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Abstract

We study properties and dynamics of Bragg grating solitons in a system of linearly

coupled Bragg gratings equipped with Kerr nonlinearity. The e�ects of dispersive

re�ectivity on the behaviour of gap solitons in the system are also investigated. To

this end, nonlinear coupled mode equations are solved numerically.

Gap solitons, whether quiescent or moving are found to exist throughout the

bandgap of the structure. We show that the system supports two types of symmetric

and asymmetric gap solitons that can have any velocities from zero to the speed of

light in the medium. At given soliton parameters a critical coupling coe�cient,

bifurcation point, is found above which only symmetric solitons exist. Below the

bifurcation point however, both types of gap solitons may exist at the same time.

Linear forms of coupled mode equations are solved analytically. We show that

these solutions are in excellent agreement with the gap soliton tails. This is done in

both cases of quiescent and moving gap solitons. Interestingly, dispersive re�ectivity

results in the change of soliton pro�les. Also, using the linear analysis a condition is

found for the gap solitons to have sidelobes in their tails.

Stability of gap solitons are investigated using systematic numerical simulations.

A general rule for the stability of both quiescent and moving gap solitons is concluded:

it is found that when dispersive re�ectivity is zero, asymmetric solitons are stable

for ω & 0. While with increase of dispersive re�ectivity the stable region expands

into the negative frequencies. Symmetric solitons on the other hand are found to be
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stable where they exist on their own.

Interactions of quiescent gap solitons in the model are studied numerically. Through

various simulations we found that interactions of quiescent solitons generally depend

on the initial separation (∆x) and phase di�erence (∆ϕ). However, when the dis-

persive re�ectivity parameter is small, ∆x-dependence is very weak. Depending on

the parameters, interactions are found to result in a number of outcomes including

merger into a single quiescent soliton, destruction of solitons, formation of a bound

state that eventually breaks up into two separating solitons, formation of two moving

and one quiescent soliton and repulsion of solitons. A key �nding is that destruction

and 2→ 3 transformation can occur even if dispersive re�ectivity is absent.

In the case of moving solitons, collisions of counter-propagating gap solitons

are investigated. In-phase collisions are studied and several outcomes are identi�ed

among which merger of the solitons into a single quiescent and 2 → 3 transforma-

tion are the most interesting ones. On the contrary, out-of-phase collisions generally

result in the repulsion of the pulses.
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Chapter 1

Introduction

1.1 Optical Communications: Overview

High-speed long-distance communication is an essential part of today societies. Every

year the rate at which digital information is carried over telecommunication networks

increases exponentially. This demands for new technologies that o�er higher band-

width, more reliability, better management, more versatility, and more importantly

less cost. Optical communication specially �ber-based networks play a vital role in

connecting today's users across the world. Theoretically, the optical carrier o�ers

low-loss transmission over a wide range of frequencies of about 50 THz. In addition,

other advantages such as low cost, easy installation, signal security compared to

many other media, life more than 25 years, wider bandwidth i.e. accommodation of

more channels, no electromagnetic interference (EMI), and abundant availability of

raw material makes �ber the ideal communication medium among all other types of

transmission media [1].

Historically, the �eld of �ber optics developed rapidly starting from 1960s when

Light Ampli�cation by Stimulated Emission of Radiation, i.e. LASER, was invented.

It soon exploded during 1970s with the development of new �ber fabrication tech-
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CHAPTER 1. INTRODUCTION 2

nologies [2] and became a communication revolution with the invention of low loss

�bers in 1979 [3]. The fast-paced development of the �eld of optics, and generally

communications, has been due to the exponentially-increasing need for transmitting

digital data, which initially was in the form of voice signals but soon digitized images

came into play which demanded for transmission of huge volume of data in the back-

bone networks altogether. This was not possible with the use of traditional copper

cables which were the main medium.

With signi�cant decrease in �ber loss by using 1550 nm band, there were still

other e�ects preventing long-distance communication channels: dispersion and non-

linearity. This led to the invention of dispersion-shifted �bers and discovery of many

nonlinear e�ects such as birefringence, Self-phase modulation, stimulated Raman

scattering (SRS) and stimulated Brillouin scattering (SBS) [4]. It was a result of

the advancements of nonlinear optics during 1970s and 80s that optical solitons were

developed and later on observed experimentally.

The advancements of �ber optics continued at even a faster pace with the inven-

tion of Erbium-dopped �ber ampli�ers (EDFA) in 1987 which allowed ampli�cation

in the 1550 nm wavelength region and reduction in cost and ampli�er noise com-

pared to the existing optical or electro-optical ampli�ers. In a 1998 study various

transmission experiments are reviewed in which transmission capacities of up to 1

Tb/s and greater are achieved over a single �ber using di�erent techniques [5]. With

the use of �ber ampli�ers and incorporating gratings, which were �rst made in 1987,

the �eld of optical solitons also became a hot topic among researchers and scientists

which continues to date. In the next section we will brie�y review optical solitons

history and their importance in today's communication network.
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1.2 History of Optical Solitons

Optical solitons are one of the most enchanting phenomena found in optical �bers

which occur as a result of the balance between the �ber nonlinearity and dispersion.

Solitons, being special types of waves that can propagate undistorted over long dis-

tances, have been discovered in many branches of physics. Historical records show

that the �rst observation of solitons date back in 1834 when John Scott Russell ac-

cidentally watched the motion of water heaps in a narrow channel [6]. The waves

propagated for long distances keeping their shape and speed, as he stated in his

report.

In 1965 Norman Zabusky and Martin Kruskal demonstrated solitary waves in

plasmas subject to the Korteweg�de Vries equation (known as KdV equation) via

computational techniques using a �nite di�erence method [7]. They coined the term

�soliton� to point out the particle-like behavior of such waves specially during colli-

sions. In contrast to solitons, water waves change their amplitude when interact with

each other, which is why they are not solitons; sometimes called solitary waves in

the literature to di�erentiate their properties from solitons. Nonetheless, scientists

have used the term soliton to refer to any types of waves that are of permanent form

and can interact with one another without change of shape.

KdV equation was �rst derived in 1895 to explain soliton-like waves in shallow

waters. In its simplest form KdV equation can be expressed as,

∂u (z, t)

∂t
+ 6u

∂u (z, t)

∂z
+
∂3u (z, t)

∂z3
= 0, (1.1)

where u (z, t) represent the amplitude of the �eld envelope, propagating along z.

Analytical solutions of KdV were not found only until 1967 when inverse-scattering

method was discovered by Gardner, Greene, Kruskal and Miura [8]. It was shown
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that Eq. (1.1) supports solutions of the form

u (z, t) =
v

2
sech2

[√
v

2
(z − vt)

]
, (1.2)

where v is the soliton velocity, and sech () is the secant hyperbolic function. Since

then, the inverse-scattering method have been applied to various nonlinear evolution

equations. The discovery of inverse-scattering method was a great mathematical

step forward particularly in explaining solitary waves in other branches of physics

such as hydrodynamics, and quantum mechanics [9].

In optics, one equation that is commonly used to describe the propagation of the

waves through a nonlinear medium is the well-known nonlinear Schrödinger equation

(NLSE). The equation models many nonlinearity e�ects in a �ber, including but not

limited to self-phase modulation (SPM), four-wave mixing, second harmonic gener-

ation, and stimulated Raman scattering (SRS) [10]. In simple form it is expressed

as [4],

i
∂u

∂z
− β2

2

∂2u

∂T 2
+ γ |u|2 u = 0, (1.3)

where u (z, t) is the �eld envelope, β2 is the group velocity dispersion (GVD) param-

eter which is positive for normal dispersion and negative in the anomalous dispersion

region. γ is the nonlinear parameter responsible for SPM. Equation (1.3) has been

referred to as the master equation for information transfer in optical �bers [1].

NLSE is an integrable system meaning that it is possible to solve Eq. (1.3)

analytically using inverse-scattering method. This was done in 1972 by Zakharov

and Shabat which resulted in the soliton solutions of the NLSE. It was shown that

based on the sign of the GVD parameter being positive or negative, dark or bright

solitons can exist in the �ber, respectively. It was also shown that �rst order bright

solitons maintain their shape while propagating along the �ber. In contrast higher

order solitons, whose amplitudes are integer-multiples of the fundamental soliton,
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change shape in a periodic fashion.

In 1973, Hasegawa and Tappert demonstrated the stability of picosecond op-

tical pulses in the form of solitons in glass �bre, by performing various computer

simulations [11,12]. It was the �rst time that the use of solitons in optical communi-

cations was theoretically suggested. Their work, eventually led to the experimental

observation of solitons in optical �ber in 1980 [13].

The number of papers that were published in the area of nonlinear optics during

1970s and 1980s is so large that it is not possible to list them here. Solitons among

other topics were of particular interest as they found to be suitable candidates for

potential all-optical and slow-light applications. The research e�orts around solitons

particularly intensi�ed after the discovery of solitons in periodic guide structures

such as nonlinear Bragg gratings [14]. Taking advantage of strong dispersion of

Bragg grating, it was possible to generate solitons in distances as short as a few

centimeters; the grating length. By late 1990s it was shown both numerically and

experimentally that Bragg grating solitons can have any velocities between zero to

the speed of light. This opened the gate to a whole new research area and seeded

the idea of optical bu�ers and memories or in a more general sense optical signal

processing specially slow light.

1.3 Thesis Outline

In this thesis we study properties of Bragg grating solitons in a system of linearly

coupled Bragg gratings. To this end, this work is structured as follow: due to their

importance, in Chapter 2 we will brie�y review �ber Bragg gratings and generation

of optical solitons in the photonic bandgap of the gratings. Properties of Bragg

grating solitons or gap solitons are then reviewed through coupled mode equations.

Properties of directional couplers and their use in nonlinear applications, particularly
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grating-assisted couplers, are then investigated and described. An in-depth deriva-

tion of nonlinear coupled mode equations, describing two linearly coupled gratings,

starting from Maxwell's equations is given in Chapter 3. Coupled mode equations are

generalised at the end of Chapter 3 by inclusion of dispersive re�ectivity parameter

that takes into account nonuniformities in gratings.

Chapter 4 deals with numerical techniques and methods that are used in com-

puter simulations to �nd soliton solutions and also to propagate the solitons in the

structure. The results are then divided into two subsequent chapters. Chapter 5 is

dedicated to the study of zero-velocity or quiescent solitons in the model. Chapter

6 deals with the existence, stability and interactions of moving solitons in the struc-

ture. The thesis is summarized in Chapter 7 where also a few ideas are outlined to

further extend the research in this area.



Chapter 2

Optical Waveguides

2.1 Fibre Bragg Gratings

Gap solitons were originally introduced in the framework of superlattices [15]. This

discovery has led to extensive research, focusing on their characteristics and exper-

imental observation in nonlinear optical media [16, 17, 19�25] and, more recently,

Bose�Einstein condensation (BEC) [26�30]. An optical medium that has been at

the center of activity is the �ber Bragg grating (FBG). FBGs are produced by vary-

ing the refractive index along an optical �ber. Their compactness, ease of fabrication

and the ability to design their spectral response have made them the device of choice

for various applications both in the linear and nonlinear regimes such as disper-

sion compensation, pulse compression, �ltering, add-drop multiplexing (ADM) and

sensing [14,31�36].

There are various techniques to make �ber gratings. Four of which have been

commonly used are known as the single-beam internal technique, the dual-beam

holographic technique, the phase-mask technique, and the point-by-point fabrica-

tion technique [37]. The fabrication of �ber Bragg gratings typically involves the

illumination of the core material which is photosensitive with ultraviolet laser light,

7
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which induces some structural changes i.e. permanent variations of the refractive

index. In addition the photosensitivity of the �ber is strongly dependent on the

chemical composition of the core as well as the laser wavelength. For instance sil-

ica glass has a very weak photosensitivity, whereas Germanosilicate glass exhibits a

much stronger e�ect, making a refractive index modulation depth of up to ∆n ∼ 10−3

possible [31,37,38].

A schematic diagram of the periodic refractive index inside a FBG core is shown

in Figure 2.1(a) where n is the average refractive index of the core, and Λ is the

grating period. An important feature of FBGs is that, due to the periodic (or ape-

riodic) perturbation of refractive index, their linear spectrum contains a photonic

bandgap, centered at the Bragg wavelength λ0 = 2nΛ, in which low-intensity light

experiences high re�ectivity. Physically, when the wavelength of the incident light

is equal to λ0, exactly half the wavelength �ts in one grating period causing the re-

�ected waves o� the local nonuniformities to be in-phase, thus giving rise to a strong

backward-propagating wave [19]. At wavelengths far from the phase-matching condi-

tion, re�ected waves are not constructive and the light can pass through the structure,

making the grating an optical band-stop �lter. Additionally, cross-coupling between

the forward- and backward- propagating waves leads to a strong e�ective dispersion

which may be six orders of magnitude larger than the underlying material dispersion

of the �ber [19,22,25].

Wave propagation in FBGs, and generally periodic media, is usually governed

by coupled mode theory. Here, we brie�y review the features of FBGs described

mathematically using the coupled mode equations. Detailed derivation of the general

case of nonlinear coupled mode equations is given in the next chapter.

In coupled mode theory it is assumed that the guided modes of the structure can

be expressed in terms of the modes of the unperturbed waveguide. In the case of

a single mode �ber equipped with gratings, it has been shown that electromagnetic
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z
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

Λ

∆n

(a)

0
k

0
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(b)

cκ/n

-cκ/n

Figure 2.1: (a) Refractive index variation along the length of a uniform �ber Bragg
grating, and (b) dispersion relation of the uniform FBG in the plane of (k, ω).

waves admit the following equations [19],

i
∂E+

∂z
+ i

n

c

∂E+

∂t
+ κE− = 0, (2.1a)

−i∂E
−

∂z
+ i

n

c

∂E−

∂t
+ κE+ = 0, (2.1b)

where c is the speed of light in vacuum, and E+and E− are the forward- and

backward- propagating waves, respectively. κ is the grating coupling coe�cient de-

�ned as below,

κ ≡ ω0∆ε

2nc
. (2.2)

It should be noted that κ in general is more complex and includes transverse vari-

ations of refractive index (cf. Ref. [37] page 12), however in the uniform case it

simpli�es to Eq. (2.2). Equations (2.1) are the linear coupled mode equations that

can be generalized to include nonlinear and higher order e�ects. Before explaining

the generalization of the equations, it is useful to look at the dispersion relation

associated with the structure. To this end, we look for envelope functions of the
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form,

E± (z, t) = A±e−i(ωt−kz), (2.3)

where A± are constants. Substituting (2.3) into (2.1b), the following equations in

the matrix form are obtained,

 n
c
ω − k κ

κ n
c
ω + k


 A+

A−

 = 0, (2.4)

which leads to the following dispersion relation:

ω = ± c
n

√
k2 + κ2. (2.5)

Equation (2.5) is plotted in Figure 2.1(b) where clearly shows that there is a gap in

the spectrum for the frequencies in the range |ω| < cκ/n. It should be noted that

the gap is centered at (k0, ω0) and ω in Eq. (2.5) can be thought of as detuning from

the Bragg frequency; this can be shown by translating the coordinates introducing

ω ≡ ω′ − ω0 and k ≡ k′ − k0 (cf. Ref. [19]).

The re�ection bandwidth, from Eq. (2.5) is obtained as ∆ω = 2cκ/n, which may

be expressed in the form of �lter Q-factor, i.e.

ω0

∆ω
≈ n

∆n
. (2.6)

The latter shows that re�ection bandwidth depends on the modulation depth. Also

tells us that standard gratings with typical ∆n ∼ 10−4 have quality factors of the

order of & 104.

First and second order dispersion, representing the group velocity and group

velocity dispersion, are obtained from the �rst and second order derivatives of Eq.

(2.5), respectively. It is obvious that near bandgap edges the structure exhibits
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strong dispersion which, as mentioned earlier, dominate the material dispersion.

2.2 Kerr-type Nonlinear Gratings

All the materials that are found in nature are nonlinear. That is their response to

electromagnetic waves depends on the intensity of the waves and may even change

over time. The origin of this behavior in physics is described through the nonlinear

relationship between the electromagnetic �eld and its induced material polarization

[4], i.e.

P = ε0

(
χ(1) · E + χ(2)·̇EE + χ(3)...EEE + · · ·

)
, (2.7)

where χ(m) is the m-th order susceptibility which in general is am+1 rank tensor. In

silica �ber the e�ects of χ(2) are negligible due to symmetrical molecules of silica [4].

Therefore the lowest-order nonlinear response is due to χ(3) which causes e�ects

such as third-harmonic generation, four-wave mixing, self-phase modulation, and

cross-phase modulation, of which we only consider the last two in this work. The

intensity dependence of the refractive index of the �ber is a direct result of the above

polarization relation. In simple form,

n = n0 + n2 |E|2 , (2.8)

where |E|2 is the intensity of light inside the �ber and n2 is the nonlinear index or

Kerr coe�cient related to χ(3). The values of n2 are typically small, on the order of

∼ 10−20m2W−1.

Taking Kerr-type nonlinearity into account the linear coupled mode Eqs. (2.1)
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takes the form (for detailed derivation refer to Section 3.2) [19,39],

i
∂E+

∂z
+ i

n

c

∂E+

∂t
+ κE− + γ

(∣∣E+
∣∣2 + 2

∣∣E−∣∣2)E+ = 0, (2.9a)

−i∂E
−

∂z
+ i

n

c

∂E−

∂t
+ κE+ + γ

(∣∣E−∣∣2 + 2
∣∣E+

∣∣2)E− = 0, (2.9b)

where the nonlinear parameter γ is obtained as

γ =
n2ω0

cAeff
, (2.10)

where Aeff is the e�ective mode area of the unperturbed �ber (cf. Ref. [4] page 35).

Equations (2.9) are the nonlinear coupled mode equations (NLCMEs). Fourth and

�fth terms in Eqs. (2.9) account for self-phase modulation (SPM) and cross-phase

modulation (XPM) contributions, respectively.

Coupled mode equations are often expressed in dimensionless form which reduce

the number of parameters that must be investigated. It is straightforward to show

that Eqs. (2.9) remain the same for the following rescaling,

z → z

κ
, t→ n

κc
t, (2.11)

E+ =

√
κ

2γ
u, E− =

√
κ

2γ
v, (2.12)

which results in the following normalized nonlinear coupled mode equations,

i
∂u

∂z
+ i

∂u

∂t
+ v +

(
1

2
|u|2 + |v|2

)
u = 0, (2.13a)

−i∂v
∂z

+ i
∂v

∂t
+ u+

(
1

2
|v|2 + |u|2

)
v = 0. (2.13b)

It has been shown that Eqs. (2.13) have traveling-wave solutions whose frequencies

are well inside the photonic bandgap of the structure which would normally be Bragg

re�ected; the so-called Gap Solitons. One of the striking features of gap solitons is
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that they can propagate undistorted through the grating at any velocities in the

range of zero to the speed of light in the medium. This feature was �rst described

theoretically in Refs. [20, 21]. Gap solitons had not been observed until 1996 when

moving solitons were experimentally veri�ed for the �rst time by Eggleton et al. [24].

In the next section analytical soliton solutions of the nonlinear coupled mode

equations (2.13) are discussed with the objective of giving the reader an overview of

the characteristics of gap soliton solutions in periodic media.

2.3 Bragg Grating Solitons

Analytical solutions of the nonlinear coupled mode equations (2.13) have been well

studied in many references before [14, 20, 21]. The model admits a two-parameter

family of gap solitons that �ll the entire bandgap whose velocity may range from

zero (quiescent) to the speed of light in the medium. Solutions of Eqs. (2.13) i.e.

gap solitons may be expressed in the following form [17]

u = +αW (X) exp
[y

2
+ iϕ (X)− iT cos (θ)

]
, (2.14a)

v = −αW ∗ (X) exp
[
−y

2
+ iϕ (X)− iT cos (θ)

]
, (2.14b)

where X and T are given by

X =
x− V t√
1− V 2

, T =
t− V x√
1− V 2

, (2.15)

where V is the group velocity of the soliton. Also,

α−2 = 1 +
1

2
cosh (2y) , (2.16)

ϕ (X) = α2 sinh (2y) arctan

[
tanh (X sin (θ)) tan

(
θ

2

)]
, (2.17)

W (X) = sin (θ) sech

[
X sin (θ)− iθ

2

]
. (2.18)
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Thus, the two parameters of the gap solitons are rapidity y and the detuning pa-

rameter θ. The former is related to the soliton group velocity through V = tanh (y)

while the later determines the frequency detuning inside the gap spectrum [17].

Experimental studies have con�rmed the existence of gap solitons in nonlinear

FBGs. To date, gap solitons with velocities as low as 23% of the speed of light

in the medium have been experimentally observed [18]. Numerical and analytical

studies of the stability of gap solitons have led to the conclusion that nearly half of

the gap soliton family, whose frequency detuning falls in the range −1 < cos θ < 0,

are unstable against oscillatory perturbations [16, 17, 23]. It is worth pointing out

here that Eqs. (2.13) are a non-integrable system that can explain special features

of gap solitons that do not exist in the case of nonlinear Schrodinger (NLS) solitons

described through Eq. (1.3). More speci�cally, gap solitons exhibit feature rich

collisions in both co- and contra-propagating cases which do not happen for the

NLS solitons. For example based on the relative phase of the colliding solitons,

the fundamental properties of both solitons such as frequency, velocity or even the

number of solitons may change after the collision. This is further investigated in

Chapters 5 and 6 where interactions and collisions of quiescent and moving gap

solitons are studied, respectively.

2.4 Directional Couplers

Optical couplers, often called directional couplers, are one of the most commonly used

devices in optical networks that split the light into two or more physically separated

parts [37]. While they have been extensively studied in linear applications, optical

couplers in nonlinear regime play an essential role in all-optical applications such

as switching, ampli�cation and logic operations [40�42]. Directional couplers can

be made using planar waveguides or �bers. Our focus in this thesis is on �ber-
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based couplers. When two �bers are placed (fused) next to each other so that the

cores are close enough, the fundamental modes propagating in each core may overlap

partially in the cladding region between the two cores resulting in the power transfer

between the two cores. This means that the coupling coe�cient of a coupler depends

on the spacing of the cores as well as the mode distributions. To have an in-depth

understanding of the characteristics of couplers, following the approaches in Refs. [37]

and [43], in this section we derive the equations describing a nonlinear coupler using

coupled mode theory.

In coupled mode theory, as mentioned also in Section 2.1, it is assumed that the

variations of dielectric constant (or refractive index) are so small that can be taken

into account as perturbations of the modes of the unperturbed waveguide. Therefore

the dielectric tensor representing the compound structure can be written as [43],

ε (x, y, z) = εr (x, y) + ε̃ (x, y, z) + εNL (x, y, z) (2.19)

where the �rst, second and third terms account for the unperturbed, periodic along

z direction, and nonlinear parts of the dielectric tensor, respectively. The modes of

the unperturbed structure can be expressed in the form

Fm (x, y) e−i(ωt−βmz) (2.20)

where m is the core index, βm is the mode propagation constant, and Fm (x, y) is the

transverse mode distribution in m-th core which is in the form of Bessel functions in

the case of �ber couplers. Note that we study the case of coupled single mode �bers

where only one mode is con�ned within each core. Each mode is known to satisfy

the wave equation,

[
∇2
T + ω2µεr (x, y)− β2

m

]
Fm (x, y) = 0. (2.21)
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It is assumed that the electric �eld in the coupler can be expressed in the form

E (x, y, z, t) =
[
E1 (z)F1 (x, y) e−iωt + E2 (z)F2 (x, y) e−iωt

]
eiβz, (2.22)

where Em (z) are �eld envelopes in the m-th core, and β is the propagation constant

to be determined. In fact in Eq. (2.22) the variables are separated which is a common

method in solving the wave equation and generally ordinary di�erential equations.

Here we also assume that the two cores are identical (a more general derivation for

asymmetric couplers are available in Ref. [37]). Substituting (2.22) into the wave

equation [
∇2
T + ω2µε (x, y, z)− β2

]
E = 0, (2.23)

and using Eqs. (2.19) and (2.21) the nonlinear coupled mode equations are obtained

as,

i
∂E1

∂z
+
n

c

∂E1

∂t
+
β2

2

∂2E1

∂t2
= KE2 + γ

(
|E1|2 + σ |E2|2

)
E1, (2.24a)

i
∂E2

∂z
+
n

c

∂E2

∂t
+
β2

2

∂2E2

∂t2
= KE1 + γ

(
|E2|2 + σ |E1|2

)
E1, (2.24b)

where β2 is the group velocity dispersion parameter, K is the linear coupling coe�-

cient de�ned as,

K =
k0

2β

ˆ ˆ ∞
−∞

(
n2 − n2

1

)
F ∗1F2dxdy, (2.25)

where n2
1 = εr and the nonlinear coe�cient γ is de�ned in Eq. (2.10). The cross-

phase modulation (XPM) parameter σ is de�ned as

σ =

´ ´∞
−∞ |F1|2 |F2|2 dxdy

2
´ ´∞
−∞ |F1|4 dxdy

. (2.26)

It should be noted that the denominator in Eq. (2.26) can also be 2
´ ´∞
−∞ |F2|4 dxdy,

because the two cores are identical. From Eq. (2.26) it is clear that σ is generally
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very small and negligible, because it accounts for the overlap of the transverse mode

distributions in the cladding region.

It is often convenient to assume that the cores of the couplers are identical, as we

did above. However, in practice there are many reasons that couplers may become

asymmetric. For instance, couplers composed of cores with di�erent nonlinear prop-

erties have been studied before [45, 46]. It has been shown that such devices may

have interesting properties that do not exist in simple couplers. For example couplers

may be equipped with Bragg gratings which leads to striking features discussed in

the next subsection.

2.4.1 Grating-Assisted Couplers

First studied in planar waveguides, grating-assisted couplers make use of periodic

variation of refractive index to improve the power transferred between the two cores

of the coupler, even though the cores are weakly coupled or highly mismatched [44].

Periodic refractive index, which in the case of planar waveguides means periodic cou-

pling constant, is made by periodic changes in the dielectric slab thickness. However

in the case of �ber-based couplers it is not feasible to perturb the diameter of the

core, instead �bers can be equipped with Bragg gratings. Therefore the coupling

coe�cient remains almost constant along the coupler length. In either of the cases,

the period of the gratings is selected in such a way that the mismatch between the

propagation constants of the two unperturbed cores equals the grating wave vector,

i.e.

β1 − β2 =
2π

Λ
, (2.27)

which is known as the Bragg or phase matching or resonant coupling condition

[37,43]. It has been shown that under the phase matching condition complete power

transfer between the modes of each core is possible [47�49]. It has been shown that

a symmetric Kerr-type nonlinear grating-assisted coupler can be described via the
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following set of nonlinear coupled mode equations [37],

i
∂E+

1

∂z
+
n

c

∂E+
1

∂t
+ κE−1 + γ

(∣∣E+
1

∣∣2 + 2
∣∣E−1 ∣∣2)E+

1 +KE+
2 = 0, (2.28a)

−i∂E
−
1

∂z
+
n

c

∂E−1
∂t

+ κE+
1 + γ

(∣∣E−1 ∣∣2 + 2
∣∣E+

1

∣∣2)E−1 +KE−2 = 0, (2.28b)

i
∂E+

2

∂z
+
n

c

∂E+
2

∂t
+ κE−2 + γ

(∣∣E+
2

∣∣2 + 2
∣∣E−2 ∣∣2)E+

2 +KE+
1 = 0, (2.28c)

−i∂E
−
2

∂z
+
n

c

∂E−2
∂t

+ κE+
2 + γ

(∣∣E−2 ∣∣2 + 2
∣∣E+

2

∣∣2)E−2 +KE−1 = 0. (2.28d)

It should be noted that GVD is neglected which is an accurate assumption because

the dispersion length in such a structure is much larger than the grating length.

Equations (2.28) are derived in details in Section 3.2.

The �ber-based grating-assisted couplers have been studied and used widely in

Wavelength Division Multiplexing (WDM) systems [48,50,51]. In linear regime, when

a broadband WDM signal is launched inside one core of a coupler, the channel whose

wavelength falls within the stop band of the grating is re�ected back and appears at

the unused input port of the second core while the remaining channels appear at the

output end (cf. Figure 1 in Ref. [48]). Also a signal at the same speci�c wavelength

can be added by injecting it from the output port of the core without the grating.

Such grating-assisted �ber couplers have been fabricated and exhibit large add�drop

e�ciency (> 90%) with low losses [50]. These devices can also act as a switch such

that the channel is dropped only if its power exceeds a certain value: At low power,

the coupler couples the power from one normal mode to the other at resonance. At

high power, the nonlinearity-induced refractive index change detunes the resonance,

leaving all the power in the mode initially excited [47]. Applied to WDM signals, the

intensity-dependent shift of the Bragg frequency a�ects the channel to be dropped.

As a result, the device can act as a nonlinear switch. Complete discussions regarding

the principle of operation and design criteria of grating-assisted couplers can be found

in Ref. [37] (Section 2.4.3) and references mentioned therein.
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Theoretical Background

3.1 Introduction

Propagation of light as electromagnetic waves in a medium is in general governed by

Maxwell's equation [52],

∇× E = −∂B
∂t

(3.1a)

∇×H = J +
∂D

∂t
(3.1b)

∇ ·D = ρ (3.1c)

∇ ·B = 0, (3.1d)

where E and H are electric and magnetic �eld vectors, D and B are electric and

magnetic �ux density vectors, ρ and J are charge density and current density vectors,

respectively. Also,

D = ε0E + P, (3.2a)

B = µ0 (H + M) , (3.2b)

19
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where P and M are polarization and magnetization vectors, ε0 = 8.854× 10−12F/m

and µ0 = 4π×10−7H/m are the vacuum permittivity and permeability, respectively.

In a non-magnetic material (M = 0) such as optical �ber where charge and current

densities are zero, i.e. ρ = 0 and J = 0, by taking the curl of Eq. (3.1a) and using

(3.1b) it obtains

∇×∇× E = − 1

c2

∂E2

∂t2
− µ0

∂P2

∂t2
, (3.3)

where the speed of light c, permittivity ε0 and permeability µ0 in vacuum are related

through

c =
1

√
ε0µ0

. (3.4)

Substituting the left side of Eq. (3.3) by the curl of curl identity

∇×∇× E = ∇ (∇.E)−∇2E, (3.5)

and using Eq. (3.1c), the general wave equation is obtained,

∇2E− 1

c2

∂E2

∂t2
= µ0

∂P2

∂t2
. (3.6)

The induced polarization in Eq. (3.6) accounts for both linear and nonlinear e�ects

and can be splitted into two parts, P = PL+PNL, where PL and PNL are the linear

and nonlinear terms of polarization, respectively. They are expressed in terms of

electric �eld using the following well-known relations [4],

PL (r, t) = ε0

ˆ t

−∞
χ(1) (t− τ) · E (r, τ) dτ, (3.7)

PNL (r, t) = ε0

ˆ t

−∞

ˆ t

−∞

ˆ t

−∞
χ(3) (t− t1, t− t2, t− t3)

...E (r, t1) dt1dt2dt3,(3.8)

where χ(1) and χ(3) are �rst and third order electrical susceptibility. Equations

(3.6)-(3.8) can be used to explain most of the nonlinear e�ects in optical �ber such
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as third-harmonic generation, four-wave mixing, and nonlinear refraction [4]. It

should be noted that only third order nonlinearity is included in Eq. (3.8) because

in this thesis we study the systems with cubic or Kerr-type nonlinearity. Higher

order nonlinearities may become prominent in cases that are not dealt with in this

work, such as pulse propagation in Chalcogenide glass which is a highly-nonlinear

material [53] where including the �fth order susceptibility χ(5) results in non-trivial

quintic nonlinearity terms [54].

In deriving the NLCMEs in standard �ber, it is valid to assume that E (r, t)

does not have any components along the direction of propagation z and is polarized

along one direction in the transverse plane, i.e. E (r, t) = E (r, t) x̂ and as a result

P (r, t) = P (r, t) x̂. This means we assume that the polarization does not change as

the pulse propagates in the �ber, hence �ber birefringence is neglected, which is a

good approximation for soliton propagation in Bragg gratings. The wave equation

in (3.6) then takes the scalar form

∇2
TE +

∂2E

∂z2
− 1

c2

∂E2

∂t2
= µ0

∂P 2

∂t2
, (3.9)

where ∇T is the transverse operator. In linear and homogenous material with in-

stantaneous polarization response wave equation simpli�es to

∇2
TE +

∂2E

∂z2
− εr
c2

∂E2

∂t2
= 0, (3.10)

where εr = 1 + χ(1) is the relative permittivity of the material. Electric �eld distri-

bution in a single mode �ber (SMF) in low intensities (PNL = 0) can be derived by

solving Eq. (3.10) which leads to the Bessel function solutions. The solutions appear

in many text books [4, 55,56] and we do not include them here.

The problem of interest in this thesis is to study the e�ects of grating nonunifor-

mities on the characteristics of a system of two linearly coupled Kerr-type nonlinear
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�bers with gratings written on both cores. This involves solving the NLCMEs for

soliton solutions in the system. In Section 3.2, starting from the wave equation (3.9),

the mathematical model describing such a system is derived. Grating nonuniformi-

ties are then added to the obtained NLCMEs through the introduction of dispersive

re�ectivity in Section 3.3. We emphasize here that the inclusion of these equations

are solely for the completeness of this thesis and they are not author's original work.

Excellent derivations and thorough discussions about the approximations made in

the derivations can be found in [1, 4, 37, 43,57,58].

3.2 Nonlinear Coupled Mode Equations (NLCMEs)

Pulse propagation in the system of two linearly coupled nonlinear Bragg gratings

involves �nding the electric �elds E1 and E2 in cores 1 and 2. The electric �elds are

sought for in the form

E1 (r, t) =
1

2
F1 (x, y)

[
E+

1 (z, t) e−i(ω0t−k0z) + E−1 (z, t) e−i(ω0t+k0z) + c.c.
]
, (3.11a)

E2 (r, t) =
1

2
F2 (x, y)

[
E+

2 (z, t) e−i(ω0t−k0z) + E−2 (z, t) e−i(ω0t+k0z) + c.c.
]
, (3.11b)

where E+
1,2 are the slowly varying electric �eld envelopes of the forward-propagating

waves in core 1 and 2, respectively. Similarly E−1,2 are the slowly varying envelopes

of the backward-propagating waves which are induced as the result of grating re�ec-

tions. The abbreviation c.c. stands for complex conjugates. It is assumed that the

nonlinear e�ects and presence of grating do not a�ect the unperturbed �ber modes.

F1,2 (x, y) are the transverse distribution of the fundamental modes in core 1 and 2

in the absence of grating that satisfy wave equation (3.10), i.e.

∂2F1,2

∂x2
+
∂2F1,2

∂y2
+

(
εr1,2 (x, y)ω2

0

c2
− β2

1,2

)
F1,2 = 0, (3.12)



CHAPTER 3. THEORETICAL BACKGROUND 23

where β1,2 are the fundamental mode propagation constants and εr1,2 (x, y) are the

dielectric coe�cients of core 1 and 2, respectively. In equations (3.11) pulses are

assumed to propagate along z axis, ω0 and k0 are the frequency and wave number

at the Bragg condition

ω0 =
πc

nΛ
, (3.13)

k0 =
π

Λ
, (3.14)

where Λ is the grating period and n is the average refractive index inside the cores.

For simplicity, the medium is assumed to be isotropic, i.e. the nonlinear properties

of the medium are uniform in all the directions. The nonlinear response of the

medium is also assumed to be instantaneous. The latter means we neglect the Raman

e�ect which is a valid assumption as long as the pulse width is approximately greater

than 1 ps [4]. Under these assumptions, and in the presence of uniform gratings,

polarization can be expressed using Eqs. (3.7) and (3.8) in the following form,

P (r, t) = ε0 (εr (x, y)− 1 + ε̃ (x, y, z))E (r, t) + ε0χ
(3)E3 (r, t) , (3.15)

where for simplicity the susceptibility component χ
(3)
xxxx is shown with the same

notation as the susceptibility tensor. It should be noted that susceptibility in general

is a tensor of complex vector components but in an isotropic medium takes the form

of a symmetric diagonal tensor of complex scalars. In a Kerr-type material the real

and imaginary parts of the susceptibility account for linear and nonlinear refractive

index (i.e. n = n0 + n2 |E|2 where n2 is the nonlinear refractive index) and loss

coe�cient (i.e. α = α + α2 |E|2 where α2 is the two-photon absorption coe�cient),

respectively. Loss components are usually negligible in �ber couplers equipped with

gratings [47,48,51]. Therefore from here onward we treat the susceptibility as a real

number. One implicit assumption in Eq. (3.15) is that high frequency terms, i.e.
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third-harmonic terms, are neglected.

ε̃ (x, y, z) in Eq. (3.15) accounts for the spatial changes of refractive index because

of the grating and is a periodic function of z with the period of Λ, the grating period.

It is useful to expand ε̃ (x, y, z) into Fourier series [19],

ε̃ (x, y, z) =
∑
m

εm (x, y) e2ik0mz, (3.16)

where m is a non-zero integer. Only frequencies near the Bragg frequency ω0 take

part in the interaction of the waves (m = ±1) and higher order e�ects are neglected

for simplicity. It is known that the higher order e�ects can be incorporated into the

equations separately [4, 37]. Letting m = ±1 in Eq. (3.16), it follows,

ε̃ (x, y, z) = ε1 (x, y) e2ik0z + ε−1 (x, y) e−2ik0z = 2∆ε (x, y) cos (2k0z) , (3.17)

where ε1 = ε−1 = ∆ε. Substituting Eqs. (3.17) and (3.15) into Eq. (3.9) it yields,

∇2
TE +

∂2E

∂z2
− εr (x, y)

c2

∂E2

∂t2
− ε̃ (x, y, z)

c2

∂E2

∂t2
− χ(3)

c2

∂2

∂t2
(
E3
)

= 0. (3.18)

Noting that the total electric �eld in the compound structure is E = E1 + E2,

we substitute Eqs. (3.11) into (3.18). Here we evaluate each term of Eq. (3.18)

separately:

∇2
TE1,2 =

1

2
∇2
TF1,2 (x, y)

[
E+

1,2e
−i(ω0t−k0z) + E−1,2e

−i(ω0t+k0z) + c.c.
]
, (3.19)

∂2E1,2

∂z2
=

1

2
F1,2 (x, y)

[
∂2E+

1,2

∂z2
+ 2ik0

∂E+
1,2

∂z
− k2

0E
+
1,2

]
e−i(ω0t−k0z)

+
1

2
F1,2 (x, y)

[
∂2E−1,2
∂z2

− 2ik0

∂E−1,2
∂z
− k2

0E
−
1,2

]
e−i(ω0t+k0z) + c.c., (3.20)

∂2E1,2

∂t2
=

1

2
F1,2 (x, y)

[
∂2E+

1,2

∂t2
− 2iω0

∂E+
1,2

∂t
− ω2

0E
+
1,2

]
e−i(ω0t−k0z)

+
1

2
F1,2 (x, y)

[
∂2E−1,2
∂t2

− 2iω0

∂E−1,2
∂t
− ω2

0E
−
1,2

]
e−i(ω0t+k0z) + c.c., (3.21)



CHAPTER 3. THEORETICAL BACKGROUND 25

We then replace the transverse derivative terms in Eq. (3.19) using Eq. (3.12), which

yields

∇2
TE1,2 =

1

2

(
β2

1,2 −
εr1,2ω

2
0

c2

)
F1,2

[
E+

1,2e
−i(ω0t−k0z) + E−1,2e

−i(ω0t+k0z) + c.c.
]
, (3.22)

It is assumed that the dielectric perturbations are weak giving rise to the slowly

varying envelope approximation (SVEA) that satis�es the following conditions,

∣∣∣∣∂E∂z
∣∣∣∣� |k0E| , (3.23a)∣∣∣∣∂E∂t
∣∣∣∣� |ω0E| , (3.23b)∣∣∣∣∂2E

∂z2

∣∣∣∣� ∣∣∣∣k0
∂E

∂z

∣∣∣∣ , (3.23c)∣∣∣∣∂2E

∂t2

∣∣∣∣� ∣∣∣∣ω0
∂E

∂t

∣∣∣∣ . (3.23d)

Under SVEA the second-order derivative terms in Eqs. (3.20) and (3.21) are all

eliminated, taking the form

∂E2
1,2

∂z2
=

1

2
F1,2 (x, y)[(

2ik0

∂E+
1,2

∂z
− k2

0E
+
1,2

)
e−i(ω0t−k0z) −

(
2ik0

∂E−1,2
∂z

+ k2
0E
−
1,2

)
e−i(ω0t+k0z)

]
+ c.c.

(3.24)

∂E2
1,2

∂t2
=

1

2
F1,2 (x, y)[

−
(

2iω0

∂E+
1,2

∂t
+ ω2

0E
+
1,2

)
e−i(ω0t−k0z) −

(
2iω0

∂E−1,2
∂t

+ ω2
0E
−
1,2

)
e−i(ω0t+k0z)

]
+ c.c.,

(3.25)

The fourth term in Eq. (3.18) takes the form

− ε̃ (z)

c2

∂E2
1,2

∂t2
=
ω2

0 ε̃ (z)

2c2
F1,2 (x, y)

[
E+

1,2e
−i(ω0t−k0z) + E−1,2e

−i(ω0t+k0z)
]
, (3.26)
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in which we substitute Eqs. (3.17):

− ε̃ (z)

c2

∂E2
1,2

∂t2
=

∆εω2
0

2c2
F1,2 (x, y)

[
E−1,2e

−i(ω0t−k0z) + E+
1,2e
−i(ω0t−k0z)

]
, (3.27)

where only phase-matched terms are included. Equation (3.27) accounts for the

linear coupling of the counter-propagating modes which is a result of the refractive

index modulation.

The last term in Eq. (3.18), the nonlinear term, is evaluated by substituting

the electric �eld with Eqs. (3.11a) and (3.11b). The result includes many of higher

order terms and terms which do not satisfy the phase matching criteria. Keeping

the phase-matched terms we obtain

E3
1,2 =

3

4
|F1,2|2 F1,2

(
1

2

∣∣E+
1,2

∣∣2 +
∣∣E−1,2∣∣2)E+

1,2e
−i(ω0t−k0z)

+
3

4
|F1,2|2 F1,2

(
1

2

∣∣E−1,2∣∣2 +
∣∣E+

1,2

∣∣2)E−1,2e−i(ω0t+k0z) + c.c. . (3.28)

The second derivative of E3
1,2 is simpli�ed by neglecting the higher order e�ects and

applying the SVEA and it takes the form

−χ
(3)

c2

∂2

∂t2
(
E3

1,2

)
=

3χ(3)ω2
0

4c2
|F1,2|2 F1,2

(
1

2

∣∣E+
1,2

∣∣2 +
∣∣E−1,2∣∣2)E+

1,2e
−i(ω0t−k0z)

+
3χ(3)ω2

0

4c2
|F1,2|2 F1,2

(
1

2

∣∣E−1,2∣∣2 +
∣∣E+

1,2

∣∣2)E−1,2e−i(ω0t+k0z) + c.c. .

(3.29)

We now replace the terms in Eq. (3.18) by what we obtained from Eqs. (3.22),
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(3.24), (3.25), (3.27), and (3.29). It then follows,

∑
m=1,2

[
εr − εrm

2c2
ω2

0E
+
m +

1

2

(
β2
m − k2

0

)
E+
m + ik0

∂E+
m

∂z
+ i

εrω0

c2

∂E+
m

∂t
+

∆εω2
0

2c2
E−m

+
3χ(3)ω2

0

4c2
|Fm|2

(
1

2

∣∣E+
m

∣∣2 +
∣∣E−m∣∣2)E+

m

]
Fme

−i(ωt−k0z)

+
∑
m=1,2

[
εr − εrm

2c2
ω2

0E
−
m +

1

2

(
β2
m − k2

0

)
E−m − ik0

∂E−m
∂z

+ i
εrω0

c2

∂E−m
∂t

+
∆εω2

0

2c2
E+
m

+
3χ(3)ω2

0

4c2
|Fm|2

(
1

2

∣∣E−m∣∣2 +
∣∣E+

m

∣∣2)E−m]Fme−i(ωt+k0z) + c.c. = 0. (3.30)

We note that εr = n2 (x, y) = n2
0 everywhere except in the two cores, and εrm =

n2
m (x, y) = n2

0 everywhere except in the m-th core. Letting β2
m− k2

0 ≈ 2k0∆β where

∆β = βm−k0, the corresponding terms in Eq. (3.30) mean detuning from the Bragg

condition. Multiplying Eq. (3.30) by F ∗1 (or F ∗2 ) and taking the integral over all

transverse plane, the following coupled system of equations is obtained,

i
∂E+

1

∂z
+
n

c

∂E+
1

∂t
+ κE−1 + γ

(∣∣E+
1

∣∣2 + 2
∣∣E−1 ∣∣2)E+

1 +KE+
2 = 0, (3.31a)

−i∂E
−
1

∂z
+
n

c

∂E−1
∂t

+ κE+
1 + γ

(∣∣E−1 ∣∣2 + 2
∣∣E+

1

∣∣2)E−1 +KE−2 = 0, (3.31b)

i
∂E+

2

∂z
+
n

c

∂E+
2

∂t
+ κE−2 + γ

(∣∣E+
2

∣∣2 + 2
∣∣E−2 ∣∣2)E+

2 +KE+
1 = 0, (3.31c)

−i∂E
−
2

∂z
+
n

c

∂E−2
∂t

+ κE+
2 + γ

(∣∣E−2 ∣∣2 + 2
∣∣E+

2

∣∣2)E−2 +KE−1 = 0, (3.31d)

where κ, γ, and K are given in Eqs. (2.2), (2.10), and (2.25) respectively. We

emphasize that in obtaining (3.31) and all the the coe�cient it is assumed that the

two cores are identical. Otherwise (3.31) takes the form of Eqs. 2.4.12-15 of Ref. [37].

Last, the method used above in obtaining NLCMEs is a general approach be-

cause we started from Maxwell's equations, even though many terms due to SVEA

and phase-matching conditions were neglected. It is possible to incorporate all the

neglected higher-order and phase-mismatched terms into Eqs. (3.31) separately. Al-
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ternative approaches may be used in obtaining Eqs. (3.31) which are simpler: One

approach is to start from Eqs. (2.9) and assume that modes of the individual grat-

ings are perturbed as a result of coupling. Alternatively, it is valid to start from the

nonlinear coupled mode equations (2.24) and assume that gratings written on the

nonlinear coupler result in mode perturbations.

It is often convenient to normalize Eqs. (3.31) and express them in dimensionless

form. Rescaling variables of Eqs. (2.11) and (2.12) we obtain,

iu1t + iu1x +

(
1

2
|u1|2 + |v1|2

)
u1 + v1 + λu2 = 0, (3.32a)

iv1t − iv1x +

(
1

2
|v1|2 + |u1|2

)
v1 + u1 + λv2 = 0, (3.32b)

iu2t + iu2x +

(
1

2
|u2|2 + |v2|2

)
u2 + v2 + λu1 = 0, (3.32c)

iv2t − iv2x +

(
1

2
|v2|2 + |u2|2

)
v2 + u2 + λv1 = 0, (3.32d)

where the rescaled linear coupling between the two cores is now,

λ = K

√
κ

2γ
. (3.33)

In terms of physical units ∆x = 1 and ∆t = 1 correspond to 1 mm and 10 ps

respectively. Also, Bragg re�ection length (LB) and Coupling length (Lc) should be

of the same order (e.g. ∼ 1 mm) in order for the system to support soliton generation.

Existing gratings have typical Bragg length of ∼ 1 mm which is feasible for Lc, too.

Also the Silica �ber nonlinear coe�cient is ∼ 2 (kmW )−1, therefore a peak power of

1 MW is required for the gap solitons to form in the structure. It is worth noting that

this is an upper bound and experimental studies have demonstrated that signi�cantly

less power is needed to observe gap solitons [24, 25, 59, 60]. Using these parameters

the required total length of the dual-core structure is ∼ 10 cm [61].
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3.3 Dispersive Re�ectivity

Uniform gratings have been extensively studied and are commercially available for

a variety of applications (cf. Section 2.1). Their nonuniform counterparts such

as chirped gratings, apodized gratings, phase-shifted gratings, and superstructure

gratings have been used in various applications such as signal processing and tunable

�bre lasers [37,62�65]. For example, due to the sudden change of refractive index at

the ends of a uniform grating, light is re�ected back into the grating, forming a cavity

that stops the pulses at lower or higher frequencies (compared to Bragg frequency)

to pass through the grating. These are seen as sidebands in the grating spectrum.

It has been shown experimentally that apodization not only increases the e�ciency

of coupling of light into the grating but also by removing the weak re�ections at the

grating ends, results in the grating spectrum sidebands to shrink [66].

In general, grating nonuniformities may be in the form of the grating period

and/or the grating strength variations along the direction of propagation. Hence,

nonuniform gratings can be generated by a nonuniform modulation of the refractive

index, i.e.

n (x) = n+ ∆n (x) cos

(
2πx

Λ
+ θ (x)

)
, (3.34)

where ∆n (x) and θ (x) are the amplitude and phase of the modulation. x-dependence

of depth and phase modulation gives rise to the apodization and chirping of the grat-

ing, respectively, both of which result in the change of the photonic bandgap. Such

e�ects may not be characterised accurately through the standard coupled mode equa-

tions that were derived in the previous section. A method has been put forward in

Ref. [67] that takes into regard certain types of grating nonuniformities by intro-

ducing dispersive re�ectivity. The phenomenological generalization of the standard

model presented in Ref. [67] is able to predict light propagation in non-standard

gratings and may be applicable to Bragg superstructures of various types [63,68,69],
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gratings written on photonic wires [70], or semi-discrete Bragg gratings [71] and

generally to structures in which the Bandgap in re�ection spectra becomes broader

and/or inhomogeneous. A common situation that may occur in an experiment is

that the grating may have weak local variations in its refractive index (what one

may call weakly disordered grating) due to the variations in the intensity of the ul-

traviolet laser beam used to make the grating or incoherence of the laser beams [31].

This may lead to random variations of θ (x) in Eq. (3.34) on a large scale.

The generalization has been applied to a variety of models such as the standard

single-core �ber Bragg gratings [72], gratings equipped with cubic-quintic nonlinear-

ity [54] and symmetric coupled �ber Bragg gratings [73, 74]. Due to its practical

importance, in this section we derive the modi�ed coupled mode equation incorpo-

rating the dispersive re�ectivity term.

It is assumed that the local refractive index varies randomly along the grating

length which may be accounted for by introducing a locally disturbed coordinate

x̂ = x + (2π/Λ) θ (x), while taking the modulation depth ∆n constant [67]. It

should be noted that the linear coupling between the two cores is also assumed to

be constant for simplicity. Substituting the refractive index from Eq. (3.34) into the

wave equation, in order to evaluate the second and third terms in Eq. (3.18) one

needs to deal with the terms

[
εr + 2∆ε cos

(
2π

Λ
+ θ (x)

)]
E1,2 =

[
n+ ∆n cos

(
2πx

Λ
+ θ (x)

)]2

E1,2, (3.35)

where we used the following relation,

√
εr + 2∆ε cos

(
2π

Λ
+ θ (x)

)
' n+ ∆n cos

(
2πx

Λ
+ θ (x)

)
, 2∆ε� εr (3.36)

The physical meaning of Eq. (3.35) is a phase mismatch in the exponential terms

of Eq. (3.27) which results in the x-dependence of the grating coupling coe�cient.
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Following the method of Ref. [67] and Taylor expanding Eq. (3.35) and replacing the

randomly varying values with their average, correction terms of m∂2v1,2

∂x2 and m∂2u1,2

∂x2

appear in the coupled mode equations,

iu1t + iu1x +

(
1

2
|u1|2 + |v1|2

)
u1 + v1 + λu2 +mv1xx = 0, (3.37a)

iv1t − iv1x +

(
1

2
|v1|2 + |u1|2

)
v1 + u1 + λv2 +mu1xx = 0, (3.37b)

iu2t + iu2x +

(
1

2
|u2|2 + |v2|2

)
u2 + v2 + λu1 +mv2xx = 0, (3.37c)

iv2t − iv2x +

(
1

2
|v2|2 + |u2|2

)
v2 + u2 + λv1 +mu2xx = 0. (3.37d)

where dispersive re�ectivity parameter is de�ned as,

m ≡ 0.5

(
Λ

2π

)〈
θ2 (x)

〉
, (3.38)

where 〈· · · 〉 representing the spatial average.

A similar approach is to assume that the spatial variations of refractive index

are translated to the spatial variations of amplitudes of the coupled modes in each

core. Taylor expanding the coupled term in say Eq. (3.31a) the following equation

is obtained,

κE−1 = κ

[
E−1 + ∆x

∂E−1
∂x

+
1

2
(∆x)2 ∂

2E−1
∂x2

+O
(
(∆x)3)] , (3.39)

where E−1 is a randomly varying function. Replacing the randomly varying function

with its spatial average and noting that the average of ∆x is zero due to its random

nature, one obtains

〈
κE−1

〉
≈ κ

[
E−1 +

1

2

〈
(∆x)2〉 ∂2E−1

∂x2

]
. (3.40)
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Therefore de�ning dispersive re�ectivity parameter as m ≡ 1
2

〈
(∆x)2〉 one arrives at

Eq. (3.37). We also note that this correction term is consistent with the SVEA, as

long as m & 10−4, which is the case in our simulations [75].



Chapter 4

Numerical Techniques

4.1 Introduction

Analytical expressions of solutions of the nonlinear coupled mode equations (NL-

CMEs) exist in some models such as the single-core standard Bragg grating with

Kerr nonlinearity, as explained in Section 2.3, or in the special case of quiescent

cubic-quintic solitons where NLCMEs are solved analytically by separation of vari-

ables [76]. However analytical solutions to the model of Eqs. (3.37) are not known

to this date. In the case of m = 0, i.e. two uniform coupled Bragg gratings, ap-

proximate analytical solutions have been derived using variational techniques for

stationary solitons [77]. However, it was shown that the obtained solutions deviate

signi�cantly from the exact numerical solutions in the case of moving solitons. That

is why in this thesis we base our study on the numerical techniques presented in

this chapter, to directly solve the NLCMEs for both quiescent and moving soliton

solutions in the general case of non-uniform gratings. The obtained soliton solutions

are then propagated numerically in the model to investigate the properties of the

system. All the computer programs in this work were written in FORTRAN 95

programing language for better e�ciency.

33
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In Section 4.2 we explain the relaxation method used to solve the NLCMEs in

details. In Section 4.3 the interpolation technique used in this work is explained.

Lastly, Section 4.4 is dedicated to the well-known split-step Fourier method that is

often utilized to propagate the soliton pulses in �ber-based structures.

4.2 Relaxation Method

The system of NLCMEs in (3.37) can be categorized as a nonlinear coupled Partial

Di�erential Equation (PDE). One common approach in solving PDEs is to trans-

form them into ordinary di�erential equations (ODE) with the use of separation of

variables. Similarly in the case of coupled PDEs it may be possible to decouple the

equations into ODEs. The obtained ODEs are then solved numerically or analyti-

cally where possible. In the case of Eqs. (3.37) solitons are searched for in the form

of stationary solutions that maintain their shape while propagating along the �ber.

The following separation of variables may be used,

u1,2 (x, t) = exp (−iΩt)U1,2 (X) ,

v1,2 (x, t) = exp (−iΩt)V1,2 (X) , (4.1)

where X = x− vt is the coordinate in the reference frame moving with the solitons

velocity v. Substituting Eqs. (4.1) into Eqs. (3.37) we arrive at the following set of

coupled nonlinear ODEs,

ΩU1 + i (1− v)U1X +

(
1

2
|U1|2 + |U1|2

)
U1 + V1 + λU2 +mV1XX = 0

ΩV1 − i (1 + v)V1X +

(
1

2
|V1|2 + |U1|2

)
V1 + U1 + λv2 +mU1XX = 0

ΩU2 + i (1− v)U2X +

(
1

2
|U2|2 + |V2|2

)
U2 + V2 + λu1 +mV2XX = 0

ΩV2 − i (1 + v)V2X +

(
1

2
|V2|2 + |U2|2

)
V2 + U2 + λV1 +mU2XX = 0, (4.2)
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where the subscript X stands for d/dX. Equations (4.2) form a one-dimensional

boundary value problem with the boundary conditions of U1,2 (±∞) = V1,2 (±∞) =

0. As inferred from Eqs. 4.2, it is not possible to decouple Eqs. (3.37) by separation

of variables and therefore it is required to solve the equations numerically. For this

purpose a relaxation algorithm, which is explained in this section, has been used

throughout this thesis to obtain soliton solutions.

The relaxation method that we use in this thesis to solve the ODEs in Eqs. (4.2)

is based on a deferred correction technique and Newton iteration [78]. The iterative

method starts with an initial guess which may be the soliton solution to a simpler

model such as that of Nonlinear Schrodinger Equations (NLS) or even single-core

standard grating with Kerr nonlinearity. The algorithm then corrects the approxi-

mate solution at each iteration using Newton iteration and deferred corrections with

the objective of making the error everywhere less than the de�ned tolerance (10−8

in this thesis). The computational window needs to be carefully chosen in order for

the algorithm to converge accurately. As a rule of thumb it needs to be an order of

magnitude greater than the width of the approximate solution.

There are cases that the initial guessed solution deviates substantially from the

exact solution which causes the iterations to diverge (the error in each iteration be-

comes larger), specially in the presence of strong dispersive re�ectivity. For instance

to obtain the asymmetric soliton solutions near the bifurcation points, as shown in

Figure 4.1(a), for given ω, m, and v, it is required to apply relaxation algorithm

recursively. More speci�cally, to �nd the asymmetric solitons for point D where

|λD| ∼ |λc|, it is necessary to set the initial guess to the solution obtained for point

C where |λC | < |λD|. Sometimes this process has to be repeated several times, i.e. to

obtain the solutions at point D solutions of points A, B, and C need to be obtained

respectively, as shown in Figure 4.1(a) . Similar approach is needed in obtaining

symmetric solution at point B near the bandgap edge, as shown in Figure 4.1(b).



CHAPTER 4. NUMERICAL TECHNIQUES 36

-0.6 -0.3 0 0.3 0.6
λ

-0.2

0

0.2

0.4

0.6

0.8

1

Θ

A

λc-λc

B

C

D

(a)

-0.6 -0.3 0 0.3 0.6
λ

-0.2

0

0.2

0.4

0.6

0.8

1

Θ

(b)

-λc λc

A B

Figure 4.1: Schematic diagram showing the application of relaxation algorithm re-
cursively to Eqs. (4.2) in order to obtain (a) asymmetric soliton solutions near bifur-
cation points, and (b) symmetric soliton solutions near bandgap edges. Bifurcation
graphs are explained in Chapter 5.

4.3 Interpolation

The relaxation algorithm described in Section 4.2 requires a large mesh for the re-

sulted �nite-di�erence equation to have an accurate solution (cf. [78]). We used

50,000 (and 100,000 where needed) points in our simulations. However propagating

the obtained solutions using such large number of points is not feasible nor e�cient.

Therefore a Lagrange interpolation is used to �rst reduce the number of points [79].

The mapped mesh uses 2n points to improve the e�ciency of the Fast Fourier Trans-

form (FFT) algorithm, where n is an integer. In our work n is set to 11 or 12 where

more accuracy is needed, for instance where a larger computational window is used.

In analyzing the interaction and collisions of solitons it is required to change the size

of the computational window for which interpolation is also used.
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4.4 Numerical Pulse Propagation

Pulse propagation in optical domain often involves solving PDEs for given initial

values. For instance propagation of solitons along a nonlinear optical �ber involves

solving NLS equation to obtain the �eld envelopes and distributions in the cross

section of the �ber, over time. This is an initial value problem because the �eld

amplitudes along the �ber depend on the initial �eld distribution. Another example

is of course propagation of solitons in gratings using NLCMEs. Generally nonlinear

optical waveguides whose governing equations posses solutions in an analytical form

are very rare [80], thus analytical approaches are limited to special cases such as

solving NLS in cases where inverse scattering method can be applied [81]. On the

contrary, very complicated pulse propagation problems can be solved using a numer-

ical procedure. Even if an analytical form does exist, the solutions may be hard to

interpret without the use of numerical computations.

Much e�ort have been put towards developing more e�cient numerical techniques

for solving soliton propagation problems. These techniques fall under two categories

of �nite di�erence and spectral domain or pseudospectral methods. Finite di�erence

methods, such as the Crank-Nicolson method, approximate the partial derivatives

by �nite di�erence equations. There are known disadvantages for �nite di�erence

methods such as slow convergence, large memory requirement and low stability. With

the help of current computers large memory is not an issue however computation

time can be long if high spatial and temporal resolution is required to ensure accurate

results. Yet they may be the preferred method for some nonlinear equations [82].

Spectral methods on the other hand, such as Fourier methods, solve equations in

the Fourier domain. Spectral methods are sometime called pseudospectral methods

because these methods only partially involve evaluating frequency domain terms.

Pseudospectral methods are generally faster by an order of magnitude than time

domain methods to obtain the same accuracy due to the speed of FFT algorithm



CHAPTER 4. NUMERICAL TECHNIQUES 38

[83,84]. As mentioned in the previous section, the e�ciency of the FFT is maximized

by using 2n simulation points, where n is an integer. Numerical simulations in

this thesis are done using a symmetrised split-step Fourier method [85, 86]. The

name arises for two reasons. First, the method relies on computing the solution in

small steps, and treating the linear and the nonlinear steps separately (see below).

Second, it is necessary to transform �eld components between time and frequency

domains successively because the linear step is done in the frequency domain while

the nonlinear step is made in the time domain [4].

4.4.1 Split-step Fourier Method

Split-step Fourier method is one of the most widely used methods in soliton propaga-

tion problems specially in solving NLS equation and NLCMEs [86,87]. This method

has been elaborated in Ref. [4]. Due to its importance in this thesis, in what follows

we repeat the same procedure. The method is then applied to the model of Eqs.

(3.37) in the next section to propagate soliton solutions in the model.

It is possible to write a PDE such as NLS equation in the following form,

∂A

∂t
=
(
D̂ + N̂

)
A, (4.3)

where D̂ and N̂ are the spatial dispersion and nonlinear operators, respectively.

Assuming A(x, t0) is the initial boundary condition, �eld distribution at t = t0 + ∆t,

where ∆t is the step size, may be written as

A (x, t0 + ∆t) = exp
(

∆t
(
D̂ + N̂

))
A (x, t0) , (4.4)

which can be approximated by

A (x, t0 + ∆t) ≈ exp
(

∆tD̂
)

exp
(

∆tN̂
)
A (x, t0) . (4.5)

We say approximated because the two operators do not commute. More speci�cally,
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in obtaining Eq. (4.5) from (4.4) we have neglected the commutators in Baker-

Hausdor� expansion [4],

exp
(

∆tD̂
)

exp
(

∆tN̂
)

=

exp

(
∆tD̂ + ∆tN̂ +

1

2

[
∆tD̂,∆tN̂

]
+

1

12

[
∆tD̂ −∆tN̂ ,

[
∆tD̂,∆tN̂

]]
+ · · ·

)
,

(4.6)

where
[
∆tD̂,∆tN̂

]
= ∆tD̂∆tN̂ −∆tN̂∆tD̂ is a commutator.

Nonlinear term in Eq. (4.5), i.e. exp
(

∆tN̂
)
A (x, t), is evaluated using �nite

di�erence method, while the dispersion term can be easily calculated in spectral

domain using the following relation:

exp
(

∆tD̂
)
A (x, t0) = F−1

{
exp

(
∆tD̃

)
Ã (x, t0)

}
, (4.7)

where F−1 is the inverse Fourier transform, and D̃ and Ã are dispersion operator

and pulse envelope in Fourier domain, respectively. So by repeating the procedure

the �eld envelope at any time can be obtained.

The accuracy of the method through Baker-Hausdor� formula is found to be in

orders of (∆t)2. That is an accuracy of 6 decimal places for increments of ∆t = 0.001

which is not satisfactory. This can be improved by taking two half dispersion steps

and compute the nonlinear term at the middle of the segment,

A (x, t0 + ∆t) ≈ exp

(
∆t

2
D̂

)
exp

(
∆tN̂

)
exp

(
∆t

2
D̂

)
A (x, t0) . (4.8)

The latter is called symmetrised split-step Fourier method [88]. In Eq. (4.8) (and

(4.5)) it is assumed that nonlinearity is constant over the segment. By including

the nonlinearity over the whole segment the accuracy of the method can be further
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improved, i.e.

A (x, t0 + ∆t) ≈ exp

(
∆t

2
D̂

)
exp

 t0+∆tˆ

t0

N̂ (τ) dτ

 exp

(
∆t

2
D̂

)
A (x, t0) , (4.9)

where the accuracy is on the order of (∆t)3. When applying the method over N

consecutive segments, Eq. (4.8) can be written as

A (x, t0 +N∆t) ≈

exp

(
−∆t

2
D̂

) N∏
n=1

exp
(

∆tD̂
)

exp

 t0+∆tˆ

t0

N̂ (τ) dτ

 exp

(
∆t

2
D̂

)
A (x, t0)

(4.10)

where the number of required FFTs are halved, resulting in the evaluation time to

be twice as fast.

4.4.2 Runge-Kutta Method

The accuracy of split-step Fourier method, as mentioned in the previous subsection,

depends greatly on how the nonlinear step is evaluated. Iterative methods may be

used to directly evaluate the nonlinear operator in each step. There is trade o�

between the total computation time and the accuracy of the iterative method used.

The one iterative method that suits our purpose is 4th order Runge-Kutta method

or shortly RK4 which is brie�y explained in this subsection.

Let's consider a general linear ODE such as

∂y

∂t
= f (t, y (t)) . (4.11)

The value of y (t0 +4t) (the next value) can then be approximated by y (t0) (present

value) as

y (t+4t) = y (t) +
4t
6

(K1 + 2K2 + 2K3 +K4) , (4.12)
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where,

K1 = f (t0, y (t0))

K2 = f

(
t0 +

4x
2
, y (t0) +

4x
2
K1

)
K3 = f

(
t0 +

4x
2
, y (t0) +

4x
2
K2

)
K4 = f (t0 +4x, y (t0) +4xK3) . (4.13)

The total accumulated error of RK4 is on the order of (4t)4 [79, 89].

4.5 Application to the Model

In this section we apply the split-step Fourier method to the problem of linearly

coupled Bragg gratings with dispersive re�ectivity, utilizing RK4 in evaluating the

nonlinear step.

We start by rewriting Eqs. (3.37),

u1t = imv1xx − u1x + i

(
1

2
|u1|2 + |v1|2

)
u1 + iv1 + iλu2,

v1t = imu1xx + v1x + i

(
1

2
|v1|2 + |u1|2

)
v1 + iu1 + iλv2,

u2t = imv2xx − u2x + i

(
1

2
|u2|2 + |v2|2

)
u2 + iv2 + iλu1,

v2t = imu2xx + v2x + i

(
1

2
|v2|2 + |u2|2

)
v2 + iu2 + iλv1. (4.14)

We now note that to write Eqs. (4.14) in the form of Eq. (4.3), dispersion and
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nonlinear operators can be written in the matrix form as follow,

D̂ ≡



− ∂
∂x

im ∂2

∂x2 0 0

im ∂2

∂x2
∂
∂x

0 0

0 0 − ∂
∂x

im ∂2

∂x2

0 0 im ∂2

∂x2
∂
∂x


, (4.15a)

N̂ ≡



i
(

1
2
|u1|2 + |v1|2

)
i iλ 0

i i
(

1
2
|v1|2 + |u1|2

)
0 iλ

iλ 0 i
(

1
2
|u2|2 + |v2|2

)
i

0 iλ i i
(

1
2
|v2|2 + |u2|2

)


,

(4.15b)

where the �eld envelop A (x, t) is the following matrix,

A (x, t) =



u1 (x, t)

v1 (x, t)

u2 (x, t)

v2 (x, t)


. (4.16)

It should be noted that the last two linear terms in each of the Eqs. (4.14) are calcu-

lated in the nonlinear step to make dispersion step, which is calculated in frequency

domain, simpler and more e�cient.

As explained in Section 4.4.1 the dispersion and nonlinear steps are evaluated

separately. The nonlinear step involves calculating the RK4 coe�cients according to

Eqs. (4.13), where f (x) = N̂A (x, t0), to �nd the four �eld components at t = t0+4t

(note that the right side of Eqs. (4.14) are independent of time in each step). The

dispersion step on the other hand involves solving four ODEs in Fourier domain, i.e.
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solving the following matrix form equations,

ũ1t

ṽ1t

ũ2t

ṽ2t


=



−iω −imω2 0 0

−imω2 iω 0 0

0 0 −iω −imω2

0 0 −imω2 iω





ũ1

ṽ1

ũ2

ṽ2


, (4.17)

where ũ1,2 and ṽ1,2 are Fourier domain counterparts. As inferred from Eq. (4.17), the

two cores do not interact in the dispersion step which makes it possible to evaluate

the dispersion step in two easy steps: First, we note that equations take the following

form

ũ1,2t = −iωũ1,2 − imω2ṽ1,2,

ṽ1,2t = iωṽ1,2 − imω2ũ1,2. (4.18)

We can treat Eqs. (4.18) in two sub-steps as follows: the �rst step involves the

following

ũ1,2t = −iωũ1,2

ṽ1,2t = iωṽ1,2

 =⇒

 ũ1,2 (t) = ũ1,2 (0) e−iω4t

ṽ1,2 (t) = ṽ1,2 (0) eiω4t
, (4.19)

while in the second step we take the second terms in Eqs. (4.18) separately. It

follows,

ũ1,2 (t) = ũ1,2 (0) cos
(
mω2t

)
− iṽ1,2 (0) sin

(
mω2t

)
,

ṽ1,2 (t) = ṽ1,2 (0) cos
(
mω2t

)
− iũ1,2 (0) sin

(
mω2t

)
. (4.20)

Combining (4.19) and (4.20) and letting t = t0 +4t leads to

ũ1,2 (t0 +4t) =
[
ũ1,2 (t0) cos

(
mω24t

)
− iṽ1,2 (t0) sin

(
mω24t

)]
e−iω4t,

ṽ1,2 (t0 +4t) =
[
ṽ1,2 (t0) cos

(
mω24t

)
− iũ1,2 (t0) sin

(
mω24t

)]
eiω4t. (4.21)
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The latter was implemented as

ũ1,2 (t0 +4t) =
1

2

[
(ũ1,2 (t0) + ṽ1,2 (t0)) e−imω

24t + (ũ1,2 (t0)− ṽ1,2 (t0)) eimω
24t
]
e−iω4t,

ṽ1,2 (t0 +4t) =
1

2

[
(ũ1,2 (t0) + ṽ1,2 (t0)) e−imω

24t − (ũ1,2 (t0)− ṽ1,2 (t0)) eimω
24t
]
eiω4t.

(4.22)

The propagation parameters in this thesis were ∆t = 0.001, and 210 or 211 mesh

points depending on the size of computational window. More speci�cally, analyz-

ing interactions and collisions of solitons require a wider computational window of

typically 140 (dimensionless units of length) which requires a larger mesh, while sta-

bility analysis are done using a computational window in the range 60 ∼ 100 units,

depending on the soliton width (which in turn depends on soliton frequency).

So far, we have discussed pulse propagation in the laboratory reference frame.

Using this method in propagating moving pulses for long times requires a wider

computational window which requires a larger mesh for the same accuracy. For

example for v = 0.2 approximately a minimum window of 260 ∼ 300 is required

(the window size depends on the pulse width) to propagate the pulse for t = 1000,

for which a minimum of 211 points are necessary for acceptable accuracy. Such

simulation takes about 15 minutes on the machine that was used for our simulations.

In cases that t = 3000 is required the method is clearly ine�cient, taking up to a

few hours for one propagation to complete; often tens of simulations are needed to

characterize soliton propagation within a region.

To solve this problem, a method is adopted in this thesis which involves trans-

forming the equations into the moving frame. The method is explained in details

in Chapter 6. This enables us to use a smaller computational window (in the range

60 ∼ 100), simply because the pulse does not move in the moving frame. Conse-

quently, smaller number of points are required (210 or 211 points depending on the

window size).
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Split-step Fourier method in the moving frame can then be applied by following

the same procedure explained in Eqs. (4.17)-(4.22). The nonlinear step is identical

to the lab frame, however starting from Eqs. (4.2) the dispersion step takes the form

ũ1,2 (t0 +4t) =

1

2

[
(ũ1,2 (t0) + ṽ1,2 (t0)) e−imω

24t + (ũ1,2 (t0)− ṽ1,2 (t0)) eimω
24t
]
e−iω(1−v)4t,

ṽ1,2 (t0 +4t) =

1

2

[
(ũ1,2 (t0) + ṽ1,2 (t0)) e−imω

24t − (ũ1,2 (t0)− ṽ1,2 (t0)) eimω
24t
]
eiω(1−v)4t.

(4.23)

Last, the computational window must be equipped with absorbing boundaries

to absorb not only the re�ections of noise from the boundaries but also the pulses

that reach the window ends. Otherwise due to the FFT algorithm both the noise

and pulses will re-enter the computational window. The absorbing boundaries that

were used in this thesis are very similar in principle of operation to uniaxial perfectly

matched layers (UPML) [90]. More speci�cally, they construct the conditions under

which re�ections of the incident waves o� the boundaries are minimized.



Chapter 5

Quiescent Gap Solitons

In this chapter we investigate the existence and stability of quiescent gap solitons

in a system of coupled Bragg gratings with dispersive re�ectivity. The starting

point is Eqs. (3.37). As explained in Chapter 4, generally there are no known

analytical solutions for the NLCMEs describing dual-core FBGs with or without

dispersive re�ectivity. Therefore we rely on numerical methods to solve the NLCMEs

for soliton solutions. The obtained solutions are then propagated using the split-step

Fourier method, which was described in Chapter 4, to characterize the stability and

interactions of quiescent gap solitons in the system.

In the next section, we �rst analyze the photonic bandgap of the structure in

which solitons may exist. The types of soliton solutions that may exist in the bandgap

are then investigated. In Section 5.2 analytical forms of the quiescent soliton tails

are derived. Section 5.3 addresses the stability of quiescent solitons in detail followed

by Section 5.4 which is dedicated to the study of quiescent soliton interactions.

5.1 Quiescent Solutions

To characterize the spectral gap within which gap solitons may exist, it is necessary

to analyze the linear spectrum of the system. Substituting plane wave solutions,

46
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i.e. u1,2, v1,2 ∼ exp (ikx− iωt) where ω is the frequency detuning and k is the wave

number, into the linearized form of Eqs. (3.37), i.e.

iu1t + iu1x + v1 + λu2 +mv1xx = 0,

iv1t − iv1x + u1 + λv2 +mu1xx = 0,

iu2t + iu2x + v2 + λu1 +mv2xx = 0,

iv2t − iv2x + u2 + λv1 +mu2xx = 0, (5.1)

we arrive at the the following equations in the matrix form,

ω − k 1−mk2 λ 0

1−mk2 ω + k 0 λ

λ 0 ω − k 1−mk2

0 λ 1−mk2 ω + k





u1

v1

u2

v2


= 0. (5.2)

For Eq. (5.2) to have non-trivial solutions, the determinant of the coe�cients matrix

must be zero. This gives rise to the following dispersion relation,

ω2 =
(
1−mk2

)2
+ λ2 + k2 ± 2λ

√
(1−mk2)2 + k2. (5.3)

Positive and negative signs account for the upper and lower branches of the dispersion

relation, respectively. Four branches of Eq. (5.3) are plotted in Figures 5.1(a)-(c)

for di�erent values of λ and m. The dispersion relation for m = 0, i.e. standard

model, is shown with doted lines. Figure 5.1(c) shows that no soliton solution exist

for λ = 1 because the bandgap closes.

To �nd the bandgap we look for the roots of ∂ω2/∂k2 = 0. The following bandgap

is obtained,

ω2 < ω2
0 =


(1− |λ|)2 m ≤ 0.5(√

4m−1
2m

− |λ|
)2

m > 0.5

(5.4)
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Figure 5.1: Dispersion curves for m = 0, 0.2, 0.4, and 0.7 and (a) λ = 0.2, (b)
λ = 0.5, and (c) λ = 1.

where ω2
0 is the minimum value of ω2 (k2), i.e. where group velocity is zero, and is

found at k2 = 0 if m ≤ 0.5 and k2 = (2m− 1) /2m2 if m > 0.5. Equation (5.4)

shows that the bandgap does not exist for |λ| ≥ 1 when m ≤ 0.5 and |λ| ≥
√

4m−1
2m

when m > 0.5.

It is worth noting that for λ = 0, the dispersion relation in (5.4) takes the
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following form,

ω2 =
(
1−mk2

)2
+ k2, (5.5)

which leads to the bandgap of |ω| ≤ 1; same as the bandgap in a single non-uniform

grating found in Ref. [67]. Another �nding is that for the range of m ≤ 0.5 the

size of the bandgap in (5.4) does not depend on m. However, as shown in Figures

5.1(a)-(c), the bandgap becomes smaller as m increases in the range m > 0.5. Since

the values of m > 0.5 may not be of physical signi�cance, without loss of generality,

we restrict our analysis to m ≤ 0.5 [67, 72].

Stationary soliton solutions are sought for in the following form,

{u1,2 (x, t) , v1,2 (x, t)} = {U1,2 (x) , V1,2 (x)} exp (iωt) . (5.6)

Substituting Eq. (5.6) into (3.37) and invoking the symmetry condition for quiescent

solutions, i.e.

v1,2 = −u∗1,2, (5.7)

we arrive at the following system of nonlinear di�erential equations,

ωU1 + iU ′1 +
3

2
|U1|2 U1 − U∗1 + λU2 −mU∗

′′

1 = 0,

ωU2 + iU ′2 +
3

2
|U2|2 U2 − U∗2 + λU1 −mU∗

′′

2 = 0, (5.8)

where the prime represents a derivative with respect to x. We solved Eqs. (5.8) for

various values of parameters and found that gap solitons exist everywhere within

the bandgap. Also, Eqs. (5.8) readily show that the system supports symmetric

solutions, i.e. by replacing U1 → U2 and U2 → U1 we arrive at the same equations.

This is similar to the case of m = 0 that have been studied in Ref. [77].

In general, the system of Eqs. (5.8) supports two types of symmetric (U1 = U2)

and asymmetric solitons (U1 6= U2). A key �nding is that for given ω and m there

exists a critical linear coupling coe�cient λc at which the two types of solutions
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bifurcate. To explain this further it may be useful to de�ne an asymmetry parameter

as follow,

Θ =
U2

1m − U2
2m

U2
1m + U2

2m

, (5.9)

where U1m,2m are the maximum amplitudes of the forward-propagating waves in

the two cores. It is worth noting that the above relation can also be de�ned us-

ing backward-propagating waves V1,2 which leads to the same values of asymmetry

parameter.

Asymmetry parameter is illustrated in Figure 5.2 in the plane of (λ,Θ) for di�er-

ent values of ω and m. The horizontal lines in Figures 5.2(a)-(d) account for Θ = 0,

i.e. symmetric solutions. It should be noted that |U1m| may be smaller than |U2m|

resulting in negative values of Θ. Figure 5.2 only shows the positive branches of Θ

simply because the negative branches are the mirror images of the positive branches.

Also according to Eq. (5.4) the gap closes at ± (1− |λ|). This is why for example in

Figure 5.2(c) the horizontal lines stop at ±0.5.

As Figure 5.2 show, at any given ω and m and for values of |λ| < λc both

symmetric and asymmetric solutions are found while for the range |λ| ≥ λc the

system of Eqs. (5.8) only supports symmetric solutions. The dotted horizontal lines

in Figure 5.2 depicts symmetric solutions that coexist with asymmetric ones. A

striking �nding is that λc, as Figure 5.2 shows, varies with m. More speci�cally, as

m increases λc decreases. In Section 5.4 we will explain how this feature translates

to the broadening of the stability region.

Figures 5.3(a)-(f) show examples of the solutions of Eqs. (5.8). Figures 5.3(a), (b)

and (f) show examples of asymmetric and symmetric solutions for ω = 0.5, λ = 0.2,

and m = 0.4, respectively (for these parameters Θ = 0.7885).

As shown in Figures 5.3(c)-(e) with increase of the dispersive re�ectivity pa-

rameter, soliton pro�les change signi�cantly. More speci�cally, they develop side-

lobes for larger values of m. Similar results have been reported in the single core
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Figure 5.2: Bifurcation diagrams for (a) ω = 0.1, and (b) ω = 0.3, (c) ω = 0.5,
and (d) ω = 0.7 and di�erent values of dispersive re�ectivity. The negative branches
being the mirror images of the positive branches are not shown. According to Eq.
(5.4) the gap closes at λ = ±0.9, ±0.7, ±0.5 and ±0.3 in (a)-(d), respectively.

standard model [67] and also single core model equipped with cubic-quintic non-

linearity [54]. To better illustrate the sidelobes, in Figure 5.3(e) the amplitudes of

forward-propagating waves (U1) are plotted in logarithmic scale for m = 0 and 0.4.

Figure 5.3(e) shows the appearance of sidelobes in soliton pro�les asm increases from

zero to 0.4. In Section 5.2 the regions where sidelobes appear are found analytically.
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Figure 5.3: Examples of quiescent gap solitons. Asymmetric solution for m = 0.4:
real and imaginary parts of (a) U1 and (b) U2. The e�ect of dispersive re�ectivity on
soliton pro�le: amplitudes of (c) U1, and (d) U2. (e) Amplitude of U1 in logarithmic
scale, and (f) Symmetric solution (i.e. U1 = U2) for m = 0.4 . In all the above
ω = 0.5 and λ = 0.2.
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5.2 Linear Approximation

In references [67] and [54] it was shown that, when the dispersive re�ectivity param-

eter exceeds a certain critical value, sidelobes appear in the solitons' pro�les. This is

also the case in the model of Eqs. (5.8), as it was shown in Figures 1.3 (c)-(e). Since

the amplitudes of the sidelobes are considerably smaller than the soliton itself, the

e�ect of nonlinear terms in Eqs. (5.8) are negligible. Therefore, to analyze the char-

acteristics of the tails of the solitons and sidelobes, we use the linearized equations

(5.1). Substituting the symmetry condition (5.7) for quiescent solitons into (5.1) we

arrive at

ωU1 + iU ′1 − U∗1 + λU2 −mU∗
′′

1 = 0,

ωU2 + iU ′2 − U∗2 + λU1 −mU∗
′′

2 = 0. (5.10)

By rewriting the real and imaginary parts separately, a set of four linear di�erential

equations with real coe�cients are obtained,

(ω − 1)U1re − U ′1im + λU2re −mU
′′

1re = 0,

(ω + 1)U1im + U ′1re + λU2im +mU
′′

1im = 0,

(ω − 1)U2re − U ′2im + λU1re −mU
′′

2re = 0,

(ω + 1)U2im + U ′2re + λU1im +mU
′′

2im = 0, (5.11)

where U1re,2re and U1im,2im are real and imaginary parts of the forward-propagating

waves in core 1 and 2, respectively.

In the case of symmetric solitons, Eqs. (5.11) are further simpli�ed. Letting

U1 = U2, it follows,

(ω + λ− 1)U1re − U ′1im −mU
′′

1re = 0, (5.12a)

(ω + λ+ 1)U1im + U ′1re +mU
′′

1im = 0. (5.12b)
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It is possible to decouple Eqs. (5.12) into two fourth-order ordinary di�erential

equations (ODEs). To this end, we rewrite (5.12b),

U ′1im = (ω + λ− 1)U1re −mU ′′1re. (5.13)

Taking the derivative with respect to x from Eq. (5.12b) results in

(ω + λ+ 1)U ′1im + U ′′1re +mU
′′′

1im = 0. (5.14)

By replacing the �rst and third order derivative terms in (5.14) from (5.13) we arrive

at the following equations,

[
(ω + λ)2 − 1

]
U1re + (1− 2m)U ′′1re −m2U ′′′′1re = 0,[

(ω + λ)2 − 1
]
U1im + (1− 2m)U ′′1im −m2U ′′′′1im = 0, (5.15)

where U ′′′′1re is the fourth order derivative. The equations in (5.15) are linear homoge-

neous fourth order di�erential equation with constant coe�cients that have analytical

solutions. We expect the general solution of (5.15) to have four independent coe�-

cients to be determined by applying four boundary conditions, i.e. U1re,im (±∞) = 0.

To �nd the general solution we start from the characteristic equation of (5.15) which

can be obtained by taking the Laplace transform of either of the equations, i.e.

[
(ω + λ)2 − 1

]
+ (1− 2m)S2 −m2S4 = 0. (5.16)

The roots of the characteristic equation (5.16) are,

S2 =
1− 2m± Γ

2m2
, (5.17)

where,

Γ =

√
1− 4m+ 4m2 (ω + λ)2. (5.18)

Note that in (5.17) m cannot be zero. For the special case of m = 0 Eq. (5.16) leads
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to [
(ω + λ)2 − 1

]
+ S2 = 0 =⇒ S = ±

√
(ω + λ)2 − 1, (5.19)

which in turn results in a simple general solution.

The fact that U1re (x) and U1im (x) are even and odd functions of x, respectively,

eliminates two of the four unknown coe�cients. Using symbolic tools of MATLAB

one can obtain a general solution for Eqs. (5.15) which can be simpli�ed to the

following,

U1 (x) = C1

[
1 + i

1 + 2m (ω + λ) + Γ

4m (ω + λ+ 1)

√
2− 4m− 2Γ

]
exp

(
−x
√

1− 2m− Γ

2m2

)

+ C∗1

[
1 + i

1 + 2m (ω + λ)− Γ

4m (ω + λ+ 1)

√
2− 4m+ 2Γ

]
exp

(
−x
√

1− 2m+ Γ

2m2

)

+ C2

[
1− i1 + 2m (ω + λ) + Γ

4m (ω + λ+ 1)

√
2− 4m− 2Γ

]
exp

(
+x

√
1− 2m− Γ

2m2

)

+ C∗2

[
1− i1 + 2m (ω + λ)− Γ

4m (ω + λ+ 1)

√
2− 4m+ 2Γ

]
exp

(
+x

√
1− 2m+ Γ

2m2

)
, (5.20)

where star means complex conjugate, and C1 and C2 are arbitrary complex coe�-

cients to be determined by applying the boundary conditions. Clearly, for the right

tail of the soliton, i.e. x > 0, C2 must vanish. Likewise for x < 0 which accounts for

the left tail, C1 = 0. It is obvious that after applying the boundary conditions, one

arbitrary constant (C1 for x > 0 and C2 for x < 0) appears in the general solution.

Depending on the sign of 1−4m+4m2 (ω + λ)2, Γ may be real or complex. More

speci�cally, for the range of

m >
1

2

(
1 +

√
1− (ω + λ)2

) , (5.21)

Γ and consequently the exponents in (5.20) are complex. We note that when the

exponents are real-valued, the tails of the solitons decay exponentially. On the

other hand when they are complex, sidelobes appear. Therefore inequality (5.21)
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determines the region where sidelobes appear. It is worth noting that in the absence

of linear coupling, i.e. λ = 0, Eqs. (5.20) and (5.21) reduce to the ones derived in

Ref. [91] for the single-core case. When the inequality (5.21) is satis�ed, Eq. (5.20)

may be expressed as

U1 (x) = A [cos (bx+ ϕ) + id cos (bx+ ϕ+ ψ)] exp (−ax)

+B [cos (−bx+ ϕ)− id cos (−bx+ ϕ+ ψ)] exp (ax) , (5.22)

where,

a =
1

2m

√
1− 2m+ 2m

√
1− (ω + λ)2,

b =
1

2m

√
−1 + 2m+ 2m

√
1− (ω + λ)2,

d =

(
1− (ω + λ)

1 + ω + λ

) 1
4

,

ψ = tan−1

1−
√

1− (ω + λ)2

− (ω + λ)
×

√√√√√√√
−1 + 2m

(
1 +

√
1− (ω + λ)2

)
1− 2m

(
1−

√
1− (ω + λ)2

)
 , (5.23)

are real quantities. The free parameters A, B, and ϕ can be determined from the

exact numerical soliton solution and are related to C1 and C2 through A = 2 |C1|,

B = 2 |C2| and ϕ = arg (C1), respectively. Due to the symmetry of the soliton pro�le

C1 and C2 are equal.

It should also be noted that the �rst and second terms of Eq. (5.22) correspond

to the right and left soliton tails, respectively. As is shown in Figures 5.4(a) and (b),

Eqs. (5.22) and the numerical soliton solution are in excellent agreement and only

di�er near the soliton's peak where the linear approximation is not valid. Figure

5.4(c) depicts the region within the bandgap, as predicted by (5.21) for various λ,

where the sidelobes exist. The numerical results are in complete agreement with the

predictions of (5.21).
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Figure 5.4: Comparison between numerically obtained soliton solutions and Eq.
(5.22) for the (a) real and (b) imaginary parts of the symmetric quiescent solitons
with ω = 0.5, λ = 0.2, m = 0.4, A = B = 0.945 and ϕ = 1.405. The rest of the
coe�cients are calculated using Eqs. (5.23). (c) The region within the photonic
bandgap where sidelobes appear in the soliton pro�les, predicted by Eq. (5.21).

In the case of asymmetric solitons, i.e. U1 6= U2, one may rewrite Eqs. (5.11)

in the frequency domain by applying Laplace transform. It results in the following
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equation in the matrix form,

ω − 1−ms2 −s λ 0

s ω + 1 +ms2 0 λ

λ 0 ω − 1−ms2 −s

0 λ s ω + 1 +ms2





Ũ1re

Ũ1im

Ũ2re

Ũ2im


= 0, (5.24)

where Ũ(s) is the Laplace transform of U(x). For (5.24) to have non-trivial solutions,

the matrix must be singular i.e. with zero determinant. The result is an 8th order

polynomial with the following roots,

si = ±

√√√√±√4m2 (ω ± λ)2 − 4m+ 1− 2m+ 1

2m2
, i = 1, ..., 8 (5.25)

Note that si are eigenvalues of Eqs. (5.11) that can be used to form the general

solutions. The manipulation is cumbersome and parametric solvers such as MATLAB

or Mathematica may be used. Equations (5.11) admit the following solutions

U1 (x) = C1

[
1 + i

1 + 2m (ω + λ) + Γ1

4m (ω + λ+ 1)

√
2− 4m− 2Γ1

]
exp

(
− x

2m

√
2− 4m− 2Γ1

)
+ C∗1

[
1 + i

1 + 2m (ω + λ)− Γ1

4m (ω + λ+ 1)

√
2− 4m+ 2Γ1

]
exp

(
− x

2m

√
2− 4m+ 2Γ1

)
+ C2

[
1 + i

1 + 2m (ω − λ) + Γ2

4m (ω − λ+ 1)

√
2− 4m− 2Γ2

]
exp

(
− x

2m

√
2− 4m− 2Γ2

)
+ C∗2

[
1 + i

1 + 2m (ω − λ)− Γ2

4m (ω − λ+ 1)

√
2− 4m+ 2Γ2

]
exp

(
− x

2m

√
2− 4m+ 2Γ2

)
+ C3

[
1− i1 + 2m (ω + λ) + Γ1

4m (ω + λ+ 1)

√
2− 4m− 2Γ1

]
exp

(
+
x

2m

√
2− 4m− 2Γ1

)
+ C∗3

[
1− i1 + 2m (ω + λ)− Γ1

4m (ω + λ+ 1)

√
2− 4m+ 2Γ1

]
exp

(
+
x

2m

√
2− 4m+ 2Γ1

)
+ C4

[
1− i1 + 2m (ω − λ) + Γ2

4m (ω − λ+ 1)

√
2− 4m− 2Γ2

]
exp

(
+
x

2m

√
2− 4m− 2Γ2

)
+ C∗4

[
1− i1 + 2m (ω − λ)− Γ2

4m (ω − λ+ 1)

√
2− 4m+ 2Γ2

]
exp

(
+
x

2m

√
2− 4m+ 2Γ2

)
,

(5.26a)
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U2 (x) = C1

[
1 + i

1 + 2m (ω + λ) + Γ1

4m (ω + λ+ 1)

√
2− 4m− 2Γ1

]
exp

(
− x

2m

√
2− 4m− 2Γ1

)
+ C∗1

[
1 + i

1 + 2m (ω + λ)− Γ1

4m (ω + λ+ 1)

√
2− 4m+ 2Γ1

]
exp

(
− x

2m

√
2− 4m+ 2Γ1

)
− C2

[
1 + i

1 + 2m (ω − λ) + Γ2

4m (ω − λ+ 1)

√
2− 4m− 2Γ2

]
exp

(
− x

2m

√
2− 4m− 2Γ2

)
− C∗2

[
1 + i

1 + 2m (ω − λ)− Γ2

4m (ω − λ+ 1)

√
2− 4m+ 2Γ2

]
exp

(
− x

2m

√
2− 4m+ 2Γ2

)
+ C3

[
1− i1 + 2m (ω + λ) + Γ1

4m (ω + λ+ 1)

√
2− 4m− 2Γ1

]
exp

(
+
x

2m

√
2− 4m− 2Γ1

)
+ C∗3

[
1− i1 + 2m (ω + λ)− Γ1

4m (ω + λ+ 1)

√
2− 4m+ 2Γ1

]
exp

(
+
x

2m

√
2− 4m+ 2Γ1

)
− C4

[
1− i1 + 2m (ω − λ) + Γ2

4m (ω − λ+ 1)

√
2− 4m− 2Γ2

]
exp

(
+
x

2m

√
2− 4m− 2Γ2

)
− C∗4

[
1− i1 + 2m (ω − λ)− Γ2

4m (ω − λ+ 1)

√
2− 4m+ 2Γ2

]
exp

(
+
x

2m

√
2− 4m+ 2Γ2

)
,

(5.26b)

where C1, C2, C3, and C4 are complex coe�cients to be determined from the bound-

ary conditions. The other coe�cients are,

Γ1 =

√
4m2 (ω + λ)2 − 4m+ 1,

Γ2 =

√
4m2 (ω − λ)2 − 4m+ 1. (5.27)

It should be noted that for the right tail (i.e. x > 0) C3,4 = 0, and for the left tail

C1,2 = 0 for x < 0 . Analyzing Eqs. (5.26) and (5.27), it is found that sidelobes will

appear in the solitons' pro�les when both Γ1 and Γ2 are complex. This occurs when

m is in the range

m > max


1

2

(
1 +

√
1− (ω + λ)2

) , 1

2

(
1 +

√
1− (ω − λ)2

)
 . (5.28)

When condition (5.28) is met, using the following prescription

√
P ± iQ =

√
1

2

(
P +

√
P 2 +Q2

)
± i sgn (Q)

√
1

2

(
−P +

√
P 2 +Q2

)
, (5.29)
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where P and Q are real numbers and sgn() is the sign function, Eqs. (5.26a) and

(5.26b) can be expressed in the following forms,

U1 (x) = D1 [cos (b1x+ ϕ1) + ic1 cos (b1x+ ϕ1 + ψ1)] exp (−a1x)

+D2 [cos (b2x+ ϕ2) + ic2 cos (b2x+ ϕ2 + ψ2)] exp (−a2x)

+D3 [cos (−b1x+ ϕ1)− ic1 cos (−b1x+ ϕ1 + ψ1)] exp (a1x)

+D4 [cos (−b2x+ ϕ2)− ic2 cos (−b2x+ ϕ2 + ψ2)] exp (a2x) , (5.30a)

U2 (x) = D1 [cos (b1x+ ϕ1) + ic1 cos (b1x+ ϕ1 + ψ1)] exp (−a1x)

−D2 [cos (b2x+ ϕ2) + ic2 cos (b2x+ ϕ2 + ψ2)] exp (−a2x)

+D3 [cos (−b1x+ ϕ1)− ic1 cos (−b1x+ ϕ1 + ψ1)] exp (a1x)

−D4 [cos (−b2x+ ϕ2)− ic2 cos (−b2x+ ϕ2 + ψ2)] exp (a2x) , (5.30b)

where D1, D2, D3, D4, ϕ1 and ϕ2 are real arbitrary coe�cients that can be deter-

mined from the numerical soliton solutions. They are related to C1 , C2 , C3 and

C4 through D1 = 2 |C1|, D2 = 2 |C2|, D3 = 2 |C3|, D4 = 2 |C4|, ϕ1 = arg (D1), and

ϕ2 = arg (D2). The symmetry of the soliton's pro�le dictates that D1 = D3, and

D2 = D4. The other parameters are all real and are given by

a1 =
1

2m

√
1− 2m+ 2m

√
1− (ω + λ)2, (5.31a)

b1 =
1

2m

√
−1 + 2m+ 2m

√
1− (ω + λ)2, (5.31b)

c1 =

(
1− (ω + λ)

1 + ω + λ

) 1
4

, (5.31c)

a2 =
1

2m

√
1− 2m+ 2m

√
1− (ω − λ)2, (5.31d)

b2 =
1

2m

√
−1 + 2m+ 2m

√
1− (ω − λ)2, (5.31e)

c2 =

(
1− (ω − λ)

1 + ω − λ

) 1
4

, (5.31f)
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Figure 5.5: Comparison between numerically obtained quiescent asymmetric soliton
solution and Eqs. (5.30a) and (5.30b) for ω = 0.5, λ = 0.2, m = 0.4, D1 = D3 =
1.498, D2 = D4 = 0.616, ϕ1 = 1.453 and ϕ2 = 1.201. (a) Real part of U1 , (b)
imaginary part of U1, (c) real part of U2 and (d) imaginary part of U2 . The other
parameters are calculated using Eqs. (5.31h).

ψ1 = tan−1

(
−ia1Γ1 − b1 (1 + 2m (ω + λ))

−ib1Γ1 + a1 (1 + 2m (ω + λ))

)
, (5.31g)

ψ2 = tan−1

(
−ia2Γ2 − b2 (1 + 2m (ω − λ))

−ib2Γ2 + a2 (1 + 2m (ω − λ))

)
. (5.31h)

Figure 5.5 compares soliton solutions obtained by numerically solving Eqs. (5.8)

with analytical solutions given in equations (5.30) for ω = 0.5, λ = 0.2, m = 0.4.

It is clear that the linear solutions in (5.30) approximate the tails of the solitons

extremely well and they only deviate from the numerical solutions in the proximity

of the peak of the soliton where the linearized equations (5.10) are not valid.
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Figure 5.6: Evolution of asymmetric and symmetric solitons corresponding to ω =
0.5, λ = 0.2 and m = 0.2. (a) U1 component of the stable asymmetric soliton. (b) U1

and (c) U2 component of the unstable symmetric soliton for the same parameters.

5.3 Stability

Similar to what explained in Refs. [61] and [77] on the basis of the elementary bi-

furcation theory, one can conjecture that, in the region where the symmetric and

asymmetric solitons coexist (i.e. |λ| < λc), the asymmetric solitons are always stable

and symmetric ones are unstable. On the other hand, beyond the bifurcation point

(i.e. |λ| > λc), the symmetric solitons exist on their own and are expected to be

stable. To verify these predictions, we have numerically solved Eq. (3.37) using the

numerically obtained solutions of (5.8) as initial input. To seed any inherent insta-

bility, the stationary solutions were asymmetrically perturbed at t = 0. The results

of the numerical stability analysis are in complete agreement with the predictions

of the bifurcation theory. Examples of the evolution of asymmetric and symmetric

solitons are shown in Figure 5.6. As is shown in Figures 5.6(b) and (c), the unstable

symmetric soliton sheds some radiation, deforms, and subsequently evolves into a

stable asymmetric one.

As was indicated in Section 5.1, the critical value of λc at which bifurcation
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Figure 5.7: Stability regions for quiescent solitons for (a) λ = 0.1, (b) λ = 0.2, and
(c) λ = 0.4. The regions where only symmetric types of solutions exist are hatched.

occurs becomes smaller as m increases in the range 0 < m < 0.5 (refer to Figure

5.2). This means that increasing m enlarges the stable symmetric branch. Our

numerical simulations have con�rmed this result. This is somewhat analogous to

the results of [67] where it was demonstrated that the inclusion of the dispersive

re�ectivity in the standard single-core model results in the expansion of the stability

region.

We have systematically investigated the stability of asymmetric and symmetric
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quiescent gap solitons for various values λ and m within the bandgap by simulating

their evolution up to t = 2000. The results of the numerical stability analysis for

the quiescent solitons are displayed in Figures 5.7 (a)-(c) in the plane of (m,ω) for

various values of λ. In these �gures the hatched areas account for the symmetric

solitons that exist on their own and are always stable. Also the regions marked with

�No Solution� account for the parameters that fall outside the photonic bandgap (see

Eq. (5.4) for bandgap).

As shown in Figures 5.7(a)-(c), it is found that the stabilizing e�ect of dispersive

re�ectivity is diminished as λ increases. An interesting feature shown in Figure

5.7 is that, in the case of λ = 0.1, the stability region is progressively enlarged

up to m ≈ 0.35 and then it shrinks. As for symmetric solitons that coexist with

asymmetric counter parts (not shown in Figure 5.7), our analysis shows that they

are una�ected by dispersive re�ectivity and are always unstable. The instability

development does not result in the destruction of gap solitons. Instead, as is shown

in Figure 5.6(b) and (c), the unstable solitons shed some radiation and spontaneously

rearrange themselves into robust asymmetric quiescent or moving breathers.

5.4 Interaction Dynamics

When two quiescent solitons are placed within a certain range, their tails overlap and

causes the solitons to interact. In this section, the interactions of quiescent solitons

in the dual-core grating model are systematically studied, relying on the numerical

techniques explained in Chapter 4. To this end, we may categorize the interaction

problem into the following cases: (a) interactions of two identical quiescent solitons

placed 4x apart in the same core, with an initial phase di�erence of 4ϕ, and (b)

interactions of two identical solitons placed 4x apart but in opposite cores. The

reason we consider identical solitons is that solitons will only interact if their fre-
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quency detunings are very close. More importantly launching two di�erent frequency

solitons into a grating may be practically limited.

5.4.1 Symmetric Interactions

To study the interactions of quiescent gap solitons, we numerically solve Eqs. (5.8)

using the symmetrised split-step Fourier method that was explained in Section 4.4.1

subject to the following initial conditions:

U1,2 (x, 0) = U1,2(x− 4x
2
, 0) + U1,2(x+

4x
2
, 0) exp (i4ϕ) ,

V1,2 (x, 0) = V1,2(x− 4x
2
, 0) + V1,2(x+

4x
2
, 0) exp (i4ϕ) , (5.32)

where U1,2 and V1,2 belong to the stable regions shown in Figure 5.7. In all simula-

tions, we have utilized the absorbing boundary conditions to minimize the re�ection

of radiation at the boundaries of the computational window.

Through extensive and systematic simulations we have characterized the interac-

tions of solitons and their outcomes. Generally speaking, in the absence of sidelobes,

the interaction of solitons is similar to that of nonlinear Schrödinger solitons, i.e.

in-phase solitons attract and π-out-of-phase solitons repel. However, when m 6= 0,

the outcome of the interactions does depend on ω, 4ϕ and 4x. Similar behavior

has been reported in gratings written on a single-core equipped with cubic-quintic

medium [91].

In the case of4ϕ = 0, a number of outcomes are possible. For instance, the inter-

actions can result in the formation of two symmetrically separating solitons (shown

in Figure 5.8(a)), the creation of a quiescent soliton (Figure 5.8(b)), repulsion of

solitons (Figure 5.8(c)), formation of a temporary bound state that eventually splits

into two separating solitons (Figure 5.8(e)) and generation of a quiescent soliton and

two moving ones (Figure 5.8(f)). In the case of symmetric solitons (i.e. U1 = U2

and V1 = V2), which are only stable when they exist on their own, the interactions
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Figure 5.8: Examples of interaction of quiescent in-phase gap solitons. (a) Symmetric
separation in region S for λ = 0.1, 4x = 10, ω = 0.3, m = 0.05, (b) Merger into a
quiescent soliton in region M for λ = 0.1, 4x = 10, ω = 0.5, m = 0.25, (c) Repulsion
for λ = 0.1, 4x = 10, ω = 0.65, m = 0.35, (d) Asymmetric separation in region A in
the symmetric region (i.e. initially U1 = U2 and V1 = V2) for λ = 0.2, 10, ω = 0.65,
m = 0.3, (e) Temporary bound state followed by generation of two separating moving
gap solitons for λ = 0.1, 4x = 10, ω = 0.15, m = 0.4, (f) Generation of a quiescent
soliton along with two moving ones for λ = 0.2, 4x = 10, ω = 0.26, m = 0.05. In
all the �gures only forward propagating wave in core 1 i.e. U1 is shown.

may result in their merger into a single quiescent soliton or the formation of two

asymmetrically separating solitons (Figure 5.8(d)). The symmetry breaking in Fig-

ure 5.8(d) may be attributed to the mismatch between the centers of �phase� and

�amplitude� of the two gap solitons [92].

The results of simulations for λ = 0.1 and 0.2, 4x = 6 and 10, and 4ϕ = 0
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and π are summarized in Figures 5.9 and 5.10, respectively. The dashed curves in

these �gures depict the inequality (5.28) which determines the region where sidelobes

exist, i.e. the region to the right of the dashed curves (see Figure 5.4(c)). The

narrow shaded areas account for the regions where symmetric solutions exist on

their own (see Figure 5.7). A noteworthy feature shown in Figures 5.9 and 5.10

is that the outcomes of the interactions are greatly in�uenced by the presence of

sidelobes and initial separation of solitons. More speci�cally, in the case of symmetric

solitons (i.e. the shaded regions), Figures 5.9(a) and (c) show that depending on

the value of m, the interactions may result in merger into a single quiescent one

or asymmetric separation of solitons. However, when 4x is increased to 10 two

additional outcomes in the region where solitons have sidelobes are observed, namely

repulsion and formation of a temporary bound state that subsequently splits into two

separating solitons whose velocities may be di�erent (see Figures 5.9(b) and (d)).

For asymmetric solitons (i.e. U1 6= U2 and V1 6= V2 ), in the region where

solitons do not have sidelobes (i.e. the region to the left of the dashed curves), the

outcomes of the interactions are weakly dependent on the initial separation of gap

solitons (cf. 5.9(a) and (b)). On the other hand, the presence of sidelobes drastically

alters the character of interactions. In particular, increasing 4x from 6 to 10 results

in signi�cant shrinkage of the regions R and M and appearance of region B. It is

worth noting that in the absence of dispersive re�ectivity (m = 0), the merger

of solitons, which is important for practical applications, occurs in a small range

of frequencies. However, the presence of dispersive re�ectivity leads to signi�cant

expansion of region M. Another interesting feature of Figure 5.9(c) and (d) is that

2 → 3 transformations (region T) occur in the region where solitons do not have

sidelobes. More importantly, such transformations are observed even in the absence

of dispersive re�ectivity (i.e. m = 0). This is in sharp contrast with single core FBG

models with dispersive re�ectivity (e.g. Refs. [72, 91]) where it was reported that
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Figure 5.9: Results of the interactions of the in-phase i.e. 4ϕ = 0 quiescent solitons
in the parameter plane of (m,ω) for (a) λ = 0.1, and 4x = 6.0, (b) λ = 0.1, and
4x = 10.0, (c) λ = 0.2, and 4x = 6.0 (d) λ = 0.2, and 4x = 10.0. Labels
stand for the following outcomes: temporary Bound state following by separation
(B), Destruction of the solitons (D), Merger into a single soliton (M), Repulsion of
the solitons (R), Symmetric separation (S), and tree soliton generation: a quiescent
soliton and two moving ones (T). Region U accounts for the unstable region. Shaded
areas show the region where only the symmetric solutions exist. In the region to the
right of the dashed curves gap solitons develop sidelobes.

2 → 3 transformation occurs for moderate to strong dispersive re�ectivity. Also, it

has previously been shown that in single core FBGs, when m 6= 0, interaction or

collisions of gap solitons may result in their destruction [72,91]. However, Figure 5.9

shows that in the model of Eqs. (5.8), destruction of solitons can occur even when

m = 0.
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Table 1. Interaction outcomes for ω = 0.15, m = 0.4, and λ = 0.1 and various initial
separation.

Initial separation Outcome

∆x ≤ 4.56 Merger (region M)

4.56 < ∆x ≤ 6.9 Repulsion (region R)

6.9 < ∆x Temporary bound state followed by separation (region B)

Another �nding is that at any given ω, m and λ there exists a critical initial

separation 4xcr below which in-phase gap solitons whether symmetric or asymmet-

ric always attract each other and form a lump. It is highly likely that the resulting

lump forms a quiescent soliton, however depending on the soliton parameters the

interaction outcome may result in the destruction, or symmetric or asymmetric sep-

aration of the solitons. For instance for the parameters of Figure 5.8(c) i.e. ω = 0.65,

m = 0.35, and λ = 0.1 the critical separation is 6.99 while for the parameter of Fig-

ure 5.8(e) i.e. ω = 0.15, m = 0.4, and λ = 0.1 it is 4.56. For the latter case we have

summarized the interaction outcomes for various ∆x in table 1. A noteworthy fea-

ture is that unlike nonlinear Schrödinger solitons, even in-phase solitons may repel

each other depending on ∆x.

The outcomes of the interactions of two out-of-phase (4ϕ = π) quiescent gap

solitons are displayed in Figure 5.10. In this case, the most dominant outcome is

repulsion of solitons. In the case of solitons without sidelobes, the initial separation

of solitons does not have any e�ect on the outcome of the interactions. In the region

where gap solitons have sidelobes the interactions may either result in the repulsion

of solitons or formation of a bound state that subsequently splits into two separating

solitons (i.e. region B). Similar to the in-phase case, the interaction of solitons with

sidelobes is greatly a�ected by the initial separation. As is shown in Figures 5.10(b)

and (d), increasing the separation from 6 to 10 results in the expansion of region R

and splitting of region B.
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Figure 5.10: Results of the interaction analysis for the out-of-phase (4ϕ = π) qui-
escent solitons in the parameter plane of ω −m for (a) λ = 0.1, and 4x = 6.0, (b)
λ = 0.1, and4x = 10.0, (c) λ = 0.2, and4x = 6.0 (d) λ = 0.2, and4x = 10.0. The
outcomes are: Repulsion of the gap solitons (R), temporary Bound state following
by separation of gap solitons (B). Region U accounts for the unstable gap solitons.
The dashed line and shades areas are as per Figs. 1.

5.4.2 Asymmetric Interactions

In Section 5.4.1 the interactions of two identical asymmetric or symmetric quiescent

solitons whose larger (smaller) components were in the same core i.e. {U1,2}left =

{U1,2}right, and {V1,2}left = {V1,2}right (the subscripts �left� and �right� correspond

to the left and right solitons in Figure 5.8) were investigated. In this section we

consider another initial con�guration where the solitons are mirror images of each

other i.e. {U1, V1}left = {U2, V2}right, and {U2, V2}left = {U1, V1}right. As a result,
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Figure 5.11: Examples of asymmetric interaction of in-phase quiescent solitons. (a)
Merger into a single moving for λ = 0.2, 4x = 8, ω = 0.0, m = 0.1, (b) repulsion of
solitons for λ = 0.2, 4x = 6, ω = 0.15, m = 0.4, (c) temporary bound state followed
by separation of solitons forλ = 0.1, 4x = 9, ω = 0.15, m = 0.46. (d) and (e) show
U1 and U2 components for λ = 0.1, 4x = 6, ω = 0.0, m = 0.05, respectively. The
inset in (d) shows the initial setup.

the amplitudes of the interacting solitons in each core will be di�erent. In the case of

4ϕ = 0, the simulations demonstrate that the interactions may result in asymmetric

separation of solitons, repulsion, merger into a moving or quiescent soliton, and

formation of temporary bound state followed by symmetric or asymmetric separation

of solitons. Some examples are shown in Figure 5.11.

In Figures 5.11(a)-(c) only U1 component i.e. forward-propagating wave in the

�rst core is shown. Figure 5.11(a) shows how the two solitons merge into a single slow
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moving one; a transition that causes energy loss in the form of radiation. Figures

5.11(d) and (e) show U1 and U2 components for the case of asymmetric separation,

respectively. In the latter, as inferred from Figures 5.11(d) and (e), after the inter-

actions the soliton in core 1 has a higher velocity. It should be noted that because

one of the pulses is smaller (specially when λ is small) we need to put the two pulses

closer to each other compared to the case of symmetric interactions for the solitons

to interact.

It is found that in contrast to the results found in the symmetric interaction

case (cf. Figure 5.9), destruction, and 2 → 3 transformation do not occur, when

interacting pulses are not identical. For π-out-of-phase solitons, the outcomes are

similar to the ones discussed in Section 5.4.1 except for the region B where the

temporary bound state is always followed by asymmetric separation of solitons.

5.5 Potential Applications of Quiescent Solitons

The existence and stability of gap solitons have been considered theoretically in

various nonlinear systems such as photonic bandgap crystals and FBGs. However,

these types of gap solitons have not been observed experimentally yet. As was

mentioned earlier in this chapter, the slowest reported gap soliton travels at 16% of

the speed of light in vacuum [18].

Gap solitons are potential candidates for reaching zero group velocity, a phe-

nomenon that is of signi�cant importance. For instance, one of the most important

potential applications of zero-velocity solitons is the ability to capture (and store)

light pulses, i.e. optical memories. One may also categorize very-slowly moving gap

solitons (v � 1 in normalized units) under these applications, e.g. optical delay lines.

Therefore, it is crucial to investigate the characteristics of quiescent gap solitons. To

have a better picture, we describe a conceptual design of an optical memory here:
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in the simplest form, an optical memory may consist of two coupled Bragg gratings

which are a few centimeters long. In theory a �memory cell� needs only to be wide

enough to hold a quiescent soliton. Therefore, such device can potentially hold many

memory cells. The questions are: how do we write to these memory cells and how

do we recover the optical signal?

One method of generating quiescent solitons is through the collision of two moving

ones. This is described in details in the next chapter. There are, however, other

approaches that have been proposed and experimented in photonic crystals. For

instance, it has been shown that in resonance photonic crystals it is possible to trap

(or store) optical pulses in a local defect [101, 102]. Experimental results given in

the same reports also show how the stored pulse can be recovered using another

out-of-phase pulse. In principle, this may be the building block of on-chip optical

memories. Same idea has been used in reference [103] to trap gap solitons in FBGs.

There, the authors have studied the interaction of solitons with defects in �ber

gratings and showed that it is possible under certain soliton parameters and defect

strength to capture moving gap solitons. It is also suggested that such grating

defects can be imposed and controlled externally via electrostriction (which in turn

suggests that optical sensing is also another possible application). One may note

that grating nonuniformities are inevitable in making such defects. This is where

the dispersive re�ectivity parameter may come into play to examine the e�ect of

such nonuniformities on the performance of the memory.

The interaction outcomes given in Figures 5.9 and 5.10 for in-phase and out-of-

phase gap solitons are useful to engineer the length of each memory cell, for example

to prevent interactions of gap solitons in adjacent cells. Also, the same recovery

technique used in resonance photonic crystals [101,102] can be applies to the model

studied in this thesis. More speci�cally, as will be also presented for the case of

moving gap solitons in the next chapter, out-of-phase solitons generally repel each
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other. So, to release the non-moving gap soliton from a memory cell, one approach is

to launch another pulse (moving gap soliton) into the coupled FBG, at the properly

chosen parameters. Of course much theoretical research is yet to be done before any

experiment of this sort becomes possible.



Chapter 6

Moving Gap Solitons

Gap solitons in general, unlike NLS solitons, may have any velocity between zero

to the speed of light in the medium (0 ≤ v ≤ c where c is the speed of light in

the medium) [20]. In the previous chapter the dynamics of quiescent (v = 0) gap

solitons have been investigated. This chapter addresses the dynamics of the general

case of moving gap solitons. In general when v 6= 0, unlike the quiescent gap solitons,

there are no symmetry conditions. Therefore, we need to solve the general nonlinear

coupled mode equations, i.e.

iu1t + iu1x +

(
1

2
|u1|2 + |v1|2

)
u1 + v1 + λu2 +mv1xx = 0,

iv1t − iv1x +

(
1

2
|v1|2 + |u1|2

)
v1 + u1 + λv2 +mu1xx = 0,

iu2t + iu2x +

(
1

2
|u2|2 + |v2|2

)
u2 + v2 + λu1 +mv2xx = 0,

iv2t − iv2x +

(
1

2
|v2|2 + |u2|2

)
v2 + u2 + λv1 +mu2xx = 0. (6.1)

The �rst section of this chapter is dedicated to �nding the moving soliton solutions

of Eqs. (6.1). In this section linear forms of NLCMEs are also solved analytically

leading to approximate solutions of moving soliton tails. In Sections 6.2 and 6.3 the

stability and collision dynamics of both symmetric and asymmetric moving solitons

75
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are investigated.

6.1 Moving Soliton Solutions

As mentioned in Chapter 5, in general there are no known analytical solutions to

the NLCMEs (6.1), even in the absence of dispersive re�ectivity. Therefore, we

rely on numerical techniques to �nd soliton solutions, whether quiescent or moving.

For quiescent solitons, as discussed in the previous chapter, we apply the relaxation

algorithm directly to the NLCMEs. In the case of moving solitons however, it makes

sense to transform Eqs. (6.1) into the reference frame moving with the soliton

velocity v. This means that solutions of the following form are searched for,

u1,2 (X, t) = U1,2 (X, t) exp (−iΩt) ,

v1,2 (X, t) = V1,2 (X, t) exp (−iΩt) , (6.2)

where {X, t} = {x− vt, t} are the new coordinates in the moving reference frame.

It should be noted that v is normalized to the speed of light in the �ber ( i.e. c0/n0

with n0 being the average refractive index of the �ber) so that v = 1 means a

soliton with the speed of light. Ω is the detuning frequency of the soliton in the new

moving coordinates which is related to its counterpart in the laboratory frame, i.e.

ω, through

Ω (k) = ω (k)− vk, (6.3)

where k is the wave number [77]. Substituting Eqs. (6.2) into (6.1) and applying

chain rule for the partial derivatives, coupled mode equations in the moving reference
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frame are obtained,

ΩU1 + i (1− v)U1X +

(
1

2
|U1|2 + |U1|2

)
U1 + V1 + λU2 +mV1XX = 0,

ΩV1 − i (1 + v)V1X +

(
1

2
|V1|2 + |U1|2

)
V1 + U1 + λv2 +mU1XX = 0,

ΩU2 + i (1− v)U2X +

(
1

2
|U2|2 + |V2|2

)
U2 + V2 + λu1 +mV2XX = 0,

ΩV2 − i (1 + v)V2X +

(
1

2
|V2|2 + |U2|2

)
V2 + U2 + λV1 +mU2XX = 0, (6.4)

where the subscripts X denote derivative with respect to X.

It is also relevant to translate the dispersion relation (5.3) into the new moving

coordinates in order to �nd the transformed edges of the bandgap. Substituting Eq.

(6.3) into the dispersion relation (5.3), the transformed relation is obtained,

(Ω + vk)2 =
(
1−mk2

)2
+ λ2 + k2 ± 2λ

√
(1−mk2)2 + k2. (6.5)

Alternatively, following the same approach explained in Section 5.1, it is possible to

derive Eq. (6.5) directly from the linearized form of Eqs. (6.4). To this end, we �rst

linearize Eqs. (6.4) which take the following form,

ΩU1 + i (1− v)U1X + V1 + λU2 +mV1XX = 0,

ΩV1 − i (1 + v)V1X + U1 + λv2 +mU1XX = 0,

ΩU2 + i (1− v)U2X + V2 + λu1 +mV2XX = 0,

ΩV2 − i (1 + v)V2X + U2 + λV1 +mU2XX = 0. (6.6)

Plane wave solutions are sought for in the form of U1,2, V1,2 ∼ exp (ikX − iΩt).

Substituting the latter into Eqs. (6.6) we arrive at the following equations in the
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matrix form,

Ω− k (1− v) 1−mk2 λ 0

1−mk2 ω + k (1 + v) 0 λ

λ 0 Ω− k (1− v) 1−mk2

0 λ 1−mk2 Ω + k (1 + v)





U1

V1

U2

V2


= 0. (6.7)

For (6.7) to have non-trivial solutions the determinant of the square matrix must be

zero which results in the dispersion relation in (6.5).

The transformed linear gap spectrum can be obtained by solving for the roots of

∂Ω/∂k = 0. The latter results in the following third order polynomial of k2,

4m4k6
=m2

(
8m+ v2

=4
)
k4 +

[
4m (m− 1) + v2(2m=1) + 1

]
k2
=v2 = 0, (6.8)

with the following real-valued roots:

k2
0 =

(4m− v2 − 2 + f1)
2

+ 3v2f1

12m2f1

, (6.9)

where,

f1 =
(√

f2 + 3v
√

3 (4m− 1)
)2/3

f2 = (12m− 1)
(
−v4 + 5v2 − 4

)
+ 16m2

(
3v2 + 6− 4m

)
+
(
v2 − 1

) (
v4 + 6v2 − 4

)
.

(6.10)

Substituting the roots ±k0 from Eq. (6.9) back into the dispersion relation in (6.5)

we arrive at the following bandgap,

|Ω| ≤
√
k2

0 + (1−mk2
0)

2 − v |k0| − |λ| . (6.11)

Inequality (6.11) shows that in the moving coordinates, the bandgap is dependent on
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Figure 6.1: Dispersion curves in the reference frame moving with the velocity of
v = 0.2 for m = 0.1 and 0.4, and (a) λ = 0.1, (b) λ = 0.4. Doted lines indicate the
edges of the bandgap for m = 0.4.

m. More speci�cally, with increase of m the bandgap in the moving frame shrinks.

In the absence of dispersive re�ectivity Eq. (6.8) takes the form of

(
1− v2

)
k2 − v2 = 0 =⇒ k2

0 =
v2

1− v2
, (6.12)

leading to the bandgap of the standard dual-core model in the moving coordinates,

i.e.

|Ω| ≤
√

1− v2 − |λ| . (6.13)

Four branches of dispersion relation (6.5) are shown in Figure 6.1 for v = 0.2

and various values of m and λ. The dotted lines in Figures 6.1(a)-(b) indicate the

edges of bandgap for m = 0.4. It is worth noting that according to Eqs. (6.9) k2
0 do

not depend on λ. For example in both Figures 6.1(a) and (b) k0 = ±0.623. From

Eq. (6.11) the bandgap for Figure 6.1(a) and (b) are obtained to be |Ω| ≤ 0.825 and

|Ω| ≤ 0.525, respectively.

It is found that the model of Eqs. (6.4) supports two types of symmetric (U1 = U2,
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V1 = V2) and asymmetric (U1 6= U2, V1 6= V2) moving gap solitons. As explained in

Chapter 5, we are only interested in the range 0 < m < 0.5 for which it is found that

moving gap solitons �ll the entire bandgap.

Similar to the quiescent solutions, it is found that for given Ω and v there exists

a critical coupling coe�cient λc beyond which only symmetric solutions exist. For

values of
∣∣λ∣∣ < λc symmetric and asymmetric moving gap solitons are found to co-

exist in the model. Asymmetry parameter Θ de�ned in Eq. (5.9) may be used in the

moving case too, to show the bifurcation of solutions at λc. Bifurcation graphs are

plotted numerically in Figures 6.2(a) and (b) in the plane of (λ,Θ) for di�erent values

of Ω and v. The horizontal lines in Figures 6.2(a) and (b) account for symmetric

solutions (i.e. Θ = 0), and the dotted-horizontal lines correspond to the symmetric

solitons that co-exist with asymmetric ones. Also in these �gures the edges of the

solution space (which correspond to the edges of bandgap) are: (a) λ = ±0.875,

±0.866, ±0.825, and (b) Ω = ±0.395, ±0.362, ±0.265 for m = 0.1, 0.2, and 0.4,

respectively.

An interesting feature seen in Figures 6.2(a) and (b) is that the bifurcation points

(λc) depend on m. More speci�cally, with increase of dispersive re�ectivity parame-

ter, λc decreases. This phenomenon is illustrated in Figure 6.2(c) where λc is plotted

versus m for v = 0.2 and various frequencies.

According to Eq. (6.11) the location of edges of bandgap in the moving reference

frame depends on m and v. This is illustrated in Figure 6.2(d) where bandgap edges

Ω0 are plotted in the plane of (m,Ω) for λ = 0.1 and various values of soliton velocity.

Similarly, edges of bandgap are displayed in Figure 6.2(e) in the plane of (v,Ω) for

λ = 0.1 and various values of dispersive re�ectivity. Note that in both Figures 6.2(d)

and (e) the corresponding bandgap edges in the lab frame are |ω0| = 0.9 (bandgap

does not depend on m).

As discussed in Section 5.2, in the case of quiescent solitons, above a certain
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Figure 6.2: Bifurcation diagrams for (a) Ω = 0.1, v = 0.2 and (b) Ω = 0.5, v = 0.4,
and various values of m. Dotted lines in both �gures depict symmetric solitons that
co-exist with asymmetric counterparts. In Figure (b) values of λ corresponding to the
edges of bandgap for various values of m are marked. (c) Change of bifurcation point
with respect to m for v = 0.2 and various values of Ω. Location of bandgap edges
versus (d) dispersive re�ectivity and (e) soliton velocity, according to Eq. (6.11) for
λ = 0.1.
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threshold of dispersive re�ectivity solitons develop sidelobes. By analyzing gap soli-

ton in the linear region, i.e. soliton tails, we also obtained the condition given in

inequality (5.28) that is met when sidelobes appear. Similar phenomenon is seen

for moving gap solitons. However, linear analysis of asymmetric moving gap soliton

tails is not possible. This is explained in the next subsection. Therefore, we have
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Figure 6.3: Real and imaginary parts and amplitudes of an example moving soliton
with sidelobes. (a) to (d) in order: forward- and backward-propagating waves in
core 1 and 2 for m = 0.45, v = 0.35, Ω = −0.1, and λ = 0.25.
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to �nd the sidelobe regions numerically. The components of a moving soliton with

sidelobes are shown in Figure 6.3(a)-(d), respectively.

In determining the regions where solitons develop sidelobes, it is important to

note that real and imaginary parts of forward or backward propagating waves in

either of the cores may have oscillations in their tails even in the region where no

sidelobes exist. This is due to the fact that the real and imaginary parts are not

in-phase, i.e. the oscillations cancel each other in calculating the soliton amplitude,

i.e. |U1,2| and |V1,2|. For instance Figure 6.4(a) shows an example of an asymmetric

moving soliton for m = 0.1, v = 0.2, Ω = 0.35, and λ = 0.2 where no sidelobes exist.

To have a better resolution of the trailing parts oscillations, Figure 6.4(b) displays

the real part, imaginary part, and amplitude of U1 in logarithmic scale for the same

parameters as in Figure 6.4(a). As shown in Figure 6.4(b) real and imaginary parts

have oscillations in their tails while there are no sidelobes may be usedin the soliton

pro�le. Therefore to examine the existence of sidelobes numerically, we look for the
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Figure 6.4: (a) Real and imaginary parts of forward-propagating waves in cores 1
and 2 i.e. U1 and U2 for m = 0.1, v = 0.2, Ω = 0.35, and λ = 0.2 (asymmetric
soliton). (b) Real, imaginary and amplitude of U1 in logarithmic scale for the same
parameters.
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Figure 6.5: Generation of sidelobes as a result of dispersive re�ectivity for (a) λ = 0.1,
(b) λ = 0.2 and various values of soliton velocity.

nontrivial roots of ∂ |U1| /∂x or other wave components (sidelobes appear in all of

the four U1,2 and V1,2 components simultaneously).

Using the technique explained above, we identi�ed the sidelobe regions in the

plane of (m,Ω) for various values of coupling and soliton velocity. The outcomes

are shown in Figures 6.5(a) and (b). The analysis shows that for faster solitons,

speci�cally v ≥ 0.4, no sidelobes appears in the upper half of the bandgap.

6.1.1 Analysis of Tail of Solitons

In Section 5.2 linear forms of coupled mode equations (5.1) (or (6.6)) were solved

for the special case of quiescent solitons where the symmetry conditions v1,2 = −u∗1,2

reduced the number of equations and consequently the number of unknowns to half

of the general case. In the case of symmetric quiescent gap solitons equations further

simpli�ed into half. In the general case, i.e. v 6= 0, we need to deal with a system of

eight coupled ODEs. More speci�cally, splitting the real and imaginary parts in Eq.
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(6.6), we arrive at the following system of equations,

ΩU1re − (1− v)U ′1im + V1re + λU2re −mV
′′

1re = 0,

ΩU1im + (1− v)U ′1re + V1im + λU2im +mV
′′

1im = 0,

ΩV1re + (1 + v)V ′1im + U1re + λU1re +mU ′′1re = 0,

ΩV1im − (1 + v)V ′1re + U1im + λU1im +mU ′′1im = 0,

ΩU2re − (1− v)U ′2im + V2re + λU1re +mV
′′

2re = 0,

ΩU2im + (1− v)U ′2re + V2im + λU1im +mV
′′

2im = 0,

ΩV2re + (1 + v)V ′2im + U2re + λU2re +mU ′′2re = 0,

ΩV2im − (1 + v)V ′2re + U2im + λU2im +mU ′′2im = 0, (6.14)

where prime stands for derivative with respect to X and,

U1 = U1re + iU1im,

U2 = U2re + iU2im,

V1 = V1re + iV1im,

V2 = V2re + iV2im. (6.15)

All the coe�cients are constant and the equations are homogenous. However, di�er-

ent set of coe�cients result in di�erent types of solutions that may deviate from the

soliton tails.

In the case of symmetric moving gap solitons the order of the ODEs, i.e. the

number of equations in (6.14) can be halved by applying the symmetry conditions.
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Substituting U1 = U2 and V1 = V2 in Eqs. (6.14) it obtains,

(Ω + λ)U1re − (1− v)U ′1im + V1re +mV ′′1re = 0,

(Ω + λ)U1im + (1− v)U ′1re + V1im +mV ′′1im = 0,

(Ω + λ)V1re + (1 + v)V ′1im + U1re +mU ′′1re = 0,

(Ω + λ)V1im − (1 + v)V ′1re + U1im +mU ′′1im = 0. (6.16)

In what follows we solve the special case of Eqs. (6.16).

Characteristic equation of the system of (6.16) can be found by substituting

U1,2, V1,2 ∼ eΓX where Γ is a complex number. In matrix form it can be expressed

as follows,

Ω + λ − (1− v) Γ 1 +mΓ2 0

(1− v) Γ Ω + λ 0 1 +mΓ2

1 +mΓ2 0 Ω + λ (1 + v) Γ

0 1 +mΓ2 − (1 + v) Γ Ω + λ





U1re

U1im

V1re

V1im


= 0. (6.17)

For Eqs. (6.17) to have nontrivial solutions the square matrix must be singular which

results in the following equation,

m4Γ8+2m2
(
2m− 1 + v2

)
Γ6+

(
1 + 4mv2 + 6m2 + v4 − 4m− 2v2 − 2m2 (λ+ Ω)2)Γ4

+
(
(λ+ Ω)2 (2 + 2v2 − 4m

)
+ 2v2 + 4m− 2

)
Γ2 +

(
(λ+ Ω)2 − 1

)2
= 0. (6.18)

Because the polynomial in (6.18) is a fourth order polynomial of Γ2, its roots are

complex conjugates of each other. It is worth noting that for m = 0 Eq. (6.18)

simpli�es to a fourth-order polynomial,

(
v2 − 1

)2
Γ4 + 2

(
(λ+ Ω)2 (1 + v2

)
+ v2 − 1

)
Γ2 +

(
(λ+ Ω)2 − 1

)2
= 0, (6.19)
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leading to four complex roots,

Γ2 = −
(Ω + λ)2 (v2 + 1) + v2 − 1± 2

√
(Ω + λ)2 v2 [(Ω + λ) + v2 − 1]

(1− v2)2 . (6.20)

For v = 0, Eq. (6.20) simpli�es to Eq. (5.19).

In general, it is possible for any set of soliton parameters to �nd the roots of Eq.

(6.18) and form the general solution of Eqs. (6.16), by applying boundary conditions.

Equations (6.16) admit the following general solutions,

U1re (X) =
8∑

n=1

Ψn exp (ΓnX) ,

U1im (X) =
8∑

n=1

ΨnΓn exp (ΓnX)
{
a1Γ6

n + b1Γ4
n + c1Γ2

n + d1

}
,

V1re (X) =
8∑

n=1

Ψn exp (ΓnX)
{
a2Γ6

n + b2Γ4
n + c2Γ2

n + d2

}
,

V1im (X) =
8∑

n=1

ΨnΓn exp (ΓnX)
{
a3Γ6

n + b3Γ4
n + c3Γ2

n + d3

}
, (6.21)

where Γn are the roots of Eq. (6.18) and Ψn are complex coe�cients to be satis�ed

through boundary conditions, i.e.

U1re,im (±∞) = 0,

V1re,im (±∞) = 0. (6.22)

In obtaining Eqs. (6.21) we also used MATLAB symbolic tools. Applying the

boundary conditions (6.22) to Eqs. (6.21), it is found that U1re and V1re must be

real and even functions of X. Similarly U1im and V1im must be real and odd functions
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of X. Thus, Ψn coe�cients take the following form,
Ψ2j = 0,Ψ3 = Ψ∗1,Ψ7 = Ψ∗5 X > 0

Ψ2j−1 = 0,Ψ4 = Ψ∗2,Ψ8 = Ψ∗6 X < 0

(6.23)

where j = 1, .., 4. This reduces the total number of unknowns in Eqs. (6.21) to four

arbitrary constants. The rest of the coe�cients in Eqs. (6.21) are:

a1 = m4β−1
1 ,

b1 = 2 ∗m2
(
v2 + 2m− 1

)
β−1

1 ,

c1 =
[(

3 (λ+ Ω)2 + 1
)
v2 +

(
(λ+ Ω)2 − 1

)
(1− 2m)

]
β−1

1 ,

d1 =
[
v4 + 2 (2m− 1) v2 −m2

(
(λ+ Ω)2 − 5

)
− 4m+ 1

]
β−1

1 ,

a2 = m4 (1 + v) β−1
2 ,

b2 = m2 (1 + v)
(
2v2 + 3m− 2

)
β−1

2 ,

c2 =
[
v2 (1 + v)

(
v2 + 3m− 2

)
−
(
−1 + 3m+ 3m2

(
(λ+ Ω)2 − 1

))
v

+m2
(
3− (λ+ Ω)2)− 3m+ 1

]
β−1

2

d2 =
[(

(λ+ Ω)2 + 1
)
v3 +

(
3 (λ+ Ω)2 + 1

)
v2 − (m− 1)

(
3 (λ+ Ω)2 − 1

)
v

− (m− 1)
(
(λ+ Ω)2 − 1

)]
β−1

2

a3 = m4
(
v2 + 2v + 1−m

)
β−1

3

b3 =
[(
v2 + 2v +m

)
2v2 + (2m− 1) 4v −

(
(λ+ Ω)2 + 3

)
m2 + 6m− 2

]
m2β−1

3

c3 =
[
v6 + 2v5 + (3m− 1) v4 + 4 (2m− 1) v3 +

(
4
(
1− (λ+ Ω)2)m2 + 2m− 1

)
v2+(

4
(
3− (λ+ Ω)2)m2 − 8m+ 2

)
v −

(
3 + (λ+ Ω)2)m3 + 8m2 − 5m+ 1

]
β−1

3

d3 =

{(
3 + (λ+ Ω)2) v4 + 4

(
1 + (λ+ Ω)2) v3 +

[(
3− 7 (λ+ Ω)2)m+ 6 (λ+ Ω)2 − 2

]
v2+

(
1− (λ+ Ω)2) (6m− 4) v +

(
−1 + (λ+ Ω)2) [(1 + (λ+ Ω)2)m2 − 3m+ 1

]}
β−1

3

(6.24)
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where,

β1 = 2v (λ+ Ω)
(
(λ+ Ω)2 − 1

)
,

β2 = 2v (λ+ Ω)
(
m (λ+ Ω)2 − (v + 1)2) ,

β3 = 2v
(
(λ+ Ω)2 − 1

) (
m (λ+ Ω)2 − (v + 1)2) . (6.25)

By properly choosing the four arbitrary constants that appear in (6.21) (i.e. Ψ2j−1

for X > 0 and Ψ2j for X < 0), one can obtain the analytical expressions for the tails

of the gap solitons. As is shown in Figures 6.6(a) and (b), real and imaginary parts

of the analytical solutions obtained from Eqs. (6.21) and the exact numerical soliton

solutions are in excellent agreement, except in the proximity of soliton's peak where

the linear approximation does not hold.
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Figure 6.6: Comparison of numerically obtained soliton solutions with analytical
solutions obtained from Eqs. (6.21); (a) real and (b) imaginary parts of a symmetric
gap soliton for Ω = 0.4, λ = 0.2, m = 0.35, and v = 0.2. Eq. (6.18) was solved
numerically. The complex coe�cients were found using a curve �tting algorithm:
Ψ1 = 0.6288 − 0.4042i, Ψ3 = 0.6288 + 0.4042i, Ψ5 = −0.1260 + 0.6701i, Ψ7 =
−0.1260− 0.6701i.
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6.2 Stability of Moving Solitons

We have investigated the stability of moving gap solitons in the model of Eqs. (6.4)

through systematic numerical analysis. To this end, Eqs. (6.4) are numerically solved

using the relaxation algorithm that was explained in Section 4.2. The obtained pulses

are then propagated in the structure via the symmetrised split-step Fourier method

described in Section 4.4.1. The results are displayed in Figures 6.7(a)-(f) where

stable regions for di�erent values of v and λ are shown in the plane of (m,Ω). As

it can be inferred from Figure 6.7, for m = 0 i.e. standard dual-core model, the

asymmetric moving solitons with Ω . 0 are unstable. The case of m = 0 has also

been studied in reference [77] where it has been reported that moving asymmetric

solitons are always stable where they exist. The results displayed in Figure 6.7 not

only agree well with the results of reference [77], but also generalize the model by

including all frequencies of the bandgap.

One important �nding is that with increase of dispersive re�ectivity parameter

the stability region expands into the negative values of Ω. This is true for higher

velocity solitons too as shown in Figures 6.7(e)-(f). This is yet another con�rmation

of the stabilizing e�ects of dispersive re�ectivity. Similar to the quiescent solitons, in

the moving case increase of λ decreases the stabilizing e�ects of dispersive re�ectivity.

For instance with increase of λ from 0.1 to 0.2 in Figures 6.7(e) and (f) the stable

region slightly shrinks to approximately Ω & 0 for the whole range of m < 0.5.

According to bifurcation theory it is known that for given Ω, m and v, above

critical coupling λc, the symmetric solutions that exist on their own are always

stable. The numerical stability analysis con�rms the predictions of the bifurcation

theory. The regions where symmetric solutions exist on their own are shown in

Figures 6.7(a)-(f). It should be noted that unstable symmetric solutions that co-

exist with asymmetric ones are not shown in these �gures.

In obtaining the stable regions, we have used two methods. The common method
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Figure 6.7: Stability diagrams for moving solitons in the plane of (m,Ω) for di�erent
coupling coe�cients λ, and soliton velocities v; (a) λ = 0.1 and v = 0.1, (b) λ = 0.2
and v = 0.1, (c) λ = 0.1 and v = 0.2, (d) λ = 0.2 and v = 0.2, (e) λ = 0.1 and
v = 0.4, (f) λ = 0.2 and v = 0.4. The dashed lines depict bifurcation points. The
narrow hatched regions correspond to the symmetric solutions that exist on their
own. Edges of the bandgap in the moving reference plane are shown by dash-dotted
curves (cf. Figures 6.2(c)-(e)).
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is to examine the stability of solitons against perturbations. However, this approach

makes it di�cult to distinguish the stability of pulses for the parameters very close

to the stability borders. More speci�cally, perturbations cause velocity change in

both stable and unstable solitons that are close to the stability border, particularly

when longer propagation time is needed. Thus, it is somewhat inaccurate to identify

the stability borders using this approach. The same di�culty was experienced in the

quiescent case. More speci�cally, perturbed stable quiescent solitons that are close

to the stability border may become moving as a result of the perturbation.

The other method that is used in this thesis is to examine the oscillations of

the solitons peak during propagation in the absence of the perturbations. In this

case the numerical noise is enough to trigger any instability. For instance, maximum

amplitude of U1 component for Ω = −0.1, λ = 0.1, m = 0.1, and v = 0.2 which falls

in the unstable region (cf. Figure 6.7(c)) is shown in Figure 6.8(a). With increase of

frequency to Ω = +0.05 the soliton is in the stable region. Maximum amplitude of U1

for the stable soliton is shown in Figure 6.8(b). It is obvious that the oscillations of

the soliton's peak in Figure 6.8(a) ampli�es as the soliton propagates in the medium,

suggesting that the soliton is unstable. On the other hand the soliton's peak is at
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Figure 6.8: Evolution of maximum amplitudes of forward-propagating waves in core
1 (U1) for moving asymmetric solitons. (a) An unstable soliton for Ω = −0.1, λ = 0.1,
m = 0.1, and v = 0.2, and (b) stable soliton for the same parameters but Ω = +0.05.
Perturbations are not used.
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a steady state in Figure 6.8(b), suggesting that the soliton is stable. Also, periodic

changes of the soliton's peak, i.e. breathing, can be seen in Figure 6.8(b). It should

be noted that the increase in the oscillations of the peak amplitude happen in all of

the components.

Similar to the quiescent solitons, the development of instability in the moving

solitons generally does not lead to the destruction of the solitons. Instead, whether

symmetric or asymmetric they spontaneously rearrange themselves into robust asym-

metric ones. During the rearrangement solitons generally shed some radiation and

the energy loss causes the soliton to either reduce its velocity or frequency or both

depending on the parameters. It is possible to approximately determine the pa-

rameters of the emerging robust solitons via curve �tting, however the emerging

solitons generally undergo �uctuations, i.e. breather, which makes it hard to make

any accurate estimate of the new parameters.

Examples of the evolution of unstable asymmetric and symmetric moving soli-

tons are shown in Figures 6.9(a) and (b), respectively. In these �gures U1 and U2

components are shown at the same time for better comparison. As shown in Figure

6.9(a) the asymmetric solitons gain velocity as they propagate and as a result shed

some radiations. The emerging fast moving solitons then undergo breathing. Simi-

larly, the symmetric solitons in Figure 6.9(b) lose some energy while propagate along

the �ber. They quickly transform into asymmetric robust ones which subsequently

undergo breathing.

6.3 Collisions of Moving Solitons

Interactions and collisions of solitons are of great interest and have been studied in

various contexts [93�95]. This is, in part, due to the fact that the outcomes of such

interactions provide further insights into the nonlinear dynamics of the system which
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Figure 6.9: Evolution of (a) U1 and (b) U2 components of an unstable asymmetric
moving gap soliton. (c) and (d): evolution of U1 and U2 components of a symmetric
moving gap soliton. Other parameters in all the above are: Ω = −0.4, λ = 0.4,
m = 0.25, and v = 0.2. The above symmetric and asymmetric solitons co-exist in
the system.

can be used to manipulate light for various applications. A major challenge in the

slow light applications is the generation of stationary or quiescent gap solitons. One

of the proposed methods is through the collisions of counter-propagating moving gap
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solitons which at certain parameters result in the merger of the gap solitons into a

single non-moving one [66,92,96,97].

To study the collisions of moving gap solitons, we have propagated stable identical

counter-propagating solitons numerically throughout the plane of (m,Ω) for di�erent

values of λ and v, subject to the following initial conditions:

Up (X, 0) = Up,v(X −
4X

2
, 0) + Up,−v(X +

4X
2
, 0) exp (i4ϕ) ,

Vp (X, 0) = Vp,v(X −
4X

2
, 0) + Vp,−v(X +

4X
2
, 0) exp (i4ϕ) , (6.26)

where4X and4ϕ are initial separation and phase di�erence of the two colliding soli-

tons. p = 1, 2 correspond to the �rst and second cores. Also, {Up,v, Vp,v} correspond

to the forward-propagating soliton with the velocity of v. Similarly {Up,−v, Vp,−v}

correspond to the backward-propagating soliton with the velocity of v.

One interesting result, which was found by systematically changing ∆X in many

simulations, is that the initial separation has negligible e�ect on the character of

interactions. This is found for collisions of both symmetric and asymmetric gap

solitons.

We have studied two cases of in-phase (∆ϕ = 0) and out-of-phase (∆ϕ = π) colli-

sions. Figures 6.10(a)-(f) show examples of collisions of in-phase counter-propagating

identical solitons for various parameters. Through systematic simulations we have

found that collision of two moving symmetric or asymmetric gap solitons leads to

one of �ve possible outcomes: it may result in the passage of solitons through each

other (Figure 6.10(a) and (e)), merger into a single quiescent or moving soliton (Fig-

ure 6.10(b)), elastic bounce (Figure 6.10(c)), creation of a single quiescent and two

moving solitons (Figure 6.10(d)), and destruction of both solitons (Figure 6.10(f)).

It is found that in the region where solitons bounce o� each other, they gener-

ally maintain their energies and consequently their velocities and frequencies after

the particle like collision. In contrast the passage of solitons through each other is
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Figure 6.10: Examples of collisions of stable identical counter-propagating in-phase
moving gap solitons. (a) Passage of asymmetric solitons through each other for
Ω = 0.2, λ = 0.1, m = 0.1, and v = 0.1, (b) Merger of asymmetric solitons into a
quiescent one for Ω = 0.1, λ = 0.1, m = 0.3, and v = 0.2, (c) Elastic collision of
asymmetric solitons for Ω = 0.0, λ = 0.2, m = 0.45, and v = 0.1, (d) Generation of
a quiescent soliton along with two moving ones for Ω = 0.55, λ = 0.2, m = 0.4, and
v = 0.2, and (e) Symmetric separation in the symmetric region where u1 = u2 and
v1 = v2 for Ω = 0.65, λ = 0.2, m = 0.42, and v = 0.2. (f) Destruction of asymmetric
solitons for Ω = 0.08, λ = 0.2, m = 0.05, and v = 0.1. Only forward-propagating
wave in core 1 i.e. U1 is shown.

generally not elastic, giving rise to the emission of radiation (e.g. Figure 6.10(a)).

Similarly merger of solitons, as is shown in Figure 6.10(b), generally result in ra-

diation loss and the emerging quiescent or moving soliton has less power than the

two initial solitons combined. The amount of radiation varies based on the soliton
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Figure 6.11: Outcomes of the interactions of in-phase moving gap solitons in the
plane of (m,Ω) for (a) λ = 0.1 and v = 0.1, (b) λ = 0.2 and v = 0.1, (c)λ = 0.1
and v = 0.2, and (d) λ = 0.2 and v = 0.2, (e) λ = 0.1 and v = 0.4, (f) λ = 0.2 and
v = 0.4. Labels stand for: Destruction (D), Elastic bounce (E), Merger (M), Passage
of solitons through each other (P), three solitons generation i.e. generation of two
moving and one quiescent solitons (T). The dashed lines show the bifurcation points
i.e. the border between symmetric and asymmetric solutions. The dash-dotted lines
show bandgap edges in the moving reference frame. Regions in which sidelobes
appear are determined by dotted lines.
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parameters.

In the case of in-phase gap solitons, the outcomes of interactions are summarized

in Figures 6.11(a)-(f) for various λ and v in the plane of (m,Ω). The dotted curves

in these �gures show the regions where sidelobes appear in the soliton pro�le. One

striking �nding is that with increase of velocity of solitons from 0.1 to 0.2 a region

appears in which collisions result in the generation of two moving solitons and a

quiescent one (region T). With further increase of velocity to 0.4, as shown in Figure

6.11(e) and (f), region T signi�cantly expands. Also, region P, where solitons pass

through each other, expands largely with increase of soliton velocity from 0.2 to

0.4. As shown in Figures 6.11(d) and (f) 2→ 3 transformation happens even in the

absence of dispersive re�ectivity, i.e. standard coupled mode system. This is the �rst

time that three gap soliton generation is reported as a result of in-phase collision of

moving solitons in the m = 0 case, suggesting that this is a feature of the model.

As shown in Figure 6.11, collisions of stable symmetric solutions where U1 = U2

and V1 = V2 (cf. Figure 6.7), usually result in the passage of solitons through each

other except for small regions for fast moving solitons.

Outcomes of out-of-phase symmetric and asymmetric gap solitons, i.e. when

∆ϕ = π, generally fall into two categories: gap solitons with small or no sidelobes

symmetrically bounce o� each other. This is similar to the collisions of out-of-phase

nonlinear Schrodinger (NLS) solitons. On the other hand for larger values of m, i.e.

regions speci�ed in Figure 6.5 where sidelobes appear, it is seen that gap solitons

repel each other and lose some energy by decreasing their velocities after the collision.

6.4 Potential Applications Of Moving Solitons

The ability to delay optical pulses by slowing down the light inside a grating has a

number of potential applications: optical bu�ers, delay lines, and all-optical mem-
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ories, to name a few, which may be used in high speed optical communication sys-

tems. For example, a con�guration has been proposed in reference [104] for optical

memories, which consists of a �ber ring incorporating a phase-sensitive ampli�er to

compensate for the ring losses. It has been shown that such storage devices are

physically realizable and can store up to 10 Mbits of data inde�nitely, which may be

useful for interchange and routing bu�ers [105].

Generating slowly moving gap solitons is a challenge of its own. A method was

proposed recently to create very slow gap solitons with the help of grating-assisted

couplers [100]. The proposal involves many design complexities, however gap solitons

with velocities as low as 4% of the speed of light in vacuum were numerically reported.

The results of the soliton-soliton collision that were presented in Figures 6.11 may

also be used to overcome the problem of creating slow optical pulses. For instance, the

velocity of the resulting moving gap solitons can be controlled by properly choosing

the parameters: they may have faster, slower or even zero velocities (refer to Figures

6.10).

In reference [96] it was shown that to get a quiescent soliton from an inelastic

collision of faster gap solitons, the initial velocities of solitons must be less than 20%

of the group velocity, which has not been experimentally observed yet. However,

�gure 6.11(f) shows the collision outcomes for v = 0.4, i.e. fast initial solitons, which

lead into the generation of quiescent gap solitons in region M.

One of the key slow-light applications of gap solitons is their use in all-optical

switching (or logic gates), which is an integral part of future communication net-

works. All-optical AND gates, for instance, were �rst proposed in the concept of gap

solitons by Lee and Ho [99]. The proposed method was based on two orthogonally

polarized gap solitons that form a coupled system, described through coupled NLS

equations. They showed that the coupled pulses launched simultaneously into the

grating propagate through the nonlinear periodic medium while individual pulses
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undergo strong grating-induced re�ection (i.e. an AND operation), because their

frequency lies within the bandgap. Same principle was also used a few years later in

�ber Bragg gratings and the all-optical AND gate was experimentally demonstrated

to have a switching contrast of 17dB (i.e. the ratio of output power in ON and OFF

states) [98]. One advantage of optical logic gates over their semiconductor counter-

parts is shorter response time (or propagation delay). For example current NAND

gates have propagation delays in the order of a few to hundreds of ns, while the logic

operation in [98] is done as soon as the pulses travel through the grating which is of

the order of sub-ns for an 8-cm long grating.

Similarly, one potential application for the model that we studied in this thesis is

optical switching. For instance, by controllingm in Figure 6.11(c) at �xed frequencies

(say Ω = 0.45), it is possible to control the outcomes of the soliton-soliton collision

between the two regions of merger (M) and elastic bounce (E). More speci�cally, in

region M the incident pulses will (theoretically) remain inside the grating, while in

the region E they will bounce o� each other and appear at the output ports. This

could be used in optial routing applications or even optical Add-Drop components.



Chapter 7

Summary

7.1 Conclusions

The existence, stability and interactions of gap solitons in Kerr-type nonlinear grating-

assisted �ber couplers were studied. In this thesis we incorporated the dispersive

re�ectivity parameter (m), which accounts for the grating nonuniformities, into the

nonlinear coupled mode equations to generalize the model. The e�ects of the dis-

persive re�ectivity on the pro�les, stability and interactions of gap solitons in the

system were investigated in details.

Analytical expressions of the bandgap were derived in both laboratory and mov-

ing frames. We showed that when 0 < m < 0.5 bandgap is independent of m,

however for m > 0.5 the bandgap shrinks with increase of m. It was also found that

above a certain value of dispersive re�ectivity solitons develop sidelobes, regardless

of their types.

In terms of the types of solutions, the system was found to support two families

of symmetric and asymmetric gap solitons that �ll the entire photonic bandgap. By

obtaining bifurcation diagrams we showed that for given parameters the two types of

solutions bifurcate at certain coupling coe�cient (λc). More speci�cally, for values

101
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of coupling coe�cient greater than λc symmetric solutions exist on their own, while

below λc the two types of symmetric and asymmetric gap solitons can exist at the

same time. The bifurcation theory predicts that asymmetric solitons are stable where

they exist, while symmetric ones are only stable where they exist on their own.

For better insights into the characteristics of the model, gap solitons in the system

were studied in two separate cases of quiescent and moving ones. In the quiescent

case linear forms of coupled mode equations were solved analytically for both types

of symmetric and asymmetric solitons. This led to the analytical forms of the tails of

the quiescent gap soliton, where due to smaller amplitudes the nonlinear e�ects are

negligible. From the linear analysis we also found the condition for solitons to have

sidelobes. We showed that the obtained analytical solutions agree well with the exact

numerical solutions except in the peak region of the soliton where nonlinearity comes

into play. This is a signi�cant achievement that can be useful in optical switching

applications.

We also tried the same linear analysis for the case of moving gap solitons. The

system of linear CMEs in the case of asymmetric moving solitons has not been solved

yet and analytical solutions remain unknown. However, in the case of symmetric

moving solitons, we were able for the �rst time to solve the linear system analytically,

resulting in excellent approximate solutions for the symmetric moving solitons tails.

The stability of symmetric and asymmetric gap solitons were investigated using

systematic numerical simulations. Whether quiescent or moving, we found that when

m = 0 asymmetric gap solitons are stable for ω & 0. However with increase of m

stable region expands into negative frequencies. Symmetric solitons, on the other

hand, are stable only if they exist on their own. The results were found to be in

excellent agreement with the predictions drawn from the bifurcation theory.

It is concluded that dispersive re�ectivity generally results in the stabilization of

the gap solitons and the expansion of the stability region. We also found that as
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the coupling coe�cient λ increases the stabilization e�ect of dispersive re�ectivity

is reduced. The stabilizing e�ect of dispersive re�ectivity was also veri�ed using

bifurcation theory. More speci�cally, we found that as m increases λc decreases

which broadens the region where symmetric stable gap solitons exists.

Interactions of quiescent solitons in the model were studied using systematic nu-

merical analysis. In the case of in-phase solitons, it was found that the interactions

may result in various outcomes such as merger into a single quiescent soliton, de-

struction of solitons, formation of a bound state that eventually breaks up into two

separating solitons, formation of two moving and one quiescent soliton and repulsion

of solitons. A key �nding was that destruction and 2→ 3 transformation can occur

even if dispersive re�ectivity is absent. To the best of our knowledge, such outcomes

have not been reported in the other models of gap solitons in the absence of disper-

sive re�ectivity. Therefore, one can conclude that these outcomes are speci�c to this

model and arise as a result of the coupling between the gratings.

We also considered the e�ect of the initial separation on the outcome of the

interactions. It was found that, for both in-phase and π-out-of-phase cases, when

gap solitons do not have sidelobes in their pro�les the outcome of interactions are

weakly dependent on the initial separation. On the other hand, the interactions of

gap solitons with sidelobes are strongly dependent on the initial separation.

In the case of moving gap solitons, we found that collisions feature rich dynamics.

In-phase collisions of moving solitons were investigated and several outcomes were

identi�ed among which merger of the solitons into a single quiescent and 2 → 3

transformation are the most interesting ones. It was shown that three soliton gener-

ation is more likely to happen when coupling coe�cient is stronger. Slow symmetric

solitons were found to pass through each other in inelastic collisions while faster ones

may generate three solitons for larger dispersive re�ectivity.

Colliding out-of-phase solitons were generally found to repel each other. Another
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�nding was that when dispersive re�ectivity is weak the collisions are usually elastic

while for strong dispersive re�ectivity solitons lose energy in the form of radiation

during and after the collisions.

7.2 Future Work

There are areas that we identi�ed throughout this thesis which may be further in-

vestigated in the form of new research projects. Here we brie�y point these areas

out.

One interesting �nding in the study of the collisions of moving gap solitons was

that quiescent gap solitons may be generated as a result of the collisions under con-

trolled conditions. In this thesis we investigated in-phase and out-of-phase collisions

of pulses with identical velocities and frequencies. In practice, the colliding pulses

may become slightly out of phase or have unequal velocities or slightly di�erent

frequencies. Collisions of such solitons give more insight into the system's dynamics.

In this thesis we considered identical nonuniformities in the two cores using the

same dispersive re�ectivity parameter. However, in reality due to the random na-

ture of nonuniformities, dispersive re�ectivity may vary from one core to the other.

Therefore, one may solve the coupled mode equations incorporating m1 and m2 ac-

counting for di�erent nonuniformities in the cores. This will add one more parameter

to the system of equations and may result in new features of gap soliton interactions

in the model.
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