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Abstract 

 

The coastal fringe of Australia is characterised by a number of estuarine environments with 

over 900 systems identified. Estuaries are one of the richest and diverse coastal 

environments, ranked among the most valuable natural resources in the world. In Australia, 

estuaries are biologically productive, providing key environmental, social and economic 

functions. As coastal populations increase, considerable pressures are exerted on estuarine 

environments. Despite recent improvements to estuarine management, the absence of a clear 

and consistent management approach and limited accountability has affected the value of 

estuarine management. Consequently, there is a need for a clear approach, involving the 

development of an effective, integrated and regionally consistent assessment of estuarine 

environments. This approach will guide the formation of management decisions and 

distribution of limited management resources. A review of existing state and national 

estuarine assessment schemes revealed that the value and functionality of these assessments 

are often limited by the inappropriate use of environmental indicators and complex 

management of data.  Several improvements have been made in the current scheme, allowing 

a greater degree of reliability in the reporting of estuarine condition. These improvements 

include the development of a simple assessment framework, use of high-value indicators that 

limit confounding by natural spatial and temporal variation, reduction in the complexity of 

data analysis and the use of fuzzy logic in indicator evaluation. These improvements were 

incorporated into the development of a hierarchal assessment scheme that involved a two-

tiered assessment of estuaries within New South Wales (NSW), Australia. The regional 

assessment scheme formed the preliminary component of estuarine evaluation, providing an 

initial quantitative assessment of 38 estuaries in NSW. Five classes of estuarine condition 

were identified: near pristine, slightly modified, modified, highly modified and severely 

modified. Under this scheme, estuarine systems classified as ‘severely modified’ (Dee Why 

Lagoon, Curl Curl Lagoon, Manly Lagoon, Sydney Estuary and Cooks River) were selected 

for a detailed evaluation under a local assessment scheme. Using Sydney estuary as a case 

study in this category, the local assessment formed the secondary component of the hierarchal 

scheme, providing a detailed intra-estuary assessment of catchment pressures and estuarine 

condition. Blackwattle/Rozelle Bay, Iron Cove, Homebush Bay and Duck River were found 

to be heavily degraded with water quality of particular concern in Duck River, Homebush 

Bay, Parramatta River and Lower Parramatta River. Sediment quality was also of significant 
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concern in Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay. North Harbour, 

Upper Middle Harbour and Lower Middle Harbour were found to be in the best condition. A 

report card format, involving the use of letter grades, was used to present the results of the 

assessment schemes. The use of report cards is a valuable tool to convey scientific 

information in a readily understood manner to estuarine managers and members of the public. 

Use of letter grades also provides benchmarking and performance monitoring ability, 

allowing estuarine managers to set improvement targets and assesses the effectiveness of 

management strategies. The current hierarchal assessment scheme provides an effective, 

integrated and consistent assessment of estuarine health, unhindered by natural spatial and 

temporal variance. This scheme, involving the regional and local assessment of estuaries, 

provides an effective decision support tool to maximise the efficient distribution of limited 

management resources by identifying priority estuarine systems. 
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Key Terms 

 

Estuary: 

A partially enclosed coastal body of water that is either permanently or periodically open to 

the sea and which receives sediment from both fluvial and marine sources. The estuary 

contains geomorphological facies influenced by tide, wave and fluvial processes and is 

considered to extend from the landward limit of tidal range to the seaward limit. 

 

Regional assessment: 

Regional assessment is an inter-basin assessment of multiple estuarine systems. 

 

Local assessment: 

Local assessment is an intra-basin assessment of a single, local estuarine system. 

 

Sydney estuary: 

Sydney estuary is defined as encompassing all submerged areas to Indian Spring Low water 

in the estuary and includes areas of North Harbour, Middle Harbour, Sydney Harbour and the 

Parramatta River. 

 

Sydney catchment: 

The Sydney catchment is a drainage basin, defined by topographical boundaries whereby 

surface water runoff drains into Sydney estuary. 

 

Sub-catchment: 

A sub-catchment is a smaller division of catchment, defined by topographical boundaries 

within a larger catchment. A single catchment may comprise of many sub-catchments. 

 

Sub-estuary: 

A sub-estuary is a smaller division of an estuary. Embayments and estuary channels may be 

classified as subestuaries. 

 

Compartment: 

A compartment is a catchment/estuary system operating as a single entity. 
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1 Introduction 

Estuaries are one of the richest and diverse coastal ecosystems, providing essential 

environmental, social and economic functions (NLWRA, 2002). With greater than 90% of 

the Australian population living within 50 km of the coast (ABS, 2011), increasing 

population densities and urbanisation has resulted in the degradation of many of these 

important environments. 

1.1 Defining Estuarine Environments 

Numerous definitions are available to describe estuarine environments, however many of 

these descriptions fail to take into account features that characterise many Australian 

estuaries (Potter et al., 2010).  To accurately describe estuarine environments within 

Australia, the following definition adapted from Dalrymple et al. (2010), is used in the 

current study: 

 

An estuary is defined as a partially enclosed coastal body of water that is either permanently 

or periodically open to the sea and which receives sediment from both fluvial and marine 

sources. The estuary contains geomorphological facies influenced by tide, wave and fluvial 

processes and is considered to extend from the landward limit of tidal range at its head to the 

seaward limit of its mouth. 

1.1.1 Classification of Estuarine Environments 

Estuaries and coastal water bodies are dynamic environments in which geomorphic change 

may occur over a range of time scales (Roy, 1994; Harris et al., 2002). Under stable 

conditions, the geomorphology of coastal waterways is principally determined by the 

influence of wave, tide, and river energy (Ryan et al., 2003) (Figure 1). 

 

Figure 1: Ternary classification of estuaries (adapted from Dalrymple et al., 2002; Boyd et al., 2002). 
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A number of schemes have been developed that attempt to classify the range of physical 

characteristics exhibited by estuarine environments. However, the majority of these are not 

widely applicable, or do not characterise the nature of Australian estuaries. Ryan et al. (2003) 

identified several estuarine classes of Australian estuaries and coastal waterways depending 

on the relative influence of waves, tides, and rivers (Figure 1). Estuaries and coastal 

waterways may be classified into the following categories: 

­ Wave dominated; 

­ Tide dominated; 

­ Drowned river valley (tide and wave dominated);  

­ Coastal lagoons and strandplain lakes; and 

­ Tidal creeks. 

1.2 Importance of Estuarine Environments 

Estuaries are highly valuable coastal environments, ranking among the most important 

natural resources in the world (Smith et al., 2001). Large urban populations often occupy 

these environments due to significant environmental, economic and social importance. 

1.2.1 Environmental Value 

Estuaries are biologically productive and diverse environments, acting as the interface 

between terrestrial and marine environments. With high ecological and conservation value 

(Hutson, 2005; Birch and Hutson, 2009; Boyes and Elliot, 2006), these systems play an 

important role in maintaining the health of coastal ecosystems, providing essential 

environmental and ecosystem functions, that include: 

 Provision of shelter, breeding grounds and nursery habitat for marine, estuarine and 

terrestrial species; 

 Ability to trap sediment and gross pollutants; 

 Play an important role in the recycling of nutrients and carbon; and 

 Provision of suitable conditions for important ecological communities, such as 

saltmarsh, mangroves and seagrass beds. 
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1.2.2 Economic and Social Value 

Estuaries also have a high social and economical value, supporting industrial, commercial 

and recreational activities (Burchmore, 1992; Ward et al., 1998; Boyes and Elliot, 2006).  

Estuaries provide: 

 Sheltered deep-water access for ports, facilitating trade and ocean transport; 

 Suitable areas and resources for urban and industrial development; 

 Natural resources such as fisheries and aquaculture; 

 Areas for tourism and recreation; and 

 Aesthetic value. 

1.3 Management of Estuarine Environments 

In Australia, rapid, catchment-wide urbanisation and industrialisation in the 19
th

 century may 

be correlated to the onset of estuarine degradation and contamination (Taylor et al., 2004). 

Increasing population densities and urban development have increased environmental 

pressures and subsequent deterioration of adjacent estuarine systems (Birch and Hutson, 

2009). 

Despite the importance of these natural resources, management of estuaries in Australia has 

historically been poor (Hutson, 2005), with limited accountability and responsibility. For 

example, reclamation within Sydney Estuary was considered a ‘harmless’ practice by the 

NSW Legislative Assembly in 1866, but came at the expense of wetlands, mangroves and 

other sensitive habitats (Birch et al., 2009). Estuarine environments were also regarded as a 

suitable location for industrial waste disposal, leading to extensive contamination of heavy 

metals and organic contaminants (McCready et al., 2000). The absence of a coherent 

management structure and lack of responsibility has led to the degradation of coastal 

waterways in Australia (Birch and Taylor, 2004).  

Despite recent improvements in the management of estuarine environments in Australia, 

there is a need to effectively manage impacted estuaries to maintain vital environmental 

functions, as well as maintaining important social and economic services. Effective 

management may only be achieved through a sound understanding of the relationship 

between a catchment and estuary (Edgar et al., 1999). Effective and targeted management of 

estuaries requires rigorous, high quality, science-based information provided in such a way 
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that it may be readily integrated into a decision-making process by natural resource managers 

(Hutson, 2005).  

1.4 Environmental Indicators 

An environmental indicator is a physical, chemical, biological or socio-economic measure, 

used to assess the current state and condition of the environment. Indicators provide a 

scientific basis for the management, planning and monitoring of estuarine environments and 

are key to measuring progress towards and achieving standards and targets (Barton, 2003; 

Bateson, 2010; Reese et al., 2008; Birch, Olmos and Lu, 2012). 

It has been recognised by the scientific community that a variety of indicators derived from a 

multi-disciplinary approach is necessary for successful estuarine assessment and informed 

management (Ward et al., 1998). Many governments and management organisations have 

adopted the use of environmental indicators that have become an integral part of natural 

resource management and policy making (Bayer et al., 2008; Backer, 2008). 

No single environmental indicator will unambiguously measure impacts of anthropogenic 

pressure on estuarine systems (Deeley and Paling, 1999). However, a holistic approach 

employing the use of a variety of indicators will provide an effective and relevant 

assessment. Care should be taken when choosing suitable environmental indicators, selecting 

those that minimise spatial and temporal variability and demonstrate strong causal 

relationships.  

Effective environmental indicators should fulfil the following criteria (Bateson, 2010; 

Scheltinga et al., 2004; Niemi et al., 2004): 

 Sensitive to aspects of environmental change; 

 Reflect key components of the environment; 

 Provide an early warning of potential problems; 

 Easily monitored;  

 Show clear causal relationships; 

 Should not be affected by spatial and temporal variation; 

 Easy to interpret and understand; and 

 Scientifically robust. 



 

8 
 

1.4.1 Limitations of Common Environmental Indicators 

It is increasingly recognised that much emphasis is being placed on irrelevant environmental 

indicators in estuarine assessment (Olmos and Birch, 2009; ANZECC, 2000). For indicators 

to communicate appropriate information they must: simplify complex information to aid 

communication between scientists and management, establish current environmental status 

and provide benchmarks and thresholds. Subsequently, there is a need to focus on indicators 

that provide meaningful science-based information with minimum effort and expense 

(Ardron, 2008). 

Many indicators used in existing assessment schemes are limited in their ability to accurately 

assess the condition of catchment / estuary systems. These limitations, detailed below, must 

be acknowledged in order to provide an accurate assessment of these environments. 

Spatial and Temporal Variability 

A primary limitation of many environmental indicators is the potential for spatial and 

temporal variation to confound the result of the indicator.  This natural variation may make it 

difficult to identify and quantify the human-induced component of change. Spatial and 

temporal variability may be managed to a degree through careful sample design, data 

collection and interpretation. However, many common indicators are effort intensive and are 

poor in providing reliable trend and compliance information (Magni, 2003; Birch, Olmos & 

Lu, 2012).Careful selection of indicators that minimise natural temporal and spatial 

variability is key to providing an accurate assessment of human-induced change in 

environmental management.  

Causal Relationships  

Understanding causal relationships between catchment pressures and estuarine condition is 

important in when selecting relevant environmental indicators to assess estuarine condition. 

Without a clear correlation between indicators, the selection of appropriate management 

actions is difficult. Use of irrelevant environmental indicators limits the value of information 

provided in an assessment and may incur additional cost and time. 
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1.4.2 Examples of Limitations within Common Environmental Indicators 

Biological Indicators 

Biological indices are important and valuable indicators of estuarine condition. However, due 

to technological, logistical and financial reasons, biological assessments are often isolated to 

small sample areas over short periods. Consequently, the ability of these indices to assess and 

record change over a range of temporal and spatial scales is inherently imprecise. Careful 

interpretation is important due to confounding effects of natural temporal and spatial 

variation. 

Many estuarine assessments commonly examine the distribution and extent of mangrove, 

seagrass and saltmarsh habitat.  These habitats, particularly seagrass communities, are 

susceptible, not only to natural disturbances, but are highly temporally variable in spatial 

extent.  For example, large natural runoff events resulted in widespread decrease in seagrass 

distribution in Moreton Bay, Queensland (Dennison and Abal, 1999). In Western Australia 

Wood and Lavery (2001) observed common variables used to assess seagrass health (shoot 

density, canopy cover, leaf density etc.) vary seasonally and are limited in the ability to 

assess the health of such habitats. 

Studies have also identified catchment-based impacts such as land clearing, increased 

sedimentation, nutrient loads and changes in catchment hydrology may be attributed to both 

the expansion and decline of mangrove habitat (Morrisey et al., 2007; Farnsworth and 

Ellison, 1997; Saintilan and Wilton, 2001).  A lack of sufficient and reliable data makes 

identification of the human-induced component of change in mangrove extent difficult to 

discern, making their value as estuarine indicators questionable (McLoughlin, 1985). 

Detailed investigation of the relationship between habitat extent and human impacts is 

required for these indicators to be used with confidence.   

Other common biological indices, such as species diversity and composition, abundance, 

nursery function and trophic integrity are also subject to natural temporal and spatial 

variability, as well as challenges in data collection and interpretation. Such indicators are 

only able to provide an approximation of condition and are hence limited in assessment of 

estuarine health. Appropriate selection and careful interpretation of biological indices may 

provide valuable information in the assessment of estuarine health. However, the availability 

and quality of data for Australian estuaries is limited. 
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Water Quality Indicators 

Water quality parameters are commonly used in the assessment of estuarine condition, but 

the inherent variability of contaminant concentrations requires intensive sampling with 

higher costs and more complex interpretations (Horowitz et al., 1990; Birch et al., 1999). 

Water sampling may also miss many brief, but high-concentration contaminant discharges. 

Similar to many biological indicators, water quality parameters are subject to natural spatial 

and temporal variation. Turbidity, for example, is a common water quality parameter, but 

may vary temporally in response to changes in rainfall, wind, tide, temperature and 

resuspension (Birch et al., 1999). Variation in turbidity may influence other indicators 

associated with suspended particulate matter, such as nutrients, dissolved oxygen and 

contaminants. Thus variation may be a result of natural process, making the human-induced 

component of change difficult to establish. Where data exists in sufficient temporal and 

spatial detail, water quality indices are valuable metrics of estuarine health.  

1.5 Value and Use of Sedimentary Metals as Indicators 

The importance of sediment chemistry in assessment of estuarine condition is widely 

acknowledged (Olmos and Birch, 2008; Borja and Dauer, 2008; Fairy et al., 2001; Chang, 

2001). However, the evaluation of estuarine sediments is rarely applied effectively in 

mainstream assessment schemes. Sedimentary metal indicators, when used in a weight-of-

evidence approach, are valuable tools in evaluating the health of estuarine environments. 

The affinity of heavy metals and contaminants to adsorb to the fine fraction (organic and 

inorganic) of sedimentary material (Birch, 2003) allow sediments to faithfully record and 

time-integrate the environmental status of an aquatic ecosystem. An advantage of sediment-

bound metals is the ability to identify the pre-anthropogenic condition and provide natural 

‘background’ concentrations in sediments. These indicators provide information background 

condition, historical and possible future magnitude of anthropogenic change, as well as 

benthic risk, not confounded by natural spatial and temporal variability (Birch and Taylor, 

1999; Birch and Olmos, 2008). 

Sedimentary metals indicators are particularly useful in the preliminary stage of estuarine 

health assessment as they can provide a determination of both human impact and biological 

risk (Olmos and Birch 2008; 2010). Sedimentary metal indicators provide additional lines of 
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evidence in assessment of estuary condition and provide added value to allow differentiation 

of estuarine ecosystem health.  Subsequently, these indices have been adopted for use in the 

current study. Other chemical indicators such as redox and polycyclic aromatic hydrocarbons 

(PAH) may provide valuable environmental information, however the availability and quality 

of such data for Australian estuaries is limited. 

1.6 Limitations of Existing State and National Estuarine Assessment Schemes 

1.6.1 National Land and Water Resources Audit – Estuary Assessment (2002) 

In 2002, the National Land and Water Resources Audit (NLWRA) published the first 

comprehensive assessment of catchments, rivers and estuaries in Australia (NLWRA, 2002). 

Using data already available, the audit provided a condition assessment of Australian 

estuaries. The assessment was conducted in two stages. Stage one involved a preliminary 

assessment of estuarine condition, providing an effective opportunity to identify impacted 

estuary systems (NLWRA, 2002). Criteria used in the preliminary assessment were largely 

qualitative, with emphasis placed on catchment-based indicators. Four estuary conditions 

were subsequently identified, e.g. near pristine, largely unmodified, modified and extensively 

modified. 

The primary assessment was designed to provide an assessment of Australian estuaries using 

limited resources and available information. The effectiveness of the assessment was limited 

by the selection and use of environmental indicators that were largely qualitative and not 

supported by robust scientific data. Indicators placed emphasis on catchment processes with 

no delineation of catchment pressures and estuarine condition.  

Subjective indicator definitions such as ‘ecological systems and processes modified (e.g. loss 

of benthic flora and fauna’ and ‘dams and impoundments, significant abstraction modifying 

natural flows’ were used to classify each estuary into one of the four condition categories 

with little or no scientific data used to demonstrate the effect of these pressures on estuarine 

condition.  The subjective and qualitative nature of indicators used raises concern over the 

validity of results and correct classification of estuaries. Estuaries appear to have been 

assessed regardless of true catchment pressures and estuarine condition, potentially resulting 

in incorrect assessment of estuaries and implementation of uniformed management 

responses.  The classification of estuarine condition by existing assessment schemes is 

further detailed in Chapter 2, Section 4.4.  
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The second stage of the Audit assessed the extent of change in modified systems using a 

Pressure-State-Response model. The audit utilised several condition indices that assessed 

parameters, such as ecosystem integrity, habitat integrity and fish condition, as well as water 

and sediment quality. Pressures were separately assessed through a susceptibility and 

utilisation index. The detailed assessment proved difficult mainly due to limited and 

inconsistent data due to poor availability and differences the reporting and quality of data 

(NLWRA, 2002). 

Indicator selection was again a limiting factor in the ability of the audit to provide a realistic 

assessment of estuarine health. Metrics, such as seagrass and mangrove cover, diversity and 

abundance of fish species and water quality parameters were used as indicators of 

anthropogenic influence.  As previously noted, such indicators are subject to confounding 

due to temporal and spatial variability and natural stress. Due to the scale of the Audit and 

methods of data collection / accessibility, these indicators are not considered to be suitable. 

The NLWRA understood some limitations, recognising that due to a lack of data, the audit 

was unable to define benchmarks to establish the extent of change for all modified estuaries 

(NLWRA, 2002). 

Where data were available, subjective definitions for each indicator were again used to 

categorise an estuary into one of four condition categories (near pristine, largely unmodified, 

modified and extensively modified).  This method raises concerns over the reliability and 

validity of results. In addition, the weighted ranking of each condition indicator index is 

largely inclined towards the ecosystem integrity index which, amongst others, predominantly 

uses chlorophyll a and turbidity data for which little information exists in detail for 

Australian estuaries. Despite these limitations, the NLWRA report was a key study that 

helped identify areas of future research and was a step forwards in the allocation of resources 

and management of Australian estuaries. 

1.6.2 New South Wales - State of the Catchment Reports (2010) 

The NSW State of the Catchments Reports - Estuaries and Coastal Lakes (NSW SOC), 

adopted a quantitative approach to estuarine assessment. The NSW SoC reports utilised new 

and existing datasets compiled under the Monitoring, Evaluation and Reporting Program 

(MER) to establish estuarine reference conditions and compare both pressure and condition 

indicators. A mix of indicator groups were adopted, representing elements of the structure, 

function and composition of estuarine ecosystems including; eutrophication, habitat 
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availability and fish assemblages. Pressure indicators were separately assessed and included 

both catchment and estuarine indicators. Limitations identified within the SoC assessment are 

detailed below. 

Estuary classification subgroups were defined and reference conditions established for 

‘pristine’ estuaries in each estuary subgroup. A primary disadvantage of this method was that 

reference conditions were largely generalised for each estuary type and were not estuary 

specific.  Subsequently, the condition of an estuary was compared to a reference estuary that 

may not be truly reflective of the estuary examined. Estuary specific reference conditions 

would be more valuable in determining the degree of disturbance in the future. 

In comparison to many existing assessment schemes, the NSW SoC reports again focuses 

heavily on indicators (estuarine macrophytes, fish assemblages and water quality) that are 

confounded by temporal and spatial variability and natural stressors. Sampling programs 

developed as part of the MER program took steps in addressing these issues. However, a 

general lack of available data limited the value of these indicators in the assessment of 

estuarine condition.  In addition, little evidence of direct correlation between pressure and 

condition indicators were provided with links primarily based on expert opinion, not 

scientific data. 

Methodology used to assess indicators restricted the ability of the scheme to convey useful 

information to the user. Scoring followed a conventional ordinal scoring system whereby an 

indicator value is placed into one of several discrete categories. Some ordinal category 

boundaries were defined by expert option, potentially introducing uncertainty and bias into 

the assessment. Limitations of ordinal scoring systems are further discussed in Section 4.1.2. 

In general, the NSW SoC – Estuaries and Coastal Lakes assessment provided a data-driven 

approach to estuarine assessment. However, due to the scale of the assessment and 

generalisation of reference conditions, indicators selected may have limited the value of the 

assessment. Through limited data availability (a condition index could not be calculated for 

45% of NSW estuaries), scoring methodology and influence of temporal and spatial 

variability, the assessment may not be an accurate representation of estuarine condition 

within NSW. 
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1.7 Approach of the Current Study 

In a novel approach to the management and identification of ‘priority’ estuarine 

environments in NSW, a hierarchal assessment approach was adopted in the current study. 

This approach, detailed in Figure 2, combines the use of a regional and local assessment 

scheme to facilitate the provision of targeted management and the effective distribution of 

limited resources.  

The regional assessment scheme (Chapter 2) is a preliminary assessment of estuarine 

condition, designed to demonstrate the value of sedimentary metals in estuarine assessment. 

The scheme assesses catchment-based pressures and provides information on biological risk 

and the magnitude of human-induced change. Individual ‘priority’ estuaries identified 

through this preliminary stage may undergo further examination though a secondary, local 

assessment scheme.  

The local assessment scheme (Chapter 3) considers an estuary and its catchment at an intra-

estuary scale, utilising a suite of physical, chemical and socioeconomic indicators in a 

weight-of-evidence approach. The local secondary assessment identifies issue of concern at a 

local scale, allowing the prioritisation of site management and provision of targeted 

solutions.  

This ‘top-down’ approach provides a decision support tool allowing for the systematic and 

informed allocation of resources for effective and targeted estuarine management. 

 

 

 

 

 

 

 

Figure 2: Hierarchal assessment approach to estuarine management. 
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1.8 Project Objectives 

The current study aims to implement a hierarchal assessment scheme involving a preliminary 

regional assessment and secondary detailed assessment of catchment/estuary systems. 

Through use of simple assessment frameworks, maximising the use of high-value indicators, 

the scheme is intended to provide an effective decision support tool for estuarine managers. 

This tool provides science-based information for effective decision making and facilitates the 

efficient distribution of limited management resources to degraded estuarine environments. 

The project will be achieved through completion of the following objectives: 

a. Develop a hierarchal assessment scheme to identify ‘priority’ estuarine environments 

at a regional and local scale in NSW; 

b. Identify a suite of relevant, high-value environmental indicators for the accurate 

assessment of estuarine condition; 

c. Evaluate relationships between catchment pressure and estuarine condition; 

d. Assess applications of the assessment results; and 

e. Identify management implications of the assessment. 
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1.9 Thesis Structure 

The structure of this thesis is as follows: 

Chapter 1: Introduction; 

Chapter 2: Regional estuarine assessment scheme; 

Chapter 3: Local estuarine assessment scheme; and 

Chapter 4: Conclusions. 

It is acknowledged that due to intentional similarities between the regional and local 

assessment schemes, some repetition is expected.  
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Chapter 2: Regional Assessment Scheme 
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1 Introduction 

A large proportion of the Australian population resides on the coastal fringe, resulting in 

significant pressures on estuarine environments (Birch and Hutson, 2009). Due to the 

environmental, social and economic importance of these systems, effective management is 

urgently required. Despite recent improvements, a lack of a clear management structure and 

limited accountability has restricted the effective management of Australian estuaries. 

Several state and national audits have attempted to address the management of these 

environments through the assessment of impact on Australian estuaries. The value and 

functionality of these assessments were found to be often limited by inappropriate use of 

environmental indicators and the management of data.  Due to these limitations, there is a 

need to develop an effective, integrated and regionally consistent assessment of estuarine 

health, unhindered by natural spatial and temporal variance. 

There is a need to focus on indicators that provide meaningful information with minimum 

effort and expense (Ardron, 2008; McNie, 2007).  Sedimentary metal indicators provide 

valuable information on human activities that affect the environment in a time-effective 

manner. Sedimentary metals are particularly useful estuarine assessment as they provide a 

determination of human impact as well as biological risk (Olmos and Birch, 2008; 2010).  

The regional assessment scheme developed in the current study forms a component of a 

hierarchal assessment whereby limited resources can be distributed most effectively. The 

scheme provides an initial quantitative assessment of 38 NSW estuaries and demonstrates the 

value of sedimentary metals in evaluating estuarine condition. 

  



 

19 
 

1.1 Project Objectives 

The current study has been designed specifically to assess catchment pressures and estuarine 

condition of catchment/estuary systems on a regional scale. This scheme, forming the 

preliminary assessment in a hierarchal scheme, aims to facilitate effective decision making 

and management and identification of ‘priority’ catchment/estuary systems. 

 

The project will be achieved through the completion of the following objectives: 

a. Develop a regional  assessment scheme to identify ‘priority’ or ‘at risk’ estuarine 

environments in NSW; 

b. Identify relationships between catchment pressure and estuarine condition; 

c. Evaluate applications of the assessment scheme results; 

d. Compare the results of the regional assessment scheme with existing state and federal 

estuarine audits; and 

e. Identify management implications of the regional assessment scheme. 
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2 Methodology 

2.1 Study Area 

Of the 970 defined estuaries (>0.05km
2
) in Australia, 130 are located on the NSW coast 

(NLWRA, 2002). For the purposes of the current study, 38 NSW estuaries (Figure 3 - 5; 

Table 1) were selected to be assessed as part of a regional report card scheme. All estuaries 

are located within 300 km of the Sydney CBD with Saltwater Creek to the north and Wallaga 

Lake to the south. 

 

Figure 3: Estuaries assessed in the northern portion of the study area. 
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Figure 4: Estuaries assessed in proximity to the Sydney metropolitan region. 

 

 

Figure 5: Estuaries assessed in the southern portion of the study area. 
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2.2 Catchment Selection 

A total of 38 NSW estuaries were selected to be evaluated as part of the regional assessment 

(Table 1). Estuaries were chosen from a range of ‘near-pristine’ to ‘extensively modified’ 

environments, as identified in the NLWRA (2002), and encompassed a diverse array of 

estuary sizes, types and entrance conditions. 

Table 1: Estuary classification for selected NSW estuaries assessed in the current study. 

Estuary 
Catchment Area 

(Km
2
) 

Estuary Area 

(Km
2
) 

Entrance 

Conditions* 
Estuary Type* 

Saltwater Creek 91.9 1.0 I IV 

Wallis Lake 1215.9 91.8 O/T III 

Smiths Lake 23.1 9.9 I IV 

Myall Lakes 815.7 109.1 I V 

Karuah River 1493.5 18.0 O II 

Port Stephens 1878.6 136.9 O II 

Tilligerry Creek 135.5 10.3 O III 

Hunter River 21377.9 55.6 O/T III 

Lake Macquarie 595.3 113.8 O/T III 

Tuggerah Lakes 715.9 80.8 I III 

Wamberal Lagoon 6.0 0.5 I IV 

Terrigal Lagoon 9.0 0.3 I IV 

Avoca Lake 11.4 0.7 I IV 

Cockrone Lagoon 6.9 0.3 I IV 

Brisbane Water 153.5 28.3 O III 

Hawkesbury River 21618.2 115.2 O II 

Pittwater 50.9 18.3 O II 

Narrabeen Lagoon 52.8 2.3 I IV 

Dee Why Lagoon 5.8 0.3 I IV 

Curl Curl Lagoon 4.4 0.1 I IV 

Manly Lagoon 17.4 0.1 I IV 

Sydney Estuary 479.8 53.3 O II 

Cooks River 103.1 1.2 O - 

Georges River 936.9 26.2 O II 

Botany Bay 1099.7 40.2 O I 

Port Hacking 164.5 11.9 O II 

Lake Illawarra 238.4 35.7 O/T III 

Shoalhaven River 7110.5 29.8 I III 

St Georges Basin 325.8 40.4 O III 

Swan Lake 26.0 4.7 I IV 

Lake Conjola 139.3 6.7 O III 

Burrill Lake 61.0 4.1 O(I) III 

Meroo Lake 19.5 1.2 I IV 

Willinga Lake 13.6 0.3 I IV 

Durras Lake 59.2 3.9 I IV 

Tuross Lake 1814.7 14.5 O III 

Wagonga Inlet 93.4 6.9 O/T III 

Wallaga Lake 264.2 9.1 O/I III 

*Adapted from Roy et al. (2001). Entrance Conditions: O=open, T=trained, I=intermittent. Estuary group types: I=oceanic 

embayment, II=tide dominated estuary, III=wave dominated estuary, IV=intermittently closed estuary, V=freshwater. 
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2.2.1 Delineation of Sub-catchments 

Catchments were delineated from estuarine catchment boundaries produced by the Office of 

Environment and Heritage (2008). Catchment boundaries were further refined to provide a 

greater level of detail using 1:25,000 topographic maps developed by the Department of 

Lands (2001). 

2.2.2 Regional Assessment Scheme Structure 

Assessment Framework 

Due to inherent complexities in the evaluation of multiple estuarine systems, the regional 

assessment scheme necessitated the need for a simple, yet effective assessment framework.  

Based on the Pressure-State-Response model (OECD, 1993), the framework was adapted to 

provide a simple yet robust regional assessment, reducing the complexity of analysis required 

and prioritising the use of relevant and meaningful environmental indicators. 

The regional assessment framework (Figure 6) allowed the relationship between estuarine 

condition and catchment pressures to be examined and applied at a regional scale.  The 

framework provided individual assessment of catchment pressure and estuarine condition, as 

well as an overall assessment of estuarine health. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Regional assessment framework based on the Pressure – State – Response model. 
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2.3 Environmental Indicators 

To identify and quantify the human–induced component of change in estuarine systems, the 

current study utilised high-value indicators that are not confounded by natural spatial and 

temporal variance. These indicators evaluate catchment pressures and estuarine condition, 

providing information on biological risk and the magnitude of human-induced change. The 

following section describes the environmental indicators used in the regional assessment.  

2.3.1 Pressure Indicators 

Urbanised Catchment Area 

It is well understood that catchment characteristics, such as urbanisation and industrial 

activity, have influenced the condition of receiving basins (Birch and Taylor, 1999; Abrahim 

and Parker, 2002). A strong association exists between the proportion of urbanised catchment 

and the extent of human impact on an estuary. High dissolved and particulate phase 

contaminants identified in stormwater and fluvial sediment connects the catchment and 

estuary (Snowden and Birch, 2004), suggesting land-derived metals make an important 

contribution to estuarine contamination (Birch, Vanderhayden and Olmos, 2011), particularly 

in urbanised catchments. 

Several studies note that landuse may be correlated to human-induced change and the risk of 

adverse biological effects in estuarine systems (Birch and Olmos, 2008; McCready et al., 

2006a, 2006b; Sanger et al., 1999; Taylor et al., 2004).  Birch and Olmos (2008) found a 

strong positive correlation between landuse and human impact, particularly with Cu, Pb and 

Zn. It was also observed that sediments in estuaries with more than 85% of the landuse 

dedicated to parkland, agriculture, and public services did not exceed sediment quality 

guidelines (Birch and Taylor, 1999; 2004). Sediment exceeded guidelines where >29% of 

landuse was dedicated to residential, commercial, and industrial activities (Birch and Olmos 

2008). 

Calculation of Urbanised Catchment Area 

Landuse information was derived from the Australian Bureau of Statistics (ABS) Mesh 

Blocks (Draft) data set (ABS, 2005).  Landuse data were presented in ArcGIS 10 and, using 

the clip function, data were extracted for the 38 study estuaries.  Urbanised catchment area 

was expressed as a proportion of total catchment area, i.e. 
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𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑒𝑑 𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎  % =  
𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑒𝑑 𝐴𝑟𝑒𝑎 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎 
 × 100 

Population Density 

Population density is considered an important indicator in the assessment of pressures on 

estuarine systems, with a close relationship observed between population density and 

estuarine condition (Birch and Olmos, 2011; Bricker et al., 2008; Ward et al., 1998).  

Pressures exerted by population density on estuarine systems include increased metal, 

nutrient, litter and sediment loads, as well as sewage overflows and disturbance of riparian 

vegetation and estuarine biota (Roper et al., 2010). In addition, a strong and consistent 

correlation between population density to pollutant flux (Cu, Pb, Zn and total particulate 

matter) has been demonstrated for a number of urbanised catchments in NSW, Australia 

(Davis, 2009).  

Calculation of Population Density 

Population density was derived from the ABS Statistical Local Area (SLA) dataset (ABS, 

2011). Population data were presented in ArcGIS Version 10 and, using the clip function, 

data were extracted for the 38 study estuaries.   

Population densities of individual SLAs within catchment boundaries were averaged to 

generate a mean population density indicator value for the catchment. Population density was 

expressed as a mean value for a single sub-catchment i.e. 

 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  𝑝𝑒𝑜𝑝𝑙𝑒 𝑕𝑎−1 =
 𝑆𝐿𝐴 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝐿𝐴𝑠 𝑖𝑛 𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡
 

2.3.2 Condition Indicators 

Human Impact Index (HII) 

Estuarine sediments are enriched in metals throughout NSW due to increased population 

density and urbanisation within surrounding catchments (Birch and Olmos, 2008; Taylor, 

Birch and Links, 2004; Hutson, 2005). While current and historical sources of pollution 

continue to enrich estuarine sediments in metals and organic contaminants, recent evidence 

indicates that in some locations, concentrations of sediment-bound metals are decreasing due 
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to tighter legislative controls on pollution and the gentrification of shoreline industry (Lean, 

2013).  

The pre-anthropogenic or pristine condition of an estuary is required to estimate the 

magnitude of impact caused by human activities (Birch et al., 1999).  Sediment-bound metals 

offer a method to identify the pre-anthropogenic condition, providing natural background 

concentrations from unmodified pre- anthropogenic material.  Background concentrations for 

estuaries assessed in the current study were determined using size-normalised (<62.5 µm 

fraction) sedimentary metals data obtained from pre-anthropogenic substrate.  Background 

concentrations for the estuaries ranged between 3-45 µg g-1 for Cu, 9-43 µg g-1 for Pb and 20-

107 µg g-1 for Zn (Birch and Olmos, 2008). 

Birch and Olmos (2008) identified three metals (Cu, Pb and Zn) closely correlate to the suite 

of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), ubiquitous in estuarine 

environments.  Further correlation was also identified between these three metals and 

Organochlorines (OCs), Polychlorinated Biphenyls (PCBs) and Polycyclic Aromatic 

Hydrocarbons (PAHs) in Sydney estuary and other Australian and international estuaries. 

Consequently, only these three metals (Cu, Pb and Zn) have been used in the HII to provide a 

simple assessment of human-induced change. 

Calculation of HII 

The HII assesses the magnitude and spatial extent of human-induced change on estuarine 

sediments by expressing surficial sediment metal concentrations over ‘background’ levels 

observed within pre-anthropogenic substrate. The HII uses the mean enrichment quotient 

(MEQ) of Cu, Pb and Zn for normalised sediment samples within an estuary i.e. 

HIIሺܳܧܯሻ ൌ
ቆ൬ ஼௨ೄ೐೏೔೘೐೙೟

஼௨ಳೌ೎ೖ೒ೝ೚ೠ೙೏
൰ ൅ ൬ ஼௨ೄ೐೏೔೘೐೙೟

஼௨ಳೌ೎ೖ೒ೝ೚ೠ೙೏
൰ ൅ ൬ ஼௨ೄ೐೏೔೘೐೙೟

஼௨ಳೌ೎ೖ೒ೝ೚ೠ೙೏
൰ቇ

3
 

Using detailed sedimentary data obtained from the University of Sydney Environmental 

Geology Group (USEGG) sedimentary database, the HII was calculated for each sample 

location within each estuary. Individual values were averaged to generate a mean HII value 

for each estuary. 
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Benthic Health Index (HII) 

Sedimentary metals may also be used as an effective indicator of biological risk through the 

application of sediment quality guidelines (SQGs).  SQGs were initially developed in North 

America as a predictive tool to assess the potential toxicity of sediments to benthic organisms 

(Long et al., 1998; Birch and Taylor, 2000; McCready et al., 2006). These guidelines 

comprise effects range-low (ERL) and effects range-median (ERM) for 28 chemical 

concentrations associated with adverse biological effects (McCready et al., 2006).  ERLs 

correspond to concentration below which adverse biological risk is expected rarely. ERMs 

represent concentrations above which biological effects are expected frequently (Long and 

Macdonald, 1998). 

Due to a lack of sufficient data, North American ERM and ERL values have been adapted as 

interim SQGs (ISQGs) in Australia, as ISQG-Low and ISQG-High, respectively (ANZECC / 

ARMCANZ, 2000). ISQG-L is considered a threshold level that triggers the requirement for 

further investigative work (Olmos and Birch, 2008) and was therefore adopted in the BHI 

developed in the current study. Due to the predictive ability of Cu, Pb and Zn, only these 

metals have been used in the calculation of BHI. 

The mean ISQG-L (MISQG-L) quotient was adopted in the current study to account for the 

presence of mixtures of chemicals that may have additive toxicity affect (Long and 

McDonald, 1998). The mean ISQG quotient is a valuable tool for assessing the quality of 

sediment in which there are complex mixtures of substances. 

Calculation of BHI 

The BHI assesses potential risk to benthic organisms from contaminants contained within 

estuarine sediments. ISQG-L values for Cu, Pb and Zn (65, 50 and 200 µg g-1, respectively) 

(ANZECC, 2000) were used to calculate the mean ISQG-L (MISQG-L) value for total 

sediment samples i.e.    

BHI	ሺMISQG‐Lሻ ൌ
൬ቀ

஼௨ೄ೐೏೔೘೐೙೟

଺ହ
ቁ ൅ ቀ

஼௨ೄ೐೏೔೘೐೙೟

ହହ
ቁ ൅ ቀ

஼௨ೄ೐೏೔೘೐೙೟

ଶ଴଴
ቁ൰

3
	 

Using sedimentary data obtained from the University of Sydney Environmental Geology 

Group (USEGG) sedimentary database, the BHI was calculated for each sample location 

within each of the 38 subject estuaries. Individual values were averaged to generate a mean 

BHI indicator value for each estuary. 
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2.4 Correlation Matrix of Indicators 

Using a non-parametric Spearman’s correlation test in Microsoft Excel, a correlation matrix 

of indicators was created to assess covariance between indicators used in regional assessment 

and to further examine the relationship between pressure and condition indicators.  

The Spearman correlation coefficient is a non-parametric measure of statistical dependence 

between two ranked values, and assesses how well the relationship between two variables 

may be described using a monotonic function (Corder and Foreman, 2009).  For each 

indicator used, the raw values (Xi, Yi) were converted to ranks (xi, yi), equal to the average of 

their positions in the ascending order of the values. The correlation coefficient (ρ) was 

calculated from these ranked values (Myers and Well, 2003) using the following equation: 

𝜌 =
  𝑥𝑖 − 𝑥  𝑦𝑖 − 𝑦 𝑖

   𝑥𝑖 − 𝑥 2   𝑦𝑖 − 𝑦 2
𝑖𝑖

 

Output values for the Spearman correlation coefficient range between -1 and 1, indicating a 

negative to positive correlation, respectively.  A test of significance was undertaken on the 

coefficient values generated with the P value determined using a t-distribution table of 

critical values. 

2.5 Assessment of Indicators 

The current study uses the application of fuzzy logic for the assessment of indicators in the 

regional assessment.  Fuzzy logic, in its simplest iteration, has been employed to obtain a 

non-linear transformation of indicator values, measured on various scales, in order to make 

the data comparable in a functional and readily understood common index between 0 (good) 

to 1 (poor). 

All indicators in the current study were assessed using the sigmoidal ‘s-shaped’ membership 

function (Figure 7), one of the most commonly used fuzzy set functions. Indicator values 

were transformed using the monotonically increasing function where a lower indicator value 

represented a better pressure or condition.  The sigmoidal ‘s-shaped’ curve is produced using 

a cosine function, which is described in Figure 7. 
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𝑓 = cos  
𝑑𝑎𝑡𝑎 − 𝑚𝑎𝑥

𝑚𝑖𝑛 −𝑚𝑎𝑥
 ×  

𝑃𝑖

2
  

2

 

 

Where: 

Data = Raw indicator value 

Max = Maximum indicator value observed 

Min = Minimum indicator value observed 

Figure 7: Sigmoidal ‘s-shaped' monotonically increasing membership function used in the current study. 

Using these functions, a fuzzy score between 0 (good) and 1 (poor) was generated for each 

indicator.  The concept of fuzzy logic and its application is discussed in Section 4.1.2. 

2.6 Calculating Assessment Scores 

This section describes the calculations used in the determination of pressure, condition and 

final assessment scores for the NSW estuaries examined in the current study.  Stages 

involved in the calculation of assessment scores are provided in Figure 8 and detailed below. 
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Figure 8: Calculation of regional assessment scores. 
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Stage 2: Calculating Pressure and Condition Scores 

To calculate the pressure and condition score for each stressor category, the sum of the 

‘fuzzy’ indicator scores were divided by the number of respective indicators to generate a 

mean indicator score for both pressure and condition i.e. 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 =
  𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠
 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
  𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠
 

Stage 3: Calculating Overall Estuary Scores 

The final estuary assessment score was calculated by averaging the final pressure and 

condition score obtained for an estuary i.e. 

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡  𝑆𝑐𝑜𝑟𝑒 =
 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 

2
 

2.7 Regional Assessment Scheme Output 

Results were assessed against a colour-coded scale, adapted from Gunns (2011), which 

ranges from 0 to 1 (good to poor condition), categorised equally into 13 condition classes. 

Letter grades from A+ to F (Figure 9) have been assigned to the 13 condition classes adopted 

in the current study.  Pressure, condition and overall assessment score results may be 

evaluated against this scale.  
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Figure 9: Scoring classes for the regional assessment and associated letter grades A+ to F. 

Whilst the current scheme aimed to minimise the categorisation of data, the use of letter 

grades in a report card format required the classification of results as per Figure 9. Despite 

this limitation, the categorisation of final scores acts to minimise information loss and 

maintain data integrity, preserving the accurate assessment of estuarine condition.  
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3 Results 

The following section details the results of the regional assessment scheme. Implications of 

results for the regional assessment scheme are examined in Section 4 of this chapter. 

3.1 Indicator Correlation Matrix 

Results of the non-parametric Spearman’s correlation test revealed condition indicators show 

a significant co-variance (P<0.05) with pressure indicators used in the current study (Table 

2). Results indicated a strong relationship between catchment urbanisation, population 

density and the magnitude of human induced change and benthic health. 

Table 2: Correlation coefficients for indicators used in the regional report card. 

  Condition Indicators  

  Human Impact Index (HII) Benthic Health Index (BHI) 

P
re

ss
u

re
 

In
d

ic
at

o
rs

 

Catchment Urbanisation 0.79 0.66 

Population Density 0.82 0.77 

Bivariate plots show that BHI was strongly related to the proportion of urbanised catchment 

area (R
2
 = 0.607) (Figure 10-A) and population density (R

2
 = 0.609) (Figure 10-C). A similar 

relationship was demonstrated by the proportion of urbanised catchment area and HII (R
2
 = 

0.632) (Figure 10-D) with a slightly weaker relationship between population density and HII 

(R
2
 = 0.513) (Figure 10-B). 
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Figure 10: Bivariate plots of catchment pressure and estuarine condition indicators. A. Population density and 
Benthic Health Index (BHI), B. Population Density and Human Impact Index (HII), C. Proportion of urbanised 
catchment and Benthic Health Index (BHI), D. Proportion of urbanised catchment and Human Impact Index 
(BHI). 

3.2 Regional Assessment Results 

Results of the regional assessment are detailed below and summarised in Table 3 and Figure 

14 - 16. Detailed results, including the calculation of scores, are presented in Appendix A.  

Table 3: Assessment results for NSW estuaries assessed in the current study. 

Estuary 
Pressure Score / Report 

Card Grade 
Condition Score / 

Report Card Grade 
Regional Assessment Score / 

Report Card Grade 

Saltwater Creek 0.09 A 0.00 A+ 0.05 A+ 

Wallis Lake 0.02 A+ 0.00 A+ 0.01 A+ 

Smiths Lake 0.01 A+ 0.00 A+ 0.00 A+ 

Myall Lakes 0.00 A+ 0.00 A+ 0.00 A+ 

Karuah River 0.00 A+ 0.00 A+ 0.00 A+ 

Port Stephens 0.01 A+ 0.00 A+ 0.01 A+ 

Tilligery Creek 0.04 A+ 0.00 A+ 0.02 A+ 

Hunter River 0.07 A 0.09 A 0.08 A 
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Estuary 
Pressure Score / Report 

Card Grade 
Condition Score / 

Report Card Grade 
Regional Assessment Score / 

Report Card Grade 

Lake Macquarie 0.09 A 0.43 B- 0.26 B+ 

Tuggerah Lakes 0.08 A 0.02 A+ 0.05 A+ 

Wamberal Lagoon 0.22 B+ 0.01 A+ 0.12 A 

Terrigal Lagoon 0.31 B 0.02 A+ 0.16 A- 

Avoca Lake 0.13 A 0.01 A+ 0.07 A 

Cockrone Lake 0.03 A+ 0.01 A+ 0.02 A+ 

Brisbane Water 0.34 B 0.02 A+ 0.18 A- 

Hawkesbury 0.08 A 0.03 A+ 0.06 A+ 

Pittwater 0.24 B+ 0.09 A 0.16 A- 

Narrabeen Lagoon 0.50 C+ 0.04 A+ 0.27 B+ 

Dee Why Lagoon 1.00 F 0.44 B- 0.72 D+ 

Curl Curl Lagoon 0.75 D+ 0.96 F 0.86 D- 

Manly Lagoon 0.75 D+ 0.56 C 0.65 C- 

Sydney Estuary 0.98 F 0.66 C- 0.82 D 

Cooks River 1.00 F 0.92 F 0.96 F 

Georges River 0.46 C+ 0.20 A- 0.33 B 

Botany Bay 0.65 C- 0.02 A+ 0.33 B 

Port Hacking 0.30 B+ 0.15 A- 0.22 A- 

Lake Illawarra 0.13 A 0.05 A+ 0.09 A 

Shoalhaven Estuary 0.01 A+ 0.00 A+ 0.01 A+ 

St. Georges Basin 0.02 A+ 0.00 A+ 0.01 A+ 

Swan Lake 0.00 A+ 0.00 A+ 0.00 A+ 

Lake Conjola 0.00 A+ 0.00 A+ 0.00 A+ 

Burrill Lake 0.01 A+ 0.02 A+ 0.01 A+ 

Meroo 0.00 A+ 0.00 A+ 0.00 A+ 

Willinga 0.00 A+ 0.00 A+ 0.00 A+ 

Durras Lake 0.00 A+ 0.00 A+ 0.00 A+ 

Tuross Lake 0.00 A+ 0.00 A+ 0.00 A+ 

Wagonga Inlet 0.01 A+ 0.01 A+ 0.01 A+ 

Wallaga Lake 0.00 A+ 0.01 A+ 0.01 A+ 

Final Regional Assessment Results 

Table 3 and Figure 14 - 16, show final assessment scores ranged between 0.00 (Willinga 

Lake) and 0.96 (Cooks River) (grade A+ to F, respectively). The mean assessment value was 

0.17 (A-). Approximately 58% of estuaries assessed received a final assessment grade of A+, 

with 8% and 10% receiving A and A- , respectively. The remaining 24% of estuaries 

returned grades of B+ and lower.  Five estuaries located within the Sydney region returned 

the poorest overall assessment scores (Figure 11). Curl Curl Lagoon (0.86) and Cooks River 

(0.96) returned the lowest grade of D- and F, respectively. The three remaining estuaries 
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received grades of C-, D+ and D (Manly Lagoon 0.65, Dee Why Lagoon 0.72 and Sydney 

estuary 0.82 respectively). 

 

Figure 11: Final regional assessment scores and letter grades. 

Regional Pressure Results 

Pressure scores were generally poorer than overall results with a mean score of 0.21 (A-). 

Scores ranged between 0.00 and 1.00 (grade A+ to F respectively). Approximately 50% of 

estuaries assessed received a final pressure grade of A+, with 18% receiving a grade of A. 

The remaining 32% of estuaries returned grades of B+ and lower.  Dee Why Lagoon and 

Cooks River returned the highest pressure score with 1.00 (F), followed Sydney estuary (0.98 

F), Manly Lagoon and Curl Curl Lagoon both with 0.75 (D+) (Figure 12). 

 

Figure 12: Regional pressure scores and letter grades. 

0
.0

0
0
3

0
.0

0
0
5

0
.0

0
0
7

0
.0

0
1
1

0
.0

0
2
3

0
.0

0
2
4

0
.0

0
2
5

0
.0

0
2

7

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

0
.0

1
1

0
.0

1
5

0
.0

2

0
.0

2
3

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9 0
.1

6

0
.1

6
4

0
.1

8

0
.2

2

0
.2

6

0
.2

7

0
.3

3

0
.3

3
3

0
.6

5 0
.7

2 0
.8

2

0
.8

6

0
.9

6

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
W

ill
in

g
a

M
e
ro

o

K
a
ru

a
h
 R

iv
e
r

T
u

ro
s
s
 L

a
k
e

D
u
rr

a
s
 L

a
k
e

S
w

a
n
 L

a
k
e

M
y
a
ll 

L
a
k
e
s

L
a
k
e
 C

o
n
jo

la

W
a
lla

g
a
 L

a
k
e

S
m

it
h
s
 L

a
k
e

S
h
o
a
lh

a
v
e
n
 E

s
tu

a
ry

W
a
g
o
n
g
a
 I
n
le

t

P
o
rt

 S
te

p
h
e
n
s

W
a
lli

s
 L

a
k
e

S
t.

 G
e

o
rg

e
s
 B

a
s
in

B
u
rr

ill
 L

a
k
e

C
o
c
k
ro

n
e
 L

a
k
e

T
ill

ig
e
ry

 C
re

e
k

W
a
m

b
e
ra

l L
a
g
o
o
n

T
u

g
g
e
ra

h
 L

a
k
e
s

S
a
lt
w

a
te

r 
C

re
e
k

H
a
w

k
e
s
b
u
ry

A
v
o
c
a
 L

a
k
e

H
u
n
te

r 
R

iv
e
r

L
a
k
e
 I
lla

w
a
rr

a

T
e

rr
ig

a
l 
L
a
g
o
o
n

P
it
tw

a
te

r

B
ri

s
b

a
n

e
 W

a
te

r

P
o
rt

 H
a
c
k
in

g

L
a
k
e
 M

a
c
q
u
a
ri
e

N
a
rr

a
b
e
e
n
 L

a
g
o
o
n

G
e
o
rg

e
s
 R

iv
e
r

B
o
ta

n
y
 B

a
y

M
a
n
ly

 L
a
g
o
o
n

D
e
e
 W

h
y
 L

a
g
o
o
n

S
y
d
n
e
y
 E

s
tu

a
ry

C
u
rl
 C

u
rl
 L

a
g
o
o
n

C
o
o
k
s
 R

iv
e
r

A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+A+ A A A A- A- A- A- B+B+ B B C- D+ D D- F

F
in

a
l 
R

e
g
io

n
a
l 
A

s
s
e
s
s
m

e
n
t 
S

c
o
re Regional Assessment Score

0
.0

0
0
0
0

0
.0

0
0
0
6

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
0
6

0
.0

0
0

9

0
.0

0
1
1

0
.0

0
1
9

0
.0

0
2
0

0
.0

0
6
2

0
.0

0
6
4

0
.0

0
7

0
.0

0
9

0
.0

1
3

0
.0

1
6

0
.0

1
9

0
.0

3

0
.0

4

0
.0

6

0
.0

6
6

0
.0

7

0
.0

8

0
.0

9

0
.0

9
4

0
.1

3

0
.1

3 0
.2

4

0
.3

0

0
.3

1

0
.3

4 0
.4

6

0
.5

0 0
.6

5 0
.7

4
7

0
.7

5

0
.9

8

1
.0

0

1
.0

0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

M
e
ro

o

D
u
rr

a
s
 L

a
k
e

K
a
ru

a
h
 R

iv
e
r

W
ill

in
g
a

W
a
lla

g
a
 L

a
k
e

L
a
k
e
 C

o
n
jo

la

M
y
a
ll 

L
a
k
e
s

T
u

ro
s
s
 L

a
k
e

S
w

a
n
 L

a
k
e

B
u
rr

ill
 L

a
k
e

W
a
g
o
n
g
a
 I
n
le

t

S
m

it
h
s
 L

a
k
e

S
h
o
a
lh

a
v
e
n
 E

s
tu

a
ry

P
o
rt

 S
te

p
h
e
n
s

W
a
lli

s
 L

a
k
e

S
t.

 G
e
o
rg

e
s
 B

a
s
in

C
o
c
k
ro

n
e
 L

a
k
e

T
ill

ig
e
ry

 C
re

e
k

W
a
m

b
e
ra

l L
a
g
o
o
n

T
u

g
g
e
ra

h
 L

a
k
e
s

H
u
n
te

r 
R

iv
e
r

H
a
w

k
e
s
b
u
ry

S
a

lt
w

a
te

r 
C

re
e

k

L
a
k
e
 M

a
c
q
u
a
ri
e

A
v
o
c
a
 L

a
k
e

L
a
k
e
 I
lla

w
a
rr

a

P
it
tw

a
te

r

P
o
rt

 H
a
c
k
in

g

T
e

rr
ig

a
l 
L
a
g
o
o
n

B
ri
s
b
a
n
e
 W

a
te

r

G
e
o
rg

e
s
 R

iv
e
r

N
a
rr

a
b
e
e
n
 L

a
g
o
o
n

B
o
ta

n
y
 B

a
y

C
u
rl
 C

u
rl
 L

a
g
o
o
n

M
a
n
ly

 L
a
g
o
o
n

S
y
d
n
e
y
 E

s
tu

a
ry

C
o
o
k
s
 R

iv
e
r

D
e
e
 W

h
y
 L

a
g
o
o
n

P
re

s
s
u
re

 S
c
o
re

Pressure

Final Assessment Score 

Pressure Score 



 

35 
 

Regional Condition Results 

Condition scores were generally lower than pressure scores with a mean value of 0.13 (A). 

Scores ranged between 0.00 and 0.96 (grade A+ to F, respectively). Approximately 74% of 

estuaries received a final condition grade of A+, with 11% each receiving a grade of A and 

A-. The remaining 15% of estuaries returned grades of B- and lower.   

Curl Curl Lagoon and Cooks River returned the poorest condition score with 0.96 (F) and 

0.92 (F) respectively. This was followed by Sydney estuary (0.66 F), Manly Lagoon (0.56 

C), Dee Why Lagoon with 0.44 (B-) and Lake Macquarie (0.43 (B-) (Figure 13). 

 

Figure 13: Regional condition scores and letter grades. 

3.2.1 Geographical Distribution 

Eight of the nine poorest scoring estuaries are located within the Sydney region (Figure 15), 

with scores generally improving with distance away from the urban centre (Figure 14 - 

Figure 16).  In addition, estuaries south of Sydney were observed to have better assessment 

scores than those located north of Sydney. In comparison to surrounding estuaries, Lake 

Macquarie (Figure 14) returned a significantly lower final assessment score of B+. 
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Figure 14: Final regional assessment results for northern estuaries. 

 

 

Figure 15: Final regional assessment results for Sydney metropolitan estuaries. 
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Figure 16: Final regional assessment results for southern estuaries. 
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4 Discussion 

4.1 Development of the Regional Assessment Scheme 

4.1.1 Development of the Assessment Framework 

The regional assessment scheme was developed as a preliminary assessment in a hierarchal 

assessment scheme, designed to maximise the efficient use of limited management resources. 

Recognising limitations of exiting estuarine assessment schemes, the regional framework 

developed in the current study improved the assessment and transfer of scientific data, with 

results reflective of actual estuarine condition. 

Framework Structure 

Due to the scale of the assessment and inherent complexities in the evaluation of multiple 

estuarine systems, a simple yet effective assessment scheme was required.  To achieve this 

requirement, an assessment framework was developed around a simplified ‘Pressure-State-

Response’ model (OECD, 1993). The framework reduced the complexity of analysis 

required and prioritised the use of relevant and meaningful environmental indicators. 

The framework, detailed in Section 2.2.2, can provide estuarine managers and end users with 

the ability to identify catchment/estuary systems where further investigation and management 

would be required. The structure of the scheme and indicators used would allow the 

assessment to be undertaken over longer time intervals to minimise time and other burdens 

associated with current intensive annual assessment schemes. 

Emphasis on High-Value Environmental Indicators 

High-value environmental indicators were employed to maintain the simplicity of the 

regional assessment whilst providing accurate science-based information. Sedimentary metal 

indicators were used due to their value in the preliminary stage of estuarine assessments and 

ability to provide information on both human impact and biological risk. 

Fuzzy Logic and Data Management 

The present regional assessment abandons the traditional ‘ordinal’ scoring of indicators and 

replaces it with the concept of fuzzy logic. To assess estuarine indicators, fuzzy logic was 
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used to minimise the transformation of data, reducing information loss and maintaining data 

integrity. The application of fuzzy logic is further discussed in below.  

4.1.2 Indicator Assessment and Data Management 

Ordinal Assessment, Bivalence and ‘Crisp’ Sets 

Traditionally, estuarine assessment schemes have typically used an ordinal scoring system to 

categorise environmental data and assessment of environmental indicators. In these systems, 

indicator values are placed within one of several discrete assessment categories defined by a 

‘crisp’ set of boundaries which may be either statistically or arbitrarily defined. In fuzzy set 

theory, ‘crisp’ sets are defined as a conventional set, whereby the degree of membership of 

any value is either 0 or 1, true or false (Goble, 2001; Hellmann, 2001). Crisp sets are 

governed by use of bivalent logic which states that an element within a set has either full 

membership or nil membership (Tomassi, 1999; Hürlimann, 2009; Béziau, 2003). 

Table 4 demonstrates the application of ordinal scoring and ‘crisp’ sets in the assessment of 

environmental indicators. Under a conventional five-point ordinal scoring systems, raw 

values would be transformed as shown below. 

Table 4: Conventional ordinal scoring using ‘crisp’ data sets. 

Raw observation (%)
 

Ordinal score Description 

0 - 5 1 Very Good 

>5 - 10 2 Good 

>10 -  20 3 Moderate 

>20  -  40 4 Poor 

>40  5 Very Poor 

Table 4 demonstrates not only that there is a considerable loss of information value in the 

transformation process, but small differences between two individual measurements may 

result in them being placed into different categories, with significant implications for their 

interpretation.  For example, little difference exists between a value of 9.8%, and one of 

10.2%, however, if the two measurements were made on successive occasions, the ordinal 

scoring method would indicate a significant decline in condition. Similarly, a measurement 

of 39.95% would effectively conceal the true condition as the assessment score would be 

four on a five-point scale. 
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In addition, the categorisation of data in traditional assessment schemes occurs in the initial 

stage of indicator assessment.  Information lost by forcing data into a set of discrete classes is 

carried throughout the remaining assessment process, potentially compounding the effect of 

information loss, influencing results of the scheme and management decisions based upon 

them. 

Ordinal scoring was trialled by Gunns (2011), using an ordinal scale from 1 – 5 (good to 

poor). It was determined that results generated did not reflect true conditions within the 

Sydney catchment/estuary system. Fuzzy logic was trialled and adopted by Gunns (2011), as 

a method to improve the accuracy and precision of indicator assessment and to preserve 

information value.   

Application and Use of Fuzzy Logic 

When dealing with complex and imprecise systems, such as estuarine environments, the 

coarse categorisation of data is not reflective of real-world conditions where no sharp 

distinctions may be defined (Zadeh, 2008). Using estuarine condition as an example, there is 

no sharp cut-off between good and poor condition, rather a gradual transition between the 

two (Gunns, 2011).  

Fuzzy set theory and fuzzy logic allows intermediate values to be defined between 

conventional evaluations like true/false, yes/no (Hellmann, 2001). A fuzzy set is defined as a 

set without crisp boundaries, characterised by a continuous membership grade that ranges 

from 0 (non-membership) to 1 (full membership) i.e. to what degree does a variable belong 

in a specified set (Chapman, 2010; Eastman, 2003; Hellmann, 2001). 

Fuzzy logic is employed in the current study to obtain a non-linear transformation of 

indicator scores, measured on multifarious scales, to make them all comparable on a single 

scale. For example, in evaluating the condition of a particular environmental indicator, a 

fuzzy membership function may be defined, such that a value of 1 has a membership of 0 

(good condition), and a value of 10 has a membership of 1 (poor condition). Between 1 and 

10, the fuzzy membership of an indicator value gradually increases on a scale from 0 to 1 

(Figure 17). This is in contrast with the classic crisp set, used in ordinal scoring, which has a 

distinct boundary at 5 between good and poor condition. Using fuzzy membership functions 

in the assessment of indicators, the information value of data is retained throughout the 

assessment process, thus producing accurate and meaningful results. 
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Figure 17: Comparison between ‘fuzzy’ and ‘crisp’ membership functions. 

It would be expected, when assessing the health and condition of catchment/estuary systems, 

few results would be located towards the extreme ends of the assessment range, i.e. towards 0 

or 1 where the datum would be classified either as pristine, or extensively degraded. The 

majority of results would be expected to fall around the middle of this range. The Sigmoidal 

or ‘s-shaped’ fuzzy membership function (Figure 7) is one of the most commonly used 

functions in the application of fuzzy set theory (Chapman, 2010; Eastman, 2003) and has 

been applied in the current study to attain the finest differentiation in the mid-range values. 

Thus providing a greater level of differentiation between indicators scores and allowing 

variances between catchment/estuary systems to become apparent. 

Use of Indicator Weightings 

Indicator weightings are often used in assessment schemes to differentiate indicators based 

on their perceived value in determining catchment pressure and estuarine condition. 

Weightings are an arbitrary value applied to indicator scores to increase or decrease their 

value and thus their influence in determining the overall pressure or condition score for an 

estuary. 

Use of indicator weights in estuarine report cards was investigated by Gunns (2011) through 

the use of the Delphi method (Gordon, 2004). Results of the study revealed a strong central 

tendency of weights, indicating a conservative bias of the respondents, and provided little 

differentiation between the results of each catchment/estuary system. Comparison between 

weighted and unweighted results revealed that weighted indicators produced misleading 
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results, inferring little variation between the conditions of catchment/estuary systems 

assessed 

Given the results of Gunns (2011), indicator weightings were not adopted in the current 

study. In future studies, weightings may be selected through a more detailed scientific 

consensus, or assigned by an individual or management authority. If an individual or 

management authority does select this method, the user must be aware of the potential 

implications of these decisions in biasing the results of the assessment. 

4.2 Relationships between catchment pressures and estuarine condition 

4.2.1 Indicator correlation 

Association between catchment development and estuarine condition has been observed 

locally and internationally (Abrahim and Parker 2002; Birch and Taylor 1999; Walters et al. 

2003).  This relationship has been demonstrated in the current study with a strong correlation 

(P=<0.05) identified between the regional pressure and condition results (R
2
=0.6405) (Figure 

18). 

 

Figure 18: Correlation between regional pressure and condition assessment scores. 

Correlation established between catchment pressure and estuarine condition reveals the value 

of sedimentary metal indicators in representing the condition of the estuary and the role 

population density and catchment urbanisation play in influencing the health of estuarine 

systems. A significant outlier, located at 0.1, 0.4, represents the Lake Macquarie estuary. The 

nature of this outlier is discussed in greater detail in Section 4.3.1. 
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4.2.2 The influence of catchment pressures on estuarine condition 

Catchment pressures, including population density and urbanised catchment area correlate 

positivity and significantly with both the HII and BHI (Table 2). However, these pressures 

are not consistently related to estuarine condition as demonstrated in Figure 19 – 20.  Results 

of the regional assessment indicate that combined high population density and catchment 

urbanisation is not always related to an elevated HII (Figure 19). For example, Narrabeen 

Lagoon, Botany Bay and Georges River have relatively high catchment pressures, yet these 

estuaries demonstrate comparatively low HII scores. Clearly, urbanisation and population 

density are not the only factor controlling HII in these estuaries. Manly Lagoon demonstrates 

a similar association, although this is likely attributed to recent dredging and remediation of 

sediments (Cardno, 2010).  

Impacted estuaries with high BHI values, e.g. Curl Curl Lagoon, Manly Lagoon, Sydney 

estuary and the Cooks River (Figure 20), demonstrate a strong relationship with catchment 

pressures. However, high population density and catchment urbanisation is not always 

associated with a high BHI. For example Botany Bay and Dee Why Lagoon demonstrate 

comparatively low BHI values which may be attributed to the coarse nature of estuarine 

sediments (<39% fine fraction) and possible remobilisation and removal of fine surficial 

sediment as a consequence of enhanced flushing.  High catchment urbanisation / low 

population density observed in Brisbane Water and Narrabeen Lagoon, suggest the BHI in 

these estuaries is influenced by localised areas of intense urbanisation within the catchment. 

Pittwater has a high BHI in comparison to catchment pressures, reflecting heavy metal 

contamination associated with one of the highest recreational boating densities in Australia 

(WBM, 2006). 
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Figure 19:  Relationship between regional HII and pressure indicators. 

 

Figure 20:  Relationship between regional BHI and pressure indicators. 

4.3 Application of the Scheme in the Assessment of Estuarine Condition 

4.3.1 Application and Use of Assessment Results 

Results of the regional assessment scheme may be used in various applications in order to 

convey information on the condition of catchment/estuary systems. Information may be used 

to: 

­ Generate report cards, as undertaken in the current study;  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ill

in
g
a

S
a
lt
w

a
te

r 
C

re
e
k

D
u
rr

a
s
 L

a
k
e

W
a
lla

g
a
 L

a
k
e

M
y
a
ll 

L
a
k
e
s

W
a
lli

s
 L

a
k
e

T
u

ro
s
s
 L

a
k
e

W
a
g
o
n
g
a
 I
n
le

t

P
o
rt

 S
te

p
h
e
n
s

S
h
o
a
lh

a
v
e
n
 E

s
tu

a
ry

S
w

a
n
 L

a
k
e

S
m

it
h
s
 L

a
k
e

K
a
ru

a
h
 R

iv
e
r

H
a
w

k
e
s
b
u
ry

T
ill

ig
e

ry
 C

re
e

k

B
u
rr

ill
 L

a
k
e

L
a
k
e
 C

o
n
jo

la

A
v
o
c
a
 L

a
k
e

M
e
ro

o

L
a
k
e
 I
lla

w
a
rr

a

S
t.

 G
e
o
rg

e
s
 B

a
s
in

W
a
m

b
e
ra

l L
a
g
o
o
n

T
u

g
g
e
ra

h
 L

a
k
e
s

B
ri
s
b
a
n
e
 W

a
te

r

C
o
c
k
ro

n
e
 L

a
k
e

N
a
rr

a
b
e
e
n
 L

a
g
o
o
n

B
o
ta

n
y
 B

a
y

T
e

rr
ig

a
l 
L
a
g
o
o
n

G
e
o
rg

e
s
 R

iv
e
r

H
u
n
te

r 
R

iv
e
r

P
it
tw

a
te

r

P
o
rt

 H
a
c
k
in

g

M
a
n
ly

 L
a
g
o
o
n

L
a
k
e
 M

a
c
q
u
a
ri
e

S
y
d
n
e
y
 E

s
tu

a
ry

D
e
e
 W

h
y
 L

a
g
o
o
n

C
o
o
k
s
 R

iv
e
r

C
u
rl
 C

u
rl
 L

a
g
o
o
n

H
II

Human Impact Index

Population Density

Urbanised Catchment Area

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e
ro

o

S
a
lt
w

a
te

r 
C

re
e
k

T
u

ro
s
s
 L

a
k
e

W
ill

in
g
a

W
a
lli

s
 L

a
k
e

S
m

it
h
s
 L

a
k
e

K
a

ru
a

h
 R

iv
e

r

S
h

o
a

lh
a

v
e

n
 …

P
o
rt

 S
te

p
h
e
n
s

S
t.

 G
e

o
rg

e
s
 B

a
s
in

T
e

rr
ig

a
l 
L
a
g
o
o
n

T
ill

ig
e
ry

 C
re

e
k

S
w

a
n
 L

a
k
e

C
o
c
k
ro

n
e
 L

a
k
e

L
a
k
e
 C

o
n
jo

la

M
y
a
ll 

L
a
k
e
s

B
o
ta

n
y
 B

a
y

D
u
rr

a
s
 L

a
k
e

W
a
g
o
n
g
a
 I
n
le

t

W
a
lla

g
a
 L

a
k
e

A
v
o
c
a
 L

a
k
e

W
a
m

b
e
ra

l L
a
g
o
o
n

T
u

g
g
e
ra

h
 L

a
k
e
s

B
ri
s
b
a
n
e
 W

a
te

r

B
u
rr

ill
 L

a
k
e

N
a
rr

a
b
e
e
n
 L

a
g
o
o
n

H
a
w

k
e
s
b
u
ry

P
it
tw

a
te

r

L
a
k
e
 I
lla

w
a
rr

a

H
u
n
te

r 
R

iv
e
r

P
o
rt

 H
a
c
k
in

g

D
e
e
 W

h
y
 L

a
g
o
o
n

G
e
o
rg

e
s
 R

iv
e
r

L
a
k
e
 M

a
c
q
u
a
ri
e

C
u
rl
 C

u
rl
 L

a
g
o
o
n

M
a
n
ly

 L
a
g
o
o
n

S
y
d
n
e
y
 E

s
tu

a
ry

C
o
o
k
s
 R

iv
e
r

B
H

I

Benthic Health Index

Population Density

Urbanised Catchment Area



 

45 
 

­ Categorise the condition of estuaries in a regional context;  

­ Determine evolutionary trends of estuaries in response to human impact; and  

­ Provide a weight-of-evidence approach to estuarine assessment. 

Development of Report Cards 

As demonstrated in the current study, results of the regional assessment scheme may be used 

to generate a report card for individual catchment/estuary systems. Report cards are an 

important decision support tool for estuarine managers to prioritise estuary management, 

identify issues and areas of concern and allow for the condition of a catchment/estuary 

system to be assessed.  

Report cards are also a valuable method to convey information in a simplistic and readily 

understood manner to natural resource managers, members of the public and interested 

stakeholders. They provide a method of summarising the assessment of an estuary in a way 

that provides concise, interesting and relevant content (both graphical and written) in an 

easily read form.  The Health-e-Waterways Report Card (SEQ Healthy Waterways 2013) is 

an example of successful report card that provides interesting and relevant content in both 

interactive online and printed formats. 

The application and use of the report cards in the current study is detailed in Section 2.7 of 

this chapter.    

Categorisation of Estuaries 

As noted in Section 4.2.1, a strong correlation (R
2
=0.6405) exists between pressure and 

condition scores of estuaries assessed in the current study. Consequently, when presented in a 

bivariate plot, estuaries may be grouped into five distinct categories (Figure 21). 
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Figure 21: Determination of condition classes based on the relationship between catchment pressures and 

estuarine condition. 

These categories, shown Figure 21, represent five classes of estuarine condition (Table 5).  

Description of the classes from ‘near pristine’ to ‘severely modified’, have been adapted 

from the NLWRA (NWLRA 2002) and aim to represent the condition of the 

catchment/estuary system in response to anthropogenic impacts. 

Table 5: Five condition classes for the regional classification of NSW estuaries. 

Condition Category Regional Assessment Score Description 

1 0 – 0.01 Near Pristine 

2 >0.01 – 0.05 Largely Unmodified 

3 >0.05 – 0.2 Modified 

4 >0.2 – 0.5 Highly Modified 

5 >0.5 – 1 Severely Modified 

Each of the 38 estuaries assessed were grouped according to the five condition classes and 

are presented in Table 6. The outlying data point (Lake Macquarie [0.1, 0.4]), has been 

classified as ‘severely modified’ due to the specific nature of anthropogenic influence within 

the catchment. This is discussed in greater detail in Section 4.3.1. 

Table 6: Regional classification of NSW estuaries assessed according to Table 5. 

Estuary Condition Class Estuary Condition Class 

Saltwater Creek 1 - Near Pristine Curl Curl Lagoon 5 - Severely Modified 

Wallis Lake 1 - Near Pristine Manly Lagoon 5 - Severely Modified 

Smiths Lake 1 - Near Pristine Sydney Estuary 5 - Severely Modified 
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Estuary Condition Class Estuary Condition Class 

Myall Lakes 1 - Near Pristine Cooks River 5 - Severely Modified 

Karuah River 1 - Near Pristine Georges River 4 - Highly Modified 

Port Stephens 1 - Near Pristine Botany Bay 4 - Highly Modified 

Tilligerry Creek 2 - Largely Unmodified Port Hacking 4 - Highly Modified 

Hunter River 2 - Largely Unmodified Lake Illawarra 2 - Largely Unmodified 

Lake Macquarie 4 - Highly Modified Shoalhaven River 1 - Near Pristine 

Tuggerah Lakes 2 - Largely Unmodified St Georges Basin 1 - Near Pristine 

Wamberal Lagoon 2 - Largely Unmodified Swan Lake 1 - Near Pristine 

Terrigal Lagoon 3 - Modified Lake Conjola 1 - Near Pristine 

Avoca Lake 2 - Largely Unmodified Burrill Lake 2 - Largely Unmodified 

Cockrone Lagoon 2 - Largely Unmodified Meroo Lake 1 - Near Pristine 

Brisbane Water 3 - Modified Willinga Lake 1 - Near Pristine 

Hawkesbury River 2 - Largely Unmodified Durras Lake 1 - Near Pristine 

Pittwater 3 - Modified Tuross Lake 1 - Near Pristine 

Narrabeen Lagoon 4 - Highly Modified Wagonga Inlet 1 - Near Pristine 

Dee Why Lagoon 5 - Severely Modified Wallaga Lake 1 - Near Pristine 

Identification of evolutionary trends 

A strong correlation (R
2
=0.6405, p<0.05) between catchment pressure and estuarine 

condition suggests an inverse relationship exists whereby estuary condition decreases as 

catchment pressures increase. This concept is widely accepted, with environmental 

degradation seen as an inevitable consequence of industrial and urban development (Taylor 

et al., 2004; Reish et al., 1998). 

Relationships between catchment pressures and condition identified in the current study 

(Figure 19 - Figure 20), suggest that the contemporary condition of an estuary is not only a 

function of current catchment pressures, but also historical catchment changes, sediment 

characteristics and remediation activity.  Estuarine morphodynamics and flushing attributes 

may play a role in influencing the condition of an estuary, however a relationship between 

estuarine condition and estuary type was not observed in the current study. Results of the 

regional assessment may be used to infer and predict evolutionary trends of a 

catchment/estuary system in response anthropogenic impacts.   
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Evolution of Catchment/Estuary Systems with an Extensive History of Industrialisation and 

Urbanisation 

Results of the regional assessment show that catchment/estuary systems with an extended 

history of industrial activity and urbanisation are generally characterised by high catchment 

pressures and poor estuarine conditions. These estuaries, located within close proximity to 

Sydney, include Dee Why Lagoon, Manly Lagoon, Sydney estuary, Curl Curl Lagoon and 

Cooks River.  Results may be used to infer how estuarine condition has evolved from ‘near 

pristine’ to ‘severely modified’ in response to historical changes within the catchment.  These 

results have been used to explain historical trends in the following case studies. 

Case study: Sydney estuary 

Sydney estuary has a history of environmental degradation and contamination, associated 

with intense urbanisation and industrialisation during the 19
th

 and 20
th

 centuries (Taylor et 

al., 2004).  The evolution of urbanisation and landuse within the Sydney catchment has been 

investigated and documented by Lean (2013) for seven time slices from 1788 to 2010.  In 

1892, approximately 13% of the catchment was urbanised with residential (2%) and roads 

(9%) the dominant landuse. Industrial activity only accounted for 1% of the catchment area. 

Between 1892 and 1936, urbanisation within the catchment increased to 38% with the 

proportion of industrial landuse growing to 2%. During this time shore-based industry 

became prevalent. From 1936 to 1978 industrial landuse increased to 4% of the catchment 

and occupied 32km of the estuary foreshore (Lean 2013). Since the approximate maximum 

industrial activity in the 1970s, industrial landuse within the catchment decreased to 2%, 

occupying 9 km of the shoreline in 2010. Industrial areas have replaced by larger commercial 

centres and residential developments. In 2010, 77% of the catchment was urbanised, making 

it one of the most heavily urbanised catchments in the world (Birch, Lee and Churchill 

2013). 

Evolution of landuse within the Sydney catchment may be correlated to sediment 

contamination within the estuary. Onset of contamination has been closely linked to rapid 

urbanisation and industrialisation within the catchment during the early to mid 20
th

 century 

(Taylor, Birch and Links 2004). Maximum sedimentary metal concentrations coincide with 

the highest industrial activity within the catchment in the 1970s (Taylor et al., 2004). High 

levels of contamination away from stormwater discharge points provides further evidence the 
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role of industrial pollution played contamination during the industrialisation and urbanisation 

of the Sydney catchment (Birch et al., 2013). 

Relocation of shore-based industry and introduction of pollution control legislation, 

including the Pollution Control Act 1970 and Clean Water Act 1972 has seen a decrease in 

sediment contamination in areas of the estuary (Taylor et al., 2004; Birch et al., 2013). 

Despite a reduction of industrial pollution, studies show contamination is still persistent 

within the harbour with stormwater derived pollutants replacing industrial activity as the 

dominant source of contamination to the estuary (Birch et al., 2013; Birch, Vanderhayden 

and Olmos, 2010).  

As shown in Figure 19 – 20, assessment results for Sydney Estuary show high pressure and 

condition scores, reflecting the nature of the catchment and its industrial history. Similar 

patterns are observed within the results for Dee Why Lagoon, Manly Lagoon, Curl Curl 

Lagoon and Cooks River, which all demonstrate a history of industrial activity and intensive 

urbanisation.  

Case Study: Lake Macquarie 

Results of the regional assessment indicate that the contemporary condition of Lake 

Macquarie has been influenced by a single historical pollution point source, as indicated by a 

low catchment pressure score and comparatively high condition score. The condition score of 

the estuary has been largely driven by the refining of Cd, Pb, and Zn at the Cockle Creek 

Smelter. Commencing operation in 1897, waste effluent from the smelter was dispersed into 

Cockle Creek, in the northern portion of the estuary, until the 1970s when a sludge treatment 

facility was installed (Spurway, 1982). Despite treatment, wastewater and material stockpiles 

continued to contribute contaminants to the creek and the estuary until the smelter was closed 

in 2003 (Willmore et al., 2006).  Consequently, significant concentrations of Cd, Cu, Pb and 

Zn are observed within surficial sediments in the northern portion of Lake Macquarie (Birch 

and Olmos 2009).  

Similar to Sydney estuary, industrial contamination has historically been the primary source 

of pollution within Lake Macquarie. However, the shutdown of the Cockle Creek Smelter 

and increasing urbanisation and population density within the catchment has seen stormwater 

become the dominant source of contamination.  A study by Birch and Olmos (2009) provides 

evidence of this trend, with an overall improvement in sediment quality observed in the 
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northern part of the estuary affected by the Cockle Creek Smelter between 1979 and 2003. 

An increase in surficial Cu concentrations was also identified across the whole estuary, 

possibly reflective of the influx of contamination from current stormwater derived sources. 

The Hunter River exhibits similar characteristics whereby industrial landuse (port facilities) 

may be linked to a disproportionate variation between estuarine condition and catchment 

pressures (Figure 19). In response to changing landuse, the source of contamination in these 

estuaries generally follows the historical trend: natural background influx > industrial point 

sources > stormwater derived contamination.  

Evolution of Catchment/Estuary Systems with a Recent History of Urbanisation 

Results of the regional assessment have demonstrated catchment/estuary systems with a 

recent history of urbanisation are characterised by moderate to high catchment pressures and 

good estuarine conditions. These estuaries include Narrabeen Lake, Avoca Lagoon, 

Wamberal Lagoon, Terrigal Lagoon, Tuggerah Lake and Brisbane Water.  In general, these 

estuaries have recent history of urbanisation, primarily dominated by commercial and 

residential developments. Consequently, the source, type and migration pathways of 

contaminants differ from those with a history of industrial use and intense urbanisation.  

Case Study: Brisbane Water 

Brisbane Water has a relatively recent history of urbanisation, with expansion of residential 

and commercial areas occurring during the mid 20
th

 century. Due to its location away from 

Sydney, the estuary was spared from intensive industrial activity and associated 

contamination.  Today, Brisbane Water is predominantly characterised by agricultural and 

parkland land uses with residential (27%), commercial (4%) and industrial (1%) land uses 

accounting for the urbanised area of the catchment (Olmos and Birch 2008).   

An investigation of sediment quality within Brisbane Water on the NSW Central coast by 

Olmos and Birch (2008), identified creeks draining urbanised portions of the catchment were 

the main source of contamination to the estuary. Residential land uses were found to 

contribute the highest heavy-metal loading for most of the estuary.  The results of Olmos and 

Birch (2008) in conjunction with the regional assessment scheme, demonstrate that without 

an extensive history of urbanisation and intense industrialisation, stormwater derived 

contamination is the primary source of pollution to an estuary. Similar trends are also 
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observed within Narrabeen Lake, Avoca Lagoon, Wamberal Lagoon, Terrigal Lagoon and 

Tuggerah Lake which lack a history of intensity industrial activity. Botany Bay exhibits a 

similar relationship between catchment pressures and estuarine condition, however this is 

likely attributed to the coarse nature of the sediments (12.5% mean fine fraction) limiting the 

ability of contaminants to be adsorbed and retained. 

4.3.1.1 Other Applications  

Results of the regional assessment scheme may also be used within other estuarine or 

environmental assessment schemes when used in conjunction with other indicators in a 

weight-of-evidence approach to environmental and estuarine management. 

4.4 Comparison to state and national assessment schemes 

The regional assessment scheme considers the benthic risk and magnitude of human-induced 

change of sediments as a consequence of catchment urbanisation and population density. 

Because the methodology and criteria used to assess ecosystem condition in the NLWRA 

Audit and NSW SoC Reports comprise a range of catchment and estuary attributes, results of 

the schemes may not necessarily covary. Nevertheless, similarities and differences in 

outcomes of the three approaches will provide insight into the importance of the assessment 

methodology and use sedimentary metal as indicators in the current regional scheme. 

4.4.1 National Land and Water Resources Audit (2002)  

To facilitate comparison between the current regional assessment scheme and the NLWRA, 5 

classes of estuarine condition in the current study were consolidated into 4 categories by 

combining groups 1 and 2 (near pristine and largely unmodified).In general, little similarity 

exists between the results of the national audit and the current regional assessment (Figure 

22), with results of the current scheme indicating estuaries assessed are in better condition 

than indicated by the national audit. However, some agreement between the two schemes is 

noted between five ‘extensively modified’ (Manly Lagoon, Curl Curl Lagoon, Dee Why 

Lagoon, Sydney estuary and Cooks River) and four ‘near pristine’ estuaries (Willinga Lake, 

Meroo Lake, Karuah River and Tuross Lake). 

As detailed in Section 1.6.1, the NLWRA relies heavily on environmental indicators that are 

not only limited by natural spatial and temporal variation, but also poor data availability. 

Reliance on existing data sets varying in quality and age severely restricted the effectives of 
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indicators to provide a reliable and accurate assessment of estuarine condition. Use of water 

quality and biological indices, obtained from pre-existing data sets, do little to address 

natural spatial and temporal variation and further hindered the audit. In addition, subjective 

pressure indicators, such as ‘recreational fishing’ and ‘yachting and boating’ demonstrated 

little relationship with the actual condition and health of an estuary.  Data management and 

indicator assessment techniques adopted in the NLWRA again acted to introduce uncertainty 

and bias into the assessment.  Use of ordinal scoring, weightings and subjective indicator 

scoring methods confounded assessment results and may have resulted in improper 

assessment of estuarine condition.  

The current regional assessment addresses the shortcomings of the NLWRA, simplifying the 

assessment framework and utilising high value pressure and condition indicators in a data-

driven approach. Use of sedimentary metals provides an effective method to assess estuarine 

condition (see Section 1.5), providing information on biological risk and magnitude of 

human-induced change. Data in the current scheme was not forced into several discrete 

categories, but rather transformed on a linear scale using fuzzy logic, minimising information 

loss and improving the accuracy of the assessment. 

Assessment of estuarine condition by the audit (Figure 22) identified a number of extensively 

modified estuaries (n=17).  In comparison to the current study, only five estuaries considered 

to be ‘extensively modified’ (see Table 5 and 6) would require further assessment, thus 

improving the quality and efficiency of management responses. 

 

Figure 22: Comparison of the NLWRA and regional assessment scheme results developed in this study. 
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4.4.2 NSW State of the Catchments (2010) 

A combined assessment of estuarine pressure and condition was not undertaken in the NSW 

SoC reports. Therefore, in order to facilitate comparison, separate pressure and condition 

results of the current scheme were grouped into 5 categories and compared to the NSW SoC 

reports.  NSW SoC assessment values were subsequently reversed to reflect scoring used in 

the regional assessment scheme. While some comparisons may be drawn between several 

estuaries in the NSW SoC reports and regional assessment, little similarity exists between 

results. 

Results show a conservative bias in the NSW SOC report card (Figure 24 - Figure 23) with 

pressure and condition scores generally ‘good/low’ to ‘fair/moderate’ (category 2 and 3 

respectively).  No estuaries were assessed to have very high pressure or very poor condition, 

with the exception of Manly Lagoon. The central tendency of pressure and condition results 

suggests a conservative bias has been introduced through weighted indicators.  

Similar to the NLWRA, the NSW SoC reports relied heavily on biological environmental 

indicators that are not only influenced by natural spatial and temporal variation, but have 

limited data availability (only 45% of NSW estuaries assigned a condition score). Reliance 

on these indicators confounded by natural variation restricted the ability to provide a reliable 

and accurate assessment of estuarine condition.  In comparison to the NSW SoC, the current 

assessment limited the number of indicators used, improving the method of indicator 

assessment to improve the accuracy of the assessment and the value of the scheme to natural 

resource managers. 
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Figure 23: Comparison of the SoC pressure and regional assessment scheme pressure results developed in this 

study. 

 

 

Figure 24: Comparison of the SoC condition and regional assessment scheme condition results developed in this 

study. 

4.5 Management Implications 

As coastal urbanisation and populations increase, considerable pressures are being exerted on 

estuaries in Australia (Hutson, 2005).  The absence of a consistent regional management 
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structure and limited responsibility has intensified the degradation of these coastal 

environments (Birch and Taylor, 2004).  

The current regional assessment scheme provides the ability to rapidly identify ‘priority’ 

catchment/estuary systems, but also assists natural resource managers and decision makers in 

the prioritisation of estuaries, benchmarking, performance monitoring and the allocation of 

limited management resources. For example, five estuaries identified as ‘extensively 

modified’ (Manly Lagoon, Dee Why Lagoon, Sydney estuary, Curl Curl Lagoon and Cooks 

River), may be prioritised by managers for further assessment and evaluation as per the local 

assessment scheme detailed in Chapter 3.   

The value of the assessment scheme may be further enhanced through the application and use 

of a report card format that conveys high quality technical information in a simplistic and 

readily understood manner to the public. Use of letter grades provides estuarine managers 

with a tangible method of setting improvement targets and to determine appropriate 

management actions through which the condition of the catchment/estuary system may be 

improved. Value and progress of the estuarine management strategies may also be tracked 

and assessed using this format. 
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5 Conclusions 

For countries like Australia where >90% of the population resides within the coastal fringe, 

the effective management of coastal and estuarine resources is an important socio-political 

issue. Pressures exerted on these estuarine environments require that effective management is 

urgent and high priority.   Historically, a lack of a clear management structure, as well as 

limited responsibility and accountability has resulted in an often disjointed and ad-hoc 

approach to estuarine management.  

Accurate and reliable science-based information is required to provide the tools and 

techniques to adequately assess the condition of estuarine environments and to guide 

appropriate management strategies. The objective of the current study was to develop a 

framework for the regional assessment of NSW estuaries and demonstrate the value of 

sedimentary metal indicators in estuarine assessment. 

Several state and national assessment schemes have attempted to quantity the level of impact 

on Australian estuaries. However, the use of indicators and complex data management has 

limited the value and functionality of these assessments. Recognising the limitations of 

existing estuarine assessments, the current regional assessment scheme was developed as a 

preliminary assessment in a hierarchal scheme, designed to provide high quality accurate 

scientific information to natural resource managers. 

In the current study, pressure indicators show population density and catchment urbanisation 

to be significantly related to the enrichment and biological risk of sedimentary metals in 38 

estuaries in NSW. However, some coastal waterways show a varying relationship between 

pressure and condition indices due to historical and current landuse activities, remedial 

activities and the physical nature of sediments. Estuarine morphodynamics and hydrology 

may also play a role in determining the present condition of an estuary, however no 

signification relationship between sedimentary metals and estuary type was identified. 

Sedimentary metal indicators are unique in providing accurate information on the magnitude 

of human-induced change, as well as biological risk not confounded by natural and temporal 

stress. The value of sedimentary metal indicators in assessment and ranking coastal 

waterways is demonstrated in the current study. 

In addition to the generation of report card grades and identification of historical trends, 

results of the assessment have also been used to identify five classes of estuarine condition; 
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severely modified (n=5), highly modified (n=5), modified (n= 3), largely unmodified (n=9), 

near pristine (n=16).  Estuarine condition was found to decrease in proximity to large urban 

centres, with the exception of Lake Macquarie due to a single local industrial point source. 

To improve the efficient use of management resources, estuaries identified as ‘severely 

modified’ would be subject to further assessment under the local assessment scheme detailed 

in Chapter 3.   

The assessment scheme developed is an effective, integrated and regionally consistent 

assessment of estuarine health, unhindered by natural spatial and temporal variance. The 

scheme may be used to construct baseline data against which future trends may be assessed 

and management strategies judged. This scheme maximises the efficient use of limited 

management resources in an effective manner.   
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Chapter 3: Local Assessment Scheme 
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1 Introduction 

Sydney estuary is surrounded by one of the most extensively urbanised and densely 

populated catchment in Australia (Birch and Taylor, 1999) and is considered to be one of its 

most polluted waterways (Taylor et al., 2004). Historically, ineffective and uninformed 

management of this important natural resource has led to the degradation of this 

catchment/estuary system. 

For several decades, Sydney estuary has been the focus of environmental research (Birch and 

Taylor, 1999; 2000; 2004; Birch and Hutson, 2009), however the wealth of information 

gathered from these studies is only now being incorporated into management of the estuary 

and catchment. This high-quality scientific data should be evaluated in a way that it may be 

readily integrated in the decision-making process as an effective decision support tool for 

environmental managers. 

In recent years, there has been a trend towards the development and use of estuarine 

assessment schemes as a decision support tool in the effective management of estuarine 

environments (DECCW, 2010; Dauvin et al., 2008; EcoCheck., 2010). These schemes offer a 

method by which high-quality environmental data may be converted into a readily 

understandable and communicable format, providing science based information for effective 

and informed management decisions. 

Assessment schemes have been developed for several Australian and international estuaries 

(Drewry, 2010; DECCW, 2010; SEQ Healthy Waterways, 2010; EcoCheck, 2010). Whilst 

fulfilling the purpose for which these schemes were designed, their accuracy and 

effectiveness is often limited as a result of their structure, function and/or content. 

Consequently, there is a need for the development of a comprehensive, effective and accurate 

assessment methodology that provides detailed information on a local scale for urbanised 

catchment/estuary systems. The development of such a scheme will guide estuarine managers 

in the formation of effective management decisions, as well as assisting in site prioritisation, 

goal setting, performance monitoring for the sustained improvement in estuarine condition. 
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1.1 Project Objectives 

The current study, using Sydney Estuary as a case study, is the first to implement a detailed, 

local assessment scheme, designed specifically to assess catchment pressures and estuarine 

condition of ‘severely modified’ catchment/estuary systems. This scheme aims to facilitate 

the provision of science-based information for effective decision making and management of 

degraded estuarine environments. 

The project will be achieved through the completion of the following objectives: 

a. Develop a local  assessment scheme to evaluate the condition of an urbanised 

catchment/estuary system (Sydney estuary); 

b. Identify relationships between catchment pressure and estuarine condition;  

c. Identify priority sub-catchment/sub-estuary systems for further assessment and 

management; and 

d. Identify management implications of the local assessment scheme. 
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2 Methodology 

2.1 Study Area 

Sydney estuary, located on the central New South Wales coast (Figure 25), is a tide-

dominated, drowned river valley with variable bathymetry (Birch et al., 2008).  The estuary 

is surrounded by a highly-urbanised catchment (>80%) of 480 km
2
, supporting a population 

of approximately 2.5 million people (Birch and Taylor, 1999). Sydney estuary is referred to 

in the current study as encompassing all submerged areas to Indian Spring Low water 

(McLoughlin, 2000, cited in Birch et al., 2009) rather than the customary ‘Port Jackson’ or 

‘Sydney Harbour’, which are spatially restricted. 

 
Figure 25: The Sydney estuary. 

The estuary (50 km
2
) is well mixed under dry and low-precipitation conditions, but becomes 

temporarily stratified during infrequent, high-precipitation events (>50 mm day
-1

) (Lee and 

Birch, 2012, Birch et al., 2009). Flushing rates range from less than 1 day at the mouth to 255 

days in the upper reaches (Das et al., 2000).  

Sydney estuary has an extensive history of environmental degradation with the onset of 

contamination during the 19
th

 century associated the rapid increase of urbanisation and 

industrialisation within the catchment (Taylor et al., 2004). Legacy contamination and 

±

0 3 6 9 121.5

Km

Sydney CBD

NSW

S
yd

ne
y 

E
st

ua
ry

Homebush

Baulkham Hills

Parramatta

Chatswood

Macquarie Park

Ashfield



 

62 
 

stormwater discharge from urban areas continues to influence the health and condition of 

Sydney estuary. 

2.2 Delineation of Sub-catchments 

Sub-catchments of the Sydney estuary were originally derived from Cruickshank (2006) who 

delineated fifteen individual sub-catchments (Figure 26) using 1:25,000 topographic maps 

produced by the Departments of Lands (2001). Sub-catchments have been defined on the 

basis of elevation rather than drainage infrastructure (stormwater distribution). All fifteen 

sub-catchment/sub-estuary systems that define the Sydney estuary catchment have been 

assessed as part of the present study. 

 
1. Lower Estuary 
2. Middle Estuary 
3. Upper Estuary 
4. Lower Parramatta River 
5. Lane Cove 

6. Parramatta River 
7. Duck River 
8. Homebush Bay 
9. Hen and Chicken Bay 
10. Iron Cove 

11. Blackwattle / Rozelle Bay 
12. Upper Middle Harbour 
13. Central Middle Harbour 
14. Lower Middle Harbour 
15. North Harbour 

Figure 26: Sub-catchment/sub-estuary systems of Sydney Estuary (after Gunns, 2011). 

The sub-catchment/sub-estuary systems of Sydney estuary are provided in a schematic 

diagram (Figure 27). The schematic demonstrates the overall structure and function of water 

movement and sediment transport within the waterway and relationships between individual 

sub-catchment/sub-estuary systems.  
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Figure 27: Schematic diagram of sub-catchment/sub-estuaries of Sydney estuary (after Gunns, 2011). 

2.3 Report Card Structure 

2.3.1 Framework 

The assessment framework employed in the current study (Figure 28) is an evolution of the 

framework developed by Gunns (2011). Developed in consideration of the Pressure-State-

Response model, the present framework provides a much improved method by which causal 

relationships between pressures and condition may be evaluated and factors that influence 

estuarine health may be identified. 

The scheme developed in Gunns (2001) was a ‘pilot’ study of four sub-catchment/sub-

estuary systems within Sydney estuary. The scheme was designed to test a range of different 

assessment methodologies and indicators to provide the most accurate evaluation of estuarine 

systems. The present local scheme draws upon the finding of Gunns (2011), making several 

improvements to the assessment framework, e. g. removing the evaluation of driving forces 

or ‘stressors’, as well as the separate assessment temporal change, which were included in the 

original assessment.  These changes were aimed at simplifying the report card structure, 

ensuring the use of high-quality, scientific data and minimising duplication of environmental 

indicators.  Separate assessment of sediment quality and water quality condition indicator 

groups (Figure 28) were introduced in the current assessment to provide a greater degree of 

functionality and understanding of estuarine condition.   

 

The present framework allows for a detailed assessment of catchment pressures and estuarine 

condition, guiding informed management responses and decisions. Appropriate management 
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responses would, in turn, lead to an improvement in the overall condition of an estuarine 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Local report card framework based on the Pressure – State – Response model. 

2.4 Environmental Indicators 

The current study uses pressure and condition indicators to evaluate the activities, actions and 

processes that may impact the condition of the estuary. The following section defines 

environmental indicators for the local assessment.  

2.4.1 Pressure Indicators 

Urbanised Catchment Area 

It is well understood that catchment characteristics, such as urbanisation and industrial 

activity, have influenced the condition of receiving basins (Birch and Taylor, 1999; Abrahim 

and Parker, 2002). This indicator is described in greater detail in Chapter 2 Section 2.3.1. 

Calculation Urbanised Catchment Area 

High-resolution landuse information for the Sydney Estuary was derived from Cruikshank 

(2006) who produced a landuse use map based on the Australian Bureau of Statistics Mesh 
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Blocks (draft) data set (ABS, 2005) and transport infrastructure from the Department of 

Property Information (2000).   

Using ArcGIS 10, the landuse layer of Cruikshank (2006) was refined in the present work 

using cadastral information provided by the Land and Property Information (2012), current 

high-resolution aerial imagery (NearMap, 2012), as well as the ‘street view’ function in 

Google Maps.  

High-resolution landuse data were extracted for the 15 sub-catchments using the ‘Clip’ 

function in ArcGIS. Urbanised catchment area was expressed as proportion of total 

catchment area i.e. 

𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑒𝑑 𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎  % =  
𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑒𝑑 𝐴𝑟𝑒𝑎 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎 
 × 100 

Population Density 

Population density is considered an important indicator in the assessment of ‘pressures’ on 

estuarine systems, with a close relationship between population density and estuarine 

condition (Birch and Olmos, 2011; Bricker et al., 2008; Ward et al., 1998).  Pressures exerted 

by population density on estuarine systems include increased metal, nutrient, litter and 

sediment loads, as well as sewage overflows and disturbance of riparian vegetation and 

estuarine biota (Roper et al., 2010). This indicator is described in greater detail in Chapter 2 

Section 2.3.1. 

Calculation of Population Density 

Population density information was derived from the Australian Bureau of Statistics 

Statistical Local Area (SLA) dataset (ABS, 2011).  Population data were presented in 

ArcGIS 10 and, using the ‘Clip’ function, data were extracted for the 15 sub-catchments.   

Population densities within a sub-catchment were averaged to generate a mean population 

density value i.e. 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  𝑝𝑒𝑜𝑝𝑙𝑒 𝑕𝑎−1 =
 𝑆𝐿𝐴 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝐿𝐴𝑠 𝑖𝑛 𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡
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Estuary Reclamation 

Sydney has an extensive history of harbour development with reclamation of the estuary 

commencing soon after European colonisation. To date, a total of 1135 ha or 22% of the 

estuary has been in-filled (Murray, 2003; Birch et al., 2009). Reclamation was not limited to 

port activities, but also undertaken at the heads of embayments in an effort to improve the 

appeal of harbour foreshores and to create recreational and residential areas close to the water 

(Birch, 2006, Birch et al., 2009).  

Reclamation was initially regarded as a ‘harmless’ procedure (NSW Legislative Assembly 

1866, cited in Birch et al., 2009), however, estuary foreshores were reclaimed at the expense 

of mudflat, wetland, mangrove, seagrass and saltmarsh ecosystems (Birch et al. 2009; 

McLoughlin, 2000). In addition to estuarine ecological effects, reclamation has been shown 

to reduce the tidal prism, tidal flushing and water velocity, with an estimated 9 million cubic 

meters of water lost each tidal cycle (Birch, 2006). A reduction in water movement can 

influence the build-up of contaminants and increase sedimentation within the estuary (Birch 

et al., 2009). 

It is also recognised that leachates from waste materials and dredge spoil used as infill 

material may also act as a source of contamination to estuarine environments (Birch and 

Taylor, 1999; Irvine and Birch, 1998, Birch, 2006). Tidal pumping and rainwater percolation 

has been shown to actively release metals from infill material and acts as a primary source of 

contamination to Sydney estuary (Suh et al., 2003a, b; Suh et al., 2004; Birch et al., 2004 and 

Birch et al., 2009). 

Calculation of Estuary Reclamation 

This indicator aims to reflect the potential effect that foreshore reclamation has had on 

hydrologic and ecological functioning within Sydney estuary, as well as providing an 

indication of potential risk of estuarine contamination from infill material.  

Using the clip function in ArcGIS v10, Sydney estuary reclamation polygons, derived from 

Murray (2003), were clipped to individual sub-catchment/sub-estuary boundaries. Reclaimed 

areas were expressed as proportion of original estuary area i.e. 

𝑅𝑒𝑐𝑙𝑎𝑖𝑚𝑒𝑑 𝐴𝑟𝑒𝑎  % =   
𝑅𝑒𝑐𝑙𝑎𝑖𝑚𝑒𝑑 𝐴𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑟𝑒𝑎
  × 100 
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Condition of Riparian Vegetation of Creeks and Rivers 

This indicator is derived from the Sydney Metropolitan Catchment Management Authority 

(SMCMA) ‘Waterways Health Strategy’, which aimed to prioritise and monitor progress to 

protect and rehabilitate the waterways of Sydney (Earth Tech, 2007). A riparian vegetation 

condition assessment of creeks and rivers, conducted as part of the waterways assessment, 

formed the basis of this indicator. 

Calculation of Riparian Condition 

This indicator reflects the ability of riparian vegetation to reduce pollutants (sediment, 

pathogens, metals and nutrients) entering catchment creeks and rivers. 

Following the methodology used in the Waterways Health Strategy (Earth Tech, 2007), this 

indicator examines riparian vegetation of catchment creeks and rivers of the Sydney estuary 

which are classified into one of nine condition classes (Table 7).  

Table 7: Condition classes used to assess the condition of riparian vegetation. 

Condition 

Value 
Condition Class Description 

1 Near Intact Inside Reserve 

2 Near Intact Outside Reserve 

3 Good Condition High Recovery Potential 

4 Good Condition Moderate Recovery Potential 

5 Moderate Condition Good/Moderate Vegetation Cover 

6 Moderate Condition Little/No Vegetation Cover 

7 Degraded Condition Good/Moderate Vegetation Cover 

8 Degraded Condition Little/No Vegetation Cover 

9 No vegetation/Flood Control/Recreation 

A length-weighted pressure score was developed in the present work, combining the value of 

each condition class (1-9) with the proportion that value represents of the total length of 

creeks and rivers within the sub-catchment i.e. 

𝑅𝑖𝑝𝑎𝑟𝑖𝑎𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =    𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 × 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡𝑕  

A total riparian condition score, 1 to 9 (good to poor condition), was generated for each sub-

catchment. 
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Enrichment of Metals in Catchment Soils 

Enrichment is defined as the extent to which soil metal concentrations exceed geochemical 

background or pre-anthropogenic concentrations (Birch et al., 2010) and provides a direct 

measure of human-induced change. As metals are not biodegradable and are poorly mobile, 

catchment soils are often enriched in trace metals.  

Enrichment of metals in urban soils is expressed as an enrichment factor (EF) and is related 

to intensity and type of landuse. The enrichment factor is expressed as current surficial 

concentrations over pre-anthropogenic or ‘background’ concentration with an EF greater than 

1.5 times background concentrations, considered to be indicative of human influence (Birch 

and Olmos 2008). 

Birch et al. (2010) demonstrated that in the Sydney catchment, the highest EF for Cu was 

found in industrial areas with areas adjacent to main roads showing maximum enrichment for 

Pb and Zn. Parkland and open space landuse showed the lowest enrichment for all three 

metals. 

Calculation of Metal Enrichment 

This indicator assesses the magnitude and spatial extent of human-induced change on 

catchment soils by expressing soil metal concentrations over ‘background’ levels recorded. 

Background concentrations for Cu, Pb and Zn in Sydney estuary catchment soils were 

estimated at 9, 16±3.5 and 17±6.3 µg g
-1

 respectively (Vanderhayden, 2007). 

This indicator uses the combination of Cu, Pb and Zn to calculate a Mean Enrichment 

Quotient (MEQ). The MEQ for is calculated from size normalised soil samples within a sub-

catchment i.e. 

𝑀𝐸𝑄 =

  
𝐶𝑢𝑆𝑜𝑖𝑙

𝐶𝑢𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 +  

𝑃𝑏𝑆𝑜𝑖𝑙

𝐶𝑢𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 +  

𝑍𝑛𝑆𝑜𝑖𝑙

𝐶𝑢𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
  

3
 

 

Using soil data derived from Vanderhayden (2007), the MEQ was calculated for each sample 

location within each of the 15 sub-catchments (total 491 samples). Individual values were 

averaged to generate a mean MEQ value for each sub-catchment. 
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Metal Yield 

This indicator uses the mass of contaminants generated per unit area of catchment per year 

(yield). Soil contamination may influence metal yields and if transported into the adjacent 

estuary in surface runoff, may affect the condition of sediments, water quality and estuarine 

biota. 

Contaminants in stormwater are generated by a range of landuse types (Fletcher et al. 2004) 

with Cu, Pb and Zn commonly elevated in soils, sediment and biota in the Sydney 

catchment/estuary system. Influenced by anthropogenic activity, these metals have been 

widely used to assess impacts of human-induced changed.  

Sub-catchment yield (kg km
2
 yr

-1
) allows for direct comparison of loadings in respect to sub-

catchment size and can be helpful in identifying catchments that generate high contaminant 

loads. 

Calculation of Metal Yield 

This indicator uses yield data from Lean (2013) who calculated the yield values for Cu, Pb 

and Zn for the 15 Sydney estuary sub-catchments assessed. Lean (2013) calculated loading 

values for each sub-catchment using the simple empirical model (EPA, 2001) and pollutant 

Event Mean Concentrations (EMCs) from Fletcher et al. (2004). 

Yield values for each sub-catchment were calculated using the following formula: 

𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑  𝑘𝑔 𝑘𝑚2 𝑦𝑟−1 =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑏𝑐𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑 (𝑘𝑔 𝑦𝑟−1)

𝑆𝑢𝑏𝑐𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝐴𝑟𝑒𝑎 (𝑘𝑚2)
 

Nutrient Yield 

The supply of nutrients (Nitrogen and Phosphorous) from the catchment to the adjacent 

estuary is an important indicator of anthropogenic pressures placed on these (ANZECC 

2000). In urbanised catchments, a significant proportion of nutrients are derived from 

wastewater discharges or diffuse runoff as a consequence of human pressures. Generally, the 

highest yields of nutrients are from urban areas with lower yields from agricultural and 

forested areas (Campbell and Doeg, 1989; Ward et al., 1998). 
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In the Sydney catchment, elevated concentrations of nutrients in receiving waters are 

generally associated with stormwater discharges and sewer overflows during high-rainfall 

periods (Birch, Eyre and Taylor, 1999). 

Calculation of Nutrient Yield 

This indicator uses nutrient data from Lean (2013) who calculated yield values for Total 

Nitrogen (TN) and Total Phosphorous (TP) for the 15 Sydney estuary sub-catchments 

assessed. Lean (2013) calculated loading values for each sub-catchment using the simple 

empirical model (EPA, 2001) and pollutant Event Mean Concentrations (EMCs) from 

Fletcher et al. (2004). 

Yield values for each sub-catchment were calculated using the following formula: 

𝐶𝑎𝑡𝑐𝑕𝑚𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑  𝑘𝑔 𝑘𝑚2 𝑦𝑟−1 =  
𝑇𝑜𝑡𝑎𝑙  𝑆𝑢𝑏𝑐𝑎𝑡𝑐 𝑕𝑚𝑒𝑛𝑡  𝑌𝑖𝑒𝑙𝑑  (𝑘𝑔 𝑦𝑟−1)

𝑆𝑢𝑏𝑐𝑎𝑡𝑐 𝑕𝑚𝑒𝑛𝑡  𝐴𝑟𝑒𝑎  (𝑘𝑚 2)
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2.4.2 Condition Indicators 

2.4.2.1 Sediment Quality Indicators 

Benthic Health Index (BHI) 

Sedimentary metals may also be used as an effective indicator of biological risk through the 

application of sediment quality guidelines (SQGs).  These guidelines comprise effects range-

low (ERL) and effects range-median (ERM) for 28 chemical concentrations associated with 

adverse biological effects (McCready et. al 2006).   Due to a lack of sufficient data, North 

American ERM and ERL values have been adapted as interim SQGs (ISQGs) in Australia, as 

ISQG-Low and ISQG-High, respectively (ANZECC 2000).  

The mean ISQG-L (MISQG-L) quotient was adopted in the current study as it is a valuable 

tool for assessing the quality of sediment in which there are complex mixtures of substances. 

This indicator is described in greater detail in Chapter 2 Section 2.3.2. 

Calculation of BHI 

The BHI was calculated using the method detailed in Chapter 2 Section 2.3.2, for each 

sample location within each of the 15 sub-estuaries. Individual values were averaged and a 

mean BHI value generate for each sub-estuary. 

Human Impact Index 

The pre-anthropogenic or pristine condition of an estuary is required to estimate the 

magnitude of impact caused by human activities (Birch et al., 1999).  Sediment-bound metals 

provide a method to identify the pre-anthropogenic condition, providing natural background 

concentrations from unmodified pre-anthropogenic material.  Background concentrations of 

sedimentary metals in Sydney Estuary are 12, 20 and 48 µg g
-1

, for Cu, Pb and Zn 

respectively (Birch and Taylor 1999).  

Birch and Olmos (2008) identified three metals (Cu, Pb and Zn) closely correlate to the suite 

of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). Consequently, only these three 

metals (Cu, Pb and Zn) have been used in the HII to simplify the assessment of human-

induced change. This indicator is described in greater detail in Chapter 2 Section 2.3.2. 
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Calculation of HII 

The HII value was calculated using the method detailed in Chapter 2 Section 2.3.2 for each 

sample location within each of the 15 sub-estuaries. Individual sample values were averaged 

to generate a mean HII value for each sub-estuary. 

Water Quality Indicators 

Water quality indices are common among estuarine assessment schemes and are frequently 

relied on as a primary tool to evaluate the condition of an estuary (NLWRA, 2002; DECCW, 

2010). Whilst there are inherent difficulties in the collection, analysis and interpretation of 

water quality data to discern the influence of human activities, water quality indices have 

been included in the local assessment scheme due to the availability of high-quality data for 

the Sydney estuary. Water quality indices are further discussed in Chapter 1 Section 1.4.2. 

Water quality parameters assessed are those influenced by human activity and of particular 

concern in urbanised estuarine systems (ANZECC, 2000). Parameters include; chlorophyll-a 

(chl a), Dissolved Oxygen (DO), turbidity and nutrients (Total Nitrogen and Total 

Phosphorous). 

Chlorophyll a (Chl  a) 

Chl a is often used as a general indicator of plant biomass due to the presence of chl a in 

plants, algae and cyanobacteria (ANZECC, 2000; Brando et al., 2006). Increased levels of 

Chl a in the water generally indicates that plants, algae or cyanobacteria are growing and can 

indicate if a water body has become eutrophic. Chl a may also be used as a surrogate for 

nutrient pollution within a water body (ANZECC, 2000; Scanes et al., 2007). 

Elevated nutrient loads associated with catchment urbanisation is considered a primary factor 

in the elevation of chl a in a water body (Cruikshank 2006). Chl a should be used with 

caution as there is not always a clear relationship between chl a concentration and plant 

biomass due to species variation and varying physiological conditions (ANZECC, 2000; 

Bolwes, 1982). 
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Dissolved Oxygen (DO) 

Concentration of DO within a water body reflects the equilibrium between oxygen-

consuming processes and oxygen releasing process (ANZECC, 2000; Best et al., 2007). 

Biodegradable organic matter, such as sewage effluent and plant material, which are readily 

available to microorganisms, may have a considerable impact on dissolved oxygen levels. 

These organisms utilise dissolved oxygen when decomposing organic matter reducing DO 

concentrations (Connell and Miller, 1984; ANZECC, 2000).   

Low DO concentrations can significantly affect aquatic organisms that rely on optimal 

concentrations for efficient functioning. Low DO concentrations at the sediment-water 

interface can also control the flux of nutrients, metals and other compounds into the water 

column. Toxicity of some substances, such as Cu, Pb, Zn, cyanide, hydrogen sulphide and 

ammonia can also increase with low DO due to physiological changes in gilled organisms, 

affecting the rate of respiratory flow and thus the concentration of toxins on the gill surface 

(Lloyd, 1961; Davis, 1975; ANZECC, 2000).  

DO, as an indicator of human impact, should be used with caution as concentrations within a 

water body may be highly dependent on temperature, salinity, biological activity and rate of 

transfer from the atmosphere. Consequently, concentrations may vary widely over a 24 hr 

period (ANZECC, 2000).  

Turbidity 

Turbidity is the presence of suspended particulate matter and colloidal material (silt, clay, 

phytoplankton and other detritus) in a water body (ANZECC, 2000). Turbidity is largely 

controlled by natural factors, such as tidal movement, rainfall, temperature and resuspension 

by wind and wave action (Birch et al., 1999). However human influences such as 

urbanisation, catchment clearing, erosion and waste water discharges may introduce fine 

suspended sediments into the estuary (ANZECC, 2000). Additional factors, such as vessel 

movements, moorings and dredging can influence turbidity through resuspension and 

remobilisation of sediments.  

A significant impact of increased suspended particulate matter is a reduction in light 

availability, influencing primary production and disrupting trophic functioning (Heap et al., 

2001). Other impacts may include the mechanical and abrasive impairment of gilled 
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organisms, disruption of community structure, succession of exotic weeds and smothering of 

benthic organisms and habitat (ANZECC, 2000). 

Nutrients (Total Nitrogen, Total Phosphorous) 

Concentrations of nitrogen (N) and phosphorous (P) in the water column can be used to 

indicate how eutrophied a water body is and its susceptibility to nuisance plant growth (NRC, 

2000; Alderson et al., 2002).  Activities, such as sewage discharge, industrial and agricultural 

wastewater and fertiliser runoff can supply excess nutrients in receiving waters.  

Excess nutrients may cause eutrophication, stimulate nuisance growth of aquatic plants, 

increase oxygen demand through decomposition of organic matter and can potentially lead to 

a reduction in dissolved oxygen (Boyton et al., 1996). Algal blooms and nuisance plant 

growth may also limit the recreational and economic value of estuaries due to restricted use 

of the waterway (Alderson et al., 2002; ANZECC 2000).  

In Sydney estuary, N and P concentrations can exceed ANZECC guidelines and with blooms 

of blue-green algae common in the upper reaches of the estuary (Birch, Eyre and Taylor, 

1999). 

Calculation of Water Quality Indices 

Twelve months of water quality data were provided by Harrison (University of Sydney 

unpublished data, 2013) for the calculation of these indicators. Water samples were collected 

on a weekly basis from 29 locations within Sydney estuary with two depths sampled; 0.3 m 

below the surface and 0.3 m above the sea bed. Due to data availability, only shallow water 

data was used in the current assessment. 

Chl a was analysed by the spectrophotometric method according to the Standard Methods 

10200 H (APHA, 1998) including the correction for phaeophytin-a by acidification, on a 

Hitachi U-2000 dual beam spectrophotometer. Determination of TN and TP was conducted 

using a persulfate digestion according to Method 4500-N C. Persulfate Method (APHA, 

1998). Final concentrations of N and P were determined by flow injection analysis on a 

LaChat FIA. Turbidity (NTU) and DO (%) were measured in situ using a YSI model 6600 

V2 sonde. 
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Water quality data was compared to trigger values defined in the ANZECC (2000) guidelines 

for estuaries in south-east Australia (Table 8). The proportion of samples exceeding the 

trigger value for a given parameter was used to provide an indicator of overall water quality 

within each sub-estuary.  

A percentage value for each sub-estuary was calculated using the following formula: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝐸𝑥𝑐𝑐𝑒𝑑𝑖𝑛𝑔 𝑇𝑟𝑖𝑔𝑔𝑒𝑟   % =   
  𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝐸𝑥𝑐𝑐𝑒𝑑𝑖𝑛𝑔 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 × 100 

 

Table 8: ANZECC and ARMCANZ (2000) water quality trigger values for SE Australian estuaries. 

Water Quality Parameter Guideline Trigger Value* 

Chlorophyll a  (µg L
-1

) 4 

Total Nitrogen (µg L
-1

) 300 

Total Phosphorous(µg L
-1

) 30 

Dissolved Oxygen (%) Upper: 110  Lower: 80 

Turbidity (NTU) 10 

* ANZECC (2000) trigger values for SE Australian estuaries. 

2.5 Correlation Matrix of Indicators 

Using the non-parametric Spearman’s correlation test, a correlation matrix of indicators was 

created to assess covariance between indicators used in local assessment and to further 

examine the relationship between pressure and condition indicators.  Use of the Spearman’s 

correlation test is detailed in Chapter 2, Section 2.4. 

Results of the correlation test are provided in Section 3.1 of this chapter. 

2.6 Assessment of Indicators 

The assessment of indicators uses the same fuzzy logic assessment methods as the regional 

assessment scheme which is detailed in Chapter 2, Section 2.5. 
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2.7 Calculating Assessment Scores 

This section describes the calculations used in determination assessment scores for the 15 

sub-estuaries examined.  Stages involved in the calculation of assessment scores are provided 

in Figure 29 and detailed below. 

 

. 

 

 

 

 

 

Figure 29: Calculation of assessment scores for the regional assessment. 

Stage 1: Calculating Indicator Scores 

Individual indicators were assessed using fuzzy logic as where individual indicator values 

were transformed so that a ‘fuzzy’ score between 0.00 (good) and 1.00 (poor) was generated 

for each indicator. 

Stage 2: Calculating Pressure and Condition Score 

To calculate pressure and condition scores, the sum of ‘fuzzy’ indicator scores was divided 

by the number of respective indicators to generate a mean indicator score i.e. 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 =
  𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠
 

 

𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
  𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡  𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠
 

 

𝑊𝑎𝑡𝑒𝑟 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
  𝑊𝑎𝑡𝑒𝑟 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠
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Scores 

Stage 2: Pressure and 
Condition Scores 

Pressure Indicator  
Score 

Condition Indicator 
Score  

Water Quality 
Score  

(Mean Value) 

 Local 
Assessment 

Score 

(Mean Value) 

Stage 3: Final 
Assessment Score 



 

77 
 

Stage 3: Calculating Overall Estuary Scores 

The final sub-catchment/sub-estuary assessment score was calculated by averaging the final 

pressure and condition scores i.e. 

𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 =
 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 + 𝑊𝑎𝑡𝑒𝑟 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 + 𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 

3
 

2.8 Assessment Scheme Output 

In line with the regional assessment scheme detailed in Chapter 2, a letter grade format has 

been selected to present the results of the local assessment scheme. The letter grade output is 

detailed in Chapter 2, Section 2.7. 



 

78 
 

3 Results 

3.1 Indicator Correlation Matrix 

Results of the non-parametric Spearman’s correlation test revealed sediment quality 

indicators generally show a significant correlation (P<0.05) with pressure indicators (Table 

9). However, sediment quality was not significantly related to TN yields with BHI and 

population density demonstrating little covariance (R2=0.271). 

Water quality indicators generally showed little correlation with pressure indicators with the 

exception of estuary reclamation, which showed significant correlation with all water quality 

indices (Table 9). In addition, Chl a had a strong correlation to catchment urbanisation and 

riparian health. Total phosphorus showed covariance with riparian health and soil metal 

enrichment.   

Table 9: Correlation coefficients for indicators used in the local report card*. 
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H
um

an
 I

m
pa

ct
 

In
de

x 
(H

II
) 

B
en

th
ic

 H
ea

lt
h 

In
de

x 
(B

H
I)

 

T
ot

al
 N

it
ro

ge
n 

T
ot

al
 P

ho
sp

ho
ro

us
 

T
ur

bi
di

ty
 

C
hl

or
op

hy
ll

 a
 

D
is

so
lv

ed
 O

xy
ge

n 

Pr
es

su
re

 I
nd

ic
at

or
s 

Catchment Urbanisation 0.625 0.611 -0.070 0.243 -0.173 0.442 -0.178 

Population Density 0.571 0.271 -0.488 -0.358 -0.373 0.137 -0.507 

Riparian Health 0.621 0.820 0.129 0.508 -0.041 0.576 -0.334 

Estuary Reclamation 0.504 0.800 0.668 0.852 0.523 0.485 0.444 

Soil Metal Enrichment  0.754 0.907 0.264 0.591 0.162 0.657 0.115 

Metal Yield 0.525 0.314 -0.698 -0.300 -0.558 0.205 -0.686 

Total Nitrogen Yield 0.275 0.068 -0.687 -0.450 -0.489 0.000 -0.465 

Total Phosphorous Yield 0.546 0.418 -0.485 -0.210 0.113 -0.129 -0.416 

*indicators showing a significant correlation (P<0.05) shown in bold. 
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3.2 Local Assessment Results 

The following section details the results of the regional assessment scheme. Complete results 

for the sub-catchment/sub-estuary systems assessed are contained in Appendix B.  

Results of the local assessment are summarised in Table 10 and in Figure 31 - Figure 37. 

Table 10: Summarised assessment results for Sydney estuary. 

Sub-estuary 

Pressure Score / 

Report Card 

Grade 

Water Quality 

Score / Report 

Card Grade 

Sediment Quality 

Score/ Report 

Card Grade 

Final Assessment 

Score / Report 

Card Grade 

Lower Estuary 0.65 C- 0.10 A 0.15 A- 0.38 B 

Middle Estuary 0.56 C 0.06 A+ 0.38 B 0.35 B 

Upper Estuary  0.50 C+ 0.48 C+ 0.47 C+ 0.49 C+ 

Lower Parramatta River 0.40 B- 0.69 D+ 0.29 B+ 0.49 C+ 

Lane Cove River 0.28 B+ 0.52 C+ 0.15 A- 0.34 B 

Parramatta River  0.35 B 0.72 D+ 0.19 A- 0.46 C+ 

Duck River 0.44 B- 0.86 D- 0.47 C+ 0.60 C 

Homebush Bay  0.53 C+ 0.78 D 0.49 C+ 0.62 C- 

Hen And Chicken Bay  0.47 C+ 0.44 B- 0.90 D- 0.52 C+ 

Iron Cove  0.76 D+ 0.34 B 0.93 F 0.63 C- 

Blackwattle / Rozelle Bay 0.96 F 0.24 B+ 1.00 F 0.71 D+ 

Upper Middle Harbour 0.12 A 0.31 B 0.04 A+ 0.18 A- 

Central Middle Harbour  0.35 B 0.16 A- 0.49 C+ 0.31 B 

Lower Middle Harbour 0.39 B- 0.01 A+ 0.00 A+ 0.20 A- 

North Harbour  0.18 A- 0.01 A+ 0.07 A 0.10 A 

3.2.1 Final Local Assessment Results 

Final assessment scores (Table 10 and Figure 30 - Figure 31) were generally well distributed 

with values ranging from 0.10 (North Harbour, A) to 0.71 (Blackwattle/Rozelle Bay, D+). 

The mean final assessment score for Sydney estuary was 0.43 (B-). North Harbour (0.10), 

Upper Middle Harbour (0.18) and Lower Middle Harbour (0.20) returned the assessment 

scores with grades ranging between A and A- respectively. Four sub-estuaries returned the 

poorest overall assessment scores (Figure 31) with Blackwattle/Rozelle Bay (0.71) and Iron 

Cove (0.63) returning the lowest grade of D+ and C- respectively. Duck River (0.60) and 

Homebush Bay (0.62) both received a grade of C. Of remaining sub-estuaries assessed, four 

received a grade of B (Central Middle Harbour [0.31], Lane Cove River [0.34], Middle 

Estuary [0.35] and Lower Estuary [0.38]). Parramatta River (0.46), Lower Parramatta River 
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(0.49), Upper Estuary (0.49) and Hen and Chicken Bay (0.52) all returned a grade of C+ 

(Figure 31). 

 

Figure 30: Final assessment grades for the Sydney estuary. 

 

Figure 31: Final local assessment scores and letter grades.  
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Pressure scores ranged between 0.12 (Upper Middle Harbour, A) and 0.96 

(Blackwattle/Rozelle Bay, F) (Table 10 and Figure 32 - Figure 33). Sydney estuary returned a 

mean pressure score of 0.46 (C+).  Upper Middle Harbour and North Harbour had the lowest 

catchment pressures with scores of 0.12 (A) and 0.18 (A-), respectively. Blackwattle/Rozelle 

Bay had the highest catchment pressures in the Sydney Estuary with a score of 0.96 (F), 

significantly greater than the next highest sub-catchment, Iron Cove, with 0.76 (D+).  

Remaining sub-catchments were relatively well distributed between B+ and C-. 

Approximately 40% returned a grade between 0.28 and 0.44 (B+ to B-) with 33% returning a 

grade between 0.47 and 0.76 (C+ to C-), respectively (Figure 32-Figure 33). 

 

Figure 32: Final pressure grades for the Sydney estuary. 
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Figure 33: Final pressure scores and letter grades for the Sydney estuary. 

3.2.2 Condition Results 
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Water quality decreased away from the estuary mouth (Figure 34) with poorest conditions 
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Figure 34: Final water quality grades for the Sydney estuary. 

 

 

 

Figure 35: Final water quality scores and letter grades for the Sydney estuary. 

B

B

D

A

B

A+

D+

A+

B-

D-

D+
C+

B+

A+
A-

Lane Cove River

±

0 3 6 9 121.5
Km

Lower Estuary

Blackwattle/Rozelle Bay

Parramatta River

Duck River

Iron Cove

Hen and Chicken Bay

Homebush Bay

Lower Parramatta 
River

Upper Estuary

Upper Middle 
Harbour

North 
Harbour

Central Middle 
Harbour

Middle Estuary

Lower Middle 
Harbour

Legend

A+ A A- B+ B B- C+ D+ D D-

0
.0

1

0
.0

1

0
.0

6

0
.1

0 0
.1

6 0
.2

4 0
.3

1

0
.3

4 0
.4

4

0
.4

8

0
.5

2

0
.6

9

0
.7

2 0
.7

8 0
.8

6

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o
rt

h
 H

a
rb

o
u
r 

L
o
w

e
r 

M
id

d
le

 H
a
rb

o
u
r

M
id

d
le

 E
s
tu

a
ry

L
o
w

e
r 

E
s
tu

a
ry

C
e
n
tr

a
l 
M

id
d
le

 H
a
rb

o
u
r 

B
la

c
k
w

a
tt

le
 /
 R

o
z
e
lle

 B
a
y

U
p
p
e
r 

M
id

d
le

 H
a
rb

o
u
r

Ir
o
n
 C

o
v
e
 

H
e
n
 A

n
d
 C

h
ic

k
e
n
 B

a
y
 

U
p
p
e
r 

E
s
tu

a
ry

 

L
a
n
e
 C

o
v
e
 R

iv
e
r

L
o
w

e
r 

P
a
rr

a
m

a
tt

a
 R

iv
e
r

P
a
rr

a
m

a
tt

a
 R

iv
e
r 

H
o
m

e
b

u
s
h

 B
a

y
 

D
u
c
k
 R

iv
e
r

A+ A+ A+ A A- B+ B B B- C+ C+ D+ D+ D D-

W
a
te

r 
Q

u
a
lit

y
 S

c
o
re

Water Quality



 

84 
 

3.2.2.2 Sediment Quality  

Sediment quality results were highly variable, with scores ranging between 0.00 (A+) in 

Lower Middle Harbour and 1.00 (F) in Blackwattle/Rozelle Bay (Table 10 and Figure 36 -

Figure 37).  Three sub-estuaries (Blackwattle/Rozelle Bay, Iron cove and Hen and Chicken 

Bay) returned significantly higher sediment condition results in comparison to other sub-

estuaries, with scores of 1.00 (F), 0.93 (F) and 0.90 (D-), respectively. Central Middle 

Harbour returned the next highest score of 0.59 (C). Lower Middle Harbour and Upper 

Middle Harbour had the best sediment quality, both returning scores of 0.00 (A+) and 0.04 

(A+).  Four other estuaries (North Harbour, Lower Estuary, Lane Cove River and Parramatta 

River) returned scores with 0.07 (A), 0.15 (A-), 0.15 (A-) and 0.19 (A-), respectively. 

Remaining sub-estuaries ranged between B+ and C+ (Figure 37). 

 

Figure 36: Final sediment quality grades for the Sydney estuary. 
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Figure 37: Final sediment quality scores and letter grades for the Sydney Estuary. 
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4 Discussion 

4.1 Development of the Local Assessment Scheme 

4.1.1 Development of the Assessment Framework 

The local assessment scheme was developed as a secondary, detailed assessment tool in a 

hierarchal scheme, evaluating ‘severely modified’ estuarine systems identified in the regional 

assessment (Chapter 2).  The scheme was designed to provide a comprehensive 

understanding of relationships between catchment pressures and estuarine condition at a local 

scale. 

Recognising limitations of indicators used in existing state and national assessment schemes, 

the local framework maximises the use of high-value environmental indicators. This scheme 

provides relevant and meaningful information to estuarine managers and allows for the fine 

scale assessment of estuarine condition. The current scheme centres on the internal 

assessment of Sydney estuary whereby individual sub-catchment/sub-estuary systems are 

compared to each other rather than external reference sites. This method facilitates the 

development and implementation of realistic management options and goals specific to the 

Sydney estuary. 

Framework Structure 

The framework, developed around a simplified ‘Pressure-State-Response’ model (OECD 

1993), mirrors that of the regional assessment and is capable of providing a robust and 

detailed local assessment of estuarine condition. The framework reduces the complexity of 

indicator analysis required, maintains information value and prioritises the use of relevant 

and meaningful environmental indicators. The structure allows catchment pressures and 

estuarine condition indicators to be evaluated individually and as a whole with functionality 

and value of the scheme improved by the individual assessment of sediment quality and water 

quality. The framework allows estuarine managers with the ability to identify specific areas 

and issues of concern within the estuary and prioritise management in these areas. 
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Use of Relevant High-Value Indicators 

A selection of high-value physical, chemical and socioeconomic indicators were chosen to 

provide accurate and robust assessment of Sydney estuary. These indicators were required to 

have:  

­ Suitable data availability; 

­ Fine-scale spatial resolution; 

­ Clear causal relationships between catchment pressure and estuarine condition; and 

­ Relevance to environmental issues within the estuary. 

Sediment Quality Indicators were chosen due to high levels of sediment contamination 

identified within the estuary (Birch et al, 2004, Olmos and Birch, 2008; Birch and Taylor, 

1999). These indicators are valuable in the assessment of estuarine condition due to the 

ability to provide information on both the magnitude of human impact and biological risk 

within an estuary.  

Water quality within Sydney estuary is generally good, except during high precipitation 

events where rapid increases in freshwater discharge can cause temporary stratification (<44 

days) within the estuary (Lee and Birch, 2012). Stormwater constituents, including sediment, 

nutrients and particulate and dissolved contaminants can result in short-term reduction in 

water quality (Lee and Birch, 2012; Farmer and Graham, 1999; Barry et al., 1999).  Although 

the degree of human influence is difficult to discern, water quality indicators are an important 

indicator of estuarine condition. The provision of high quality data allowed water quality 

indices to be used with confidence in local assessment. 

Use of Biological Indicators 

Due to technological, logistical and financial reasons, biological assessments are often 

limited in their ability to assess and record change over a range of temporal and spatial scales. 

Confounding effects of natural temporal and spatial variation mean careful interpretation of 

biological indices is important in order to identify the human-induced component of change. 

Limitations of biological indices in estuarine assessment are discussed in Section 1.4.2. 

The composition of intertidal biota was considered to be used in the local assessment scheme 

however it was subsequently excluded due to poor data availability and spatial resolution. A 

dedicated sampling program specifically designed for inclusion in a report scheme would be 
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required to minimise the confounding effect of natural spatial and temporal variation. 

Relevant and robust biological indicators would complement the existing suite of indictors 

used in the assessment and may include bioaccumulation / enrichment of metals in sessile 

filter feeders such mussels and oysters. 

Other biological indicators including fish assemblages as well as mangrove, seagrass and 

saltmarsh extent have the potential to be used in the current scheme. If these indicators are to 

be used with confidence, detailed investigation involving a comprehensive sampling strategy 

would be required to address spatial and temporal variability and to discern the influence of 

anthropogenic activity.  

Spatial Variation of Conditions 

Whilst the local assessment provides an average condition for a particular sub-estuary, the 

quality of sediment and water can vary spatially. Excluding industrial or known historical 

point sources, trace metals generally increasing towards the heads of embayments, with 

highest concentrations identified in proximity to stormwater discharge points (Birch and 

Taylor; 1999; Barry et al., 2000; Birch et al., 2013). Water quality is also highly spatially 

variable and can be associated with waste water discharge points, sewage over flow locations 

or in constricted embayments within a sub-estuary (Lee and Birch, 2012). The local 

assessment developed in the current study does not provide this level of differentiation; rather 

it has been designed as a tool to guide the prioritisation of estuaries for further research to 

identify specific areas of concern and to develop appropriate management strategies. 

4.1.2 Indicator Assessment and Data Management  

The current assessment abandons the traditional ‘ordinal’ scoring of indicators, adopting 

instead the concept of fuzzy logic. Fuzzy logic was used to minimise the transformation of 

data, reducing information loss whilst maintaining data integrity.  Fuzzy logic was employed 

to obtain a non-linear transformation of indicator scores, measured on multifarious scales, to 

make them all comparable on a single scale. 

An investigation of indicator weights by Gunns (2011) found that conservative bias was 

introduced into the assessment through the use of weighted indicator scores. This bias 

resulted in the distortion of results and the misrepresentation of estuarine condition. Given 

these findings, indicator weights were not applied in the current study.  Indicator assessment 
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and data management techniques employed in the local assessment scheme are previously 

discussed in Chapter 2, Section 4.1.2. 

4.2 Relationships between catchment pressure and estuarine condition 

4.2.1 Indicator Correlation 

Unlike the regional scheme, results of the local assessment suggests little correlation exists 

between the catchment and its associated estuary (R
2
=0.0581) (Figure 38 A).  However, as 

shown in Figure 38 B, this relationship is largely driven by poor covariance between water 

quality and pressure results (R
2
=0.0021).  

Association between catchment pressures and water quality (Figure 38 B), suggests 

catchment based pressures are not the only factor controlling water quality within the Sydney 

estuary. Other factors such as flushing rates and estuary morphodynamics may influence 

water quality and are further discussed in Section 4.3 of this chapter. In agreement with the 

regional assessment, a significant correlation exists between catchment pressure and sediment 

quality (R
2
=0.5414) (Figure 38 C). This relationship demonstrates the value of sedimentary 

indicators in representing the condition of the estuary and role of human induced pressures in 

influencing the health of estuarine systems. 
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Figure 38: Bivariate plots of catchment pressure condition results. A. Pressure and condition results, B. Pressure 
and Water Quality Results, C. Pressure and sediment quality results. 

4.3 Influence of catchment pressures on estuarine condition 

Correlation between catchment pressure and estuarine condition may be used as a method of 

determining the influence of anthropogenic impacts and understanding causal relationships 

between a catchment and estuary. Results of the assessment may also be used to infer how 

historical catchment changes have influenced the current condition of an estuary. 

Sediment Quality 

Catchment pressures correlate positively and significantly (R2=0.5414) with sediment quality 

indicators (Table 9 and Figure 38 C). However, these factors are not always consistently 

related, as shown in Figure 39.  
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Figure 39: Relationship between sediment quality and catchment pressures. 

Lower Middle Harbour and Lower Estuary have high catchment pressure scores in 

comparison to low sediment quality scores indicating catchment-based pressures are not the 

only factor controlling the quality of sediments in these sub-estuaries.  This inverse 

relationship is likely attributed to the coarse nature of sediments within Lower Middle 

Harbour and Lower Estuary (<36% and <43% fine fraction, respectively) which limits the 

ability of contaminants be adsorbed and retained. Increased flushing rates, vessel movements 

and dredging activity may also result in the remobilisation and removal of fine surficial 

sediment and the lowering of metal concentrations.  

Conversely, Central Middle Harbour, Iron Cove, Hen and Chicken Bay and 

Blackwattle/Rozelle Bay demonstrate higher sediment quality scores in comparison to 

catchment pressures. Located within close proximity to the Sydney CBD, sediment quality 

scores within these sub-estuaries is likely attributed to historical catchment use, which was 

dominated by industrial activity.  Earliest industrial activity in Sydney was located close to 

the present CBD (Taylor et al., 2004). Three bays (Blackwattle, Rozelle and Cockle Bay) 

were the first to be urbanised with the establishment of several metal foundries, tanneries and 

other small industries during the 1800s (Taylor et al., 2004; Links, 1998; Lean, 2013). 

Significant economic development after 1860 led to  rapid urbanisation and industrialisation 

of  Sydney catchment between 1870 and 1917, which spread west to encompass Iron Cove 

and Hen and Chicken Bay and Homebush Bay (Taylor et al., 2004, Lean, 2013). The rapid 

increase in manufacturing activity within these catchments at the turn of the century 

coincides closely with increased trace metal concentrations in subsurface sediments.  
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Residual contamination from historic fill material, industrial activity and landfills located 

within these catchments continues to influence contamination within the estuary (Taylor et 

al., 2004).   

The onset of contamination in Blackwattle, Rozelle and Cockle Bays occurred from 1866 - 

1876, which closely approximates to the onset of metal usage within the catchment (Taylor et 

al., 2004). Maximum trace metal concentrations in these embayments are observed from 

1950 to 1980, associated with maximum industrial activity within the catchment (Taylor et 

al., 2004). Metal concentrations generally decrease after this period due to a decline of shore-

based industries in the catchment. Birch et al., (2013) notes in some areas of these bays, 

surficial sediments remain highly enriched (>50 times background concentrations). 

 

Central Middle Harbour, whilst not extensively urbanised or industrialised during this early 

period, demonstrates the impact of localised and intensive industrial activity on the condition 

of the estuary. Significant Cr contamination within Central Middle harbour is associated with 

establishment of tanneries in the catchment in 1869 (Birch et al., 2013, Taylor et al., 2004). 

Centred near Scotts Creek, tanneries operated in the area up to 1992 (Birch et al., 2013). The 

onset Cr contamination, a major ingredient in the tanning process, began in 1907 with 

maximum concentrations (4000 mg kg-1) observed in 1923 (Birch et al., 2013). Surficial 

sediment is still highly enriched in comparison to regional levels, suggesting a residual source 

of Cr to the estuary, perhaps by remobilisation of fluvial material. The presence of a historic 

industrial and domestic landfill in Flat Rock Gulley, Central Middle Harbour, may also be 

acting as a source of residual contamination to the estuary due to the strong increase of Cr, 

Cu, Pb and Zn at the mouth of Flat Rock Creek in Long Bay (Birch et al, 2013). 

Water Quality 

As previously demonstrated, little correlation exists between water quality indices and 

catchment pressures in Sydney estuary (Table 9 and Figure 38). Figure 40 again reveals this 

relationship suggesting water quality is largely influenced by factors other than those used to 

assess catchment pressures in the current scheme. This association suggests that flushing 

rates may be a significant influence on water quality within the estuary with water quality 

declining away from the estuary mouth.  In general, the poorest water quality was observed in 

Duck River, Homebush Bay, Parramatta River and Lower Parramatta River in upper reaches 
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of the estuary. Water quality in these sub-estuaries was primarily influenced by poor DO and 

nutrients (TN/TP) values and to a lesser extent by turbidity and chl a. A correlation between 

estuary reclamation and water quality also suggests that a reduction in the tidal prism, tidal 

flushing and water velocity may result in a build-up of contaminants.  Conversely, sub-

estuaries located within proximity to the harbour mouth, i. e. North Harbour, Lower Middle 

Estuary, Middle and Lower Estuary, demonstrate the best water quality with few samples 

exceeding ANZECC (2000) criteria.  

Catchment pressures are likely to play a greater role in the quality of water during high-

rainfall events where stormwater runoff containing sediment, organic material and particulate 

and dissolved phase contaminants are discharged into the estuary. These freshwater pulses 

are generally short lived with contaminates rapidly removed from the estuary (Lee and Birch, 

2012). Water sampling may miss these brief, high-concentration contaminant discharges 

making the influence of catchment pressures difficult to discern.  

 

Figure 40: Relationship between water quality and catchment pressures. 

4.4 Identification of Priority Sub-catchment / Sub-estuary Systems 

Based on the assessment grades of the local assessment scheme, each sub-catchment/sub-

estuary has been assigned a management priority classification according to the following 

scheme:  

­ Low Priority (A+ to A-); 

­ Medium Low Priority (B+ to B-); 
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­ Medium High Priority (C+ to C-); and 

­ High Priority (D+ to F). 

Management priorities for the 15 sub-catchment/sub-estuary systems are provided in Table 

11. 

Table 11: Management priorities derived for Sydney estuary. 

Sub-estuary Overall Priority  Sediment Quality Priority Water Quality Priority 

Duck River High Medium High High 

Homebush Bay  High Medium High High 

Iron Cove  High High Medium Low 

Blackwattle / Rozelle Bay High High Medium Low 

Upper Estuary  Medium High Medium High Medium High 

Lower Parramatta River Medium High Medium Low High 

Parramatta River  Medium High Low High 

Hen And Chicken Bay  Medium High High Medium Low 

Lower Estuary Medium Low Low Low 

Middle Estuary Medium Low Medium Low Low 

Lane Cove River Medium Low Low Medium High 

Central Middle Harbour  Medium Low Medium High Low 

Upper Middle Harbour Low Low Medium Low 

Lower Middle Harbour Low Low Low 

North Harbour  Low Low Low 

4.5 Management Implications 

In Australia, considerable pressures are being exerted on estuaries in urbanised catchments 

due to increasing coastal populations (Hutson, 2005). Despite recent improvements, the lack 

of a clear, consistent management approach has limited the effectiveness of estuarine 

management and has led to the degradation of these important coastal environments (Birch 

and Taylor, 2004). 

Application of the current local assessment scheme provides estuarine managers with a tool 

to assist in the identification of ‘priority’ sub-catchment/sub-estuary systems, as well as areas 

and issues of concern. This is achieved through a multi-tiered assessment of individual sub-

catchment/sub-estuary systems that evaluates catchment pressures and estuarine condition, 

including sediment and water quality.  

An ability to prioritise estuarine management improves the efficiency of management actions 

and facilitates the development of effective, appropriate and targeted long-term management 

strategies. An understanding of the relationships between catchment pressures and estuarine 
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condition may also be used to identify the source and pathways of contamination to an 

estuary, allowing appropriate management actions to be developed. 

The value of the local assessment scheme may also be enhanced through the use of a letter 

grade format which conveys scientific information and key beneficial information in a 

readily-understood manner to the public. The use of letter grades also provides benchmarking 

and performance monitoring ability, allowing estuarine managers to set improvement targets 

and assesses the progress of management strategies. Letter grades have proved successful in 

informing the public in an easily recognised and understandable form (SEQ Healthy 

Waterways, 2013). 

Results generated from the local assessment have demonstrated the ability of the scheme to 

provide a reliable assessment of estuarine condition. Its use as a decision support tool would 

provide the basis of informed management decisions, advancing the efficient management of 

urbanised estuarine environments.  
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5 Conclusion 

Estuarine environments in Australia and worldwide, particularly those in urban areas, are 

frequently degraded by a history of modification and contamination. Due to the importance of 

estuarine environments for environmental, social and economic functions, appropriate 

management is critical. Historically, limited responsibility, accountability and lack of a 

defined management structure have restricted the effectiveness of estuarine management in 

Australia. 

The current local assessment scheme was developed as a secondary assessment in a 

hierarchal assessment scheme, designed to provide reliable, science-based information to 

facilitate the efficient and effective allocation of limited management resources in ‘severely 

modified’ NSW catchment/estuary systems.  The current study addressed a number of 

limitations identified in existing assessment schemes, using high-value environmental 

indicators to minimise confounding by temporal and spatial variability. Careful selection of 

indicators, coupled with the simplistic transformation of data using fuzzy logic, ensured the 

generation of accurate and reliable results, reflective of real-world conditions. 

The development of a robust assessment framework, with an emphasis on causal 

relationships between catchment pressures and estuarine conditions, may be used as a method 

of determining the relative influence of anthropogenic impact. The separate assessment of 

water quality and sediment quality allows for differentiation and targeted management of 

these specific issues. 

Indicator weightings have potential to be used in estuarine assessment schemes. However, as 

demonstrated by Gunns (2011), the use of indicator weights was found to distort the results of 

the current assessment. Indicator weights were therefore excluded from the present 

assessment of Sydney estuary. Weightings may be applied to the current scheme at any time 

by however their ability to distort the results of the assessment should be recognised. 

Overall results of the local assessment identified Blackwattle/Rozelle Bay, Iron Cove, Hen 

and Chicken Bay and Homebush Bay as the most heavily impacted and were designated 

‘high priority’ for management action. These sub-estuaries are located within proximity to 

the Sydney CBD and have an extensive history of urbanisation and industrial activity. North 

Harbour, Upper Middle Harbour and Lower Middle Harbour were in the best condition and 

were designated ‘low priority’.  
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Management priorities varied for water quality and sediment quality with Duck River, 

Homebush Bay, Parramatta River and Duck River classified as ‘high priority’ due to poor 

water quality. Whereas Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay were 

designated as ‘high priority’ due to high levels of sediment contamination.   

The local assessment scheme developed in the current study provides estuary managers and 

decision makers with the ability to prioritise site management, identify issues and areas of 

concern and allow goal setting and performance monitoring. This assessment scheme is a 

unique and effective decision support tool that will assist in the successful and efficient 

management of severely modified estuaries and potentially the management of degraded 

estuarine systems worldwide. 
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Chapter 4: Conclusions  
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1 Conclusions 

Estuarine environments in Australia and worldwide, particularly those associated with large-

urban areas, are often degraded as a consequence of significant anthropogenic pressures. As 

one of the richest and most diverse coastal environments, estuaries provide key 

environmental, social and economic functions. As coastal populations increase, considerable 

pressures are exerted on estuaries making appropriate management of these sensitive 

environments essential.  The current study has developed a hierarchal scheme, involving both 

a regional and local assessment. The scheme is a tool to provide accurate, science-based 

information to facilitate the efficient and targeted allocation of limited management 

resources.    

A review of state and national estuarine assessment schemes revealed the value of these 

schemes is often limited by the structure of the assessment, selection of environmental 

indicators and the management of data. To facilitate effective and targeted allocation of 

management resources, there must be an effective, integrated and regionally consistent 

approach to estuarine assessment and management. To address these issues, the current 

scheme makes several improvements to provide an accurate and reliable assessment of 

estuarine condition.  

A primary limitation of many environmental indicators is the potential for confounding as a 

consequence of natural spatial and temporal variance.  This natural variation makes it 

difficult to identify and quantify the human-induced component of change.  Consequently, 

high-value environmental indicators, not confounded by natural spatial and temporal 

limitations, were employed in the current study to provide accurate and reliable science-based 

information. 

Traditional ordinal methods of indicator assessment were abandoned, with fuzzy logic 

successfully applied in the current scheme. The use of fuzzy logic provided a simple and 

effective method of indicator assessment whilst maintaining information value and data 

integrity through the assessment process.  

Indicator weightings have been previously used in estuarine assessment schemes. However, 

the use of indicator weights may act to distort the results of the assessment as a consequence 

of bias introduced in the determination of weighted values. Indicator weights were therefore 

excluded from the current scheme. Weightings may be applied to the current scheme, 
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however the ability of weighted scores to misrepresent assessment results should be 

recognised.  

The frameworks developed for the regional and local assessment scheme were based on the 

Pressure-State-Response model and provided a simple, yet robust assessment of estuarine 

condition. The regional and local frameworks were designed to maximise the use of high-

value environmental indicators and provided a method by which causal relationships between 

catchment pressures and estuarine condition may be identified. Coupled with the simplistic 

transformation of data using fuzzy logic, the regional and local assessment schemes provided 

a robust and relevant assessment of estuarine condition. 

The regional assessment scheme formed the preliminary component of estuarine assessment, 

providing an initial quantitative assessment of 38 estuarine in central NSW. Five classes of 

estuarine condition were identified: near pristine, slightly modified, modified, highly 

modified and severely modified. Estuarine systems classified as ‘severely modified’ (Dee 

Why Lagoon, Curl Curl Lagoon, Manly Lagoon, Sydney Estuary and Cooks River) in the 

regional assessment were selected for detailed evaluation under a local assessment scheme, 

with Sydney estuary used as a case study for systems in this category. 

The local assessment formed the secondary component of the hierarchal scheme, providing a 

detailed intra-estuary assessment of catchment pressures and estuarine condition. The local 

assessment of Sydney estuary revealed that Blackwattle/Rozelle Bay, Iron Cove, Homebush 

Bay and Duck River were heavily degraded with water quality being of particular concern in 

Duck River, Homebush Bay, Parramatta River and Lower Parramatta River. Poor sediment 

quality was identified in Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay. 

North Harbour, Upper Middle Harbour and Lower Middle Harbour were found to be in the 

best condition.  

Results of the assessments were presented in a report card format using letter grades to 

indicate the relative condition of an estuarine system. The use of report cards is a valuable 

tool to convey scientific information in a readily understood manner to estuarine managers 

and members of the public. Letter grades also provide benchmarking and performance 

monitoring ability, allowing estuarine managers to set improvement targets and assesses the 

effectiveness of management strategies.  
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The absence of a consistent management structure and lack of accountability has historically 

limited the effectiveness of estuarine management in Australia and has led to the degradation 

of these coastal environments. Consequently, there is a need for a consistent management 

approach, involving the development of an effective assessment of estuarine environments to 

guide estuarine managers in the formation of effective management decisions and to facilitate 

the efficient distribution of limited management resources. The hierarchal assessment scheme 

developed in the current study is an effective, intergraded and consistent assessment of 

estuarine health, unhindered by natural spatial and temporal variance. This scheme, involving 

the regional and local assessment of estuaries, is a valuable decision support tool, improving 

the targeted and effective management of Australian estuarine environments 
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Appendix A 

Regional Assessment Scheme Score Card 

 

  



 



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 24.17 0.18

Population Density (people/Ha) 62.96 0.03 11.73 0.08

Pressure Score 0.13

Benthic Health Index 3.05 0.10 0.31 0.01

Human Impact Index 37.28 1.11 2.08 0.00

Condition Score 0.01

Assessment Score 0.07 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 41.70 0.46

Population Density (people/Ha) 62.96 0.03 45.99 0.83

Pressure Score 0.65

Benthic Health Index 3.05 0.10 0.27 0.01

Human Impact Index 37.28 1.11 4.96 0.03

Condition Score 0.02

Assessment Score 0.33 B

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 44.25 0.51

Population Density (people/Ha) 62.96 0.03 16.76 0.16

Pressure Score 0.34

Benthic Health Index 3.05 0.10 0.49 0.04

Human Impact Index 37.28 1.11 2.98 0.01

Condition Score 0.02

Assessment Score 0.18 A

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 3.91 0.00

Population Density (people/Ha) 62.96 0.03 3.50 0.01

Pressure Score 0.01

Benthic Health Index 3.05 0.10 0.50 0.05

Human Impact Index 37.28 1.11 1.96 0.00

Condition Score 0.02

Assessment Score 0.01 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 10.35 0.03

Population Density (people/Ha) 62.96 0.03 6.96 0.03

Pressure Score 0.03

Benthic Health Index 3.05 0.10 0.26 0.01

Human Impact Index 37.28 1.11 3.08 0.01

Condition Score 0.01

Assessment Score 0.02 A+

BRISBANE WATER - SCORING

COCKROAN LAKE - SCORING

Pressure

Condition 

Pressure

Condition 

AVOCA LAKE - SCORING

Pressure

Condition 

Pressure

Condition 

Pressure

Condition 

BURRIL LAKE - SCORING

BOTANY BAY - SCORING

A+

A+

C-

A+

B+

A+

A+

A+

A+

A+



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 87.39 1.00

Population Density (people/Ha) 62.96 0.03 61.79 1.00

Pressure Score 1.00

Benthic Health Index 3.05 0.10 3.05 1.00

Human Impact Index 37.28 1.11 27.85 0.84

Condition Score 0.92

Assessment Score 0.96 F

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 79.38 0.98

Population Density (people/Ha) 62.96 0.03 32.05 0.51

Pressure Score 0.75

Benthic Health Index 3.05 0.10 2.54 0.93

Human Impact Index 37.28 1.11 37.28 1.00

Condition Score 0.96

Assessment Score 0.86 D-

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 85.85 1.00

Population Density (people/Ha) 62.96 0.03 62.96 1.00

Pressure Score 1.00

Benthic Health Index 3.05 0.10 1.30 0.35

Human Impact Index 37.28 1.11 19.59 0.52

Condition Score 0.44

Assessment Score 0.72 D+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 0.44 0.00

Population Density (people/Ha) 62.96 0.03 0.32 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.28 0.01

Human Impact Index 37.28 1.11 1.19 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 35.02 0.35

Population Density (people/Ha) 62.96 0.03 34.07 0.56

Pressure Score 0.46

Benthic Health Index 3.05 0.10 1.30 0.36

Human Impact Index 37.28 1.11 6.32 0.05

Condition Score 0.20

Assessment Score 0.33 B+

F

F

Condition 

COOKS RIVER - SCORING

CURL CURL LAGOON - SCORING

DEE WHY LAGOON - SCORING

Pressure

Condition 

Pressure

Condition 

Pressure

Condition 

Pressure

Condition 

Pressure

GEORGES RIVER  - SCORING

A+

A+

B-

A-

D+

F

F

B-

DURRAS LAKE - SCORING



Indicator Max Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 3.51 0.00

Population Density (people/Ha) 62.96 0.03 16.21 0.15

Pressure Score 0.08

Benthic Health Index 3.05 0.10 0.58 0.06

Human Impact Index 37.28 1.11 1.92 0.00

Condition Score 0.03

Assessment Score 0.06 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 7.34 0.02

Population Density (people/Ha) 62.96 0.03 14.36 0.12

Pressure Score 0.07

Benthic Health Index 3.05 0.10 0.75 0.12

Human Impact Index 37.28 1.11 6.62 0.06

Condition Score 0.09

Assessment Score 0.08 A

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 0.61 0.00

Population Density (people/Ha) 62.96 0.03 0.16 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.17 0.00

Human Impact Index 37.28 1.11 1.88 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 1.64 0.00

Population Density (people/Ha) 62.96 0.03 1.26 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.26 0.01

Human Impact Index 37.28 1.11 1.98 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 15.70 0.08

Population Density (people/Ha) 62.96 0.03 17.93 0.19

Pressure Score 0.13

Benthic Health Index 3.05 0.10 0.67 0.09

Human Impact Index 37.28 1.11 2.27 0.00

Condition Score 0.05

Assessment Score 0.09 A

Pressure

Condition 

Pressure

Condition 

Pressure

Condition 

Pressure

Condition 

Pressure

KARUAH RIVER - SCORING

LAKE CONJOLA - SCORING

A

Condition 

HAWKESBURY RIVER - SCORING

HUNTER RIVER - SCORING

LAKE ILLWARRA  - SCORING

A+

A+

A

A+

A+

A+

A+

A

A+



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 18.24 0.10

Population Density (people/Ha) 62.96 0.03 11.90 0.09

Pressure Score 0.09

Benthic Health Index 3.05 0.10 1.73 0.58

Human Impact Index 37.28 1.11 13.86 0.28

Condition Score 0.43

Assessment Score 0.26 B+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 62.18 0.81

Population Density (people/Ha) 62.96 0.03 39.34 0.69

Pressure Score 0.75

Benthic Health Index 3.05 0.10 2.66 0.96

Human Impact Index 37.28 1.11 10.68 0.16

Condition Score 0.56

Assessment Score 0.65 C-

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 0.00 0.00

Population Density (people/Ha) 62.96 0.03 0.03 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.10 0.00

Human Impact Index 37.28 1.11 2.15 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 0.90 0.00

Population Density (people/Ha) 62.96 0.03 1.82 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.27 0.01

Human Impact Index 37.28 1.11 1.35 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 52.98 0.66

Population Density (people/Ha) 62.96 0.03 24.81 0.34

Pressure Score 0.50

Benthic Health Index 3.05 0.10 0.57 0.06

Human Impact Index 37.28 1.11 4.86 0.03

Condition Score 0.04

Assessment Score 0.27 B+

MYALL LAKES - SCORING

NARRABEEN LAGOON - SCORING

B-Pressure

Condition 

MANLY LAGOON - SCORING

LAKE MAQUARIE - SCORING

D

C

A+

B-

Pressure

Condition 

Pressure

Condition 

MEROO LAKE - SCORING

A+

A+

A+

A+

Pressure

Condition 

Pressure

Condition 

A+



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 35.12 0.35

Population Density (people/Ha) 62.96 0.03 17.77 0.18

Pressure Score 0.27

Benthic Health Index 3.05 0.10 0.66 0.08

Human Impact Index 37.28 1.11 8.20 0.09

Condition Score 0.09

Assessment Score 0.18 A

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 14.74 0.07

Population Density (people/Ha) 62.96 0.03 32.67 0.53

Pressure Score 0.30

Benthic Health Index 3.05 0.10 0.93 0.18

Human Impact Index 37.28 1.11 9.17 0.12

Condition Score 0.15

Assessment Score 0.22 A-

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 2.86 0.00

Population Density (people/Ha) 62.96 0.03 6.16 0.02

Pressure Score 0.01

Benthic Health Index 3.05 0.10 0.18 0.00

Human Impact Index 37.28 1.11 1.83 0.00

Condition Score 0.00

Assessment Score 0.01 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 24.73 0.18

Population Density (people/Ha) 62.96 0.03 1.51 0.00

Pressure Score 0.09

Benthic Health Index 3.05 0.10 0.10 0.00

Human Impact Index 37.28 1.11 1.14 0.00

Condition Score 0.00

Assessment Score 0.05 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 3.85 0.00

Population Density (people/Ha) 62.96 0.03 4.62 0.01

Pressure Score 0.01

Benthic Health Index 3.05 0.10 0.18 0.00

Human Impact Index 37.28 1.11 1.86 0.00

Condition Score 0.00

Assessment Score 0.01 A+

SHOALHAVEN RIVER - SCORING

Pressure

Condition 

Pressure

Condition 

Pressure

Condition 

Pressure

Condition 

PORT STEPHENS - SCORING

A+

A+

A+

A+

SALTWATER CREEK - SCORING

PORT HACKING - SCORING

PITTWATER - SCORING

B+

A

A-

A

Pressure

Condition 

A+

A+



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 13.80 0.06

Population Density (people/Ha) 62.96 0.03 6.70 0.03

Pressure Score 0.04

Benthic Health Index 3.05 0.10 0.22 0.00

Human Impact Index 37.28 1.11 1.96 0.00

Condition Score 0.00

Assessment Score 0.02 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Catchment Landuse Index (Index) 87.39 0.00 8.92 0.03

Population Density (people/Ha) 62.96 0.03 14.88 0.13

Pressure Score 0.08

Benthic Health Index 3.05 0.10 0.44 0.03

Human Impact Index 37.28 1.11 2.92 0.01

Condition Score 0.02

Assessment Score 0.05 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 1.65 0.00

Population Density (people/Ha) 62.96 0.03 2.17 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.13 0.00

Human Impact Index 37.28 1.11 1.51 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 3.94 0.01

Population Density (people/Ha) 62.96 0.03 3.56 0.01

Pressure Score 0.01

Benthic Health Index 3.05 0.10 0.29 0.01

Human Impact Index 37.28 1.11 1.61 0.00

Condition Score 0.01

Assessment Score 0.01 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 1.13 0.00

Population Density (people/Ha) 62.96 0.03 1.20 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.37 0.02

Human Impact Index 37.28 1.11 1.28 0.00

Condition Score 0.01

Assessment Score 0.01 A+

Pressure

Condition 

Pressure

TILLIRGERY CREEK - SCORING

A+

A+

Pressure

Condition 

WALLAGA LAKE - SCORING

WAGONGA INLET - SCORING

A+

A+

TUROSS LAKE - SCORING

Pressure

Condition 

Condition 

A

A+

A+

A+

A+

A+

TUGGERAH LAKES - SCORING

Pressure

Condition 



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 6.37 0.01

Population Density (people/Ha) 62.96 0.03 1.11 0.00

Pressure Score 0.01

Benthic Health Index 3.05 0.10 0.16 0.00

Human Impact Index 37.28 1.11 1.88 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 5.57 0.01

Population Density (people/Ha) 62.96 0.03 6.86 0.03

Pressure Score 0.02

Benthic Health Index 3.05 0.10 0.20 0.00

Human Impact Index 37.28 1.11 2.28 0.00

Condition Score 0.00

Assessment Score 0.01 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 3.04 0.00

Population Density (people/Ha) 62.96 0.03 1.30 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.23 0.00

Human Impact Index 37.28 1.11 1.87 0.00

Condition Score 0.00

Assessment Score 0.00 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 78.20 0.97

Population Density (people/Ha) 62.96 0.03 60.58 1.00

Pressure Score 0.98

Benthic Health Index 3.05 0.10 2.76 0.98

Human Impact Index 37.28 1.11 15.46 0.34

Condition Score 0.66

Assessment Score 0.82 D

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 42.97 0.49

Population Density (people/Ha) 62.96 0.03 15.12 0.14

Pressure Score 0.31

Benthic Health Index 3.05 0.10 0.21 0.00

Human Impact Index 37.28 1.11 5.00 0.03

Condition Score 0.02

Assessment Score 0.16 A

Condition 

Pressure

Condition 

Pressure

Condition 

TERRIGAL LAGOON - SCORING

SMITHS LAKE - SCORING

A+

A+

A+

A+

Pressure

Condition 

Pressure

Condition 

Pressure

A-

A+

SYDNEY ESTUARY - SCORING

SWAN LAKE - SCORING

F

C-

A+

A+

ST GEORGES BASIN REPORT CARD - SCORING



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 2.52 0.00

Population Density (people/Ha) 62.96 0.03 7.11 0.03

Pressure Score 0.02

Benthic Health Index 3.05 0.10 0.15 0.00

Human Impact Index 37.28 1.11 1.36 0.00

Condition Score 0.00

Assessment Score 0.01 A+

Indicator Max Min Indicator Value Fuzzy Score Grade

Catchment Landuse Index (Index) 87.39 0.00 33.99 0.33

Population Density (people/Ha) 62.96 0.03 13.95 0.12

Pressure Score 0.22

Benthic Health Index 3.05 0.10 0.37 0.02

Human Impact Index 37.28 1.11 2.29 0.00

Condition Score 0.01

Assessment Score 0.12 A

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area (%) 87.39 0.00 1.33 0.00

Population Density (people/Ha) 62.96 0.03 0.54 0.00

Pressure Score 0.00

Benthic Health Index 3.05 0.10 0.14 0.00

Human Impact Index 37.28 1.11 1.11 0.00

Condition Score 0.00

Assessment Score 0.00 A+

WALLIS LAKE - SCORING

Pressure

Condition 

WAMBERAL LAGOON - SCORING

WILLINGA LAKE - SCORING

A+

A+

B+

A+

Pressure

Condition 

Pressure

Condition 

A+

A+
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Appendix B 

Local Assessment Scheme Results 

 



 



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 80.67 0.75

Population Density (people/Ha) 139.95 19.93 95.24 0.69

Metal Enrichment in Catchment Soils 12.52 2.84 6.42 0.30

Creek and River Riparian Health  (Index) 9.00 2.54 8.77 1.00

Estuary Reclamation (%) 74.16 1.48 5.21 0.01

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 134.48 0.66

TN Yield (Kg/Km2/Year) 1946.6 159.6 1778.79 0.98

TP Yield (Kg/Km2/Year) 318.7 146.6 272.90 0.84

Pressure Score 0.65

Water Quality - TN 100.00 18.18 39.47 0.16

Water Quality - TP 100.00 9.09 36.84 0.21

Water Quality - Turbidity 54.55 0.00 0.00 0.00

Water Quality - Chlorophyll-a 71.43 0.00 9.52 0.04

Water Quality - DO 83.33 0.00 15.00 0.08

0.10

Benthic Health Index 5.46 0.45 1.70 0.15

Human Impact Index (HII) 27.59 6.67 11.91 0.15

0.15

0.11 A-

Assessment Score 0.38 B-

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 83.01 0.83

Population Density (people/Ha) 139.95 19.93 60.90 0.26

Metal Enrichment in Catchment Soils 12.52 2.84 6.49 0.31

Riparian Health  (Index) 9.00 2.54 6.53 0.68

Estuary Reclamation (%) 74.16 1.48 9.94 0.03

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 132.13 0.61

TN Yield (Kg/Km2/Year) 1946.6 159.6 1716.40 0.96

TP Yield (Kg/Km2/Year) 318.7 146.6 266.30 0.79

Pressure Score 0.56

Water Quality - TN 100.00 18.18 18.75 0.00

Water Quality - TP 100.00 9.09 28.13 0.10

Water Quality - Turbidity 54.55 0.00 3.03 0.01

Water Quality - Chlorophyll-a 71.43 0.00 12.50 0.07

Water Quality - DO 83.33 0.00 16.67 0.10

0.06

Benthic Health Index (BHI) 5.46 0.45 2.75 0.44

Human Impact Index 27.59 6.67 14.81 0.33

0.38

0.15 A-

Assessment Score 0.35 B-

1 - LOWER ESTUARY 

Pressure C-

Water 
Quality A

Water Quality Score

Sediment 
Quality

Water 
Quality A+

Water Quality Score

Sediment 
Quality C+

Sediment Quality Score

Overall Condition Score

B+

Sediment Quality Score

Overall Condition Score

2 - MIDDLE ESTUARY

Pressure C

timgunns
Typewritten Text


timgunns
Typewritten Text


timgunns
Typewritten Text


timgunns
Typewritten Text


timgunns
Typewritten Text
Condition

timgunns
Typewritten Text


timgunns
Typewritten Text


timgunns
Typewritten Text
Condition



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 79.55 0.71

Population Density (people/Ha) 139.95 19.93 43.27 0.09

Metal Enrichment in Catchment Soils 12.52 2.84 9.02 0.71

Riparian Health  (Index) 9.00 2.54 9.00 1.00

Estuary Reclamation (%) 74.16 1.48 13.38 0.06

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 109.12 0.10

TN Yield (Kg/Km2/Year) 1946.6 159.6 1576.40 0.90

TP Yield (Kg/Km2/Year) 318.7 146.6 222.20 0.41

Pressure Score 0.50

Water Quality - TN 100.00 18.18 54.55 0.41

Water Quality - TP 100.00 9.09 90.91 0.98

Water Quality - Turbidity 54.55 0.00 5.88 0.03

Water Quality - Chlorophyll-a 71.43 0.00 57.14 0.90

Water Quality - DO 83.33 0.00 15.79 0.09

0.48

Benthic Health Idex (BHI) 5.46 0.45 3.30 0.61

Human Impact Index 27.59 6.67 14.74 0.32

0.47

0.48 C+

Assessment Score 0.49 C+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 65.96 0.16

Population Density (people/Ha) 139.95 19.93 38.82 0.06

Metal Enrichment in Catchment Soils 12.52 2.84 5.25 0.15

Riparian Health  (Index) 9.00 2.54 8.45 0.98

Estuary Reclamation (%) 74.16 1.48 57.12 0.87

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 99.67 0.01

TN Yield (Kg/Km2/Year) 1946.6 159.6 1335.80 0.74

TP Yield (Kg/Km2/Year) 318.7 146.6 199.40 0.21

Pressure Score 0.40

Water Quality - TN 100.00 18.18 90.91 0.97

Water Quality - TP 100.00 9.09 100.00 1.00

Water Quality - Turbidity 54.55 0.00 54.55 1.00

Water Quality - Chlorophyll-a 71.43 0.00 0.00 0.00

Water Quality - DO 83.33 0.00 41.67 0.50

0.69

Benthic Health Index (BHI) 5.46 0.45 2.76 0.44

Human Impact Index 27.59 6.67 11.97 0.15

0.29

0.58 C

Assessment Score 0.49 C+

3 - UPPER ESTUARY 

Pressure C+

Water 
Quality C+

Water Quality Score

Sediment 
Quality

Water 
Quality D+

Water Quality Score

Sediment 
Quality C+

Sediment Quality Score

Overall Condition Score

C-

Sediment Quality Score

Overall Condition Score

4 - LOWER PARRAMATTA RIVER 

Pressure B-

timgunns
Typewritten Text
Condition

timgunns
Typewritten Text
Condition



Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 74.17 0.48

Population Density (people/Ha) 139.95 19.93 33.15 0.03

Metal Enrichment in Catchment Soils 12.52 2.84 4.78 0.10

Riparian Health  (Index) 9.00 2.54 5.26 0.38

Estuary Reclamation (%) 74.16 1.48 14.20 0.07

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 105.47 0.06

TN Yield (Kg/Km2/Year) 1946.6 159.6 1437.40 0.81

TP Yield (Kg/Km2/Year) 318.7 146.6 211.70 0.31

Pressure Score 0.28

Water Quality - TN 100.00 18.18 60.00 0.52

Water Quality - TP 100.00 9.09 92.31 0.98

Water Quality - Turbidity 54.55 0.00 3.03 0.01

Water Quality - Chlorophyll-a 71.43 0.00 43.48 0.67

Water Quality - DO 83.33 0.00 38.03 0.43

0.52

Benthic Health Index 5.46 0.45 2.15 0.26

Human Impact Index 27.59 6.67 9.14 0.03

0.15

0.41 B

Assessment Score 0.35 B

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 79.79 0.71

Population Density (people/Ha) 139.95 19.93 32.41 0.03

Metal Enrichment in Catchment Soils 12.52 2.84 6.84 0.37

Riparian Health  (Index) 9.00 2.54 6.48 0.67

Estuary Reclamation (%) 74.16 1.48 15.24 0.09

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 99.48 0.01

TN Yield (Kg/Km2/Year) 1946.6 159.6 1319.50 0.73

TP Yield (Kg/Km2/Year) 318.7 146.6 200.40 0.22

Pressure Score 0.35

Water Quality - TN 100.00 18.18 100.00 1.00

Water Quality - TP 100.00 9.09 87.50 0.95

Water Quality - Turbidity 54.55 0.00 33.33 0.67

Water Quality - Chlorophyll-a 71.43 0.00 0.00 0.00

Water Quality - DO 83.33 0.00 75.00 0.98

0.72

Benthic Health Index 5.46 0.45 2.34 0.31

Human Impact Index 27.59 6.67 10.22 0.07

0.19

0.57 C

Assessment Score 0.46 B-

5 - LANE COVE RIVER 

Pressure B+

Water 
Quality C+

Water Quality Score

Sediment 
Quality

Water 
Quality D+

Water Quality Score

Sediment 
Quality B+

Sediment Quality Score

Overall Condition Score

A

Sediment Quality Score

Overall Condition Score

6 - PARRAMATTA RIVER 

Pressure B
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Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 85.15 0.90

Population Density (people/Ha) 139.95 19.93 44.53 0.10

Metal Enrichment in Catchment Soils 12.52 2.84 7.39 0.45

Riparian Health  (Index) 9.00 2.54 8.47 0.98

Estuary Reclamation (%) 74.16 1.48 15.24 0.09

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 104.73 0.05

TN Yield (Kg/Km2/Year) 1946.6 159.6 1341.30 0.74

TP Yield (Kg/Km2/Year) 318.7 146.6 203.90 0.25

Pressure Score 0.44

Water Quality - TN 100.00 18.18 100.00 1.00

Water Quality - TP 100.00 9.09 100.00 1.00

Water Quality - Turbidity 54.55 0.00 27.27 0.50

Water Quality - Chlorophyll-a 71.43 0.00 50.00 0.79

Water Quality - DO 83.33 0.00 83.33 1.00

0.86

Benthic Health Index (BHI) 5.46 0.45 2.86 0.47

Human Impact Index 27.59 6.67 16.64 0.46

0.47

0.75 D

Assessment Score 0.60 C

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 73.89 0.47

Population Density (people/Ha) 139.95 19.93 53.15 0.18

Metal Enrichment in Catchment Soils 12.52 2.84 7.54 0.48

Riparian Health  (Index) 9.00 2.54 8.79 1.00

Estuary Reclamation (%) 74.16 1.48 74.16 1.00

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 107.19 0.08

TN Yield (Kg/Km2/Year) 1946.6 159.6 1372.60 0.77

TP Yield (Kg/Km2/Year) 318.7 146.6 211.50 0.31

Pressure Score 0.53

Water Quality - TN 100.00 18.18 90.91 0.97

Water Quality - TP 100.00 9.09 100.00 1.00

Water Quality - Turbidity 54.55 0.00 27.27 0.50

Water Quality - Chlorophyll-a 71.43 0.00 50.00 0.79

Water Quality - DO 83.33 0.00 50.00 0.65

0.78

Benthic Health Index (BHI) 5.46 0.45 3.48 0.66

Human Impact Index (HII) 27.59 6.67 14.68 0.32

0.49

0.70 C-

Assessment Score 0.62 C

7 - DUCK RIVER 

Pressure B-

Water 
Quality D-

Water Quality Score

Sediment 
Quality

Water 
Quality D

Water Quality Score

Sediment 
Quality C+

Sediment Quality Score

Overall Condition Score

C

Sediment Quality Score

Overall Condition Score

8 - HOMEBUSH BAY 

Pressure C+
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Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 83.74 0.85

Population Density (people/Ha) 139.95 19.93 43.96 0.10

Metal Enrichment in Catchment Soils 12.52 2.84 7.24 0.43

Riparian Health  (Index) 9.00 2.54 9.00 1.00

Estuary Reclamation (%) 74.16 1.48 32.50 0.39

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 121.07 0.34

TN Yield (Kg/Km2/Year) 1946.6 159.6 159.60 0.00

TP Yield (Kg/Km2/Year) 318.7 146.6 249.10 0.65

Pressure Score 0.47

Water Quality - TN 100.00 18.18 45.45 0.25

Water Quality - TP 100.00 9.09 100.00 1.00

Water Quality - Turbidity 54.55 0.00 0.00 0.00

Water Quality - Chlorophyll-a 71.43 0.00 60.00 0.94

Water Quality - DO 83.33 0.00 8.33 0.02

0.44

Benthic Health Index (BHI) 5.46 0.45 4.52 0.92

Human Impact Index 27.59 6.67 22.77 0.87

0.90

0.57 C

Assessment Score 0.52 C+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 91.78 1.00

Population Density (people/Ha) 139.95 19.93 54.00 0.19

Metal Enrichment in Catchment Soils 12.52 2.84 12.52 1.00

Riparian Health  (Index) 9.00 2.54 9.00 1.00

Estuary Reclamation (%) 74.16 1.48 29.47 0.32

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 136.77 0.71

TN Yield (Kg/Km2/Year) 1946.6 159.6 1791.60 0.98

TP Yield (Kg/Km2/Year) 318.7 146.6 276.70 0.86

Pressure Score 0.76

Water Quality - TN 100.00 18.18 27.27 0.03

Water Quality - TP 100.00 9.09 100.00 1.00

Water Quality - Turbidity 54.55 0.00 0.00 0.00

Water Quality - Chlorophyll-a 71.43 0.00 40.00 0.59

Water Quality - DO 83.33 0.00 16.67 0.10

0.34

Benthic Health Index 5.46 0.45 4.79 0.96

Human Impact Index 27.59 6.67 23.33 0.90

0.93

0.51 C

Assessment Score 0.63 C-

9 - HEN AND CHICKEN BAY 

Pressure C+

Water 
Quality B-

Water Quality Score

Sediment 
Quality

Water 
Quality B

Water Quality Score

Sediment 
Quality F

Sediment Quality Score

Overall Condition Score

D+

Sediment Quality Score

Overall Condition Score

10 - IRON COVE

Pressure D+
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Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 92.72 1.00

Population Density (people/Ha) 139.95 19.93 139.95 1.00

Metal Enrichment in Catchment Soils 12.52 2.84 11.55 0.98

Riparian Health  (Index) 9.00 2.54 9.00 1.00

Estuary Reclamation (%) 74.16 1.48 47.42 0.70

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 159.75 1.00

TN Yield (Kg/Km2/Year) 1946.6 159.6 1946.60 1.00

TP Yield (Kg/Km2/Year) 318.7 146.6 318.70 1.00

Pressure Score 0.96

Water Quality - TN 100.00 18.18 40.00 0.17

Water Quality - TP 100.00 9.09 60.00 0.59

Water Quality - Turbidity 54.55 0.00 0.00 0.00

Water Quality - Chlorophyll-a 71.43 0.00 30.77 0.39

Water Quality - DO 83.33 0.00 14.29 0.07

0.24

Benthic Health Index 5.46 0.45 5.46 1.00

Human Impact Index 27.59 6.67 27.59 1.00

1.00

0.46 C+

Assessment Score 0.71 D+

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 56.66 0.00

Population Density (people/Ha) 139.95 19.93 19.93 0.00

Metal Enrichment in Catchment Soils 12.52 2.84 3.41 0.01

Riparian Health  (Index) 9.00 2.54 2.54 0.00

Estuary Reclamation (%) 74.16 1.48 5.08 0.01

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 95.71 0.00

TN Yield (Kg/Km2/Year) 1946.6 159.6 1352.10 0.75

TP Yield (Kg/Km2/Year) 318.7 146.6 194.20 0.18

Pressure Score 0.12

Water Quality - TN 100.00 18.18 45.45 0.25

Water Quality - TP 100.00 9.09 45.45 0.35

Water Quality - Turbidity 54.55 0.00 0.00 0.00

Water Quality - Chlorophyll-a 71.43 0.00 7.14 0.02

Water Quality - DO 83.33 0.00 70.83 0.95

0.31

Benthic Health Index (BHI 5.46 0.45 0.75 0.01

Human Impact Index 27.59 6.67 10.49 0.08

0.04

0.24 A-

Assessment Score 0.18 A-

11 - BLACKWATTLE / ROZELLE BAY 

Pressure F

Water 
Quality B+

Water Quality Score

Sediment 
Quality

Water 
Quality B

Water Quality Score

Sediment 
Quality A

Sediment Quality Score

Overall Condition Score

F

Sediment Quality Score

Overall Condition Score

12 - UPPER MIDDLE HARBOUR

Pressure A
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Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 73.93 0.47

Population Density (people/Ha) 139.95 19.93 54.75 0.19

Metal Enrichment in Catchment Soils 12.52 2.84 5.73 0.20

Riparian Health  (Index) 9.00 2.54 4.77 0.27

Estuary Reclamation (%) 74.16 1.48 6.98 0.01

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 95.71 0.00

TN Yield (Kg/Km2/Year) 1946.6 159.6 1659.40 0.94

TP Yield (Kg/Km2/Year) 318.7 146.6 252.80 0.68

Pressure Score 0.35

Water Quality - TN 100.00 18.18 36.36 0.12

Water Quality - TP 100.00 9.09 42.42 0.30

Water Quality - Turbidity 54.55 0.00 3.03 0.01

Water Quality - Chlorophyll-a 71.43 0.00 13.33 0.08

Water Quality - DO 83.33 0.00 30.56 0.30

0.16

Benthic Health Index (BHI) 5.46 0.45 2.38 0.32

Human Impact Index 27.59 6.67 22.30 0.85

0.59

0.28 B+

Assessment Score 0.31 B

Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 78.37 0.66

Population Density (people/Ha) 139.95 19.93 40.63 0.07

Metal Enrichment in Catchment Soils 12.52 2.84 2.84 0.00

Riparian Health  (Index) 9.00 2.54 5.00 0.32

Estuary Reclamation (%) 74.16 1.48 1.48 0.00

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 125.42 0.44

TN Yield (Kg/Km2/Year) 1946.6 159.6 1706.40 0.96

TP Yield (Kg/Km2/Year) 318.7 146.6 251.80 0.67

Pressure Score 0.39

Water Quality - TN 100.00 18.18 18.18 0.00

Water Quality - TP 100.00 9.09 18.18 0.02

Water Quality - Turbidity 54.55 0.00 0.00 0.00

Water Quality - Chlorophyll-a 71.43 0.00 0.00 0.00

Water Quality - DO 83.33 0.00 8.33 0.02

0.01

Benthic Health Index 5.46 0.45 0.45 0.00

Human Impact Index 27.59 6.67 6.67 0.00

0.00

0.01 A+

Assessment Score 0.20 A-

13 - CENTRAL MIDDLE HARBOUR 

Pressure B

Water 
Quality A-

Water Quality Score

Sediment 
Quality

Water 
Quality A+

Water Quality Score

Sediment 
Quality A+

Sediment Quality Score

Overall Condition Score

C+

Sediment Quality Score

Overall Condition Score

14 - LOWER MIDDLE HARBOUR

Pressure B-
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Indicator Max Min Indicator Value Fuzzy Score Grade

Urbanised Catchment Area  (%) 92.72 56.66 61.16 0.04

Population Density (people/Ha) 139.95 19.93 62.38 0.28

Metal Enrichment in Catchment Soils 12.52 2.84 2.85 0.00

Riparian Health  (Index) n/a n/a n/a n/a

Estuary Reclamation (%) 74.16 1.48 2.38 0.00

Average Cu, Pb, Zn Yield (Kg/Km2/Year) 159.75 95.71 107.28 0.08

TN Yield (Kg/Km2/Year) 1946.6 159.6 1501.40 0.85

TP Yield (Kg/Km2/Year) 318.7 146.6 146.60 0.00

Pressure Score 0.18

Water Quality - TN 100.00 18.18 27.27 0.03

Water Quality - TP 100.00 9.09 9.09 0.00

Water Quality - Turbidity 54.55 0.00 0.00 0.00

Water Quality - Chlorophyll-a 71.43 0.00 0.00 0.00

Water Quality - DO 83.33 0.00 0.00 0.00

0.01

Benthic Health Index (BHI) 5.46 0.45 0.70 0.01

Human Impact Index 27.59 6.67 11.49 0.13

0.07

0.02 A+

Assessment Score 0.10 A

A+

Sediment Quality Score

Overall Condition Score

15 - NORTH HARBOUR

Pressure A-

Water 
Quality A+

Water Quality Score

Sediment 
Quality
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