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Abstract 
 

For knees afflicted by osteoarthritis (OA) progression in the medial compartment, a 

high tibial osteotomy (HTO) can be an important adjunct to conservative 

management in interrupting disease development. A medial opening wedge HTO 

allows shifting load from the affected medial compartment to the lateral 

compartment with intact cartilage by correcting the Hip-Knee-Ankle (HKA) angle. 

The current literature unfortunately lacks consensus with regards to the ideal 

correction angle based on tibiofemoral loading distribution to maximize osteotomy 

survival and post-operative knee function. To fill this knowledge gap, this study 

aimed to determine the biomechanical effects of simulated medial open-wedge HTO 

at varying correction angles on stress distribution in the tibiofemoral soft tissues by 

introducing a patient-specific modelling method.  

 

In this study, a 3D knee finite element (FEA) model developed from MRI images of 

a healthy living subject was used to simulate different medial open-wedge HTO 

correction angles as 2.5°, 5°, 7.5° and 10° valgus(which is equivalent to the HKA 

angle of 0.2, 2.7, 3.9 and 6.6 valgus, respectively). The femur, tibia and fibula and 

articular cartilage were modelled as linear elastic, isotropic and homogenous, 

whereas the menisci and ligaments were modelled as nonlinear hyperelastic material. 

Loading and boundary condition assignments were based on the subject-specific 

kinematic and kinetic data recorded during gait analysis. 
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The compressive and shear stress distributions in the femoral cartilage and tibia 

cartilage of each angular case were quantified for the first time. Both the peak 

compressive and peak shear stresses in the medial compartment decreased as the 

loading axis shifted laterally but the lateral compartment increased the peak stresses. 

3D finite element analysis (FEA) demonstrated that a simulated medial opening 

wedge HTO with 7.5° correction angle (equivalent to HKA of 3.9°) from neutral 

effectively reduced the loads in the medial compartment and achieved a more ideal 

situation with stresses most uniformly distributed between these two compartments.  

 

More importantly, this patient-specific non-invasive analysis of stress distribution 

that provided a quantitative insight to evaluate the mechanical responses of the soft 

tissue within knee joint as a result of adjusting the loading axis, may be used as a 

preoperative assessment tool to predict the consequential mechanical loading 

information for surgeon to decide the patient specific optimal angle.  
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Chapter 1 Introduction 
 

Osteoarthritis (OA) is a common disease globally and it imposes a considerable 

ongoing health and economic burden on socioeconomic system [1]. In Australia, 

approximately 15% of the population is adversely affected by OA [2], with the knee 

most affected [1]. While it is recognised that etiology of OA is multi-factorial and 

complicated, biomechanics is amongst the most critical factors in its pathogenesis [3]. 

An unfavourable biomechanical environment or condition, such as overloading by 

obesity, overuse, and malalignment etc, is considered a significant risk factor 

attributable to the incidence of OA[4]. As more and more biomechanical factors been 

explored, malalignment of the lower limb has been found to influence load 

distribution across the articular surface of the knee joint very substantially.  

 

The role of the loading axis in the progression of knee OA has been well recognised. 

Clinically, the interventions that alter the excessive forces related to position of 

loading axis acting on damaged tissues, such as articular cartilage, have been 

employed to relieve OA symptoms [5]. For knees afflicted by OA progression in the 

medial compartment, a medial opening wedge HTO can be an effective adjunct to 

conservative management of interrupting disease progression[6, 7]. By correcting the 

Hip-Knee-Ankle (HKA) angle, HTO shifts the mechanical load from the affected 

medial compartment to the lateral compartment with intact cartilage. 

 

Although HTO significantly unloads the medial compartment and arrests the 

progression of OA, the literature lacks consensus on the ideal alignment to maximize 

osteotomy survival and post-operative knee function. While some have examined 
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this issue with survival studies [8-11], others have predicted the effect of correction 

on tibiofemoral load through cadaveric studies [12, 13]. On the other hand, finite 

element analysis (FEA) methods have been widely used to predict the local stress 

and strain distribution at the tibiofemoral joint to quantify soft tissue mechanics 

under different loading conditions [14-22]. Unfortunately, there have been no studies 

available on assessing the effect of variation in knee alignment (in terms of 

correction angle) using FEA. For this reason, this study adopted FEA to explore the 

effect of medial open-wedge HTO on the stress redistributions in femoral cartilage, 

tibia cartilage and menisci. 

 

Following this introductory Chapter (Chapter 1), the thesis includes: Chapter 2, a 

thorough literature review by introducing the background knowledge of present 

study and commenting on the related studies published in literature; Chapter 3, 

describing the methodology with all techniques employed in this study; Chapter 4 

and 5 quantifying the results with all stress distribution simulated from this study; 

Chapter 6, discussing the key finding and its clinical implication and Chapter 7, 

drawing major conclusions and recommending some critical areas for the further 

studies. 

 

Publications and conference presentations raised from this MPhil study include:  

 

Journal papers: 

Zheng K, Chen J, Scholes C, Li Q (2013). Magnetic Resonance  Imaging 

(MRI) Based Finite Element Modeling for Analyzing the  Influence 
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of Material  Properties on Menisci Responses. Applied  Mechanics and 

Materials, 2014. 553: p.  305-09. 

Journal Paper (To be submitted):  

Zheng K, Scholes C, Chen J, Smith R, Lynch J, Parker D, Li Q . The 

effect of high tibial osteotomy correction  angle on articular cartilage 

and  meniscus loading using finite element  analysis. Aim for 

Journal of  Orthopaedics research.   

 

Conference presentation: 

Zheng K, Fatima M, Scholes C, Lynch J, Parker D, Li Q, An MRI-derived 

subject-specific finite element model of the stress and strain distributions in 

knee cartilage during stance phase of gait. 19th Australian & New Zealand 

Orthopaedic Research Society, Sept. 2013, Sydney, Australia. 

 

Zheng K, Scholes C, Lynch J. Parker D, Li Q, The effect of high tibial 

osteotomy correction angle on articular cartilage loading using finite element 

analysis. 19th Australian & New Zealand Orthopaedic Research Society, Sept. 

2013, Sydney, Australia. 

 

Zheng K, Scholes C, Lynch J, Chen J, Parker D, Li Q, Finite element analysis 

of time-dependent stress and strain distribution at knee cartilage during the 

stance phase of gait. 8th Combined Meeting of Orthopaedic Research 

Sociality, Oct. 2013, Venice, Italy.  
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Chapter 2 Literature Review 
 
In this Chapter, the background knowledge of the cause of OA is firstly introduced 

and followed by the biomechanical consideration in the progression of OA. After that, 

an overview of HTO and its surgical procedure are described, and then a thorough 

review on the published studies focusing on the optimal HTO correction angle in 

literature is conducted. At the last, the up-to-date FEA techniques used in knee joint 

biomechanics study are introduced followed by another thorough review on the 

applications of FEA in the area of knee joint diseases. By targeting the research gap 

in literature for HTO, the aim and hypothesis of this study are established to 

conclude this Chapter.    
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2.1 Medial compartment Osteoarthritis of knee 

 

In OA, cartilage breaks down and subsequently degenerates, causing pain and 

stiffening in the joint from normal movements. Despite its nature of chronological 

aging which is considered the most important risk factor of OA, other risk factors of 

knee OA in young patients are related to an unfavourable biomechanical conditions, 

such as overloading by obesity, overuse, malalignment and genetics [23]. Of them, 

the malalignment of lower limb has been found to substantially influence load 

distribution across the articular surface of the knee joint [3, 24-27], which is 

therefore considered as a critical risk factor for OA progression. In this section, the 

varus and valgus malalignment is introduced followed by background knowledge of 

biomechanics in relation to knee OA.   

 

2.1.1 Varus and valgus malalignment 
 

Lower-limb alignment is typically defined as the hip-knee-ankle (HKA) angle and it 

represents a key determinant of load distribution in the knee joint [28]. The HKA 

angle is the lateral angle between the mechanical axes of the femur and tibia. As 

illustrated in Figure 1, the femoral mechanical axis is a line from the centre of the 

femoral head to the centre of the tibial spines, while the tibial mechanical axis (which 

happens to be the tibial anatomical axis as well) is the line from the centre of the 

tibial spines to the centre of the talus. A neutrally aligned knee is indicated with an 

HKA equal to 180°, whereas a valgus and varus knee position is typically indicated 

by an HKA >180° and HKA <180° respectively. In general, normal knee alignment 

is in-between 180°and 178° [29]. As a convention the HKA can also be  expressed as 
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its angular deviation from 180° [30], i.e. 185° of HKA angle equal to 5° valgus. In 

addition, the Weight Bearing Line (WBL) illustrated in Figure 1 (the red line) is the 

mechanical axis (contacting centre of femoral head to the centre of ankle) measured 

as distance from the centre of the knee or as percentage of tibial width [31].  

 

 

Figure 1 The mechanical axes of the femur and tibia [31] 

 

In the normally aligned ambulating knee, load is disproportionately transmitted to the 

medial compartment [24] due to (1) alignment is considered as normal under 2° 

varus, and (2) the different anatomical structure between the medial and lateral 

compartment. For example, a 6° varus in single-leg stance, leads to a stress on the 

medial compartment to withstand 95% of the total body weight [32]. Therefore, it is 
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reasonable to associate the increased incidence of medial compartment OA with 

mechanical loading [10]. This is the reason why the medial opening wedge HTO (i.e. 

one of the HTO treatments for medial compartment OA) is considered in this study.  

 

While limited quantitative evidence exists regarding the possible relationship 

between OA incidence and axial malalignment, the clinical correlation between the 

progression of early OA to advanced stages of degeneration and axial malalignment 

has been established [24]. The excessive compressive loading on either medial or 

lateral compartment may impair joint repair and maintenance. More importantly, the 

loss (degeneration) of articular cartilage and change of subchondral bone may in turn 

further increase malalignment.  

 

2.1.2 Osteoarthritis as a mechanically driven disease 
 

In order to understand how excessive loads result from lower limb malalignment 

influence the OA, a brief overview of the biomechanics of knee cartilage OA is 

provided in this section. The primary changes with OA typically occur in the 

articular cartilage, followed by the associated changes in subchondral bone [3]. The 

unique mechanical properties of articular cartilage depend on the extracellular matrix 

which consists of tissue fluid and framework of structural molecules. These highly 

organised molecular structures (Figure 2) were assembled by type II collagen fibres, 

non-collagenous proteins, proteoglycans and glycoproteins which are produced by 

chrondrocyte and give the cartilage its form and tensile strength [33]. 
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Figure 2.Molecular structure within cartilage [3] 

         

It is claimed that the failure [3]of chrondrocyte to maintain the homeostasis between 

synthesis and degradation of such extracellular matrix components is one of the key 

reasons to trigger OA. The main cause of the chrondrocyte is the repetitively 

excessive loading. As a result, the water content in the matrix increases, but the 

proteoglucan content decreases. The collagen network is also weakened due to 

decreased synthesis of type II collagen. Furthermore, even the compensatory 

mechanism, in which the synthesis of matrix molecular and proliferation of 

chrondrocyte in deep layer of cartilage should increase to maintain the integrity of 

the articular cartilage, will eventually fail due to the loss of chrondrocyte after 

disruption of homeostasis (e.g. caused by excessive loading). Consequently, the OA 

starts.  

 

Since the excessive loading caused by varus moment may increase the magnitude of 

compressive stress and strain in the cartilage, varus deformity can hasten progression 

of medial compartment knee OA. Shear stress induced by compression is associated 

with increased catabolic factors and decreased cartilage biosynthetic activity, leading 
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to cartilage damage [34]. Therefore, some surgical interventions may be necessary to 

correct the alignment of knee joint in the early stage of OA. 
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2.2 Medial Opening Wedge High Tibial Osteotomy 

 

Treatment of knee OA can be fairly challenging, particularly in younger and more 

active patients. The role of mechanical loading in the progression of knee OA has 

been recognised in the previous studies [3], therefore interventions that shift the 

loads acting on the damaged tissues demonstrated considerable success in relieving 

symptoms. For a knee afflicted by OA progression in the medial compartment, the 

high tibial osteotomy (for short HTO) can be an important adjunct to conservative 

management in an effort to interrupt disease progression. The aim of an HTO is to 

shift load from the affected area to other areas with intact cartilage thereby providing 

considerable advantages over conventionally used total knee replacement in this 

population group by well preserving the biological knee structures [28]. Due to the 

increased incidence of medial compartment OA with loading as described in Section 

2.1.1., this study focused on the HTO to treat the medial OA. In the following 

sections, an overview of high tibial osteotomy followed by a review of long term and 

short term clinical studies is provided. 

 

2.2.1 Overview of medial opening wedge HTO 
 

HTO is a surgical realignment procedure (Figure 3) designed to reduce the load 

acting on the degenerated medial knee compartment, thereby relieving pain and 

improving joint function[7]. The realignment reduces the varus moment, which also 

reduces the compressive loading related to knee pain and self-reported OA symptoms 

[1]. HTO has considerable advantages over total knee replacement (TKR) since it 

well preserves the native bone structure, as well as the durability and degree of 
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functional recovery particularly for young and active patients [26]. Therefore, 

osteotomy is recommended to younger and more active patients who require high 

knee function and wish to postpone the need for total knee replacement. 

 

Figure 3.Radiographic results of HTO: a) preoperative, b) instant postoperative and c) 2 years 
postoperative[35] 

 

One of debated issues of HTO is to decide whether to choose lateral closing wedge 

or medial opening wedge HTO for treating the medial compartment OA [36]. 

Recently, the medial opening wedge HTO has gained notable popularity and 

becomes a widely acceptable surgical option comparing to the lateral closing wedge 

HTO for treating medial knee OA, mainly due to several limitations of lateral closing 

HTO as follows [25, 27]:  

1) Fibular osteotomy or proximal tibiofibular joint distruption, 

2) Lateral muscle detachment, 

3) Personal nerve dissection, 

4) Bone stock loss, 

5) More demanding subsequent TKR. 

 

In a standard medial opening wedge HTO, the frontal angle (HKA) between the 

femur mechanical axis and the tibial mechanical axis is reduced, which corrects a 
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varus alignment to slight varus alignment by rotating the distal part of tibia laterally. 

During the rotation, the distal portion of the tibia is rotated about an anterior-

posterior axis that runs through the hinge point (Figure 4b) of the osteotomy to 

maintain the posterior tibial slope [30]. After inserting the graft into the osteotomy 

gap (Figure 4a), a solid metallic plate will be used to fix the sectioned bone at the 

anteriomedial surface of tibia [35]. However, the position of fixation can be varied 

and will largely depend on other considerations, such as increasing the tibial slope to 

maintain joint stability. 

 

Figure 4.a) Incision is normally 20-25mm superior to proximal end of tibial and grafts are inserted into the 
gap, b) rotation is based on the hinge axis.[30, 35] 

 

2.2.2 Long term and short term clinical outcome 
 

While the HTO treatment has successfully proven to have the great short term effect 

on pain reduction [25, 37], the clinical outcome (e.g. survivorship) deteriorate with 

time. Despite a number of studies available, comparison and pooling of the clinical 

outcome are somewhat challenging because of the different evaluation systems and 

techniques used. The evaluation of clinical outcome of HTO has centred on survival 

analysis in which failure was defined as the need for conversion of HTO to TKR or if 

the osteotomy fail to reduce pain, follow-up evaluation system (various scoring 
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system of knee joint) and radiography for tibiofemoral angle measurement. Due to a 

large number of published studies on the survivorship of HTO, a summary is 

provided in Table 1. From this table, it is confirmed that the outcomes of HTO 

gradually deteriorate with time. Although Koshino et al [38]  and Akizuki et al [5] 

reported some extraordinary high survival rate of HTO, most studies showed good 

results within the first 5 years and poor results after 15 years.  

 

Table 1.Survivorship of HTO in literature 

Reference  Year Survival rate (5 
Years) 

Survival rate (10 
Years) 

Survival rate (15 
Years+) 

Naudie et al 
[39]  

1999 75% 51% 39% 

Billings et al 
[40] 

2000 85% 53% 38% 

Sprenger and 
Doerzbacher 
[10] 

2003 86% 65-74% N/A 

Koshino et al 
[38]  

2004 97.3% 95.1% 86.9% 

Tang and 
Henderson [8] 

2005 89.5% 74.7% 66.9% 

Flecher et al 
[41] 

2006 95% 93% 85% 

Gstottner et 
al [42] 

2008 94% 79.9% 70.5% 

Akizuki et al 
[5] 

2008 N/A 97.6% 90.4% 

Hui et al [43] 2011 95% 79% 68 

Efe et al [44]  2011 98% 84% N/A 

 

Various factors are believed to be responsible for the failure of HTO over long term 

(e.g. ten years or longer), such as under and over correction, advanced age, failure of 

fixation, patellofemoral arthritis joint instability and lateral thrust. Most of such 

factors can be avoided by ensuring adequate patient selection and preoperative 

planning, thereby improving surgical techniques. This explains why more recent 
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studies reported better long term outcome (Table 1), suggesting that the HTO 

procedure has been improved due to better patient selection, adequate preoperative 

planning and improved surgical techniques. Of the preoperative planning, deciding 

the optimal correction angle is considered to have significantly affect on the long 

term clinical outcome of the HTO treatment [24]. Nevertheless, an optimal correction 

angle remains controversial. In the following section, a detailed review of the 

selection of correction angle is provided.   



 

15 
 

2.3 Optimisation of correction angle 

 

Of those preoperative planning factors, the optimal correction angle is generally 

considered most critical to the long term success of a HTO treatment. Despite the 

research in relation to the long term clinical outcome with an optimal angle, the 

conclusion of such topic is controversially debatable. Failure of targeting a desire 

alignment is responsible for poor outcomes, since alignment valgus associates with 

patellar subluxation, medial joint opening and rapid degeneration of the lateral 

cartilage, and correction leaned to neutral leads to re-progression of medial OA and 

patient dissatisfaction. Most of previous studies aimed to establish an optimal range 

of correction angle based on surgical outcomes empirically, such as survival rate [9, 

10, 38, 45-49], knee scoring system [10, 36], cartilage wearing rate [50], motion 

analysis [51] and radiographical examination [11], etc, while few studies correlated 

the effect of correction angle to biomechanics, such as in vitro contact pressure on 

the cartilage [12, 13] and kinematic analysis [51]. 

 

2.3.1 Current clinical studies on optimizing correction angle 
 

Achieving the appropriate alignment is a critical determinant of success for an HTO 

to treat medial compartment knee OA. However, it is surprising after several decades 

of osteotomy that there is little agreement between studies on the ideal alignment. In 

some studies [7, 52, 53], the target is a lateral shift of the weight bearing line to a 

maximum of 62.5% of the medial to lateral width of the tibia plateau (Fujisawa point) 

[54], equivalent to 3.5° of valgus [11]. The exact position of the correction was 

dependent upon the magnitude of mal-alignment and status of the articular cartilage 
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in the lateral tibiofemoral compartment as assessed by intraoperative arthroscopy. 

For those patients with good quality cartilage in the lateral compartment, an HKA 

angle of 3.5° valgus was sought, otherwise the target was towards 0°.However, after 

large number of clinical studies focusing on the ideal correction angle, the 

recommended angles vary from 1° valgus up to 10° valgus. In order to better 

understand the up-to-date investigation of optimal alignment following HTO, Table 2 

summarised all the published clinical studies available in literature with a focus on an 

ideal post-operative alignment. Although some of them used the anatomical axis 

rather than mechanical axis (i.e. HKA angle measurement used in this study) to 

measure the alignment, it is possible to convert between anatomical alignment and 

mechanical alignment (also known as HKA) by considering an offset of 5° between 

them [55]. 

Table 2. Summary of up-to-date clinical studies in literature on optimal correction angle 

Author Year  Post-op alignment 
(Anatomical)(in 
degree) 

Post-op alignment 
(Mechanical, i.e. HKA angle)(in 
degree) 

Coventry et al [28] 1979  10 
Inall et al [56] 1984 5-14  
Hernigou et al [50] 1987  3-6 
Dugdales  1989  0-5  
Valenti et al [9] 1990  3-8 
Hsu et al [57] 1990  4.9 
Yasuda et al [49] 1991 12-16  
Nakhostine et al [47] 1993 5-7  
Rinonapoli et al [45] 1998 10-12  
Korovessis et al [46] 1999 6-10  
Rudan et al [11] 1999 10.8  
Aglietti et al [58] 2003 8-14  
Sprenger et al [10] 2003 8-16  
Koshino et al [38] 2004 9  
Takeuchi et al [59] 2009 10.4  
Birmingham et al [60] 2009  1 
Benzakour et al [36] 2010  2-4 
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Among these studies, we noticed that the recommended optimal alignment following 

HTO varies significantly by different authors; some of them even have contradictory 

results. Sprenger et al. investigated the correlation between various clinical 

radiographic factors and the long term results after HTO for medial compartment OA 

[10]. In their study, the radiographic valgus alignment between 3° and 11° had a 

significantly positive effect on survivorship for all end points (p<0.01) compared 

with the other parameters after an average 10 year follow-up study (n = 76 knees), 

with 90% survival. Similarly, Valenti et al [9] and Agletti et al [58]suggested an 

ideal correction angle of 3° to 8° and 3° to 9°, respectively, based on the highest 

survivorship in their study. However, this is still quite a big range to determine the 

optimal post-operative alignment.  

 

Hernigou et al’s study [50] examined an average 10 year follow-up on 93 HTO 

patients and they found that 3° to 6° generated the best outcome, which narrowed 

Sprenger et al's ideal correction range of 3° to 11° [10]. In Hernigou et al's study[50], 

50 of the 93 knees had reverted to varus at the point of follow up, while there were 

only 5 of the 93 knees resulted in greater than 6° valgus. The standard used in their 

study to define unsuccessful correction was based on the lateral cartilage wear rate, 

even though 60% still exhibited a good, pain free result compared to 18% in the 

under-corrected group. Therefore, their result were interpreted in a manner that is 

somewhat self confirming, and while the 3° to 6° range may be a good target for 

post-operative alignment at follow up, greater overcorrection in surgery is ideal to 

ensure that this target range is actually reached and maintained by the majority of the 

knees in the long term. From Table 2, this narrowed range fits most of the clinical 

studies in literature.  
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On the other hand, there were some published studies that suggested an optimal 

alignment from 0° to 4°valgus, which is close to neutral alignment [36, 47, 60].  

Benzakour et al[36] conducted an average 15 year’s follow-up on 224 knees with 

HTO treatments, in which the excellent and good results were 75% in the group with 

an angle less than 4°. This result seems to be completely contradictory to those from 

other studies attempted to establish the correlation between correction angle and 

clinical results. However, Benzakour et al’s study is the most recent clinical study 

investigating the optimal correction in HTO but unfortunately remains determination 

of ideal HTO alignment to be controversial.   

 

2.3.2 Current biomechanical studies on optimizing correction angle 
 

Other than purely investigating the effect of the amount of frontal plane knee 

alignment correction following HTO on clinical outcome, Briem et al [51] 

investigated the correlation between alignment angle and joint moment and muscle 

co-contraction. However, the results seemed lack of scrutiny, since they used the 

mean correction angles to define the under-correction and over-correction groups and 

found that overcorrection led to high adduction moment and muscle co-contraction 

which are associated with poor HTO survival rate. Although their findings narrowed 

the optimal alignment to smaller than 5° valgus, the lack of relating the kinematics 

and kinetic findings to the knee joint internal loading, limited this study to further 

explore the effect of changing alignment on knee joint internal loading, as the actual 

loading on the soft tissues (i.e. cartilages and menisci) is more relative to OA 

progression. Therefore, some mechanical testing experiments (as shown in Figure 5) 
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of HTO were conducted to investigate pressure distribution at the knee joint 

following a HTO surgery. 

 

 

 

Figure 5.Mechanical testing for knee to simulate functional activities[12] 

 

Mina et al [13] attempted to directly relate the correction angles to the contact 

loading pattern of the knee joint by using electronic pressure sensor inserted into the 

cartilage of cadaveric knee specimen under a specific mechanical testing system 

simulating functional activity of knee joint. 8 specimens had been used and each leg 

was tested through 10 different adduction angles using an osteotomy spreader in 

replication of real HTO treatment. Based on achieving equal stress distribution 

between the medial and lateral compartments which is considered most closely 

approximating idealised physiologic loading, Mina et al recommended an alignment 

of 0° – 4° of valgus, regardless of condylar width, baseline tibiofemoral alignment, 

body weight and the chrondral defect size. Although this recommendation somewhat 

narrowed the optimal HTO alignment, they[13] encapsulated one of the major 

challenges in HTO research that the in vivo measurement of stress and strain at the 

knee cartilage following HTO treatment is difficult during a dynamic loading cycle. 
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Another study [12] used pressure-sensitive film in mounted cadaveric specimens (6 

specimens) to observe increased medial compartment pressure at 8°valgus with a 

compressive load of 1000N applied with a hydraulic apparatus. The reason for the 

discrepancy between this study and the Mina et al’s study [13] may be due to 

differences in the location of the osteotomy. In their study, the osteotomy was 

superior to the distal attachment region of MCL, which led to a superiorly directed 

force on the medial tibial plateau, due to ligament tension caused by MCL. 

 

2.3.3 Summary of the limitations and challenges of current studies 
 

Although deciding an optimal angle of valgus correction is critical for achieving the 

long term survival result, many studies on clinical outcome have been linked to 

pursuit of such an empirical optimal angle, with as many conclusions as authors[9-11, 

28, 36, 38, 41-46, 53-56] drawn. Most of the above studies were largely clinical 

based and lacked biomechanical insights into the causes of such controversy 

recommendations. Although the recommended alignment range has been narrowed 

by some cadaver mechanical testing which directly investigated the effect of 

changing alignment and loading in cartilage, the need to insert electronic pressure 

sensors, particularly under the menisci, limits this approach to in-vivo studies. 

Despite the difficulty of in-vivo measurement, the intra-patient variability of knee 

anatomy and difference of loading, particularly during functional tasks [21], have 

suggested a need for patient-specific quantification of tibiofemoral contact loading. 

 

Although HTO has been employed widely in the past half century, optimising the 

correction angle of medial opening wedge HTO pre-operatively based on patient-
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specific knee anatomy and subsequent biomechanics can increase survival rate of the 

procedure and restoration of patient function post-operatively. Facing the key 

challenge of quantifying the effects of varying correction angles on patient-specific 

knee load distribution non-invasively prior to surgery, it is worthwhile employing a 

new approach to optimising the HTO alignment based on knee biomechanics pre-

operatively. This method should be able to provide the insightful understandings 

comparable to those derived from the experiments of mechanical testing or follow-up 

assessment of clinical studies.   
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2.4 Introduction to Finite Element Analysis in Knee 

joint biomechanical study 

 

While the in vitro mechanical testing method provides some experimental results of 

loading distribution at the knee joint, there are still some limitations to impede 

detailed study on the quantitative investigation into the mechanism at the knee joint. 

Of those studies reviewed in the previous sections, only the surface pressures were 

recorded by placing the pressure-sensor film in-between cartilage and meniscus. The 

shear stress and strain within the cartilage structure, which are more significantly 

related to the progression of OA, however, could not be determined directly and 

precisely. The complexity of anatomical structure of the knee joint makes it very 

difficult (if not impossible) to use theoretical approaches, such as geometric 

abstraction and free body diagrams [61], for the biomechanics analysis. It is for this 

reason that numerical techniques have now become more and more popular in 

biomechanics. Computer-assisted design (CAD) and finite element analysis (FEA) 

provide an opportunity to simulate surgical effects in a patient-specific setting. In this 

section, an overview of Finite Element Method (FEM) is provided and some 

applications of FEA on knee joint are reviewed.  

 

2.4.1 Overview of Finite Element Analysis 
 

FEA is a promising method to overcome the challenge of performing direct 

measurement of stress/strain within such a complicated anatomy as knee joint in vivo 

by developing 3D finite element (FE) models for estimating the mechanical 

responses of the joint internal structures, where direct or indirect in vivo or in-vitro 
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measurement is difficult or impossible. The principle behind this numerical method 

is to perform the quantitative analysis of complex structure by modelling its 

anatomical geometry in a finite number of fine elements with relatively simple 

geometries. Then each element is processed individually by choosing adequate 

functions for interpolation to set up elemental stiffness matrix with assignment of the 

material properties. According to the connectivity, all these individual elemental 

stiffness matrices are then summed up in a proper way to form the global stiffness 

matrix. After the system matrices have been assembled, a numerical solver is then 

employed to calculate the unknown vector of nodal displacements under applied 

external loading. Thus the stress and strain can be derived from the nodal 

displacements calculated.  

 

 

Figure 6. Finite element representations of biological structures can be used as a subsidiary model in different 
modeling modalities, e.g. musculoskeletal movement simulations coupled with finite element analysis of 
joint.[62] 
 

Since its initial development for aerospace engineering in 1940s, FEM has been 

employed in a wide variety of industries. Advances in magnetic resonance imaging 

(MRI) techniques have enabled the development of sophisticated 3D FE models to 

precisely capture the patient-specific geometries of both hard and soft tissues in the 

region of interest (RoI) .Exponential improvement in computational power allows 
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generation of highly sophisticated models to more precisely simulate complicated 

tissue responses, thereby reflecting more realistic biomechanical behaviours. In the 

past decades, extensive FE models have been developed. Of those studies, coupling 

the FE model with in-vivo kinematic data is a common way to analyse true tissue 

deformation (Figure 6) [62]. This results in a more convincing simulation and 

prediction of the loading condition in FEA. The following section will review 

numerous studies published in literature that have used FE techniques to analyse the 

stress and strain distribution at the knee joint under different loading conditions for 

investigating the effects of ligament injury, meniscus injury, cartilage defect and 

normal knee joint contact mechanism [63].  

 

2.4.2 Up-to-date FEA technique on knee biomechanics 
 

The up-to-date studies have demonstrated validity and effectiveness of knee 

biomechanics under simulated realistic loading under either physiological or non-

physiological conditions. Since there have been a large body of FEA studies on 

analysing the biomechanics of the knee joint, this review will focus only on those 

that used a complete 3D model of the human knee (including the femur, tibia, 

articular cartilage, meniscus and primary ligaments) for its relevance to this study.   

 

Validation of the FE model of human knee was considered an important step for its 

critical role in understanding the biomechanical details. Li et al [17] presented a 

detailed three-dimensional finite element model of knee joint and validated it via the 

experimental data. At that time, the geometry of the knee joint was obtained from 

Magnetic Resonance (MR) images of a cadaveric knee specimen, in which both soft 
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and hard tissues were included. The same specimen was tested in a biomechanical 

testing system and the kinematics under anterior-posterior tibial loads was obtained. 

Such kinematic data was then compared with the results (tibia anterior-posterior 

translation) calculated from finite element solution. The agreement between the FEA 

and experimental results has proven the validity of the computational model. 

Therefore, the procedure and protocol of FE modelling in Li et al's study could be 

considered as a benchmark for future FE study concerning the knee biomechanics.     

 

Since the articular cartilage is relatively thin in the knee joint, the variation of 

cartilage thickness was essential during either manual or automatic segmentation 

process of FE modelling. The effect of cartilage thickness variation on contact stress 

was quantified through five FE models of knee in Li et al's study [64]. One was the 

average FE model constructed from the mean values of the digitised contours of the 

cartilage and the other four were constructed by varying the mean value of thickness 

by ±5% and ±10%. Their results demonstrated that the 10% of variation in the 

cartilage thickness may result in a difference of approximately 10% of peak contact 

stress in the linear-elastic model where contact mechanics was involved. Therefore, 

the variation of cartilage thickness was considered to have significant influence on 

the FE results. Further investigation by Li et al[64] into the effect of variation in 

material properties of soft tissues on contact stress claimed that the stress distribution 

is also sensitive to the accuracy of material properties of the cartilage model, 

especially to the variation in the Poisson’s ratio. As a result, the FE results are 

considered sensitive to both cartilage thickness and material properties of cartilage 

and other soft tissues. Therefore, selecting proper material model and accurate 

segmentation of knee joint soft tissues are critical in a FEA study. 
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Although the FE results are sensitive to material properties of soft tissue cartilage, 

the FE results are less sensitive to the materials properties of hard tissue bones. To 

avoid unnecessary computational expenses, bone was normally considered as rigid 

body attributable to its relatively high density and Young's modules comparing with 

other soft tissues in knee joint. In Donahue et al’s study[16], a 3D FE knee joint 

model was generated based on CT images to determine whether assuming bone as 

rigid body could affect contact behaviour. Under the application of a 800 N 

compressive load, the maximum pressure, mean pressure, contact area, total contact 

force and coordinate of the centre of pressure were determined. The findings 

suggested that the contact responses within knee joint have no significant difference 

whether the bone is assumed rigid body or deformable body. This explains why bone 

has been considered either as rigid body or linearly elastic isotropic material in 

literature.  

 

To define the boundary condition, rotation is an important consideration of knee joint 

loading, as reported by Bendjaballah[63]. Their study aimed to construct a detailed 

knee model included all major tissue structures (e.g. tibia, femur, cartilages, menisci 

and ligaments) for investigating the contact mechanism between menisci and 

cartilages with and without rotation constrained. Their knee model was reconstructed 

from CT images of a cadaveric knee joint. Only hard tissues can be clearly observed 

from the CT images, therefore a laser based three-dimensional coordinate digitising 

system was used to impose the geometry of soft tissues into the bone structure. The 

incremental response of the tibiofemoral joint in full extension was determined under 

axial forces of up to 1000N applied on femur. When the axial rotation was left 
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unconstrained, the load transferred through the joint was found to be greater for the 

lateral compartment (60%) than for the medial compartment. If the axial rotation is 

fixed, two compartments share the load nearly equally. Therefore, the constraint of 

the axial rotation had significant effects on the results of loading between the two 

compartments and should be considered when applying loading and boundary 

conditions in FEA.  

 

Most of abovementioned FEA studies applied simple force condition without 

considering patient-specific physiological loading during functional activities, while 

it could represent a more realistic mechanical behaviour within the knee joint. In 

Yang et al’s study [21], the soft tissue deformation in knee joint was analysed by 

post-processing of a subject-specific musculoskeletal loading state. The entire stance 

phase of the gait cycle of three healthy subjects with normal, varus and valgus 

alignment respectively was employed in the FEA for simulating soft tissue 

deformation. Either varus or valgus moment caused by varus and valgus alignment 

was respectively generated at different times of the stance phase of gait cycle, and a 

correlation between varus/valgus moments with the normal stress distribution of 

cartilages and menisci was indicated. Loading data varies between individuals, which 

imply that different functional patterns between individuals such as varus/valgus 

moments, internal and external rotational moments, have significant influence on the 

FEA results. In another study by Yang [65], the importance of considering the 

subject-specific loading data in FEA was again emphasised by simulating the 

tibiofemoral joint contact loading with different lower limb alignments, which 

resulted in different loading distributions across different compartments. 
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2.4.3 Current FEA applications in knee joint studies 
 

With the validated FE models published in numerous FE studies, there has been 

considerable confidence of using FEA technique for such clinical problems as HTO 

treatment. A previous study [66] used FEM to study the three-dimensional stress and 

strain behaviour in the MCL (medial cottateral ligament), where the kinematic data 

from a musculoskeletal modelling study (motion analysis and force platform during 

gait analysis) was employed to the FE model to simulate patient-specific stress/strain 

distributions. They found that the strain distribution within the MCL was non-

uniform and changed with flexion angle. The highest MCL strains occurred at full 

extension in the posterior region of the MCL, proximal to the joint line during valgus 

loading, which suggests that such a region may be most vulnerable to injury under 

such loading conditions. 

 

Peña et al [20, 67, 68] conducted a series of FEA studies to investigate the stress and 

strain behaviours in the soft tissues of a healthy human knee joint, after 

meniscectomy and with an osteochondral defect. The same MRI-based model was 

used for all these studies. In the study of meniscectomy, the minimal principal 

stresses corresponding to a compressive load at full extension were obtained for the 

posterior region of the medial meniscus and the corresponding region of the cartilage. 

Under an axial compressive loading at the demur, the maximal contact stress in the 

articular cartilage after meniscectomy was about twice of that in a healthy joint. For a 

study on overall loading distribution of all soft tissues of the knee joint[67], the 

results reproduced complex, non-uniform stress and strain distribution occurred in 

such soft tissues (Figure 7) connecting to the human knee joint under an external 

physiological load. Their further FEA study [68]was conducted to explore the 
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influence of osteochondral defect size and location on the stress and strain 

concentration around the defect rim. From their results, it was found that no stress 

concentration observed around the rim of small defects, since the stress distribution 

was mainly borne by the meniscus. Nevertheless, significant stress concentration was 

found around the rim of large defects, which was considered to be of important 

clinical implications regarding the long-term integrity of the adjacent cartilage of 

osteochondral defects. Overall, all the results predicted from FEA have considerable 

clinical significance on investigating these common knee joint diseases.  

 

 

Figure7.Stress distribution on the menisci and cartilages. [67] 
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With its advantages over in vivo cadaveric studies and the potential in clinical utility 

in the orthopaedic area, FEA technique was used in a few studies on the HTO 

procedure. Izaham et al [69] used FEA to analyse two common types of fixing plate 

of HTO, while another study by Blecha et al [70] investigated two plate positioning 

systems to examine their effects on the overall loading distribution of knee joint. 

Although both studies proved the expelling success of FEA technique employing to 

contribute in such a clinical issue as HTO treatment, the surgical simulation of HTO 

was conducted by simply extruding a wedge out of proximal region of tibia rather 

than actually rotating the tibia to alter the alignment. This simplification eliminates 

the involvement of the rearrangement of compressive loading distribution due to an 

increased valgus moment after changing alignment. It was necessary to change the 

mechanical loading axis for reflecting a proper HTO surgery, which could be 

simulated by bending the distal portion of the tibia. Therefore, a precise HTO 

simulation involving bending of tibia to vary lower limb alignment would definitely 

provide more realistic and clinical relevant results.  

 

In literature, Yang et al [65] investigated the effects of the frontal plane tibiofemoral 

angle on the stresses and strains distribution at the knee cartilage which was 

considered most relevant to the objective of this study. In their study, three patients 

with valgus, normal and varus knee alignment were studied to relate the variation of 

loading distribution from one compartment to another with the shifted loading axis. 

Although this study provided important insight into the understanding of the effect of 

HTO correction angle on stress distribution of the knee cartilage; it could be more 

persuasive to explore the loading distribution relative to the different loading axes 
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(e.g. WBL and relative frontal plane correction angle) in one specific subject, since 

different anatomical geometries of different patients may influence the loading 

distribution and magnitude to a considerable extent.  
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2.5 Knowledge gap and research aims of this study 

 

As abovementioned, the current literature lacks of consensus with regard to the ideal 

correction angle to maximize osteotomy survival rate and post-operative knee 

function based on knee biomechanics. While some have examined this issue with 

survival studies in vivo and cadaveric experiments, none can predict the effect of 

correction on tibiofemoral load. Furthermore, FEA has been used to assess the local 

stress and strain distribution at the tibiofemoral joint for understanding soft tissue 

behaviour subject to different loading conditions. However, there have been no 

studies available on assessing the effect of variation of HTO correction angle through 

FE modelling.  

 

To address such knowledge gaps in the current literature, the aim of this study was to 

introduce a patient-specific approach to determine the effect of simulated medial 

open-wedge HTO with varying correction angles on contact pressure and shear stress 

distributions within the tibiofemoral cartilages and menisci. The contact pressure 

represents the compressive loading on the soft tissues of knee joint; while the shear 

stress was believed to associate with increased catabolic factors and decreased 

cartilage biosynthetic activity and leads to cartilage damage[34]. It was hypothesised 

that: (1) the stresses at both cartilage and meniscus of the medial knee compartment 

would decrease as the valgus correction angle increased; and (2) stress between two 

compartments would be equally distributed when reaching a specific HKA angle. 

Thus this study is dedicated to understanding of these critical issues relevant to HTO 

treatments. 
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Chapter 3 Modelling and Surgical 
Simulation 
 

An overview of the methodologies applied in this study is shown in Figure 8. Firstly, 

a subject was selected for MRI scanning; and then both a knee joint model and a 

whole lower limb model were developed based on the MRI images by segmentation. 

The lower limb alignment was measured two-dimensionally on the lower limb model 

and interoperates it onto the knee joint model for obtaining proper alignment in knee 

joint as a reference for simulating different HTO corrections. The loading and 

boundary conditions applied to the models were obtained via the specific gait test 

and analysis. The stress distributions across the cartilage and menisci predicted by 

the finite element method would then be quantified in each model with different 

degrees of corrections.    

 

Figure 8. Overview of the methodology 
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The process of employing FEA technique to predict respective stress/strain results 

will be described in next Chapter. In this current Chapter, the involved modelling 

issues, such as subject selection and scanning, modelling of knee joint, measurement 

of lower limb alignment and surgical simulation of the medial opening wedge HTO, 

are discussed in detail.  
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3.1 Subject selection and MRI scan 

 

The present study aimed to develop an in-silico procedure by using MRI based finite 

element analysis technique to quantify the stress distribution on soft tissues of knee 

joint under different degree corrections of HTO. Since the patients underwent HTO 

are normally suffering unicompartment OA, which suggests that the cartilage of this 

compartment is not intact (e.g. cartilage holes of defects), and the defected cartilage 

may induce considerable complications of the overall stress distribution at the 

cartilage to be investigated. To restrain our attention to the key issue of correction 

angle, therefore, a volunteer with normal lower limb alignment has been selected for 

this study. The height and weight of the subject was 179cm and 74kg, respectively. 

 

As the most fundamental part of a biomechanical FEA, accurate anatomical model 

has become possible as the rapid development of high resolution medical CT or MR 

imaging techniques, in which the contour of region of interest based on the signal 

intensity (i.e. grey value) can be manually or automatically segmented [71]. Since the 

grey value can be directly associated with the mineral density of certain human 

tissues, the geometry and materials of the model are almost identical to the original 

anatomy. Despite the fact that MRI uses a magnetic field to do the same thing as CT 

does without known side effects due to radiation exposure, MRI provides much 

better details in the soft tissues (by stimulating the hydrogen contained molecular in 

soft tissues). Such advantages in MRI allow us to capture the geometry and some 

material properties of the soft tissue during segmentation, rather than using some 

complicated methods, e.g. using laser-based three-dimensional coordinate digitizing 

system to impose geometry of soft tissue into the bone geometry generated from the 
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CT images in literature[16]. Thus, the MRI scanning was performed in this soft 

tissue focused study.  

 

Due to the limitation of Field of View (the size of the two dimensional spatial 

encoding area of the image) in MRI scanning, it is impossible to scan the whole 

lower limb in the sagittal plane, which is nevertheless the ideal plane for segmenting 

major soft tissues in the tibiofemoral joint. For this reason, two sets of MRI scanning 

were conducted in both axial and sagittal views (Figure 9a). The scan through the 

axial plane was able to obtain the whole leg from hip to ankle, through which a 

whole lower limb model can be generated for the alignment measurement. The other 

scan was performed in the sagittal plane to obtain the MRI data with tibia and femur 

bones and all soft tissues (cartilages, menisci and ligaments) involved, from which a 

detailed model of knee joint can be generated. 

 

During the sagittal plane scan, the subject's left knee, positioned at full extension, 

was subjected to the MRI scanner with a proton density weighted SPACE sequence 

and 3.0 Tesla magnets. The MR scan was performed with a surface coil and spanned 

from the medial to the lateral extremes of the knee. The scan consisted of parallel 

digital images separated at 0.5 mm intervals (resulted in 163 slices in total) with a 

FOV of 150 ×150 mm with 256×256 pixel resolution (Figure 9b). During this MR 

scanning protocol, the contrast between hard and soft tissues in the knee joint was 

enhanced.  

 

Although the use of axial plane scan is capable for obtaining the data of the whole 

low limb, it cannot process the whole leg in one cycle because the scanning space 



 

37 
 

can only cover part of the leg. Four cycles had been used to scan the whole leg 

separately, i.e. hip to femur, femur to knee joint, knee joint to tibia and tibia to ankle. 

During the entire process, fish oil capsules have been attached on the skin as 

anatomical landmarks that could be used for registration and assembly of the whole 

leg model which will be described in next section.  

 

During the axial plane scanning, the subject remained in the same position as in 

sagittal plane scanning for maintaining the identical coordinate system for the both 

sets of data (the axial and sagittal planes). This is because the alignment of this leg 

measured on the whole leg model (generated from the axial plane) would be 

interoperated onto the knee model generated from the sagittal plane during the 

alignment measurement. Since the whole leg model would be used for measurement 

only, a thicker space between two slices (1mm which resulted in 81 slices in total) 

was used in this scanning for minimising time cost. Also, the soft tissues would not 

be included in this model, instead a sequence of IW (intermediate-weighted) TSE 

(turbo spin-echo) which is considered ideal for bone tissue observation was 

employed during the scan (Figure 9a). 

 

Figure 9a) IW TSE sequence MRI of using axial view, b) PD weighted SPACE sequence MRI of usig sagittal view 
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3.2 Modelling of the knee joint 

 

As mentioned in the previous section, image-based modelling has become a popular 

and effective procedure for the application of finite element methods to a wide range 

of biomechanical studies that were previously challenged by the difficulty of 

obtaining the realistic geometry of human anatomy. ScanIP (4.0, Simpleware, UK) is 

a commercial image processing software package that allows for the conversion of 

3D anatomical data obtained from MRI/CT scans to a 3D solid and FE model.  

 

During the importation of the DICOM (Digital Imaging and Communications in 

Medicine) data from MRI scans into ScanIP, the contrast between different "regions" 

of the knee joint in terms of grey value can be adjusted in order to help distinguish 

different tissues. Re-sampling is another important step prior to the modelling 

process, as it can reduce the overall size of the image while maintaining a good 

resolution for retaining small anatomical details. A resolution of 0.45×0.45×0.45mm 

resulted from a more visually defined image was adopted in this study.   

 

Segmentation of the models was conducted manually through visual identification of 

the region boundaries. This is because the grey value intensities between different 

tissues (such as bone and muscle) was somewhat fairly similar to each other, which 

made the automatically segmentation sometimes lose control of region identification. 

As shown in Figure 10, the Paint Tool in ScanIP was first used to outline the region 

of interest and then the “Floodfill” tool was used to create the active mask within that 

region.  
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Figure 10. Demonstration of the process of useing segamenting tools 
 

This process was repeated for all slices. In total, there were 11 masks generated 

representing eleven different tissues in the knee joint, which are respectively femur, 

femoral cartilage, tibia, tibial cartilage, fibula, fibula cartilage, menisci, MCL, LCL, 

ACL and PCL (Figure 11).   

 

Figure 11.  Demonstration of segmentation  of all tissues 
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Once the segmentation of all slices were completed, all masks were stacked together 

to form a 3D model, which was visualised in ScanIP. However, the model was 

relatively rough at this stage due to lack of interpolation between masks of abjection 

slices (Figure 12a). A recursive Gaussian filter was then employed on each mask to 

smooth the model. Of the Gaussian filter, the Gaussian kernel sigma is a spatial 

parameter that control how many neighbouring pixels around each target pixel 

should contribute to the smoothing operation. Specifically, the bigger the Gaussian 

kernel sigma used, the more powerful the smooth effect, at the same time the more 

the original structure and anatomical feature might however be lost. Therefore, 

picking an appropriate Gaussian kernel value is critical to obtain an accurate and 

smooth model, i.e. properly balancing the smoothness and accuracy of the model. 

After a number of tests, a cubic Gaussian Kernel sigma of 1.2mm was selected to 

obtain a final model (Figure12b).  
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Figure 12. The construction of a) the surface model and b) the smoothed surface model 
 

As mentioned in the previous section, there were four sets of axial MR images 

containing the entire lower limb. Therefore, these four parts of leg model, which 

include femoral head to mid femur region, mid femur region to knee, knee to mid 

region of tibia and mid region of tibia to ankle, were generated using the identical 

modelling parameters and procedure (Figure 13).  
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Figure 13. Process of constructing the whole lower limb model 
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3.3 Surgical simulation of HTO 

 

Following the generation of the surface models of knee joint in ScanIP, all these 

surface models were imported into Rhinoceros (v 3.0, Rober McNeel & Associates, 

USA) to be converted into the solid models. For constructing knee models with 

different degree of medial opening wedge HTO correction, the CAD software 

packages Solidworks (v2012, DassaultSystemes, UK) and Rhinoceros were used to 

play a part together to accurately simulate the operated knee with the help from 

experienced orthopaedic surgeons.  

 

Before introducing the modelling process, it would be helpful to have an overview of 

the actual HTO surgical procedure. After exploring the proximal-medial tibia region, 

a guide wire will be inserted obliquely and directed towards the tips of the fibula 

under fluoroscopic guidance (Figure 14a). The entrance point should be set on the 

medial side of the tibia, with approximately 35 mm underneath the tibial plateau and 

equidistant from anterior and posterior tibial cortices. While the guide wire should be 

stopped by the point positioned approximately 18 mm beneath the lateral edge of 

tibial plateau. Once the guide wire has been positioned, an oscillating saw was used 

to create an incomplete osteotomy, starting distally along the guide wire until a 10 

mm continuous lateral hinge remained (Figure 14b). A combination of stacked 

osteotomies and laminar spreaders will then be used to perform tibial opening until 

the pre-operatively planned correction angle has been achieved. Femoral head 

allograft will then be used to fill the gap and stable fixation can be realised using an 

osteotomy plate (Figure 14c). 
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Figure 14. Surgical procedure of HTO: a) a guide pin has been placed; b) the osteotomy has been inserted just 
below the guide pin and 10 mm of lateral tibial cortex has been left intact; c) the plate and screws in place 
[72] 

 

However, it is difficult to directly simulate this process in a real surgery. In this study, 

Rhinoceros was used to bend the tibia to a specific degree, and the modified tibia 

was then imported into Solidworks to cut a wedge area of the tibia. To bend the tibia 

for achieving a specific amount of angular degree, a hinge axis was defined at the 

position of 18mm distal from tibial surface and 10mm medial from the lateral tibial 

plateau for rotation (Figure 14 b).  

 

The detailed process of bending the tibia laterally to a specific angle is illustrated in 

Figure 15. A more detailed sketch of calculating the specific translations to simulate 

the HTO can be found in Appendix A. 
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Figure 15.Demonstration of correcting tibia laterally: a) sketch of the contour best fits the tibia; b) calculation 
of the translation of the votex and midpoint of the distal surface of tibia and c) deformation of the original 
tibia to the corrected tibia by matching the distal region 

 

The tibia shape was approximately outlined in Solidworks (Figure 15a) and a 

simulation of the HTO surgery was performed based on such a profile. The position 

of the insertion to cut the tibia for opening a wedge was based on the procedure 

described earlier in this section. After bending the distal region of the tibia to a 

certain angle, the new positions of two vortex combined with the middle point of the 

bottom surface were recorded. By using the "Deform" function in Solidworks, which 

allows solid body to either extend or contract, the distal region of the tibia could be 

extended and rotated (i.e. deform) in order to match the bottom surface to the new 

position. The new position of bottom surface was recorded in Solidworks. As a result, 

the bending of tibia to simulate the opening wedge in HTO could be achieved (as 
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shown in Figure 15 c). In this study, the tibia was bent to obtain a wedge angle from 

0° to valgus 10° with an increment of 2.5°, which generated five knee models with 

different HTO correction angles of 0°, 2.5°, 5°, 7.5° and 10°, respectively. 

 

At this stage, the models were actually representing the knee joints of different 

alignments. However, to finally realise the HTO treatment, the wedge region should 

be cut out in Solidworks (as shown in Figure 16 a and b) to simulate the “wedge 

opening in HTO.  

 

 
Figure 16. Demonstration of wedge openning: a) calculate and sketch the cutting position on the tibia, b) 
remode the wedge region to simulate the wedge openning osteotomy. 
 

Last step was to place the plate, screws and the wedge to the cut tibia for simulating 

the fixation of HTO (Figure 17). Both screw and fixing plate were created in 

Solidworks based on the Tomofix HTO plate (DePuy Synthes, USA).  
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Figure 17. Insertion of the plate, screws and bone-graft substitute 

 

In summary, all the solid models with specific opening wedge angles are shown in 

Figure 18.  
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Figure 18. The original knee model and four corrected knee models  
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3.4 Measurement of lower limb alignment 
 

Following creation of these five models to represent one normal and four abnormal 

knees with different HTO correction angles, the measurement of the lower limb 

alignment had been performed to verify the accuracy of the frontal plane correction. 

As described in Chapter 2, the lower limb alignment can be referred to the HKA 

angle. But in this study, it is hard to measure the HKA angle in the knee joint model 

as it does not include the hip and ankle. Therefore the alignment measurement was 

performed in the whole lower limb model and the knee joint model separately.  

 

Recalling that the measurement of the HKA angle of the lower limb was based on 

three points: 1) centre of the femur head, 2) midpoint between tibial spines; and 3) 

centre of the talus, therefore the only available point is the midpoint between tibial 

spines in the knee joint model. For this reason, in the original knee joint model, we 

started from the midpoint between tibial spines to draw a line to the midpoint of the 

distal surface of the tibia, at the same time, draw a line from the midpoint between 

tibial spines to a random point of the proximal surface in the femur (Figure 19). The 

angle between these two lines can be referred to as the tibiofemoral angle (Figure 19 

a). By assuming that the original knee model has a frontal plane tibiofemoral angle of 

0°, the frontal plane tibiofemoral angles of the other four models could be then 

obtained. After measuring the actual HKA angle of original knee based on the whole 

lower limb model, the actual HKA angle of the other corrected knee models can be 

interoperated by adding the correcting angle to the actual HKA angle of the original 

knee. 
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Interestingly, the actual correction angle on the frontal plane used in clinical practice 

was smaller than the opening wedge angle (i.e. correction angle on the frontal plane 

of tibia). A wedge angle of 5° will be equivalent to an actual frontal plane correction 

angle of 3.97° (Figure 19). The reason of this difference is due to the fact that the 

correction degree used in this study was based on the degree bended on the frontal 

plane of tibia, which would be slightly smaller than the actual degree of the 

correction angle in the HTO clinical procedure. Note that the frontal plane of the 

tibia was different from the actual frontal plane which is based on femur. This 

internal rotation of the tibia would result in the decrease of the correction angle based 

on the frontal plane of tibia when such an angle was measured on the frontal plane of 

femur. As a result, the amount of stress decrease at the medial compartment might be 

somewhat smaller compared to the published HTO studies for the same degree 

correction. The 2.5°, 5°, 7.5° and 10° valgus is thus equivalent to the 1.49°, 3.97°, 

5.21° and 7.94°valgus, respectively. The figures of the measurement of the frontal 

plane HKA angle can be referred to Appendix B.  
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Figure 19. Correction angle of a) normal aligned knee and b) the knee with 5° valgus correction 
 

Moreover, by considering the actual frontal plane, HKA angle of the original knee 

model was 1.3° varus, which was measured from the whole lower limb model 

(Figure 20). The actual frontal plane HKA angle of all models referred to 2.5°, 5°, 

7.5° and 10° valgus is thus equivalent to the 0.19°, 2.67°, 3.91° and 6.64°valgus, 

respectively. In this study, nevertheless, the objective was to investigate the effect of 

shifting loading axis laterally on the trend of the variation of the stress distribution 

between two compartments; it is more convenient to use the opening wedge angle 

rather than the actual frontal plane HKA angle. Therefore, for comparing the results 

of the previously published clinical studies of HTO in the Chapter of discussion, the 

effect of this unmatched situation will be added up for consideration.  
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Figure 20. HKA angle of the whole lower limb  
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Chapter 4 Finite Element Analysis 
 

FEA is based on the solution to a complex system of discretised model with elements 

(which consist of nodes). The element is programmed to contain the material 

properties which determine how the structure will react to specific boundary and 

loading conditions. In FE solution, the displacements of each node are calculated and 

used to obtain the stress and strain through the generalised Hooke’s Law. In general, 

four important components comprise the overall FEA process, which are: 

• Meshing 

• Assigning material properties  

• Defining loading and boundary conditions 

• Solving linear equation sets 

The following sections will describe the entire FEA process (including pre-

processing and solution) through these four components. Specifically, the surface 

models were firstly exported from ScanIP and converted to solid model in 

Solidworks. Once the solid models were generated, meshing was performed to divide 

the models into finite number of elements in ABAQUS. Prior to numerical solution 

of displacement, material properties of respective tissues and certain loading and 

boundary conditions were assigned to the model, which is known as pre-processing 

of FEA. ABAQUS had been used to perform all the analyses in this study.  
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4.1 Meshing 

 

A proper selection of type and size of elements for generating mesh could directly 

contribute to the accuracy of FEA, which is required to precisely mirror the 

anatomical details of the subject concerned. Although the meshing algorithm 

embedded in ScanIP can generate tetrahedral meshes, it is not able to generate 

smooth mesh at some surfaces, such as edge of the thin layer structures (i.e. menisci 

and cartilages). As shown in Figure21a, failing to achieve smoothness in the surface 

edge and two parts in contact would result in some sparkle elements, which might 

cause drastic stress concentration in FEA. Moreover, the solid model generated in 

ScanIP was based on the meshed elements. In other words, only a dense meshing 

(Figure 21b) could capture a smooth model which will however significantly raise 

the computational cost in FEA solution process. In Figure 22b, a less dense mesh 

was generated in ScanIP, but clearly, the model has lost some smoothness on the 

surfaces (Figure 22 a).   

 

 

Figure 21.Fine mesh resulted by using the meshing algorithm embedded in ScanIP: a) the surface model based 
on fine mesh, b) the mesh of the model 
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Figure 22. Coarse mesh by using the meshing algorithm embedded in ScanIP: the surface model based on 
coarse mesh, b) the mesh of the model.  

 

For this above reason, only the surface models were constructed in ScanIP and 

exported into Rhinoceros to generate solid models. Since the surface model obtained 

from ScanIP was generated based on the pixels of the MR images, it is necessary to 

construct new surface on the model, otherwise the surface model with a large amount 

of tiny surfaces would make it very difficult to process and limit the meshing 

capacity in ABAQUS. The meshing algorithm in ABAQUS was controlled by the 

edge of each subsurface on the whole surface of the model. In Rhinoceros, new 

patches were manually constructed on the surface model and each patch was 

developed into one subsurface by merging the original pixel-based subsurface. The 

re-constructed surface model was shown in Figure 23. In this figure, the smoothness 

of the edge of cartilages and meniscus were retained well. The meshing quality in the 

new surface model can be freely controlled in ABAQUS, such as defining elemental 

sizes and element types, and more importantly, different meshing density can be 

defined at different regions.   
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Figure 23.Re-constructed surface models with patches 

 

Once the solid models were constructed in  Rhinoceros, they were imported into 

ABAQUS for mesh generation (Figure 24). The bone, articular cartilage, meniscus 

and ligaments were discretised into 10-node tri-linear tetrahedral elements. 

Tetrahedral elements were chosen over hexahedral elements attributable to its great 

flexibility in meshing complex curved geometry.   

 

 

Figure 24. Mesh result of the use of meshing algorithm in ABAQUS 
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4.2 Loading Condition 

 

In this section, two loading conditions adopted in this study were described. The first 

(load case 1) is the single axial loading and the second (load case 2) is the subject-

specific forces and moments obtained from the gait analysis.   

 

4.2.1 Loading case 1 
 

In order to validate the knee models available in literature, a single axial force was 

applied on the femur to obtain the stress distribution at menisci and cartilages, which 

can be compared with those stress values obtained in other studies. Most of the FEA 

studies on knee joint only concerned the stress distribution at both cartilages and 

menisci under pure axial loading. Since the subject selected in this study had a 

weight of 74 Kg, an axial force of 740 kN (approximate body weight) was applied at 

the centre point of the cross section of femur (Figure 25).  
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Figure 25. Single axial force applied on the mid-point of the proximal surface of the femur 

 

4.2.2 Analysis of the gait data 
 

During the gait analysis, a twelve-camera motion analysis system combined with two 

force-platforms was used to collect the subject-specific kinematic and kinetic data. 

Retro-reflective makers were placed at bony landmarks to define the different 

segments of the leg. The motion analysis cameras recorded the data at a frequency of 

1200 Hz and were time synchronized with the motion analysis system. The ground 

reaction forces and centre of pressure were measured by the force platforms. Ten 

trials of walking at a self-selected speed were conducted while monitoring the 

ground reaction forces and the kinematics of one leg. The over ground walking with 

the self-selected speed was preferred to screen natural function of the knee. In this 

case, treadmills and timing techniques to control speed would not be required. An 
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inverse dynamics analysis was then performed to calculate the knee-joint reactions 

forces and moments. Although 10 individual trials are conducted during the gait 

analysis, the data input into the finite element model was provided by taking the 

average of these ten trials as plotted in Figures 26-28.  

 

Before interoperating the gait data, it is useful to define the coordinate system in the 

gait analysis. Flexion is defined as positive, while extension is defined as negative in 

the sagittal plane. Adduction of the tibia with respect to the femur is defined as 

positive, while abduction of the tibia with respect to the femur is defined as negative 

on the frontal plane. Internal rotation of the tibia with respect to the femur is defined 

as positive, while external rotation of the tibia with respect to the femur is defined as 

negative in the transverse plane. 

 

According to Figure 26, the primary points of the interest are at 0%, 100% of the gait 

cycle, since a full extension (0° for flexion angle) was considered in the model.  
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Figure 26. Knee joint angles 

 
 
 

 
Figure 27. Knee contact forces 

 

When the knee contact force are examined at 0%, it is noted however that only a 

small force is being generated since at this stage the foot only just hit the ground. A 

more realistic representation of the peak loading that occurs post heel strike is 
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consequently located at 5% of the gait cycle, which corresponds to a flexion angle of 

approximately 10°. Although this does not completely agree with the fully extended 

models, a flexion angle of 10° was considered a sufficiently small deviation from full 

extension. It was therefore decided that the best loading point of interest to be taken 

was that at 5% of the gait cycle.  

 

 

Figure 28. Knee joint moments 

 

Similarly, the averages of the internal moments for both knees are provided in the 

three planes as shown in Figure 28. At 5% of the gait cycle, there is flexion of the 

femur with respect to the tibia in the sagittal plane (flexion moment), adduction of 

the femur with respect to the tibia on the frontal plane (varus moment), and external 

rotation of the femur with respect to the tibia in the transverse plane (external 

rotation moment).  
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4.2.3 Loading case 2 
 

In the second loading case, the tibia and fibula were fixed in all translations and 

rotations. At the heel strike, the femur is in 0° flexion and all other translation and 

rotation of the femur were unconstrained. The loading applied to the FE model was 

obtained using motion analysis and force platform data as explained in Section 2.1 

and was applied to the midpoint of femur. 

 

The loading condition that were applied to the model included the axial forces Fz, the 

anterior/posterior force Fy, and the varus/valgus moment My and the internal/external 

rotation moment Mz. All forces and moments were illustrated in Figure 29. The 

flexion/extension moment was not directly applied as an input of the loading 

condition because the knee functions as a hinge joint (i.e. pin joint motion in the 

sagittal plane), meaning that there is no external moment in the sagittal plane 

generated in the knee joint. The effect of the internal flexion/extension moment is 

balanced out by the flexion angle. However, the knee is relatively fixed in the 

transverse and frontal plane, which means that the knee joint generated external 

moments to balance the effect of internal/external rotation and valgus/varus motion. 

For this reason, the varus/valgus moment My and the internal/external rotation 

moment Mz need to be considered when applying the loading condition.  

 

In this loading case, the flexion/extension moment was not applied to the model 

since the femur was assumed to be fully extended while the leg was perpendicular to 

the ground, which means that the flexion moment was cancelled out at this stage.   
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Figure 29. Combination of forces and moments applied on the mid-point of the proximal surface of the femur 
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4.3 Material Properties 

 

Selection of material constitutive models to best reflect the tissue behaviour is one of 

the most critical yet challenging steps in the biomechanical FEA studies, since the 

material properties of tissues, especially soft tissues, remain rather controversial. 

Despite the non-linear behaviours of many soft tissues, the material properties of the 

tissue might vary between in vivo and in vitro [73]. The difficulty of testing the 

material properties of soft tissues in vivo is one of the reasons that lead to such 

controversy in assigning appropriate material properties in FEA. 

 

According to the previous FEA studies on knee joint, the Young's Modulus of the 

bone is much higher than those of the soft tissues; therefore variation of bone 

material properties has nearly no effect on the mechanical behaviours of the soft 

tissues. As this study had a focus on the biomechanics of soft tissues, so the 

difference between cancellous bone and cortical bone was negligible. Although some 

studies in literature considered the tibia and femur as rigid body, my study have 

implant attached to the bone which might be reasonable to consider the bone as 

deformable body. Also as mentioned in the previous Chapter, the stress distribution 

on the soft tissues within knee joint is less sensitive to the material property variation 

of the bone. Therefore, femur, tibial and fibula were assumed to be a linear elastic 

and isotropic material with a Young's Modulus of 8 GPa and a Possion’s ratio of 0.3 

[16] here.   

 

Generally speaking, cartilage is viscoelastic tissue in nature. In this study, however, 

articular cartilage was assumed to behave as single-phase linear elastic and isotropic 
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material because the loading time of interest corresponding to that of a fully extended 

leg touching the ground is far less than the viscoelastic time constant of cartilage 

(1500sec) [74]. This is considered sufficiently accurate to predict instantaneous 

cartilage response, as demonstrated by Donzelli et al [75], who proved that there 

were no significant changes in the cartilage contact responses shortly after loading. 

In summary, the material properties of bone, cartilage, plate, screws and wedge are 

shown in Table 3. 

 

Table 3 Material properties of linear elastic isotropic tissues 

Component  Young’s modulus 
(MPa) 

Poisson ratio  References 

Bone 8,000 0.3 [16] 
Cartilage 5 0.46 [67] 
Plate + Screws 114,000 0.3 [69] 
Wedge  2100 0.35 [69] 
 

 

For meniscus, two material models were developed to simulate its mechanical 

behaviours. The first one was isotropic and linearly elastic, and single-phased 

material with Young's Modulus of 59MPa and Poisson’s Ratio of 0.49[67]. The 

second model was hyperelastic derived from in vivo measurements[76]. Based on in 

vivo indentation, the meniscus constitutive model can be derived from the stress-

strain relationship [64], to illustrate the variance of the compressive moduli at 

different loading stages. In this case, the 3rd order Ogden strain energy density 

equation provided the best fitted response to the in vivo data by using the least-square 

method as shown in Figure 30.  
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Figure 30.Comparison between in-vivo and calculated stress-strain data of menical material properties: 
experimental data from an identation test (red curve) compared to calculated Ogden strain energy density 
(blue curve), stresses are in MPa.  

 

From the literature, the linear elastic material model of meniscus adopted an 

“average” modulus of 59MPa [67], and the stress concentration was more likely to 

occur with such a stiff material when the contact was not fully established. Moreover, 

according to the experimental data of meniscus material testing, the linear behaviour 

of the stress and strain curve was only observed in the low and extremely high 

loading region (as shown in Figure 30). The hyperelastic material model has the 

capability of providing more accurate prediction of stress under the moderate loading, 

which is often a more realistic case in clinic. Therefore, the hyperelastic material 

model was used in this study to describe meniscus behaviour.  

 

For the same reason, ligaments were assumed to be isotropic and hyperelastic. 

Different to menisci, hyperelasticity for ligament was represented by an 

incompressible Neo-Hookean model with parameters of C10 and D1 for ligaments 

[77], in which the C10 refers to the stiffness of the Neo-Hooken strain energy function 

and D1 denotes the inverse of bulk modulus. The relative Neo-Hookean constants of 
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specific ligaments were calculated from the experimental data from Arnoux et al.’s 

study [78].All the constants of ligaments calculated are summarised in Table 4.  

 

 

Table 4. Material parameters for the ligaments (MPa) 

Ligaments C10 D1 

ACL 1.95 0.00683 

PCL 3.24 0.0042 

MCL 1.45 0.00127 

LCL 1.45 0.00127 
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4.4 Numerical solutions 

 

ABAQUS was used to obtain approximate solutions to all static simulations in the 

present study. Contact interfaces were modelled between femur, tibia cartilage 

surfaces and menisci surfaces. Finite sliding of pairs of curved, deformable surfaces 

was involved in the contact condition of all the models. All of the surfaces were 

modelled as frictionless [17]. The “hard’ contact model was used to define the 

surface interaction, implying that no penetration was allowed of the nodes from one 

surface into the other surface. Slave and master surfaces were defined for each 

contact pair. An augmented Lagrangian algorithm was adopted to simulate the 

contacts between femur cartilage, tibia cartilage and menisci with frictionless 

behaviour assumed to mimic the lubrication in the joint. The boundary condition 

remains consistent with literature, in which the tibial is fixed in all translations and 

rotations while the femur remains unconstrained. 
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Chapter 5 Results 
 

FE analysis was carried out to obtain the distribution of the stresses on the knee joint 

cartilages using the subject specific loading data and knee joint model. In this 

Chapter, von Mise equivalent stress was obtained to see the overall stress distribution 

while the compressive stresses were used to investigate the actual loading on the 

cartilage caused by different degrees of HTO correction. Shear stress in cartilages 

was also obtained here since it was considered a major cause of OA progression[4]. 

Contact pressure was calculated for comparing the results with the published FEA 

studies in order to validate the FE knee model.  

 

Firstly, the stress distributions in the original knee joint model under axially 

compressive loading was obtained, which allows the comparison between stress 

results of the model used in this study and those obtained in other FEA studies in 

literature. After that, the stress distributions at the knee joint of each scenario under 

combined loading condition (i.e. loading case 2) was also obtained in order to 

investigate the effect of correction degree of HTO on the more realistic stress 

distributions at the soft tissues of the knee joint.   
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5.1 Stress distribution at knee joint under sole axial 

loading and multi-loading 

 

Although only the contact stresses on the surface of cartilages and menisci, rather 

than the internal stresses, were concerned, both stresses may be important to the 

degeneration of cartilage [79]. Since most published FEA studies on knee joint 

investigated the contact pressure on the menisci and cartilages under axial loading, 

the FE model of the original knee were applied with a single axial load to calculate 

the contact pressure on the menisci and cartilages. 

 

Before starting to investigate the results obtained from FEA, it should be noticed that 

for all stress contours plotted in this Chapter, the medial compartment was placed on 

the left hand side whilst the lateral compartment was on the right hand side. For the 

menisci and femoral cartilages, the anterior side was facing upward whilst the 

posterior side was facing downward. However, the anterior/posterior orientation was 

opposite in tibia cartilage to the menisci and femoral cartilage. For clarification, the 

orientations of these different soft tissues in knee joint were illustrated in Figure 31.   
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Figure 31. The orientations of femoral cartilage, menisci and tibia cartilages 

 

The maximal contact pressure was found to be 3.2MPa in the anterior horn in the 

lateral meniscus and 1.8 MPa in the middle region medial meniscus. The maximal 

contact pressures in the femoral cartilage and tibia cartilage were found to be 

1.88MPa and 3.06MPa, respectively. All these contact pressures obtained here 

strongly agreed with the results of the previously published FEA studies of knee joint 

in literature [19, 21, 66, 67]. 

 

As shown in Figure 32, the contact pressure contours of menisci and cartilages under 

the loading case 1, in which the model was subjected to a single compressive load, 

were compared with the contact pressure contour of same tissues in loading case 2 

where the subject-specific loading data was employed. Overall, the maximum 

contact pressure and major pressure concentration were found in the lateral 

compartment under loading case 1, whereas the maximum contact pressure and 

major pressure concentration appeared in the medial compartment under loading case 

2. Also the pressure distributions were found to be shifted posteriorly when 

compared the contact pressure distributions in loading case 1 with those in loading 

case 2.   
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a)    b) 

 

    c)     d)  

 

    e)     f) 

Figure 32. Contact pressure in the menisci, femoral cartilage and tibial cartilag under two loading cases 
 

These above results were considered reasonable since such pressure distribution can 

properly reflect the forces and moment application in loading case 2. In addition to 

the axial force Fz, the anterior-to-posterior force Fy would change the loading point 

from the middle region of the knee posteriorly while the varus moment My combined 

with the internal rotation moment Mz would result in an increase in the loading 

Loading case 1 Loading case 2 
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through the medial compartment. This explains the pressure distribution across two 

compartments in loading case 2. According to Yang et al's study [21], the maximal 

contact pressure on the medial meniscus could be increased up to three times in the 

case of applying subject-specific loading data compared to that by applying an axial 

compressive force only. Therefore, the results obtained from the current FE knee 

joint model is fairly consistent with the literature data, indicating that this knee 

model should be capable for further investigating into other stress distributions. 
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5.2 Overall von Mises stress of the knee joint after 

shifting loading axis 

 

Upon validating the knee model, the von Mises equivalent stresses were obtained to 

observe the overall stress distribution of the knee joint after shifting the loading axis 

from medial to lateral. The equivalent stress variation was exhibited in Figure 33 and 

the same range of stress legend was used for all the models for comparison.   

 

 

Figure 33. The overal von Mise stress distribtion of the knee joint models 
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For the first (initial) model, the maximum stress appeared in the medial side due to 

loading axis through the medial compartment combined with the varus moment. 

When the tibia was bended 2.5° laterally, the maximum stress shifted to the lateral 

side. However, stress concentrations were observed in the medial side of the tibial 

bottom area. This may be caused by the effect of placing the fixation plate, since the 

stress concentration around the screw area was fairly close to the fixed boundary 

(distal surface of the tibia). Beside this, the equivalent stress results had confirmed 

the hypothesis of this study, i.e. stress increases laterally as the alignment shifted 

from varus to valgus.  
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5.3 Effect of correction angle on compressive stress at 

cartilages and menisci 

 

Both cartilages and menisci are largely in compression with its minimal principal 

stresses (or maximal compression) oriented approximately normal to the articular 

surface. In order to better investigate the effect of the changing loading axis laterally 

on the stress distributions across both the compartments, the range of the maximum 

stress to minimum stress had been set to be a constant for all five models. Therefore, 

the stress distribution pattern between different models becomes comparable.    

 

The compressive stress in the menisci was shown in Figure 34. The blue region 

indicated the higher compressive stress whilst the red region indicated the lower 

compressive stress. A clear trend of decreasing compressive stress on the medial 

meniscus was demonstrated as the blue region accumulated in the posterior region of 

the medial meniscus was fading as the correction angle increased from 0° to 10° 

valgus. At the same time, the stress distribution started to increase in the lateral 

meniscus due to the loading axis shifting laterally by correcting the tibia from 0° to 

10° valgus.  
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Figure 34. Maximal compression stress distribution in the menisci of all models 

 
 

In Figure 35, however, the decrease in compressive stress on the medial side of 

femoral cartilage was not so obvious compared to the variation in stress distribution 

on the medial side of meniscus. On the other hand, the increase of stress on the 

lateral side of the femoral cartilage could be observed as there was a spot of blue 

region, indicating that a higher compressive stress appeared in the model with 7.5° 

and 10° valgus, respectively. The bigger region of the blue spot in the model with 10° 

valgus compared to the model with 7.5°valgus clearly indicates that a higher 

compressive stress was accumulated on the lateral side of femoral cartilage for such 

an angle.  
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Figure 35. Maximal compression stress distribution in the femoral cartilages of all models 

 

As shown in Figure 36, a similar trend of the variation of stress distribution can be 

observed for the tibial cartilage. The compressive stress decreased in the medial tibia 

cartilage as the valgus angle increased. Overall, the results of such HTO correction 

indicated that the decrease of loading in the medial compartment could be achieved 

by increasing the valgus angle, in other words, shifting the loading axis laterally.  
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Figure 36. Maximal compression stress distribution in the tibial cartilages  of all models 

 

 

The maximal compressive stress calculated for both compartments of three soft 

tissues have been summarized in Table 6 (refered to Appendix C), which also 

been plotted in Figures 37-39 below. When the correction angle changed from 0° to 

10° valgus, the maximum compressive stress for medial meniscus, medial femoral 

cartilage and medial tibia cartilage was observed to decrease from 6.4MPa to 4.9MPa 

(23% reduction), 7.7MPa to 6.9MPa (10% reduction) and 5.8MPa to 4.9MPa (16% 

reduction) respectively. Meanwhile, the maximum compressive stress for the lateral 
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meniscus, lateral femoral car taiga and lateral tibia cartilage was increased from 

2.4MPa to 3.9MPa (63% increase), 3.3MPa to 5.6MPa (70% increase) and 3.3MPa 

to 5.8MPa (76% increase) respectively, when the correction angle changed from 0° 

to 10° valgus.  Since the increase of stress in the lateral compartment was much 

smaller than that in the medial compartment, this huge difference of stress variation 

between two compartments required a larger valgus correction (6.6 HKA) to achieve 

a balance of stress distribution between two compartments. 

 

 

Figure 37.Variation of maximum compressive stresses in menisci of both compartments across the change of 
valgus correction 
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Figure 38. Variation of maximum compressive stresses in femoral cartilages of both compartments across the 
change of valgus correction 

 

 

Figure 39. Variation of maximum compressive stresses in tibial cartilages of both compartments across the 
change of valgus correction 
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5.4 Effect of correction angle on shear stress 

distribution at cartilages and menisci 

The shear stress, as mentioned earlier, was considered one of the major risks of 

accelerating the degeneration of cartilage. Therefore, the peak overall shear stresses 

(Tresca equivalent stress) of each model were calculated to see if the shifted loading 

axis has some effect on decrease in shear stress in the medial compartment in this 

section. As shown in Figure 40, some similar results were observed for the shear 

stress distributions between the menisci in these two compartments. The results 

clearly showed that shifting the loading axis (by increasing the valgus correction 

angle) has effectively  decreased the medial compartment shear stress and increased 

the lateral compartment shear stress. As shown in the same Figure, the red region 

indicated the maximum shear stress and the blue region represented the minimum 

shear stress at this case.   
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Figure 40. Shear stress distribution in the menisci of all models 

 

As shown in Figure 41, a clearer decrease in the shear stress distribution can be 

observed on the medial side of the femoral cartilage. The shear stress concentration 

on the medial side of the cartilage observed in the normal knee model was spread out 

and clearly the stress distribution became more uniform after 10° valgus correction. 

However, there was an increased stress concentration on the lateral side of the 

cartilage in both models for the 10° valgus. This implies that when the lower limb 

was aligned in the situation of 10° valgus, there would be a certain risk of initiating 

the degeneration of cartilage in the lateral compartment.  
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Figure 41. Shear stress distribution in the femoral cartilages of all models 

The shear stress distributions on the tibia cartilages were shown in Figure 42. 

Although the trend of decrease in the shear stress concentration on the medial side 

and subsequent increase in the stress concentration on the lateral side cannot be 

observed clearly, the marginal variation in the shear stress distribution is still 

consistent with shifting of loading axis laterally.  
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Figure 42. Shear stress distribution in the tibial cartilages of all models 

 

Looking at the Table 7 (referred to Appendix C) and the Figures 43-45, when the 

correction angle changed from 0° to 10° valgus, the maximal shear stress 

was calculated decreasing in medial dimensions of meniscus, femoral cartilage and 

tibia cartilage, that is a reduction from 6.325MPa to 5.76MPa (9% 

reduction), 4.7MPa to 3.4MPa (28% reduction), and 4.0MPa to 2.0MPa (a reduction 

of 50%) respectively. At the same time, the maximum shear stress for the lateral 

meniscus, femoral cartilage and the lateral tibia cartilage have been observed to 

increase from 3.2MPa to 5.3MPa (66% increase), 2.7MPa to 4.1MPa (52% increase) 

and 2MPa to 2.5MPa (25% increase) respectively when the knee alignment 

changed from 0° to 10° valgus. Different to compressive, the larger reduction of 

shear stress in the medial compartment resulted in a smaller amplitude difference 
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between medial stress decrease and lateral stress increase. Therefore a balanced 

stress distribution between two compartments was achieved in a smaller valgus 

correction (5°) compared to that in compressive stress. 

 

 

Figure 43. Variation of maximum shear stresses in menisci of both compartments across the change of valgus 
correction 

 

 

Figure 44. Variation of maximum shear stresses in femoral cartilages of both compartments across the change 
of valgus correction 
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Figure 45. Variation of maximum shear stresses in tibial cartilages of both compartments across the change of 
valgus correction 
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Chapter 6 Discussion 
 

In this Chapter, the validation of the model and investigation of the effect of subject-

specific loading on stress distribution at knee joint were firstly discussed. Then, the 

effects of changing frontal correction angle of HTO on the stress distribution at the 

knee joint were explored by comparing our findings with other HTO studies based on 

the clinical outcome and experimental biomechanics. Finally, the limitation of this 

study will be outlined.  
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6.1 Validation of the model with literature 

 

The underlying motivation for this study was to develop a computational procedure 

to explore the biomechanical implications and effects induced by the correction 

degree of HTO treatment. For this purpose, subject-based FEA has been adopted to 

simulate the loading condition at knee joint because FE models have been 

extensively used for representing complex biological structures [80]. To obtain an 

acceptable FE prediction, it is essential to validate the model. It is however rather 

difficult and challenging to validate the computational results with the in vitro or in 

vivo experimental results in this study as the knee model was generated based on a 

volunteer rather than cadaveric knee specimen. Therefore, the original knee model 

(normal aligned) was applied under a single compressive load (body weight) to 

obtain the contact pressure for comparing with published FEA studies [16, 57, 65, 67, 

81, 82].   

 

The maximum contact pressure of 3.1 MPa was observed on the surface of meniscus 

which was fairly close to the contact pressure obtained by Pena et al [67]'s study 

(data), in which an axial compression of 1150N was applied on a FE model of knee 

joint while the bone was considered as rigid body, cartilages and menisci behaved as 

linear elastic and isotropic, and ligaments was modelled as hyperelastic and isotropic. 

In their study, the maximal contact pressure appeared in the posterior region of the 

medial meniscus with average value of 2.9 MPa and in the anterior horn of the lateral 

meniscus with 1.45 MPa. Although the contact pressure was slightly higher in this 

study, it is within an acceptable range considering the difference between the 

subjects modelled. In other words, the difference in the geometry (e.g. thickness of 
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cartilage, thickness of meniscus) might be an important factor towards the stress 

deviation. In another study by Donahue et al [16], a FE model of knee joint was 

subjected to a compression of 800N. The maximum contact pressure obtained was 

2.6 MPa, which is lower than that predicted in this study due to the reduced axial 

loading. Therefore, the consistence between the result of contact pressures in this 

study and the literature data demonstrated that my FE model is able to generate 

reasonable results. 

 

Refer to literature, it is common to use subject-specific knee model in FE 

biomechanical studies since the different geometrical structures among people's knee 

joints, especially cartilage thickness, may affect the stress and strain distribution [16, 

17, 19, 67, 79, 83, 84]. However, few of those studies have attempted to incorporate 

subject-specific joint geometry with loading and boundary conditions based on 

subject-specific gait data[21, 62].  

 

In this study, the subject-specific gait data was used as an input in the FE model 

(loading case 2) and a comparison of the results between these two loading cases was 

established in the previous Chapter. Under loading case 1, the maximal contact 

pressure was observed in the lateral meniscus whilst the maximal contact pressure 

was shifted to the medial meniscus in loading case 2. This is because the varus 

moment at the beginning increased the loading in the medial compartment. This 

result is consistent with the findings of the previous studies indicating that 

approximately 70-75% of the load is transferred to the medial compartment of the 

knee joint due to the varus moment [57, 82]. 
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The maximum normal stress of 3.11 MPa was found on the lateral femoral cartilage 

and 2.68MPa on the medial cartilage. The magnitude of the normal stresses on the 

medial knee cartilage doubled with the application of the varus knee moment in the 

current model. This comparison further indicated the importance of including the 

varus knee moment when studying knee biomechanics and may explain why knee 

OA occurs more frequently on the medial compartment of the knee than the lateral 

compartment [24], since alignment within 2° varus is still considered as normal 

aligned knee.  

 

It is no doubt that the varus knee moments are the primary factor in the loading 

distribution to the medial compartment of the knee joint during normal gait. However, 

at the single leg support phase of the gait cycle, a varus-aligned knee will have a 

moment that increases the loading on the medial compartment of the knee, while a 

valgus-aligned knee will have a moment that increases the loading on the lateral 

compartment. In other words, the subject-specific loading condition would be 

different from individual to individual. For an individual with valgus-aligned knee, 

the valgus moment is most likely generated at the single leg support phase, while the 

varus moment occurs at the single leg support phase for the individual with varus-

aligned knee [85]. This again indicated the importance of assigning the subject-

specific functional data to the subject-specific knee structure.  

 

In summary, calculating and comparing the magnitude of the contact pressure with 

literature combined with interpreting the effect of applying patient specific loading 

pattern in FEA on the stress distributions, were used to validate the subject-specific 
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FE knee model in this study. The consistence between my results and the published 

data allows the FE model in this study to obtain persuasive results.  
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6.2 Effect of varying correction angle on stress 

distribution 

 

Prior to the investigation of varying correction angle into the stress distribution, it is 

important to clarify that the correction angle is different to the HKA angle used in the 

clinical world. The correction angle referred to the amount of valgus correction 

degree, while the HKA angle referred to the Hip-Knee-Ankle alignment. In the 

conventional HTO surgery, the final goal of alignment is referred to the HKA angle 

since the amount of correction varies from patient to patient. But in this section the 

correction angle was used for biomechanical analysis to solely investigate the effect 

of varying correction angle (changing alignment) on the stress distribution of knee 

joint. Their difference merely resides in the angle definition but not in the 

biomechanical trend.  

 

According to the limited HTO studies in literature, the effect of changing correction 

angle during HTO on the stress distribution at the soft tissues of knee joint has been 

investigated herein. The results from this subject-specific FE model quantified the 

role of the correction angle on the stress distribution in the knee joint. The knee 

alignment influenced load distribution at the knee; varus and valgus alignment 

increased medial and lateral load, respectively.  

 

As abovementioned, the underlying motivation of this study was to establish an in-

silico method to investigate how the change in knee alignment could influence the 

stress distribution at the soft tissues of knee joint; and subsequently obtain an optimal 

position of loading axis (i.e. the respective correction angle of HTO). The finite 
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element analysis was carried out here to quantify the stress distribution with the 

subject-specific data. The shifting of the loading axis laterally was achieved by 

bending the tibial to a certain valgus angle in this direction. In this study, four valgus 

angles of tibia were simulated at 2.5°, 5°, 7.5° and 10°.The decreases in both 

compressive stress and shear stress in the medial compartment were successfully 

achieved by changing the knee alignment from normal (slightly varus of 1.29°) to 

valgus. At the same time, the stress distribution increased in the lateral compartment 

as a result of increasing amount of valgus degree. These findings well supported the 

hypothesis proposed in this study.  

 

As mentioned in the precious section, the varus moment contributes on a large 

portion of loading in the medial compartment. This explained the incidence of the 

major stress distribution in the medial compartment (cartilages and menisci) in the 

original knee model. The loading condition was identically applied on the femur to 

all the cases; therefore the results were used to essentially investigate the effect of 

shifting loading axis on the stress distribution in the knee joint. Although the results 

of this study could not directly relate to the clinical outcomes of the actual HTO and 

the gait data might change after surgery (which is one of the limitations of this study), 

the results did provide certain biomechanical insights into the evaluation of an 

optimal correction angle during HTO treatment in terms of stress redistribution. 

 

The results also showed that the increased valgus alignment led to a smaller 

difference in the maximum values of both compressive and shear stresses between 

the medial and lateral cartilages. A more uniform stress distribution and a smaller 

difference between the maximum values on either side of the knee could explain why 
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Harman et al [86] observed that the valgus knee on the tibial plateau showed to wear 

out in a more uniform fashion. Although my result was based on the premise of 

applying the varus moment at that stage of interest during the gait cycle, this 

uniformly-distributed stress pattern might explain the overall performance during this 

functional activity. In addition, this finding might contribute to the decision of 

choosing optimal correction angle during HTO surgery.  

 

It is surprising that limited studies were focused on the actual intra-articular effect of 

an osteotomy, which was intended to shift the loading axis from varus to valgus. The 

only related study, by Yang et al [65], was to investigate the effect of the frontal 

plane HKA angle on the stress and strain distributions at the knee cartilage, which 

constructed the knee joint FE models for three individuals. They found a lower stress 

in the medial compartment of the varus-aligned knee joint compared with that 

calculated in the same compartment of both valgus- and normal-aligned knee joint. 

More interestingly, at the heel strike of the gait cycle, varus-aligned subject and 

valgus-aligned subjects initiate the varus and valgus moment, respectively.  

Compared with Yang et al’s study [21], the results obtained from my current model 

restricted the investigation only into the effect of changing HKA angle on the stress 

distribution in knee joint, which appeared a more accurate and effective way for the 

simulation of HTO treatment. Although the gait data of post-HTO patient may 

change due to the changing alignment of lower limb, it is reasonable to quantify the 

variation of stress distribution under the sole effect of changing HKA angle. 

Moreover, the simulation of different valgus angles on a single subject might avoid 

the issues in Yang et al's study on anatomical difference of individuals that may 

influence the loading distribution substantially.  
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6.3 Optimization of correction angle 

 

Note that, the correction angle used in this study was based on the angular 

measurement bended on the frontal plane of tibia, which would be slightly larger 

than the actual degree of the correction angle used in clinical HTO procedure. This is 

because the frontal plane of the tibia was different to the frontal plane of the femur. 

The internal rotation of the tibia would result in some decrease in the correction 

angle measured from the frontal plane of tibia. Therefore, as mentioned before, a 5° 

correction will be equivalent to a 3.97° correction, which was described in Section 

3.4. As a result, the amount of stress decrease in the medial compartment might be 

smaller in this study compared to the previous published HTO studies for the same 

degree correction. The 2.5°, 5°, 7.5° and 10° valgus correction were equivalent to the 

1.49°, 3.97°, 5.21° and 7.94° valgus correction angles, respectively. By considering 

the offset of the actual frontal plane HKA angle of the original knee model, the 2.5°, 

5°, 7.5° and 10° valgus correction were equilibrium to the 0.19°, 2.67°, 3.91° and 

6.64° valgus alignment in terms of HKA angle, respectively (Table 5). It must be 

emphasized again that the offset does not affect the biomechanical analysis and 

trends of stress distributions obtained in this study.  

 

Table 5 Summary of the correction angles (positive degree indicated valgus and negative degree indicated 
varus) 

Correction angle  Actual correction angle 
(Frontal Plane) 

HKA angle (Frontal Plane) 

0° 0° -1.29° 
2.5° 1.49° 0.2° 
5° 3.97° 2.7° 
7.5° 5.27° 3.9° 
10° 7.94° 6.6° 
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6.3.1 How to determine optimal alignment 
 

As mentioned in Chapter 2, it is surprising after several decades of osteotomy that 

there is little agreement between studies on the ideal alignment. Although the 

"Fujisawa point" which targeted a lateral shift of the weight bearing line to a 

maximum of 62.5% of the medial to lateral width of the tibia plateau (equivalent to 

3.5° of valgus) [54] has gained the most recognitions in literature [11], large amount 

of clinical studies recommended different HKA alignment varying from 2° valgus up 

to 8° valgus [6, 7, 10, 38, 46, 87]. The possible reason caused such debatable issues 

may be due to different surgical techniques, population and statistical analysis used 

in these separate studies. More importantly, the patient’s variability rises as another 

possible reason to this controversial HKA alignment recommendation. Does an 

individualised HKA angle provide better outcome for HTO patient? 

 

Since there remains lack of biomechanical evidence to rigorously define the optimal 

correction angle in an individual patient, a more direct way to investigate the 

alignment optimisation by analysing the knee joint loading in vivo has been carried 

out in this study. The desired alignment will determine the angle to which the medial 

compartment is unloaded and the lateral compartment loaded, with an implication for 

potential chondral regeneration medially and degeneration laterally [88]. The balance 

of loading between two compartments could be critical to the success of HTO. 

Presumably the appropriate correction is the minimum over-correction (i.e. slightly 

valgus) necessary to achieve unloading in medial compartment and prevent 

recurrence of varus deformity, thereby avoiding overloading on lateral compartment 

cartilage by excessive valgus.  

 



 

98 
 

Although the FE method should be able to quantify the internal loading in both 

compartments for determining a possible alignment by avoiding an overloading on 

lateral cartilage to achieve sufficient unload in medial cartilage for pain revival, the 

in vivo tolerance of human cartilage to contact stress and the direct correlation 

between pain and contact stress are unavailable. Therefore, it might be reasonable to 

assume the achievement of equal stress distributions between two compartments as a 

standard. Also this uniform loading situation most closely approximates 

physiological loading in neutral aligned lower limb and therefore represents an ideal 

outcome for patients [13].  

 

In this study, the recommended HKA angle is 6.6° of valgus when considering 

compressive stress and 3.9° of valgus when considering shear stress. The 

compressive stress is directly related to the pain while the shear stress is believed as 

an important factor of OA progression. Different recommendations based on 

considering peak shear stress and peak compressive stress is because the shear stress 

considered the tearing force resulted from internal moments compared to that 

compressive stress only considered the “pushing” force by functional loading, which 

implies that the change in shear stress is more sensitive to the variation in the 

correction angle (i.e. Smaller correction allows shear stress to have uniformly-

distribution between the two compartments comparing to compressive stress). 

Although the shear stress is believed to potentially affect the OA progression, 

compressive stress which directly relates to pain has been so far commonly accepted 

as a more critical factor in clinical HTO. Prior to adapting shear stress for optimising 

the HTO alignment in our approach more research is required on investigating how 

significantly the shear stress influences OA and HTO.  
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6.3.2 Comparison with biomechanical studies of HTO in literature 
 

To validate the feasibility of the method used in this study, the recommended 

alignment from the outcome of this study was compared with the published cadaver 

studies that have investigated the effect of the medial opening wedge HTO on the 

intra-articular cartilage pressure of the knee. One literature study performed 

osteotomy proximal to the distal attachment of the MCL on cadaveric specimens and 

observed an increased medial compartment pressure at a correction of 8°valgus [12], 

which is contradict to ours. The reason for the discrepancy between their study and 

this study may be related to the differences in the location of the osteotomy. The 

present study simulated an osteotomy distal to the MCL attachment and detected a 

reduction in medial compartment loading. This finding is consistent with Mina et al’s 

cadaver study [13] that also performed an osteotomy distal to the attachment. 

However, Mina et al recommended the alignments of 0° to 4° of valgus to achieve 

equally stress distribution between the two compartments which is somewhat lower 

than the present study.  

 

Such differences lead to a possible limitation of the current experiment, which is the 

use of a healthy knee to simulate clinical HTO. It may overestimate the required 

HKA in a clinical situation, because normally, the HTO patients may have had 

degeneration of medial meniscus and possible cartilage defects. In those cases, 

medial compartment unloading can be achieved with a smaller valgus correction 

angle. This may explain why the HKA of 6.6° valgus in this study is slight larger 

than the HKA angle recommended (2-5° valgus) in some recent publications [24, 25, 

89]. Although employing the standard healthy model in this study on real patients 

will be another crucial step, at the first stage of development, selection of health 
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subject is considered necessary and applicable to avoid the possible stress 

concentration causing confusion in the biomechanical interpretation of most critical 

results.  
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6.4 Implications and limitations 

 

The results from current study confirmed the hypothesis that the stress distribution in 

the medial compartment decreases as the loading axis shifted laterally; and also 

agrees with the previous research that observed medial opening wedge HTO was 

able to reduce the load in the medial compartment and disentangle the patient from 

OA in that compartment. Considering the importance of the cartilages and menisci in 

load dissipation that was established before, any excessive loading to both soft 

tissues can impose a greater risk of degeneration in the underlying bones; and thus 

contribute to the mechanical pathway leading to new onset and progression of OA. 

According to the FEA results obtained, the stress distribution, especially the shear 

stress which was considered a critical factor for accelerating the cartilage worn and 

progression of OA, on the lateral compartment increased as loading axis shifted 

laterally. This might indicate the initiation of the subsequent OA on the lateral 

cartilages. Therefore, a uniformly-distributed stress in both the compartments would 

be more ideal for preventing OA. This may be another consideration for deciding the 

optimal correction angle.  

 

Although a uniformly-distributed stress in both compartments might be ideal for 

preventing OA in terms of mechanical concept, the recognised guideline of optimal 

HTO correction is still unavailable in literature. Therefore the present study focused 

on providing a new procedure to explore this debatable issue in a way of pre-

operatively mechanical loading evaluation rather than providing an answer to this 

issue. This subject-specific non-invasive analysis of stress distribution that provided 

a quantitative insight into evaluation of the mechanical responses in the soft tissues 
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within knee joint as a result of adjusting the loading axis, may be used as a 

preoperative assessment tool to predict the consequential mechanical loading 

information for surgeon to decide the patient specific optimal angle. A feasible way 

could be to use computer navigation system for helping surgeon to achieve greater 

precision in implementing the exact correction angle that is considered most 

appropriate.  

 

The key biomechanical limitation of this study is that the non-linear behaviours of 

the material properties of cartilage were not considered here. Although the cartilage 

were taken into account as linearly homogenous isotropic material in most of the 

previously studies published in literature, the real cartilage can behave nonlinearly, 

e.g. in a viscoelastic fashion. There are no studies actually investigated the influence 

of the viscoelastic behaviour of the femoral and tibia cartilage on the FEA results due 

to the short time span considered in those studies. Nevertheless, considering such 

non-linearity in FEA will generate more realistic results and definitely be a valuable 

motivation for future study.      

 

Another limitation resides in neglecting muscle forces. The contribution of the 

muscle forces increases the total compressive forces at the knee three to six times the 

body weight during the gait cycle [90, 91]. However, the subject-specific muscle 

forces cannot be calculated using the inverse dynamic method discussed above. 

"Muscle force reduction method" introduced by Morrison [21] has been commonly 

used in biomechanics studies on knee joint to calculate the muscle forces. But the 

calculation of the muscle forces was based on the substantial assumption of 

generalising the position of the major muscle attachment and the line of action of 
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each muscle group. This limits the way to applying subject specific loading data 

more accurately. The use of EMG-driven models may provide improved data for 

individual muscle forces when applied to the FE model [92]. However, it is fairly 

challenge to use the EMG-driven models at this stage of studies due to limited 

resources available. In summary, the current FE studies did not consider the muscle 

forces and may underestimate the cartilage stresses. Nevertheless, the symmetric 

muscle force would mainly affect the stress magnitude rather than the distribution.  
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Chapter 7 Conclusion and future 
work 
 

In this study, the 3D subject-specific finite element analysis was carried out to 

investigate the effect of post-operative alignment of the medial opening wedge HTO 

on the stress distribution at the cartilage and meniscus in knee joint. The finite 

element models involved in the present study were constructed based on the subject-

specific MR images and had been validated with the literature data by comparing the 

contact pressures at the cartilage and meniscus under identical loading condition.  

 

Our results showed that both the compressive and shear stresses at the cartilage of 

the medial compartment decrease as the valgus correction angle of the medial 

opening wedge HTO increases. In addition, the stress distribution at the medial 

cartilage became more uniform as the loading axis shifting to the lateral 

compartment. These results strongly support the hypothesis in this study.  

 

Considering the lack of a standardised HTO alignment and no FEA studies have 

investigated the effect of correction angle of HTO on the stress distribution on the 

soft tissues in literature, the present study focused on establishing a new systematic 

method to explore this debated issues in a way of pre-operatively mechanical loading 

evaluation rather than providing an answer to this tissue.  

 

After comparing with those published studies that investigated the effects of 

correction angle of HTO on either the clinical outcome or the biomechanical 



 

105 
 

outcome (e.g. stress distribution), results in this study are well correlated to the 

clinical data and recommendation in literature. More importantly, this patient-

specific non-invasive analysis of stress distribution that provided a quantitative 

insight to evaluate the mechanical responses of the soft tissue within knee joint as a 

result of adjusting the loading axis, may be used as a preoperative assessment tool to 

predict the consequential mechanical loading information for surgeon to decide the 

patient specific optimal angle.  

 

In order to obtain more reliable and persuasive results for deciding the optimal HTO 

correction angle, improvements in this study are required. Firstly, the muscle force 

could play an important role in the biomechanics of the knee joint during functional 

activities and therefore considering both magnitude of the net knee joint loading 

(muscle force combined with total reaction forces) and the location of applying the 

muscle forces would increase the overall stress magnitudes on the cartilage and 

meniscus, and possibly change the patterns of the stress distribution. Secondly, 

assigning the non-linearly behaved material properties to other soft tissues could be 

another potential area of improvement for the future work. It will surely increase the 

modelling accuracy. Therefore, the effort to overcome the challenges of these two 

limitations would be worthy in future study on this topic.  

 

Furthermore, repeating the investigation on a number of real patients operated with 

clinical HTO procedures will allow for a better comparison of results. Gaining 

greater biomechanical and clinical insights will be expected by determining whether 

similar stress distributions are obtained across different patients, and whether the 

same patterns of stress distribution would exist in different patients.  
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Despite its limited generalisability and the need for further validation, the concept 

introduced here may develop into a useful procedural technique for patient-specific 

preoperative planning of HTO for medial compartment knee OA. 
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Appendix A 
 

Detail sketch of calculating the specific translations to simulate the HTO, including 
all dimensions.  
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Appendix B 
 

Actual correction angles on the frontal plane 

0° correction  

 

  



 

109 
 

2.5° correction  
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5° correction  
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7.5° correction  
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10° correction  
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Appendix C 
 

Table 6. Maximum Compressive stresses (MPa) on menisci and cartilages 

Tissues Maximum 
Normal Stress 
0° 

Maximum 
Normal Stress 
2.5° Valgus 

Maximum 
Normal Stress 
5° Valgus 

Maximum 
Normal Stress 
7.5° Valgus 

Maximum 
Normal Stress 
10° Valgus 

Medial 
Meniscus  

6.4 6.1 5.5 5.2 4.9 

Lateral 
Meniscus 

2.4 2.8 3.1 3.6 3.9 

Medial 
Femoral 
Cartilage 

7.7 7.4 7.2 7.1 6.9 

Lateral 
Femoral 
Cartilage 

3.3 3.4 3.8 4.1 5.6 

Medial 
Tibia 
Cartilage 

5.8 5.6 5.2 5.0 4.9 

Lateral 
Tibia 
Cartilage 

3.3 4.1 4.8 5.6 5.8 

 

Table 7. Maximum shear stresses (MPa) on menisci and cartilages 

Tissues Maximum 
Shear Stress 
0° 

Maximum 
Shear Stress 
2.5° Valgus 

Maximum 
Shear Stress 
5° Valgus 

Maximum 
Shear Stress 
7.5° Valgus 

Maximum 
Shear Stress 
10° Valgus 

Medial 
Meniscus  

6.3 6.2 5.9 5.8 5.7 

Lateral 
Meniscus 

3.2 3.7 3.9 4.3 5.3 

Medial 
Femoral 
Cartilage 

4.7 3.7 3.6 3.5 3.4 

Lateral 
Femoral 
Cartilage 

2.7 3.1 3.6 3.7 4.1 

Medial 
Tibia 
Cartilage 

4.0 2.9 2.6 2.5 2.0 

Lateral 
Tibia 
Cartilage 

2.0 2.3 2.3 2.4 2.5 
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