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Abstract

Lachlan McCalman Doctor of Philosophy
e University of Sydney October 

Function Embeddings for Multi-modal Bayesian Inference

Tractable Bayesian inference is a fundamental challenge in robotics and machine learn-
ing. Standard approaches such as Gaussian process regression and Kalman filtering make
strong Gaussianity assumptions about the underlying distributions. Such assumptions,
however, can quickly break down when dealing with complex systems such as the dynam-
ics of a robot or multi-variate spatial models.

In this thesis we aim to solve Bayesian regression and filtering problems withoutmaking
assumptions about the underlying distributions. We develop techniques to produce rich
posterior representations for complex,multi-modal phenomena. Ourwork extends kernel
Bayes’ rule (KBR), which uses empirical estimates of distributions derived from a set of
training samples and embeds them into a high-dimensional reproducing kernel Hilbert
space (RKHS). Bayes’ rule itself occurs on elements of this space.

Our first contribution is the development of an efficient method for estimating poste-
rior density functions from kernel Bayes’ rule, applied to both filtering and regression. By
embedding fixed-meanmixtures of component distributions, we can efficiently find an ap-
proximate pre-image by optimising themixtureweights using a convex quadratic program.
e result is a complex, multi-modal posterior representation. We demonstrate the utility
of our algorithm on several motion estimation problems in robotics.
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Our next contributions are methods for estimating cumulative distributions and quan-
tile estimates from the posterior embedding of kernel Bayes’ rule. Such information is
critical for quantifying risk, and hence for using the output of inference in a decision-
making process. We examine a number of novel methods, including those based on our
density estimation techniques, as well as directly estimating the cumulative through use
of the reproducing property of RKHSs. e performance of these techniques is com-
pared against well-known conditional quantile estimation algorithms on standard ma-
chine learning datasets.

Finally, wedevelop anovelmethod for scalingkernelBayes’ rule inference to largedatasets,
using a reduced-set construction optimised using the posterior likelihood. is method
retains the ability to perform multi-output inference, as well as our earlier contributions
to represent explicitly non-Gaussian posteriors and quantile estimates. We apply our al-
gorithm to a number of standard datasets used in large scale kernel-based regression, and
also demonstrate competitive performance with comparable techniques from the Gaus-
sian process literature.
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Chapter 

Introduction

A the key attributes of intelligence is the ability to create a model of the
surrounding environment from unreliable, even conflicting observations that
is powerful enough to generalise and make predictions.

Such models inform the actions we take at every scale; from retrieving a coin from be-
hind the couch to enacting global emissions targets to curtail climate change. e brains
of humans and animals have been solving this problem to varying degrees for millions of
years in order to survive and procreate. It is only in the last few hundred years that math-
ematics has caught up, to the extent that we now have a formal system with codified rules
for this kind of reasoning under uncertainty. at formalism is the theory of probabil-
ity. It develops the heuristics of human learning into a uniquely valid system for inductive
inference. Probability theory extends Aristotelian logic, which is the much older system
of reasoning when we only deal with absolutes of truth and falsity, into the realm of the
uncertain—the realmof the real world. As such, developing probability theory is building
the tools to help humans make the right decisions. It is a supremely important task.

Bayes’ theorem is the equation that describes inductive inference with probabilities. To
use it to perform probabilistic inference requires us to explicitly enumerate many of our
underlying assumptions. We must list all relevant states of the world we consider possible,
assign each one a prior probability of being correct, and collate them into a set of mutually
exclusive hypotheses. When we consider a new piece of evidence, we must define a likeli-
hood function that computes the chance that evidence would be observed under each one
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of our hypotheses. From these results we are then able to compute our posterior belief in
the validity of each of our hypotheses; that is, the extent to which we believe each of our
hypotheses is the true state of the world.

As might be expected, the two human endeavours that have embraced Bayesian reason-
ing particularly strongly are those attempting to quantify and reproduce intelligence itself;
robotics and machine learning. Mobile robots receive continuous streams of data from
multiple sensors which must be fused into a coherent model of the world. Visual data
from a camera, encodings from motors in the joints or wheels, inertial information from
accelerometers and gyroscopes, laser range-finding and radar, may all provide valuable in-
formation about the outsideworld, but each comeswith its ownuncertainties. Combining
these measurements with Bayes’ rule to jointly estimate a map of the surroundings and the
robot’s position in that map has been extremely successful: the ubiquitous Simultaneous
Localization and Mapping (SLAM) [, ].

Machine learning also now routinely uses Bayesian methods to solve a wide variety of
real world problems. General problems such as regression, classification and clustering
have been tractably solved in both continuous and discrete cases, with varying amounts
of prior knowledge []. Computer vision problems such as segmentation or classifica-
tion of images, or registration of multiple images together [] have also received the
Bayesian treatment, along with document processing such as topic modelling or spam
filtering []. e explosion of popularity of the internet has driven recent progress in
Bayesian techniques for problems such as preference elicitation [], and relationships in
social networks.

e overarching aim of the work in this thesis is to advance Bayesian non-parametric in-
ference in continuous spaces, particularly focusing on non-Gaussian, multi-modal prob-
ability distributions that oen appear in robotics and machine learning problems. Our
work builds on a method for Bayesian inference called kernel Bayes’ rule (KBR), a very
general non-parametric approximation of Bayes’ rule that attempts to relax the restric-
tions on a particular prior and likelihood distribution. emethod works by representing
distributions as points in a high-dimensional space of functions, and then performing in-
ference entirely inside this space. e space itself is defined implicitly through the choice of
a particular kernel function, sharing many characteristics with the covariance function in
Gaussian processes. Tractable approximate inference is possible inside this space of func-
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tions. We extend kernel Bayes’ rule in a number of ways: adding the ability to estimate
multi-modal posteriors in the form of mixture distributions, constructing algorithms for
estimating cumulative and quantile distributions, and scaling the techniques to very large
datasets.

1.1. Motivation

If Bayes’ rule really is a universally applicable tool for performing quantified logical reason-
ing under uncertainty, why does humanity not exist in an enlightened utopia where reason
and evidence trump bias and superstition? ere are many answers to this question— and
most are suited more to a thesis in psychology than one in machine learning. at being
said, the most fundamental problem is that for many real-world problems, the computa-
tional cost in computing posteriors using Bayes’ rule is impossibly large. In particular, the
requirement to sum likelihood contributions from every possible model under consider-
ation requires computing high-dimensional integrals in the continuous case, or explicitly
enumerating vast combinatoric spaces in the discrete case. In the continuous case, exact in-
tegrals exist for only a small number of prior and likelihood distributions and approximate
integration techniques rapidly break down in high-dimensional settings. In the discrete
case, adding variables to the hypothesis space causes a combinatoric increase in the number
of possible states, and soon outgrows the abilities of modern computer hardware.

By way of example, explicitly computing probabilities over a person’s possible rank-
ing of  films requires considering roughly the same number of hypotheses as there are
atoms in the Milky way. To say this is beyond our current computational capabilities is
an understatement— amaximally efficient computer operating at the Landauer limit []
would expend at least 1045 Joules to perform this computation, around the energy released
in a supernova [] and close to the total mass-energy of planet earth.

However, these tractability problems are secondary to a more fundamental issue; that
of writing down an appropriate prior or likelihood function in the first place. In general,
determining these functions systematically can itself be a difficult and probably intractable
inference problem.

One approach that has seen successful application is to learn theprior and likelihooddis-





.. Motivation

tributions themselves from data, and then restrict the class of possible posteriors to make
inference tractable. is type of inference is called non-parametric, as the complexity of
themodel can growwith additional input, rather than being fixed from a set of parameters
defined a-priori.

In the continuous domain (which is the focus of this thesis), a canonical example of a
non-parametric inference system is the Gaussian process (GP). is model considers the
space of hypotheses of functions, with properties determined by a covariance function that
controls the spatial dependence of the function values. GPs assume that prior and likeli-
hooddistributions areGaussian, and then approximate thesewith a set of training samples.
eGaussianity assumption allows for closed-form integration over the hypotheses space,
yielding a tractable inference method that has been applied to many inference problems
in machine learning, robotics, geophysics and ecology [].

Given no other information, making a Gaussianity assumption is a justifiable choice; it
is a maximum entropy distribution for a given mean and variance, and more importantly,
the central limit theoremensures thatmanydistributions encountered innaturewill be ap-
proximately Gaussian []. However, there are still plenty of examples of problems where
the prior and likelihood distributions are more complex. Any kind of multi-modal be-
haviour, for instance, already requires a relaxing of this assumption. In robotics, we see
this particularly with distributions derived from range-only or bearing-only sensors, or
for motion models with unknown characteristics like the friction under-foot. In machine
learning, there is multi-modal behaviour in in problems such as matching, preference elic-
itation, and inverse-kinematics []. Inference in geostatistics is oen multi-modal [],
owing to the large null-space associated with sensor modalities such as gravity and elec-
tromagnetics. For a given set of observations with these sensors, there exists an infinite
number of different subterranean structures with a high likelihood.

A simple example of the difference between a uni-modal (Gaussian process) estimate
and amulti-modal estimate using our techniques on the samedata is illustrated infigure ..
In this case, a GP is forced to explain the data with a large variance, obscuring the detail
that a multi-modal estimate can capture. It is important to note that the GP places a large
degree of plausibility in regions that have no data.

is behaviour can have very real implications, especially when the multi-modal be-
haviour arises in the context of decision making. One classic example from robotics is
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...

Multimodal Distribution

..

Unimodal Distribution

Figure ..: Uni-modal distributions are forced to blur out details that amulti-modal distri-
bution could represent. (Right) A Gaussian process estimate of a multi-modal
distribution. (Le) A multi-modal estimate of the same data generated by the
techniques described in this thesis.

tracking a robot as it moves around an obstacle under periodic observation. is example
is illustrated in figure .. Here a robotmust drive around an obstacle in its path. However,
we do not actually observe the robot during this manoeuvre, and so we must account for
the possibility that it deviated to its le or its right. e resulting predictive distribution
has two modes, corresponding to the two possible paths the robot can take. A Gaussian
or uni-modal estimation of the predictive distribution is forced to average out these two
explanations, and place a single mode of the prediction in the middle of the two paths.
Unfortunately, this places the robot in a state we know to be quite unlikely; in the middle
of the obstacle itself.

e principle of this simple example applies tomuchmore general inference and regres-
sion problems. Wherever we have strong multi-modal behaviour, a uni-modal estimate of
that behaviour will necessarily place large probability mass in unlikely regions.

Amulti-dimensional state space poses another challenge to performing non-parametric
inference. Traditional Gaussian processes estimate only one-dimensional functions. e
so-called multi-task problem essentially requires stacking these one-dimensional estima-
tors. edevelopment of techniques to encode complex, non-linear relationships between
the different output dimensions is ongoing []. It is also confounded by the fact that
many complex systems have a high-dimensional state-space, and posterior distributions
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Observation

Multimodal PredictionMean Prediction

Observation Observation

Figure ..: Robot trajectory estimation from two observations. (Le) A uni-modal posterior will
force the mean and the mode to coincide. In this example, the mean trajectory of the
robot is actually through the obstacle. (Right) A multi-modal posterior prediction
will account for the two possible states, correctly predicting two means for the robot
on either side of the obstacle in this case.

over that state-space are a requisite for probabilistic decision making. Non-parametric
methods are suited to this case, because we oen have no analytic expression for the state
evolution. At best, we might have a set of differential equations approximating the be-
haviour of the system. Figure . illustrates such a system— the Lorenz equations, which
model several real-world phenomena including convection currents fluids. e state-space
is three-dimensional, and the dimensions are linked by non-linear differential relation-
ships. Additionally, the system is sensitively dependent on initial conditions, and observes
unstable orbits of one of two points (visible as the centre of the two rings in the diagram).
In that case, there is a high probability that the state will be orbiting one or other of these
nodes, but a low probability that it will be found in the intervening space. is is exactly
the multi-modal situation analogous to our obstacle-avoiding robot.

Assuming these issues have been addressed and a reasonable posterior distribution for
a problem has been computed, the next task is oen to make a decision or take an action
based on this distribution. As such itmay be important to quantify the risk associatedwith
a particular outcome, rather than simply estimating its probability. Given a fixed boundon
this risk, the quantile of a distribution gives a representative value of the unknownquantity
that will not be exceeded within the bound. For instance, given a  confidence, the
associated quantile is the value by which the unknown quantity is bounded above with
. probability. In figure . we see how using quantile information allows for safe robot
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.. x.

y
.

z

Figure ..: A multi-dimensional state-space is difficult to model with standard non-
parametric methods such as Gaussian processes, especially when the variables
are non-linearly related as in this Lorenz state space example.

True obstacleMean estimate True obstacle95% quantile

Figure ..: Accurate estimation of quantiles is critical for safe planning.

motion planning. If we are unsure about the radius of an obstacle, by using a quantile
estimatewe canpath plan to reduce the risk of collision to an acceptable level of our choice.
Ideally, we would also like to be able to compute the confidence intervals and quantiles
efficiently, to enable online decisionmaking for robots. ismay preclude first computing
the posterior distribution and then numerically integrating.

Computational efficiency more generally is one of the significant barriers to overcome
in implementingmany non-parametricmethods. Traditional algorithms such as theGaus-
sian processes scale poorly with increasing numbers of input points. Tractable inference
for large problem sizes is critical in fields such as long-term autonomy, continental geo-
physics, or global-scale modelling. A naïve approach to implementing any kernel-based
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non-parametric method requires at least N2 storage and N3 computational time. Solv-
ing problems in this way becomes difficult on a personal computer with more than about
, points.

econsequenceof these issues is that anon-parametricmethod forperformingBayesian
inference that is tractable for large datasets, and canmodelmulti-dimensional,multi-modal
distributions arising from complex phenomena, and recover quantile information, has the
potential to be a very powerful and very widely applicable tool. e goal of this thesis is
to develop such a tool.

1.2. Problem Statement

is thesis addresses three problems associated with the non-parametric estimate for per-
forming Bayesian inference, the kernel Bayes’ rule. e first is the problem of computing
a posterior density estimate from the function-space embedding that is the output of the
algorithm. is requires solving the ‘pre-image’ problem, or to reverse themapping of dis-
tributions into elements of the function space. A unique solution does not exist in the
general case. Additionally, as there are no underlying assumptions about the nature of the
posterior distribution, any parametrisation of a density estimate must be very flexible.

e second problem this thesis addresses is how to recover estimates of conditional cu-
mulative distributions and quantiles from the KBR posterior embedding. ese tools are
importantwhen employing risk-based decisionmaking, oen encountered in robotics and
machine learning. e ability to enforce non-crossing constraints on the quantiles would
be desirable, as would the ability to recover estimates without first having to compute pos-
terior densities.

e third problem this thesis addresses is how to scaleKBR estimation to problemswith
large training datasets, beyondN > 10, 000points. Unfortunately, a standardKBR imple-
mentation requires inversion of anN2 matrix, precluding these larger datasets. erefore,
there is a requirement to either approximate this inversion directly, or to use a more effi-
cient underlying representation that still makes use of all the data, but has lower storage
and computation requirements.

In summary, this thesis addresses the following three problems:





.. Contributions

. How to extract an estimate of the posterior distribution from kernel Bayes’ rule.

. How to directly estimate quantiles of the posterior, without necessarily estimating
the density first.

. How to scale the KBR algorithm to larger problems, beyond , samples.

1.3. Contributions

To address these problems, this thesis presents the following contributions:
Amethod to recover the full posterior estimate from an application of kernel Bayes’

rule. Ourmethod solves the pre-image problemby embedding amixture distribution into
the function space, and optimising the parameters of that distribution tomatch the poste-
rior embedding. We develop a new cost function and training scheme to enable learning
the algorithm’s parameters, and apply it to a number of difficult motion estimation prob-
lems in robotics. ese problems demonstrate the ability for our new algorithm to handle
non-linear models and multi-modal posteriors in multiple output dimensions.
Methods to estimate the cumulative distribution, quantile and confidence intervals

for a KBR posterior. We present two different methods for estimating these quantities.
e first estimates the cumulative at a particular point directly, by using the reproducing
property of the embedded function space. e second estimates the cumulative by integra-
tion of a density estimate. e first method is more computationally efficient, whilst the
second guarantees the non-crossing constraint for quantiles is upheld. We demonstrate
competitive performance for both algorithms on a number of standard machine learning
datasets.
Amethod to scale the KBR algorithm to large datasets. Our method is a reduced-set

construction, in that we create a smaller subset of the training datawithwhich to represent
the function embeddings. is reduced set is optimised over all training data using the
posterior likelihood. e entire dataset is also used to generate the prior embedding. We
compare our approach to the low-rank approximations of the original KBR paper, and to
several algorithms in the Gaussian process literature. Our algorithm shows competitive
performance, and is much more flexible in terms of both the dimensionality and the form
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of the posterior.

1.4. esis Structure

Aer this introduction, chapter two of this thesis presents the required background ma-
terial for understanding the kernel embeddings and the kernel Bayes’ rule algorithm, and
places them in the wider context of kernel methods in machine learning. We provide a
brief refresher on Bayes’ theorem itself, before delving into the basics of functional anal-
ysis. We build up from vector spaces, to Banach spaces, to Hilbert spaces, and finally to
reproducing kernel Hilbert spaces (RKHS), which form themathematical basis for KBR.
Embedding probability distributions in RKHSs follows, before we derive kernel Bayes’
rule itself.

Chapter three describes our first major contribution; the derivation of a new method
for recovering multi-modal density estimates from KBR embeddings, which we denote
as multi-modal kernel Bayes’ rule, or MKBR. Aer describing related work, we take the
reader through the principles of our technique. is introduces the fundamental idea of
this chapter and the next, which is to embed parametric functions into the Hilbert space
associated with KBR inference, and using those embeddings to extract information about
the posterior. Next, we describe the density estimation algorithm itself, including the
training and implementation. Finally, we report on a number of experiments concerned
with estimatingmotionmodels in robotics, using both the regression and filtering variants
of KBR.

Chapter four extends the theory on function embeddings to extract quantile and con-
fidence interval information from the posterior. We begin by discussing optimal embed-
dings of known parametric functions into the RKHS, which allows us to derive an expres-
sion for the cumulative of a posterior embedding in terms of dot products in the RKHS.
Wealso discuss variations of this algorithm that enforce smoothness in the estimates. Next,
we consider quantile recovery, both through the previously outlined method, but also
through direct estimation of the density as in chapter three. We compare these newmeth-
ods to a number of existing conditional quantile estimation algorithms in the machine
learning literature.
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Chapter five outlines our third main contribution, which is the novel algorithm for in-
creasing computational scalability of MKBR and our quantile extensions in the previous
chapter. Aer describing related work, particularly in the Gaussian process literature, we
present our technique, first of the reduced-set construction, and then the associated opti-
misation. Wefirst apply the algorithm to a toy problem to demonstrate its properties, then
compare its performance against big-data GP algorithms on a number of large datasets.

Finally, chapter six concludes the thesis, considers the implications of the results, and
discusses future work. An appendix provides additional information on proofs, soware
architecture and any useful mathematical results for working in the area.





Chapter 

Background

T goal of this chapter is to introduce the reader to the mathematical back-
ground of kernel Bayes’ rule and the extensions developed in this thesis. We
begin with a brief re-cap of Bayes’ rule itself, before making a foray into func-

tional analysis to establish the important concepts of abstract vector spaces, and reproduc-
ing kernel Hilbert spaces in particular. From here, we examine embeddings of probability
distributions in these spaces, and finally, the theorems required to construct kernel Bayes’
rule.

2.1. Bayes’eorem

Bayes’ theorem is a direct consequence of the product and sum rules of probability. It de-
scribes themethod for updating the prior probabilityP(X) of a randomvariableX through
making an observation y of another variable Y, assuming we know the likelihood P(Y|X).
From the product rule we have P(Y|X)P(X) = P(X|Y)P(Y) and hence

P(X|Y=y) =
P(Y|X)P(X)

P(y) . (.)

For a discrete randomvariableX, themarginal distributionP(y) is a sumover all possible
values of x,P(y) = ∑P(y|X=x)P(x). IfX is continuous, then the sumbecomes an integral;
P(y) = ∫P(y|X=x)P(x) dx and so
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P(X|Y=y) =
P(Y|X)P(X)

∫P(Y|X=x)P(x) dx
. (.)

2 . 1 . 1 . E      

AT-model robot is charged with a face recognition task: finding a subject JohnCon-
nor, known to be somewhere in theUnited States. eT-’s soware facial recognition
systemhas been trained to be  accurate, in that it correctly recognises the subject’s face
 of the time, and correctly returns a negative result  of the time when faced with
another human. Whilst moving through a busy street in New York, the face detector goes
off. Should the robot act upon this result?

Fortunately for the bystanders, this T- model will use Bayes’ theorem to compute
the probability. Let Hj be the hypothesis that John Connor is on the street, and Hn be
that he is not. e positive observation from the feature detector is denoted D. We are
given the likelihood model of the T- sensor; P(D|Hj) = 0.99 and (D|Hn) = 0.01.
e robot has no prior information that the subject is nearby, so it is effectively sampling
randomly from the whole population of the United States before taking the observation.
e population of the United States at the time () is approximately  million, so a
reasonable prior is P(Hj) = 3.7 × 10−9. Computing the posterior:

P(Hj|D) =
P(D|Hj)P(Hj)

P(D|Hj)P(Hj) + P(D|Hn)P(Hn)
(.)

P(Hj|D) =
0.99 × 3.7 × 10−9

0.99 × 3.7 × 10−9 + 0.01 × (1 − 3.7 × 10−9) (.)

P(Hj|D) ≈ 4 × 10−7. (.)

Here we see that despite the T- face detector being  accurate, the robot’s poor
prior knowledge means it is still overwhelmingly likely that D was a false positive. e
robot must now take more data to increase the probability of a successful detection.
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2 . 1 . 2 . N         C               B    ’ T     

ough direct application of Bayes’ theorem is tractable for simple cases such as the ex-
ample above, computing the posterior probabilities for a real-world experiment rapidly
becomes all but impossible without making strong assumptions about the problem struc-
ture. is is due to the denominator of Bayes’ theorem. In the discrete case, as the number
of hypotheses grows we quickly run out of memory and time to store the computation,
whilst in the continuous case, the integral only exists for a few special classes of distribu-
tions.

2 . 1 . 3 . K      B    ’ R   

How then do we solve equation . in general, without restricting ourselves to particular
distributions? e solution offered by kernel Bayes’ rule is to map prior and likelihood
distributionsP(X) andP(Y|X) to points in a high-dimensional vector space through some
mapμ[⋅], andfind analogue rules for the product rule and sumrule for distributions. Using
these rules, Bayes’ rule can be applied in the vector space to find an element in that space
corresponding to a posterior distribution. In theory, we can use the inverse mapping μ−1

to ascertain what the result of Bayes’ theorem would have been had we applied it directly.
is concept is illustrated in figure .. In practice however, finding the ‘pre-image’ of the
posterior element is difficult, and forms the subject of chapter three.

e mapping we use is between distributions and points in an abstract space similar to
a vector space called a reproducing kernel Hilbert space [], and will be more precisely
defined in due course. Distributions become points in this space under the mapping, and
the sum and product rules have analogous operators. e following section gives an intro-
duction to RKHS theory, leading in to the kernel rules of probability and kernel Bayes’
rule, whilst a schematic overview of the KBR algorithm is given in figure ..

2.2. Vector Spaces

e Euclidean vector spaces overℝN are ubiquitous in mathematics, partially because of
the degree that our own experience affords us intuition in these spaces, especially in - and
-D.ese vector spaces are only an example of amuchmore general class ofmathematical
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μ[⋅]

μ−1[⋅]

P(X)

P(X|Y)

v

r

KBR

Space of Probability
Distributions

Reproducing Kernel
Hilbert Space

Figure ..: An idealised version of kernel Bayes’ rule algorithm. Note that in general, the
inverse mapping μ−1[⋅] either does not exist or cannot be explicitly computed.

Joint P(X,Y)

Prior P(X)

Unobserved Training

(Xi, Yi)

Xj

RKHS
Embeddings

μ[X,Y]

Observation

y

μ[X] μ[X|Y = y]

μ[y]

Distributions Samples

Figure ..: Diagram of kernel Bayes’ kule, including posterior density estimation. Note
that the posterior embedding can be used as the prior to condition on a new
observation, allowing continuous filtering inside the RKHS.
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objects, which we can refer to as abstract vector spaces. Where as the Euclidean vector
spaces are defined over power-sets of the real numbers, we are free to define a vector space
over entirely different sets.

Abstract vector spaces are powerful, because, to an extent, the intuition we have devel-
oped inℝ3 carries over to these spaces as well. Formally, a vector space consists of a field
, a set , and two binary operations, vector addition + and scalar multiplications. e
elements of are scalars, and the elements of are vectors.

Definition .. (Vector Space). A vector space over a field  is a set  and two binary
operations; vector addition (denoted by 𝐮 + 𝐯 for 𝐮, 𝐯 ∈ ) and scalar multiplication
(denoted by a𝐯 for a ∈ ,𝐯 ∈ ), which satisfy the following axioms:

∀𝐮,𝐯,𝐰 ∈ , 𝐮 + (𝐯 + 𝐰) = (𝐮 + 𝐯) + 𝐰, (.)

∀𝐮,𝐯 ∈ , 𝐮 + 𝐯 = 𝐯 + 𝐮, (.)

∀𝐯 ∈ ,∃0 ∈ :𝐯 + 0 = 0, (.)

∀𝐯 ∈ ,∃ − 𝐯 ∈ :𝐯 + ∀𝐯 ∈ ,−𝐯 = 0, (.)

∀𝐮,𝐯 ∈ , a ∈ , a(𝐮 + 𝐯) = a𝐮 + a𝐯, (.)

∀𝐯 ∈ , a, b ∈ , (a + b)𝐯 = a𝐯 + b𝐯, (.)

∀𝐯 ∈ , a, b ∈ , a(b𝐯) = (ab)𝐯, (.)

∀𝐯 ∈ , 1𝐯 = 𝐯. (.)

e Euclidean vector spaces set  = ℝN, over either the real or complex numbers,
 = ℝ or = ℂ.

2 . 2 . 1 . B    

A basis is a set of vectors used to build a vector space. Every element in the space can
be constructed from a linear combination of the basis vectors, but no basis vector can be
constructed from a linear combination of the others.

Definition .. (Basis). A basis {𝐞i} ∈  is a set of vectors indexed by elements of an
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index set i ∈  such that

𝐯 = 
i∈

ai𝐞𝐢, ∀𝐯 ∈ , (.)


i∈

ai𝐞𝐢 = 0 ⟶ ai = 0, ∀ai ∈ . (.)

In other words, a basis of is a set of vectors that are linearly independent and span.
Every vector space has a basis. e dimension of the vector space is equal to the cardinality
of the index set . For instance, the Euclidean vector space onℝ3 has an index of {1, 2, 3}
which is of cardinality 3. Larger spaces require larger index sets, until we reach an index
set with infinite cardinality, such as the reals. e vector spaces we are interested in belong
to this class. ey are the function spaces.

2.3. Function Spaces

Function spaces are vector spaces in which the set of vectors  corresponds to a set of
functions. e associated index set  is oen infinite (for instanceℝN),making such vector
spaces ‘infinite-dimensional’.

e general class of infinite dimensional function spaces are not going to be particularly
useful to us, because we have not yet developed any notion of an infinite sum in these
spaces. So, for instance, even though we now have an infinite dimensional basis, we are
only able to say that linear independence holds for any finite sum of the basis, and that
every 𝐯 ∈  can be constructed from a finite number of basis vectors.

In order to consider constructing a vector space from an infinite basis, we must explic-
itly ensure that every infinite sum of weighted basis vectors in actually converges to an
element in. Spaces with this property are called complete. It is to this subclass of vector
spaces we now turn.

2 . 3 . 1 . B      S     

Banach spaces are complete vector spaces possessing a notion of length of a vector given by
a norm operator. Banach spaces are complete in the sense that every absolutely converging
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sequence of vectors in converges to an element in. For infinite-dimensional function
spaces, this property allows us to use infinite sums of basis vectors to construct elements of
the space. From Banach spaces onwards, the field associated with our vector space must
be ℝ or ℂ. For the sake of brevity, we will use the reals, noting only when a result is not
directly analogous toℂ as well.

Definition.. (Banach Space). ABanach space is a vector space overℝorℂwith a norm
operator ‖ ⋅ ‖ satisfying

‖𝐯‖ = 0 ⟺ 𝐯 = 0, ‖𝐯‖ > 0 ⟺ 𝐯 ≠ 0, (.)

‖a𝐯‖ = |a|‖𝐯‖∀a ∈ , (.)

‖𝐮 + 𝐯‖ ≤ ‖𝐮‖ + ‖𝐮‖, (.)

and is complete, in that for every Cauchy sequence converges to an element of the space
with respect to the norm.

e norm property in Banach spaces define vectors length, and has properties familiar
from the well-known Euclidean vector spaces. ey ensure that the zero vector is the only
vector with zero length, and all other vectors have positive length. Multiplying a vector by
a scalar multiplies the length of that vector by the modulus of that scalar, and finally, that
the triangle inequality holds, which is that the shortest distance between two points is a
straight line.

2 . 3 . 2 . H       S     

Hilbert spaces are a particular type of Banach space which possess a notion of angle. is
is because Hilbert spaces are defined to include an inner product (or dot product in terms
of the Euclidean vector spaces).

Definition .. (Hilbert Space). A Hilbert space is a Banach space (,)with an inner
product operator ⟨⋅, ⋅⟩:⊗ →  satisfying the following properties for𝐮,𝐯 ∈  and
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a ∈ :

⟨𝐮, 𝐯⟩ = ⟨𝐯,𝐮⟩, (.)

⟨a𝐮,𝐯⟩ = a⟨𝐮,𝐯⟩, (.)

⟨𝐮,𝐮⟩ > 0. (.)

e norm of a Hilbert space is induced by the inner product

‖𝐮‖ = √⟨𝐮,𝐮⟩, (.)

which also allows definition of distance between two points

‖𝐮 − 𝐯‖ = ⟨(𝐮 − 𝐯), (𝐮 − 𝐯)⟩ (.)

= √⟨𝐮,𝐮⟩ + ⟨𝐯,𝐯⟩ − ⟨𝐮,𝐯⟩ − ⟨𝐯,𝐮⟩. (.)

e angle between two vectors follows as

cos ϑ ≡ ⟨𝐮, 𝐯⟩
‖𝐮‖‖𝐯‖ . (.)

Hence, two vectors 𝐮 and 𝐯 are orthogonal if ⟨𝐮, 𝐯⟩ = 0:

𝐮 ⟂ 𝐯 ⇔ ⟨𝐮,𝐯⟩ = 0. (.)

Hilbert spaces are an abstraction from the -D Euclidean vector space with which we
commonly approximate the geometry of our universe. Some other examples include every
finite-dimensional inner product space, the space of square-summable sequences l2, and
the space of twice-differentiable functions in a finite interval L2[a, b]. From now on, we
will be considering Hilbert spaces exclusively in our theory. Nonetheless, it is useful to
understand exactly what intuitions do and do not apply to these abstract vector spaces,
and how they relate to the familiar Euclidean -space.
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2.4. Kernels

e mathematical tools in Hilbert space such as length and distance between points are
useful when trying to generalise about a set  or understand its structure. If  is not itself
a Hilbert space, we can still gain use of these tools by constructing a mapping from  into
a different set over which a Hilbert space can be defined. We would also then gain use
of the intuition developed aboutℝ3.

Kernels are functions which allow us to construct just such a mapping between an arbi-
trary set  and aHilbert space(, ⟨, ⟩). ere are twoways to achieve this end, themost
common of which is the so-called ‘kernel trick’[, ]. is method defines a kernel as a
symmetric function k(x, x′): ⊗  → ℝ between two elements an arbitrary set  and the
reals. Suitable choices of k implicitly defines a mapping Φ:  →  from  to a Hilbert
space though the definition of the inner product:

k(x, x′) = ⟨Φ(x),Φ(x′)⟩. (.)

e condition on k to be a valid inner product is that k is positive definite:

Definition .. (Positive-Definite Kernel). A positive-definite kernel on a set  is a sym-
metric function  ⊗  → ℝ which for all finite sets {xi}Ni=1, xi ∈ , e matrix Gij =
k(xi, xj) is positive-definite.

As long as analysis is restricted to operations built from inner products,  can bemanip-
ulated as if it were a Hilbert space, and without ever computing Φ explicitly. e kernel
trick has enabled many types of algorithms is machine learning, including support vector
machines (SVMs), kernel dimensionality reductionmethods such as kernel principle com-
ponent analysis and kernel independent component analysis, and a host of other ‘kernel
methods’ [].

Algorithms that cannot be couched in terms of an inner product require an explicit
computation of the mappingΦ. For a given kernel, neitherΦ nor the space is uniquely
determined []. However, there exists a particular choice ofΦ which has several useful
properties and forms the basis for our further work.
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2 . 4 . 1 . R           K      H       S     

One simple mappingΦ(x) can be constructed by Currying [] a positive-definite kernel
function. at is, by considering k(x, x′) not as a function of two variables, but of only one
variable x ∈ , that returns a function of one variable x′ through partial application,

k:  → [ → ℝ]. (.)

For notational convenience, the function returned by k is oen denoted k(x, ⋅), and hence
we can write Φ(x) = k(x, ⋅). Using this functional defines a reproducing kernel Hilbert
space (RKHS) over .

Definition.. (ReproducingKernelHilbert Space). AreproducingkernelHilbert space
is a Hilbert space of functions from a set  to ℝ in which for every x ∈  and f ∈ 
there exists an evaluation functional δx which is bounded and continuous in x such that
δx[f] = f(x).

A reproducing kernel k(x, ⋅) ∈  is then a function which for every f ∈ ,

⟨k(x, ⋅), f⟩ = f(x). (.)

is equation is knownas the reproducingproperty for anRKHS.Critically, ifk is positive-
definite, then theHilbert space inducedbyk(x, ⋅)will always be anRKHS,with the (unique)
evaluation functional δx given by k(x⋅) itself.

e converse is also true—that is, everyRKHShas a unique positive-definite kernel act-
ing as the evaluation functional. is result is known as Moore-Aronszajn’s theorem [].

2 . 4 . 2 . R K H S I     P          B    

An RKHS defined through a set  and a reproducing kernel k is actually unique only up
to isomorphism— that is, we still have not determined the feature space over which
is defined. Nonetheless, if  is separable (i.e. contains a countable dense subset,  say), and
Φ is continuous, then the set of all vectorsΦ(xi), i ∈  forms a (countable) basis of and
hence [, ]. erefore, we can write any element f ∈  as a countable sum of these
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basis vectors, weighted by a set of real coefficients {ai}i∈:

∀f ∈ , ∃{ai}i∈:
i∈

aik(xi, ⋅) = f. (.)

Knowing this, for two arbitrary elements f and g of  we can write their inner product
purely in terms of these basis vectors:

f = 
i∈I

aik(xi, ⋅), (.)

g = 
i∈I

bik(xi, ⋅), (.)

⟨f, g⟩ = 
i,j∈I

aibjk(xi, xj). (.)

So, we have constructed an explicit mappingΦ = k(x, ⋅) between an arbitrary set  and
anRKHS. All the tools of these spaces are nowavailable to analyse, aswe can explicitly
write elements of  in terms of basis functions. is is a very powerful concept, and will
be used to construct the space inside which kernel Bayes’ rule is defined.

2 . 4 . 3 . F      S           

If the set  is finite of sizeN, then the index set of the basis is just 1…N. If  = {xi}i=1..N
then a basis set for  with kernel k is {k(xi, ⋅)}i=1…N. In this case elements in  are finite
linear combinations of basis vectors:

∀v ∈ , ∃𝐚 ∈ ℝN: v =
N

i=1

aik(xi, ⋅). (.)

Just like in theEuclidean vector spaces, we candispensewith the basis vectors themselves
andperformcomputations in termsof theweight vector𝐚. In fact, theHilbert space is now
isomorphic toℝN under the mapping 𝐚 ↔ ∑N

i=1 aik(xi, ⋅).
e inner product in can be specified by theGramMatrix, which is a matrix of inner
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products of all pairs of basis vectors:

(GXX)ij = k(xi, xj). (.)

For two elements ofwith weight vectors𝐮 and 𝐯, the weight vector of their inner prod-
uct is written in terms ofGXX as

⟨𝐮,𝐯⟩ = 𝐮TGxx𝐯. (.)

2 . 4 . 4 . R K H S D       M      

e RKHS norm enables evaluating distances between functions. However, it has an ad-
ditional useful property, which is that it also constrains the point-wise difference between
two functions. As the RKHS evaluation functional is bounded and continuous, for any
two functions f and g in there exists anM such that

sup[|f(t) − g(t)|] ≤ M‖f − g‖ ∀f, g ∈ . (.)

is demonstrates that the RKHS distance measure is a useful proxy for the similarity of
two functions. For further information aboutRKHSs, an excellent short introduction can
be found in [] or []. For a longer treatment emphasising applications and particularly
support vector machines try []. A more principled introduction with an emphasis on
mathematical rigour is [].

Wenowgive somebrief examples of positive definite kernels commonly used inmachine
learning.

2.5. Example Positive-Definite Kernels

Squared Exponential Kernel

One common positive-definite kernel is the squared exponential or Gaussian kernel [].
is is a symmetric kernel, in the sense that k(x, x′) = k(x′, x), and stationary, meaning
k(x, x′) is a function only of the distance ‖x − x′‖. e RKHS induced by this kernel
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Laplacian Kernel

Figure ..: Example kernels centred at x = 0. Le: e squared exponential kernel with σ = 1.
Right: e Laplacian kernel with b = 1.

contains only infinitely differentiable functions. It is also sometimes referred to as the
radial basis function (RBF) kernel, owing to its radial symmetry. e squared exponential
kernel is plotted in -D in figure .. Its analytic expression is an un-normalised multi-
variate Gaussian with a covariance matrix 2σ2I:

k(x, x′) = exp −
‖x − x′‖2

2σ2  . (.)

Matérn Kernels

Matérn kernels are a generalisation of the Gaussian kernel which are only finitely differ-
entiable []. Like the Gaussian kernel, the Matérn family is stationary, able to be written
as a function of r = ‖x − x′‖;

k(r) =
21−υ

Γ(υ)

⎛
⎜⎜⎜⎝
√2υr
l

⎞
⎟⎟⎟⎠
υ

Kυ

⎛
⎜⎜⎜⎝
√2υr
l

⎞
⎟⎟⎟⎠ , (.)

where Kυ is the modified Bessel function. Common special cases of this function are υ =
3/2 and υ = 5/2:

kυ=3/2(r) =
⎛
⎜⎜⎜⎝1 + √3r

l

⎞
⎟⎟⎟⎠ e

−√3r

l , (.)
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Figure ..: Matérn kernels centred at x = 0. Le: υ = 3/2, Right: υ = 5/2.

kυ=5/2(r) =
⎛
⎜⎜⎜⎝1 + √5r

l
+

5r2

3l2

⎞
⎟⎟⎟⎠ e

−√5r

l . (.)

Setting υ = 1/2 gives the exponential or Laplacian covariance function k = exp(r/l)
plotted in figure .. e Matérn kernel is plotted for some values of υ in figure .. As
υ → ∞, the Matérn kernels converge to the Gaussian kernel.

Piecewise-Polynomial Kernels

Polynomial kernels are a broad class of kernels defined through a polynomial on the in-
put parameters. One useful series of these kernels are described in []. ese kernels
are stationary and approximately Gaussian, but are compact. is induces sparsity in the
associated Gram matrix, and hence provides the potential for numerical savings in com-
putations with large numbers of data points. In particular, the product of a sparse Gram
matrix and a vector can be computed efficiently if the matrix is sparse.

e following are all positive-definite up to an input dimension D, and are 2q times
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Figure ..: Compact piecewise-polynomial RBF kernels.

differentiable. is series of kernels is plotted in figure ..

kD,q=0 = (1 − r)j+ (.)

kD,q=1 = (1 − r)j+1+ (j + 1)r + 1 (.)

kD,q=2 = (1 − r)j+2+ (j2 + 4j + 3)r2 + (3j + 6)r + 3 /3 (.)

kD,q=3 = (1 − r)j+3+ [(j3 + 9j2 + 23j + 15)r3 (.)

+ (6j2 + 36j + 45)r2 + (15j + 45)r + 15]/15 (.)

where j = D
2

+ q + 1, and (⋅)+ = max(⋅, 0). A selection of these kernels are plotted in
figure ..
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Non-stationary Kernels

Non-stationary kernels cannot be written as a function of ‖x− x′‖, hence the kernel func-
tion itself varies with location x or x′. is is an important class of kernels that allow for
changes in the length scale or behaviour of the function in different subsets of the input
space . However, these changes must be parametrised in the kernel, and learning those
parameters can itself be a difficult inference problem. An example non-stationary kernel is
illustrated in figure .. A common non-stationary kernel is a generalisation of the Gaus-
sian to allow explicit parametrisation of the kernel bandwidth σ as a function of the input
space. is is known as the Paciorek kernel[]:

k(x, y) =
D

d=1


2ld(x)ld(y)
l2d(x) + l2d(y)



1

2
exp

⎡
⎢⎢⎢⎢⎢⎣−

D

d=1

(xd − yd)2
l2d(x) + l2d(y)

⎤
⎥⎥⎥⎥⎥⎦ (.)

with li(x) a length scale function which is arbitrary butmust be strictly positive. An exam-
ple of this kernel is illustrated in figure ..

2.6. RKHS of Stochastic Functions

In the previous sections we outlined the properties of RKHSs defined over an arbitrary
set . Now we will narrow our focus to consider the case when  is a set of probability
distributions of a random variable X.

One map that can be used to link points in the space of distributions X over X with
an RKHS  is the mean map, so called because elements of  are the expectation of the
embedding k(X, ⋅) of X. Intuitively, the mean map of X is the mean of all the possible
RKHS elements corresponding to draws from X.

Definition .. (Mean Map). Given a random variable X with distribution P(X) and an
RKHS with kernel k, the mean map μ[⋅]:X →  is the function

μ[P(X)] = E [k(X, ⋅)] (.)

=  k(x, ⋅)P(x) dx. (.)
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Figure ..: Non-stationary RBF kernel with simple linearly decreasing length scale.
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is definition implies the reproducing property, which allows us to recover expecta-
tions of functions in over the random variable X. For f ∈ ,

⟨f, μ[P(X)]⟩ = E f(x) . (.)

e mean map can preserve high-order moment information about P(X) []. Consider
the Gaussian kernel with unit bandwidth,

μ[P(X)](t) =  e−‖x−t‖2P(x)dx, (.)

= 
∞

k=0

−(‖x − t‖2)k
k!

P(x) dx (.)

=
∞

k=0

−E[‖x − t‖2k]
k!

(.)

=
∞

k=0

−1
k!

M2k[P(X); t], (.)

where M2k[P(X); t] is the 2k-th moment of P(X) centred at t. Intuitively, we see that the
mean map can preserve the complex structure of the distribution P(X).

2 . 6 . 1 . C              K      

e mean mapping is a powerful tool to manipulate probability distributions or their em-
pirical estimates inside an RKHS. However, using kernel embeddings as a proxy for dis-
tributions would require that different distributions not be mapped to the same element
in the RKHS. In other words, the mean map μ[⋅] should be one-to-one.

e subset of positive-definite kernels which induce this property on μ[⋅] is known as
the characteristic kernels [].

Definition .. (CharacteristicKernel). LetX be the set of all probability distributions
on the set S associatedwith a randomvariableX. A kernel k is characteristic over0 ⊂ X

if for all P(X),Q(X) ∈ 0,

‖μ[P(X)] − μ[Q(X)]‖ = 0 ⟶ P(X) = Q(X). (.)
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Apowerful result for determiningwhichkernels are characteristicwas developed in [].
It is built fromthe characterisationof positive-definite kernels viaBochner’s theorem[];

eorem .. (Bochner’s eorem). e kernel k(𝐫) is positive semi-definite, uniformly
continuous and has k(𝟎) = 1, ‖k(𝐫)‖ ≤ 1 if and only if the spectral density Λ(ω) ≥ 0, where
Λ is the Fourier transform of k;

k(𝐫) =  ei𝐫T𝝎Λ(𝝎)d𝝎. (.)

Sriperumbudur proved that positive-definite stationary kernels are characteristic if and
only if their spectrum Λ has a support of all ofℝk:

eorem ... Let  be an RKHS with kernel k. If k is a stationary and continuous
positive-definite kernel on ℝd, then k is characteristic in for all probability distributions
P(X) ∈ , if and only if supp(Λ) = ℝd, where Λ is the kernel spectrum [].

is result demonstrates that common kernels such as the Gaussian and Laplacian, as
well as all compactly supported translation-invariant kernels onℝd such as the piecewise-
polynomial kernel in section ., are characteristic. erefore, with these kernels themean
map μ[⋅] is one-to-one, meaning distributions can safely be embedded in an RKHS with
these kernels without information loss.

2 . 6 . 2 . E         A                 M    M  

When the underlying distribution P(X) is not available, it is still possible to create an ap-
proximate embedding using a set of finite samples {xi}Ni=1 ∈  drawn from P(X). In this
case the expectation becomes an empirical average over the samples:

μ[X] ≈ μ[P(X)] (.)

μ[X] =
1
N

N

i=1

k(xi, ⋅) (.)

=
1
N
𝐤T
X[⋅]𝟏 (.)
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where𝐤T
X[⋅] = (k(x1, ⋅), ..., k(xN, ⋅)). For a given set of samples, this defines afinite-dimensional

Hilbert space isomorphic toℝN, as seen in section ...

Given two arbitrary elements f, g ∈  with  = ({x}Ni=1, k), if f = 𝐤T
X𝐚 and g = 𝐤T

X𝐛,
the inner product both in and the associated Euclidean space overℝN is

⟨𝐚,𝐛⟩ = 𝐚TGXX𝐛 (.)

whereGXX is the Gram matrix.

Moreover, if the kernel k is characteristic, then anN-sample empirical embedding con-
verges to the true embedding (with high probability) at a rateO(N−0.5) []. is allows
us to use finite samples as proxies for unknown distributions, with the reassurance we can
guarantee the embeddings converge to the true embedding as the number of sample points
increases.

Figure . illustrates an example of an empirical approximation of a distribution embed-
ded in anRKHS. It shows the empiricalmean embedding for a three componentGaussian
mixture in one dimension, created using  draws.

Apart from the work on conditional embeddings described in following sections, em-
pirical embeddings of probability distributions in RKHS have been used for several appli-
cations in machine learning and statistics; in [], these maps were used to test indepen-
dence of two distributions (see also []), to perform covariate shi correction, and for
feature extraction, and density estimation. Work has also been done on the two sample
problem [], and kernelised sorting [].

2.7. RKHSOperators

e mean map embeds probability distributions in an RKHS, but to manipulate distri-
butions within the space a set of RKHS operators is required. ese operators are used
to embed conditional distributions, and also to map between different RKHSs. Most im-
portantly, they form the foundations of the kernel analogues for the rules of probability
(reviewed in appendix A..).
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ated with squared exponential kernels centred at  sample locations.
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2 . 7 . 1 . C     - C         O       

Cross-covariance operators are operators between two RKHSs used to define a notion of
covariance between two embedded distributions [].

Definition .. (Uncentred Cross-Covariance Operator). Given a pair of random vari-
ables X ∈  and Y ∈ , and associated RKHS spaces X = (, kx) and Y = (, ky),
the uncentred cross-covariance operator CXY is the operator fromY toX satisfying

CXY = E(X,Y) [kX(X, ⋅) ⊗ kY(Y, ⋅)] . (.)

Here ⊗ is the tensor product, and kX(X, ⋅) and kX(Y, ⋅) are in their role as evaluation
operators. e intuition behind cross-covariance operators becomes clearer with an appli-
cation of the reproducing property, which shows that for all f inX and g inY,

⟨f,CXYg⟩ = E f(X)g(Y) . (.)

In essence, CXY measures the uncentred covariance between f(X) and g(Y). Viewed in
a different light, the cross-covariance operator is also the mean embedding for the joint
distribution P(X,Y) into the RKHSX ⊗ Y. We can see this by noting its equivalence
to the mean embedding of X characterised in equation .:

⟨g ⊗ f,CXY⟩ = E f(X)g(Y) . (.)

e cross-covariance operator from a space to itselfCXX is denoted simply as the covari-
ance operator.

Empirical Estimation

Just like with the mean map, a converging approximation of the cross-covariance operator
can be constructed from i.i.d. samples {(xi, yi)}Ni=1 of the joint distribution P(X,Y):

ĈXY =
N

i=1

k(xi, ⋅) ⊗ k(yi, ⋅). (.)
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For characteristic kernels this estimate convergeswithO(N−0.5) to the true cross-covariance
operator [].

We canderive an explicitGrammatrix expression for ĈXY in the context of two arbitrary
functions f(X) = 𝐤T

X𝜶 and g(Y) = 𝐤T
Y𝜷 given joint samples {(xi, yi)}Ni=1. e reproducing

property requires

⟨f,CXYg⟩ = E[f(X)g(Y)] (.)

≈ 
i
f(xi)g(yi) (.)

= 
i
⟨k(xi, ⋅), f⟩⟨k(yi, ⋅), g⟩. (.)

(.)

Substituting the expressions for f and g requires that

ĈXYg = 𝐊T
Y[⋅]GYY𝜷. (.)

is result is quite useful in later derivations of more complex operators.

2 . 7 . 2 . C           P            

One of the fundamental operations in probability is conditioning; considering the prob-
ability of one variable when another has been fixed to a particular value. Cross-covariance
operators allow for conditional distributions to be embedded in an RKHS, furthering the
goal of anRKHSanalogue of the laws of probability andhence of inference in these spaces.

e conditonal embedding CY|X is an operator from X to Y, which, when acting on
a point embedding μ[x] in , results in the point μ[P(Y|X = x)] in Y []. In other
words, CY|X is the RKHS analogue of a condition distribution P(Y|X).

Definition .. (Conditional Embedding). Let X and Y be random variables over ℝM,
and μ[P(Y|X = x)] the mean embedding of the conditional distribution P(Y|X = x). e
conditional embedding CY|X is an operator fromX toY, which for all x ∈ ℝM:

μ[P(Y|X = x)] = CY|Xμ[x], (.)
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where μ[x] = ∫ k(x,X)δ(x − X) dX = k(x, ⋅).

e conditional embedding also obeys the reproducing property:

⟨g, μ[P(Y|X = x)]⟩ = ⟨g,CY|Xμ[x]⟩ (.)

= E[g(Y)|X = x]. (.)

e expression for CY|X is derived in [], following from a theorem first proved in [].
It is defined in terms of cross-covariance operators,

CY|X = CYXC−1
XX. (.)

e full expression for a conditional embedding is then

μ[P(Y|X = x)] = CYXC−1
XXμ[x]. (.)

Note that the expressionC−1
XX in this expression is not rigorous. e inverse operator does

not exist in general, but regularised inverses can be computed empirically [].

Empirical Estimate

Unfortunately, neither CXX being one-to-one, nor CY|X ∈ X can be assumed to hold in
general []. However, it is possible to derive an empirical approximation ĈY|X under these
assumptions and prove that it causes the instantiation ĈY|Xμ[x] to converge to μ[P(Y|X =
x)].

Given samples (xi, yi)Ni=1 fromP(X,Y), and assuming that k(x, ⋅) lies in the range ofCXX,
then the empirical estimate ĈY|X is given by

μ[Y|X = x] = 𝐤Y[⋅]T(GXX + NεI)−1𝐤X[x], (.)

where ε ∈ ℝ is the regularising term, and (𝐤X[x])i = k(xi, x). is estimate converges to
the true μ[P(Y|X = x)] at the rateO((Nε)−0.5 + ε0.5) [].
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Relationship to Gaussian Process Regression

Gaussian process regression uses a set of training points {(xi, yi)}Ni=1 to construct a distribu-
tion of functions, which, when conditioned on query variables {x∗}, produces a posterior
mean function with associated covariance structure. e GP is defined through a covari-
ance function, that also happens to be in the form of a positive-definite kernel [].

emean of aGaussian process given training data {(xi, yi)}Ni=1 and a single conditioning
variable x∗ is

μ = 𝐤x[x∗]T(GXX + σ2I)−1𝐘, (.)

where 𝐘 = (Y1,Y2, ...)T. Interestingly, this is exactly the embedding μ[P(Y|X = x∗)]
from equation ., assuming we have a linear kernel k(y, y′) = 𝐲T𝐲. is relationship
raises interesting questions about the link betweenGaussian process regression andRKHS
kernel embeddingsmore generally, andparticularly raises possibility of assigning a physical
meaning to the regularisation parameter ε, which corresponds to the process noise σ2 in
the GP case. Chapter three discusses these regularisation terms further, in the context of
training procedures.

2.8. Kernel Probability Laws

e ability to embed conditional distributions has now opened the door to defining the
fundamental laws of probability inside an RKHS. Just as these rules are used to derive
Bayes’ rule, their RKHS analogues will be used to construct its kernel equivalent and the
basis for future work, kernel Bayes’ rule.

2 . 8 . 1 . K      S   R   

e kernel sum rule is the kernel analogue of the sum rule,

P(Y) = P(Y|X)P(X) dX, (.)
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corresponding to themarginalisation of a variableX from the conditionalP(Y|X) through
multiplication of the prior P(X) and integration.

e kernel analogue of this would see amean embedding μ[P(Y)] ∈ Y estimated from
a conditional embedding operatorCY|X and a prior embedding μ[P(X)]. It follows directly
from the conditional embedding in section ...

eorem .. (Kernel Sum Rule). Given random variables X and Y, distributions P(X),
P(Y) andP(Y|X), and associatedRKHSsX andY, then μ[P(Y)] and μ[P(X)] are related
by

μ[P(Y)] = CY|Xμ[P(X)], (.)

= CYXC−1
XXμ[P(X)]. (.)

where CYX and CXX are cross-covariance operators [].

Empirical Estimate

Given training samples {xi, yi}Ni=1 fromthe joint, and aweightedmean embedding {(αi, ui)}Mi=1
for the prior P(X), the empirical estimate of the kernel derives from a direct substitution
of the empirical estimates μ[Y], μ[X] and ĈY|X:

μ[Y] = 𝐤T
Y[⋅](GXX + NεI)−1GXU𝜶, (.)

where (GXU)ij = k(xi, uj).

2 . 8 . 2 . K      P       R   

e product rules relates the joint distribution P(Y,X) to the conditional P(Y|X) and the
marginal P(X) by P(Y,X) = P(Y|X)P(X). e kernel analogue of this rule relates the
associated mean embeddings of these distributions.

eorem .. (Kernel Product Rule). Given random variables X and Y, distributions
P(X), P(Y) and P(Y,X), and associated RKHSs X, Y and X ⊗ Y then μ[P(X,Y)]
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and μ[P(X)] are related by

μ[P(X,Y)] = C(YX)XC−1
XXμ[P(X)], (.)

where C(YX)X is the cross-covariance operator omX to joint space Y ⊗X [].

A simple intuition for the kernel analogue of this rule was given in []. LetZ = (X,Y).
en we can write P(Y,X) in terms of the sum rule by noting that

P(Z|X) = P(X,Y|X′)δ(X − X′), (.)

and hence, that

P(Z) = P(Z|X)P(X)dX. (.)

Direct application of the kernel sum rule for this expression yields

μ[P(X,Y)] = C(YX)XC−1
XXμ[P(X)]. (.)

Empirical Estimate

eempirical estimate also follows fromkernel sum rule. Given training samples {xi, yi}Ni=1
from the joint, and a weighted mean embedding {(αi, ui)}Mi=1 for the prior P(X), then

μ[P(X,Y)] = 𝐤T
XY[⋅, ⋅](GXX + NεI)−1GXU𝜶, (.)

where (𝐤T
XY[⋅, ⋅])i = kX(xi, ⋅) ⊗ kY(yi, ⋅). is is identical to the expression for the weights

of P(Y) in section .., only with a basis in the joint space.

2.9. Kernel Bayes’ Rule

Finally, with the kernel analogues of the fundamental laws of probability, we are able to
derive an expression that applies Bayes’ theorem to empirical estimates of mean-map em-
beddings of probability distributions into an RKHS— otherwise known as kernel Bayes’
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rule [, ].
Given a prior embedding μ[P(X)] and a likelihood μ[P(Y|X)], kernel Bayes’ rule com-

putes the posterior embedding μ[P(X|Y = y)] conditioned on a given observation y. From
the conditional embeddings in equation .:

μ[P(X|Y = y)] = CX|Yμ[y] (.)

μ[P(X|Y = y)] = CXYC−1
YYμ[y]. (.)

e equivalence between a cross-covariance operator from X → Y and the mean
map in the product spaceX ⊗ Y described in section .. means we can use joint em-
beddings to derive expressions for CYY and CXY above.

In particular, we equate CXY with the joint embedding μ[P(X,Y)] from equation .:

CXY = μ[P(X,Y)] (.)

= C(YX)XC−1
XXμ[P(X)]. (.)

e cross-covariance operator CYY is similarly defined through the kernel product rule,
this time using the product space embedding μ[P(Y,Y)]:

CYY = C(YY)XC−1
XXμ[P(X)]. (.)

Substituting these operators into equation . yields kernel Bayes’ rule:

eorem .. (Kernel Bayes’ Rule). Let X and Y be random variables with distribution
with prior P(X) and joint P(X,Y), and let y be an observation of Y. en,

μ[P(X|Y = y)] = C(YX)XC−1
XXμ[P(X)] C(YY)XC−1

XXμ[P(X)]
−1

μ[y], (.)

where C(YX)X,CXX and C(YY)X are the associated cross-covariance operators [, ].

2 . 9 . 1 . E         E      

Fromthe empirical kernel probability laws, we canderive an expression for evaluatingKBR
using a set of samples {xi, yi}Ni=1 from the joint P(X,Y) and {uj}Mj=1 from the prior P(X).
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In [], these prior samples could also have real (and possibly negative) weights {γj}Mj=1.
Next are the empirical estimates of operators CXY and CYY in equations . and ..

ese estimates are of the form

ĈXY =
N

i=1

βik(xi, ⋅) ⊗ k(yi, ⋅), (.)

ĈYY =
N

i=1

βik(yi, ⋅) ⊗ k(yi, ⋅), (.)

with common weights 𝜷 as demonstrated by equation .:

𝜷 = (GXX + NεI)−1GXU𝜸. (.)

e final expression for the KBR requires a different type of regularised inverse for ĈYY

than was used for ĈXX. is is because the Gram matrix expression may contain nega-
tive eigenvalues, and hence must first be squared in order to ensure the operator remains
positive-definite:

μ[X|Y = y] = ĈXY(Ĉ2
YY + δI)−1ĈYYμ[y]. (.)

e Gram matrix expression that follows is

μ[X|Y = y] = 𝐤T
X[⋅]RX|Y𝐤Y[y], (.)

where

RX|Y = D(β)GYY (D(β)GYY)2 + δI
−1

D(β), (.)

D(β) = Diag(β), and (𝐤Y[y])i = k(yi, y). e convergence properties of equation .
are discussed in detail in [] and []. Under normal conditions, assuming the prior is
sampled equally oen as the joint, convergence follows aO(n4/27) rate, which while slow,
is a lower bound that is exceeded in practice.

Finally, we have an expression to compute Bayes’ rule inside an RKHS. Figure . gives
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XY X

Y ⊗X ⊗X X ⊗Y

Y

Y ⊗Y ⊗X Y ⊗Y

X

Q(X,Y) P(X)

μ[Q((Y,X)|X)]

μ[Q((Y,Y)|X)] μ[P(Y,Y)]

μ[P(X,Y)]

Cπ
XYC

π
YY

−1 μ[y]

y

μ[P(X)]

μ[P(X|Y=y)]

C(YY)XC−1
XX

C(YX)XC−1
XX

Figure ..: Diagram of the operations involved in computing the posterior embedding
μ[P(X|Y = y)] in KBR. Beginning with the ‘input data’ of the algorithm, we
have the distributions Q(X,Y) (the joint), P(X) (the prior), and an observa-
tion y ofY. e distributions live inside the yellow spacesXY andX respec-
tively, whilst the variable y is from the green space , for instance ℝN. e
mean map, indicated by the blue arrows, is used to map these objects into a
number of different Hilbert spaces. P(X) is mapped to the prior embedding
μ[P(X)] ∈ X, whilst y is mapped to μ[y] ∈ Y. Kernel Bayes’ rule itself
is the operator Cπ

XYC
π
YY

−1 which maps this embedding μ[y] to the posterior
embedding μ[P(X|Y = y)] ∈ x, indicated by the solid black leward arrow.
ese two operators can themselves be seen as elements of RKHSs, indicated
by the dotted lines equating Cπ

XY with μ[P(X,Y)] ∈ X ⊗ Y and Cπ
YY with

μ[P(Y,Y)] ∈ Y⊗Y. ese two elements aremapped fromX by two other
operators which are also elements of the two le-most RKHSs, constructed
through the mean map onQ(X,Y).
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a visual overview of theKBR, illustrating the embedded estimates of various distributions,
and the computation of the posterior embedding μ[P(X|Y = y)].

is algorithm forms the basis for our contributions in further chapters. Note the im-
mediate issue: we have derived an expression for μ[P(X|Y = y)] ∈ X, but have so far not
discussed estimating P(X|Y = y) itself. Efficient and accurate recovery of the distribution
and associated information is a non-trivial problem, to which we devote our attention in
chapter three.

2 . 9 . 2 . E      

e T- model robot has just located subject John Connor, standing across an empty
street. e robotmust now initiateGreetingProtocols using itsM-phased-plasmapulse
rifle. Using a built-in laser range-finder, the robot estimates the distance to the subject at
. metres. At this distance, how far above John Connor’s centre of mass should the
robot aim to achieve maximally efficient greeting?

Fortunately, the robot has collected the aim offsets from  previous successful imple-
mentations of the Greeting Protocol at various distances from the subject, and so decides
to use kernel Bayes’ rule to compute the posterior probabilities of aim offsets, conditioned
on its measurement of distance to subject.
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Let X represent the distance above the subject’s centre of mass (CM), and Y be the dis-
tance to the subject. e robot opts to use the X data as samples from the prior P(X) and
the (X,Y) data as samples from the joint P(X,Y). e robot selects a Gaussian kernel to
perform the inference, with bandwidths σx = 3.2, and σy = 0.075. e prior embedding
μ[P(X)] = ∑300

i=1 kX(xi, ⋅) is then computed with this kernel:
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Next, the robot computes the Gram matrices GXX and GYY required to estimate the
conditional operators, with (GXX)ij = kX(xi, xj) and (GYY)ij = kX(yi, yj).
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Because the robot chose to use theX values of the joint as the priorU, the prior weights
γ are all equal to 1

300
. erefore, with suitable choice of regulariser ε = 0.006, it can now

compute β from equation .. e weights beta are shared by the embedding μ[P(Y)] =
∑300

i=1 βikY(yi, ⋅), shownbelow-le, andμ[P(X,Y)] = ∑300
i=1 βikY(yi, ⋅)kX(xi, ⋅) shownbelow-

right.
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Finally, the robot computes the weights𝜶 of the posterior embedding μ[P(X|Y=y)] by
𝜶 = RX|Y𝐤Y[y], withRX|Y from equation . (using δ = 0.8) and the vector instantiating
its observation (𝐤Y(y))i = kY(yi, 53.68). e resultant embedding is μ[P(X|Y=20.12)] =
∑300

i=1 αikX(xi, ⋅).
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Unfortunately, theT-has nowhit a critical problem. It cannot interpret this embed-
ding as a probability distribution, noting that it drops below zero at some points. As the
robot neglected to parse the next chapter of this thesis, it cannot recover a true probability
distribution from the embedding, and falters long enough for John Connor to escape.

2.10. Summary

In this chapter we introduced kernel Bayes’ rule, and provided the required background in
functional analysis and reproducing kernel Hilbert spaces. e key idea of the chapter is
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that probability distribution can be represented as elements in a type of vector space called
a reproducing kernel Hilbert space. Critically, it is possible to create such representations
with only samples from the distribution, rather than an explicit parametric form.

ese embeddings are able to be manipulated through operators which act analogously
to the sum and product rules of probability. By embedding prior and likelihood distribu-
tions, a combination of these operators can be applied to perform Bayes’ rule inside the
reproducing kernel Hilbert space. e result is an element of the space corresponding to
the posterior distribution that would have been obtained had Bayes rule been applied di-
rectly to the prior and likelihood. However, kernel Bayes’ rule avoids the need to compute
the costly marginalisation integral that would be otherwise required.





Chapter 

Multi-modal Regression and Filtering

M- probability distributions appear in a wide variety of inference
contexts, especially in machine learning and robotics. In this chapter we
present extensions to kernel Bayes’ rule to allow multi-modal and multi-

dimensional posterior density estimation, for both regression and filtering problems. We
apply these techniques to a variety ofmulti-modal problems in roboticmotion estimation.

3.1. Motivation

Kernel Bayes’ rule’s ability to learn the prior and likelihood from samples, without restric-
tion to a particular parametric form is a useful attribute in disciplines such as robotics
and machine learning where parametric models can be unknown or difficult to estimate.
However, the output of kernal Bayes’ rule (KBR) is amean-map embedding in a reproduc-
ing kernel Hilbert space (RKHS), not a probability distribution. e original methods of
obtaining posterior estimates were either maximum a-posteriori (MAP) points, or expec-
tations of functions with respect to the posterior []. A technique to estimate the full
posterior density function would enable us to quantify the uncertainty associated with
a prediction, something critical to any automated decision making, and also to use the
posterior as a prior distribution in subsequent analysis with a different algorithm. Such
an algorithm could potentially see wide application in machine learning, perhaps replac-
ing the ubiquitous Gaussian process regression in circumstances where the Gaussianity
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assumptions of this algorithm do not apply.

Another area where such a fully non-parametric, multi-modal method for Bayesian in-
ference would be valuable is the time-recursive Bayesian inference or filtering commonly
used in robotics. Current filteringmethods are either restricted to particular distributions
or else are unable to learn complex multi-dimensional dynamics. A Bayesian filter capable
ofmodelling both non-linear dynamics andmulti-modal distributions would therefore be
particularly desirable in filtering applications where complex, multi-modal distributions
arise. Examples include bearing-only tracking, multi-hypothesis tracking, or in cases of
poorly known dynamics. In principle, a SLAM implementation could also be developed
which included probabilistic data association as an inherent feature. A non-linear multi-
modal filterwould also allow formultiplemotionmodels to be considered simultaneously,
but with a fully Bayesian treatment of the resultant distribution. is is in contrast to the
filter-bank methods commonly used.

3.2. Contributions

is chapter focuses on the problem of extracting posterior estimates from kernel Bayes’
rule, and hence on the difficulty of performing multi-modal non-parametric inference.
Such problems oen arise in the context of robotics motion estimation, owing to complex
motion models without parametric forms and noisy sensors. To address these problems,
we present the following contributions:

Anovel mixture distribution pre-image algorithm to obtain a full posterior estimate
from theKBRalgorithm. is extends theKBR to performnot only non-linear and non-
parametric, but also multi-modal inference. Our technique is well-suited to both regres-
sion and filtering applications of KBR, as recursive inference can happen purely within the
RKHS and a distribution estimate recovered only when required. We denote our exten-
sion as multi-modal kernel Bayes’ rule, orMKBR. Finding these estimates of the posterior
with KBR involves solving the pre-image problem; approximating the inverse of mapping
between a set and an RKHS. We present two techniques for estimating the pre-image of
the embedded posterior. e first relies on embedding a mixture distribution into the
RKHS and minimising the distance between this distribution and the embedded poste-
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rior. e second involves truncating and normalising the weights of the embedding to
directly estimate a posterior.

A new training scheme necessary for automatic parameter estimation. In both the
regression and filtering cases, learning the free parameters in the algorithm requires a cost
function that properly accounts for the multi-modality of the output of our algorithm.
We present a training system utilising the negative log-probability of a leave-out set of the
training data, that will also be useful in later chapters.

Novel applications of our multi-modal inference system to difficult motion estima-
tion problems in robotics. We first illustrate our techniques with an experiment tracking
a simulated particle moving through a set of randomly chosen trajectories. is filtering
problem is multi-modal and has multi-dimensional input and output, and the MKBR al-
gorithm is able to demonstrate learning the hidden variable controlling which path the
particle takes. We then consider an experiment tracking a slot car moving around a track
from inertial data taken from a small on-board inertial measurement unit (IMU).is ex-
periment demonstrates learning complex dynamic models without parametric forms and
in the presence of noise.

Significant extension of a robotics algorithm for indoor motion planning presented
in []. e algorithm builds a normalised probabilistic velocity map for robot path plan-
ning based on the recorded trajectories of pedestrians in the area. e original algorithm
relied on Gaussian process (GP) regression to infer this distribution, but the uni-modal
estimates from a GP cause the algorithm to break down when pedestrians move in dif-
ferent directions through the same area. Our MKBR extension allows for multi-modal
distributions of direction, and so much more reliable path planning.

3.3. RelatedWork

Filtering is a fundamental problem in robotics, in which a probabilistic representation of
the state of the world or the robot itself is periodically updated with new measurements
from sensors. e venerable Kalman filter remains a popular method to implement filter-
ing [], but contains strong assumptions about the prediction and observation models,
and the underlying distributions. All models must be linear, and all variables are assumed
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Figure ..: Illustration of the multi-modal (and heteroscedastic) output of our MKBR al-
gorithm as presented in this chapter, applied to the well-known ‘motorcycle’
dataset.
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to be normally distributed (Gaussian). In situations where these assumptions hold, the
Kalman filter has demonstrated many years of successful application.

e extended Kalman filter (EKF) relaxed the need for linear models by linearising
the prediction and observation update models at the current mean and covariance esti-
mate []. However, if the underlying models are strongly non-linear or the filter is poorly
initialised, numerical stability is difficult to achieve [].

e unscented Kalman filter (UKF) was made partly to overcome these issues of insta-
bility. It uses an alternative linearisation approach in which deterministic samples of the
random variables are propagated through the non-linear models. e image of these sam-
ples under the model is then used to estimate the Gaussian for the next state []. is
filter has demonstrated greater numerical accuracy and tends to be simpler to implement
than the EKF, and has also been widely adopted when the Gaussian assumption is valid.

A number of filtering algorithms have attempted to also relax the Gaussianity assump-
tion placed on the underyling distributions. ese filters operate on representations of
distributions formed through the sum of simpler basis functions.

e earliest examples of these filters were Parzen density and mixture model filters,
which tile basis functions such as Gaussians or sawteeth in order to represent distribu-
tions [, ], but are limited to linear models and suffer from poor dimensional scaling
in practice.

Particle filters are a very general filter developed to represent arbitrary distributions and
non-linear models, by approximating distributions with a set of point samples (‘particles’)
that aremapped through the transition andobservationmodels. However, in general these
methods suffer from very poor dimensional scaling and difficulties with sample degener-
acy or impoverishment [, ]. Progress has been made to overcome these problems be-
yond the standard sequential importance sampling particle filters; EKF andUKF particle
filters use those filters to approximate the proposal distribution, reducing sample impov-
erishment but introducing linearisation errors [, ]. Rao-Blackwellised particle filters
demonstrate better dimensional scaling [] but require structural knowledge of posterior
distributions. Gaussian particle filters also scale more favourably with dimension but are
restricted to Gaussian posteriors []. Gaussian sum filters relax this restriction to rep-
resentation as a Gaussian sum [] but suffer from mixture component impoverishment.
Both algorithms are also sensitive to linearisation errors.
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All of the filters described above require analytical expression for the transition and ob-
servation models, whether linear or non-linear. Few filters thus far have been extended to
enable learning of prediction and observation models from data. e noise parameters of
the EKF were learned in []. e GP-BayesFilter particle filter uses a standard sequential
importance re-sampling (SIR) particle filter but learns the state transition and observation
models from data using a set of Gaussian processes [].

Apart from their use in filtering, GPs [] themselves are a popular tool in robotics for
non-parametric regression when the assumptions of Gaussian priors, likelihoods and pos-
teriors are valid. GPs perform inference over a space of smooth functions, any finite sam-
pling from which is Gaussian-distributed. As such they are capable of modelling complex
relationships between variables with Gaussian marginals, and have been used for mod-
elling terrain and occupancy [, ], optimal control [], and for planning based on
information gain []. GP mixture models relax the Gaussianity assumption of the pos-
terior but retain a strong assumption of mixture component independence [].

One class of filtering and regression techniques which relax the Gaussianity assump-
tion, but retain non-parametric representations and high-dimensional scaling, are those
based on representing distributions as elements of a Hilbert space of functions. ese
methods have shown a number of advantages over traditional estimation techniques, es-
pecially with complex, high-dimensional distributions when very little prior information
is known. Methods based on orthogonal function bases andhave good sparsity and scaling
properties in theory, but the filtering equations are generally insoluble [, ]. Methods
using reproducing kernel Hilbert spaces have had more success, initially with a Bayesian
filter approximated heuristically [], assuming additive contributions from the observa-
tion and state transitionmodels. An estimate to the filtering problem posed in the form of
a hidden Markov model was recently developed [] that can learn complex non-linear
models, but is limited to producing a maximum a-posteriori estimate.

e kernel Bayes’ rule algorithm, used as the basis for our approach to regression and
filtering [] in this chapter, provides a converging estimate to full Bayesian inference. It
learns non-linear models from training data, has no restrictions on the shape of prior or
posterior distributions, and has demonstrated scalability to high dimension. Its main lim-
itation is that it recovers only a maximum a-posteriori estimate at each time-step. ere is
no estimation of the uncertainty in the result. Wewill rectify this limitation by solving the
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pre-image problem for the KBR posterior, and in doing so, recover an estimate of the full
posterior density function. Earlier versions of some of our results in this chapter appeared
in []. However, we have since modified both our training algorithm and our posterior
estimation scheme, and also performed more extensive experiments.

However, before describing our algorithm, we first give a brief description of the filter-
ing variant of kernel Bayes’ rule from []. is will enable us to demonstrate posterior
recovery on both filtering and regression problems in later sections.

3.4. Kernel Bayes’ Rule Filtering

Bayesian filtering is a special case of the inference problem inwhichwe attempt to estimate
a dynamic state Xt over time using a set of noisy measurements of that state Y1,… ,Yt.
By making a Markov assumption, the problem can be framed in terms of two stochastic
functions; a state transition model s:Xt → Xt+1 that encapsulates how the state evolves
with time, and an observation model o:Xt → Yt that relates the state to an observation.
Probabilistically, the state transition model is encoded in the distribution P(Xt+1|Xt), and
the observation model in P(Yt+1|Xt+1).

e goal of Bayesian filtering is to estimate the state X at time t + 1 in terms of these
distributions and our estimate ofX at the previous time step t. Bayes’ theorem relates these
various models by

P(Xt+1|Y1:t+1) =
P(Yt+1|Xt+1)P(Xt+1|Y1:t)

P(Yt+1|Y1:t)
. (.)

eKBR analogue of this Bayesian filtering equation uses a set of samples {(xt′ , yt′)}Nt′=0
assumed to be from the joint distribution P(X,Y), and uses them to learn the state tran-
sition and observation models. Given an embedded estimate of the state at some time t,
μ[P(Xt|Y1:t=y1:t)] that is based on previous observations y1:t, and an observation yt+1, the
KBR filter computes the embedded estimate μ[P(Xt+1|Y1:t+1 = y1:t)] at time t + 1. For
brevity we will write μ[P(Xt|Y1:t=y1:t)] as μ[P(Xt|y1:t)].

To write equation . in terms of kernel embeddings, we first note that P(Xt+1|Y1:t) is
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the marginal of the transition model with respect to the prior:

P(Xt+1|Y1:t) = P(Xt+1|Xt)P(Xt|Y1:t) dXt. (.)

Using the kernel sum rule in equation ., we can write the corresponding embedding as

μ[P(Xt+1|Y1:t)] = CX+1XC
−1
XX μ[P(Xt|Y1:t)], (.)

where CX+1X is the cross-covariance operator between states at 0,… , t and 1,… , t + 1.
Decomposing the denominator P(Yt+1|Y1:t) with the sum rule yields

P(Yt+1|Y1:t) = P(Yt+1|Xt+1)P(Xt+1|Y1:t) dXt+1, (.)

for which the kernel sum rule again provides an expression,

μ[P(Yt+1|Y1:t)] = CYXC−1
XXμ[P(Xt+1|Y1:t)]. (.)

Substituting equations . and . gives an expression for μ[P(Yt+1|Y1:t)] in terms of known
quantities:

μ[P(Yt+1|Y1:t)] = CYXC−1
XXCX+1XC

−1
XXμ[P(Xt|Y1:t)]. (.)

From this point, direct application of kernel Bayes’ rule using prior P(Xt+1|Y1:t) and like-
lihood P(Yt+1|Xt+1) yields an expression for the posterior

μ[P(Xt+1|y1:t+1)] = Ct+1
XYC

t+1
YY

−1μ[yt+1] (.)

with Ct+1
XY = C(YX)XC−1

XXμ[P(Xt+1]|y1:t] (equation .) and Ct+1
YY associated with the cor-

responding embedding in equation ..

3 . 4 . 1 . E         E      

Given a set of samples {xt, yt}Nt=1 from the stochastic process at times t = 1…N, the empir-
ical embedding of μ[P(Xt|y1:t)] of the probability ofX at time t given observations y1… yt
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is of the form

μ[Xt|y1:t] = 𝐤X[⋅]T𝜶, (.)

where (𝐤X[⋅])i = k(xi, ⋅), and 𝜶 is a vector of real weights. is forms the prior for the
filtering step. e empirical estimate of the prediction step that transforms this into an
embedding μ[P(Xt+1|y1:t)] has the expression

μ[Xt+1|Y1:t=y1:t] = 𝐤X[⋅]T𝜷, (.)

𝜷 = (GXX + NεI)−1GXX+1(GXX + NεI)−1GXX𝜶 (.)

where ε is a regularisation parameter, and GXX+1 is the Gram matrix between the states
X0,… ,Xt and X1,… ,Xt+1. e observation update for the posterior distribution embed-
ding μ[P(Xt+1|y1:t+1)] given an observation yt+1 is identical to the KBR conditioning step
in equation .:

μ[Xt+1|y1:t+1] = 𝐤X[⋅]TD(𝜷)GYY((D(𝜷)GYY)2 + δI))−1D(𝜷)𝐤Y[yt+1], (.)

whereD(𝜷) = Diag(𝜷) and δ is a regularisation parameter.
If we have weighted samples from a prior distribution at t = 1, {ui, γi}Mi=1 with u drawn

from the domain ofX, and an initial observation y1, then the KBR can be applied directly
to determine an initial embedding for the filter at t = 1. Otherwise, [] suggests the
conditional embedding μ[P(X1|y1)], given by

μ[P(X1|y1)] = 𝐤X[⋅]T(GYY + NεI)−1𝐤Y[y1], (.)

from equation ..

3.5. Kernel Bayes’ Rule Posterior Recovery

Computing an estimate of the posterior distribution from either the regression or filtering
variants of the KBR is vital to analysing complex, multi-modal posterior distributions, or
using these posteriors as priors in other algorithms. Unfortunately, there is no analytical
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method for computing the inverse of a mean embedding, in fact the inverse may not even
be well-defined in general []. Finding (possibly approximate) inverse mappings from
an RKHS embedding to the original space is known as the pre-image problem, and if we
would like to obtain posterior estimates from KBR, it is the problem that needs to be
solved.

3 . 5 . 1 . T  P   -      P      

Kernel algorithms for machine learning work by creating a mapping between an arbitrary
set  and an oen higher-dimensional feature space, in which a richer set of mathematical
tools can be applied. In the case of KBR, the set  is the space of probability distributions
on a random variable X, X. ese points are mapped to a reproducing kernel Hilbert
space , through the mean map μ[⋅]:X → . Inference is performed in , with the
result being a posterior point f ∈ . is point converges to the mean map of the true
posterior μ[P(X|Y = y)] as the number of training points goes to infinity.

However, to recover an estimate of the posterior itself, we need to compute the pre-
image of f under μ[⋅], or in other words, the distribution Q ∈ X such that μ[Q] = f.
An example of this pre-image problem for KBR and a possible solution is illustrated in
figure ..

Unfortunately, the meanmapping μ is not guaranteed to be one-to-one, and the inverse
μ−1[v]may not even exist for some points v ∈ . What we can do is search for points in
X which, when mapped into, are nearby f in terms of the Hilbert norm. We can then
use such a point as an approximate pre-image []. In other words, given a point f ∈ ,
we would like to find the point p∗ defined such that

p∗ = argmin
p∈X

‖μ[p] − f‖. (.)

Figure . illustrates this idea. Although the goal is a point in , forward embeddings
only are utilised to test candidate points, with their performance measured by the RKHS
distance between their embedding and the actual embedding.

Unfortunately, exploring the entire space of probability distributions to find the distri-
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Figure ..: (Top) e raw posterior embedding, with blue regions as negative values. (Bottom)
PDF estimate using Gaussian mixture weights centered on the training points.
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Figure ..: An illustration of the pre-image problem inKBR.e posterior distribution is
a point r in the RKHS. We try to find a distribution P̂, which, when mapped
into the RKHS to a point s, is close to the posterior point r.

bution embeddingμ[P̂] closest to the posterior is intractable. To reduce the computational
burden to realistic levels, we need to make additional approximations or assumptions. In
the next sections we propose two approximation methods that enable tractable posterior
recovery from KBR.

3 . 5 . 2 . F     K      M       P   -      M     

One method for posterior recovery involves assuming a particular parametric form which
facilitates the inversemapping (in this case amixture of kernel functions), and thenfinding
an instance of that form closest to the true posterior in the Hilbert space metric. is
corresponds to restricting the search space for our pre-image to a subset of distributions
X ⊂ X.

For a random variable X, let P be the true posterior, and P̂ our recoverable estimate. P
and P̂ are elements of the set of all distributions on X, X. e problem is to determine
the P̂ which has an embedding closest to the embedding of P:
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P̂∗ = argmin
P̂∈X

‖μ[P̂] − μ[P]‖2 (.)

= argmin
P̂∈X

⟨μ[P], μ[P]⟩ − 2⟨μ[P̂], μ[P]⟩ + ⟨μ[P̂], μ[P̂]⟩ (.)

= argmin
P̂∈X

1
2
⟨μ[P̂], μ[P̂]⟩ − ⟨μ[P̂], μ[P]⟩. (.)

One choice for the search space is the space of distributions parametrised by weighted
mixtures of fixed component distributions P̂i. is restricted space has the advantage of
making the optimisation in equation . convex [].

For a set of components {P̂i}Mi=1 weighted by a vector 𝐰, distributions in 0 take the
form

P̂𝐰 =
M

i=0

wiP̂i, s.t
M

i=0

wi = 1,wi > 0 ∀i. (.)

Now, assumeμ[P] is theposterior embeddingofKBRgiven a set of joint samples {(xi, yi)}Ni=1
and so let μ[P] = 𝐤X[⋅]T𝜶, with 𝜶 ∈ ℝN. Using the parametrisation in equation .
yields

P∗w = argmin
𝐰∈ℝN

1
2

M

i=1

M

j=1

wiwj⟨μ[P̂i], μ[P̂j]⟩ −
M

i=1

N

j=1

wiαj⟨μ[P̂i], k(xj, ⋅)⟩. (.)

e addition of a regularising term λ allows us to cast the optimisation as a standard
quadratic programming problem, i.e.

P̂∗ = argmin
𝐰

1
2
𝐰T (A + 𝟏λ)𝐰 − 𝜶TB𝐰

s.t 𝐰 ≥ 0, 𝟏T𝐰 = 1 (.)
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where λ > 0 is a regularisation constant, and

Aij = ⟨μ[P̂i], μ[P̂j]⟩, (.)

Bij = ⟨μ[P̂i], k(xj, ⋅)⟩. (.)

As A is symmetric and positive semi-definite by construction, this is a convex quadratic
program. e matrices A and B depend only on the choice of kernel and the choice of
mixture components, not the distributions themselves. erefore they are only computed
once before inference begins. To recover an estimate of the posterior in terms of the mix-
ture distribution, we need only perform this optimisation. Many fast algorithms for solv-
ing convex quadratic programs exist [, , ], though scaling beyond thousands ofmix-
ture components poses a challenge.

e choice of mixture components will determine the convergence properties of our
algorithm. However, as long as we can bound the distance between the embedded KBR
posterior and our pre-image embedding, our estimate will be bounded with respect to
functions that are reasonably smooth in X(i.e. in the unit ball). is proof follows the
technique used in Lemma  in [].

Proposition ... Let P(X|Y = y) be the posterior distribution aer instantiation with
Bayes’ rule using a joint probability P(X,Y) and a prior P(X). Let μ[Pk] = 𝐤X[⋅]T𝜶 be the
posterior embeddingomKBRwith training samples {(xi, yi)}Ni=1 omP(X,Y) andweighted
prior samples {ui, γi}Mi=1 om P(X). In the computation of the KBR posterior, let the regular-
isation terms ε = N−2a/3 and δ = N−8a/27 for some a > 0. Let P̂ be fixed mixture estimate
of the posterior om equation ., and let Δ be the RKHS distance between the embedding
of P̂ and the KBR posterior, Δ = ‖μ[Pk] − μ[P̂]‖.
Assume the conergence conditions for KBR hold om theorem  in []; specifically, as-

sume that the estimate μ[π] of the prior conerges to the true prior such ‖μ[π] − μ[Pπ(X)]‖ =
O(N−a) for 0 ≤ a ≤ 0.5. Also assume that Pπ/P is in the range of √CXX, and that
EP[f(X)|Y = y] is in the range of Cπ

YY.
en for a function f in the unit ball of the RKHSX defined by the points {xi},

sup
f

|EP[f(x)] − EP̂[f(x)]| = O(N−8a/27) + Δ. (.)
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Proof. By expanding this modulus in terms of the expectation ofPk, and from the triangle
inequality,

sup
f

|EP[f(x)] − EP̂[f(x)]| ≤ sup
f

|EP[f(x)] − EPk[f(x)]| + sup
f

|EPk[f(x)] − EP̂[f(x)]|.

(.)

From the KBR consistency proof, we know that under the stated assumptions, |EP[f(x)] −
EPk[f(x)]| = O(N−8a/27). Now, using the reproducing property to expand the second term
we have EPk[f(x)] = ⟨f, μ[Pk]⟩ and EP̂[f(x)] = ⟨f, μ[P̂]⟩, and so

sup
f

|EPk[f(x)] − EP̂[f(x)]| = sup
f

|⟨f, μ[Pk]⟩ − ⟨f, μ[P̂]⟩| (.)

= sup
f

|⟨f, μ[Pk] − μ[P̂]⟩| (.)

(.)

Because f is in the unit ball in , sup
f
|⟨f, μ[P] − μ[P̂]⟩| = ‖μ[P] − μ[P̂]‖ which implies

sup
f
|⟨f, μ[P] − μ[P̂]⟩| = Δ. Substituting ε into equation . completes the proof. ■

Ideally, we would like f(x) = δ(x − t) in this proof to demonstrate point-wise conver-
gence to the true posterior. However, Dirac delta functions are not contained inX with
finite samples. Nonetheless, we can bound the -norm distance between the true Dirac
embedding and the empirical estimate by O(N−0.5) for vanishing kernel bandwidth (see
theorem  in []). is ensures point-wise convergence of the PDF itself.

3 . 5 . 3 . M         K       P         E       

e choice of mixture components has, up to this point, been arbitrary. However, us-
ing the kernel itself as the mixture component simplifies the construction of the matri-
ces A and B, and is intuitively reasonable barring any additional information. In this
case, the posterior component P̂i = ck(μi, ⋅), where c is a normalising constant such that
c = (∫ k(μi,X) dX)−1, and μi is the mean location of the i-th mixture component. e
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matrices A and B then simplify to

Aij = c2 k(μi, s)k(μj, t)k(s, t) ds dt, (.)

Bij = c k(μi, s)k(Xj, s) ds. (.)

For the Gaussian kernel, the posterior representation is a Gaussian mixture, and these ex-
pressions have analytic form. en we can write the kernel as

kx(x, x′) = (2π)k/2|Σx|1/2(x; x′,Σx), (.)

and the mixture components as P̂i(x) = (x; μi,Σi), where Σx and Σi are covariance ma-
trices. e terms of A and B are then

Aij = (2π)k/2|Σx|1/2(μi; μj,Σx + Σi + Σj), (.)

Bij = (2π)k/2|Σx|1/2(Xj; μi,Σx + Σi). (.)

Special Case: Mixtures of Training-centred Kernels

Further simplification can be gained if we take the means of the mixture components as
the training points xi. enM = N and

Aij = c2 k(xi, s)k(xj, t)k(s, t) ds dt, (.)

Bij = c k(xi, s)k(xj, s) ds, (.)

where c = (∫ k(μi,X) dX)−1. For a Gaussian kernel and assuming all mixture components
have standard deviation Σ,

Aij = (2π)k/2|Σ|1/2(xi; xj, 3Σ), (.)

Bij = (2π)k/2|Σ|1/2(xi; xj, 2Σ). (.)
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Other Choices of Mixture Components

In our experiments in this chapter we fixed the location and parameters of the mixture
components a-priori to reduce thenumber of free parameters in the algorithm. Weutilised
the kernel itself as a mixture component, and centring the mixtures at the training points.
In this case, the form of the embedding and the posterior are identical, except that the
posterior has positive normalised weights that ensure it is a valid probability distribution.

Using fixed mixture components is by no means the only strategy that could be em-
ployed with this algorithm. In chapter five, we experiment with learning the pre-image
mixture components from the training data in the context of scaling to large datasets.

Other possible strategies could include uniform grids, or multi-scale methods in which
successively finer mixtures are used to approximate regions of greater probability. ese
types of pre-images are the subject of future work. As with any mixture model, high-
dimensional problems will requiremany components to represent a complex distribution.
Similarly, the MKBR algorithm will perform poorly in regions away from training data
(like any non-parametric method). However, it is worth emphasising that the choice of
mixture components in no way affects the underlying inference process, and merely cor-
responds to different approximations of the embedded posterior.

3 . 5 . 4 . N      -W      P         E        

Another, simpler approach to obtaining a density estimate from the posterior embedding
of KBR is to still use training-point centred kernel mixtures as a candidate distribution,
but simply clip and normalise the posterior weights directly to produce a valid PDF. is
idea follows from the simplification of KBR used in []. ere is currently no proof of
convergence for this technique, but we demonstrate good empirical results. is method
is also numericallymuchmore efficient, requiring no optimisation step, and as such is used
in chapter five to scale MKBR to very large datasets.

eexpression for the joint embedding inKBR(equation .) produces aweight vector
𝜷 such that

ĈXY =
N

i=1

βik(Xi, ⋅) ⊗ k(Yi, ⋅), (.)
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where 𝜷 = (GXX + NεI)−1G−1
XXGUX𝜸 and 𝜸 is the vector of prior weights.

e subsequent posterior expression can be simplified if we approximate 𝜷 with ̂𝜷:

β̂i =
max(βi, 0)

∑N
j=1 max(βj, 0)

. (.)

Now ̂𝜷 has the properties that ̂𝜷T𝟏 = 1 and ̂βi ≥ 0∀i.

Whilst this initial normalisation is not strictly necessary to produce a posterior estimate,
the positive weights allow a simpler Tikhonov regularisation [] to be used for calcu-
lating the KBR operator RX|Y from equation .. We use μ[X|y= y] = 𝐤T

X[⋅]R̂X|Y𝐤Y[y],
where

R̂X|Y = (D( ̂𝜷)GYY) + NδI
−1

D( ̂𝜷), (.)

andD( ̂𝜷) = Diag( ̂𝜷). An analogous simplification occurs for the filtering prediction step.

Using the same clipping and normalisation again on the posterior weights, we can ap-
proximate the posterior embedding by μ[X|Y=y] = 𝐤T

X[⋅]�̂�, where

�̂� = R̂X|Y𝐤Y[y], (.)

α̂i =
max(αi, 0)

∑N
j=1 max(αj, 0)

. (.)

For a stationary kernel, the embedding c𝐤X[⋅]T�̂� is also a valid probability distribution
on , where c = ∫ k(0, x) dx

−1
. Rather than find the minimum of the quadratic pro-

gram in equation ., we can use it directly as a point in the viable set of the optimisation.
With a suitable training scheme, this approximation has shown good empirical results in
experiments.

We have now presented two methods for recovering posterior distribution estimates
from embedded posteriors. We now give an algorithmic overview of how to compute
these estimates in tandem with the KBR algorithm.
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3 . 5 . 5 . T  M   -M     K      B    ’ R    A        

In this section we now give an algorithmic description of how these posterior recovery
methods are used in combinationwith theKBR for performing both regression and filter-
ing. Assuming we are using kernels as mixture components (as described in sections ..
and ..), we denote the combination of KBR with kernel mixture estimates as multi-
modal kernel Bayes’ rule (MKBR).

In the regression case, the goal is to estimate the conditional posterior P(X|Y = y∗) of
some random variable X, given an observation y∗. Rather than consider a single observa-
tion, we oen want to evaluate a set of query points {y∗i }Ti=1. e corresponding output of
the algorithm is a set of vectors {𝐰∗

i }Ti=1 that define the posterior distribution at each query
point y∗i . For the filtering case, the conditional posterior is P(Xt|Y=y∗1:t).

e relationship between X and Y is learned from a set of training points {xi, yi}Ni=1, in
the regression case drawn from the joint P(X,Y), and in the filtering case from the joint
process P(Xt,Yt), i.e. {xt, yt}Nt=1. e prior for X is estimated using samples {ui}Mi=1 from
the prior P(X) (or P(X1) in the filtering case) with associated weights {γi}Mi=1.

e algorithm requires kernel functions kX and kY to be given, which specify the partic-
ular RKHS in which the probability distributions will be embedded. We assume that the
posterior mixture components are given by the kernels themselves centred at the training
points, but if this assumption were relaxed then the components would also need to be
specified.

In the regression case, there are a number of terms that can be pre-computed for all query
points. ese are the pre-image matrices A and B from equation ., the joint embed-
ding coefficients 𝜷 in equation ., and the RX|Y operator used to compute the posterior
weights, in equation . or .. Once these have been calculated, the algorithm loops
through every query observation y∗i , computes the embedding 𝐤Y[y]i = ∑N

j kY(yj, y∗i ),
then calculates the posterior embedding𝜶i from equation .. Finally, using either equa-
tion .or ., theposteriormixtureweights are calculated. Algorithmgives anoverview
of this procedure in pseudo-code.

e filtering case is very similar. e important point to note here is that recursive es-
timation of the embedding can occur without the need to compute the pre-image. e
filter continues to iterate, with a pre-image calculation only performed when an estimate
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Algorithm :e MKBR regressor described in pseudo-code.
Input: training set {(xi, yi)}Ni=1,
weighted prior samples {j, γj}Mj=1,
kernels and parameters (kx, ϑx), (ky, ϑy)matrix regularisers ε, δ,
pre-image regulariser λ,
mixture components {μk, σk}

Q
i=1 observation queries {y∗k}

T
t=1

Output: posterior mixture weights {𝐰∗
t }Tt=1

Calculate pre-image matrices A, B (Eq. .);
Calculate joint 𝜷 (Eq. .) ;
Calculate RX|Y (Eq. . or .);
for i ← 1toT do

Embed observation 𝐤Y[y]i = ∑N
j ky(Yj, yi);

Calculate posterior𝜶i (Eq..);
Find mixture weights𝐰i (Eq. . or .);

end

of the distribution is required external to the algorithm.
e initial embedding is computed through the technique described in equation .,

and the pre-image matrices A and B pre-computed from equation .. Because the esti-
mation is recursive, we cannot pre-computeRX|Y as this operator relies on the prior, which
is the posterior embedding from the previous time-step.

At each time-step, the predictive distribution embedding is calculatedwith equation ..
If there is no observation, this embedding is updated by embedding the observation, then
computingRX|Y and the posterior, by equation .. e posterior for this time-step is then
set as the prior for the next time-step. Should an estimate of the pre-image be required, it
is computed with equations . or .. Note that in the filtering case it is also possible to
use either method of pre-image recovery. Algorithm  gives a pseudo-code outline of the
MKBR filter.

3 . 5 . 6 . C           C         

For N training points, T query points, the computational complexity of the regression
algorithm is O(TN3). If the pre-image optimisation is performed as per equation .,
then this is the naïve complexity of solving the convex quadratic program. If the normed-
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Algorithm :e MKBR filter described in pseudo-code.
Input: training set {(xi, yi)}Ni=1,
weighted prior samples {βj, uj}Mj=1,
kernels (kx, ϑx), (ky, ϑy) pre-image regulariser λ,
mixture components {μk, σk}

Q
i=1 initial observation y0

Output: posterior mixture weights𝐰t+1

Calculate pre-image matrices A, B (Eq. .);
Calculate initial embedding 𝜶0 (Eq. .);
while running do

Calculate prediction 𝜶P
t+1 (Eq. .) ;

if new observation yt+1 then
Calculate Λ = diag(𝜶P

t+1);
Embed observation 𝐤Y(y)i = ky(Yi, yt+1);
Calculate posterior𝜶t+1 (Eq. .);

else
Use prediction𝜶t+1 = 𝜷t+1;

end
if estimate then

Find mixture weights𝐰t+1 (Eq. . or .);
end

end
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weights method is used as per equation ., then the most expensive step is the matrix
multiplication in equation ..

e filtering case is also O(TN3), but there is an additional term with that complexity,
which is computingRX|Y as per equations . or .. Note that in the filtering case, both
the input and output of the KBR are embeddings, meaning that the filter can run inde-
pendently of whenwe choose to recover estimates. We could, for instance, only recover an
estimate when a user queries, or when a particular condition is met. is would have no
effect on the embeddings computed in the filter.

3.6. Parameter Learning

As seen in the previous section, there are a number of unknown parameters in the MKBR
algorithm. ere are two regularisers in theKBR, plus one in the quadratic program for re-
covering posterior estimates. Any parameters of the kernels usedmust also be determined.
Finally, there are the parameters of the posterior mixture components; their positions and
length-scales in each output dimension.

A common approach to learning unknownparameters in an algorithm is to define a cost
function that characterises the quality of the algorithm’s output, then use the unknownpa-
rameters as variables in an optimisation trying tominimise this cost function. e original
KBR algorithm took this approach with a cost function defined as the mean-squared er-
ror between a maximum a-posteriori estimate of the posterior (the mode), and a training
point. However, point statistics such as these poorly represent the structure of a probabil-
ity distribution.

Amore rigorous cost functionwould attempt to characterise the difference between the
estimated distribution and the true posterior. Measures such as the Kullback-Leibler di-
vergence or mutual information would be appropriate [], but the requirement to know
the true conditional posterior for the training data is unrealistic for most real problems.

erefore, a compromise measure is needed that properly accounts for the shape and
multi-modality of the posterior estimate, but that can be evaluated with access only to
{xi, yi} samples from the jointP(X,Y). One choice that has been successful in theGaussian
process literature is the negative log-probability (NLP) []. is cost function measures
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the log-probability of drawing a ‘true’ value xi from the posterior distribution estimated
by conditioning on yi. Using the log of this quantity make evaluating it simpler with lim-
ited floating point precision, and taking the negative ensures that cost decreases with an
increasing quality of the solution.

To define this cost function explicitly, let {(xi, yi)}Ni=1 be samples from the joint P(X,Y),
and let P̂(X|Y= yi; ϑ) be the posterior estimate produced by the MKBR algorithm when
conditioned on a training observation yi, with unknown parameter vector ϑ ∈ ℝM.

en the NLP cost function is

C(ϑ) = −
N

i=1

log P̂(xi|Y=yi; ϑ). (.)

Here ϑ is a vector composed of theM unknown parameters in the algorithm: the kernel
widths σx and σy (section ..), the matrix regularisers ε and δ (section ..), and the
pre-image regulariser λ (section ..);

ϑ = (𝝈x,𝝈y, ε, δ, λ). (.)

In practice, the training function in equation . is prone to over-fitting. We therefore
use k-fold cross-validation to evaluate it on hold-out sets of the training points. We divide
the training data into k (approximately) evenly sized groups, then evaluate the cost func-
tion for each fold, using the other k − 1 folds as the training data for that evaluation. If
I = 1…N and Ik is the set of indices of the kth fold in the training set {xi, yi}Ni=1 then the
resultant cost function is

CCV(ϑ) =
−1
N

k

j=1


i∈Ij

log P̂I\Ij(xi|Y=yi; ϑ), (.)

where P̂I\Ij is the distribution estimate trained on the joint training samples with indices
in I\Ij. Taking the mean over the testing points allows for comparison between different
sized training sets. In other words, the cross validation function chooses a ϑ, then uses
algorithm  tomake posterior predictionswhich are evaluatedwith theNLP cost function
on the hold-out data. e computational complexity of the training scheme isO(N4) per
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iteration, due to the need to evaluate the hold-out sets for each fold.
e k-fold cross validated NLP described in this section is the cost function we use for

all subsequent work in this thesis unless otherwise noted.

3 . 6 . 1 . I           

Practically speaking, parameter learning is the biggest challenge to creating an efficient im-
plementation ofKBR, and so also ofMKBR. Both theKBR algorithm and our extensions
are prone to numerical instability from the Gram matrix inversions, and the parameter
space generally contains local minima requiring robust global search strategies. Addition-
ally, the computational cost associated with training can be high, as both the original cost
function in [] and the one developed above, partially due to the computation of the
posterior weights, but also the optimisation required to recover the posterior estimate (or
MAP estimate in the case of []. e use of cross-validation further exacerbates the issue.

Despite these challenges, a numerically efficient implementation and a good-quality
global optimiser can demonstrate fast and reliable training for filtering and regression
problems. Weemploy the global search algorithmknowasmulti-level single linkage (MLSL) []
for the M-dimensional optimisation of ϑ, which seeds many local convex optimisations
from random starting points in the search space. e implementation also utilises low-
discrepancy sequences rather than random numbers, which improve the convergence rate
by increasing the expected spacing between random draws []. For the local optimiser,
we use Powell’s canonical implementation of constrained optimisation by linear approx-
imations (COBYLA) []. is is a derivative-free algorithm that constructs successive
linear approximations to the cost functions.

Within the pre-image method, the convex quadratic program solver implementation
utilises themethodofmoving asymptotes (MMA), globally converging algorithmutilising
analytic derivative information []. All the implementations of these optimisers are part
of the ‘NLOpt’ soware package [].

Numerical Stability

A significant problem in implementing an efficient training scheme is that many com-
binations of kernel width parameters and regulariser for the Gram matrix inversion will
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result in the required linear solve not converging (for instance, equations . and .).
is yields a numerical error in the implementation, effectively ruling out gradient-based
search algorithms, as the search must be re-started from a different point.

We take a number of steps to alleviate this issue. e first is to never explicitly compute a
matrix inverse, but instead to perform Cholesky decompositions and solve the equivalent
linear system. We use a Cholesky decomposition routine which to solve the linear system
𝐱 = A−1b decomposes A such that A = LLT, then computes L𝐲 = b and L∗𝐱 = 𝐲. is
is much more stable numerically than explicitly computing the inverse matrix A−1.

We also use a variant of the ‘jitChol’ algorithm used in the venerable GPML Gaussian
process MATLAB implementation [] to increase stability. JitChol is a function that
attempts to solve the linear system associated with the requestion matrix inversion. If the
solver returns an error, then a jitter or regulariser is added to the lead diagonal of the ma-
trix, and the solve re-attempted. e jitter is doubled until the solver returns a valid so-
lution. e aim here is to remove any small negative eigenvalues from the matrix that are
preventing the solver from successfully completing a Cholesky decomposition.

Our approach extends jitChol; rather thanusing the successful returnof the linear solver,
we compute the error bounds of the inversion explicitly by considering ‖Ax− b‖. If a fixed
accuracy bound is not satisfied then jitter is added. We also implement a smart caching
system for remembering the size of previous jitter additions, to minimise the number of
times the inversion has to be re-computed to meet the error criterion.

3.7. Experiments

To demonstrate the effectiveness of the MKBR filter and regressor, we performed several
experiments modelling motion in robotics applications designed to require multi-modal,
non-linear estimation.

efirst experimentwas amulti-modal tracking simulation of an entity able to takemul-
tiple routes around a fixed track decided by coin tosses at the junctions, with infrequent
observations. e resultant distribution in space for the entity must be multi-modal until
the track it took at the most recent junction was observed. e performance of our filter
was compared with variations of a standard particle filter given the true underlying mod-
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els (and even the coin tosses) [], as well as a GP-Bayes particle filter that uses Gaussian
processes to model the underlying prediction and observation distributions [].

e next experiment was another filtering challenge involving real data taken from an
inertial measurement unit (IMU) attached to a slot car as it looped around a fixed track.
e challenge was to predict the rate of progress of the car along the track given only raw
IMU data, effectively learning the car’s motion model and implicitly the geometry of the
track. Our filter was again compared against the GP-Bayes particle filter.

Finally, the third experiment was a regression problem addressing estimation of a direc-
tion field associated with track of pedestrians moving in an indoor area. A probabilistic
map of allowable velocities was created, and used by a set of simulated robots to perform
path planning. Our algorithm was compared against the published implementation []
which uses a GP to model the direction field [].

We now give a brief overview of the algorithms against which we compared our tech-
niques, before detailing the experimental setup and results.

3 . 7 . 1 . C         A         

For the experiments, we compared MKBR against standard algorithms used in robotics
for filtering in regression:

Gaussian Process Regression

Gaussian processes regression (GPR) is a generalisation of multi-variate Gaussian regres-
sion, to potentially infinite-dimensional function spaces []. Unfortunately, whilst the
kernel literature including the original KBR paper [] denote a true state as x and a (pos-
sibly noisy or indirect) observation with y, the GP community do the opposite. At risk of
confusing those more familiar with the latter, we will use notation consistent with the rest
of the work in this thesis, which follows the x as state, y as query convention.

GPR requires a set of training points {xi, yi}Ni=1 and a covariance function k(⋅, ⋅) in the
form of a positive-definite kernel. Given a set of query points {y∗i }Mi=1, the GPR algorithm
returns an estimate of P(X|Y = y∗i ), assuming that the underlying relationship between
X and Y is X = f(Y) + ε, where f is an arbitrary function, and ε is Gaussian-distribution
noise with mean 0 and variance σ. GPR assumes the query points and the training data





.. Experiments

are actually a single point drawn from anN+M-dimensional Gaussian distribution, with
mean  and covariance defined by

⎡
⎢⎢⎢⎢⎣
x
x∗

⎤
⎥⎥⎥⎥⎦ = 

⎛
⎜⎜⎜⎜⎝0,

⎡
⎢⎢⎢⎢⎣
G GT

∗
G∗ G∗∗

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ (.)

where G is the covariance (Gram) matrix Gij = k(xi, xj), (G∗)ij = k(xi,X∗
j ) and (G∗∗)ij =

k(x∗i , x∗j ). Conditioning on the training data yields a Gaussian distribution at the query
points with mean

E[x∗] = G∗ [G + σI]−1 𝐲 (.)

and variance

var[x∗] = G∗∗ − G∗ [G + σI]−1 KT
∗ . (.)

Gaussian process regression is able to represent complex, non-linear functions, but can-
not representmulti-modal distributions, as the predicted distribution at every query point
is a Gaussian. It is also non-trivial to extend GPs to the case where X is more than one-
dimensional, although this is an area of current research [, ].

Computationally, GPR is dominated by theO(N3)matrix inversionwith the number of
training points. Evaluating a query point is amatrix-vectormultiplication, which isO(N2)
in general.

Particle Filter

Particle filters are a sequential Monte-Carlo approach to solving the Bayesian filtering
problem by approximating distributions with a set of samples or particles, and propagat-
ing these through the prediction and observation models [, ]. ese models must be
known a-priori.

Given a state transition model P(Xt+1|Xt) and observation model in P(Yt+1|Xt+1), a
particle filter produces a state X at time t + 1 conditioning on a set of observations {yi}ti=1
as per equation ..
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One ubiquitous and successful variant of particle filtering is the sequential importance
re-sampling (SIR) filter []. Given a set of samples {(xi)}t which approximateP(Xt|Y1:t =
y1:t) the SIR particle filter computes a set of updated samples {(xi)}t+1 approximating the
distribution P(Xt+1|Y1:t+1=y1:t+1).

First, a new set of particles are sampled from the proposal distribution, usually the prior
prediction probability, by

x(t+1)i ∼ P(Xt+1|Xt = xti) (.)

given yt+1, the importance weights of these samples (up to a normalising constant) are
calculated through the observation model:

w(t)
i = w(t−1)

i P(Yt+1=yt+1|Xt+1). (.)

ese weights are then normalised such that∑i wi = 1. eweighted samples now repre-
sent an estimate of the distribution P(Xt+1|Y1:t+1). To ensure that particles are located in
regions of high probability mass, we can re-sample the particles to obtain an un-weighted
estimate. Simply drawing from the particles with probability given bywi andwith replace-
ment yields a new particle population.

Common techniques used to estimate the distribution represented by the particles in-
clude Parzen windows, and histograms based on spatial partitioning. Computationally,
the particle filter is a linear algorithm in the number of particles, but the particle count
required for a given accuracy scales exponentially with dimensionality.

GP-Bayes Particle Filter

eGP-BayesFilter is amulti-modal, non-parametric filter byusingbanks ofGaussianpro-
cess regressors to learn the prediction and observationmodels for a SIR particle filter [].
Given a set of samples {xt, yt}Nt=1 of state and observation pairs, theGP-BayesFilter approx-
imates the state transition and observation models with
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estimation. Red stars represent the points where the particle decides between the
blue and red trajectories, and again between the yellow and green trajectories. Ob-
servations are taken only at points represented by black dots. (Right) An example of
training data drawn from the simulation.

P̂(Xt+1|X1:t) =  Xt+1; μp,Σp (.)

P̂(Yt+1|X1:t+1) =  Yt+1; μo,Σo , (.)

where the means and covariances are given by Gaussian process regressors, trained on
(xt+1, xt) pairs for the prediction model and (xt, yt) pairs for the observation update.

If eitherX orY is multi-dimensional, then a separate GP is required for each dimension.
Computationally, theGP-BayesFilter particle filter is dominated by (P+Q)Gaussian pro-
cess evaluations for every time-step (whereX ∈ ℝP andY ∈ ℝQ), which are eachO(N3) in
the number of training points if attempted naïvely, though it is possible to achieveO(N2)
through sequential updating.

3 . 7 . 2 . E          1 : M   -      T       S        

Experimental Setup

is experiment simulated a particle moving around two concentric loops. At the inter-
sections of these two loops, the particle randomly chooses to follow one loop or the other.
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However, observations of the particle only occurwhen it is half-way round the loop, which
means that a filter predicting the location must consider both possible trajectories. is
problem is oen encountered in the robotics localisation domain, in which predictions of
a targetmoving around an obstaclemust consider the differentways inwhich that obstacle
could be avoided. is simulation is illustrated in figure ..

e equations of motion of the particle in -D were

x = cos(2π/20t), (0.5 + 1.5η) sin(2π/20t) + Zt, (.)

where η is a Boolean-valued random variable that was re-drawn at t = 0, 10, 20,… and
Zt is zero-mean Gaussian process noise with σp = 0.05. Observation noise is similarly
distributed with σo = 0.02, and observations were taken every five time-steps.

We tested with problem dimensionality from -D to -D. For dimension n > 2, the
plane of the loopswas subject ton randomsub-plane rotations using the formulaX′ = RX,
where

R =
n


i=1

Ri(ϕi), (.)

(Ri)I1I1 = cos ϕi (.)

(Ri)I2I2 = cos ϕi (.)

(Ri)I1I2 = − sin ϕi (.)

(Ri)I2I1 = sin ϕi. (.)

e noise was computed in n dimensions aer the rotations had occurred. e angle ϕi
is drawn from (0, 0.5π), I1 and I2 are random indices from 1… n, and the other entries of
Ri are zero.

Comparison Algorithms

We compared our MKBR filter with a number of variations of particle filters, using the
average log-probability (LP) of the test data under the predictive posterior []. As dis-
cussed in section ., this measure properly accounts for complex posterior distributions
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that may be multi-modal. e more probability mass an algorithm has assigned to the
test point, the greater the performance. As the total probability mass for the predictive
distribution is constant, this measure allows comparison between different algorithms—
essentially measuring how likely each algorithm considered the test data to be.

Given test data {x∗i , y∗i }Mi=1 the LL of a posterior estimate P(x|Y=y∗i ) is

LL =
1
M

M

i=1

log P(x∗i |Y=y∗i ) . (.)

e first algorithm, and comparable with ours, is the GP-BayesFilter particle filter, in
which the process and noisemodels are estimated using banks of GPs trained on  sam-
ples from the trajectory. is algorithm is denoted GPPF in our results.

We also considered variations of the standard particle filter, actually giving the exact
state transition and observation models from the simulation. e first, denoted PF, was
not given the value of the random variable η that determines which path was being taken.
ismeant that the predictionmodel assignedparticles to bothpossible paths. e second
variation, denoted EPF, was given the value of η at every time-step. is meant that the
EPF had the exact transition and observation models, and never even needed to make a
multi-modal estimate.

All these particle filters were tested with , ,  and , particles. Prob-
ability distributions were estimated at each time-step using a Gaussian Parzen window
estimate. Two variations on bandwidth selection were tested, the normal approximations
(Silverman’s rule) [], and an a-posteriori optimisation to maximise the probability, de-
noted by GPPF-O in our experiments. ough such an optimisation is hardly fair, it does
place an upper bound on the possible accuracy of the particle filter methods.

We examined three variations of our filter. e KBR-N filter used the normed-weights
method for approximating the posterior distribution. e KBR-NS method also used
normed-weights, but pre-scaled all data to have mean zero and standard deviation one.
e KBR-J used the full pre-image estimation, with kernel mixtures centred on the train-
ing points, and a joint optimisation of the kernel widths and pre-image regulariser. All
variations utilised a spherically symmetric Gaussian kernel.

e MKBR filters were given the same  training points as the GPPF. e unknown
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Figure ..: Results for the multi-modal particle simulation. e sets of four points in each colour
indicate results for ,, and , particles. In every case the accuracy of
the result increased with particle count.

parameters were trained using the procedure outlined in section ... e GPs in the
GPPF were trained with the standard marginal likelihood method []. We used Python
implementations of the Gaussian process [] and the SIR particle filter¹.

Results

e results of this simulation are plotted in Figure ., and tabulated in the appendix in
table B.. For all the particle filters, larger numbers of particles increased the accuracy of
the posterior estimates as expected, and the dimensionality of the problem saw a corre-
sponding decrease in performance. Unsurprisingly the filter not given access to the latent
transition variable η (PF) performed worse than the EPF and OPF which did have access
to this information. e OPF performed significantly better than the EPF, illustrating
the difficulty of estimating the Parzen window bandwidth: e EPF estimated the band-
width using Silverman’s rule, whilst the OPF optimised it a-posteriori. is difference was
enhanced in higher dimensions.

e GPPF performed the worst of all the particle filters. Given that it was forced to

¹ProbRob version , http://launchpad.net/probrob
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represent the motion and observation models using a uni-modal set of GPs, this result is
to be expected. A GP-based solution to this problem would require explicitly modelling
the latent variable, and the two separate paths.

evariations of ourMKBRalgorithmdisplayed significant differences in performance.
e NS variation, which used normed weights and normalised the data to a mean of zero
and unit standard deviation in each dimension, performed the worst of all algorithms
tested. e likely explanation is that the re-scaling distorted the ring structure, making
points at the same location in the ring, spread out over a whole dimension, now on the
same scale as points on opposite sides of the ring, but in the plane. erefore a tensionwas
introduced in which the kernel width needed to be large in some dimensions and small
in others. Our experiment used spherically symmetric kernels which meant this was im-
possible, and a compromise resulted in poor performance. Having more complex kernel
functions that could vary in length scale per dimensionwould likely alleviate this problem.

e two other variations of theMKBR algorithm, theMKBR-Nvariantwhich used the
normedweights pre-imagemethod, and theMKBR-J variantwhichused the full quadratic
program pre-image, displayed the highest performance. e -J variant was unbeaten in all
dimensions, whilst the -N variant overtook the OPF particle filter from D onwards. e
superior performance of these algorithms must come down to the underlying representa-
tionof the posterior distribution, as theMKBRmethodswere at a disadvantage in terms of
accurate prediction andobservationmodels. euniformlyweightedpoint-basedmethod
of representingdistributions employedbyparticle filters are known toperformpoorlywith
dimension [].

e log-probability results for the MKBR -N and -J variants actually increased in per-
formance with dimension. is result is more an artefact of the behaviour of the log-
probability function in high dimensions, rather than a real increase in performance. e
behaviour can be explained by recalling a property ofN-dimensional Gaussians. For small
variance, probability mass gets increasingly concentrated near the mean as dimensional-
ity increases. Consider the N-D Gaussian PDF with spherically symmetric covariance
Σ = σI:

P(X) = (2πσ2)−0.5D exp −
‖x − μ‖2

2σ2  . (.)
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Figure ..: Results for the multi-modal particle simulation with the D log 8 factor subtracted to
remove dimensionality effects as per section ...

In our training, σ ≈ 0.05 for all dimensions. erefore the PDF for a mixture component
was approximately

P(X) ≈ 8D exp −
‖x − μ‖2

2σ2  . (.)

As long as the accuracy of the simulation (asmeasured by the normbetween the true point
and the nearest mixture component) was increasing reasonably slowly, we would expect
to see an increase in the probability with dimension from the scaling factor 8D. e same
results plotted with this factor subtracted can be seen in figure ..

e -J variation of theMKBRwith the full pre-image estimate found by joint optimisa-
tionperformed thebest of all themeasures. is is likely due to the increased regularisation
of the solution from the additional parameter in the convex optimisation (eq. .). e
normed weights solution tended to blur out the position of its estimate over a couple of
time steps, an effect that was reduced by the pre-image regulariser, hence increasing the
accuracy of the posterior estimate.

Analysing individual time steps indicates that the MKBR algorithms were able to learn
the behaviour of the particle including the existence of the latent variable. e algorithm
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Figure ..: e MKBR filter is able to learn the multi-modal path, which then collapses when an
observation is made at t=. Now that the measurement has been made the particle’s
trajectory is determined for the rest of the loop, so a uni-modal prediction is sufficient.
e MKBR learns this behaviour directly from the data. e star at T = 95 indicates
an observation made at that time-step.

knew that once the particle is observed in one track, it would stay in this track even though
it was no longer being observed. is behaviour is illustrated in figure ..

3 . 7 . 3 . E          2 : I        S    C  

Experimental Setup

esecond experiment involved aminiature slot carmoving around an -metre trackwith
loops and banked curves. Inertial data was takenwith a small IMU attached to the car. An
overhead camera provided ground truth for the position of the car, which was interpreted
as a scalar quantity equivalent to (un-normalised) proportion of the track complete. e
derivative of this quantity is the norm of the car’s velocity vector, or its velocity in the
direction of motion. e goal of the experiment was to predict the track velocity of the
car, using the six-dimensional IMUdata as observations. enameof the datasetwas “Slot
Car Inertial Measurement”, taken from [].

e relationship between the IMUand the forward velocity of the car is complicated by
the track; the car changes speed depending on the banking and slope of the track. Given
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Figure ..: e slot car experimental setup. A slot car was fitted with an IMU as it was driven
around a fixed track.

the variability of these features in the track, the resulting likelihoods are non-trivial (time-
varying) functions of the IMU variables. To compare performance of the algorithms we
used the probability of the true state in the filter’s posterior estimate which properly ac-
counts for the generality of the distributions output by our filter.

Algorithms

Wecompared theperformanceof our algorithmwith theGP-BayesFilter particle filter [].
Both algorithms were estimating a full posterior over the car’s position. ough there are
many possible filters withwhich to compare, we are focussing on two filter properties: e
ability to learn observation and transition models from data, and the ability to represent
arbitrary posterior distributions. Standard filters such as the EKF are ruled out on both
counts, and have previously been compared with the original KBR in [], performing
poorly in non-Gaussian problems such as this.

e filters were both given  data points for training corresponding to approximately
five loops around the track. e GPPF used , ,  and , particles. e
ground truth for the experiment was given as a -D filtered track velocity from the over-
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Figure ..: e slot car training data, measured in metres per time step. is is the training data
for the algorithms.

head camera. Measurements from the IMU were six-dimensional vectors of pitch, yaw,
roll, and x, y, z accelerations. We tested on  data points. Posterior distributions for the
GPPF were obtained from the particles via a Parzen estimator, with bandwidth set using
twomethods. efirst, denotedGPPF, used the normal approximation, otherwise known
as Silverman’s rule of thumb. e second, denoted OPF, used an optimiser to determine
the bandwith that maximised the posterior probability. e GP implementation used for
both of these variations utilised the maximum marginal likelihood estimation method for
learning GP hyperparameters from the training data, following [].

Results

Table . lists the results. Both MKBR algorithms outperformed the GPPF in this mea-
sure. As expected, the accuracy of theGPPF algorithms increased with particle count, but
it was still not able to compete with our methods, even with , particles. ough
the GPPF was able to represent non-Gaussian posterior estimates, the underlying motion
model relating the IMU variables was Gaussian. Furthermore, each dimension of the mo-
tionmodel wasmodelled by a separateGP,meaning there could be no covariance between
different dimensions of the model. is contrasts with our method which can represent
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themulti-dimensional, non-Gaussian predictionmodel as a high-dimensional RKHS em-
bedding. Once again, the choice of Parzen window bandwidth had a significant effect on
the performance of the GPPF models. e PF variation which used Silverman’s rule per-
formed significantly worse than the OPF which learned the bandwidth a-posteriori.

Figure . illustrates the posterior estimates of the different algorithms. e PF es-
timated the bandwidth too low, meaning the resultant distribution was over-confident.
e optimised bandwidth was very large, owing to the low accuracy of the model repre-
sentation. is againmeant a low log-probability at the test locations. A single slice of the
posterior at T = 320 emphasises this effect, shown in figure ..

Unlike the previous experiment, in this instance the normedweights pre-imagemethod
(denotedbyN)outperformed the full pre-image estimation algorithm(denotedby J).is
suggests that posterior estimates generated by the normed weights method may have dif-
ferent characteristics from the full pre-image estimator that might be beneficial to certain
types of problem. Understanding this intriguing result more fully is the subject of future
work.

Another,moremundane explanation is that theparameter learningwasnot sufficient for
the full pre-image algorithm. As each iteration of the cross-validation contains a convex
quadratic program, it is a very time consuming process, and may not have run for long
enough to find a good optimum for the algorithm parameters ϑ. For more details on the
cross validation scheme, see section ..

3 . 7 . 4 . E          3 : P          V       F    

e third experiment involved generating a normalised velocity field for the purposes of
indoor robot navigation []. Pedestrians moving around an indoor office space were
tracked using a SICK laser. From this data, tracks of their position as a function of time
were computed. At each point on the track, the direction of motion of the pedestrian can
be estimated. Building up this velocity information for many pedestrians provides data
about common paths through the area. ese paths are useful for robots later navigating
in the area, as it allows them to take advantage not only of a human’s avoidance of obstacles
which might be difficult to detect, but also because it gives the robot information about
social boundaries such as office cubicles which might not normally be used as a thorough-
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low. In each graph the true value is shown with a vertical line.

Table ..: Results for the slot car dataset

Algorithm Mean log-probability
GP-PF -. ±.
GP-PF -. ±.
GP-PF -. ±.
GP-PF -. ±.
GP-OPF -. ±.
GP-OPF -. ±.
GP-OPF -. ±.
GP-OPF -. ±.
MKBR-J -.±.
MKBR-N -. ±.

fare. e data for this experimentwere taken from theUTSRobotAssist project []. e
inputsY of the algorithmwere taken as Dpositions in the room, and the underlying states
X were the angles of the velocity field, represented as quaternions to avoid interpolation
issues across the angle discontinuity.

We compared ourMKBR algorithm to the original implementation in [] which used
a Gaussian process to model the direction field as a deviation from some prior model. In
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Table ..: e results of the pedestrian dataset.

Algorithm Mean log-probability
GP .

MKBR .

their experiment, the prior was a normalised velocity, which at every point, was aligned
towards a single destination point. We have elected to make the destination an area rather
than a point which corresponds to the yellow box in figure .. As a result, the prior ve-
locity field pointed straight down everywhere in the test area. For the GP, this involved
setting the prior mean to −π/2, and for the MKBR, we created an embedded prior distri-
bution from Gaussian samples centred around −π/2.  training points were given to
both algorithms, which were randomly sampled from all available tracks which ended in
the area of interest. e tracks were smoothed using a -point Hamming window before
calculating velocity. To allow for meaningful interpolation, the angles were expressed in
quaternions before being given to the algorithms. Note that this mean that two GPs were
required, as in the original implementation.  other points were sampled from the
smoothed tracks for testing.

e GP hyper-parameters were trained using the maximum marginal likelihood, with a
convex optimiser following []. e MKBR used  mixture components for the pre-
image, evenly distributed over (−π, π). e results of the experiment appear on table ..

e MKBR algorithm outperforms the GP, primarily because of its ability to represent
multi-modal distributions. e corridor at the top of the image in figure . had people
walking in both directions to reach the same destination. As the GP is only able to learn
a uni-modal posterior, the result is a weighted average of the two directions, which in this
case points straight down. On the other hand, the MKBR is able to learn a bi-modal
distributionwhich points both le and right. See figure . for close ups of this behaviour
on the testing data.

To illustrate how this result would be useful to a real robot, we performed a simulation
of a simple indoor robot using the posterior direction field learned by the algorithms to
navigate from a starting position to the goal area. e robot first evaluated the posterior
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(a) e training data derived from SICK
laser scans of pedestrian pose

(b) (Top) mixture components are plotted
as arrows. e distribution is bi-modal
le and right. (Bottom) e GP must
average the tracks going le and right,
with erroneous result

Figure ..: Training data and posterior inset.

at its location. e robot then moved in the resulting direction for about . metres, and
re-evaluated the posterior. In the case of amulti-modal posterior, the robot used themode
which was within π of its current orientation.

Figure . depicts these robots navigating from various starting locations and orienta-
tions. Notice that in the MKBR case, robots are able to move down the top corridor in
opposite directions, whilst the robots using the GP are caught by the averaging of the two
directions and as a result hit the wall.

3.8. Summary

In this chapter we have presented a new algorithm for Bayesian regression and filtering,
MKBR. By building on kernel Bayes’ rule, we have created an algorithm that can perform
tractable Bayesian inference on non-Gaussian, multi-dimensional distributions, learning
those distributions directly from sampled data. e output of the algorithm is a full pos-
terior estimate in the form of a mixture distribution. Our algorithm works by solving the
pre-image problem for the posterior embeddings generated by KBR. It embeds a mixture
distribution with fixed components and variable weights, then determines the optimal
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Figure ..: Robot navigation from direction maps

weights of themixture tominimise the RKHS distance between the posterior embedding
and the embedding of the mixture. ese full posterior outputs required a new training
scheme, and we proposed one based on minimising the negative log-probability of the
training data, with k-fold cross validation to prevent over-fitting.

We demonstrated the effectiveness of our MKBR algorithm on a number of difficult
motion estimation problems in robotics, comparing its performance to standard algo-
rithms used in that domain. e MKBR learned latent variables in a motion model and
was able to represent high-dimensional, multi-modal probability distributions. We also
created a significant extension of a robotic path planning algorithm that used probabilis-
tic velocity fields generated from pedestrian data []. is outperformed the original
algorithm, demonstrating the ability to use training data containing conflicting direction
vectors. is enabled robots to perform much more flexible path planning.





Chapter 

Conditionaluantile Estimation fromKBR

Posterior Embeddings

U risk is critical to making decisions based on uncertain infor-
mation. Computing uncertainty through the use of probability, and then
bounding that uncertainty with quantile estimation is one approach to this

problem. Building fromourwork in chapter three, wenowaimto extendournon-parametric,
multi-modal techniques for regression to include cumulative andquantile estimation. With
these additions, our work can be applied to problems with unknown prior and likelihood
and produce not only probabilistic estimations, but also quantify the risk associated with
decisions that rely on them.

4.1. Motivation

Probabilistic risk calculations are commonplace in any discipline making decisions under
uncertainty. is includes environmental science, economics, geology, and engineering,
which must all make potentially life-threatening choices about quantities that cannot be
known precisely ahead of time. A model for climate change for instance, cannot predict
with total accuracy the sea level rise resulting from any given global temperature change.
It may not even be possible to be certain about reasonable bounds on the rise.

Consider the problem then, of world leaders meeting to determine an acceptable sea
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level rise, and using the probabilistic model and associated target temperature rise to meet
it. Because of the uncertainty in the model, no matter what target temperature the world
leaders choose, there will always be a chance that the target sea level will be exceeded.

One approach that the world leaders could take is to agree not only on a target sea level
rise, but on an acceptable level of risk that the target will be exceeded. From this risk, they
can then choose a target temperature rise to meet it. It is this sort of decision making that
our quantile estimation algorithms enable.

Apart from the decision making application, quantile statistics are also useful as estima-
tors in a regression context. e median for instance, is less sensitive to outliers than the
mean [], and can be semantically more meaningful than the mode when the underlying
distribution is highly non-Gaussian or multi-modal.

4.2. Contributions

is chapter focuses on the problem of estimating cumulative and quantile statistics from
a posterior probability embedding that is the result of an application of kernel Bayes’ rule
(KBR). ese statistics are critical in performing risk-based decision making, and as es-
timators for non-Gaussian or multi-modal distributions. To address this problem, we
present the following contributions:

Novelmethods for computingBayesianconditional cumulative estimates fromKBR.
We introduce a technique to recover estimates of the cumulative distribution function
(CDF) of a reproducing kernelHilbert space (RKHS) embedded probability distribution
without first computing the density, by embedding an indicator function and utilising the
reproducing property. is indicator embedding technique can recover a number of dif-
ferent CDF estimates with different computational costs and smoothness properties.

Extensionofmulti-modal kernel Bayes’ rule to generateCDFestimates. Wepresent a
simple method of computing CDF estimates by integrating the kernel mixture posteriors
from the multi-modal kernel Bayes’ rule (MKBR) algorithm described in chapter three.
ese estimates have the advantage of being normalised and strictly non-decreasing, guar-
anteeing the estimate is a valid conditional distribution. We also examine the close rela-
tionship between the indicator embedding technique and this integration method.
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Figure ..: (Top) An estimate of the conditional cumulative distribution function for
the Motorcycle dataset created using the algorithms presented in this chapter.
(Bottom) e ., ., . (median), . and . quantiles of the Motorcy-
cle dataset. ese curves can be thought of as level sets or contour lines of the
cumulative distribution function above.
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An algorithm for Bayesian conditional quantile estimation, based on the KBRCDF
estimators. e conditional quantile itself can be estimated efficiently from a CDF using
efficient one-dimensional root-finding techniques. We examine two optimisation strate-
gies for MKBR parameter learning in this context: directly optimising error for a partic-
ular quantile, and using the negative log-probability (NLP) method in chapter three. e
former demonstrates a potential increase in accuracy for a single given quantile, but must
be re-trained when a different quantile is required. eNLP, on the other hand, is trained
only once for any quantile estimate, and has the added advantage of ensuring non-crossing
constraints on the quantile estimates.

Demonstration of competitive performance of our new quantile algorithm in a set
of experiments. We compare the performance of the above techniques with other condi-
tional quantile estimators in the literature. e experiments use standardmachine learning
datasetswith complexmulti-modal andnon-linear behaviours. Ourmethods demonstrate
competitive, and in some cases, superior performance to these algorithms. Our algorithms
also make fewer assumptions about the underlying distributions.

4.3. RelatedWork

uantile regression was first introduced by Koenker et. al. in  []. is work con-
sidered the regression problem of inferring values of an unknown linearmodel given noisy
samples of inputs and outputs. Rather than using themean as an estimator of the function,
Koenker chose the . quantile (the median), on the basis that it was less sensitive to out-
liers, andhence effective in caseswithnon-Gaussianorheavy tailednoise. A general regres-
sion quantile was then defined as the function value minimising the pinball loss [](see
section ..). For linear models, the minimisation was formulated as a linear program-
ming problem and so solved efficiently.

e pursuit of conditional quantiles quickly divided the field into so-called discrimina-
tivemethods, that attempt to directly compute the quantile from the training data through
minimisation of the pinball loss, and generative methods, that attempt to first model the
conditional cumulative distribution, and from there derive quantile estimates [].

e discriminative initially demonstrated the advantage of flexibility—non-parametric
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function estimation techniques could be applied that made no assumptions about the
underlying distribution. Examples include locally-constant and locally-linear approxima-
tions [, ]. However, this flexibility also led to problems such as quantile crossing; in
which a data point might be considered to be below the . quantile but above the .
quantile [].

An important development was the addition of non-crossing constraints to discrimi-
native quantile regression solutions []. is ensured that different quantile estimates
obeyed a strict ordering, with no two quantiles having the same function value. Such a
strict ordering was achieved by adding a penalty term to the optimisation [], or by re-
ducing the class of possible functions used to represent the quantiles, for instance to classes
of location-scalemodels [, ]. Unfortunately, suchmodels implicitly restricted the un-
derlying distribution, causing reduced applicability to data that did not fit the assumptions
of the model [].

Standardmachine learning techniques have also been co-opted for conditional quantile
estimation, including the support vectormachine (SVM),whichfinds thedecisionbound-
ary associatedwith theminimisation of the pinball loss, with additional non-crossing con-
straints []. However, in this algorithm, the non-crossing constraints may cause the re-
sulting estimates to violate the (empirical) quantile definition.

More recently, Chernozhukov et. al. developed a monotisation procedure based on
function re-arrangement to remove crossing from quantile estimates generated by other
algorithms. e resulting quantiles were guaranteed to be more accurate, and no assump-
tions were made about the underlying distribution [].

e ‘quanting’ algorithm [] introduced an important development in discriminative
estimation of conditional quantiles, which was to re-cast quantile regression as a classifica-
tion problem. By placing a set of classifiers over the range of the regression, each classifier
can be trained on whether the quantile is above or below it. e quantile estimate is then
the expectation of this assignment, over all the classifiers. A set of importance weights
were learned to minimise the error of the estimation.

Generative models for conditional quantile regression have also been examined in the
semi-parametric and non-parametric setting. Linear models for Bayesian quantile esti-
mation were examined in [], using Laplacian likelihood functions and uniform priors.
ese methods require Markov chain Monte Carlo (MCMC) integration to perform in-
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ference, as well as making the uni-modal assumption. Similar semi-parametric methods
such as [, ] use Dirichlet process priors, which again required costly inference ap-
proximations.

Kernel conditional quantiles usingGaussian process regression to explicitly compute the
cumulative distribution were examined in []. e underlying PDF was estimated using
a Gaussian process, which enforced the non-crossing constraint and allowed for efficient
inference. Additionally, heteroskedastic covariance functions were employed to account
for input-dependent noise in the data. One limitation of the workwas that the underlying
Gaussianity assumption restricts applicability to uni-modal distributions.

A more general formulation of Bayesian quantile regression was developed in [],
which used Dirichlet process mixture models to represent the underlying joint distribu-
tion. is allowed a very general class of distributions to be represented, but inference
required expensive MCMC integration.

Our work aims to overcome limitations of both these methods– giving the flexibility
of a mixture distribution representation for modelling multi-modal behaviour, with the
efficient inference inherent in the MKBR algorithm. It is to this new algorithm we now
turn our attention.

4.4. Background

Beforemoving into the contributions of this chapter, we will give a brief overview of prob-
ability measures and cumulative distributions, quantiles, and conditional quantile regres-
sion. We will also describe the pinball loss function [], which is the cost function used
to evaluate the quality of a conditional quantile regression when given only test samples
from the associated joint distribution.

4 . 4 . 1 . P           M       

In chapter three, ourwork focussedonestimating theprobability density functionP(X|Y=
y) of a random variable X defined on a set  (usually ℝN) and given an observation y of
Y ∈ . Rather than considering the likelihood at a point x, cumulative and quantile esti-
mation requires computing the probability of x being inside a given setΩ ⊆ . In a slight
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abuse of notation, we denote the function that maps setsΩ to the probability enclosed by
that set as the probability measure for.

Definition ... ForΩ in the power set of, the probability measureM is the function
for whichM(Ω) = P(x ∈ Ω).

By definition, M() = 1 and M(∅) = 0 where ∅ is the empty set. If  has a total
ordering, then X has a cumulative distribution function, which is defined as the function
giving the probability X is less than a particular value.

Definition ... Given a random variable X ∈ ℝN with probability density function
P(X), the cumulative distribution function C(𝐚) for 𝐚 ∈ ℝN is the function for which
C(𝐚) = P(X ≤ 𝐚).

e CDF is a special case ofM(Ω):

C(a) = M({x}: x ≤ a). (.)

If we restrict toℝN such thatX has a probability density function (PDF) P(X), thenM
and hence C can both be written in terms of P(X):

M(Ω) = 
Ω

P(𝐱) d𝐱, (.)

and for C,

C(𝐚) = 
𝐱≤𝐚

P(𝐱)d𝐱. (.)

For the rest of this chapter, we will make the assumption that  = ℝN and hence that
P(X) and C(X) exist.

4 . 4 . 2 .        

e quantile function of a random variable measures the value of that variable bounding
a certain fraction of the probability mass of the PDF. e τ quantile q(τ) of P(X) gives the
value of X such that the probability of X being less than q(τ) is τ.
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Definition ... Let P(X) be a probability distribution over a random variable X ∈ .
Let C(x) = P(X ≤ x). en for τ ∈ (0, 1), the τ-quantile of P is the function

q(τ) = inf (x:C(X) ≥ τ) . (.)

For instance, the . quantile is the value of X we expect that there is a  chance X
is below. A particularly useful quantile is the . quantile, also known as the median. e
median is the “middle value”, in the sense there is a  chanceXwill be above themedian,
and a  chance it will below the median. For a Gaussian distribution, the median is
equal to the mean, but this is certainly not the case in general.

e extension to conditional distributions is straightforward. A conditional quantile is
simply the quantile of the conditional distribution.

Definition ... LetP(X|Y=y) be a conditional probability distribution over a random
variable X ∈ ,Y ∈ . e conditional quantile q(τ|Y= y) is defined as the quantile q of
the conditional P(X|Y=y).

Conditional quantile curves can also be thought of as contour lines or level sets of the
conditional CDF. If theC(X|Y) is viewed as a heightmap inX andY, then the . quantile
say is the C(X|Y) = 0.5 level set. is idea is illustrated in figure ..

4 . 4 . 3 .        R         

uantile regression is the problem of estimating the quantile q(τ|Y= y) of a distribution
P(X|Y = y) given a set of samples {x, y}Ni=1 from the associated joint distribution P(X,Y).
An example, using the techniques developed in this chapter, is illustrated in figure ..

In order to determine the optimal estimate of q in the regression context, we need to
determine a cost function which measures how close our estimate is to the true quantile.
e function with this property is called the pinball loss [].
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Figure ..: Estimate of the cumulative embedding (top), and the quantiles ., ., ., ., .
overlaying a PDF estimate (bottom)
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Pinball Loss

e pinball loss is motivated by noting that the median, or . quantile of a distribution
P(X), minimises the expected absolute loss[]:

q(0.5) = argmin
f

E |f − x| . (.)

Intuitively, the absolute loss is minimised because the median balances losses equally on
either side. Consider two infinitesimal chunks of probability mass dx at locations x1 and
x2 in the distribution P(X). If the median is between these two points (if x1 ≥ q(0.5) ≥
x2), then the total absolute loss is

|q(0.5) − x1| + |q(0.5) − x2| = |x1 − x2| (.)

and is independent of q(0.5). If, however, the median is outside one of these points, then
the absolute loss must be greater, by an amount equal to the distance q is from the nearest
point:

|q(0.5) − x1| + |q(0.5) − x2| = |x1 − x2| + min |x1 − q(0.5)|, |x2 − q(0.5)| . (.)

Now, by definition, the median bisects the probability mass of the distribution. ere-
fore, for every infinitesimal volume of probability x1 dx below the median, there will be
a corresponding volume x2 dx above the median and the integrand |f − x| will always be
minimised by the median, and hence the expected absolute loss. is argument can be
generalised to consider the function that is minimised by an arbitrary quantile q(τ). We
assert that it is the pinball loss:

Definition ... Let z = q(τ) be the τ-quantile. e pinball loss is the function

Lτ(x, z) =

⎧⎪⎨
⎪⎩
(x − z)τ : x ≥ z
(z − x)(1 − τ) : z > x

. (.)

To see that Lτ is indeed minimised by q(τ), consider again two points x1 and x2, with
x1 ≤ x2. Now though, we consider two infinitesimal probability masses dx1 = τ dx and





.. Measure Estimates om RKHS Embeddings

dx2 = (1 − τ) dx, with relative sizes dx1/ dx2 = τ/(1 − τ). Now, if q(τ) is between x1 and
x2, then the pairwise loss is

Lτ(x1, q)) dx1 + Lτ(x2, q) dx2 = (q − x1)(1 − τ)τ dx + (x2 − q)(τ)(1 − τ) dx (.)

= |x1 − x2| (τ(1 − τ)) dx, (.)

which is again, independent of q(τ). Any q outside the bounds between x1 and x2 will
result in an additional term, just as in equation ..

Now, critically, the ratio of probabilitymass below and above q(τ) is τ/(1−τ), exactly the
ratio of volumes of dx1 and dx2. Hence, every x1 below q(τ) has a corresponding x2 above,
and so we can integrate over these pairs, resulting in the minimum of the expected pinball
loss. is gives the motivation for using pinball loss to determine quantile estimates, but
for a more rigorous proof of this result, see [].

Unfortunately, in the regression context, we do not have access to the underlying distri-
bution P(X), but rather a set of training points {xi, yi}Ni=1 from P(X,Y). erefore, given
an estimate of the conditional quantile q(τ|Y= y), we can compute the empirical average
of the expected pinball loss:

L̄τ =
N

i=1

Lτ xi, q(τ|Y=yi) . (.)

e empirical pinball loss allows for training the quantile estimation algorithm, and also
for evaluating the relative performance of different algorithms given a withheld testing set.

4.5. Measure Estimates from RKHS Embeddings

is section details novelmethods for recovering an estimate of themeasure function (and
hence the CDF) from and embedded KBR posterior. Estimates of this function could be
derived directly by integration (equations . and .) using theMKBRposterior in chap-
ter three. However, it is also possible to derive approximations for these functions directly
from the embedded posterior μ[P(X)] ∈ . Direct approximations would increase the
computational efficiency of the algorithm if a posterior estimate was not required.
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To derive these direct approximations to C andM for a given embedding μ[P(X)] ∈ 
consider a function f ∈ . By the reproducing property:

⟨f, μ[P(x)]⟩ = EP f(x) (.)

=
∞


−∞

f(x)P(x)dx. (.)

We can use this property to estimateM through embedding indicator functions. e indi-
cator function χΩ(x) is  when x is in a subspace ofℝN denoted asΩ and zero otherwise.

Definition ... e indicator function χΩ:ℙ(ℝN) → (0, 1) is the function in which
for all x ∈ ℝN,

χΩ(x) =

⎧⎪⎪⎨
⎪⎪⎩
1 : x ∈ Ω

0 : x ∉ Ω
. (.)

whereℙ(ℝN) is the power set ofℝN.

Let χΩ be an element of , then by the reproducing property, it is possible to recover
the probability measure function from an embedded distribution μ[P(X)] by taking the
dot product,

⟨χΩ, μ[P(x)]⟩ = E χΩ (.)

= 


χΩ(x)P(x) dx (.)

= 
Ω

P(x) dx (.)

= M(Ω). (.)

Unfortunately, empirical estimates of KBR created from a finite set of samples {xi}Ni=1
exist in an RKHS that will not in general contain χΩ. Only functions in the familiar form
∑N

i=1 αik(xi, ⋅) are admitted. However, a straightforward optimisation allows us to deter-
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mine the optimal embedding of a function f in terms of a limited basis [], and so com-
pute the empirical approximation of χΩ.

4 . 5 . 1 . O       A          E         

For themoment, assume f is an arbitrary function in a RKHS. Given a basis induced by
a set of points {xi}Ni=1, then finding an approximate f in the span of this basis is equivalent
to determining optimal weights𝜶 such that

̂f =
N

i=1

αik(xi, ⋅). (.)

eoptimalweights𝜶∗minimise the distance between f and ̂f in theHilbert norm sense.
erefore,

𝜶∗ = argmin
α∈ℝN

‖f − ̂f‖ (.)

= argmin
α∈ℝN

⟨f, f⟩ − 2⟨f, ̂f⟩ + ⟨ ̂f, ̂f⟩ (.)

= argmin
α∈ℝN

⟨f, f⟩ − 2𝜶T𝐟[X] + 𝜶TGXX𝜶, (.)

where (𝐟[X])i = f(xi). Differentiating this expression and setting the result to zero yields
the optimal weights

𝜶 = G−1
XX𝐟[X]. (.)

4 . 5 . 2 . O       E         M       E      

Using equation., we cannow embed the indicator function χΩ into aRKHSdefined
by a kernel k and a set of points {Xi}Ni=1. e approximation is

χ̂Ω = G−1
XX𝝌Ω[X], (.)
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where (𝝌Ω)i = χΩ(Xi). Hence, for an embedding μ[P(X)] = 𝐤X[⋅]T𝜷, the estimate of the
probability volume functionM(Ω) is

M(Ω) = ⟨χ̂Ω, μ[P(X)]⟩ (.)

= (G−1
XX𝐟[X])TGXX𝜷 (.)

= 𝝌Ω[X]T𝜷, (.)

where (𝝌Ω[X])i = χΩ(xi). is now gives us a fast and efficient way to compute the prob-
ability measure functionM(Ω) by a simple dot product of coefficient vectors inℝN.

Cumulative Estimation

For a cumulative estimate, equation . simplifies to a sum of weights:

C(a) ≈ 
{i}:xi<a

βi. (.)

A similar expression for the empirical estimate of the cumulative distribution fromμ[P(X)]
was developed independently by Kenji Fukumizu [].

Example

Figure . illustrates an approximation to the CDF of a posterior embedding calculated
using KBR and the Motorcycle dataset. Note the weight vector is graphed in the le of
the figure, from which the cumulative sum is generated on the right.

One thing immediately noticeable about this approximation to the CDF is that it is
piecewise constant, with a step change occurring at every training point. Additionally,
because the KBR output contains weights which can be negative, it is also not strictly
non-decreasing. We address the smoothness issue first, in the next section.
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Figure ..: (Le) A MKBR estimate of the PDF from the Motorcycle dataset. e blue line
indicates the PDF, and the red bars indicate the weights of training points at those
X locations. (Right) e resulting CDF estimate using equation .. Note that the
estimate jumps at locations corresponding to training points.

4.6. SmoothMeasure Approximations

A smooth estimate of the measure function, and hence the CDF, would have some de-
sirable properties over the approximation in the previous section. First, if the underlying
distribution was smooth then the estimate could approximate it more accurately. e es-
timate would also be differentiable, allowing for more efficient root-finding methods to
be used for quantile estimation.

One way to achieve a smooth estimate of the measure functionM is to approximate the
indicator function as

χ̂Ω = μ[χΩ] (.)

= 
Ω

k(x, ⋅) dx. (.)

Clearly, χ̂Ω converges to χΩ in the limit as the kernel bandwidth goes to zero. is con-
vergence property makes intuitive sense, as it follows the convergence of the KBR itself,
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which expects a vanishing kernel bandwidth as the number of samples in the empirical
estimate goes to infinity [].

To use the same reproducing property approach as in equation ., χ̂ needs to be re-
written in terms of the empirical RKHS  induced by KBR on a set of training points
{xi}Ni=1. Using the optimal approximate embeddings in equation .,

μ[Ω] = G−1
XX�̂�[X], (.)

where (�̂�[X])i = ∫
Ω
k(x, xi) dx. erefore, the estimate for the probabilitymeasureM(X)

of an arbitrary distribution P(X) with embedding μ[P(X)] = 𝐤X[⋅]T𝜶 is

M(X) = ⟨μ[P(X)], �̂�[X]⟩ (.)

= 𝜶T�̂�[X]. (.)

4 . 6 . 1 . E       : C                    

To estimate the cumulative distribution C(a) the vector �̂�[X] is

�̂�[X]: ωi = 
x≤a

k(x, xi) dx. (.)

An illustration of the same Motorcycle dataset posterior with this smooth cumulative
estimate is given in figure .. In this example, the kernel was a one-dimensionalGaussian,
which means the expression for the cumulative estimate is

C(a) =
N

i=1

αiωi (.)

=
N

i=1

αi 
x≤a

exp 
‖x − xi‖2

2σ2  dx (.)

=
1
2

N

i=1

αi 1 + erf 
a − xi
σ√2

 . (.)
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Figure ..: (Le) A MKBR estimate of the PDF from the Motorcycle dataset. e blue line
indicates the PDF, and the red bars indicate the weights of training points at thoseX
locations. (Right) e resulting smooth CDF estimate using equation . overlaid
on the previous (non-smooth) estimate.

ough the cumulative estimate is now smooth, because of the negative weights (visible
in figure .), it is still not guaranteed to be strictly non-decreasing. To rectify this, we
examine the relationship between the cumulative estimations we have derived, and the
probability density estimations in chapter three.

4.7. CDF-From-PDF Estimation Techniques

Given the MKBR’s ability to recover PDF estimates from RKHS embeddings, directly
integrating the PDF is also an attractive choice for measure and CDF estimation. Such
an estimate would be both smooth and strictly non-decreasing, and hence be a valid CDF
unconditionally.

Given a set of training points {xi, yi}Ni=1 with kernel k, the posterior estimates generated
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ponents from equation . are also plotted. Just as the posterior density is a sum of
Gaussians, the posterior cumulative is a sumof error functions. Note, negativeweights
mean that some of the contributions from the terms in the sum are negative. e re-
sultant CDF estimate may not be strictly non-decreasing.

by MKBR are parametrised as a mixture distribution of kernels,

P(X|Y=y) =
M

i=1

wik(μi, ⋅). (.)

erefore, the measure function for some setΩ ⊆  is the integral of the PDF,

M(Ω|Y=y) =
M

i=1

wi
Ω

k(μi, x) dx. (.)

For a cumulative distribution estimate, this equates to

C(a|Y=y) =
M

i=1

wi 
x≤a

k(μi, x) dx. (.)
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For many kernels, these integrals have an analytic expression. Even in the event an ana-
lytic solutiondoes not exist, the integral is independent of the posteriorweights, andhence
approximations to the kernel integrals can be pre-computed before inference begins.

One kernel for which the integral is well-known is the Gaussian kernel. Assuming the
bandwidth of the mixture components is equal to the kernel bandwidth of KBR, and the
mixtures are centred on the training points, the cumulative estimate reduces to

C(a|Y=y) =
1
2

M

i=1

wi 1 + erf 
a − xi
σ√2

 . (.)

is is identical to the smooth cumulative derived in equation ., but with the poste-
rior weights𝐰 (equation .) replacing the embedding weights (equation .). Because
the posterior weights are guaranteed to be positive, the resulting CDF estimate is guaran-
teed to be non-decreasing. is equivalence also highlights another interpretation of the
smoothCDFestimate generated in section... It is simply the integral of the normalised
posterior embedding.

4.8. Overview of CDF Estimation Algorithms

e first two techniques we have presented for CDF estimation are based on the direct
embedding of an indicator function to compute the integral of the posterior density via
the reproducing property. e use of a simple piecewise-constant indicator function re-
sults in equation .. is CDF estimate is piecewise constant, changing value only at
the location of training points. It is also not guaranteed to be a valid CDF: the estimate
may not be strictly non-decreasing.If we instead convolve the indicator function with the
kernel, we retrieve the smooth approximation to the cumulative distribution seen in equa-
tion .. is estimate is also not guaranteed to be strictly non-decreasing.

e other two techniques we have presented for CDF estimation are based on the PDF
estimation techniques presented in chapter three. In that chapter we demonstrated how
to recover a posterior PDF from the RKHS embedding output by kernel Bayes’ rule us-
ing one of two pre-image techniques; a full optimisation of the posterior weights (equa-
tion .), and an estimate based on a positive normalised embedding (equation .).
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erefore, we also have two corresponding cumulative estimates based on integration of
these PDFs. Both methods return normalised, strictly non-decreasing conditional cumu-
lative estimates.

4.9. KBRuantile Estimation

egenerative approach for estimating a quantile is first to estimate the cumulative density
function C(x) and from this solve the equation C(x) = τ for a quantile τ. Combining the
cumulative estimates derived in section . with a numerical method to find the root of
the expressionC(X)−τwill yield quantile estimates. However, the question then becomes
how to train the free parameters in the KBR and MKBR algorithms required to generate
the CDF estimates.

4 . 9 . 1 . P        L       

We have considered two approaches to optimising the free parameters in our KBR quan-
tile estimators, which are described in detail in section .. e first is simply to use the
pinball loss described in section .., evaluated over a leave-out set of the training data
generated from a cross-validation scheme. For a particular quantile, a functionwhichmin-
imises the pinball loss will also minimise the error in the quantile estimate. Additionally,
the loss function is tolerant to CDF estimates which may not be strictly non-decreasing.
e disadvantage of this cost function is that it is specific to a particular quantile. ere-
fore, estimating different quantiles from the same training data requires different optimi-
sations. e result is that quantile estimates may actually cross for certain query locations.

Another possible approach to parameter learning is to optimise the parameters with re-
spect to the PDF that is being used to generate the CDF estimate. We can utilise the same
cost function as in chapter three (section .), the NLP of a leave-out set of the training
data. e NLP approach has a significant advantage, in that it is independent of the par-
ticular quantile estimate chosen. ismeans that a singleCDF is generated for all quantile
queries, and therefore different quantiles are guaranteed not to cross. Obviously this ap-
proach could not be used when we have directly estimated the quantile as in sections ..
and ...
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4 . 9 . 2 . S         A         

Given a kernel k, a set of training samples {xi, yi}Ni=1 from a joint distribution P(X,Y),
weighted samples {ui, γi}Mi=1 from the prior P(X), and an observation y, KBR yields a pos-
terior embedding μ[P(X|Y = y)] = 𝐤X[⋅]T𝜶 in the RKHS  with 𝜶 ∈ ℝN. As we have
described four methods for estimating the conditional cumulative distribution, there are
four associated conditional quantile estimates. e first uses the direct CDF approxima-
tion ..

Definition.. (DirectEmbeddinguantileEstimator). edirect embedding τ-quantile
estimate q is

q(τ) = x:
1
‖𝜶‖


{i}:xi<x

αi = τ. (.)

For the direct embedding quantile we minimise the pinball loss (equation .) of the
training data using k-fold cross-validation over the free parameter vector ϑ as described
in section .. We denote this algorithm as DR.

Using the smooth approximation of the CDF given in equation . results in another
direct embedding method:

Definition .. (Smooth Embedding uantile Estimator). e smooth embedding τ-
quantile estimate q is

q(τ) = x:
1
‖𝜶‖𝜶

T�̂�q[X] = τ, (.)

where (�̂�q[X])i = ∫q

−∞
k(xi, x) dx. We train this algorithm by minimising the pinball loss

(equation .) using k-fold cross validation over the free parameter vector ϑ as described
in section .. We denote this algorithm as DS.

Integration of a PDF estimate P(X|Y = y) obtained through a pre-image optimisation
described in section .. yields the pre-image quantile estimator:
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Definition .. (Pre-Image uantile Estimator). e pre-image posterior τ-quantile es-
timate q is

q(τ) = x: 𝐰T�̂�q[X] = τ, (.)

where (�̂�q[X])i = ∫q

−∞
k(xi, x) dx and𝐰 are the weights of the posterior estimateP(X|Y=

y) = ∑N
i=1 wik(xi, ⋅) generated fromequation .. We can train theMKBRparameter vec-

tor ϑ (see section .) for this algorithm using the pinball loss (equation .) or the NLP
(equation .) using the k-fold cross-validation scheme described in section .. We de-
note this algorithmas JBwhen trainedwithpinball loss, and JLwhen trainedwithnegative
log-probability.

Finally, integration of a PDF estimate obtained through a normed weights method de-
scribed in section .. yields the normed weights quantile estimator:

Definition .. (Normed Weights uantile Estimator). e norm posterior τ-quantile
estimate q is

q(τ) = x: 𝐰T�̂�q[X] = τ, (.)

where (�̂�q[X])i = ∫q

−∞
k(xi, x) dx and𝐰 are the weights of the posterior estimateP(X|Y=

y) = ∑N
i=1 wik(xi, ⋅) from equation .. Like the pre-image quantile estimator, we can

train the MKBR parameters for this algorithm using the pinball loss (equation .) or
the NLP (equation .) using the k-fold cross-validation scheme described in section .
in both cases. We denote this algorithm as NB when trained with pinball loss, and NL
when trained with negative log-probability.

Table . lists the properties of each of these algorithms, including whether the under-
lying CDF estimate is smooth or non-decreasing, and whether the algorithm enforces the
non-crossing property. It also describes the time complexity of each algorithm, as detailed
in the next section.
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Algorithm Smooth Non-Decreasing Non-Crossing Complexity
DR O(NlogN)
DS ✓ O(NlogN)
NB ✓ ✓ O(NlogN)
JB ✓ ✓ O(N3logN)
NL ✓ ✓ ✓ O(NlogN)
JL ✓ ✓ ✓ O(N3logN)

Table ..: Comparison of uantile estimation techniques. For the computational com-
plexity bound,N is the number of training points.

Computational Complexity

e computational complexity of these algorithms varies from O(NlogN) to O(N3logN)
in the number of training points N. e -D root-finding required to solve the quantile
equations adds a factor of logN in all cases (using a binary search), the difference comes
from the cumulative estimation algorithms.

e cheapest cumulative evaluate is the direct embedding estimator (DR)— this is sim-
ply a (conditional) sum of the mixture weights output by KBR and is therefore O(N) in
the number of training points. e smooth embedding estimator (DS) and the normed
weights estimator (NLandNB) are also inexpensive to compute, provided an efficient esti-
mate of the kernel integral exists. ey are alsoO(N), but with a larger constant due to the
kernel integration. e most expensive are the pre-image estimators ( JL and JB), which
require solving a quadratic program to determine the mixture weights and are therefore
O(N3). is is only relevant if a PDF estimate was not required, and the pre-image was
computed only for the quantiles. If a pre-image estimate is already available then the JL
and JB are alsoO(N).

4.10. Experiments

Wenow test the performance of our quantile estimators on a number of standardmachine
learning datasets from the literature. We compare our algorithms to state-of-the-art gen-
erative and discriminative techniques for conditional quantile estimation.
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We evaluated the algorithms on four datasets commonly used in the literature for con-
ditional quantile estimation tests: Antigen, Weather, Bone Mineral Density and Motor-
cycle. eAntigen dataset samples the concentration of variousmolecules [] in a blood
sample. e dataset contains  points, with eight-dimensional observations Y and a
one-dimensional state X. e Weather dataset measures a meteorological variable dis-
tributed over the surface of the Earth. It has two-dimensional observations Y and a one-
dimensional state X, and contains  points. e Motorcycle dataset is a record of mea-
surements taken from an accelerometer during a front-on motorcycle collision, and is of-
ten used because it contains heteroskedastic, non-Gaussian behaviour. e dataset con-
tains  points, with a single input dimension Y (time), and a single output dimension
X. Finally, the Bone Mineral Density dataset contains relative spinal bone mineral den-
sity measurements from North American adolescents of various ages. It has a single input
variable Y (age), a single output variable X (bone mineral density), and  points. e
original data were recorded in []. Antigen,Weather andMotorcycle were taken from the
UCI repository [] and Bone Mass Density from the “ElemStatLearn” R package [].

For all experiments, performance was evaluated by five-fold cross validation and the av-
erage pinball loss over the hold-out set. e average and standard deviation of the perfor-
mance over these five tests was used as the final score. ree quantiles were tested for each
dataset; ., . and .. Any categorical variables in the data were ignored. All X and Y
variables were scaled to have  mean and unit variance in each dimension.

4 . 1 0 . 1 . O   A         

We test the six quantile estimation algorithms in section .. ese are the direct em-
bedding quantile estimator (DR), the smooth embedding estimator (DS), the pre-image
quantile estimator with pinball loss learning ( JB) and negative log-probability learning
( JL), and the normed weights quantile estimator with pinball (NB) and negative log-
probability learning (NL).

For all KBR-based algorithms, we used a Gaussian kernel for both the query variables
Y and the output variable X. For the query variables Y, we parametrised the kernel with
a length scale for every dimension, and whitened them with a rotation matrix that diag-
onalised their covariance. is implemented a form of automatic relevance determina-
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tion []. All our algorithms were trained with (nested) five-fold cross-validation.

4 . 1 0 . 2 . C         

e comparison results for these algorithms were taken from the results in []. e fol-
lowing paragraphs give a brief overview of each of the algorithms against which we com-
pared. For more detail, see the stated reference, or section ..

LinearuantileEstimation is is the linear discriminative quantile estimatordescribed
in []. We denote it with the letter A in our tabulation of results.

uantile SVM is is the non-parametric estimator of the quantile based on dual opti-
misation of the loss function through a support vector machine, as documented in [].
e RBF kernel was used for this algorithm, with kernel width and regularisation fitted as
described in []. We denote this algorithm with the letter B.

Reduction to Classification is is the algorithm for reducing a quantile estimation
problem to a series of classifiers []. e results from this algorithm are taken from [],
which used  GP classifiers trained with expectation propagation and an RBF kernel.
We denote this algorithm with the letter C.

uantile GP is algorithm is the Gaussian-processed based direct estimate of the cu-
mulative distribution []. An RBF kernel was used, with the hyper-parameters learned
by optimising the marginal log-likelihood. We denote this algorithm with the letter D.

Heteroskedastic uantile GP is algorithm is the same as the uantile GP, except
that the kernel is a heteroskedastic RBF with  latent pseudo-observations controlling
the bandwidth along the length of the input dimension []. is algorithm is denoted
with the letter E.

4 . 1 0 . 3 . R     

e average pinball loss for each algorithm in the three experiments is given in figure ..
Overall, all algorithms that obtain a quantile estimate through PDF estimation performed
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as well if not better than the algorithms from the literature. e two best performing al-
gorithms were NB and JB, which are the normed-weights and pre-image methods, both
using the pinball loss cost function for training. e fact that this cost function performed
better than theNLP is unsurprising, given that the training was optimising the same func-
tion that would evaluate the algorithm’s performance.

is demonstrates a trade-off between using pinball loss and receiving slightly better
performance, or using negative log-probability (NL and JL) and ensuring the non-crossing
constraint holds. e NL and JL algorithms were still competitive, but also beaten out by
the kernel conditional quantile (D).

With both the NLP and pinball loss functions, there was little difference on average
between the pre-image estimator and the normed-weights estimator. is fact in partic-
ular is worth noting when considering a real-time application of these algorithms, as the
pre-image estimator has a much greater computational cost.

Over the three experiments, we see that extremal quantiles . and . are significantly
lower pinball loss compared to the median (.). ere appear to be no algorithm that is
especially capable at a particular quantile, although two direct methods (DR and DS) are
much more competitive with the extrema than the median. e likely explanation is that,
in general, an accurate (empirical) estimate of themedian is affected by nearby points both
above and below it. ese direct methods however only sum contributions from points
lying below the median. e posterior methods on the other hand, sum contributions
from mixture components centred at all training points. Far away from the median, there
are fewer points nearby and so the effect is reduced.

e full results for each individual experiment and quantile are also tabulated. ForAnti-
gen, this information is given in table .. Curiously, the three top performers for the
quantiles were each from a totally different family of algorithms; our smooth direct em-
bedding estimator (DS), the quantile SVM (B), and the quantile GP (D). e full results
for the Weather, and Bone Mineral Density tests are given in tables . and ..

From the tabulated results in tables . and ., we can see that algorithm E matched
or exceeded all other algorithms in Motorcycle dataset, and was competitive but did not
beat our algorithms in the Bone Mineral Density dataset. e likely explanation is the
strong heteroskedasicity of the Motorcycle dataset benefited from a modelling approach
that explicitly took it into account. is raises a possible avenueof futurework—including
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Figure ..: Results from the three quantile experiments. e error bars in these figures
represent±1 standard deviation of the pinball loss over the testing set.

heteroskedastic kernel in our KBR based methods to improve performance.

Figure . plots the quantiles estimated for theMotorcycle dataset for three of the algo-
rithms. e piecewise-constant quantile estimates are clearly visible in the DR plot. e
JB plot has each quantile trained separately, and as a result the . and . quantile both fit
the boundary of the data very closely. eNLplot shows amuch smoother representation,
in line with the fact that these are quantiles for a single underlying cumulative distribution
(trained on the NLP).
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Figure ..: Examples of . (red), . (green) and . (blue) quantile estimates for theMo-
torcycle dataset, for the DR (le), JB (centre) and NL (right) algorithms.

Method τ = 0.1 τ = 0.5 τ = 0.9
DR 0.125 ± 0.033 0.270 ± 0.063 0.152 ± 0.022
DS 𝟎.𝟏𝟎𝟗 ± 𝟎.𝟎𝟐𝟐 0.267 ± 0.059 0.141 ± 0.031
NB 0.117 ± 0.021 0.275 ± 0.065 0.139 ± 0.017
JB 0.118 ± 0.031 0.256 ± 0.044 0.142 ± 0.039
NL 0.136 ± 0.035 0.294 ± 0.030 0.141 ± 0.014
JL 0.124 ± 0.017 0.260 ± 0.033 0.132 ± 0.022
A 0.239 ± 0.105 0.264 ± 0.050 0.292 ± 0.087
B 0.123 ± 0.033 𝟎.𝟐𝟒𝟗 ± 𝟎.𝟎𝟑𝟑 0.128 ± 0.018
C 0.122 ± 0.031 0.266 ± 0.021 0.131 ± 0.015
D 0.166 ± 0.021 0.255 ± 0.028 𝟎.𝟏𝟐𝟔 ± 𝟎.𝟎𝟏𝟓

Table ..: Antigen results.
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Method τ = 0.1 τ = 0.5 τ = 0.9
DR 0.169 ± 0.098 0.353 ± 0.117 0.086 ± 0.015
DS 0.106 ± 0.064 0.169 ± 0.129 0.073 ± 0.009
NB 𝟎.𝟎𝟔𝟐 ± 𝟎.𝟎𝟏𝟐 0.115 ± 0.010 0.076 ± 0.016
JB 0.055 ± 0.008 0.112 ± 0.020 0.072 ± 0.009
NL 0.063 ± 0.008 0.143 ± 0.029 0.087 ± 0.016
JL 0.077 ± 0.012 0.136 ± 0.034 0.094 ± 0.016
A 0.291 ± 0.034 0.293 ± 0.024 0.301 ± 0.045
B 0.067 ± 0.015 0.218 ± 0.034 0.118 ± 0.013
C 0.075 ± 0.011 0.176 ± 0.028 0.123 ± 0.011
D 0.057 ± 0.010 𝟎.𝟎𝟗𝟕 ± 𝟎.𝟎𝟏𝟓 𝟎.𝟎𝟔𝟖 ± 𝟎.𝟎𝟏𝟕

Table ..: Weather results.

Method τ = 0.1 τ = 0.5 τ = 0.9
DR 0.163 ± 0.060 0.240 ± 0.037 0.096 ± 0.024
DS 0.180 ± 0.075 0.465 ± 0.181 0.120 ± 0.022
NB 0.096 ± 0.019 0.194 ± 0.033 0.092 ± 0.015
JB 0.101 ± 0.030 0.204 ± 0.022 0.107 ± 0.041
NL 0.097 ± 0.016 0.210 ± 0.034 0.092 ± 0.016
JL 0.091 ± 0.007 0.199 ± 0.032 0.091 ± 0.010
A 0.396 ± 0.080 0.389 ± 0.019 0.387 ± 0.056
B 0.090 ± 0.012 0.202 ± 0.019 0.085 ± 0.008
C 0.094 ± 0.011 0.190 ± 0.015 0.083 ± 0.010
D 0.092 ± 0.025 𝟎.𝟏𝟖𝟔 ± 𝟎.𝟎𝟏𝟖 0.089 ± 0.010
E 𝟎.𝟎𝟕𝟗 ± 𝟎.𝟎𝟏𝟗 0.187 ± 0.021 𝟎.𝟎𝟕𝟎 ± 𝟎.𝟎𝟏𝟔

Table ..: Motorcycle results.
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Method τ = 0.1 τ = 0.5 τ = 0.9
DR 0.125 ± 0.008 0.308 ± 0.013 0.162 ± 0.028
DS 𝟎.𝟏𝟐𝟎 ± 𝟎.𝟎𝟎𝟕 0.307 ± 0.014 0.157 ± 0.011
NB 0.122 ± 0.007 𝟎.𝟑𝟎𝟔 ± 𝟎.𝟎𝟏𝟕 𝟎.𝟏𝟓𝟏 ± 𝟎.𝟎𝟏𝟒
JB 0.121 ± 0.006 0.307 ± 0.016 0.152 ± 0.014
NL 0.121 ± 0.016 0.308 ± 0.013 0.153 ± 0.011
JL 0.123 ± 0.014 𝟎.𝟑𝟎𝟔 ± 𝟎.𝟎𝟏𝟐 0.153 ± 0.013
A 0.328 ± 0.028 0.325 ± 0.034 0.324 ± 0.073
B 0.122 ± 0.017 𝟎.𝟑𝟎𝟔 ± 𝟎.𝟎𝟑𝟗 0.152 ± 0.025
C 0.121 ± 0.020 0.311 ± 0.041 0.154 ± 0.027
D 0.135 ± 0.014 0.310 ± 0.045 0.168 ± 0.030
E 0.123 ± 0.017 0.309 ± 0.045 0.153 ± 0.027

Table ..: Bone Mineral Density results.

4.11. Summary

In this chapter we have presented six new algorithms for computing conditional quan-
tile estimates from RKHS embeddings output by kernel Bayes’ rule. ese are generative
quantile algorithms, based on estimate the conditional cumulative distribution from the
embedding. We demonstrated two methods to derive these cumulative estimates. e
firstmethod utilised the reproducing property to directly estimate the cumulative through
embedding indicator functions into the RKHS. e second method generated posterior
density estimates using the MKBR algorithm described in chapter three, and integrated
to determine the CDF.

We showed that the direct method may produce an estimate that is only approximately
a CDF, in that it may not be strictly non-decreasing. e posterior-based methods will
always produce a valid CDF.

We then constructed quantile estimators from these CDF estimators using simple nu-
merical root-finding, and considered training on both the pinball loss function, and the
negative log-probability. We then evaluated the resulting algorithms using a set of well-
known machine learning datasets.

Our pre-image quantile estimators in particular were comparable to, or better than, the
state-of-the-art algorithms in the literature. ese algorithms can be trained either using
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pinball loss, for a slight increase in performance, or with negative log-probability, to guar-
antee the non-crossing constraint. Additionally, all our algorithms explicitly represent
multi-modal distributions, and can model datasets with strong heteroskedasticty.





Chapter 

ScalableMulti-Modal Regression

R technological advancements have caused an explosion of electronic data
recordingmany aspects of our lives and the world around us. In this chapter we
present an extension to our multi-modal, non-parametric inference algorithm

described in chapter three to better scale to these larger datasets.

5.1. Motivation

Mass electronic communication, ubiquitous inertial and global positioning sensors and
continuous high-frequency logging of financial transactions and medical data, are just
some of the sources now constantly generating new data to be analysed. e ability to
make predictions from these large datasets using machine learning techniques has already
demonstrated significant benefits in a number of application areas. e flagship applica-
tion has thus-far been global social networking and targeted advertising, but increasingly
these ‘big data’ techniques have tackled critical problems such as understanding the un-
derlying genetic factors of disease [], the causes and spread of pollution, and financial
market instabilities [].

Kernel Bayes’ rule (KBR) and the multi-modal extensions described in this thesis natu-
rally lend themselves to these sort of applications; inwhich analyticmodels can be difficult
to formulate and little is known about the associated probability distributions a-priori.
e challenge to overcome is one of scalability. A naïve implementation of KBR given
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n training points is O(n3) in computation time and O(n2) in storage, precluding datasets
much larger than ten thousand points on current hardware. is is very far from the ter-
abyte scale ofmodern big data analytic techniques, and in fact, datasets that could easily fit
on aportableUSB thumb-drivewould still be too large to trainKBRonmodernhardware.

erefore, in this chapterwe focus onmodifications of ourmulti-modalKBR algorithm
(MKBR) to lower the computation and storage complexity bounds andhence enable anal-
ysis of larger datasets: at least , points, and with a linear time complexity. We pro-
pose a novel method that is O(m3n) in computation and O(m3) in storage withm << n.
ismethod constructs a reduced training set that induces a lower-dimensional reproduc-
ing kernel Hilbert space (RKHS) in which to solve the MKBR equations. We denote the
method sparse multi-modal kernel Bayes’ rule, or SMKBR.

5.2. Contributions

is chapter focuses on the problem of scaling MKBR inference to be able to use more
than , data points, by reducing time complexity to O(n) and space complexity to
O(k) for n training inputs (with k a constant). To address this problem, we present the
following contributions:

Novel reduced set construction algorithm for large-scale multi-modal kernel Bayes’
rule inference. We present the sparseMKBR algorithm (SMKBR), based on the reduced
set techniques used in support vector machines [] and large-scale Gaussian process
(GP) regression []. For n training points, we learn a new set of m << n pseudo-
samples to performMKBR inference byminimising the posterior negative log-probability
(NLP)of the full trainingdatawith respect to thenew representation. e resulting lower-
dimensionalRKHSenables efficient treatment of very large datasetswith onlyO(m2) stor-
age andO(nm3) time requirements. Like the MKBR, our sparse approximation also sup-
ports multi-dimensional posterior output.

Demonstration of competitive performance of SMKBR on large datasets We com-
pare our method with a number of scalable GP implementations, and the original scala-
bility suggestion of a low-rankGrammatrix approximation given in []. We demonstrate
competitive performance on a number of standard machine learning datasets in the liter-
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ature, particularly in the case where significant data noise exists.

Re-derivation of low-rank strategy from []. We explain the low-rank approxima-
tion strategy to decrease computation cost of theKBR algorithm, show the resultingKBR
equations using the Woodbury identity [], and suggest using a well-know Nyström
technique for stochastically approximating the required decomposition [].

5.3. RelatedWork

e work on large-scale, functional Bayesian inference has predominantly focussed on
GPs, though many of these techniques are applicable to any kernel method. Like KBR,
the computational complexity of naïve GP regression for n training inputs is O(n3) in
time andO(n2) in storage. ere are many strategies for reducing these bounds, and with
a few exceptions, these strategies are motivated by either implicitly or explicitly referenc-
ing some subsetm << n of the training data. For a thorough overview of these and other
GP approximation techniques, see [].

One of the original strategies for reducing GP complexity was to use low-rank approx-
imations for the Gram matrix. For a GP, Gram matrix inversion is necessary to perform
inference, but this matrix is usually n× n for n training points, which becomes intractable
to invert on modern hardware around the range of ten thousand points []. Assuming
the eigenvalues of G decay rapidly, a rankm approximation of G can be obtained by con-
sidering only the first m eigenvalues of G. With the aid of the Woodbury identity, this
reduces the computational cost of Gram matrix inversion to O(nm2) in time and O(mn)
in storage. Unfortunately, the optimal low-rank approximation to a Grammatrix requires
performing an eigen-decomposition, which is itself an O(m3) operation []. erefore,
approximate eigen-decompositions have been utilised to increase the efficiency of this ap-
proach.

eNyströmmethod is one such approximate eigen-decomposition, first applied to ker-
nel methods in []. is method considers a reduced set I ofm training points, and ap-
proximates the kernel evaluations of the remaining points as linear combinations of those
in I. e resulting optimal approximation is of the formG = GXIG−1

II GIX, whereGII is the
Gram matrix of the reduced set, andGXI is the n × nGram matrix of cross-terms [].
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is Nyström method is one example of a general class of subset of data (SD) methods,
that all utilise a small subset of the full set of training points. SD methods are efficient
compared to standard GP inference, being O(m2n) in time and O(mn) in storage. e
challenge with these methods is how to select the members of the training data subset in
such a way as to maximise performance of the resultant approximation.

e brute-force approach of considering all possible subsets of a fixed size rapidly be-
comes intractable as m grows even beyond a few dozen points. Greedy approximations
were suggested in [, ] which choose the next best point either from all remaining
points, or a random subset. ese choices are optimal with respect to sum of the RKHS
distances between the true kernel functions and their reduced-set representation. Other
approaches to evaluating the quality of a selection include maximising the differential en-
tropy of the posterior evaluated at prospective points [], maximising the log-marginal
likelihood of the training data [], and maximising the information gain as measured by
the KL divergence of the new posterior probability with respect to the old [].

A close cousin to the SD methods is a Nyström method proposed in []. is method
uses a non-uniformprobability distribution to sample the columns ofGbased on themod-
ulus of the diagonal elements. Probabilistic error bounds were also derived. is method
is similar to the randomised SVD approximation developed in [], but takes explicit ad-
vantage of the symmetry of the Gram matrix, and does not use the subspace projection
approach [].

e subset of regressors (SR) methods are another popular approach to scaling GP re-
gression. Again, these methods rely on preferencing a reduced set I of M << N training
points. Subset of regressors utilises the fact that the mean of a Gaussian process estimate
of a function can be written as

f∗ = E

⎡
⎢⎢⎢⎢⎣

n

i=1

αik(xi, ⋅)
⎤
⎥⎥⎥⎥⎦ (.)

where the vectorα ∈ (𝟎,G−1
XX) []. e essence of subset of regressors is that this expres-

sion can be approximated by only consideringm terms in the sum. e resulting approxi-
mation isO(mn2) in time andO(mn) in storage [, ]. Again, choosing them points for
optimal performance is intractable, and the same reduced-set selectionmethods described
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above can be employed.
e projected process (PP) approximation is a hybrid of the SR and SD approaches.

Unlike SR, PP approximations are strictly GPs, in which the likelihood calculation for
points outside the subset is approximated by considering only the mean of the posterior.
e resulting predictivemean is identical to the SR case, but the variance is different [].
e projected process also scales asO(mn2) for computation andO(mn) for storage.

e Bayesian committee machine (BCM) approximates full GP regression by splitting
the training data up into separate partitions, and applying a GP over each of these parti-
tions separately. e resulting predictive distribution as assumed to be the product of pre-
dictions by the individual ‘committee member’ GPs. Interestingly, this produces a model
which gives different answers depending on the number of query points used. Selecting
the partitions can be done either randomly, or by clustering in the input dimensions [].

One difficulty with all the above reduced set selection methods is the need to optimise
the hyperparameters outside these selection strategies. e discrete choice of the reduced
set induces discontinuities in the computation of the marginal likelihood, making ker-
nel hyperparameter optimisation difficult []. To alleviate this problem, and improve
performance, [] considers instead a reduced set constructionmethod, in which pseudo-
observations are used instead of real training points, and these observations are jointly
optimised along with the kernel hyperparameters using gradient-based techniques.

It turns out thatmany of the above scaling strategies for reducingGPcomplexities can be
re-cast as different variations of the same approach; adding a set ofm << n latent variables
to the model that reduce the time complexity of inference. is connection unified the
above models in a single latent variable GP formulation [].

A different approach to the GP scaling problem involves spectral decomposition and
approximation of the Gaussian process []. e covariance function is approximated by
its spectral decomposition at a finite numberM of frequencies, and the resulting inference
problem can be solved with O(m2n) computation and O(mn) storage. ese frequencies
can be selected by optimising the marginal likelihood jointly with the hyperparameters.

It was observed in [] that all reduced set construction methods can be prone to over-
fitting, as induced pseudo-inputs actually induce changes in the underlying covariance
function, and hence create a high-dimensional hyperparameter space if jointly optimised
with the kernel parameters. Also, suchmethods donot explicitlyminimise the approxima-
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tion error to the full GP, but rather only maximise the performance of the approximation
with respect to the hyperparameters. To counter these issues, it is possible to determine
inducing inputs and hyperpameters though a variational inference approach to maximis-
ing the lower bound of the marginal likelihood []. e KL-divergence between the
full GP and the induced approximation is computed, and used as part of a reduced set se-
lection strategy, in which a new point is selected, then the hyperparameters re-optimised.
is approach demonstratedmore resilience to over-fitting comparedwith [, ], at the
expense of the much greater computational cost associated with the variational learning.

Finally, the variational strategy was recently generalised in []. Using stochastic varia-
tional inference, the inducing inputs were simultaneously learned with the hyperparame-
ters, rather than selected from the training set. Stochastic gradient descent was utilised to
efficient optimisation, which was onlyO(m3) in time andO(m2) storage.

We now proceed to present our main contribution; an algorithm for large-scale multi-
modal inference using kernel Bayes’ rule, based on a reduced set construction technique
and our work in multi-modal pre-image recovery in chapter three. Like the stochastic
variational inference approach above, we have achieved efficient computation and storage
ofO(m3) andO(m2) respectively.

5.4. Sparse Multi-modal Kernel Bayes’ Rule

e approach for scaling KBR inference considered in [] was to approximate the Gram
matrix inversions using a low-rank strategy. With a rank m approximation, this resulted
in an algorithmO(nm2) in time andO(nm) in storage.

ough efficient low-rank approximations such as [] implicitly sub-sample the train-
ing points, the RKHS elements representing the various distributions are still functions
of the training set in its totality. e training set {xi, yi}ni=1 for example, induces RKHS
elements of the form f = ∑n

i=1 αik(xi, ⋅). It is for this reason that the storage complexity
of the low-rank approximation is O(nm), as it must store a matrix n × m where n is the
dimensionality of the underlying RKHS representation (see section .. for details).

erefore, further reducing the computational complexity of the MKBR algorithm re-
quires reducing the dimensionality of the basis used to represent the embedded distribu-
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tions. is can be achieved by using a reduced set method; using a smaller set of training
points {x′i , y′i }mi=1 withm << n. ese new training points could either be selected from the
full set, or could be entirely new ‘pseudo-inputs’; points whose values have been learned
to produce a posterior distribution similar to that would be generated from the training
data, but using many fewer points.

For MKBR, the latter, reduced set construction is a more natural approach. In chap-
ter three, the training points were used as the means of the mixture components used in
MKBRposterior estimates (section ..). Taking the same approachwith learned pseudo-
inputsmeanswewould also be optimising the parametrisation of the posterior probability
estimate, which up until now has been fixed a-priori.

erefore, this reduced set construction approach is the one we take to scale MKBR
inference. Given a set of training points {x′i , y′i }mi=1 from a joint distribution P(X,Y), a
set of weighted prior samples {γi, ui}, ui ∈  from the prior P(X), an observation y and
a kernel k, MKBR as implemented in chapter three produces a posterior estimate of the
form

P(X|Y=y) =
1
c

n

i=1

wik(xi,X), (.)

where c is volume of the kernel and {wi} are positive normalisedweights. From the same in-
puts, the sparse MKBR simply replaces the full training set {xi, yi}ni=1 with a set of pseudo-
inputs {x′i , y′i }mi=1, using the same inference procedure. e resulting posterior probability
estimates are of the form

P̂(X|Y=y) =
1
a

m

i=1

wik(x′i ,X). (.)

An pseudo-code outline of our reduced set construction approach, denoted sparse multi-
modal KBR (SMKBR), is given in algorithm .

5 . 4 . 1 . C           C         

ematrix inversions in the KBR equations (equations . and .) are only dependent
on the reducedGrammatrices (G′

YY)ij = kX(x′i , x′j ) and (G′
XX)ij = kY(y′i , y′j ), meaning they
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Algorithm :e SMKBR Regressor
Input: pseudo-inputs {(x′i , y′i )}mi=1, weighted prior samples {γj, uj}

p
j=1, regularisers ε, δ, kernels

(kx, ϑx), (ky, ϑy) pre-image regulariser λ, query point (observation) y
Output: posterior mixture weights𝐰 (equation .)

Calculate pre-image matrices A, B (Eq. .);
Calculate joint 𝜷 (Eq. .) ;
Calculate RX|Y (Eq. . or .);
Embed observation 𝐤Y[y] = ∑m

j ky(y′j , y);
Calculate posterior𝜶 (Eq..);
Find mixture weights𝐰 (Eq. . or .);

can be computed with O(m3) cost and O(m2) storage. Similarly, the pre-image methods
described in sections .. and .. also see only the pseudo-inputs, limiting their compu-
tational complexity to O(m3). is is determined by the quadratic program solve in the
pre-image method (equation .), and the matrix multiplication in the normed weights
method (equation .). Training still requires O(n) operations however, as each of the
training samples must be considered at least once.

5 . 4 . 2 . E      

Figure . illustrates the flexibility of our approach. In this figure, an MKBR estimate
trained on a . random subset of the full input set is contrasted with an SMKBR es-
timate with the same number of pseudo-observations. Immediately noticeable is that the
training points in the optimised case have moved such that they attempt to cover much
more of the function structure. As a result, the learned kernel bandwidths can be much
lower, and hence the width of the posterior distributions smaller. emain challenge with
this method is to extend this reasoning to many more data points than the case illustrated
contains.

5 . 4 . 3 . P        L       

With the introduction of the pseudo-inputs, we have dramatically increased the number
of parameters that need to be learned relative to the MKBR. For nx-dimensional states,
and ny-dimensional states and m pseudo-inputs, at least m(ny + nx) parameters for the
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Figure ..: (Top)MKBRposterior utilising a randomly-selected reduced set of .of the
training data ( points).
(Bottom) the SMKBR algorithm with  pseudo-inputs. e mixture widths
learned in this case are much smaller, owing to the smart placement of the
pseudo-inputs. e discontinuity evident at Y = 0.0 is a numerical artefact
owing to the low number of points in the basis sets, and is caused by a large
regulariser value δ being learned.
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pseudo-inputs, on top of any kernel parameters and the two regularisation terms in KBR.
We can employ the same cost function as used to train the parameters of the MKBR in

chapter three, to jointly train the pseudo-inputs as well. is function is, as in section .,
the NLP of the testing states when conditioned on the training states. Let {(xi, yi)}ni=1 be
samples from the jointP(X,Y), and let P̂(X|Y=yi; ϑ)be the posterior estimate producedby
the SMKBR algorithmwhen conditioned on a training observation yi andwith unknown
parameters ϑ. e NLP cost function is then

C(ϑ) = −
n

i=1

log P̂(xi|Y=yi; ϑ). (.)

In chapter three, we used k-fold cross-validation to prevent over-fitting of the data with
this cost function. However, if the number of pseudo-inputs is much smaller than the
number of training points, the danger of over-fitting is reduced. Additionally, unlike chap-
ter three, themixture components of the posterior estimate are not centred on the training
points (but rather at the pseudo-inputs). is further reduces the danger of over-fitting,
because the test points are not being evaluated at the mode of each mixture component.

Initialisation

Initialisation of the parameters at the beginning of the training is critical in such a large
search space, especially with a non-convex cost function such as equation .. Follow-
ing [], we initialise the (x′, y′)mi=1 pseudo-inputs using the k-means algorithm run on
the training data []. For the kernel parameters and the regularisation terms, we use the
result of an initial optimisation that holds the pseudo-inputs fixed.

Optimisers

For the initial optimisation of the kernel parameters and the KBR regularisers, we use a
global optimiser called controlled random search (CRS) with local mutation [], which
initialises a large population of points in the search space and then perturbs these points
using simplex-based local update rule. Based on our experiments, CRS is more biased
toward global rather than local search and so performs better on larger datasets compared
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with the multi-level single linkage (MLSL) [] algorithm used in chapter three.
e joint optimisation of the parameters and the pseudo-inputs is performed using the

local optimisation strategy denoted constrained optimisation by linear approximations
(COBYLA) []. is is a derivative-free algorithm that constructs successive linear ap-
proximations of the cost function to perform gradient descent. As in chapter three, both
the CRS and COBYLA implementation are part of the ‘NLOpt’ soware package [].

euse of a derivative-free algorithm in this context is less than ideal. For a large parame-
ter space (as is the case with a large set ofm pseudo-inputs), an efficient analytic expression
could significantly speed up training. It is also worth noting that equation . is the sumof
independent cost terms, and is therefore amenable to stochastic gradient descent []. is
would allow potentially more efficient computation of an approximate derivative to fur-
ther speed up training for very large training sets. Implementing these features is a subject
of future work.

5.5. Other MKBR ScalingMethods

In addition to the SMKBR algorithm forming the main contribution of this chapter, we
also present two simple scaling strategies for MKBR against which it is insightful to com-
pare. e first is simply random reduced set selection, in which we decimate the training
set randomly to contain only m points. e second is the low-rank strategy mentioned
in [], with the addition of a Nyström-based stochastic Gram matrix approximation.

Random Subset of Data

Randomreduced set selection forMKBRsimply requires taking a subset {xi, yi}i∈I, |I| = m
of m pairs of xi, yi points from the original training set {xi, yi}ni=1. e pairs of points are
sampled randomly without replacement. e reduced training set is then used to train the
MKBR. Assuming the reduced set is much smaller than the original, (i.e. m << n), then
cross-validation in the learning becomes unnecessary, andwe can simply use the decimated
samples {xi}i∈(1..n)\I, with the same NLP cost function as the SMKBR, equation ..

is random subset of data method forms a baseline from which we can compare our
algorithm. It allows us to measure the value of optimising the pseudo-inputs over what is
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the simplest reduced set method.

5 . 5 . 1 . L   - R    G    M     A           

Gram matrix inversion is the dominating operation that defines the time complexity of
MKBR. Using a low-rank approximation to the Gram matrix provides an efficiency gain
in this inversion, both in time and space complexity. In this sectionwe outline themethod
suggested in [] for low-rank approximation of KBR, which of course also applies to
MKBR.

Naïvely, Gram matrix inversion is anO(n3) operation with n training points. However,
it may be the case that the eigenvalues of a Gram matrixG decrease rapidly, implying it is
possible to approximate the n × nGram matrix as the product of a tall n × mmatrix and
a longm × nmatrix, wherem << n. In this case, the resulting matrix inversion isO(mn2)
in storage andO(mn) in computation.

e two matrix inversions required in the KBR are the computation of the joint em-
bedding in equation ., and the computation of the posterior operator RX|Y in equa-
tion .. e first computes the weights α of the joint embedding μ[X,Y] = 𝐊T

XY[⋅]𝜷 for
the training points {xi, yi}ni=1 as

𝜷 = (GXX + εI)−1GXU𝜶. (.)

ApproximatingG by a rankmmatrix requires finding them×nmatricesU andVT and the
m×mmatrix B such that Ĝ ≈ G = UBV. Actually computing the low-rank factorisation
can be achieved in a number of ways. For small matrices, computing the singular value de-
composition (SVD) and throwing away the smallest n−m eigenvalues is tractable, but for
larger matrices, approximations are required. One efficient approach is to use randomised
SVD algorithms [] that compute an approximate SVD through random projections of
the matrix into lower-dimensional sub-spaces. is means we need never actually store
the full n × nmatrix.

For our work we implemented a popular algorithm specifically designed for Gram ma-
trices, based on these randomised matrix decompositions []. For an n× nGram matrix,
this algorithm produces a rankm approximation of the form Ĝ = CW−1CT, where C is a
n×mmatrix, andW is anm×m invertiblematrix. ematrixC is constructedby randomly
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drawing columns from G (with replacement) according to a data-dependent probability
distribution. e matrix C is the intersection of these columns with the corresponding
rows ofG.

With this low-rank approximation ofG, the Woodbury identity describes how to com-
pute the sum ofG and a full-rank matrixAwith only two matrix inversions of sizem×m,
provided A−1 is known [].

Definition ... Given a full-rank matrix A, and a rankNmatrixUBV, whereU and VT

areN × M andW isM × M, then the Woodbury identity asserts that

(A + UBV)−1 = A−1 − A−1U B−1 + VA−1U
−1

VA−1. (.)

In the case of equation ., the full-rankmatrixA is diagonal, making its inversion trivial.
ere are then only two M × M matrix inversions to perform. Substituting the decom-
position ofG into this equation and expanding with the Woodbury identity withU = C,
V = CT, B = W and A = εI yields

𝜷 = (ĜXX + εI)−1GXU𝜶 (.)

=
1
ε
GXU𝜸 − 1

ε2
C(W +

1
ε
CTC)−1CTGXU𝜸. (.)

For the details of computing C and W, see []. For better numerical stability, direct
inversion can be replaced with linear solves. In this case, finding 𝜷 amounts to solving

C(W +
1
ε
CTC)𝐱 = CTGXU𝜸 (.)

and then substituting x giving

𝜷 =
1
ε
GXU𝜸 − 1

ε2
𝐱. (.)

e secondGrammatrix inversion to compute theKBRposterior is part of the equation
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for the conditioning operator RX|Y. From equation .:

RX|Y = D(β)GYY (D(β)GYY)2 + δI
−1

D(β), (.)

where D(β) = Diag(β). e different kind of regularisation here requires a slightly dif-
ferent form of approximation. If GYY = CW−1CT then applying the Woodbury identity
withU = D(β)CW−1CTC, B = W−1 and V = CT yields

RX|Y =
1
δ
D(β)GYYD(β) (.)

− 1
δ2
D(β)CW−1CTC(W +

1
δ
CTD(β)CW−1CTC)−1CTD(β). (.)

e associated linear equations are

W𝐱 = CTC (.)

(W +
1
δ
CTD(β)C𝐱)𝐲 = CTD(β) (.)

RX|Y =
1
δ
D(β)GYYD(β) −

1
δ2
D(β)C𝐱𝐲, (.)

which require solving for 𝐱, then 𝐲, then substituting into the expression for RX|Y.

Using the normed weights technique in section .. to derive a pre-image estimate, the
computation of RX|Y can be greatly simplified. In this case,

RX|Y = D(β̂)GYY + δI
−1

D(β̂) (.)

and so by the Woodbury identity,

=
1
δ
D(β̂) − 1

δ2
D(β̂)C(W +

1
δ
CTC)−1CTD(β). (.)

When n is small, it makes sense to compute RX|Y once during the training phase, and
then to condition on a particular query point ys simply by multiplying; μ[X|Y = ys] =
RX|Y𝐤Y[ys]. Unfortunately, this requires storing the n × nmatrix RX|Y. erefore, we can
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instead solve the linear equations

D(β)GYY (D(β)GYY)2 + δI μ[X|Y = ys] = D(β)𝐤Y[ys] (.)

for every query point, reducing the storage cost to O(n × m) at the cost of increasing the
time complexity by a factor equal to the number of query points.

A comparison of the low-rank MKBR to the full-rank algorithm using a toy data set is
illustrated in figure .. Note that although the low-rank approximation provides a cruder
estimate of the KBR operators, the underlying RKHS for representing the embedding
remains the same. e low-rank approximation with a rank of 0.005n shows some loss of
detail, particularly in the sections withmulti-modality when compared to the fullMKBR
solution. Both methods utilised normed weight pre-images and a Gaussian kernel.

Rank-m approximations of the Gram matrices still require O(mn) storage and O(mn2)
computationhowever. emainmotivation for SMKBRwas to reduce these complexities
further, as they may still be prohibitive for very large datasets.

5.6. Experiments

In this section we evaluate the performance of SMKBR with a set of regression exper-
iments. We compare our algorithm to a number of scalable GP approximations from
the literature, as well as the MKBR with random reduced set selection, and with low-
rank Gram matrix approximation. e experiments are a toy dataset consisting of a bi-
modal pair of trigonometric functions, and two well-known datasets from the literature;
Abalone, which aims to predict the age of abalone in Bass Strait based on a set of physical
measurements, and Kink, which aims to predict the position of a simulated robot arm
based on a set of joint rotation parameters.

5 . 6 . 1 . D     

Toy dataset

Our first experiment is a demonstration on a toy dataset of multiple trigonometric func-
tions. At any point x the distribution is the sum of two functions with Gaussian noise,
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Figure ..: (Top) Full-rank MKBR posterior estimate.
(Bottom) .-rank MKBR posterior estimates. Note that even with this se-
vere approximation, the algorithm still performswell. However, a loss of detail
is clearly visible, especially in the bi-modal sections of the distributions.
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P(x) = 0.5m1(x) + 0.5m2(x) + 2ε where ε ∼ (0, σ) and

m1 = sin(3/2πx) + 5(0.5 − x) sin(3πx), (.)

m2 = −3 cos(2x) cos(6πx2), (.)

and noise σ = 0.3. We consider x ∈ (0, 1), and draw  points for training and 
for testing. ese points are then scaled to have mean  and unit variance. e resultant
dataset, which is bi-modal, is also used in the examples given in figures . and ..

Abalone

eAbalone data aremeasurements of nine physical attributes of abalone specimens taken
from coastal waters off Tasmania, Australia []. ere are nine attributes in the dataset:
sex, length, height, total weight, shucked weight (shell removed), ‘viscera weight’, shell
weight, and rings. Measuring the rings of an abalone is an accurate way to determine the
age of the creature, but is difficult and time consuming. erefore, the goal of the inference
problem is to use the eight simpler-to-obtain measurements to predict the rings variable.

ere are  abalone specimens in the data, which is randomly split into  training
values and  test values. All variables are treated as being continuous. e dataset is
available from the UCI machine learning repository.¹

Kin-40k

e Kin-k dataset contains simulated measurements generated from an eight link all-
revolute robot arm, similar to a Puma  model []. ere are eight measurements of
angular displacement for each of the joints, as well as a measurement of the distance be-
tween the end-effector and a fixed target. e aim of the experiment is to predict the dis-
tance to target given the joint angles. is variation of the Kin-k dataset was simulated
with high non-linearity, but low noise on the observations.

ere are , data points in total, which for each run of an experiment are randomly
divided into , training points and , testing points. e dataset is available

¹http://archive.ics.uci.edu/ml/
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online.²

5 . 6 . 2 . C         

e following algorithms from this thesis and the literature were examined in our exper-
iments. e comparison results for these algorithms were reproduced from the results
in []. e following paragraphs give a brief description of the methods, but for more
detail, see the stated reference or section ..

Low-RankMKBR is is the MKBR using the Nyström-based low-rank Gram matrix
approximation, described in section ... We denote this algorithm as LR-MKBR.

Subset of Data MKBR is is the MKBR using a simple randomly-selected subset of
the data, as described in section .. We denote this algorithm as SD-MKBR.

k-Means MKBR is is the MKBR using a reduced set construction which was com-
puted using k-means on the training data, without further optimisation. We denote this
algorithm as KM-MKBR.

SparsePseudo-InputGP is is the reduced set construction techniquedescribed in [],
in which a set of pseudo-inputs to the GP are jointly optimised with the kernel hyperpa-
rameters. We denote this algorithm as SP-GP.

Variational Lower Bound GP is is the algorithm described in [] in which a set of
inducing variables that simplifyGP inference are learned byminimising a variational lower
bound between the true GP output and the approximation. We denote this algorithm as
VAR-GP.

Projected Process GP is is the reduced set algorithm closely related to subset of re-
gressors, in which likelihood calculation for points outside the reduced set are approxi-
mated through the posterior mean []. We denote this algorithm as PP-GP.

²http://ida.first.fraunhofer.de/~anton/
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Full GP e abalone dataset was small enough that a full GP can also can be run for
comparison []. For more details on GPs, see section ...

5 . 6 . 3 . E           S    

For every dataset, the data were rescaled such that the training points {yi} had zero mean
and unit variance on every dimension. e {xi} training points were centred to have zero
mean. Each experiment was repeated five times using randomly selected training and test-
ing sets. For theAbalone andKin-k datasets, the sizem of the reduced set was evaluated
from , in powers of two up to . For the toy dataset, reduced set sizes from  to were
evaluated.

To conform with similar work in the literature, the experiments were assessed using a
slight variation on the NLP measure utilised in chapter three: the standardised negative
log-probability (SNLP) []. is measure is the difference between the negative log-
posterior probability of the algorithm, and the negative log-probability of a single Gaus-
sian with mean and variance determined empirically from the data. erefore, a score of
 corresponds to the most basic Gaussian regression, and a more negative score indicates
better performance. Let the training data {xi, yi} have mean μ and covariance Σ. en
given a testing set {x∗i , y∗i }Ti=1, the SNLP for a predictive distribution P(X|y∗i ) is

SNLP = − 1
T
log P(x∗i |y∗i ) − log (x∗i ; μ,Σ) . (.)

For all the KBR-based methods, a Gaussian kernel was used with a diagonal covariance
matrix, and a single parameter for each dimension of x and y. As in chapter four, the train-
ing data were whitened to remove covariance between dimensions. For very large data
sets, it is probably not feasible to perform a pre-image optimisation at every evaluation
of the cost function. erefore, we utilised the normed-weights method described in sec-
tion .. for all experiments.
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Toy Dataset

e results of the toy dataset are illustrated in figure ., and a full table of results is given
in table B.. e best performing algorithm aer the full MKBR is the low-rank MKBR.
is is unsurprising, considering the full dimensionality of the Hilbert space is retained
in this method, at the cost of additional storage and computation. Interestingly, the per-
formance of this method appears to be roughly independent of the size of the reduced
set. is is likely due to the intrinsic rank of the full Gram matrix being quite low. e
difference between the SMKBR and the KM-KBR illustrates the benefit of training the
pseudo-inputs over simply using their initialised values from the k-means algorithm. Fi-
nally, the SD-MKBR method performs the worst. Given that its reduced set is randomly
selected, there are likely significant areas without coverage by a training point for small
data fractions.

Abalone Dataset

e Abalone results are plotted in figure ., and tabulated in table B.. Here we see the
fullMKBRdramatically outperforms all othermethods including the fullGP.eabalone
dataset is known to be quite noisy, and without making the Gaussianity assumption the
MKBR is able tomodel amuch richer class of conditional distributions. e SMKBR also
demonstrated good convergence toward the full MKBR result as the number of points
increased.

Kin-40K Dataset

e Kin-k results are plotted in figure ., and tabulated in table B.. In this case the
performance of the SMKBR was less impressive than the majority of the other methods,
especially at larger set sizes. ere are a few possible reasons for this. e first is that as
Kin-k is a low noise dataset with essentially deterministic behaviour, high performance
in this dataset speaks more to the quality of the latent function prediction, rather than the
posterior distribution. Because SMKBR has significantly relaxed the assumptions on the
posterior relative to aGP, itwouldbe expected toperformworsewhen theGPassumptions
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Figure ..: Results from the sinusoidal toy regression problem. GP results were omitted
due to the string multi-modality of the problem.
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Figure ..: Results from the Kin-k dataset

are valid (as they appear to be in this case). Another reason is that the larger dataset made
training more difficult, and our implementation was somewhat limited in training speed
by the use of numerical derivatives for the training scheme.

5.7. Summary

In this chapter we have presented a new algorithm for efficiently scaling multi-modal ker-
nel Bayesian inference to large datasets. We have utilised a reduced set construction tech-
nique to lower the time complexity ofMKBR fromO(n3) toO(m3), and the storage from
O(n2) to O(m2), where m is the number of pseudo-input parameters. Rather than using
the n training inputs in the KBR directly, our algorithm instead uses a set of m << n
pseudo-inputs. To train the algorithm, we perform a joint optimisation of the pseudo-
inputs, kernel parameters and regularisation terms, using the negative log-probability of





.. Summary

the training data as a cost function. We named the resultant algorithm sparsemulti-modal
KBR or SMKBR.We have also re-derived the low-rank approximation to KBR suggested
in [], using a Nyström-based method for stochastic approximation of the Gram matri-
ces.

We demonstrated the effectiveness of the SMKBR algorithm on a set of experiments; a
simulated bi-modal regression problem, and the Abalone and Kin-k datasets from the
literature. e abalone experiment attempted to use physical measurements of abalone
specimens to estimate their age, whilst the Kin-k experiment attempted to learn the
position of a robot end-effector given the angular position of its eight rotational joints.
Our algorithm performed competitively with state-of-the-art scalable Gaussian process
techniques from the literature. is was particularly true in the Abalone dataset, where
SMKBR outperformed all other algorithms including sparse pseudo-input GPs [] and
variational lower bound GPs [].





Chapter 

Conclusions

T thesis developedmulti-modal, scalable, non-parametric inference using ker-
nel Bayes’ rule (KBR). Inference is the foundation stone of humanity’s system
of knowledge, and when quantified through Bayesian probability, it is a funda-

mental philosophical tool for how science determines what is ‘true’. Fortunately for the
richness anddiversity of theworld aroundus,manyphysical, sociological and environmen-
tal phenomena display complex, non-linear behaviour which eludes analytic description.
Unfortunately for statisticians, these properties make systems difficult to model with tra-
ditional parametric techniques.

Non-parametric methods such as Gaussian process (GP) regression are able to learn
the behaviour of complex phenomena directly from observations, without the need for a-
priori. However, GPs are limited to modelling normally-distributed uncertainty in their
predictive models.

Kernel Bayes’ rule is another type of non-parametric inference system that relaxes the
Gaussian assumptions inherent in GP regression. It is able to learn prior and likelihood
functions from a set of sample observations withoutmaking assumptions about the nature
of the underlying distribution, whilst still being able to represent non-linear phenomena
in multiple dimensions. It utilises high-dimensional function spaces to embed represen-
tations of the prior and likelihood distribution, and perform a Bayes update inside the
function space. e result of the algorithm is an element of the space corresponding to an
embedded posterior distribution. Expectations or amaximum a-posteriori estimate can be
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obtained from this embedding.
ough these estimates are useful by themselves, understanding the full posterior den-

sity of an inference problem is important inmany applications. is is especially truewhen
that distribution containsmultiplemodes. For risk-based decisionmaking, accurate quan-
tile estimates allow the risk of particular outcomes to be bounded and so are an important
product of inference. e ability to recover these estimates from KBR would significantly
enhance its utility, as would reducing the computational complexity of the algorithm for
scaling to larger datasets.
e objectives of this thesis were three-fold: to extend kernel Bayes’ rule to recover an esti-

mate of the full conditional posterior distribution, to estimate conditional quantiles to sup-
port risk-based descision making, and to increase the numerical efficiency of these algorithms
allowing them to scale to larger datasets.

Achieving these objectives would create a system of non-parametric inference thatmade
no assumptions about the prior, likelihood or posterior distribution and could represent
multi-modal posteriors arising from complex systems. It would also be useful for under-
standing larger quantities of data, and using this understanding to make explicit decisions
based on a rigorous process of risk quantification.

6.1. Summary of Contributions

Toachieve ourobjectives, wedeveloped themulti-modal kernelBayes rule algorithm(MKBR),
successfully applied it to conditional quantile estimation, and then developed a scalable
extension of the algorithm that allows for inference over larger datasets. Specifically we
presented the following contributions to achieve our objective:

M   -      R             F       

A novel mixture distribution pre-image extension to KBR Posterior estimates from
KBR take the form of elements of a reproducing kernel Hilbert space (RKHS). Recov-
ering an estimate of the distribution requires solving the pre-image problem; the reverse
mapping between the RKHS and the space of probability distributions. We presented
a novel approach to this difficult problem which was able to recover an estimate of the
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full posterior density from KBR, by embedding a candidate mixture distribution into the
RKHS space, then optimising the mixture weights to match the candidate and posterior
embeddings. e method is flexible, in that arbitrary mixture components can be chosen,
and efficient, requiring only the solution of a convex quadratic program to recover the
density estimate. We named this algorithm multi-modal kernel Bayes’ rule, or MKBR.

Anew training scheme for automatic parameter estimation eMKBR algorithm re-
quired a training scheme for optimising the free parameters that properly accounted for
the multi-modality of the resultant posterior. As such, standard functions like the mean-
squared errorwere unsuitable. Wepresented a training technique that optimised the nega-
tive log-probability of the trainingdata using k-fold cross validation toprevent over-fitting.

Application to difficult motion estimation problems in robotics We applied MKBR
to a number of difficult recursive Bayesian filtering and regression problems in the domain
of robotics. We illustrated thatMKBR is able to represent high-dimensional multi-modal
distributions and learn latent behaviour from data in a filtering experiment that tracked
a simulated particle choosing random forks in a fixed path. We showed that a complex
underlyingmotionmodel could be learned from noisy inertial measurements in a filtering
experiment predicting the location of a slot car moving around an  metre track. Finally,
we significantly extended a robotic path planning algorithm that used probabilistic ve-
locity fields generated from tracking pedestrians. Unlike the GP-based standard method,
MKBR could properly model the multi-modal velocity distribution caused by pedestri-
ans moving in opposite directions down the same hallway. is resulted in a much more
flexible system for robot motion planning.

C                  E        

Novel methods to recover cumulative distribution estimates directly from KBR pos-
terior embeddings We presented two different techniques for directly recovering esti-
mates of the conditional cumulative distribution from a KBR embedding, without the
need to first recover a PDF estimate through solution of the pre-image problem. ese
estimates used embedded indicator functions which took advantage of the reproducing
property of RKHSs to recover cumulative estimates with a simple inner product.
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Extension ofmulti-modal KBR to generate cumulative and quantile estimates As the
output of MKBR is a posterior density estimate, recovering the cumulative distribution
and hence the quantiles is simply a matter of integration and numerical root-finding. We
demonstrated automatic parameter estimation of thisMKBRvariant throughmaximising
the negative log-probability of the posterior density, or if a particular quantile is required,
through optimisation of the pinball loss. e former guarantees that different quantile
estimates will not cross, whilst the latter directly optimises the accuracy of the quantile
estimate.

Competitive performance in conditional quantile regression against state-of-the-art
techniques We demonstrated the various conditional quantile estimation algorithms
presented by testing them on a variety of standard datasets from the literature. We com-
pared against a number of state-of-the art algorithms, including heteroskedastic GP quan-
tile estimation, and quantile support vector machines. Our methods, particularly those
based on theMKBR posterior density, demonstrated competitive and in some cases supe-
rior performance. We showed a trade-off between the pinball loss training method, and
the log-probabilitymethod. e former demonstrated slightly better performance overall,
at the expense of guaranteeing the estimated quantiles do not cross.

S        M   -      R         

Novel reduced-set construction algorithm for efficient multi-modal inference on large
datasets We presented scalable multi-modal KBR (SMKBR), an algorithm that applies
the MKBR to a set of pseudo-inputs then optimises those inputs to maximise perfor-
mance. e result is that the underlying representations of distributions scale not with the
training data but with the numberm of pseudo-inputs. For n data points, this reduces the
complexity of KBR fromO(n3) in time andO(n2) in space toO(m3) in time andO(m2) in
space, wherem << n. e pseudo-inputs are jointly optimised with the algorithms’ other
parameters by minimising the negative log-probability of the training data. e resulting
algorithm can be applied to much larger datasets than the standard MKBR.

Competitive performance in large regressionproblems against state-of-the-art scalable
GP techniques We applied SMKBR to standard large datasets used in the scalable GP
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community. Our algorithm demonstrated superior performance in the noisy Abalone
dataset, even when compared to state of the art techniques such as sparse pseudo-input
GPs, and variational GPs. e low-noise Kin-k dataset proved more challenging, but
performance was still comparable with techniques such as projected-process GPs.

6.2. FutureWork

e gamut of future work arising from this thesis spans many interesting avenues of pur-
suit. is includes formal verification of some of the empirically demonstrated results,
increases is the expressiveness and efficiency of our algorithms, and novel application ar-
eas. We briefly outline some of these possibilities below.

Convergence proofs Producing proofs of convergence for the MKBR posterior and
quantile estimators is an important piece of future work. However, this relies on as-yet-
unproven convergence results of KBR itself. It would also be interesting to explore the
requirements on the posterior mixture representation given a particular true posterior.
Another important question is the link between KBR and GP regression. is may help
uncover the physical interpretation of the matrix regularisation parameters in KBR.

New kernels Extending MKBR to use more sophisticated kernel functions, especially
non-stationary kernels, would potentially increase the performance of the algorithmwhen
known information about the underlying system such as changing length-scales could be
encoded explicitly.

Performance away from data Like all non-parametric methods, KBR and MKBR per-
form poorly when queried far from training data points. However, the behaviour of these
algorithms in this domain is currently not well understood. Contrast this with GP regres-
sion, in which the choice of kernel is able to determine this behaviour. An important piece
of future work is trying to characterise how the choice of kernel, regulariser, and mixture
distribution impact estimates far from data.





.. FutureWork

Entropy estimation Efficient estimation of the entropy of an RKHS embedded distri-
bution would allow established techniques for decision making based on maximising in-
formation gain to be applied to KBR. One promising avenue to explore in this area is
the maximum mean discrepancy measure, an analogue for entropy computable inside the
RKHS.

Missingdata eMKBR is able to perform inferencewhenboth the input andoutput is
multi-dimensional. Supporting partial input data, in which some data-points are missing
some dimensions of input, is still an open problem however. Progress in this area would
broaden the applicability of MKBR to the common multi-task inference problems where
different measurements are not co-located.

Scalability performance For the scalable MKBR variant, future work includes imple-
menting analytic derivatives of the cost function to increase the efficiency of training, and
testing the performance of stochastic gradient descent as an optimiser. ese two changes
together could create a significant performance increase and allow scaling to even larger
problems.

New application areas Finally, there is interesting future work to be done in applying
the work in this thesis to other application areas beyond robotics and machine learning.
Areas such as environmental modelling contain sparse data from multiple sensor modal-
ities, and oen lack analytic models for the underlying phenomena. Because of potential
to affect the human population, accurate characterisation of uncertainty is critical. ese
are all factors which suggest the work in this thesis may be able to make a future contribu-
tion to the area. Another promising domain is geophysical inversion. e unconstrained
inversion of geophysical measurements taken at the surface to recover structural informa-
tion deep underground is fundamentally ill-posed, creating a complex posterior distribu-
tion. ough analytic models exist for many geophysical sensors, they are oen expensive
enough to compute that a sample-based approach such as MKBR may be able to provide
efficient approximations.

Of course, the work in this thesis constitutes only a small fraction of the possible appli-
cations of kernel Bayes’ rule, which is itself only part of a larger category of non-parametric
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kernel-based inference techniques. e enormity of the challenge this thesis represented
to the author only underlies the sheer scale, not only of the knowledge out in the world
waiting to be acquired, but also of that knowledge which has yet to be discovered. It is an
exciting and humbling prospect.

Now small fowls flew screaming over the yet yawning gulf; a sullen white surf beat against
its steep sides; then all collapsed; and the great shroud of the sea rolled on as it rolled five
thousand years ago.

(HermanMelville, “Moby-Dick; or, eWhale”)
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Foundations of Probabilityeory

P theorydescribes how to reasonwith incomplete information. ough
the field is both wide and deep, the foundations of probability theory are simple
and merely formalize a task performed by every human every day. One com-

pelling formulation of probability theory starts with the goal of extending Aristotelian
logic to a theory able to reason about degrees of belief, rather than the absolutes true and
false. From this goal, some basic properties of the theory can be fixed to ensure it is com-
patible with human experience and intuition.

Cox first wrote down three of such statements as axioms, and then proceeded to prove
that any theory of reasoningbasedon themwouldbe isomorphic toprobability theory [].
is was an important result, because at the time the prevailing interpretation of proba-
bility theory was that it represented the result of large numbers of repeated trials rather
than a degree of plausibility. Since then, the original set of axioms has been refined, and
some of Cox’s assumptions relaxed []. ere have also been quite different axiomatic
formulations that again lead to the same result [].

Before continuing, we note that modern axiomatic probability theory is oen couched
in terms of measure theory. is has some benefits, such as unifying considerations of
finite and infinite distributions []. However, in the work that follows there is no partic-
ular need for this formalism, and the mathematical overhead in couching all subsequent
work in terms of measures would not add to the reader’s understanding. As such, we will
consider probability distributions rather than probability measures, whilst being careful
to describe the set over which these distributions are defined.
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Wewill also skip a treatment of theories such as fuzzy logic [], which rather than being
based on degrees of plausibility about facts that are either true or false, instead deals with
uncertainty in the truth or falsity of the facts themselves.

A . 0 . 1 . C   ’  A     

Let us begin by assuming that the notion of a “degree of belief ” exists. is would include
both the concepts of true and false but would also encompass values between these two
extremes that reflect how much we believe in a proposition given incomplete knowledge.
For a proposition X, such as it is raining, we denote the belief of X given our current state
of information I to be B(X|I). Assume B(X|I) ∈ , the set of all beliefs. Denote the value
of B(X|I) corresponding to true as T and false as F. We will specify four properties we
would like B(X|I) to have, and from these attempt to ascertain the features of a theory of
reasoning under uncertainty.

R1: Degrees of belief are real numbers

• B(X|I) ∈ ℝ ∀X, I.

As the real numbers are the standard system of measurement for every fundamental unit
in physics (length, time, mass etc.), it does seem reasonable to use this set to also mea-
sure belief. Jaynes gives this requirement explicitly [], but we can consider two weaker
requirements separately and show they imply R1.

R1a: Degrees of belief have a total ordering

• B(X) > B(Y), B(Y) > B(Z) ⟶ B(X) > B(Z).

Intuitively, this is stating that all degrees of belief can be compared. Whilst comparing the
chance of rain tomorrow with the likelihood of Mars harbouring life seems incongruent,
it is intuitive that the strength of our beliefs about them can be compared. Ra immedi-
ately rules out any theories which represent belief as a multi-dimensional quantity. Such
theories do exist; possibility theory [] and belief function theories [] for instance.
For an overview of the debate surrounding this requirement, see [].
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R1b: Degrees of belief are infinite

• || ≥ ℵ0.

Rb makes sense when we consider the alternative— a finite number of degrees of belief.
Imagine there were onlyN degrees of belief, andwewere faced withN+1 groups of coins,
where the k-th group contained k coins. Intuitively, we would like to assign a different
level of belief to the chance that all coins in a group come up heads. But with onlyN levels
of belief we would be forced to assign the same belief to two groups containing different
numbers of coins.

R satisfiesRa andRb, but so do countably infinite sets such as the rationals []. How-
ever, we can make an argument analogous to the N coins to see why a countable number
of belief values would make constructing a universal system difficult, especially one that
was useful when reasoning about real-valued physical quantities such as length or time.

R2: Beliefs are compatible with propositional calculus

• X is equivalent to X′ implies B(X|I) = B(X′|I)

• If X is true then B(X|I) = T

• B(X|Y,Z, I) = B(X|(Y ∧ Z), I)

• If I is consistent and B(¬X|I) < T, then (X, I) is also consistent

Here equivalence means that these two statements have the same truth values (i.e. X ↔
X′ is a tautology). Consistency for a set of information I says that there exist no twopropo-
sitions X and X′ such that B(X|I) = T and B(¬X|I) = T.

R states that when two statements are equivalent, our belief in their truth should be
equal. If a statement is always true, then it should be given the belief associated with
certainty. If two statements are true, we should be able to replace them with their con-
junction. And finally, if there is some chance that X is true, then adding it to our known
information should not cause our system of reasoning to become inconsistent.
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R3: A belief and its negation cannot vary independently.

• ere exists a non-increasing function S0 such that B(¬X|I) = S0(B(X|I)) for all X
and consistent I.

R states that once we know on of either B(X|I) or B(¬X|I), the other is determined
(through S0 or S−10 ). e non-increasing function requirement means that if our belief
in X increases, we do not want our belief in¬X to also increase.

R4: e set of all beliefs is dense.

• If B(X|I) < B(Y|I) then ∃a ∈ :B(X|I) < a < B(Y|I).

ere are arguments against R [], but these arguments stem from a desire to define a
system over a finite set of possible beliefs (which we addressed in requirement Rb). Such
a system would necessarily be tied to the particular finite subset chosen, and hence would
be difficult to construe as a general system for reasoning under uncertainty.

A . 0 . 2 . C   ’  T     

On first glance it might appear that R1 − R4 are not particularly restrictive, in that there
might exist any number of theories that are different from each other but satisfy these
axioms. Surprisingly, it is not the case. In fact, any system of reasoning for whichR1−R4
hold will be isomorphic to probability theory. is is Cox’s eorem.

erefore, it is without loss of generality that we can describe our degrees of belief in a
proposition X given information I as the probability P(X|I), and noting that (PX|I) = 0
implies X is certainly false, and P(X|I) = 1 is equivalent to the statement X is certainly
true.

e implications of Cox’s eorem are significant. First, it states that not using Bayes’
theorem for reasoning about uncertainty implies throwing out at least one of R-R. It
also cements the prior distribution as in integral part of reasoning. Finally, it provides us
with a recipe for inference that demands explicit enumeration of our assumptions in the
form of prior and likelihood distributions.
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A . 0 . 3 . L     P          

From the axioms above, we can of course re-create the familiar rules of probability. From
here we will explicitly consider random variables rather than individual propositions, not-
ing that the probability distributionP(X) for a random variableX relates to a set of propo-
sitions {X = x}, x ∈ .

Product Rule

For random variables X ∈  and Y ∈ , the product rule relates their joint distribution
to the conditional by

P(X,Y) = P(X|Y)P(Y). (A.)

Sum Rule

e sum rule states that the total probability of all propositions being considered is equal
to unity.


n
P(Xn|I) = 1. (A.)

Law of total Probability

P(X) = 
n
P(X,Yn) (A.)

e law of total probability is also referred to as marginalization in the Bayesian literature,
because provides a method to ‘ignore’ unknown variables by placing a prior on them and
integrating them out of the expression. is process is made explicit by substituting the
sum rule in place of the joint:

P(X) = 
n
P(X|Yn)P(Yn) (A.)
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When the sets and are uncountable, there are equivalent expressions for all the above
results:

P(X,Y) = P(X|Y)P(Y), (A.)

P(X = x) dx = 1, (A.)

P(X) = P(X,Y) dY, (A.)

P(X) = P(X|Y)P(Y) dY. (A.)
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Table B..: Results for the Particle Simulation

Algorithm D D D D D
PF- -. ±. -. ±. -. ±. -. ±. -. ±.
PF- -. ±. -. ±. -. ±. -. ±. -. ±.
PF- . ±. -. ±. -. ±. -. ±. -. ±.
PF- . ±. -. ±. -. ±. -. ±. -. ±.
EPF- . ±. -. ±. -. ±. -. ±. -. ±.
EPF- . ±. -. ±. -. ±. -. ±. -. ±.
EPF- . ±. -. ±. -. ±. -. ±. -. ±.
EPF- . ±. -. ±. -. ±. -. ±. -. ±.
OPF- . ±. . ±. . ±. -. ±. -. ±.
OPF- . ±. . ±. . ±. -. ±. -. ±.
OPF- . ±. . ±. . ±. -. ±. -. ±.
OPF- . ±. . ±. . ±. -. ±. -. ±.
GPPF- -. ±. -. ±. -. ±. -. ±. -. ±.
GPPF- -. ±. -. ±. -. ±. -. ±. -. ±.
GPPF- . ±. -. ±. -. ±. -. ±. -. ±.
GPPF- . ±. -. ±. -. ±. -. ±. -. ±.

KBR-N . ±. -. ±-. -. ±-. . ±. . ±.
KBR-NS . ±. -. ±-. -. ±-. -. ±-. -. ±-.
KBR-J . ±. . ±. . ±. . ±. . ±.

Algorithm D D D D
PF- -. ±. -. ±. -. ±. -. ±.
PF- -. ±. -. ±. -. ±. -. ±.
PF- -. ±. -. ±. -. ±. -. ±.
PF- -. ±. -. ±. -. ±. -. ±.
EPF- -. ±. -. ±. -. ±. -. ±.
EPF- -. ±. -. ±. -. ±. -. ±.
EPF- -. ±. -. ±. -. ±. -. ±.
EPF- -. ±. -. ±. -. ±. -. ±.
OPF -. ±. -. ±. -. ±. -. ±.
OPF -. ±. -. ±. -. ±. -. ±.
OPF -. ±. -. ±. -. ±. -. ±.
OPF -. ±. -. ±. -. ±. -. ±.
GPPF- -. ±. -. ±. -. ±. -. ±.
GPPF- -. ±. -. ±. -. ±. -. ±.
GPPF- -. ±. -. ±. -. ±. -. ±.
GPPF- -. ±. -. ±. -. ±. -. ±.

KBR-N . ±. . ±. . ±. . ±.
KBR-NS -. ±-. -. ±-. -. ±-. -. ±-.
KBR-J . ±. . ±. . ±. . ±.





B. Full Experimental Results

Data Fraction Random K-Means Optimal Low Rank
. 0.265 ± 0.243 −0.014 ± 0.022 −0.022 ± 0.035 −0.894 ± 0.040
. 0.081 ± 0.059 −0.025 ± 0.020 −0.077 ± 0.036 −0.818 ± 0.055
. 0.087 ± 0.070 −0.270 ± 0.027 −0.328 ± 0.019 −0.850 ± 0.037
. 0.084 ± 0.124 −0.391 ± 0.020 −0.397 ± 0.046 −0.806 ± 0.033
. −0.094 ± 0.085 −0.421 ± 0.018 −0.431 ± 0.030 −0.834 ± 0.038
. −0.032 ± 0.107 −0.427 ± 0.016 −0.497 ± 0.013 −0.827 ± 0.079
. −0.119 ± 0.080 −0.429 ± 0.051 −0.517 ± 0.020 −0.829 ± 0.091
. −0.046 ± 0.136 −0.487 ± 0.029 −0.534 ± 0.041 −0.827 ± 0.010
. −0.067 ± 0.069 −0.492 ± 0.032 −0.579 ± 0.046 −0.801 ± 0.080
. −0.096 ± 0.126 −0.590 ± 0.030 −0.636 ± 0.020 −0.815 ± 0.037
. −0.218 ± 0.094 −0.557 ± 0.033 −0.619 ± 0.028 −0.839 ± 0.054
. −0.178 ± 0.108 −0.587 ± 0.019 −0.664 ± 0.045 −0.848 ± 0.032
. −0.147 ± 0.054 −0.610 ± 0.028 −0.658 ± 0.037 −0.855 ± 0.015
. −0.268 ± 0.063 −0.633 ± 0.023 −0.691 ± 0.017 −0.837 ± 0.026
. −0.243 ± 0.172 −0.639 ± 0.032 −0.711 ± 0.056 −0.871 ± 0.034
. −0.189 ± 0.058 −0.599 ± 0.021 −0.707 ± 0.021 −0.854 ± 0.058
. −0.243 ± 0.060 −0.658 ± 0.011 −0.724 ± 0.063 −0.859 ± 0.023
. −0.226 ± 0.098 −0.671 ± 0.030 −0.743 ± 0.034 −0.825 ± 0.019
. −0.234 ± 0.118 −0.681 ± 0.034 −0.761 ± 0.035 −0.831 ± 0.024
. −0.270 ± 0.133 −0.739 ± 0.023 −0.778 ± 0.038 −0.845 ± 0.032

Table B..: Toy Sinusoidal data set SNLP results for the various scaling strategies. e ex-
act result was −0.954 ± 0.018.

Table B..: Abalone data set Results

Reduced Set Size SD-MKBR SMKBR
 −0.237 ± 0.094 −0.382 ± 0.022
 −0.259 ± 0.059 −0.430 ± 0.021
 −0.291 ± 0.021 −0.657 ± 0.306
 −0.428 ± 0.017 −1.309 ± 0.100
 −0.684 ± 0.271 −1.670 ± 0.098
 −1.516 ± 0.334 −2.076 ± 0.176

Table B..: KinK data set Results

Reduced Set Size SD-MKBR SMKBR
 −0.095 ± 0.049 −0.483 ± 0.088
 −0.187 ± 0.028 −0.538 ± 0.013
 −0.227 ± 0.020 −0.516 ± 0.005
 −0.325 ± 0.022 −0.498 ± 0.009
 −0.395 ± 0.016 −0.532 ± 0.017
 −0.481 ± 0.013 −0.558 ± 0.018
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