. The use of radiotelemetry provides a number of advantages 
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over these earlier techniques. Firstly, blood pressure recordings can be obtained in the conscious, 

freely moving rat. Earlier experiments such as the use of arterial cannulation method had to place the 

rat under anaesthesia; it is widely known that anaesthesia can affect blood pressure and autonomic 

regulation, which may confound results and impact on interpretation of data (Dampney and Horiuchi, 

2003). Furthermore when investigating the effects of either physiological or psychological stress, it is 

imperative to use unanesthetised, unrestrained animals; this ensures that proper behavioral and 

physiological responses are evoked in response to the stress.  

	  
The tail cuff method, does provide a technique that does not involve the use of anaesthesia, however 

this method only allows for accurate measurement of systolic blood pressure rather than 

measurement of a blood pressure waveform.  Therefore detailed analysis of cardiovascular function 

(including heart rate derived from the pulse interval) is not possible.  In particular, is it not possible to 

make calculations of sBRS, HRV, BPV or dP/dtmax with tail cuff. Further, tail cuff is likely to elicit 

additional stress in the animal that may affect the results (Kubota et al., 2006; Denton et al., 2006). 

This might be of particular importance in studies looking at programmed hypertension, where blood 

pressure may not be altered during rest but may change between groups in response to a stressor. 

For example, a study by Ortiz et al., (2001) using the tail cuff method, showed hypertension at rest in 

dexamethasone-programmed rats. However, a study by O’Regan and colleagues (2008) repeated the 

experiments 7 years later, using radio telemetry, and showed that blood pressure in dexamethasone 

programmed rats did not differ from controls at rest but showed an exaggerated response to stressors 

such as restraint stress.  Studies done by Prestipino et al., (2014) have confirmed the observations 

made by O’Regan and colleagues (2008), that blood pressure measurements in dexamethasone 

programmed rats at rest are no different to controls but show an exaggerated response to air jet 

stress.   

	  
The technique of tail cuff recording of blood pressure essentially mimics restraint stress. This is 

because, in order to measure blood pressure, the rat is essentially restrained in a box in an almost 

identical manner to that used to evoke restraint stress (Igosheva et al., 2004).  Chronic indwelling 

catheters have also been used to measure blood pressure in the conscious programmed rat (Pladys 

et al., 2004; Woods et al., 2001; 2004).  Although use of this technique will provide the investigator 

with measurement of blood pressure waveform, the animal is still likely to be experiencing greater 
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levels of stress simply due to the presence of the externalised catheters running from its body.  

Therefore the use of telemetry may uncover important differences in blood pressure control that was 

masked by the use of earlier techniques.  

	  
Secondly, the use of telemetry allows for long-term recording of blood pressure without the use of any 

additional manipulation. After the implantation of the radiotelemetry probe, a rat can be placed on a 

receiver and blood pressure recordings can be made for extended periods of time without disturbing 

the animal.  With regard to our study, this has been key for blood pressure measurements during the 

9-day dehydration protocol. Use of radioteleletry allowed measurement of differences in blood 

pressure in response to a three-day period of dehydration and diurnal fluctuations in blood pressure. 

Furthermore, the acquisition program used to record blood pressure, allows up to 8 animals to be 

recorded at a time, enabling collection of blood pressure data from 8 animals at a time over a 9-day 

protocol. Therefore, telemetry provides a very powerful tool for long-term recording of blood pressure, 

as well as other indices of cardiovascular and autonomic function in a very efficient manner.  

	  
However, further refinement to this technique is possible. The transmitters used in our studies were rat 

(PA-C40 DSI) transmitters, which are designed for use in rats weighing above 170g. It was noted 

during the implantation of the probe that the rat transmitter appeared to be quite big when sutured to 

the wall of the abdomen in some rats. Therefore the use of another smaller and lighter mouse 

transmitter (PA-C10, DSI) may be a possibility, this would reduce any discomfort in the rat that may be 

associated with the placement of the transmitter, and allow for better and faster recovery from surgical 

implantation of the probe, thus reducing any stresses caused. This may be of particular significance in 

our high fat study, where a high mortality rate following surgery was experienced. Studies using 

mouse transmitters have shown blood pressure data to be of same stability and quality as the larger 

rat transmitter (Polson et al., 2010; Braga and Prabhakar, 2009; Samuelsson et al., 2010). It has also 

been thought that there may be physiological benefits for using a smaller transmitter, Prabhakar et al., 

(1985) showed evidence of altered breathing patterns with the addition of extra mass to the abdominal 

cavity. Therefore using a smaller transmitter might reduce physiological disruptions due to the 

presence of a transmitter thus improving animal welfare. Furthermore, the use of a smaller mouse 

transmitter would enable us to obtain blood pressure recordings in younger rats (as young as three 

weeks of age, Samuelsson et al., 2010), allowing us to investigate changes in blood pressure 
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regulation at a younger age and hence before the onset of any obesity or age related changes to 

blood pressure regulation (Samuelsson et al., 2010; Simms et al., 2009). On the other hand, the main 

disadvantage of using a mouse transmitter is the greater cost of purchase and reduced battery life in 

these smaller transmitters; this will in turn increase costs associated with refurbishment of transmitters.  

	  
4.2.4 The use of non invasive indices of autonomic function 

The use of non-invasive measures of autonomic function has a major advantage in the fact that they 

can be carried out under normal physiological behaviors, i.e in an unrestrained, freely moving animal. 

However, a major disadvantage of these measures is that they are all indirect measures of autonomic 

function and are subjected to over interpretation and potential errors. The indices used to describe 

autonomic function in our study include dP/dtmax, HRV, BPV, sBRS and BEI; these indices have all 

been validated and used in previous studies and have been useful in the estimation of autonomic 

function provided care is taken with interpretation (Waki et al., 2006; Dowell and Houdi, 1997; Malpas, 

2002).   

	  
dP/dmaxt: dP/dtmax of the aortic blood pressure waveform was used in our study as an index of left 

ventricular contractility. Traditional techniques used to determine ventricular dP/dtmax are quite 

invasive, these techniques require the insertion of a catheter into the left ventricle to detect pressure 

(de Roest et al., 2009). However, studies show aortic pressure can be used as a surrogate for 

ventricular pressure when determining ventricular contractility. For example, a study by Dowell and 

Houdi (1997) showed that injections of positive or negative cardiac inotropic agents have significant 

effects on aortic pressure and flow; these effects are directionally appropriate and produce similar data 

to use of cardiac catheterisation. Further supporting this theory, Brington et al (1997), found a good 

correlation (r=0.87) between data from peripheral dP/dtmax calculations and invasive catheterised 

ventricular recordings of blood pressure. However, it is important to note that there are situations in 

which dP/dtmax calculations from aortic blood pressure measurements are imperfect and become an 

incorrect predictor of the inotropic state. In particular, vessel stiffness in the abdominal aorta is an 

important factor to consider when making dP/dtmax calculations from the aorta. This is because a 

decrease in arterial vessel elasticity produces increased pulse pressures amongst an array of other 

pathophysiological changes (Quinn et al., 2012), and this would produce a higher dP/dtmax despite 

unaltered ventricular contractility.  We did not investigate arterial stiffness, and so this caveat remains 
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open to interpretation.  However, none of the rats in any cohort showed unusually high pulse 

pressures.  Therefore, although the possibility cannot be excluded, it is unlikely that arterial stiffness 

was altered in this study. Calculations of dP/dtmax are also influenced by changing load conditions on 

the ventricle (preload and afterload), which affect intrinsic myocardial contractility (Hamlin and del Rio, 

2012).  Because it was not possible to measure ventricular pressures, the finding that there was no 

difference in cardiac contractility between groups is dependent on the assumption that intrinsic 

myocardiac tension-length relationship and cardiac filling conditions are also the same.  

	  
HRV and BPV: Beat to beat fluctuations in heart rate and blood pressure are present in all 

investigated mammals including humans (Malpas, 2002). There are a number of factors that underlie 

this observed variability including differences in the inherent biophysical properties in the sino-aortic 

pacemaker myocytes and haemodynamic properties of the circulation (Malpas, 2002). In addition, 

there is good evidence that variability is influenced by temperature regulation, vasoactive hormone 

levels and sympathetic and parasympathetic nerve activity (Malik, 1996; Stauss, 2003).  The 

importance of the autonomic nervous system in heart rate variability is clear in patients following 

cardiac transplantation, where heart rate variability is markedly reduced (Toledo et al., 2002).  On the 

basis of the different frequency response characteristics of sympathetic and parasympathetic 

modulation of heart rate, frequency analysis of heart rate variability can identify a low frequency 

component that is correlated to sympathetic modulation and a high frequency component that is 

correlated to parasympathetic modulation of heart rate (see below).  However, despite the strong 

autonomic modulation of heart rate the LF and HF frequency components of HRV may not always be 

very reliable markers for cardiac sympathetic and parasympathetic activity (Malpas, 2002).  

Specifically, while the LF component is influenced by the sympathetic nervous system, there are many 

examples where known increases in sympathetic nerve activity are not associated with changes in low 

frequency variability.  For example, there is a decrease in the LF HRV with myocardial infarction 

despite increased levels of sympathetic activity (Houle and Billman, 1999). Similarly, there is a 

decrease in the LF HRV during exercise, while sympathetic activity is increased (Arai et al., 1989).  

	  
Spectral analysis using a fast fourier transform (FFT) algorithm is one of the most commonly used 

methods of investigating HRV and BPV in the frequency domain (Malpas, 2002; Cerutti et al., 1991), 

as used in our studies. The FFT algorithm deconstructs the HR and SBP waveforms into different 
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components depending on frequency. The most common analysis divides the frequency range into 

three distinct frequency bands; very low frequency (VLF), low frequency (LF) and high frequency (HF). 

Spectral analysis provides information on how much variance or “power” there is in each frequency 

band (VLF, LF and HF), (Jenkins and Watts, 1968; Kay and Marple, 1981; Malik et al., 1996). The VLF 

band comprises a frequency range of HR and BP oscillations between 0-0.27 Hz in the rat. Variability 

in the VLF component is thought to reflect changes associated with levels of vasoactive hormones 

(Cerutti et al., 1991; Askelrod et al., 1981). The LF component consists of frequencies in the range of 

0.27-0.75 Hz in the rat. Although the LF component is more complex, it is often thought to be a 

dominant indicator of sympathetic activity, or the level of sympathetic modulation in both HRV and 

BPV (Berntson et al., 1997; Billman, 2011; Malpas, 2002). This association with BPV has been shown 

by the use of ganglionic blockade, which abolishes these oscillations in the BPV component (Cerutti et 

al., 1994). The HF band is associated with respiratory sinus arrhythmia and the parasympathetic 

influences on HR, consisting of a frequency range between 0.75-3.3 Hz in the rat (Waki et al., 2006). 

With regard to BPV, the HF component is not related to autonomic function, but is associated with 

respiratory changes in the intrathoracic pressure perturbing venous return and cardiac output. The HF 

component in HRV is indicative of parasympathetic activity, and has been demonstrated by using 

parasympathetic blockers such as atropine, which substantially diminishes the HF component in HRV, 

but this is not seen in BPV (Malpas, 2002; Malik et al., 1996).   

Like any technique there are negative aspects involved in the use of a FFT algorithm in spectral 

analysis. The FFT takes into account all the data available from the selected signal when producing 

the power spectrum; therefore it includes the entire signal variance regardless of whether the 

frequency components emerge as specific spectral peaks or non-peaks (Parati et al., 1995). 

Furthermore, the recorded signal may frequently contain signal artifacts, and as the FFT takes into 

account the entire recorded signal, these artifacts, if large in amplitude, may have a substantial 

influence on the signal variance, thereby affecting the power spectrum. It is important to consider 

these factors in our study, especially when analysing the dehydration protocol. During our protocol, 

blood pressure was recorded for five minutes per hour over the entire 9 days. One technique to 

reduce effects of signal variance is to carefully select short periods of time when there is minimal 

variance.  However, a disadvantage of this is that the resulting power spectrum may not be 

representative of the true variability over the course of the study.  Therefore, to both minimise this 



123 
 

signal variance and yet maintain an accurate estimate of true variability, the analysis was performed 

over every 5 minute period separately and the powers averaged for night and day. By way of 

comparison, the study of Rudyk et al. (2011) made estimates of HRV in their programmed rats based 

upon a single 5 minute recording performed between 9-10 am.  It is apparent that measurements 

made over such a small time interval will not be representative of the overall variability in a 24 hour 

period, but very dependent upon events that have occurred at the time point where the measurements 

were made. 

An alternate method to overcome these artifact- associated influences is the use of another technique, 

known as autoregressive (AR) modeling. The AR method identifies a best fitting model in the raw data 

from which the final spectrum is derived, and any component of the recorded signal that does not fit 

the model is regarded as noise and is either partially or totally removed (Box and Jenkins, 1970, Kay, 

1988).  

However, in our study, FFTs done over a recorded signal consisting of moderate artifacts did not 

appear to alter the HRV and BPV analysis, although regions with major artifacts were removed 

manually. This was mainly done during the air jet protocol; the 2 second time period during which the 

stream of air was directed at the rat. The sudden puff of air provoked escape behavior (running and 

jumping), which often elicited substantial movement artifacts in the blood pressure waveform.  For this 

reason, this period was excluded, and data was sourced from the 1 minute intermittent resting phase 

between sets of puffs. This period was used to describe the stress period and its associated changes 

in HRV and BPV.  
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4.2.5 Fos immunohistochemistry 

As described in the introduction, the method of immunohistochemical labelling of fos as a marker for 

neuronal activity has a number of advantages over older traditional techniques such as identification of 

changes in metabolic activity or invasive electrophysiological recordings (Greenberg et al., 1981). 

Specific characteristics of c-fos transcription and the protein product Fos make it an ideal tool for use 

as a marker of neurons recently activated. For example, basal Fos levels are almost always negligible 

in neurons, but is rapidly activated in response to a stimulus (Dampney and Horiuchi, 2003).  

Therefore any Fos expression observed is likely to be from recently activated neurons. This 

characteristic of Fos has served well for the specific detection, quantification and mapping of activated 

neurons after the air jet protocol in our studies. In addition, Fos labelling can be performed in 

conjunction with other techniques to allow for a more detailed analysis, such as double-labelling of 

neurotransmitters/neuromodulators and the use of retrograde/anterograde tracing   (Furlong et al., 

2014; Dampney and Horiuchi, 2003). More importantly, the technique of using Fos as a marker of 

neuronal activity can be used in the conscious freely moving animal, negating any confounding 

influences of surgical stress or anaesthesia on neuronal activation (Dampney and Horiuchi, 2003).  

	  
The use of this method has some possible drawbacks. Firstly, although this technique allows studies 

to be carried out in the conscious animal, the animal may be susceptible to other environmental stimuli 

such as noise and smell, which may arouse and stress the animal (Li and Dampney, 1994). Any noise 

or smell in the lab could therefore cause activation of neurons thereby increasing Fos expression. To 

minimise these effects, we allow the animal to acclimatise to the lab environment for two weeks before 

the commencement of the experiment. By this time, the animal should have been well adapted for the 

laboratory environment and any noise or smell should no longer act as a significant stimulus to evoke 

Fos expression in the animal. Possible false positive labelling from environmental stimuli would have 

been accounted for with the use of control experiments (i.e. without exposure to air jest stress), in 

which basal levels of Fos were quantified.  Such a control can serve as a baseline for comparison of 

the level of Fos expression in rats at rest and of those exposed to the air jet stress. These basal 

measures of Fos expression could not be performed in the present study due to the limited number of 

animal available and time constraints.  However, it should be acknowledged that these measures 

would provide valuable information about basal Fos expression in high sucrose and high fat 

programming.  
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Another drawback of the Fos technique is that Fos expression is not seen in all neurons when 

activated. For example, neurons activated in the substantia nigra do not express Fos, regardless of 

the stimulus (Dragunow and Faull, 1989), while in cardiac vagal preganglionic neurons Fos expression 

is delayed by up to 8 hours before it is detectable (Dampney and Horiuchi, 2003). Therefore, in such 

studies, it is not possible to label Fos in both cardiac vagal preganglionic neurons and other brainstem 

neurons due to the transient nature of the Fos expression in other neurons.  It is therefore necessary 

when interpreting results to be aware factors such as these that would elicit false negative data.  

The use of Metamorph to discriminate labelled neurons was used, the accuracy of this semi-

automated counting program has been validated in our laboratory previously by performing manual 

counts on random selection of sections (Iigya et al., 2012)     

	  
4.2.6 Receptor sensitisation and desensitisation 

To investigate the stress response in programming, rats were subject to two types of stressors, a 

physiological (dehydration) and a psychological (air jet) stress. Rats were exposed to both stressors; 

firstly the dehydration protocol was performed, followed by a three-week rest period before the air jet 

protocol was implemented. A potential confounder in the data obtained from the air jet stress protocol 

is receptor sensitisation or desensitisation due to prior dehydration. Sensitisation is a process whereby 

the repeated administration of a stimulus causes an amplification of the process (Shettleworth, 2010).  

Conversely, receptor desensitisation is a process where by the receptor has a diminished response to 

a stimulus due to prolonged exposure (Fehmann et al., 1991). It is unlikely that sensitisation or 

desensitisation due to dehydration would have impacted the blood pressure data obtained in the air jet 

study. This is because dehydration has been a persistent challenge to homeostasis throughout 

evolution (Debora et al., 2012) and therefore plasma osmolality and blood volume are robustly 

defended and controlled tightly in the mammal via homeostatic processes (McKinley et al., 2004; 

Autunes-Rodrigues et al., 2004). Hence, It is very unlikely that these evolutionarily homeostatic 

processes would result in any receptor sensitisation or desensitisation, particularly because of the 

inclusion of a three week resting period, between dehydration and air jet stress. Furthermore, receptor 

sensitisation is mostly characterised in the central sensitisation of nociceptive neurons, processes of 

long-term potentiation (learning), drug sensitisation and allergic sensitisation (Collingridge et al., 2004; 

Robinson et al., 1993; Kohno et al., 2003; Janeway et al., 2001). Therefore, it is unlikely that a 

stimulus such as dehydration would cause receptor sensitisation under these categories of 
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sensitisation. Similarly, receptor desensitisation is often associated with increased agonist exposure to 

a receptor, which decreases its sensitivity. Although hormones such as antidiuretic hormone are in 

action during dehydration (Autunes-Rodrigues et al., 2004; Burbach et al., 2001) there are no known 

pathways whereby sensitising or desensitising these hormonal receptors may impact blood pressure 

data following psychological stress. Ideally, control experiments should have been performed to 

determine if rats exposed to dehydration respond differently to psychological stress compared to rats 

that did not experience dehydration. However, due to the limited number of available rats, this was not 

practicable.  

	  
4.3 SEX SPECIFIC DIFFERENCES 

	  
There are three main factors that give rise to sexual dimorphism and consequently sexual dimorphism 

in developmental programming. These three factors include; differences in developmental patterns 

(genetic, morphological and transcriptional), differences in the timing of development, and the effect of 

steroid hormone exposure during in utero and postnatal life (Aiken and Ozanne, 2012). These factors 

together give rise to mature adult organisms that are sexually dimorphic in their physiology, anatomy, 

behaviour and reproductive capacity (Aiken and Ozanne, 2012). Therefore, it was important to 

consider both male and female offspring in our study to investigating how sex-specific differences may 

influence blood pressure in our high fat programmed model. 

	  
In reviewing the literature, it is evident that male offspring appear to be more susceptible to developing 

programmed hypertension due to an adverse in utero stimulus compared to females.  In the rat, there 

are reports in models of maternal gestational dexamethasone exposure (Alexander, 2003; Ortiz et al., 

2003), maternal low protein diet (Woods et al., 2005: Langley-Evans et al., 1996) and in studies of 

uterine artery hypoperfusion (Alexander, 2003) that describe raised blood pressure in male, but not 

female offspring.  With regard to programming following maternal high fat diet, there are conflicting 

data.  An early study by Langley-Evans (1996) showed mothers fed a diet high in saturated fat results 

in hypertension in the male offspring but not in females. In contrast, Khan et al (2003) showed a 

maternal obesogenic high fat diet programmed hypertension in female offspring only, while another 

paper reported that an obesogenic high fat diet programmed hypertension in both male and female 

offspring (Samuelsson et al., 2010).  Similar conflicting results have been reported in mice, with both 
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high fat programming producing hypertension in both male and female offspring (Samuelsson et al., 

2008) and in females only (Elahi et al., 2008).  Thus, it appears that there is not a strong sex-specific 

difference in high fat programming of hypertension.  

In our study, both male and female rats programmed by a maternal high fat diet developed 

hypertension to a similar degree. The LF:HF ratio, an index of cardiac sympathetic modulation, was 

elevated in the HRV spectra in females. This response was exacerbated when the females were 

exposed to dehydration.  This suggests that maternal high fat programming may alter cardiac 

autonomic function in females, which in turn, may increase the risk of developing hypertension under 

certain conditions. In males, there was no evidence of autonomic dysfunction either at rest or in 

response to physiological or psychological stressors. Therefore, the hypertensive phenotype observed 

in programmed males does not appear to have an autonomic origin. 

	  
The studies of maternal overnutrition described above indicate that female offspring may have a 

greater tendency to develop hypertension than the males. The reason for this remains elusive, 

however, a clue may lie in the observed difference of growth rates in the male and female foetuses in 

utero (Gilbert and Nijland., 2008). Faster growing male foetuses may differ in their susceptibility to 

nutritional insults in comparison with female foetuses.  There is also evidence that there may be sex-

specific differences in the mechanisms that produce programmed hypertension.  For example, a 

maternal low protein diet during gestation has been reported to program hypertension in males via a 

glucocorticoid-mediated mechanism. Conversely, in females it has been shown to be mediated via 

changes in angiotensin receptor expression (McMullen and Langley-Evans, 2005).  It is therefore 

possible that similar sex specific differences are present in high fat programming, however, this 

remains to be investigated. 

	  
4.4 CARDIOVASCULAR AND AUTONOMIC PARAMETERS AT REST 

	  
Cardiovascular parameters at rest: Similar to previous studies of high fat programmed hypertension 

in Sprague Dawley rats (Khan et al., 2003; Samuelsson et al., 2009), our high fat model programmed 

for hypertension at rest in both male and female offspring. Although there are clear differences in the 

high fat diets used and the duration of the intervention period implemented across most of the studies 

of maternal overnutrition, including ours ,, all studies show hypertension in offspring of over-nourished 
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mothers compared to offspring from mothers given a control diet (Khan et al., 2003; Samuelsson et 

al., 2009). However, an important difference is, our study appears to be the first to demonstrate 

programmed hypertension using the high fat diet model in the absence of maternal obesity and 

offspring obesity.  In contrast, Rudyk et al. (2011) found that a non-obesogenic maternal high fat diet 

(23.6% lard) did not produce raised blood pressure at rest in the offspring.  It is possible that the 

difference in programming effect is due to the timing of exposure to the high fat diet or the amount of 

fat in the diet.  In the study by Rudyk and colleagues, the dams were exposed to the high fat diet for 

only 10 days prior to conception, compared to one month in our study.  This early pre-conception 

stage is crucial in determining the quality of the oocyte (Minge et al., 2008) and extended exposure to 

an unfavourable diet may produce early developmental effects.  In addition, there was a difference in 

the amount and type of fat used between our study and that of Rudyk et al (2011), which may impact 

on possible developmental or epigenetic changes.  Nevertheless, in our model, hypertension can arise 

purely due to gestational dietary high fat intake.  This is an important consideration in the interpretation 

of possible causative mechanisms because it shows that obesity and the changes associated with 

obesity, such as raised leptin levels (Taylor et al., 2014), are not necessary to produce changes in 

blood pressure regulation.   

	  
In the high sucrose model, raised blood pressure was not observed at rest. There are only two reports 

in the literature that have investigated the programming effects of gestational high sucrose diet on 

blood pressure (Samuelsson et al., 2008, 2013).  The first of these was a study in mice using radio 

telemetry and demonstrated programming of raised blood pressure.  However, that study used a 

gestational diet consisting of both high fat (16%) and high sucrose (33%), and importantly, the diet 

was obesogenic.  This raises the possibility that the reported hypertension was due to raised fat or 

obesity, rather than high sucrose.  The same investigators recently reported results of a study in mice 

using a maternal high sucrose diet in the absence of high fat (Samuelsson et al., 2013). In contrast to 

the results of the current study, they reported raised blood pressure in the high sucrose rat during the 

active phase (night). The increased SBP observed by Samuelsson and colleagues, but not seen in our 

high sucrose model, is difficult to compare as Samuelsson and colleagues used a mouse model and 

there may be species differences in programming effects of high sucrose on blood pressure control.  
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An explanation for the difference in programming effect on blood pressure following gestational high 

sucrose may be due to the shorter dietary intervention period in our study compared to that of 

Samuelsson and colleagues (2013). Dams were maintained on the high sucrose diet for 4 weeks prior 

to mating, one week during mating and three weeks of gestation. In contrast, Samuelsson and 

colleagues maintained their dams on a high sucrose diet for 6 weeks prior to mating, throughout 

gestation and suckling. In other programming studies of maternal obesity, it has been found that 

oocyte quality is determined before fertilisation even occurs (Minge et al., 2008), thus the longer 

dietary intervention period prior to mating may prime adverse changes in the oocyte associated with 

impaired embryo development.  In addition, the early postnatal exposure to high sucrose may also 

have a significant impact on developmental changes, further priming the offspring to develop 

hypertension (Myrie et al., 2012).  Therefore, it is unclear from the study of Samuelsson et al. (2013) 

whether the effect that they describe on blood pressure is due to a programming effect during the 

antenatal or postnatal period.  Finally, the sucrose content was much higher (55% greater in simple 

sugars) compared to our study (10% sucrose), which may impact programming differently. A 10% 

sucrose solution was used in our model as this is based on the standard energy density of a popular 

sugar sweetened beverage (1.7kJ/ml), therefore, the sugar content in our study is more applicable to 

today’s society than previous studies.  However, further investigation is necessary to develop a better 

picture of the effects of high sucrose during development of blood pressure regulation. 

	  
Autonomic parameters at rest: There was no indication of baroreflex dysfunction at rest in either 

male or female offspring of the high fat or the high sucrose models according to BEI and sBRS 

indices. This is not in agreement with other programming studies utilising maternal high fat diet (Rudyk 

et al., 2011), maternal obesogenic diet (Samuelsson et al., 2010), maternal dexamethasone exposure 

in sheep (Segar et al., 2006; Dodic et al., 1999) and maternal protein restriction (Pladys et al., 2004). It 

is important to note that in these previous studies the Oxford technique was used to measure 

baroreflex. The Oxford technique allows for a detailed description of baroreflex function, as 

comparisons of the relationship between blood pressure and heart rate are made over a wide range of 

blood pressures. Therefore, changes associated with baroreflex function can be shown in the absence 

of changes to baroreflex sensitivity (Pladys et al., 2004). However, a negative aspect of the Oxford 

technique is that there is an element of stress involved in the protocol, which may confound the results 

obtained. It is widely known that stress causes changes in baroreflex function (Dampney et al., 2008). 
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Therefore, the differences in baroreflex function seen in previous studies may be attributed to the way 

the programmed animals reacted to the stress of exteriorised catheter implantation. Consequently, the 

spontaneous technique used in our study may reflect a more accurate measure of baroreflex function 

at rest.  

	  
Baseline measurements of dP/dtmax, LF and LF:HF component of HRV and the LF component of BPV 

are indicative of sympathetic and vasomotor modulation. In our study there was no indication of 

increased cardiovascular sympathetic activity at rest in the male or female offspring of the high fat or 

the high sucrose models. This is surprising, as previous studies in the rat using similar techniques 

commonly show increases in sympathetic cardiac and vasomotor activity during rest in programming 

models using maternal obesogenic diet (Samuelsson et al., 2010) and protein restriction (Pladys et al., 

2004).  A possibility for this difference may be attributed to differences in these programming models, 

which may result in different autonomic function. For example, the study by Samuelsson et al (2010) 

used an obesogenic high fat diet, whereby obesity is induced in the mother (not the case in our study). 

This means that the offspring are exposed to both maternal obesity and maternal overnutrition during 

pregnancy and lactation; hence effects of maternal overnutriiton per se cannot be distinguished from 

maternal obesity. These are potentially important differences because increased adiposity produces a 

number of changes that may affect central nervous system regulation of sympathetic function, such as 

increased leptin concentration or insulin production (Head et al., 2014). Therefore the differences in 

sympathetic and vasomotor modulation seen in our study to that of other programming studies may be 

attributed to difference in programming models.  Consistent with this, no differences in HRV or BPV 

were found at rest in a similar model to the one employed in this study, where pregnant dams were 

exposed to a non-obesogenic high fat diet (Rudyk et al., 2011), although, as mentioned above, in that 

study there was no difference in blood pressure reported between groups. In addition, results of 

previous studies and our study should be considered with caution, as sympathetic activity is not 

always reflected by changes in HRV or BPV if the modulatory effects are changed (Stauss et al., 

1995; Eisenhofer et al., 1996). This is seen most clearly in heart failure, where it is reported that the 

LF component of HRV is reduced despite clear evidence for increased cardiac sympathetic activity  

(Van de Borne et al., 1997). This reduced LF band has been explained as indicative of a raised, but 

invariant level of sympathetic activity in heart failure.  
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There was no observed difference in other frequency components of HRV or BPV between groups, in 

either male or female offspring, thus supporting the conclusion that cardiac autonomic function is not 

altered in either the high fat or high sucrose models. 

 

4.5 CARDIOVASCULAR AND AUTONOMIC PARAMETERS DURING 

PSYCHOLOGICAL STRESS  

	  
Cardiovascular parameters during psychological stress: In our study, the high fat programmed 

rats (male and female) had sustained higher blood pressure throughout the air jet protocol (baseline, 

stress and recovery). However there was no observed difference in the magnitude of the blood 

pressure and heart rate response to the air jet stress. Therefore, it was concluded that the high fat rats 

did not respond to the air jet stress differently to controls with respect to their hypertensive response. 

Cardiovascular changes in response to stress between our study and other studies (Samuelsson et 

al., 2010; Rudyk et al., 2011) are difficult to compare, as the type of stressors used are different, and 

different psychological stressors may elicit both qualitatively and quantitatively different cardiovascular 

and sympathoexcitatory responses (Furlong et al., 2009). The choice of psychological stressor used in 

our experiments was the air jet protocol, which is regarded as a mild to moderate psychological 

stressor (Dampney et al., 2008). This stressor has been shown previously to evoke hypertensive, 

tachycardic and putative sympathoexcitatory responses in the naive (non-programmed) rat (Furlong et 

al., 2014). Although both control and high fat rats did respond to the stressor, the blood pressure data 

in our study are not consistent with the view that a maternal high fat diet during gestation causes 

offspring to respond to a stressor in a hypertensive manner, in contrast to previous reports 

(Samuelsson et al., 2010; Rudyk et al., 2011). The differences observed in the stress responses may 

be attributed to the type of stress used. Previous studies have used restraint stress by placing the rat 

in a confined space for 20 minutes (Samuelsson et al., 2010; Rudyk et al., 2011).  This is regarded as 

a significantly more severe form of stress.  Studies by McDougall et al., (2006) showed that air jet 

stress and restraint stress elicited clear differences in their cardiovascular responses in rats, with 

restraint evoking a much greater increase in blood pressure and heart rate than the air jet protocol. It 

is therefore thought that a gating mechanism is operative in the central nervous system that 

consequently determines the amount of cardiovascular activation depending on the degree of the 



132 
 

perceived threat (McDougall et al., 2006). It is possible that in our study the more mild form of stress 

failed to evoke a difference in cardiovascular or sympathetic responses between the control and high 

fat programmed rats. As mentioned above, there were differences in maternal diet and/or duration of 

the intervention period of the diet in these previous studies,.  It is possible that these differences may 

also underlie differences in programming effects and subsequent cardiovascular responses to stress.  

In this context it is worth noting that the study of Samuelsson et al. (2010), which showed a greater 

difference in cardiovascular response to restraint stress between control and programmed rats, used 

an obesogenic high fat diet that is likely to exert greater programming effects than a non-obesogenic 

high fat diet. In contrast, the high fat diet of Rudyk and colleagues (2011) was not obesogenic, 

although it did extend into the postnatal lactation period.  That study reported a difference in 

cardiovascular responses to restraint stress between groups in male, but not female offspring, 

suggesting that the responses are graded and dependent on the severity of the programming insult.  

These dietary differences would need to be examined more carefully to determine the exact effect that 

they may have on programming cardiovascular responses to psychological stress  

	  
The second model, ustilising high sucrose programming, did not show any differences compared to 

controls in blood pressure or heart rate responses to air jet stress at any time point throughout the 

protocol (baseline, stress and recovery). At the time of writing, there has been no study done 

previously that has examined the cardiovascular responses to a psychological stress in a high sucrose 

programmed model. Although preliminary, the results of the current study suggest that gestational 

exposure to high dietary sucrose does not program an altered cardiovascular response to 

psychological stress in the offspring. 

	  
A number of studies using other models of programming have reported enhanced cardiovascular 

responses to psychological stress, including gestational high glucocorticoid exposure (O’Regan et al., 

2008; 2010), stress in pregnancy (Igosheva et al., 2004); maternal hypoxia (Peyronnet et al., 2002) 

and maternal high salt diet (Porter et al., 2009).  In addition, an exaggerated cardiovascular response 

to exposure to ammonia has been demonstrated in offspring following maternal low protein diet 

(Tonkiss et al., 1998).  Thus there is considerable diversity in the type of programming insult that can 

lead to enhanced responses to stress, suggesting that this is a common alteration in phenotype.  It is 

possible that there may be an underlying disturbance common to these different programming models.  
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There is good evidence that many of these foetal insults either directly or indirectly produce a down 

regulation of glucocorticoid receptor levels in the hypothalamus (Seckl, 2004; Gonzalez-Rodriguez et 

al., 2014), and that this may in turn increase the hypothalamic-pituitary-adrenal axis response to stress 

in the offspring, producing exaggerated cardiovascular and autonomic responses to stress (Seckl, 

2004). Although there is no evidence for prenatal high salt diet producing an increase in foetal 

glucocorticoid, increases in levels of corticotropin-releasing hormone mRNA in the hypothalamus have 

been reported (Porter et al., 2009) and this may produce a similar exaggeration of stress responses.  

It is interesting to note that a maternal obesogenic diet in rats also increases systemic corticosterone 

levels in the dam, and produces an increase in glucocorticoid receptor gene expression in the 

amygdala of the offspring (Sasaki et a., 2013), that is associated with exaggerated behavioural stress 

responses. It is not known whether a maternal high fat diet that is not obesogenic, or a maternal high 

sucrose diet, such as those used in the present study, also produce altered glucocorticoid responses 

in the hypothalamic pituitary adrenal axis or amygdala.  It is possible that the failure to observe a 

difference in the cardiovascular responses to stress in these models may be reflected by a lack of 

alteration in glucocorticoid receptor levels within these areas of the brain.  

	  
Autonomic parameters during psychological stress:  In the high fat study, there was no difference 

in sBRS or BEI between groups during rest or in response to stress in either male or female rats.  

However, there were differences observed between sexes in response to stress. In males, both 

control and high fat showed a decrease in sBRS to a similar degree in response to stress. Both groups 

also showed a similar trend towards a decrease in BEI in response to stress, but this was not 

statistically significant in either group. In contrast, female rats did not show a significant change in 

either sBRS or BEI in response to stress.  

	  
Similarly in our high sucrose model there was no difference in sBRS or BEI between groups at rest or 

in response to stress. However, in contrast to the high fat study (males), there was no change in sBRS 

in response stress in either sucrose model or control rats, while BEI decreased in the high sucrose 

rats but remained unaffected in the controls.  

	  
The original hypothesis was that the programmed rats may show a depression of their baroreflex 

function (both sBRS and BEI) either at rest or in response to stress, based on numerous reports that 

decreased baroreflex sensitivity is associated with hypertension or increased risk of hypertension 
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(Dodic et al., 1999; La Rovere et al., 1998; Leotta et al., 2007; Pladys et al., 2004).  A depressed 

baroreflex function in response to stress may help to explain the observation of an augmented 

hypertensive response to stress reported previously in high fat/obesogenic diet programmed 

hypertension (Samuelsson et al, 2010; Rudyk et al., 2011), although these studies did not investigate 

the effects of stress on baroreflex function.  Unlike these previous studies, our study did not observe 

an augmented cardiovascular response in response to stress in the programmed animals, and 

therefore lack of an effect on baroreflex function between groups is consistent with the similarity in 

cardiovascular response between groups.   

	  
It is noteworthy that a difference was found in the effect of stress on sBRS in the male control groups 

of our high fat (decreased) and high sucrose (unchanged) studies.  It is not possible to explain this 

discrepancy without further investigation. A recent study by Bajic et al. (2010) in the Wistar rat 

examined baroreflex responses to an air jet protocol similar to the one used in our study.  It reported 

that stress evoked no change in sBRS consistent with the controls in the current high sucrose study.  

It is possible that the differences in sBRS that were observed in the two control groups may indicate a 

technical error in the analysis of sBRS in the high fat study, however the results were carefullly 

examined and this is not considered to be the case. Identical procedures were used for the analysis of 

sBRS in the high fat- and high sucrose- studies.  One possibility is that the low n values, due to the 

high mortality linked to the telemetry surgery, may have generated a type I error (false positive), 

However, due to the inability to access more animals, this could not be investigated further. 

	  
A review of the literature indicates that there may be variability in the effect of stress on baroreceptor 

function, possibly dependant on the type of stressor, or other variations in how the stress is evoked.  

Early literature supported the idea that stress elicited a depression of baroreflex function, based on 

studies of the hypothalamic defence area (Hilton, 1982).  Stimulation of this region has been shown to 

inhibit the baroreflex via GABAergic inhibition of baroreceptor-sensitive neurons in the nucleus of the 

solitary tract (Silva- Carvalho et al. 1995; Mifflin et al., 1988).   However, more recent studies report 

that baroreceptor reflex function during a stressor, or in response to activation of the stress “centre” in 

the dorsomedial hypothalamus, shifts the operating range of the reflex to a higher blood pressure 

without having an effect on sensitivity (Kanbar et al., 2007; Dampney et al., 2008).  Thus there is 

inconsistency in the literature, and it is sensible to conclude that the effects of stress on baroreflex 
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function may be highly variable, and dependant on a number of factors, including state of arousal and 

use of anaesthetics. 

 

We also found inconsistencies in our data on stress-evoked changes in BEI.  A decrease in BEI 

observed in the high fat control is consistent with the Bajic et al (2010) study.  A decrease in BEI 

would indicate that although the sensitivity of the reflex is not diminished during air jet stress, it is no 

longer triggered as frequently by fluctuations in blood pressure. Thus, the effect of a decrease in BEI 

is to reduce the strength of the baroreflex at a given pressure, and this may explain the right shift in 

the baroreflex function curve to a higher blood pressure that is described by Dampney et al., (2008).  

Presumably this assists in a permissive manner to allow for stress-evoked increases in sympathetic 

nerve activity, heart rate and blood pressure.   

	  
There were only a few changes in HRV and BPV observed in response to stress, with no significant 

differences seen in sympathetic indices (LF or LF:HF ratio) between groups in either the high fat or 

high sucrose rats. This is consistent with our blood pressure data obtained in our study, which also 

showed no differences between groups in response to air jet stress. Our study is the first to examine 

HRV and BPV in response to stress in maternal high fat programming, and thus it is not possible to 

make any comparisons with previous studies. The possible reasons for the lack of an augmented 

response to air jet stress in the programmed rats have been discussed above: such differences may 

lie in the dietary models or intervention period used.  

	  
In summary, we found few differences in the cardiovascular and autonomic responses to air jet stress 

between control and high fat- and high sugar-programmed rats.  This is surprising because a number 

of other studies of programmed hypertension (O’Regan et al., 2008; 2010; Igosheva et al., 2004; 

Peyronnet et al., 2002; Porter et al., 2009), including models of maternal high fat diet programmed 

hypertension (Samuelsson et al., 2010; Rudyk et al., 2011), have reported increases in stress-related 

cardiovascular function. Different gestational stressors are likely to elicit a different pattern of 

developmental changes in the offspring, which can explain in part the lack of effect that was observed.  

However an explanation of the differences between our study and that of Rudyk et al. (2011) is more 

complicated because both studies used a non-obesogenic high fat diet for the programming model.  

There are differences in the protocol of high fat exposure: our study provided a 34% fat diet to the dam 



136 
 

for one month prior to mating and throughout gestation, whereas Rudyk and colleagues provided a 

23.6% fat diet for two weeks prior to conception, throughout gestation and also throughout lactation.  

The continuation of the high fat diet during the neonatal phase means that these investigators were 

studying the effects of peri-natal rather than prenatal programming and this may impact on the results. 

The perinatal period is a time of increased plasticity, especially for the stress system, and is therefore 

particularly sensitive to alterations in environment. Thus handling during the neonatal period affect 

behaviour in the adult, including exaggerated responses to stress (Meaney et al., 1998).  Thus 

postnatal high fat diet may have an added and substantial effect on the offspring response to stress 

(Samuelsson et al., 2010; Rudyk et al., 2011).  Therefore, although we cannot suggest a mechanism 

to explain the differences in our results, it is possible that the different methodologies for high fat-

programming may underlie these differences.   

	  
4.6 CARDIOVASCULAR AND AUTONOMIC PARAMETERS DURING 

DEHYDRATION 

	  
Cardiovascular parameters during physiological stress (dehydration): Disturbances in the control 

of fluid balance and electrolyte homeostasis are associated with hypertension (Morris, 1982). A 

common osmotic challenge in today’s society is one that is imposed by a high salt (NaCl) diet. There 

are a growing number of studies that show increased prevalence of salt sensitive cardiovascular 

diseases such as hypertension (Adams, 2004; Weinberger, 1996; DiBona and Sawin, 1991).  

Moreover, a number of studies have highlighted a salt-sensitive component to programmed 

hypertension (Rudyk et al., 2011; Sander et al., 2005; Tang et al., 2011; Woods et al., 2001; 2004), 

indicating that programming may not only increase the risk of hypertension due to psychological 

stressors, but also physiological stressors such as osmotic challenge. To investigate the effect of an 

osmotic challenge we chose to use a dehydration protocol (described in Section 2.2). Similar to a high 

salt diet, dehydration causes a change in the fluid balance and electrolyte homeostasis resulting in a 

hyperosmotic extracellular fluid environment (Toney and Stocker, 2010), and an increase in 

sympathetic nerve activity (Osborn et al., 2007; Toney and Stocker, 2010).  Thus, dehydration may 

partly mimic the effect of high salt diet over a shorter time course.  
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In our study, the high fat programmed rats (male and female) had sustained higher blood pressure 

throughout the dehydration protocol, including the baseline period, the period of water deprivation and 

the recovery period. However, in response to dehydration both high fat and control rats showed a 

similar increase in SBP, suggesting that acute dehydration, resulting in a reduced, hyperosmotic 

extracellular fluid volume, produced similar effects in both groups.  To our knowledge, there are no 

reports in the literature of cardiovascular responses to dehydration in programmed animals.  However 

a study by Rudyk and colleagues (2011) showed that high fat diet programmed rats had a significant 

increase in blood pressure in response to salt loading, which, as discussed above evokes a similar 

change in plasma osmolarity. Surprisingly, in contrast to our study, there was no difference in blood 

pressure at rest between groups.  It is hard to explain these differences between our study and that of 

Rudyk et al. (2011). However, there are differences in the two models, as described in section 4.5 of 

air jet stress. Our study used a 34% fat diet commencing 4 weeks prior to mating and terminating at 

parturition, while the other study used a 23.6% fat diet and commenced 2 weeks prior to mating and 

continued until after weaning.  Therefore the study of Rudyk et al, 2011 exposed the offspring to 

raised fat both prenatally and postnatally. This suggests the possibility that the early neonatal 

environment is a crucial period in the rat for the programming of altered cardiovascular autonomic 

regulation.  The postnatal period is of crucial importance in the rat as it is developmentally quite 

immature at birth and therefore processes of maturation continue during the immediate postnatal 

period (Patel and Srinivasan 2010). This period is characteristic of great plasticity, and thus 

developmental programming can occur during this time similar to in the gestation period (Ostadalova 

and Babickey, 2012). It is unclear as to when the developmental regulation of cardiac and autonomic 

responsiveness start developing in the rat. However some studies offer some clues. A study in the rat 

show parasympathetic innervation to the heart is first detected before birth (Marvin et al., 1980). 

Conversely, there is no indication of sympathetic innervation to the rat ventricle during the first week 

after birth (Robinson, 1996). Furthermore studies have shown developmental expression of α-1 

adrenergic, β-adrenergic and muscarinic receptors in the heart appear to peak during the first and 

second week after birth, this period is thought to be a time of rapid maturation of innervation to the 

heart (Kojima et al., 1990). In addition, at the time of birth in a rat, a period of potential autonomic 

imbalance has been found, whereby parasympathetic innervation is already established to the heart 

but not sympathetic innervation (Robinson, 1996). This indicates that the postnatal period is of crucial 
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importance for autonomic development and any adverse insult may have negative impacts on 

autonomic homeostatic regulation. The extended postnatal exposure of a high fat diet in the study by 

Rudyk et al, 2011 may have influenced cardiac and autonomic development adversely, thus this may 

have lead to the increased pressor response seen to a physiological stressor, in contrast to our 

observations. Therefore, the phenomenon of postnatal plasticity and/or postnatal programming is 

important to consider when making comparisons between studies.  

	  
Our second model of high sucrose programming rats did not show any difference in blood pressure or 

heart rate between groups at any time point during the protocol (baseline, stress, recovery). Similar to 

our male high fat programmed rats, in response to dehydration both high sucrose and controls showed 

an increase in SBP and DBP, and this increase was similar between groups.  To our knowledge, there 

has been no study done previously that has examined the cardiovascular responses to a physiological 

osmotic stress in a high sucrose programmed model. Although preliminary, our results suggest that 

gestational exposure to high dietary sucrose does not program an altered cardiovascular response at 

rest or in response to either psychological (air jet) or physiological (dehydration) stressors in the 

offspring.  

	  
In addition to the study on high fat programming mentioned above (Rudyk et al., 2011), a number of 

studies using other models of programming have reported enhanced cardiovascular responses to a 

physiological osmotic stress, although in these cases the osmotic stress was produced by high salt 

diet.  These include, maternal protein restriction (Wood et al., 2004), gestational diabetes (Nehiri et al., 

2008), uterine artery ligation (Sanders et al., 2005), and raised maternal glucocorticoids (Tang et al., 

2011). Thus, a range of maternal insults can program an exaggerated response to an osmotic stress, 

suggesting that there may be a common alteration in phenotype throughout a variety of different 

programming models. However, our results indicate that not all prenatal stressors evoke this common 

altered phenotype.  It may be that the lack of a difference in response to dehydration between groups 

is because dehydration is a stronger stimulus than high salt, activating both osmoreceptors and 

volume receptors (due to the low blood volume).  The stronger stimulus may saturate the hypertensive 

response, and thus mask any difference between groups.  However, consistent with our results, there 

are a number of reports in models of programmed hypertension that failed to elicit further increases in 

blood pressure in response to a high salt diet (Langley-Evans et al., 1996; Moritz et al., 2011; Zimanyi 
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et al., 2004).  Thus it seems that the programming paradigm does not consistently elicit a hypertensive 

or exaggerated response to either a psychological or physiological stressor.  Further investigation is 

necessary to better elucidate what circumstances lead to these hypertensive responses, particularly if 

they pose a heightened risk for the development of overt hypertension in the long term. 

 

The increase in blood pressure in response to dehydration is consistent with previous studies, and is 

believed to be due to increased sympathetic activity (Colombari et al., 2011; Gardiner and Bennet, 

1985; Woods and Johnston, 1983; Burnier et al., 1983).  Therefore, based upon the observed 

similarity in pressor response, we would argue that dehydration evoked a similar degree of 

sympathoexcitation in high fat, high sucrose and control rats.  We examined non-invasive indices of 

autonomic function, as described in the methods, to investigate this further. 

	  
Autonomic parameters during physiological stress (dehydration): In the high fat study, there was 

no difference in sBRS or BEI between groups during rest or in response to dehydration in males. 

However, in females, although BEI was not different between groups, there was a significant 

difference in sBRS throughout the entire protocol (baseline, dehydration and recovery), with HFD 

females having a higher sBRS. Furthermore, in response to dehydration sBRS increased in HFD, but 

not control rats.  This result is surprising in light of the HFD rats having a raised blood pressure, which 

is usually associated with a decrease in sBRS (Lantelme et al., 1998; Waki et al., 2006).  Indeed, 

previous studies using an obesogenic high fat diet to programme hypertension also found reduced 

baroreflex sensitivity at rest in offspring of mothers fed an obesogenic diet (Samuelsson et al., 2009).  

As discussed already, the protocol in this study was significantly different to ours because the 

pregnant dams developed obesity and also the diet was maintained during the weaning period.  We 

are uncertain as to why there is increased sBRS, however one possibility is related to the high 

polyunsaturated fatty component of the high fat diet used in our study, as high polyunsaturated fatty 

acids have been shown to increase baroreflex sensitivity in patients following myocardial infarct 

(Radaelli et al., 2005). 

	  
There were no significant changes in HRV and BPV between groups in the male high fat model. 

Interestingly female HFD rats showed an increased LF:HF ratio throughout the dehydration protocol, 

with a significant increase in the LF:HF ratio in response to dehydration.  This increased LF:HF ratio in 
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HFD rats is thought to reflect a shift towards a sympathetic dominance  in cardiac autonomic function 

(Billman, 2013).  It is possible, therefore, that the increase in LF:HF ratio in the HFD females may 

relate to their higher blood pressure.  If this were true, it would suggest that the mechanism producing 

raised blood pressure in the male HFD rats is different to that of the females.  Such gender differences 

have been described previously (see section 4.3).  

 

In summary, we found little difference in the cardiovascular and autonomic responses to dehydration 

stress between control and high fat- and high sugar-programmed rats. This is surprising as a recent 

study by Rudyk and colleagues (2011) has shown alterations in high salt-related function. Difference 

in duration of the diet by Rudyk and colleagues may partly explain the lack of effect we observed. 

These differences have been described extensively in Section 4.5.  

	  
4.7 COMPARISON OF FOS LABELLING IN HIGH SUCROSE AND CONTROL 

RATS  

	  
We compared Fos expression in the hypothalamus in high sucrose and control rats following air jet 

stress in order to determine whether there were differences in neuronal activation in response to the 

stress between groups.  Three main regions of the hypothalamus are thought to be involved in 

mediating cardiovascular response to acute stressors, including the PVN, DMH and PeF. Similar to 

other studies that have used air jet stress (Furlong et al., 2014; Palmer and Printz, 1999), our studies 

showed Fos expression in these three regions.  There were no differences in the number of Fos-

labelled nuclei between control and high sucrose rats. Our initial hypothesis was that high sucrose 

programmed rats would display a greater hypertensive response to air jet stress, and that such a 

response may lead to increased Fos expression in the hypothalamus. Considering that we did not see 

any major differences in cardiovascular or autonomic responses between groups during the air jet 

stress, it is not surprising that we did not see differences in Fos expression. We are unable to compare 

the Fos labelling in our high sucrose model with other studies of high sucrose programming as to our 

knowledge there have been no other study that have looked at Fos expression in rats following air jet 

stress.  Indeed, no studies to date have examined Fos expression in any model of programming. 

However, genetic models of hypertension have found differences in Fos expression compared to 

normotensive controls.  For example, following stress, the number of Fos-positive neurons in these 
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hypothalamic regions is increased in the SHR (Palmer and Printz, 1999) and in the Schlager 

generically hypertensive mouse (Davern et al., 2010), consistent with the increased cardiovascular 

responses to stress in these animals. Utilization of the c-fos technique in other models of programming 

will help to identify those regions of the brain that exhibit alterations in the central processing of stress 

responses, such as described following gestational raised glucocorticoids (O’Regan et al., 2008) or 

maternal hypoxia (Peyronnet et al., 2002). 
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CHAPTER 5: CONCLUSIONS 

In summary, the data showed that a maternal high fat diet during pregnancy results in hypertension at 

rest, demonstrating that the risk of developing hypertension is increased in these offspring when 

compared to offspring from mothers given a control diet.  In response to a psychological or 

physiological stressor, all animals showed an increase in cardiovascular variables, however despite 

the high fat rats having a higher blood pressure during baseline, the magnitude of increase in 

cardiovascular variables were similar between groups in both male and female rats.  

There is limited evidence of altered autonomic function in the high fat programmed rats in our study, 

despite their higher blood pressure. Evidence of autonomic differences were seen in the females, 

where a sustained higher blood pressure throughout the dehydration protocol was accompanied by a 

large increase in the low:high frequency ratio of heart rate variability. This is indicative of increased 

sympathetic activity.  A similar change in the low:high frequency ratio of HRV was not seen in males. 

This suggests the possibility that at least in the female high fat programmed rats, the increase in blood 

pressure may be due in part to enhanced sympathetic activity. However, there were no obvious 

differences in autonomic responses to either air jet stress or dehydration between high fat and control 

animals, indicating that any increased susceptibility to hypertension in high fat programmed rats is 

unlikely to be due to heightened sympathetic responses to stress. Further studies are necessary to 

elucidate the pathophysiological mechanisms that underlie hypertension in our model of high fat 

programming.  

In our second model, a maternal high sucrose diet failed to program hypertension in the offspring at 

rest or in response to either a psychological or physiological stressor. There were also no differences 

in autonomic function between groups at rest or in response to a psychological or physiological 

stressor. Therefore, this model failed to detect any detrimental effects of a maternal high sucrose 

intake on the cardiovascular or autonomic function in the offspring.  

In relevance to humans, programming may play a pivotal role in sensitising an individual to developing 

hypertension as a consequence of nutrition-related factors during pregnancy.  The nature of the signal 

that instigates foetal programming from the mother to the fetus has not been delineated. The 

remarkable similarity of phenotype in offspring from studies of nutritional manipulation suggests that 
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there is an over arching signal influencing programming in these studies. However, the mechanisms 

that link nutritional factors in development of hypertension remain elusive. Our studies are not strongly 

indicative of autonomic dysfunction in the high fat programmed hypertensive rats. Further 

investigations into pathways that mediate blood pressure homeostasis are required. An area that 

requires further research is renal ontogeny and epigenetic mechanisms. In addition, it is important to 

consider details of specific dietary components and methodological differences between groups when 

making conclusions.  
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APPENDIX  

Dr Kieron Rooney and Prof. Robert Boakes provided the supplementary graphs and tables stated in 

the appendix, based on the biochemical data and blood analysis from the animals used in this thesis. 

This material was not a part of the thesis.  

 
Table 1: Maternal out comes in the high fat model  
  

Chow Fed (n=4) Fat Fed (n=8) 

Body Weight (g)  

Starting weights  173.7 ± 3.1  157.6 ± 2.5  

Pre-gestation  256.1 ± 9.4  234.7 ± 7.3  

Gestation day 19  347.0 ± 10.4  312.2 ± 16.4  

PND2  325.7 ± 8.3  303.3 ± 11.4  

Blood Glucose (mM)  

Pre-gestation  5.0 ± 0.3  5.8 ± 0.2*  

Gestation day 19  4.1 ± 0.4  4.1 ± 0.3  

Plasma Insulin (pM)   

Pre-gestation  38.8 ± 11.0  20.2 ± 5.0  

Gestation day 19  179.4 ± 61.2  143.8 ± 63.6  

Plasma Leptin (pg/mL)  

Pre-gestation  511.2 ± 108.9  996.4 ± 170.2*  

Gestation day 19  768.8 ± 74.5  925.4 ± 92.1  

 

 

Table 1: Maternal summary data high fat model. * denotes significance between groups.  
Maternal body weight: There were no significant differences in maternal weight at any point.   
Blood glucose levels: were significantly higher in the fat fed mother (P<0.05), pre gestation (four 
weeks prior to mating). However at gestation day 19, blood glucose levels were similar between 
maternal groups  
Plasma insulin: there were no significant differences in maternal plasma insulin levels pre-gestation 
or at gestation day 19. 
Plasma leptin: levels were significantly higher in the fat fed mother mother (P<0.05), pre gestation 
(four weeks prior to mating). However at gestation day 19, plasma leptin levels were similar between 
maternal groups.  
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Figure 2: oral glucose tolerance test in control and sucrose mothers. Blood glucose 

levels were higher in sucrose rats throughout the test (P<0.01). Total area under the curve 

(figure inset) also showed a significant higher blood glucose levels in sucrose rats (P<0.01). 

Figure 1: water and sucrose solution intake in female rats means ± SD. Average daily 

intake of sucrose water (sucrose group) was 112.5±17.3 mL and water (control group) was 

29.9±6.8 mL 
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Figure 3: fasting blood triglycerides of 

control and sucrose mother following 28 
days of dietary intervention. Average 

fasting blood triglycerides were higher in the 

sucrose group compared to controls 

(P=0.015).  

 

Figure 4: Body weight of female control versus sucrose rats throughout intervention: There 

was no significant difference in body weight between maternal high sucrose or control groups.  

 


