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Abstract

Pseudo-plateau bursting is a type of oscillatory waveform associated with mixed mode
dynamics in slow/fast systems and commonly found in neural bursting models. In a recent
model for the electrical activity in a pituitary lactotroph, two types of pseudo-plateau bursts
were discovered: one in which the calcium drives the bursts and another in which the calcium
simply follows them. Multiple methods from dynamical systems theory have been used to
understand the bursting. The classic 2-timescale approach treats the calcium concentration
as a slowly varying parameter and considers a parametrized family of fast subsystems. A
more novel and successful 2-timescale approach divides the system so that there is only
one fast variable and shows that the bursting arises from canard dynamics. Both methods
can be effective analytic tools but there has been little justification for one approach over
the other. In the first part of this thesis, we demonstrate that the two analysis techniques
are different unfoldings of a 3-timescale system. We show that elementary applications
of geometric singular perturbation theory and bifurcation theory in the 2-timescale and 3-
timescale methods provides us with substantial predictive power. We use that predictive
power to explain the transient and long-term dynamics of the pituitary lactotroph model.

The canard phenomenon occurs generically in singular perturbation problems with at
least two slow variables. Canards are closely associated with folded singularities and in the
case of folded nodes, lead to a local twisting of invariant manifolds. Folded node canards
and folded saddle canards (and their bifurcations) have been studied extensively in R3. The
folded saddle-node (FSN) is the codimension-1 bifurcation that gives rise to folded nodes and
folded saddles. There are two types of FSN. In the FSN type I, the center manifold of the FSN
is tangent to the curve of fold bifurcations of the fast subsystem. In the FSN II, the center
manifold of the FSN is transverse to the curve of fold bifurcations of the fast subsystem.
Both types of FSN bifurcation are ubiquitous in applications and are typically the organizing
centers for delay phenomena. In particular, the FSN I and FSN II demarcate the bursting
regions in parameter space. Their dynamics however, are not completely understood. Recent
studies have unravelled the local dynamics of the FSN II. In the second part of this thesis, we
extend canard theory into the FSN I regime by combining methods from geometric singular
perturbation theory (blow-up), and the theory of dynamic bifurcations (analytic continuation
into the plane of complex time). We prove the existence of canards and faux canards near
the FSN I, and study the associated delayed loss of stability.
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CHAPTER 1

Introduction

The neuroendocrine system is the remarkably complex network of cells, glands and tis-
sues that maintain homeostasis and regulate reproduction, metabolism, energy utilisation,
osmolarity, and blood pressure within the human body. The neuroendocrine system is made
up of the nervous system and the endocrine system (Figure 1.1) and together, these work to
keep the body functioning regularly. The nervous system coordinates voluntary and involun-
tary actions, and transmits signals between different parts of the body. At the cellular level,
the nervous system is defined by the presence of a special type of cell, called the neuron (or
nerve cell), which provides a long-range signalling mechanism to coordinate the behaviour
of cells in remote parts of the body [1]. Neurons typically extend long branching processes
(axons) that terminate at specialized sites of signal transmission known as chemical synapses.
The axons enable neurons to contact target cells that are far away. When activated by stimuli
from the environment or from other nerve cells, the neuron sends electrical impulses (action
potentials) rapidly along its axon, triggering neurotransmitter release at the synapse. Neu-
rotransmitters in turn communicate information throughout the brain and body by relaying
signals between neurons. The brain essentially uses neurotransmitters to tell the heart to
beat, the lungs to breathe and the stomach to digest.

(a) (b)

Figure 1.1. The neuroendocrine system is composed of the (a) nervous and (b) endocrine
system. Adapted from http://members.shaw.ca/renaissanceservices/
health/stress/stress.htm.

The endocrine system consists of the pituitary, pineal, thyroid, parathyroid and adrenal
glands, pancreatic islet cells, and the ovaries or testicles. It controls physiological and be-
havioural activities via the secretion of hormones directly into the bloodstream, which carries
the hormones far and wide, allowing them to act on target cells that may lie anywhere in the
body [1]. Hormones regulate various human functions such as metabolism, growth and de-
velopment, tissue function, sleep, and mood. The endocrine system’s effects are slow to
initiate, and prolonged in their response, since it relies on diffusion and blood flow. This is

1
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2 1. INTRODUCTION

in contrast to the synaptic signalling of the nervous system, which is much faster (and more
precise) with short lived responses.

The control centre of the endocrine system is the hypothalamus, a small area located
in the middle of the base of the brain (behind and between the eyes). Typically weighing
about 4 grams out of the 1400 gram brain mass of an adult human [108], the hypothalamus
stimulates cellular activity in various parts of the body by directing the release of hormones
from the pituitary gland. By controlling the secretory functions of the pituitary gland, the
hypothalamus exerts control over most of the vegetative and endocrine functions of the body
as well as many aspects of emotional behaviour [56]. Damage to the hypothalamus can result
in severe imbalances in the internal environment.

The pituitary gland is the pea-sized organ that lies immediately beneath the hypothala-
mus. It is considered the ‘master gland’ of the body as it secretes a battery of hormones that
collectively influence all cells and affect virtually all physiological processes (Figure 1.2).
The pituitary gland is connected to the hypothalamus via the hypophyseal stalk. This stalk
contains neuronal processes and blood vessels that collect neurotransmitters released by neu-
rons in the hypothalamus. In this way, the endocrine system is connected to and controlled
by the nervous system [56].

Figure 1.2. The hypothalamus, pituitary gland, and the array of hormones released from the
anterior and posterior pituitary lobes. Adapted from [9].

Physiologically, the pituitary gland is split into two distinct regions: the posterior and
anterior lobes. The posterior lobe of the pituitary gland is an extension of the hypothalamus
and is composed largely of axons of hypothalamic neurons, which extend downward as a
large bundle that terminate behind the anterior pituitary. The posterior pituitary is where
the hormones oxytocin (which affects uterine contractions and lactation) and vasopressin
(which affects water retention and blood pressure) are stored and released. Secretion from
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the posterior pituitary is controlled by nerve signals that originate in the hypothalamus and
terminate in the posterior pituitary [56]. The anterior lobe of the pituitary gland is respon-
sible for the synthesis and release of most pituitary hormones. The anterior pituitary does
not receive direct neural input from the brain, but is instead connected to the hypothalamus
through a vascular network called the hypophyseal portal system. The primary function of
the hypophyseal portal system is the transport and exchange of hormones to allow rapid com-
munication between the hypothalamus and the pituitary gland. More specifically, hypothala-
mic releasing and hypothalamic inhibitory hormones secreted within the hypothalamus are
conducted (via the hypophyseal portal system) to the anterior pituitary, where they act on the
glandular cells to control hormone secretion [40].

The anterior region of the pituitary gland contains five types of trophic endocrine cells
that secrete a variety of hormones into the blood, which affect the growth of their target
tissues [9, 40, 56, 83]:

(i) Corticotrophs secrete adrenocorticotropic hormone, which stimulates the synthesis and
release of glucocorticoids (GCs) from the adrenal cortex. GCs regulate the metabolism
of glucose and are part of the immune system’s feedback mechanism to turn down
immune activity (i.e. inflammation).

(ii) Somatotrophs secrete growth hormone, which promotes the growth of most cells in the
body. Excess secretion of growth hormone can lead to gigantism (before puberty) or
acromegaly (after puberty). Growth hormone deficiency can lead to pituitary dwarfism,
which can result in a number of physical and psychological symptoms. Unlike the other
major anterior pituitary hormones, growth hormone does not function by stimulating a
target gland but exerts its effects directly on all or almost all tissues of the body.

(iii) Lactotrophs target the mammary glands by secreting prolactin, which initiates milk
synthesis and has many other roles related to reproduction and parental behaviour. Un-
like the other anterior pituitary hormones, the hypothalamus mainly inhibits prolactin
production, rather than promoting it. Dopamine is the primary neuroendocrine inhibitor
of the secretion of prolactin from the anterior pituitary.

(iv) Gonadotrophs secrete luteinizing hormone (LH) and follicle stimulating hormone (FSH),
which target cells in the gonads. In females, LH stimulates ovulation and the formation
of corpora lutea in the ovary. In males, LH stimulates the Leydig cells to secrete andro-
gens such as testosterone. FSH promotes the development of gametes and the secretion
of gonadal hormones in males and females.

(v) Thyrotrophs target the thyroid gland by secreting thyroid stimulating hormone, which
stimulates the synthesis and release of thyroxine and triiodothyronine from the thyroid
gland.

These pituitary hormones are transported by the vasculature to other regions of the body
where they act on other endocrine glands, which in turn secrete their hormones into the
blood, and on other tissue including the brain.

Like neurons and muscle cells, endocrine pituitary cells are electrically excitable. They
generate brief electrical impulses (called action potentials or spikes) that bring calcium ions
into the cell, which can in turn evoke the exocytosis of hormone-containing granules. In
this way, the hormone secretion from pituitary cells is, to a large extent, controlled by the
electrical activity of the cells. There are many types of ion channels expressed in pituitary
cells, and the ionic currents mediated by these channels determine the electrical activity
exhibited by the cells [118]. In a physiological setting, this spontaneous activity is subject to
continuous adjustment by hypothalamic neuropeptides, by hormones from other glands such
as the testes or ovaries, and by other pituitary hormones [42, 118].
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Figure 1.3. Electrical activity recorded in GH4C1 lacto-somatotroph cell lines. The cells
are able to exhibit (a) spiking and (b) bursting behaviour.

One typical pattern of electrical activity commonly seen in nerve and endocrine cells is
bursting [84, 38, 100, 74, 101, 104] (Figure 1.3(b)). Characterized by alternating periods of
fast spiking in the active (depolarized) phase and quiescence during which the cell is repolar-
ized, bursts are typically more efficient than spikes in evoking hormone and neurotransmitter
release [82, 117]. Such bursting oscillations have been observed in the spontaneous activ-
ity of prolactin-secreting lactotrophs, growth hormone-secreting somatotrophs, and ACTH-
secreting corticotrophs [132, 133, 78, 128], as well as GH4C1 lacto-somatotroph tumor cells
[122]. Characteristics of the burst pattern such as frequency and duration determine how
much calcium enters the cell, which in turn determines the level of hormone secretion [133].
More specifically, the bursting elevates the Ca2+ concentration in the cytosol of the cell and
thus generates higher levels of hormone secretion than tonic spiking patterns.

In this introductory chapter, we provide a brief overview of the bursting phenomenon
that motivates this thesis. In Section 1.1, we review the bursting phenomenon from a math-
ematical viewpoint with particular emphasis on plateau and pseudo-plateau bursting. The
underlying mathematical structure we introduce is the singular perturbation problem, which
lies at the heart of bursting phenomena. In Section 1.2, we introduce the pituitary cell model
of interest that generates pseudo-plateau bursting and formally show that it is singularly per-
turbed. We then outline the aims, scope and main contributions of the thesis in Section 1.3.

1.1. Slow/Fast Analysis of Plateau and Pseudo-Plateau Bursting

Bursting has been observed in various excitable systems, such as neurons [74, 84], car-
diac and muscle cells [109, 127], and endocrine cells [38, 65]. Given the ubiquity and com-
plexity of the bursting pattern, there has been a great deal of attention from the modelling
community. The earliest models of bursting neurons were developed in the 1970s and burst-
ing models have been published regularly ever since. Several books describe these models
and the techniques to analyze them [19, 66, 70]. The key observation is that the dynamics
operate on multiple timescales and are described by singularly perturbed systems of the form

ẏ = g(y, z),

ż = δ h(y, z),
(1.1)

where y ∈ Rn is fast, z ∈ Rk is slow, 0 < δ � 1 is a small parameter and the overdot denotes
a time derivative. Such slow/fast systems are amenable to singular perturbation methods and
one technique that has been used with great success is geometric singular perturbation theory
(GSPT) [41, 68].

Remark 1.1. Many biological systems evolve on more than 2 timescales and the canonical
form (1.1) is achieved through either model reductions or by a convenient grouping of the
variables into slow and fast categories.
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The traditional implementation of GSPT in bursting problems (as pioneered in [98])
groups the variables so that there is only 1 slow variable, and takes the singular limit δ → 0
and analyzes the dynamics of the resulting fast subsystem

ẏ = g(y, z),

ż = 0,
(1.2)

where z ∈ R is now a parameter. The dynamics of the fully perturbed problem (1.1) are
then understood as a slow drift through the dynamic regimes of (1.2). Such a geometric
singular perturbation analysis is also referred to as a ‘slow/fast’ analysis. Bursts are classi-
fied according to the fast y-subsystem bifurcations (with respect to z) involved in the initia-
tion/termination of the active (depolarized) phase [99, 65]. More precisely, the topological
classification of bursting is based on two important bifurcations of the fast subsystem (1.2):

(i) Initiation – bifurcation of equilibria of (1.2) resulting in a transition to limit cycles.
(ii) Termination – bifurcation of limit cycles resulting in a transition to equilibria.

Based on this classification scheme, there are 16 possible types of bursting when the fast
subsystem (1.2) is 2D and there are 120 types when the dimension of (1.2) is higher. We
refer to [65] for a complete listing of these bursters.
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Figure 1.4. Typical slow/fast analysis (with c slow and V fast) for (a) plateau and (b) pseudo-
plateau bursting. The fast subsystem equilibria (blue) undergo a (a) supercritical and (b)
subcritical Hopf bifurcation (HB). The plateau bursting closely follows stable limit cycles of
(1.2) until the homoclinic (HC). The pseudo-plateau bursting is not as well understood in this
formulation. In both cases, the active phase initiates at the lower fold (SN2).

One particular type of bursting that has been the focus of recent modelling efforts is
pseudo-plateau bursting, which features small amplitude oscillations or spikes in the active
phase superimposed on large amplitude relaxation type oscillations [121, 116]. Pseudo-
plateau bursting is usually associated with higher levels of hormone or neurotransmitter se-
cretion in nerve and endocrine cells and there is evidence it may have important roles in
neuronal signalling [82, 117]. Pseudo-plateau bursts are distinguished from plateau bursts,
which feature large amplitude fast spiking in the active phase [98, 6, 81, 128]. In terms of
(1.2), plateau and pseudo-plateau bursting feature a Hopf bifurcation of the fast subsystem in
the active phase, the criticality of which distinguishes the two bursting types [95, 129]. In the
plateau case, the Hopf is supercritical and the large amplitude active phase spikes are related
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to stable periodic orbits of the fast subsystem. The spiking activity in the active phase ter-
minates at a saddle homoclinic orbit. In the pseudo-plateau case, the small amplitude spikes
are transient oscillations that pass through a neighbourhood of the subcritical Hopf [116]
(see Figure 1.4). The small amplitude active phase spiking can persist even when there is
no stable solution of (1.2). Note that plateau and pseudo-plateau bursting can be converted
into one another via parameter changes that alter the criticality of the fast subsystem Hopf
[95, 124]. In both plateau and pseudo-plateau bursting, the initiation of the active phase
occurs via a fold bifurcation of the fast subsystem.

The slow/fast analysis outlined above has been very successful in understanding the
plateau bursting that occurs in pancreatic islets [7], pre-Bötzinger neurons of the brain stem
[16], trigeminal motoneurons [21] and neonatal CA3 hippocampal principal neurons [105].
It has also been useful in understanding aspects of pseudo-plateau bursting such as resetting
properties [116], how fast subsystem manifolds affect burst termination [94], and how pa-
rameter changes convert the system from plateau to pseudo-plateau bursting [124]. There are
features of the pseudo-plateau bursting however that are not well described by the standard
slow/fast analysis. Most notably, the transition from spiking to bursting cannot be predicted.
In fact, periodic spiking trajectories of the full system (1.1) can occur over a range of the fast
subsystem bifurcation diagram that only contains stable equilibria (see [123] for example).
As noted in Remark 1.1, most bursting models usually evolve on more than 2 timescales
and it may be more instructive to decompose the system so that there is more than 1 slow
variable. This thesis is concerned with breaking partially from the traditional approach by
using alternative slow/fast analyses where there is more than 1 slow variable.

1.2. The Pituitary Lactotroph Cell Model

Many hormone-secreting cells in the anterior pituitary gland, such as lactotrophs, soma-
totrophs and corticotrophs exhibit fast bursting with small spikes arising from an elevated
or depolarized voltage [78, 133] – see Figure 1.3(b). Many mathematical models have been
developed for the pseudo-plateau bursting in lactotrophs [121, 130], somatotrophs [128],
corticotrophs [81, 114] and single β-cells [146]. In this thesis, we consider a conductance-
based model for the electrical activity and calcium signalling in a pituitary lactotroph [121].
Conductance-based models are derived from equivalent circuit representations of a cell mem-
brane [64]. The model variables are the membrane potential V of the cell, the fraction n of
activated K+ channels of the delayed rectifier type, the fraction e of A-type K+ channels that
are not inactivated and the cytosolic free Ca2+ concentration c. The equations are

Cm
dV

dt
= − (ICa + IK + IBK + ISK + IA) ,

dn

dt
=

λ

τn
(n∞(V )− n),

de

dt
=

1

τe
(e∞(V )− e),

dc

dt
= −fc (αICa + kcc) ,

(1.3)

where ICa is an inward Ca2+ current responsible for the upstroke of an action potential. The
outward current IK is a delayed rectifying current largely responsible for the downstroke of
a spike whilst IBK is a fast-activating large-conductance BK-type K+ current that limits the
upstroke and contributes to the downstroke of an action potential [112]. The small Ca2+-
activated K+ current ISK contributes to the patterning of spikes, rather than the actual spike
dynamics and IA is an A-type K+ current that hyperpolarizes the membrane. The currents
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are defined, via Ohm’s law, by
ICa = gCam∞(V )(V − VCa),
IK = gKn(V − VK),

IBK = gBKf∞(V )(V − VK),

ISK = gSKs∞(c)(V − VK),

IA = gAa∞(V )e(V − VK).

The steady state functions are given by

x∞(V ) =

[
1 + exp

(
Vx − V
sx

)]−1

,

e∞(V ) =

[
1 + exp

(
V − Ve
sx

)]−1

,

s∞(c) =
c2

c2 + k2
s

,

where x ∈ {m,n, f, a}. The parameters Vx and sx set the half-maximum location and the
slope of the Boltzmann curve, respectively. Details of the parameters are listed in Table 1.1.

Table 1.1. System parameters for the pituitary lactotroph model (1.3)

Parameter Value Definition
Cm 0− 10 pF Membrane capacitance
gCa 2 nS Maximal conductance of Ca2+ channels
VCa 50 mV Reversal potential for Ca2+

Vm −20 mV Voltage value at midpoint of m∞
sm 12 mV Slope parameter of m∞
gK 0− 10 nS Maximal conductance of delayed rectifier K+ channels
VK −75 mV Reversal potential for K+

Vn −5 mV Voltage value at midpoint of n∞
sn 10 mV Slope parameter of n∞
τn 30 ms Time constant for n
λ 0.7 Parameter used to control spiking pattern

gBK 0− 0.7 nS Maximum conductance of BK-type K+ channels
Vf −20 mV Voltage value at midpoint of f∞
sf 5.6 mV Slope parameter of f∞
gSK 1.7 nS Maximum conductance of SK channels
ks 0.5 µM c at midpoint of s∞
gA 0− 25 nS Maximal conductance of A-type K+ channels
Va −20 mV Voltage value at midpoint of a∞
sa 10 mV Slope parameter of a∞
Ve −60 mV Voltage value at midpoint of e∞
se 10 mV Slope parameter of e∞
τe 20 ms Time constant of e
fc 0.01 Fraction of free Ca2+ ions in cytoplasm
α 0.0015 µMfC−1 Conversion from charge to concentration
kc 0.16 ms−1 Rate of Ca2+ extrusion

The model (1.3) represents a minimal biophysical interpretation for a pituitary lactotroph
cell in which current flow across the membrane is due to charging of the membrane capaci-
tance and movement of ions across ion channels. The main parameters of interest (i.e. that
can be tuned experimentally) are the maximal conductance of delayed rectifier K+ channels
gK , the maximum conductance of BK-type K+ channels gBK and the maximal conductance
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of A-type K+ channels gA. System (1.3) can also be thought of as a model for the pituitary
somatotroph, since lactotrophs and somatotrophs exhibit similar behaviours and the level of
detail in the model is insufficient to distinguish the two.

0 400 800 1200
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 (

m
V

)

Figure 1.5. A typical pseudo-plateau burst or 14 MMO generated by system (1.3).

A typical (pseudo-plateau) burst generated by system (1.3) is shown in Figure 1.5. Such
bursts are also known as mixed mode oscillations (MMOs). MMOs are oscillatory trajecto-
ries in which there is an alternation between large amplitude and small amplitude spiking. A
prototypical MMO is composed of L large amplitude oscillations followed by s small ampli-
tude oscillations. This is denoted Ls and called the MMO signature. A general MMO pattern
then is just a concatenation of these MMO units resulting in a signature Ls11 L

s2
2 . . . Lsn

n .
The pituitary lactotroph model (1.3) is capable of generating pseudo-plateau bursting

(MMOs) over a range of parameter values. In most endocrine cell bursting models, the
bursting oscillations are driven by the slow, systematic variation in the calcium concentration
[81, 121, 128, 146]. Changes in the intracellular calcium concentration play a crucial role in
the functioning of almost every cell type [70]. When the intracellular calcium concentration
is fixed, the bursting ceases (Figure 1.6(a)). This is referred to in [130] as classic bursting.
Unexpectedly, there are instances where the pseudo-plateau bursting persists almost unal-
tered when the calcium concentration is fixed [130] (Figure 1.6(b)). This is unusual since
the slow variation of the intracellular calcium concentration is typically responsible for clus-
tering impulses into episodes of electrical activity. We dub bursts driven by the calcium
fluctuations dynamic bursts. We call those bursts that do not require the calcium fluctua-
tions calcium-conducting bursts. Here, we use ‘conducting’ in the sense that the calcium
oscillations follow the bursts rather than drive them.

We would like to understand the dynamic mechanisms that underlie the bursting, and how
and why the bursts switch between dynamic and calcium-conducting MMOs. To facilitate
our analysis, we first perform a ‘dimensional analysis’ of (1.3) to identify the time scales of
the problem. The variables (V, n, e, c) vary on different time scales. To see this, we introduce
a dimensionless time scale tI = t/kt with reference time scale kt = τe, transforming (1.3) to

Cm
kt gmax

dV

dtI
≡ ε

dV

dtI
=f(V, n, e, c),

dn

dtI
=
λkt
τn

(n∞(V )− n) ≡ g1(V, n),

de

dtI
=
kt
τe

(e∞(V )− e) ≡ g2(V, e),

dc

dtI
=− kt

(fckc)−1

(
α

kc
ICa + c

)
≡ δ h(V, c),

(1.4)
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Figure 1.6. Time traces of the electrical activity and calcium concentration in (1.3) for (a)
classic bursting, in which the slow changes in the calcium concentration drives the bursts and
(b) ‘novel’ bursting, in which the calcium concentration is not driving the bursts but simply
follows them. The parameters were set atCm = 2 pF, fc = 0.01, gBK = 0.4 nS, gA = 10 nS
and (a) gK = 4 nS or (b) gK = 6 nS. The vertical dashed line marks the instant at which the
calcium is fixed.

where gmax = 10 nS is a typical conductance scale and

f(V, n, e, c) = − 1

gmax

(ICa + IK + IBK + ISK + IA)

is a rescaled version of the right hand side of the V -equation of (1.3).

Remark 1.2. We avoid complete nondimensionalization as the V and c scalings have no
influence on the timescales. This also allows easy comparison with experimental data.

The membrane potential V evolves on a fast timescale (given by Cm/gmax < 1 ms to
leading order) whilst (n, e) evolve on an intermediate timescale (τe = 20 ms and τn/λ ≈
43 ms). The calcium concentration evolves on a slow timescale ( 1

fckc
= 625 ms). In par-

ticular, decreasing Cm increases the timescale separation between V and (n, e, c), which
is reflected in the small parameter ε = Cm

ktgmax
� 1. Similarly, decreasing fc increases

the timescale separation between (V, n, e) and c, which is reflected in the small parameter
δ = ktfckc � 1, which is independent of ε. We will use (ε, δ) and (Cm, fc) interchangeably
since (ε, δ) have simple linear dependences on the biophysical parameters (Cm, fc). Thus,
system (1.4) is a singularly perturbed problem with fast variable V , intermediate variables
(n, e), slow variable c and small, independent perturbation parameters (ε, δ).

1.3. Aims & Outline

In this thesis, we focus on MMOs in 3-timescale systems of the form

ε ẋ = f(x, y, z),

ẏ = g(x, y, z),

ż = δ h(x, y, z),

(1.5)

where 0 < ε, δ � 1 are small, independent parameters, and f, g and h are sufficiently smooth
functions. The variables (x, y, z) vary over different timescales with x ∈ Rm classified as
fast, y ∈ Rn classified as intermediate and z ∈ Rk classified as slow. Such 3-timescale
systems have received little attention [67, 74, 75] and are typically treated as 2-timescale
problems, which is the natural setting for GSPT [41, 68]. However, the presence of two
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perturbation parameters means that there are various ways in which the theory can be imple-
mented (see Figure 1.7). One implementation uses ε as the singular perturbation parameter
whilst keeping δ fixed. System (1.5) is then partitioned into a fast subsystem described by the
x dynamics and a slow subsystem described by the (y, z) dynamics (1-fast/3-slow pathway of
Figure 1.7). The more traditional viewpoint of (1.5), as outlined in Section 1.1, utilizes δ as
the singular perturbation parameter with ε fixed, creating a family of fast (x, y) subsystems
parametrized by the slow variable z (3-fast/1-slow pathway of Figure 1.7).

3-Timescale 
Bursting Model

1 Fast
3 Slow

3 Fast
1 Slow

1 Fast
2 Intermediate

1 Slow

Origin & 
Properites of 
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Figure 1.7. Schematic of the multiple geometric approaches to bursting in the context of the
4D, 3-timescale system (1.4), where x = V ∈ R, y = (n, e) ∈ R2 and z = c ∈ R.

There are multiple goals to this work. First and foremost, we wish to broaden the scope
of GSPT by showing that elementary applications of the theory can be a powerful analytical
tool in understanding 3-timescale problems. We compare the familiar 2-timescale methods
with a 3-timescale analysis (1-fast/2-intermediate/1-slow pathway of Figure 1.7) and demon-
strate the efficacy of each technique. In conjunction with this, we illustrate our assertions by
analyzing the 3-timescale, 4D pituitary lactotroph model (1.4) [121, 130] and show that our
multiple geometric viewpoints provide a fairly complete view of the dynamics. Physiolog-
ically, we are motivated by a desire to understand a complex neuroendocrine cell model.
Mathematically, we are interested in the relationship between multiple analytical techniques.

The main contributions of this thesis are as follows. Firstly, we show that the pseudo-
plateau bursting is a canard-induced MMO [123, 134]. Mixed mode oscillations have been
described previously for neural models and data [15, 33, 38, 39, 47, 74, 101, 103, 140],
but this is the first example where they form pseudo-plateau bursting oscillations. We then
study the bifurcation sequences of canard-induced MMOs via return maps [135] in order to
understand the dynamics of spike-adding in pseudo-plateau bursting. Our next major result is
the extension of GSPT to 3-timescale problems of the form (1.5). In particular, we reconcile
the different timescale decompositions (3-fast/1-slow and 1-fast/3-slow) in the 3-timescale
context [136].
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The key mathematical objects at the heart of our results are canards, which are special
solutions of slow/fast systems that typically act as separatrices for the flow and organize the
dynamics in phase space. Closely associated with folded singularities (degenerate fold bifur-
cations of the fast subsystem), canards of folded node type and folded saddle type have been
studied extensively in R3 [5, 49, 119, 140]. The codimension-1 bifurcation that generates
folded nodes and folded saddles is called folded saddle-node (FSN) and has been observed
in various applications (including ours). There are two types of FSN and in either case, the
local dynamics of the FSN are not well understood. Recent studies of the FSN type II have
begun to unravel its dynamics [20, 51, 76], however, there are currently no results for the
FSN type I. The main mathematical contribution of this thesis then is the extension of canard
theory into the FSN type I regime. In particular, we prove the existence of canard (and faux
canard) solutions, and study the delayed loss of stability near the FSN type I limit [138].

The outline of the thesis is as follows: In Chapter 2, we introduce the theoretical frame-
work of GSPT with particular emphasis on canard theory. We describe the canard phenome-
non, state the main results of canard theory and show how it can lead to MMOs. In Chapter
3, we examine the dynamics underlying the calcium-conducting bursts by taking the limit
δ → 0 in (1.4) and studying the resulting singularly perturbed subproblem. We provide a
detailed bifurcation analysis of the pseudo-plateau bursting in this subproblem and show that
it is a canard-induced MMO. We then examine the bifurcation sequences of these MMOs by
constructing a global return map. The canards act as separatrices in the return map, organiz-
ing the dynamics along the Poincaré section. Using the return map formulation, we study
the bifurcation sequences involved in the creation and crossing of folded node type canards,
which informs our geometric intuition of the bursting phenomenon.

In Chapter 4, we extend the results of Chapter 3 to 0 < δ � 1, explaining the differ-
ence between dynamic and calcium-conducting MMOs in the process. In particular, we use
the lactotroph model (1.4) to demonstrate that the classic 3-fast/1-slow and novel 1-fast/3-
slow analyses are different unfoldings of a 3-timescale system. We show that elementary
applications of GSPT in the 2-timescale and 3-timescale methods provide us with substan-
tial predictive power. We use that predictive power to explain the transient and long-term
dynamics of (1.4). The analysis in Chapter 4 reveals that the FSN bifurcations (types I and
II) are crucial and persistent features of bursting models. In Chapter 5, we analyze the local
dynamics near the FSN type I, which is typically the organizing center for delay phenomena.
By combining methods from GSPT (blow-up), and the theory of dynamic bifurcations (an-
alytic continuation into the plane of complex time), we extend canard theory into the FSN I
regime. We obtain results on the existence of canards in the FSN I limit and results on the
associated delay effects. We conclude in Chapter 6 with a summary and discussion of the
main results of the thesis, their implications and open questions.



CHAPTER 2

Geometric Singular Perturbation Theory & Canard Theory

The dynamics of bursting occurs over multiple timescales, alternating between periods of
rapid oscillation and slow silent phases where the cell is hyperpolarized. The mathematical
models that describe such burst phenomena are often singularly perturbed. Various analytic
methods exist for dealing with such problems and one approach that has been used with
great success is GSPT, which combines the power of asymptotic theory with dynamical
systems techniques. In this chapter, we review the theoretical framework of the geometric
singular perturbations approach with particular emphasis on canard theory. The theoretical
foundation established here forms the basis of our results in subsequent chapters.

In Section 2.1, we state Fenichel’s theorems, which are fundamental in the analysis of
slow/fast systems. Fenichel theory is limited to normally hyperbolic manifolds. Normal hy-
perbolicity breaks down on folded critical manifolds and in Section 2.2, we examine features
of such problems. The blow-up technique, which we outline in Section 2.3, is a desingular-
ization procedure that extends Fenichel theory to nonhyperbolic problems. One of the great
successes of the combined power of the blow-up technique and GSPT is the analysis of folds
and canards. In Section 2.4, we give the results of a blow-up analysis of regular folds. We
follow in Section 2.5 with the results of a blow-up analysis of canards, which is collectively
known as canard theory. We take our local results and show in Section 2.6 how they can be
used to construct global solutions (relaxation oscillations and MMOs). We follow in Section
2.7 with an outline of the numerical methods involved in the computation and continuation
of invariant slow manifolds and canards.

2.1. Fenichel Theory

Many natural phenomena that vary over multiple timescales are described by singular
perturbation problems of the form

ẋ = g(x, z, ε),

ε ż = f(x, z, ε),
(2.1)

where x ∈ Rn is slow, z ∈ Rm is fast, t is the slow time, the overdot denotes derivatives
with respect to t, 0 < ε � 1 is a small perturbation parameter that measures the timescale
separation (between x and z), and f : Rn × Rm × R → Rm and g : Rn × Rm × R → Rn

are sufficiently smooth functions. A time rescaling t = ε τ gives an equivalent description
of the dynamics

x′ = ε g(x, z, ε),

z′ = f(x, z, ε),
(2.2)

where τ is the fast time, the prime denotes derivatives with respect to τ , and the trajectories
of (2.1) trace out the same paths in phase space as those of (2.2) but at different speeds.
The idea of GSPT is that, dynamically, the equations can be partitioned into slow and fast
subsystems by taking the singular limit ε → 0 on the slow and fast timescales, respectively.
Taking the singular limit ε→ 0 in (2.1) gives the n-dimensional differential-algebraic system

12
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called the reduced system (or slow subsystem)
ẋ = g(x, z, 0),

0 = f(x, z, 0),
(2.3)

which is an approximation of (2.1) wherein the fast variables move so rapidly they immedi-
ately settle to their equilibrium state defined by f = 0 (assuming it exists and is attracting).
The singular limit ε→ 0 in (2.2) gives the m-dimensional layer problem (or fast subsystem)

x′ = 0,

z′ = f(x, z, 0),
(2.4)

which is an approximation of (2.2) wherein the slow variables move so slowly they are
essentially fixed. GSPT uses the lower dimensional subproblems (2.3) and (2.4) to predict
the dynamics of the full (n + m)-dimensional system (2.1) for 0 < ε� 1. For an overview
of GSPT, we refer to the reviews in [60, 69].

Any slow/fast analysis starts with a bifurcation analysis of the layer problem (2.4).

Definition 2.1. The critical manifold is the set of equilibria of the layer problem

S := {(x, z) ∈ Rn × Rm : f(x, z, 0) = 0} . (2.5)

In general, S defines an n-dimensional manifold, i.e. the Jacobian D(x,z)f
∣∣
S

has full rank.
The critical manifold is arguably the most important object in the geometric singular per-
turbations approach and the classification of singularly perturbed systems is based on the
properties of S as equilibria of the layer problem (2.4).

Definition 2.2. A subset S0 of S is normally hyperbolic if all (x, z) ∈ S0 are hyperbolic
equilibria of the layer problem, i.e. the eigenvalues of the Jacobian Dzf |S0

are uniformly
bounded away from the imaginary axis. A normally hyperbolic subset

(i) Sa ⊂ S is attracting if all eigenvalues of Dzf have negative real part for (x, z) ∈ Sa,
(ii) Sr ⊂ S is repelling if all eigenvalues of Dzf have positive real part for (x, z) ∈ Sr,

(iii) Ss ⊂ S is of saddle type if it is neither attracting nor repelling.

Remark 2.1. A manifold is hyperbolic if the local linearization is structurally stable (i.e. the
eigenvalues have non-zero real part), and it is normally hyperbolic if in addition, the expan-
sion/contraction near the manifold in the transverse direction is stronger than in the tangential
direction, as may be quantified using Lyapunov type measures [63, 145] for instance.

For normally hyperbolic critical manifolds S0 ⊂ S, we have a uniform splitting of the
eigenvalues of Dzf along S0 into two groups. That is, for each p ∈ S0, the Jacobian Dzf
has mu (ms) eigenvalues with positive (negative) real part, where mu +ms = m. This leads
to the following definition of local stable and unstable manifolds of the critical manifold S0:

Definition 2.3. The local stable and unstable manifolds of the critical manifold S0 denoted
by W s

loc(S0) and W u
loc(S0), respectively, are the unions

W s
loc(S0) =

⋃
p∈S0

W s
loc(p), W u

loc(S0) =
⋃
p∈S0

W u
loc(p).

The manifolds W s
loc(p) and W u

loc(p) form a family of fast fibers (called a fast fibration or
foliation) for W s

loc(S0) and W u
loc(S0), respectively, with base points p ∈ S0. The dimension

of W s
loc(S0) is n+ms and the dimension of W u

loc(S0) is n+mu.

The geometric theory of slow/fast systems with normally hyperbolic critical manifolds
is referred to as Fenichel theory [41, 68]. It is one of the fundamental tools in the analysis of
singularly perturbed problems. Fenichel’s theorems guarantee the persistence of a normally
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hyperbolic manifold that is a small perturbation of S0, and corresponding local stable and
unstable manifolds close to W s

loc(S0) and W u
loc(S0) as follows:

Theorem 2.1 (Fenichel’s Theorem 1 [41, 68]). Consider system (2.1) with f, g ∈ C∞.
Suppose S0 is a compact normally hyperbolic manifold, possibly with boundary. Then for
ε > 0 and sufficiently small, the following holds:

(i) For any r <∞, there exists a Cr-smooth slow manifold Sε, locally invariant under the
flow of (2.1), that is Cr O(ε) close to S0.

(ii) For any r <∞, there exist Cr-smooth, locally invariant, stable and unstable manifolds

W s
loc(S

ε) =
⋃
pε∈Sε

W s
loc(p

ε), W u
loc(S

ε) =
⋃
pε∈Sε

W u
loc(p

ε),

that are Cr O(ε) close to W s
loc(S0) and W u

loc(S0), respectively.

Remark 2.2. The slow manifold Sε is generally non-unique, but all representations of Sε lie
O(e−K/ε) close to each other for some K > 0. That is, all r-jets are uniquely determined.

The price we pay for the approximation (2.4) is that the dynamics on S are trivial. To
obtain a non-trivial flow, we turn to the reduced flow (2.3), which describes the slow motions
along S. That is, S interfaces between the reduced and layer problems. The price we pay for
the approximation (2.3) is that the flow is not defined off S. For normally hyperbolic critical
manifolds S0 (i.e. Dzf |S0

has full rank), the implicit function theorem implies that S0 has
local graph representation z = h(x). That is, S0 can be represented over a single coordinate
chart given by the slow variable base x ∈ Rn. The reduced flow (2.3) on S0 then, is

ẋ = g(x, h(x), 0). (2.6)

Fenichel theory guarantees the persistence of a slow flow on the slow manifold Sε close to
the reduced flow on S in the following way:

Theorem 2.2 (Fenichel’s Theorem 2 [41, 68]). Consider system (2.1) with f, g ∈ C∞.
Suppose S0 is a compact normally hyperbolic manifold, possibly with boundary. Then for
ε > 0 and sufficiently small, Theorem 2.1(i) holds, and

(iii) The slow flow on Sε converges to the reduced flow on S0 as ε→ 0.

Since S0 is a graph z = h(x), it follows that Sε also has a graph representation zε =
h(x, ε) for 0 < ε� 1. Thus, the slow flow on Sε satisfies

ẋ = g(x, h(x, ε), ε), (2.7)

and we are now dealing with a regular perturbation problem on Sε, which is a remarkable
result. Consequently, we have

Corollary 2.1. Hyperbolic equilibria of the reduced problem (2.6) persist as hyperbolic
equilibria of the full system (2.1) for sufficiently small ε.

For ε > 0, the base points pε ∈ Sε of the fast fibers W s
loc(p

ε) and W u
loc(p

ε) evolve
according to (2.7). Hence, the individual fast fibers W s

loc(p
ε) and W u

loc(p
ε) are not invariant,

but the families of fibers W s
loc(S

ε) and W u
loc(S

ε) are invariant in the following sense:

Theorem 2.3 (Fenichel’s Theorem 3 [41, 68]). Consider system (2.1) with f, g ∈ C∞.
Suppose S0 is a compact normally hyperbolic manifold, possibly with boundary. Then for
ε > 0 and sufficiently small, Theorem 2.1(ii) holds, and
(iv) The foliation {W s

loc(p
ε) : pε ∈ Sε} is (positively) invariant, i.e.

W s
loc(p

ε) · t ⊂ W s
loc(p

ε · t),
for all t ≥ 0 such that pε · t ∈ Sε, where · t denotes the solution operator of (2.1).
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(v) The foliation {W u
loc(p

ε) : pε ∈ Sε} is (negatively) invariant, i.e.

W u
loc(p

ε) · t ⊂ W u
loc(p

ε · t),
for all t ≤ 0 such that pε · t ∈ Sε, where · t denotes the solution operator of (2.1).

Theorem 2.3 implies that the exponential decay of a trajectory in the stable manifold
W s(Sε) towards its base point pε ∈ Sε is inherited from the unperturbed case. Similarly for
a trajectory in the unstable manifold W u(Sε), but in backward time. Formally:

Theorem 2.4 (Fenichel’s Theorem 4 [41, 68]). Let αs < 0 be an upper bound for the real
part of the stable eigenvalues of the critical manifold S0. There exists a constant κs > 0, so
that if pε ∈ Sε and qε ∈ W s

loc(p
ε), then

‖qε · t− pε · t‖ ≤ κs exp(αst),

for all t ≥ 0, such that pε · t ∈ Sε.
Similarly, let αu > 0 be a lower bound for the real part of the unstable eigenvalues of the

critical manifold S0. There exists a constant κu > 0, so that if pε ∈ Sε and qε ∈ W u
loc(p

ε),
then

‖qε · t− pε · t‖ ≤ κu exp(αut),

for all t ≤ 0, such that pε · t ∈ Sε.
Remark 2.3. If we assume that S0 = Sa is an attracting normally hyperbolic manifold,
then Fenichel theory implies that the dynamics of (2.1) are completely described (after some
initial transient time) by the dynamics on the n-dimensional slow manifold Sε, which to
leading order, can be completely determined by the reduced flow on Sa.

In summary: Fenichel theory [41, 68] guarantees that normally hyperbolic invariant man-
ifolds of equilibria of the layer flow (2.4) persist as locally invariant slow manifolds Sε of
the full system (2.1) for sufficiently small ε. Moreover, the restriction of the flow (2.1) to Sε

is anO(ε) smooth perturbation of the slow flow along S described by the reduced flow (2.3).

2.2. Folded Critical Manifolds

For normally hyperbolic critical manifolds, the geometric theory is fairly complete. How-
ever, Fenichel theory breaks down at points on the critical manifold where normal hyperbol-
icity is lost. The most common causes of loss of normal hyperbolicity are fold [119] and
Hopf bifurcations [91, 92, 113] of (2.4), and points of self-intersection of S [72]. Often,
these non-hyperbolic regions are of interest since they tend to generate complex dynamics.

Definition 2.4. The n-dimensional critical manifold S is (locally) folded if there exists a set
L that forms an (n− 1)-dimensional manifold in S, where

L := { (x, z) ∈ S : rank(Dzf)(x, z, 0) = m− 1,

v · [(D2
zzf)(x, z, 0)(w,w)] 6= 0, v · [(Dxf)(x, z, 0)] 6= 0 } ,

and v and w denote the left and right nullvectors of Dzf , respectively. The set L is the set of
fold points of the critical manifold.

Folded critical manifolds are particularly common in applications and the dynamics
around them have been carefully studied in the plane [71, 73] and in R3 [119, 120, 140].
For problems with m > 1 fast variables, the (m − 1) fast hyperbolic eigendirections do not
alter the local dynamics significantly and the system can be reduced (via center manifold
reduction) to an (n+ 1)-dimensional system [14]:
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Theorem 2.5 (Reduction Theorem [14, 143]). Consider system (2.1) with critical manifold
S. Suppose (x0, z0) ∈ S is such that Dzf(x0, z0, 0) has a zero eigenvalue with algebraic
multiplicity 1, and all other eigenvalues have negative real part. Then there exists an (n+1)-
dimensional center manifold WC with the following properties:

(i) WC is tangent to the (n+ 1)-dimensional space spanned by the slow directions and the
nullvector of Dzf(x0, z0).

(ii) WC is exponentially attracting.
(iii) The vector field (2.1) reduced to WC has the form

ẋ = g̃(x, z̃, ε),

ε ˙̃z = x1(1 +O(x, z̃)) + z̃2(1 +O(x, z̃)) + εO(x, z̃, ε) =: f̃(x, z̃, ε),
(2.8)

where x ∈ Rn and z̃ ∈ R.

Remark 2.4. Theorem 2.5(iii) states that the point (x0, z0) corresponds to a saddle-node
bifurcation of the layer problem of (2.8).

Thus, we restrict attention to z ∈ R and drop the tildes, in which case the fold points are

L = {(x, z) ∈ S : fz(x, z, 0) = 0, fzz(x, z, 0) 6= 0, Dxf(x, z, 0) 6= 0} , (2.9)

where f is the right hand side of the z-equation in (2.8). The fold L divides the critical
manifold into attracting sheets Sa (where fz < 0) and repelling sheets Sr (where fz > 0).
Solutions of (2.4) flow along the 1D fast fibers {x constant} towards an attracting sheet Sa
or away from a repelling sheet Sr. As before, the slow flow on S is described by the reduced
vector field (2.3), which is (by definition) in the tangent bundle TS of S. The total time
derivative of the algebraic constraint f(x, z, 0) = 0 gives

Dxf · ẋ+ fz ż = 0,

which provides the definition for a tangent vector (ẋ, ż) of an integral curve (x(t), z(t)) to
be constrained to the tangent bundle TS. This leads to the following representation of (2.3):

ẋ = g(x, z, 0),

−fz ż = Dxf · g(x, z, 0),
(2.10)

where (2.10) is evaluated along (2.5). In many applications, S is a smooth manifold with
an atlas containing overlapping charts, where each chart describes the local structure of the
manifold. System (2.10) provides a representation of the original reduced problem (2.3) in
any (local) coordinate chart on the manifold S.

For a folded critical manifold S, a (local) graph representation can be used to analyse the
n-dimensional reduced problem (2.10). The difference from the normally hyperbolic case is
that the slow variable base x ∈ Rn has to be replaced by a slow/fast variable base (see [144]
for further details). The fold condition (2.9) together with the implicit function theorem
imply that S has a local graph representation, say x1 = h(x2, . . . , xn, z), which leads to the
projection of the reduced problem (2.10) onto the coordinate chart (x2, . . . , xn, z) ∈ Rn:

ẋi = gi(x, z, 0), i = 2, . . . , n,

−fz ż = Dxf · g(x, z, 0).
(2.11)

We observe that the reduced problem (2.11) is singular along the fold L, where fz = 0.

Definition 2.5. Regular fold points p ∈ L of the reduced flow (2.11) satisfy the transversality
condition (or normal switching condition)

Dxf · g |p∈L 6= 0. (2.12)
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Geometrically, the conditionDxf ·g = 0 is a violation of transversality: the reduced flow
on S projected onto the slow subspace is tangent to the fold. The non-degeneracy condition
fzz 6= 0 along L implies that fz changes sign at the fold. Thus, in the neighbourhood of
regular fold points, the flow is directed either towards or away from L. Solutions of (2.11)
reach the fold L in finite (forward or backward) time where they cease to exist.

Desingularization (i.e. a time rescaling dt = −fzds) removes the singular term at the
fold and gives the desingularized system

ẋi = −fz gi(x, z, 0), i = 2, . . . , n,

ż = Dxf · g(x, z, 0),
(2.13)

where the overdot denotes differentiation with respect to s. System (2.13) is topologically
equivalent (2.11) on Sa but has opposite orientation to (2.11) on Sr due to the time rescaling.
Obviously, the desingularized system (2.13) is simpler to analyse than the reduced problem
(2.11). The aim is to understand properties of (2.11) based on properties of (2.13).

Definition 2.6. Ordinary singularities of the desingularized problem (2.13) are defined by

E := {(x, z) ∈ S : g(x, z, 0) = 0} .
Folded singularities of the desingularized problem (2.13) are points along the fold L where
the transversality condition (2.12) is violated:

M := {(x, z) ∈ L : Dxf · g(x, z, 0) = 0} .
Remark 2.5. Generically (i.e. for fz 6= 0), the ordinary singularities are equilibria of (2.11).
By Corollary 2.1, the points of E are O(ε) close to hyperbolic equilibria of the full system.

Considered as equilibria of (2.13), folded singularities are classified according to their
linearization. Note that for n ≥ 2 slow variables, the linearization of (2.13) always has n− 2
zero eigenvalues, the eigenvectors of which are tangent to the set M . The classification of
folded singularities is based on the two remaining eigenvalues.

Definition 2.7. The linearization of (2.13) about a folded singularity has n − 2 zero eigen-
values. Let λ1, λ2 denote the remaining eigenvalues. The folded singularity is a

• Folded saddle if λ1, λ2 ∈ R and λ1λ2 < 0.
• Folded saddle-node if λ1, λ2 ∈ R and λ1λ2 = 0.
• Folded node if λ1, λ2 ∈ R and λ1λ2 > 0.
• Degenerate folded node if λ1, λ2 ∈ R and λ1 = λ2.
• Folded focus if λ1, λ2 ∈ C.

Remark 2.6. Folded saddles, folded nodes and folded foci are generic singularities of M .
Their reduced flows are locally topologically equivalent to those shown in Figure 2.1. The
sets of folded saddle-nodes and degenerate folded nodes are codimension-1 subsets of M .
Folded saddles, folded saddle-nodes and folded nodes are also known as canard points [119].

Folded singularities are not equilibria of the reduced system (2.11) but are points where
the right hand side of the z-equation vanishes. That is, they are points of (2.11) where there
is potentially a cancellation of a simple zero and trajectories of the reduced flow may pass
through the folded singularity with finite speed. This allows solutions to cross the fold L in
finite time and move from one sheet of the critical manifold to another (of opposite stability),
leading to the notion of canards [119, 140, 143]:

Definition 2.8. Solutions of the reduced problem (2.11) passing through a canard point from
an attracting manifold Sa to a repelling manifold Sr are called singular canards. Solutions
of the reduced problem (2.11) passing through a canard point from a repelling manifold Sr
to an attracting manifold Sa are called singular faux canards.



18 2. GSPT & CANARD THEORY

y

z

Γs Γf
y

z

Γs

Γw
y

z(a) (b) (c)

Figure 2.1. Reduced flow with (a) folded saddle, (b) folded node, and (c) folded focus at the
origin projected onto a slow/fast variable base (y, z). The fold L is the (slow) y-axis. S is
attracting for z < 0 and repelling for z > 0. The folded saddle has singular canard Γs and
singular faux canard Γf . The folded node has a sector (shaded) of singular canards enclosed
by the singular strong canard Γs and the fold. The singular canards pass through the folded
node tangent to the singular weak canard Γw. The folded focus has no singular canards.

The folded saddle has a singular canard and a singular faux canard, corresponding to the
stable and unstable eigendirections of the folded saddle, respectively. The folded node has
strong and weak eigendirections. The unique trajectory tangent to the strong eigendirection
is called the strong canard. Every trajectory that starts inside the trapping region enclosed by
the strong canard and by the fold is filtered into the folded node, and is a singular canard.

Definition 2.9. The strong canard together with the (n − 1)-dimensional set of fold points
L bounds a sector in Sa, called the singular funnel. Every trajectory starting in the singular
funnel reaches the set of folded nodes in finite time and subsequently crosses L transverse to
Sr in the direction tangent to the weak stable eigenvector of the corresponding folded node.

Remark 2.7. Trajectories that start on the strong canard in Sa reach the folded node in finite
time but cross it tangent to the strong stable eigenvector of the folded node.

Lemma 2.1. All folded singularities, except the folded focus, possess singular canards or
singular faux canards.

Singular canards and their persistence under small perturbations are the subject of ca-
nard theory (see Section 2.5). Canards have been studied extensively using various methods
such as nonstandard analysis [5, 29], matched asymptotic expansions [37, 87] and geometric
desingularization, i.e. blow-up [73, 119, 140, 143]. In planar slow/fast systems, canards are
degenerate and only occur in an exponentially small parameter window [30, 36, 73]. The
addition of a second slow variable makes the canards generic and robust and these have been
classified and analyzed in [119, 139, 140]. The remarkable insight of [143] is that (to leading
order) the dynamics near generic canards for n > 2 slow variables is precisely described by
the canard theory for two slow variables:

Theorem 2.6. Suppose (2.8) possesses folded singularities p of either saddle or node type.
Then there exists a smooth change of coordinates that brings (2.8) to the canonical form

ẋ1 =
1

2
µ(x3, . . . , xn)x2 − (1 + µ(x3, . . . , xn)) z +O

(
x1, ε, (x2 + z)2

)
,

ẋ2 = 1 +O(x1, x2, z, ε),

ẋj = aj + gj,1(x3, . . . , xn) +O(x1, x2, z, ε), j = 3, . . . , n,

ε ż = x1(1 + zO(x2, . . . , xn)) + z2(1 +O(x1, z)) + εO(x1, x2, z, ε),

(2.14)

where the aj are constants, gj,1(0, . . . , 0) = 0 and µ(x3, . . . , xn) denotes the eigenvalue ratio
of the folded singularity p, regarded as an equilibrium of the desingularized system.
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Corollary 2.2. The local (n + 1)-dimensional flow past the set of folded singularities M is
described to leading order by the 3D system

ẋ1 =
1

2
µ(x3, . . . , xn)x2 − (1 + µ(x3, . . . , xn)) z,

ẋ2 = 1,

ż = x1 + z2,

(2.15)

where (x3, . . . , xn) and hence µ = µ(x3, . . . , xn) are parameters.

Remark 2.8. Corollary 2.2 is obtained by rescaling system (2.14) by (and dropping the bars)

x1 = ε x1, x2 =
√
εx2, z =

√
εz, t =

√
ε t. (2.16)

This represents an O(
√
ε) zoom of (2.14) in the (x1, x2, z)-space transverse to M . The

rescaling converts the singular perturbation problem (2.14) into a regular perturbation prob-
lem, which is governed to leading order by the limiting system (2.15).

System (2.15) is the canonical form for folded saddles/nodes of singular perturbation
problems with n = 2 in an O(

√
ε) neighbourhood of the folded singularity [5, 14, 140].

Thus, for systems with n > 2 slow variables, a model reduction to two slow variables is (in
principle) not necessary to identify canard-induced phenomena. Consequently, to describe
the canard phenomenon, we invoke Theorem 2.5, Theorem 2.6 and Corollary 2.2 to restrict
our treatment to slow/fast systems in R3. That is, to study the local dynamics near a folded
singularity of node or saddle type, it suffices to consider (cf. system (2.14)):

Proposition 2.1 (Folded Node/Folded Saddle Normal Form [5, 14, 140]). Suppose (2.8)
with n = 2 has a folded node/folded saddle at the origin, and that the other fold points are
regular. Then there exists a smooth change of coordinates, which brings (2.8) to the form

ẋ =
1

2
µy − (µ+ 1)z +O(x, ε, (y + z)2),

ẏ = 1 +O(x, y, z, ε),

ε ż = x+ z2 +O(z3, xz2, xyz, ε(x+ y + z), ε2),

(2.17)

in a neighbourhood of the origin, where λ1 = −µ ∈ R and λ2 = −1 correspond to the
eigenvalues of the linearization of the desingularized flow of (2.17).

Remark 2.9. The folded singularity at the origin is saddle type for µ < 0 (Figure 2.2(a)) and
node type for µ > 0 (Figure 2.2(b)). For general slow/fast systems (2.1), µ is the eigenvalue
ratio of the folded singularity. A description of the dynamics around the folded saddle-node
(µ = 0) requires consideration of higher order terms in (2.17) (see Section 2.5).

Note that (2.16) is related to the blow-up transformation. The blow-up technique facili-
tates the analysis of slow/fast systems in regions where normal hyperbolicity fails. Given its
importance, we devote the next section to a description of the procedure.

2.3. The Blow-Up Technique

Fenichel theory [41, 68] breaks down when normal hyperbolicity is lost, which occurs
frequently in applications (regular fold and canard points being prime examples). The key
insight of [36] is that the blow-up technique [35, 102] is the right tool to desingularize and
hence analyze folds in S. In this section, we outline the blow-up technique in the context of
(2.17). For a rigorous formulation in a general setting, we refer to [22, 35, 102]. The blow-up
technique is a procedure that takes a nilpotent equilibrium and restores enough hyperbolicity
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Figure 2.2. Reduced flow of (2.17) on the critical manifold S along with its projection into
the (y, z)-plane for the (a) folded saddle and (b) folded node. The fold curve is given by the
y-axis. All trajectories in the funnel (shaded) of the folded node are singular canards.

that a complete analysis can be done via standard dynamical systems techniques [46, 34].
We rewrite (2.17) on the fast timescale (τ = t/ ε) as the extended system in R4

{(2.17), ε′ = 0} , (2.18)

i.e. we include the trivial equation for ε. In this extended phase space, the set S × {0} is a
manifold of equilibria. Away from the fold curve L, the linearization of (2.18) along Sa×{0}
has a triple zero eigenvalue and one negative eigenvalue.

Remark 2.10. The slow manifolds Sεa, S
ε
r are obtained as sections ε = constant of 3D,

locally invariant, center-like manifolds Ma,Mr of the extended system (2.18).

The linearization of (2.18) along L has a quadruple zero eigenvalue, i.e. the fold curve
is a set of degenerate equilibria of (2.18). Let X denote the vector field (2.18), and suppose
that X(0) = 0 and fz(0, 0, 0, 0) = 0 so that the origin is a nilpotent equilibrium where f
denotes the right hand side of the z equation in (2.17). We define two kinds of blow-up
transformation: one for regular folds and one for folded singularities.

Definition 2.10. The cylindrical blow-up ΦL : BL,0 ⊂ BL → R4 is the mapping

ΦL(x, y, z, ε, r) = (rα1x, y, rα3z, rα4ε),

where BL = S2×R×R, BL,0 = S2×R× [−r0, r0], r0 > 0 with weights (α1, α3, α4) ∈ N3.
That is, the y-axis is blown-up by ΦL to a cylinder with

x2 + z2 + ε2 = 1.

The spherical blow-up ΦM : BM,0 ⊂ BM → R4 is the mapping

ΦM(x, y, z, ε, r) = (rα1x, rα2y, rα3z, rα4ε),

where BM = S3 × R, BM,0 = S3 × [−r0, r0], r0 > 0 with weights (α1, α2, α3, α4) ∈ N4.
That is, the origin is blown-up by ΦM to a 3-sphere with

x2 + y2 + z2 + ε2 = 1.

Remark 2.11. The spherical blow-up ‘inflates’ a nilpotent equilibrium to a 3-sphere and is
used for the analysis of folded singularities. For regular folds, there is no distinguished point
on L and all points on L have to be treated simultaneously to obtain uniform results, hence
why there is no rescaling of y in the cylindrical blow-up.

The map ΦM is surjective and proper since it maps the 3-sphere ZM = S3 × {0} to the
origin. The map ΦL is surjective and proper since it maps the cylinder ZL = S2 × R × {0}
to the y-axis. Let Φ denote the cylindrical or spherical blow-up. The restriction Φ|B\Z is
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a diffeomorphism from B\Z to R4\{0} (spherical blow-up) or to R3\{0} × R (cylindrical
blow-up). The map Φ defines the induced map Φ∗ : TB → TR4 between the associated
tangent bundles.

The map Φ induces a vector field X on B such that Φ∗X = X . It suffices to study X
on B0 since Φ(B0) is a full neighbourhood of the origin. For the analysis of X on B0, we
make use of coordinate charts (to make the calculations as simple as possible), leading to the
notion of directional blow-ups.

Definition 2.11. Directional blow-ups Φi, i = 1, 2, . . . , 2m are obtained by setting one
blown-up variable on Sm−1 to ±1 in the definition of Φ (m = 4 for spherical and m = 3
for cylindrical). The directional charts κi : Bi → R4 are homeomorphic maps such that
B =

⋃
iBi. In chart κi the blown-up vector field X is described by a vector field Xi.

Remark 2.12. The directional charts κi cover the 3-sphere (cylinder) by planes perpendicu-
lar to the axes. In practice, not all directional charts are needed for a complete analysis.

In singular perturbation problems, the most important chart is the classical or rescaling
chart κ2, corresponding to ε = 1 in the blow-up. The associated directional blow-up is an
ε-dependent rescaling of the variables since r = ε−α4 .

Sa

Sr
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z

ε

←−ΦM

x
z

ε

κ1
�
�
��

κ2
�
��

Sa

Sr

(a) (b)

Figure 2.3. The spherical blow-up transformation ΦM for a folded singularity (node or sad-
dle) projected onto y = 0. (a) Fast fibers of the layer problem are indicated by the red lines
(double arrow), and the folded singularity (black dot) is at the origin. (b) The folded singular-
ity is blown up to a sphere. Chart κ1 covers the incoming and outgoing flow on the blown-up
sphere. The rescaling chart κ2 covers the flow on the blown-up sphere.

Definition 2.12. A local vector field X is defined on a compact smooth manifold B by a
finite open covering {Bi} of B with some smooth vector field Xi on each Bi, such that for
each pair of indices i, j ∈ I withBi∩Bj 6= ∅, there exists a strictly positive, smooth function
gij defined in Bi ∩Bj such that Xi = gijXj on Bi ∩Bj .

Definition 2.13. Let {Bi} be a finite open covering of B, on which local vector fields X and
X̃ are given by Xi and X̃i. Then X̃ is the result of local division of X if there exist smooth
functions fi : Bi → R such that Xi = fiX̃i in Bi.

Remark 2.13. The functions fi tend to be polynomials in ri, which vanish on the 3-sphere
S3 × {0} or the cylinder S2 × R × {0} (where the blow-up fails to be a diffeomorphism).
In that regard, local division consists of dividing out powers of ri, leading to vector fields
X̃i and Xi with the same phase portraits for ri > 0. However, on ri = 0, X̃i may show
nontrivial dynamics that were hidden in Xi, thus validating the blow-up procedure.
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The choice of weights, which is problem dependent, is guided by the requirements:
(i) Local division is possible to obtain the vector fields X̃i.

(ii) The vector fields X̃i only have hyperbolic or semi-hyperbolic equilibria.
(iii) The dynamics in the planes ri = 0 can be analysed.
(iv) Perturbation methods can be used to obtain the dynamics for ri > 0.

We summarize the blow-up technique in the following:

Definition 2.14. A desingularization of vector field X in R4 with nilpotent equilibrium
X(0) = 0 is a blow-up transformation Φ : B → R4 with suitable weights (α1, α2, α3, α4)
such that for all local vector fields Xi induced by Φ and any point p ∈ Zi with X̃i(p) = 0,
where X̃i is a result of local division of Xi, p is a hyperbolic or semi-hyperbolic singularity
of X̃i.

Remark 2.14. The blow-up technique is an iterative process, so that if any nilpotent equilib-
ria remain after one blow-up, additional blow-ups can be used to desingularize these points.
Moreover, if X satisfies a Lojasiewicz inequality, then only a finite sequence of blow-ups is
needed to make all singularities either hyperbolic or semi-hyperbolic [35].

It is important to be able to connect the dynamics in different coordinate charts. To this
end, we require coordinate changes that move between charts.

Definition 2.15. The change of coordinates between two charts κi and κj is defined as

κji := κj ◦ κ−1
i .

2.4. The Regular Fold

We now state the results of a blow-up of regular folds [71, 120]. Consider (2.17) with
µ < 0 so that the reduced flow is directed towards L for y < 0 and away from L for y > 0
(Figure 2.2(a)). We restrict attention to a neighbourhood of L for y < 0 where all fold points
are regular and orbits on S reach L in finite time. The only possibility to continue from there
(in the singular limit) is along the weakly unstable fiber of the layer flow. The goal is to track
Sεa and Sεr as they pass close to L. Note that results for y > 0 are obtained by time reversal.

We blow-up (a segment of) the fold curve to a cylinder S2 × I × R, with (x, z, ε) ∈ S2,
y ∈ I and r ∈ R. The cylindrical blow-up transformation ΦL in this case is

x = r2x, y = y, z = rz, ε = r3ε.

The only directional charts needed in the analysis of the blown-up vector field are the entry
chart κ1 defined by x = −1 for the incoming flow, the classical chart κ2 for the flow on the
cylinder, and the exit chart κ3 defined by z = 1 for the outgoing flow.

Remark 2.15. The blow-up converts the singular perturbation problem to a regular pertur-
bation problem. In chart κ2, the unperturbed system boils down to the Riccati equation

z′′2 − 2z2z
′
2 =

1

2
µy2,

where y2 < 0 is a parameter, which is a local canonical form for regular folds [71, 87, 120].

For small positive ρ and suitable rectangles J1, J2 ∈ R2, let

Σin :=
{

(−ρ2, y, z) : (y, z) ∈ J1

}
, Σout := {(x, y, ρ) : (x, y) ∈ J2} ,

be sections transverse to Sa and the fast fibers, respectively. Let ΠL : Σin → Σout be the
transition map for the flow of (2.17).
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Theorem 2.7 (Flow past 2D regular fold [120]). For the regular fold, there exist ρ > 0 and
ε0 > 0 such that for ε ∈ (0, ε]:

(i) There exists an interval Iout such that for y ∈ Iout, the slow manifold Sεa intersects Σout

in a smooth curve, which is a graph, i.e. xout = hout(yout, ε).
(ii) The section Σin is mapped to an exponentially thin strip around Sεa ∩Σout, i.e. its width

in the x-direction is O(exp(−c/ ε)), where c is a positive constant.
(iii) The map ΠL : Σin → Σout has the form

ΠL

(
y
z

)
=

(
hout(GL(y, z, ε), ε) +O(exp(−c/ ε))

GL(y, z, ε)

)
,

where hout(GL(y, z, ε), ε) = O(ε2/3) and GL(y, z, ε) = GL,0(y) +O(ε ln ε). The func-
tion GL,0(y) = y +O(ρ3) is induced by the reduced flow on Sa from Σin to L.

Remark 2.16. Theorem 2.7 shows that solutions leave a neighbourhood of the regular fold
via fast directions O(ε2/3) close to the corresponding weakly unstable fiber of the layer
problem. As such, regular fold points are also known as jump points.

2.5. Canard Theory

We consider (2.17) once again, this time blowing-up the folded singularity at the origin
in order to prove the persistence of singular canards under small perturbations and study their
properties. The spherical blow-up transformation ΦM for folded nodes/saddles is [119, 140]

x = r2x, y = ry, z = rz, ε = r2ε,

with (x, y, z, ε) ∈ S3. It suffices to consider the directional chart κ1 (given by x = −1) and
the classical chart κ2 (see Figure 2.3(b)). In the rescaling chart κ2, the singular perturba-
tion problem is transformed into a regular perturbation problem with leading order dynamics
(r2 = 0) governed precisely by system (2.15), with (x1, x2, z, µ(x3, . . . , xn)) of (2.15) re-
placed by (x2, y2, z2, µ). The following observation [5] is crucial:

Lemma 2.2. System (2.15) has, for µ 6= 0, two explicit algebraic solutions:

γ1 =

(
−µ

2

4
t2 +

µ

2
, t,

µ

2
t

)
, γ2 =

(
−1

4
t2 +

1

2
, t,

1

2
t

)
,

where γ1 and γ2 correspond to the eigenvalues λ1 = −µ and λ2 = −1, respectively.

Remark 2.17. The projections of the special solutions (γ1, γ2) into the (y2, z2) plane coin-
cides with the eigendirections at the origin of the singular canards. Note that (2.15) can be
rewritten as a second-order inhomogeneous differential equation

z′′2 − 2z2z
′
2 + (1 + µ)z2 =

1

2
µt, (2.19)

which serves as a local normal form for generic canard problems in slow/fast systems [143].

The importance of the special solutions (γ1, γ2) is that they connect the attracting slow man-
ifold across the ‘upper half’ (ε > 0) of S3 to the repelling slow manifold or vice versa. Thus,
(γ1, γ2) are viewed as extensions of the singular canards. The chart κ1 is used to connect the
unbounded branches of (γ1, γ2) with the singular canards of the reduced problem.

We are now in a position to state the existence and bifurcation theorems that form the
theoretical framework of canard theory. We begin by defining canard solutions away from
the singular limit. Recall that the slow manifolds are non-unique (but exponentially close).
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Definition 2.16. For a fixed choice of slow manifolds, a maximal canard is a solution of
(2.17) that corresponds to the intersection of Sεa and Sεr , extended by the flow of (2.17) into
the neighbourhood of the folded singularity.

Remark 2.18. A maximal canard defines a family of canards nearby which are exponentially
close to the maximal canard (which reflects the non-uniqueness of Sεa and Sεr ). In the singular
limit, such a family of canards is represented by a unique singular canard.

2.5.1. Folded Node Canards. Consider (2.17) in the folded node case with real, nega-
tive eigenvalues λs < λw < 0. In our formulation, we take µ = λw/λs so that 0 < µ < 1 for
folded nodes. There are two kinds of results concerning folded node type canards: existence
of maximal canards and rotational properties.

Theorem 2.8 (Existence of Maximal Canards [14, 119, 140, 143]). Suppose system (2.17)
has a folded node with 0 < µ < 1. Then for 0 < ε� 1 and µ bounded away from zero:

(i) The singular strong canard perturbs to a maximal canard γ0, called the primary strong
canard.

(ii) If µ−1 6∈ N, the singular weak canard perturbs to a maximal canard γw, called the
primary weak canard.

(iii) If 2k + 1 < µ−1 < 2k + 3, k ∈ N and µ−1 6= 2k + 2, then there exist k additional
maximal canards γj, j = 1, 2, . . . , k, positioned between γ0 and γw called secondary
canards, which are O(ε(1−µ)/2) close to γ0 at O(1) distances from the fold curve L.

(iv) The secondary canards bifurcate from the primary weak canard in a transcritical bifur-
cation for odd µ−1 ∈ N.

Remark 2.19. Theorem 2.8(i)–(ii) follows by extending the slow manifolds along the special
solutions (γ1, γ2). For µ−1 6∈ N, the manifolds intersect transversally, so their intersection
persists under small perturbations [119]. Theorem 2.8(iii)–(iv) follows from applications of
Melnikov theory [140].

When the non-resonance condition µ−1 6∈ N is violated, secondary canards bifurcate
from the weak canard leading to additional rotational sectors [140] (see Theorem 2.8 and
[52, 135] for numerical examples). More precisely, there is a pitchfork bifurcation of canards
for even µ−1 and there is a transcritical bifurcation of canards for odd µ−1. One branch of
the transcritical bifurcation and the two branches of the pitchfork bifurcation only exist in
a very small neighbourhood of µ−1 ∈ N. The only persistent branch of secondary canards
away from the resonances bifurcates from the transcritical bifurcation for odd integer µ−1

(i.e. at changes in smax).

By studying the variational equation of (2.17) along the special solution γ1 corresponding
to the weak eigendirection, we obtain the following:

Theorem 2.9 (Rotational Properties [14, 119, 140, 143]). Suppose system (2.17) has a
folded node with 0 < µ < 1. Then for 0 < ε � 1 and µ bounded away from zero with
2k + 1 < µ−1 < 2k + 3, k ∈ N and µ−1 6= 2k + 2:

(i) the primary strong canard twists once around the primary weak canard in an O(
√
ε)

neighbourhood of the folded node,
(ii) the j-th secondary canard, 1 ≤ j ≤ k, twists 2j + 1 times around the primary weak

canard in an O(
√
ε) neighbourhood of the folded node,

where a twist corresponds to a rotation of 180◦.

Thus, from Theorem 2.9, folded node type canards are known to oscillate in an O(
√
ε)

neighbourhood of the folded node. A combination of GSPT, blow-up and Melnikov argu-
ments show that (in addition to the two primary canards) there are b1−µ

2µ
c secondary canards
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away from the resonances µ−1 ∈ N, where b·c is the floor function [140]. With this informa-
tion, the number of oscillations s in a neighbourhood of the folded node can be bounded:

0 ≤ s ≤ smax := bµ+ 1

2µ
c. (2.20)

Corollary 2.3. Under the conditions of Theorem 2.9, there exist smax−1 secondary canards.
The kth secondary canard γk, k = 1, . . . , smax − 1, makes k full rotations about γw.

In geometric terms, the primary weak canard γw is the axis of rotation for the invariant
manifolds Sεa and Sεr , and the other maximal canards. The strong canard γ0 is the separatrix
that divides the flow between those trajectories that oscillate and those that do not. The
secondary canards partition the funnel into smax subsectors Ik, k ∈ [1, . . . , smax] each with
distinct rotational properties. In the singular limit, all secondary canards collapse onto γ0

and only the maximal rotation sector persists (as the singular funnel). Initial conditions in
sector Ik make (2k + 1) twists about γw. In this way, folded node type canards organize the
dynamics in phase space (Figure 2.4(b)). In practice, all solutions in the funnel experience
some kind of delay before repulsion.
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Figure 2.4. Invariant slow manifolds Sεa and Sεr (ε = 0.005) calculated up to the plane y = 0
for (a) folded saddles (µ = −0.1) and (b) folded nodes (µ = 0.1). In each case, the folded
singularity is located at the origin. The bottom row shows the slow manifolds (solid) and their
singular counterparts (dashed) in the cross-section y = 0. Maximal canards are identified as
intersections between Sεa and Sεr .

2.5.2. Folded Saddle Canards. Consider system (2.17) in the folded saddle case with
real eigenvalues of opposite sign λs < 0 < λf . That is, µ < 0 for folded saddles. We
split the results concerning folded saddles into two categories: those concerning canards and
those concerning faux canards. We start with the canard result (see Figure 2.4(a)):



26 2. GSPT & CANARD THEORY

Theorem 2.10 (Existence of Maximal Strong Canard [119]). Consider (2.17) with µ < 0.
Then for 0 < ε � 1 and µ bounded away from zero, the singular strong canard perturbs to
a maximal canard γ0, called the primary strong canard.

Studies of faux canards around the folded saddle have been much less extensive than
their folded node canard counterparts. We have the following results concerning existence
and rotational properties of faux canards:

Theorem 2.11 (Existence of Faux Canards [119]). Consider (2.17) with µ < 0. A singular
faux canard implies the existence of a 2-parameter family of faux canards for 0 < ε� 1.

Proposition 2.2 (Rotational Properties of Faux Canards [89]). Consider (2.17) with µ <
0. Let s denote the number of rotations a faux canard solution makes about the folded saddle
faux canard in an O(

√
ε) neighbourhood of the folded saddle. Then

0 ≤ s ≤ b1− µ−2µ
c.

for −µ−1 6∈ N.

Remark 2.20. The folded saddle faux canard is the axis of rotation for the faux canards (cf.
the primary weak canard for folded nodes). Proposition 2.2 states that faux canards only
have rotational behaviour for µ ∈ (−1, 0). Otherwise, for µ < −1, there are no rotations.

2.5.3. Folded Saddle-Node Canards. To complete our overview of canard theory, con-
sider once again the normal form (2.17) for the dynamics near a folded node or folded saddle.
For µ 6= 0, an equivalent normal form is

ẋ = y − (µ+ 1)z +O(x, ε, (y + z)2),

ẏ =
1

2
µ+O(x, y, z, ε),

ε ż = x+ z2 +O(z3, xz2, xyz, ε(x+ y + z), ε2).

(2.21)

In both (2.17) and (2.21), the higher order terms do not alter the local dynamics and are
sufficient to understand the folded node and folded saddle problems. The boundary between
folded node and folded saddle is called folded saddle-node (FSN) and there are two types.
The FSN type I, given by µ → 0 in (2.17), refers to a saddle-node bifurcation of a folded
node and a folded saddle. The center manifold of the FSN I is tangent to the fold curve L and
there are no ordinary singularities involved in the bifurcation (Figure 2.5(a) and (b)). The
FSN type II, given by µ→ 0 in (2.21), has center manifold transverse to L and corresponds
to a transcritical bifurcation of ordinary and folded singularities (Figure 2.5(c)). Both types
of FSN are common in applications, but their dynamics are not well understood.
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Figure 2.5. Reduced flow near a FSN (a) type I with center manifold WC on Sa, (b) type I
with WC on Sr, and (c) type II with WC transverse to the fold.
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Both FSN singularities are known to possess canards for 0 < ε� 1 [119, 139], however,
not much can be said about their properties. Recent studies have unravelled the dynamics of
the FSN II [20, 51, 76]. In the FSN II case, there is a nearby full system Hopf bifurcation
and the periodic orbits that emanate from it can significantly impact the local dynamics. In
[51], the small Hopf-like limit cycles near the FSN II and their bifurcations were studied
in the µ = O(ε) regime. The results in [76] complement this by considering the FSN II
regime with µ = O(

√
ε). In this case, the onset of small Hopf-like limit cycles and their

bifurcations can be ignored. The transition between the µ = O(ε) and µ = O(
√
ε) settings

was then studied extensively in [20, 27].
To study the dynamics near the FSN II, additional terms to explicitly describe the trans-

critical bifurcation of the ordinary and folded singularities are required [76]:

ẋ = y − (µ+ 1)z +O(x, ε, (y + z)2),

ẏ =
1

2
µ+ a1y + a2z +O(x, ε, (y + z)2),

ε ż = x+ z2 +O(z3, xz2, xyz, ε(x+ y + z), ε2),

(2.22)

where (a1 + a2) < 0, which guarantees that the ordinary singularity is on Sa for µ < 0 and
is on Sr for µ > 0. The directional blow-up (to the rescaling chart κ2)

x = ε x2, y =
√
εy2, z =

√
εz2, µ =

√
εµ2, t =

√
εt2,

transforms the 1-fast/2-slow system (2.22) into the 2-fast/1-slow system

ẋ2 = y2 − z2 +O(
√
ε),

ẏ2 =
√
ε

(
1

2
µ2 + a1y2 + a2z2 +O(

√
ε)

)
,

ż2 = x2 + z2
2 +O(

√
ε).

(2.23)

The layer problem of (2.23) has a 1D critical manifold

CM :=
{

(−y2
2, y2, y2) : y2 ∈ R

}
,

and the reduced flow of (2.23) simply moves trajectories along CM . Away from CM , an
explicit algebraic solution is known for the layer problem of (2.23)

γ1(t2) =

(
−1

4
t22 +

1

2
, 0,

1

2
t2

)
,

where γ1 corresponds to the eigenvalue λ = −1 of the deingularized flow.

Theorem 2.12 (Existence of Maximal Strong Canard for the FSN II [76]). The singular
strong canard γ1 always perturbs to a maximal strong canard for ε sufficiently small.

The maximal strong canard connects the attracting and repelling slow manifolds. Solu-
tions exponentially close to the maximal strong canard cross the fold and follow the repelling
manifold for O(1) times on the slow timescale before being repelled. All other trajectories
within the funnel (and not exponentially close to the strong canard) are quickly attracted to
CM , which can be viewed as the orbital limit of the primary weak canard in the folded node
case. The following summarizes the main results of [76]:

Theorem 2.13 (Existence of Primary Weak and Secondary Canards for the FSN II [76]).
Consider system (2.22) with µ = O(

√
ε). There exist O( 1√

ε
) maximal canards, which are

O(
√
ε) close to CM in O(

√
ε) neighbourhoods of the FSN II singularity.
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Remark 2.21. Theorem 2.13 extends the folded node theory, µ > 0 in (2.22), into the FSN
II case µ = O(

√
ε). There are also estimates of bifurcation delay for the FSN II [76]. The

gist of the result is that all trajectories (canard or otherwise) must leave the vicinity of CM
before the ordinary singularity on Sr can be reached.

For the FSN I case, an extension of Melnikov theory to invariant manifolds on non-
compact domains establishes the existence of maximal canards [139]. However, not much
else is known about the FSN I canards. We will derive FSN I analogues of the FSN II
theorems [76] in Chapter 5.

2.6. Global Results: Relaxation & Mixed Mode Oscillations

In Sections 2.4 and 2.5, we studied the local properties of singularly perturbed problems
in neighbourhoods of a folded critical manifold. We now examine how these local results
can influence the global behaviour of solutions. We consider slow/fast systems in R3:

ẋ = g1(x, y, z, ε),

ẏ = g2(x, y, z, ε),

ε ż = f(x, y, z, ε).

(2.24)

2.6.1. Relaxation Oscillations. We make the following assumptions on the geometry
of the system [120]:

Assumption 2.1. The critical manifold is ‘S-shaped’, with attracting upper and lower branches
S±a and middle repelling branch Sr, separated by upper and lower fold curves L±. That is,

S = S−a ∪ L− ∪ Sr ∪ L+ ∪ S+
a .

Assumption 2.2. The points p ∈ L± are jump points (regular fold points), i.e. (2.12) holds
and the reduced flow near the folds is directed towards the folds (see Section 2.4).

Let P (L±) ⊂ S∓a be the projection of the fold curves L± along fast fibers of the layer
problem on the opposite attracting branch S∓a .

Assumption 2.3. The reduced flow is transverse to the curves P (L±) ⊂ S∓a .

Under the assumptions above, a singular relaxation orbit Γ of system (2.24) is a piecewise
smooth closed curve (see Figure 2.6(a))

Γ = Γ−a ∪ Γ−f ∪ Γ+
a ∪ Γ+

f ,

consisting of:
(i) A slow orbit segment Γ−a that follows the slow flow on S−a up to L−.

(ii) A fast jump Γ−f from L− up to the upper attracting sheet S+
a .

(iii) A slow orbit segment Γ+
a that follows the slow flow on S+

a up to L+.
(iv) A fast jump Γ+

f from L+ down to the lower attracting sheet S−a .

Assumption 2.4. There exists a singular periodic attractor Γ for system (2.24).

Initial conditions generically start away from S, and the layer flow brings trajectories
onto an attracting sheet of S where the dynamics switch to those of the reduced problem.
Solutions then follow the reduced flow along S until they reach one of the folds where
they jump off S, switching once again to the fast dynamics. Under Assumption 2.4 and
after sufficiently many iterations of this sequence, trajectories (in the domain of attraction)
converge to Γ. GSPT guarantees that, for sufficiently small ε, the singular orbit Γ persists as
a periodic orbit Γε of the fully perturbed problem (2.24):
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Theorem 2.14 (Persistence of Relaxation Orbits [120]). Assume system (2.24) satisfies
assumptions 1–4. Then there exists a locally unique relaxation orbit Γε of system (2.24),
which is O(ε2/3) close to Γ for 0 < ε� 1.

Remark 2.22. The periodic orbit Γε of (2.24) retains the same basic characteristics as its
singular counterpart (i.e. alternation between slow and fast phases). The fast jumps initiate in
O(ε2/3) neighbourhoods of the fold curves [71, 120] (Theorem 2.7). Such periodic solutions
that switch between slow and fast motions are called relaxation oscillations.
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Figure 2.6. Singular (a) relaxation orbit and (b) MMO orbit Γ with corresponding non-
singular trajectory Γε (dashed). The fast up-jump Γ−f in (b) projects Γ into the funnel
(shaded) of the folded node. Note the small oscillations of Γε around the folded node.

2.6.2. Canard-Induced MMOs. Suppose now that we relax Assumption 2.2 and allow
for folded singularities.

Assumption 2.5. There exists a folded node p on the upper fold curve L+ and all other points
on L± are jump (regular fold) points.

Remark 2.23. Obviously, assumption 2.5 can be modified to allow for multiple folded sin-
gularities of various types along the fold curves. Here, we assume there is only one folded
node on the upper fold curve for the sake of illustration.

Under assumptions 2.1, 2.3 and 2.5, system (2.24) may possess a singular periodic orbit,
Γ, consisting of:

(i) A slow orbit segment Γ−a that follows the slow flow on S−a up to L−.
(ii) A fast jump Γ−f from L− up to the upper attracting sheet S+

a .
(iii) A slow orbit segment Γ+

a that flows along S+
a up to the folded node p ∈ L+.

(iv) A fast jump Γ+
f from p ∈ L+ down to the lower attracting sheet S−a .

Note the small but crucial difference to the singular relaxation orbit previously constructed:
the slow orbit segment on S+

a terminates at the folded node.

Assumption 2.6. There exists a singular periodic attractor Γ for system (2.24), where Γ has
a fast fiber segment based at the folded node.

Theorem 2.15 (Canard-Induced MMOs [14]). Suppose system (2.24) satisfies assumptions
2.1, 2.3, 2.5 and 2.6.

(i) There exist MMOs Γε with signature 1s, s = smax if Γ+
a is in the interior of the funnel

of the folded node.
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(ii) MMOs Γε with signature Ls, s < smax and L ≥ 1 are possible (depending on the global
return onto S+

a ) if Γ+
a is a segment of the strong canard.

GSPT again guarantees that the singular orbit Γ persists as a periodic orbit Γε of the fully
perturbed problem. The difference is that there are small oscillations (due to canards) about
the folded node superimposed on the relaxation oscillations. That is, there is an alternation
between small-amplitude oscillatory phases (associated with canard dynamics) and large-
amplitude relaxation type excursions. Thus, we have MMOs. We say that the MMOs are
canard-induced. For an extensive survey of canard-induced MMOs, we refer to [27].

Remark 2.24. Away from the folded node, Γ and Γε are O(ε) close as in the relaxation
oscillator. Near the folded node, Γ and Γε are O(

√
ε) close (cf. the relaxation oscillator).

An important diagnostic of canard-induced MMOs is the distance, d, of the phase point
of global return trajectories on P (L−) to the strong canard [14]. A negative d denotes orbits
that land outside the funnel (relaxation oscillations) and a positive d denotes orbits that land
inside the funnel of the folded node (MMOs). The border d = 0 marks the boundary between
MMOs and relaxation oscillations, and indicates that a part of the singular orbit is a segment
of the strong canard. Thus, for a canard-induced MMO to exist, we require:

(i) A folded node singularity of the reduced flow.
(ii) A singular periodic orbit with fast fiber segment at the folded node, which automatically

guarantees that the global return lies within the funnel of the folded node.
The MMOs (Figure 2.6(b)) are the result of the interaction between local and global

mechanisms. The small amplitude oscillations are caused by a local twisting of trajectories
near a folded node singularity [119, 140, 143]. The large relaxation type spikes arise from
the global return of trajectories. We will show in Chapter 3 that the MMOs in Figure 1.5 are
canard-induced.

2.6.3. Hopf-Induced MMOs. Recall that the most common causes of loss of normal
hyperbolicity are fold and Hopf bifurcations of the layer problem. We now examine how
MMOs can be generated by fast subsystem Hopf bifurcations. Note that, in general, a Hopf
bifurcation of the layer problem does not imply a Hopf bifurcation of the fully perturbed
problem. Consider the 2-fast/1-slow problem

ẋ = f1(x, y, z, ε),

ẏ = ε g(x, y, z, ε),

ż = f2(x, y, z, ε),

(2.25)

where f1, f2 and g are analytic functions. We make the following assumptions on (2.25):

Assumption 2.7. System (2.25) has critical manifold Z with complex eigenvalues, which
loses hyperbolicity at a (super- or subcritical) Hopf bifurcation ZH . Near ZH , we write

Z = Za ∪ ZH ∪ Zr,
where Za and Zr denote the parts of Z with eigenvalues having negative and positive real
parts, respectively.

Assumption 2.8. The reduced flow of (2.25) moves trajectories from Za to Zr through ZH .

In the singular limit, the slow variable y is a fixed parameter of the layer problem. Away
from the singular limit, the slow variable becomes a dynamic quantity that drifts through the
vicinity of the Hopf bifurcation ZH and the behaviour of the dynamical system depends on
a parameter that changes slowly in time. In such dynamic bifurcation problems, one often
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observes a bifurcation delay, where solutions that pass over a bifurcation point do not imme-
diately leave the repulsive curve of stationary points but continue to stay in a neighbourhood
of the stationary points for a surprisingly long time [93].

Remark 2.25. In 2D slow/fast systems, the canard phenomenon is degenerate and only oc-
curs in an exponentially small parameter interval. In that case, only those trajectories expo-
nentially close to the maximal canard experience bifurcation delay. In 3D slow/fast systems,
canards are generic and all trajectories in the funnel of a folded node observe a delay. That
is, the generalized canard mechanism is just another manifestation of bifurcation delay.

One very useful diagnostic in the theory of dynamic bifurcations is the way-in/way-out
(or entry-exit) function:

Definition 2.17. Let (x0, y0, z0) ∈ Za. The way-in/way-out function, ψ(y0), is the function
implicitly defined by the relation ∫ ψ(y0)

y0

Reλ(s, 0) ds = 0, (2.26)

where λ(y, ε) denotes the eigenvalues of the linearization of (2.25) about Z , so that λ(y, 0)
denotes the eigenvalues of the layer problem of (2.25) about Z .

Intuitively, the way-in/way-out function is interpreted as the moment when the expansion
on the repelling manifold counterbalances the accumulative contraction on the attracting
manifold. The implication is that a solution of (2.25) starting at y0 will remain in a small
neighbourhood of Z at least up to ψ. This is summarized in the following:

Theorem 2.16 (Delayed Loss of Stability for a Dynamic Hopf [91, 92]). Consider (2.25)
under Assumptions 2.7 and 2.8. Let (x0, y0, z0) be an initial condition such that Reλ(y0, 0) <
0 and (x0, z0) is O(ε) close to Z at y0. Then the trajectory of (x0, z0) stays O(ε) close to Z
for all y ≤ ψ(y0), where ψ(y0) is the way-in/way-out function (2.26).

Remark 2.26. Stability loss delay does not hold for non-analytic systems (see [93]).

Trajectories that approach Za a distance O(1) from ZH are attracted to and oscillate
around Za. Trajectories become exponentially close to Za on the slow timescale as they
pass close to ZH . As the trajectories pass over to Zr, the layer equations undergo a Hopf
bifurcation, but in analytic systems the trajectories remain close to Zr for O(1) times (i.e.
they stay close for O(1) distances beyond ZH). The delay occurs because the trajectory
is exponentially close to Z and must be repelled before it can follow limit cycles of the
layer problem. That is, trajectories destabilize when the expansion on Zr counteracts the
accumulative contraction on Za. Thus, the further a trajectory is from ZH on Za, the longer
the delay on Zr before it is repelled. However, there is a maximal distance that trajectories
may trace Zr before they must escape via fast directions.

Definition 2.18. Let ψ(y0) be as defined in (2.26). The maximal delay or buffer point, yB, is

yB := lim
y0→ymax

a

ψ(y0),

where ymax
a is the furthest point (possibly infinity) of Za from ZH .

Remark 2.27. The buffer point implies that phase points that were attracted to Z at different
moments before yB will escape from Z simultaneously at yB.

The amplitude and number of small oscillations due to the slow passage through the
dynamic Hopf are related to the size of the perturbation. For small ε, the passage through
ZH is slow and there is a substantial amount of time for trajectories to oscillate but those
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oscillations are small and difficult to observe due to the strong attraction to Za. Any oscil-
latory behaviour becomes visible just before the trajectory jumps away from Zr. When ε is
increased, the timescale separation weakens, making the slow variable faster. Consequently,
the drift through ZH is faster, there is less time for the trajectories to oscillate and the attrac-
tion to Za is weaker. Thus, the trajectories have less time to be pulled into Za and so the
observed oscillations are larger and fewer. Moreover, as the trajectory drifts through ZH ,
the real part of the eigenvalues increases through zero. As such, the small oscillations have
decreasing amplitude (on Za) and increasing amplitude (on Zr).

We now examine one set of conditions (corresponding to those encountered in Chapter
4) in which the dynamic Hopf can generate MMOs.

Assumption 2.9. The critical manifold is ‘Z-shaped’, with fold points L ± separating the
upper, middle and lower branches, and with a Hopf bifurcation ZH on the upper branch.
Moreover, yH < y+, where y+ and yH are the y-coordinates of L + and ZH , respectively.
That is,

Z = Z−a ∪L − ∪ Z−r ∪L + ∪ Z+
r ∪ ZH ∪ Z+

a .

The attracting branches of the critical manifold have graph representations (x±a (y), y, z±a (y))
for y ∈ I±, where I+ ∩ I− 6= ∅ (i.e. Z has bistable regions).

Assumption 2.10. System (2.25) has an equilibrium on Zr not in the vicinity of ZH or L ±.

Under assumptions 2.9 and 2.10, system (2.25) may possess a singular periodic orbit, Γ,
consisting of:

(i) A slow orbit segment Γ−a that follows the slow flow on Z−a up to L −.
(ii) A fast jump Γ−f from L− up to the upper attracting branch Z+

a .
(iii) A slow orbit segment Γ+

a that flows along Z+
a up to the Hopf bifurcation ZH .

(iv) A fast jump Γ+
f from ZH down to the lower attracting branch Z−a .

Assumption 2.11. There exists a singular periodic attractor Γ for system (2.25), where Γ
has fast fiber segment based at the Hopf bifurcation of the layer problem of (2.25).

Theorem 2.17. Consider system (2.25) under assumptions 2.9–2.11. For 0 < ε � 1, there
exist MMOs Γε with signature 1s, s ≥ 0.

GSPT establishes the persistence of the singular orbit Γ for 0 < ε � 1. The resulting
MMOs Γε depend crucially on the criticality of the Hopf bifurcation of the layer problem. In
the supercritical case, the small oscillations of the MMO closely follow the stable limit cycles
that emanate from ZH (as in plateau bursting). In the subcritical case, the small oscillations
are transient oscillations generated by the unstable limit cycles emanating from the subcriti-
cal Hopf (as in pseudo-plateau bursting). Theorem 2.17 is illustrated in the super/subcritical
case (in the bursting context) in Figure 1.4(a) and (b), respectively.

Remark 2.28. The small oscillations of the MMOs Γε arise from the slow passage through
a dynamic Hopf bifurcation. We say that the MMOs of Theorem 2.17 are Hopf-induced.

2.6.4. Return Maps In Slow/Fast Systems. Discrete dynamical systems arise naturally
from flows: one can observe the flow at fixed time intervals (strobing) or record the coordi-
nates of the flow when a special event occurs (Poincaré section). Often in the study of peri-
odic orbits of continuous dynamical systems, Poincaré maps are used to convert the problem
into a discrete dynamical system that has state space one dimension smaller than the original
state space. The Poincaré map allows the stability of orbits to be determined in a process
that resembles the linearization procedure used to determine the stability of equilibria.

We proceed now to define the Poincaré map in the context of the slow/fast system (2.24).
Let φt denote the flow of (2.24) and let γ be a periodic orbit of φt. Let Σ ⊂ R3 be a 2D local
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cross-section such that the flow is everywhere transverse to Σ. Let p = γ ∩ Σ and assume
that p is unique (if not, restrict Σ so that p is unique).

Definition 2.19. The first return or Poincaré map is the mapping

Πε : U ⊂ Σ→ Σ,

q 7→ φτ (q),

where U is a neighbourhood of p, τ = τ(q) is the smallest positive time taken for the orbit
φt(q) based at q to first return to Σ.

Remark 2.29. We use the ε subscript in Πε to indicate that the return map is being calculated
for the fully perturbed problem (i.e. ε > 0). We will define singular analogues of Πε in
Chapter 3. The return time τ = τ(q) need not be equal to the period T (p) of the periodic
orbit γ. However, τ(q) converges to T (p) as q → p.

Clearly, p is a fixed point of the map Πε, the stability of which reflects the stability of the
periodic orbit γ for the flow φt. In slow/fast systems, the Poincaré map has the advantage
that trajectories decay to Sεa exponentially fast so that cross sections to Sεa quickly evolve
to exponentially thin strips that can be approximated by curves. That is, in 3D slow/fast
systems, the return map is closely approximated by a 1D curve. We use this to our benefit in
practice by taking a curve of initial conditions on Sεa and flowing them forward to obtain a
suitable approximation of the dynamics (Figure 2.7(a)).
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Figure 2.7. Return map construction for a system of the form (2.24) with 11 MMO attractor
(see Chapter 3). Here, V is fast and (n, e) are the slow directions. (a) The first returns of
the points of Sεa ∩ Σ are computed. Initial conditions uin = (Vin, nΣ, ein) are mapped to
uout = (Vout, nΣ, eout). (b) Associated return map (inset: zoom of the nearly vertical region
separating rotational sectors I0 and I1). The fixed point p of the map falls in the rotational
sector I1 and is stable.

Figure 2.7(b) shows a typical return map generated by a slow/fast system (2.24) that has
a canard-induced MMO attractor with signature 11. Trajectories that follow the maximal
strong canard on opposite sides of Sεr are torn apart and follow very different evolutions.
This gives rise to rapid expansion in the return maps. Hence, we observe nearly vertical
segments in Πε, corresponding to the exponentially close family of canards associated to the
maximal strong canard. Initial conditions on one side of the strong canard execute a small
oscillation in their forward orbit and initial conditions on the other side of the strong canard
have no rotations. That is, the maximal strong canard demarcates the rotational sectors I0

and I1. A more detailed analysis of the return maps and the bifurcation sequences involved
in the creation and crossing of folded node type canards will be studied in Chapter 3.
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2.7. Computation of Invariant Slow Manifolds and Canards

An important aspect of GSPT and canard theory in practice is numerically implementing
all of the relevant geometric features. The numerical method used to compute the attracting
and repelling slow manifolds, such as in Figure 2.4, involves reformulating the singular
perturbation problem as a boundary value problem (BVP) and using homotopic continuation
to generate a family of solutions that form a mesh of the surface. Here, we outline the method
in the context of the leading order dynamics of the folded node/folded saddle normal form
(2.17) and refer to [23, 24, 25] for additional details (with further examples) and to the AUTO
demo files [32], which provide sample codes.

To compute the invariant slow manifolds, Sεa and Sεr , we first rescale (2.17)

ẋ = T

(
1

2
µy − (µ+ 1)z

)
,

ẏ = T,

ż =
T

ε
(x+ z2),

(2.27)

where the overdot denotes differentiation with respect to the new time variable and the free
parameter T is the actual integration time. Thus the integration time of any solution is
rescaled to unity. For the computation of the attracting slow manifold Sεa, we continue solu-
tions of (2.27) subject to boundary conditions which ensure that solutions lie (approximately)
on Sεa. To do this, we choose a curve on the attracting sheet Sa of the critical manifold that
is sufficiently far from the fold L:

u(0) ∈ Σa := {(x, y, z) ∈ Sa : z = −0.3} , (2.28)

where u = (x, y, z). To ensure the relevant part of Sεa is computed near the folded singu-
larity, the right endpoint u(1) is restricted to a plane through the folded singularity with the
requirement that the plane is transverse to the flow. A suitable choice is to take the plane of
constant y passing through the folded singularity

u(1) ∈ Σ := {(x, y, z) : y = 0} . (2.29)

Before Sεa can be calculated, note that a solution of (2.27) subject to (2.29) is the trivial orbit
segment given by the folded singularity.

We now use homotopic continuation to construct a first solution of the BVP (2.27) subject
to (2.28) and (2.29). In the first step, we start with the trivial solution at the folded singularity
and continue the orbit in T subject to the modified boundary condition

u(0) ∈ {(x, y, z) ∈ L} ,
until the endpoint u(0) is at some predetermined distance from the folded singularity. In
other words, we grow the orbit segment out from the folded singularity along the fold. In
Figure 2.4, the calculation was terminated when the endpoint reached y = −2. In the second
step, we continue the orbit segment in T subject to the new boundary condition

u(0) ∈ {(x, y, z) ∈ Sa : y = −2} ,
until the endpoint u(0) reaches Σa. That is, we grow the orbit segment along the attracting
sheet of the critical manifold approximately parallel to the plane Σ. The last solution ob-
tained from the homotopy is the start solution for the BVP defined by (2.27) subject to (2.28)
and (2.29). Numerical continuation in T then generates the surface Sεa (see Figure 2.8).

The repelling slow manifold is computed analogously but with negative T , which has the
effect of reversing the direction of the flow. The boundary conditions are chosen to ensure
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that solutions lie close to Sεr . To continue orbits with negative T in practice, we simply swap
the boundary conditions. Thus, the BVP for the repelling slow manifold is (2.27) subject to

u(0) ∈ Σ,

u(1) ∈ Σr := {(x, y, z) ∈ Sr : z = 0.3} .
As in the computation for Sεa, the trivial orbit segment at the folded singularity is used as a
starting solution for a 2-step homotopy process to find a first solution to the BVP. In the first
stage, we move solutions along the fold L until y(1) = 2. From there, the second stage of
the homotopy moves solutions along Sr, parallel to Σ, until Σr is reached (see Figure 2.8).

Σa
AAUAAU

Σr

Σ

L

Sa

Sr

Figure 2.8. Computation of the slow manifolds Sεa and Sεr near a folded node. Starting
at the folded node, orbits are grown homotopically (red and blue, dashed) along L and then
parallel to the section Σ. Initial conditions from Σa and Σr are flowed forward and backward,
respectively, to Σ. These trajectories (red and blue, solid) form a mesh of the surface.

The advantage of terminating the computation of Sεa and Sεr in the cross-section Σ is that
the maximal canards are easily identifiable. In terms of the BVP, canards are solutions of
(2.27) subject to the boundary conditions

u(0) ∈ Σa and u(1) ∈ Σr.

A solution of this BVP is computed by finding orbit segments ua ∈ Sεa and ur ∈ Sεr that
match in the plane Σ. We concatenate ua with the reverse of ur (so that the integration
time is positive), rescale the resulting orbit back to the time interval [0, 1] and continue the
solution. Provided |ua(0)− ur(0)| is sufficiently small, a Newton step in AUTO generates a
solution of the BVP, which represents the respective canard solution.



CHAPTER 3

Bifurcations of Canard-Induced MMOs

MMOs are complex oscillatory waveforms that naturally occur in physiologically rel-
evant dynamical processes. In Chapter 1, we showed that our pituitary cell model (1.4)
generates two types of MMOs (dynamic and calcium-conducting). In this chapter, we study
the calcium-conducting MMOs in a 3D reduction of (1.4). Using the combined power of
bifurcation theory and GSPT, we show that the pseudo-plateau bursting is a canard-induced
MMO and study bifurcations of the MMOs under variations of key parameters. To do this,
a global return map induced by the flow of the equations is constructed and a qualitative
analysis given. The canards act as separatrices in the return maps, organizing the dynamics
along the Poincaré section. We examine the bifurcations of the MMOs from the viewpoint
of the return maps, which informs our geometric intuition of the bursting and explains the
different observed MMO patterns. This chapter is documented in [134, 135].

Authors’ Contributions: The analysis in [134] was done by TV, RB, and JT (only the work
by TV is presented herein). The manuscript of [134] was written and edited by all authors.
The analysis and manuscript of [135] were done by TV, and edited by all authors.

3.1. Motivation

In most bursting models, the bursting oscillations are driven by the slow, systematic
variation in the calcium concentration c [81, 128, 146]. However, in the pituitary lactotroph
model (1.4), the bursting can persist almost unaltered when c is fixed (Figure 1.6). This
suggests an intrinsic bursting mechanism independent of the calcium. Early treatments of
(1.4) focused on these novel calcium-conducting bursts by fixing c [130]. Mathematically,
this is equivalent to taking the singular limit δ → 0 in system (1.4) and examining the
dynamics of the (V, n, e) subsystem with parameter c. The value at which c is fixed is chosen
via averaging (see Chapter 4). In that case, the calcium-dependent SK current becomes a
constant conductance current that arises from the leakage of potassium ions through the cell
membrane and plays a significant part in determining the resting membrane potential of the
cell [56, 62]. Thus, the SK current becomes a passive leak current

IL = gL(V − VK),

where gL is the leak conductance, which we set at gL = 0.3 nS. To further reduce and
simplify the model for calcium-conducting bursts, we remove the BK current (gBK = 0 nS),
which corresponds (in an experimental setting) to the introduction of pharmacological agents
such as paxilline or iberiotoxin (which are known BK channel blockers – see Chapter 6). In
that case, the pituitary cell model reduces to

ε V̇ = f(V, n, e) ≡ − 1

gmax

(ICa + IK + IA + IL) ,

ṅ = g1(V, n) ≡ kt
τn

(n∞(V )− n),

ė = g2(V, e) ≡ kt
τe

(e∞(V )− e),

(3.1)

36
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where ε = Cm

ktgmax
� 1, t is the (dimensionless) slow time and the dot denotes a t derivative.

Remark 3.1. Note that in (1.4), the timescale of n is given by τn/λ. In (3.1), we absorb the
λ factor into the definition of τn and set τn = 40 ms.

System (3.1) provides a minimal description for the calcium-conducting bursts [130].
The key parameters of interest are the conductance of the delayed rectifier channels gK and
the conductance of the A-type channels gA. Together, these parameters control the amplitude
and number of spikes per burst as we discuss later. Note that the membrane capacitance Cm
plays the role of the singular perturbation parameter so that we use ε andCm interchangeably.
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Figure 3.1. Bifurcation structure of (3.1) for Cm = 2 pF. (a) Two-parameter (gK , gA)
diagram showing the curves that delimit the various system behaviours. (b) Hyperpolar-
ized steady state (gK = 5 nS, gA = 24 nS). (c) Typical spiking pattern (gK = 6.5 nS,
gA = 10 nS). (d) Typical 11 MMO (gK = 5.5 nS, gA = 10 nS). (e) Typical 12 MMO
(gK = 4.6 nS, gA = 10 nS). (f) Depolarized steady state (gK = 3.2 nS, gA = 10 nS). The
(gK , gA) coordinates for panels (b)–(f) are indicated by crosses in panel (a).

We wish to determine how the bursting relates to other states of the system, such as
spiking or quiescence (hyperpolarized or depolarized equilibria), and to determine how the
number of spikes in a burst varies with parameters. To this end, we construct a 2-parameter
(gK , gA)-bifurcation diagram (Figure 3.1(a)). Here, we briefly describe the bifurcation struc-
ture of system (3.1) that motivates this chapter and refer to Section 3.2 for a detailed anal-
ysis. The bursting region is enclosed by the period-doubling, saddle-node of periodics and
saddle-node on invariant circle (SNIC) curves. Within the bursting region, the number of
small oscillations s increases (so that the bursting waveform broadens) with decreasing gK
(compare Figures 3.1(d) and (e)). Surrounding the bursting region are regions of depolarized
steady states (Figure 3.1(f)), hyperpolarized steady states (Figure 3.1(b)) and spiking be-
haviour (Figure 3.1(c)). Whilst the bifurcation analysis provides boundaries for the bursting
region in parameter space, it does not explain the rationale for these boundaries.

There are two primary goals to this chapter. The first is to show that the pseudo-plateau
bursting is a canard-induced MMO. That is, using GSPT, we demonstrate the genesis of
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the bursting rhythm, identify the region in parameter space where it exists and show how the
number of small amplitude oscillations (or spikes) varies in parameter space. In so doing, we
identify the mechanism for this type of pseudo-plateau bursting, and also perform analyses
at the singular limit to explain behaviours seen away from this limit. The second major goal
is to explain the bifurcation structure of (3.1) (as shown in Figure 3.1) by way of canard-
induced MMOs. Such studies have been performed previously on plateau bursting [126]
and more recently on pseudo-plateau bursting [95, 129], but ours is the first case study to
examine MMOs under the creation and crossing of folded node type canards.

The outline of the chapter is as follows. In Section 3.2 we provide a detailed investigation
of the bifurcation structure of pseudo-plateau bursting similar to [95] to determine the regions
in parameter space where spike transitions occur. Following the work done in [141, 142] for
a stellate cell model, we focus primarily on 1s and related MMO patterns. In Section 3.3 we
perform a geometric singular perturbation analysis wherein the 3D system (3.1) is formally
decomposed into a 2D slow subsystem coupled to a 1D fast subsystem. In particular, we
show that the bursting is a canard-induced MMO. This slow/fast analysis helps us understand
the pattern of spike additions and the dynamics underlying them. The comparison of the
singular limit predictions with the observed MMO boundaries shows that the singular limit
analysis is able to predict these different MMO boundaries sufficiently well.

In Section 3.4, we construct a global return map [51, 53, 77, 85, 141, 142] induced by
the flow of (3.1) as an alternative method for understanding the spike-adding transitions. In
Section 3.5 we investigate the bifurcation sequences of the return maps, which explain the bi-
furcation structure of the MMOs observed in Section 3.2. Again, certain topological features
of the return maps can be predicted from the corresponding singular limit return maps and,
hence, explain the bifurcation structure of interest. Thus, the bifurcation analysis of system
(3.1) provides a view of the sequence of spike-adding transitions and the associated periodic
bursting solutions, whilst the slow/fast analysis and 1D return maps help us understand why
the spike-adding transitions occur. We follow in Section 3.6 with a discussion.

3.2. Bifurcations of MMOs

In this section, we perform a full system bifurcation analysis of system (3.1) with respect
to the maximal conductances of the delayed rectifier (gK) and A-type currents (gA). The aim
of this section is to examine the detailed bifurcation structure of (3.1) and ultimately show
how Figure 3.1 was constructed. We place particular emphasis on identifying a common
sequence of bifurcations from stable 1s to 1s+1 MMO patterns, s ≥ 0.

3.2.1. Horizontal bifurcations. By fixing Cm = 2 pF, gA = 4 nS, we consider only
those bifurcations that arise from variations in gK , the biophysical parameter that controls
the repolarizing current IK . Using AUTO [31, 32], a bifurcation diagram was calculated as
shown in Figure 3.2, where gK is the principal continuation parameter and L2 norm refers to
the standard Euclidean norm for equilibria or the L2 norm for periodic solutions.

The spiking family (s = 0, Figure 3.2) connects to the depolarized equilibrium curve
ED at subcritical Hopf bifurcations (HB) at gK ≈ 3.67 nS and gK ≈ 36.99 nS (only one
Hopf bifurcation is shown). The equilibrium is a depolarized steady state for small gK . After
the first Hopf it becomes a saddle and after the second Hopf it is hyperpolarized. The first
bursting family (s = 1) connects to the spiking family at period doubling (PD) points at
gK ≈ 6.127 nS and gK ≈ 3.592 nS. The rest of the MMO families are isolated closed curves
of periodic orbits. These isolas are born in saddle-node of periodic orbits (SN) bifurcations in
a neighbourhood of gK ≈ 3.592 nS and possess stable plateau regions which never overlap.
Between each pair of MMO families s = n and s = n + 1 (n = 0, 1, 2, . . .), there is a
small interval where neither branch is stable. In these gK intervals, we find isolas of more
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Figure 3.2. Bifurcations of (3.1) along gA = 4 nS for Cm = 2 pF. (a) Left inset: neigh-
bourhood of the saddle-node of periodics of the bursting families for s ≥ 2. Only the branch
s = 1 connects to the Hopf branch at a PD. Right inset: the s = 2 bursting family is a closed
isola of periodic orbits. This is true for all bursting families s ≥ 2. (b) Region between the
spiking (s = 0) and first bursting (s = 1) families where an isola of orbits with signature
1011 have been computed. Note that the s = 1 branch connects to the s = 0 branch at a PD.
(c) Transition region between s = 1 and s = 2 MMOs.

complicated MMO patterns. The MMO signature in these parameter intervals is always
some mixture of 1n and 1n+1. Figure 3.2(b) shows one of these isolas with signature 1011.
The stability plateau of the MMOs in these parameter intervals decreases rapidly with the
complexity of the MMO signature.

Figure 3.2(b) shows the gK window where the s = 0 and s = 1 curves meet along with
the 1011 MMO. In order of decreasing gK , there are 4 significant bifurcations for the s = 0
and s = 1 branches. The SN point on the spiking branch at gK ≈ 6.127 nS labelled SNs=0

1

marks the location where the first bursting family and additional isolas of mixed MMO type
are born. There is also a PD bifurcation labelled PDs=0

1 at almost the same gK value. The
spiking branch s = 0 remains stable until the SN point marked by SNs=0

2 at gK ≈ 6.1235 nS
is reached. Then there is a PD point labelled PDs=1

2 at gK ≈ 6.1213 nS where the s = 1
bursting branch becomes stable. The parameter window between PDs=1

2 and SNs=0
2 is filled

with stable branches of isolas with mixed MMO signature (only branch shown is 1011).
The transition from the s = 1 bursting branch to the s = 2 bursting branch differs slightly

from the spiking to bursting transition as the s = 1 and s = 2 families do not connect to
each other (Figure 3.2(c)). The 12 isola is born as an unstable branch for decreasing gK in
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a SN bifurcation (labelled SNs=2
3 ) whilst the 11 branch remains stable. The s = 1 branch

then destabilises at the SN point SNs=1
4 and another parameter window of complex isolas is

encountered where the stable MMOs have signatures which are mixtures of 11 and 12. As
gK decreases further, the s = 2 branch becomes stable at the PD point PDs=2

3 .
There are additional bifurcations of the s = 1 and s = 2 curves that have been omitted

as they have little bearing on later results. For the remaining transitions between MMO
families, the sequence of bifurcations is the same. Thus it is sufficient to consider only the
transition from spiking to bursting and from s = 1 to s = 2 to understand the bifurcation
structure of the MMOs away from the SN region near gK ≈ 3.59 nS (inset Figure 3.2(a)).

3.2.2. Vertical bifurcations. By fixing gK = 4.1 nS, we now consider bifurcations
that arise due to variations in gA, the biophysical parameter that controls the sub-threshold
current IA. The resulting bifurcation diagrams for Cm = 2 pF and Cm = 0.1 pF are shown in
Figures 3.3 and 3.4, respectively. As before, we consider (and label) only those bifurcations
which are crucial to our discussion.
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Figure 3.3. (a) Bifurcations of MMOs along gK = 4.1 nS for Cm = 2 pF where smax = 4.
(b) Blown-up view of the transition from spiking to bursting. (c) Transition region between
s = 1 and s = 2 MMOs: we observe regions of bistability.

For Cm = 2 pF, the s = 1 bursting family connects to the spiking branch at a PD point
and the remaining MMO branches are disconnected. Unlike the horizontal case, there are
no parameter windows in which more complex MMO patterns can be found. Instead, there
are regions in which the stable plateau of neighbouring MMO branches may overlap and
the system exhibits bistability between two different bursting states (Figure 3.3(b) and (c)).
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Figure 3.4. Bifurcations of MMOs along gK = 4.1 nS for Cm = 0.1 pF where smax = 4.
Inset: there is no overlap between the stable portions of the MMO branches (cf. Figure 3.3).

These bistable parameter windows shrink as Cm decreases. For sufficiently small Cm, the
stable branches no longer overlap (Figure 3.4 inset) and parameter windows with more com-
plex MMOs can be found (not shown). All bursting families terminate in homoclinics (not
shown) for gA values well outside the physiologically meaningful domain (gA > 500 nS).

For Cm = 2 pF, the sequence of bifurcations in the transition from spiking to bursting (in
the direction of increasing gA) is commenced by the SNs=1

5 point where the 11 orbit is created
(Figure 3.3(b)). The upper branch immediately loses stability in a PD bifurcation PDs=1

4 at
virtually the same gA value. The s = 1 MMO curve becomes stable again at another PD
point PDs=1

5 whilst the spiking branch also remains stable. This bistability endures until a
PD point PDs=0

6 is reached on the s = 0 branch where the 11 family connects with the 10

family. Beyond this point, the 11 family is stable and the 10 branch is unstable.
For the change from s = 1 to s = 2 for Cm = 2 pF, the 12 family is born in the SNs=2

6

point with a stable upper branch and an unstable lower branch. The stable upper branch
rapidly loses stability at a PD point PDs=2

7 in Figure 3.3(c) (so that both the SN and PD
points virtually coincide). The upper branch of the s = 2 curve eventually regains stability at
another PD point PDs=2

8 . There is a small bistable window before the s = 1 MMO becomes
unstable in a PD bifurcation PDs=1

9 . Subsequently, the s = 1 MMO remains unstable and
the s = 2 MMO remains stable until the next MMO transition. The sequence of bifurcations
from the s = n to the s = n + 1 branch (n = 1, . . . , smax − 2, where smax is the maximum
number of small oscillations observed) is similar. In our case, smax = 4 and the above
description of bifurcation sequences covers the s = 2 to s = 3 transition.

The last transition from the smax−1 branch to the smax branch requires special attention.
The smax branch is born in a SN point in the usual way, but the upper branch is born stable
and remains so. Bistability between smax − 1 and smax exists until the smax − 1 family loses
stability via a PD bifurcation. The smax branch remains stable until it terminates in a saddle-
node on invariant circle (SNIC) bifurcation (Figures 3.3 and 3.4), after which the attractor of
the system is a hyperpolarized state (labelled EH in Figures 3.3 and 3.4).

3.2.3. The MMO regime. In light of Sections 3.2.1 and 3.2.2, Figure 3.5(a) shows the
(gK , gA) diagram (Figure 3.1(a)) forCm = 2 pF. We also include the corresponding (gK , gA)-
bifurcation diagram for Cm = 0 pF in Figure 3.5(b) (for easier comparison between the
Cm = 2 pF and Cm = 0 pF figures), but defer the discussion to Section 3.3.
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Figure 3.5. MMO boundaries in (gK , gA) space: (a) observed in the full 3D system (3.1) and
(b) predicted from the singular limit (see Section 3.3.2). Vertical lines in (b) between µ = 0
and µ = 1 indicate candidate boundaries for the rotational sectors in (3.1) corresponding to
odd integer values of µ−1. Horizontal dashed lines correspond to gA = 4 nS (Figure 3.2).
Vertical dashed lines correspond to gK = 4.1 nS (Figure 3.3).

For the Cm = 2 pF diagram (Figure 3.5(a)), we calculated the bursting boundaries using
numerical continuation [31, 79]. The rightmost boundary is a curve of SN points which
follows SNs=0

2 (Figure 3.2(b)) in (gK , gA) and marks the location where the spiking family
destabilises. Note that a (gK , gA)-continuation of SNs=0

1 generates a similar curve to the right
of SNs=0

2 (not shown). In fact, the SNs=0
1 and SNs=0

2 curves coalesce at a limit point near
the corner of the bursting regime. The left and lower boundaries of the bursting regime form
a single curve of PD points. These arise from a 2-parameter continuation of PDs=0

6 (Figure
3.3(b)). The PDs=0

6 point also generates a nearly vertical right border (not shown), which
virtually sits on top of the SNs=0

1 border (cf. Figure 3.2(b)). Moreover, the right boundary
generated by PDs=0

6 passes through the curve of SN points. To clarify, in Figure 3.5(a) we
depict the right and lower boundaries of the MMO region as the SNs=0

2 branch and the PDs=0
6

branch up to its intersection with the SNs=0
2 branch.

There is a very thin strip in the smax = 1 sector where the MMO signature is some
combination of 10 and 11. This thin strip is delimited on the right by the SNs=0

2 branch and
on the left by a PD branch obtained from continuation of PDs=1

2 (not shown). For gA away
from the lower PD border, the PDs=1

2 branch sits to the left of the SNs=0
2 branch (hence the
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complex MMO region). For smaller gA, the situation is reversed and the PDs=1
2 branch sits

to the right of the SNs=0
2 branch thus indicating bistable MMO regions (see Figure 3.3(b)).

As shown in Section 3.2.1, a 1n MMO destabilises at a SN point whilst the adjacent 1n+1

MMO stabilises shortly after at a PD point. Two parameter continuation of these PD points
generates a first approximation to the boundaries between MMO regimes. For instance,
continuation of PDs=2

3 (Figure 3.2(c)) gives the border between smax = 1 and smax = 2.
Continuation of SNs=1

4 (not shown) would generate a boundary very close to (and to the
right of) the PDs=2

3 border. We could then use this to identify the thin wedges in parameter
space where the complex MMO patterns appear. Similarly, continuation of the PD points in
Figure 3.3 where the s = n branch destabilizes and the s = n+1 branch stabilizes generates
thin strips in (gK , gA) space where bistability holds. In either case (complex MMOs or
bistability), the strip covered in the (gK , gA) plane is extremely thin. As such we concern
ourselves with the boundaries where a spike is added to the MMO pattern.

From the bifurcation analysis we have identified the regions in parameter space where
the spike transitions occur in the bursting. We turn our attention now to the question of what
causes these transitions. We use GSPT as the basis of our understanding.

3.3. Geometric Singular Perturbation Analysis of MMOs

System (3.1) is a slow/fast system written over the slow timescale t. Switching to a
(dimensionless) fast timescale τ = t/ ε yields an equivalent representation of (3.1):

V ′ = f(V, n, e),

n′ = ε g1(V, n),

e′ = ε g2(V, e),

(3.2)

where the prime denotes a τ derivative. Here we apply GSPT and canard theory (Chapter 2)
to (3.1) to demonstrate the origin of the MMOs. Dynamically, (3.1) can be partitioned into
slow and fast subsystems by taking the singular limit ε → 0 (Cm → 0) on the slow and fast
timescales, respectively. The 2D reduced system given by ε→ 0 (Cm → 0) in (3.1), is

0 =f(V, n, e),

ṅ =g1(V, n),

ė =g2(V, e).

(3.3)

The 1D layer problem, given by ε→ 0 (Cm → 0) in (3.2), is

V ′ =f(V, n, e), (3.4)

with parameters (n, e). GSPT [41, 68] pieces together the information obtained from the
lower dimensional subproblems (3.3), (3.4) to provide a unified global description of (3.1).

3.3.1. The reduced and layer problems. The critical manifold of the layer flow (3.4),

S :=
{

(V, n, e) ∈ R3 : f(V, n, e) = 0
}
, (3.5)

is a folded surface with respect to the fast variable V as shown, e.g., in Figures 3.6 and 3.7.
This follows directly from the stability analysis of the 2D set of equilibria in (3.4), which
possesses a subset of equilibria with a zero eigenvalue. In the physiological range of (n, e)
this subset consists of two disjoint sets, the 1D fold curves

L± := {(V, n, e) ∈ S : fV (V, n, e) = 0} , (3.6)
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which divide S into attracting (S±a ) and repelling (Sr) sheets. There also exist parameter sets
of (gK , gA) where the two fold curves L± join in the physiological domain. In that case, the
critical manifold forms a cusp (not shown here; see [134]).

(a) (b)

Figure 3.6. Singular spiking orbit for gK = 4.1 nS, gA = 0.2 nS: (a) 3D view and (b)
projection onto the (V, e)-plane. The fast jumps (double arrow) join with the slow segments
(single arrow) on the attracting sheets S±a . The fold curves L± and their projections P (L±)
indicate where the reduced flow jumps and where it lands, respectively. The grey shaded
region between L+ and the strong canard γ0 is the funnel of the folded node (FN).

The critical manifold S is both the manifold of equilibria for the layer problem (3.4) and
the phase space of the reduced problem (3.3), which describes the slow evolution along S.
Since n (and e) enter f(V, n, e) linearly, S has, e.g., a graph representation n = n(V, e). As
a result, a complete description of (3.3) can be obtained in the (V, e) coordinate chart. The
resulting equations are

−fV V̇ =fng1 + feg2,

ė =g2,
(3.7)

where n = n(V, e) satisfies (3.5). The finite time blow-up of solutions along L± can be
removed by rescaling time (t = −fV s) to give the desingularized system

V̇ =fng1 + feg2 ≡ F,

ė =− fV g2,
(3.8)

where the dot now denotes s derivatives. The flow of (3.8) is equivalent to (3.7) on S±a but has
the wrong orientation on Sr due to time rescaling. The desingularized system (3.8) has two
kinds of equilibria: ordinary (g1 = g2 = 0) and folded (F = fV = 0). In our model system,
there is a single folded singularity on the upper fold curve L+, which can be of node, saddle
or focus type, depending on parameters. Folded node singularities are especially important
to the bursting model (3.1) since they allow for canard solutions (Section 2.5), which in turn,
can lead to canard-induced MMOs (Section 2.6).

3.3.2. Singular periodic orbits, relaxation oscillations and MMOs. Using the re-
duced and layer flows, singular periodic orbits can be constructed as continuous concatena-
tions of slow and fast orbit segments. Singular periodic orbits which hit L+ at a jump point
(Figure 3.6) correspond to relaxation oscillations [120]. Singular periodic orbits which are
filtered into the folded node on L+ (Figure 3.7) are singular representations of MMOs (Sec-
tion 2.6). Recall the two important diagnostics of a canard-induced MMO [14, 119, 140]:

(i) The eigenvalue ratio µ of the folded node, which essentially bounds the number of
small oscillations, s, about the folded node (see (2.20)): 0 ≤ s ≤ smax := bµ+1

2µ
c.
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(a) (b)

Figure 3.7. Singular MMO for gK = 4.1 nS, gA = 2 nS: (a) 3D view and (b) projection
onto the (V, e)-plane. The main difference to the singular spiking orbit is that the fast up
jump projects the singular orbit into the funnel of the folded node.

(ii) The distance d of global return trajectories on P (L−) to the strong canard γ0.
Variation of the biophysical parameter gK affects the repolarizing current in the active

phase, the dynamics of which are associated with the local oscillations in the MMOs. Con-
sequently, gK controls (almost exclusively) the eigenvalue ratio µ. Similarly, variation of the
biophysical parameter gA affects the sub-threshold current in the silent phase, the dynamics
of which are associated with the global resetting properties. As a result, gA controls (almost
exclusively) the distance d [134]. As such, we use (gK , gA) and (µ, d) interchangeably.

We can now justify our choice of the special horizontal and vertical directions in Section
3.2. By fixing gA = 4 nS and Cm = 2 pF (Section 3.2.1), d is also essentially fixed provided
we stay away from the lower MMO boundary in Figure 3.5(a). The only bifurcations that
arise as gK varies are due to changes in µ. By fixing gK = 4.1 nS and Cm = 2 pF (Section
3.2.2), µ is fixed and the only quantity that varies is d (through variations in gA). In particular,
there is a maximum number of small oscillations; for gK = 4.1 nS, and Cm = 2 pF resp.
Cm = 0.1 pF, we find smax = 4 (Figure 3.3 resp. 3.4), which matches the singular limit
prediction, i.e. smax = 4 in (2.20) for this specific example where µ ≈ 0.122.

In general, we wish to demonstrate that the singular limit systems ((3.3) and (3.4)) predict
the behaviour of the full system (3.1) sufficiently well. Figure 3.5(b) shows a 2-parameter
bifurcation diagram based on our singular limit analysis. The right µ = 1 border of the
MMO regime corresponds to a degenerate folded node where 2 nonzero eigenvalues merge.
To the right of the µ = 1 border we have folded foci which possess no canards and hence
we predict relaxation oscillations. The left border µ = 0 denotes a FSN II [76, 119] of the
reduced flow (see Section 2.5.3). To the left of the µ = 0 border we have a folded saddle on
L+ and a stable node on S+

a , corresponding to a stable depolarized state of (3.1).
The d = 0 border indicates whether or not the global return mechanism projects the

phase point of the singular orbits into the funnel. Below the d = 0 line, orbits land outside
the funnel and relaxation oscillations are produced. Increasing d to positive values moves the
phase point into the funnel so that MMOs are produced. The upper boundary of the MMO
regime is a curve of SNIC bifurcations. Crossing this curve towards increased gA annihilates
the singular orbit and a stable hyperpolarized state becomes the attractor. The predictive
power of GSPT for the boundaries of the MMO regime is evident from Figure 3.5.

3.3.3. The geometry of MMOs. We now examine the geometry of (3.1) away from the
singular limit to explain the appearance of the small oscillations in a MMO. Fenichel theory
[41, 68] guarantees that the regions of S±a , Sr that areO(1) away fromL± perturb to invariant
slow manifolds S±a,ε, Sr,ε which are O(ε) close to their singular counterparts. The flow on
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these perturbed manifolds is a smooth O(ε) perturbation of the reduced flow (Section 2.1).
Extending S+

a,ε and Sr,ε by the flow of (3.1) into the vicinity of a folded node results in a local
twisting of the manifolds [119, 140] (Section 2.5). This geometric feature produces the small
spikes seen during the active phase of a burst. Representative slow manifolds calculated up
to a plane Σe : e = eFN passing through the folded node are depicted in Figure 3.8. The
procedure for computing S+

a,ε and Sr,ε is outlined in Section 2.7.
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Figure 3.8. Slow manifolds S+
a,ε and Sr,ε for gK = 4.1 nS, gA = 1.2 nS and Cm = 2 pF

extended to cross-section Σe : e ≈ 0.083 through the folded node. The intersections are
maximal canards: the primary strong canard γ0 and the secondary canards γl, l = 1, 2, 3.
Each canard is consecutively separated by a full rotation. The attractor Γ of (3.1) is a 12

MMO and lies between γ1 and γ2 in rotational sector I2. Also shown is a saddle equilibrium
ED on Sr,ε (teal filled circle). Inset: intersection of S+

a,ε and Sr,ε with cross-section Σe.

The rotational properties of the slow manifolds are closely related to the existence of ca-
nards in (3.1). The primary strong and weak canards, γ0 and γw, correspond to the eigendi-
rections of the folded node. The remaining smax−1 secondary canards γl partition the funnel
region between γ0 and γw into smax subsectors Ik, k ∈ [1, . . . , smax] each with different ro-
tational properties. The rotations occur in O(

√
ε) neighbourhoods of the folded node. At

O(1) distances from L+, the secondary canards are O(ε(1−µ)/2) close to γ0 whilst the maxi-
mal rotation sector hasO(1) width. In the singular limit, all secondary canards collapse onto
γ0 [14, 140]. The vertical bifurcation diagrams (Figures 3.3 and 3.4) give an indication of
the width of the rotational sectors Ik. For gK = 4.1 nS, Cm = 2 pF (Figure 3.3), the maxi-
mal rotation sector I4 is significantly larger than sectors I1, I2 and I3. As Cm decreases the
secondary canards approach γ0 and the corresponding sectors decline in width (Figure 3.4),
except for the maximal rotation sector I4 which (almost) covers the entire MMO regime.

Figure 3.8 shows the maximal canards that connect S+
a,ε and Sr,ε. The green trajectory is

the primary strong canard γ0 and it makes one twist (half-rotation). The dark slate grey orbit
is the first secondary canard γ1, which makes 3 twists. The purple canard is γ2, which makes
5 twists about the axis of rotation and the olive canard γ3 is the third secondary canard, which
makes 7 twists. Also shown are the saddle equilibrium ED (teal point) of the system, which
lies on Sr,ε and the unique trajectory Γ (black) of the system for the given parameter values
corresponding to a 12 MMO which lies in rotational sector I2 bounded by γ1 and γ2.
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These secondary canards explain the boundaries shown in the interior of the MMO region
in Figure 3.5. In the singular limit diagram, Figure 3.5(b), the vertical lines in the interior of
the bursting region which occur at resonant values of µ−1 indicate candidate boundaries for
the rotational sectors since a maximal canard bifurcates from γw for odd integer µ−1 [140].
In order of decreasing gK , the first vertical line in the interior of the MMO regime in Figure
3.5(b) corresponds to µ−1 = 3. The next vertical line occurs at the gK value for which
µ−1 = 5 and so on. A comparison of the singular and non-singular diagrams (Figures 3.5(b)
and (a)) reveals a one-to-one correspondence between boundaries of the different MMO
regions. Since all secondary canards collapse onto γ0 (d = 0) in the singular limit, the
almost linear segments of the interior MMO boundaries in Figure 3.5(a) collapse onto the
d = 0 curve in Figure 3.5(b) and we are left with only the vertical segments in Figure 3.5(b).

We turn now to more qualitative methods based on the singular perturbation analysis to
further our understanding of the spike-adding transitions in the MMO patterns.

3.4. Return Maps of MMOs

Return maps provide a tool to analyze periodic orbits and their stability [46] (see Section
2.6.4) and can be used to understand the dynamics in a simple and elegant way. The essential
ingredient that the return map formulation developed here depends upon is the exponential
contraction of the system along Sa,ε [27, 51, 53, 77, 85, 141, 142]. Sections transverse to
Sa,ε quickly evolve to exponentially thin strips that can be approximated by curves. Thus,
the flow map through an appropriately chosen section is strongly contracting and hence is
almost 1D. Here we detail the formulation of singular and non-singular return maps which
cover the essential dynamics. Our work is an amalgamation of [77, 141, 142] and [53] who
use singular and non-singular return maps, respectively. In contrast to [53, 141, 142] who
use a cross-section through the folded node (i.e. use the blow-up technique), we choose a
cross-section that keeps the analysis simple and retains the essential dynamics for both ε = 0
and ε 6= 0. We show that vital information can be extracted from the singular limit return
map. Hence we use the singular limit as a predictor for the non-singular case.

3.4.1. Singular return maps. Following [77, 141], we construct a singular return map
to characterize the dynamics of the singular orbits [50, 55, 120]. For the reduced and layer
flows, we define the following maps which track local and global properties of the flow:

• Trajectories of the reduced problem (3.3) starting from P (L−) outside the funnel can
reach L+ at a jump point and follow the layer flow (3.4) to S−a . Trajectories then
follow the slow flow on S−a to L− where they jump and return to P (L−). This map
tracks the returns of jump points (see, e.g., Figure 3.6) and we denote it by

ΠJ : P (L−)→ L+ → P (L+)→ L− → P (L−).

• Trajectories of (3.3) starting from P (L−) inside the funnel reach L+ at the folded
node, FN ∈ L+. Since these trajectories do not represent canards for Cm 6= 0, they
jump in an O(

√
ε) neighbourhood of FN [14, 140]. Hence, we do not extend these

singular canards onto Sr but let them jump at FN to S−a . They then follow the reduced
flow on S−a to L− where they jump and return to P (L−). This map tracks the returns
of points in the interior of the funnel (see, e.g., Figure 3.7) and we denote it by

ΠF : P (L−)→ FN → P (L+)→ L− → P (L−).

• The strong canard γ0 represents all rotational canards for ε = 0 and hence, trajecto-
ries of (3.3) can track γ0 on Sr. These canard trajectories can jump off γ0 at any point



48 3. CANARD-INDUCED MMOS

**
oo

0.0 0.2 0.4 0.6 0.8
-80

-60

-40

-20

0

20

e

V
 (

m
V

)

FN

TPA

TPB

γ0∩L−

γ0

P (L+)

P (L−)L+

L−

P−(γ0)

P+(γ0)

(a)

**
oo

0.00 0.05 0.10 0.15 0.20
-80

-60

-40

-20

0

20

e

V
 (

m
V

) FN

TPA

TPB

γ0∩L−

γ0

P (L+)

P (L−)

L+

L−

P−(γ0)

P+(γ0)

0.02 0.03 0.04 0.05 0.06
-72.7

-72.6

-72.5

-72.4

-72.3

-72.2

-72.1

e

V
 (

m
V

) TPA

P (L+)

P−(γ0)

(b) (c)

Figure 3.9. Reduced flow (3.3) for gK = 5 nS and gA = 4 nS: panels (b) and (c) are
zooms. P±(γ0) (red and green dashed curves, respectively) are the projections of γ0 onto
S±a , respectively. Note, (3.3) has a tangency with P+(γ0) (red asterix TPB) and P−(γ0)
(green circle TPA).

on γ0 ∩ Sr to S−a and flow into L− before jumping to P (L−). The returns of these
‘jump-away’ canards are monitored via this map, denoted by

ΠA : γ0 ∩ Sr → S−a → L− → P (L−).

• Trajectories of (3.3) tracking γ0 ∩ Sr can jump up to S+
a , flow into L+ and subse-

quently return to P (L−). This map follows the returns of the ‘jump-back’ canards
and we denote it by

ΠB : γ0 ∩ Sr → S+
a → L+ → P (L+)→ L− → P (L−).

We construct the first return map Π0 : Σ0 → Σ0 as the union of ΠJ ,ΠF ,ΠA and ΠB. We
take Σ0 = P (L−) as the section so that the map is naturally parametrized by the coordinate
e. To completely understand Π0, the geometry of the reduced system must be examined
in detail. Figure 3.9 shows the projection of the reduced flow (3.3) on the (V, e) plane for
gK = 5 nS, gA = 4 nS with γ0 on both attracting and repelling sheets of the critical manifold.
The reduced flow along P (L−) is towards L+. The reduced flow along P (L+) is away from
L− for small values of e (see Figure 3.9(c)) and towards L− for larger values of e. This
implies a point of tangency of the reduced flow with P (L+) for some ẽ. Moreover, since
eFN is small and the reduced flow along P (L+) is directed away from L− for small e, we
have ẽ > eFN .

Consider two jump points P1(V1, e1) and P2(V2, e2) on L+ with 0< e1 < e2 < eFN . On
jumping down to P (L+) the orientation e1 < e2 < eFN is preserved. However, since the
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reduced flow is away from L− for small e and towards L− for larger e, this orientation is
reversed when P1 and P2 are flowed forward to L−. That is, the e coordinate of P2 is to the
left of the e coordinate of P1 under the flow of (3.7). Thus if we track points described by
ΠJ , we observe a decreasing segment in Π0 due to the orientation flip caused by the reduced
flow on S−a . The corresponding (slightly) decreasing branch labelled I0 is shown in Figure
3.10(a). Next, note that ΠF maps the whole funnel segment on P (L−) to a single value. This
implies a horizontal segment in Π0 which we observe as the branch I1 in Figure 3.10(a).

The maps ΠA and ΠB create vertical segments in Π0 due to canards [11, 142]. Thus, the
singular map Π0 is multivalued and not well-defined. We track the first returns of γ0 ∩ Sr to
deduce the vertical extent of these segments. Both start at FN, which is the beginning of the
canard segment onto Sr. We start with the jump-away canards. As we follow γ0 on Sr the
returns initially increase from FN until they reach TPA (Figure 3.9(c)), where the projections
of the jump-away canards, P−(γ0), have a tangency with the reduced flow. This point defines
the maximum of the green vertical segment in Figure 3.10(a). As we follow γ0 further on
Sr the returns decrease monotonically until we reach the endpoint γ0 ∩ L−. The endpoint
γ0 ∩ L− jumps-back to S+

a , landing exactly on P (L−), and corresponds to the minimum of
the canard branch on Π0 (Figure 3.10(a)). Simply put, the jump-away canards that follow
γ0 ∩ Sr furthest have the greatest vertical extent in the return map.

The projections of the jump-back canards, P+(γ0), also have a tangency (TPB in Figure
3.9) with the reduced flow. This introduces a corresponding turning point (TPB in Figure
3.10(a)) in Π0. We track the returns of γ0 ∩ Sr once more, along with the return of the
tangency. The jump-back canards start at the canard point FN where all branches of Π0

intersect. As we travel along γ0 ∩ Sr towards the endpoint on L−, the returns of the jump-
back canards increase until we encounter a maximum, corresponding to the tangency TPB.
As we trace γ0∩Sr further, the returns start to decrease from the maximum. If the projection
P+(γ0) lies outside the singular funnel, then the return of the endpoint γ0 ∩ L− is above
the canard point of the map. If P+(γ0) falls inside the singular funnel then the jump-back
canards start at FN, increase to a maximum and then decrease back to FN.

Remark 3.2. The initial point γ0 ∩ P (L−) which tracks the strong canard may jump off
γ0 ∩ Sr precisely to γ0 ∩ P+(γ0) (open circle in Figures 3.9(a) and (b)), thus generating a
periodic jump-back canard cycle, which cannot be detected by Π0. This return of canards to
the funnel can generate chaotic invariant sets [142].

Note for µ = 1, the strong and weak canards coincide and as µ decreases, the primary
canards separate. Neither of them connect to the saddle ED on Sr (not shown) and both travel
along Sr towards L−. Consequently, the singular returns for the weak canard γw are similar
to those of the strong canard γ0. In particular, the returns of γw form vertical branches in Π0

attached to some point ew in the singular funnel. The further µ decreases from 1, the further
ew moves away from FN into the funnel. Analogous to the strong canard, the endpoints of
the vertical branches associated with γw are the turning point corresponding to the jump-back
weak canard and the termination of γw on the lower fold L−.

3.4.2. Non-singular return maps. For the fully perturbed problem (3.1) we define a
similar first return map Πε : Σ→ Σ, where Σ is a suitably chosen cross section transverse to
the flow far from the fold, and ε = Cm

ktgmax
. The typical choice in numerical simulations was

to take the section as a line of initial conditions on S+
a,ε with fixed coordinate n:

Σ =
{

(V, n, e) ∈ S+
a,ε : n = nσ, nσ constant

}
.

We choose nσ so that we are close to the landing point of trajectories that jump up to S+
a,ε

from S−a,ε. In most instances, we take nσ = 0.04. As in the singular case, this choice of
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Figure 3.10. Return maps Πε for gK = 5 nS, gA = 4 nS and (a) Cm = 0 pF with inset
showing the jump-back (red) and jump-away (green) canards. (b) Cm = 0.2 pF with inset
showing a caricature of the vertical segment at the strong canard. (c) Cm = 2 pF. Panel (d)
shows the attractor for Cm = 2 pF, a 11 MMO (as predicted). Fixed points are indicated by
black markers. Note in (b) the fixed point lies outside the regime covered by Πε.

Σ leads to a map naturally parametrized by e. Note that such a section will cross P (L−).
Thus, it only covers the return map between 0 and emax where emax < 1. Nonetheless, the
essential dynamics are covered. In particular, we observe all the attractors (relaxation and
mixed mode oscillators) of the system.

Panels (b) and (c) of Figure 3.10 show the map Πε for Cm = 0.2 pF and Cm = 2 pF,
respectively. As Cm increases, the vertical extent of the maps decreases rapidly but the
structure of the singular return map Π0 itself is preserved. The maximum associated with
the turning point TPB in Π0 persists under small perturbations as a local maximum of Πε.
The fixed point (indicated by black markers) of the maps lies in rotational sector I1 and the
associated MMO pattern is indeed a 11 MMO (Figure 3.10(d)).

The apparent jump in the perturbed maps Πε is the strong canard, which divides trajec-
tories between relaxation oscillations and MMOs. These regions of rapid expansion in Πε

reflect the instability of trajectories flowing along the canards on Sr,ε for various times before
jumping to S±a,ε [53]. The vertical extent of these near vertical segments is not clear from the
simulations due to the stiffness of the problem. To clarify, each seemingly disjoint branch of
the map Πε is in fact continuously connected to each other. Limitations in the numerical inte-
gration scheme prevents these segments of rapid variation from being computed using initial
value solvers. We use boundary value solvers instead to compute the canard segments.

The procedure for computing Πε involves 2 parts: computing the regular parts of Πε

away from canards and approximating the (nearly vertical) exponentially thin segments near
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a canard. As in the computation of canards (Section 2.7), we rescale solutions to the time
interval [0, 1]. For the regular parts of Πε, we require initial conditions on S+

a,ε with n = nσ.
To initialize the computation, we take a line of initial conditions on S+

a far from Σ:

u(0) ∈
{

(V, n, e) ∈ S+
a : V = 100

}
.

This line of initial conditions is then flowed forward until they hit the section Σ, at which
point the calculation is terminated. That is,

u(1) ∈ Σ = {(V, n, e) : n = nσ, nσ constant} .

Exponential contraction of (3.1) ensures that this curve is sufficiently close to S+
a,ε. We use

the curve S+
a,ε∩Σ as the initial conditions in Πε and flow them forward until they return to Σ.

This produces a return map naturally parametrized by e. For any maximal canards crossed,
there is a seemingly discontinuous jump and the map appears to have disjoint branches. The
distance ∆e between the distinct branches (where there is no data) is nonzero and depends
on the number of points used to compute Πε. The more points used to parametrize S+

a,ε ∩ Σ,
the smaller the ‘gap’ ∆e. In our calculations, we typically used 2000 points.

By continuity of solutions of (3.1), all branches of the map are in fact continuously
connected to each other by exponentially thin canard segments. To compute these canard
segments, we first use AUTO to identify the maximal canards (Section 2.7). The endpoint of
the canard on Sr is then extended as close to the lower fold curve L− as possible to give an
indication of the vertical extent of the canards. We also extend the endpoint of the canards
on S+

a out to the section ΣV : V = 100 and then flow it forward to obtain the corresponding
canard point on S+

a,ε∩Σ. The canard point in S+
a,ε∩Σ always sits in the interval of width ∆e

between the distinct branches of Πε.
We then take the points of the canard on Sr,ε and perturb them in either V direction

(towards either S±a,ε). Those points that sit above Sr,ε jump-back to S+
a,ε whilst those that sit

below Sr,ε jump-away to S−a,ε. The returns of these points to the section Σ give the returns
of the jump-back and jump-away canards. To complete the computation of the return map,
we must determine the initial conditions in Σ corresponding to the jump-back and jump-
away canards. Since it is impossible to trace the returns of these canards to their origin
in the section Σ, we use interpolation to approximate the distribution of these returns in
a neighbourhood of the canard point. As in [53] we terminate the canard branch when it
intersects the regular part of Πε so that we have a continuous map.

3.5. Bifurcations of the Return Maps

We now use the singular and non-singular return maps Π0 and Πε to track the bifurcations
of MMOs in the lactotroph model (3.1) and show that the return maps cover the essential
dynamics. Our work differs from [53] who employ kneading theory and numerical analysis
for a qualitative and quantitative description of the bifurcation sequence related to a FSN II.
Here, we (qualitatively) describe the bifurcation sequences associated with the primary and
secondary canards of a folded node. To our knowledge, there have been no prior studies of
the bifurcation sequences of folded node type canards using return maps, especially near their
creation (birth) at µ = 1. As in Section 3.2, we focus on the horizontal and vertical directions
in the 2-parameter diagram (Figures 3.2, 3.3 and 3.5). That is, we track the bifurcations
which arise from variations in µ and d via the return maps.

3.5.1. Horizontal bifurcations - variation of µ and birth of canards. Fixing gA =
4 nS, the distance d from the strong canard is essentially fixed as gK varies and so the bifur-
cations of interest in this scenario are the ones that arise from the creation of canards.
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Figure 3.11. Return maps Πε for gA = 4 nS: (a) Cm = 0 pF, gK = 6.2 nS, (b) Cm = 0 pF,
gK = 5.8 nS, (c) Cm = 2 pF, gK = 6.2 nS, (d) Cm = 2 pF, gK = 5.8 nS. Fixed points are
indicated by black dots.

For large gK , the reduced system has folded foci on L+ (Figure 3.5), there are no canards
and the singular limit map Π0 is well defined (Figure 3.11(a), gK = 6.2 nS). The dynamics
are strongly attracting to a stable fixed point of Π0, representing relaxation oscillations. The
associated perturbed map Πε (Figure 3.11(c)) preserves this structure of Π0. Namely, Πε is
regular, well-defined and has a single fixed point representing a relaxation oscillator.

As gK decreases so that µ becomes real, i.e. µ < 1, the singular system has a folded
node. There are two fixed points of the associated return map Π0 with the stable one falling
in the funnel region I1 (Figure 3.11(b), gK = 5.8 nS). For Cm = 2 pF, the corresponding
Πε map is multimodal with two distinct branches, separated by near vertical jumps (Figure
3.11(d)). The left branch is the spiking branch (I0). Initial conditions on this part of the map
exhibit a relaxation oscillation in their tra nsient solution. The right I1 branch of the map
corresponds to a 11 bursting oscillation which is observed for gK = 5.8 nS (Figure 3.2(a))
and is expected from the singular limit prediction.

To understand the bifurcation sequence in Figure 3.2(b), we examine the unfolding of Πε

as gK decreases (Figure 3.12). Before the degenerate folded node, Πε is regular with a local
minimum occurring in a neighbourhood of the folded singularity (Figure 3.12(a)). As gK
decreases (with µ still complex), this local minimum sharpens becoming almost cusp-like
and signalling the formation of a canard (Figure 3.12(b)). When gK reaches the degenerate
folded node, µ = 1, the slow manifolds S+

a,ε and Sr,ε are tangential signalling the birth of
the primary canards (‘vertical branches’ in Figure 3.12(c)-(d)), which quickly separate as µ
decreases (Figure 3.12(e)-(f)).

Note that just after the bifurcation, Πε has 3 distinct branches, I0, I1 and I0 (Figure
3.12(c)-(e)). Figure 3.13(a) shows the slow manifolds in the cross-section Σe : e = eFN .
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Figure 3.12. Return maps Πε for Cm = 2 pF and gA = 4 nS: (a) gK = 6.2 nS, 10 spiking,
(b) gK = 6.12824 nS, 10 spiking, (c) gK = 6.1225 nS, 1011 MMOs, (d) Zoom of right
vertical segment in (c), (e) gK = 6.05 nS, 11 MMOs, (f) gK = 5.8 nS, 11 MMOs. The
strong (weak) canard corresponds to the left (right) vertical segment. Fixed points (black
dots) move from I0 to I1. In (d), the 1011 MMO is represented in the maps as a 2-cycle.

Subsector I1 is the segment of S+
a,ε bound by γ0 and γw. The two distinct I0 subsectors are

identified as the disjoint parts of S+
a,ε outside I1. Also shown are solutions Γ1,Γ2,Γ3, taken

from the sectors I0, I1 and I0, respectively (Figure 3.13(b)). The orbit Γ1 starts on S+
a,ε ‘prior’

to γ0, i.e. outside the funnel, and jumps away to more negative V without rotation. The
orbit Γ2 lies in the funnel region between γ0 and γw, and makes a single transient rotation.
The orbit Γ3 starts on S+

a,ε ‘after’ the weak canard and like Γ1, has a spiking transient. As
gK decreases, the I1 branch quickly expands to larger e values and the right I0 branch is
eventually pushed out of the domain covered by the map (Figure 3.12(f)).

The reason for the difference between Γ2 and Γ3 is as follows: for 1 < µ−1 < 2, S+
a,ε

makes a twist around the weak canard. Then the sector I1 lies above Sr,ε after passage near
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Figure 3.13. Trajectories with different rotational properties for Cm=2 pF, gK =6.1225 nS
and gA=4 nS. (a) Zoom of S+

a,ε ∩ Σe and Sr,ε ∩ Σe. (b) Orbits Γ1,Γ3 ∈ I0 and Γ2 ∈ I1.

the folded node and hence jumps back to S+
a,ε where it finishes a full rotation before jumping

to S−a,ε, which explains the rotation number s = 1. On the other hand, the sector I0 bound by
γw and the fold L+ lies (after passage of the folded node) below Sr,ε and hence jumps to S−a,ε
without any extra rotation, which accounts for the rotation number s = 0. The two different
behaviours can be clearly observed in Figure 3.13(b). More generally, initial conditions
between γw and L+ rotate smax − 1 times before jumping away (see Section 3.5.3).
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Figure 3.14. Zoom of return map Πε for gA = 4 nS, Cm = 2 pF, gK = 6.1235 nS. The
fixed point (black dot) is highly unstable and the attractor is a (10)411 MMO (not shown).

Figure 3.14 shows a zoom of the return map Πε for gK = 6.1235 nS near the vertical
branch associated with the weak canard. Recall from Section 3.4.1 that the local maximum
in Figure 3.14 is due to a turning point in the jump-back weak canard and the local minimum
is due to the termination of the jump-away weak canard. Here, rather than consider a bifur-
cation diagram, we consider a single snapshot of a 3-parameter family of maps. Since the
local topological structure of the map is preserved under changes in the bifurcation parame-
ter, the only thing that changes is the position of the diagonal relative to the map. Hence we
proceed on the understanding that the indicated bifurcations occur when a fixed point, i.e.,
an intersection of the map with the diagonal, crosses the special points.

We observe that the diagonal ‘moves up’ relative to the map as gK decreases. For gK >
6.127 nS there is a stable fixed point to the right of the local minimum. As gK decreases the
diagonal will first touch the map at the SNs=0

1 point which is followed immediately by the
PDs=0

1 point where the newly created stable fixed point loses its stability. As gK decreases
further, the stable spiking branch s = 0 loses its stability at the SNs=0

2 point. The 11 MMO
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branch then becomes stable at PDs=1
2 . In between the SNs=0

2 and the PDs=1
2 points, there is

a parameter window in which there are no stable fixed points and the MMO attractor is an
n-cycle with k period-n points on the s = 0 branch and (n−k) period-n points on the s = 1
branch, where k is typically either 1 or n − 1. The stable 1011 MMO pattern is identified
in the map shown in Figure 3.12(d) as a 2-cycle. This explains precisely the sequence of
bifurcations detected in Figure 3.2, which is closely related to the birth of canards.

3.5.2. Vertical bifurcations - variation of d and crossing of strong canard. Fixing
gK = 4.1 nS, the maximal number of rotations is smax = 4. We construct Π0 and Πε, and
explore the bifurcations associated with the passage of d as it crosses zero. The return maps
before and after this bifurcation sequence are shown in Figure 3.15 for Cm = 0, 2 pF.
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Figure 3.15. Return maps Πε for gK = 4.1 nS where smax = 4: (a) Cm = 0 pF, gA =
0.3 nS (δ < 0), (b) Cm = 0 pF, gA = 0.7 nS (δ > 0), (c) Cm = 2 pF, gA = 0.3 nS, (d)
Cm = 2 pF, gA = 0.7 nS. The fixed point (black dots) shifts from sector I0 to I1.

For gA = 0.3 nS, the distance d of the global returns from the strong canard is negative
and the trajectories exhibit relaxation oscillations. The corresponding maps (Figure 3.15(a)
and (c)) reflect these dynamics. The fixed point (black dot) of the singular map Π0 sits to the
left of the canard point (Figure 3.15(a)). Thus the attractor is a relaxation orbit.

For gA = 0.7 nS and Cm = 0 pF, d is positive. The singular map Π0 (Figure 3.15(b)) has
two fixed points: one stable on the maximal rotation branch I4 and one highly unstable on the
canard branch. As the perturbation is switched on, the secondary canards (represented in the
singular limit by γ0) bifurcate out of γ0. The non-singular map Πε has five distinct branches,
each separated by nearly vertical segments (Figure 3.15(d) shows only three branches – the
other two exist outside the physiological domain e > 1). The leftmost branch I0 corresponds
to relaxation oscillations where the global return trajectories land outside the funnel (i.e.
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d < 0). The I1 branch of Πε is the region of the funnel where MMO patterns only have
one small oscillation. The subsequent branches progressively move through the rotational
sectors until the maximal rotation sector I4 is reached. The stable fixed point of the map
occurs on the I1 branch and this is reflected in the observed 11 MMO pattern.
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Figure 3.16. Return map Πε for gK = 4.1 nS, Cm = 2 pF, gA = 0.672 nS where smax = 4.
The fixed point (black dots) shifts from the left spiking branch to the s = 1 bursting branch.

When gA is small, only the spiking and first bursting branches of Πε lie in the physio-
logical domain (Figure 3.15(c)). As gA increases, the branches of the map contract and shift
to smaller e so that higher order bursting branches enter the physiological domain (Figure
3.15(d)). Consequently, the fixed point occurs closer to the MMO branches. The transition
from I0 to I1 can be observed in Figure 3.16 (which is a snapshot of Πε for fixed (Cm, gK , gA)
rather than a bifurcation diagram; cf. Figure 3.14). As gA continues to increase, the first inter-
section of the diagonal with the s = 1 branch occurs when Πε has slope 1 (bifurcation point
SNs=1

5 ) just before the local maximum of the jump-back canards (see also Figure 3.3(c)).
As gA increases further, the s = 1 branch of the map becomes stable as the diagonal

passes through a point with slope −1 (PDs=1
4 ) to the right of the maximum associated with

the jump-back canards. Thereafter, there is a window of gA values for which there are two
stable fixed points, one on the spiking branch s = 0 and the other on the s = 1 bursting
branch (Figure 3.16(b)). There is also an highly unstable fixed point on the canard branch.
As gA moves to larger values still, the fixed point on the spiking family loses stability at
PDs=0

6 point (Figure 3.3(c)) and the s = 1 MMO is the only attractor of the system. Thus the
return maps Πε predict the sequence of bifurcations shown in Figure 3.3 and the bistability
of the MMO orbits.

3.5.3. Crossing and creation of secondary canards. To complete the discussion of the
return maps, we examine the structure of Πε under two circumstances: when a trajectory
crosses a secondary canard into a different rotational sector (vertical bifurcations) and when
a secondary canard bifurcates from the primary weak canard (horizontal bifurcations). As
seen in Section 3.2, the bifurcation structure of (3.1) follows similar trends in the transitions
between MMO families under variations in d and µ. The return map Πε reflects this as shown
in Figure 3.17.

Variations in d have the effect of shifting the map relative to the diagonal but have vir-
tually no impact on the structure (topology) of the map. For gK = 4.1 nS, the maximal
number of rotations is smax = 4 so the return map Πε has 5 branches. Starting with gA small,
increasing gA shifts the diagonal to the right relative to the map so that the fixed points shift
to MMO branches with higher rotation number. In terms of the funnel, orbits are pushed
away from the strong canard, moving deeper into the rotational subsectors. Bistable MMO
orbits can also be detected near the switch from one rotational subsector to another. These
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Figure 3.17. Return maps Πε for Cm = 2 pF under variations in d and µ: (a) gK = 4.1 nS,
gA = 1 nS, (b) gK = 4.1 nS, gA = 1.45 nS, (c) gK = 4.723 nS, gA = 4 nS, (d) gK =
4.722 nS, gA = 4 nS. Black dots denote fixed points of the map.

manifest in the maps as two stable fixed points occurring on adjacent MMO branches. The
bifurcations that occur arise as the trajectories cross the canards.

In the crossing from s = 1 to s = 2 (Figure 3.17(a)), the diagonal initially intersects
the s = 1 branch at a stable fixed point. As the diagonal ‘moves to the right’ relative to the
map under increases in gA (we again think of the map frozen since its topological structure
is preserved under parameter changes), it encounters the stable s = 2 branch at the SNs=2

6

point (Figure 3.3(c)). This stability is short-lived as the diagonal ‘shifts right’ (relative to
Πε) and encounters the PDs=2

7 point where the s = 2 branch turns unstable. The concavity
of the s = 2 branch allows the slope to decrease from −1 and then increase back to −1 so
that the s = 2 MMOs regain their stability via another PD indicated by the point PDs=2

8 in
Figure 3.3(c). As the diagonal shifts further to the right (relative to the map), the fixed point
on the s = 1 MMO branch passes through the PD point PDs=1

9 and becomes unstable. This
is exactly the bifurcation sequence shown in Figure 3.3(c).

Under variations in µ, secondary canards bifurcate from γw thus forming new branches
in the map. The creation of these new branches introduces almost vertical segments in Πε.
For gK = 4.723 nS, the 11 MMO is the attractor and is represented by a stable fixed point
on the I1 branch of Πε (Figure 3.17(c)). The I1 branch has a local minimum, which as
gK decreases, becomes significantly sharper until it reaches a SN bifurcation corresponding
to SNs=2

3 in Figure 3.2(c). At this point the I1 branch breaks into two distinct branches
with an additional, newly created I2 branch in between (Figure 3.17(d)). The left vertical
boundary of I2 corresponds to the newly created secondary canard γ1. The right vertical
boundary corresponds to γw. Note that the rightmost I1 branch is the subsector bound by
γw and the fold (cf. Figure 3.12(c) at the µ = 1 bifurcation). As in the µ = 1 case, the
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SN point corresponds to a tangency between S+
a,ε and Sr,ε, which then perturbs to transverse

intersections. As gK decreases further, the I2 branch rapidly expands to larger e values and
the right I1 branch is pushed out of the physiological domain. In this process, the right
I1 branch loses stability at SNs=1

4 in Figure 3.2(c). The I2 branch then becomes stable at
PDs=2

3 . The return map Πε and the associated bifurcation sequence (Figure 3.2(c)) in this
case is analogous to the situation in Figure 3.14 (Section 3.5.1).

3.6. Discussion

MMOs in multiple timescale systems are the result of the combined interaction between
a local mechanism and a global mechanism. The local mechanism is the folded node of the
reduced flow (3.3), which causes a local twisting of the slow manifolds and hence local rota-
tions of trajectories. The global mechanism is the global return which re-injects trajectories
into the funnel region and thus resets the dynamics after completion of the local passage. In
this chapter, we showed that the calcium-conducting bursts were canard-induced MMOs and
we studied their bifurcation structure.

Using geometric singular perturbation analysis, we demonstrated the origin of the MMO,
identified the region in parameter space where it exists, and showed how the number of small
amplitude oscillations varies in parameter space. The curves in the (gK , gA) parameter space
that bound the MMO region in the singular limit correspond one-to-one with those that bound
the bursting region away from the singular limit. Thus, the analysis performed at the singular
limit not only reveals the subtle mechanism of bursting, but also provides information on the
extent of bursting that is consistent with the bifurcation analysis of the full system.

Importantly, the singular perturbation analysis provides information on features that were
not apparent from the bifurcation analysis of the full system. While the full system analysis
provided boundaries for the bursting region in parameter space, it did not fully explain the
rationale for these boundaries. The singular perturbation analysis gave a clear rationale, in
terms of the properties of the folded node singularity and the curves delimiting the singular
funnel. It was clear from the singular analysis that the appropriate parameter space to work
in was (µ, d) space. Also, the singular analysis provided information on how the number of
spikes in a burst varies in parameter space: information that could not be obtained from the
bifurcation analysis of the full system (but required numerical simulation).

While the singular perturbation analysis has many virtues, it also has limitations. Most
obviously, the singular analysis is only guaranteed to be valid for sufficiently smallCm. Also,
the analysis is most effective when there are no more than two slow variables. Thus, the
singular analysis has limitations that are not present in the full system bifurcation analysis.
This emphasizes the power of combining the two analysis techniques: singular perturbation
analysis to understand the oscillation mechanism and extent in parameter space, and full
system bifurcation analysis to extend the singular analysis to the non-singular situation that
is likely a more accurate description of the biological system.

We then employed bifurcation analysis, GSPT and return map analysis to examine the
bifurcation structure of the canard-induced MMOs. Each technique provided substantial
information and it was their combination that allowed us to understand the phenomenon of
spike-adding in pseudo-plateau bursters. We constructed singular and non-singular return
maps Π0 and Πε so that we could study the dynamics in the setting of 1D maps. This relied
on the geometry and exponential contraction of (3.1). The exponential contraction reduces
the problem of studying the bifurcations of MMOs under variations of ε, µ and d to the study
of bifurcations in a 3-parameter family of maps. The resulting maps Πε were multimodal
and seemingly discontinuous. The distinct branches of Πε arise from the canard orbits.
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Trajectories that follow a maximal canard on opposite sides of Sr,ε are torn apart and follow
very different evolutions, thus causing the rapid vertical expansion in the maps.

One of the strengths of the return map formulation is that the partitioning of the funnel
can be characterized in a simple way. The canard trajectories act as separatrices in the return
maps, clearly dividing trajectories with differing numbers of twists around the weak canard.
The main insight obtained from Π0 is the extent of the vertical segments of the canards in
Πε. Moreover, the turning points of Π0 on S+

a have a one-to-one correspondence with local
extrema in Πε. The main bifurcation sequences detected consist of only SN and PD points.
In studying the transitions between MMO branches, this is sufficient. However as µ → 0
(FSN type II), different tools are needed to explain the bifurcation structure near the singular
Hopf bifurcation [52, 76] of system (3.1): a task we leave to future work.



CHAPTER 4

Multiple Geometric Viewpoints of Mixed Mode Dynamics

The pituitary lactotroph model (1.3) produces two types of (pseudo-plateau) bursts: one
in which the calcium drives the bursts and another in which the calcium follows them. Multi-
ple methods from dynamical systems theory have been used to understand the bursting. The
classic 2-timescale approach treats the calcium concentration as a slowly varying parame-
ter and considers a parametrized family of fast subsystems. A more novel and successful
2-timescale approach divides the system so that there is only one fast variable and shows
that the bursting arises from canard dynamics. Both methods can be effective analytic tools
but there has been little justification for one approach over the other. In this chapter, we use
(1.3) to demonstrate that the two approaches are different unfoldings of a 3-timescale system.
We show that elementary applications of GSPT in the 2-timescale and 3-timescale methods
provides us with substantial predictive power. We use that predictive power to explain the
transient and long-term dynamics of (1.3). This chapter was published in [136].

Authors’ Contributions: The analysis in this chapter was performed by TV. MW assisted
in the structuring of the manuscript. The manuscript was written by TV, and edited by TV,
RB, and MW.

4.1. Motivation

The discovery of dynamic and calcium-conducting MMOs [130] marked the juncture at
which studies of (1.3) diverged. Early treatments focused on the calcium-conducting MMOs
in a 3D reduction of (1.3) since they were novel (Chapter 3) [134, 135]. However, due to
the physiological importance of calcium, attention was eventually given again to the bursting
with variable calcium (in another 3D reduction of (1.3)) [123]. In both cases, the theory of
canard-induced MMOs showed that the bursting arose from canard dynamics. In spite of
these advances, the two 3D reductions of (1.3) remain as fairly separate entities. There has
been virtually no work done to reconcile the results from the two 3D reductions and form a
coherent picture. In this chapter, we tie the various threads from [121, 130, 134, 123, 135]
and provide a first step towards a unified picture of the dynamics of (1.3).

Using GSPT [41, 68], we have shown that the (calcium-conducting) pseudo-plateau
bursting in (3.1) [134, 123] was a canard-induced MMO [14, 15]. A vital feature of the
analysis was the multiple timescale structure of the governing equations. In this chapter,
we extend the results of Chapter 3 to the 0 < δ � 1 regime and focus on MMOs in the
3-timescale version of the model, which we reproduce here for convenience:

ε
dV

dtI
= f(V, n, e, c),

dn

dtI
= g1(V, n),

de

dtI
= g2(V, e),

dc

dtI
= δh(V, c),

(4.1)

60
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where 0 < ε, δ � 1, f, g1, g2 and h are smooth functions and tI is the dimensionless time
(see Chapter 1). The variables (V, n, e, c) vary over different timescales with V fast, (n, e)
intermediate and c slow. In its current form, system (4.1) is written such that the motions in
V areO(ε−1), the motions in (n, e) areO(1) and the motions in c areO(δ). Thus, overO(1)
time intervals, (4.1) naturally highlights the motions in the intermediate variables (n, e). We
say that (4.1) is written over an intermediate timescale. An equivalent description of the
dynamics can be obtained by rescaling time (tI = ε tF ) to obtain the fast system

dV

dtF
= f(V, n, e, c),

dn

dtF
= ε g1(V, n),

de

dtF
= ε g2(V, e),

dc

dtF
= ε δ h(V, c).

(4.2)

Alternatively, we can obtain a different viewpoint of the dynamics by rescaling time (tS =
δtI) to give the equivalent slow system

ε δ
dV

dtS
= f(V, n, e, c),

δ
dn

dtS
= g1(V, n),

δ
de

dtS
= g2(V, e),

dc

dtS
= h(V, c).

(4.3)

Systems (4.1), (4.2) and (4.3) stress the notion that the choice of reference scale kt in the
non-dimensionalization process is not important. The multi-timescale structure is an intrinsic
feature of the model and (4.1), (4.2) and (4.3) simply reflect different choices of kt.

Such 3-timescale systems as (4.1) have received little attention [67, 74, 75] and are typi-
cally treated as 2-timescale problems, which is the natural setting for GSPT [41, 68]. How-
ever, the presence of two perturbation parameters means that there are various ways in which
the theory can be implemented. One particular implementation uses ε as the singular pertur-
bation parameter whilst keeping δ fixed (1-fast/3-slow pathway of Figure 4.1). System (4.1)
is then partitioned into a fast subsystem described by the V dynamics and a slow subsystem
described by the (n, e, c) dynamics. Another viewpoint of (4.1) utilizes δ as the singular
perturbation parameter with ε fixed (3-fast/1-slow pathway of Figure 4.1), creating a family
of fast (V, n, e) subsystems parametrized by the slow variable c.

This asymptotic approach with perturbation parameter δ is the standard approach to
bursting oscillations [98, 99] in systems (4.1) with a single slow variable c [6, 81, 10, 121,
128, 116]. Bursts are classified according to the fast (V, n, e) subsystem bifurcations (with
respect to c) involved in the initiation/termination of the active phase. Plateau bursting and
various features of pseudo-plateau bursting such as resetting properties [116] and burst ter-
mination due to fast subsystem manifolds [94] are well understood in the classic approach
(see Section 1.1). More recent studies [134, 123, 125] make use of ε as the perturbation
parameter and complement the classic slow/fast analysis. Key organizing structures are the
invariant slow manifolds and their intersections (canard solutions) [23, 119, 140]. The the-
ory of canard-induced MMOs [14] then provides the theoretical basis for understanding burst
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phenomena such as the transition from spiking (relaxation oscillations) to bursting (MMOs)
and how spike-adding bifurcations can occur (Chapter 3). The two slow/fast analysis tech-
niques yield key insights into the mixed mode dynamics of pseudo-plateau bursting. Com-
parative analyses of the two slow/fast methods have been performed [123], however, there
have been few attempts to reconcile these approaches [125] in the context of (4.1).
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Figure 4.1. Schematic diagram of the multiple geometric analyses of pseudo-plateau bursting.

There are multiple goals to this chapter. First and foremost, we wish to broaden the scope
of GSPT by showing that elementary applications of the theory can be a powerful analytical
tool in understanding 3-timescale problems. We compare the familiar 2-timescale methods
with a 3-timescale analysis (1-fast/2-intermediate/1-slow path of Figure 4.1) and demon-
strate the efficacy of each technique. In conjunction with this, we illustrate our assertions
by analyzing the 3-timescale model (4.1) [121, 130] and show that our multiple geometric
viewpoints provide a fairly complete view of the dynamics. Physiologically, we are moti-
vated by a desire to understand a complex neuroendocrine cell model. Mathematically, we
are interested in the relationship between multiple analytical techniques. Our work comple-
ments [125], in which the relationship between geometric features of the 2-fast/1-slow and
1-fast/2-slow analysis techniques is demonstrated in a 3D reduction of (4.1).

The outline of the chapter is as follows: in Section 4.2, we investigate the bifurcation
structure of (4.1) and identify the regions in parameter space where MMOs exist. Section
4.2 serves as a preamble to the main results of this chapter, which are presented in Sec-
tions 4.3–4.5. Section 4.3 details a slow/fast analysis in which there is 1 fast variable and 3
slow variables, examples of which are currently scarce [58, 59]. We then recall the standard
slow/fast analysis in Section 4.4, where everything is treated as fast except for a single slow
variable. The crux of this chapter lies in Section 4.5, where we perform a geometric singular
perturbation analysis of the full 3-timescale problem (4.1). We formulate our analysis in a
general way to emphasize that our approach can easily be adapted to other 3-timescale prob-
lems. We show that the 3-timescale decomposition inherits the strengths of the 2-timescale
methodologies, affording us a remarkable degree of control and predictive power. Sections



4.2. FULL SYSTEM BIFURCATION ANALYSIS 63

4.3–4.5 highlight an unusual degeneracy about which the small oscillations of the MMOs
are localized. In Section 4.6, we examine this degeneracy more closely whilst comparing the
three analytical approaches. We conclude the chapter in Section 4.7 with a discussion.

4.2. Full System Bifurcation Analysis

The first step towards a classification of the dynamics is a full system bifurcation analysis,
which complements slow/fast analysis techniques and views the MMOs as periodic solutions
with complex structure [104, 129]. In [134, 123, 135], careful bifurcation analyses were
performed for reductions of (4.1) that focused on calcium-conducting MMOs (with δ → 0
and c removed – see Section 3.2) or dynamic MMOs (with gA = 0 nS and e decoupled) but
not both. We now extend the bifurcation analysis to (4.1) with 0 < δ � 1.

4.2.1. The Three Conductances. Using AUTO [31, 32], the bifurcation structure of
the lactotroph model (4.1) was calculated for each of the three conductances gK , gBK and
gA (Figure 4.2). In each case, we set fc = 0.01 (so that δ = 0.032). The L2 norm refers,
as before, to either the standard Euclidean norm for equilibria or the L2 norm for periodic
orbits.

Figure 4.2(a) shows the bifurcation structure of (4.1) with continuation parameter gK .
Here, we are considering bifurcations that arise from variations in the repolarizing current
IK . For small gK , the depolarized equilibrium (labelled Dep) is attracting (black curve) and
destablizes at a subcritical Hopf bifurcation (denoted HBgK

) at gK ≈ 0.576 nS. Emanating
from HBgK

is the spiking branch (s=0), which terminates outside the physiological domain
at another subcritical Hopf point. The s=1 bursting branch connects with the spiking branch
at period doubling (PD) points. The s= 2 branch is born at a saddle-node of periodics (SN)
at gK ≈ 0.613 nS and is a closed isola of MMOs. The bursting families s= k, k > 2 (not
shown) have the same configuration as the s=2 case with ever-decreasing stability plateaus.
These closed isolas are all born in SN points in a neighbourhood of the PD point where the
spiking and first bursting branches connect (at gK ≈ 0.617 nS). Situated between the s= k
and s= k+1 (k ≥ 0) bursting families are isolas of MMOs with signatures that are some
mixture of 1k and 1k+1 patterns (not shown; cf. Section 3.2).

Figure 4.2(b) shows bifurcations of (4.1) with respect to gBK , the biophysical parameter
that controls the BK current and reliably increases c (with increasing gBK) [121]. The bi-
furcation structure of gBK has a reversed orientation to the gK bifurcation structure, but the
core elements are the same. There is a curve of (depolarized) equilibria (black curve) that
loses stability at a subcritical Hopf bifurcation (HBgBK) at gBK ≈ 2.499 nS. Spiking orbits
(blue curve) arise from HBgBK and are stable for the smallest gBK values. As gBK is increased
from 0 nS, we encounter the various MMO families. The s = 1 branch (red curve) connects
with the s = 0 branch at PD points and the remaining bursting families are disjoint, closed
curves. The isolas are born in SN points in a neighbourhood of the PD point where the s = 0
and s = 1 branches connect (at gBK ≈ 2.338 nS). As before, there exist MMO families with
complex signature between each bursting family.

Figure 4.2(c) shows a bifurcation diagram of (4.1) with continuation parameter gA. The
bifurcations we are treating in this case are due to variations in the sub-threshold current IA.
The gA bifurcation structure is inherently different from the gK and gBK structures. In the gA
case, there is no Hopf bifurcation. The depolarized steady state (black curve) bifurcates at
a saddle-node on invariant circle (SNIC) bifurcation well beyond the physiological domain
(not shown) where it meets a hyperpolarized steady state. Like the gBK case, the spiking
orbits (blue curve) are stable for the smallest gA values. The first bursting family (red curve)
arises from the spiking branch at a PD point at gA ≈ 0.316 nS but terminates (at large gA) at
a homoclinic point. The remaining MMO families are disjoint, but not closed. In fact, they
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Figure 4.2. One parameter bifurcation structure of (4.1) with Cm = 2 pF and fc = 0.01,
showing the depolarized steady states (black), spiking (blue), and bursting families (red and
green). (a) gBK = 0.4 nS, gA = 4 nS. (b) gK = 5 nS, gA = 4 nS. (c) gK = 5 nS,
gBK = 0.4 nS. Insets: transition between spiking (s = 0) and bursting (s = 1) branches.

all terminate at homoclinics far outside the physiological domain. Unlike the gK and gBK
cases, there is a maximal MMO family (not shown). This maximal bursting family has the
largest stability plateau and terminates at the SNIC point (cf. Figure 3.3).

In each panel of Figure 4.2, there is an inset that shows the transition from the spiking
branch (blue, s = 0) to the first bursting branch (red, s = 1). In each case the spiking branch
loses stability at a PD point, labelled PDgx , where x ∈ {K,BK,A}. The s = 1 branch does
not immediately become stable and there is a window of complex MMO families. The s = 1
branch eventually becomes stable at the SN point, denoted SNgx with x ∈ {K,BK,A}. This
window of complex MMOs sitting between adjacent bursting families vanishes as the per-
turbation parameter Cm is decreased. In fact, for sufficiently small Cm (i.e. ε), the adjacent
MMO branches overlap and there is bistability (cf. Section 3.2.2 [135]).
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4.2.2. The Bursting Boundaries. Using the one-parameter diagrams (Figure 4.2), we
can now construct 2-parameter diagrams to identify the regions in parameter space where
MMOs exist (Figure 4.3) relative to other types of dynamical behaviour. We concentrate on
the bursting boundaries and save refinements of our 2-parameter diagrams for future work.
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Figure 4.3. Two parameter bifurcation structure of (4.1). In (a) and (b), gA = 4 nS. In (c)
and (d), gBK = 0.4 nS. In (e) and (f), gK = 5 nS. Panels (a), (c) and (e) have Cm = 0 pF and
fc = 0 whilst panels (b), (d) and (f) have Cm = 2 pF and fc = 0.01. The MMO boundaries
are generated by continuing the PD and Hopf points from Section 4.2.1 (see text for details).
The crosses in panels (c) and (d) indicate the positions of Figures 1.6(a) and (b). The dashed
lines denote the 1D slices taken in Figure 4.2.

In Figure 4.3, we show diagrams for the singular limit (ε, δ) → (0, 0) (panels (a), (c)
and (e)) but defer the discussion to Section 4.5. Panel (b) shows the (gK , gBK) diagram
for gA = 4 nS, Cm = 2 pF and fc = 0.01. In the physiologically relevant domain, there
are three distinct types of behaviour: spiking, bursting and depolarized steady states. The
spiking and bursting regions are separated by the PDgK

/PDgBK curve, which can be calculated
by 2-parameter continuation of either the PDgK

or PDgBK point. In any case, we choose the PD
point instead of the SN point as the spiking/bursting boundary since the PD point is where
the spiking branch destablizes and gives way to trajectories that are mixtures of spikes and
bursts. Note that continuation of the SN point would generate essentially the same boundary.
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The other boundary that delimits the MMO regime is the HBgK
/HBgBK curve, which was

obtained from a 2-parameter continuation of the HBgK
(or HBgBK) point.

In Figure 4.3(d), gBK = 0.4 nS and in Figure 4.3(f), gK = 5 nS. As in panel (b), the
main types of dynamical behaviour in panels (d) and (f) are spiking, bursting and depolar-
ization. The spiking and bursting behaviour in (d) are separated by the PDgK

/PDgA
curve

and in (f) the border is the PDgBK/PDgA
curve. Moreover, the divide between spiking and

depolarization arises from continuation of the Hopf bifurcation (the HBgK
/HBgA

curve in (d)
and the HBgBK/HBgA

curve in (f)). Note in Figures 4.3(d) and (f) that the 1D gA slice taken in
Figure 4.2(c) never intersects a Hopf bifurcation.

Thus, we have identified the regions in parameter space where MMOs exist. In addi-
tion, we can deduce that the bursting waveform broadens (s → ∞) when the parameters
approach the HB boundary. Conversely, the bursting waveform narrows (s → 0) when the
spiking/bursting boundary is approached. In other words, our diagrams suggest that gA has
little effect on the number of small oscillations and that s is primarily determined by gK
and gBK (cf. Section 3.3.2). We now concern ourselves with the question of the origin and
properties of the MMOs. At the core of our approach is GSPT.

4.3. The ε-Viewpoint

In this section we consider a timescale splitting of (4.1) in which there is only one fast
variable and everything else is considered slow (1-fast/3-slow path of Figure 4.1). Such
decompositions have been used to explain neuronal dynamics [33, 38, 101, 104, 141] and
intracellular calcium dynamics [58, 59]. This section adds to the currently sparse literature
of examples of dealing with systems that have more than 2 slow variables [58, 59, 143]. The
1-fast/k-slow approach has been applied to 3D reductions of (4.1) in which k = 2 (Chapter 3
and [123]). The addition of a third slow variable does not significantly change the procedure.

4.3.1. Geometric Singular Perturbation Analysis. For a fixed δ, (4.1) is a singularly
perturbed problem with perturbation parameter ε where V is fast and (n, e, c) are ‘slow’.
The fast system is given by (4.2) and an equivalent ‘slow’ system is given by (4.1) (or (4.3)).
Taking the singular limit ε→ 0 on the fast timescale tF gives the 1D layer problem

dV

dtF
= f(V, n, e, c), (4.4)

where (n, e, c) are parameters. The singular limit ε → 0 in the ‘slow’ system (i.e. on the
intermediate timescale tI) gives the 3D reduced problem:

0 = f(V, n, e, c),

dn

dtI
= g1(V, n),

de

dtI
= g2(V, e),

dc

dtI
= δh(V, c).

(4.5)

Remark 4.1. Note in (4.5) that c operates on a slower timescale than the other variables.
That is, (4.5) is itself singularly perturbed with small parameter δ. We demonstrate in this
section what information can be gleaned from the 2-timescale methodology with ε as the
principal perturbation parameter. In Section 4.5, we acknowledge the 3-timescale structure
of (4.1) and show that we can use the extra timescale to gain greater predictive power.
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The aim of GSPT is to concatenate the information obtained from the lower dimensional
subproblems (4.4) and (4.5) to provide a unified global description of (4.1). As usual, we
start with a bifurcation analysis of the 1D layer problem (4.4). The critical manifold is

S :=
{

(V, n, e, c) ∈ R4 : f(V, n, e, c) = 0
}
. (4.6)

In our model system, S is a 3D folded manifold with 2D fold surface:

L := {(V, n, e, c) ∈ S : fV (V, n, e, c) = 0} , (4.7)

which divides S into attracting sheets Sa (fV < 0) and repelling sheets Sr (fV > 0).
The critical manifold S is not only the manifold of equilibria of (4.4), but is also the

phase space of (4.5), interfacing between the layer and reduced problems, (4.4) and (4.5),
respectively. Projection of (4.5) onto a slow-fast variable base, (V, e, c) say, gives:

−fV
dV

dtI
= fn g1(V, n) + fe g2(V, e) + δfc h(V, c) ≡ Fδ(V, n, e, c),

de

dtI
= g2(V, e),

dc

dtI
= δh(V, c),

(4.8)

where n satisfies (4.6). Desingularization (i.e. a time rescaling dtI = −fV dsI) removes the
singular term at the fold and gives the desingularized system

dV

dsI
= Fδ(V, n, e, c),

de

dsI
= −fV g2(V, e),

dc

dsI
= −δ fV h(V, c).

(4.9)

The ordinary singularities E and folded singularities Mδ of (4.9) are given by

E := {(V, n, e, c) ∈ S : g1(V, n) = g2(V, e) = h(V, c) = 0} ,
Mδ := {(V, n, e, c) ∈ L : Fδ(V, n, e, c) = 0} .

The ordinary singularities correspond to actual equilibria of (4.1). The points on the curve
Mδ are special points of (4.8) where there is potentially a cancellation of a simple zero, al-
lowing trajectories of the reduced problem to cross L with nonzero speed. The persistence of
these singular canards [119, 140] under small perturbations gives rise to complex dynamics,
such as in [11, 17, 24, 33, 39, 58, 84, 85, 100, 101, 104, 141].

Remark 4.2. The δ subscript in Fδ and Mδ is a notational convenience used to indicate the
δ dependence and does not denote a derivative.

The Jacobian of (4.9) evaluated along Mδ has two linearly dependent rows. Conse-
quently, there will always be a zero eigenvalue with eigenvector tangent to Mδ. The remain-
ing two eigenvalues are used to classify the points of Mδ (Definition 2.7). The boundary
between folded saddles and folded nodes is the folded saddle-node (FSN). We are interested
in the FSN points because they are the organizing centers for delay phenomena [76]. In par-
ticular, a FSN II occurs when there is a transcritical bifurcation of ordinary and folded sin-
gularities. That is, the set of FSN II points is the set of singular Hopf bifurcations [2, 4, 51]:

ESHB := {(V, n, e, c) ∈ E : fV (V, n, e, c) = 0} . (4.10)

A FSN I corresponds to the coalescence of a folded saddle and a folded node.
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Remark 4.3. There are two ways in which a FSN I can occur in (4.9). A FSN I may occur
at a fold in the curve of folded singularities Mδ. Alternatively, a FSN I is associated with the
change in sign of an eigenvalue when a special curve crosses the fold surface L:

M I
δ := {(V, n, e, c) ∈ L : g1 = δG1(V, n, e, c, δ), g2 = δG2(V, n, e, c, δ)} , (4.11)

where the functions G1 and G2 are computable. The geometric interpretation of (4.11) will
become clear in Section 4.5.1 where we make use of the full 3-timescale machinery.

4.3.2. Singular Orbits and Canards. As we saw in Section 4.2.2, the attractor of (4.1)
can be in one of three states: spiking, bursting or depolarization. We now use our analysis
from Section 4.3.1 to construct singular approximations of (4.1) to understand the transient
and long-term evolution for each of the attractors. For convenience, we introduce some
notation. We denote solutions of the fully perturbed problem (4.1) by Γ(ε,δ). We write
Γx(0,δ), x ∈ {F, I} to denote trajectories of the fast subsystem (4.4) and ‘slow’ subsystem
(4.5) written over the intermediate timescale tI . The singular orbits take the form

ΓF(0,δ) ∪ ΓI(0,δ),

where ΓF(0,δ) represents fast jumps in V and ΓI(0,δ) is the ‘slow’ flow along S.
Figure 4.4 shows the 1-fast/3-slow singular orbit construction for equilibria and periodic

orbits. In each case, the folded singularities Mδ (red), c-nullcline (dashed, black) and full
system trajectory Γ(ε,δ) (black) are plotted. When the attractor is a depolarized steady state
(panels (a) and (b)) the singular trajectory is simple, consisting of a fast and ‘slow’ orbit seg-
ment. The fast evolution ΓF(0,δ) brings the trajectory onto an attracting sheet of S, where the
dynamics switch to those of (4.9) We observe that the ‘slow’ orbit segment ΓI(0,δ) converges
to the equilibrium point E. The full system trajectory Γ(ε,δ) then shows that the singular or-
bit is a suitable predictor of the transient evolution to the equilibrium. More precisely, since
the singular trajectories stay in normally hyperbolic regions of S, Γ(ε,δ) is simply an O(ε)
perturbation of the singular attractor ΓF(0,δ) ∪ ΓI(0,δ) (by Fenichel theory).

Parameter variations shift the position of the steady state E on S. There eventually
comes a point when E crosses the fold surface L and moves from an attracting sheet Sa
to a repelling sheet Sr. When E crosses the fold surface L, we have a FSN II bifurcation
leading to the birth of limit cycles [51]. Figures 4.4(c) and (d) show that the 1-fast/3-slow
singular attractor is composed of a fast jump from a folded node together with a ‘slow’ flow
that returns the orbit to the folded node. That is, we have the singular limit representation of
a canard-induced (dynamic) MMO [14] (Section 2.6.2).

Recall that the canard theory for two slow variables (Section 2.5) extends to k slow
variables, k ≥ 2 (Theorem 2.6) [143]. In particular, the number of small oscillations, s, of
an MMO is bounded (see (2.20)). In Figures 4.4(c) and (d), the folded node of the singular
attractor is O(δ) close to a FSN I point M I

δ, i.e. the eigenvalue ratio is µ = O(δ) and smax

is large. However, we typically do not see smax oscillations and the oscillations occur some
distance from the folded node. Figure 4.4(c) shows that the singular MMO approaches the
folded node along its weak eigendirection, vw, which is a linear approximation to the axis
of rotation for the small oscillations. Thus, trajectories close to vw do not visibly oscillate
until they are some maximal distance from the folded node and are repelled. In light of this,
we see that the offset between singular and non-singular trajectories around the folded node
(most prominent in Figure 4.4(c)) is due to the delay effects associated with passage through
twisted slow manifolds near a folded node.

Figure 4.4(d) shows that the folded node is not the only region where there is disparity
between Γ(ε,δ) and its singular counterpart. At the ‘slow’-fast transition near e ≈ 0.4, Γ(ε,δ)

deviates significantly from the predicted path before it realigns with the ‘slow’ orbit segment.
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Figure 4.4. Singular orbit construction ΓF(0,δ) ∪ ΓI(0,δ) for equilibria (top row) and periodic
orbits (middle and bottom rows) projected onto the (V, c) plane (left column) and the (V, e)
plane (right column). For (a) and (b), gK = 5 nS, gBK = 3 nS and gA = 10 nS. The
full system trajectory Γ(ε,δ) (black) has Cm = 2 pF and fc = 0.01. For panels (c) and (d),
gK = 3 nS, gBK = 0.4 nS, gA = 8 nS. Panels (e) and (f) have gK = 5 nS, gBK = 0.4 nS,
gA = 8 nS. The solution of (4.1) in panels (c)-(f) has Cm = 0.2 pF and fc = 0.001.

To understand the discrepancy, we note that S is folded with fold surface L, which is itself
folded with a curve, C, of cusp bifurcations (not shown). This creates an unusual scenario
in a neighbourhood of C, where trajectories either encounter L with ever-shortening fast up-
jumps or avoid L entirely by circumventing C (as in Figure 4.4(f)). The scenario depicted
in Figure 4.4(d) shows that the singular orbits are close to C (since ΓF(0,δ) is so short) and
consequently, Γ(ε,δ) exhibits slow passage effects associated with a cusp. Currently, cusp
singularities in slow/fast systems have only been treated for the case of a single cusp point
[13], whereas our system presents a whole curve of them. Numerically, we observe that
small perturbations to C change the geometry of the trajectory significantly (as highlighted
by Figures 4.4(d) and (f)) but the precise details are unknown and left to future work.
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As far as the 1-fast/3-slow decomposition is concerned, there is no intrinsic difference
between dynamic MMOs (where the slow calcium variations drive the bursts) and calcium-
conducting MMOs (where the calcium oscillations follow the burst, rather than drive it).
In both cases, the singular orbit is a concatenation of ‘slow’ and fast segments that join
continuously at a folded node. The main observation is that dynamic MMOs have µ = O(δ),
whilst calcium-conducting MMOs have µ above some threshold. Figure 4.4(e) suggests that
the singular orbit is not a very good predictor of the full system calcium-conducting MMO.
Figure 4.4(f) counterbalances this and reveals that the (V, c) projection is a special projection
in which the approximation error is most pronounced. As before, Γ(ε,δ) is O(ε) close to
ΓF(0,δ) ∪ΓI(0,δ), except near the folded node and the cusp (which is circumvented in this case).

The other attractor we need to consider is the spiking orbit (not shown). Once again,
properties of folded nodes can be used to tell the difference between the spiking and MMO
attractors. Each folded node of Mδ possesses a 2D funnel and together, these form a 3D fun-
nel volume for Mδ. Singular orbits that land inside the funnel volume on their fast upstroke
will jump at one of the folded nodes of Mδ and so correspond to MMOs. Singular orbits that
land outside the funnel volume return to L at a regular jump point. In that case the singular
orbit is a relaxation oscillation and corresponds to spiking trajectories of the full system.

Remark 4.4. The funnel of the folded nodes of Mδ is a theoretical construct that loses
practical utility as the number of slow variables increases. The concept is only truly effective
in the case of 2 slow variables where Mδ is a single point, the funnel is a 2D region and
everything can be visualized (see Sections 2.5, 3.3.3 and 4.5.5). In practice, a simpler way of
identifying a spiking trajectory is to monitor Fδ at the upper jump point of the singular orbit.
If Fδ 6= 0 at the upper jump point, then the singular orbit hits L at a regular jump point.

We have now computed the main objects essential to a 1-fast/3-slow geometric singular
perturbation analysis. The bursting is the result of canard dynamics associated with a folded
node [14, 119, 140]. This 1-fast/3-slow decomposition is new in the sense that only relatively
recently has it become an established method in mathematical neuroscience for understand-
ing bursting phenomena. Early work on the analysis of bursting used an alternative slow/fast
analysis. The next section reviews the main components of this traditional approach.

4.4. The δ-Viewpoint

The classic slow/fast analysis, pioneered by [98], treats δ as the principal perturbation
parameter. It has been used to great effect in unravelling the dynamics of plateau bursting in
pancreatic islets [7], trigeminal motoneurons [21] and neonatal CA3 hippocampal principal
neurons [105]. It is also useful in explaining how pseudo-plateau bursting can be converted
to plateau bursting [124]. Here, we review the classic approach and apply it to (4.1). In this
viewpoint, the system is partitioned such that c is the sole slow variable and everything else
is relatively fast [6, 81, 94] (3-fast/1-slow path of Figure 4.1). In the language of GSPT, (4.1)
is singularly perturbed with small perturbation parameter δ and fixed nonzero ε.

4.4.1. Geometric Singular Perturbation Analysis. When using δ as the perturbation
parameter, (4.1) can be considered to have fast variables (V, n, e) and slow variable c. In this
3-fast/1-slow analysis, the equivalent ‘fast’ and slow systems are given by (4.1) (or (4.2))
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and (4.3), respectively. The singular limit δ → 0 in (4.1) gives the 3D layer problem

ε
dV

dtI
= f(V, n, e, c),

dn

dtI
= g1(V, n),

de

dtI
= g2(V, e),

(4.12)

where c is a parameter. The singular limit δ → 0 in (4.3), i.e. on the slow timescale tS , gives
the 1D reduced problem

0 = f(V, n, e, c),

0 = g1(V, n),

0 = g2(V, e),

dc

dtS
= h(V, c).

(4.13)

Remark 4.5. Obviously, the layer problem (4.12) of the 3-fast/1-slow method is singularly
perturbed with small parameter ε. In fact, it is precisely the 3D model reduction of (4.1)
dealt with in Chapter 3. Our objective here is to illustrate the strengths and weaknesses of
the 2-timescale method with perturbation parameter δ. As such, we defer discussion of the
full 3-timescale structure to Section 4.5.

To understand the dynamics of the simpler subsystems (4.12) and (4.13), we proceed
with a bifurcation analysis. The critical manifold of the 3D layer problem is

Z :=
{

(V, n, e, c) ∈ R4 : f(V, n, e, c) = g1(V, n) = g2(V, e) = 0
}
, (4.14)

which is a 1D subset of the critical manifold S. Often, we deal with critical manifolds Z
which are folded curves with isolated fold points L defined by

L :=

(V, n, e, c) ∈ Z : det

 fV fn fe
g1V g1n 0
g2V 0 g2e

 = 0

 . (4.15)

In the classic slow/fast analysis, Z is known as the ‘z-curve’ and the fold points L are
called the ‘knees’. The other generic codimension-1 bifurcation we may encounter is the
Andronov-Hopf bifurcation. Hopf bifurcations of (4.12) are given by the condition:

ZH := {(V, n, e, c) ∈ Z : fV = εH(V, n, e, c, ε)} , (4.16)

where H(V, n, e, c, ε) can be computed explicitly. Note that the Hopf bifurcation points ZH
are O(ε) close to the fold surface L of the 1-fast/3-slow approach. Note further that there
are other Hopf bifurcations on Z but these have been found (numerically) to occur on the
repelling branch Zr of Z and so we will only concentrate on those Hopfs that are O(ε)
close to the fold surface L. The criticality of the fast subsystem Hopf typically differentiates
between plateau and pseudo-plateau bursting [116, 95, 129, 124]. In our model system,
ZH has always been found (numerically) to be subcritical so that the associated bursts are
pseudo-plateau type.

System (4.13) describes the slow motions on the restricted phase space Z . A complete
description of (4.13) is obtained by projection:

d

dtS

Vn
e

 = −

 fV fn fe
g1V g1n 0
g2V 0 g2e

−1fch0
0

 =
1

detA

−g1ng2e

g1V g2e

g1ng2V

 fch, (4.17)
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where A is the matrix appearing in (4.15). The slow flow along Z is singular at the folds
L . For our model, the only singularities of the slow subsystem are the equilibria E of the
fully perturbed problem. It is conceivable however that there are discrete parameter values,
g∗ say, where the full system equilibrium coincides with a fold point L and a singular Hopf
bifurcation may occur [95]. That is, it is possible that the set

L ∩ E = {(V, n, e, c) ∈ L : h(V, c) = 0} ,
is non-empty and a canard point of (4.17) exists, making canard solutions feasible in an
exponentially small parameter window around g∗. Despite this, such canard points have
no bearing on the full system dynamics since they have always been found (numerically)
to occur on Zr. This is due to the geometric structure of Z wherein the Hopf point ZH
occurs at a more depolarized voltage level than the fold points L . Consequently, any canard
points must occur on Zr and the singular attractor of (4.12) and (4.13) never visits the canard
point. As such, (4.1) has no (observable) canard dynamics with respect to the slow-fast
decomposition (4.12)–(4.13) and the oscillatory behaviour cannot be due to a folded node.
The oscillation mechanism must be encoded then in the layer problem (4.12).

4.4.2. Singular Orbits and Bifurcations. We now proceed to construct singular orbits
as in the previous section to extract information about the dynamics. The singular orbits

ΓI(ε,0) ∪ ΓS(ε,0),

are once again continuous concatenations of solutions of (4.12) and (4.13), denoted by ΓI(ε,0)

and ΓS(ε,0), respectively. Figure 4.5 shows the 3-fast/1-slow singular orbit construction for
equilibria and for dynamic MMOs.

In Figures 4.5(a) and (b), the equilibrium E of (4.1) sits on Za. Initial conditions generi-
cally start away from Z and so the first part of the transient evolution is a rapid motion ΓI(ε,0)

towards Z . Due to the slow/fast structure of (4.12), the ‘fast’ orbit segment initially over-
shoots Z before settling down to it. The slow flow ΓS(ε,0) along Za brings the trajectory to E
before it can reach either the Hopf point ZH or the fold point L . Since the singular orbit
stays away from bifurcations of the ‘fast’ and slow subsystems, Fenichel theory guarantees
that the full system trajectory Γ(ε,δ) is an O(δ) perturbation of ΓI(ε,0) ∪ ΓS(ε,0). Note that the
asymptotic matching in this case occurs at Z , where the reduced problem (outer solution)
and layer problem (inner solution) overlap (cf. Figures 4.4(a) and (b)).

Parameter variations move E through ZH and the attractor becomes a limit cycle. The
singular dynamic MMO attractor is an hysteresis loop that alternates between the attract-
ing branches of Z (Figures 4.5(c) and (d)). The singular orbit jumps at the fold point L −

and at the (subcritical) Hopf bifurcation ZH , and satisfies Assumptions 2.9–2.11. By The-
orem 2.17, the full system trajectory Γ(ε,δ) is a Hopf-induced MMO. Hence, according to
the 3-fast/1-slow analysis, the oscillation mechanism of dynamic MMOs is a delayed Hopf
bifurcation [3, 27, 54]. The inset of Figure 4.5(c) shows that Γ(ε,δ) experiences bifurcation
delay and traces Zr some distance before it oscillates and jumps to a different branch of Z .
Typically, the small oscillations associated with the passage through the Hopf are below a
visible threshold due to exponential attraction to Za (Section 2.6.3), resulting in trajectories
that are virtually indistinguishable from Z .

Remark 4.6. Apart from the fast subsystem Hopf point, the other bifurcation point in the
singular orbit is the fold point L −. The behaviour of Γ(ε,δ) in a neighbourhood of L − is
that of classic fold behaviour [71, 120]. That is, Γ(ε,δ) and the layer solution that jumps from
L − are O(δ2/3) close (Theorem 2.7). At O(1) distances from the singular points ZH and
L −, the full system trajectory is O(δ) close to ΓI(ε,0) ∪ ΓS(ε,0).
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Figure 4.5. Singular orbit and bifurcation diagram (with respect to c) for equilibria (top
row) and dynamic MMOs (bottom row). Parameter values in (a) and (b) are gK = 5 nS,
gBK = 3 nS and gA = 10 nS with Cm = 2 pF and fc = 0.01 for Γ(ε,δ) (cf. Figures 4.4(a)
and (b)). In (c) and (d), gK = 3 nS, gBK = 0.4 nS and gA = 8 nS with Cm = 0.2 pF and
fc = 0.001 for Γ(ε,δ) (cf. Figures 4.4(c) and (d)). In both cases, there is an unstable spiking
branch (blue, dashed) emanating from the subcritical Hopf bifurcation of (4.12).

4.4.3. The Distinction Between MMO Types. As noted in Figure 4.5(c), the singular
dynamic MMO orbit is an hysteresis cycle that jumps at the thresholds L − and ZH , where
L − sits to the left of ZH in the (V, c) projection. Under variation of the conductances
(gK , gBK , gA), the relative positions of L − and ZH change. We immediately see an issue:
what happens when L − sits to the right of ZH so that the bistable region of Z disappears?

Figure 4.6 is a prototypical example of a scenario in which the fold point L − sits to the
right of the Hopf pointZH . The attractor Γ(ε,δ) of the fully perturbed problem (4.1) sits in the
c-interval between the two bifurcation points. Transients of (4.1) closely trace Z until they
encounter either L − or ZH , at which point they start bursting (Figure 4.6(a)). The transient
bursting exhibits differing numbers of small oscillations, depending on the position of the
trajectory in phase space. An explanation of this dynamical behaviour using GSPT requires
more work than in previous scenarios.

For our transient singular orbit construction we can, without loss of generality, take an
initial condition on Za. Transients move (according to (4.13)) along Za until they encounter
L − or ZH (where normal hyperbolicity breaks down). At L −, the layer flow description
(4.12) takes over and it generates a stable MMO, Γ1

(ε,0), with fixed c. Similarly, at ZH the
layer problem (4.12) produces a stable MMO, Γ2

(ε,0), with c fixed at ZH (Figures 4.6(b) and
(c)). We then find that for every fixed c-value between ZH and L −, the attractor of (4.12) is
a MMO (not shown). In short, when there is no bistability in Z , the 3-fast/1-slow splitting
predicts a torus of MMOs of calcium-conducting type between ZH and L −.
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Figure 4.6. Geometric configuration of Z in which there is no bistability for gK = 5 nS,
gBK = 0.4 nS and gA = 8 nS (cf. Figures 4.4(e) and (f)). In (a) the transient evolution to
the attractor of (4.1) with Cm = 0.2 pF, fc = 0.0001 exhibits a variety of bursts. In (b) there
is a c-interval of stable singular MMOs bounded by Γ1

(0,0) and Γ2
(0,0) (see text). The attractor

of the fully perturbed problem Γ(ε,δ) for Cm = 0.2 pF, fc = 0.001 lies somewhere in this
c-interval. (c) The (V, e) projection shows a clearer picture of the periodic orbits.

Remark 4.7. Recall from Section 4.3.2 that there is a curve of cusp bifurcations in the
1-fast/3-slow splitting, where the trajectories deviate significantly from the singular limit
predictions. Figure 4.6(c) shows that the cusp continues to play a role in shaping the tra-
jectories. However, in the 3-fast/1-slow setting, the cusp cannot be detected and hence the
disparity between singular and non-singular orbits cannot be explained.

Within this torus of stable singular MMOs, there is an unique singular attractor that Γ(ε,δ)

converges to in the singular limit δ → 0. To locate this singular attractor, we use averaging.
A rigorous discussion of the averaging method is presented in [107] and we refer to [6, 10]
for examples of the method applied to singular perturbation problems. In the context of (4.1),
the autonomous averaged equation (to leading order) for the slow motions is

dc

dtI
= δ

1

T (c)

∫ T (c)

0

h(V(ε,0)(s, c), c) ds ≡ δh(c), (4.18)

where V(ε,0)(t, c) is the V -coordinate of the MMO attractor of (4.12) with period T (c) for a
fixed c between ZH and L −. We are interested in equilibria of (4.18), where there is no net
drift in c.

Figure 4.7 shows how the averaging method can be used to approximate the MMO attrac-
tor of (4.1). In panel (a), the averaged vector field h(c) is plotted over the c-interval between
ZH and L −. We can immediately see that the averaged equation (4.18) has a single stable
equilibrium at c ≈ 0.277 µM. We then use c in the layer problem (4.12) to generate a stable
singular MMO. Panel (b) shows the bifurcation structure of (4.12) with respect to c. The
critical manifold Z is unstable over the c-interval between ZH and L −. Emanating from
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Figure 4.7. The averaging method for the parameter set given in Figure 4.6. (a) The function
h(c) plotted over the c-interval between ZH and L − shows that (4.18) has an unique stable
equilibrium. (b) Bifurcation structure of the layer problem (4.12). The maxima and minima
of the various MMO families are shown. The spiking family comes from the Hopf ZH and
the MMO families with s ≥ 1 are born nearby. (c) The singular averaged MMO attractor
(red, ΓF(ε,0)) is a good approximation of the full system trajectory Γ(ε,δ).

ZH is the unstable spiking branch (labelled 10), which terminates in homoclinic points on
the unstable branch of Z . There exist stable MMO families in the c-interval between ZH
and L −. These are computed in AUTO using c as the continuation parameter.

In Figure 4.7, the MMO family for s = 1 (green) has a small window of stability and
terminates at homoclinics. The adjacent MMO branch for s = 2 (blue) is a closed isola
of orbits. Similarly, the s = 3 branch (red) is an isola of MMOs with a stability window
adjacent to the stability window of the s = 2 branch. Further calculations show that there
are additional MMO families within the c-interval between ZH and L −. The number of
small oscillations s increases as c tends towards ZH . The singular averaged attractor, ΓF(ε,0),
is then superimposed on the bifurcation diagram in Figure 4.7. We observe that ΓF(ε,0) lies
in the stable window of the 13 MMOs and that Γ(ε,δ) is itself a 13 MMO. Moreover, since
the singular orbit ΓF(ε,0) with c = c never runs into any singularities, Fenichel theory holds
and Γ(ε,δ) is an O(δ) perturbation of the averaged singular orbit. In this way, we can use the
singular limit δ → 0 to predict the full system dynamics.

Variations in the conductances change the bifurcation structure of (4.12). By choosing
parameter sets closer to the spiking/bursting boundary (see Figure 4.3), the MMO families
are pushed to lower c values. That is, the MMO branches with large s are squeezed into
ever-decreasing neighbourhoods of ZH . The averaged singular MMO moves through these
MMO families towards the fold point L − and thus traverses the MMOs with smaller s.
Eventually, the s = 0 branch itself becomes stable and the averaged MMO trajectory lies in
the stability plateau of the spiking family.

Thus, the 3-fast/1-slow analysis can be used to explain the main dynamical behaviours
of (4.1): depolarized steady states, (dynamic and calcium-conducting) MMOs and spiking.
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In particular, the bifurcation structure of Z provides a simple test for dynamic or calcium-
conducting MMOs. A Hopf bifurcation in the layer problem explains the oscillation mech-
anism of dynamic MMOs. For calcium-conducting MMOs however, the singular analysis
does not provide any clear oscillation mechanism.

4.5. The Three Timescale Problem

So far we have taken two different approaches to the analysis of the 3-timescale prob-
lem (4.1). In the 1-fast/3-slow approach, the MMOs were due to canards. Canard theory
provided a strong theoretical framework to explain the delay phenomena but had no way of
distinguishing between dynamic and calcium-conducting MMOs. In the 3-fast/1-slow ap-
proach, we had a simple criterion to differentiate the MMO types based on the geometric
configuration of Z but we did not have a clear oscillation mechanism. In each case, we
alluded to the presence of the third timescale (but made no use of it). In this section, we
finally acknowledge the 3-timescale structure of (4.1) and perform a geometric singular per-
turbation analysis (1-fast/2-intermediate/1-slow path of Figure 4.1). Analyses of 3-timescale
problems are currently rare [67, 74, 75, 125] and a rigorous theoretical framework has yet
to be developed. Regardless, we demonstrate that our approach is effective for dealing with
3-timescale problems. In particular, we show that the 3-timescale analysis combines the in-
formation from 2-timescale methodologies, affording us greater predictive power than any
of the 2-timescale approaches.

4.5.1. Geometric Singular Perturbation Analysis. Recall that the lactotroph model
(4.1) is a 3-timescale problem with fast variable V , intermediate variables (n, e) and slow
variable c. We have observed in the transient evolution of (4.1) that the fastest timescale
initially dominates the evolution. The slower timescales come into effect when the trajectory
enters some special neighbourhood of phase space (either S or Z). With this in mind, we
proceed to define the singular subsystems of the 3-timescale problem in the order in which
we expect to encounter them.

The double limit (ε, δ) → (0, 0) on the fast timescale gives the fast subsystem, which
is the approximation of (4.1) in which the intermediate and slow variables (n, e, c) move so
slowly (compared to V ) that they are fixed. The fast subsystem is precisely the layer problem
(4.4) of the 1-fast/3-slow approach. The double limit on the intermediate timescale tI gives
the 2D intermediate subsystem:

0 = f(V, n, e, c),

dn

dtI
= g1(V, n),

de

dtI
= g2(V, e),

dc

dtI
= 0,

(4.19)

an approximation of (4.1) in which V is sufficiently rapid that it immediately responds to
changes in state and c is sufficiently slow that it has no motion. Note that (4.19) is the δ → 0
limit of the 3D reduced problem (4.5) of the 1-fast/3-slow splitting. It is also the ε→ 0 limit
of the 3D layer problem (4.12) of the 3-fast/1-slow decomposition. Thus, we can interpret the
intermediate subsystem (4.19) as the interaction between the 1-fast/3-slow and 3-fast/1-slow
analyses. What that means, as we will show, is that all the geometric structures encountered
previously persist in the double limit.
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We inherit the 3D critical manifold S (and its 2D fold surface L), which serves as a
manifold of equilibria of the fast subsystem and as the phase space of (4.19). Projection and
desingularization of (4.19) give a complete description of the nontrivial flow on S:

dV

dsI
= F0(V, n, e, c) ≡ fn g1 + fe g2,

de

dsI
= −fV g2(V, e),

dc

dsI
= 0,

(4.20)

where n is determined by (4.6). The desingularized system (4.20) inherits the curve of folded
singularities M0, where M0 is simply the δ → 0 limit of Mδ:

M0 := {(V, n, e, c) ∈ L : F0(V, n, e, c) = 0} . (4.21)

The ordinary singularities E of (4.9) do not persist as singularities of (4.20). The δ → 0
limit frees system (4.20) from the requirement that h = 0 for an ordinary singularity. Thus,
the δ → 0 analogue of the ordinary singularities for (4.20) is in fact the critical manifold Z
of the 3-fast/1-slow splitting.

Remark 4.8. The persistence of the curve of folded singularities in the desingularized sys-
tem (4.20) gives us access to canard theory, which provides an oscillation mechanism for the
MMOs. Moreover, the presence of the critical manifold Z in (4.20) provides the geometric
information needed to distinguish between dynamic and calcium-conducting MMOs.

The critical manifold Z forms a 1D subset of the critical manifold S. As such, we expect
bifurcations of (4.20) at bifurcations of (4.4), i.e. at the fold surface L. This can be easily
verified by computing the determinant of the Jacobian of (4.20) evaluated along Z:

det

(
∂V (F0) ∂e(F0)

∂V (−fV g2) ∂e(−fV g2)

)∣∣∣∣
Z

= −fV fn g1V g2e.

In particular, along the fold surface L, system (4.20) possesses a zero eigenvalue. Thus, the
attracting branch Za of Z is the subset of Z embedded in Sa along which the eigenvalues
have negative real part. The repelling branch Zr of Z is the subset of Z (embedded in either
Sa or Sr) along which at least one eigenvalue has positive real part.

Remark 4.9. In principle, we should also consider Hopf bifurcations along Z . Numerical
studies show that Hopf bifurcations of (4.20) usually occur on the repelling branch Zr.

The curve of folded singularitiesM0 consists of folded nodes, saddles and foci. The FSN
points can be located by examining the Jacobian determinant of (4.20) evaluated along M0:

det

(
∂V (F0) ∂e(F0)

∂V (−fV g2) ∂e(−fV g2)

)∣∣∣∣
M0

= g2 (F0efV V − F0V fV e) .

There are two ways in which a FSN I may occur: either F0efV V − F0V fV e = 0 or g2 = 0.
The first case corresponds to actual folds in the curve M0. In the case g2 = 0, the condition
F0 = 0 simplifies to g1 = 0 and thus the corresponding FSN I points are defined by

M I
0 := M0 ∩ Z = {(V, n, e, c) ∈ Z : fV (V, n, e, c) = 0} . (4.22)

Geometrically, the setM I
0 has two interpretations. First, the FSN I pointsM I

0 represent direct
interactions between geometric structures of the 1-fast/3-slow (M0) and 3-fast/1-slow (Z)
analyses, respectively. Second, the FSN I points M I

0 correspond to crossings of the critical
manifold Z over the fold surface L.
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Remark 4.10. The geometric meaning of (4.11) is now clear. The curve defined by

Zδ := {(V, n, e, c) ∈ S : g1 = δG1, g2 = δG2}
is an O(δ) perturbation of the critical manifold Z .

We note that the points of M I
0 are the ε → 0 limit of the Hopf bifurcation points ZH ,

defined by (4.16), encountered in the 3-fast/1-slow layer problem. Moreover, M I
0 is the

δ → 0 counterpart of the FSN I points M I
δ, defined by (4.11), in the 1-fast/3-slow splitting

(cf. [125]). We further note that, as far as (4.20) is concerned, the FSN II points (4.10) are
codimension-2 bifurcations (in fact, they are special cases of FSN I points M I

0).
The slow subsystem approximation of (4.1) assumes that (V, n, e) are so rapid when

compared with c that they immediately settle down to their steady state under changes in c.
The slow subsystem is obtained from the double limit (ε, δ) → (0, 0) of the slow system
(4.3) and is identical to (4.13). As before, Z is both the manifold of equilibria of (4.20) and
the phase space of the slow subsystem, and the fold points L are points where the slow flow
(4.13) (but not the intermediate flow (4.19)) is singular. The only equilibria of (4.13) are the
true equilibria E of (4.1).

4.5.2. Transients and the Depolarized Steady State. As before, we use our geometric
singular perturbation analysis to unravel the dynamics of (4.1). We now write Γx(0,0), x ∈
{F, I, S} to denote solutions of the fast, intermediate and slow subsystems (4.4), (4.19) and
(4.13), respectively. Our singular orbits take the form

ΓF(0,0) ∪ ΓI(0,0) ∪ ΓS(0,0).

As usual, solutions of the fully perturbed problem are denoted by Γ(ε,δ).
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Figure 4.8. Singular orbit construction for a stable equilibrium projected into (a) (V, c) and
(b) (V, e). The parameters are gK = 5 nS, gBK = 3 nS and gA = 10 nS (cf. Figures 4.4 and
4.5, panels (a) and (b)). The solution Γ(ε,δ) of (4.1) with Cm = 2 pF and fc = 0.01 (black
curve) is approximated by solutions of the fast (red, ΓF(0,0)), intermediate (green, ΓI(0,0)) and
slow (blue, ΓS(0,0)) subsystems.

Figure 4.8 shows the singular orbit construction in the case when system (4.1) has a stable
depolarized steady state. We first identify the main objects from our geometric singular
perturbation analysis: the critical manifold Z intersects the curve of folded singularities M0

at the FSN I point M I
0. This marks the switch from an attracting branch to a repelling branch

(of both S and Z). Both Z and M0 are folded. The fold point L in Z (not labelled) at
c ≈ 0.355 µM occurs when an eigenvalue changes sign, so that there is a saddle on one
side and an unstable node on the other. The fold in M0 (also not labelled) at c ≈ 0.421 µM
is another FSN I point. The intersection of Z with the c-nullcline corresponds to a true
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equilibrium E of (4.1). In Figure 4.8, E lies on the attracting sheets Sa and Za and so is a
stable equilibrium of the full system for sufficiently small perturbations.

We now explain the transient evolution to the attractor starting from arbitrary initial con-
ditions. Since an initial condition is (generically) off the critical manifold S, the fast dynam-
ics (4.4) dominate and there is a rapid evolution ΓF(0,0) to an attracting branch of S (red, 3
arrows). This is succeeded by an intermediate decay ΓI(0,0) (green, 2 arrows) towards Z . For
the example illustrated in Figure 4.8, the intermediate flow ΓI(0,0) explains the overshoot pre-
viously seen in Figure 4.5(a). Once the trajectory is on Z , the slow flow description (4.13)
takes over and the slow drift ΓS(0,0) either brings the orbit to the depolarized equilibrium E

(blue, 1 arrow) or to the lower fold point L −, depending on initial conditions. In the case
of the fold point, the intermediate and fast subsystems describe the return of the trajectory to
the upper attracting branch of Z where the slow flow once again brings the trajectory to E.

Remark 4.11. Even though the fold point L − is embedded in the critical manifold S, the
results from classic studies of fold points hold [88, 120, 131, 143]. This can be shown
formally by computing a normal form for L −. The main result in the context of our 4D
3-timescale problem is that there is a 2D slow/intermediate subsystem that is precisely the
classic fold problem and the remaining intermediate and fast directions are hyperbolic.

Since the singular orbit in Figure 4.8 does not involve any bifurcations of the fast, in-
termediate or slow subsystems, the full system trajectory is an O(ε, δ) perturbation of the
singular attractor. Bearing in mind the results of Sections 4.3.2 and 4.4.2, we can actually
make more precise asymptotic statements. At the interface where ΓF(0,0) and ΓI(0,0) meet,
the fast timescale switches to the intermediate timescale and the dominant perturbation pa-
rameter is ε. This ε-dominance manifests as a non-uniform sensitivity of the trajectories to
perturbations in ε and δ in a neighbourhood of the timescale switch. That is, small changes
in δ have virtually no effect on Γ(ε,δ) near the fast-intermediate timescale transition whilst
small changes in ε quickly move Γ(ε,δ) away from the singular limit prediction. Similarly,
the intermediate-slow timescale switch (where ΓI(0,0) and ΓS(0,0) meet) is dominated by δ.
Small changes in ε have very minor impact on Γ(ε,δ) near the intermediate-slow transition
whereas small changes in δ cause more substantial deviations.

4.5.3. Bursting With Dynamic Calcium. Recall from Sections 4.3 and 4.4 that the
transition from stable depolarized steady states, E, to MMOs occurred when the equilibrium
crossed from a stable branch of the critical manifold to an unstable one. The transition either
occurred via a FSN II (1-fast/3-slow case) or via a Hopf bifurcation ZH (3-fast/1-slow case).
In the double limit, ZH moves to the fold surface L, becoming a FSN I M I

0 in the process.
Thus, when E crosses from Sa to Sr, it also crosses from Za to Zr at the same time. Hence,
the switch from depolarized steady states to MMOs still occurs via a FSN II.

As we saw in Section 4.5.2, any transient flow towards Z can be explained using the fast
and intermediate subsystems. We now focus on the singular MMO attractor and examine
its key features (Figure 4.9). The singular MMO consists of seven distinct orbit segments.
Starting at L −, the intermediate flow (4.19) brings the trajectory to the fold surface L. From
there, the fast fibers project the trajectory onto a different attracting manifold Sa. The in-
termediate timescale then dominates and the trajectory is brought into Za (along the weak
eigendirection of a node of Z). The trajectory then travels along Za according to (4.13) until
it hits the FSN I point M I

0. From M I
0, the trajectory jumps off Sa to an alternate attract-

ing branch of S. Yet another intermediate flow returns the orbit to Z (again, via the weak
eigendirection of a node of Z). The slow subsystem then describes the motion of the tra-
jectory until it returns to L −, thus completing the singular MMO attractor. The full system
attractor, Γ(ε,δ), is a perturbation of this singular orbit.
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Figure 4.9. Singular orbit construction for a dynamic MMO with gK = 3 nS, gBK = 0.4 nS
and gA = 8 nS (cf. Figures 4.4 and 4.5, panels (c) and (d)). A solution Γ(ε,δ) (black) of (4.1)
for Cm = 0.2 pF and fc = 0.001 is shown along with the singularities Z and M0 of (4.20).
There are three FSN I points (only one of which is labelled M I

0). The singular MMO is a
concatenation of seven distinct orbit segments.

Within our singular MMO attractor, there are 3 special regions where normal hyperbol-
icity breaks down. The first is the fold point L −, which exhibits classic fold behaviour [71].
This is where the trajectory transitions from the slow timescale to the intermediate timescale
and δ is the important perturbation parameter. Trajectories Γ(ε,δ) are O(δ2/3) perturbations
of the singular orbit in a neighbourhood of L −. The second non-hyperbolic region encoun-
tered is the fold surface L, where the intermediate-fast timescale switch occurs and ε is the
important perturbation parameter. Trajectories typically exhibit classic fold behaviour near
L (Theorem 2.7) [120]. In our case however, the fast up-jump is close to a cusp (see Section
4.3.2) and Γ(ε,δ) deviates significantly from the singular orbit in this region. The third non-
hyperbolic region is the FSN I point M I

0, which is new and specific to 3-timescale problems.
The small oscillations of the MMO occur in a neighbourhood of M I

0. Naïvely, we expect the
oscillation mechanism to be related to folded singularities. This is only partly true. We defer
detailed discussion of how the FSN I point M I

0 unfolds to Section 4.6.
As is clear from Figure 4.9, the limiting subsystems are an excellent approximation of

the fully perturbed problem. Away from the singularities L −, L and M I
0, the full system tra-

jectory Γ(ε,δ) is O(ε) close by to ΓF(0,0) ∪ ΓI(0,0). As in Section 4.5.2, the perturbative effects
of ε and δ are non-uniform and δ has very weak influence on the shape of trajectories around
the fast-intermediate timescale transition. Similarly, Γ(ε,δ) is O(δ) close by to ΓI(0,0) ∪ ΓS(0,0)

and ε has virtually no effect on the shape of orbits around the intermediate-slow timescale
transition. The singular dynamic MMO attractor is an hysteresis cycle that alternates be-
tween stable branches of Z (and S). The benefit of the 3-timescale splitting is that we have
access to additional information about the shape of the trajectory that we did not have in
the 2-timescale splittings. On the other hand, the 3-timescale decomposition retains the de-
generacies of the 1-fast/3-slow and 3-fast/1-slow methodologies, making the singular orbit
construction more difficult.

4.5.4. Calcium-Conducting Bursts. The geometric configuration of Z is an important
factor in determining the type of MMO attractor. As we saw in Section 4.4.3, parameter
variations alter the structure of Z and when bistability of Z no longer holds, the MMO
attractor changes dramatically. To reiterate the main points of Section 4.4.3, there was a torus
of stable singular MMOs between the fold point L − and the Hopf point ZH . The unique
attractor was situated somewhere between these two points. The method of averaging was
identified as the appropriate analytic tool to locate the MMO attractor.
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Figure 4.10. Singular orbit construction via averaging for a calcium-conducting MMO. The
parameters are gK = 5 nS, gBK = 0.4 nS and gA = 8 nS (cf. Figures 4.4(e)–(f) and 4.7(b)–
(c)) with Cm = 0.2 pF and fc = 0.001 for the full system trajectory. The oscillation region
is bordered by the fold point L − and the FSN I point M I

0.

These properties persist in the double limit (ε, δ) → (0, 0) with the Hopf bifurcation
ZH replaced by the FSN I point M I

0 (Figure 4.10). The net effect of the averaging process
is to remove the slowest variable so that the remaining (V, n, e) subsystem is a classic 2-
timescale problem. We immediately inherit the results established in Chapter 3. Namely, the
singular orbit ΓF(0,0) ∪ ΓI(0,0) satisfies the criteria for a canard-induced MMO: the presence
of a folded node and a global re-injection mechanism that resets the system dynamics after
passage through the canard point [14]. The small oscillations in the calcium-conducting
MMOs can then be explained by examining the geometry of the (V, n, e) subsystem away
from the singular limit ε = 0 (Section 3.3.3). We illustrate this in Figure 4.11 by showing
how the attracting and repelling manifolds Sa and Sr unfold for nonzero ε.

Remark 4.12. In comparing Figures 4.10(a) and 4.7(b), it is clear that the averaged singular
MMO undergoes a leftward shift as ε → 0. Note in (4.18) that the averaging takes the ε
dependence into consideration. As a result, the averaged orbit computed in Section 4.4.3
fully accounts for the slow passage effects induced by the canard dynamics in the active
phase. As ε → 0 however, the small oscillations near the folded node disappear (recall the
O(ε1/2) dependence) and the time spent in the active phase is underestimated. Consequently,
as ε→ 0 the silent phase has greater contribution than the active phase to the averaged orbit
and the singular MMO shifts to lower c values.

Recall from Section 4.4.3 that the transient evolution to the calcium-conducting MMO
attractor exhibited a wide variety of bursts. The 3-timescale decomposition allows for a
complete explanation of the transient behaviour using canard theory. For the parameter set in
Figure 4.10, the eigenvalue ratio of the folded node of the attractor is µ ≈ 0.041 and smax =
12. At the FSN I point M I

0, µ = 0. As c increases, µ increases until it eventually reaches
µ = 1 (beyond L −), where the folded nodes of M0 become folded foci. Transients of (4.1)
that pass through a neighbourhood of M I

0 undergo a large number of small oscillations. As
the trajectory slowly drifts towards the attractor, it encounters a different folded node (with
larger µ) every time it returns to M0. Thus, smax gradually decreases until the attractor is
reached (see Figure 4.6(a)). A similar argument shows that there is a monotonic increase in
smax for those transients of (4.1) that approach the attractor via L −.

Remark 4.13. An understanding of the transient evolution allows us to predict how our
model system responds to external stimuli such as a calcium pulse. We contend that this can
be experimentally significant since the transient evolution can distinguish between the two
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Figure 4.11. Unfolding of the slow attracting (blue) and repelling (red) manifolds for fixed
c = c, calculated up to a section passing through the folded node. The insets show the inter-
section of the manifolds with a hyperplane through the folded node. The maximal canards
correspond to the intersections of the attracting and repelling surfaces. Parameter values are
as in Figure 4.10 with (a)Cm = 0 pF, (b)Cm = 0.1 pF, (c)Cm = 0.5 pF and (d)Cm = 1 pF.

MMO types. Transients featuring pseudo-plateau bursts with a wide variety of small oscil-
lations are associated with calcium-conducting MMOs. Meanwhile, transients that simply
decay to a slow flow along Z are characteristic features of dynamic MMOs.

Thus, the 3-timescale decomposition provides the geometric information necessary to
identify calcium-conducting MMOs and the theoretical framework (canard theory) to explain
their oscillatory behaviour. We observe that when there is no bistability, the singular MMO
construction only consists of intermediate and fast orbit segments. In other words, since we
can average out the c-dynamics, we are effectively down to a 2-timescale problem.

4.5.5. Spiking Orbits. Spiking behaviour always falls (for sufficiently small ε) into pa-
rameter regimes where there is no bistability of Z and we are able to discard a slow direction
(via averaging). Consequently, we again deal with a family of 2-timescale problems with
parameter c. To determine the difference between spiking and bursting, we first note that the
curve of folded singularities M0 possesses degenerate folded nodes (DFNs), where folded
nodes turn into folded foci. Obviously, if the averaged singular attractor is fixed at a c value
such that M0 has a folded focus, then the corresponding full system trajectory will be a spik-
ing pattern. If the averaged singular attractor has c value such that M0 has a folded node,
there is no guarantee that the singular orbit will converge to that folded node. Trajectories
that land inside the funnel of the folded node inevitably pass through the folded node. Trajec-
tories that land outside the funnel encounter the fold surface L at a jump point instead. The
beauty of the double limit (ε, δ) → (0, 0) is that the funnel region (and the spiking/bursting
criterion) can be visualized (Figure 4.12).

In Figure 4.12(a), the averaged singular orbit has c ≈ 0.2245 µM and the associated
folded singularity has complex eigenvalues. The corresponding singular attractor ΓF(0,0) ∪
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Figure 4.12. The difference between spiking and bursting for gBK = 0.4 nS, gA = 4 nS and
(a) gK = 9 nS and (b) gK = 7 nS. Panels (a) and (b) are projections into the (V, e) plane. For
fixed c, the fold surface L is a curve (blue). Its projection P (L) (red) onto different branches
of S is shown to indicate where fast orbit segments land. In (a), the singular attractor hits
the folds at regular jump points and the full system orbit (for Cm = 2 pF and fc = 0.001)
is a relaxation oscillation (panel (c)). In (b), the singular attractor is inside the funnel of the
folded node and the full system trajectory is a 11 MMO (panel (d)).

ΓI(0,0) with c = c is a relaxation oscillator. For the example in Figure 4.12(a), the singular
orbit does not actually hit the upper fold at the folded focus but at a regular jump point. The
associated time trace of (4.1) shown in Figure 4.12(c) is a spiking pattern, as expected. In
Figure 4.12(b), the singular attractor has c ≈ 0.2467 µM and M0 possesses a folded node
with eigenvalue ratio µ ≈ 0.555 (and smax = 1). In this case, the fast up-jump projects
the singular orbit into the funnel region of the folded node. That is, we have a folded
node and a global re-injection mechanism (fast depolarization) that returns trajectories to
the funnel region. The associated full system trajectory is a MMO with 1 small oscillation
(Figure 4.12(d)) in accordance with the theoretical prediction.

4.5.6. Bifurcation Diagrams. We have shown that the 3-timescale splitting can be used
as an effective predictor to explain both the transient dynamics and attractors of (4.1). Our
central concern is in identifying the various mechanisms that cause the observed dynamical
behaviours (particularly the bursting). We do this by constructing singular 2-parameter dia-
grams (shown in Figures 4.3(a), (c) and (e)). The singular 2-parameter diagrams are divided
into three regions, reflecting the different attractors. The sector marked ‘Dep’ represents the
subset of parameter space where the depolarized steady state is the attractor. The ‘Delayed
Hopf’ region corresponds to the dynamic MMOs. The ‘calcium-conducting’ region corre-
sponds to the MMOs where averaging can be used to fix the calcium concentration. The
singular spiking orbits lie in the spiking region.

The boundary between the equilibrium state and the singular MMO state is the set of
FSN II points ESHB, where the equilibrium crosses from an attracting manifold Sa (and Za)
to a repelling manifold Sr (and Zr). The division between dynamic and calcium-conducting
MMOs is related to the geometric structure of Z . When the stable branches of Z overlap
(denoted ‘Delayed Hopf’ in Figure 4.3), the singular MMO attractor is an hysteresis cycle.
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The small oscillations occur in a neighbourhood ofM I
0 but the precise oscillation mechanism

is unknown. When the stable branches of Z are separated (labelled ‘calcium-conducting’),
the calcium variable can be fixed and the small oscillations are associated with folded node
canards. The degeneracy where the c-coordinate of L − and M I

0 coincide (labelled ‘Bista-
bility’) approximates the boundary between dynamic and calcium-conducting MMOs.

To complete our singular 2-parameter diagrams, we must locate the border between the
calcium-conducting MMOs and spiking orbits. The singular spiking attractor can be associ-
ated with either a folded focus or a folded node. In the case of a folded node, the singular
orbit lands outside the funnel of the folded node. Thus, there are two parts to the border
between the singular spiking and MMO orbits. One part of the spiking/MMO boundary con-
sists of the set of singular orbits that jump at a DFN. The other segment of the spiking/MMO
boundary is the set of singular orbits that land on the strong canard of a folded node. Fig-
ure 4.3 clearly demonstrates that our singular subsystems provide a good first approximation
to the dynamics of the fully perturbed problem for sufficiently small (ε, δ).

By using the multiple timescale structure of (4.1) to our advantage, we can explain the
dynamics of (4.1). Canard theory in the 1-fast/3-slow approach provides the theoretical
basis for the oscillation mechanism. Geometric considerations in the 3-fast/1-slow approach
generate a criterion to identify the MMO type. The 3-timescale splitting then gives the best
of both worlds and allows the construction of diagrams such as Figure 4.3, which elucidate
the cause of the observed attractors of (4.1). However, there are setbacks to the 3-timescale
approach. The most obvious is that the dynamic MMOs jump at the FSN I point M I

0, which
is a doubly degenerate point where M I

δ and ZH merge. The rest of the chapter is concerned
with unravelling the oscillation mechanism of dynamic MMOs.

4.6. The Oscillation Mechanism

We have seen that the complex oscillatory waveforms in (4.1) manifest as MMOs of dy-
namic or calcium-conducting type. In the calcium-conducting case, the small oscillations
in the bursts were unequivocally identified as canards. In the dynamic MMO case, the pre-
cise oscillation mechanism depends on the chosen geometric viewpoint. The 1-fast/3-slow
formulation suggests that the small oscillations are due to canards, whilst the 3-fast/1-slow
viewpoint insists that the oscillations are due to a slow passage through a dynamic Hopf bi-
furcation. In this section we examine the oscillation mechanism for dynamic MMOs more
carefully and reconcile the seeming discrepancy.

4.6.1. Perturbations of the FSN I PointM I
0. In Section 4.5 we showed that when bista-

bility of the critical manifold Z holds, the resulting oscillatory behaviour of (4.1) can be
attributed to the FSN I point M I

0. In Section 4.3 we found that the oscillations were asso-
ciated with folded node singularities with µ ≈ 0. More specifically, there was always a
FSN I M I

δ that was O(δ) close by. In Section 4.4, the oscillatory behaviour emerged from
neighbourhoods of a Hopf bifurcation ZH that was O(ε) close to the fold surface L.

Proposition 4.1. The FSN I point M I
δ of the 1-fast/3-slow decomposition and the Hopf bi-

furcation ZH of the 3-fast/1-slow decomposition are different unfoldings of the FSN I point
M I

0 of the 3-timescale decomposition.

Proof. Suppose we have a 2-timescale slow/fast system with k slow and m fast variables
that has a locally folded m-dimensional critical manifold S with an (m − 1)-dimensional
manifold of fold points. Suppose further that S possesses an (m − 2)-dimensional set of
generic folded singularities and that the (m − 1) nonzero eigenvalues of S along the fold
have negative real part. Then, by Theorem 3.1 of [143], there exists (after center manifold
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reduction) a smooth change of coordinates that transforms the slow/fast system to

ε ẋ = y1(1 + xO(y2, z)) + x2(1 +O(x, y1)) + εO(x, y1, y2, ε),

ẏ1 = B2(z)y2 + C(z)x+O(y1, x
2, y2

2, xy2) + εO(x, y1, y2, z),

ẏ2 = A2(z) + β2y2 +O(x, y1, ε),

ż = A3(z) +O(x, y1, y2, ε),

(4.23)

where

Aj(z) = aj + gj,1(z), B2(z) = b2 + g1,1(z), C(z) = c+ g1,2(z),

with gi,j(0) = 0 and computable constants a2, a3, b2, c, β2, which are generically nonzero.
Using (4.23), we wish to compute a canonical form for a FSN I point M I

0. Without loss
of generality, we assume the curves Z and M0 cross at the origin (i.e. M I

0 is at the origin).
This requires a2 = 0 and a3 = 0. We also assume that the folded singularities change from
folded nodes (with two negative real eigenvalues) to folded saddles at the FSN I point. A
sufficient condition for this is C(z) < 0 in a neighbourhood of the origin.

The critical manifold Z is given parametrically by

Z =

{
x =

A2(z)B2(z)

β2C(z)
, y1 = −A

2
2(z)B2

2(z)

β2
2C

2(z)
, y2 = −A2(z)

β2

}
and the curve of folded singularities is defined by

M = {x = 0, y1 = 0, y2 = 0} .

A Hopf bifurcation of the (x, y1, y2) subsystem is given by the condition

A2(z)B2(z)
(
2A2(z)B2(z)− C2(z) + ε β2

2C(z)
)

= 0,

together with

C(z)
(
2A2(z)B2(z)− C2(z)

)
> 0.

The nonzero eigenvalues of the desingularized system of (4.23) with a2 = 0, a3 = 0 are

2λ = C(z)±
√
C2(z)− 8A2(z)B2(z).

We thus have both a Hopf bifurcation of the (x, y1, y2) subsystem and a FSN of the desingu-
larized system as we pass through M I

0 (i.e. as A2(z)→ 0). �

It is beyond our scope to analyze how trajectories perturb in both ε and δ. We conjecture
that if δ is sufficiently small, then the small oscillations of the MMO inherit their rotational
properties from the dynamic Hopf bifurcation. Alternatively, if δ is sufficiently large, the
rotational properties of trajectories are manifestations of the properties of the canards.

Figure 4.13 shows the effect of ‘small’ and ‘large’ δ on trajectories Γ(ε,δ) of (4.1). In panel
(a), δ is small enough that the 3-fast/1-slow splitting is valid. The slow drift in c moves Γ(ε,δ)

through the Hopf bifurcation and we see behaviour typical of a delayed Hopf. By increasing
δ, we eventually cross a secondary bifurcation and the nature of the orbit changes. Panel
(b) shows Γ(ε,δ) after the secondary bifurcation has been crossed. The trajectory no longer
closely follows Z and undergoes its small oscillations in a neighbourhood of Mδ (about a
folded node). Thus, by increasing δ, we have moved from a parameter regime where the 3-
fast/1-slow splitting is favoured to a regime where the 1-fast/3-slow splitting is appropriate.
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Figure 4.13. Oscillatory behaviour associated with the FSN I M I
0 for various δ. The pa-

rameters are gK = 3 nS, gBK = 0.4 nS, gA = 8 nS, Cm = 0.2 pF and (a) fc = 0.01 and
(b) fc = 0.03. The singularities Z and M0 (red, solid) of (4.20) are shown along with the
folded singularities Mδ (red, dashed) of (4.9). (a) When δ is small, the trajectories exhibit
properties of the Hopf. (b) When δ is large, the trajectories no longer stick to Z and the small
oscillations arise from canards.

4.6.2. Delayed Hopf Bifurcation and Tourbillon. There exists a subset of parameter
space such that the dynamic MMOs exhibit oscillations above an observable threshold. Such
dynamic MMOs are called tourbillon [27]. The burst patterns associated with a tourbillon are
qualitatively different from those arising from delayed Hopf or folded node mechanisms (see
Figure 4.14). Despite this, a tourbillon is actually just a different manifestation of a dynamic
Hopf bifurcation. Recall that MMOs approaching the Hopf ZH from an O(1) distance be-
come exponentially close to Z(ε,0) and so display virtually no small oscillations. In the case
of a tourbillon, the trajectory approaches the dynamic Hopf bifurcation from a much closer
distance. In that case, the real part of the eigenvalues is small and the attraction to Z(ε,0) is
weak. As a result, the trajectory does not have sufficient time to be exponentially attracted
and the oscillations are visible throughout. The speed at which the trajectory traverses the
dynamic Hopf region is governed by the slowest timescale. As δ increases, the time spent
near the Hopf decreases and hence, the number of observed oscillations decreases.

Figure 4.14 illustrates the difference between the two types of trajectories that pass by a
dynamic Hopf bifurcation. Panel (a) depicts a geometric configuration in which L − and M I

0

are well separated. This means that the full system bursting attractor shows virtually none
of its small oscillations. The only observable small oscillation is at the end of the oscillatory
regime when the trajectory jumps off the slow manifold. Figure 4.14(b) shows that when
L − and M I

0 are not well separated, the hysteresis loop narrows in width when viewed in
the (V, c) projection. This means trajectories return sufficiently close to the Hopf that the
rotations occur before the the trajectory can be exponentially attracted to the slow manifold.
The amplitude of the small oscillations in a tourbillon initially decreases and eventually
increases before the trajectory jumps away. This is because the real part of the eigenvalues
is initially negative and increases through zero to positive values.

It becomes clear that when the parameters are chosen such that bistability holds and
the fold point L − and the FSN I point M I

0 are weakly separated, the resulting full system
trajectory will (in principle) be a tourbillon. However, for fixed ε, the difference between a
tourbillon and a delayed Hopf MMO is not always clear. There is no predefined distance that
can be used to differentiate between the two types of dynamic Hopf phenomena.
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Figure 4.14. The two types of dynamic Hopf bifurcation for gBK = 0.4 nS, gA = 4 nS:
(a) delayed Hopf bifurcation (gK = 2 nS) and (b) tourbillon (gK = 4 nS). Full system
trajectories (black) have Cm = 2 pF and fc = 0.001.

4.7. Discussion

MMOs are complex oscillatory waveforms characterized by an alternation between large
and small amplitude oscillatory motion. Often appearing in the time course evolution of
neural bursting models, MMOs have become a new metric in neuroscience [38]. As a re-
sult, a thorough understanding of the structure of MMOs and their mechanisms has become
a significant interdisciplinary endeavour. An important aspect of MMOs is the multiscale
structure of their governing equations, making them amenable to singular perturbation meth-
ods. One particular singular perturbation technique that has been used with great success
is GSPT. Using this geometric approach, we have examined the transient and long-term dy-
namics of a 3-timescale neuroendocrine cell model (4.1). Our results show that the early
investigations of (4.1) produced limited, non-overlapping views of the mixed mode dynam-
ics in the pituitary cell model.

The dynamics of pseudo-plateau bursting have been of interest to both the cell mod-
elling community and to those interested in MMOs in multiscale systems. Historically, the
analysis of bursting in slow/fast systems was pioneered by [98] and several treatments of
pseudo-plateau bursting followed suit [94, 95, 116, 129]. In this traditional 3-fast/1-slow
approach, the small oscillations are born from a slow passage through a dynamic Hopf bi-
furcation [91, 92, 3] and the MMOs are hysteresis loops that alternately jump at a fold and a
subcritical Hopf (fold/subHopf bursts) [99, 65]. We extended the standard slow/fast analysis
and computed the additional MMO families that bifurcate from the unstable spiking branch
(Figure 4.7). This classic slow/fast analysis is particularly effective for dynamic MMOs and
for detecting the switch from dynamic to calcium-conducting MMOs. Away from singu-
larities of the slow and ‘fast’ subsystems, Fenichel theory guarantees that the singular and
non-singular orbits are O(δ) close to each other.

An alternative and more recent take on pseudo-plateau bursting complements the classic
approach. In the 1-fast/3-slow analysis, a folded critical manifold and canard orbits shape the
dynamics. This novel slow/fast analysis is particularly effective in explaining the oscillatory
behaviour of calcium-conducting MMOs. We showed that other geometric features such
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as a curve of cusp bifurcations could influence the resetting behaviour of MMOs via fast
depolarization at a fold or via circumnavigation of the cusps. The full system trajectories
were O(ε) perturbations of the singular limit predictions in normally hyperbolic regions
[41, 68]. In a neighbourhood of the fold surface L or a folded node, the asymptotic error
estimates were O(ε2/3) [71, 120] and O(ε1/2) [14, 140], respectively. Our work also adds to
the currently scarce supply of examples of canard-induced MMOs in systems with more than
2 slow variables [58, 59]. In both the 3-fast/1-slow and 1-fast/3-slow analyses, the underlying
geometry influences the bursting through a combination of local and global mechanisms.
These two slow/fast analyses of (4.1) stem from the inherent 3-timescale structure.

The core focus of this chapter has been the comparison of the relative strengths and weak-
nesses of these two complementary geometric methods in the context of the 3-timescale
singular perturbation problem (4.1). When dealing with such problems, there are always
questions of which analysis is appropriate and how the different methods are related [125].
In this chapter, we have directly addressed how the classic and novel 2-timescale methods
are related in the context of system (4.1). To be precise, they are different unfoldings of the
more degenerate 3-timescale decomposition. As to the question of which method is most
appropriate, we assert that the 3-timescale decomposition provides the best results asymp-
totically, independent of the model, as it inherits all of the geometric information contained
in the different 2-timescale analyses. As a result, the 3-timescale decomposition provides us
with a remarkable degree of control and predictive power.

To the authors’ knowledge, there has been little work done on 3-timescale problems
[67, 74, 75]. In this chapter, we concentrated on 3-timescale problems of the form (1.5), in
which there is an obvious ordering of the timescales, i.e.

δ � 1� 1

ε
.

In particular, we analyzed a 3-timescale pituitary lactotroph model using geometric singular
perturbation analysis techniques. We have demonstrated the potency of such an approach
and formulated our analysis in a general way that easily carries over to other 3-timescale
problems. Our analysis showed that, for the most part, each transition of a trajectory could
be explained locally by the interaction of 2-timescales only. However, we have also shown
that there is a need for the development of a comprehensive theoretical framework for 3-
timescale systems. In the 3-timescale formulation, we encountered degeneracies not yet
seen before in the form of the FSN I points M I

0, which represent the interaction of objects
from the 3-fast/1-slow theory (the critical manifold Z) with objects from the 1-fast/3-slow
theory (the folded singularities M0). The unfolding of M I

0 is particularly important because
it is new and it marks regions in phase space where all three timescales interact. Moreover,
there are elements of the 2-timescale theory that require deeper analysis. For instance, the
unfolding of FSN I singularities has yet to be done: a problem we address in the next chapter.
In any case, we have shown that there is great benefit in combining GSPT with bifurcation
analysis. The moral of the story then, is that it never hurts to look at a problem from multiple
points of view.



CHAPTER 5

Canards of Folded Saddle-Node Type I

Folded node canards, folded saddle canards, and their bifurcations have been studied
extensively in R3. The folded saddle-node of type I (FSN I) is the codimension-1 bifur-
cation that gives rise to folded nodes and folded saddles and has been observed in various
applications, such as the forced Van der Pol oscillator and in models of neural excitability.
Their dynamics however, are not completely understood. In this chapter, we analyze the lo-
cal dynamics near a FSN I by combining methods from GSPT (blow-up), and the theory of
dynamic bifurcations (analytic continuation into the plane of complex time). We prove the
existence of canards, faux canards, and their concatenations near the FSN I. We also show
that there is a delayed loss of stability and estimate the expected delay. The contents of this
chapter are the focus of [138].

Authors’ Contributions: The analysis in this chapter was performed by TV with assistance
from MW. The results of Section 5.3.1 and the proof of Proposition 5.14 were obtained by
MW. The analysis in Section 5.3.2 was done jointly by TV and MW. The manuscript was
written by TV, and edited by TV and MW.

5.1. Motivation

Canards are special solutions of slow/fast systems that partition the flow and organize the
dynamics in phase space. They are ubiquitous in applications and have been used to explain

• the firing patterns (spiking, bursting and excitability thresholds) of electrically ex-
citable cells in neuroscience [24, 33, 39, 101, 103, 104, 135],

• the sudden change in amplitude and period of oscillatory behaviour in chemical re-
actions [85, 90, 97],

• the anomalous delays in response to exogenous pulses of inositol triphosphate in
calcium signalling [58, 59],

• the critical regimes that separate explosive and non-explosive chemical reactions in
combustion problems [44, 45, 111, 115],

• and the instability to self-sustained vibrations that can ruin metal cutting processes
such as turning, milling and drilling [17].

This is just a small sample of the many instances in which the canard phenomenon has been
applied and we refer to [15, 27] for additional examples. In Chapters 3 and 4, we found that
the bursting behaviour of (1.3) was closely related to the existence of folded singularities and
canards. In particular, the bursting/depolarized equilibrium boundary was the set of FSN II
points, and the dynamic MMOs always passed close to a FSN I point. Motivated by this, we
now carefully examine the dynamics around the FSN bifurcation.

Both types of FSN are common in applications, often leading to the onset of complex
and chaotic dynamics. FSN I singularities arise in the forced van der Pol oscillator, where
they lead to the creation of MMOs [11, 48, 57, 120]. The FSN I demarcates the regions in
parameter space where bursting occurs in neuroendocrine cell models [123]. In Chapter 4,
we identified the FSN I points as the regions in phase space where all three timescales interact
[136]. The FSN I also crops up in a hybrid Morris-Lecar/FitzHugh-Nagumo model, where it

89
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is responsible for creating firing threshold manifolds that differentiate between spiking and
quiescent behaviour [144]. We remark that the FSN I does not require a Hopf bifurcation to
create oscillatory behaviour.

The FSN II is the dynamic unfolding of the 2D singular Hopf bifurcation and explains
the rapid transition from O(

√
ε)-amplitude limit cycles to relaxation oscillations via canard

explosion in planar slow/fast systems [36, 73]. The FSN II plays an important role in the
creation of MMOs [4, 12, 51] and frequently occurs in cell models. Some examples include
the Hodgkin-Huxley model [103, 104], an entorhinal cortex layer II stellate cell model [101],
models of intracellular calcium dynamics [59], and the pituitary lactotroph model (1.3). The
occurrence of one type of FSN does not preclude the possibility of the other; both types
appear in [39, 123] where they enclose the region of parameter space where MMOs occur.

Despite their importance in applications, the dynamics near FSN singularities are not
well understood. Both FSN singularities are known to possess canards for 0 < ε � 1
[119, 139]. Recent studies have unravelled the dynamics of the FSN II [20, 51, 76] (see
Section 2.5.3). In particular, the FSN II has been studied in the µ = O(ε) regme [51], in the
µ = O(

√
ε) regime [76] and in the transition between them [20]. However, there is currently

no such analogue for the FSN I.

5.1.1. Aims and Outline. The aim of this chapter is to extend canard theory into the
FSN I regime with µ = O(εk), k ≥ 1

4
(we refer to the blow-up in Section 5.3.3 for an

explanation of the ε-dependent neighbourhoods). We seek to analyze the dynamics near the
FSN I thereby proving the existence of canards and faux canards. We focus on the delayed
loss of stability near the FSN I and provide delay estimates. Unlike the FSN II [51, 76], the
FSN I has no full system Hopf bifurcation and there is also the possibility for faux canards.
This suggests there may be canards that traverse the entire length of the repelling manifold
and return to the attracting manifold. This chapter complements the FSN II analysis in [76].

The outline of the chapter is as follows. In Section 5.2, we study the FSN I in the forced
Van der Pol oscillator and in a hybrid Morris-Lecar/FitzHugh-Nagumo model for neural
excitability, showing that it generates complex and unexpected dynamics. We numerically
demonstrate canards, faux canards and solutions that are concatenations of canards and faux
canards, a study of which motivates the rest of the chapter. In Section 5.3, we examine a
normal form for the FSN I, define the associated transition map, and provide a partial blow-
up analysis. In particular, we zoom in on an O(ε1/4) neighbourhood of the FSN I. In so
doing, we convert our problem of finding canards into a dynamic Hopf bifurcation problem.

In Section 5.4, we state our main theoretical results whilst pointing out the similari-
ties/differences to the FSN II. We state existence theorems for canards and faux canards in
the FSN I limit, and estimate how long we expect solutions to follow the weak canard before
escaping via fast directions. The novel results that set the FSN I apart from the FSN II are
the existence of faux canards, and the ability for solutions to cross the repelling manifold and
return to the attracting side. The numerics in Section 5.2 illustrate the theorems of Section
5.4. Sections 5.2, 5.3 and 5.4 contain the main results of the chapter, whilst Sections 5.5 and
5.6 are devoted to formally proving our assertions.

To prove the existence of canards and study their properties, we follow the approach of
[91, 92] for dynamic bifurcation problems and analytically continue solutions into the plane
of complex time in Section 5.5. We examine special paths along which the system has an
adiabatic invariant. That is, we study the linearized complex flow along elliptic paths, where
solutions neither grow nor decay. In Section 5.6, we extend the results of Section 5.5 to the
complex nonlinear flow. In this way, we are able to track the invariant manifolds across the
dynamic bifurcations and hence show the existence of O(ε−1/4) canards and faux canards,
and study the associated bifurcation delay. We conclude in Section 5.7 with a discussion.
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5.2. The FSN I In Practice

The FSN I is the codimension-1 bifurcation of the reduced flow that separates folded
saddle and folded node regimes. We are interested in the local dynamics of the FSN I because
it is the organizing center for delay phenomena. A canonical form for the FSN I [76] is

ẋ = −z + δ
(
α− y2

)
+O(x, ε, z(y + z), y3),

ẏ = 1 +O(x, y, z, ε),

ε ż = x+ z2 +O(z3, xz2, xyz, ε(x+ y + z), ε2),

(5.1)

with parameters α ∈ R and δ = ±1 (cf. system (2.17) for µ = 0). In this section, we provide
a brief geometric singular perturbation analysis of (5.1), highlighting the main differences
between the two FSN I subcases (δ = ±1). We numerically demonstrate canards and faux
canards in the FSN I limit in the forced Van der Pol (VdP) oscillator (δ = −1 subcase), and
in a hybrid Morris-Lecar/FitzHugh-Nagumo model for excitability in the firing patterns of
neurons (δ = 1 subcase).

Remark 5.1. For α > 0, system (5.1) can be transformed to system (2.17) by translating
one of the folded singularities to the origin. By translating the folded node to the origin, we
can express the parameter α in terms of the eigenvalue ratio µ of the folded node

µ =
−1 +

√
1− 16

√
α

−1−
√

1− 16
√
α
, or α =

µ2

16(1 + µ)4
.

We choose to work with (5.1) to retain symmetry at leading order.

5.2.1. Geometric Singular Perturbation Analysis. Fast fibers of the layer problem of
(5.1) move trajectories towards or away from the 2D critical manifold, which is given to
leading order by the parabolic cylinder S = {(x, y, z) : x = −z2}, with attracting sheet Sa
(z < 0), repelling sheet Sr (z > 0), and fold curve L given by the y-axis. The reduced flow
is the ε→ 0 limit of (5.1). Projection and desingularization give

ẏ = −2z(1 +O(z)),

ż = −z + δ
(
α− y2

)
+O(x, z(y + z)),

(5.2)

which has folded singularities at (y, z) = (±√α, 0) for α > 0. These merge to the FSN I
for α = 0 and disappear for α < 0. If δ = 1, the folded singularity at (−√α, 0) is a folded
node and the folded singularity at (

√
α, 0) is a folded saddle. The funnel of the folded node

is bounded by the folded node strong canard Γns and L (Figure 5.1(a)). If δ = −1, the folded
singularities are reversed and the funnel is enclosed by Γns , the folded saddle canard Γss and L
(Figure 5.1(b)). When α is large enough, the folded node and folded saddle are sufficiently
separated that the bifurcation theory of folded nodes [140] applies without modification. For
α > 0, the unstable manifold of the folded saddle forms a heteroclinic connection with the
folded node and trajectories near the unstable manifold of the folded saddle rotate about the
folded node [52]. We take this heteroclinic to be the primary weak canard.

For α = 0, we see that δ controls the position of the center manifold WC . For δ = 1,
WC lies on Sa, the funnel region persists and we expect a family of canard solutions. For
δ = −1, the funnel region shrinks to zero and WC lies on Sr. In this case, we expect only
those initial conditions close to the strong canard will be influenced by the dynamics near the
FSN I singularity. Both scenarios have been observed in applications. The δ = 1 situation
occurs in [144] whilst the δ = −1 configuration has been found in [39, 119, 123]. In fact,
the bifurcations associated with secondary canards near the FSN I with δ = −1 were studied
numerically in [52]. We now investigate the two FSN I subcases in two model systems.
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Figure 5.1. Reduced flow of (5.1) for (a) δ = 1 and (b) δ = −1. In (a), the funnel (shaded)
persists in the FSN I limit α → 0 (bottom row) and the center manifold WC is on Sa. In
(b), the funnel disappears and WC is on Sr. The folded node strong and weak canards are
denoted by Γns and Γnw, respectively. The folded saddle true and faux canards are labelled as
Γns and Γnf , respectively

5.2.2. Example: The Forced Van der Pol Oscillator. The VdP oscillator is a basic
model for oscillatory processes in physics, electronics, biology, neurology, sociology and
economics. With strong nonlinear damping effects, it is the prototypical example of a relax-
ation oscillator. The most prominent variant of the VdP oscillator is the forced VdP equation:

ẋ = −z + A cos y,

ẏ = ω,

ε ż = x− 1

3
z3 + z,

(5.3)

where ε−1/2 is the damping factor, A is the forcing amplitude and ω > 0 is the slow drive
frequency. The external signal models a periodically varying driving force, such as a heart
being driven by a pacemaker. Detailed studies of (5.3) have been done in the geometric
singular perturbations context [11, 48, 57, 120]. Our goal here is to illustrate the existence
of canards and faux canards near the FSN I limit.

We start by identifying the geometric structures of (5.3). The critical manifold is

S =

{
(x, y, z) : x =

z3

3
− z
}
,

with folds at z = ±1, which separate the attracting sheets (|z| > 1) from the repelling sheet
(|z| < 1). The reduced flow is given by

ẏ = ω,

(z2 − 1)ż = −z + A cos y.

For A < 1, there are no folded singularities and the attractor of the system is a relaxation
oscillator. For A = 1, there is a FSN I at (y, z) = (0, 1) which splits into a folded saddle and
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a folded node for A > 1. The folded saddle is located at (y, z) = (− cos−1(A−1), 1) and the
folded node at (y, z) = (cos−1(A−1), 1). Note that folded nodes only exist for

A < ADFN :=
√

1 + (64ω2)−1,

which ensures the eigenvalues of the desingularized system are real. The configuration of
(5.3) is such that the reduced flow is directed from the folded saddle towards the folded node.
As such, the FSN I in (5.3) has center manifold on Sr (i.e. δ = −1 in the normal form).

Remark 5.2. Since the forcing term is periodic, there are infinitely many pairs of folded
singularities (i.e. there is a pair of folded singularities on each of the folds, and these live in
the space R2 × S1). All pairs have the folded saddle to folded node (δ = −1) configuration.

We make the following (numerical) observation: solutions of (5.3) with 1<A< ADFN

(and ε sufficiently small) on Sa tend towards the submanifold defined by

CM := {(x, y, z) ∈ S : z = A cos y} ,
as shown in Figure 5.2. We will show in Section 5.3.3 that CM is the zero order approxi-
mation to the primary weak canard, which we take to be the heteroclinic between the folded
node and folded saddle.

-1

0

1

y

z

L+

L−

CM
666

Figure 5.2. Attractor of (5.3) for ε = 0.01, ω = 0.15 and A = 1.2. Trajectories become
slaved to the segments of CM (green) that lie on an attracting sheet of S.

We are interested in the behaviour of solutions near the FSN I limit (A = 1). Using initial
value solvers, it is very easy to find transient solutions of (5.3) that are initiallyO(ε1/4) close
to CM on Sr, and pass from Sr to Sa via the folded saddle (we again refer to the blow-up
in Section 5.3.3 for an explanation of the ε-dependent neighbourhoods). These faux canards
exhibit small oscillations that have growing amplitude on Sr and decaying amplitude on
Sa, evocative of a slow passage through a dynamic Hopf bifurcation [2, 3, 4, 91, 92] (but in
reverse). Once they are on Sa, the trajectories follow CM until they reach the fold and return
to Sr. Depending on the initial conditions, some of these solutions may continue to follow Sr
for O(1) times on the slow timescale before they subsequently jump to an attracting branch
of S. Boundary value solvers can be used to extend the solutions on Sr further and in the
case of (5.3), can extend solutions along the entire length of Sr (Figure 5.3).

The special canard orbit in Figure 5.3 is highly unstable. In practice, most solutions fall
off Sr before they can pass through the folded saddle and return to Sa. As a result, the at-
tractor of the forced VdP oscillator near a FSN I is either a relaxation oscillation interspersed
with delays (Figure 5.2) or a MMO (not shown). In either case, the delay occurs whenever
the attractor falls into the funnel region enclosed by the fold curve, the folded node strong
canard and the folded saddle canard. The delay itself is due to the slow passage effects as-
sociated with the folded node. The difference between a simple delay and a full MMO is
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Figure 5.3. Special canard orbit (black) of (5.3) with ε = 0.0001, ω = 0.1 and A = 1 +
2
√
ε = 1.02 that stays uniformly O(ε1/4) close to CM (green) projected onto the (y, z)

plane. The folds L± intersect CM at folded saddle (left inset) and folded node (right inset)
singularities. The stable and unstable eigendirections of the folded singularities are included.
The small oscillations near the folded nodes are virtually imperceptible.

the size of the perturbation, which determines the oscillation amplitude (O(
√
ε) for folded

nodes).

5.2.3. Non-autonomous Excitable System With Dynamic Protocols. An excitable
system is one that is typically silent (i.e. at steady state) but can produce a transient os-
cillation in response to an external stimulus. In the neuroscience context, these transient
oscillations are action potentials. The notion of excitability is useful for understanding the
firing behaviours of neurons, which are responsible for transmitting information through the
nervous system. We study the FSN I in a hybrid Morris-Lecar/FitzHugh-Nagumo model for
neural excitability with slow external drive I(εt) [144]:

v̇ = v(v − a)(b− v)− w + I(s),

ẇ = ε(w∞(v)− w),

ṡ = ε,

(5.4)

where s ∈ R is the (dimensionless) slow time, w ∈ R is a slow recovery variable and v ∈ R
is the (dimensionless) fast voltage. The external slow drive is a mollified step protocol

I(s) =
1

2
I1

(
1 + tanh

(
s− s0

s1

))
, s ∈ [s−, s+],

where [s−, s+] is a sufficiently large interval centered around s0. For s < s−, we take
I(s) = 0 and for s > s+, I(s) = I1. The activation function is given by

w∞(v) =
1

2

(
1 + tanh

(
v − v1

v2

))
.

We set a = −0.5, b = 1, I1 = 0.09, s0 = 0, v1 = −0.1, v2 = 0.1 and take s1 to be the
bifurcation parameter. Geometrically, the most important features of (5.4) are the cubic
shaped critical manifold

S :=
{

(v, w, s) ∈ R3 : w = v(v − a)(b− v) + I(s)
}
,

(to allow switching between active and silent states) and the sigmoidal activation function
w∞(v), which determines the number of equilibria the unforced (I(s) ≡ 0) system can have.
Note the non-autonomous system (5.4) has no equilibria. The dynamic drive however can
create folded singularities. This can in turn generate folded node and folded saddle canards,
which provide a useful metric for excitability.
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System (5.4) possesses a folded critical manifold S with folds located at

v±L =
1

3

(
a+ b±

√
a2 − ab+ b2

)
,

and lower attracting sheet S−a (v < v−L ), upper attracting sheet S+
a (v > v+

L ) and repelling
sheet Sr enclosed by the folds. Projection and desingularization of the reduced flow on S
gives:

ṡ = −f ′(v),

v̇ = f(v) + I(s)− w∞(v) + I ′(s),

where f(v) := v(v − a)(b− v). As in the forced VdP example, we define the submanifold

CM := {(v, w, s) ∈ S : w = w∞(v)} ,
with the understanding that it will play the role of the primary weak canard.

The reduced flow on S has no ordinary singularities but the dynamic drive can create
folded singularities. More precisely, for s1>sFSN ≈ 0.829, there are no folded singularities,
no canards and hence no firing behaviour. For s1 = sFSN, the reduced flow of (5.4) has a FSN
I singularity. For 0.7813 . s1 < sFSN, the reduced flow has a pair of folded singularities on
the lower fold curve. These folded singularities are oriented such that the flow is directed
from folded node to folded saddle (i.e. δ = 1 in the normal form). For 0 < s1 . 0.7813, the
folded node becomes a folded focus and only the folded saddle canard persists.

We focus on trajectories that start somewhere on S−a . For s1 > sFSN, (5.4) has no folded
singularities. The reduced flow on S−a is directed away fromL− and any trajectory starting on
S−a never leaves S−a . Thus, in the absence of any additional stimulus, the system is quiescent.
For s1 . 0.7813, there is a folded focus and a folded saddle on L−. Since folded foci have
no canards, only the folded saddle canard Γss influences the firing behaviour. In fact, Γss plays
the role of a firing threshold manifold [144]. Trajectories enclosed by Γss and L− transiently
spike; all other trajectories stay on S−a and remain quiescent.

Near the FSN I, the transient firing criterion is not so simple. There is a folded node
strong canard Γns as well as the folded saddle canard Γss. Both canards emanate from their
respective folded singularities and in system (5.4) turn back towards the fold. The trapping
region of each canard is quite small and the phase space is divided into three distinct regions.
Trajectories on S−a not enclosed by Γss never pass through either of the folded singularities
and remain silent (Figure 5.4(a)). Most solutions in the region between Γns and Γss reach L−

and elicit a transient spike (Figure 5.4(b)).
In the region between Γns and L−, trajectories are filtered through the folded node where

they oscillate around CM . These solutions follow CM on Sr for various distances before
being repelled, resulting in transient MMOs (Figure 5.4(c)). Some of these trace CM ∩ Sr
and return to S−a in a neighbourhood of the folded saddle, where the slow flow directs them
away from L− so that they remain quiescent (Figure 5.4(d)). Thus, care must be taken with
the firing threshold criterion near the FSN I limit since trajectories can tunnel through the
fold via (folded node) canards and return to S−a via (folded saddle) faux canards.

Remark 5.3. Another possibility is that solutions filtered through the folded node make it
over to Γss, follow it some distance on Sr and jump back to S−a (see Figure 5.11 and [96]).

As the system parameter s1 is moved away from the FSN I limit, the folded node and
folded saddle separate. Most initial conditions in the region between Γns and CM jump away
from CM before they can return to S−a (Figure 5.4(e)). However, the primary weak canard
can still make it all the way through (see Figure 5.4(f), where an approximation of the weak
canard is virtually indistinguishable from CM ).
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Figure 5.4. Canards, faux canards, spiking and MMOs in the excitability model (5.4). Pa-
rameters were set at ε = 0.00001, s1 = sFSN − 0.5

√
ε for (a)–(d), and s1 = sFSN − 5

√
ε for

panels (e) and (f). Insets show magnified views of the region around the folded singularities.
We fix s(0) = 0 (except for panel (f), where s(0) = 0.2) and move v(0) through the different
regions on S−a . Initial conditions are marked by black dots.

5.3. Blow-up Analysis of the FSN I

We have (numerically) demonstrated the existence of canards and faux canards near the
FSN I limit in two model systems. The canards and faux canards oscillate near their respec-
tive folded singularities and can (surprisingly) connect to each other, allowing trajectories
starting on Sa to cross over to Sr and eventually return to Sa (and vice versa). Motivated by
these observations, we now turn to the theoretical problem of formally proving the existence
of canards and faux canards in (5.1), and studying their properties near the FSN I limit. In
this section, we define the flow map induced by (5.1), and perform a partial blow-up analysis.
This section serves as a prelude to the analysis and results in the remainder of the chapter.

5.3.1. Transition Map. We introduce the transition map Π : Σ1 → Σ4, induced by the
flow of (5.1) with cross-sections

Σ1 := {(x, y, z) : x = −σ1, σ1 > 0} , Σ4 := {(x, y, z) : z = σ4, σ4 > 0} .
Fenichel theory [41, 68] guarantees that the regions of Sa and Sr that are O(1) away from
L perturb to invariant slow manifolds Sεa and Sεr , which are O(ε) close to their singular
counterparts. Moreover, the slow flow on Sεa and Sεr is a smooth O(ε) perturbation of the
reduced flow on S (Section 2.1). The blow-up technique extends Fenichel theory intoO(

√
ε)

neighbourhoods of L. To analyze the map Π in these neighbourhoods (and the flow past the
fold), we introduce intermediate ε-dependent cross-sections (Figure 5.5)

Σ2 := {(x, y, z) : x = − ε σ2, σ2 > 0} , Σ3 :=
{

(x, y, z) : z =
√
εσ3, σ3 > 0

}
,
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which are used in the blow-up analysis of folded singularities (see [14, 119, 140] for details).

Σ1 :x=−σ1

Γs

WC
Σ2 :x=−εσ2

Σ3 :z=
√
εσ3

Σ4 :z=σ4

Sa

Sr

y
z

x

Figure 5.5. Cross-sections Σ1 – Σ4 to the flow of (5.1) in the FSN I limit for the subcase δ = 1.

We have the following result, valid up to Σ2 or up to Σ3:

Proposition 5.1. For system (5.1) the sets Sε
1/4

a and Sε
1/4

r are smooth locally invariant nor-
mally hyperbolic manifolds and O(ε1/4) smooth perturbations of S. The flow on Sε

1/4

a and
Sε

1/4

r is an O(ε1/4) perturbation of the reduced flow.

The reason why Sε1/4a and Sε1/4r are O(ε1/4) perturbations of S will become apparent in
Section 5.3.3. An important property of Sε1/4a and Sε1/4r is that they grow algebraically in
backward and forward time, respectively. In fact, Sε1/4a and Sε

1/4

r approach the parabolic
cylinder x = −z2 as t→ ∓∞, respectively.

5.3.2. Blow-up & Entry Chart. To analyze the map Π, we introduce a suitable (spher-
ical) blow-up transformation and analyze the dynamics on the sphere by treating the flow
in various charts. Recall that the most important chart in the singular perturbations context
is the classical chart κ2 corresponding to an ε-dependent rescaling of the vector field (see
Section 5.3.3). In chart κ2, the parameter α is rescaled as α =

√
εα2 so that limε→0 α = 0

and we have a FSN I singularity for all α = O(
√
ε). With this in mind, we set α =

√
εα2 in

(5.1). For the FSN I singularity of (5.1) with α =
√
εα2, the blow-up transformation is

(x, y, z, ε) = (r4x, ry, r2z, r4ε), (5.5)

with (x, y, z, ε) ∈ S3. We concentrate on charts κ1 and κ2 defined by x = −1 and ε = 1,
respectively (recall from Figure 2.3(b) that these charts are sufficient to capture the incoming,
outgoing and flow on the blown-up sphere itself).

We begin our analysis of Π by examining the transition from Σ1 to Σ2. To do this,
consider (5.5) with x = −1 and let Π1 : Σ1 → Σ2 be the associated map. The sections
Σ1 and Σ2 are given by r1 = σ

1/4
1 and r1 = (σ2 ε)

1/4, respectively. Transformation and
desingularization (i.e. rescaling time by 1

4
r2

1) of system (5.1) on the fast timescale with
α =
√
εα2 gives:

ṙ1 = −r1 ε1

(
−z1 + δ(

√
ε1α2 − y2

1) +O(r1, ε1)
)
,

ẏ1 = 4r1 ε1 + ε1 y1

(
−z1 + δ(

√
ε1α2 − y2

1) +O(ε1)
)

+O(r2
1),

ż1 = 4(−1 + z2
1) + 2 ε1 z1

(
−z1 + δ(

√
ε1α2 − y2

1) +O(r1, ε1)
)
,

ε̇1 = 4 ε2
1

(
−z1 + δ(

√
ε1α2 − y2

1) +O(r1, ε1)
)
.

(5.6)
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This has two invariant subspaces r1 = 0 and ε1 = 0. Their intersection contains the lines of
equilibria La,1 = (0, y1,−1, 0) and Lr,1 = (0, y1, 1, 0), which have nonzero eigenvalue ∓2,
respectively. In the invariant subspace ε1 = 0, system (5.6) has normally hyperbolic surfaces
Sa,1 and Sr,1 of equilibria, which emanate from La,1 and Lr,1, respectively. Note that Sa,1
and Sr,1 correspond to the attracting and repelling branches of the critical manifold S. In the
invariant subspace r1 = 0, there exist 2D center manifolds Ca,1 and Cr,1 of La,1 and Lr,1,
respectively, which can be viewed as the extensions of Sa,1 and Sr,1 on the blown-up locus.

Proposition 5.2 ([119, 140]). The following hold for system (5.6):
(i) There exists an attracting 3D center manifold Ma,1 of the line of equilibria La,1, con-

taining the surface of equilibria Sa,1 and the center manifold Ca,1. The branch of Ca,1
in r1 = 0, ε1 ≥ 0 is unique for 1 + δ(

√
ε1α2 − y2

1) > 0.
(ii) There exists a repelling 3D center manifold Mr,1 of the line of equilibria Lr,1, contain-

ing the surface of equilibria Sr,1 and the center manifold Cr,1. The branch of Cr,1 in
r1 = 0, ε1 ≥ 0 is unique for −1 + δ(

√
ε1α2 − y2

1) < 0.

System (5.6) is the blow-up of system (5.1) over the fast timescale. To obtain the corre-
sponding slow flow on the center manifold Ma,1 given by z−1 (r1, y1, ε1) = −1 + O(r1, ε1),
we substitute z−1 into (5.6) and desingularize (i.e. rescale time by ε1):

ṙ1 = −r1

(
1 + δ(

√
ε1α2 − y2

1) +O(r1, ε1)
)
,

ẏ1 = 4r1 + y1(1 + δ(
√
ε1α2 − y2

1) +O(r1, ε1)),

ε̇1 = 4 ε1

(
1 + δ(

√
ε1α2 − y2

1) +O(r1, ε1)
)
.

(5.7)

In the invariant subspace ε1 = 0, (5.7) is the desingularized flow (5.2) on Sa for α = 0.
For δ = 1, there is a saddle at the origin and saddle-nodes at (0,±1, 0). The attracting
eigendirection of the saddle corresponds to the strong eigendirection Γs of the FSN I whilst
the center directions of the saddle-nodes correspond to the center directions WC of the FSN
I. That is, the blow-up splits the strong and center directions of the FSN I.

In the invariant subspace r1 = 0, there is a saddle at the origin and two branches of
equilibria WC

± =
(
0,±

√
α2
√
ε1+1, ε1

)
which are both center-stable and correspond to the

center directions of the FSN I. Note that the (y1, ε1) problem is singularly perturbed since
WC
± is invariant. Trajectories approach WC

± along its stable eigendirection and the flow on
WC
± is determined by a center manifold computation.
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Figure 5.6. Dynamics in chart κ1 for α2 > 0 and (a) δ = 1, and (b) δ = −1.

Estimating the transition time from Σ1 to Σ2 by the linearization of the saddle at the origin
gives Ts = O

(
log ε−1/4

)
. The expansion in y1 implies that all initial conditions in Σ1 that are

O
(
ε1/4
)

close to Γs will be mapped into an O(1) neighbourhood of Γs in Σ2. The leading
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order flow on the center manifold of (0,−1, 0) gives the transition time from Σ1 to Σ2 as Tc =
O
(
ε−1/4

)
. Thus, all initial conditions in Σ1 that are O(1) close to the center eigendirection

and some arbitrarily small but fixed distance from Γs map to Σ2 in an O
(
exp

(
− ε−1/4

))
neighbourhood of the center eigendirection. By continuity of Π1, all initial conditions in
Σ1 cover the whole segment between the strong and center eigendirections in Σ2 (up to
exponentially small error) under the map Π1 (Figure 5.6(a)).

For δ = −1, there is only a saddle at the origin in the invariant subspace {ε1 = 0}.
In the invariant subspace {r1 = 0}, there are two additional branches of equilibria WC

± =(
0,±

√
α2
√
ε1−1, ε1

)
which only exist for ε1 > α−2

2 and are both center-stable (Figure
5.6(b)). These can be viewed as the pre-images of the folded node weak canard and the
folded saddle faux canard in chart κ1, respectively.

We identify an exit section Σout
2 : ε1 = σ−1

2 for when solutions in κ1 enter κ2. The
transition estimates near the saddle are as above so that initial conditions O(ε1/4) close to
Γs in Σ1 expand to an O(1) interval around Γs in Σ2 (Figure 5.6(b)). The restricted map
Πout

1 : Σ1 → Σ2 ∩Σout
2 gives the additional constraint ε1(0)=O(ε) so that ε1(Ts) = σ−1

2 . We
will show in Section 5.3.4 that this implies only initial conditions O(ε1/4) close to Γs in Σ1

enter the domain of attraction of the dynamics in κ2 (i.e. the funnel).

5.3.3. Zoom of the FSN I. We now examine the flow past the fold curve (i.e. the tran-
sition from Σ2 to Σ3) by setting ε = 1 in (5.5), which gives

x = ε x2, y = ε1/4 y2, z =
√
εz2, (5.8)

since ε = r4
2. The directional blow-up (5.8) is an ε-dependent zoom of the vector field

near the FSN I. Recall that α =
√
εα2. In terms of the eigenvalue ratio of the folded node,

α = O(
√
ε) corresponds to µ = O(ε1/4).

Remark 5.4. The change of coordinates between chart κ1 and κ2 (see Definition 2.15) is
given by

κ12(x2, y2, z2, r2) =
(
r2(−x2)1/4, (−x2)−1/4y2, (−x2)−1/2z2,−x−1

2

)
, x2 < 0,

κ21(r1, y1, z1, ε1) =
(
− ε−1

1 , ε
−1/4
1 y1, ε

−1/2
1 z1, r1 ε

1/4
1

)
, ε1 > 0.

Transformation and desingularization (i.e. t =
√
εt2) converts the 1-fast/2-slow system

(5.1) into the 2-fast/1-slow system

ẋ2 = −z2 + δ
(
α2 − y2

2

)
+O(ε1/4),

ẏ2 = ε1/4
(
1 +O(ε1/4)

)
,

ż2 = x2 + z2
2 +O(ε1/4),

(5.9)

which describes the dynamics in an O(ε1/4) neighbourhood of the FSN I singularity. The
associated layer problem of (5.9) is given by

ẋ2 = −z2 + δ
(
α2 − y2

2

)
,

ż2 = x2 + z2
2 ,

(5.10)

with parameter y2. The 1D critical manifold CM of equilibria is defined by

CM :=
{(
−(α2 − y2

2)2, y2, δ(α2 − y2
2)
)

: y2 ∈ R
}
. (5.11)

Linear stability analysis shows that the eigenvalues of (5.10) along CM are

λ = δ(α2 − y2
2)±

√
(α2 − y2

2)2 − 1. (5.12)
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For α2 < 0, CM is always stable (or unstable) and we do not expect any unusual dynamics.
For α2 > 0, the stability of CM changes via Hopf bifurcations at y2 = ±√α2. Thus, the
folded singularities of (5.1) correspond to Hopf bifurcations of (5.10). For 0 < α2 < 1,
the eigenvalue structure of CM for |y2| <

√
α2 is elliptic (i.e. complex). For α2 > 1, the

eigenvalue structure of CM switches between elliptic (complex) and hyperbolic (real), as
shown in Figure 5.7.
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Figure 5.7. Eigenvalue structure of (5.10) along CM for (a) δ = 1 and (b) δ = −1.

The reduced flow of the blown-up vector field (5.9) is given by

0 = −z2 + δ
(
α2 − y2

2

)
,

ẏ2 = 1,

0 = x2 + z2
2 ,

(5.13)

and simply describes the slow passage along CM . In particular, the reduced flow moves
trajectories through Hopf bifurcations of the layer problem (5.10) leading to delayed loss of
stability [93] (Theorem 2.16).

Remark 5.5. Note that α = O(
√
ε) is the lowest order at which there is any delay. For

α=O(εk), k>1/2, the Hopf bifurcations collapse to the origin and the stability of CM does
not change when the reduced flow crosses y2 = 0. That is, all rescalings α=O(εk), k > 1/2
are encapsulated in the case α2 = 0.

Away from CM , two explicit algebraic solutions can be computed for the layer problem:

γ±(t2) =

(
−1

4
t22 +

1

2
,±√α2,

1

2
t2

)
, (5.14)

where γ± correspond to the eigenvalue λ = −1 of the linearization of the desingularized
flow (5.2) for the FSN I (α = 0). The importance of these solutions is that they connect the
attracting and repelling slow manifolds, Sa,2 and Sr,2, of the unperturbed problem of (5.9),
as illustrated in Figure 5.8.

Remark 5.6. We use Sa,2 and Sr,2 to denote the ε→ 0 limit of Sε1/4a and Sε1/4r in (5.9). The
manifolds Sa,2 and Sr,2 can be described as a union of special solutions of the layer problem
(5.10), indexed over the slow variable y2 (see Section 5.6.2).

These special solutions are viewed as pre-images of a folded node strong canard (at
y2 =−δ√α2) and of a folded saddle canard (at y2 =δ

√
α2).

Proposition 5.3 ([119]). The singular strong canards γ± always perturb to maximal strong
canards of folded node/folded saddle type for 0 < ε� 1.
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Figure 5.8. Invariant manifolds Sa,2 and Sr,2 extended up to Σ2 and Σ3, respectively for
δ = 1. The canards γ± connect the manifolds whilst CM approximates the connection
between the folded node weak canard and the folded saddle faux canard. Note that CM can
reach Sr,2 for sufficiently ‘large’ α2.
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Figure 5.9. Slow manifolds of (5.9) for δ = 1, α2 = 0.25 and ε = 1 × 10−5, shown in
the cross-section (a) y2 =

√
α2 (folded saddle) and (b) y2 = −√α2 (folded node). The

singular canards γ± (black) perturb to nearby maximal canards. The (x2, z2) regions shown
correspond to O(ε)×O(

√
ε) neighbourhoods in the (x, z) coordinates of (5.1).

Proposition 5.3 is illustrated in Figure 5.9 (cf. Figure 2.4). Solutions exponentially close
to γ± in Σ2 will cross the fold and follow the repelling manifold for O(1) times on the slow
timescale before being repelled. All other points in Σ2 within the funnel region and not
exponentially close to either of the canards will be quickly attracted to CM .

Like γ±, CM connects the attracting and repelling manifolds. The difference is that CM
returns to the manifold on which it started. Unlike the FSN II, there are no equilibria nearby
so that solutions can, in principle, follow CM indefinitely. Note that CM can be viewed as
the concatenation of the folded node primary weak canard and the folded saddle faux canard.
To simplify our analysis of the dynamics around CM , we rectify CM to the y2-axis.

Lemma 5.1. There exists a smooth change of coordinates that transforms (5.9) to the system

ẋ2 = −z2 +O(
√
ε, ε1/4 x2, ε

1/4 z2),

ẏ2 = ε1/4,

ż2 = x2 + 2δ(α2 − y2
2)z2 + z2

2 +O(
√
ε, ε1/4 x2, ε

1/4 z2).

(5.15)
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Proof. Let (x2, z2) = (x2 + (α2 − y2
2)2, z2 − δ(α2 − y2

2)). Then (5.9) becomes

x′2 = −z2 +O(ε1/4),

y′2 = ε1/4(1 +O(ε x2, ε
1/4 y2, ε

1/2 z2, ε)),

z′2 = x2 + 2δ(α2 − y2
2)z2 + z2

2 +O(ε1/4),

where CM is the y2 axis. Let Φ = (1 + O(ε x2, ε
1/4 y2, ε

1/2 z2, ε))
−1, which is positive in

the domain of interest. Rescaling time by Φ, expanding Φ and dropping the bars, we have:

x′2 = −z2 + ε1/4ϕ1(y2) +O(
√
ε, ε1/4x2, ε

1/4z2),

y′2 = ε1/4,

z′2 = x2 + 2δ(α2 − y2
2)z2 + z2

2 + ε1/4ϕ2(y2) +O(
√
ε, ε1/4x2, ε

1/4z2).

Let z̃2 = z2 − ε1/4ϕ1(y2). Then the system transforms to

x′2 = −z̃2 +O(
√
ε, ε1/4x2, ε

1/4z̃2),

y′2 = ε1/4,

z̃′2 = x2 + 2δ(α2 − y2
2)z̃2 + z̃2

2 + ε1/4ϕ̃2 +O(
√
ε, ε1/4x2, ε

1/4z̃2),

where ϕ̃2 = ϕ2 + 2ϕ1z̃2 + 2δ(α2 − y2
2)ϕ1. Setting x̃2 = x2 + ε1/4ϕ̃2 leads to the result. �

The y2-axis of (5.9) is invariant only to leading order, whereas in (5.15), it is invariant to
order O(ε1/4). This control over the leading order terms will be needed in our analysis. We
now define the eigenvalues of the linearization of (5.15) along CM (i.e. the y2-axis) up to
order O(ε1/4):

λ(y2, α2, ε
1/4) := δ(α2 − y2

2)− i
√

1− (α2 − y2
2)

2
+ ε1/4 h1(y2),

ν(y2, α2, ε
1/4) := δ(α2 − y2

2) + i

√
1− (α2 − y2

2)
2

+ ε1/4 h2(y2).

(5.16)

The zero order terms λ(y2, α2, 0) and ν(y2, α2, 0) are precisely the eigenvalues of (5.10).

Definition 5.1. The integrals

Iλ(s0, s1) :=

∫ s1

s0

Reλ(s, α2, 0) ds, Iν(s0, s1) :=

∫ s1

s0

Re ν(s, α2, 0) ds, (5.17)

measure the (leading order) expansion/contraction properties of (5.15) along CM .

Note that Iλ = Iν when the eigenvalues are elliptic but not when they are hyperbolic.
We have the following view of the dynamics: let I be a y2 interval where the eigen-

values λ(y2, α2, 0) and ν(y2, α2, 0) are real and negative. The rescaled system (5.15) has
strong and weak stable foliations, W ss and W s, along CM (Figure 5.10). In I , the weak
stable foliation is equivalent to the invariant manifold Sa,2 locally near CM . Similarly, if
the eigenvalues are real and positive, there exists a weak unstable foliation W u along CM ,
which is locally equivalent to Sr,2. Fenichel theory guarantees that these weak stable and un-
stable foliations (and hence Sa,2 and Sr,2) persist as Sε1/4a and Sε1/4r , respectively. In regions
where the eigenvalues are complex, there are no preferred directions to follow and we must
find an alternative way of identifying and tracking the manifolds.
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Figure 5.10. System (5.15) for δ = 1 and α2 > 1. CM is the y2-axis. Each cross-section
shows a different regime of (5.15) (cf. Figure 5.7). W s and Wu can be viewed as foliations
of Sa,2 and Sr,2, respectively.

5.3.4. Connecting Charts κ1 and κ2. We now rewrite the special solutions γ± and CM
from chart κ2 in the entry chart κ1. To do this, we require the change of coordinates κ12 that
take solutions in κ2 and map them to κ1. For the FSN I, the change of coordinates is

r1 = r2(−x2)1/4, y1 =
y2

(−x2)1/4
, z1 =

z2√−x2

ε1 = − 1

x2

,

for x2 < 0. A simple calculation shows that

lim
t2→−∞

κ12(γ±(t2)) = (0, 0,−1, 0)

so that the strong canards γ± both emanate from the origin of (5.7) in κ1 (for both δ = ±1).
Transforming the weak canard CM to κ1 gives:

κ12(CM) =

(
0,

y2

((α2 − y2
2)2)1/4

,
δ(α2 − y2

2)√
(α2 − y2

2)2
,

1

(α2 − y2
2)2

)
,

which shows that, for δ = 1, CM emanates from the saddle-nodes of (5.7) in κ1 (Figure
5.6). For δ = −1, the only part of κ12(CM) that enters κ1 with z1 < 0 is the segment of
κ12(CM) that has |y2| <

√
α2. Note that ε1 → α−2

2 as y2 → 0 and ε1 →∞ as y2 → ±
√
α2.

That is, since the center manifold of the FSN I lies on Sr, CM only extends a finite distance
into κ1 with z1 = −1.

Note that κ21(Σout
2 ) = Σ2 : z2 = −√σ2, where κ21 = κ−1

12 . For δ = −1, the domainD2 of
attraction ofCM in chart κ2 is the y2-interval (−√α2,

√
α2), which isO(1) since α2 = O(1)

by assumption. The inverse change of coordinates κ21 = κ−1
12 shows thatD1 = κ21(D2) is the

O(ε1/4)×O(1)×{σ−1
2 } region in (r1, y1, ε1) in chart κ1. As we showed in Section 5.3.2, D1

comes from an O(ε1/4) neighbourhood of the strong canard Γs in Σ1, with ε1 = O(ε). That
is, only those initial conditions O(ε1/4) close to the strong canard in Σ1 enter the domain of
attraction of CM in chart κ2.

5.4. Statement of Main Results

Using blow-up, we have shown the existence of maximal strong canards near the FSN I
and established that solutions within the funnel not exponentially close to the strong canards
become exponentially close toCM in Σ2. The task now is to figure out what the behaviour of
solutions near CM is (i.e. to understand the behaviour of the weak and secondary canards).
In this section, we state the main theoretical results of this work, leaving the proofs of our
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assertions to Sections 5.5 and 5.6. We have two kinds of results: existence of canards and
faux canards (Sections 5.4.1 and 5.4.2), and estimates of bifurcation delay (Section 5.4.3)
due to Hopf bifurcations of the layer problem of the blown-up system (5.9).

We consider trajectories starting in some hyperbolic region of CM and ask whether a
trajectory starting close to CM remains close or separates (i.e. follows fast directions). The
issue is whether the separation happens in hyperbolic or elliptic regions of CM and the two
cases must be handled separately. If the separation occurs in hyperbolic regions (α2 > 1),
then the weak stable and unstable foliations for CM are equivalent to the invariant manifolds
Sa,2 and Sr,2, and we can track the evolution using the linear subspaces (see Section 5.6.3).
If the separation occurs in elliptic regions (0 < α2 < 1), then we cannot track Sa,2 and
Sr,2 using the linear subspaces and we must rely on special properties of the layer flow (see
Section 5.6.2). We call the interval 0 < α2 < 1 the near-field and the interval α2 > 1 the
far-field. To aid our analysis, we introduce the auxiliary cross-sections

Σ±2 :=

{
(x2, y2, z2) : y2 = y2,0, y2,0 ≈ ±

√
α2 +

√
σ2

}
,

where y2,0 is in a hyperbolic region of CM and Σ±2 are approximately equivalent to Σ2.

5.4.1. Existence of Canards and Faux Canards in the Near-Field.

Theorem 5.1 (Existence of canards). Let 0 < α2 < 1.
(i) For δ = 1, suppose y2,0 is chosen to define Σ−2 and y2,∗ is such that Iλ(y2,0, y2,∗) = 0,

with |y2,∗| <
√
α2. There exists a canard originating in Sεa ∩ Σ1, passing through

Sε
1/4

a ∩ Σ−2 an O(ε1/4) distance from CM and continuing to a point in Sε
1/4

r near y2,∗.
(ii) For δ = −1, suppose y2,0 is chosen to define Σ+

2 and y2,∗ is such that Iν(y2,∗, y2,0) = 0,
with |y2,∗| <

√
α2. There exists a canard O(ε1/4) close to CM connecting Sε

1/4

a near
y2,∗ to Sε

1/4

r ∩ Σ+
2 and continuing to a point in Sεr ∩ Σ1.

Proof. Section 5.6.2. �

Remark 5.7. We prove in Section 5.5.4 that such a y2,∗ exists for every y2,0, |y2,0| >
√
α2.

Theorem 5.2 (Existence of faux canards). Let 0 < α2 < 1 and Σ∗ : y2 = y2,∗.
(i) For δ = 1, suppose y2,0 is chosen to define Σ+

2 and y2,∗ is such that Iλ(y2,∗, y2,0) =
0, with |y2,∗| <

√
α2. There exists a faux canard O(ε1/4) close to CM connecting

Sε
1/4

r ∩ Σ∗ to Sε
1/4

a ∩ Σ+
2 .

(ii) For δ = −1, suppose y2,0 is chosen to define Σ−2 and y2,∗ is such that Iν(y2,0, y2,∗) =
0, with |y2,∗| <

√
α2. There exists a faux canard O(ε1/4) close to CM connecting

Sε
1/4

r ∩ Σ−2 to Sε
1/4

a ∩ Σ∗.

Proof. Section 5.6.2. �

Corollary 5.1. For δ = 1, there exist canard solutions that originate in Sεa ∩ Σ1 and remain
O(ε1/4) close to CM for all y2. For δ = −1, there exist faux canard solutions that connect
Sε

1/4

r ∩ Σ−2 to Sε
1/4

r ∩ Σ+
2 .

Theorem 5.1 states the existence of canards in the near-field, where CMr is elliptic (cf.
Theorem 3.1 of [76] for the FSN II). Theorem 5.2 is the corresponding statement for faux
canards, which is a novel result. Corollary 5.1 is new and unique to the FSN I context. Corol-
lary 5.1 implies there are canards and faux canards that connect since trajectories starting on
Sa cross over to Sr and eventually return to Sa (for δ = 1). Similarly for δ = −1.
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5.4.2. Existence of Canards and Faux Canards in the Far-Field. In the far-field limit
(α2 > 1), the eigenvalue structure of the layer problem (5.10) along CM alternates between
elliptic and hyperbolic. When this hyperbolic structure does not influence the dynamics, the
existence theorems (and their proofs) for canards and faux canards are essentially unaltered.

Theorem 5.3 (Existence of canards: elliptic case). Let α2 > 1.
(i) For δ = 1, Theorem 5.1(i) holds with y2,∗ ∈ (−√α2,−

√
α2 − 1).

(ii) For δ = −1, Theorem 5.1(ii) holds with y2,∗ ∈ (
√
α2 − 1,

√
α2).

Theorem 5.4 (Existence of faux canards: elliptic case). Let α2 > 1.
(i) For δ = 1, Theorem 5.2(i) holds with y2,∗ ∈ (

√
α2 − 1,

√
α2).

(ii) For δ = −1, Theorem 5.2(ii) holds with y2,∗ ∈ (−√α2,−
√
α2 − 1).

When the hyperbolic structure of CM does influence the dynamics, we have existence
results, but cannot determine where the canards originate since they may turn back towards
the fold (see Figure 5.1). We fix an interval A := [α2,0, α2,1] with 1 < α2,0 < α2,1.

Theorem 5.5 (Existence of canards: hyperbolic case). Let Σ∗ : y2 = y2,∗. For most
α2 ∈ A (an open set of almost full measure), there exists a canard uniformly O(ε1/4) close
to CM that

(i) for δ = 1, connects Sε
1/4

a ∩ Σ−2 to Sε
1/4

r ∩ Σ∗, where y2,0 defines Σ−2 and y2,∗ ∈
(−√α2 − 1, 0] is such that Iλ(y2,0,−

√
α2 + 1) + Iν(−

√
α2 + 1, y2,∗) = 0.

(ii) for δ = −1, connects Sε
1/4

a ∩ Σ∗ to Sε
1/4

r ∩ Σ+
2 , where y2,0 defines Σ+

2 and y2,∗ ∈
[0,
√
α2 − 1) is such that Iλ(y2,∗,

√
α2 + 1) + Iν(

√
α2 + 1, y2,0) = 0.

Proof. Section 5.6.3. �
Theorem 5.6 (Existence of faux canards: hyperbolic case). Let Σ∗ : y2 = y2,∗. For most
α2 ∈ A (an open set of almost full measure), there exists a faux canard uniformly O(ε1/4)
close to CM that

(i) for δ = 1, connects Sε
1/4

r ∩ Σ∗ to Sε
1/4

a ∩ Σ+
2 , where y2,0 defines Σ+

2 and y2,∗ ∈
[0,
√
α2 − 1) is such that Iν(y2,∗,

√
α2 + 1) + Iλ(

√
α2 + 1, y2,0) = 0.

(ii) for δ = −1, connects Sε
1/4

r ∩ Σ−2 to Sε
1/4

a ∩ Σ∗, where y2,0 defines Σ−2 and y2,∗ ∈
(−√α2 − 1, 0] is such that Iν(y2,0,−

√
α2 + 1) + Iλ(−

√
α2 + 1, y2,∗) = 0.

Proof. Section 5.6.3. �
Corollary 5.2. For δ = 1, there exist canard solutions O(ε1/4) close to CM that connect
Sε

1/4

a ∩ Σ−2 to Sε
1/4

a ∩ Σ+
2 and continue to a point in Sεa ∩ Σ1. For δ = −1, there exist faux

canard solutions O(ε1/4) close to CM that connect Sε
1/4

r ∩ Σ−2 to Sε
1/4

r ∩ Σ+
2 .

The existence of canards in the far-field (Theorem 5.5) is the FSN I equivalent of The-
orem 3.2 from [76] for the FSN II. The existence of faux canards (Theorem 5.6), and the
existence of solutions which are concatenations of canards and faux canards (Corollary 5.2)
is unique to the FSN I.

Remark 5.8. It is possible that trajectories starting on Sa tunnel through to Sr via CM until
they reach some exponentially small neighbourhood of the folded saddle canard Γss. From
there, these special solutions trace Γss on Sr for some time before they jump back to Sa (see
[96], where such solutions that follow canard segments of different folded singularities are
called composite canards). Such solutions are only found in exponentially small parameter
windows, reminiscent of a canard explosion (Figure 5.11).

Our next result concerns the number of canards (i.e. small oscillations) near the FSN I.
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Figure 5.11. Transition through a ‘canard explosion’ near the FSN I limit in (5.1) for δ =
1, ε = 5× 10−6 and (a) α = 0.318

√
ε, (b) α ≈ 0.320406

√
ε, and (c) α = 0.325

√
ε. Γns and

Γss denote the (singular) folded node strong canard and folded saddle canard, respectively.
Top row: trajectories on S. Bottom row: projection onto (y, z). (a) Solutions (black) trace
CM ∩ Sr entirely (Corollary 5.1). Note the small oscillations about the folded saddle. (b)
Solutions in an exponentially small parameter interval around α ≈ 0.320406

√
ε follow Γss on

Sr for various distances before jumping back to Sa. (c) Solutions escape via a fast direction.

Proposition 5.4. Let α2 > 0 and suppose a canard (faux canard) solution exists. Then there
are O(ε−1/4) canards (faux canards).

Proof. Section 5.5.4 (Proposition 5.12). �
Remark 5.9. Recall from Section 2.5.1 that the maximal number of rotations in a neigh-
bourhood of a folded node becomes unbounded in the FSN limit (i.e. as µ→ 0). The FSN II
analysis in [76] refines this and shows that the number of rotations is O(ε−1/2). Proposition
5.4 refines the folded node and folded saddle theory for the FSN I case and shows that there
are O(ε−1/4) rotations.

5.4.3. Bifurcation Delay. The benefit of the blow-up transformation (5.8) is that we
have converted our problem into a dynamic Hopf bifurcation problem, where the behaviour
of the dynamical system depends on a parameter that changes slowly in time (Section 2.6.3).
One very useful diagnostic in the theory of dynamic bifurcations is the way-in/way-out (or
entry-exit) function, ϕ(y2,0, α2), implicitly defined by

Iλ(y2,0, ϕ) = 0, (5.18)

with entry point y2,0 ∈ CMa and exit point ϕ ∈ CMr. Intuitively, the way-in/way-out
function is interpreted as the moment when the expansion on CMr counterbalances the ac-
cumulative contraction on CMa. The implication is that solutions starting at y2,0 stay in a
small neighbourhood of CM up to ϕ.

Remark 5.10. The way-in/way-out function (5.18) measures the balance of weak contrac-
tion and strong expansion along the weak canard CM for generic solutions. When CMr

is elliptic, ϕ = y2,∗. However, when CMr is hyperbolic, ϕ 6= y2,∗ (Figure 5.12) since the
canard-way-in/way-out points y2,∗ measure weak contraction versus weak expansion along
CM (hence the branch switching when evaluating the integrals).
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Figure 5.12. Real part of the eigenvalues (5.16) to leading order for δ = 1 and real y2. The
way-in/way-out function for general solutions is indicated by ψ. The canard way-in/way-out
points are denoted by y2,∗. (a) α2 = 0.7: ψ = y2,∗ (for the same y2,0) since CMr is elliptic
and the notion of strong/weak expansion does not apply. (b) α2 = 2: ψ < y2,∗ since CMr is
hyperbolic. The dashed lines indicate the branch points of λ(y2, α2, 0).

Using the way-in/way-out function, we now consider how long general solutions can stay
close to CM before leaving via fast directions.

Theorem 5.7 (Minimal delay estimates). Let α2 > 0, and (x2, y2, z2) be a solution of
(5.15) with initial condition O(ε1/4) close to CM .

(i) For δ = 1, let y2(0) = y2,0, where y2,0 defines Σ−2 and ϕ(y2,0, α2) is defined by (5.18).
Then the solution (x2, y2, z2) stays O(ε1/4) close to CM for all y2 ≤ ϕ+ o(1).

(ii) For δ = −1, let y2(0) = ϕ(y2,0, α2), where y2,0 defines Σ+
2 and ϕ is defined by (5.18).

Then the solution (x2, y2, z2) stays O(ε1/4) close to CM for all y2 ≤ y2,0 + o(1).

Proof. Section 5.6.4. �
Remark 5.11. Theorem 5.7 is more general than the classic delayed Hopf result [91, 92]
(the prototypical example of bifurcation delay) as the eigenvalue used in (5.18) can alternate
between elliptic and hyperbolic (cf. Theorem 3.3 of [76] for the FSN II).

The way-in/way-out function depends on the distance traversed on CMa. That is, there is
a memory effect and the delay depends on the accumulative contraction. Despite this, there
is a maximal distance (the buffer point [91, 92, 113]) that solutions can trace CMr before
they must leave the vicinity of CM (see Definition 2.18).

Definition 5.2. For the FSN I the buffer point, y2,B, is:

y2,B =

 lim
y2,0→−∞

ϕ(y2,0, α2), δ = 1,

lim
y2,0→−

√
α2

ϕ(y2,0, α2), δ = −1.

Note the difference between the subcases δ = ±1. In the δ = 1 case, CMa extends to
unbounded y2. In the δ = −1 case, CMa is restricted and the contraction can only occur on
the interval |y2| <

√
α2.

Lemma 5.2. Suppose δ = 1. For 0<α2<α̃2 ≈ 0.66, y2,B =
√
α2. For α̃2 < α2 < 1, y2,B ∈(

0,
√
α2

)
. For α2 > 1, y2,B ∈ (−√α2, 0). Suppose δ = −1. Then y2,B ∈

(√
α2, 2
√
α2

)
for

all α2 > 0.

Proof. Section 5.5.4. �
Remark 5.12. An important distinction between the FSN I and the FSN II is the existence of
an upper bound on y2,B. In the FSN II, there is an ordinary singularity y2,p on CMr (which
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trajectories cannot cross) and y2,B < y2,p [76]. In the FSN I, there is no ordinary singularity
and y2,B can reach the ‘edge’ of CMr. This happens for δ = 1 and 0 < α2 < α̃2, where
y2,B =

√
α2. We have already seen this in Section 5.2.3, where close to the FSN I limit (i.e.

near-field), generic solutions pass from S−a to Sr via the folded node weak canard and return
to S−a via the folded saddle faux canard (Figure 5.4(d)).

We now estimate the maximal delay before trajectories escape a neighbourhood of the
FSN I (cf. Theorem 3.5 of [76]). For δ = 1, let J+ be an open subset of Sεa ∩Σ1 with closure
contained in the open interval −σ1/4

1 < y < −2
√
σ1 (i.e. between the strong canard and the

center manifold – see Figure 5.1). For δ = −1, let J− be an open subset of Sεa ∩ Σ1 with
closure contained in the open interval −2

√
σ1−K ε1/4 < y < −2

√
σ1 for some K > 0 (i.e.

O(ε1/4) close to the strong canard).

Theorem 5.8 (Maximal delay estimates). Let α2 > 0. There exists a function d(ε) sat-
isfying limε→0 d(ε) = 0 such that, given any solution originating in J± (possibly with the
exception of an exponentially small interval), the exit point of the solution in Σ3 satisfies
y2 ≤ y2,B + d(ε).

Proof. Section 5.6.4. �

Remark 5.13. The difference between the FSN I subcases is most evident in Theorem 5.8.
For δ = 1, bifurcation delay near the FSN I is generic since the funnel region persists. For
δ = −1, bifurcation delay only occurs for trajectories O(ε1/4) close to the strong canard in
Σ1. All other points hit the fold and jump.

We define analogous canard-buffers y2,C for the canard-way-in/way-out points y2,∗:

Iλ(−∞,−
√
α2) + Iν(−

√
α2, y2,C) = 0, δ = 1,

Iλ(−
√
α2,
√
α2) + Iν(

√
α2, y2,C) = 0, δ = −1.

For δ = 1, we have y2,C = y2,B in the near-field where CMr is elliptic. For all other cases,
y2,B < y2,C . That is, the canards can stay in a small neighbourhood of CM beyond y2,B (see
Remark 5.10). Using y2,C , we derive the following extension of Corollaries 5.1 and 5.2:

Proposition 5.5. For α2 > 0, there always exists a canard that extends the entire length of
CMr.

Proof. Section 5.5.4. �

We now relate our theorems back to the FSN I examples in Sections 5.2.2 and 5.2.3.
Our principal results are the existence of canards (akin to the FSN II), faux canards and
canard-faux canard concatenations (unique to the FSN I). We also provide delay estimates,
which are comparable to those of the classic delayed Hopf bifurcation and FSN II, but are
also distinct in that the trajectories can extend all the way along CMr. Figures 5.3 and 5.4
highlight the novel aspects of the FSN I, which we summarize in Table 5.1.

The demonstration of Corollary 5.1 immediately illustrates Theorems 5.1 and 5.2. Sim-
ilarly, Corollary 5.2 inherently shows Theorems 5.5 and 5.6. Note in Figures 5.3, 5.4(c)
and 5.4(d) that the solutions visibly oscillate around the folded saddle, but seemingly pass
through the folded node without rotation. Recall that the blow-up (5.8) converts the folded
singularities into Hopf bifurcations of (5.10). As such, the canards and faux canards inherit
their rotational properties from the dynamic Hopf bifurcations. In particular, the oscillations
have growing amplitude on CMr and decaying amplitude on CMa. The oscillations near the
folded node are below a visible threshold due to exponential attraction to CMa.
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Table 5.1. Demonstration of results in the forced VdP oscillator (δ = −1) and Morris-
Lecar/FitzHugh-Nagumo (δ = 1) examples. FN = folded node and FS = folded saddle.

Result Figure Description
Cor 5.1 5.4(d), (f) Canards starting on S−a return to S−a via the FS faux canard.
Cor 5.2 5.3 Special orbit traces both the FN weak and FS faux canards.
Prop 5.4 5.3, 5.4(d) There are about 7 oscillations, which is O(ε−1/4) for the given ε.

Thm 5.8 5.4(d) Near-field: y2,B =
√
α2; most solutions trace CMr all the way.

5.4(e) Far-field: y2,B =0; solutions trace CMr less than halfway.
Prop 5.5 5.3, 5.4(f) Solution connects FN to FS and traces CMr completely.

5.5. Linearized Complex Flow

For α2 > 0, the reduced flow (5.13) on CM crosses the Hopf bifurcations of the layer
problem (5.10), leading to delayed loss of stability. To find canard solutions near CM , we
have to track Sε1/4a and Sε1/4r across the Hopf bifurcations. Standard methods like Melnikov
theory will not work due to the singular nature of (5.15) together with the partially complex
eigenvalue structure of (5.10). The benefit of the rescaling (5.8) is that we can analytically
continue the vector field into the complex domain (following [91, 92, 93]) and look for spe-
cial (elliptic) paths connecting points on the real y2-axis. Along such paths, we have control
over the growth rates of solutions and can track the invariant manifolds (and hence show
transverse intersection). In this section, we complexify our system, show the existence of
elliptic paths in the linearization, and study the growth/decay rates and rotational properties.

5.5.1. Complexification. To track the invariant manifolds across the Hopf bifurcations
of (5.10), we extend the vector field into the complex domain. To do this, let (x2, y2, z2) ∈ C3

and introduce the complex coordinate transformation

u2 = z2 + i
x2 + δ(α2 − y2

2)z2 +O(ε1/4)√
1− (α2 − y2

2)2 +O(ε1/4)
,

v2 = z2 − i
x2 + δ(α2 − y2

2)z2 +O(ε1/4)√
1− (α2 − y2

2)2 +O(ε1/4)
,

(5.19)

which brings the linear part of (5.15) into Jordan normal form and (u2, v2, y2) ∈ C3. Note
that (5.19) is singular for real |α2−y2

2| = 1 to leading order. That is, the domain of analyticity
must exclude branch points of the square root function. Applying (5.19) to (5.15) gives

u′2 = λu2 +
1

4
(u2 + v2)2

(
1 + i

δ(α2 − y2
2) +O(ε1/4)√

1− (α2 − y2
2)2 +O(ε1/4)

)
+G1(u2, v2, ε

1/4),

v′2 = νv2 +
1

4
(u2 + v2)2

(
1− i δ(α2 − y2

2) +O(ε1/4)√
1− (α2 − y2

2)2 +O(ε1/4)

)
+G2(u2, v2, ε

1/4),

y′2 = ε1/4,

(5.20)

whereGi=O(
√
ε, ε1/4(|u2|2+|v2|2)), i = 1, 2 and we suppress the (y2, α2, ε

1/4) dependence
in λ, ν. We take the standard definition of the square root function given, for z = |z| exp(iθ)

with θ ∈ [−π, π), by
√
z =

√
|z| exp (iθ/2), with Arg

√
z ∈ [−π

2
, π

2
) and branch cut along

the negative real axis. Translating this to our problem:√
1− (α2 − y2

2)2 =
√
|1− (α2 − y2

2)2| exp

{
iArg

√
1− (α2 − y2

2)2

}
,
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with modulus and argument given by√
|1− (α2 − y2

2)2| =
{[

(1− ζ)2 + 4a2b2
] [

(1 + ζ)2 + 4a2b2
]}1/4

,

Arg

(√
1− (α2 − y2

2)2

)
=


π
4
− 1

2
tan−1

(
1+4a2b2−ζ2

4ab ζ

)
if ab ζ > 0,

−π
4
− 1

2
tan−1

(
1+4a2b2−ζ2

4ab ζ)

)
if ab ζ ≤ 0,

where y2 = a+ ib with a, b ∈ R, ζ := α2− a2 + b2 and Arg
(√

1− (α2 − y2
2)2
)
∈ [−π

2
, π

2
).

The branch cut of this function along the negative real axis is defined by

Im
(
1− (α2 − y2

2)2
)

= 4ab(α2 − (a2 − b2)) = 0,

Re
(
1− (α2 − y2

2)2
)

= 1 + 4a2b2 − (α2 − (a2 − b2))2 < 0.

For more detailed derivations, we refer to Section 4.1 of [76] and note that our problem is the
same (with y2 from [76] replaced by α2 − y2

2). The domain of analyticity D is the complex
y2-plane with the branch cuts and small discs about the branch points at y2 = ±√α2 ± 1
removed (Figure 5.13). The existence and uniqueness theorems for differential equations
hold on D and can be analytically continued to points on the branch cuts.
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Figure 5.13. Branch cuts (bold lines) of the function
√

1− (α2 − y2
2)2 in the complex y2-

plane for (a) 0<α2<1 and (b) α2>1. The square root function is independent of δ.

It is important to identify which solutions of (5.20) correspond to real solutions of (5.15).
For y2 ∈ R, if the eigenvalues λ(y2, α2, ε

1/4), ν(y2, α2, ε
1/4) are complex, then we require

u2 = v2 for real solutions (x2, y2, z2) of (5.15). If the eigenvalues (5.16) are real, then u2 and
v2 must be real in order to have real solutions of (5.15).

5.5.2. Linearization. We now study properties of the linear homogeneous flow of (5.20):

u′2 = λ(y2, α2, ε
1/4)u2,

v′2 = ν(y2, α2, ε
1/4)v2,

y′2 = ε1/4 .

(5.21)

Alternatively, using y2 as the complex slow time, we consider the system

ε1/4 du2

dy2

= λ(y2, α2, 0)u2,

ε1/4 dv2

dy2

= ν(y2, α2, 0)v2,

(5.22)
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with the leading order eigenvalues and note that the equations are decoupled. As such, it
suffices to study the complex linear homogeneous ODE:

ε1/4 du2

dy2

= λ(y2, α2, 0)u2, (5.23)

on the slow time y2. Solutions of (5.23) take the form

u2(y2) = ũ2 exp

{
1

ε1/4

∫
Γ

λ(z, α2, 0) dz

}
,

with initial condition u2(ỹ2) = ũ2 and contour Γ ⊂ D connecting ỹ2 with y2. The behaviour
of the homogenous solution depends on the form of the exponent

ϕ(y2) =

∫
Γ

λ(z, α2, 0) dz,

along contours Γ of integration. In particular, we are interested in the special contours:

Definition 5.3. Elliptic contours are the level curves of constant growth given by Reϕ =
constant. Hyperbolic contours are the level curves of constant oscillatory behaviour given
by Imϕ = constant.

We now derive equations for the elliptic contours. Let y2(τ) = a(τ) + ib(τ) be a contour
parametrization. Substituting in Definition 5.3

Reϕ(a(τ) + ib(τ), α2, 0) = constant,

and differentiating both sides with respect to τ gives

Reλ(a(τ) + ib(τ), α2, 0)
da

dτ
− Imλ(a(τ) + ib(τ), α2, 0)

db

dτ
= 0.

Rewriting in system form leads to the following evolution equations for the elliptic contours:

a′ = − Imλ(a(τ) + ib(τ), α2, 0),

b′ = −Reλ(a(τ) + ib(τ), α2, 0),
(5.24)

where the prime denotes differentiation with respect to τ .

Remark 5.14. Similar evolution equations can be derived for the hyperbolic contours. We
omit these since (5.23) has no hyperbolic contours that connect points on the real y2-axis.

5.5.3. Analysis of the Elliptic Contours.

Proposition 5.6. For 0 < α2 < 1, (5.24) has the following properties along the real y2-axis:

sgn a′
{

= 0 |a| ≥ √α2 + 1

= 1 |a| < √α2 + 1

sgn b′


= sgn δ |a| > √α2

= 0 |a| = √α2

= − sgn δ |a| < √α2
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For α2 > 1, (5.24) has the following properties along the real y2-axis:

sgn a′


= 0 |a| > √α2 + 1

= 1
√
α2 − 1 < |a| < √α2 + 1

= 0 |a| < √α2 − 1

sgn b′


= sgn δ |a| > √α2

= 0 |a| = √α2

= − sgn δ |a| < √α2

Proposition 5.7. For 0 < α2 < 1, (5.24) has the following properties along the imaginary
y2-axis:

sgn a′
{

= 0 |b| ≥ √1− α2

= 1 |b| < √1− α2

sgn b′ = − sgn δ b ∈ R

For α2 > 1, (5.24) has the following properties along the imaginary y2-axis:

sgn a′ = 0 b ∈ R
sgn b′ = − sgn δ b ∈ R

Propositions 5.6 and 5.7 are the FSN I analogues of Propositions 4.1–4.3 from [76]. We
refer the reader to the appendices of [76], where detailed proofs of these results can be found
in the FSN II context and point out that our results are obtained by replacing y2 in [76] by
δ(α2 − y2

2). Note that for α2 > 1, the elliptic contours cannot cross the imaginary axis. The
main point of Proposition 5.6 is that the elliptic contours cross the real axis transversally.

We observe that λ(y2, α2, 0) has the symmetry λ(y2, α2, 0) = λ(−y2, α2, 0), so that the
elliptic contours in the first and third quadrants of the complex y2-plane have the same prop-
erties. Similarly, contours in the second and fourth quadrants have the same properties.

Proposition 5.8. Let α2 > 0, δ = 1 and y2 = a+ ib with |y2| � 1. Then the elliptic contours
in the first and third quadrants are respectively forward and backward asymptotic to

K :=

{
(a, b) ∈ R2 :

a2

3
+
C1

a
− b2 = α2, C1 constant

}
,

The elliptic contours in the second and fourth quadrants are respectively backward and
forward asymptotic to the family of circles

C :=
{

(a, b) ∈ R2 : (a− C2)2 + b2 = C2
2 − α2, |C2| >

√
α2

}
.

Proof. Let z ∈ C. Then, from Appendix E of [76], we have:

√
1− z2 =

−iz
√

1− 1
z2

Im z > 0,

iz
√

1− 1
z2

Im z < 0.

Replacing z by δ(α2 − y2
2) gives:

√
1− (α2 − y2

2)2 =

−iδ(α2 − y2
2)
√

1− 1
δ(α2−y22)2

Re y2 Im y2 < 0,

iδ(α2 − y2
2)
√

1− 1
δ(α2−y22)2

Re y2 Im y2 > 0.
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Now, for |y2| large, we obtain the following expansions for λ:

λ =


1
2

1
δ(α2−y22)

+O
(

1
δ3(α2−y22)3

)
Re y2 Im y2 < 0,

2δ(α2 − y2
2) +O

(
1

δ(α2−y22)

)
Re y2 Im y2 > 0.

Suppose y2 = a+ ib is in the first quadrant. Using the appropriate expansion for λ in (5.24):

a′ = −4δab,

b′ = 2δ(α2 − a2 + b2).

We can remove the time parametrization and rewrite the system as a single linear equation
(in b2), the general solution of which gives the result. By symmetry of λ, we immediately
have the result in the third quadrant.

Suppose that y2 is in the second quadrant. Then the asymptotic expansion of (5.24) is

a′ = −δ1

2

1

|α2 − y2
2|2

2ab,

b′ = −δ1

2

1

|α2 − y2
2|2

(α2 − a2 + b2).

Eliminating the parameter τ gives a single linear equation in b2

a
and the result follows. �

Remark 5.15. For δ = −1, the elliptic contours in the first and third quadrants are asymp-
totic to the circles C whilst the contours in the second and fourth quadrants are asymptotic
to the hyperbolae K.

Lemma 5.3. Let α2 > 0. The elliptic contours are horizontal along the hyperbola

H :=
{
y2 = a+ ib : α2 − a2 + b2 = 0

}
. (5.25)

That is, the hyperbola H is precisely the b-nullcline of (5.24).

Corollary 5.3. There exist critical elliptic paths Γ± that touch the real axis tangentially at
y2 = ±√α2.

We summarize our analysis of the elliptic contours in Figure 5.14.

H

C

K

Γ+

Γ−
a

b

H

C

K

Γ+

Γ−

a

b(a) (b)

Figure 5.14. Elliptic paths in the complex y2 plane for δ = 1 for (a) 0<α<1 and (b) α2>1.
The elliptic contours for δ = −1 are obtained by flipping the image about the real axis.
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Remark 5.16. The elliptic contours have symmetries due to the quadratic dependence of
λ(y2, α2, 0) on y2. The higher order terms in λ will lead to symmetry breaking. We expect
that those elliptic contours that are tangent to the imaginary axis at leading order may cross
the imaginary axis under perturbation.

We can now state the main results of this section:

Proposition 5.9. Let α2 > 0 and y2,∗ ∈ (−√α2,
√
α2) be a point on the real axis. Then

there exists an elliptic path Γe that connects y2,∗ to some y2,0 where |y2,0| >
√
α2.

Proof. Follows from Proposition 5.6 together with Corollary 5.3. �
Corollary 5.4. For 0 < α2 < 1, there exist elliptic paths Γe that connect y−2,0 < −

√
α2 to

y2,∗ ∈ (−√α2,
√
α2) to y+

2,0 >
√
α2.

Proof. Follows from Proposition 5.9 together with Proposition 5.7 (i.e. from the fact that
the elliptic contours can cross the imaginary axis for 0 < α2 < 1). �

5.5.4. Expansion, Contraction and Rotation Along Elliptic Paths. We now study the
growth and decay rates along these paths and compute the amount of rotation. To do this, we
transform (5.22) along the elliptic paths described by (5.24), resulting in the system

ε1/4 u′2 = −i λ(y2(τ), α2, 0)λ(y2(τ), α2, 0)u2,

ε1/4 v′2 = −i ν(y2(τ), α2, 0)λ(y2(τ), α2, 0) v2.
(5.26)

By construction, the eigenvalue of the u2 equation is purely imaginary (i.e. the growth rate
is zero) along the elliptic paths. The same cannot be said for the v2 equation.

Proposition 5.10. Let z = δ(α2 − y2
2). The hyperbolic and elliptic components of the v2

equation are

Re
(
−i ν λ

)
= 2

(
Re zRe

√
1− z2 + Im z Im

√
1− z2

)
,

Im
(
−i ν λ

)
=
√

1− z2
√

1− z2 − zz.
(5.27)

The sign of Re (−iνλ) along an elliptic path determines the growth/decay in v2. That is,
the sign of

Ξ := 2
(

Re zRe
√

1− z2 + Im z Im
√

1− z2
)
,

where z = δ(α2−y2
2) must be determined (Figure 5.15). This is essentially Lemmas 4.4 and

4.5 of [76]. As such, we state the following without proof and refer to [76] for details:

Proposition 5.11. Let α2 > 0. Then

sgn Re (−iνλ)

{
= sgn δ b2 > a2 − α2

= − sgn δ b2 < a2 − α2.

Moreover, Re (−iνλ) = 0 along H and along the branch cuts of
√

1− (α2 − y2
2)2.

To study the rotational properties along elliptic paths, we substitute the parametrization
y2 = y2(τ) into (5.23). The amount of expansion/contraction, E, and rotation, R, along a
path y2(τ), τ ∈ [0, T ] is

E :=
1

ε1/4

∫ T

0

Re

(
λ(y2(τ), α2, 0)

dy2

dτ

)
dτ,

R :=
1

ε1/4

∫ T

0

Im

(
λ(y2(τ), α2, 0)

dy2

dτ

)
dτ.



5.5. LINEARIZED COMPLEX FLOW 115

a

b

H

Ξ = 0 Ξ = 0

Ξ
=

0
Ξ

=
0

Ξ =
0 Ξ =

0

Ξ>0

Ξ<0

Ξ<0

Ξ<0

Ξ<0

a

b

H

Ξ = 0 Ξ = 0

Ξ
=

0
Ξ

=
0

Ξ =
0 Ξ =

0

Ξ<0

Ξ>0

Ξ>0

Ξ>0

Ξ>0

(a) (b)

Figure 5.15. Growth and decay rates of the v2 equation of (5.26) for 0 < α2 < 1 for (a)
δ = 1 and (b) δ = −1.

These integrals are path independent, allowing us to make the computation along the real
axis and the hyperbola H instead of along the elliptic contours. We have:

Proposition 5.12. Let α2 > 0 and suppose Γe is an elliptic path joining y2,0 < −
√
α2 to

y2,∗ > −
√
α2. There exist constants m,M with 0 < m < M such that the amount of

rotation, R, along Γe is bounded

mε−1/4 ≤ R ≤M ε−1/4 .

Proof. Consider the case 0 < α2 < 1 and δ = 1. Suppose first that y2,0 < −√α2 + 1,
y2,∗ >

√
α2 + 1 and Γe is the elliptic path joining these points. Let (aH∓ , b

H
∓ ) be the unique

points where Γe intersects the hyperbola H in the second and fourth quadrants, respectively.
Let Rreal,− denote the amount of rotation along the real axis from y2,0 to −√α2. Let RH,−
denote the amount of rotation alongH from (−√α2, 0) to (aH− , b

H
− ). We compute the rotation

along Γe up to H by computing Rreal and RH,−. For simplicity of notation, we write λ(z) =
λ(z, α2, 0). We have

Rreal,− +RH,− =
1

ε1/4

(∫ −√α2

y2,0

Im λ(s) ds+

∫ aH
−

−√α2

Im λ(a+ ibH(a))
dbH
da

da

)
,

where bH(a) is a graph representation of H . Similarly, the amount of rotation from (aH+ , b
H
+ )

to (y2,∗, 0) along the hyperbola and the real axis is

Rreal,+ +RH,+ =
1

ε1/4

(∫ √α2

aH
+

Im λ(a+ ibH(a))
dbH
da

da+

∫ y2,∗

√
α2

Im λ(s) ds

)
.

To compute the rotation in regions where Ξ > 0, we compute the rotation backwards along
Γe by considering a combination of paths along the real axis and the hyperbola H . Thus, the
amount of rotation from (aH− , b

H
− ) to (aH+ , b

H
+ ) computed in backward time is

ε1/4(RH,++Rreal+RH,−) =

∫ √α2

aH
+

Imλ(a+ ibH(a))
dbH
da

da+

∫ −√α2

√
α2

Im λ(s) ds

+

∫ aH
−

−√α2

Im λ(a+ ibH(a))
dbH
da

da.
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Hence, the amount of rotation from y2,0 to y2,∗ along Γe is

ε1/4Rtotal = ε1/4 (Rreal,− +RH,− −RH,+ −Rreal −RH,− +Rreal,+ +RH,+) ,

=

∫ √1+α2

−√1+α2

√
1− (α2 − s2)2 ds,

which can be expressed in terms of the complete elliptic integrals of the first and second
kinds. In particular, ε1/4Rtotal is bounded above and below for all α2 > 0 leading to the
conclusion that there are O(ε−1/4) rotations.

Now, let y2,0 < −
√
α2 and y2,∗ > −

√
α2 be the endpoints of the elliptic path Γe. Then,

by the above arguments, the amount of rotation from y2,0 to y2,∗ is

ε1/4Rtotal =

∫ s1

s0

√
1− (α2 − s2)2 ds ≤

∫ √1+α2

−√1+α2

√
1− (α2 − s2)2 ds,

where s0 ∈ [−√1 + α2,−
√
α2] and s1 ∈ [−√α2,

√
1 + α2]. Similar arguments show

boundedness of the rotations for α2 > 1. Also note that Im λ(y2, α2, 0) is independent
of δ along the real axis so that the above holds for δ = −1. �

Remark 5.17. Proposition 5.12 implies Proposition 5.4. In the FSN II, the number of
canards is bounded below by K ε−1/2, for some positive constant K [76]. Here we have
O(ε−1/4) canards (faux canards) for the FSN I, contingent on the existence of a canard (faux
canard) solution. The number of canards becomes unbounded as α2 → 0, in keeping with
the folded node and folded saddle theory as µ→ 0.

We now formally identify a canard-way-in/way-out function that allows us to obtain
delay estimates.

Lemma 5.4. The elliptic contours are the level curves of the Hamiltonian

H(y2, α2) = Re

(∫
Γ

λ(z, α2, 0) dz

)
.

Proof. Follows from the Fundamental Theorem of Calculus together with the Cauchy-Riemann
equations (see Lemma 4.1 of [76]). �

Corollary 5.5. If y2,0 and y2,∗ are points on the real axis joined by an elliptic path Γe, then∫
Γe

Re λ(z, α2, 0) dz = 0.

Proof. Since H is constant along Γe, we have H(y2,0, α2) = H(y2,∗, α2). Linearity of inte-
gration allows the operations of integration and taking the real part to be swapped. �

Remark 5.18. The integral is path independent so we may evaluate it along the real axis.
Note that λ(y2, α2, 0) and ν(y2, α2, 0) represent the same complex function on different
sheets of the Riemann surface. Continuity of λ implies that λ(y2, α2, 0) → ν(y2, α2, 0) as
y2 → ±

√
α2 − 1 along the real axis in the far-field case, hence the need for branch switching

(see Figure 5.12).

Proof of Lemma 5.2. For δ = 1 and 0 < α2 < 1, we have y2,B = y2,C and there is always
an elliptic path that terminates at y2,∗ ∈

(
0,
√
α2

]
. There exists a α̃2 ≈ 0.66 such that the

critical paths Γ± connect to the branch points on the imaginary axis. For α2 < α̃2, the critical
paths cross the imaginary axis and y2,B =

√
α2 (Figure 5.14(a)). For α2 > α̃2, the critical

paths do not cross the imaginary axis and y2,B <
√
α2. For δ = 1 and α2 > 1, the elliptic
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contour that terminates at y2 = 0 is the one that originates at −∞ (Figure 5.14(b)) so that
y2,B < y2,C = 0. For δ = −1, we have:

Iλ(−
√
α2, 2
√
α2) ≥

∫ 2
√
α2

−√α2

(s2 − α2) ds = 0,

which is valid for all α2 > 0, and the result follows. �
Proof of Proposition 5.5. For δ = 1 and 0 < α2 < 1, y2,B ∈ (0,

√
α2]. Time reversal

and symmetry of λ(y2, α2, 0) imply that there is a faux canard that originates at +∞ and
terminates at y2,0 ∈ [−√α2, 0). For δ = 1 and α2 > 1, y2,C = 0. Again, by symmetry,
there is a faux canard that connects y2,0 = 0 and +∞. We obtain the result for δ = −1 by
considering the flow in backward time. �

5.6. Existence of Canards and Delay Estimates

In Section 5.5, we studied the linearized complex flow (5.22) and showed the existence
of elliptic paths (connecting points on the real axis) along which we have control over the
growth/decay of solutions. In this section, we show that the elliptic paths of Section 5.5
perturb to elliptic paths of the nonlinear problem (5.20). Using these perturbed paths, we are
able to transport the invariant manifolds Sε1/4a and Sε1/4r across the dynamic bifurcations and
hence prove the theorems of Section 5.4.

5.6.1. Elliptic Paths and Preliminary Estimates. We have shown that there are always
elliptic paths defined by (5.24) that are transverse to the real axis. We are therefore guaran-
teed that the construction of these paths persist under O(ε1/4) perturbation. In particular, we
can construct elliptic paths Γεe for the perturbed linear homogeneous problem

ε1/4 du2

dy2

= λ(y2, α2, ε
1/4)u2,

which are solutions of
a′ = − Im λ(a(τ) + ib(τ), α2, ε

1/4),

b′ = −Re λ(a(τ) + ib(τ), α2, ε
1/4).

Consequently, Γεe is O(ε1/4) close to the unperturbed elliptic path Γe.

Proposition 5.13. Let Γεe be an elliptic path with parametrization y2(τ) starting on the real
axis in an O(ε1/4) neighbourhood of some y2,0 and ending on the real axis in an O(ε1/4)
neighbourhood of y2,∗. Then system (5.20) transformed along Γεe is

ε1/4 u′2 = −iλ(τ, α2, ε
1/4)λ(τ, α2, ε

1/4)u2 +G1(τ, α2, u2, v2),

ε1/4 v′2 = −iν(τ, α2, ε
1/4)λ(τ, α2, ε

1/4) v2 +G2(τ, α2, u2, v2),
(5.28)

where the nonlinearities are defined by

Gi = O(
√
ε, |u2|2 + |v2|2), i = 1, 2.

Remark 5.19. The expansion and contraction properties of the linear part of (5.28) are the
same as those detailed in Proposition 5.11.

If (5.28) is holomorphic, bounded and Lipschitz in a closed disc around an initial condi-
tion, then we have existence and uniqueness of solutions of the corresponding initial value
problem [61]. Analytic continuation allows us to extend solutions along any path provided
the vector field can also be extended along that path. Thus, we have existence and uniqueness
of solutions of (5.28) everywhere in the domain of analyticity except possibly along paths
connecting to the branch points, where care has to be taken.
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The linear flow of system (5.28) is given by

Φ(τ, τ0) :=

(
exp(−i ε−1/4

∫ τ
τ0
λ(σ)λ(σ) dσ) 0

0 exp(−i ε−1/4
∫ τ
τ0
ν(σ)λ(σ) dσ)

)
,

where we have suppressed the (α2, ε
1/4) dependence in λ, λ and ν. We can rewrite (5.28) as

U2(τ, U0) = Φ(τ, 0)U0 +
1

ε1/4

∫ τ

0

Φ(τ, σ)G(U2(τ, U0),
√
ε) dσ, (5.29)

where U2 = (u2, v2), G = (G1, G2) and U0 = (u2(0), v2(0)).

Proposition 5.14. Let α2 > 0, δ = 1 and c ∈ (0, 1
4
) a constant. Suppose |U0| = O(ε1/4+c)

and y2(τ) parametrizes an elliptic path Γεe such that (Im y2)2 < (Re y2)2 − α2, i.e. y2(τ)
parametrizes the part of Γεe where Re (−iνλ) < 0. Then

U2(τ, U0) = O(ε1/4),

for all τ ∈ [0, τH ], where τH is such that y2(τH) ∈ H .

Proof. Consider (5.29) and rewrite the nonlinear terms as

G(U2,
√
ε) = G1(

√
ε) +G2(U2,

√
ε),

where G1(
√
ε) = O(

√
ε) and G2(U2,

√
ε) = O(

√
εU2, U

2
2 ). Then (5.29) becomes

U2(τ, U0) = Φ(τ, 0)U0 +
1

ε1/4

∫ τ

0

Φ(τ, σ)G1(
√
ε) dσ+

1

ε1/4

∫ τ

0

Φ(τ, σ)G2(U2,
√
ε). (5.30)

Since we restrict attention to elliptic segments where Re (−iνλ) < 0, we have Φ(τ, 0)U0 =
O(ε1/4+c). Moreover,

∫ τ
0

Φ(τ, σ) dσ = O(ε1/4), for O(1) time τ , so that∫ τ

0

Φ(τ, σ)G1(
√
ε) dσ = O(ε3/4).

Now, let U2 = ε1/4+c Ũ2 where Ũ2 = O(1). Then

G2(U2,
√
ε) = ε1/2+2c G̃2(Ũ2,

√
ε),

where G̃2 is O(1). In fact, we may assume |G̃2| ≤ K1(Λ) for all |Ũ2| ≤ Λ. Substitution in
(5.30) leads to the Gronwall-inequality

|Ũ2| ≤ K2 + εcK1(Λ)

∫ τ

0

|Φ(τ, σ)| dσ,

for some constant K2 > 0. The implication is that |Ũ2| = O(1) and the result follows. �
Remark 5.20. Analogues of Proposition 5.14 can be shown for elliptic paths in regions
where Re (−iνλ) > 0 by integrating backwards in τ from the real axis to the hyperbola H .
Similar estimates can also be shown for δ = −1 by integrating forwards or backwards in τ
from the real axis to H .

5.6.2. Near-Field Existence Theorems. We now prove the existence theorems in the
near-field limit 0 < α2 < 1 (Theorems 5.1 and 5.2). Before we proceed, we first review
properties of the layer problem (5.10), which we reproduce here for convenience

ẋ2 = p− z2,

ż2 = x2 + z2
2 ,

(5.31)

where p = δ(α2 − y2
2). For δ = 1, we assume p ∈ (0, 1) so that the equilibria of the layer

problem are unstable foci (see Figure 5.7 for the corresponding y2 intervals). For each fixed
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p there is an unique trajectory, Sr,p, which is algebraic in forward time [71]. The union of
these trajectories Sr,p over p provides a close approximation of Sε1/4r .

The properties of (5.10) near CM were studied in [76] by considering the map

Πp : Σp :=
{

(x2, z2) : z2 = p, x2 < −p2
}
→ Σp.

The unstable foci of CM exponentially expand the distance between points in a neighbour-
hood of CM . More precisely, if (x2, p) ∈ Σp then the number of iterations of Πp required to
be a distance d > 0 away from (−p2, p) is m = b− log |x2 + p2|c. That is,

dist
(
Πm
p (x2, p), (−p2, p)

)
≥ d.

Moreover, if x2,0 and x2,1 are points in Σp such that x2,1 is on the forward orbit of x2,0

but the trajectory of x2,1 does not return to Σp, then there must be a point x2,∗ ∈ Σp with
x2,1 < x2,∗ < x2,0 corresponding to Sr,p. Similar statements hold for δ = −1, in which case
we assume p ∈ (−1, 0) so that the equilibria of (5.31) are stable foci and we consider the
layer flow in backward time.

We are now in a position to prove Theorems 5.1 (cf. Theorem 3.1 from [76]) and 5.2.

Outline of Proof (Theorem 5.1). For δ = 1, let J1 be a set of initial conditions in Σ1 in
(x, y, z)-coordinates between the strong canard and center manifold. By Lemma 5.1, CMa

perturbs to CM
√
ε

a . Exponential contraction of Π1 onto CM
√
ε

a implies one endpoint of
J2 = Π1(J1) is O(

√
ε) close to CM . We choose the other endpoint q of J1 such that Π1(q)

is O(ε1/4+c). Thus, J2 is O(ε1/4) close to CM in Σ−2 and can be assumed to be contained in
a leaf of the weak stable foliation W s (see Figure 5.10). Let Π∗ : Σ−2 → Σ∗ and assume Π∗
transforms to complex (u2, v2, y2)-coordinates. Then we can transport the invariant bundle J2

to Σ∗ using the elliptic path. By Proposition 5.14 and Remark 5.20, J∗ = Π∗(J2) is a curve
of length O(ε1/4) in (u2, v2) coordinates (i.e. J∗ is O(ε1/4) close to CM ). Returning to
(x2, y2, z2)-coordinates and using properties of the layer flow (5.31) near an unstable focus,
we can show that J∗ ‘winds out’ from CM and intersects Sε1/4r transversally. Since the
intersection is transverse at zero order, the manifolds will intersect for the fully perturbed
problem, which is an O(ε1/4 ln ε) perturbation of the zero order estimate. For δ = −1, we
simply consider the flow in backward time.

Outline of Proof (Theorem 5.2). For δ = 1, let J2 ⊂ Sε
1/4

a ∩ Σ2 be an O(ε1/4) neighbour-
hood of CM . Assume that the backwards map Π∗ : Σ2 → Σ∗ transforms to (u2, v2, y2)
coordinates. Then by Remark 5.20, J∗ = Π∗(J2) is also O(ε1/4). The proof now proceeds
as in Theorem 5.1, i.e. by evolving J∗ forward under the layer flow (5.31) and showing that
J∗ winds out from CM , intersecting Sε1/4r in the process. For δ = −1, consider the flow in
backward time and take J2 ⊂ Sε

1/4

r ∩ Σ2 to be an O(ε1/4) neighbourhood of CM .

Corollary 5.1 follows from Theorems 5.1 and 5.2 together with Corollary 5.4.

5.6.3. Far-Field Existence Theorems. In the far-field (α2 > 1), if the hyperbolic struc-
ture of CMr does not influence the dynamics, the existence theorems are unaltered (Theo-
rems 5.3 and 5.4). When the hyperbolic structure of CMr does influence the dynamics, we
can track the invariant manifolds using their linear subspaces.

Proposition 5.15. Let α2 > 1 and δ = 1. Let R+ be the amount of rotation from y2,0 <
−√α2 + 1 along an elliptic path to the hyperbola H . Similarly, let R− denote the amount of
rotation from y2,∗ ∈ (−√α2 − 1, 0) backwards along the path to the hyperbola. Then

d

dα2

(R+ −R−) < 0.
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Proof. By similar arguments as in Proposition 5.12, the amount of rotation along an elliptic
path starting at y2,0 < −

√
α2 + 1 and ending at y2,∗ ∈ (−√α2 − 1, 0) is

F (α2) := ε1/4(R+ −R−) =

∫ −√α2−1

−√α2+1

√
1− (α2 − s2)2 ds.

To prove that ε1/4(R+ −R−) is decreasing, we want to show that

F ′(α2) =
d

dα2

F (α2) =

∫ −√α2−1

−√α2+1

s2 − α2√
1− (α2 − s2)2

ds < 0.

Consider first the following standard integral∫ α2+1

α2−1

u− α2√
1− (α2 − u)2

du = 0.

Changing variables s = −√u, we obtain the relation∫ −√α2−1

−√α2+1

s2 − α2√
1− (α2 − s2)2

ds =
1√
α2

∫ −√α2−1

−√α2+1

(s−√α2)(s+
√
α2)2√

1− (α2 − s2)2
ds.

Note that the integrand of the right hand side is negative on the integration interval (except
at the endpoints where it diverges to −∞ and at s=−√α2 where it is zero). �

Remark 5.21. Analogues of Proposition 5.15 exist for δ = −1 and for the positive real axis.

Recall that we are interested in solutions of (5.28) that correspond to real solutions of
(5.15). For real y2, the necessary conditions on u2 and v2 are:

• u2 = v2 if λ(y2, α2, ε
1/4), ν(y2, α2, ε

1/4) ∈ C
• u2, v2 ∈ R if λ(y2, α2, ε

1/4), ν(y2, α2, ε
1/4) ∈ R

Let u2(τ) be a solution of (5.23) corresponding to a real solution of (5.15), where y2 = y2(τ)
parametrizes an elliptic path with y2(0) < −√α2 + 1. Let uH2 (α2) = u2(τH), where τH is
such that y2(τH) ∈ H . Similarly, let u2,∗(τ) be the solution of (5.23) corresponding to a
real solution of (5.15) with u2,∗(T ) ∈ (−√α2, 0) and let uH2,∗(α2) = u2,∗(τH). We interpret
uH2 (α2) and uH2,∗(α2) as vectors in R2. Let θ(α2) be the angle between uH2 (α2) and uH2,∗(α2)
and define

Ad = {α2 : θ(α2) ≥ d for all α2 ∈ A} ,
where A := [α2,0, α2,1] with 1 < α2,0 < α2,1. Let Acd be the complement of Ad in A. Then,
by Proposition 5.4 of [76], we have:

Proposition 5.16. There exists a constant K > 0 such that for each d > 0 and 0 < ε � 1,
the total length of Acd is bounded by Kd.

For the case of ε-dependent elliptic paths, let Aεd and Aε,cd denote the analogues of Ad and
Acd, respectively, where the elliptic path Γεe is used instead of Γe. By Proposition 5.5 of [76]:

Proposition 5.17. There exists a constant K > 0 such that for each d > 0 and 0 < ε � 1,
the total length of Aε,cd is bounded by Kd.

The implication of Propositions 5.15 and 5.17 is that for most α2 ∈ A, the vectors uH2 (α2)
and uH2,∗(α2) rotate in opposite directions. We have equivalent results for δ = −1 and for the
positive real y2-axis.
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Outline of Proof (Theorems 5.5 and 5.6). We deal with Theorem 5.5 for δ = 1 and refer
to Theorem 5.1 of [76] for details. We take a set of initial conditions in Sε1/4a ∩ Σ2 that is
O(ε1/4) close to CM and evolve it forward along the elliptic path Γεe up to the hyperbola H .
Similarly, we take a set of initial conditions in Sε1/4r ∩ Σ∗ that is O(ε1/4) close to CM and
evolve it backward along Γεe up to H . We can show that these invariant bundles are close
(Proposition 5.14) and rotate in opposite directions (Proposition 5.15). Hence they intersect
transversally for most α2. The proof for faux canards is the same.

5.6.4. Estimates of Bifurcation Delay. We now consider how long general solutions
stay close to CM before escaping. We first consider trajectories that start close to CM
(Theorem 5.7, which is the FSN I analogue of Theorem 5.2 from [76]).

Outline of Proof (Theorem 5.7). We treat the near-field case for δ = 1. Consider solutions
(u2, v2, y2) of (5.20) that correspond to real solutions of (5.15) with elliptic paths y2(τ),
τ ∈ [0, T ] connecting points on the real y2-axis. Let U2(τ) = (u2(τ), v2(τ)) and U2,∗(τ) =
(u2,∗(τ), v2,∗(τ)) be solutions of (5.20) with initial conditions U2(0) = U0 with y2(0) <
−√α2 + 1 and U2,∗(T ) = U0,∗ with |y2,∗(T )| < √α2 subject to the requirement U0 =

O(ε1/4) and U0,∗ = O(ε1/4).
We follow U2(τ) forward (in τ ) and U2,∗ backward (in τ ) along the elliptic path up to

the hyperbola H . Then, by Proposition 5.14 and Remark 5.20, the distance between U2 and
U2,∗ is O(ε1/4). We then follow the solutions down H to the point y2 = −√α2. Exponential
contraction in the u2 coordinate shrinks the distance between the two solutions:

|u2 − u2,∗|y2=−√α2
= O

(
exp

(
ε−1/4 Iλ(y2,0,−

√
α2)
))
.

Since we are considering real solutions of (5.15), we have u2 = v2 and u2,∗ = v2,∗ so that the
above estimate holds for v2 and v2,∗ at y2 = −√α2. Finally, the maximal expansion along a
solution from y2 = −√α2 to any y2 > −

√
α2 is

exp
(
ε−1/4 Iλ(−

√
α2, y2)

)
.

Hence, if y2 > −
√
α2 is such that Iλ(y2,0, y2) < 0, then the corresponding solution of (5.15)

on the interval between y2,0 and y2 must be O(ε1/4). Similarly for the far-field and δ = −1.

We now estimate the maximal delay before solutions leave CM and move to Σ3 (Theo-
rem 5.8).

Outline of Proof (Theorem 5.8). We consider the far-field case for δ = 1, which contains
all of the essential steps required for the other cases. Suppose y2,B ∈ (−√α2,−

√
α2 − 1)

so that CMr is elliptic. Fix a K > 0 and suppose we have a trajectory of (5.28) with

|(u2, v2)| ≥ K ε1/4, for all y2(τ) ≤ y2,B + d(ε), (5.32)

and (u2, v2) is not exponentially close to Sε1/4r . Then (5.32) implies (x2, y2, z2) is O(ε1/4)
away from CM . Consequently, (x2, y2, z2) follows the layer dynamics and reaches Σ3 in
O(− ln ε) time (see Theorem 3.1 of [76]). To prove the result for this subcase, we must
show that (5.32) holds for most trajectories.

Suppose then that p ∈ J+ is such that

|(u2, v2)| < K ε1/4, for all y2(τ) ≤ y2,B + d(ε), (5.33)

and consider the trajectory of Π1(p) under the flow of (5.15). Then to leading order, the flow
about Π1(p) from Σ2 up to the section defined by y2 = y2,B + d(ε) is an expansion with
expansion rate

exp
(
ε−1/4 Iλ(y2,0, y2,∗ + d(ε))

)
. (5.34)
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We can show (see Lemma 5.4 of [76]) that the maximal contraction rate of Π1 is smaller than
the contraction in (5.34) so that the composition of Π1 and transition by (5.15) exponentially
expands the distance between points p, q ∈ J+. Thus, q can only satisfy (5.33) if it is
exponentially close to p.

Suppose now that y2,B ∈ (−√α2 − 1, 0) so that CMr is hyperbolic. Consider a solution
U2 = (u2, v2) of (5.20) with initial condition not exponentially close to the weak canard. By
Theorem 5.5, Sε1/4a and Sε1/4r intersect transversally for most α2 ∈ A. This means the angle
between the invariant manifolds is bounded below by some positive constant, which implies
that U2(τH) has a large component in the strongly expanding direction, where y2(τH) ∈
H . Linearization of (5.20) along CM allows us to measure the evolution of the strongly
expanding component. By continuing the solution U2 downH to the real axis at y2 = −√α2,
the strongly expanding component shrinks by the factor

exp
(
ε−1/4 Iλ(y2,0,−

√
α2)
)
.

Now, continuing U2 along the real axis, the component in the strong unstable direction ex-
pands to O(1) when y2 reaches a neighbourhood of the point y2,∗.

5.7. Discussion

The canard phenomenon occurs generically in singular perturbation problems with at
least two slow variables. Closely related to folded singularities of the reduced flow, canards
are solutions that follow a repelling invariant manifold for O(1) times on the slow timescale
and partition the flow. Folded nodes and folded saddles with eigenvalue ratio µ bounded
away from zero have been studied extensively. The main gaps in the theory are related to the
FSN, of which there are two types: one where the center manifold is tangent to the fold (type
I) and another where the center manifold is transverse to the fold (type II). Canard theory has
been extended to the FSN II case with µ = O(ε) [51], with µ = O(

√
ε) [76, 119] and for

the transition between these two regimes [20]. The FSN I is known (via Melnikov methods
on non-compact domains) to possess canard solutions [139].

The main contribution of this chapter was the extension of canard theory into the FSN I
regime, which complements [76, 139]. We combined GSPT (blow-up) and dynamic bifur-
cation theory (complex time path analysis) to study the FSN I in the µ = O(εk), k ≥ 1/4
regime. Although our results were formulated in terms of the parameter α, we note from
Remark 5.1 that the interval α ≥ 0 is equivalent to µ ∈ R. We showed the existence of
O(ε−1/4) canards and faux canards, which rotate around the primary weak canard. Our the-
orems explain the transition between folded node and folded saddle regimes (i.e. how Figure
2.4(a) is converted to Figure 2.4(b)). In the folded node regime, the secondary canards ro-
tate about the weak canard. As µ decreases through zero (via the FSN I), the primary weak
canard becomes the folded saddle faux canard (see Figure 2.2). The folded node secondary
canards then become faux canard type solutions that rotate about the folded saddle faux ca-
nard. Thus, the rotational behaviour near the folded saddle in Figure 2.4(a) cannot be seen
because the numerical method is suited to detecting canards, not faux canards.

In addition to the existence of canards and faux canards near the FSN I limit, we stud-
ied their properties. We showed that the canard and faux canard solutions exhibit char-
acteristics of dynamic Hopf bifurcations: namely, growing/decaying amplitude on the at-
tracting/repelling manifold and bifurcation delay. We provided delay estimates by means
of way-in/way-out functions, which naturally pop out of the complexification process. For
δ = 1, generic solutions in the near-field can follow CM on Sr until they return to Sa. In
the far-field, the folded node and folded saddle are too well-separated that most trajectories
cannot make it more than halfway along CMr. For δ = −1, most trajectories in the funnel
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can only trace CMr a finite distance before they must escape. The main differences to the
FSN II case are the lack of a full system Hopf bifurcation and the existence of faux canards.
These differences allow canards of FSN I type to traverse the entire length of the repelling
manifold.

We illustrated our assertions numerically in the forced VdP oscillator and in a hybrid
neural excitability model (see Table 5.1). The forced VdP oscillator corresponded to the
δ = −1 subcase (center manifold of the FSN I on Sr) with flow directed from folded saddle
to folded node. In the Morris-Lecar/FitzHugh-Nagumo excitability model, the flow had the
δ = 1 configuration (center manifold on Sa and flow directed from folded node to folded
saddle). In both examples, we demonstrated the existence of canards, faux canards and
canard-faux canard concatenations in the near-field and far-field. We also showed that the
number of rotations about the folded saddle wasO(ε−1/4). Moreover, we showed that there is
always at least one solution that tracesCMr all the way. There are numerous examples where
the dynamics near the FSN I have only been cursorily glossed over, such as [39, 123, 136],
and the examples studied here show that the dynamics near the FSN I can be very rich.

There are many details yet to be worked out. In this article, we only provided a partial
blow-up analysis of the FSN I, restricting attention to the entry and rescaling charts. That
is, we focused on the delayed loss of stability in O(ε1/4) neighbourhoods of the FSN I. We
have also yet to make explicit the connection between our work and the results of [139].
Another issue to be resolved is the task of calculating faux canards numerically. In the
folded node case, the invariant slow manifolds are computed by reformulating the system as
a boundary value problem and using homotopic continuation to generate a family of solutions
that form a mesh of the surface (Section 2.7). The folded node canards are then identified
as intersections between the surfaces. To the author’s knowledge, there is currently no such
analogue for computing faux canards and the best prospect for developing such an algortihm
is a detailed blow-up analysis of the folded saddle singularity [89].



CHAPTER 6

Summary, Discussion & Open Questions

In this thesis, we studied the pseudo-plateau bursting activity produced by hormone-
secreting pituitary lactotrophs. A vital feature of the analysis of bursting rhythms is the
multiple-timescale structure of the governing system, which typically takes the form

εẋ = f(x, y, z, ε, δ),

ẏ = g(x, y, z, ε, δ),

ż = δh(x, y, z, ε, δ),

(6.1)

where 0 < ε, δ � 1 are small, independent perturbation parameters, x ∈ R is fast, y ∈ R2

is intermediate and z ∈ R is slow. Such multiscale problems are amenable to singular per-
turbation methods. One particular singular perturbation technique that has been used with
great success is GSPT, which is most naturally suited to 2-timescale problems. The presence
of two perturbation parameters means there are various ways in which GSPT can be imple-
mented as illustrated in Figures 1.7 and 4.1, and reproduced in Figure 6.1 for convenience.
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Figure 6.1. Slow/fast decompositions in the 3-timescale context.

In the classic implementation of GSPT in bursting problems [98], δ is treated as the
principal perturbation parameter and the bursts are classified according to the fast (x, y)-
subsystem bifurcations (with respect to z) involved in the initiation/termination of the burst
[65] (3-fast/1-slow pathway of Figure 6.1). Plateau and pseudo-plateau bursting in partic-
ular feature a fast subsystem Hopf bifurcation in the active phase, the criticality of which
distinguishes the two bursting types. In the plateau case, the Hopf is supercritical and the
large-amplitude active phase spikes are related to stable periodic orbits of the fast subsystem.
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In the pseudo-plateau case, the small amplitude spikes are transient oscillations generated by
unstable limit cycles emanating from a subcritical Hopf. Plateau bursting and various fea-
tures of pseudo-plateau bursting such as resetting properties [116] and burst termination due
to fast subsystem manifolds [94] are well understood in this classic approach. Despite this,
the standard slow/fast analysis has been demonstrated to be of limited use for understanding
the underlying dynamics of pseudo-plateau bursting [123].

This thesis broke partially from the traditional approach to bursting by looking at alterna-
tive slow/fast analyses where there is more than 1 slow variable. We provided an alternative
view of pseudo-plateau bursting by considering a slow/fast decomposition in which ε is the
principal perturbation parameter and δ is fixed (1-fast/3-slow pathway of Figure 6.1). This
splitting gave us access to canard theory, which in the 1-slow setting was degenerate and ex-
ponentially sensitive. The theory of canard-induced MMOs is one of the first areas where this
alternative slow/fast decomposition has been introduced with some success. We summarize
and discuss the implications of the main contributions of the thesis below.

6.1. Canard-Induced MMOs as a Mechanism for Bursting

The pituitary cell model we studied is unlike other bursting models in that the bursting
persists almost unaltered when the calcium concentration c is fixed [130]. This is unusual,
since the slow variation in the intracellular calcium concentration is typically responsible
for clustering impulses into periodic episodes of activity. This suggests an intrinsic bursting
mechanism independent of c. To investigate this novel form of bursting, we fixed the calcium
(δ → 0) and employed GSPT to unravel the underlying dynamics. Following the 1-fast/3-
slow pathway of Figure 6.1 (with δ → 0), we showed that the bursting was a canard-induced
MMO. MMOs have been described previously for neural models and data [15], but this was
the first example where they formed pseudo-plateau bursting oscillations [123, 134].

Key organizing structures in this slow/fast splitting were the fast x-subsystem equilibria
(the critical manifold) and singularities of the slow (y, z)-subsystem. Normally hyperbolic
critical manifolds approximate attracting and repelling slow manifolds of (6.1). The ex-
tension of these manifolds into nonhyperbolic regions (folded nodes) led to local twisting
behaviour. Transverse intersections of these manifolds (canards) form separatrices that par-
tition the phase space and shape the dynamics [119, 140]. The theory of canard-induced
MMOs [14] provided the theoretical basis for understanding properties of the bursting such
as the transition from spiking (relaxation oscillations) to bursting (MMOs) and how spike-
adding bifurcations occur. The MMOs were the result of the interaction between local and
global mechanisms. The local mechanism was the folded node, which caused a local twisting
of trajectories. The global mechanism was the global return, which re-injected trajectories
into the funnel region, thus resetting the dynamics after completion of the local passage.

We studied the bifurcations of the (folded node type) canard-induced MMOs under vari-
ations in the eigenvalue ratio µ of the folded node and the distance d of the global return
of trajectories to the strong canard. To do this, a global return map induced by the flow of
the equations was constructed and a qualitative analysis given [135]. The canards acted as
separatrices in the return maps, organizing the dynamics along the Poincaré section. The
(approximately) 1D return map covered the essential dynamics, allowing for an explanation
of the different MMO patterns observed in the lactotroph model with fixed c.

6.2. Analysis and Prediction Testing On Real Cells

In our pituitary cell model analysis, we demonstrated the genesis of the bursting rhythm
[8], identified the regions in parameter space where it exists [123, 134], and showed how
features of the bursting vary in parameter space [135]. That is, through the combined power
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of GSPT and bifurcation analysis, we made theoretical predictions about the bursting that
could be tested experimentally. Here, we briefly discuss one context in which the geometric
singular perturbation analysis has informed experimentation and vice versa [137].

Authors’ Contributions: The analysis in this section [137] was performed by TV. The
experiments were done by JT and TV. The manuscript was written by TV, and edited by TV,
RB, JT, and MW.

6.2.1. Fast-Activating BK Current Promotes Bursting. Pituitary cells express a vari-
ety of ion channels and establishing the role of any given channel type is difficult. It has been
proposed that large conductance potassium (BK) channels [80, 106, 118] primarily determine
whether a pituitary cell spikes or bursts [86, 117]. In [122], a computational/experimental ap-
proach was used to study how kinetic properties of BK channels affect bursting. Blocking of
the BK channels using paxilline generally resulted in an irreversible conversion from burst-
ing to spiking. Using the dynamic clamp technique [110], artificial BK current was injected
into the cell, which was observed to reliably return the cell to a bursting state. However,
it was also observed that the burst promoting effect of the BK current came with a caveat:
BK activation must be sufficiently fast to promote bursting. If the BK activation is too slow,
then the BK current inhibits bursting by speeding up repolarization [122]. The primary aim
of [137] was to explain the physiological observations of [122], i.e. to understand why BK
activation must be fast in order to promote bursting.

6.2.2. Theoretical & Experimental Setup. In [137], a pituitary cell model similar to
(1.3) was studied, the key difference being that the BK channels were no longer assumed to
activate instantaneously. That is, the gating dynamics of the BK channels were included:

τBK
db

dt
= b∞(V )− b,

where τBK is the time constant of the activation variable b for the BK channels. We refer to
[137] for details of the model. One of the key observations from [122] was that the activation
of the BK channels needed to be fast to promote bursting. Otherwise, the BK current has
an inhibitory effect and the cell spikes. Using geometric singular perturbation analysis, we
showed that the bursting can either be a canard- or a Hopf-induced MMO, depending on
parameter values. The question then is whether or not they are observed experimentally.

To test our predictions experimentally, we employed a hybrid experimental/modelling
tool called dynamic clamp [110]. In the dynamic clamp technique, an electrode is attached to
a cell to record its voltage. To investigate IBK , we block IBK by introducing pharmacological
agents (such as paxilline), which are known BK channel blockers. Once IBK is blocked, we
take our live voltage recordings and send them to a computer, where we compute a model
(voltage-dependent) current, Imodel

BK , with parameters that we specify. We then take that model
current and inject it into the cell to see how the cell responds. Thus, the computer calculates
Imodel
BK using V from the cell and then injects the model current into the cell. In this way, we

can use Imodel
BK to simulate IBK and hence investigate (in vitro) how kinetic properties of the

BK current enhance/inhibit bursting in pituitary cells.

6.2.3. Experimental Results. A simple test to distinguish between the canard- and
Hopf-induced MMOs is to inject artificial BK current (via dynamic clamp) and vary τBK .
Based on the bifurcation and geometric singular perturbation analyses (see [137]), we ex-
pect the canard-induced MMOs to have weak response to variations in τBK , whilst the Hopf-
induced MMOs have extreme sensitivity to variations in τBK . To test the sensitivity of the
trajectories to variations in τBK , we blocked the BK channels using paxilline and measured
the response of the cell to injection of BK current at different activation rates.



6.2. ANALYSIS AND PREDICTION TESTING ON REAL CELLS 127

0 500 1000 1500 2000

−60

−40

−20

0

Time (ms)

V
 (

m
V

)

0 2000 4000 6000 8000

−60

−40

−20

0

Time (ms)

V
 (

m
V

)

0 2000 4000 6000

−60

−40

−20

0

Time (ms)

V
 (

m
V

)

0 2000 4000 6000

−60

−40

−20

0

Time (ms)

V
 (

m
V

)

0 10 20 30 40
0

0.1

0.2

0.3

τ
BK

 (ms)

M
ea

n 
m

ax
 a

m
p

0 2 4 6 8 10
0

0.2

0.4

0.6

τ
BK

 (ms)

M
ax

 a
m

p

(a) (b)

(c) (d)

(e) (f)

Figure 6.2. Effect of variations of τBK in dynamic clamp experiments recorded from a
GH4C1 lacto-somatotroph cell line. (a) τBK = 10 ms: spiking. (b) τBK = 7 ms: mix-
ture of spiking and bursting. (c) τBK = 5 ms: bursting. (d) τBK = 2 ms: plateauing. Note
the different timescales. (e) Summary of the behaviour of the small oscillation amplitude
under τBK variations in different cells. The gBK values for the red, blue, green, olive and
purple curves are gBK = 0.5, 1.6, 2, 0.5, 1 nS, respectively. The blue curve (gBK = 1.6 nS)
corresponds to the cell in panels (a) to (d). (f) Theoretical analogue of (e) calculated for the
associated model.

In Figure 6.2, we show evidence for Hopf-induced MMOs in pituitary cells. Panels
(a)–(d) show the effect of varying τBK for fixed gBK . For BK current injected with slow
activation time constant (i.e. τBK large), the cell is spiking (panel (a)). By decreasing τBK ,
we eventually cross a threshold and bursting can be observed interspersed with the spik-
ing activity (panel (b)). Further decreasing τBK reliably converts the electrical activity to
bursting and the spiking behaviour is absent (panel (c)). Moreover, the amplitude of the
small oscillations decreases with τBK . For sufficiently fast activation rates, the small oscil-
lations are virtually non-existent and the electrical activity exhibits plateau behaviour (panel
(d)). These observations are consistent with the prediction that for Hopf-induced MMOs,
decreasing τBK switches the activity from spiking to bursting to plateauing (see [137]).

To quantify how changing τBK affects the bursting, we measured the amplitude of the
largest small-amplitude active phase oscillation in a given burst for a fixed gBK with acti-
vation time constant τBK . We then normalized the amplitude relative to the maximum and
minimum voltage values of that burst to obtain the maximal relative amplitude. Averaging
over the number of events (where an ‘event’ refers to a spike, burst or plateau) produced the
mean maximal small-oscillation amplitude for a fixed (τBK , gBK) pair. This was repeated
for each (τBK , gBK) pair used in the dynamic clamp experiments. Figure 6.2(e) provides a
graphical summary of the amplitude data from these experiments for 5 cells. Bursting ap-
pears for fast activation rates with small oscillations of large amplitude (relative to the size
of the pulse). For very fast BK activation, the mean maximal small-oscillation amplitude
decreases and eventually disappears, giving way to plateaus. Figure 6.2(f) shows an equiv-
alent diagram for the associated bursting model. The model predicts the trends observed
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experimentally. Namely, that fast BK activation generates bursting with small oscillations
that decay as τBK is decreased.

6.2.4. Summary. One of the key observations from [122] was that the BK activation
rate τBK played a vital role in the spiking/bursting activity of pituitary cells. GSPT provided
the theoretical framework necessary to understand the burst generating mechanisms. One of
the hallmarks of the Hopf-induced MMOs is the sensitivity to variations in τBK . Two easily
observable traits that change dramatically with τBK are the number and amplitude of small
oscillations in the burst pattern. To test the model predictions, we blocked BK channels
in GH4 cells and injected artificial BK current (via dynamic clamp) at different activation
rates. We observed that at the onset of bursting, the amplitude of the small oscillations is
large. Injecting more rapidly activated BK current reliably decreased the amplitude of the
small oscillations. For injected BK current with sufficiently small τBK , the small oscillations
disappear and the bursting is replaced by plateauing. Thus, the dynamic clamp experiments
support the notion that the bursting arises from Hopf-induced MMOs. The canard mecha-
nism completes the theoretical picture, but experimental evidence for canard-induced MMOs
is more elusive.

6.3. Bursting as a 3-Timescale Problem

Multiple methods from dynamical systems theory have been used to understand pseudo-
plateau bursting. The classic 2-timescale approach (3-fast/1-slow path of Figure 6.1) pro-
vides valuable information about how the transition from plateau to pseudo-plateau bursting
occurs under parameter variation. It also provides information about complex phase reset-
ting properties and the termination of spikes in a burst. Our more novel 2-timescale approach
(1-fast/3-slow path of Figure 6.1) shows that the bursting arises from canard dynamics. This
approach explains the origin of the small-amplitude spikes that occur during the active phase
of the bursting, the transition between spiking and bursting, and provides information about
how the number of spikes per burst varies with parameters. Both methods can be effective
analytic tools, but there has been little justification for one approach over the other.

That the two slow/fast analyses yield key insights points to the fact that the system
evolves on three timescales. Such 3-timescale systems have received little attention [67,
74, 75] and are typically treated as 2-timescale problems, which is the natural setting for
GSPT. Comparative analyses of the two slow/fast methods have been performed [123], how-
ever, there have been few attempts to reconcile these approaches [125] in the context of (6.1).
In Chapter 4 [136], we broadened the scope of GSPT by showing that elementary applica-
tions of the theory can be a powerful analytical tool in understanding 3-timescale problems.
We showed that the two analysis techniques are different unfoldings of a 3-timescale system
(1-fast/2-intermediate/1-slow path of Figure 6.1) and the results from each method can be
reconciled in the 3-timescale context. As to the question of which method is most appro-
priate, we assert that the 3-timescale decomposition provides the best results asymptotically,
independent of the model, as it inherits all of the geometric information contained in the
2-timescale methodologies.

6.4. Extending Canard Theory to FSN I Singularities

One of the key results of our model analysis was that the bursting arose from canard
dynamics. Canards are special solutions of singularly perturbed problems that partition the
flow, helping to organize the dynamics in phase space. They are closely associated with
folded singularities of the reduced flow, and in the case of folded nodes, lead to a local
twisting of invariant manifolds. Folded node canards and folded saddle canards have been
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studied extensively in R3 [119, 140]. The folded saddle-node (FSN) is the codimension-1
bifurcation that gives rise to folded nodes and folded saddles, and there are two types.

The FSN type I corresponds to a true saddle-node bifurcation of folded singularities,
i.e. a folded node and a folded saddle coalesce and annihilate each other. The FSN type II
corresponds to a transcritical bifurcation of a folded singularity with an ordinary singular-
ity. Both types of FSN are common in applications, often leading to the onset of complex
and chaotic dynamics. FSN I singularities arise in the forced van der Pol oscillator, where
they lead to the creation of MMOs [11]. The FSN I has also been identified in 3-timescale
problems as the region of phase space where all three timescales interact [136]. The FSN II
explains the rapid transition fromO(

√
ε)-amplitude limit cycles to relaxation oscillations via

canard explosion in singular perturbation problems [73]. Moreover, both types of FSN tend
to demarcate the regions in parameter space where bursting behaviour can occur [123, 135].
Despite their ubiquity, the dynamics near FSNs are not completely understood.

The existing folded node canard theory has been extended into the FSN II regime for
µ = O(ε) [51], for µ = O(

√
ε) [76] and for the transition between these two settings

[20]. To the author’s knowledge, there are currently no such results for the FSN I. The
main mathematical contribution of this thesis then, was the extension of canard theory into
the FSN I regime [138]. By combining methods from GSPT (blow-up), and the theory of
dynamic bifurcations (analytic continuation into the plane of complex time), we proved the
existence of canards and faux canards near the FSN I limit. We focused on the delayed loss
of stability near the FSN I, showing that canards and faux canards could connect, allowing
trajectories that start on an attracting manifold to traverse the entire length of the repelling
manifold and return to the attracting side.

6.5. Open Questions

In this thesis, we have demonstrated the potency of combining theory, numerics and
experimentation. The theory of canard- and Hopf-induced MMOs provides a theoretical
framework in which experimental predictions can be made. The dynamic clamp technique
can then be used to confirm or counter these predictions in an experimental setting. In spite
of the success of these techniques, there are various limitations, complications and open
questions that have yet to be addressed. Broadly speaking, these fall into three distinct
categories:

(i) canard phenomena in higher dimensions,
(ii) GSPT in 3-timescale systems,

(iii) GSPT in electrophysiology.

6.5.1. Canard Phenomena in Higher Dimensions. Canards and their bifurcations have
been studied extensively in R3. These results extend to higher dimensional systems [143],
where the canards persist with enriched dynamics. That is, the folded singularities (and
canards) can interact with other dynamical objects and these interactions can have drastic
impact on the evolution of a system, such as in [26, 28]. Many of these phenomena have not
been studied in detail and the field is ripe for the picking.

One pressing example in the bursting context is the interaction between a folded node
and a dynamic Hopf bifurcation, such as in the 2-fast/2-slow system presented in [137]. The
issue is how the switch from canard-induced to Hopf-induced MMOs occurs in the fully
perturbed problem 0 < ε � 1. In the singular limit, the switch can be well understood as a
Bogdanov-Takens bifurcation of the layer problem, which alters the jumping mechanism for
the singular orbits. How the switch in the oscillation mechanism perturbs (i.e. how the slow
and fast subsystems interact away from the singular limit) is much less clear. Studies of how



130 6. SUMMARY, DISCUSSION & OPEN QUESTIONS

the BT bifurcation unfolds in systems with one slow variable have been considered [18, 43],
however, the 2-slow variables case is different since the canard phenomenon is generic.

A related issue is what happens to canard-induced MMOs in these higher dimensional
systems. How the bifurcation structure of a system is affected when the canard mechanism
interacts with other mechanisms is an interesting problem. We only briefly touched upon
this in the context of our pituitary cell model (1.3). More specifically, in Section 3.2, we
performed careful one parameter bifurcation analyses of (1.3) with δ = 0 via return maps.
Our return map formulation did not cover all of the dynamics and a careful study of canard
cycles in pseudo-plateau bursting has yet to be done. We then extended the bifurcation anal-
ysis to (1.3) with δ 6= 0 in Section 4.2. However, since the detailed bifurcation structure of
(1.3) was not a primary focus of Chapter 4, we only highlighted the salient features, leaving
more detailed discussions to future work. Moreover, our singular analysis showed that the
switch between dynamic and calcium-conducting MMOs corresponded to a global bifurca-
tion, wherein the geometry of the critical manifold of the 3-fast/1-slow system changed from
a bistable regime to a non-bistable regime. How this global singular bifurcation manifests in
the fully perturbed problem remains an open question.

6.5.2. GSPT in 3-Timescale Problems. Many natural phenomena evolve on more than
two timescales. Currently, GSPT is formulated for 2-timescale problems and there is no
rigorous theoretical framework for problems involving three or more timescales. There are
several interesting problems that need to be addressed such as understanding the local dy-
namics near singularities of the 3-timescale problem and working out which timescales are
truly important to the evolution.

There are various types of singularities that can arise in the 2-timescale problem. For
instance, fast subsystem bifurcations can lead to slow passage effects (such as in the case
of the dynamic Hopf bifurcation). Alternatively, singularities of the slow subsystem (folded
singularities) can generate canards. In the 2-timescale context, these singularities remain
as separate entities. In the 3-timescale scenario however, these singularities can merge and
arise from some higher codimension bifurcation in the double singular limit (ε, δ)→ (0, 0).
The unfolding of such points poses an interesting mathematical problem, an understanding
of which would help to clarify the disparity between the various slow/fast decompositions of
3-timescale systems such as (6.1).

Another interesting problem is the question of which timescale dominates the evolution.
In the 2-timescale context, either the fast or slow timescale dominates and the fast or slow
dynamics closely follow their singular counterparts. In neighbourhoods of the singularities
however, the timescale separation is not so clear and the timescales can mix, a well known ex-
ample being the dynamics near folded nodes where trajectories evolve onO(

√
ε) timescales.

This problem is only exacerbated in the 3-timescale problem, where there are two perturba-
tion parameters, and singularities of the 2-timescale problem become extra degenerate.

6.5.3. GSPT in Electrophysiology. In Section 6.2, we showed how GSPT combined
with electrophysiology can be used to answer biologically inspired questions. That is, obser-
vations from dynamic clamp experiments showed that fast-activating BK current tended to
promote bursting in pituitary cells. Motivated by this, we used GSPT to predict that the root
cause of the observations was a dynamic Hopf mechanism. We then used dynamic clamp
to verify our predictions. Thus, we have provided experimental evidence for Hopf-induced
MMOs, but experimental evidence for the canard-induced MMOs is currently tenuous and
left to future work. The theory (GSPT) and experiments (dynamic clamp) form a symbiotic
relationship and their interplay will continue to both deepen our knowledge of the biological
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mechanisms that generate bursting in pituitary cells, and drive new and innovative mathe-
matical methods for analyzing such systems.
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