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Abstract 

Type 1 diabetes is an autoimmune disorder characterised by hyperglycaemia resulting 

from β-cell destruction and absolute deficiency of endogenous insulin.  Current 

medical management revolves around exogenous insulin therapy to restore blood 

glucose levels to the optimal range.  Despite concerted efforts on the part of 

clinicians, researchers and patients, euglycaemia remains difficult to achieve in day-

to-day practice particularly in response to meals high in protein and/or fat. Given the 

risk of life-threatening acute and chronic diabetic complications resulting from 

inadequate glycaemic control, improving the insulin dose algorithm warrants further 

research.   

The Food Insulin Index (FII) has been proposed as an alternative strategy for 

mealtime insulin dosing in type 1 diabetes.  The FII is a novel system of ranking 

foods based on the insulin response (‘demand’) in healthy subjects relative to an 

isoenergetic reference food.  Using food energy rather than carbohydrate as the 

constant allows all foods to be included (not just those with sufficient carbohydrate), 

and thus all dietary components and their metabolic interactions can be considered, 

allowing a more holistic approach to determining insulin demand.   The goal of the 

research described in this thesis was to deepen our knowledge of the relationship 

between foods and normal physiological insulin demand and explore the clinical 

application of this novel ‘insulin index’ of foods to diabetes management.  We 

hypothesised that there was only limited evidence to support carbohydrate counting as 

the primary dietary therapy in type 1 diabetes and that the use of the FII would 

improve glycaemic control beyond that of carbohydrate counting.  We also 
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hypothesised that the FII could also improve metabolic control in type 2 diabetes by 

reducing insulinaemia. 

Carbohydrate counting is currently considered the gold standard method for 

determining prandial insulin dose in type 1 diabetes mainly on the basis of narrative 

review. We therefore conducted a systematic review and meta-analysis of studies 

assessing the efficacy of carbohydrate counting on glycaemic control in adults and 

children with type 1 diabetes (Chapter 2).  Only 7 studies that met the inclusion 

criteria and meta-analysis revealed there was no significant improvement in 

glycosylated haemoglobin A1c (HbA1c) with carbohydrate counting over general 

dietary advice and/or usual care  (-0.35%, p = 0.096).  This study highlighted the need 

for research into alternative strategies to improve the accuracy of the mealtime insulin 

dose in type 1 diabetes. 

Chapter 3 presents the results of testing 26 new foods for their FII value in healthy 

subjects and exploratory analysis of the complete database of 147 foods. Linear 

regression analysis of nutrients vs FII indicated that postprandial insulinaemia is not 

the response to a single nutrient (carbohydrate) but rather the sum total effect of 

metabolic interactions among different nutrients within foods.  Although a predictive 

equation based on the GL and protein content could be generated, this explained only 

57% of observed insulin responses in healthy individuals. Because the FII cannot be 

accurately calculated based on the known nutrient content of the food, it is best 

determined through in vivo testing.   

The FII reveals a notable insulin demand for foods high in protein and fat, nutrients 

that would normally be disregarded for mealtime insulin dosing with traditional 

carbohydrate counting.  As it is conceivable that using the FII to estimate insulin 
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doses for foods rich in protein and fat might result in hypoglycaemia, the next stage of 

this research assessed the safety of using the FII for these foods as evening meals. Six 

high protein foods with little or no carbohydrate were studied (Chapter 4). Compared 

with carbohydrate counting, the FII algorithm was able to reduce mean blood glucose 

level (5.7 +/- 0.2 mmol/L vs 6.5 +/- 0.2 mmol/L, p = 0.003), while the rate of 

hypoglycaemia was similar in both conditions (48% vs 33% for FII vs carbohydrate 

counting respectively, p = 0.155).  Thus, even in this ‘worst case’ scenario, the FII 

appears to be no less reliable than carbohydrate counting for preventing 

hypoglycaemia. 

Although the FII had been trialled in the research setting, it remained to be seen 

whether the FII was feasible in practice and could be translated into clinically 

meaningful improvements in long-term glycaemic control.  In the first randomised, 

controlled trial of the real-world application of the FII, 26 adults with type 1 diabetes 

counted FID units or carbohydrate grams and calculated their prandial insulin doses 

using an individualised insulin ratio (Chapter 5). The results indicated that FID 

counting was at least as good as carbohydrate counting for glycaemic control (FII: -

0.1 ± 0.1% vs CC: -0.3 ± 0.2%, p = 0.855), with a trend towards reduced risk of 

hypoglycaemia in the FID counters after 12 weeks (-43%, p = 0.057), inferring 

improved glycaemic stability.  

The potential of the FII to improve glycaemic control is not just limited to type 1 

diabetes.  Chronic hyperinsulinaemia may exacerbate insulin resistance and β-cell 

failure in type 2 diabetes. The FII offers an alternate dietary approach to reducing 

postprandial insulin demand and thus hyperinsulinaemia. The final study therefore 

explored this potential by comparing the day-long plasma glucose and insulin 
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responses of 10 adults with non-insulin treated type 2 diabetes to a low-FII vs a high-

FII diet (Chapter 6).  As hypothesised, the low FII diet produced a significantly lower 

day-long insulin response compared to a high FII diet (iAUCinsulin 18,740 ± 3,100 

pmol/L vs 11,000 ± 1,810 pmol/L, p = 0.018), even when matched for macronutrients, 

fibre and GI.  Hence, FII represents a promising dietary strategy for reducing 

postprandial hyperinsulinaemia in type 2 diabetes, thereby reducing insulin resistance 

and preserving β-cell function. 

Collectively, these studies offer exciting insights into the relationship between food 

and normal physiological insulin secretion and the potential of the FII for optimising 

glycaemic control and managing both type 1 and type 2 diabetes.  Until a cure for 

diabetes can be found, the potential for clinically significant enhancements in overall 

glucose control and reduced glycaemic variability offer people with diabetes greater 

wellbeing through a reduced burden of disease and decreased risk of long-term 

diabetes complications. 
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1.1  Introduction 

Type 1 diabetes is an autoimmune disorder characterised by hyperglycaemia resulting in an 

absolute endogenous insulin deficiency.  This life-threatening disorder affects almost 500,000 

children under 15 years of age worldwide, and is estimated to be increasing by around 3% per 

year.  Australia ranks in the top 10 countries worldwide with the highest rates of type 1 

diabetes 1. Current medical management revolves around exogenous insulin therapy to restore 

blood glucose levels to within an optimal range.  At present there is no cure for type 1 

diabetes, therefore effective strategies to assist in the achievement and maintenance of 

normoglycaemia are required to promote the acute and long-term health and wellbeing of 

individuals with type 1 diabetes. 

Carbohydrate counting has long been considered the cornerstone of intensive insulin therapy, 

with bolus insulin doses matched to the total carbohydrate content of the meal 2.  This practice 

is based on the premise that carbohydrate is the predominant macronutrient contributing to the 

rise in post-prandial glycaemia, however the underlying theoretical basis and its practical 

utility have since been questioned 3-7.   Current international recommendations supporting the 

use of carbohydrate counting in practice are based simply on narrative review and grading of 

the limited available evidence 2, 6.  

Despite significant advancements in insulin therapy, optimum postprandial glycaemic control 

remains difficult to achieve.  Even patients within target glycated haemoglobin A1c (HbA1c) 

levels continue to experience unanticipated hyper- and hypoglycaemia, particularly in 

response to meals high in protein and/or fat3, 8, 9. Given the risk of developing life-threatening 

acute and chronic diabetic complications, improving the insulin dose algorithm presents a 

significant clinical issue. 
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Numerous studies in healthy subjects have demonstrated that the same amount of 

carbohydrate from different food sources produces wide variations in the normal blood 

glucose and insulin responses3, 10-12.  In addition, in vitro and in vivo studies have 

demonstrated the role of protein and fat in addition to carbohydrate on normal physiological 

insulin secretion13-15.  A more comprehensive understanding of the relationship between 

dietary factors and physiological insulin secretion evoked by foods is, therefore, of clinical 

and practical importance in the management of type 1 diabetes. 

To address this gap in the evidence and thus clinical practice, a Food Insulin Index (FII) has 

been proposed.  The FII is a novel algorithm of ranking foods based on the insulin response 

(‘demand’) in healthy subjects relative to an isoenergetic reference food 16.  Using food 

energy as the constant allows all foods to be included, not just those with sufficient 

carbohydrate content, and thus all dietary components and their metabolic interactions can be 

considered, allowing a more holistic approach to determining insulin demand. Previous 

research in healthy people has demonstrated that the FII algorithm is a more accurate 

predictor of observed insulin responses to composite meals than carbohydrate content17.  

Furthermore a preliminary clinical trial in adults with type 1 diabetes yielded promising 

results, showing the FII algorithm was associated with improved postprandial glycaemia 

without increased risk of hypoglycaemia compared to carbohydrate counting following a 

mixed meal 18.  The goal of the research described in this thesis therefore, was to deepen our 

knowledge of the relationship between foods and normal physiological insulin demand and 

explore the clinical application of this novel ‘insulin index’ of foods to diabetes management.  

We hypothesised that there was only limited evidence to support carbohydrate counting as the 

primary dietary therapy in type 1 diabetes and that the use of the FII would improve 
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glycaemic control beyond that of carbohydrate counting.  We also hypothesised that the FII 

could also improve metabolic control in type 2 diabetes by reducing insulinaemia.!
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1.2 Physiological insulin secretion 

!

1.2.1   Overview of insulin 

1.2.1.1 Physiological insulin function 

Insulin is a polypeptide hormone that plays a central role in the regulation of glucose 

homeostasis.  It is the most potent anabolic hormone and its principal action is to: 

• Facilitate the entry of glucose and amino acids into the cells 

• Suppress the release of glucose from the liver 

• Promote the synthesis and storage of glycogen and fats 

   

1.2.1.2 Structure and biosynthesis of insulin 

Insulin is synthesised in the β-cells of the Islets of Langerhans in the pancreas following the 

systematic production and processing of its biologically inactive precursors.  

Insulin is composed of two peptide chains, the A and B chains, connected by two disulphide 

bonds, with an additional disulphide bond in the A chain (FIG 1.2.1.1)19.  In humans, the A 

chain consists of 21 amino acids while the B chain is made up of 30 amino acids. 
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Figure 1.2.1.1: Chemical structure of Insulin: Two peptide chain (A and B chains) connected 

by two disulphide bonds, with an additional disulphide bond in the A chain.  Insulin is 

synthesised from proinsulin (pictured) by the removal of the C-peptide chain19.   

Insulin biosynthesis begins with the translation of insulin mRNA to produce preproinsulin in 

the β-cell.  This single-chain molecule has a 24 amino acid signal peptide attached to the N-

terminus (FIG 1.2.1.2A20).  The signal peptide facilitates the translocation of the 

preproinsulin from the cytosol across the rough endoplasmic reticulum membrane and into 

the cell lumen.  During this translocation, preproinsulin is converted into the prohormone 

proinsulin by signal peptidases, which remove the signal peptide (FIG 1.2.1.2B20).  Within 

the endoplasmic reticulum, several specific endopeptidases excise the 31 amino acid C-

peptide chain from proinsulin to derive the bioactive insulin molecule (FIG 1.2.1.2C20).  The 

insulin is then stored in the β-cell until the cell is stimulated to release the insulin into 

circulation. 
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Figure 1.2.1.2: Structure of A) Preproinsulin, B) Proinsulin and C) Insulin, showing the 

signal peptide, A and B chains linked by disulphide bonds and C-peptide and the processing 

from the biologically inactive preproinsulin into the bioactive insulin hormone20. 

Under normal circumstances, the β-cell maintains a readily available pool of insulin that can 

be rapidly secreted in response to a stimulus, such as an increase in blood glucose. Any 

insulin release is compensated for by a corresponding increase in insulin biosynthesis, so that 

β-cell insulin stores are constantly maintained.  

 

1.2.1.3 Insulin secretion 

Insulin is a potent regulator of metabolism and the β-cell is exquisitely designed to detect and 

respond to the ingestion of carbohydrate, protein, fat, gut hormones, neural stimulation and 

pharmacological agents to stimulate and/or amplify insulin secretion.   
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1.2.2   Glucose-stimulated insulin secretion 

1.2.2.1 Introduction 

Elevation of the blood glucose level is the most potent stimuli for insulin release from the β-

cell in the pancreas. In 1981, Slama et al. showed there was a highly significant correlation 

between the amounts of carbohydrate consumed, as sugar (dextrose) or as part of mixed 

meals, and the total amount of insulin needed to restore blood glucose levels to baseline levels 

in type 1 diabetes using an artificial pancreas21.  Further work in this field confirmed the 

relationship between carbohydrate intake and insulin requirement3, 4, 22, 23.  However, these 

studies failed to account for other factors affecting normal insulin secretion in healthy 

subjects, as discussed in the following sections.  

 

1.2.2.2 Mechanism 

In the presence of elevated blood glucose concentrations, glucose is transported into the 

cytosol of β-cell in the pancreas by the GLUT-2 transporter.  This process occurs 

independently of insulin.  Once inside the β-cell, glucose is phosphorylated into glucose-6-

phosphate by glucokinase (GK).  As this is the rate-limiting step, it effectively traps the 

glucose inside the β-cell.  Glucose-6-phosphate undergoes glycolysis, producing pyruvate in 

the cytosol.  Pyruvate enters the mitochondria as acetyl-CoA and continues through the citric 

acid cycle and electron transport system, producing multiple high-energy ATP molecules.  

Each glucose molecule oxidised produces 38 ATP molecules through aerobic metabolism.  

The additional ATP molecules produced increases the ATP:ADP ratio.  The ATP molecules 

bind to the ‘ATP-gated K+ channel’, closing the channel and thus preventing K+ ions from 

‘leaking’ out.  Retention of the K+ ions depolarises the cell from -70 mV, which opens the 
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voltage-sensitive Ca2+ channels when the membrane potential reaches -30 mV, and allows the 

Ca2+ enter the β-cell.  The increased concentration of Ca2+ ions acts as an intracellular signal 

triggering the exocytosis of insulin from the β-cell and into the blood (FIG 1.2.2.1). 

 

 

Figure 1.2.2.1: Schematic diagram of glucose-stimulated insulin secretion24  

 

1.2.2.3 Effect of different carbohydrate sources 

The type of carbohydrate consumed is also an important factor in determining the 

insulinaemic response.  Available carbohydrate alone has been shown to account for just 49% 
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of the blood insulin response to single foods and there is only a marginal correlation between 

available carbohydrate and insulin response for mixed meals (r = 0.53, p = 0.06)16.  However 

when both the amount and type of carbohydrate (as quantified by the Glycaemic Index (GI), a 

physiological measure of the glycaemic response to carbohydrate-containing foods) is taken 

into consideration, the two factors explain 59% of the variation in insulin response to single 

foods and 46% of the variation to mixed meals 16. 

 

1.2.3   Protein-stimulated insulin secretion 

1.2.3.1 Introduction 

Although protein has a negligible effect on blood glucose levels in healthy subjects, it has 

shown to be a potent insulin secretagogue.  Physiologically, insulin is needed to promote the 

uptake of amino acids and synthesis of new proteins.  

Dietary proteins are able to directly stimulate insulin secretion, as amino acid metabolism in 

the β-cell shares common pathways with glucose metabolism, which leads to the exocytosis 

of the insulin vesicles from the β-cell, ie insulin secretion14.  The specific mechanisms of 

protein-stimulated insulin secretion will be discussed in detail later in this section. 

Dietary protein is digested into small peptides and free amino acids by proteases in the 

stomach and small intestine, which can then be easily transported across the intestinal wall by 

a wide variety of transporters25.  Compared with carbohydrate metabolism, this is a relatively 

slow process, requiring around 8 h, although the majority of protein is digested and absorbed 

within 4 h26. The gut mucosal cells catabolise aspartate, glutamate and glutamine for fuel, 

while the remaining amino acids are transported to the liver through the portal vein.  Once in 

the liver, the nonessential amino acids are largely deaminated, with the nitrogen excreted and 
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the carbon skeleton used for glucose synthesis.  The essential amino acids however, are 

passed into general circulation where they can be used for new protein synthesis or skeletal 

muscle fuel if required. It is these circulating amino acids, which stimulate insulin secretion27.  

 

1.2.3.1.1 Healthy subjects 

In isolation, protein is considered a relatively weak stimulus for insulin secretion compared to 

glucose, however when combined with carbohydrate, the resulting insulin response is 

significantly increased above that of glucose alone27-30.   

In healthy subjects, ingestion of 50 g of protein as lean beef stimulated 72% less insulin than 

that following the ingestion of 50 g of glucose29.  When both glucose and protein was 

consumed, the insulin response was 127% greater than that of glucose alone, indicating an 

additive effect between protein and glucose. 

Rabinowitz et al. also found there was only a slight increase in plasma insulin following the 

ingestion of protein alone, however when both protein and glucose were combined, the 

resulting insulin dose was twice that of glucose alone and four times that of protein alone31. 

These findings are similar to that observed by Berger and Vongaraya, who found that the 

insulin response to 50-100 g of protein was 21% of that following the ingestion of 100 g 

glucose28.  This result was consistent regardless of variations in the portion size of protein and 

whether the protein source was casein or gelatin.   

A more recent study found that insulin secretion was increased by 166% when carbohydrate 

and protein were combined, compared with that of glucose alone32.  Nilsson et al also found 
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some protein sources alone (including milk, cheese, whey and cod) could increase insulin 

secretion by 124-190% above that of the response to carbohydrate (white bread)33. 

There is further evidence to suggest the dose-response to protein is not linear.  When 16 g of 

protein was added to a liquid test meal containing 58 g of sugars and 0 g of protein, the 

insulin response doubled34.  However, when the protein was increased to 50 g, there was no 

further increase in the insulin response. In fact there were no significant differences in the 

insulin response whether the protein load was 16, 25, 34 or 50 g. 

 

1.2.3.1.2 Type 2 diabetes 

The insulin response to protein in adults with type 2 diabetes is remarkably higher than that of 

healthy subjects.  When glucose was combined with protein, the resulting insulin response 

was nearly double that of the response to glucose alone and about 4-fold higher than the 

insulin response observed in healthy subjects35.  Likewise, the insulin response to the 

ingestion of protein alone was 80% of that following the ingestion of glucose alone in those 

with type 2 diabetes, compared with just 21% in healthy subjects28  Manders et al. also found 

there was a significant increase in the plasma insulin response in subjects with type 2 diabetes 

after the consumption of carbohydrate with protein, compared with healthy subjects36.  The 

response to carbohydrate with protein was 66% higher than the response to carbohydrate 

alone in healthy subjects but 141% higher in those with type 2 diabetes. 

When seven subjects with type 2 diabetes were given 50 g of glucose, 50 g of protein and 50 

g of carbohydrate with 50 g of protein combined on separate occasions, there were similar 

plasma insulin responses to both glucose and protein when each was given alone, however the 

response was 2.5 times greater for the combination than the response to either macronutrient 
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individually and 30% greater than the sum of the individual responses to glucose and 

protein35.  These results suggest that although the insulin response to carbohydrate and protein 

combined is additive of the responses to the individual macronutrients in healthy subjects, 

there is a synergistic relationship in type 2 diabetes, increasing the insulin response above and 

beyond that of the individual responses.   Furthermore, similar to when protein was given 

alone, the plasma insulin response to glucose and protein combined had not returned to the 

fasting level after 5 h, indicating the final response may have been even greater than that 

observed within the time constraints of the experiment.  

 

1.2.3.1.3 Type 1 diabetes 

The effect of protein on blood glucose levels is dependent on having sufficient amounts of 

insulin.  In the absence of sufficient exogenous insulin in people with type 1 diabetes, it has 

been shown that protein can raise the blood glucose level.   

Smart and colleagues demonstrated that increasing the protein content of the meal 

independent of the other macronutrients increases the postprandial blood glucose response37.  

In this study, the protein content of the meal was raised from 5 g to 40 g while the other 

macronutrients remained constant and the insulin dose was determined by the carbohydrate 

content of the meal (ie the same insulin dose was given under both conditions as the 

carbohydrate content did not vary).  The mean postprandial glucose excursions after the high 

protein meal were 2.6 mmol/L higher than the glucose excursions after the low fat meal 

between 210 to 300 mins (-0.3 mmol/L vs. -2.9 mmol/L; p = 0.01), demonstrating that protein 

in the absence of sufficient insulin raises blood glucose levels and thus there is an insulin 

requirement for protein in type 1 diabetes. 
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1.2.3.2 Effect of different protein sources 

Although almost all protein sources are capable of stimulating insulin secretion in the absence 

of carbohydrate, the potency of protein on insulin secretion appears to depend on the quality 

of the protein consumed, with the literature revealing that different protein sources have 

different effects on insulin secretion.  Pal and Ellis compared four different protein sources in 

lean, healthy men and found that while each produced a significant insulin response, whey 

was the most potent secretagogue, followed by fish, turkey and then egg38.  Nilsson et al also 

found whey to be the most potent of all protein sources tested, with a plasma insulin response 

90% higher than the response to white bread in healthy subjects33.  The insulinotropic 

properties of whey may be due, at least in part, to that fact that it is rapidly digested and thus 

readily bioavailable.  Milk and cheese also produced insulin responses 24 and 25% greater 

than the response to white bread respectively, however the differences were not statistically 

significant33.  In contrast to the other test foods, the insulin response to cod fish was 11% 

lower than that of white bread.   

In adults with type 2 diabetes, the insulin response to each protein food tested (cottage cheese, 

gelatin, beef, turkey, fish, soy and egg whites) when combined with glucose was more than 

two-fold greater than the response to glucose alone, even though the amount of protein was 

only half that of glucose on a gram-for-gram basis39.  The relative area under the curve was 

greatest for glucose + cottage cheese, with a response 360% greater than that of glucose 

alone.  The lowest response was for glucose + egg whites, however this was still significantly 

higher than that for glucose alone, producing a plasma insulin response 190% greater than 

glucose alone.  

These relative differences in the insulinotropic properties of different protein sources are 

similar to that reported by Bao et al.16  On an isoenergetic basis, dairy products such as skim 
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milk, cheese and yoghurt produced an insulin response more than two-fold greater than other 

protein sources such as roast chicken, beef steak and walnuts.  Interestingly they also reported 

differences within protein sources, for example skim milk produced an insulin response more 

than twice that of full-cream milk.  Some protein sources also produced an insulin response 

comparable to that of carbohydrate sources, for example beef steak produced a similar 

response to that of grain bread.   

 

1.2.3.3 Mechanism of individual amino acids 

The differences in the reported insulinotropic properties of different protein sources may be 

attributable to the variations in the amino acid composition of the proteins employed.  Only 

certain amino acids can acutely and chronically regulate insulin secretion and the amino acids 

vary in their mode of action and the magnitude of their insulinotropic effect14. In descending 

order, arginine, lysine, leucine and phenylalanine are the most potent insulin secretagogues, 

however all essential amino acids, with the exception of histidine, stimulate some insulin 

release40.  Intravenous administration of a 30 g mixture of all 10 essential amino acids and of 

certain individual amino acids produces larger increases in plasma insulin than does the 

infusion of 30 g of glucose.  A mixture of the 10 essential amino acids however, is more 

potent than any single amino acid suggesting there is a synergistic effect among amino 

acids40.  It has been reported that individual amino acids can induce insulin secretion only at 

high concentrations or in combination rather than physiological concentrations in vitro14, 15. 

Different amino acids employ different mechanisms to stimulate insulin secretion directly.  

There are three primary mechanisms within the β-cell: 1) metabolism with generation of ATP 

(L-alanine, L-proline, L-leucine, L-glutamine), 2) co-transport with sodium resulting in 
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membrane depolarisation (L-alanine, L-proline) and 3) uptake of cationic amino acids (L-

arginine, L-lysine) and membrane depolarisation41 (FIG 1.2.3.1)41.  

 

 

Figure 1.2.3.1: Schematic diagram of insulin secretion in β-cells stimulated by glucose, fatty 

acids and specific amino acids. AAs are accumulated within the β-cell by a number of 

different transport systems. AAs stimulate insulin secretion in β-cells through three different 

mechanisms: (i) metabolism with generation of ATP (L-alanine, L-proline, L-leucine, L-

glutamine); (ii) co-transport with sodium resulting in membrane depolarisation (L-alanine, L-

proline); (iii) uptake of cationic AAs (L-arginine, L-lysine) and membrane depolarisation. 

AA: amino acid. PD: pyruvate dehydrogenase. PC: pyruvate carboxylase. PDG: phosphate-

dependent glutaminase. GDH: glutamate dehydrogenase. TCA: tricarboxylic acid41 
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1.2.3.3.1 Arginine 

L – arginine is a cationic, conditionally-essential amino acid and is recognised as one of, if 

not the most, powerful amino acid secretagogue and is an essential synergistic compound for 

nutrient-induced insulin secretion14.  However its effect on insulin secretion is seen only in 

the presence, but not absence, of glucose in isolated β-cells, indicating there is a synergistic 

relationship between glucose and arginine42.  Physiologically, it is impossible for there to be a 

complete absence of glucose within the β-cell and therefore when single amino acids were 

given intravenously to healthy men, arginine produced the largest incremental increases in 

plasma insulin40.  Conversely, when arginine was given orally in amounts similar to that 

found in a large, high-protein meal, it did not stimulate a rise in plasma insulin levels when 

consumed either in isolation or in combination with glucose43.  Similar results have also been 

observed following low doses of arginine, equivalent to that found in commercial sports 

supplements44-46.  On the other hand, large doses of free arginine consumed with carbohydrate 

as a beverage does produce large increases in both plasma arginine and plasma insulin 

concentration. At this dosage, however, arginine causes severe diarrhea for several hours47. 

Arginine is transported across the membrane and into the β-cell through electrogenic transport 

by catatonic amino acid transporters (mCAT2A in mice)48.  The accumulation of this 

positively charged amino acid within the β-cell results in membrane depolarisation (without 

changing the KATP channel activity or resting membrane K+ permeability42, 49), triggering the 

opening of the voltage-gated Ca2+ channels and causing a rise in intracellular calcium, which 

stimulates insulin exocytosis and thus insulin secretion48.  

Furthermore, arginine may also be converted L-glutamate, generating additional metabolic 

coupling factors (MCF), which amplify the glucose-stimulated insulin secretion pathways and 

thus further enhance insulin secretion14. 
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1.2.3.3.2 L-glutamine 

L-glutamine alone does not stimulate or enhance glucose-stimulated insulin secretion14.  

Although glutamine is rapidly taken up by the pancreatic β-cells, it has been proposed leucine 

is needed to activate glutamate dehydrogenase (GDH) in order to increase glutamine entry 

into the tricarboxylic acid (TCA) cycle within the B-cell and thus enhance insulin secretion50. 

The production of y-aminobutyric acid (GABA) from glutamine has been proposed as an 

explanation for the paradox that glutamine alone does not stimulate insulin release.  When 

glutamine is consumed alone, it is preferentially metabolised to GABA and L-aspartate after 

glutamine enters the TCA cycle.  Since there is no oxidation of glutamine in the process, the 

stimulus-secretion coupling via ATP would be minimal51. 

Glutamine however, has been shown to play a prominent role in mediating insulin release in 

vitro when given as a mixture of amino acids in the presence of glucose.   It has been 

hypothesised that glutamine plays a signalling role in insulin secretion, but only in the 

presence of elevated intracellular ATP and calcium concentrations52.  Metabolism of glucose 

in the β-cell produces ATP in order to activate the rest of the glucose-stimulated insulin 

secretion pathway.  ATP however, also inhibits glutaminolysis and drives the glutamine 

synthetase reaction to generate glutamine from glutamate and ammonia.  The two functions 

work synergistically to raise the intracellular glutamine concentration.  Glutamine, or its 

analogue DON, may increase the intracellular calcium concentration or enhance the 

downstream calcium signalling to amplify insulin exocytosis52.  

Glutamine has also been shown to act as a trigger and potentiator of GLP-1 release, which is 

consistent with its role as the major metabolic fuel for the gut.  In the murine GLP-1-secreting 

cell line, GLUTag, glutamine was a more potent GLP-1 (glucose-like peptide 1) secretagogue 

than glucose or other amino acids53.   
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1.2.3.3.3 Intracellular L-glutamate 

It has been proposed that L-glutamate promotes insulin secretion, acting as part of a metabolic 

coupling factor to amplify the glucose-stimulated insulin secretion pathway.  Total cellular 

glutamate levels have been reported to increase the insulin response to glucose in human, 

mouse and rat islets and clonal cells54-56, although other groups have reported no changes in 

insulin response57, 58.  

Glutamate may bring about its action as an intracellular messenger, being transported into the 

insulin vesicles within the β-cell by glutamate transporters, where it promotes insulin 

exocytosis and thus insulin secretion59, 60.  

The glutamate-aspartate shuttle, in conjunction with the malate – α-ketoglutarate shuttle, 

plays a key role in the maintenance of glucose metabolism in the β-cell.  The malate – α-

ketoglutarate shuttle moves malate into the mitochondria in exchange for α-ketoglutarate 

(FIG 2.3.2). In the mitochondrial matrix, malate dehydrogenase (MDH) generates 

oxaloacetate (OOA) from malate, converting NAD to NADH in the process.  OAA is then 

transaminated to aspartate, using glutamate as the amino group donor. Aspartate is exported 

into the cytosol through the inner mitochondrial membrane in exchange for glutamine, where 

it is converted back to OOA and then to malate, regenerating the cycle to be used by the 

malate- α-ketoglutarate shuttle.  The synergistic relationship between the Glutamate-Aspartate 

shuttle and the Malate- α -ketoglutarate shuttle plays a key role in maintenance of glucose 

metabolism, since the shuttles allow the regeneration of NADH within the matrix, which is 

then oxidised into NAD and the derived electrons are transferred to the electron transport 

chain, creating the proton electrochemical gradient driving ATP synthesis, increasing the 

ADP/ATP ratio and resulting in insulin release15, 56.   
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Figure 1.2.3.2: Role of the Glutamate-Aspartate and Malate- α-Ketoglutarate shuttles in 

amino acid-stimulated insulin secretion.  The synergistic relationship between the Glutamate-

Aspartate shuttle and the Malate- α-ketoglutarate shuttle plays a key role in maintenance of 

glucose metabolism, since the shuttles allow the regeneration of NADH within the matrix, 

which is then oxidised into NAD and the derived electrons are transferred to the electron 

transport chain, creating the proton electrochemical gradient driving ATP synthesis, 

increasing the ADP/ATP ratio and resulting in insulin release. ASP: Aspartate; GLU: 

Glutamate; α-KG: α-Ketoglutarate; OOA: Oxaloacetate.  

!
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1.2.3.3.4 L-alanine 

Alanine has been shown to increase insulin secretion in isolated clonal cells61.  The 

insulinotropic effect of alanine is reportedly a result of co-transport with sodium, which 

causes the depolarisation of the β-cell membrane, an increase in intracellular calcium and 

results in insulin secretion62, 63.   

The metabolism and oxidation of alanine have been shown to be important factors in its 

efficacy as a secretagogue55.  However prolonged exposure to alanine has previously been 

shown to reduce subsequent alanine-induced insulin secretion, indicating a non-linear dose-

response relationship61. 

!

1.2.3.3.5 Homocysteine 

Unlike the other amino acids, homocysteine significantly inhibits both glucose- and amino-

acid-stimulated insulin secretion14, 15, 41, 64.  The precise mechanism is not clear, however the 

inhibition of insulin secretion by homocysteine occurs rapidly, reversibly and in a dose-

dependent manner.   

Homocysteine is formed during the metabolism of methionine and could exert its inhibitory 

effect through interactions with key molecules to modulate enzyme activities or modify 

proteins65 or cause oxidative stress damage64.  For example, homocysteine has been shown to 

significantly reduce the labelling of TCA cycle endpoints following glucose metabolism, 

which may affect the triggering and potentiation of insulin secretion.  

Homocysteine also inhibits the insulinotropic effect of alanine and arginine.  It has been 

suggested that homocysteine may also cause further damage by decreasing the bioavailability 
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of nitric oxide, which is needed in a constant low supply for insulin secretion and β-cell 

function. 

 

1.2.3.3.6 Branched Chain Amino Acids 

Branched chain amino acids (BCAA) refer to those amino acids with an aliphatic (or non-

aromatic) side chain with a branch, ie a carbon atom bound to more than two other carbon 

atoms.  This group includes leucine, isoleucine and valine. 

BCAA are commonly reported to be potent secretagogues in the literature40, 66, however the 

efficacy of the individual amino acids within the group varies despite their similar structure.  

For example, leucine has been shown to be among the top few amino acids producing 

significant insulin responses, whereas valine had minimal effect on insulin in dogs67.  Floyd et 

al. found similar results in humans, with leucine being among the most potent amino acids 

when tested on an equimolar basis40.  In both these studies, the amino acid load was 

administered intravenously, however the results remain consistent when leucine was ingested 

orally in combination with carbohydrate, with plasma leucine concentrations significantly 

correlating with the 2 h postprandial observed insulin response47. 

In vitro studies have also found that the addition of leucine stimulates insulin release in 

pancreatic β-cells50.  They revealed that leucine activates glutamate dehydrogenase activity in 

the β-cell, acting as both a metabolic substrate and activator.  Glutamate dehydrogenase is a 

key enzyme controlling amino acid metabolism in the β-cells of the pancreas and its 

activation leads to increased glutaminolysis and a subsequent increase in the TCA cycle 

activity, inhibition of the ATP-regulated potassium (KATP) channel activity and thus enhanced 

insulin secretion32, 50.  In addition, leucine, or its transaminated product α-ketoisocaproate 
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may impact insulin secretion through direct inhibition of the KATP channel currents68. 

Dairy products, particularly whey protein, are well-known insulin secretagogues despite their 

comparatively low glycaemic response.  The efficacy has been attributed to their high BCAA 

content33, 69. 

One of the commonly cited reasons for the efficacy of BCAAs is that their structure means 

they are rapidly digestible and thus the bioactive peptides and amino acids are readily 

available in the bloodstream32, 33, 69.  Just as Van Loon et al. saw with leucine, there is also a 

positive correlation between the postprandial insulin levels and the increase in the plasma 

amino acids level, with the response intensified for all BCAA, including leucine, isoleucine 

and valine32.  This importance of digestion time is clearly demonstrated by casein and whey, 

two milk protein fractions.  Although both proteins have high BCAA contents and high 

digestibility, casein coagulates when it reaches the stomach, slowing its digestion and the 

release of amino acids into circulation resulting in a weaker insulin response.  Whey on the 

other hand, does not coagulate and is therefore digested faster and elicits a stronger insulin 

response33, 70. 

Another possible mechanism by which leucine may stimulate insulin secretion is through the 

activation of a serine and threonine kinase protein, mammalian target of rapamycin (mTOR).  

Activation of this protein significantly increases gene transcription and protein synthesis in 

pancreatic β cells, which in turn increases insulin secretion71. 
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1.2.4   Fat-stimulated insulin secretion 

1.2.4.1 Overview 

Changes in the physiological plasma free fatty acid (FFA) levels are important for regulating 

β-cell function and insulin release.  The acute stimulatory effect of FAs on glucose stimulated 

insulin secretions has been demonstrated both in vitro72-74 and in vivo75-77.   

Although fatty acids do not initiate insulin release, their presence is essential for glucose-

stimulated insulin secretion14 and, at higher concentrations of FFA, they amplify the glucose-

stimulated insulin response, significantly enhancing insulin response78. This has been clearly 

demonstrated by Collier and colleagues77, 79, 80. When fat is ingested with carbohydrate, it 

results in lower blood glucose levels and significantly higher insulin levels compared with 

those following carbohydrate ingestion alone.  In one study, the addition of 37.5 g of fat to 75 

g of carbohydrate resulted in a ~60% greater insulin response, compared with the 

carbohydrate meal alone80.  They proposed that this effect was due to the fat potentiating 

insulin release, possibly due to increased pancreatic insulin release combined with increased 

incretin hormone release (incretin hormone-stimulated insulin release discussed further in 

following section).  At the same time as insulin levels increase, fat also slows gastric 

emptying and therefore the release of carbohydrate in the intestine, accounting for the lower 

blood glucose levels.   

While acute exposure to plasma FFA substantially increases insulin secretion14 from the β-

cell, low plasma FFA levels severely impair glucose-stimulated insulin secretion.13 This is 

important for normal metabolism, as insulin is required for the uptake of FFA and the 

synthesis of new fats.  However during fasting, when plasma glucose and FFA levels are low, 

this excess insulin output is not required and therefore insulin release is effectively reduced. 
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While acute exposure (1-3 h) of pancreatic β-cells to FFA enhances insulin secretion, long-

term exposure (6-24 h) to high FFA concentrations desensitises the β-cell, impairs glucose-

stimulated insulin release and thus suppresses insulin secretion13, 14, 24.  The accumulation of 

triglycerides in the β-cell promotes lipotoxicity, causing β-cell dysfunction and apoptosis, 

reducing the β-cell mass81.  Furthermore, prolonged in vitro exposure to high levels of both 

glucose and FFA also impairs insulin gene expression82.  

 

1.2.4.1.1 Type 2 diabetes 

Diets high in fat, particularly rich in saturated fatty acids, are associated with impaired insulin 

sensitivity and secretion, insulin resistance, hyperinsulinaemia and the development of type 2 

diabetes83-86.  Exposure to unsaturated fats also impairs glucose-stimulated insulin secretion 

but without causing insulin resistance83. 

 

1.2.4.1.2 Type 1 diabetes 

There has been recent interest in the implications of fatty acid-modulated insulin secretion on 

bolus insulin requirements in type 1 diabetes.  High fat meals often result in delayed 

hyperglycaemia in patients with type 1 diabetes as shown when insulin was dosed according 

to the carbohydrate content of the meal9, 87-89.  Lee and colleagues89 gave 8 adults with type 1 

diabetes (mean age 48 yrs) using insulin pump therapy two test meals under three conditions 

as follows; 1) Control meal using standard wave (24% fat); 2) High fat meal using standard 

wave (54% fat) and 3) High fat meal using dual wave (70% of the insulin dose given 

immediately, and the remaining 30% administered over a 5 h period).  Postprandial glycaemia 

was significantly increased with the high fat meal using a standard wave bolus compared with 
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when the dual wave bolus was applied to the same meal.  Interestingly, the postprandial 

glycaemic response was relatively flat for the high fat meal with the dual wave bolus, 

however an additional 4.7 units of insulin was administered under this condition which shows 

that, not only does fat change the glycaemic profile, but it also creates an additional insulin 

demand to maintain postprandial normoglycaemia.  

In these studies, the resulting delayed hyperglycaemia is attributed to delayed gastric 

emptying and therefore they suggest insulin delivery patterns need to be altered to better 

match the glycaemic pattern (eg the use of dual or square wave patterns over a 

normal/standard wave using insulin pump technology)88.  

More recently, Wolpert et al. demonstrated that adults with type 1 diabetes needed additional 

insulin for a high fat meal compared with a low fat meal90.  A closed-loop system was used to 

detect the circulating blood glucose level and automatically adjust the insulin delivery in 

seven patients over separate 18 h periods.  On average, patients required 42% more insulin 

following the high fat meal (60 g fat) compared to the low fat meal (10 g fat).  Despite this 

increased insulin infusion, the high fat meal also caused more postprandial hyperglycaemia.  

The researchers postulated that the observed increased insulin requirement and 

hyperglycaemia may be due to insulin resistance caused by elevated FFA levels but 

acknowledged that gastric emptying and incretin hormones may also play a role.  

These results were supported by Smart and colleagues, who demonstrated that increasing the 

fat content of the meal independently increased the postprandial blood glucose response in 33 

children with type 1 diabetes37.  In this study the fat content of the meal was raised from 4 g 

to 35 g while the other macronutrients remained constant and the insulin dose was determined 

by the carbohydrate content of the meal (ie the same insulin dose was given under both 

conditions as the carbohydrate content did not vary).  The mean glucose excursions after the 
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high fat meal were 3.4 mmol/L higher than the glucose excursions after the low fat meal 

between 210 to 200 minutes postprandially (0.6 mmol/L vs -2.9 mmol/L; p = 0.01), 

demonstrating there is a need for additional insulin when meals contain more fat. 

In contrast to these studies, Dunn and Carroll found that fat did not alter short-term basal or 

postprandial insulin requirements in type 1 diabetes91.  In this study, blood glucose levels and 

insulin requirements were determined by an artificial β-cell following 1 day (5 consecutive 

meals) on a high fat diet (40% fat) and 1 day on a fat-free diet (0% fat) in random order.  

They found that elimination of the calories from fat had no significant impact on the blood 

glucose response or the postprandial, basal or total insulin requirements.  As the calories from 

fat were not replaced by another macronutrient, the two test meals were not isocaloric, which 

may have confounded the results.  

Kordonouri and colleagues found that postprandial glycaemia was significantly lower in 

children and young people (6-21 yrs) with type 1 diabetes when the mealtime insulin dose 

was increased to account for both the fat and protein contents of the meal and a dual wave 

insulin delivery pattern employed to account for the delayed hyperglycaemia observed92.  

This lower postprandial glycaemic rise however, was associated with a higher risk of 

hypoglycaemia.   

 

1.2.4.2 Mechanism 

Although the effect of fat-stimulated insulin release is widely reported in the literature, the 

complete mechanism by which fatty acids stimulate insulin secretion remains unknown13.  It 

is thought that fatty acids regulate insulin secretion through 3 main pathways, known as the 

‘trident model’ of β-cell regulation14. 
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1) Malonyl-CoA/Long-chain CoA Signalling 

FFA enter the pancreatic β-cell and are converted into long-chain acyl CoA (LC-CoA) by 

acyl-CoA synthase.  FFA metabolism is mainly controlled by substrate supply.  During 

fasting, LC-CoA is transported into the mitochondria, where β-oxidation of the fatty acids 

occurs, feeding into the TCA cycle and leading to insulin exocytosis.  LC-CoA is also thought 

to be an effector molecule in signal transduction within the β-cell as it can also a) activate the 

Protein Kinase C (PKC) signal transduction pathway involved in GSIS, b) interact with the 

KATP channel to close it, c) stimulate calcium influx through the voltage-gated calcium 

channels or calcium mobilisation from intracellular stores and d) directly activate and enhance 

insulin exocytosis78.  At fasting blood glucose levels however, this fatty acid metabolism has 

little impact on insulin levels and primarily assists in maintaining basal insulin secretion13, 14.  

Conversely, when high levels of glucose are available, glycolysis occurs, creating Acetyl-

CoA, which feeds into the TCA cycle and upregulating the glucose-stimulated insulin 

secretion.  However, Acetyl-CoA also subsequently produces Malonyl-CoA, which inhibits 

the β-oxidation of LC-CoA.  Therefore Malonyl-CoA effectively switches off β–cell fatty 

acid metabolism, leading to an increase in cytosolic levels of LC-CoA, which potentiates 

glucose-stimulated insulin secretion through a variety of mechanisms, ultimately activating 

insulin exocytosis.  Therefore, in the presence of both glucose and fatty acids insulin release 

is enhanced14, 78. 

 

2) Fatty acids and lipid receptor signaling 

FFAs are ligands for a small group of G-protein-coupled transmembrane receptors, including 

GPR40, which is selectively expressed in β-cells.  Long-chain fatty acids, including palmitate, 

oleate, stearate, linoleate and linolenate, bind to and activate GPR40, resulting in increased 
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intracellular calcium levels. This occurs through calcium influx via the voltage-gated calcium 

channels and mobilisation of intracellular calcium stores and consequently stimulates insulin 

exocytosis78.   

 

 3) Triglyceride/FFA cycling 

In the presence of high glucose levels, both lipolysis of intracellular triglycerides and fatty 

acid esterification are promoted within the β-cell93.  Elevated glucose increases lipolysis of 

intracellular triglycerides, resulting in increased levels of LC-CoA, diacyl-glycerol, 

phospholipids and FFAs.  With β-oxidation blocked by malonyl-CoA, these intermediates 

build up in the cytosol and can act as lipid signalling molecules to amplify glucose-stimulated 

insulin secretion. Furthermore, LC-CoA can be esterified with glycerol-3-phosphate (Glyc-3-

P) to form new triglycerides, diacyl-glycerols and phospholipids and thus complete the cycle 

(FIG 2.3.1).  There are two possible advantages of this triglyceride/FFA cycling pathway.  

Firstly, this pathway generates lipid-signalling molecules, which amplify the glucose-

stimulated insulin secretion.  Secondly, high flux of glucose through mitochondrial oxidation 

generates superoxides and free radicals, which damage the β-cell. Therefore triglyceride/FFA 

cycling presents an alternative pathway for glucose that bypasses the need for mitochondrial 

oxidation and can therefore protect the β-cell and preserve the pancreatic β-cell mass93.  
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Figure 1.2.4.1: Fatty acid-stimulated insulin secretion93  

 

Chronic exposure of the β-cell to elevated FFA desensitises the β-cell and suppresses insulin 

secretion. High levels of saturated fatty acids over long periods of time impairs glucose 

oxidation, resulting in a fall in the ATP/AMP ratio, reduction in FFA synthesis and promotion 

of FFA oxidation which impairs glucose-simulated insulin secretion.  Furthermore, this 

increased FFA oxidation also inhibits the generation of the lipid-derived signalling molecules, 

further reducing insulin secretion (see triglyceride/FFA cycling pathway)13, 14.  A number of 

possible mechanisms have been proposed for the effect of chronic exposure to FFA on 

glucose-stimulated insulin secretion including the induction of UCPs (uncoupling proteins), 

GLUT2, glucokinase and insulin gene expression94.   In rat models, β-cell dysfunction is 

related to triglyceride accumulation within the islets, which increased the production of nitric 

oxide, ceramide synthesis and promoted β-cell apoptosis81.  
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1.2.4.3 Effect of different fat sources  

The potency of fatty acids on insulin secretion are directly correlated with the fatty acid chain 

length and degree of unsaturation72, 76.   

 

1.2.4.3.1 Chain length 

Stein and colleagues found there was positive correlation between fatty acid chain length and 

insulin response, with long chain fatty acids, such as palmitate (16:0) and linoleate (18:2), 

acutely increasing glucose-stimulated insulin secretion, whereas short- and medium-chain 

fatty acids and saturated fatty acids inhibited insulin secretion76.  Hosokawa et al. also 

observed that long chain fatty acids such as palmitate (16:0) and linoleate (18:2) and 

linolenate (18:3) potentiate insulin secretion in response to basal glucose concentrations in 

vitro95.  In contrast however, Opara and colleagues reported that as the fatty acid chain length 

increases there is a bell-shaped insulin response curve, with peak insulin release at 12 carbon 

atoms (Lauric acid; 12:0), no insulin response with 6 and 16 carbon atoms (hexanoic acid; 6:0 

and Palmitic acid; 16:0) and an inhibitory effect on insulin at both 4 and 18 carbon atom chain 

lengths (Butanoic acid; 4:0 and Stearic acid; 18:0) (FIG 2.3.2)72.  These conflicting results 

with regards to insulin secretion and LCFA, may be due in part to a lack of carefully 

conducted dose-response studies and/or disparities in the cell species and/or fatty acid 

concentrations used. 
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Figure 1.2.4.2: Insulin release is augmented by the fatty acid chain length72 

 

1.2.4.3.2 Saturation 

The degree of saturation may affect the insulinotropic properties of fatty acids, although the 

results are controversial.  Studies in vivo have found that the postprandial insulin response 

was essentially unaffected by the type of fat (unsaturated vs. saturated) consumed in healthy 

subjects96, 97. Alternatively, some studies have found that acute exposure of the pancreatic β-

cell to both high glucose concentrations and saturated free fatty acids results in substantial 

increase in insulin release13, 73, 74, 98. Furthermore, while the insulin response was significantly 

increased by adding 50 and 100 g of butter, replacing it with 40 and 80 g of olive oil 

(monounsaturated fat) had no effect99.   

In contrast, Lardonis and colleagues found that polyunsaturated fatty acids significantly 

increased serum insulin responses by 62% compared to saturated fat.  This finding is 

Chain Length 
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supported by research by Stein et al. who reported that polyunsaturated fatty acids (such as 

linoleic, linolenic and arachidonic acids) stimulate insulin secretion in vitro while saturated 

fatty acids (such as palmitic acid) inhibited insulin secretion in pancreatic cells isolated from 

4 h starved rats76.  Another study suggested monounsaturated fatty acids may be more 

effective secretagogues, with the insulin response to a meal high in monounsaturated fatty 

acids but low in polyunsaturated omega-6 fatty acids significantly higher compared to that 

following a meal with a low ratio of monounsaturated to polyunsaturated fatty acids100. 

 

Figure 1.2.4.3: Insulin release is augmented by the degree of fatty acid unsaturation72 

 

1.2.5   Incretin hormone-stimulated insulin secretion 

1.2.5.1 Introduction 

Insulinotropic peptides are secreted into the intestines in response to nutrients and enhance 

insulin secretion.  Glucagon-like peptide-1 (GLP-1) and Glucose-dependent insulinotropic 
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polypeptide (GIP) are the two incretin peptides and are rapidly secreted into the hepatic portal 

venous system by specific enteroendocrine cells located in the intestinal mucosa in response 

to nutrient ingestion.101  

Insulin secretion stimulated by these incretins is often referred to as the ‘incretin effect’ and 

accounts for around 50% of the total insulin secreted in response to oral glucose102.  The 

magnitude of their effect on insulin secretion is dose-dependent and is proportional to the 

calorie content of the meal and the type of macronutrient ingested. They are most strongly 

activated by glucose and to a lesser extent by fatty acids while amino acids are a relatively 

weak stimulus101.    

Both GIP and GLP-1 exert their insulinotropic effect only in the presence of elevated blood 

glucose levels and thus are glucose dependent102.  This prevents excess insulin secretion 

during fasting and following meals without carbohydrate, thus avoiding hypoglycaemia.  

When glucose is given orally it induces a greater insulin response than when glucose is given 

intravenously, even if the blood glucose response was higher with the intravenous glucose103-

105.   

The early increase in glucose-stimulated insulin secretion following fat ingestion is postulated 

to be due to the rise in incretin hormones80.   Fatty acids stimulate the release of GIP and 

GLP-1, however without glucose, the incretin secretion is not sufficient to stimulate insulin 

secretion from the β-cells at fasting blood glucose levels.  Unsaturated fats, such as olive oil 

have been shown to induce higher concentrations of GLP-1 and GIP than saturated fats such 

as butter.97 

Although a relatively weak stimulus in comparison with glucose and fat, protein in the 

intestinal lumen also stimulates the release of incretin hormones, potentiating insulin 
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secretion. The resulting insulin response is largely due to the presence of protein, or digestion 

products of protein, in the intestine rather than the total amino acid concentration in the 

circulation.106  

 

1.2.5.1.1 Type 2 diabetes 

Incretin hormones have recently become a target for type 2 diabetes therapies.  GIP and GLP-

1 release are severely impaired or absent in type 2 diabetes, which is likely to contribute to 

worsening insulin secretion and glycaemic control107.  Treatment with continuous, 

subcutaneous infusions of GLP-1 for 6 weeks has been shown to substantially improve the 

first-phase insulin response, decrease plasma glucose, HbA1c, fructosamine and free fatty 

acids and improve insulin sensitivity and β-cell function in patients with type 2 diabetes108, 109.  

 

1.2.5.2 Mechanism 

GIP and GLP-1 are synthesised in the enteroendocrine K- and L-cells respectively of the 

intestines.  The K-cells are primarily located in the proximal small intestine (duodenum and 

jejunum), whereas the L-cells are mainly located in the distal ileum and colon.  They are 

open-type intestinal epithelial endocrine cells that are in direct contact with nutrients through 

the microvilli on the luminal surface110.  The incretin hormones are stored in granules within 

the cell until the presence of nutrients in the intestines stimulates their release. 

Fasting plasma levels of GIP and GLP-1 are low but increase rapidly within just a few 

minutes after a meal102.  Their release follows a biphasic pattern, with an early phase 

beginning within 5-15 min and a prolonged second phase following within 30-60 min111.  

This early phase release occurs within 5-15 minutes may be due to the “cephalic” or 
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“preabsorptive” phase insulin release, whereby GLP-1 and GIP release is stimulated by neural 

factors112.  This mechanism has not been established in humans, however it is thought to be 

mediated, at least in part, by cholinergic mechanisms.  The latter phase of this biphasic release 

pattern may be due to the movement of food through the digestive system and the nutrients 

that are released at various stages coming into contact with the K- and L-cells along the 

intestines102.  

The incretin hormones achieve their insulinotropic effects by binding to their specific 

receptors, GIPR and GLP-1R, on the β-cell.  This activates adenylyl cyclase, which produces 

cyclic adenosine monophosphate (cAMP) and subsequently activates Protein Kinase A 

(PKA).  Activation of this signalling pathway within the β-cell has a number of roles 

including closing the KATP  channels, elevating the intracellular calcium concentration, 

increasing mitochondrial ATP synthesis, all of which ultimately enhance exocytosis of insulin 

from insulin-secretory vesicles113.  

GLP-1 also influences insulin secretion indirectly by inhibiting gastric emptying114, 

decreasing appetite and food intake114, 115, inhibiting glucagon secretion116, 117 and slowing the 

rate of endogenous insulin production118 all of which lower blood glucose levels.   

GIP and GLP-1 also promote β-cell mass and function by reversing the age-dependent decline 

in β-cell function, protecting the β-cells from apoptosis and stimulating cell proliferation and 

neogenesis119-121. 

Both GIP and GLP-1 work to acutely increase insulin secretion following meal ingestion but 

are then degraded by DPP-4.  Their half-life is between 1.5 to 2 min102. 
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1.3 Insulin dosing in type 1 diabetes 

Type 1 diabetes is an autoimmune disorder resulting in an absolute endogenous insulin 

deficiency and is characterised by chronic hyperglycaemia (ie elevated plasma blood glucose 

levels).  Current medical management revolves around exogenous insulin therapy to restore 

blood glucose levels to within an optimal range.  At present there is no cure for type 1 

diabetes, therefore effective strategies to assist in the achievement and maintenance of 

normoglycaemia are required to promote the acute and long-term health and wellbeing of 

individuals with type 1 diabetes. 

 

1.3.1   Exogenous insulin therapy 

Exogenous insulin is designed to be injected or infused subcutaneously as hexamers of insulin 

crystalized around a zinc molecule.  These hexamers need to dissociate from one another and 

diffuse from the injection site into the blood stream, thereby limiting their rate of absorption, 

and thus the time to onset of action.  Exogenous insulins can be classified into several 

categories based on their time to onset and peak and their duration of action.  Rapid acting 

insulin takes up to 15 minutes to begin exerting an effect on glycaemia and 30-90 minutes to 

reach its peak action.  Unlike the relatively short half-life of endogenous insulin (5-7 

minutes), exogenous insulin will still be acting in the system for 3-5 hours, so bolus insulin 

dosing decisions will have an impact on blood glucose levels for several hours.  Alternatively, 

long-acting or ‘basal’ insulin begins acting after 1-2 h and is designed to be ‘peakless’, 

gradually releasing insulin for up to 24 h.  

There are two modes of insulin delivery, multiple daily injections (MDI) using a syringe or 

insulin ‘pen’, a cartridge of insulin stored in a pen-shaped device with a needle for injections, 
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or continuous subcutaneous insulin infusion (CSII), where insulin is delivered continuously 

from a cartridge in a programmable, pager-sized insulin pump through a fine cannula placed 

in the subcutaneous tissue.  The type of insulin required is determined, in part, by the mode of 

insulin delivery.  MDI usually requires a ‘basal-bolus’ regimen, where a long-acting insulin is 

injected 1-2 times per day (depending on the brand) to simulate normal basal insulin release 

and then a rapid-acting insulin is used to cover meals and correct high blood glucose levels.  

Since CSII delivers a continuous stream of insulin, only a rapid-acting insulin is required.  

The insulin pump can be programmed to deliver small amounts of insulin continuously and 

then larger ‘boluses’ for meals and to correct blood glucose levels.  Insulin pumps can deliver 

very accurate and precise doses, down to one tenth of a unit of insulin, whereas insulin pens 

can only deliver whole or half units.  Insulin pumps are also advantageous in that they can be 

programmed to adjust the basal rate of insulin over the day for normal changes in insulin 

sensitivity and can calculate the insulin dose required based on the pre-programmed insulin: 

carbohydrate ratio (ICR; discussed in greater detail in the follow section) and the correction 

factor (CF) for correcting high blood glucose levels to a set target.  Furthermore, insulin 

pumps allow insulin to be delivered in 3 types of patterns, a ‘normal’ or ‘standard’ bolus, 

where the total bolus is delivered immediately, a ‘dual wave’ bolus where a proportion of the 

insulin is delivered immediately and the remainder delivered over a selected period of time 

and a ‘square wave’ or ‘extended’ bolus, where the total insulin dose is delivered evenly over 

a set period of time.  These delivery patterns can be matched to different meal types, however 

no clear, evidence-based guidelines currently exist for when and how to use these features. 

Since the insulin is delivered continuously an insulin pump, adjustments can be made 

throughout the day for factors that affect blood glucose levels including physical activity and 

alcohol intake.  In contrast, people using MDI need to take their basal insulin 1 or 2 times per 
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day and therefore do not have the flexibility to adjust their rates over the day for change sin 

insulin sensitivity or lifestyle. 

Advancements in insulin therapy to more closely mimic normal physiological insulin 

secretion, in terms of both the types of insulins available and the modes of delivery, offer 

improvements in glycaemic control.  The challenge lies in how the lessons learnt from 

normal, postprandial insulin secretion can be applied to optimise mealtime insulin therapy in 

type 1 diabetes. 

!

1.3.2  Glycaemic control in type 1 diabetes 

Achieving and maintaining optimal glycaemic control is considered a key goal of diabetes 

management in order to reduce the risk of diabetes-related complications122. 

As red blood cells turn over approximately every 120 days, the level of glycated haemoglobin 

A1c (HbA1c) provides a measure of mean plasma blood glucose over the previous 3 months 

and is the gold standard measure of longer-term glycaemic control. For people with type 1 

and type 2 diabetes, the American Diabetes Association recommends an HbA1c level of less 

than 7% for non-pregnant adults, but highlights this target needs to be individualised122.  This 

recommendation is based on the Diabetes Control and Complications Trial (DCCT), which 

showed an HbA1c at or below 7% was associated with a reduced risk of microvascular 

diabetes complications123.  An HbA1c of 5% translates to a mean blood glucose level of 5.4 

mmol/L, while an HbA1c of 7% translates to a mean blood glucose level of 8.6 mmol/L.   

Postprandial blood glucose levels are key targets for acute and chronic glycaemic control. 

Postprandial hyperglycaemia spikes have been shown to be a direct and independent risk 

factor for CVD124.  The American Diabetes Association recommend that peak postprandial 
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blood glucose levels should not exceed 10 mmol/L122.  Strategies for adjusting insulin doses 

for meals will be discussed in detail later in this section. 

Recently there has been a great deal of interest in the importance of glycaemic variability for 

reducing the risk of diabetes-related complications, and in particular, cardiovascular disease. 

Studies have shown that oxidative stress and epithelial dysfunction are closely related to both 

chronic hyperglycaemia and the degree of fluctuation in blood glucose125.  Nonetheless, 

analysis of the DCCT data suggested that glycaemic variability had no impact on the risk of 

microvascular complications126, although this analysis considered only the area under the 

blood glucose curve and the standard deviation around the mean blood glucose level.  There 

are other measures of glycaemic variability, which may be more informative. 

Continuous glucose monitoring systems (CGMS), which sample interstitial blood glucose 

levels every minute and record the mean every 5 minutes, provide detailed insights into 

fluctuations in glycaemia.  Several measures of blood glucose variability have been suggested 

in the literature but there is great debate over their statistical and clinical appropriateness127-

130.  The mean amplitude of glycaemic excursions (MAGE) has been suggested as the most 

appropriate and comprehensive tool as it denotes the summed mean differences between 

consecutive peaks and nadirs in blood glucose levels for differences greater than 1 standard 

deviation of the mean. In doing so, the MAGE is not dependent on the mean blood glucose 

level nor defined targeted blood glucose levels and only considers large fluctuations in 

glycaemia, whilst excluding minor ones127, 128.   MAGE has been directly linked with the risk 

of microvascular complications, with univariate analysis showing MAGE to be a strong and 

significant predictor of oxidative stress (r = 0.8863, p < 0.05)131.  
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1.3.3  Historical perspective to mealtime insulin dosing 

Historically, insulin therapy has been inflexible, with nutrition education primarily focused on 

maintaining a prescribed food intake matched to a rigid insulin regimen.  A number of 

different theoretical approaches to quantify and categorise foods have been used in practice, 

including food exchanges, calorie/carbohydrate points and total available glucose5, 132. 

The ‘total available glucose’ approach was developed soon after the discovery of insulin in 

1921. Foods were counted based on the total amount of glucose supplied to the body, with 

100% of carbohydrates, 58% of protein and 10% of fat converted to available glucose.  The 

overarching goal was to maintain a constant intake of available glucose with a matched 

insulin regimen133-135.  

The Diabetes Control and Complications Trial (DCCT) was a landmark study examining the 

determinants and effects of intensive insulin therapy.  Four dietary approaches for insulin 

adjustment from around the world were used during the study, comprised of healthy food 

choices, exchanges for meal planning, carbohydrate counting and total available glucose5.  

The DCCT showed that individuals who reported always adjusting their insulin based on what 

they ate, had a HbA1c 0.5% lower than those who never adjusted their insulin136. However, 

the study does not differentiate among the effectiveness of the different dietary approaches. 

The ‘food exchanges for meal planning’ approach was introduced in the United States in 1950 

and was commonly used in the United States during the DCCT.  Its popularity fell following 

the DCCT as carbohydrate counting became increasing popular but it is still in use. Foods are 

categorised into starch, vegetable, milk, fruit, meat, and fat exchanges and subdivided based 

on their carbohydrate, protein, fat and calorie contents.  For example a food classed as a low 

fat milk exchange contains 12 g carbohydrate, 8 g of protein, 5 g of fat and 120 calories.  This 
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allows foods in a meal plan to be exchanged for similar foods, while maintaining a consistent 

intake. Insulin dose is calculated based on the number of starch, milk and fruit exchanges.  

The American Diabetes Association (ADA) published the first food exchange tables in the 

1950’s137.  The exchanges for meal planning approach has long been recognised as a complex 

concept requiring a higher educational status132 as the system requires a detailed knowledge 

of food composition to determine the correct number and type of exchanges eg a glazed 

doughnut is classed as 2 carbohydrate and 2 fat exchanges, while a plain doughnut is 2 

carbohydrate but only 1 fat exchange, and to exchange foods in a meal plan while meeting an 

overall daily goals.  The ADA has since revised the original food exchange tables with an 

increasing focus on carbohydrate, and thus simplifying the approach.  

The carbohydrate counting approach adopted in the Diabetes Control and Complications Trial 

(DCCT), classes carbohydrate foods into portions equating to 10 or 15 g of carbohydrate, 

referred to as a carbohydrate exchange.  At the time of the DCCT, this was the primary 

dietary strategy for diabetes in the United Kingdom but was relatively uncommon in the 

United States and its validity and reliability was challenged.  This carbohydrate exchange 

approach allowed a set number of carbohydrate exchanges to be prescribed per meal/snack, 

promoting a consistent carbohydrate intake and matched insulin regimen, however gave 

patients the freedom to select different carbohydrate foods up to the same exchange value. 

With developments in medical technology and a shift towards patient-centered care, insulin 

therapy has become more flexible and thus medical nutrition therapy has also needed to 

change from rigid dietary prescriptions designed to maintain consistent food intake to 

nutrition education to assist patients to match their insulin to flexible food intakes and 

patterns.  
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1.3.4   Carbohydrate counting 

Carbohydrate counting has long been considered the cornerstone of intensive insulin therapy, 

with bolus insulin doses matched to the carbohydrate content of the meal138.  This practice is 

based on the premise that carbohydrate is the predominant macronutrient contributing to the 

rise in post-prandial blood glucose levels.   

Modern carbohydrate counting can be difficult to define as it has evolved and encompasses 

multiple tiers reflecting the increasing complexity with more advanced methods.  

Carbohydrate counting ranges from an awareness of carbohydrate-containing foods and their 

impact on blood glucose levels through to counting the number of carbohydrate exchanges or 

grams of carbohydrate eaten and using an insulin:carbohydrate ratio to calculate the bolus 

dose required139. 

Current diabetes management guidelines around the world recommend that carbohydrate 

counting should be used to adjust mealtime insulin in both children and adults with type 1 

diabetes.  A review undertaken by the ADA in 2008, concluded that “Individuals receiving 

intensive insulin therapy should adjust their pre-meal insulin dosages based on the 

carbohydrate content of meals”138. This review forms the evidence base for the ADA’s 

Standards of Medical Care, which states that “Monitoring carbohydrate, whether by 

carbohydrate counting, choices, or experience-based estimation, remains a key strategy in 

achieving glycaemic control140” and that “Most people with type 1 diabetes should be 

educated in how to match prandial insulin dose to carbohydrate intake, pre-meal blood 

glucose, and anticipated activity”122.  The Australian Paediatric Endocrine Group and 

Australian Diabetes Society’s ‘National Evidence-Based Clinical Care Guidelines for Type 1 

Diabetes in Children, Adolescents and Adults’ found similar results, concluding that the 
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“matching of meal-time insulin dose to carbohydrate intake should be considered for patients 

using multiple daily injection therapy”141.  

These recommendations are based simply on narrative review and grading of the limited 

available evidence.  Although carbohydrate counting is widely endorsed as the gold standard 

in dietary management of type 1 for glycaemic control, the overall effectiveness of the 

strategy has not been assessed as a benchmark for other strategies or for health professionals 

in practice at this point in time. 

 

1.3.4.1 Evidence for carbohydrate counting  

1.3.4.1.1 Scientific Basis for carbohydrate counting 

Thirty years ago, Slama et al. showed a significant correlation between the amount of 

carbohydrate consumed and the dose of insulin needed to restore blood glucose levels using 

an artificial pancreas21.  Further work confirmed the linear relationship between carbohydrate 

intake and insulin requirement22, 142, 143.  However, the underlying theoretical basis and its 

practical utility have since been questioned3, 5, 7, 144, 145. Bao et al., for example, showed that 

available carbohydrate could explain much of the variance in glucose response to iso-caloric 

portions of single foods, but was not a significant predictor of the response to mixed meals 

containing variable amounts of carbohydrate, fat and protein16.  Moreover, the same amount 

of available carbohydrate from different food sources is known to produce significantly 

varying blood glucose responses in both healthy and diabetic subjects3, 10, 11.  Indeed, the 

predictable difference in responses to different carbohydrate-containing foods is the basis of 

the glycaemic index (GI). In meta-analyses, low GI diets have been shown to improve HbA1c 

compared with conventional or high GI diets146. 
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Schrezenmeir et al, highlighted one of the key underlying problems with carbohydrate 

counting in their 1989 paper7. Carbohydrate counting is based on the premise that 

carbohydrate is the predominant macronutrient raising blood glucose levels.  Since the 

primary function of insulin is to lower blood glucose levels, exogenous insulin doses for 

meals in type 1 diabetes are dosed according to the predicted rise in blood glucose levels 

based on the carbohydrate content of the meal.  However as Schrezenmeir et al. identified, the 

glycaemic response to 3 carbohydrate breakfasts in healthy subjects differed significantly to 

the insulin requirements of subjects with type 1 diabetes, thus highlighting the inherent flaw 

in carbohydrate counting7.   

The underlying problem in type 1 diabetes is the lack of endogenous insulin production.  It 

would therefore be logical that exogenous insulin doses should be matched to the normal 

endogenous insulin response, rather than the predicted rise in blood glucose level.  As 

elucidated in the previous section, a number of nutritional factors, including protein and fat, 

also modulate postprandial insulin secretion.  Therefore dosing insulin solely on the basis of 

the carbohydrate content of the meal reflects a narrow scope of focus within a bigger picture.  

 

1.3.4.2 What improvement in glycaemic control can be achieved with carbohydrate 

counting? 

There is a paucity of studies assessing the effectiveness of carbohydrate counting for 

glycaemic control in type 1 diabetes.   This lack of evidence suggests carbohydrate counting 

was integrated into clinical practice before the evidence base was well established.  There is a 

belief amongst the diabetes community that carbohydrate counting is a well-founded, 

evidence-based therapy. 
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The Diabetes Control and Complications Trial (DCCT) is often cited as key evidence for 

carbohydrate counting as it is a landmark, international trial.  As discussed earlier in this 

chapter, the DCCT used 4 dietary approaches for insulin adjustment from around the world to 

examine the determinants and effects of intensive insulin therapy one of which as 

carbohydrate counting5.  Although the DCCT showed that those who reported always 

adjusting their insulin (on the basis of food eaten) had an HbA1c 0.5% points lower than 

those who never adjusted their insulin136, the publications did not differentiate between the 

effectiveness of the different dietary approaches so the effectiveness of carbohydrate counting 

alone cannot be elucidated.  Furthermore, this intervention was relatively uncommon in the 

USA at the time, and its validity and reliability were questioned by physicians5. 

Two of the most well-established carbohydrate counting programs is the Diabetes Teaching 

and Treatment Program (DTTP) and the Dose Adjustment For Normal Eating (DAFNE) 

program.  The DTTP was first developed in Germany in 1978 and are now standard practice 

for adults with type 1 diabetes in Germany and Austria. It is a structured 5-day training 

program teaching flexible insulin therapy so that mealtime insulin doses can be adjusted 

according to the carbohydrate content of meals and thus allowing dietary freedom.  In 2005, 

Samann et al published the results from over 9,500 adults who participated in the program, 

which showed that the DTTP improved glycaemic control without increasing the risk of 

hypoglycaemia147.  While both the DTTP is well-known and is widely published with large 

sample sizes, the studies were designed as program evaluations rather than clinical trials and 

therefore lack control groups for comparison. 

The DTTP was translated and adapted for the United Kingdom and renamed the DAFNE 

program.  A 2002 trial in 3 centres, revealed an improvement in HbAlc of 1% point (11 

mmol/mol) at 6 months and 0.5% point (5 mmol/mol) at 12 months.  There were no changes 
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in weight or risk of severe hypoglycaemia but there were considerable improvements in 

participants’ quality of life148. Since this trial, the DAFNE has been rolled out across the UK 

and Australia.   

There is conflicting evidence regarding the efficacy of carbohydrate counting.  Some studies 

have shown a beneficial effect with carbohydrate counting in adults149-152, however like the 

DTTP, not all studies151, 152 included a control group making interpretation difficult.  Other 

studies have shown no significant difference between carbohydrate counting and general 

dietary advice144 or empirical methods153.  Two studies, 1 in children154 and 1 in adults155 

found alternative methods superior to carbohydrate counting for glycaemic control.  

Gilbertson et al, compared carbohydrate counting with flexible, unmeasured low GI dietary 

advice in children aged 8-13 years154.  At 6 months there was no difference in glycaemic 

control between the 2 groups but at 12 months HbA1c was 0.6% lower in the low GI group (p 

= 0.05).  Furthermore 64% of children and 91% of their parents who had used both methods 

of adjusting insulin doses, reported they preferred the low GI diet to carbohydrate counting (p 

< 0.01 and p < 0.001 respectively). 

In 2009, Mehta et al. showed that greater accuracy and precision in parent’s ability to count 

carbohydrates was associated with a lower HbA1c in their child; however only precision was 

a significant predictor of HbA1c (p = 0.9 and p = 0.02 respectively).  The child’s HbA1c was 

0.8% points lower when their parents were above the 75th percentile for precision.   However, 

there is great debate within the diabetes community over how precisely carbohydrates need to 

be counted to achieve good glycaemic control.  There are several commonly used methods 

including counting in 1 gram increments, 10 g portions and 15 g exchanges.  Each method has 

its own advantages for example, counting in 10 g portions makes reading food labels easier as 

carbohydrate values are easily divisible into 10 portions, whereas common food portions 
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contain approximately 15 g carbohydrate, such as 1 slice of white bread, 1 medium sized 

apple and ½ cup of juice etc.   

At present there is a lack of evidence to support the use of one method of carbohydrate 

counting over another.  It is a widely held belief among patients and health professionals that 

counting in gram increments is more accurate and leads to better blood glucose control than 

less precise measures such as 10 g portions or 15 g exchanges.  However counting 

carbohydrates this precisely may be unnecessary. Smart et al. have shown that children and 

adolescents using intensive insulin therapy can maintain glycaemic control without precise 

carbohydrate counting.  Their studies demonstrated that postprandial glycaemic control was 

maintained with a 10 g variation in carbohydrate content with an individualised insulin: 

carbohydrate ratio156 but not with a 20 g variation157.  These studies concur with that of 

Shapira et al158, who found that a similar proportion of blood glucose levels were within the 

normal range when carbohydrate was estimated to the nearest gram or when a 15 g 

carbohydrate exchange was used.  Furthermore, individuals who could accurately estimate the 

carbohydrate content of meals and snacks within 10 g of the true value had the lowest 

HbA1c159.   Indeed, children who counted in gram increments of carbohydrate did not 

estimate the true carbohydrate content of tested meals and snacks with greater accuracy than 

those using 10 g or 15 g exchanges160. 

One of the key limitations of carbohydrate counting is the accuracy with which people can 

estimate the true carbohydrate content of their meals. The literature shows a wide variation in 

this ability, with studies showing most subjects were able to accurately estimate carbohydrate 

to within 10-15 g160 or within 15-20% of the true value4, 161, while other studies revealed only 

around half or fewer could accurately estimate carbohydrate content159, 162 or had large 

variations in estimations158. 
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A cross-sectional, observational study in 48 adolescents with type 1 diabetes aged 12-18 years 

showed that only 23% of adolescents could estimate the carbohydrate content of common 

meals within 10g of the true value159. The participants were asked to assess the amount of 

carbohydrate in 32 breakfasts, lunches, dinners and snacks commonly consumed by children 

of that age. The meals were presented either as food models or as actual food and in some 

cases were presented as standard serve sizes eg packaged snacks, while other meals were self- 

served by study participants.  The proportion of children who could identify the carbohydrate 

within 20 g increased to 31% and to 52% when the level of precision was dropped to within 

30 g of the true value. This study highlights some of the practical limitations of asking 

children to count carbohydrates in more precise increments.   

As highlighted above, this finding is not unanimous in the literature.  Another study revealed 

that 73% of children could accurately estimate the carbohydrate content of meals and snacks 

within 10-15 g of the true value160. This study included slightly younger children from age 8 

through to adolescents aged 18 but like the previous study, included real foods representing 

commonly consumed breakfasts, lunches, dinners and snacks.  The authors found that meals 

served in non-standard quantities such as rice, pasta were frequently underestimated, while 

snacks such as fruit and baked foods were often overestimated.  

 

1.3.4.3 Nutritional implications of carbohydrate counting 

The potential adverse nutritional implications of carbohydrate counting should not be ignored.  

Carbohydrate counting has been linked with unhealthy food beliefs163, 164, an increased 

reliance on packaged foods as the carbohydrate content is published on the nutrition 

information label163, 165 and high intakes of fats and protein exceeding nutritional 

recommendations in an effort to avoid insulin165-167.  Studies have shown that children and 
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adolescents with type 1 diabetes are at greater risk of atherosclerosis166, dyslipidaemia and 

CVD165, possibly due to avoidance of carbohydrate and insulin, and higher intake of saturated 

fat166.  Some parents have referred to carbohydrate counting as a “double edged sword” 

because the greater dietary flexibility afforded by basal bolus regimens and insulin.   

Interestingly, it is thought that carbohydrate counting is a much simpler approach to insulin 

dosing in practice because of the availability of carbohydrate contents for packaged foods.  

However in reality, even when presented packaged foods with their nutrition information 

label, only 23% of adolescents aged 12-18 years could correctly identify the carbohydrate 

content of the meal within 10 g of the true value, as discussed in the study above159. In fact, 

the packaged foods with a label were among some of the least accurately assessed foods 

presented.  

 

1.3.4.4 Summary 

Carbohydrate counting is recommended to assist patients to match their insulin to flexible 

food choices, yet given the weaknesses in the theoretical basis for carbohydrate counting, 

alternate methods of determining prandial insulin dose should also be explored. 

 

 

1.3.5   Warsaw Pump Therapy School Program 

The Warsaw Pump Therapy School (WPTS) in Poland has proposed an alternative approach 

to traditional carbohydrate counting168.  This method was developed based on the premise that 

protein and fat, in addition to carbohydrate, increased insulin requirements and that the 
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macronutrient composition of the meal will affect the meal absorption pattern.  Their method 

therefore, builds upon traditional carbohydrate counting by introducing a ‘Fat-Protein Unit’ 

(FPU) to determine supplementary mealtime insulin doses and emphasises the use of varying 

insulin delivery patterns using insulin pump therapy technology. 

 

1.3.5.1 Definition 

A FPU is defined as 100 kcal (418 kJ) of fat and/or protein 168.  The total number of FPUs in a 

meal are summed and multiplied by an individualised insulin ratio.  Similar to traditional 

carbohydrate counting, the carbohydrate content in the meal is also counted as 10 g 

carbohydrate units (CU).  The total prandial insulin dose for each CU and FPU is based on the 

individualised ICR. 

Insulin doses are delivered in a dual wave insulin delivery pattern, meaning a proportion of 

the insulin is delivered immediately, while the remainder of the dose is delivered gradually 

over an elected period of time.   The proportional split and the duration of the insulin delivery 

is determined by the number of FPUs of the meal.  For a meal containing no FPU, the total 

insulin dose is delivered immediately, for 1 FPU this component of the dose is delivered over 

3 h, extending to 4 h for 2 FPU, 5 h for 3 FPU and to 8 h for 3 or more FPU. 

 

1.3.5.2 Clinical studies 

The WPTS Program was shown to be effective for controlling postprandial glycaemia in one 

randomised, controlled clinical experimental trial169.  Twenty-six children with type 1 

diabetes using insulin pump therapy, aged 12-18 yr, were randomised to one of two groups, 

Group A used traditional carbohydrate counting, while Group B had their mealtime insulin 
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dose determined using the WPTS Program method of carbohydrate + FPU counting.  Both 

groups received the same pizza meal at dinnertime, consisting of 46.8 g of carbohydrate, 33.1 

g of fat and 25.4 g of protein (ie 4.5 CU and 4.0 FPU).  Group A received the insulin for the 

carbohydrate component of the meal only, delivered as a standard, immediate bolus. Group B 

received the insulin dose determined by the CUs and FPUs, delivered over 6 h.  Postprandial 

blood glucose levels over 6 hs, were significantly lower in the Carbohydrate + FPU counters 

than in those counting carbohydrate alone, from 60 mins.  

A cross-sectional study of 499 bolus records from children with type 1 diabetes using insulin 

pump therapy, aged 0-18 yr, were assessed for frequency of dual wave boluses168.  All of the 

patients included in the study had been taught to use dual-wave boluses with the carbohydrate 

+ FPU counting. The study showed that those using 2 or more dual wave boluses each day 

achieved the lowest HbA1c values compared with those administering an average of less than 

1 per day.  Although this study is not direct evidence for the use of the WPTS program, it 

does assume that the application of a dual-wave bolus within this clinic population reflects 

compliance with this method of food counting and estimating insulin doses.  

To assist in the calculation of insulin doses, a bolus and food calculator ‘Diabetics’ was 

developed by the WPTS 170.  As expected with the introduction of technology, comparison of 

glycaemic control in children using the ‘Diabetics’ software, with those calculating their 

doses using calorie tables and mental calculations showed the software significantly reduced 

2 h post-prandial blood glucose levels and glycaemic variability. Surprisingly, this did not 

translate to improvements in HbA1c or insulin doses. 
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1.3.5.3 Clinical considerations 

The WPTS program builds on traditional carbohydrate counting by providing a practical 

prescription for estimating the insulin dose and delivery pattern required for meals containing 

protein and fat as well as carbohydrate.  This approach reflects an important shift in clinical 

practice, as it is the first method described in the literature incorporating protein and fat into 

prandial insulin dosing in type 1 diabetes. 

There are several important clinical advantages to this method.  In addition to providing a 

quantitative approach to mealtime insulin dosing for protein and fat, the method also aims to 

mimic normal physiological insulin release patterns by utilising insulin delivery pattern 

options available with modern insulin pump technology.  By better matching exogenous 

insulin doses with physiological demand, glycaemic control can potentially be improved.  

Furthermore, the method can be easily integrated into clinical practice, as carbohydrate, 

protein and fat contents of foods are readily available on food packaging.   One of the 

limitations of the WPTS program however, is the complexity of insulin dose calculations.  

Carbohydrate counting is often critiqued for the literacy and numeracy skills required to 

master the method in practice, however the WPTS method is far more complicated in 

practice.  There are a number of calculation steps involved in calculating the total insulin dose 

and delivery and, although the macronutrient weights are available, the calories for protein 

and fat, which are required for the calculation of the number of FPUs, are not listed on food 

packaging. 

In addition to this practical limitation, there are limitations in the theoretical basis of this 

method. The WPTS program assumes that all carbohydrate, protein and fats modulate insulin 

requirements uniformly. However, just as carbohydrate from different foods sources has been 

shown to produce wide variations in blood glucose and insulin responses, so to have fat and 
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protein from different food sources.  Furthermore this method also does not account for the 

effect of nutrient interactions within foods.  Furthermore, this method is limited to individuals 

using insulin pump therapy.  Although insulin pumps are becoming increasingly popular, the 

majority of patients with type 1 diabetes rely on multiple daily insulin injections, which does 

not allow for dual-wave insulin release.   

While some of the initial published trials suggest the WPTS program may be effective for 

optimising glycaemic control in type 1 diabetes, there is a paucity of evidence.  At the time of 

this review, there have been no published randomised, controlled clinical trials comparing the 

WPTS Program method with another method of determining insulin dose such as 

carbohydrate counting in the real-world setting.  The one experimental trial showed 

significant improvements in 2 h post-prandial glycaemia however these results are 

confounded by differences in insulin delivery patterns and without well-designed, randomised 

controlled trials, it has yet to be seen whether this translates to clinically meaningful 

improvements in long-term glycaemic control.  Furthermore, studies have only been 

conducted in the paediatric population and thus the efficacy would also need to be established 

in the adult population. 

 

The WPTS program integrates additional insulin for protein and fat with dual-wave bolusing.  

Since changes in the insulin delivery pattern could potentially improve glycaemic control, this 

element acts as a potential confounder in assessing the efficacy of this method of estimating 

the total insulin dose required for meals containing protein and fat. 
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1.3.5.4 Summary 

In summary, the WPTS program offers an alternative to traditional carbohydrate counting by 

incorporating additional insulin dosing for the protein and fat contents of meals, however 

there are significant theoretical and practical limitations to the method. 

 

 

1.3.6   Food Insulin Index 

The Food Insulin Index (FII) is a novel algorithm of ranking foods based on the insulin 

response (‘demand’) in healthy subjects relative to an isoenergetic reference food 16.  It was 

originally proposed as a tool in nutritional epidemiology to study the effect of diets calculated 

to have a high insulin demand on the risk of development of diabetes and adverse blood lipid 

profiles171.  A possible role in the dietary management of type 1 diabetes was also suggested.  

 

1.3.6.1 Definition 

The FII is methodologically defined as the incremental area under the plasma insulin curve 

elicited by a 1000 kJ portion of a test food expressed as a percentage of the response to a 1000 

kJ portion of the reference food (glucose) within one lean, healthy subject.  The final FII of a 

food is calculated as the average FII in 10 subjects. 

 

 

 
Food Insulin Index (FII) =                                                                           x 100!    120min AUCInsulin for 1000 kJ test food   

120min AUCInsulin for 1000 kJ reference food 
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Using food energy as the constant allows all foods to be included, not just those containing 

carbohydrate, and thus all dietary components and their metabolic interactions can be 

considered, allowing a more holistic approach to determining insulin demand.  

 

1.3.6.2 FII database 

A systematic FII database has been established and the data for 121 foods, accumulated 

between 1995 and 2009 were routinely added to the database16.  The tested foods included the 

top 100 sources of energy in the American diet, representing 10 food categories.  The FII 

values of foods vary widely both within and between food groups.  On a scale where the 

reference food 1000 kJ anhydrous glucose = 100, jellybeans produced the highest FII value 

(117 ± 12), while gin produced the lowest FII (1 ± 1).  Common foods in the western diet, 

such as white bread (FII = 73) and potato (FII = 88), are among the most insulinogenic foods.  

Highly refined bakery products, snack foods and breakfast cereals induced substantially more 

insulin secretion per portion of food (gram-basis) than did the other foods tested.  There were 

significant differences within food groups despite similarities in macronutrient composition.  

For example, dairy products ranged from FII = 18 for cream cheese to FII = 84 for low fat 

strawberry yoghurt, a 4.5-fold difference.   Interestingly, protein-rich foods induced 

significant insulin responses, with some foods having FII values even higher than some 

carbohydrate-rich foods.  Beef steak for example, contains no carbohydrate but has a FII 

value of 37, while an isoenergetic portion of grain bread contains 40 g of carbohydrate and a 

similar FII of 44.   

Correlations between the FII, and the glycaemic load (GL), glycaemic index (GI), available 

carbohydrate, protein, fat, starch, sugar and fibre showed the GL was the most powerful 

predictor of postprandial insulinaemic response (r = 0.68, p = 0.01).  Fat was also a significant 
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predictor (r= -0.60, p =0.03)16.  Although carbohydrate is widely considered the best predictor 

of insulinaemic responses to foods, it was not significantly correlated with insulin responses 

(r=0.53, p = 0.06).  Protein was also not significantly correlated (r= -0.46, p = 0.12).   

 

1.3.6.3 Clinical studies 

1.3.6.3.1 Healthy population 

The efficacy of the FII for predicting insulin responses to realistic meals has been tested in 

healthy adults.  Lean, healthy adults (n = 10 or 11 for each meal) consumed 13 different 

isoenergetic (2000 kJ) mixed meals of varying macronutrient content and their plasma insulin 

response was measured16.  As anticipated, the observed insulin response varied over a wide 

range with significant differences between the meals (P<0.001) but was best predicted by the 

calculated insulin demand of the meal (calculated from the pre-determined FII of the 

component foods relative to reference food white bread) (r=0.78, P=0.0016).  This study 

confirmed that the database of single foods could be used to predict responses to mixed meals 

where the amount of energy from different foods and macronutrients varied. Surprisingly, in 

that context, carbohydrate, fibre and protein content were found to be relatively poor 

predictors of the overall insulin response, while GL and fat content were also significant 

predictors, but less so than the FII. In fact, mixed meals with similar carbohydrate content 

produced widely disparate insulin responses. For example, a meal containing beef steak and 

potatoes with ~40 g of carbohydrate produced twice the insulin response of a meal composed 

of grain bread, peanut butter and milk, despite a similar amount of carbohydrate (~37 g). This 

underscored the inherent difficulty with estimating insulin demand (or insulin dose in the case 

of type 1 diabetes) based on carbohydrate alone.   
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In a subsequent study, 10 healthy adults consumed a high and low FII diet (3 consecutive 

meals over 8 h) in a randomised, crossover design.  The two iso-energetic diets were matched 

for macronutrients, fibre and GI but had a two-fold difference in predicted insulin demand 

(FII = 65 vs 30).  The low FII diet reduced the mean insulin response (iAUC) by 53% 

compared with the high FII diet, despite no significant differences in glycaemic response. 

These studies provided the first clinical evidence of the physiological validity of the concept 

of food insulin index as a measure of day-long glucose and insulin profiles.  The findings 

implied that if the database were sufficiently large, the FII classification may have clinical 

application in estimating insulin demand of different meals and diets in type 1 diabetes. 

 

1.3.6.3.2 Type 1 diabetes 

At the start of this PhD project (July 2011), only one study exploring the utility of the FII for 

estimating insulin demand in type 1 diabetes had been undertaken.  In that study18, 28 adults 

with type 1 diabetes using continuous subcutaneous insulin infusion therapy (CSII, insulin 

pump) consumed two different iso-energetic breakfast meals, matched for GI, fibre and 

calculated insulin demand (both FII = 60) but with a 2-fold difference in carbohydrate content 

(75 g vs 41 g).  The meals were consumed in random order on 3 consecutive mornings after 

an overnight fast.  Meal A was consumed once with the insulin dose determined by the 

carbohydrate content of the meal, while Meal B was consumed twice, once based on the 

carbohydrate content and once based on the predicted insulin demand.  Since the two 

breakfast meals had the same FII, the same insulin dose was applied for Meal B as for Meal A 

when the dose was determined by the FII even though Meal B contained only half as much 

carbohydrate.  Compared with carbohydrate counting, the FII algorithm significantly 

decreased glucose incremental area under the curve over 3 h (-52%, p = 0.013), peak glucose 
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excursion (-41%, p = 0.01) and improved the percentage of time within the normal blood 

glucose range (4-10 mmol/L) (+ 31%, p = 0.001).  Although twice as much insulin was given 

for Meal B using the FII as for carbohydrate counting, there were no significant differences in 

the occurrence of hypoglycaemia.  The study demonstrated that the FII based on physiological 

insulin demand in healthy adults may be a useful tool for estimating mealtime insulin dose in 

patients with type 1 diabetes.  

 

1.3.4.4. Epidemiological studies 

Hyperinsulinaemia has been identified as risk factors for several chronic diseases, including 

type 2 diabetes, cardiovascular disease and cancer.  Dietary patterns characterised by a low 

insulin demand (ie low FII) may play a role in the prevention and treatment of these chronic 

diseases.  Epidemiological studies have investigated the relationship between the FII and 

colorectal cancer172, prostate cancer173, pancreatic cancer174, however no significant 

association between a high FII diet and risk of these cancers was found.  One study looking at 

the FII in relation to biomarkers of glycaemic control, plasma lipids and inflammation 

markers, found that those in the highest quintile of FII had 26% higher triglyceride 

concentrations than those in the lowest quintile (P < 0.0001)171.  This association was 

strongest for obese subjects.   HDL-cholesterol was also inversely associated with the FII in 

obese subjects.  The FII was not significantly associated with fasting biomarkers of glycaemic 

control, inflammation or other plasma lipids including, plasma C-peptide, HbA1c, LDL 

cholesterol, CRP, or IL-6.  Further work is warranted in this area with other diet-related 

chronic diseases and their biomarkers. 
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Puberty has also been associated with physiological insulin resistance and the potential for 

overweight development. One longitudinal study175 in boys and girls before and after puberty 

found that a higher dietary FII and a higher food insulin load at the start of puberty were 

associated with higher levels of percentage of body fat in young adulthood but not body mass 

index (BMI, kg/m2), even after adjustment for early life, socioeconomic and nutritional 

factors.  This suggested that postprandial increases in insulinaemia (ie a high FII diet) during 

puberty may have an unfavourable effect on the body composition in young adulthood. 

 

1.3.6.4 Summary 

In summary, early studies into the FII indicate it is a promising tool for improving the 

mealtime insulin dosing algorithm in type 1 diabetes.  Further research is required to 

determine its clinical efficacy and the feasibility of its integration into clinical practice. 

!

 

!  
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2.1 Abstract 

Objective: Although carbohydrate counting is the recommended dietary strategy for 

achieving glycaemic control in people with type 1 diabetes, the advice is based on narrative 

review and grading of the available evidence. Our objective was to conduct a systematic 

review and meta-analysis of the efficacy of carbohydrate counting on glycaemic control in 

adults and children with type 1 diabetes. 

Methods: We screened and assessed randomised controlled trials (RCTs) of interventions >3 

months duration that compared carbohydrate counting with general or alternate dietary advice 

in adults and children with type 1 diabetes. Change in glycated haemoglobin (HbA1c) was the 

primary outcome. Hypoglycaemia, insulin dose, fasting plasma glucose, weight change and 

quality of life were secondary outcome measures. 

Results: Of 311 potentially relevant studies, we identified 7 eligible RCTs, comprising 599 

adults and 104 children with type 1 diabetes.  Study quality score averaged 7.6 out of 13.  

Overall there was no significant improvement in HbA1c with carbohydrate counting versus 

the control or usual care (-0.35%, 95% CI: -0.75-0.06; p = 0.096).  We identified significant 

heterogeneity, potentially related to study design. In the five studies in adults using a parallel 

design, there was a -0.64% point improvement in HbA1c with carbohydrate counting (95% 

CI: -0.91 - -0.37; p<0.0001). Six studies reported a non-significant decrease in the frequency 

of hypoglycaemia using carbohydrate counting. 

Conclusions: There is modest evidence to recommend carbohydrate counting over alternate 

advice or ‘usual care’ in adults with type 1 diabetes.  Additional studies are required to 

support carbohydrate counting over other methods of matching insulin dose to food intake.  
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Publication: Bell K, Barclay AW, Petocz P, Colagiuri S, Brand-Miller JC.  The efficacy of 

carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet 

Diabetes & Endocrinology 2014; 2(2): 133-140 (Appendix 1). 
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2.2 Introduction 

Type 1 diabetes is an autoimmune disorder characterised by chronic hyperglycaemia resulting 

from an absolute endogenous insulin deficiency.  Current medical management revolves 

around exogenous insulin therapy to restore blood glucose levels to within an optimal range.  

At present there is no cure for type 1 diabetes, therefore effective strategies to assist in the 

achievement and maintenance of normoglycaemia are required to promote the acute and long-

term health and wellbeing of individuals with type 1 diabetes. 

Carbohydrate counting has long been considered the cornerstone of intensive insulin therapy, 

with bolus insulin doses matched to the total carbohydrate content of the meal.1  This practice 

is based on the premise that carbohydrate is the predominant macronutrient contributing to the 

rise in post-prandial glycaemia.  Carbohydrate counting ranges from an awareness of 

carbohydrate-containing foods and their impact on blood glucose levels through to counting 

the number of carbohydrate exchanges (15 g), portions (10 g) or grams of carbohydrate eaten.  

An insulin: carbohydrate is used to calculate the bolus dose required.2  

Thirty years ago, Slama et al. showed a significant correlation between the amount of 

carbohydrate consumed and the dose of insulin needed to restore blood glucose levels using 

an artificial pancreas.3  Further work confirmed the linear relationship between carbohydrate 

intake and insulin requirement.4  However, the underlying theoretical basis and its practical 

utility have since been questioned.5-9  Bao et al., for example, showed that available 

carbohydrate could explain much of the variance in glucose response to iso-caloric portions of 

single foods, but was not a significant predictor of the response to mixed meals containing 

variable amounts of carbohydrate, fat and protein.10  Moreover, the same amount of available 

carbohydrate from different food sources is known to produce significantly varying blood 

glucose responses in both healthy and diabetic subjects.5, 11, 12  Indeed, the predictable 
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difference in responses to different carbohydrate-containing foods is the basis of the glycemic 

index (GI).  

Surprisingly, the efficacy of carbohydrate counting has not been assessed as a benchmark for 

other dietary strategies.  Current international recommendations supporting the use of 

carbohydrate counting in practice are based simply on narrative review and grading of the 

limited available evidence.1, 8, 13 Hence, our objective was to conduct a systematic review and 

meta-analysis of randomised controlled trials (RCT) comparing carbohydrate counting 

interventions with general or alternate dietary advice in adults and children with type 1 

diabetes.  Glycaemic control as judged by glycated haemoglobin (HbA1c) was the primary 

outcome measure.   

 

2.3 Methods 

The study was designed and reported in accordance with the PRISMA guidelines, an 

evidence-based, 27-item checklist for reporting systematic reviews and meta-analyses to 

ensure complete and transparent reporting.   

 

2.3.1 Search strategy 

We searched all relevant biomedical databases, including the Medical Literature Analysis and 

Retrieval System Online (MEDLINE), the Excerpta Medica (EMBASE), the Cumulative 

Index to Nursing and Allied Health Literature (CINAHL), Thomson Reuters (formally ISI) 

Web of Knowledge and the Cochrane Central Register of Controlled Trials.  In consultation 

with a medical librarian, we developed a search strategy based on an analysis of medical 
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subject headings, terms, and key text words from January 1980 to August 2013 (Appendix 2).  

A start date of January 1980 was intentionally chosen as HbA1C assays were becoming 

routinely available in the early 1980s.14  We combined terms for “randomised controlled 

trials”, “type 1 diabetes”, “glycaemic control” and “carbohydrate counting”. Reference lists 

from relevant meta-analyses, systematic reviews, and clinical guidelines were also examined. 

 

2.3.2 Study selection 

Two review authors (KB and AB) independently screened all study titles and abstracts 

identified through the search strategies against the predetermined selection criteria described 

below, to identify potentially relevant studies.  Duplicate records were removed and multiple 

papers on the same study were collated as one.  Full-text copies of potentially relevant studies 

were sourced and independently assessed by the reviewers for compliance with the selection 

criteria.  To be included, studies had to be written in English and published between January 

1980 and August 2013.  All published randomised and quasi-randomised controlled clinical 

trials of interventions that compared the management of type 1 diabetes with and without 

carbohydrate counting in either children or adults with type 1 diabetes for at least 3 months 

were included.  RCTs in pregnant women were acceptable. ‘Carbohydrate counting’ included 

all methods of quantifying the amount carbohydrate consumed for the purpose of determining 

prandial insulin dose, as per the American Diabetes Association definition.1 This included 

counting in grams or using carbohydrate exchanges or portions and both flexible and fixed 

insulin therapy.  Interventions where insulin therapy or diabetes education was 

simultaneously intensified were accepted for inclusion because carbohydrate counting is 

intricately linked with insulin therapy.  This factor was noted as a potential confounder. 
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2.3.3 Data extraction and quality assessment 

The data from included studies were independently extracted using a predetermined form by 

two review authors (KB and AB) and compared for accuracy.  Any differences between 

reviewers’ data extraction results were resolved through discussion.   Where there was 

uncertainty, authors were contacted for clarification. 

The primary outcome measure was HbA1c.  Secondary measures included 1) number overall 

and severity of hypoglycaemic episodes; 2) fasting plasma glucose; 3) insulin dose required to 

maintain glycaemic control; 4) body weight change and 5) quality of life (measured by a 

validated instrument). 

The quality of each study was independently evaluated by two review authors (KB and AB) 

based on the following factors and was scored according to the corresponding criterion 

(Table 2.1).  Quality assessment items included 1) random sequence generation; 2) allocation 

concealment; 3) blinding of outcome assessment; 4) subject attrition rate or ‘lost-to-follow-

up’ rate; 5) incomplete outcome data; 6) protocol deviation 7) selective reporting and 8) use 

of an attention placebo in the control group.   
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Table 2.1: ‘Assessment of risk of bias’ scoring criterion. 

Bias Type Bias Source Criteria 

Selection Bias Random sequence generation 0 - Unclear/Not randomised 

1 - Pseudo-randomised 

2 - Appropriately randomised 

Allocation concealment 0 - Not concealed/Unclear 

1 – Concealed 

Detection Bias Blinding of outcome 

assessment 

0 - Unclear/Not blinded 

1 - Outcome assessor blinded 

Attrition Bias Participant attrition rate or 

‘lost-to-follow-up’ rate 

0 - ≥ 25%  

1 - 15 - 24.9% 

2 - 5.0 - 14.9% 

3 - 0 - 4.9% 

Incomplete outcome data 0 - Not discussed 

1 - Used 1 method of dealing with missing 

data and discussed potential impact 

2 - Compared multiple strategies for dealing 

with missing data and discussed impact on 

results/conclusions. 

Protocol deviation 0 - Unclear/significant deviation/Impact of 

deviation not discussed when interpreting 

results 

1 - Some protocol deviation but impact   

discussed when interpreting results 

2 - No protocol deviation 

Reporting Bias Selective reporting 0 - Outcome measure(s) not reported with no 

explanation 

1 - Outcome measure(s) not reported with 

explanation/discussion of impact 

2 - No outcome measure(s) omitted 

Other Bias Attention Placebo 0 - No attention placebo 

1 - Attention placebo 
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2.3.4 Statistical analysis 

The Comprehensive Meta-Analysis (CMA) package15 was used to analyse the data.  As all 

data collected were continuous, the results were expressed as the difference in means 

calculated from end of treatment values, with 95% confidence intervals. Cross-over studies 

were included and analysed using the mean and standard deviation (SD) of the change from 

the baseline to endpoint of each intervention time period.  Heterogeneity between studies was 

assessed using the Chi-squared test, with a significance level of 0.05 considered evidence of 

heterogeneity.  Funnel plots were used in exploratory data analyses to assess for the potential 

existence of publication bias.  The results of clinically and statistically homogenous studies 

were pooled and meta-analysed using the random-effects model to provide estimates of the 

efficacy of carbohydrate counting. Statistical significance was set at a p value of < 0.05 for all 

outcome measures.    

The following subgroup analyses were performed, 1) carbohydrate counting method (grams 

versus 10 g portions versus 15 g exchanges); 2) adults versus children; 3) pregnant versus not 

pregnant. 

Sensitivity analyses were performed by using the ‘one study removed’ sensitivity analysis and 

by excluding studies identified as having a high risk of bias. 
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2.4 Results 

2.3.1 Study selection 

From the 311 studies identified through the literature search and additional hand-searching, 

18 papers were identified as potentially relevant, 16-33 (FIG 2.1).  Of those 18 studies, 8 were 

excluded because there was no control group (or no control group without carbohydrate 

counting),16-23 one was not an original article,24 one was in type 2 diabetes25 and one did not 

report HbA1c values26.  The remaining seven studies,27-33 totaling 703 subjects (599 adults, 

104 children), met the inclusion criteria.  The subject characteristics and outcomes of these 

studies, including the number and mean age of subjects, study design, intervention duration 

and study quality score, are shown in Table 2.2.  

Six studies were conducted in parallel 27, 28, 30, 31, 33 and one was a cross-over with 3 

interventions.29   Six of the seven studies were conducted in adults 27, 29-33 and one recruited 

children aged 8 -13 years28.  All studies were conducted in an outpatient clinical setting, with 

three providing individual appointments28-30 and four conducting group education sessions27, 31, 

33.  Study duration averaged 11 months (range 3.5 to 30 months).  Each study used 

carbohydrate intake to determine insulin dose, although a variety of different methods of 

quantifying carbohydrate counting were taught. Two studies instructed subjects to count in 

grams of carbohydrate29, 30, one study used 10 g carbohydrate exchanges,27 another used 15 g 

carbohydrate exchanges28 and three studies31, 33 did not specify how carbohydrate was 

quantified and the authors could not be contacted.  In six of the seven studies, subjects in the 

control groups received ‘usual care’ and general nutrition education.27, 29-31, 33 One study 

compared carbohydrate counting with a flexible (non-measured) low GI diet.28   
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Figure 2.1: Flowchart of Study Selection  

 

Assessment of the quality of the studies revealed an average score of 7.6 out of a possible 13 

points (range: 5-10).  All studies used appropriate randomisation strategies; however none of 

the studies had adequate intervention allocation concealment and none blinded the outcome 

assessor.  The highest scoring studies had the lowest attrition rates and demonstrated the least 

risk of bias.  Four of the six studies had concurrent intensification of the insulin regimen,27, 29, 

30, 33 and only four provided an attention placebo i.e. subjects in the control group had 

equivalent amounts of contact time as those in the carbohydrate counting group.28, 29, 32, 33. 
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Table 2.2: Summary of included studies 

Study Study 
Design 

Study 
Length 

Number of 
Subjects 

(Total sample 
size (No. 

completing 
study/ No. 
allocated, 

attrition rate) 

Population  

(Diabetes 
type, 

Gender, 
Age, 

Country 
Conducted) 

Intervention  

(Description, 
Education Mode, 

Carbohydrate 
Counting Method) 

Control  

(Description, 
Education 

Mode, 
Carbohydrate 

Counting 
Method) 

HbA1c  

(Baseline Mean ± 
SD – Endpoint 

Mean ± SD, 
Change Mean ± 

SD.  P value 
between groups, 
where available) 

 Secondary Outcomes  

(Baseline Mean ± SD – 
Endpoint Mean ± SD, Change 
Mean ± SD.  P value between 

groups, where available)  

Intention 
to Treat 

Analysis? 

Quality 
Score 
(max. 

13) 

DAFNE 
200227 

RCT 12 
months 

169 (I: 
68/84,19%, C: 
72/85, 15%) 

type 1 
diabetes; 
44% male; 
mean age 40 
± 9 years; 
England 

5 day course run by 
diabetes educator in 
matching insulin to 
carbohydrate 
intake; group 
education; 10 
carbohydrate 
exchanges 

Usual care HbA1c (%) I: 9.4 
± 1.2 – 8.4 ± 1.2, 
C: 9.3 ± 1.1 – 9.4 
± 1.1, p < 0.0001  
 

Weight (kg) I: 80.5 ± 16.7 – 81.5 
± 16.9, C: 77.4 ± 13.4 – 77.3 ± 
13.4, p = 0.11  
Hypo (% subjects experiencing 
severe hypo in past 6 months; 
coma or requiring third party 
assistance) I: 22-18, C: 11-15,      
p = 0.67  
Insulin Dose (U/kg) I: 0.71 – 
0.74, P = 0.017, C: 0.71 – 0.70,   
p = 0.47  
QoL (ADDQoL) I: -2.0 ± 1.6 – -
1.6 ± 1.6, C: -1.9 ± 1.3 –  -1.9 ± 
1.4, p < 0.01 

No 9 
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Gilberts
on et al. 
200128 

 RCT 12 
months 

104 (I: 38/49, 
22%, C: 
51/55, 7%) 

type 1 
diabetes; 
51% male; 
mean age    
I: 10 ± 2 
years; C: 11 
± 2 years, 
Australia 

Meal plan with set 
number of 
carbohydrate 
exchanges per 
meal/snack; 
individual 
education - 1 
session with 
dietitian; 15 g 
carbohydrate 
exchanges 

Low glycaemic 
index diet with 
no portion 
prescription but 
general guide; 
Individual 
education - 1 
individual 
session with 
dietitian 

HbA1c (%) I: 8.6 
± 1.4 – 8.6 ± 1.4, 
C: 8.3 ± 1.3 – 8.0 
± 1.0, p = 0.05   
 

Weight Measured but not 
reported.                                
Hypo (Mean number of 
episodes/month; <3.5mmol/L) I: 
7.3 ± 5.7 – 5.8 ± 5.5, C: 6.9 ± 6.2 
– 6.9 ± 6.8, p = 0.37   
Insulin Dose (U/kg) I: 0.9 ± 0.3 – 
1.00 ± 0.3, C: 1.0 ± 0.3 – 1.1 ± 
0.3, p = 0.87 

Yes 8 

Kalergis 
et al. 
200029 

RCT – 
cross- 
over 

3.5 
months 

21 (I: 15/21, 
29%, C: 
15/21, 29%) 

type 1 
diabetes; 
40% male; 
mean age    
I: 38 years; 
C: 38 years, 
Canada 

Meal plan with 
insulin adjusted 
using 1 unit:10 g 
ratio; Individual 
education - monthly 
clinic visits and 
then weekly 
telephone; gram 
increments 

Meal plan using 
food group 
exchange 
system and no 
insulin 
adjustments; 
Individual 
education - 
monthly clinic 
visits and then 
weekly 
telephone 

HbA1c (%) I: 7.6 
± 1.3 – 7.2 ± 0.9, 
-0.21 ± 0.18,      
C: 7.7 ± 1.24 – 
7.9 ± 1.4, -0.24 ± 
0.22, NS 

Weight (kg) I: 67.7 ± 3.0 – 67.4 ± 
3.2, C: 67.7 ± 3.0 – 68.2 ± 2.9  
Hypo (episodes per 100 patient 
years at endpoint; < 4mmol/L))   
I: 53. C: 48, NS 
QoL (DQOL) I: 2.0 ± 0.10 – 1.8 
± 0.11, C: 2.0 ± 0.10 – 2.0 ± 0.13, 
NS 

No 7 
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Laurenz
i et al. 
201130 

RCT 24 
weeks 

61 (I: 28/30, 
7%, C: 28/31, 
10%) 

type 1 
diabetes; 
54% male; 
mean age I: 
41 ± 10 
years; C: 40 
± 10 years, 
Italy 

Education 
programme 
including 
estimating grams of 
carb and matching 
with insulin; 
Individual 
education - 4-5 
visits with dietitian 
in 12 weeks; gram 
increments 

Usual care HbA1c (%) I: 7.9 
± 0.9 (baseline), -
0.4 (mean 
change), C: 8.10 ± 
1.5 (baseline),  -
0.05 (mean 
change), p = 0.05 

Insulin Dose (U/day) I: 36 
(median), C: 33 (median), p = 
0.282 
 

No 7 

Scavone 
et al. 
201031 

RCT 9 
months 

256 (I: 73/100, 
27%, C: 
156/156, 0%) 

type 1 
diabetes; 
49% male; 
mean age    
I: 39 ± 11 
years;         
C: 39 ± 11 
years; Italy 

Nutrition education 
programme 
including 
estimating 
carbohydrate 
content and 
matching insulin to 
carbohydrate; 
Group education - 1 
session/wk for 4 
weeks then 3 
monthly reviews to 
9 months; Not 
stated.  

Usual Care HbA1c (%) I: 7.8 
± 1.3 – 7.4 ± 0.9, 
C: 7.5 ± 0.8 – 7.5 
± 1.1, p <0.01 

Hypo (number of hypo events; 
<3.9mmol/L) I: 4, C: 7, p < 0.05  
Insulin Dose (U/24 h) I: 23.5 ± 
10.9.  C: 27.7 ± 17.1, p = 0.03 
 

Not stated 5 
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Schmidt 
et al. 
201232 

RCT 16 
weeks 

36 (I: 21/27, 
22%, C: 8/9, 
11%) 

type 1 
diabetes, I: 
52% male, 
C: 75% 
male; mean 
age I: 41± 
10 years; C: 
46 ± 9 years; 
Denmark 

Diabetes education 
program plus 
carbohydrate 
counting using 
individualised 
Insulin: 
carbohydrate ratio; 
Group education – 
1 x 3hr session, 1 
individual review, 
2x 15min phone 
reviews; Not stated. 

Diabetes 
education 
program, 
including 
empirical 
mealtime insulin 
adjustment 
based on 
prescribed 
doses. 

HbA1c (%) I: 9.2 
± 0.6 – 8.4 ± 0.9, 
-0.8, C: 9.1 ± 0.7 
– 8.9 ± 1.1, -0.1,  
p = 0.175 

Hypo (Perceived frequency. 
Scored 0–6. Higher scores 
indicate higher perceived 
frequency) I: 2.3 ± 1.4 – 2.2 ± 1.1, 
-0.1, NS; C: 2.4 ± 1.3 – 1.8 ± 1.4, 
-0.6, NS; NS between groups. 
(Total reported episodes requiring 
third party assistance) I: 2, C: 1. 
Insulin Dose (U/kg/24 h) I: 0.7 ± 
0.17 (baseline), -0.03 ± 0.11 
(change mean); C: 0.7 ± 0.2 
(baseline), -0.01 ± 0.07 (change 
mean). 
QoL (ADDQoL) I: -2.0 ± 1.7 – -
1.8 ± 1.6, NS; C: -2.0 ± 1.7 –  -1.4 
± 0.9, NS; NS between groups. 

Yes 7 

Trento 
et al. 
201133 

RCT 30 
months 

56 (I:27/27, 
0%, C: 29/29, 
0%) 

type 1 
diabetes; 
67% male; 
mean age I: 
37 ± 13 
years; C: 37 
± 8 years, 
Italy 

Carbohydrate 
counting program, 
including matching 
insulin to 
carbohydrate 
embedded into 
usual group care 
program; Group 
education - at least 
8 education 
sessions; Not stated 

Usual diabetes 
care program; 
group education 
- at least 8 
education 
sessions 

HbA1c (%) I: 7.6 
± 1.3 – 7.2 ± 0.9, 
-0.21 ± 0.18 NS, 
C: 7.7 ± 1.24 – 
7.9 ± 1.4, -0.24 ± 
0.22 NS within 
group, p < 0.05 
between groups.   
 

Weight (kg) I: 71.9 ± 10.0 – 71.9 
± 9.3, 0.65 ± 0.91, NS, C: 66.9 ± 
10.7 – 67.1 ± 10.2, -0.17 ± 0.87, 
NS   
Hypo (Absolute number of severe 
hypo for group; requiring third 
party assistance) I: 5, C: 6 
Insulin Dose (U/kg) I: 47.9 ± 
10.6 – 46.1 ± 12.7, 0.82 ± 1.57, 
NS, C: 45.7 ± 12.6 – 49.3 ± 17.2, 
-4.4 ± 2.48, NS between groups.  
QoL (DQoL) I: 88.7 ± 9.2 – 78.0 
± 9.9, 10.7 ± 1.3, P < 0.0001, C: 
88.7 ± 12.5 – 80.4 ± 11.7, 8.3 ± 
1.47, p < 0.0001 within group, NS 
between groups 
 

Yes 10 
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2.3.2 Carbohydrate counting and HbA1c 

Meta-analysis of changes in HbA1c showed heterogeneous findings. Five studies favoured 

carbohydrate counting,27, 30, 31, 33 while two favoured the control group.28, 29 The change in 

HbA1c between baseline and end of the treatment ranged from -1.0% to +0.14% points in the 

carbohydrate counting groups, and -0.3% to +0.24% points in the controls. There was no 

significant improvement in HbA1c with carbohydrate counting versus the control or usual 

care, using the random effects model (-0.35%; 95% CI: -0.75-0.06; p = 0.096; FIG 2.2A). 

Assessment of the funnel plot showed no indication of asymmetry and thus there is no 

evidence of publication bias. Heterogeneity (Chi2) between the studies was significant (32%, 

p<0.0001), potentially related to study design. In the five studies that utilised a parallel design 

comparing carbohydrate counting with alternative advice or ‘usual care’, the difference in 

HbA1c between baseline and the end of the intervention was -0.64% points favouring 

carbohydrate counting (95% CI: -0.91 - -0.37; p < 0.0001; FIG 2.2B).  

Certain assumptions were made to conduct the meta-analysis. The SD for the change in 

HbA1c from baseline to the end of the intervention is required to assess the significance of 

the change; however Trento et al.33 was the only paper reporting this information.  In Laurenzi 

et al.30, the SD of the change was based on the reported p value for the difference between the 

intervention and control groups.  The calculated SD was 0.45 for carbohydrate counting and 

0.8 for the control group.  Kalergis et al.29 reported the SE of the change, although the values 

appeared too large and was more likely the SD of the change and was treated accordingly.  

Finally, for the remaining studies that did not report the SD of the change,27, 28, 31 a correlation 

of 0.5 between baseline and endpoint in the control data, and 0.6 in the intervention data was 

assumed, based on the values published in Trento et al.33  



Chapter 2: Carb Counting Meta-Analysis 

! ! !
 

97 

As part of the sensitivity analysis and to verify the effects of these assumptions, the ‘one-

study-removed’ analysis was conducted.  All results remained consistent with only the 

removal of the studies by Gilbertson et al.28 or Kalergis et al.29 making the result significant (p 

= 0.016 and 0.015 respectively). 

 

 

 

 

 

 

 

 

 

 

Figure 2.2:  Meta-analysis of changes in glycated haemoglobin (HbA1c) after carbohydrate 

counting vs alternate advice or usual care in type 1 diabetes. All seven studies (A) studies and 

the five studies in adults employing a parallel design (B).  The studies included are described 

in Table 2.2.  
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2.3.3 Carbohydrate counting and other indicators of glycaemic control 

Hypoglycaemic events 

There was inconsistency in the way hypoglycaemia was defined and reported.  Four studies 

defined hypoglycaemia as an objective blood glucose value but the cut-off value varied from 

<4 mmol/L to <2.8 mmol/L.28-31 Three studies captured ‘severe hypoglycaemia’ only, defined 

as whether third party assistance was required.27, 32, 33 Schmidt et measured perceived 

hypoglycaemia using a questionnaire32.  Six studies reported hypoglycaemic events at the 

conclusion of the intervention, yet only three reported events at baseline.27, 28, 32 Two studies 

reported significantly less self-reported hypoglycaemia in the carbohydrate counting group, 

but did not report the level of significance, 31, 32. In one study, there were two episodes of 

severe hypoglycaemia in the carbohydrate counting group compared with one in the control 

group.32 Overall, six studies reported a non-significant decrease in the frequency of 

hypoglycaemic events in the carbohydrate counting group.27-32 

 

Quality of life 

Five studies measured quality of life using a validated instrument,27, 29, 30, 32, 33 however only 

two studies used the same questionnaire and thus a meta-analysis was not possible.  All five 

studies showed trends towards improved quality of life using carbohydrate counting, but only 

the ‘Dose Adjustment for Normal Eating’ (DAFNE) study group27 showed a significant 

difference between groups.   Laurenzi et al.30 reported a significant improvement in scores 

relating to dietary restrictions (p = 0.008) but no other significant results and did not report 

the overall scores and associated p value.   
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Insulin dose 

All studies reported the insulin dose as units of insulin/day or units of insulin/kg/day.  Four 

out of the five studies that assessed changes in insulin dose reported a non-significant 

difference between groups with no consistent trends.27, 28, 32, 33 Only Scavone et al.31 reported a 

significant difference between endpoint insulin doses (23 vs 28 units of insulin/24 h in the 

intervention vs control group respectively, p = 0.03) but did not report baseline or change 

values.   

 

Body weight 

Five studies measured weight at baseline and the end of the intervention 27, 28, 29, 32, 33, but 1 did 

not report the results 28.  The four other studies all reported a non-significant difference 

between groups.  

 

Fasting glucose 

Only one study reported the change in fasting plasma glucose between baseline and the end of 

the 30-month study.33  Fasting plasma glucose levels dropped non-significantly by 0.27 ± 1.50 

mmol/L using carbohydrate counting. 

 

Other sub-group analyses 

Adults may be more accurate than children in estimating carbohydrate content of meals. In 

the 6 studies comprising of 599 adults27, 29-33 there was a -0.4% difference in HbA1c favouring 
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carbohydrate counting (marginally significant p = 0.048).  Only one study involved children28 

and therefore a comparison of adults vs children was not appropriate. There were too few 

studies to allow meta-analysis of different strategies used for quantifying carbohydrate (eg 

counting in grams vs 10 g or 15 g exchanges), and there were no studies in pregnancy.   

 

2.5 Discussion 

Our systematic review found seven eligible RCTs comparing the efficacy of carbohydrate 

counting on glycaemic control as determined by changes in HbA1c in adults and children 

with type 1 diabetes.27-33 The results were heterogeneous with five studies supporting 

carbohydrate counting and two trials (one crossover study, one in children) suggesting less 

quantitative methods were superior or equally effective.  Overall, the difference was not 

statistically significant.  However, in the five studies confined to adults, the difference in 

HbA1c favoured carbohydrate counting (-0.6% points), a result that was both clinically and 

statistically significant (p < 0.0001).  

This systematic review and meta-analysis has several strengths.  Although a number of 

reviews of carbohydrate counting have been published, to our knowledge, this is the first 

meta-analysis. Meta-analysis provides the opportunity to quantify the improvement in HbA1c 

that can be expected with the introduction of carbohydrate counting education.  It also allows 

carbohydrate counting to be compared with other available glycaemic control strategies and 

offers a benchmark for future interventions.  Our inclusion criteria ensured that only quality 

studies were eligible.  We accepted only RCTs >3 months duration and independently 

assessed the risk of bias for each study and took this score into account when analysing and 

interpreting the findings.  No study was found to have a high risk of bias and therefore no 
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studies were excluded for this reason.  Additionally, our ‘one study removed’ sensitivity 

analysis, allowed us to examine whether lower quality scoring studies influenced the final 

result, however excluding the lowest scoring study did not alter the final result.  

There are several limitations. Because so few studies met the inclusion criteria, caution must 

be applied in interpreting the results of this meta-analysis. Several studies from the Diabetes 

Teaching and Treatment Program (DTTP) and DAFNE program have shown improvements 

in HbA1c using carbohydrate counting,34-36 but were not designed as RCTs and lacked control 

groups.  The limited number of included studies meant that most planned subgroup analyses 

could not be performed, including studies in children vs adults. The one study in children 

showed a significant difference between interventions, favouring the alternative approach (a 

low GI diet) over carbohydrate counting. Conversely, the observed trend to improved 

glycaemic control among adults should also be interpreted with care as most of the studies 

had a concurrent intensification of the insulin regimen in the intervention group, which may 

have reduced HbA1c independently of dietary advice. Similarly, three of the seven studies 

failed to provide an attention placebo for the control group.27, 30, 31 Since it is possible for 

glycaemic control to improve due to increased contact time with healthcare professionals, this 

may be an additional source of bias and needs to be taken into account when interpreting the 

results. 

An additional limitation is that the included studies have not measured or reported compliance 

with the intervention nor the effectiveness of the education provided.  The effectiveness of 

carbohydrate counting may ultimately be limited by both compliance and the ability of adults 

and children to accurately estimate carbohydrate content.  Mehta et al.23 showed that greater 

accuracy and precision in parent’s ability to count carbohydrates was associated with a lower 

HbA1c in their child; however only precision was a significant predictor of HbA1c (p = 0.9 
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and p = 0.02 respectively).  HbA1c was 0.8% points lower for parents who were >75th 

percentile for precision.  The literature shows a wide variation in this ability, with some 

studies showing most participants are able to accurately estimate carbohydrate to within 10-

15 g37, 38 or within 15-20% of the true value,6, 23 while other reports revealed only half could 

accurately estimate carbohydrate content39 or had large variations in estimations40. 

Unfortunately, in the present study, the planned subgroup analysis comparing methods of 

quantifying carbohydrate could not be conducted because of the small number of eligible 

trials. Future studies should therefore investigate the role of precision and the effectiveness of 

one strategy over another. 

In addition, the lack of consistency in way hypoglycaemia was measured and reported 

prevented the results from being meta-analysed.  The data suggests a trend towards a 

decreased risk of hypoglycaemia with carbohydrate counting, indicating the reductions in 

HbA1c are a result of stabilised glycaemic control rather than just an overall lowering of 

blood glucose levels. It should be noted that reports of hypoglycaemic episodes based on 

blood glucose meter readings may not reflect the true incidence of hypoglycaemia, as some 

meters are not accurate below the normal range.   

A prescribed meal plan may lower HbA1c irrespective of whether it includes carbohydrate 

counting.  For example, Mehta et al.41 showed that HbA1c correlated with dietary adherence 

in youths aged 9 - 14 years, with those in the lowest tertile for dietary adherence having 

HbA1c 0.6 - 0.9% points higher than those in the higher tertiles.  In the DCCT, HbA1c was 

0.9% points lower in those following a prescribed diet ‘most of the time’ compared with those 

following a plan ‘less than half of the time’.42 Carbohydrate counting with flexible insulin 

therapy may be advantageous to quality of life however, as it allows more dietary flexibility. 

In practice, many people with type 1 diabetes have difficulty managing their postprandial 



Chapter 2: Carb Counting Meta-Analysis 

! ! !
 

103 

blood glucose levels.  Ahola et al.40 reported that only a third could maintain postprandial 

normoglycaemia, and even in those with apparently good metabolic control, ~40% 

experienced frequent hyperglycaemia. Given the weaknesses in the theoretical basis for 

carbohydrate counting, alternate methods of determining prandial insulin dose should also be 

explored. With developments in medical technology and a shift towards patient-centered care, 

insulin therapy has become more flexible and concomitantly medical nutrition therapy. 

Carbohydrate counting is recommended to match insulin doses to food choices yet alternate 

methods other than carbohydrate counting have rarely been studied.  It is possible that other 

methods of matching insulin with food are not being studied because of the belief that 

carbohydrate counting is well-founded, evidence-based therapy. Indeed, this meta-analysis 

indicates how little high level evidence exists. Four studies suggest carbohydrate counting is 

better than ‘usual care’, but there are too few studies comparing carbohydrate counting with 

similarly intensive but different methods of matching insulin to food.   

In summary, using systematic review and meta-analysis, we found seven RCT of at least 3 

months duration comparing carbohydrate counting with usual care or alternate dietary advice 

for individuals with type 1 diabetes. Overall, there was no significant effect of carbohydrate 

counting (0.35%, p = 0.096), but a sub-analysis of five studies employing a parallel study 

design showed a -0.64% point improvement in HbA1c favouring carbohydrate counting (p < 

0.0001). Further studies are needed, particularly in children and adolescents, to support the 

use of carbohydrate counting over other methods of matching insulin dose to food intake. 
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3.1 Abstract 

Objective: Dietary patterns which induce excessive insulin secretion may contribute to worsening 

insulin resistance and beta-cell dysfunction in susceptible individuals1, 2.  This study had 3 aims: 1) 

test 26 common foods for their Food Insulin Index (FII) and Glucose Score (GS), 2) systematically 

evaluate the relationships between different dietary factors and postprandial physiological responses 

using the updated FII database and 3) validate previously generated equations for predicting FII and 

develop new predictive models. 

Methods: Healthy subjects consumed 1000 kJ portions of 26 common single foods.  Glycaemia 

and insulinaemia were quantified as area under the curve and the FII and GS calculated relative to 

an isoenergetic reference food. Simple and multiple linear regression analysis was used to evaluate 

correlations and develop improved predictive models. 

Results: There were large differences in the GS and FII both within and between food groups for 

the 147 foods. GL, GI and available carbohydrate content were the strongest predictors of the FII, 

explaining 55%, 51% and 47% of variation respectively.  Fat, protein and sugar were all also 

significant but relatively weak predictors, accounting for only 31%, 7% and 13% of the variation 

respectively. In the hierarchy of insulinotropic macronutrients, carbohydrate was the strongest 

predictor, followed by protein and then fat.  Together the actual GS, sugar, protein and fat could be 

used to predict the final average FII value, explaining 78% of the variation. However, when only 

the nutritional composition of the food was considered, the equation explained about just half of the 

variability. 

Conclusions: Macronutrient composition alone in a poor predictor of the FII, suggesting that in 

vivo testing is required to generate either the GS or FII itself.  The postprandial insulin response to a 
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single food represents multiple nutritional and metabolic interactions that are difficult to predict 

with the precision needed for clinical application.  

Acknowledgement:.The existing FII database used in this chapter was collected progressively over 

a 15 yr period by a number of different individuals, including Dr. Susanne Holt, Fiona Atkinson, Dr 

Jiansong Bao, Vanessa de Jong, Kaniz Fatima, Karola Stockman, Laura Sampson, Mary Franz.  

Masters of Nutrition and Dietetic students, Sally Lane and Aleksandra Grasar, provided assistance 

with the practical work for the assessment of the Food Insulin Index values for some of the new 

foods presented in the chapter.  See Appendix 3 for the original FII database (121 foods). 
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3.2  Introduction 

Metabolic health is of paramount importance in the prevention and management of chronic disease, 

including type 2 diabetes, overweight and obesity, cardiovascular disease and some types of 

cancers.  As detailed in Chapter 1 (Section 1.3.4.4) dietary patterns which induce excessive insulin 

secretion are thought to contribute to worsening insulin resistance and beta-cell dysfunction1, 2. 

Carbohydrate has been identified as the sole macronutrient that directly increases postprandial 

blood glucose levels, and is thus the main dietary determinant of postprandial insulin secretion.  

However, numerous studies in healthy subjects have demonstrated that the same amount of 

carbohydrate from different food sources produces wide variations in glycaemic and insulin 

responses3-6.  Furthermore postprandial insulin responses to typical mixed meals containing 

carbohydrate, protein and fat are not closely correlated with the carbohydrate content7, implying 

that carbohydrate counting will fall short in the management of type 1 diabetes.   Indeed, the 

insulinotropic effects of protein and fat are well documented8-11.  While fat and protein have a 

modest effect on postprandial blood glucose levels (via increased hepatic glucose output and acute 

insulin resistance), they elicit significant insulin responses, in some cases comparable to that of 

carbohydrate12-17.   

A comprehensive understanding of the relationship between dietary factors and physiological 

insulin secretion evoked by foods is required to inform the dietary management and prevention of 

chronic diseases.  The glycemic index (GI) has proven a valuable tool for ranking carbohydrate 

foods on the basis of their postprandial blood glucose response relative to a reference food matched 

for carbohydrate content.  The glycemic load (GL) is a measure of the potency of a carbohydrate 

food on glycemia and is calculated using the GI and the grams of carbohydrate in the serve size.  

However, the GI and GL concepts do not consider concurrent insulin responses, nor foods 
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containing little to no carbohydrate.   

In order to systematically rate postprandial insulin responses for a broad range of common foods, a 

Food Insulin Index (FII) has been proposed which ranks foods based on the insulin response 

(‘demand’) in healthy subjects relative to an isoenergetic reference food 16.  Using food energy as 

the constant allows all foods to be included, not just those with sufficient carbohydrate content, and 

thus all dietary components and their metabolic interactions can be considered, allowing a more 

holistic approach to determining insulin ‘demand’.  Additionally, a Glucose Score (GS) can be 

calculated using a similar equation but substituting the blood glucose response for the insulin 

response to determine the corresponding glycemic impact of the food.  To date, 121 common foods 

in the western diet have been tested for their FII, but more research is needed to expand the 

database to represent the spectrum of foods consumed in the typical Australian diet and to increase 

our understanding of the relationship between dietary factors and postprandial insulin secretion.  FII 

prediction equations have been published, although these were developed on the basis of just 38 test 

foods available at the time and their accuracy has not been validated18. The present study therefore 

aims to: 

1) Determine the FII and GS for an additional 26 commonly-consumed single foods 

2) Systematically evaluate the degree of association between different dietary factors and the 

postprandial physiological glycaemic and insulinaemic responses in healthy subjects 

consuming isoenergetic portions of 147 single foods 

3) Validate previously generated regression equations for predicting FII and develop new 

predictive models using the updated FII database. 
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3.3   Methods 

3.3.1 Study design 

Healthy subjects (n = 10-11 for each test food) were recruited. Subjects were included if they were 

aged 18–65 years non-smoking, with a stable body weight and BMI between 19 and 25 kg/m2.  

Those with impaired fasting glucose or impaired glucose tolerance or food allergies, intolerances or 

eating disorders were excluded. The protocol was approved by the University of Sydney Human 

Research Ethics Committee and subjects gave informed consent (See Appendices 4 – 7 for 

participant forms and questionnaires). 

On the day prior to testing, subjects were instructed to refrain from unusual physical activity, avoid 

alcohol and legumes and to eat a high-carbohydrate, low-fat dinner meal, to avoid the ‘second meal 

effect’19 and other influences on glycaemia the following morning.  On the morning of each testing 

session, subjects presented to the metabolic kitchen at the University of Sydney after a 10-12 h 

overnight fast.  On separate occasions, each subject consumed a1000 kJ portion of one of 26 test 

foods or the reference food (1000 kJ glucose powder dissolved in 250 mL of water) with 250 mL of 

water in random order. Due to their low energy density, the 6 non-starchy vegetables were tested in 

300 kJ portions with an isoenergetic reference food.  The test foods were chosen to represent a 

cross-section of commonly consumed foods in the Western diet that had not already been tested.  

The nutrition information for the tested foods is presented in Table 3.1.  The subjects remained 

seated throughout the test session and were not permitted to eat or drink until the end of the session. 

Fasting capillary blood samples were taken at -5 and 0 minutes and then postprandially at 15, 30, 

45, 60, 90 and 120 minutes.  Plasma glucose was analysed with the glucose hexokinase enzymatic 

assay on a centrifugal analyzer (model HITACHI 912; Hitachi, Tokyo, Japan).  Plasma insulin was 

measured with an antibody-coated tube radioimmunoassay (Diagnostic Products Corporation, Los 
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Angeles, CA).  

 

3.3.2 Statistical analysis   

The incremental area under the 120 min curve (iAUC) was calculated using the trapezoidal method 

for both the glucose and insulin response for each test subject for each food.  All subjects tested the 

reference food on 3 separate occasions, with the average metabolic response used as the basis for 

comparison with all other foods and thereby accounting for differences between subjects.  The ISO 

standard for GI testing of intra-individual CV < 35% for the reference food was used. 

The FII for each subject was determined as the iAUC of the insulin response elicited by the 1000 kJ 

portion of the test food expressed as a percentage of the average iAUC response to the 1000 kJ 

portion of the reference food (glucose).  The final FII of a food was calculated as the average FII in 

10 subjects. 

 

 

 

The GS was calculated using a similar algorithm based on the blood glucose responses for the test 

and reference foods.    

  

 

Food Insulin Index (FII) =                                                                                 x 100!    120min AUCInsulin for 1000 kJ test food   

120min AUCInsulin for 1000 kJ reference food 

Glucose Score (GS) =                                                                               x 100!    120min AUCGlucose for 1000 kJ test food   

120min AUCGlucose for 1000 kJ reference food 
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To determine the degree of association between different dietary factors and the postprandial 

physiological glycaemic and insulinaemic responses, linear regression analysis was used to test 

associations between FII and available carbohydrate, protein, fat, sugar, fibre, GS, GI and 

Glycaemic Load (GL) for all 147 single foods.  A subanalysis was also used to test associations 

between FII and types of fat and select amino acids for foods for which more detailed nutritional 

information was available.  Relationships between macronutrients and FII were also visualised as 

colour-coded response profiles using thin-plate spline procedures in R (version 3.0.2). 

To validate the previously published FII stepwise linear regression equations18, the individual test 

subject’s FII for the foods tested in this study were calculated using these equations and compared 

with the 254 actual observations.  Correlations between the calculated FIIs and between the 

calculated and observed FII for the original 446 observations and the new 254 observations were 

analysed and compared.  The combined 700 individual observations were used to generate a new 

stepwise regression equation to examine the extent to which the different predictors accounted for 

the variability of the observed postprandial responses.  

All statistical analyses were carried out by using the SPSS statistical package version 21 (SPSS Inc., 

Chicago, IL, USA).  Differences and correlation coefficients were considered statistically 

significant if the P value was < 0.05 and was highly significant if the P value was < 0.01 (2-tailed). 

 

3.4   Results 

There were large variations in the observed glucose and insulin responses to the 26 single foods, 

with GS ranging from 1 for cream to 100 for sweet potato, and FII ranging from 7 for brie cheese to 

96 for sweet potato.  There were large differences in FII both within and between food groups (FIG 
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3.1).  Within this sample of foods, meat-based foods (including fresh cuts, deli meats and processed 

products such as chicken nuggets and meat pies) had an average FII of 25, dairy foods an average of 

33, cereal and grain based products foods an average of 44, and vegetables (including legumes, 

starchy and non-starchy varieties) an average of 60. 

      

Figure 3.1: Observed insulin responses of 26 single foods, relative to an isoenergetic reference 

food (FII) arranged by food group. 
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Table 3.1: Macronutrient composition, glycaemic index (GI), glycaemic load (GL), actual glucose score (GS), and food insulin index (FII) for 1000-kJ 

portions of the reference glucose and test foods  

Food Test 

Date 

Weight 

(g/MJ) 

Protein 

(g/MJ) 

Fat 

(g/MJ) 

AvCHO 

(g/MJ) 

Sugar 

(g/MJ) 

Fibre 

(g/MJ) 

GI 

(%) 

GL 

(g/MJ) 

GS (%) FII (%) 

Vegetables and legumes            

Peas, steamed from frozen (McCains) * 2011 333 17 1 21 7 22 22 5 40 ± 10 37 ± 8 

Carrots, peeled and steamed (Australia) * 2011 775 9 2 32 29 33 33 14 35 ± 5 44 ± 7  

Broccoli, steamed (Australia) * 2011 877 4 4 11 11 25 - - 16 ± 5 29 ± 8 

Cauliflower, steamed (Australia) * 2011 971 21 2 19 19 27 - - 31 ± 7 48 ± 9 

Sweet Potato, orange, peeled and steamed 

(Australia) * 

2011 313 6 0 48 19 10 61 29 100 ± 11 96 ± 14 

Butternut pumpkin, baked (Australia) * 2011 431 3 11 37 28 21 51 19 64 ± 15 77 ± 16 

4 Bean Mix (Edgells) 2013 201 16 6 33 5 16 37 12 31 34 

Fruits            

Peach, raw (Australia) 2011 565 7 1 51 46 13 56 29 53 39 

Dairy products            

Chocolate milk (Moove) 2013 341 19 6 35 34 0 26 9 46 46 

Yoghurt, plain (Dairy Farmers) 2013 213 10 7 34 33 0 18 6 22 46 

Brie Cheese (Coles) 2013 65 11 21 1 1 0 - - 3 7 

Custard (Dairy Farmers) 2013 233 10 6 36 32 0 29 10 32 57 

Cream (Dairy Farmers) 2013 72 2 25 2 2 0 - - 1 8 
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Food Test 

Date 

Weight 

(g/MJ) 

Protein 

(g/MJ) 

Fat 

(g/MJ) 

AvCHO 

(g/MJ) 

Sugar 

(g/MJ) 

Fibre 

(g/MJ) 

GI 

(%) 

GL 

(g/MJ) 

GS (%) FII (%) 

Protein foods            

Lamb, grilled 2013 136 38 10 0 0 0 - - 6 21 

Pork, grilled 2013 239 53 3 0 0 0 - - 3 19 

Ham, shaved (Coles) 2013 213 34 11 0 0 0 - - 10 19 

Beef sausage, thin, grilled (Coles) 2013 106 14 19 35 0 0 - - 7 7 

Beef meat pie (Four’n’Twenty) 2013 104 10 12 23 0 - - - 35 41 

Chicken nuggets (Ingham) 2013 99 18 13 18 1 - 46 8 29 41 

Sushi, chicken roll (I Love Sushi) 2013 160 19 4 37 5 - 48 18 59 48 

Carbohydrate foods            

Weetbix (Sanitarium) 2013 67 8 1 45 2 7 69 31 48 41 

Plain Biscuit, Arrowroot (Arnotts) 2013 54 3 6 42 12 0 69 29 58 48 

Tim Tam (Arnotts) 2013 46 2 12 30 20 0 - - 32 27 

Hokkien Noodles (Kan Tong) 2013 149 10 1 47 0 0 - - 43 22 

Couscous 2013 67 8 1 48 0 2 65 31 66 84 

Butter chicken sauce (Sharwood’s) 2013 209 3 16 21 9 0 - - 22 16 

Mean!± SEM!

* Tested in 300 kJ portion and GS and FII determined against 300 kJ Glucose.  
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Not surprisingly, the glucose responses were significantly correlated with the available 

carbohydrate, GI and GL of the tested foods (r = 0.80, p < 0.0001; 0.66, p = 0.010 and 0.72, p = 

0.004 respectively).  There were also significant inverse relationships between the GS and the 

protein and fat contents of the foods (r = -0.40, p = 0.042 and r = -0.59, p = 0.001 respectively).  

Sugar and fibre were not significantly associated with the GS. 

Available carbohydrate, followed closely by fat, were the strongest individual predictors of the FII, 

explaining 36% and 34% of the variation in the observed insulin responses respectively.  However, 

as with the glycaemic response, there was an inverse relationship between FII and the fat content of 

the food (r = 0.60, p = 0.001 for GS and r = -0.58, p = 0.002 for FII; FIG 3.2 A-H).  Sugar was the 

only other significant predictor of the FII in these foods, explaining 18% of the variation.   

Interestingly, protein was not a significant predictor of FII, despite the tested foods being dominated 

by those high in protein and/or fat and low in carbohydrate (r = -0.27, p = 0.180).  In isolation, 

protein was a weak predictor of FII, explaining only 7% of the variation. 
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Figure 3.2 A-H: Univariate correlations between the food insulin index and the available 

carbohydrate, protein, fat, sugar, fibre, Glucose Score (GS), Glycaemic Index (GI) and Glycaemic 

Load (GL) for 1000 kJ portions of 26 single foods (G & H: n = 14).  

Combining the 26 tested foods with the 121 previously published foods16 also demonstrated the 

wide range of FII values, with large variations within and between food groups (FIG 3.3). 

The glucose responses to these 147 foods remained significantly correlated with the available 

carbohydrate, GI and GL of the foods, with the relationships strengthening with the inclusion of a 

greater range of foods (r = 0.81, 0.85 and 0.90 respectively, p < 0.0001 for all).  GL was the 

strongest predictor of glycaemic variation, explaining 80% of the variation in the GS.  GL was 

followed closely by GI, which explained 71%, and available carbohydrate, which explained 66% of 

the variation.   The inverse relationships between GS and protein and fat were sustained, becoming 

highly significant with the expansion of the sample size (r = -0.45 and -0.61 respectively, p < 0.001 

for both).  Both sugar and fibre showed weak, positive associations with GS, however only sugar 

became a significant predictor of the FII (r = 0.28, p = 0.001 for sugar and r = -0.12, p = 0.135 for 

fibre). 
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Figure 3.3: Observed insulin responses of 147 single foods, relative to an isoenergetic reference 

food (FII) arranged by food group. 
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GL, GI and available carbohydrate were also strongly and significantly correlated with the FII when 

the databases were combined (r = 0.74, 0.72 and 0.69 respectively, p < 0.0001 for all; FIG 3.4: A, 

G & H).  Individually, GI explained 51% and available carbohydrate explained 47% of the 

variation in the observed insulin responses, while their mathematical product, GL, was the strongest 

individual predictor of the FII, explaining 55% of the variation in FII.   Sugar was also moderately 

but significantly correlated with the FII (r = 0.36, p < 0.0001; FIG 3.4D).  

With the inclusion of all tested foods, the association between the protein content of the food and 

the FII was relatively weak but highly significant (r = -0.27, p = 0.01; FIG 3.4B).  The correlation 

between the FII and fat content of the foods remained moderately strong but now highly significant, 

with an inverse relationship (r = -0.56, p < 0.0001; FIG 3.4C).  In isolation, fat explained 31% of 

the variation in FII and protein explained 7% of the variation.   

Fibre was the only nutrient assessed that showed virtually no association with the FII (r = 0.08, p = 

0.361 FIG 3.4E). 
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Figure 3.4 A-H: Univariate correlations between the food insulin index and the available 

carbohydrate, protein, fat, sugar, fibre, Glucose Score (GS), Glycaemic Index (GI) and Glycaemic 

Load (GL) for 1000 kJ portions of 148 single foods (G & H: n = 135). 
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their insulinotropic ability (FIG. 3.5: A-C).  The response profiles visualise the trends in FII as 

three dimensional maps, with the 3 macronutrients mapped on 3 different axes (X, Y and Z) and the 

FII values represented by colour gradations.  The red regions indicate the highest FII and the dark 

blue regions indicate the lowest FII.  The three-dimensional plots are presented in two-dimensions 

by depicting the cross-sectional view of the plot at the median value of the third variable (median 

value is presented below the a-axis in parentheses).  For example, in FIG. 3.5A, protein is shown 

on the x-axis, carbohydrate is shown on the y-axis and fat is on the z-axis (but cannot be shown in 

2D).  The displayed figure is the cross-section of the graph at the median fat content value (i.e. 5 g  
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Figure 3.5 A–C: Colour-coded response profiles showing the relationship between Food Insulin 

Index versus carbohydrate, protein and fat.  Three 2D slices are presented to show all three nutrient 

dimensions.  For each 2D slice, the third factor is shown at the median (presented below the x-axis 

in parentheses).  In all surfaces, the red region indicates the highest FII and the dark blue region 

indicates the lowest FII. 
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 of fat/1000 kJ).  FIG. 3.5B is cut at the median protein value: 6 g of protein/1000 kJ and FIG. 

3.5C is cut at the median carbohydrate value: 36 g of carbohydrate/1000 kJ.   The plots show that 

carbohydrate is the dominant macronutrient determining postprandial insulin responses, producing 

the largest increases in FII with increasing carbohydrate content compared with both protein and fat 

(FIG. 3.5: A & B).  Plotting fat against protein shows that in the hierarchy of macronutrients, 

protein is slightly more insulinotropic than fat, with a trend towards a slightly higher FII with 

increasing protein content (FIG. 3.5C).   

 
 
To further elucidate whether the type of fat influenced insulin section, saturated, polyunsaturated, 

and monounsaturated fat content per 1000 kJ were correlated with the FII.  All 3 types of fat had 

moderately strong, highly significant inverse associations (r = -0.42, -0.37 and -0. 51 respectively, p 

< 0.0001 for all; FIG 3.6A-C).  Monounsaturated fat was the strongest individual predictor of the 

FII, explaining 26% of the variation, followed by saturated fat explaining 17% and then 

polyunsaturated fat explaining 16% of the variation.   

  



 Chapter 3: FII Testing & Correlations 

! ! ! !
 

130 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Figure 3.6 A-C: Univariate correlations between the food insulin index and the saturated fat, 

polyunsaturated fat and monounsaturated fat for 1000 kJ portions.  A: n = 147 single foods, B & C: 

n = 99 single foods.  

As carbohydrate displaces fat and protein within foods, foods containing <10 g of carbohydrate/ 

1000 kJ were analysed separately (FIG 3.7: A-D).  Amongst these 29 low-carbohydrate foods, the 

relationship between total fat and FII was weakened but remained inverse and significant (r = -0.40, 

p = 0.030).  However, none of the individual types of fat assessed was significant or strongly  

0 

20 

40 

60 

80 

100 

120 

0 5 10 15 20 

Fo
od

 In
su

lin
 In

de
x 

(%
) 

Saturated Fat (g/MJ) 

0 

20 

40 

60 

80 

100 

120 

0.0 5.0 10.0 15.0 20.0 

Fo
od

 In
su

lin
 In

de
x 

(%
) 

Monounsaturated Fat (g/MJ) 

0 

20 

40 

60 

80 

100 

120 

0 5 10 15 20 
Polyunsaturated Fat (g/MJ) 

A B 

C 

r = -0.42          
p < 0.0001 

r = -0.37           
p < 0.0001 

r = -0.51           
p < 0.0001 



 Chapter 3: FII Testing & Correlations 

! ! ! !
 

131 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 3.7 A-D: Univariate correlations between the food insulin index and the total fat, saturated 

fat, polyunsaturated fat and monounsaturated fat for 1000 kJ portions of foods containing 10 g of 

available carbohydrate or less.  A & B: n = 29 single foods, C & D: n = 27 single foods.  

 

correlated (r = -0.12, p = 0.551 for saturated fat, r = -0.28, p = 0.166 for polyunsaturated fat and r = 
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FII in low carbohydrate foods.  Saturated and polyunsaturated fats also weakened dramatically, now 

accounting for only 1% and 8% of the variation respectively. 

To further investigate the effect of differing types of proteins, 7 key insulinotropic amino acids 

were correlated with the FII.  Amongst the 147 foods in the FII database, the amino acid content 

could be located for 37 foods.  The amino acids were all only weakly correlated with the observed 

insulin responses and none was significant (FIG 3.8:A-G). 

However, when only low carbohydrate foods were included in the analysis, total protein was 

strongly and positively associated with the FII and highly significant (r = 0.73, p < 0.0001).  

Individually, protein accounted for more than half the variation in FII in low carbohydrate foods (r2 

= 54%).  Furthermore, the relationships between the amino acids and the FII became positive and 6 

of the 7 identified amino acids were strongly and significantly correlated with the FII (FIG 3.9: A-

H).  Of the amino acids, the BCAA were among the strongest predictors of the FII, with isoleucine 

accounting for 52%, leucine accounting for 49% and valine accounting for 44% of the variation in 

insulinaemia (p = 0.008, 0.017 and 0.020 respectively). Arginine and alanine were also significant 

predictors, accounting for 49% and 44% of the variation respectively (p = 0.018 and 0.020 

respectively).  Cystine + Cysteine were the weakest predictors, accounting for only 24% of the 

variation and not significant (p = 0.109).  
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Figure 3.8 A-G: Univariate correlations between the food insulin index and alanine, glutamic acid, 

arginine, cystine + cysteine, leucine, isoleucine and valine for 1000 kJ portions of 37 single foods.  
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Figure 3.9 A-G: Univariate correlations between the food insulin index and alanine, glutamic acid, 

arginine, cystine + cysteine, leucine, isoleucine and valine for 1000 kJ portions of single foods 

containing at least 10g of available carbohydrate (A-G: n = 12, H: n = 29).  
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FII = - 4.2 + 0.9 GS + 0.3 Sugar + 0.5 Protein + 0.4 Fat (Equation 1) 

 

GS, sugar and protein were selected as highly significant predictors (p < 0.001) whereas fat did not 

reach significance (p = 0.053) and available carbohydrate, GI and GL were not selected.  Together, 

GS, sugar and protein accounted for 78% of the variation in the observed FII.    

 

Removing fat gives the following equation (Equation 2): 

 

FII = 4.0 + 0.9 GS + 0.2 Sugar + 0.4 Protein (2) 

 

All variables were highly significant (P < 0.001) and the equation accounts for 77% of the variation 

in FII.  

Equations 1 and 2 both selected GS as the most important predictor of FII.  However, to obtain a 

food’s GS, the same methodology for FII testing needs to be undertaken and thus the FII could also 

be measured in tandem, making calculating FII using these equations superfluous.  Alternatively, 

the GL could be used in place of GS (correlation coefficient between GL and GS, r = 0.90).  GL can 

be calculated from the known carbohydrate content and published GI (Equation 3).   

 

FII = 16.3 + 0.4 Protein + 1.5 GL (Equation 3) 

 

In this scenario, both protein and GL were significant predictors of FII (protein: p = 0.013; GL: p < 

0.0001) and the equation accounts for 57% variation. 
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Since GL still requires in vivo testing in order to determine the prerequisite GI, a fourth regression 

equation was developed using only the nutritional composition of the food.  Including all nutrients 

in the database, the equation explains only half of the variation in the FII (r2 = 50%) with 

carbohydrate as the only significant variable (p < 0.0001) (Equation 4).    

 

FII = 16.2 + 1.0 Carbohydrate – 0.2 Fat + 0.3 Protein – 0.1 Sugar – 0.4 Fibre (Equation 4) 

 

When only significant predictors of FII were included in the equation, the model selected 

carbohydrate (p < 0.001) and protein (p = 0.032) (Equation 5).  The overall equation explained 

slightly less of the variation than Equation 4 (49% vs 50%).  

 

FII = 10.4 + 1.0 Carbohydrate + 0.4 Protein (Equation 5) 

 

3.5  Discussion 

The results of this study add to the growing body of knowledge of the relationship between whole 

foods, specific dietary factors and insulinaemia.  It is clear that a simple food group approach is not 

sufficient because there were large differences in the GS and FII both within and between food 

groups.  Foods with similar macronutrient contents, such as hokkien noodles and sweet potato had a 

more than 4-fold difference in FII despite containing almost identical amounts of carbohydrate, 

protein and fat per MJ (FII = 22 vs. 96).  Among the 26 tested foods for this thesis, carbohydrate 

and fat were significant predictors of the FII explaining 36% and 34% of the variation in 

insulinaemia individually.  However, when these foods were combined with the 121 previously 
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tested foods, GL, GI and available carbohydrate became the strongest predictors of the FII, 

explaining 55%, 51% and 47% of variation respectively.  This was a weaker relationship than had 

previously been reported16 (84%, 76% and 66% respectively), but not surprising in light of the 

number of meat-based products and dairy produce represented in the present study, which when 

added to the database, reduced the proportion of starchy, carbohydrate-rich foods.   

Fat, protein and sugar were all also significant but relatively weak predictors, accounting for only 

31%, 8% and 13% of the variation respectively.  Together the average GS, sugar, protein and fat 

could be used to predict the final average FII value, explaining ~80% of the variation in 

insulinaemia. However, alone without the GS, macronutrients explained only 50% of the variation. 

These findings indicate that a precise FII cannot be generated on the macronutrient composition 

alone and therefore in vivo testing is required to obtain the GS or the FII.  Clearly, normal 

physiological insulin secretion is a multifaceted process involving complex nutritional and 

metabolic interactions between nutrients and the food matrix before and after digestion and 

absorption.   

Despite this intrinsic complexity, the results of these analyses suggest that there is a hierarchy of 

macronutrients in relation to their potency as insulin secretagogues.  Given the strength of the 

correlations and the colour-coded response profiles, available carbohydrate is easily identifiable as 

the predominant macronutrient increasing insulin secretion.  This is in agreement with the scientific 

literature and clinical practice, which universally accepts that carbohydrate is the predominant 

macronutrient responsible for raising blood glucose levels, and therefore the most potent stimulus 

for insulin secretion.  Yet carbohydrate is clearly not the sole macronutrient involved because by 

itself, it could account for only 47% of the variation in insulinemia, and foods containing the same 

amount of available carbohydrate (eg 50 g) showed more than 4-fold range in FII (FIG 3.4A). 

Indeed, carbohydrate was not selected as a predictor of FII in the multiple regression analysis 



 Chapter 3: FII Testing & Correlations 

! ! ! !
 

140 

(Equations 1-3).  It was only when the model was forced to drop GS, GL and GI, that carbohydrate 

was selected (Equations 4-5).  

It is also interesting to note that the foods with the highest FII are commonly regarded as healthy 

foods: potatoes, pumpkin, baked beans, yoghurt, melons, couscous, cereals and breads. Sweet 

potato also posed an interesting paradox as it has a low-to-intermediate GI value and is encouraged 

as an alternative to high GI white potatoes for improving glycaemic control20.  Yet our results show 

that the sweet potato had a GS of 100 and a FII of 96, one of the most glycaemic and insulinaemic 

foods tested.  When the FII is predicted using Equation 1 (ie using GS) the FII is calculated as 95, 

however when Equation 4 is used (ie using GL), the FII is considerably lower (62).  This suggests 

that the GL and GS are not comparable between these tests, potentially due to the variety of sweet 

potato and cooking method used. 

In the context of the complete FII database, protein appears to have an inverse relationship with the 

observed insulin responses and is a relatively weak predictor of the FII (FIG 3.2B).  This is in 

direct contrast to the literature, which identifies protein as a potent secretagogue. Reanalysis of the 

association between FII and protein involving only the low carbohydrate foods, reveals total protein 

had a highly significant, strong, positive correlation with the FII.  This may help explain how high 

protein foods across different food groups tested in this study such as pork, lamb, yoghurt and milk 

all produced notable FII values, in some cases equivalent to their high carbohydrate, low protein 

counterparts.  For example, grilled lamb fillets (a protein food with no carbohydrate) and hokkien 

noodles (a carbohydrate food) have an almost identical FII of 22 and 21. In reality, however, a 

higher protein diet will often be a lower carbohydrate diet.  Thus protein tends to displace 

carbohydrate, the most potent insulin secretagogue. 

While the relationship between protein and FII becomes positive when only low-carbohydrate foods 

were considered, the same was not true for fat and FII.  Fat had an inverse relationship with FII 
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when low-carbohydrate foods as well as the entire database were considered.  This indicates that a 

higher fat content lowers the FII under both circumstances.  This may be because fat slows gastric 

emptying and therefore the digestion and absorption of carbohydrate, the primary insulin 

secretagogue.  Fatty acids themselves do not directly stimulate insulin secretion and, in isolation, 

are relatively weak secretagogues.  However, when added to a glucose load, they are able to 

significantly amplify glucose-stimulated insulin secretion beyond that of glucose alone21.  The 

insulinotropic effect of fat may also be modulated by the type of fat within the food.  The literature 

suggests that the potency of fat on insulin secretion is correlated with the degree of unsaturation, 

although the findings are not consistent.  In vivo studies indicate that the postprandial insulin 

response is essentially unaffected by the type of fat22, 23.  This is consistent with the present findings 

where we found there were moderately strong, inverse relationships between fat and FII, 

irrespective of the type of fat.  This may have been because we tested iso-energetic portions of food 

and carbohydrate, the strongest insulinotropic macronutrient, displaced fat and vice versa.  When 

only low carbohydrate foods were considered (ie foods high in protein or fat or both), the 

relationship between fat and FII remained inverse, most likely because protein is more 

insulinotropic than fat, and fat slows the digestion of protein.  

This chapter also attempted to elucidate the effect of different types of protein by examining the 

extent of the associations between the FII and specific insulinotropic amino acids.   Of the amino 

acids assessed, the BCAA, leucine, isoleucine and valine, were the strongest individual predictors 

of the FII for low carbohydrate foods.  This finding parallels the literature, which commonly reports 

these amino acids are potent secretagogues9, 10, attributing it to their efficacy to their rapid digestion 

and activation of mTOR, which increases insulin secretion24.  The efficacy of dairy products in 

stimulating insulin secretion despite their low GI, has been attributed to their high BCAA content. 

During the cheese manufacturing process, milk is separated into curds and whey, and whey in 

particular is high in BCAA.  This may explain why the milk-based products in our study such as 
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custard (FII = 57), plain yoghurt (FII = 46) and chocolate milk (FII = 46), as well as other reported 

in the literature such as low-fat strawberry yoghurt (FII = 84)16 and vanilla ice-cream (FII = 65)16 

had a much higher FII than the cheeses, including brie cheese (FII = 7), cheddar cheese (FII = 33)16 

and cream cheese (FII = 18)16, which have had the whey component, and thus the BCAA, removed.   

We also sought to validate the accuracy of the previously published18 FII prediction equations, a 

practice that is highly recommended yet rarely done in the literature.  The original regression 

analysis of the 446 individual FII observations for 38 different single foods yielded two equations, 

one including fat but not protein and the other including protein but not fat.  The correlations 

achieved between the calculated FIIs using these equations and the actual observed FII for the foods 

in this study were lower than that published in the original paper (0.38 and 0.31 vs. 0.49 and 0.48), 

although these lower correlation coefficients are to be expected given the original equations were 

developed from the original set of data and foods.  Given the calculated FII equations were not 

strong predictors of the observed FII, a new stepwise multiple linear regression analysis using the 

average FII for the 147 foods was performed. The new equations explained 77% of the variation in 

insulinaemia compared with just 32% for both of the original equations.  

The FII and GS testing is a relatively new procedure, although the protocol parallels the 

International Standard of Operation (ISO) for GI testing to ensure reliable data.  Because glucose 

and insulin responses are both highly variable within and between subjects, subjects acted as their 

own control, ie their glycaemic and insulinaemic responses to each test food was compared with 

their response to the reference food, thus minimising interindividual differences.  Repeat tests of the 

reference food (tested 3 times) was also applied to reduce intra-individual variation and ensure 

greater precision.  Furthermore, glucose and insulin sampling was done using capillary blood rather 

than venous blood as incremental glycaemic responses display a greater magnitude and less 

variability when measured in capillary blood25. 
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The FII is determined by 120 min test sessions as per the GI testing ISO.  In healthy subjects, the 

physiologic insulin release will have stabilised postprandial glycaemia and returned it to the 

baseline level by 120 min and therefore longer test sessions are unnecessary26.  Potentially, the 

same is not true for insulin secretion, particularly for foods high in protein and fat, and further 

studies with longer test sessions (3-5 h) are warranted to compare the iAUC. 

Although a further 26 single foods were added to the FII database as a result of this study, 

additional testing of branded foods needs to be undertaken in order to develop a more 

comprehensive database of foods.  This will be necessary if the FII is to be widely incorporated into 

clinical practice.  This testing will also allow further exploration of the relationship between dietary 

factors and physiological insulin secretion evoked by foods and dietary factors.  

In conclusion, the present study found wide variations in the observed insulin responses both within 

and between food groups.  The FII could not be accurately calculated based on carbohydrate 

content alone or the full nutritional composition of the food, implying that in vivo testing is 

required.  Correlations between the FII and different nutrients indicate that the postprandial insulin 

response is not the effect of a single nutrient but rather the nutritional and metabolic interactions 

between nutrients and the food matrix. 

!  
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4.1 Abstract 

Objective: The Food Insulin Index (FII) is a novel algorithm for ranking foods based on 

insulin responses in healthy subjects relative to an isoenergetic reference food. Our aim was 

to compare postprandial glycaemic responses in adults with type 1 diabetes who used both 

carbohydrate counting and the FII algorithm to estimate the insulin dosage for a variety of 

protein-containing foods.  

Methods:  11 adults on insulin pump therapy consumed 6 individual foods (steak, battered 

fish, poached eggs, low fat yoghurt, baked beans and peanuts) on two occasions in random 

order, with the insulin dose determined once by the FII algorithm, and once with 

carbohydrate counting.  Postprandial glycaemia was measured in capillary blood glucose 

samples at 30 min intervals over 3 h. Researchers and participants were blinded to treatment. 

Results: Compared with carbohydrate counting, the FII algorithm significantly reduced mean 

blood glucose level (5.7 +/- 0.2 mmol/L vs 6.5 +/- 0.2 mmol/L, p = 0.003) and mean change 

in blood glucose level (-0.7 +/- 0.2 mmol/L vs 0.1 +/- 0.2 mmol/L, p = 0.001). Peak blood 

glucose was reached earlier using the FII algorithm than using carbohydrate counting (34 ± 5 

vs 56 ± 7 min, p = 0.007). The risk of hypoglycaemia was similar in both treatments (48% vs 

33% for FII vs carbohydrate counting respectively, p = 0.155). 

Conclusions: In adults with type 1 diabetes, compared with carbohydrate counting, the novel 

FII algorithm improved postprandial hyperglycaemia after consumption of protein-containing 

foods.  

Publication: Bell$K,!Gray!R,!Munns!D,!Petocz!P,!Howard!G,!Colagiuri!S,!Brand?Miller!JC.!

Estimating!insulin!demand!for!protein?containing!foods!using!the!Food!Insulin!Index!vs!

carbohydrate!counting.!!European!Journal!of!Clinical!Nutrition.!2014;!68:!1055?1059.$
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4.2 Introduction 

Type 1 diabetes is an autoimmune disorder resulting in an absolute endogenous insulin 

deficiency that is characterised by chronic hyperglycaemia.  Effective management of type 1 

diabetes requires exogenous insulin to be closely matched to physiological demand in order to 

maintain optimal blood glucose control.  

Carbohydrate counting is considered the foundation of intensive insulin therapy, whereby 

bolus insulin doses are matched to the carbohydrate content of the meal1. Despite significant 

advancements in insulin technology, optimum postprandial glycaemic control remains 

difficult to achieve.  Even patients within target glycated haemoglobin A1c (HbA1c) levels 

continue to experience unanticipated hyper- and hypoglycaemia, particularly in response to 

meals high in protein and/or fat2-6. Given the risk of developing life-threatening acute and 

chronic diabetic complications, improving the insulin dose algorithm presents a significant 

clinical issue. 

The Food Insulin Index (FII) is a novel algorithm of ranking foods based on the insulin 

response (‘demand’) in healthy subjects relative to an isoenergetic reference food7.  Using 

food energy as the constant allows all foods to be included, not just those with sufficient 

carbohydrate content, and thus all dietary components and their metabolic interactions can be 

considered, allowing a more holistic approach to determining insulin demand. Previous 

studies in healthy people have demonstrated that the FII algorithm is a more accurate 

predictor of postprandial insulin responses to composite meals than carbohydrate content8.   A 

cross-sectional study found no relationship between the FII and glycaemic control in healthy 

adults, but only fasting biomarkers were considered9. In individuals with type 1 diabetes, the 

FII algorithm was associated with improved postprandial glycaemia without increased risk of 
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hypoglycaemia compared to carbohydrate counting10.  However, whether the FII algorithm is 

a better predictor of exogenous insulin requirement in the case of high protein foods with 

relatively little or no carbohydrate has yet to be investigated. In the present study, our aim was 

to compare the use of carbohydrate counting versus the FII algorithm for estimating insulin 

dosage on postprandial glycaemia in adults with type 1 diabetes consuming six commonly 

consumed protein-containing foods. 

 

4.3 Methods 

4.3.1 Study design 

We used a triple-blinded, randomised, within-subject crossover design to compare traditional 

carbohydrate counting with the Food Insulin Index (FII) for estimating insulin dosage on 

postprandial glycaemia in adults with type 1 diabetes consuming six different single foods. 

Fifteen adults with type 1 diabetes using insulin pump therapy were recruited through Sydney 

Insulin Pump Clinic, a private endocrinology clinic in Sydney, Australia. Eligibility criteria 

included the following: aged between 18 to 70 years, type 1 diabetes diagnosed for ≥ 1 year; 

use of insulin pump therapy, including proficiency with use of a bolus dose calculator for at 

least 3 months; HbA1c between 6.0 and 8.5% (42 – 69 mmol/mol); and reliably performing 

self-monitoring of blood glucose at least four times daily. Exclusion criteria included food 

allergies, intolerances or eating disorders and use of other medication that may influence 

blood glucose. The protocol was approved by the Human Research Ethics Committee of the 

University of Sydney and registered with the Australian New Zealand Clinical Trials Registry 

(ACTRN12614000170628).  Participants gave written informed consent (See Appendices 8-

12 for participant forms and questionnaires). 



Chapter 4: FII for Protein Foods 

! !
! !

 
151 

Six foods (steak, battered fish, poached eggs, low fat yoghurt, baked beans and salted 

peanuts) were selected for the study.  These were chosen to represent a cross-section of 

common protein-containing foods with at least a two-fold difference between their 

carbohydrate content per serving and estimated food insulin demand (FID).  FID is the 

mathematical product of the FII and the energy content (kJ) per normal serving divided by 

1000 (FID = FII x kJ per serving /1000).  For the purposes of this study only, the FID was 

scaled up by a factor of 100/59 (FID of 1000 kJ of reference food (pure glucose)/g of 

carbohydrate in 1000 kJ of reference food) so that the existing insulin ratio programmed in 

the insulin pump could be applied to both algorithms. Table 4.1 shows the composition of the 

foods tested including the estimated FID based on the published FII (reference) and energy 

content per serving. 

Each of the 6 single foods was tested in random order on two occasions, once when the 

insulin requirement was calculated using carbohydrate counting, and once using the estimated 

FID.  Rapid acting insulin was used in both instances using the participants’ own insulin 

pump. A computer-generated randomisation table and sealed envelopes were used so that the 

order of food and algorithm was randomised, and both researchers and participants were 

blinded to treatment. 
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Table 4.1: Nutritional information and serving size for the six test foods 

Food Weight (g) Energy (kJ) Fibre (g) Fat (g) Protein (g) CHO* (g) 

Avg Insulin 

Dose using 

CHO (units) 

FID† 

Avg Insulin 

Dose using 

FID (units) 

Beef Steak 225 1350 0 11.4 59.8 0 0.0 31 3.7 

Battered Fish 105 945 1.0 14.3 12.4 14 1.6 31 3.7 

Poached Egg 180 1080 0 20.3 23.6 2 0.1 15 1.8 

Low-fat 

Strawberry 

Yoghurt 

300 1200 1.2 5.8 13.8 45 5.4 57 6.9 

Baked Beans 330 990 16.0 1.9 15.0 36 4.3 49 5.9 

Salted Peanuts 150 3900 7.9 78.9 39.5 19 2.4 35 4.2 

* CHO, available carbohydrate including sugars and starch and excluding fibre. 

† FID, Food Insulin Demand.  (FID = FII x kJ in food portion /1000) scaled using the FID and carbohydrate content of 1000 kJ of glucose 

powder (100/59)).
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During the 2 weeks before study commencement, subjects were reviewed by the credentialled 

diabetes educator (CDE) to optimise insulin basal rates and insulin-to-carbohydrate ratios 

(ICRs).  In the 24 h prior to each testing session, participants were instructed to refrain from 

the consumption of alcohol and legumes, and any unusual physical activity.   On the day of 

testing, subjects consumed their usual breakfast and lunch meals before presenting to the 

clinic between 17:00 and 18:00 h.  If the BGL was ≥ 10 mmol/L at 15:00 h, the patient 

administered a correction bolus (normal wave).  If the BGL was ≥ 10 mmol/L at the 

beginning of the testing session, a correction bolus was administered and the subject was 

asked to return on another day. 

At the start of each session, participants were provided with the test food and the designated 

insulin bolus.  The insulin dose was administered as a normal wave bolus immediately prior 

to the meal by the CDE, who was blinded to the algorithm used to calculate the insulin dose, 

as well as the test food and subjects BGL during the test session.  A dietitian prepared the test 

food and recorded BGL during the test session but was blinded to the insulin dose 

administered and the algorithm used.  Subjects were blinded to the insulin dose, the algorithm 

and their BGL during the testing session.  

Fingerprick capillary blood samples were collected at 0, 15, 30, 45, 60, 90, 120, 150 and 180 

min and the glucose concentration determined using a blood glucose monitor (HemoCue, 

Angelholm, Sweden). If hypoglycaemia occurred (defined as glucose level 3.5 mmol/L or 

less), the test session was stopped, the event recorded and the patient treated appropriately.  
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4.3.1 Statistical analysis   

A sample size of 15 subjects provided 80% power to detect a 0.5 mmol/L difference in the 

mean absolute blood glucose level between carbohydrate counting and the FII algorithm, 

assuming a standard deviation of 0.45 mmol/L.  Data were analysed using the SPSS statistical 

package version 19 (SPSS Inc., Chicago, IL, USA).  If the session was stopped due to 

hypoglycaemia, the last recorded value was carried forward.  The primary outcome measure 

was the mean absolute blood glucose level over 180 min and the secondary measures were: 1) 

pre-prandial blood glucose level, 2) change in blood glucose over 180 min, 3) peak blood 

glucose excursion, 4) time to peak blood glucose excursion, 5) mean amplitude of glycaemic 

excursion (MAGE), 6) time to return to fasting blood glucose level, and 7) number of 

hypoglycaemia episodes (defined as blood glucose level ≤ 3.5 mmol/L).  A general linear 

model with pre-prandial blood glucose level as a covariate was used to analyse the parameters 

for the two test algorithms. The number of episodes of hypoglycaemia was expressed as a 

proportion of all test sessions and compared by Chi-Square test. Differences in coefficients 

were considered statistically significant if p was < 0.05, and highly significant if p was < 0.01 

(two-tailed).  Participant characteristics are presented as mean ± standard deviation.  All other 

results are presented as mean ± standard error unless otherwise stated. 

 

4.4 Results 

Of the 15 adults recruited, 11 (4 men, 7 women) completed all testing sessions.  One 

participant failed to finish the test sessions due to food ‘intolerance’, another was not 

available due to family commitments, 1 withdrew following concerns about mild 

hypoglycaemia and 1 had unstable pre-prandial blood glucose levels on three consecutive 
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occasions and was excluded from further testing. 

The mean age of the 11 subjects who completed the study was 38 years (range: 18-62 years), 

with a mean BMI of 24.6 ± 2.4 (Table 4.2).  They had been diagnosed with type 1 diabetes 

for 14.4 years (range: 2-37 years) and had been using insulin pump therapy for 3.6 years 

(range: 1-12 years).  The mean HbA1c was 6.99 ± 0.72% (53 ± 7 mmol/mol). 

 

Table 4.2: Subject characteristics for final sample (n=11) 

Age      
(years) 

Gender       
(% Male) 

BMI       
(kg/m2) 

Duration of 
Diabetes 
(years) 

Duration of 
Insulin Pump 

Therapy (years) 

HbA1c (%, 
mmol/mol) 

38 ± 17            
(range: 18-62) 

 36% (4/11) 24.6 ± 2.4 
14.4 ± 14.0         

(range: 2-37) 
3.4 ± 3.2          

(range: 1-12) 
7.0 ± 0.7   
(53 ± 7) 

 

 

By chance, baseline (pre-prandial) blood glucose levels were lower when carbohydrate 

counting was to be used (6.3 ± -0.2 vs 6.9 +/- 0.2 mmol/L, p = 0.04 for carbohydrate vs FII 

respectively).  Hence, all remaining summary glucose statistics (Table 4.3) were adjusted for 

differences in pre-prandial glucose concentration.  

Mean blood glucose levels over 180 min were significantly lower using the FII algorithm 

compared with carbohydrate counting (5.7 ± 0.2 mmol/L vs 6.5 ± 0.2 mmol/L respectively, p 

= 0.003) (Table 4.3, FIG 4.1, FIG 4.2). Mean change in blood glucose level over 3 h was 

also lower using the FII (-0.7 +/- 0.2 mmol/L vs 0.1 +/- 0.2 mmol/L, p = 0.001).  
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Peak blood glucose was also reached earlier using the FII algorithm than using carbohydrate 

counting (34 ± 5 min vs 56 ± 7 min, p = 0.007). Peak change in blood glucose level from 

baseline tended to be lower when using the FII algorithm compared to carbohydrate counting, 

although the difference was not significant (1.3 ± 0.2 mmol/L vs 1.8 ± 0.3 mmol/L 

respectively, p = 0.13). In contrast, the maximum amplitude of the glycaemic excursion 

(MAGE = the difference between the maximum and minimum observed blood glucose 

values) was significantly larger using the FII algorithm than carbohydrate counting (4.4 +/- 

0.2 mmol/L vs 3.7 +/- 0.2 mmol/L, p = 0.02). 

Mild hypoglycaemia requiring cessation of the session per protocol occurred frequently under 

both conditions and across all foods (FIG 4.2), but there was no difference between the two 

algorithms (hypoglycaemia occurred in 48% vs 33% of all test sessions for FII vs 

carbohydrate counting respectively, p = 0.155).   
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Table 4.3: Mean results for pre-prandial blood glucose, postprandial blood glucose, change in 

blood glucose and peak blood glucose level and the actual number of hypoglycaemic episodes 

for test food and algorithm. 

Food Algorithm 

Pre-
prandial 

blood 
glucose 

level 
(mmol/L) 

Mean 
blood 

glucose 
level 

(mmol/L) 

Mean 
change in 

blood 
glucose 

level 
(mmol/L) 

Peak 
change 
blood 

glucose 
level 

(mmol/L) 

Number of 
episodes of 

hypoglycaemia   
(≤3.5mmol/L) 

Beef Steak FII 7.2 ± 0.5 4.6 ± 0.4 - 1.7 ± 0.4 0.3 ± 0.2 8 / 11 

CC 6.5 ± 0.4 6.7 ± 0.4 0.2 ± 0.4 2.4 ± 0.9 2 / 11 

Battered 
Fish 

FII 6.5 ± 0.4 5.8 ± 0.4 - 0.5 ± 0.4 0.9 ± 0.2 5 / 11 

CC 5.8 ± 0.4 6.9 ± 0.4 0.7  ± 0.4 2.5 ± 0.5 3 / 11 

Poached 
Eggs 

FII 7.4 ± 0.6 5.2 ± 0.4 - 1.5 ± 0.4 0.7 ± 0.3 5 / 11 

CC 6.8 ± 0.6 5.7 ± 0.4 - 0.9 ± 0.4 0.6 ± 0.4  2 / 11 

Strawberry 
Yoghurt 

FII 7.2 ± 0.6 6.1 ± 0.4 - 0.5 ± 0.4 1.7 ± 0.5 6 / 11 

CC 6.3 ± 0.4 6.9 ± 0.4 0.6 ± 0.4 2.3 ± 0.6 4 / 11 

Baked 
Beans 

FII 6.2 ± 0.6 7.3 ± 0.4 0.9 ± 0.4 3.4 ± 0.7 3 / 11 

CC 6.3 ± 0.3 7.0 ± 0.4 0.5 ± 0.4 2.6 ± 0.5 5 / 11 

Salted 
Peanuts 

FII 7.1 ± 0.6 5.4 ± 0.4 - 1.1 ± 0.4 0.9 ± 0.4 5 / 11 

CC 6.3 ± 0.4 5.4 ± 0.4 - 0.2 ± 0.4 0.4 ± 0.2 6 / 11 

Overall FII 6.9 ± 0.5 5.7 ± 0.2 -0.7 ± 0.2 1.3 ± 0.2 32 / 66 

CC 6.3 ± 0.4 6.5 ± 0.2 0.1 ± 0.2 1.8 ± 0.3 22 / 66 

P value  0.039 0.003 0.001 0.835 0.155 

Data presented as mean ± SE, with the exception of the episodes of hypoglycaemia, which is 

presented as the actual number.  N = 11 adults subjects with type 1 diabetes using insulin 

pump therapy. CC = Carbohydrate Counting. 
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Figure 4.1: Mean ± SEM blood glucose level after consumption of 6 foods in 11 subjects 

with type 1 diabetes  
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Figure 4.2: Changes in blood glucose after consuming protein-containing foods using either 

carbohydrate counting or the food insulin index.   
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4.5  Discussion 

The current study demonstrates that the application of the FII to single, protein-containing 

foods improves postprandial hyperglycaemia in comparison to traditional carbohydrate 

counting. Over the 3 h monitoring period, the FII algorithm reduced the mean blood glucose 

level by an average of ~12%, and reduced the time to reach peak blood glucose concentration 

by almost half.  However, MAGE was higher using the FII compared with carbohydrate 

counting and both treatments were associated with relatively high rates of mild 

hypoglycaemia.  Postprandial hyperglycaemia is common in everyday life and associated 

with increased risk of developing cardiovascular disease, nephropathy, retinopathy and 

neuropathy11. 

For this study, we specifically chose protein-containing foods where apparent insulin demand 

was at least 2-fold higher according to the FII as compared to carbohydrate counting. Indeed, 

two of the test foods (steak and eggs) contained little or no carbohydrate. We therefore 

expected to find more hypoglycaemia using the FII.  However, hypoglycaemia (defined as 

BGL < 3.5 mmol/L occurred frequently under both conditions and across all foods, with no 

statistical difference between the two algorithms (48% vs 33% for FII vs carbohydrate 

counting respectively, p = 0.155).  The observed trend towards increased hypoglycaemia with 

the FII seen in this study warrants further investigation given the risks of hypoglycaemia in 

contributing to oxidative stress and diabetes complications12, 13.  Potentially, the normal wave 

bolus does not closely follow the normal postprandial physiological insulin profile for high 

protein and/or fat foods, with excess insulin delivered initially resulting in increased risk of 

hypoglycaemia.  Previous research has highlighted the benefit of dual-wave or square insulin 

bolus delivery patterns in these instances as well as for low GI meals, as a portion of the total 

insulin dose is delivered immediately (often 50-70%) and the remainder delivered slowly over 



Chapter 4: FII for Protein Foods 

! !
! !

 
161 

an extended period of time14-17.   Further research to elucidate the optimal bolus insulin 

pattern for foods of varying FII as well as macronutrient content is warranted. 

 Although carbohydrate counting is currently considered the gold standard in determining 

mealtime insulin dose, it is essentially focused on treating the symptom of type 1 diabetes 

(hyperglycaemia) rather than the underlying cause – endogenous insulin insufficiency.   As an 

anabolic hormone, insulin plays an important role in the metabolism of all three 

macronutrients: carbohydrate, protein and fat.  In healthy subjects, protein elicits a similar 

insulin response to the same amount of glucose in many slowly digested carbohydrate 

foods18.  Fat and protein also increase hepatic glucose output and acute insulin resistance5, 19-

21, which may help explain the increased insulin demand for foods rich in these 

macronutrients and why hypoglycaemia was not seen in every test session.  In addition, fat 

and protein also slow gastric emptying and thereby reduce postprandial glycaemia compared 

with meals containing little protein and/or fat22, 23. However, carbohydrate counting entirely 

ignores the presence of fat and protein in foods because neither directly contributes to 

glycaemia.  Our present findings suggest that the FII, based on actual insulin responses in 

healthy subjects, may be a more reliable predictor of insulin dose in those with type 1 diabetes 

consuming protein-containing meals. 

The strengths of this study include the randomised, controlled design in which researchers, 

participants and technician were blinded to treatment. This reduces the risk of bias and 

improves the reliability of the findings.  This study is also the first to explore the concept of 

food insulin demand (FID = FII x kJ per serving/1000), a formula for translating the relative 

FII values into units proportional to the food portion size.  This is a critical step towards 

applying the FII algorithm in clinical practice. The FID allows a mealtime insulin dose to be 

calculated based on the FII of the food (or foods) to be consumed and the actual portion size.  
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For the purposes of this study, the food insulin demand was scaled so that the FID value could 

be imputed into the insulin pump without the need to change the subject’s existing 

individualised carbohydrate: insulin ratio. 

The study has limitations.  Although subjects were instructed to consume their usual breakfast 

and lunch meals at the same time on each testing day, these meals were not standardised and 

therefore there may have been a confounder. 

Test sessions where the subject experienced hypoglycaemia (BGL < 3.5 mmol/L) were 

terminated immediately so the hypoglycaemia could be treated.  In these cases, the last 

recorded blood glucose level was carried forward. Alternately, we could have chosen to 

assume a consistent gradient in BGLs over the remainder of the recording period. However, 

imputing any value for missing data raises doubts about the generalisability of the findings.  It 

could also be argued that 3 h recordings are not sufficiently long enough to detect delayed 

effects of an insulin dose.  The efficacy of the FII algorithm over a longer time period should 

be the subject of further research.  Additionally, the study was powered to compare mean 

blood glucose concentrations, rather than prevalence of hypoglycaemia. The lack of 

difference in hypoglycaemia may therefore be due to insufficient power.  Further studies with 

a larger sample size are needed.  

Despite these limitations, this study adds to a growing body of evidence supporting the use of 

the novel FII algorithm as a promising tool for predicting prandial insulin dose in adults with 

type 1 diabetes. 
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5.1   Abstract 

Objective:  The Food Insulin Index (FII) is a novel algorithm for ranking foods based on 

their insulin demand relative to an isoenergetic reference food.  We compared carbohydrate 

counting versus the FII algorithm for estimating insulin dosage on changes in glycated 

haemoglobin A1c and postprandial glycaemia over 12 weeks in adults with type 1 diabetes.  

Methods:  In a randomised, controlled parallel study design, adults (n = 26) using insulin 

pump therapy were assigned to either traditional carbohydrate counting (CC) or the novel FII.  

Subjects participated in group education and individual sessions with a research dietitian. 

Written resources, a smartphone app, email and telephone support were offered.  At baseline 

and on completion of the trial, glycated haemoglobin, day-long glycaemia (6-day continuous 

glucose monitoring), fasting lipids and C-reactive protein were determined.   

Results: Changes in HbA1c from baseline to 12 weeks were similar in both groups (mean ± 

SEM: FII: -0.1 ± 0.1% vs CC: -0.3 ± 0.2%, p = 0.855).  Both groups spent a similar amount of 

time within the normal glycaemic range (FID: 42 ± 18% vs CC: 39 ± 18%, p = 0.646) and 

hyperglycaemic range (FID: 50.9 ± 6.4 vs CC: 54.6 ± 5.0, p = 0.814).  Only the FID counters 

experienced a trend (-43%, p = 0.057) to reduced hypoglycaemia at 12 weeks.  

Conclusions: In a 12-week pilot study, changes in glycated haemoglobin and postprandial 

glycaemia were similar using FII counting or carbohydrate counting.  A trend to reduced risk 

of hypoglycaemia in FII counters warrants further study.   

 

!  
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5.2  Introduction 

Achieving optimal postprandial glycaemic control is an important aspect of management in 

type 1 diabetes to minimise the risk of acute and chronic complications.  Yet despite 

significant advancements in insulin therapy, optimum postprandial glycaemic control remains 

difficult to achieve.  Even patients within target glycated haemoglobin A1c (HbA1c) levels 

continue to experience unanticipated hyper- and hypoglycaemia, particularly in response to 

meals high in protein and/or fat1-3. 

Carbohydrate counting is frequently recommended as routine therapy for patients with type 1 

diabetes. However numerous studies in healthy subjects have demonstrated that the same 

amount of carbohydrate from different food sources produces wide variations in blood 

glucose and insulin responses3-6.  Furthermore, studies in vitro and in vivo have demonstrated 

the significant role of protein and fat in addition to carbohydrate on normal physiological 

insulin secretion7-9.  A more comprehensive understanding of the relationship between dietary 

factors and physiological insulin secretion evoked by foods is likely to improve clinical and 

practical outcomes in the management of type 1 diabetes. 

The Food Insulin Index (FII) is a novel algorithm of ranking foods based on the insulin 

response (‘demand’) in healthy subjects relative to an isoenergetic reference food 10.  The 

algorithm uses food energy as the constant and thus all dietary components and their 

metabolic interactions can be considered for all foods with sufficient energy density, allowing 

a holistic approach to determining insulin demand.  Previous studies in healthy people have 

demonstrated that the FII algorithm is a more accurate predictor of observed insulin responses 

to composite meals than carbohydrate content 11.  In individuals with type 1 diabetes, the FII 

algorithm was associated with improved postprandial glycaemia without increased risk of 
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hypoglycaemia compared to carbohydrate counting 12.  The FII algorithm can theoretically be 

integrated into clinical practice by counting ‘units’ of insulin demand per serving in the same 

way that carbohydrate is counted.  The food insulin demand (FID) is a formula for translating 

the relative FII values into units proportional to the food portion’s energy content (FID = FII 

x kJ per serving /1000).  The FID allows a mealtime insulin dose to be calculated based on the 

FII of the food (or foods) to be consumed and the actual portion size.  Prandial insulin doses 

are then determined using an individualised insulin: FID ratio akin to that applied when using 

the insulin: carbohydrate ratio.  However, whether estimating prandial insulin doses using the 

FII algorithm and FID counting is feasible in practice and is beneficial for glycaemic control 

has not been investigated. Therefore in the present study, our aim was to compare the use of 

carbohydrate counting versus the FII algorithm for estimating mealtime insulin dosage on 

postprandial glycaemia in adults with type 1 diabetes over 12 weeks. This was the first study 

to apply the FII to a chronic feeding situation. 

 

5.3  Methods 

5.3.1 Study Design 

In this randomised, controlled, parallel design pilot study, we compared traditional 

carbohydrate counting with the FII for estimating mealtime insulin dosage on postprandial 

glycaemia in adults with type 1 diabetes over 12 weeks. Twenty-six adults with type 1 

diabetes using insulin pump therapy were recruited through Sydney Insulin Pump Clinic, a 

private endocrinology clinic in Sydney, Australia. Eligibility criteria included the following: 

aged between 18 to 70 years, type 1 diabetes diagnosed for ≥1 year; use of insulin pump 

therapy, including proficiency with use of a bolus dose calculator for at least 3 months; 

HbA1c between 7.0 and 9.5% (53 – 80 mmol/mol); and reliably performing self-monitoring 
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of blood glucose at least four times daily. Suboptimal glycaemic control, assessed by HbA1c, 

was required for eligibility as this study aimed to improve glycaemic control.  Exclusion 

criteria included food allergies, intolerances or eating disorders and use of other medication 

that may influence blood glucose. The protocol was approved by the Human Research Ethics 

Committee of the University of Sydney and the trial was registered with the Australian New 

Zealand Clinical Trials Registry (ACTRN12613001367730).  See Appendices 13 – 17 for 

participant forms and questionnaires. 

Subjects were randomly allocated one of two methods of estimating their mealtime insulin 

doses: traditional carbohydrate counting (CC) or the FII.  Randomisation was achieved 

through a computer-generated randomisation table and the use of opaque sealed envelopes. 

The allocation sequence was concealed from patients and investigators until the 

commencement of the trial. 

Subjects participated in a 2 h interactive group education workshop with the research 

dietitian.  This workshop covered the principles of the allocated method, awareness of foods 

to be counted and orientation to the carbohydrate or FID values of common foods and 

instruction on calculating mealtime insulin doses.  Participants were given workshop manuals, 

pictorial booklets, pocket-sized guides and given access to a website and a smartphone app to 

assist with their ‘counting’ and dose calculations.  These resources were all designed de novo 

by the candidate in order to be as similar as possible with only key information and numerical 

food values being different. For illustrative purposes, sample copies of the materials are 

included at the end of this chapter and the session plans are included in Appendix 18.  For 

foods not included in the materials, participants in both groups were instructed to use the 

value of a similar food and were encouraged to contact the research dietitian if assistance was 

required. 
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During the first education session, subjects were asked to record a 24 h food recall and 

identify the carbohydrate content or FID of their meals and snacks using the resources 

provided and practice estimating the portion sizes and corresponding carbohydrate 

content/FID of self-served common, real foods, such as rice, pasta, milk, juice, cereal and in 

the case of FID counters – meats.  At the conclusion of the workshop the FID counters had 

their individualised ICR converted to an insulin: FID ratio (IFR), to allow the calculation of 

insulin doses.  The IFR was calculated by scaling the usual ICR by a factor of 1.7 (1.7 = 100 

divided by 59 = FII of 1000 kJ of glucose divided by grams of carbohydrate in 1000 kJ of 

glucose).  For example, an ICR of 1 unit: 10 g carbohydrate became an IFR of 1 unit: 17 FID.  

In this way, the IFR automatically adjusted for differences in insulin sensitivity among 

subjects.  No changes were made to the ICR of the carbohydrate counters.  Telephone and 

email support was offered to both groups and all participants received a follow-up email each 

week throughout their intervention.   

In the week following their group education workshop, subjects completed a food diary and 

recorded their carbohydrate/FID estimations and blood glucose levels. At the end of the week, 

they attended a 30 min follow-up individual appointment with the research dietitian to review 

their food diary and estimations, discuss estimations for other food preferences and 

individualise the information provided in the group workshop.  

During the week prior to the study and then again after the 12 week intervention, subjects 

wore a continuous glucose monitoring system (CGMS; iProTM2, Medtronic) for 6 consecutive 

days to capture glycaemic control.  HbA1c, blood lipids and C-reactive protein (CRP) were 

measured at baseline and end of the study to assess average glycaemic control, lipid 

metabolism and low grade chronic inflammation. 
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5.3.2 Statistical analysis   

A sample size of 38 subjects was calculated to provide 80% power to detect a 0.3% point 

difference in HbA1c between carbohydrate and FID counting, assuming a standard deviation 

of 0.32 mmol/L.  Interim analysis after 25 subjects had completed the trial revealed no 

clinically or statistically significant difference in HbA1c between the groups.  The pilot study 

was terminated at this point.  Data were analysed using the SPSS statistical package version 

21 (SPSS Inc., Chicago, IL, USA). Changes in the following parameters between baseline and 

12 weeks were analysed within and between groups: 1) glycated haemoglobin A1c (HbA1c), 

2) mean blood glucose levels, 3) percentage of time within low (< 3.9 mmol/L), normal (3.9 – 

7.8 mmol/L) and high (>7.8 mmol/L) blood glucose ranges, 4) mean amplitude of glycaemic 

excursions (MAGE) and 5) number of hyperglycaemic (>7.8 mmol/L) and hypoglycaemic (< 

3.9 mmol/L) episodes.  Differences in coefficients were considered statistically significant if 

p was < 0.05, and highly significant if p was < 0.01 (two-tailed).  For subjects who withdrew, 

available baseline measures were carried forward for analysis.  Participant characteristics are 

presented as mean ± standard deviation.  All other results are presented as mean ± standard 

error unless otherwise stated.  

 

5.4  Results 

A total of 26 adults responded to recruitment notices and met the inclusion criteria.  Of these, 

14 were randomised to FID counting and 12 to CC (FIG. 5.1).  Twenty-two subjects 

completed all testing sessions (10 men, 12 women), with 4 subjects withdrawing due to work 

commitments (two participants withdrew prior to completing all baseline measures and 

therefore could not be included in analyses, and two withdrawing following the group 

education session. In this case, baseline measures were carried forward to 12 weeks).  
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Figure 5.1: Flow of subjects through the study.  

Subject characteristics are shown in Table 5.1. Mean age, BMI and baseline HbA1c were 

similar in each group.  
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Table 5.1: Participant characteristics  

 
Carbohydrate counters        

(n = 12) 

FID counters                          

(n = 14) 

Gender (% male) 58 36 

Age (years) 
41 ± 18  

(range: 20 – 67) 

38 ± 15  

(range: 23 – 68) 

BMI (kg/m2) 25.9 ± 2.3 26.6 ± 7.0 

Baseline HbA1c  

(% (mmol/mol)) 

8.6 ± 0.3 

(70 ± 3) 

8.1 ± 0.2 

(65 ± 2) 

Baseline fasting BG 

(mmol/L)* 
6.9 ± 1.8 8.2 ± 3.4 

* CC: n = 11, FID: n = 13 

The main findings are summarised in Table 5.2.  Changes in HbA1c after 12 weeks of 

intervention were not different between the groups (FID -0.1 ± 0.1% vs CC -0.3 ± 0.2%, p = 

0.855) (FIG 5.2).  Both groups spent a similar amount of time within the normal glycaemic 

range (FID 42 ± 18% vs CC 39 ± 18%, p v= 0.646) (FIG 5.3).  Both groups spent about the 

same time in the hyperglycaemic range (FID: 50.9 ± 6.4 vs CC: 54.6 ± 5.0, p = 0.814).  FID 

counters experienced a trend to reduced time in the hypoglycaemic range (4 ± 4% at 12 weeks 

vs 7 ± 5% at baseline, p = 0.057) while the CC group showed no change at end of the trial (10 

± 7% at 12 weeks vs 9 ± 6% at baseline p = 0.684).  Changes in lipids or CRP were similar in 

both groups. 
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Table 5.2: Mean results for HbA1c, fasting blood glucose, mean blood glucose, proportion of time in low, normal and high blood glucose 

ranges, number of low and high blood glucose events, total, LDL and HDL cholesterol, triglycerides and C-reactive protein for carbohydrate 

counters and FID counters at baseline and 12 weeks.  

 Carbohydrate Counters 

(n =11) 

FID Counters 

(n=13) 

Between Groups                             

P Values 

Baseline 12 weeks Change P Value Baseline 12 weeks Change P Value Baseline 12 Weeks Change 

HbA1c (%               

(mmol/mol))* 

8.6 ± 0.3; 

70 ± 3 

8.3 ± 0.2; 

67 ± 2 

-0.3 ± 0.2 0.193 8.1± 0.2; 

65 ± 2 

8.0 ± 0.2; 

64 ± 2 

-0.1 ± 0.1 0.921 0.112 0.236 0.308 

Fasting BG 

(mmol/L) 

6.9 ± 0.6 7.1 ± 0.4 0.2 ± 0.6 0.784 8.2 ± 0.9 8.2 ± 0.4 0.0 ± 0.8 0.979 0.273 0.063 0.886 

Mean BG Level 

(mmol/L) 

9.1 ± 0.4 8.8 ± 0.6 -0.2 ± 0.6 0.682 8.9 ± 0.4 8.8 ± 0.4 -0.2 ± 0.5 0.771 0.819 0.954 0.907 
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 Carbohydrate Counters 

(n =11) 

FID Counters 

(n=13) 

Between Groups                             

P Values 

 
Baseline 12 weeks Change P Value Baseline 12 weeks Change P Value Baseline 12 Weeks Change 

Time in low BG 

range (%) 

8.5 ± 1.8  9.4 ± 2.1  0.8 ± 1.9 0.682  7.1 ± 1.4  4.0 ± 1.1  -3.1 ± 1.5  0.058  0.523 0.029 0.117 

Time in normal 

BG range (%) 

35.5 ± 2.8  39.7 ± 5.0  4.3 ± 4.6 0.378  43.0 ± 5.6  41.4 ± 4.8  -1.6 ± 7.5  0.833  0.264 0.814 0.529 

Time in high 

BG range (%) 

56.0 ± 4.1 50.9 ± 6.4 -5.1 ± 5.4 0.371 50.0 ± 5.9 54.6 ± 5.0 4.7 ± 8.2 0.575 0.425 0.646 0.347 

# of Low BG 

Events 

8.7 ± 1.6 7.9 ± 1.5 -0.8 ± 1.5 0.585 6.0 ± 1.2 4.6 ± 1.1 -1.4 ± 1.3 0.314 0.179 0.091 0.775 

# of High BG 

Events 

17.6 ± 1.1 13.9 ± 1.3 -3.7 ± 1.9 0.079 14.7 ± 1.0 16.2 ± 1.3 1.5 ± 1.6 0.381 0.066 0.229 0.048 



Chapter 5: FOODII Study 
!

   
!

177 

 Carbohydrate Counters 

(n =11) 

FID Counters 

(n=13) 

Between Groups                             

P Values 

 Baseline 12 weeks Change P Value Baseline 12 weeks Change P Value Baseline 12 Weeks Change 

Total Chol. 

(mmol/L) 

4.4 ± 0.2 4.5 ± 0.2 0.1 ± 0.1 0.404 4.7 ± 0.2 4.9 ± 0.3 0.2 ± 0.3 0.503 0.270 0.347 0.733 

HDL-Chol. 

(mmol/L) 

1.7 ± 0.1 1.7 ± 0.1 0 0.555 1.5 ± 0.1 1.5 ± 0.1 0 0.221 0.193 0.150 0.663 

LDL-Chol. 

(mmol/L) 

2.4 ± 0.2 2.5 ± 0.2 0.1 ± 0.1 0.376 2.6 ± 0.2 2.8 ± 0.3 0.2 ± 0.2 0.291 0.616 0.364 0.551 

Triglycerides 

(mmol/L) 

0.7 ± 0.0 0.7 ± 0.1 0 0.601 1.5 ± 0.3 1.3 ± 0.3 -0.2 ± 0.3 0.608 0.011 0.042 0.570 

CRP 

(mg/L) 

1.6 ± 0.5 0.9 ± 0.2 - 0.6 ± 0.4 0.173 6.3 ± 2.7 3.7 ± 1.7 0.4 ± 1.2 0.741 0.090 0.153 0.413 

* CC: n = 12, FID: n = 14; BG = Blood Glucose Level; Chol. = cholesterol; CRP = C-Reactive Protein; Low BG = (< 3.9 mmol/L); Normal = 3.9 – 7.8 

mmol/L; High = > 7.8 mmol/L. 
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Figure 5.2:  Changes in HbA1c over 12 weeks in adults with type 1 diabetes using either FID 

counting (n = 14) or traditional carbohydrate counting (n = 12) for estimating mealtime 

insulin doses (Group means in bold). 
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Figure 5.3: Proportion of time spent in high, normal and low BG ranges for adults with type 

1 diabetes using either traditional carbohydrate counting or FID counting. 

 

When asked to rate their experience with their allocated insulin dosing method, participants in 

both groups agreed that their method was easy to use and that they were able to enjoy a wide 

range of foods. Approximately half of the participants in both groups felt their blood glucose 

levels were better managed during the study (FID: 54% vs CC: 55%), while the remainder felt 

there had been no change.  None of the subjects felt their glycaemic control had deteriorated 

while they were involved in the study.  In the FID group, 46% of subjects stated that they 

would continue using FID counting to estimate their bolus insulin dose. 
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5.5 Discussion 

This is the first study of the clinical application of the FII to estimate insulin bolus 

requirements in adults with type 1 diabetes.   The findings indicate that FID counting was at 

least as good as carbohydrate counting for maintaining glycaemic control in adults with type 

1 diabetes using insulin pump therapy.  Changes in HbA1c, mean blood glucose and the time 

within the optimum glycaemic range were comparable in both groups.  The number of 

hyperglycaemic episodes was similar, but FID counters showed a trend to reduced risk of 

hypoglycaemia (-43%, p = 0.058) after using the FII for 12 weeks, inferring the potential for 

improved glycaemic stability. 

There are surprisingly few randomised, controlled trials assessing the efficacy of carbohydrate 

counting for glycaemic control in type 1 diabetes.  Our recent meta-analysis showed that 

carbohydrate counting did not result in significant improvements in HbA1c when compared 

with routine care or an alternative strategy13.  Schmidt et al recently conducted a 16-week 

study comparing carbohydrate counting intervention with usual care14.  Although they 

achieved a large reduction in HbA1c in their carbohydrate counting group (-0.8% points), this 

improvement was not significantly different to that of their control group (p = 0.175).  Two 

other trials have found other strategies, such as flexible low GI education, were more effective 

than carbohydrate counting12, 15.  

One of the strengths of the present study is the provision of an ‘attention placebo’, ie a control 

group who received a similar intensity of interaction as the intervention group.  Since 

glycaemic control can improve due to increased contact time with healthcare professionals, 

both groups received identical attention throughout the trial.  Subjects in both groups attended 

similarly structured group and individual appointments with the research dietitian, received 

identical resources, with only the key information and numerical food values changed and 
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were offered the same telephone and email support throughout the trial.  This attention 

placebo ensures that the differences in HbA1c observed were a direct result of the method of 

estimating mealtime insulin dose employed. 

This study was designed as a feasibility study to test whether FID counting could be used in 

practice in type 1 diabetes.  It has been suggested that the FID counting is too complex to be 

used in practice, however our experience during this study revealed this was not the reality.  

All participants using FID counting appeared to adapt quickly to the new algorithm.  At the 

conclusion of the trial, all rated the method as “easy to use”, with just under half of subjects 

opting to continue with the system over carbohydrate counting if the option were available. 

Two subjects withdrew from the study following the initial group education workshop, 

however they had been allocated to different arms of the study, suggesting this was not due to 

their intervention allocation.  

There are several limitations to this study. It was designed as a pilot study with a small 

sample size in order to keep a close eye on participants and assess the feasibility of the FII 

algorithm in clinical practice and to gauge the sample size necessary for a larger trial. The 

study was therefore not powered to detect clinically important differences in HbA1c, 

however, the observed difference in HbA1c does not suggest any important advantage of one 

strategy over the other.  Based on the standard deviation in HbA1c of 0.57 seen in this study 

(average SD of both groups), 116 subjects would be required to achieve 80% power to detect 

a difference of 0.3% points in HbA1c.   

The potential of the FII to reduce the risk of hypoglycaemia is an exciting prospect that was 

not foreseen and thus the study was not powered to detect differences in the risk of 

hypoglycaemia.  This finding contrasts to that of previous studies, including Chapter 4 of this 

thesis, which revealed a trend towards an increased risk of hypoglycaemia with the FII, 
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though neither were statistically significant 12,15.  Potentially the risk of hypoglycaemia is 

reversed in practice and therefore future studies with sufficient power are warranted. To 

detect the same degree of improvement in hypoglycaemia (~45% reduction), 90 subjects are 

needed.  However, to detect a smaller but clinically important 25% reduction in rate of 

hypoglycaemia, 180 subjects would be required.   

The potential for bias was real because the research dietitian was responsible for both patient 

instruction as well as assessment. However, the primary outcome was biochemical and 

collected and assessed by external laboratories who were blinded to treatment.  It is therefore 

unlikely that the main results were influenced by detection bias. 

Carbohydrate counting instruction is a routine part of clinical management of type 1 diabetes 

in Australia and is a compulsory requirement of initiating insulin pump therapy. This gave the 

carbohydrate counters a distinct advantage because they were all familiar and proficient with 

this algorithm.  The FID counters, however, were required to learn and master the novel 

strategy in the space of a few weeks. This need for adjustment may have been a confounder 

that attenuated any potential improvement in HbA1c. In addition, the insulin dose to food 

ratio in the FII counters was simply extrapolated from their existing ICR, rather than 

determined through titration according to normal practice.  Hence, the design of future studies 

should consider targeting newly diagnosed subjects with type 1 diabetes who have no prior 

knowledge of carbohydrate counting. In this scenario, new patients’ educators can titrate their 

own insulin to food ratio according to the degree of hyper and hypoglycaemia experienced.  

Future studies should also be conducted for a longer duration, with frequent contact with 

health professionals, especially initially to assist with the mastery of the new food counting 

system and the titration of the mealtime insulin ratio.  Collection of insulin therapy data (e.g. 

insulin pump downloads) and detailed food diaries will also provide further insights into 
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study compliance and postprandial blood glucose control. These considerations will also be 

important for the implementation of FID counting, or any other new system of estimating 

insulin dose in clinical practice.  

This pilot study also highlighted other issues that should be resolved before undertaking a 

larger clinical trial.  Some subjects commented that the limited number of foods with a tested 

FII value made some meal estimations difficult. This is an inherent limitation of FID counting 

at present as the FII of each food is determined from the postprandial insulin responses of 10 

lean, healthy adults and cannot be calculated from the macronutrient composition. At the time 

of the study the FII of 127 foods had been tested, representing a broad cross-section of 

commonly eaten foods in the Western diet.  However, expansion of the FII database is 

ongoing and needs to continue before FID counting could be widely implemented. 

In conclusion, changes in HbA1c and postprandial glycaemia were similar using FII counting 

or carbohydrate counting in a 12-week pilot study.  The near-significant trend to reduced risk 

of hypoglycaemia in FII counters warrants further study.  
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The$FOODII$Study$
$

FID$Counter:$
$

Pocket6Sized$
Guide$

$$$

The$FOODII$Study$
$

FID$Counter:$
$

Pocket6Sized$
Guide$

!

Cereals 
!

Food Serve Size FID 

All-Bran Original 1 Cup (60g) 19 

All-Bran Wheat Flakes 1 Cup (40g) 29 

Cheerios 1 Cup (30g) 29 

Cornflakes 1 Cup (30g) 26 

Honey Weets 1 Cup (30g) 23 

Porridge (Oats cooked 
with water) 

1 Cup  
(30g Raw Oats) 15 

Rice Bubbles 1 Cup (30g) 27 

Special K 1 Cup (40g) 30 

Sultana Bran 1 Cup (60g) 56 

Sustain 1 Cup (60g) 50 
!

5!

!!!!!!!

Confectionary!

Food Serve Size FID 

Mars Bar 1 Regular Bar 
(53g) 87 

Snickers Bar 1 Regular Bar 
(60g) 44 

Milk Chocolate 6 Squares (30g) 23 

Jellybeans 10 Small 
Jellybeans 33 

Sherbet 1 Sachet (12.5g) 4 
!

14!

!!

Dairy Products 
!

Food Serve Size FID 

Skim Milk 250mL 23 

Full Cream Milk 250mL 17 

Low Fat Fruit Yoghurt 175g Tub 57 

Vanilla Ice-Cream 1 Scoop (50g) 27 

Low Fat Vanilla        
Ice-Cream 1 Scoop (50g) 19 

Fruit Frozen Yoghurt 1 Scoop (50g) 18 

Chedar Cheese 1 Slice (25g) 14 

Low Fat Cheddar 
Cheese 1 Slice (21g) 4 

Low Fat Processed 
Cheese 1 Slice (20.5g) 6 

Cream Cheese 1 Tablespoon 
(20g) 5 

Reduced Fat Cottage 
Cheese ½ Cup (120g) 21 

Low Fat Cottage 
Cheese ½ Cup (120g) 24 

!
9!

!!!!!!!

Meat, Chicken & Seafood 
!

Food Serve Size FID 

Beef Steak 130g Cooked 30 

Panfried Chicken 130g Cooked 26 

Roast Chicken 130g Cooked 20 

Short-Cut Bacon 2 Rashers 6 

Frankfurter (Hot Dog) 1 Thin 12 

White Fish Fillet 130g Cooked 17 

Battered Fish Fillet 1 Fillet (70g) 34 

Prawns 7 Shelled (50g) 4 

Tuna in Olive Oil 95g Tin, 
Drained 9 

Tuna in Springwater 95g Tin, 
Drained 9 

!

12!

!

Cereals 
!

Food Serve Size Carb (g) 

All-Bran Original 1 Cup (60g) 35 

All-Bran Wheat Flakes 1 Cup (40g) 25 

Cheerios 1 Cup (30g) 20 

Cornflakes 1 Cup (30g) 25 

Honey Weets 1 Cup (30g) 23 

Porridge (Oats cooked 
with water) 

1 Cup 
(30g Raw Oats) 19 

Rice Bubbles 1 Cup (30g) 26 

Special K 1 Cup (40g) 26 

Sultana Bran 1 Cup (60g) 40 

Sustain 1 Cup (60g) 41 
!

5!

!!!!!!!

Confectionary!

Food Serve Size Carb (g) 

Mars Bar 1 Regular Bar 
(53g) 37 

Snickers Bar 1 Regular Bar 
(60g) 35 

Milk Chocolate 6 Squares (30g) 17 

Jellybeans 10 Small 
Jellybeans 16 

Sherbet 1 Sachet (12.5g) 3 
!

14!

!!

Dairy Products 
!

Food Serve Size Carbs (g) 

Skim Milk 250mL 13 

Full Cream Milk 250mL 13 

Low Fat Fruit Yoghurt 175g Tub 26 

Vanilla Ice-Cream 1 Scoop (50g) 11 

Low Fat Vanilla        
Ice-Cream 1 Scoop (50g) 12 

Fruit Frozen Yoghurt 1 Scoop (50g) 11 

Chedar Cheese 1 Slice (25g) 0 

Low Fat Cheddar 
Cheese 1 Slice (21g) 0 

Low Fat Processed 
Cheese 1 Slice (20.5g) 2 

Cream Cheese 1 Tablespoon 
(20g) 1 

Reduced Fat Cottage 
Cheese ½ Cup (120g) 4 

Low Fat Cottage 
Cheese ½ Cup (120g) 7 

!
9!

!!!!!!!

Meat, Chicken & Seafood 
!

Food Serve Size Carbs (g) 

Beef Steak 130g Cooked 0 

Panfried Chicken 130g Cooked 0 

Roast Chicken 130g Cooked 0 

Short-Cut Bacon 2 Rashers 1 

Frankfurter (Hot Dog) 1 Thin 2 

White Fish Fillet 130g Cooked 0 

Battered Fish Fillet 1 Fillet (70g) 9 

Prawns 7 Shelled (50g) 1 

Tuna in Olive Oil 95g Tin, 
Drained 0 

Tuna in Springwater 95g Tin, 
Drained 0 

!

12!

The$FOODII$Study$
$

Carb$Counter:$
$

Pocket8Sized$
Guide$

$$$

The$FOODII$Study$
$

Carb$Counter:$
$

Pocket8Sized$
Guide$
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Screenshots of the Smartphone Apps 
!
FID Counter 
!
  A: Searchable Food List       B: FID of Selected Food                C: FID of Entered  
        and Portion Size                              Recipe/Meal!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
 
 
Carb Counter 
 
  A: Searchable Food List            B: Carbohydrate Content of                 C: Carb Content of                  

               Selected Food and Portion Size             Entered Recipe/Meal 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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FOOD INS U LIN D EMA ND 
(FID) COU NTING

FOOD REFERENCE GUIDE FOR PEOPLE WITH  
T YPE 1 DIABETES



UNTITLED

CHAPTER 1

1

 Healthy Eating
Healthy eating is an important part of managing your diabetes and your 

overall health. A healthy, balanced diet should include a wide range of 

foods from all the different food groups.  

Different people need 
different amounts of 

food depending on their 
energy and nutritional 

needs.  

Talk to an Accredited 
Practising Dietitian to 

help you work out a 
healthy, balanced diet 

that’s right for you.



2

 Insulin & Food
The foods you eat are broken down by the body and are absorbed into the 

blood stream.  Insulin acts like a key, opening the ‘door’ to the cells of the 

body so the nutrients can get into the cells for energy and helps lower 

blood glucose levels. 

Different foods require a different amount of insulin to metabolise them. 

This amount of insulin depends on a number of factors including the 

amount of carbohydrate, protein and fat in the food and how it is 

digested. We can ‘count’ the food insulin demand (FID) of each food and 

use this to determine how much insulin is needed for the food or meal. 

Food
Foods provide the nutrients that the cells 

of the body need to function properly

Insulin
Insulin acts like a key to open the ‘door’ 

to the cells to get the nutrients inside



 Food Insulin Index
The Food Insulin Index ranks foods according to their relative insulin 

demand, in other words, how much insulin is needed to metabolise a 

food compared to other foods. Knowing the insulin demand of the foods 

you are eating can help you predict how much insulin you need to keep 

your blood glucose levels in a healthy range.

The Food Insulin Index (FII) tells us how 

much insulin is needed for each food or meal 

eaten.  This is a fixed number and doesn’t 

change depending on how much you eat.  For 

example, the FII of an apple is 43, no matter 

how much you eat.

The Food Insulin Demand (FID) takes 

into account the FII and how much you are 

going to eat.  We need to multiply the FII of 

the food by the number of kJ in your portion 

size.  For example: 1 slice of white bread has a 

FII of 73 and contains 310kJ, so the FID is 26

3

Apple
FII: 43

White Bread, 1 Slice
FII: 73
FID: 26
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 Using the FII
The amount of insulin you need is determined using your own     

insulin: FID ratio.  For example, 1 unit of insulin: 16 FID points.  This 

means that for every 16 FID points you eat, you need 1 unit of insulin.  

Your insulin: FID ratio is based on your insulin sensitivity.  

The total amount o finsulin you 

need can be calculated by adding 

together the FID of each of the 

foods you are about to eat.  This 

booklet provides the FID for 

many commonly eaten foods.

The insulin pumps currently available on the market do not allow for an 

‘insulin: FID ratio’ to be programmed, however you can use the ‘insulin: 

carbohydrate ratio’ function the same way.   To bolus your mealtime 

insulin dose, enter the FID for the food or meal you are eating into your 

insulin pump bolus wizard where you would normally enter the 

carbohydrate value.

Use your insulin: carbohydrate ratio and enter the 
FID of your food or meal instead of the carbohydrate
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The Foods



White Bread
1 Slice (35g)

FID: 26

 Breads

Grain Bread
1 Slice (28g)

FID: 11

Wholemeal Bread
1 Slice (40g)

FID: 28

Soy & Linseed Bread
1 Slice (41g)

FID: 22

Tortilla
1 Tortilla (40g)

FID: 14

Croissant
1 Medium (50g)

FID: 44
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 Cereals

Rice Bubbles
30g (1 Cup)

FID: 45

Corn Flakes
30g (1 Cup)

FID: 26

Special K
40g (1 Cup)

FID: 30

Sustain
60g (1 Cup)

FID: 50

Sultana Bran
60g (1 Cup)

FID: 56



All-Bran Original
60g (1 Cup)

FID: 19

Porridge  (Oats Cooked with Water)
1/3 Cup  Raw Oats (30g)/1 Cup Cooked

FID: 15

8

 Cereals

Cheerios
30g (1 Cup)

FID:29

All-Bran Wheat Flakes
40g (1 Cup)

FID: 29

Honey Weets
30g (1 Cup)

FID: 23
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 Rice & Pasta

Spiral Pasta 
1 Cup Cooked

FID: 22

Wholemeal Pasta
1 Cup Cooked

FID: 20

Brown Rice
1 Cup Cooked 

FID: 49

White Rice
1 Cup Cooked 

FID: 46

Rice and pasta contain 
fibre and other 

nutrients and are 
generally low in 

kilojoules.  Beware of 
the sauces you add to 

these meals as they can 
add more kilojoules 
than you imagined.    
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 Fruit

Apple
1 Medium (150g)

FID: 14

Orange
1 Medium (230g)

FID: 11

Banana
1 Medium (170g)

FID: 23

Honeydew Melon 
1 Slice (100g)

FID: 7

Sultanas
40g (1/4 Cup)

FID: 17

Grapes
12 Grapes (120g) 

FID: 18
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 Fruit

Peaches Canned in Syrup
1 Cup (250g)

FID: 47

Peaches Canned in Juice
1 Cup (250g)

FID: 28

The Australian Guide to Healthy Eating 
recommends eating at least 2 serves of 

fruit each day.  Try incorporating a 
variety of fruits as a healthy snack.
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 Free Vegetables

Carrots
1 Medium (1/2 Cup, 78g raw)

FID: 6

Peas
1/2 Cup (80g raw)

FID: 9

Broccoli 
1/2 Cup (55g raw)

FID: 2

Cauliflower
1/2 Cup (80g raw)

FID: 5
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 Other Vegetables

Coleslaw
1/2 Cup (100g)

FID: 8

Avocado
1/4 Avocado (50g)

FID: 2

 Vegetables low in kilojoules are often 
referred to as ‘free vegetables’.  These 
vegetables are often high in fibre and 

other nutrients, so they are great for filling 
up on while still watching your waistline.  
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 Starchy Vegetables

Corn
1/2 Cup (80g) 

FID: 14

Boiled Potato
1 Medium (150g)

FID: 36

Boiled Sweet Potato
1 Small (120g)

FID: 37

Roast Pumpkin
100g

FID: 15
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 Dairy Products

Skim Milk
250mL (1 Cup)

FID: 23

Full Cream Milk
250mL (1 Cup)

FID: 17

Low Fat                     
Fruit Yoghurt

175g Tub
FID: 57

Vanilla Ice-Cream
1 Scoop (50g)

FID: 27

Low Fat Vanilla Ice-Cream
1 Scoop (50g)

FID: 19

Fruit Frozen Yoghurt
1 Scoop (50g) 

FID: 18

Low Fat Milk
250mL (1 Cup)

FID: 16
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 Dairy Products

Cheddar Cheese
1 Slice (25g)

FID: 14

Low Fat Cheddar Cheese
1 Slice (21g)

FID: 4

Low Fat Processed Cheese
1 Slice (20.5g)

FID: 6

Cream Cheese
1 Tablespoon (20g)

FID: 5

Reduced Fat Cottage Cheese
1/2 Cup (120g)

FID: 21

Low Fat Cottage Cheese
1/2 Cup (120g) 

FID: 24
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 Meats & Chicken

Beef Steak
150g Raw, 130g Cooked

FID: 30

Panfried Chicken
150g Raw, 130g Cooked

FID: 26

Roast Chicken
130g Cooked

FID: 20

Short-Cut Bacon
2 Rashers (72g)

FID: 6

Frankfurter (Hot Dog) 
1 Thin (70g)

FID: 12
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 Seafood

White Fish Fillet
150g Raw, 130g Cooked

FID: 17

Battered Fish Fillet
1 Fillet (70g)

FID: 34

Prawns
7 Shelled Prawns (50g)

FID: 4

Tuna in Olive Oil
95g Tin Drained (80g)

FID: 9

Tuna in Springwater
95g Tin Drained (80g)

FID: 9
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 Nuts, Eggs & Meat Alt.

Salted Peanuts
1/3 Cup (50g)

FID: 12

Walnuts
1/4 Cup (30g)

FID: 4

Baked Beans
1/2 Cup (130g)

FID: 33

Tofu
100g

FID: 9

Poached Eggs
2 Large Eggs

FID: 14
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 Meals & Convenience Foods

McDonald’s Fries
1 Small Serve (72g) 

FID: 54

Cheese Pizza
1 Slice (71g)

FID: 37

Beef Lasagne
400g

FID: 83

French Fries
100g

FID: 58

Beef Taco
100g

FID: 17
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 Chips & Crackers

Popcorn
1 Cup (25g)

FID: 19

Water Crackers
6 Crackers (18g)

FII: 20

Jatz Crackers
6 Crackers

FID: 22

Corn Chips
11 Chips (27g)

FID: 26

Potato Chips
15 Chips (27g)

FID: 28

97% Fat-Free Pretzels
16 Pretzels (30g) 

FID: 35
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 Confectionary

Mars Bar
1 Regular Bar (53g)

FID: 87

Snickers Bar
1 Regular Bar (60g)

FID: 44

Milk Chocolate
6 Squares (30g)

FID: 23

Jellybeans
10 Small Jellybeans

FID: 33

Sherbet
1 Sachet (12.5g)

FID: 4
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 Baked Goods

Chocolate Chip  
Cookies

2 Cookies (25g)
FID: 33

Muesli Bar
1 Bar (31g)

FID: 17

Reduced Fat          
Blueberry Muffin

1 Large Muffin (170g)
FID: 116

Cinnamon Donut
1 Donut (70g)

FID: 58

Chocolate Brownie 
with Frosting

1 Brownie (50g)
FID: 47

Apple Pie
1 Slice (100g) 

FID: 55

Pancake
1 Pancake (100g)

FID: 83
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 Sauces & Spreads

Butter
1 Teaspoon (5g)

FID: 0

Peanut Butter
1 Teaspoon (15g)

FID: 4

Raspberry Jam
1 Teaspoon (15g)

FID: 11

Sugar
1  Teaspoon (5g)

FID: 5

Tomato Pasta Sauce
1/2 Cup (125g)

FID: 12

Olive Oil
1  Tablespoon (20mL)

FID: 2
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 Beverages

Coca-Cola
1 Can (375mL)

FID: 29

Carrot Juice
250mL (1 Cup)

FID: 14

Ice Tea
1 Bottle (500mL)

FID: 57

Orange Juice
250mL
FID: 23

Apple Juice
250mL 
FID: 21

Fruit Juice Drink
200mL
FID: 19
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 Frequently Asked Questions
How is the insulin demand of a food determined?

The insulin demand of a food is tested in people with diabetes.  This provides a measure of  how much 

insulin the pancreas would normally produce in response to particular foods.  The average response 

from at least 10 people gives us the Food Insulin Index (FII) for the food.  The FID can then calculated 

from the FII based on the number of kilojoules in the serve size. 

Can the FID be calculated from the food label?

No, the Food Insulin Index (FII) must be tested in healthy people without diabetes.  The body is a very 

complex system and there are many factors contributing to the overall insulin demand of the food.  The 

total amount of carbohydrate, protein and fat plays a role but it also depends on the types of 

carbohydrate, protein and fat, how he nutrients interact in the food and in the body, how the food is 

prepared/cooked and how the body digests it.  The may also be factors we don’t know much about yet.  

By measuring the insulin demand in people we can capture all these factors into one number.

Why are there only a limited number of foods in this booklet?

Each food needs to be tested by at least 10 people to find the Food Insulin Index (FII) value, so it takes 

time to add new foods to the list.  So far more than 130 commonly eaten foods have been tested and we 

constantly testing more foods. 

I can’t find a food in the booklet.  How do I work out the FID?

If there is a similar food in the booklet, use the FID of this food as a guide to the FID of your food.  For 

example; the FID of a pear will be similar to an apple and the FID of mince will be similar to beef steak.

If the food is made from a few easily identified ingredients, such as sushi, you can add the FID of the 

ingredients together to find the FID.  for example a sushi roll = rice + chicken or fish + avocado + 

cucumber).  We have provided space at the back of this book to record the FID for any foods or meals 

you’ve calculated.
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 Frequently Asked Questions
How do I work out the FID for a meal or recipe?

The FID of a meal can be worked out by working out the FID of the ingredients in the meal.  Make sure 

you adjust the FID to match the amount added to the meal.  The total FID of the meal is calculated by 

adding together the FID values of each ingredient.  

If you are cooking for multiple people or will get multiple meals from the recipe, you may find it easier 

to work out the FID for the whole meal and then divide by the number of serves in the recipe.  There is 

an example of how to do this in your workshop manual.

I want to eat a different serve size than the one listed in the booklet.  How do I adjust the 

FID?

The listed FID is just an example serve size.  You may choose to eat more or less than this.  To double 

the serve size, double the FID and to halve the serve size, halve the FID.   The ‘FID Counter’ iPhone app 

can be used to do this calculation for you and also lists many other ways of measuring your portion size 

for you to choose from.

There aren’t any FID values for salads, berries or diet products (diet softdrinks, diet 

cordials).  How do I work out the FID for these foods?

These foods are too low in kilojoules to have a FID and so you don’t need insulin for these foods.  The 

Food Insulin Index (FII) is tested in 1000kJ portions and these foods don’t have enough kilojoules to be 

tested, so an FID cannot be calculated.

There aren’t any FID values listed for alcohol.  How do I work out the FID?

The FID values for alcohol has purposely not been added for alcohol as it is not recommended to dose 

insulin for alcoholic drinks. Alcohol prevents the liver from releasing small amounts of stored glucose to 

keep your blood glucose levels in a healthy range.  Therefore injecting or infusing insulin can further 

increase the risk of hypoglycaemia associated with alcohol.
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 Frequently Asked Questions
How do I use the FID to treat my hypoglyaemia?

Hypoglycaemia occurs when blood glucose levels drop below 4mmol/L.  To treat hypoglycaemia, blood 

glucose levels need to be raised back to the normal, healthy level as quickly as possible.  Foods 

containing carbohydrates that are quickly digested are the best way to raise your blood glucose levels.  

This may include glucose jellybeans, glucose tablets, fruit juice or softdrink (not diet varieties).  

The FID is useful for determining how much insulin you need to foods but you should use 

carbohydrates to elevate blood glucose levels quickly. 

Any other questions?

Contact Kirstie by email at Kirstine.Bell@sydney.edu.au or by phone on 0400 167 043.

mailto:Kirstine.Bell@sydney.edu.au
mailto:Kirstine.Bell@sydney.edu.au
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Healthy eating is an important part of managing your diabetes and your 

overall health. A healthy, balanced diet should include a wide range of 

foods from all the different food groups.  

Different people need 
different amounts of food 

depending on their 
energy and nutritional 

needs.  

Talk to an Accredited 
Practising Dietitian to 

help you work out a 
healthy, balanced diet 

that’s right for you.

  Healthy Eating
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Foods containing carbohydrate are digested into a sugar called ‘glucose’ 

and are absorbed into your blood stream, raising blood glucose levels.  

Insulin acts like a key, ‘opening the door’ to the cells of the body so the 

glucose can get into the cells for energy and lowering blood glucose levels. 

The amount of insulin you need is proportional to the amount of 

carbohydrate you eat.  Therefore we can ‘count’ the grams of 

carbohydrate you eat and use this to determine how much insulin you 

need for that food or meal.

  Insulin & Carbohydrate

Carbohydrates
Carbohydrates break down into glucose, 

raising blood glucose levels.

Insulin
Insulin acts like a key to ‘open the 

door’ to the cells so the glucose can get 
inside, lowering blood glucose levels.
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  Carbohydrate Counting
Knowing how much carbohydrate is in the foods you eat can help you 

predict how much insulin you need to keep your blood glucose levels in a 

healthy range.

Apple
15g Carbohydrate

Carbohydrate foods can be ‘counted’ 

by adding together the grams of 

carbohydrate in each food.  For 

example, 1 apple contains 15g of 

carbohydrate.

Remember, the grams of 

carbohydrate is different to the 

weight of the food.   For example, a 

slice of white bread weighs 35g but 

contains 16g of carbohydrate.White Bread
1 Slice = 35g

Carb: 16g
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The amount of insulin you need is determined using your own insulin: 

carbohydrate ratio.  E.g. 1 unit of insulin: 10g of carbohydrate.  This 

means that for every 10g of carbohydrate you eat, you need 1 unit of 

insulin.  This ratio is prescribed for you based on your insulin sensitivity. 

  Using Carb Counting

Use your insulin: carbohydrate ratio and enter the 
grams of carbohydrate you eat into your bolus wizard

The total amount of insulin you 

need can be calculated by adding 

together the amount of 

carbohydrate (grams) in each of 

the foods you are about to eat.  This 

booklet provides the amount of 

carbohydrate in common foods.

Insulin pumps allow you to pre-program your insulin: carbohydrate 

ratio, so that you can enter the amount of carbohydrate and the insulin 

pump will determine the amount of insulin you need.
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  Foods



White Bread
1 Slice (35g)

Carb: 16g

Grain Bread
1 Slice (28g)

Carb: 10g

Wholemeal Bread
1 Slice (40g)

Carb: 18g

Soy & Linseed Bread
1 Slice (41g)

Carb: 12g

Tortilla
1 Tortilla (40g)

Carb: 18g

Croissant
1 Medium (50g)

Carb: 22g

  Breads



7

Rice Bubbles
30g (1 Cup)
Carb: 26g

Corn Flakes
30g (1 Cup)
Carb: 25g

Special K
40g (1 Cup)
Carb: 26g

Sustain
60g (1 Cup)
Carb: 41g

Sultana Bran
60g (1 Cup)
Carb: 40g

  Cereals



All-Bran Original
60g (1 Cup)
Carb: 35g

Porridge  (Oats Cooked with Water)
1/3 Cup  Raw Oats (30g)/1 Cup Cooked

Carb: 19g

8

Cheerios
30g (1 Cup)
Carb: 20g

All-Bran Wheat Flakes
40g (1 Cup)
Carb: 25g

Honey Weets
30g (1 Cup)
Carb: 23g

  Cereals



9

Spiral Pasta 
1 Cup Cooked

Carb: 36g

Wholemeal Pasta
1 Cup Cooked

Carb: 33g

Brown Rice
1 Cup Cooked 

Carb: 58g

White Rice
1 Cup 

Carb: 45g

 

  Rice & Pasta

Rice and pasta contain 
fibre and other 

nutrients and are 
generally low in 

kilojoules.  Beware of 
the sauces you add to 

these meals as they can 
add more kilojoules 
than you imagined.    
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Apple
1 Medium (150g)

Carb: 18g

Orange
1 Medium (230g)

Carb: 13g

Banana
1 Medium (170g)

Carb: 22g

Honeydew Melon 
1 Slice (100g)

Carb: 3g

Sultanas
40g (1/4 Cup)

Carb: 31g

Grapes
12 Grapes (120g) 

Carb:17g

 Fruit
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Peaches Canned in Syrup
1 Cup (250g)

Carb: 40g

Peaches Canned in Juice
1 Cup (250g)

Carb: 28g

 

 Fruit

The Australian Guide to Healthy Eating 
recommends eating at least 2 serves of 

fruit each day.  Try incorporating a 
variety of fruits as a healthy snack.
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Carrots
1 Medium (1/2 Cup, 78g raw)

Carb: 5g

Peas
1/2 Cup (80g raw)

Carb: 5g

Broccoli 
1/2 Cup (55g raw)

Carb: 1g

Cauliflower
1/2 Cup (80g raw)

Carb: 2g

 Free Vegetables
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Coleslaw
1/2 Cup (100g)

Carb: 13g

Avocado
1/4 Avocado (50g)

Carb: 0g

 Other Vegetables

 
 Vegetables low in kilojoules are often 
referred to as ‘free vegetables’.  These 
vegetables are often high in fibre and 

other nutrients, so they are great for filling 
up on while still watching your waistline.  
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Corn
1/2 Cup (80g) 

Carb: 15g

Boiled Potato
1 Medium (150g)

Carb: 20g

Boiled Sweet Potato
1 Small (120g)

Carb: 18g

Roast Pumpkin
100g

Carb: 7g

 Starchy Vegetables
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Skim Milk
250mL (1 Cup)

Carb: 13

Low Fat Milk
250mL (1 Cup)

Carb: 13g

Low Fat 
Fruit Yoghurt

175g Tub
Carb: 26g

Vanilla Ice-Cream
1 Scoop (50g)

Carb: 11g

Low Fat Vanilla Ice-Cream
1 Scoop (50g)

Carb: 12g

Fruit Frozen Yoghurt
1 Scoop (50g) 

Carb: 11g

 Dairy Products

Full Cream Milk
250mL (1 Cup)

Carb: 13g
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Cheddar Cheese
1 Slice (25g)

Carb: 0g

Low Fat Cheddar Cheese
1 Slice (21g)

Carb: 0g

Low Fat Processed Cheese
1 Slice (20.5g)

Carb: 2g

Cream Cheese
1 Tablespoon (20g)

Carb: 1g

Reduced Fat Cottage Cheese
1/2 Cup (120g)

Carb: 4g

Low Fat Cottage Cheese
1/2 Cup (120g) 

Carb: 7g

 Dairy Products



17

Beef Steak
150g Raw, 130g Cooked

Carb: 0g

Panfried Chicken
150g Raw, 130g Cooked

Carb: 0g

Roast Chicken
130g Cooked

Carb: 0g

Short-Cut Bacon
2 Rashers (72g)

Carb: 1g

Frankfurter (Hot Dog) 
1 Thin (70g)

Carb: 2g

 Meats & Chicken
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White Fish Fillet
150g Raw, 130g Cooked

Carb: 0g

Battered Fish Fillet
1 Fillet (70g)

Carb: 9g

Prawns
7 Shelled Prawns (50g)

Carb: 1g

Tuna in Olive Oil
95g Tin Drained (80g)

Carb: 0g

Tuna in Springwater
95g Tin Drained (80g)

Carb: 0g

 Seafood
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Salted Peanuts
1/3 Cup (50g)

Carb: 4g

Walnuts
1/4 Cup (30g)

Carb: 1g

Baked Beans
1/2 Cup (130g)

Carb: 14g

Tofu
100g

Carb: 3g

Poached Eggs
2 Large Eggs

Carb: 1g

 Nuts, Eggs & Meat Alt.
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McDonald’s Fries
1 Small Serve (72g) 

Carb: 24g

Cheese Pizza
1 Slice (71g)

Carb: 23g

Beef Lasagne
400g

Carb: 60g

French Fries
100g

Carb: 40g

Beef Taco
100g

Carb: 7g

 Meals & Convenience Foods
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Popcorn
1 Cup (25g)

Carb:13g

Water Crackers
6 Crackers (18g)

Carb: 13g

Jatz Crackers
6 Crackers
Carb: 17g

Corn Chips
11 Chips (27g)

Carb: 16g

Potato Chips
15 Chips (27g)

Carb: 16g

97% Fat-Free Pretzels
16 Pretzels (30g) 

Carb: 21g

 Chips & Crackers
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Mars Bar
1 Regular Bar (53g)

Carb: 37g

Snickers Bar
1 Regular Bar (60g)

Carb: 35g

Milk Chocolate
6 Squares (30g)

Carb: 17g

Jellybeans
10 Small Jellybeans

Carb: 16g

Sherbet
1 Sachet (12.5g)

Carb: 3g

 Confectionery
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Chocolate Chip  
Cookies

2 Cookies (25g)
Carb: 17g

Muesli Bar
1 Bar (31g)
Carb: 18g

Reduced Fat          
Blueberry Muffin

1 Large Muffin (170g)
Carb: 85g

Cinnamon Donut
1 Donut (70g)

Carb: 28g

Chocolate Brownie 
with Frosting

1 Brownie (50g)
Carb: 24g

Apple Pie
1 Slice (100g) 

Carb: 38g

 Baked Goods
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Butter
1 Teaspoon (5g)

Carb: 0g

Peanut Butter
1 Teaspoon (15g)

Carb: 3g

Raspberry Jam
1 Teaspoon (15g)

Carb: 6g

Olive Oil
1  Tablespoon (20mL)

Carb: 0g

Tomato Pasta Sauce
1/2 Cup (125g)

Carb: 11g

 Sauces & Spreads

Sugar
1  Teaspoon (5g)

Carb: 5g



25

Coca-Cola
1 Can (375mL)

Carb: 39g

Carrot Juice
250mL (1 Cup)

Carb: 13g

Ice Tea
1 Bottle (500mL)

Carb: 46g

Orange Juice
250mL

Carb: 21g

Apple Juice
250mL 

Carb: 26g

Fruit Juice Drink
200mL

Carb: 15g

 Beverages
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Activity!1:!
Food'Insulin'Demand'–'Food'Diary'

 
Complete the following tables by filling in the foods and the amounts 
you have eaten today (or what you would normally eat in a day) and 
then estimating the FID using your reference booklets. 
!

Food' Amount' FID'

!
Apple!

!
1!medium!

!
14!

! ! !

!
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Activity!2:!
Figuring'out'Recipes'&'Meals'

'
The FID of a meal can be calculated by working out the FID of the 

ingredients in the meal.  Make sure you adjust the FID to match the 

amount added to the meal.  The total FID of the meal is calculated by 

adding together the FID values of each ingredient.   

 

If you are cooking for multiple people or will get multiple meals from 

the recipe, you may find it easier to work out the FID for the whole 

meal and then divide by the number of serves in the recipe.  There is an 

example of how to do this in your workshop manual.!

!
Ingredient' Amount' FID'

! ! !

! ! !

! ! !

! ! !

! ! !

! Total'FID'
(Add!up!all!FID)!

!

! Number'of'Serves'
(How!many!serves!did!it!

make?)!

!

! FID'per'Serve''
(Divide!‘Total!FID’!by!
‘Number!of!Serves’)!

!
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Example:'Chicken!StirGfry'
!

!
!

!

Ingredient' Amount' FID'

Rice! 4!cups!cooked! 184!
(46!x!4)!

Chicken!
! 300g!Raw! 52!

(26!x!2)!

Carrot! 2!medium! 12!
(6!x!2)!

Broccoli! 1!cup! 4!
(2!x!2)!

Cauliflower! 1!cup! 10!
(5!x!2)!

! Total'FID'
(Add!up!all!FID)! 262!

!
Number'of'Serves'

(How!many!serves!did!it!
make?)!

4!

!
FID'per'Serve'

(Divide!‘Total!FID’!by!
‘Number!of!Serves’)!

65.5!

!
So!for!1!serving!of!
the!Chicken!StirU
fry,!the!FID!is!65.5!
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Estimating'Portion'Sizes'
'

A!key!element!of!FID!counting!is!being!able!to!accurately!
estimate!your!portion!size.!!The!chart!below!gives!some!
examples!of!what!some!common!portion!size!measures!look!like!
compared!to!household!objects.!

Adapted from www.snacksense.com!

1'Cup'='

¾'Cup'=''

½'Cup'='

¼'Cup'='

85g'='

2'Teaspoons'='

Baseball'

Tennis'Ball'

Computer'
Mouse'

Egg'

Deck'of'Cards'

Ping'Pong'Ball'
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Activity!3:!
Weighing'it'Up'

'
Serve!yourself!the!amount!of!the!food!you!would!normally!eat!into!the!
bowl!provided.!Use!the!sheet!below!to!record!your!estimations.!
!
Part%1:%%
Estimate!the!weight!of!the!food!–!in!grams!or!measuring!cups.!
Based!on!your!estimated!portion!size,!estimate!the!FID!of!the!serve.!
!
Part%2:%
Weigh!your!serve!or!pour!into!a!measuring!cup!–!how!close!were!your!
estimations?!
Using!the!reference!booklets!provided,!estimate!the!actual!FID!of!the!
serve.!
!

Food%
Estimated%
Weight%

Actual%
Weight%

Estimated%
FID%

Actual%
FID%

Rice! ! ! ! !

Pasta! ! ! ! !

Juice! ! ! ! !

Apple! ! ! ! !

Cereal! ! ! ! !

Meat! ! ! ! !

'



!
!

!
!

The FOODII Study 
!

Carbohydrate 
Counting 

 
Workshop Manual 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Facilitator: Kirstie Bell 
APD/AN, CDE & PhD Candidate 

Email: Kirstine.Bell@sydney.edu.au 
!
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Session!Overview!
!
!
!
!

Time! Topic/Activity! Page!

! Introduction! !

! What!is!Carb!Counting?! !

! How!to!use!Carb!Counting!in!Practice! !

! !!!!!Activity:!Food!Diary! 3!

! !!!!!Activity:!Estimating!Meals!&!Recipes! 4!

! Estimating!Food!Portion!Size! 6!

! !!!!!!Activity:!Weigh!&!Measure!Foods! 7!

! Summary! !

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
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Activity!1:!
Carbohydrate!Counting!–!Food!Diary!

!
Complete the following tables by filling in the foods and the amounts you 
have eaten today (or what you would normally eat in a day) and then 
estimating the carbohydrate content using your reference booklets. 

!
Food! Amount! Carb!

!
Apple!

!
1!medium!

!
18g!

! ! !
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Activity!2:!
Figuring!out!Recipes!&!Meals!

!
The carbohydrate content of a meal can be calculated by working out the 

carbohydrate content of the ingredients in the meal.  Make sure you 

adjust the carbs to match the amount added to the meal.  The total carb 

of the meal is calculated by adding together the grams of carb in each 

ingredient.   

 

If you are cooking for multiple people or will get multiple meals from the 

recipe, you may find it easier to work out the grams of carbohydrate in 

the whole meal and then divide by the number of serves in the recipe.  

There is an example of how to do this in your workshop manual.!

!

Ingredient! Amount! Carb!(g)!

! ! !

! ! !

! ! !

! ! !

! Total!Carb!
(Add!up!all!grams!of!carb)!

!

! Number!of!Serves!
(How!many!serves!did!it!make?)!

!

! Carb!per!Serve!!
(Divide!‘Total!Carb’!by!‘Number!of!

Serves’)!

!



Example:!Chicken!StirFfry!
!

!
!

!
!
!
!
!
!
!
!
!
!
!

Ingredient! Amount! Carbs!(g)!

Rice! 4!cups!cooked! 180!
(45g!x!4)!

Chicken!
! 300g!Raw! 0!

Carrot! 2!medium! 10!
(5g!x!2)!

Broccoli! 1!cup! 2!
(1g!x!2)!

Cauliflower! 1!cup! 4!
(2g!x!2)!

! Total!Carb!
(Add!up!all!grams!of!carb)! 196!

!
Number!of!Serves!

(How!many!serves!did!it!
make?)!

4!

!
Grams!of!Carb!per!Serve!
(Divide!‘Total!Carb’!by!
‘Number!of!Serves’)!

49!

!
So!1!serving!of!the!
Chicken!StirVfry,!
contains!49g!of!
carbohydrate!



Estimating!Portion!Sizes!
!

A!key!element!of!carbohydrate!counting!is!being!able!to!
accurately!estimate!your!portion!size.!!The!chart!below!gives!
some!examples!of!what!some!common!portion!size!measures!
look!like!compared!to!household!objects.!

Adapted from www.snacksense.com!

1!Cup!=!

¾!Cup!=!!

½!Cup!=!

¼!Cup!=!

85g!=!

2!Teaspoons!=!

Baseball!

Tennis!Ball!

Computer!
Mouse!

Egg!

Deck!of!Cards!

Ping!Pong!Ball!
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Activity!3:!
Weighing!it!Up!

!
Serve!yourself!the!amount!of!the!food!you!would!normally!eat!into!the!
bowl!provided.!Use!the!sheet!below!to!record!your!estimations.!
!
Part%1:%%
Estimate!the!weight!of!the!food!–!in!grams!and!in!measuring!cups.!
Weigh!your!serve!–!how!close!were!your!estimations?!
Pour!into!a!measuring!cup!–!how!close!were!your!estimations?!
!
Part%2:%
Estimate!the!amount!of!carbohydrate!in!the!serve.!
Using!the!reference!booklets!provided,!estimate!the!actual!amount!of!
carbohydrate!in!the!serve.!
!

Food%
Estimated%
Weight%

Actual%
Weight%

Estimated%
Carb%

Actual%
Carb%

Rice!
! ! ! !

Pasta!
! ! ! !

Juice!
! ! ! !

Apple!
! ! ! !

Cereal!
! ! ! !

Potato!
! ! ! !

!
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Excerpts from the pocket-sized guides!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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FID$Counter:$
$

Pocket6Sized$
Guide$

$$$
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$

FID$Counter:$
$

Pocket6Sized$
Guide$

!

Cereals 
!

Food Serve Size FID 

All-Bran Original 1 Cup (60g) 19 

All-Bran Wheat Flakes 1 Cup (40g) 29 

Cheerios 1 Cup (30g) 29 

Cornflakes 1 Cup (30g) 26 

Honey Weets 1 Cup (30g) 23 

Porridge (Oats cooked 
with water) 

1 Cup  
(30g Raw Oats) 15 

Rice Bubbles 1 Cup (30g) 27 

Special K 1 Cup (40g) 30 

Sultana Bran 1 Cup (60g) 56 

Sustain 1 Cup (60g) 50 
!

5!

!!!!!!!

Confectionary!

Food Serve Size FID 

Mars Bar 1 Regular Bar 
(53g) 87 

Snickers Bar 1 Regular Bar 
(60g) 44 

Milk Chocolate 6 Squares (30g) 23 

Jellybeans 10 Small 
Jellybeans 33 

Sherbet 1 Sachet (12.5g) 4 
!

14!

!!

Dairy Products 
!

Food Serve Size FID 

Skim Milk 250mL 23 

Full Cream Milk 250mL 17 

Low Fat Fruit Yoghurt 175g Tub 57 

Vanilla Ice-Cream 1 Scoop (50g) 27 

Low Fat Vanilla        
Ice-Cream 1 Scoop (50g) 19 

Fruit Frozen Yoghurt 1 Scoop (50g) 18 

Chedar Cheese 1 Slice (25g) 14 

Low Fat Cheddar 
Cheese 1 Slice (21g) 4 

Low Fat Processed 
Cheese 1 Slice (20.5g) 6 

Cream Cheese 1 Tablespoon 
(20g) 5 

Reduced Fat Cottage 
Cheese ½ Cup (120g) 21 

Low Fat Cottage 
Cheese ½ Cup (120g) 24 

!
9!

!!!!!!!

Meat, Chicken & Seafood 
!

Food Serve Size FID 

Beef Steak 130g Cooked 30 

Panfried Chicken 130g Cooked 26 

Roast Chicken 130g Cooked 20 

Short-Cut Bacon 2 Rashers 6 

Frankfurter (Hot Dog) 1 Thin 12 

White Fish Fillet 130g Cooked 17 

Battered Fish Fillet 1 Fillet (70g) 34 

Prawns 7 Shelled (50g) 4 

Tuna in Olive Oil 95g Tin, 
Drained 9 

Tuna in Springwater 95g Tin, 
Drained 9 

!

12!

!

Cereals 
!

Food Serve Size Carb (g) 

All-Bran Original 1 Cup (60g) 35 

All-Bran Wheat Flakes 1 Cup (40g) 25 

Cheerios 1 Cup (30g) 20 

Cornflakes 1 Cup (30g) 25 

Honey Weets 1 Cup (30g) 23 

Porridge (Oats cooked 
with water) 

1 Cup 
(30g Raw Oats) 19 

Rice Bubbles 1 Cup (30g) 26 

Special K 1 Cup (40g) 26 

Sultana Bran 1 Cup (60g) 40 

Sustain 1 Cup (60g) 41 
!

5!

!!!!!!!

Confectionary!

Food Serve Size Carb (g) 

Mars Bar 1 Regular Bar 
(53g) 37 

Snickers Bar 1 Regular Bar 
(60g) 35 

Milk Chocolate 6 Squares (30g) 17 

Jellybeans 10 Small 
Jellybeans 16 

Sherbet 1 Sachet (12.5g) 3 
!

14!

!!

Dairy Products 
!

Food Serve Size Carbs (g) 

Skim Milk 250mL 13 

Full Cream Milk 250mL 13 

Low Fat Fruit Yoghurt 175g Tub 26 

Vanilla Ice-Cream 1 Scoop (50g) 11 

Low Fat Vanilla        
Ice-Cream 1 Scoop (50g) 12 

Fruit Frozen Yoghurt 1 Scoop (50g) 11 

Chedar Cheese 1 Slice (25g) 0 

Low Fat Cheddar 
Cheese 1 Slice (21g) 0 

Low Fat Processed 
Cheese 1 Slice (20.5g) 2 

Cream Cheese 1 Tablespoon 
(20g) 1 

Reduced Fat Cottage 
Cheese ½ Cup (120g) 4 

Low Fat Cottage 
Cheese ½ Cup (120g) 7 

!
9!

!!!!!!!

Meat, Chicken & Seafood 
!

Food Serve Size Carbs (g) 

Beef Steak 130g Cooked 0 

Panfried Chicken 130g Cooked 0 

Roast Chicken 130g Cooked 0 

Short-Cut Bacon 2 Rashers 1 

Frankfurter (Hot Dog) 1 Thin 2 

White Fish Fillet 130g Cooked 0 

Battered Fish Fillet 1 Fillet (70g) 9 

Prawns 7 Shelled (50g) 1 

Tuna in Olive Oil 95g Tin, 
Drained 0 

Tuna in Springwater 95g Tin, 
Drained 0 

!

12!

The$FOODII$Study$
$

Carb$Counter:$
$

Pocket8Sized$
Guide$

$$$

The$FOODII$Study$
$

Carb$Counter:$
$

Pocket8Sized$
Guide$
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Screenshots of the Smartphone Apps 
!
FID Counter 
!
  A: Searchable Food List       B: FID of Selected Food                C: FID of Entered  
        and Portion Size                              Recipe/Meal!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
 
 
Carb Counter 
 
  A: Searchable Food List            B: Carbohydrate Content of                 C: Carb Content of                  

               Selected Food and Portion Size             Entered Recipe/Meal 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
 



!

!

 

 

 

 

CHAPTER 6 

Effect of diets of varying Food Insulin Index 

on day-long glucose and insulin profiles in 

adults with type 2 diabetes 
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6.1 Abstract 

Introduction: Chronic hyperinsulinaemia in type 2 diabetes may exacerbate insulin 

resistance and β-cell failure.  The Food Insulin Index (FII) is a novel algorithm for ranking 

foods based on their insulin responses (‘demand’) in healthy adults relative to an isoenergetic 

reference food.  Our aim was to compare day-long plasma glucose and insulin responses of 

patients with type 2 diabetes to two diets of varying insulin demand. 

Methods:   On two separate mornings, 10 adults with type 2 diabetes consumed either a high 

FII or low FII diet in random order.  Diets consisted of three consecutive meals (breakfast, 

morning tea and lunch), matched for macronutrients, fibre and GI but with two-fold 

differences in insulin demand as predicted by the FII of the component foods.  Postprandial 

glycaemia and insulinaemia were measured though capillary blood samples at regular 

intervals over 8 hours. 

Results: Compared with the high FII diet, mean postprandial insulin response over 8 h was 

41% lower on the low FII diet  (iAUCinsulin 18,740 ± 3,100 pmol/L vs. 11,000 ± 1,810 pmol/L, 

p = 0.018).  As predicted, there were no differences in glycaemic responses between the two 

diets over the same timeframe (iAUCglucose 840 ± 230 mmol/L vs. 880 ± 230mmol/L, p = 

0.994).   

Conclusion: The novel FII algorithm may be a useful tool for reducing postprandial 

hyperinsulinaemia in type 2 diabetes, thereby potentially improving insulin resistance and β-

cell function.
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6.2 Introduction 

Type 2 diabetes is characterised by chronic hyperglycaemia resulting from insulin resistance 

and β-cell failure.  Insulin resistance is linked to chronic hyperinsulinaemia, which in turn 

may induce oxidative stress and exacerbate β-cell failure1.  Dietary patterns which induce 

excessive insulin secretion have been associated with weight gain2 and a higher risk of 

developing type 2 diabetes3.  

Conventional diet therapy for type 2 diabetes is based on improving insulin sensitivity, 

primarily through weight loss, and reducing postprandial hyperglycaemia by manipulating 

carbohydrate amount, type and distribution over the day4.  However, protein and fat have also 

been shown to be potent modulators of insulin secretion in both healthy subjects and those 

with type 2 diabetes5.   

The Food Insulin Index (FII) is a novel algorithm for ranking foods based on their 

physiological insulin demand relative to an isoenergetic reference food in healthy subjects6.  

In single food studies, it has been shown to be a better predictor of observed insulin responses 

than the carbohydrate content or glycaemic index (GI)7 .  In the context of realistic mixed 

meals, the FII also predicted day-long glucose and insulin responses in healthy subjects8, 9.  

But this may not be true of individuals with type 2 diabetes because β-cell function and 

insulin secretion are compromised. The aim of the present study therefore was to determine 

whether the FII could predict metabolic responses in adults with type 2 diabetes consuming 3 

consecutive meals that had similar macronutrient content but a 2-fold difference in insulin 

demand as predicted by the FII of the component foods. We hypothesised that despite the 

same carbohydrate content, fibre and GI, there would still be a 2-fold difference in insulin 

response calculated as area under the curve. 
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6.3 Methods 

6.3.1 Study design 

A group of 11 adults with type 2 diabetes were recruited.  Volunteers were included if they 

were well controlled by diet or oral hypoglycaemic agents. They were ineligible if they used 

insulin therapy, had food allergies or intolerances, or were not proficient in English.  The 

study was approved by the University of Sydney Human Research Ethics Committee and 

participants gave written, informed consent (See Appendices 19 – 22 for participant forms 

and questionnaires). 

Subjects presented to the metabolic kitchen after an 8-hour overnight fast.   On the day before 

each test session, subjects were instructed to consume a high carbohydrate, low fat dinner (not 

standardised), avoid alcohol and legumes, and maintain usual physical activity levels.  On two 

separate test days, subjects consumed a high FII and a low FII diet in random order, 

consisting of three consecutive meals over an 8-hour period, ie breakfast, morning tea and 

lunch given at approximate 08:00, 11:00 and 13:00 h respectively.  The two diets were 

matched for energy, macronutrients, fibre and GI but had a 2-fold difference in predicted 

insulin demand (Table 6.1). Capillary blood samples were taken every 30 – 60 minutes, with 

a total of 13 blood samples taken per test day. Plasma glucose was analysed using the glucose 

hexokinase enzymatic assay on a centrifugal analyser (Model Hitachi 912; Hitachi, Tokyo, 

Japan) and plasma insulin was measured by antibody-coated tube radioimmunoassay 

(Diagnostic Products Corporation, Los Angeles, CA).  

 

6.3.2 Statistical analysis 

A sample size was estimated based on previous data suggesting 10 subjects were needed to 

detect one standard deviation difference in insulin incremental area under the curve (iAUC), 
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with p < 0.05 (unpublished data).   Data are presented as means ± SEM.  The incremental area 

under the curve (iAUC) across the 8 h period for glucose and insulin was calculated according 

to the trapezoidal rule with fasting level (0 time) as the baseline and the area beneath the 

fasting level ignored10.  Statistical analysis was performed using SPSS version 19 (SPSS Inc., 

Chicago, IL, USA).  Differences were considered significant if p < 0.05 and highly significant 

if p < 0.001. 

 

6.4 Results 

Of the 11 adults (6 men, 5 women) recruited for the study, 10 completed both test sessions.  

One subject withdrew from the study due to discomfort from capillary blood sampling.  The 

subjects had a mean age of 63 y (range 44 – 78 y), with a mean BMI of 29.6 ± 2.0 kg/m2. 

As predicted, there was no significant difference in the plasma glucose iAUC over 8 h to the 

low and high FII diets (840 ± 230 vs 880 ± 230 mmol/L.min respectively, p = 0.994, Table 

6.2).  Similarly, there were no significant differences in the mean blood glucose level across 8 

h (9.9 ± 1.3 vs 10.3 ± 1.6 mmol/L.min, p = 0.485). 

In contrast, the mean postprandial insulin iAUC over 8 h was 41% lower on the low FII diet 

compared with the high FII diet (11,000 ± 1,810 vs 18,740 ± 3,100 pmol/L.min respectively, 

p = 0.018, Fig 6.1, Table 6.2).  Mean blood insulin concentration was 38% higher on the high 

vs low FII diet (377 ± 50 pmol/L vs. 273 ± 63 mmol/L respectively) but the difference did not 

reach statistical significance (p = 0.271).   
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Table 6.1: Macronutrient composition, glycaemic index (GI), calculated glycaemic load (GL) 

and food insulin index (FII). 

 Energy 

(kJ) 

AvCHO 

(g) 

Fat 

(g) 

Fibre 

(g) 

Protein 

(g) 

GI 

(%) 

GL 

(g) 

FII 

(%) 

HIGH FII DIET 

Breakfast 

63g white bread 

302g low fat yoghurt 

104g poached egg 

2500 76 16 14 36 45 34 65 

Morning Tea 

36g cookie 

30g Mars Bar 

1000 33 11 1 3 62 20 73 

Lunch 

82g whole-meal bread 

53g cheese 

254g baked beans 

2500 76 17 14 35 44 33 62 

TOTAL 6000 185 44 29 74 48 87 65 

LOW FII DIET 

Breakfast 

55g All-Bran cereal 

275mL full-cream milk 

99g grain bread 

2500 73 19 21 33 33 24 35 

Morning Tea 

18g walnuts 

36g raisins 

1000 32 12 3 4 63 19 18 

Lunch 

162g corn 

113g roast chicken 

104g tortilla 

2500 79 15 5 35 48 38 31 

TOTAL 6000 184 46 29 72 44 81 30 
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Table 6.2: Fasting and day-long glucose and insulin profiles for 10 adults with non-insulin treated type 2 diabetes following a low FII and high 

FII diet.  

 
 

Diet Mean Fasting 

Blood Glucose 

Level (mmol/L) 

Mean Fasting 

Insulin Level 

(µmol/L) 

Mean Postprandial 

Blood Glucose 

Level (mmol/L) 

Mean 

Postprandial 

Blood Insulin 

Level (µmol/L) 

Glucose 180min 

iAUC 

(mmol/L*min) 

Insulin 180min 

iAUC 

(pmol/L*min) 

High FII 8.3 ± 0.9 148 ± 29 9.9 ± 1.3 377 ± 50 840 ± 230 18,740 ± 3,100 

Low FII 8.9 ± 1.1 151 ± 51 10.3 ± 1.6 273 ± 63 880 ± 230 11,000 ± 1,810 

P Value 0.096 0.096 0.485 0.271 0.994 0.018 

 

Data presented as mean ± SEM 

 

 

 



Chapter 6: FII in Type 2 Diabetes 
!

! ! !
 

263 

 

 

 

 

 

 

 

 

 

Figure 6.1: High FII vs Low FII Diet over 8 hours on the Mean Plasma Insulin Profile in 

Adults with Type 2 Diabetes (n=10)  

 

6.5 Discussion 

This study provides the first evidence that the novel FII may be applicable to individuals with 

type 2 diabetes.  The results show a 41% reduction in the predicted insulin demand to 3 

consecutive meals consumed over the course of 8 h.  This occurred despite the fact that 

glycaemia, macronutrients, fibre and GI were deliberately designed to be similar. The 

findings suggest that a low FII diet can reduce nutrient-induced hyperinsulinaemia and 

thereby preserve residual β-cell function in type 2 diabetes.  

These results are comparable with those achieved in healthy subjects. A study by Bao et al8.  

showed the low FII diet produced a 53% reduction in mean insulin response (iAUC) over 8 h 

with no significant differences in the glycaemic response.  The small difference in the degree 
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of reduction of insulinaemic response may be attributable to β-cell dysfunction characteristic 

of type 2 diabetes.  

Carbohydrate, protein and fat have been shown to be potent stimuli for insulin secretion, 

although varying in their efficacy and mode of action 5.  Therefore the two diets employed in 

this study were carefully matched for macronutrients, fibre and GI to rule out differences in 

glycaemic and insulinaemic responses due to macronutrient composition.  The two-fold 

difference in insulin demand was achieved by varying the food sources according to their 

insulin demand as predicted by the FII.  For example, protein-rich foods included in the high 

FII diet, such as milk, yoghurt, cheese and baked beans, produce an insulin response more 

than twice that of other protein sources incorporated into the low FII diet, such as roast 

chicken and walnuts. Although almost all protein sources have been shown to exert an 

insulinotropic effect, certain protein sources and amino acids, including glutamine, alanine 

and arginine, have been shown to stimulate β-cell secretion, increasing insulin responses by 

over 200% 5, 11, 12.    

As expected, there were no significant differences in the glycaemic responses between the 

two diets over the same timeframe. Since the two diets were matched for carbohydrate and 

GI, these factors were not responsible for the observed differences in the glycaemic, and 

corresponding insulinaemic responses.   The effect on insulinaemia could therefore be 

attributed to fat and protein per se.   

This is a physiologically important phenomenon because insulin is required for the 

metabolism of carbohydrate, protein and fat (and therefore is secreted in response to their 

ingestion).  In order to prevent blood glucose levels from falling as insulin secretion 

increases, protein also triggers glucagon release13.  This hormone acts in opposition to insulin, 

increasing hepatic glucose output and thus maintaining stable blood glucose levels.  
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This study formed part of a series of studies to document the clinical utility of the novel FII 

across different groups of the population6-9.  The overall aim is to determine whether the use 

of a FII can produce better clinical outcomes than carbohydrate counting or the use of the GI 

and GL. It is possible that foods and diets with a lower physiological insulin demand may 

improve glucose and lipid metabolism in overweight individuals and those with type 2 

diabetes, and thereby reduce the risk of complications. For example, Iozzo et al.14 showed that 

even a small increase in hyperinsulinaemia in healthy individuals reduced insulin sensitivity, 

and therefore fostered a vicious cycle of worsening insulin resistance and β-cell dysfunction.  

Although the FII values are determined by tests in healthy subjects, this study shows the FII is 

relevant for improving insulinaemic control in people with type 2 diabetes. Due to insulin 

resistance, the insulin response to protein is ~4-fold greater in people with diabetes than that 

of healthy subjects15. Furthermore, ingestion of glucose and protein in healthy subjects has 

merely an additive effect on insulin secretion, whereas in type 2 diabetes, the serum response 

is greater than the sum of the individual responses to protein or glucose, indicating there is a 

synergistic effect on insulin secretion in people with type 2 diabetes16.  Despite these 

metabolic differences between healthy and type 2 diabetic subjects, the relative difference in 

insulin demand between foods remains comparable and thus the FII is still applicable to this 

population.   

This study has limitations that should be noted. It was conducted in overweight adults who 

did not require insulin to manage their diabetes.  Therefore, the utility of this dietary strategy 

will still need to be explored in adults with little residual pancreatic β-cell function. Further 

research is also warranted to determine if low FII diets can produce clinically meaningful 

improvements in metabolic control in free-living adults over a longer period of time. The 

strength of a FII is that it represents a more holistic and practical approach that focuses on 

whole foods, rather than specific macronutrients within foods. However, it is critical that 
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further testing of the FII of single foods is continued in order to translate this information into 

practical food choices. It will always be important to consider not just the overall insulin 

demand of the diet but also the quantity of food consumed, since even a large portion of a low 

FII food would produce a significant insulin response.   

In summary, a low FII diet produced a significantly lower day-long insulin response 

compared to a high FII diet, even when matched for macronutrients, fibre and GI.  The FII 

algorithm may therefore be a useful dietary strategy for reducing postprandial 

hyperinsulinaemia in type 2 diabetes, thereby potentially reducing insulin resistance and 

preserving β-cell function. 
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7.1 Summary of major findings 

The achievement of optimal glycaemic control is central to the management of diabetes, yet 

remains difficult to achieve in day-to-day practice. Given the risk of life-threatening acute and 

chronic diabetic complications resulting from inadequate glycaemic control, improving the 

insulin dose algorithm presents a significant clinical issue. This body of research deepens our 

knowledge of the relationship between foods and normal physiological insulin demand and 

explores the clinical application of a novel ‘insulin index’ of foods to diabetes management. 

The first chapter of this thesis distilled the current literature on insulin secretion in response to 

foods and nutrients in healthy individuals, and the role of diet in the management of diabetes.  

The concept of a food insulin index (FII) was described in detail, together with its early 

applications in nutritional epidemiology and type 1 diabetes. At the time of commencement of 

this candidature, 121 single foods had been tested for their FII1 and two acute mixed meal 

studies, one in healthy subjects2 and one in type 1 diabetes3, had been undertaken.  The 

challenge was to take the next steps necessary to investigate if the FII was a worthy alternate 

strategy for estimating insulin dose in the routine management of diabetes.  

The broad aims of this research were therefore to apply the FII to adults with diabetes 

mellitus in a clinical setting and determine the effect of the novel algorithm on acute and 

chronic glycaemic control compared to carbohydrate counting.!!We hypothesised that the FII 

would improve blood glucose control beyond that of carbohydrate counting, without 

increasing the risk of hypoglycaemia.!

The objective of the second chapter of this thesis was to critically explore the scientific 

evidence for and against carbohydrate counting in order to determine the scientific basis of 

current clinical practice and provide a benchmark for alternative strategies for mealtime 
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insulin dosing.  We therefore conducted a systematic review and meta-analysis of RCTs of 

carbohydrate counting in type 1 diabetes according to the PRISMA guidelines.   The 

PRISMA guidelines are based around an evidence-based, 27-item checklist for reporting 

systematic reviews and meta-analyses to ensure complete and transparent reporting.  

Surprisingly, we found that current international clinical guidelines for dietary management 

of type 1 diabetes are based on simple narrative reviews and grading of the available 

evidence. Only 7 quality RCT could be identified (average quality score 7.6/13), highlighting 

how little high level evidence exists.  This suggests that carbohydrate counting had been 

integrated into clinical practice long before there was sufficient evidence to support it.  The 

existing studies indicate that carbohydrate counting is not consistently associated with an 

improvement in glycaemic control, with some studies supporting carbohydrate counting while 

others suggested less quantitative methods were superior or equally effective. Meta-analyses 

showed that overall there was no clinically or statistically significant improvement in glycated 

haemoglobin with carbohydrate counting (-0.35%, p = 0.01).  The systematic review 

demonstrated the clinical and practical shortcomings of current therapy and highlighted the 

need for further research into alternative methods of matching mealtime insulin doses to food 

intake.  

Chapter 3 presented the results of testing 26 new foods for their FII value in healthy subjects 

and exploratory analysis of the complete database with a total 147 foods.  The larger FII 

database revealed wide variations in the observed insulin responses both within and between 

food groups.  Correlations between the FII and different nutrients indicated that postprandial 

insulinaemia is not the response to a single nutrient (carbohydrate) but rather the sum total 

effect of metabolic interactions among different nutrients within foods.  Although a predictive 

equation based on knowledge of the GL and protein content could be generated, this 
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explained only 57% of observed insulin responses in healthy individuals. Because the FII 

cannot be generated with sufficient precision from the known nutrient content of the food, the 

conclusion is that the FII of a unknown food is best determined through in vivo testing as it 

cannot be accurately calculated based on the known nutrient content of the food.  

In 2011, Bao and colleagues demonstrated that the FII algorithm was superior to carbohydrate 

counting for estimating the most appropriate insulin dose for two different breakfast meals3.  

Under carbohydrate counting, insulin would normally be matched to the carbohydrate content 

of the meal, disregarding the protein and fat content.  The FII, however, reveals a significant 

insulin demand for foods high in protein but containing little to no carbohydrate.  As insulin 

would not typically be administered for protein foods due to fear it would lead to severe 

hypoglycaemia, it was crucial to determine the safety and efficacy of  using the FII to 

estimate the prandial insulin dose when protein foods were consumed in isolation (a ‘worst 

case scenario’).   

Hence, in the next stage of this research, we specifically chose protein-containing foods 

where apparent insulin demand was at least 2-fold higher according to the FII as compared to 

carbohydrate counting. Indeed, two of the test foods (steak and eggs) contained no 

carbohydrate. It was therefore conceivable that using the FII to estimate insulin dose might 

result in hypoglycaemia.  However, compared with carbohydrate counting, the FII algorithm 

was able to reduce mean blood glucose levels, without significantly increasing the risk of 

hypoglycaemia vis a vis carbohydrate counting. Because the rate of hypoglycaemia was 

unusually high in both conditions, further research is warranted.   

The protein study described above was also the first to explore the concept of ‘food insulin 

demand’ as defined by FID = FII x kJ per serving/1000, a formula for translating the relative 

FII values into units proportional to the food portion size.  The FID allows a mealtime insulin 
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dose to be calculated based on the FII of the food (or foods) to be consumed and the energy 

content per serving. This concept has important clinical implications, as it offers a practical 

approach to implementing the FII.  The FII itself has been challenged for being ‘good in 

theory’ but not feasible in practice as it would be too difficult to use in everyday life.  The 

FID, however, translates the FII into a set of numbers that can be taught to patients in exactly 

the same way as carbohydrate counting.  

Once the safety and efficacy of the FII had been trialled in the research setting, the efficacy of 

the FII needed to be demonstrated in the normal clinical setting.  The research thus far had 

focused on the acute postprandial glycaemic response and it was not known if the use of the 

FII would translate into clinically meaningful reductions in long-term glycaemic control.  

Therefore, the fourth study in this thesis was a 12-week RCT comparing the FII with 

carbohydrate counting for estimating insulin dosage on postprandial glycaemia and HbA1c in 

adults with type 1 diabetes.  As a pilot study, it was the first attempt to teach participants how 

to use the FII and represented the translation of findings from the research environment to the 

real-world setting.  It was not known if the use of the FII in practice would translate into 

clinically meaningful reductions in long-term glycaemic control. This study utilised the FID 

algorithm developed in the previous study, with participants counting FID units and 

calculating their prandial insulin doses using an individualised insulin: FID ratio.  

After 12 weeks, changes in HbA1c were similar in both groups but the FID counters showed a 

trend to reduced risk of hypoglycaemia (-43% compared with baseline), inferring a trend 

towards improved glycaemic stability. As a pilot study, the results indicated that FID counting 

was at least as good as carbohydrate counting for maintaining glycaemic control, and 

therefore deserving of further research.  
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The potential of the FII to improve glycaemic control is not limited to type 1 diabetes.  Type 2 

diabetes is a metabolic disorder also characterised by chronic hyperglycaemia and similar 

long term complications. The pathogenesis differs because worsening insulin resistance and a 

relative insulin deficiency due to β-cell failure are the hallmarks of type 2 diabetes.  In turn, 

chronic hyperinsulinaemia may exacerbate insulin resistance and β-cell failure.  Dietary 

patterns characterised by high insulin demand are pertinent to the dramatic rise in type 2 

diabetes over recent decades.  Compared with traditional diets, modern carbohydrate foods, 

including potatoes, bread and rice are rapidly digested and absorbed, thereby increasing 

dietary glycaemic load, and the potential for disproportionate insulin secretion and insulin 

resistance.  Therefore dietary strategies that reduce insulin demand, may help to improve 

metabolic risk and minimise the rate of diabetes complications.  Because the FII ranks foods 

by relative insulin demand per unit of energy, it offers an alternate dietary approach to 

reducing postprandial hyperinsulinaemia. For this reason, the 5th and final study in this thesis 

was designed to explore the potential of the FII in type 2 diabetes by comparing the day-long 

plasma glucose and insulin responses of 10 adults with type 2 diabetes on a low-FII vs. a 

high-FII diet.  As hypothesised, the low FII diet produced a significantly lower day-long 

insulin response compared to a high FII diet, even though they were matched for all 

macronutrients, fibre and GI.  These findings suggest that the FII may be applicable to type 2 

diabetes, even in those with severely compromised insulin secretion.  Hence, FII represents a 

promising dietary strategy for reducing postprandial hyperinsulinaemia, thereby reducing 

insulin resistance and preserving β-cell function. 

Collectively, these studies offer new insights into the relationship between food and normal 

physiological insulin secretion and the potential of the FII for optimising glycaemic control 

and managing both type 1 and type 2 diabetes.   
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7.2 Practical implications & directions for future research 

The results of this thesis add to the growing body of evidence that supports the use of the FII 

in the clinical and dietary management of diabetes.  Nonetheless, the concept is still in its 

infancy and requires further research before it could be integrated into clinical practice. 

Testing more foods and beverages for their FII value is critical to the application of the FII 

concept.  Expanding the current database will allow detailed exploration of the relationship 

between nutritional and metabolic factors and normal insulin demand.  This will improve our 

ability to predict the insulinaemic responses to foods and can help guide nutrition 

recommendations.  Furthermore, the FII is determined by the 120 min iAUC, as per the GI 

testing ISO, however potentially longer test sessions may be relevant for the FII, particularly 

for foods high in protein and fat.  Therefore further studies with longer test sessions (3-5 h) 

are warranted to compare the iAUC.   

The FII is determined in single foods, but in practice, foods are commonly consumed as part 

of a mixed meal.  Chapter 3 explored the hypothesis that the observed insulin response cannot 

be predicted by the nutrient content of the food alone, potentially due to the metabolic and 

nutritional interactions between and within foods.  Since only 50-60% of the variability could 

be explained by known factors, it could be argued that the FII is not relevant to mixed meals 

or chronic feeding because the interactions between combinations of different single foods are 

unknown.  However, in vivo testing of the FII of 13 mixed meals showed the observed insulin 

response correlated strongly with calculated insulin demand predicted by the FII of the 

component foods (r = 0.78, p = 0.0016)4.  Hence, the FII (and derived FID) appear to be 

relevant to estimating insulin demand and therefore insulin dose for mixed meals as well as 

single foods.   
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Furthermore, expanding the database is critical for the clinical implementation of the FII in 

order that the results can be translated into practical food choices.  Some subjects in the 

FOODII Study (Chapter 5) commented that the limited number of foods with a tested FII 

value made some meal estimations difficult. This is an inherent limitation of FID counting as 

the FII of each food is determined from the postprandial insulin responses of lean, healthy 

adults and cannot be calculated from the macronutrient composition. Therefore, expansion of 

the FII database needs to continue before FID counting could become widely implemented. 

Once the FII database is enlarged, the stage is also set for undertaking a larger, longer, 

adequately powered RCT of FII in type 1 diabetes.  In retrospect, the pilot study (Chapter 5) 

should have been powered to detect differences in hypoglycaemic events because there was 

the potential to find more (rather than fewer) events in the FII arm. A 12-month trial of the FII 

in practice should therefore be conducted to confirm the trend for reduced time in the 

hypoglycaemic range.  Furthermore, the research focus should be expanded to include those 

with type 1 diabetes using multiple daily insulin injections rather than an insulin pump as well 

as to children and adolescents with type 1 diabetes. 

Despite the potential for improvements in glycaemic control, the FII algorithm has been 

criticised as too difficult and complex to be integrated into routine clinical practice in type 1 

diabetes.  However, our experience during the pilot study revealed this was not the reality 

(Chapter 5).  All participants using FID counting appeared to adapt to the new system quickly 

and at the conclusion of the trial rated the method as “easy to use”, with just under half of 

subjects opting to continue with the system over carbohydrate counting if the option had been 

provided.  However, changes in HbA1c may have been tempered in the FID counters as they 

were required to learn a novel dosing strategy and become proficient with a new method of 

counting in a short timeframe, while the carbohydrate counters simply revised their 
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knowledge and skills.  In future studies, this  adjustment period should be accommodated as a 

1-2 month ‘run in’ period, followed by at least 3 months of routine use so that any changes in 

HbA1c can be detected.    

Participants were offered a variety of teaching environments and resources which may have 

assisted with the adoption of the new algorithm, including both group and individual sessions 

with the dietitian as well as written and pictorial printed resources, a website and an iPhone 

app (see sample resources at the end of Chapter 5).  FID counting is essentially no more 

difficult than carbohydrate counting in practice, with both systems relying on counting units 

(either carbohydrate or FID) in foods consumed and converting this to an insulin dose using a 

ratio.  The drawback, of course, is that additional foods need to be considered when FID 

counting, and currently FID units are not printed on food packaging as is carbohydrate.  The 

issue of food labelling can be overcome, to some degree, with the use of a phone app which 

has the FII of foods stored in a database and automatically calculates the FID for the selected 

food and portion size (based on energy density, which is available on food packaging and 

could be considered more accurate due to issues with accurately measuring available 

carbohydrate).   

Additionally, the IFR of each participant was not titrated to their individual needs (it was 

simply calculated from their current ICR), and this may have attenuated any potential benefit 

of the FII.  To overcome this issue, future studies could target newly diagnosed subjects with 

type 1 diabetes who have no prior knowledge of carbohydrate counting. A longer trial 

duration with frequent contact with health professionals, especially initially to assist with the 

mastery of the food counting system and the titration of the mealtime insulin ratio is 

recommended.  These considerations will also be important for the implementation of the FID 

counting, or any other new system of estimating insulin doses, in clinical practice. 
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Although there was a trend toward increased risk of hypoglycaemia with the FII compared to 

carbohydrate counting in Chapter 4, the opposite trend was seen in Chapter 5, with a 43% 

reduction in the risk of hypoglycaemia over the 12-week trial duration.  An early study of the 

FII also revealed improvements in postprandial glycaemic control after mixed breakfast meals 

with no increased risk of hypoglycaemia3.  Given the risks of unstable glycaemia in 

contributing to oxidative stress and diabetes complications5, 6, these trends warrant further 

research to clarify the full picture in order to identify the possibilities for the FII to improve 

glycaemic control and the opportunities to further improve the algorithm.  To do so, studies 

are needed that are specifically designed and powered to detect the risk of hypoglycaemia in 

type 1 diabetes, including both acute and chronic feeding studies. Higher baseline fasting 

blood glucose levels and day-long testing sessions are needed to glean more information 

about the risk of hypoglycaemia.   

It is also possible that the observed trend towards hypoglycaemia seen in Chapter 4 may be 

related to the types of foods and insulin bolus delivery pattern used in the study design.  The 

normal wave bolus used for all test sessions may not closely follow the normal postprandial 

physiological insulin profile for high protein and/or fat foods. The standard (or ‘normal-wave) 

insulin delivery system has been developed to deal with high carbohydrate meals, with the 

insulin dose delivered rapidly resulting in increased risk of hypoglycaemia if the meal is 

lower in carbohydrate than expected.  Previous research has highlighted the benefit of dual-

wave or square insulin bolus delivery patterns in the case of higher fat, higher protein and 

lower GI meals. In this instance, only a proportion of the total insulin dose is delivered 

immediately (often 50-70%) and the remainder delivered slowly over an extended period of 

time7-10.   Thus, further research should test the hypothesis that the optimal bolus insulin 

pattern for glycaemic control for foods of varying FII may be either square or dual-wave.  
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The FII concept also showed promise for reducing postprandial hyperinsulinaemia in the 

management of type 2 diabetes (Chapter 6).  This study was conducted in overweight adults 

who did not require insulin to manage their diabetes. Thus the utility of this dietary strategy 

should be further explored in type 2 adults with little residual pancreatic β-cell function.  

Indeed, further research is also warranted to determine if a low FII diet can produce clinically 

meaningful improvements in metabolic control in free-living type 2 individuals over a longer 

period of time. 

The FII has the potential to change the nutritional management paradigm in both type 1 and 

type 2 diabetes.  Current dietary management focuses heavily on carbohydrate intake for 

managing postprandial blood glucose levels, yet meta-analysis has shown this may not be an 

effective strategy and there is evidence it can foster unhealthy eating patterns and food 

beliefs.  Carbohydrate counting has been linked with unhealthy food beliefs, an increased 

reliance on packaged foods (as carbohydrate content is listed) and high intakes of fats and 

protein exceeding nutritional recommendations.  Studies have shown that children and 

adolescents with type 1 diabetes are at greater risk of atherosclerosis, dyslipidaemia and 

CVD, possibly due to an avoidance of carbohydrate and insulin, and higher intake of 

saturated fat.  Alternatively, the FII represents a more holistic and practical approach to 

diabetes management that focuses on whole foods, rather than specific macronutrients within 

foods.  Unlike carbohydrate, the FID values are not available on packaged foods and therefore 

the FII could reduce the reliance on packaged foods reported with carbohydrate counting.  

Nonetheless, it will always be important to consider not just the overall insulin demand of the 

meal or overall diet but also the balance, quality and quantity of food consumed to achieve an 

enjoyable, healthy and nutritious diet. 
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7.3 Conclusion 

The achievement of optimal glycaemic control is critical to the management of diabetes in 

order to minimise the risk of acute and chronic complications.  Yet, in practice, it remains 

difficult to achieve.  Even patients within target HbA1c levels continue to experience 

unanticipated hyper- and hypoglycaemia, particularly in response to meals high in protein 

and/or fat11-14.  The studies presented in this thesis build the evidence base for the FII as a 

promising tool for optimising glycaemic control in individuals with diabetes.  Until a cure for 

diabetes can be found, any clinically significant advance in glucose control and reduced 

glycaemic variability offer people with diabetes greater wellbeing through a reduced burden 

of disease and decreased risk of long-term diabetes-related complications.  
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