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1 INTRODUCTION

Volatility estimation for financial asset returns is highly important in many financial

and investment applications. The auto-regressive conditionally heteroskedastic (ARCH)

model of Engle (1982) and the generalised (G)ARCH of Bollerslev (1986) are early, seminal

works in the time-varying volatility area. Here, volatility is driven by squared returns, and

this work led to many variations of this model type: e.g. the EGARCH of Nelson (1991)

and the GJR-ARCH of Glosten et al. (1993) capture volatility asymmetry as described in

Black (1976); plus threshold nonlinear models such as the T-GARCH of Zakoian (1994)

and smooth transition ST-GARCH of Anderson et al. (1999) which generalize that idea.

Squared daily returns are an inherently noisy volatility estimator, as illustrated by

Andersen and Bollerslev (1998). Parkinson (1980) considered the daily intra-day range

(Ra), finding this to be more efficient than squared returns. Chou (2005) and Chen, Ger-

lach and Lin (2008) developed conditionally autoregressive models for the range (CARR);

whilst Brandt and Jones (2006) developed a range-EGARCH model. High frequency

intra-day data has become now more and well used, with several more efficient realized

measures of daily volatility proposed; including realized variance (RV), Andersen and

Bollerslev (1998) and the realized kernel (RK), Barndorff-Nielsen and Shephard (2002)

and Barndorff-Nielsen et al. (2008). Typically, these measures are either: i) employed in

GARCH-X models, in the volatility equation only, as a replacement for, or in addition to,

squared returns, e.g. see Molnár (2011); or (ii) the dynamics of the realized measure are

modelled directly, but not necessarily linked to returns, e.g. see Andersen et al. (2003)

for RV and Chou (2005) and Chou et al. (2010) for Ra. The latter models are employed

for volatility prediction; the former can also be employed for tail risk estimation. A few

papers directly modelled these measures and linked them to the conditional return distri-

bution: e.g. the range-based stochastic volatility model of Alizadeh, Brandt, and Diebold

(2002) and range-based EGARCH model of Brandt and Jones (2006).

Recently, Hansen et al. (2011) proposed an intuitive volatility model framework called

realized GARCH. A measurement equation was added to GARCH-X model, directly link-

ing each realized measure (X) as an observed variable dependent on contemporaneous
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latent volatility. This measurement equation, when using RV or RK as X, was shown by

Hansen et al. (2011) and Watanabe (2012) to lead to increases in the predictive likeli-

hood, over standard GARCH and GARCH-X models; these models also allow a type of

volatility asymmetry. The realized GARCH (RG) model is related to the multiplicative

error model (Engle and Gallo, 2006) and the HEAVY model (Shephard and Sheppard,

2010). Watanabe (2012) extended the RG model by employing Student-t errors in the

return equation, whilst Contino and Gerlach (2014) employed skewed-t errors in the ob-

servation, and Student-t errors in the measurement, equation, both further demonstrating

that the RG framework allows more efficient volatility estimation and forecasts via em-

ploying RV and RK in the measurement equation.

Parkinson (1980) proposed the intra-day range as a measure of volatility and showed

that this estimator was five times more efficient than squared returns for volatility esti-

mation, in a certain setting. Martens and van Dijk (2007) and Christensen and Podolskij

(2007) proposed a measure called the realized range (RR), which employs the sum of high

frequency intra-period squared ranges. Their simulations showed that the realized range

compared favourably to the RV in volatility estimation, across various micro-structure

noise settings. Martens and van Dijk (2007) also discussed some bias-correction ap-

proaches for RR, thereby proposing the scaled RR, though we do not consider that in this

paper. The RR seems to be barely considered in the literature since Martens and van

Dijk (2007). We aim to fill that gap in this paper.

In this paper, the RR, and the Ra, will be incorporated into the Realized GARCH

framework, creating the Realized Range GARCH (RR-RGARCH) and Range-GARCH

(Ra-RGARCH) models; where both Gaussian and Student-t errors will be considered for

the observation equation. Further, the MCMC estimation methods in Contino and Ger-

lach (2014) will be extended to cover these models and compared to the usual maximum

likeihood (ML) estimator. Accuracy in terms of predictive likelihood and tail risk fore-

casting will be assessed across a range of competing models, for six international market

index return series.

The paper is structured as follows. Section 2 briefly reviews modern volatility es-

timators, including Ra, RV, RK and RR. The specifications for the Ra-GARCH and
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RR-GARCH are briefly presented in Section 3. Section 4 discusses parameter estimation

via Bayesian MCMC. Section 5 reviewstail risk measures such as Value at Risk (VaR) and

expected shortfall (ES). Section 6 presents some simulation results comparing Bayesian

and maximum likelihood estimation for realized GARCH models. Section 7 describes the

data and presents the results of the empirical study. Section 8 concludes, and discusses

possible future work.

2 REALIZED MEASURES

This section gives a brief introduction to various volatility estimators included in the

models employed in this paper. First, for day t denote the intra-day high, low and closing

prices as Ht, Lt and Ct. The daily log return is then:

rt = log(Ct)− log(Ct−1)

Assuming the mean return is zero, as standard, a constant daily return variance can

be estimated by:

V =
1

n

n∑
1

r2t

Based on the distribution of range derived by Feller(1951), Parkinson (1980) proposed

the high-low intra-day range (squared), with scaling factor 4log(2) as an approximately

unbiased variance estimator:

R2
t =

(logHt − logLt)
2

4 log 2

Through theoretical derivation and a simulation study, Parkinson showed that this is a

more efficient estimator than the traditional squared return. Garman-Klass (1980), Rogers

and Satchell (1991) and Yang and Zhang (2000) derived other range based estimators; a

full study and comparison on the properties of different volatility estimators is presented

in Molnár (2012).

Extending into the high frequency intra-day framework, each day t can be divided into

N equally sized intervals of length 4, each intra-day time subscripted as i = 0, 1, 2, ..., N .

The log closing price at the i-th interval of day t is denoted Pt−1+i4. Then, the high

and low prices during this time interval are Ht,i = sup(i−1)4<j<i4Pt−1+j and Lt,i =
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inf(i−1)4<j<i4Pt−1+j respectively. Realized variance (RV) has proven an efficient volatility

estimator and gained popularity in recent years. RV is simply the sum of the N intra-day

squared returns, at frequency 4, for day t, i.e.:

RV 4t =
N∑
i=1

[log(Pt−1+i4)− log(Pt−1+(i−1)4)]2 (1)

Proposed by Barndorff-Nielsen and Shephard (2002), the realized kernel is a more

robust volatility estimator compared to realized variance, especially when the returns are

contaminated with micro-structure noise.

The Realized Range (RR), proposed by Martens and van Dijk (2007) and Christensen

and Podolskij (2007), has the following specification, which simply replaces the intra-day

squared returns with intra-day squared ranges, and scales:

RR4t =

∑N
i=1(logHt,i − logLt,i)

2

4 log 2
(2)

Theoretically, the RR may contain more information about volatility, in the same

way as the intra-day range contains more information than squared returns: it uses all

the price movements in a time period to form the high and low price, not just the price

at each end of each time period. Results in Martijns and van Dijk (2007) lend support to

this hypothesis.

Of course, both RV and RR are subject to micro-structure noise bias and inefficiency,

more so than daily returns or daily ranges. As such, realized measures have been criticized

for this. This issue has been studied extensively, see Rogers and Satchell (1991), Barndorff-

Nielsen et al. (2004) and Christensen and Podolskij (2007) for discussion.

3 REALIZED RANGE GARCH

This section reviews the literature on realized GARCH and proposes the realized

range RG model.
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3.1 Model Description

The realized GARCH model of Hansen et al. (2011) can be written as:

rt =
√
htzt, (3)

ht = ω + βht−1 + γxt−1 ,

xt = ξ + ϕht + τ1zt + τ2(z
2
t − 1) + σεεt ,

where rt = [log(Ct)− log(Ct−1)]×100 is the percentage log-return for day t, zt
i.i.d.∼ D1(0, 1)

and εt
i.i.d.∼ D2(0, 1) and xt is a realized measure, e.g. RV or RK; D1(0, 1), D2(0, 1) indi-

cate distributions that have mean 0 and variance 1. The three equations in 3 are, in

order: the return equation, the volatility equation and the measurement equation, respec-

tively. The measurement equation is a second observation equation that captures the

contemporaneous dependence between latent volatility and the realized measure. The

term τ1zt + τ2(z
2
t − 1) is used to capture a leverage-type effect.

Hansen et al. (2011) utilized the RV and RK as the realized measures (i.e. xt) in model

(3); and chose Gaussian errors, i.e. D1(0, 1) = D2(0, 1) ≡ N(0, 1). Watanabe (2012)

allowed D1(0, 1) to be a standardised Student-t; Contino and Gerlach (2014) allowed

it to be the skewed-t of Hansen (1994) and also allowed D2(0, 1) to be a standardised

Student-t. We propose two RG specifications via the choice of: (i) xt = RR4t , called the

realized range GARCH (RR-RG); and (ii) xt = Ra2t , called the range-squared realized

GARCH model (Ra-RG). The choice of RR as information to drive volatility is motivated

by Martijns and van Dijk (2007).

3.2 Stationarity and Positivity

Stationarity is an important issue in time series modelling in general. In this context

it is important to understand the conditions or parameter restrictions required so that

the long-run unconditional variance exists and is positive, as well as sufficient conditions

ensuring each ht is also positive.

Substituting the measurement equation into the volatility equation in 3 leads to:

ht = (ω + γξ) + (β + γϕ)ht−1 + at, (4)
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where at = γ[τ1zt−1 + τ2(z
2
t−1− 1) + εt−1], so that E(at) = 0. Taking expectations of both

sides of (4), the long-run variance is (ω + γξ)/[1− (β + γϕ)]. To ensure this is finite and

positive, the required conditions for the general realized GARCH model are:

ω + γξ > 0, (5)

0 < β + γϕ < 1

Further, to ensure positivity of each ht, it is sufficient that ω, β, γ are all positive. This set

of conditions are subsequently enforced during estimation of all realized GARCH models

in this paper.

4 BAYESIAN and LIKELIHOOD ESTIMATION

The model specification for the general realized range GARCH (RR-RG) is in (3).

4.1 Likelihood

Following Hansen et al. (2011), where D1 = D2 ≡ N(0, 1), the log-likelihood function for

model (3) is:

`(r, x; θ) = −1

2

n∑
t=1

[
log(2π) + log(ht) + r2t /ht

]
︸ ︷︷ ︸

`(r;θ)

−1

2

n∑
t=1

[
log(2π) + log(σ2

ε) + ε2t/σ
2
ε

]
︸ ︷︷ ︸

`(r|x;θ)

(6)

where εt = xt − ξ − ϕht − τ1zt − τ2(z
2
t − 1); the parameter vector to be estimated

is θ = (ω, β, γ, ξ, ϕ, τ1, τ2, σε)
′
, under the constraints in (5) and positivity on (ω, β, γ).

Hansen et al. (2011) derived the 1st and 2nd derivative of this log-likelihood function,

allowing calculation of asymptotic standard errors of estimation, via a Hessian matrix.

Subsequently, this model is denoted RG-GG (Realized GARCH with Gaussian-Gaussian

errors).

Under the choice D1 ∼ t∗(0, 1, ν); D2 ≡ N(0, 1), as in Watanabe (2012) and Contino

6



and Gerlach (2014), the log-likelihood function for model (3) is now:

`(r, x; θ) = −
n∑
t=1

[
A(ν) + log(π(ν − 2)) + 0.5 log(ht) +

ν + 1

2
(1 +

r2t
ht(ν − 2)

)

]
︸ ︷︷ ︸

`(r;θ)

(7)

−1

2

n∑
t=1

[
log(2π) + log(σ2

ε) + ε2t/σ
2
ε

]
︸ ︷︷ ︸

`(r|x;θ)

(8)

where εt = xt − ξ − ϕht − τ1zt − τ2(z
2
t − 1) and t∗(0, 1) ≡ t(0, 1, ν) ×

√
ν−2
ν

, which

is a Student-t distribution with ν degrees of freedom, scaled to have variance 1; and

A(ν) = log(Γ
(
ν+1
2

)
) − log(Γ

(
ν
2

)
). The parameter vector to be estimated is now θ =

(ω, β, γ, ν, ξ, ϕ, τ1, τ2, σε)
′
, under the constraints in (5) and positivity on (ω, β, γ); further

we restrict ν > 4 to ensure the first four moments of the error distribution are finite.

Subsequently, this model is denoted RG-tG.

4.2 Bayesian estimation

The likelihoods in (6) and (7) involve 8 and 9 unknown parameters respectively; most

of which are part of equations involving latent, unobserved variables. The performance

and finite sample properties of ML estimates of these likelihoods are not yet well stud-

ied. As such, we also consider powerful numerical and computational algorithms in a

Bayesian framework, under weak or uninformative priors, as a competing estimator for

these models.

4.2.1 Priors

The prior is chosen to be close to uninformative over the possible stationarity and posi-

tivity region for the model parameters θ, with two exceptions. We add a Jeffreys prior

for the scale parameter in the measurement equation, σ, and also a Jeffreys-type prior for

the intercept parameter in this equation, ξ i.e.:

π(θ) ∝ I(A)
1

σ

1

ξ
,
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for the RV-GG model, and

π(θ) ∝ I(A2)
1

σ

1

ξ

1

ν2
,

for the RG-tG model. This is a mostly flat prior on the parameters in θ, restricted by the

indicator function being non-zero only over the region A (or A2), where A is the region

defined by (5) plus positivity for ω, β, γ and A2 is A intersected with ν > 4. For the degrees

of freedom parameter ν, the prior is equivalent to a uniform prior ν−1 ∼ Unif(0, 0.25), as

used by Chen, Gerlach and So (2006), among others.

4.2.2 Adaptive MCMC

An adaptive MCMC method, adapted from that in Contino and Gerlach (2014), is em-

ployed, extended from work originally in Chen and So (2006). For the burn-in period, a

Metropolis algorithm employing a Gaussian proposal distribution, with a random walk

mean vector, is utilised for each block of parameters. The var-cov matrix of each block

is initially set to 2.38
sqrt(di)

Idi , where di is the dimension of the block (i) of parameters being

generated, and Idi is the identity matrix of dimension di. This covariance matrix is sub-

sequently tuned, aiming towards a target acceptance rate of 23.4% (if di > 1, or 40% if

di = 1), as standard, via the algorithm of Roberts, Gelman and Gilks (1997).

During the MCMC sampling period, a mixture of three Gaussians proposal distribu-

tion is employed in an ”independent” Metropolis-Hastings algorithm. The mean vector

for each block is the sample mean of the last 50% of the burn-in iterates for that block;

i.e. it is the same for each of the three mixture elements. The proposal var-cov matrix

in each element is CiΣ, where C1 = 1;C2 = 10;C3 = 100 and Σ is the sample covariance

matrix of the last 50% of the burn-in iterates for that block.

As an example, for the RG-GG model, two blocks were employed: θ1 = (ω, β, γ, ϕ)
′

and θ2 = (ξ, τ1, τ2, σ)
′

via the motivation that parameters within the same equation are

likely to be more correlated in the posterior (likelihood) than those in separate equations,

with the exception that the stationarity condition may cause correlation between iterates

of β, γ, ϕ, thus they are kept together. For the RG-tG model a third block containing

only ν−1 was added, with θ1,θ2 remaining unchanged.
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5 TAIL RISK FORECAST ASSESSMENT

Both Value at Risk (VaR) and Expected Shortfall (ES) are recommended tail risk

measures in the Basel III Capital Accord. ES is defined as the expected value of an r.v. Y ,

conditional on Y being more extreme than its α-level quantile: i.e. ESα = E(Y |Y < Qα),

where Qα is the quantile of Y . Value at Risk is here defined as the alpha-level quantile

of Y , Qα, itself. Here we consider only α < 0.5 and thus restrict this work to left-tail or

negative risk on long positions, as is standard in the literature.

While various common tests can be applied to directly assess VaR quantile forecasts:

e.g. the unconditional coverage (UC) and conditional coverage (CC) tests of Kupiec

(1995) and Christoffersen (1998) respectively, as well as the dynamic quantile (DQ) test

of Engle and Manganelli (2004) and the VQR test of Gaglione et al. (2011), proper or

optimal assessment of a set of ES forecasts is still an issue under investigation. The most

common method applied to assess ES forecasts is based on the fact that it is a conditional

expectation beyond a VaR quantile; an aspect which can be tested directly or indirectly.

The direct test examines the residuals, observations minus forecast ES level, for data

that are violations, i.e. more extreme than the corresponding VaR predictions, and tests

whether these residuals have mean 0. Since the ES predictions are usually not independent

over time, the residuals are often scaled by predicted volatility, e.g. see McNeil and Frey

(2000), or by the predicted VaR levels, as in Taylor (2008).

Following Kerkhof and Melenberg (2004), Chen, Gerlach and Lu (2012) illustrate how

to treat ES forecasts as quantile forecasts in parametric models, where the quantile level

that ES falls at can be deduced exactly. Gerlach and Chen (2014) further illustrate that

across a range of non-Gaussian distributions, when applied to real daily financial return

data, the quantile where the 1% ES is estimated to fall was ≈ 0.35%. Their approaches

are followed to assess and test ES forecasts here, treating them as quantile forecasts at

appropriate quantile levels, as discussed in Gerlach and Chen (2014), and applying the

UC, CC, DQ and VQR tests.
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6 SIMULATION STUDY

A simulation study is now presented to illustrate the comparative performance of

the MCMC and ML estimators, in terms of parameter estimation, quantile and expected

shortfall forecasting, accuracy. The aim is to illustrate the bias and precision properties

for these two methods, highlighting the comparative performance of the MCMC estimator.

The results presented focus on the RG-GG and RG-tG model specifications.

Samples of size n = 1500 and n = 3000 are simulated from two specific models,

specified as:

Model 1 rt =
√
htzt, zt ∼ N(0, 1)

ht = 0.02 + 0.75ht−1 + 0.25xt−1 ,

xt = 0.1 + 0.95ht + 0.1zt − 0.1(z2t − 1) + εt

εt ∼ N(0, 0.52)

Model 2 rt =
√
htzt, zt ∼ t∗8(0, 1)

ht = 0.01 + 0.7ht−1 + 0.29xt−1 ,

xt = 0.01 + 0.99ht + 0.25zt − 0.25(z2t − 1) + εt

εt ∼ N(0, 22)

In each model rt is analogous to a daily log-return and xt is analogous to the daily

realized measure. The persistence level (β + γϕ) is deliberately chosen very close to 1

in each case; with true values chosen close to those estimated from real data. Here, t∗

represents the Student-t distribution, standardised to have variance 1. For each model the

forecast α-level quantile is then qα(rt+1|θ) =
√
ht+1Φ

−1(α) (Model 1), where Φ−1 is the

inverse standard Gaussian cdf, and qα(rt+1|θ) =
√
ht+1T

−1
ν (α) (Model 2), where T−1ν is

the inverse standardised Student-t cdf. Following Basel II and Basel III risk management

guidelines, quantile levels of α = 0.01, 0.05 are considered.

A total of 5000 replicated datasets are simulated from model 1 and from model 2, for

each sample size n = 1500, 3000. The RG-GG model is fit to each dataset from Model

1, once using the MCMC method and once using the ML estimator, the latter employing

the ‘fmincon’ constrained optimisation routine in Matlab software. The MCMC sampler
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is run for N = 15000, with a burn-in of M = 10000, iterations, which takes 1-2 seconds

on a standard PC (depending on n); in each case all iterations after burn-in are used to

calculate the posterior mean estimate. For both estimation methods, all initial parameter

values were arbitrarily set equal to 0.25. MCMC convergence was checked extensively

by running the sampler from different starting points and visually observing convergence

to the same posterior well inside the burn-in period, for multiple simulated (and real)

datasets from each model; such convergence almost always occurs within one thousand

iterations.

Estimation results are summarised in Tables 1-2. Boxes indicate the optimal measure

comparing MCMC and ML for both bias (Mean) and precision (RMSE). For n = 1500,

the results are fairly mixed across the methods. Both methods generate close to unbiased

and quite reasonably precise parameter estimates and quantile forecasts. The bias results

slightly favour the ML method, with 6 out of 8 parameter estimates and both quantile

forecasts averaging closer to their true value; whilst the precision is slightly lower for the

MCMC method in 6 out of 8 parameter estimates, but slightly higher for the quantile

forecasts.

For n = 3000, the results are more in favour of the MCMC method overall. Again

both methods generate close to unbiased and quite reasonably precise parameter estimates

and quantile forecasts. The bias results are mixed, with 4 out of 8 parameter estimates

favouring each method, though both quantile forecasts favour the ML; whilst the precision

is slightly lower for the MCMC method for 8 parameters and also for the quantile forecasts.

The typical increase in precision in the MCMC estimator is small in most cases, but is

notably larger for the parameters ω, ξ, σ. The latter two of these, which also have smaller

bias than the MLE, have Jeffreys-type priors, that shrink estimates towards 0; clearly

these priors have had an effect in this case at both sample sizes. The increased RMSE

for the ML estimator of ω is partly due to a few datasets inducing large MLEs for that

parameter, whilst the MCMC estimator was not at all large in those cases, and further

that often the MLE was very, very close to the boundary at ω = 0 (i.e. > 20% of the

MLEs were < 0.000001) whilst the corresponding MCMC estimates were never similarly
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Table 1: Summary statistics for the two estimators of the RG-GG model, data simulated from

Model 1.
n = 1500 MCMC ML

Parameter True Mean RMSE Mean RMSE

ω 0.02 0.0299 0.0215 0.0216 0.0325

β 0.25 0.2577 0.0233 0.2528 0.0237

γ 0.75 0.7420 0.0206 0.7471 0.0232

ξ 0.10 0.1266 0.0664 0.1359 0.1206

ϕ 0.95 0.9367 0.0459 0.9406 0.0512

τ1 0.10 0.1003 0.0132 0.1000 0.0131

τ2 -0.10 -0.1008 0.0100 -0.1003 0.0098

σ 0.50 0.5002 0.0092 0.4991 0.0093

1% VaR -4.386 -4.3987 0.0904 -4.3864 0.0888

5% VaR -3.101 -3.1101 0.0639 -3.1014 0.0628

n = 3000 True Mean RMSE Mean RMSE

ω 0.02 0.0244 0.0173 0.0212 0.0343

β 0.25 0.2540 0.0162 0.2516 0.0285

γ 0.75 0.7460 0.0145 0.7479 0.0305

ξ 0.10 0.1136 0.0517 0.1175 0.1136

ϕ 0.95 0.9428 0.0325 0.9467 0.0462

τ1 0.10 0.1000 0.0092 0.0998 0.0092

τ2 -0.10 -0.1000 0.0070 -0.0997 0.0070

σ 0.50 0.5001 0.0064 0.4998 0.0095

1% VaR -4.382 -4.3873 0.0612 -4.3796 0.0682

5% VaR -3.098 -3.1020 0.0432 -3.0966 0.0482

close to 0; this clearly reduces the bias for the MLE in this case as well.

Estimation results for Model 2 are summarised in Table 2. For n = 1500, the results

are mostly in favour of the MCMC method. Both methods generate close to unbiased

and quite reasonably precise parameter estimates and quantile forecasts, except the ML

method for ν. This is because about 0.5% of MLEs for ν were above 30, and some of

those were in the tens or hundreds of thousands; the highest MCMC estimate for ν was

75. The bias results are evenly spread between methods, though the ML quantile and ES

forecasts average closer to their true value; whilst the precision is slightly lower for the

MCMC method in almost all cases.

For n = 3000, the results are almost all in favour of the MCMC method. Again both
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methods generate close to unbiased and quite reasonably precise parameter estimates and

quantile forecasts, except for the MLEs for ν. The bias and precision results almost all

favour the MCMC estimator.

The increase in precision in the MCMC estimator is small in most cases, but larger for

the parameters ν, ξ. All of these have shrinkage priors; clearly these have had a positive

effect in this case at both sample sizes. Similar increases in precision for Bayesian estimates

over frequentist optimisation were found in Gerlach and Chen (2014) and Gerlach, Chen

and Chan (2011) for different classes of financial time series models.

7 DATA and EMPIRICAL STUDY

7.1 Data Description and Cleaning

High frequency data at 5-minute intervals, as well as daily data, were downloaded from

Thomson Reuters Tick History. This included the market indices for the S&P500, NAS-

DAQ (both US), Hang Seng (Hong Kong), Nikkei 225 (Japan), DAX (Germany) and

FTSE 100 (UK), collected from January 2000 to June 2014, within trading hours. Both

the 5-minute and daily data consisted of open, high, low and closing prices, so that 5-

minute and daily log-return and log-range can be calculated. For the realized measure

calculations, the 1st and last 5-minute returns and ranges are removed for each day, as

is common practice. Further, a small number of apparent extreme outlying 5-minute

returns (e.g. representing price differences of more than 1 USD), likely data errors, were

also deleted, as standard.

7.2 Out-of-sample Forecasting: Predictive Log-likelihood

Approximately 1500-1600 one-step-ahead volatility, VaR and ES forecasts are generated

separately for the RG-GG and RG-tG specifications using 5 minute RV, 5 minute RR,

and daily Ra as the measurement equation daily input. The period from Jan 3, 2000-Dec

31 2007 is used as the initial learning period to generate the first day’s forecasts, being for

Jan 3, 2008. This is approximately 1900-2000 days in each market, with small differences

due to trading day and holiday variations. This estimation period window is then moved

ahead by one day to estimate each model and generate the next day’s set of forecasts,
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Table 2: Summary statistics for the two estimators of the RG-tG model, data simulated from

Model 2.
n = 1500 MCMC ML

Parameter True Mean RMSE Mean RMSE

ω 0.01 0.0877 0.0856 0.0686 0.0983

β 0.29 0.2815 0.0268 0.2767 0.0321

γ 0.70 0.6952 0.0227 0.7008 0.0236

ξ 0.01 0.3649 0.3840 0.3914 0.4616

ϕ 0.99 0.9451 0.0762 0.9480 0.0918

τ1 0.25 0.2019 0.0682 0.2003 0.0713

τ2 -0.25 -0.1898 0.0676 -0.1875 0.0694

σ 2.00 1.8749 0.1323 1.8707 0.1364

ν 8.00 8.4472 2.6691 1815.0 30559.0

1% VaR -5.362 -5.4108 0.2036 -5.3629 0.2012

5% VaR -3.442 -3.4522 0.0915 -3.4397 0.0949

1% ES -6.625 -6.7557 0.3804 -6.6655 0.5154

5% ES -4.659 -4.6925 0.1629 -4.6591 0.3357

n = 3000 True Mean RMSE Mean RMSE

ω 0.01 0.0783 0.0764 0.0671 0.0790

β 0.29 0.2749 0.0232 0.2729 0.0265

γ 0.70 0.7008 0.0151 0.7035 0.0156

ξ 0.01 0.3361 0.3518 0.3570 0.4104

ϕ 0.99 0.9599 0.0566 0.9598 0.0710

τ1 0.25 0.2014 0.0595 0.2006 0.0608

τ2 -0.25 -0.1872 0.0666 -0.1861 0.0677

σ 2.00 1.8760 0.1275 1.8741 0.1294

ν 8.00 8.2107 8.2938 1057.8 18671.7

1% VaR -5.371 -5.3814 0.1494 -5.3578 0.1553

5% VaR -3.448 -3.4471 0.0737 -3.4411 0.0783

1% ES -6.636 -6.6897 0.2574 -6.6439 0.2591

5% ES -4.666 -4.6694 0.1221 -4.6527 0.1751

this process continuing until forecasts are generated for each day in the forecast sample

period Jan 03, 2008 - June 10, 2014 for each model.

To assess and compare volatility forecasting accuracy between models we consider

the predictive likelihood, as in Hansen et al. (2011). Based on the sample period data,

r1, . . . , rn, the ML method estimates the model parameters θ̂, which are plugged in to

form forecasts of ĥn+1. Such forecasts are plugged into the one-step-ahead density, usually
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logged, to form the one-step-ahead predictive density estimate. For example, the 1st day

predictive log-likelihood for the RG-GG model is given by:

`n+1 = −1

2

[
log(2π) + log(ĥn+1) + r2n+1/ĥn+1

]
− 1

2

[
log(2π) + log(σ̂2

ε,n) + ε2n+1/σ̂
2
ε,n

]
These log-density estimates are calculated for each day in the forecast period, and subse-

quently summed to estimate the log-predictive likelihood for each model.

Alternatively, under the MCMC approach, each MCMC iterate of values for the

parameters θ are plugged into the one day predictive density formula, as above, giving

an MCMC iterate of this quantity. These density iterates are subsequently averaged over

the MCMC sampling period to estimate each day’s predictive log-density. The single day

predictive density estimates are then summed over all the days in the forecast period to

give an MCMC estimate of the log-predictive likelihood for each model.

Both approaches give predictive likelihoods that are equal to at least one decimal

place and give qualitatively the same order ranking of models. As such, only the MCMC

predictive likelihood estimates are reported here. Table 3 reports these estimates across

the parametric models considered here: being the RG-GG and RG-tG models, each using

RV, RR and Ra as the input measurement, as well as standard GARCH-Gaussian (G-G)

and GARCH-t (G-t) models.

Table 3: Log-predictive likelihoods; Jan 2008 - June 2014

S&P500 FTSE HangSeng Nikkei DAX Nasdaq

G-G -2411.12 -2502.80 -2764.44 -2886.05 -2774.86 -2655.50

G-t -2384.78 -2486.52 -2753.19 -2874.32 -2747.32 -2631.63

RG-RV-GG -2379.26 -2460.25 -2840.59 -2900.48 -2724.25 -2618.62

RG-Ra-GG -2494.62 -2545.54 -2853.53 -2942.84 -2773.16 -2669.83

RG-RR-GG -2264.89 -2458.38 -2795.86 -2868.14 -2706.18 -2581.31

RG-RV-tG -2367.22 -2453.47 -2812.65 -2886.89 -2713.03 -2611.74

RG-Ra-tG -2440.86 -2510.19 -2811.11 -2873.96 -2749.39 -2640.53

RG-RR-tG -2261.15 -2450.65 -2782.93 -2859.24 -2699.43 -2574.38

Note: A box indicates the favored model in each market, based on minimum predictive

log-likelihood, whilst bold indicates the least favoured model.

In five out of six markets the RG model with Student-t errors that uses the RR as

measurement input, is clearly favoured. In each of these markets, the second favoured
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model is the RG with Gaussian errors that uses RR as an input. The exception is the

Hang Seng market, where the favoured model is the traditional GARCH-t, surprisingly

followed by the traditional GARCH-Gaussian. In five markets the RG that employs Ra

as an input and Gaussian errors is the least favoured model. In four out of six markets,

the RG-RV-GG model beat the GARCH-G, and the RG-RV-Gt beat the GARCH-t in the

same four markets. Clearly, by the measure of predictive likelihood, the RR is the most

informative realized measure in all markets, compared to the RV and Ra, and in five out

of six markets compared to squared daily returns. The Ra is the least favoured measure,

whilst RV is favoured over daily returns in five markets.

7.3 Out-of-sample Forecasting: Tail risk

The same estimation sample period, forecast sample period and fixed, moving window

approach in the last section are also employed in this section that focuses on VaR and

ES forecasting at 1% risk levels. Popular non-parametric methods for forecasting VaR

and ES, including Historical Simulation (HS), using the last 100 (HS100) and the last

250 (HS250) days of returns, as well as the conditional autoregressive expectile (CARE)

indirect GARCH model of Taylor (2008), are added to the competing models.

7.3.1 Value at Risk

Table 4 presents the estimation period sample size for each forecast n, and the forecast

sample size m, in each market; also presented are the numbers of returns in the forecast

period that are more extreme than the forecasted VaR at the 1% quantile for each model

in each market; these numbers are expected to be 0.01m: boxes indicate the model in

each market that has a violation rate (VRate) closest to that; bold indicates the model

with VRate furthest away from expected. Results for the MCMC estimated RG models

are shown. The MCMC estimator of the CARE-IG model in Gerlach and Chen (2014)

was also employed, whilst ML methods were used for the standard GARCH models.

Clearly, the three models with VRates typically closest to the expected 1% across the

six markets are the CARE-IG, the RG with RR as input and Student-t errors and the

HS250 method. All models have higher than expected average VRates across the markets,
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Table 4: Counts of 1% VaR violations during the forecast period in each market, α = 0.01

model SP500 FTSE HangSeng Nasdaq Nikkei DAX Mean

G-G 42 33 33 33 27 31 33.17

G-t 28 27 26 25 22 25 25.50

HS100 25 28 26 20 23 28 25.00

HS250 24 24 25 17 27 21 23.00

CARE-IG 23 15 17 24 24 20 20.50

RG-RV-GG 36 22 49 32 36 33 34.67

RG-Ra-GG 49 29 35 25 40 34 35.33

RG-RR-GG 34 19 45 24 27 27 29.33

RG-RV-tG 26 20 34 27 27 26 26.67

RG-Ra-tG 31 24 22 12 26 27 23.67

RG-RR-tG 27 15 30 19 24 19 22.33

m 1642 1626 1561 1601 1554 1619 1591.0

n 1944 2009 1931 1974 1951 2003 1968.7

Note: Boxes indicate the model with violations closest to its nominal violation rate, bold

indicates the least favoured model, in each column.

which may not be too surprising given that the GFC is at the start of the forecast sample;

this issue is examined further later.

Having a VRate close to 1% on average is not sufficient to guarantee an accurate

forecast model. Several tests exist in the literature to statistically test for forecast accuracy

and also for independence of violations, a requirement of a proper risk model. These

include the unconditional coverage (UC) Kupiec (1995), conditional coverage (CC) of

Christoffersen (1998), dynamic quantile (DQ) of Engle and Manganelli (2004) and VaR

quantile regression (VQR) test of Gaglianone et al. (2011). The UC tests the hypothesis

that the true VRate is 1%; the CC and DQ are joint tests of that plus the independence of

the violations over time; whilst the VQR conducts a Mincer-Zarnawicz quantile regression

of forecasted quantiles on the forecast returns, whose parameters are jointly tested to

be intercept zero and slope one, respectively, as would indicate an accurate quantile

forecasting model. See the referenced papers for more details.

Table 5 counts the number of markets in which each 1% VaR forecast model is rejected,
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for each test, all conducted at a 5% significance level. Clearly, for 1% VaR forecasting

from 2008-2014, the CARE-IG model has forecast the most accurately and can only be

rejected in 1 market (Nikkei) overall. The next best is the RG-RR-tG which is rejected

in three out of six markets.

Table 5: Counts of rejections for each test and 1% VaR model during the forecast period

over the six markets, α = 0.01

α = 0.01 UC CC DQ VQR Total

G-G 6 6 6 5 6

G-t 5 3 6 4 6

HS100 4 4 5 0 5

HS250 2 4 6 0 6

CARE-IG 1 1 1 0 1

RG-RV-GG 4 4 4 4 4

RG-Ra-GG 5 5 6 6 6

RG-RR-GG 4 4 3 2 4

RG-RV-tG 5 3 2 3 5

RG-Ra-tG 3 4 6 5 6

RG-RR-tG 3 2 2 1 3

Note: Boxes indicate the model closest to its nominal violation rate, bold indicates the

least favoured model, in each column.

7.3.2 Expected shortfall

The same set of models are employed to generate 1-step-ahead forecasts of 1% ES during

the forecast sample in each market. Chen, Gerlach and Lu (2012) discuss how to treat

ES forecasts as quantile forecasts in parametric models, where the quantile level that ES

falls at can be deduced exactly. Gerlach and Chen (2014) illustrate that across a range of

non-Gaussian distributions, when applied to real daily financial return data, the quantile

level that the 1% ES was estimated to fall was ≈ 0.35%. Their approaches are followed to

assess and test ES forecasts, by treating them as quantile forecasts and employing the UC,

CC, DQ and VQR tests. As such, the expected number of violations from ES models are

expected to be = 0.0038m (exact for models with Gaussian errors); ≈ 0.0035m (for non-

parametric models) and estimated by the quantile level implied by the degrees of freedom
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estimates for models with Student-t errors (also ≈ 0.0035m for the data considered here).

Thus, based on the actual sizes of m in Table , all models have an expected or target ES

violation number of between 5.5 and 6 in each market.

Figure 1 shows the forecast sample returns from the S&P 500 and some associated

forecasted ES series. The models shown are the G-G, G-t, CARE-IG and RG-RR-tG

(estimated by MCMC). The violation numbers from these four models are, respectively,

22, 10, 5 and 4; the expected is between 5 and 6. Despite the large differences in number

of violations, the ES forecasts from the RG-RR-tG model, which have the lowest number

of violations, are, visually from Figure 1, often less extreme than those from the other

three models shown. In fact the ES forecasts from the RG-RR-tG model are less extreme

than the G-G on 26% of the forecast sample days, 62% of days less extreme than the

G-t model and on 70% of the days less extreme than the CARE-IG model. Further, at

times where there is a persistence of extreme returns (e.g. the GFC), close inspection of

Figure 1 reveals that the RG-RR-tG model’s ES forecasts recover the fastest, in terms of

being marginally the fastest to produce forecasts that again follow the tail of the data;

GARCH models are well-known to over-react to extreme events and to be subsequently

very slow to recover, due to their oft-estimated very high persistence. As an example, from

August, 2008-January, 2009, the most volatile of the GFC period, the RG-RR-tG model’s

forecasts are less extreme than the G-G model’s on 35% of the forecast sample days;

including every day except two in the period from 13/12/08 - 13/01/09; this percentage

is 39% from 27/04/10-13/10/10 and 44% in the period 16/08/11 - 10/01/12. These are

three persistent high volatility periods in the S&P500 market during the forecast sample

period.

To summarise, Figure 1 highlights the extra efficiency that can be gained by employing

an RG model, specifically one that employs RR as an input. The efficiency here can be

deduced in that this model can produce ES forecasts that have far fewer violations but

are simultaneously less extreme than those of the traditional GARCH model. Since the

capital set aside by financial institutions, to cover extreme losses, should be directly

proportional to the ES forecast, the RG-RR-tG model is saving the company money, by

giving more accurate and often less extreme ES forecasts, compared to GARCH models.
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More evidence for this statement, and how it applies to other markets considered, is now

presented.

Figure 1: Some 1% ES forecasts and the US S&P500 forecast sample returns.

Table 6 presents the numbers of returns in the forecast period that are more ex-

treme than the forecasted ES at the 1% quantile for each model in each market; called

ES violations. Boxes indicate the model in each market that has an ES violation rate

(ESRate) closest to that desired; bold indicates the model with ESRate furthest from

that expected. Results for the MCMC estimated and ML estimated RG models are each

shown separately (ML estimated RG models have -ML following their acronym; MCMC

estimated ones have -B).

Clearly, the three models with ESRates typically closest to that expected for the 1%

ES across the six markets are the RG-tG-RR-B (estimated by MCMC), RG-tG-RR-ML

(estimated by ML) and CARE-IG. All models have higher than expected average ESRates

across the markets, which may not be too surprising given that the GFC is at the start of

the forecast sample; this issue is examined further later. RG models estimated by MCMC

all have average ES violations marginally closer to that expected, compared to the same
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Table 6: Counts of 1% ES violations during the forecast period in each market, α = 0.01

model SP500 FTSE HangSeng Nasdaq Nikkei DAX Mean

G-G 22 18 18 20 14 18 18.33

G-t 10 13 7 7 10 10 9.50

HS100 20 22 21 21 19 19 20.33

HS250 15 15 15 16 14 10 14.17

CARE-IG 5 9 7 11 7 7 7.67

RG-RV-GG-ML 22 12 32 16 15 14 18.50

RG-RV-GG-B 21 12 32 16 15 15 18.50

RG-Ra-GG-ML 30 20 21 11 25 19 21.00

RG-Ra-GG-B 30 20 20 11 24 19 20.67

RG-RR-GG-ML 15 8 26 12 15 12 14.67

RG-RR-GG-B 13 8 25 12 14 12 14.00

RG-RV-tG-ML 6 7 16 11 9 9 9.67

RG-RV-tG-B 5 7 16 10 9 8 9.17

RG-Ra-tG-ML 8 10 10 5 10 9 8.67

RG-Ra-tG-B 9 9 9 5 9 8 8.17

RG-RR-tG-ML 7 7 10 5 9 8 7.67

RG-RR-tG-B 4 7 9 4 8 8 6.67

Note: Boxes indicate the model closest to its nominal violation rate, bold indicates the

least favoured model, in each column.

model estimated by ML.

Having an average ESRate close to that expected is not sufficient to guarantee an

accurate forecast model. Following Chen et al. (2012) and Gerlach and Chen (2014) the

UC, CC, DQ and VQR quantile accuracy tests are applied to the ES violations from each

model, using that model’s nominal (or an estimate of) 1% ES quantile level. The quantile

level corresponding to the median for the estimated ν during the forecast sample is used for

models with Student-t errors (the actual estimated range across the t-distributed error

models in all markets is (0.0033, 0.00375)); 0.0035 is used for non-parametric models,

0.0038 for Gaussian error models.

Table 7 counts the number of markets in which each model is rejected, for each test,

all conducted at a 5% significance level. Only counts for RG models estimated by MCMC
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are shown, since results did not qualitatively differ from the RG-ML models. Clearly, for

1% ES forecasting from 2008-2014, the RG-tG-RR model has forecast the most accurately

and can only be rejected in three markets (S&P500, Hang Seng and Nikkei225) overall.

The next best are the RG-tG-RV and the CARE-IG, both rejected in four out of the six

markets.

Table 7: Counts of 1% ES model rejections for each test and model during the forecast

period over the six markets, α = 0.01

α = 0.01 UC CC DQ VQR Bootstrap Total

G-G 6 6 6 1 5 6

G-t 1 2 5 1 0 5

HS100 6 6 6 2 6 6

HS250 5 5 6 0 2 6

CARE-IG 0 0 4 0 0 4

RG-RV-GG 6 5 5 1 1 6

RG-Ra-GG 5 5 6 5 4 6

RG-RR-GG 5 2 2 1 2 5

RG-RV-tG 1 2 3 1 1 4

RG-Ra-tG 0 2 6 0 0 6

RG-RR-tG 0 0 2 1 1 3

Note: Boxes indicate the model with lowest number of rejections, bold indicates that with

highest number of rejections, for each test.

Figure 2 plots the averages of the 1% ES forecast residuals, standardised by the 1%

VaR forecasts, for each of the six markets, plus the average of these averages, for each

forecast model/method. An accurate 1% ES forecast model should produce standardised

residuals that average approximately 0. Table 7 illustrates that a bootstrap test on

whether these averages differ from 0 is not very powerful, compared to the UC, CC and

DQ tests. Agreeing with those results, it is clear that the G-t, CARE-IG, RG-RV-tG

and RG-RR-tG (the latter two with both ML and MCMC estimation) are the most

accurate; whilst G-G, HS100, HS250, RG-Ra-GG clearly, consistently and significantly

under-estimated the 1% ES levels, causing negative average residuals to result in all six

series. Whether an RG model is estimated by ML or MCMC does not affect the ES

residual results, as is apparent in Figure 2.
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Figure 2: Residuals for 1% ES forecasts, standardised by 1% VaR forecasts, averaged. For

each model the six averages are shown, one for each data series, as well as the average of these

averages. A reference line is drawn at 0.

Figure 3 plots the ESRate ratio for the 1% ES forecasts, for each of the six markets,

plus the average of these six ratios, for each forecast model/method. An accurate 1%

ES forecast model should produce an ESRate ratio of 1. Table 7 illustrates that the UC

test, of whether these ratios differ from 1, is quite powerful and distinguishes the models

into two clear groups: those rejected in five or six markets and those rejected in only one

or zero markets. Visually, however, it is clear that only the CARE-IG and RG-RR-tG

models have ratios regularly, and on average, close to and surrounding 1, and as such are

the most accurate; whilst the G-G, HS100, RG-RV-GG and RG-Ra-GG models clearly,

consistently and significantly under-estimate the 1% ES levels, causing three or more

times as many ES violations as expected. RG models estimated by MCMC in each case

have an average ESRate ratio that is marginally closer to 1 than their corresponding RG

model estimated via ML. In the case of the RG-RR-tG model, the distribution of ratios

has clearly shifted down, towards 1, when using MCMC, compared to ML, estimation.

In summary, the RG-RR-tG model, estimated by MCMC, is the most accurate at
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Figure 3: ESRate ratios for the 1% ES forecasts in each market for each model/method. For

each model the six ratios are shown, one for each data series, as well as the average of these

ratios. A solid reference line is drawn at the target ratio of 1; the dashed reference line represents

the upper threshold for rejection by the UC test at the 5% significance level.

24



forecasting 1% ES for a long forecast period from Jan, 2008-June, 2014 across six market

index return series. It consistently displayed rates of ES violation closest to the nominal

rate predicted by the estimated Student-t error distribution, and was rejected the least by

standard diagnostic tests of quantile forecast accuracy. The next best model was the RG-

RR-tG model, estimated by ML, followed by the CARE-IG model. Clearly, in the context

of RG models, the use of RR led to greater efficiency in ES forecasting; as it did also for

predictive density forecasting. Finally, the RG-RR-tG model was also highly competitive

in 1% VaR forecasting, marginally outperformed only by the CARE-IG model.

8 CONCLUSION

In this paper, the realized range, observed at a 5 minute frequency, was proposed as an

alternative realized measure for use in the realized GARCH modelling framework. This

choice led to significant improvements in the out-of-sample predictive likelihood and the

forecasting of Value at Risk and expected shortfall, compared to RG models employing

realized volatility or intra-day range, and traditional GARCH models. This work could

be extended by considering scaled versions of the realized measures, as in Martens and

van Dijk (2007) and also alternative frequencies of observation for the realized measures.
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