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Summary 

Puerariae Lobatae Radix (PLR), the root of Pueraria lobata (Willd.) Ohwi, is a 

traditional Chinese medicine (TCM) used for the treatment of diabetes and 

cardiovascular diseases. Puerariae Thomsonii Radix (PTR), the root of P. 

thomsonii Benth., is a closely related species of PLR. In clinical practice, PLR and 

PTR are used interchangeably. The confusing nomenclature and identical 

descriptions of PLR and PTR in the pharmacopoeias and monographs has made it 

difficult to differentiate the species. Therefore, the aim of the study was to 

differentiate PLR from PTR using qualitative and quantitative methods and various 

analytical instruments in coupled with chemometrics analysis. The microscopic 

features of these two herbs were statistically analysed and confirmed using 

colorimetric assays which quantified the amount of starch and dietary fibre present 

(Chapter 2). PLR was found to have larger fibre bundles (PLR: 32.6800 ± 2.8780; 

PTR: 16.5900 ± 0.9982; p<0.01) and xylem vessels (PLR: 0.1390 ± 0.0184 mm; 

PTR: 0.0471 ± 0.0109 mm; p<0.01), and less total starch content (p<0.001) and 

total dietary fibre content (PLR: 4.2886 ± 0.3466 g/100 g DM; PTR: 12.4148 ± 

0.4541 g/100 g DM; p<0.001) as compared to PTR. It was found that the diameter 

of starch granules was insignificant between these two species (p>0.05) and 

should not be recommended as a criterion for differentiating PLR from PTR. 

 

Isoflavonoids in PLR and PTR are believed to be associated with their chemical 

activities. However, no correlation has been made between the amount of 

chemicals present in PLR and PTR and their respective antioxidant capacity. 

Since extracts are used in clinical practice, the major chemical constituents were 



 

 XXX 

quantified and identified using ultra-performance liquid chromatography (UPLC)-

mass spectrometry (Chapter 3). The amount of puerarin, daidzin and genistein in 

PLR was 11.95, 8.64 and 1.38 times, respectively, greater than those in PTR. 

Genistin was found in PLR and was absent in PTR. In addition, the colorimetric 

assays revealed that the total flavonoid content (TFC) and DPPH antioxidant 

capacity of PLR was 4.42 times and 4.91 times, respectively, greater than PTR. 

The high correlation between TFC and DPPH activity suggested that the 

antioxidant capacity of PLR and PTR is influenced by the amount and type of 

chemicals (such as puerarin) present in the plant. 

 

Puerarin is the major chemical consistent and is recommended as the chemical 

marker for the authentication of PLR and PTR. However, the use of a single 

chemical marker does not completely reflect the complexity of a herb. To examine 

this issue, partial least squares-discriminant analysis (PLS-DA) models based on 

the entire UPLC chromatographic fingerprint were constructed and compared to 

puerarin alone (Chapter 4). The results revealed that the PLS-DA model using the 

entire chromatographic fingerprint achieved a 100% correct species classification 

rate in the validation set, whereas a 86.6% correct species classification rate was 

achieved using puerarin, suggesting that the use of puerarin alone was not 

sufficient to differentiate PLR from PTR. The established PLS-DA model using the 

entire fingerprint was subsequently applied to analyse the raw material used in 

manufacturing PLR granules. It was found that 4 out of the 17 brands of granules 

used PTR as the raw material, but labeled as PLR. 

 



 

 XXXI 

To investigate a simpler technique of acquiring reliable chromatographic 

fingerprints of PLR and PTR, high performance thin-layer chromatography 

(HPTLC) was compared to UPLC (Chapter 5). The results demonstrated that 

HPTLC classification models, including K-nearest neighbors, PLS-DA, principal 

component analysis-discriminant analysis, support vector machine-discriminant 

analysis, were as effective as the UPLC models in differentiating PLR from PTR, 

and achieved a 100% correct species classification rate with zero error rate.  

 

As an alternative to chromatographic analyses, Raman spectroscopic fingerprints 

of PLR and PTR were correlated to the total phenolic content, ABTS antioxidant 

capacity and cupric reducing antioxidant capacity using partial least squares (PLS) 

regression algorithm (Chapter 6). The high correlation coefficient and ratio of 

performance to deviation values indicated that the PLS regression models were 

accurate and robust in predicting the TPC and antioxidant capacities in both PLR 

and PTR.  

 

The existing literature has outlined biological activities of PLR including anti-

diabetic, anti-hypertensive and anti-inflammatory effects. However, it has not been 

shown whether the chemical differences between these two species could impact 

on their respective pharmacological actions. Thus, enzymatic diabetic assays and 

in vitro endothelial and cancer cellular models were employed to investigate the 

pharmacological differences between PLR and PTR (Chapter 7). The results 

revealed that PLR had a superior inhibitory effect on the activity of α-amylase and 

α-glucosidase, cyto-protective effect against hydrogen peroxide-induced cell death 



 

 XXXII 

on human endothelial EA.hy926 cells and cytotoxic effect on human prostate 

cancer PC3 cells as compared to PTR. 

 

In summary, this thesis revealed that PLR is morphologically, chemically and 

pharmacologically different to PTR and the pharmacopoeias should be reviewed to 

reflect this. The use of PLR and PTR interchangeably in clinical practice should be 

reviewed. UPLC and simple analytical instruments such as HPTLC and Raman 

spectroscopy presenting the whole chemical profile combined with chemometrics 

can effectively differentiate PLR from PTR. It is anticipated that this thesis will 

provide further insight into the comprehensive nature of the quality control of 

herbal medicines, particularly the application of chemometrics to discriminate large 

sample sizes and reduce analysis time. The methods outlined in this thesis can be 

readily adopted by the pharmaceutical and herbal industry for discerning herbal 

materials. This will ultimately improve the quality, safety and efficacy of herbal 

products for consumers. 
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1.1 Puerariae Lobatae Radix and Pueraria Thomsonii Radix 

1.1.1 Traditional Chinese medicine 

Traditional Chinese medicine (TCM) is an integral part of Chinese culture, with the 

fundamental concept based on the Five Elements theory (Fire, Earth, Metal, Water 

and Wood) and the principle of Yin and Yang. Ancient Chinese believed that all 

natural phenomena could be divided into Yin and Yang, which are the two 

opposite, complementary and exchangeable aspects of nature. Everything in the 

universe comprises of the Five Elements, and the universe is constantly changing 

towards a dynamic balance or harmony (Jiuzhang and Lei, 2010; Zhu and Wang, 

2011).  

 

In TCM, an individual is considered ‘healthy’ when all the Five Elements and Yin 

and Yang are in balance (Cheng, 2000; Lu et al., 2004). Balance is considered to 

be the complex interplay between body, mind and the environment, while disease 

is a consequence of imbalances in Yin and Yang or flow of blood and Qi, which is 

caused by a variety of external or internal factors (Wang and Zhu, 2011). Each 

disease may have a set of identical symptoms among different patients, but the 

cause of imbalance of the same disease can be quite different. TCM approach 

recognises the uniqueness of each individual and the necessity to develop a 

personalised therapy to obtain an optimal homeostasis between human and 

nature, based on a multi-component and multi-targeted treatment (Chan, 1995; 

Chan, 2005; Jiang, 2005). 

 

TCM treatments aim to expel or suppress the disturbance and restore the balance 

and harmony in the body. Herbal medicine is one of the most common techniques 
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used in clinical practice. (Jiuzhang and Lei, 2010; Liao, 2011; Zhu and Wang, 

2011). The dosage forms used in Chinese herbal medicine comprise of 

decoctions, granules, pills, powder, tinctures, lotions and pastes. The most 

common one is the use of decoction, which is made by extracting the herbs in 

boiling water (Jiuzhang and Lei, 2010). According to TCM theory, a herb is rarely 

used alone and is normally combined with other herbs and presented as a 

formula, which comprises of 2 to 30 herbs (Liao, 2011; Zhu and Wang, 2011).  

 

The holistic approach of TCM can also be applied to explaining the 

pharmacological effect of a single herb, as it is believed that the therapeutic effect 

is due to the presence of all the chemical constituents within a herb which might 

act synergistically, addictively or antagonistically (Chan, 1995; Wang et al., 2009). 

 

1.1.2 Puerariae Radix 

Puerariae Radix is a Chinese herbal medicine and has been used for treating 

diabetes and cardiovascular diseases. It is native to East Asia and has been 

utilised as a food source, fodder and medicine for thousands of years. Puerariae 

Radix is widely distributed around the world and is also known as kudzuvine, 

kudsu, wa yaka, aka, nepalem, Japanese arrowroot, kuzu (Japanese), kudzu 

comun (Spanish), vigne japonaise (French) and kopoubohne (German) (EPPO, 

2007). Puerariae Radix powder and extract are sold in the United States of 

America (U.S.A.), United Kingdom and Australia as a supplement. Puerariae 

Radix is often used in combination with other herbs (e.g. Salvia miltiorrhiza, 

Bacopa monnieri, Ginkgo biloba, Silybum marianum and Salix alba) for relieving 

hangover, fever and flu, improving liver function, enhancing the detoxification 
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processes, regulating cardiac functions and aiding weight loss (Amazon, 2011; 

Healthstore, 2011; TGA, 2011).  

 

1.1.2.1 Botanical descriptions of Puerariae Radix 

Puerariae Radix refers to the root of Pueraria lobata (Willd.) Ohwi and P. 

thomsonii Benth.. These plants are climbing, semi-woody and perennial vines, with 

hairy rusty-brown stems. They form large fleshy root tubers up to 2 m long, 18 – 

45 cm in diameter and can reach a depth of 1 – 5 m (EPPO, 2007). Leaves are 

arranged alternately along the stem with three leaflets (Banks, 2008). Flowers are 

pea-like, pink to purple with yellow in the centers. They are highly fragrant with 

sweet grape-like scent and are borne in long hanging panicles at nodes on the 

stems. Fruits are brown, flattened, hairy seedpods containing 3 – 10 reddish 

brown, ovoid to ellipsoid, slightly flattened seeds (Csurhes, 2008).  

 

Figure 1.1 Whole plant of Pueraria lobata (Willd.) Ohwi (Chang and Ho, 2009). 
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1.1.2.2 Taxonomy and nomenclature of Puerariae Radix 

Pueraria species belongs to the Fabaceae family, Papilionoideae subfamily, 

Phaseoleae tribe, Glycininae subtribe and Pueraria genus. Seventeen recognised 

species were described by Van der Maesen under the Pueraria genus, however, 

the taxonomy of plants in this genus is unclear, with multiple synonyms and 

multiple varieties within the species (Van der Maesen, 1985). Three varieties have 

been illustrated within Pueraria montana, including P. montana var. lobata (Willd.) 

Maesen & SM Almeida, P. montana var. montana (Loureiro) Maesen, and P. 

montana var. chinensis (Bentham) Maesen & SM Almeida (equivalent to P. 

thomsonii Benth.) (EPPO, 2007). It is suggested that the morphological 

characteristics of these three varieties are highly variable.  

 

However, it has been considered that these three varieties suggested by Van der 

Maesen are actually comprised of two or three species (Ohashi et al., 1988; Van 

der Maesen, 1985, 2002). Pueraria montana var. lobata (Willd.) Maesen & SM 

Almeida is the official name employed by the International Union for Conservation 

of Nature and Department of Agriculture in the U.S.A., yet Pueraria lobata (Willd.) 

Ohwi currently remains a legitimate name and is used in various pharmacopoeias, 

monographs and publications (Csurhes, 2008; IUCN, 2005). Recent DNA 

sequencing analyses revealed that most of the Pueraria species grown in the 

U.S.A. are P. lobata (Willd.) Ohwi and are genetically close to the P. lobata (Willd.) 

Ohwi from China. However, high genetic differentiation was observed among P. 

lobata (Willd.) Ohwi, P. thomsonii Benth. and P. montana, suggesting that these 

plants are three distinctive species within the Pueraria genus (Jewett et al., 2003; 

Sun et al., 2005; Sun et al., 2006). The Pueraria species grown in Australia and 
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Europe are reported to be P. lobata (Willd.) Ohwi by various authorities and 

organisations (Banks, 2008; Csurhes, 2008; EPPO, 2007).  

 

The Pharmacopoeia of the People’s Republic of China (PPRC) is the official 

pharmacopoeia used in China for the authentication of herbal medicines and 

pharmaceutical products. “Radix Puerariae” is the original pharmaceutical Latin 

name used to collectively describe the roots of P. lobata (Willd.) Ohwi and P. 

thomsonii Benth (Table 1.1). “Radix Puerariae” was the name used to describe 

both species in the first edition (1965) of the PPRC until the seventh edition at 

2000. From the eighth edition (2005), the Pharmacopoeia’s Commission decided 

to separate “Radix Puerariae” into two monographs namely, Radix Puerariae 

Lobatae and Radix Puerariae Thomsonii (PPRC, 1997, 2000, 2005). In the latest 

edition of the PPRC (2010), the Commission rearranged the order of the 

pharmaceutical Latin name, and the plants are now named Puerariae Lobatae 

Radix and Puerariae Thomsonii Radix (PPRC, 2010a, b). The first part of the 

pharmaceutical Latin name (Puerariae) refers to the genus of the herb, whereas 

the last part (Radix) refers to the part of the herb used. If there are more than one 

species used as a herbal medicine, the species name is included (Lobatae or 

Thomsonii).  

 

In addition to its PPRC description, Puerariae Radix is included in various herbal 

pharmacopoeias around the world. Table 1.2 illustrates the nomenclature of 

Puerariae Radix in the latest edition of the European Pharmacopoeia (EP), British 

Pharmacopoeia (BP), Hong Kong Chinese Materia Medica Standards (HKCMMS) 

monograph and Japanese Pharmacopoeia (JP). For the BP, EP and HKCMMS 
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two distinct monographs describe the roots of P. lobata (Willd.) Ohwi and P. 

thomsonii Benth. However, only the root of P. lobata (Willd.) Ohwi is listed as a 

monograph in the JP. 

 

Thus, in this thesis, Puerariae Radix refers to the two species that are normally 

used in TCM practice, Puerariae Lobatae Radix and Puerariae Thomsonii Radix. 

Puerariae Lobatae Radix represents the root of P. lobata (Willd.) Ohwi, which is 

equivalent to P. montana var. lobata (Willd.) Maesen & SM Almeida, whilst 

Puerariae Thomsonii Radix represents the root of P. thomsonii Benth., which is 

equivalent to P. montana var. chinensis (Bentham) Maesen & SM Almeida. 
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Table 1.1 Summary of the nomenclature of Puerariae Radix in various editions of the PPRC (PPRC, 1997, 2000, 2005, 

2010a, b). 

 Prior to 2005    2005   PPRC 2010  

Pharmaceutical 
Latin name 

“Radix Puerariae”  Radix Puerariae 
Lobatae  

Radix Pueraria 
Thomsonii  

 Puerariae Lobatae 
Radix  

Pueraria 
Thomsonii Radix 

Species Dried root of P. lobata 
(Willd.) Ohwi or P. 
thomsonii Benth.  

 Dried root of P. 
lobata (Willd.) Ohwi 

Dried root of P. 
thomsonii Benth.  

 Dried root of P. 
lobata (Willd.) Ohwi 

Dried root of P. 
thomsonii Benth.  

Common name P. lobata: Gegen or 
Kudzuvine Root 
P. thomsonii: Starchy 
Puerariae Radix 

 Gegen or Yege Fenge or Thomson 
Kudzuvine Root 

 Gegen or Yege Fenge or 
Thomson 
Kudzuvine Root 

 

Table 1.2 Summary of the nomenclature of Puerariae Radix in various pharmacopoeias (BP, 2014a, b; EP, 2012a, b; 

HKCMMS, 2010a, b; JP, 2011). 

 EP/BP   HKCMMS   JP 

Pharmaceutical 
Latin name 

Puerariae Lobatae 
Radix 

Puerariae 
Thomsonii Radix 

 Radix Puerariae 
Lobatae 

Radix Puerariae 
Thomsonii  

 Puerariae Radix 

Species Dried root of P. 
lobata (Willd.) Ohwi 

Dried root of P. 
thomsonii Benth. 

 Dried root of P. 
lobata (Willd.) Ohwi 

Dried root of P. 
thomsonii Benth.  

 Dried root of P. lobata 
(Willd.) Ohwi 

Common name Kudzuvine Root Thomson 
Kudzuvine Root 

 Gegen Fenge  Pueraria root 
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1.1.3 History, traditional and current uses of Puerariae Radix 

1.1.3.1 Puerariae Lobatae Radix (PLR) 

Puerariae Lobatae Radix (PLR) is one of the earliest medicinal herbs employed in 

ancient China (Prasain et al., 2003). It is also known as Gegen (葛根), Yege (野葛) 

or kudzuvine root. The oldest Chinese written reference of the use of PLR is 

described in the Classic of Poetry (Shih Ching) dated between 1000 BC and 500 

BC. PLR was first documented as a medicinal herb in the Divine Husbandman’s 

Classic of Chinese Materia Medica (Shen Nong Ben Cao Jing) during the Western 

Han Dynasty (206 BC – 8 AD) for the relief of fever, diarrhoea and vomiting (Yan 

et al., 2004). The herb is mentioned in the classic medical book Treatise on Fevers 

(Shang Han Lun) in 200 AD, which described the use of Gegen Tang, a decoction 

prepared from PLR, for the treatment of neck stiffness, lack of perspiration and 

aversion to air drafts (Fang, 1980). In 600 AD, it was used as an anti-intoxication 

agent to treat alcohol-related problems, and was recommended as an anti-

dipostropic agent by Li Shi-Zhen in 1200 AD (Keung and Vallee, 1998). In TCM 

practice, the herb is described as cool in nature, sweet and acrid in taste and used 

to promote Spleen Yang to arrest diarrhoea and encourage the production of body 

fluid.  

 

During the Jomon period (10, 000 BC – 400 BC), P. lobata (Willd.) Ohwi. was 

introduced into Japan from China and was used for fences, baskets, trunks, fishing 

nets and clothes. PLR was also included in the Japanese Pharmacopoeia for the 

treatment of various ailments and disorders during the Edo period (1600 AD – 

1867 AD) (Bodner and Hymowitz, 2002). P. lobata (Willd.) Ohwi. was first 

introduced into the U.S.A. in 1876 as a garden ornamental plant (Everst et al., 
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1991; Pieters, 1932; Stevens, 1976). However, P. lobata (Willd.) Ohwi. soon 

became a problem as it invaded and replaced native vegetation and road, natural 

and industrial forest sites (Csurhes, 2008; Tabor and Susoot, 1941). It has been 

listed as one of the 100 world’s worst invasive species and has been naturalised in 

the U.S.A., South America, South Africa, Australia and Europe (IUCN, 2005). It is 

now abundant in the southeastern states of the U.S.A. and is recognised as a 

noxious weed in five states, including Florida, Kansas, Oregon, Pennsylvania and 

West Virginia (Csurhes, 2008; Everst et al., 1991; US Congress, 1993). In 

Australia, P. lobata (Willd.) Ohwi. exists as small infestations scattered along the 

east coast of Queensland and north-east coast of New South Wales (Banks, 2008; 

Turnbull, 2004). Specific legislations were established to control the introduction, 

storage, supply and transportation of P. lobata (Willd.) Ohwi. in New South Wales 

and Queensland (DPI&F, 2008; NWO, 2008). 

 

1.1.3.2 Puerariae Thomsonii Radix (PTR) 

Puerariae Thomsonii Radix (PTR), also known as Fengen (粉葛) or thomson 

kudzuvine root, is a medicinal and edible plant used extensively in southern 

Chinese cuisines (Chen et al., 2006). P. thomsonii Benth. is widely distributed and 

cultivated in the northeastern and southeastern provinces of China. The first 

documentation of PTR cultivation dated back to the Jin Dynasty near the current 

Hengfeng County of the Jiangxi province. PTR is regarded as an imperial tribute to 

the Emperor since the Song Dynasty (Qu et al., 2011). Currently, the cultivation of 

PTR in three regions including the Hengfeng County in Jiangxi Province and 

Foshan and Shaoguan City in Guangdong Province of China is registered as a 

Geographical Indication and is protected by the Intellectual Property Law in China 
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(Qu et al., 2011). PTR is used for cooking soup (胡蘿蔔玉米粉葛) by mixing with 

corn, carrot and pork tenderloin and for cooking a dinner dish (粉葛燜五花肉) 

made by braising PTR with pork belly or chicken (Xinshipu, 2014). 

 

1.1.4 Clinical applications of PLR and PTR  

The most common dosage form is decoction pieces, while granules and tincture 

are less common. The PLR and PTR decoction pieces are often used in 

combination with other herbs as a formula in clinical practice. For example, Gegen 

Tang is a TCM formula consisting of seven herbs, including PLR, Cinnamomi 

Cortex, Zizyphi Fructus, Poeoniae Radix, Ephedrae Herba, Zingiberis Rhizoma 

and Glyrrhizae Radix for treating fever and the common cold. 

 

1.1.4.1 Cardiovascular diseases 

In a randomised control trial (RCT), the effect of Salviae Miltiorrhizae Radix and 

PLR extract on vascular function and structure was investigated (Tam et al., 

2009). One hundred patients (mean age 58 ± 8 years) with documented coronary 

artery disease were divided into treatment and placebo group. In the treatment 

group, six capsules, each containing 500 mg water extract of Salviae Miltiorrhizae 

Radix (350 mg) and PLR (150 mg), were given daily for 24 weeks. At the end of 

the period, there were a mild decrease in plasma low-density lipoprotein, 

improvement in brachial flow-mediated dilation and carotid intima-media thickness 

in the treatment group. The study was followed by an optional open-label trial for 

six months. Patients in the treatment group (n=45) received 1.5 g water extract of 

Salviae Miltiorrhizae Radix (1.05 g) and PLR (450 mg) daily. Further improvement 
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in both brachial flow-mediated dilation and carotid intima-media thickness were 

observed in the treatment group as compared to the placebo group (n=47) (Tam et 

al., 2009).  

 

The efficacy of PLR on the management of hypertension was evaluated among 69 

patients with Stage I/II hypertension. Patients were randomly divided into 

treatment and control group. In the treatment group (n=46), patients were given 

200 mL Gegen Qushi decoction, containing PLR, Codonopsis Radix, Atractylodes 

Radix, Wolfiporia Radix, Massa Medicata Fermentata, Amomi Fructus, Zingiberis 

Rhizoma, Aucklandiae Radix and Citri Reticulatae Pericarpium. The decoction was 

administrated for two times per day for four weeks. Patients in the control group 

(n=23) were treated with the compound anti-hypertensive tablet (0.1 mg reserpine, 

12.5 mg dihydralazine, 12.5 mg hydrochlorothiazide and 3 mg chlordiazepoxide) 

twice daily. The results revealed that the decoction significantly reduced serum 

total cholesterol and total triglyceride level and improved hypertensive symptoms 

such as chest tightness, fatigue, tiredness and drowsiness (Liu, 2004). Similar 

results were observed in another trial; the administration of Gegen Tianma 

Gouteng decoction twice daily for four weeks considerably improved general well-

being and relieved hypertensive symptoms (Yu, 2007).  

 

1.1.4.2 Cerebrovascular diseases 

A RCT was carried out among 108 patients after cerebral infarction. Both 

treatment (n=58, mean age 61.30 ± 7.53 years) and control (n=50, mean age 

60.93 ± 7.86 years) groups were treated with intravenous infusion of citicolin 500 

mg or troxerutin 250 mg daily for four weeks. Patients in the treatment group were 
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given a water extract dose of 100 mL Gegen Qinlian decoction (PLR, Scutellariae 

Radix, Coptidis Rhizoma, Glycyrrhizae Radix and Zingiberis Rhizoma) twice daily. 

At the end of the study, there was a significant reduction of the plasma fibrinogen 

and fibrin D-dimer levels and improvement of cognitive function as compared to 

baseline. The plasma fibrinogen level in the treatment group was noticeably lower 

than that in the control group (Xu and Wu, 2009).  

 

1.1.4.3 Type 2 diabetes mellitus 

In a RCT, the anti-diabetic effect of Gegen Qinlian decoction combined with insulin 

treatment on type 2 diabetic patients with dampness-heat syndrome was 

investigated. The treatment group (n=14) was given Gegen Qinlian decoction and 

insulin, whereas the conventional group was given insulin alone. It was found that 

the daily average insulin dosage used in the treatment group was significantly 

lower as compared to the conventional group (Zeng et al., 2006). In a 

retrospective study, the effect of Gegen Qinlian decoction at different doses on 

type 2 diabetic patients was examined. The patients were randomly divided into 

three groups and were treated with low- (n=20; 100 mL), medium- (n=19; 300mL) 

and high-dose (n=15; 500 mL) of Gegen Qinlian decoction once daily. After three 

months of treatment, there was a significant reduction in the fasting blood glucose, 

postprandial blood glucose and haemoglobin A1c levels as compared to the 

baseline in all three treatment groups. The diabetic symptoms such as thirst and 

night urination were significantly improved after treatment (Zeng et al., 2006). 
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1.1.5 Chemical analysis of PLR and PTR 

1.1.5.1 Flavonoids 

Phenolic compounds or polyphenols are by-products of the secondary metabolism 

of plants. Collectively, phenolic compounds or polyphenols are naturally occurring 

compounds that possess an aromatic ring bearing one or more hydroxyl 

substituents, including functional derivatives such as esters, methyl ethers and 

glycosides (Crozier et al., 2009). They are widely dispersed throughout the plant 

kingdom, with more than 8,000 phenolic structures reported in the literature 

(Quideau et al., 2011).  

 

Flavonoids are the most common and widely distributed phenolic compounds, 

which comprise of 15 carbon atoms in the skeleton as shown in Figure 1.2. They 

are arranged as diphenylpropanes (C6-C3-C6) and consist of two aromatic rings 

connected by three carbon atoms and are usually in the form of an oxygenated 

heterocycle (Crozier et al., 2009). The aromatic A ring is derived from either 

resorcinol or phloroglucinol synthesised in the acetate/malonate pathway, whereas 

the aromatic B ring is derived from phenylalanine in the shikimate pathway (Bravo, 

1998; Crozier et al., 2009). The variation in substitution patterns in the flavonoid 

skeleton gives rise to a variety of flavonoid sub-classes, including flavonols, 

flavones, flavan-3-ol, anthocyanidins, flavanones, isoflavones, dihydroflavonols, 

flavan-3,4-diols, chalcones, dihydrochalcones and aurones.  
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Figure 1.2 Basic skeleton and numbering system of flavonoids. 

 

1.1.5.2 Isoflavonoids 

Isoflavonoids are one of the major sub-classes within flavonoids and account for 

about one-fifth of the total flavonoids reported in the literature (Veitch, 2007, 2009, 

2013). They are primarily distributed in the subfamily Fabaceae of the family 

Leguminosae, but they are also found in some other angiosperm families such as 

Rutaceae, Mysticaceae, Iridaceae and Rosaceae (Reynaud et al., 2005). As 

shown in Figure 1.3, the major difference that separates isoflavonoids from its 

counterpart flavonoids is the position of the aromatic B ring, which is attached to 

the C-3 position instead of the C-2 position as in flavonoids (M. Boland and M. X. 

Donnelly, 1998). Hydroxylation, methoxylation or methylenedioxy substitution, 

prenylation (addition of hydrophobic molecules) and glycosidation are the major 

processes involved in the formation of different sub-classes of isoflavonoids. 

Glucose is the dominant sugar moiety. Other minor sugar moieties include 

rhamnose, galactose, xylose, apiose, arabinose and cymarose. The aglycone is 

the most common form of isoflavonoid in plants, whereas glycosidic derivatives 

are less common (Falcone Ferreyra et al., 2012).  
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Figure 1.3 Basic skeleton and numbering system of isoflavonoids. 

 

1.1.5.3 Triterpenoids 

Triterpenoids are widely distributed in the plant and marine animal kingdoms. The 

most common form found in plants is the glycosylate triterpenoid, which is also 

known as saponin. The basic structure of saponins includes a hydrophobic 

triterpenoid moiety (sapogenin) and one or more hydrophilic sugar moieties 

(Connolly and Hill, 2008, 2010). Triterpenoids are comprised of six isoprene units 

(C5H8)6 synthesised from either the cytosolic mevalonic acid or the plastidial 

methylerythritol phosphate pathway. The triperpenoids can be broadly divided into 

three major sub-classes, including acyclic, tetracylic and pentacyclic. The 

pentacyclic triterpenoids are the most abundant, in which oleanane-type 

pentacyclic triterpenoids account for over 50% of the triterpenoids found in 

leguminous plants (Hill and Connolly, 2011, 2012, 2013). The basic chemical 

skeleton of oleanane-type pentacyclic triterpenoids is presented in Figure 1.4. 

Oleanane-type pentacyclic triterpenoids consist of five six-membered carbon rings, 

namely A, B, C, D and E ring. Rings A/B, B/C and C/D are generally trans-linked, 

whereas rings D/E are cis-linked (Alqahtani et al., 2013). Hydroxylation commonly 
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occurs at C-2, C-3, C-7, C-11, C-15, C-17 and C-22 positions. Triterpenoid 

glycosides are formed by the addition of one or more sugar moieties to these 

hydroxyl groups. Common sugar moieties include glucose, rhamnose, galactose, 

arabinose and glucuronic acid (Vincken et al., 2007). 

 

Figure 1.4 Basic skeleton and numbering system of oleanane-type 

pentacyclic triterpenoids. 

 

1.1.5.4 Major chemical constituents in PLR and PTR 

PLR and PTR are a rich source of phenolic compounds, including isoflavonoids, 

isoflavonoid glycosides, coumarins, puerarols, 2-butenolides and their derivatives. 

Figure 1.5 illustrates the chemical structures of isoflavonoids and isoflavonoid 

glycosides isolated from PLR and PTR, while Figure 1.6 illustrates the chemical 

structures of other minor phenolic compounds. Isoflavonoids and their glycosides 

are the major constituents (Rong et al., 2002). Puerarin (7-Hydroxy-3-(4-

hydroxyphenyl)-8-[(3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-

yl]chromen-4-one) is the most abundant secondary metabolite and was first 

isolated and identified from PLR in the early 1950’s (Shibata et al., 1959). Genistin 
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(5-hydroxy-3-(4-hydroxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-

(hydroxymethyl)oxan-2-yl]oxychromen-4-one) and daidzin (3-(4-hydroxyphenyl)-7-

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-

one) and their aglycones, genistein and daidzein, respectively, were originally 

detected in soybeans (Walz, 1931), whereas other components such as 

formononetin and biochanin are widely distributed in various leguminous plants 

(Price and Fenwick, 1985).  

 

Other prominent chemicals detected in PLR and PTR include triterpenoids and 

triterpenoid glycosides are shown in Figure 1.7. Oleanene-type triterpenes and 

triterpenoid glycosides have been identified from PLR, namely kudzusaponin, 

kudzusapogenol and soyasapogenol. Soyaspogenol A is the aglycone of 

kudzusaponins SA1-4 and soyasaponin A3, whereas the glycosylation of aglycone 

kudzusapogenol A forms kudzusaponins A1-5 (Rong et al., 2002). Furthermore, 

PLR and PTR’s slightly sweet and mild fruity-winey odour is attributed to the 

presence of volatile components such as methyl palmitate (42.2%), methyl 

stearate (5.2%), 2-methoxyethyl acetate (4.8%), acetyl carbinol (4.5%) and 

butanoic acid (4.1%) (Miyazawa and Kameoka, 1988). There are trace amounts of 

minor constituents, including 5-methylhydrantoin, tuberosin, choline chloride, 

acetylcholine chloride, D-mannitol, glycerol 1-monotetracosanoate (Lin et al., 

2005), eicosanoic acid, hexadecanoic acid, tetracosanoid acid-2, 3-

dihydroxypropyl ester (Wang et al., 2007), diacetonamine and D-(+)-pinitol 

(Nakamoto et al., 1975). 
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 R1 R2 R3 R4 R5 

Puerarin H H Glu H H 

Daidzein H H H H H 

Daidzin H Glu H H H 

Genistein OH H H H H 

Genistin OH Glu H H H 

Formononetin H H H H Me 

Biochanin A OH H H H Me 

Puerarin-4’-O-D-glucoside H H Glu H Glu 

3’-Hydroxypuerarin H H Glu OH H 

3’-Hydroxypuerarin-4’-O-deoxyhexoside H H Glu OH E 

3’-Hydroxy-4’-O-β-D-glucosylpuerarin H H Glu OH Glu 

3’-Methoxypuerarin H H Glu OMe H 

4’-Methoxypuerarin H H Glu H OMe 

6”-O-D-xylosylpuerarin H H Glu6-xyl H H 

6”-O-Malonyl ester of puerarin H H A H H 

Daidzein-7-O-methyl ether H Me H H H 

3’-Methoxydaidzin H Glu H OMe H 

3’-Methoxydaidzein-7-O-methyl ether H Me H OMe H 

4’-Glucosyldaidzin H Glu H H Glu 

6”-O-Malonyl ester of daidzin H A H H H 

8-[α-D-Glucopyranosyl-(1→6)-β-D-

glucopyranosyl] daidzein 

H H B H H 

6”-O-Malonyl ester of genistin OH A H H H 

Formononetin 8-C-[β-D-apiofuranosyl-(1→6)]- 

β-D-glucopyranoside 

H H C H Me 

Formononetin 8-C-[β-D-xylopyranosyl-(1→6)]-

β-D-glucopyranoside 

H H D H Me 

Figure 1.5 Chemical structures of isoflavonoids and isoflavonoid glycosides 

reported from PLR and PTR (Harada and Ueno, 1975; Hirakura et al., 1997; Kinjo et 



Chapter One: Introduction 

 20 

al., 1987; Murakami et al., 1960; Nguyen et al., 2009; Prasain et al., 2007; Rong et 

al., 1998; Shibata et al., 1959; Sun et al., 2008). Glu: glucose; H: hydrogen; Me: 

methyl; OH: hydroxyl; OMe: methoxy; A: 6”-O-manlonyl-Glu; B: α-D-

glucopyranosyl-(1→6)-β-D-glucopyranosyl; C: β-D-apiofuranosyl-(1→6)]-β-D-

glucopyranoside; D: β-D-xylopyranosyl-(1→6)]-β-D-glucopyranoside; E: 

Deoxyhexosyl 

 

 

 R1 R2 R3 

Pueroside A Glu6-Rha H H 

Pueroside B Glu Me Glu 

(±)-Puerol B 2-O-glucopyranoside Glu Me H 

Kuzubutenolide A Glu H H 

 

 

 

 

 

Puerarol Coumestrol 6,7-Dimethoxycoumarin 

 

Figure 1.6 Chemical structures of minor phenols reported from PLR and PTR 

(Hirakura et al., 1997; Kim et al., 2008; Lin et al., 2005; Nohara et al., 1993). Glu: 

glucose; H: hydrogen; Me: methyl; Rha: rhamnose. 
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 R1 R2 R3 R4 

Kudzusapogenol A H OH OH H 

Kudzusapogenol C H H OH H 

Kudzusaponin A1 Glu A2-ara2-rha o-xyl OH OH 

Kudzusaponin A2 Glu A2-gal OH OH OH 

Kudzusaponin A3 Glu A2-gal2-rha OH OH OH 

Kudzusaponin A4 Glu A2-gal OH OH OH 

Kudzusaponin A5 Glu A2-glu OH OH OH 

Kudzusaponin SA1 Glu A2-gal OH OH H 

Kudzusaponin SA2 Glu A2-gal o-ara OH H 

Kudzusaponin SA3 Glu A2- gal2-rha o-ara OH H 

Kudzusaponin SA4 Glu A2-glu A o-ara OH H 

Kudzusaponin SB1 Glu A2- gal2-rha o-ara H H 

Kudzusaponin C1 Glu A2- gal2-rha H OH H 

Soyasapogenol A H OH OH H 

Soyasapogenol B H OH H H 

Soyasaponinl A3 Glu A2- gal2-rha OH OH H 

Soyasaponinl I Glu A2- gal2-rha OH H H 

 

Figure 1.7 Chemical structures of triterpenoids and triterpenoid glycosides 

reported from PLR and PTR (Arao et al., 1995; Arao et al., 1997; Kinjo et al., 

1987). Ara: arabinose; Gal: galactose; Glu A: glucuronic acid; H: hydrogen; 

OH: hydroxyl; Rha: rhamnose. 
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1.1.5.5 Impact of seasonal and geographical variations on major 

constituents 

Traditionally, PLR is harvested during winter and autumn, as the ancient Chinese 

believed that the contents of active components were greater compared with other 

seasons. Chen et al. (2007) demonstrated that the total content of seven major 

isoflavonoids (3’-hydroxypuerarin, puerarin, 3’-methoxypuerarin, daidzin, genistin, 

formononetin-7-glucoside and daidzein) was lowest during April to August in the 

northern hemisphere (flowering period), with the content gradually increasing from 

October to December during fruiting period, and finally reaching a maximum peak 

in January of the following year when the plant is in the dormancy period (Chen et 

al., 2007). In addition, it is suggested that the best time to harvest PLR is around 

three years of growth, as the total amount of isoflavonoids is the highest (Chen et 

al., 2007). PLR from the north and north-eastern regions of China often has a 

relatively higher total isoflavonoid content as compared to those from the southern 

parts of China (Bodner and Hymowitz, 2002). 

 

1.2 Quality control of herbal products 

Herbal medicines and their preparations have been used around the world for 

centuries to prevent and cure diseases. According to a recent study, up to 80% of 

the population in Asia, Africa and Latin-America uses herbal medicines to meet 

their health care needs (World Health Organisation, 2002). Another study revealed 

that approximately two-thirds of Australians were using complementary medicines, 

which include traditional herbal medicines, vitamin and minerals to maintain 

general health (NICM, 2014; NPS, 2008). However, the lack of regulations and 
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legislations has prompted the global health care authorities to improve guidelines 

on the quality, safety and efficacy of herbal products (Uzuner et al., 2012). 

 

The quality control of herbal materials is regarded as one of the most important 

procedures in the manufacturing process of herbal products as it could potentially 

impact on the safety and efficacy of the final products (Jiang et al., 2010). For 

example, the substitution of Stephaniae Tetrandrae Radix with Aristolochiae 

Fangchi Radix in a weight loss herbal product marketed at Belgium during 1990 to 

1992 caused over 100 cases of irreversible nephropathy, due to the presence of 

the renal toxin aristolochic acid from Aristolochiae Fangchi Radix (Lewis, 2001; 

Zhu and Woerdenbag, 1995). 

 

As herbal materials are acquired from natural resources, their quality and the 

amount of active constituents can be affected by various factors such as climate, 

soil condition, altitude, harvest time, drying process and storage condition (Tistaert 

et al., 2011a). To assess the quality of herbal products, the gold standard is to 

quantify the amount of one or several chemical compounds using analytical 

instruments such as high-performance liquid chromatography (HPLC) or thin-layer 

chromatography (TLC) (Alaerts et al., 2010). In most cases, the single compound 

approach has been found to be insufficient in differentiating herbs with similar 

appearance and/or similar major chemical compounds. For instance, chlorogenic 

acid was unable to differentiate Lonicerae Flos from Chrysanthemi Indici Flos and 

oleanolic acid was unable to differentiate Ligustri Lucidi Fructus, Achyranthes 

Bidentatae Radix and Clematidis Radix (Liang et al., 2009). Therefore, it is 

necessary to develop robust methods that uncover the complex nature of herbs. 
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To address this, the chemical ‘fingerprint’, which is defined as the characteristic 

profile or pattern that defines the complex chemical composition of a herb, has 

been adopted (Goodarzi et al., 2013). In 1991, the World Health Organisation 

(WHO) published the first edition of the ‘Guidelines for the Assessment of Herbal 

Medicines’, emphasising the use of the chemical fingerprint as a tool for assessing 

the quality, safety and efficacy of herbal products (Alaerts et al., 2010; Tistaert et 

al., 2011a). Since then, the Chinese State Food and Drug Administration (State 

Food and Drug Administration, 2000), the Food and Drug Administration of the 

U.S.A. (Food and Drug Administration of the United States of America, 2004) and 

the European Medicines Agency (European Medicines Agency, 2006, 2008, 2011) 

have adopted fingerprint analysis for evaluating the quality of herbal medicines 

and their preparations.  

 

1.2.1 Analytical techniques for quality control 

There are many analytical instruments that can be used to obtain the chemical 

fingerprint of a herb and these are divided into two major categories: 

chromatography and spectroscopy. A chromatographic fingerprint can be obtained 

from TLC, high-performance thin-layer chromatography (HPTLC), HPLC, ultra-

performance liquid chromatography (UPLC), gas chromatography and capillary 

electrophoresis. The spectroscopic fingerprint can be obtained from mid-infrared 

(MIR) spectroscopy, near-infrared (NIR) spectroscopy, Raman spectroscopy, 

mass spectroscopy (MS) and nuclear magnetic resonance (NMR) spectroscopy 

(Alaerts et al., 2010; Gad et al., 2013; Tistaert et al., 2011a). 
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1.2.1.1 Liquid chromatography 

1.2.1.1.1 High- and ultra-performance liquid chromatography  

Chromatography is a differential migration process where sample components are 

distributed between a stationary and a mobile phase (Lough and Wainer, 1995). 

The type of chromatography is based on the physical state of the stationary and 

mobile phases. The most common method used in separating chemical 

constituents in herbal medicine is the liquid-solid column chromatography that 

features a liquid mobile phase, which slowly filters down through the solid 

stationary phase (Snyder et al., 2011). HPLC is a type of liquid chromatography in 

which the liquid mobile phase is mechanically pumped through a column that 

contains the solid stationary phase. A typical HPLC comprises of a mobile phase 

reservoir, a high-pressure pump, an injection port for introducing the sample, a 

stainless steel column containing packing material and a detector, and is normally 

connected to a computer for data acquisition and interpretation (Lough and 

Wainer, 1995). The most common type of HPLC used for herbal analysis is the 

reversed-phase HPLC, which consists of a column packed with uniform particles 

of silica whose surface has a covalently-bonded coating of long hydrocarbon chain 

such as octyldecyl silica. Chemical constituents from the sample mixture are 

separated depending on their different interaction with the adsorbent stationary 

phase. In reversed-phase HPLC, polar molecules are eluted at the beginning of 

the analysis, whereas less polar molecules are eluted later and hence, have a 

longer retention time. The efficacy of separating chemical components within a 

sample depends on several factors including flow rate, particle size, column 

diameter, solvent polarity and the distribution constant between the liquid and solid 

phase. In general, the identification of small molecular weight chemicals such as 
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phenolic compounds is based on ultraviolet (UV)-visible diode array detector 

(DAD) with multiple wavelengths between 200 and 800 nm (Lough and Wainer, 

1995; Yang et al., 2010). HPLC can be hyphenated with other spectral instruments 

such as MS and NMR for the identification of individual chemical constituents. 

However, the major pitfalls of using HPLC are the relatively long analytical time 

and large organic solvent consumption (Sherma, 2012).  

 

In comparison, UPLC is a collective term describing the liquid chromatography 

technology that employs a column packed with smaller particles and/or higher flow 

rates for increased speed, with superior resolution and sensitivity (Naushad and 

Khan, 2014; Xu, 2013). As compared to conventional HPLC (column diameter: 2.1 

– 4.6 mm; particle size: 3 – 5 μm), the use of UPLC with a column of particle size 

of 1.7 μm and diameter of 2.1 mm significantly decreases the solvent 

consumption, analytical run time and injection volume, and enhances resolution 

and sensitivity (Grumbach et al., 2009; Naushad and Khan, 2014; Snyder et al., 

2011; Xu, 2013). Although UPLC could significantly reduce the above problems, 

this technique is accompanied with high instrumental and maintenance cost and 

requires highly specialised skills. 

 

1.2.1.1.2 Thin-layer chromatography 

TLC is one of the oldest liquid chromatography techniques and has been widely 

used for the chemical analysis of herbal medicines and is one of the fundamental 

techniques for the authentication of herbs described in the various 

pharmacopoeias. TLC is a form of planar chromatographic technique whereby the 

stationary phase is spread on a flat and planar surface (Wall, 2005). Silica gel is 
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the most commonly used stationary phase in TLC analysis, and is supported by a 

sheet of aluminum or a glass plate, while the mobile phase (consisting of a mixture 

of solvents in a defined ratio) migrates up the stationary phase. Since the different 

chemical constituents in the sample mixture have different interactions with the 

mobile and stationary phase, separation takes place via capillary action 

(Srivastava, 2010). The separation of chemical constituents within a herbal mixture 

is governed by several factors including the partition coefficients, retention factor 

(Rf), capacity factor of an individual constituent on the plate, selectivity of the 

mobile and stationary phase to the solute, as well as the plate height that the 

solvent travels (Spangenberg et al., 2011; Srivastava, 2010). As most of the 

organic compounds are colourless, they will need to be made visible on the plate. 

The most common method is to spray the plate with a chemical reagent that reacts 

with the particular chemicals and detect under UV light (Fried and Sherma, 1996, 

1999). 

 

The modern HPTLC method is generally referred to as the application of using a 

small particle-sized HPTLC plate, automated or semi-automated sample injector 

and high-resolution densitometry (Srivastava, 2010). An automated sample 

injector applies the sample in a narrow band with equal volume, which enhances 

the separation between chemicals and minimises the injection variability. As 

compared to TLC, the relatively smaller particle size (TLC: 10 – 12 μm; HPTLC: 5 

– 6 μm) and thinner plate thickness (TLC: 250 μm; HPTLC: 100 μm) in HPTLC has 

been found to significantly reduce the development time and solvent consumption 

(Fried and Sherma, 1996; Srivastava, 2010; Wall, 2005). As compared to HPLC, 
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the advantages of using HPTLC are its simplicity, versatility and the analysis of 

multiple samples simultaneously.  

 

1.2.1.2 Vibrational spectroscopy 

Vibrational spectroscopy, comprising of near-infrared (NIR), mid-infrared (MIR) 

and Raman spectroscopy, measures the dynamic vibration transitions in 

molecules (Chalmers et al., 2012). The fundamental units used in describing a 

spectrum include wavenumber (cm-1) and wavelength (nm). The choice of unit 

depends on the type of spectrometer used, e.g. dispersive or Fourier transform. 

The conversion between wavenumber and wavelength can be expressed as 

follows (Larkin, 2011): 

   
 

 
  

 

 
 

where   denotes as the wavenumber,   represents the wavelength,   represents 

the frequency and   represents the velocity of light. 

 

1.2.1.2.1 Mid- or near-infrared spectroscopy 

Infrared spectroscopy is based on the absorption of electromagnetic radiation. The 

infrared spectrum can be divided into three major spectral regions, including NIR 

(4000 – 12500 cm-1), MIR (400 – 4000 cm-1) and far-infrared (10 – 400 cm-1) (Sun, 

2009).  

 

The MIR spectrum measures the absorbance of light at the vibrational and 

rotational frequencies of the atoms within a molecule, whilst NIR spectrum records 

the overtone and combination of fundamental vibrations (Larkin, 2011). The 
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molecule is considered as NIR active if there is a change in dipole moment of the 

molecule. A dipole refers to the product of charges, either positive or negative, and 

distance between atoms within a molecule. In general, R-H groups such as O-H, 

N-H, C-H and S-H bonds have the strongest overtone, as they are high in dipole 

moment (Smith, 2011; Workman and Weyer, 2007). However, one of the major 

disadvantages of using NIR is that the peaks in the spectrum overlap and are 

relatively broad as compared to MIR, which makes it difficult to interpret the 

molecular structure (Ozaki et al., 2006; Smith, 2011; Sun, 2009; Workman and 

Weyer, 2007). 

 

MIR spectrum is often used for structure identification of organic compound 

because the absorption peak is caused by the fundamental vibration of a specific 

function group (Chalmers et al., 2012; Larkin, 2011; McCreery, 2005; Ozaki et al., 

2006; Sun, 2009). However, one of the primary pitfalls of employing MIR is the 

high sensitivity of the water molecule, which restricts the type of samples to be 

analysed and requires sample preparation prior to analysis (e.g. dehydration) 

(Sasic and Ekins, 2008; Schrader, 2008; Smith, 2011; Workman and Weyer, 

2007). 

 

1.2.1.2.2 Raman spectroscopy 

Raman spectroscopy is based on the scattering phenomenon of electromagnetic 

radiation as a result of energy exchange during molecular vibrations. The light 

scattering effect can be broadly divided into two categories: elastic and in-elastic 

scattering (McCreery, 2005). Figure 1.8 illustrates the differences between 

Raman, MIR and NIR spectroscopy during energy transition. With irradiation of the 
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monochromatic light onto a sample, photons from the light source collide with the 

sample molecules at an initial energy of     and then scatter in all dimensions. If 

the scattered light carries the same energy as in the incident light (      ), this 

phenomenon is called elastic scattering, and is sometimes known as Rayleigh 

scattering. On the contrary, if there is an energy change (    ) between the 

scattered and incident light, this process is called in-elastic scattering, and is also 

known as Raman scattering (Larkin, 2011). It is important to note that Raman 

scattering is a rare phenomenon. Most of the light will be scattered without any 

changes in the energy, whilst only 10-8 of the light will be scattered in-elastically. In 

Raman scattering, the scattered light can have either a lower energy (anti-stroke 

Raman scattering;           ) or a higher energy (stroke Raman scattering; 

          ) level as compared to incident light (Chalmers et al., 2012; Larkin, 

2011). Typically, intense laser beams from a wide spectral range can be used as 

the excitation source in Raman spectroscopy. Argon ion laser (488.0 nm and 

514.5 nm), krypton ion laser (530.9 and 647.1 nm) and neodymium-doped yttrium 

aluminum garnet laser (1064 nm) are the most common (McCreery, 2005).  

 

A Raman spectrum displays the relationship between the intensity of scattered 

light and the Raman shift. The Raman shift refers to the frequency difference 

between the incident and scattered light and is usually expressed as wavenumber 

(Larkin, 2011). The criterion used to determine whether a molecule is Raman 

active depends on its polarisability during molecular vibration. The polarisability of 

a molecule is defined as the degree of distortion of the election cloud in a molecule 

affected by an electromagnetic field. Molecules with a symmetric shape are one of 

the basic requirements to obtain an intense peak in a Raman spectrum. As a rule 
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of thumb, molecules with functional groups such as -C-halogen, -C-S-, -C=C-, -

C=S-, -N=N- and -S-H- tend to provide a more intense peak as they exhibit greater 

polarised changes as compared to asymmetric molecules such as water 

(Chalmers et al., 2012; Larkin, 2011; McCreery, 2005).  

 

 

Figure 1.8 Comparison of the energy transition of Raman, MIR and NIR 

spectroscopy (De Beer et al., 2011).  

 

One of the major advantages of adopting Raman spectroscopy in the quality 

control of herbal medicine relates to the high penetration power. The high-energy 

laser allows Raman spectroscopy to analyse samples through glass and plastic, 

which can be extremely useful for on-line monitoring of production procedures 

(Sasic and Ekins, 2008). Thus, minimal sample preparation is required. In addition, 

the water molecule is poorly sensitive to Raman spectroscopy due to its 

asymmetric shape and this enables the analysis of fresh, water-rich and in-situ 

samples (McCreery, 2005; Schrader, 2008). However, as Raman scattering is a 

weak signal, it can be affected significantly by other environment factors. One of 
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the most common interferences in analysing herbal materials is the auto-

fluorescence of molecules such as DNA and protein (Chalmers et al., 2012; 

Larkin, 2011; Sasic and Ekins, 2008). Fluorescence is emitted when a molecule 

decays from its excited electronic state back to the ground electronic state. This 

phenomenon can be minimised by employing a laser with a longer wavelength. 

(Sasic and Ekins, 2008; Schrader, 2008; Sun, 2009). A summary comparing the 

characteristics of Raman, MIR and NIR are illustrated in Table 1.3. 

 

Table 1.3 Summary of the Raman, MIR and NIR spectroscopy (Chalmers et 

al., 2012; Larkin, 2011). 

 Raman  MIR  NIR 

Ease of sample preparation     

    Liquid Very simple  Very difficult  Fair 

    Powder Very simple  Simple  Simple 

    Gas Very simple  Simple  Simple 

Fingerprint Excellent   Excellent  Very good 

Best vibration Symmetric  Asymmetric  Overtone 

Quantitative  Good  Good  Excellent 

 

1.2.2 Colorimetric assay 

Colorimetry measures the absorbance intensity of UV-visible light when it passes 

through the test sample, and is calculated according to the Beer-Lambert’s Law as 

follows (Ozaki et al., 2006; Sun, 2009): 

          (
  
 
) 

where   represents absorbance,   represents molar absorptivity,   represents 

pathlength,   represents concentration,    represents intensity in the background 

spectrum and   represents intensity in the sample spectrum. 
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In a colorimetric assay, a reference standard is normally used to generate a 

calibration curve (Liu, 2011). The results of the tested sample is expressed as an 

equivalent dose to the reference standards and is calculated as follows:  

                
     

        
                                           

where      represents the concentration of chemical calculated in the testing 

sample using the calibration curve and          represents the original 

concentration of the testing sample. 

 

This approach provides general chemical information related to the type of 

chemical families within the herb (Liu, 2011; World Health Organisation, 2011). 

Common colorimetric assays used in herbal medicines include the determination 

of total flavonoid content, total phenolic content, antioxidant capacity and in-vitro 

cell viability. 

 

1.2.2.1 Total flavonoid content assay 

The total flavonoid content (TFC) assay measures the total quantity of flavonoids, 

including flavones, flavonols, flavanones and isoflavones, present in the sample. 

This assay uses aluminium chloride in a potassium acetate solution. Aluminium 

chloride reacts with the keto group at the C-4 position and either the hydroxyl 

groups at C-3 or C-5 position of flavonoids to form a stable complex (Chang et al., 

2002). This stable complex is yellowish-orange in colour and has a maximum 

absorbance at 415 nm. Quercetin is commonly used as the reference compound 

and the TFC of the sample is expressed as quercetin equivalent (QE) dose (Meda 

et al., 2005). 
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1.2.2.2 Total phenolic content assay 

The total phenolic content (TPC) colorimetric assay is a popular analytical method 

used to quantify the total amount of phenolic compounds in herbal medicines and 

food products. This assay uses the Folin-Ciocalteu reagent, which is a mixture of 

phosphotungstic acid (H2PW12O40) and phosphomolybdic acid (H3PMo12O40). In an 

alkaline condition, the phenolic compounds oxidise the Folin-Ciocalteu reagent 

and generate a mixture of blue oxides of tungsten (W8O23) and molybdenum 

(Mo8O23) (Ainsworth and Gillespie, 2007). The blue-coloured oxide mixture has a 

maximum absorbance at 760 nm. The intensity of the absorbance is proportional 

to the total quantity of phenolic compounds in the sample. Phenolic compounds 

such as gallic acid are commonly used to generate calibration curve. However, the 

formation of blue oxides can be affected by air oxidation after the sample is in 

alkaline condition, and therefore the Folin-Ciocalteu reagent needs to be added 

before the alkaline reagent (Ainsworth and Gillespie, 2007; Prior et al., 2005). 

 

1.2.2.3 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity 

assay 

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay measures the scavenging ability 

of chemical compounds for the stable DPPH free radical (Brand-Williams et al., 

1995). The DPPH free radical (due to the delocalisation of the spare electron 

throughout the molecule) is purple in colour and has a maximal absorbance at 520 

nm. When DPPH reacts with a hydrogen donor, the free radical reduces to a 

colourless stable form. As a result, the free radical scavenging capacity of the 

sample is estimated by measuring the decolorisation of the mixture at 520 nm. 

Trolox, a water-soluble form of vitamin E, is commonly used as a reference 
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compound and the scavenging capacity of the sample is expressed as Trolox 

equivalent antioxidant capacity (TEAC) (Brand-Williams et al., 1995; Molyneux, 

2004). 

 

1.2.2.4 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical 

scavenging capacity assay 

The 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) measures the 

ability of chemical compounds in scavenging the ABTS radical cation (Re et al., 

1999; Thaipong et al., 2006). The production of the ABTS radical cation involves 

the oxidation of ABTS with potassium persulfate or manganese dioxide. The cation 

is bluish-green in colour and has a maximal absorbance at 736 nm. Similar to the 

DPPH assay where ABTS+
 reacts with a hydrogen donor, the cation is reduced to 

a colourless stable form. As a result, the radical scavenging capacity of the sample 

is estimated by measuring the decolourisation of the mixture at 736 nm. Trolox is 

commonly used as a standard compound and the scavenging capacity of the 

sample is expressed as TEAC (Re et al., 1999).  

 

1.2.2.5 Cupric reducing antioxidant capacity (CUPRAC) assay 

The cupric reducing antioxidant capacity (CUPRAC) assay measures the reducing 

capacity of the chemicals in a redox reaction. In this assay, the ability of the 

sample in reducing cupric-neocuprine complex to cuprous-neocuprine complex in 

an alkaline condition is assessed (Apak et al., 2004). Cuprous-neocuprine 

complex is yellowish-orange in colour and has a maximal absorbance at 450 nm. 

Thus, the absorbance intensity of the mixture at 450 nm is proportional to the 

amount of complex produced, which is used to estimate the cupric ion reducing 
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capacity of the sample. Gallic acid is commonly used as the reference compound 

and the CUPRAC in the sample is expressed as gallic acid equivalent (GAE) dose 

(Apak et al., 2007; Apak et al., 2004). 

 

1.2.2.6 Cell viability assay 

The cell viability assay uses the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) for measuring the viability of cells in a cellular 

model. The MTT enters the cells and passes into the mitochondria where it is 

reduced to an insoluble coloured formazan complex by mitochondrial succinate 

dehydrogenase (Mosmann, 1983). This complex is dark purple in colour and has a 

maximum absorbance at 550 nm. As a result, the amount of insoluble formazan 

formed reflects the metabolic status of the mitochondria, which can be used as an 

indicator for cell viability (Berridge and Tan, 1993). The insoluble formazan is 

normally solubilised with organic solvents such as isopropanol and dimethyl 

sulfoxide. The cell viability is calculated as follows: 
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1.2.3 Chemometrics 

Although it is possible to visually differentiate the chemical fingerprint differences 

between an authenticated and an unknown sample, the process is rather 

subjective and may vary between different investigators and laboratories. 

Furthermore, it is time-consuming especially if a large quantity of samples needs 

to be analysed (Gad et al., 2013; Tistaert et al., 2011a). To solve this problem, 

statistical analysis in the form of chemometrics is introduced. Chemometrics is 

defined as (Massart et al., 1997; Wold and Sjostrom, 1977): 

 

“The science of relating measurements made on a chemical system or 

process to the state of the system via application of mathematical or 

statistical methods.” 

 

Chemometrics covers a wide range of techniques including the optimisation of 

experimental parameters, design of experiments, signal processing, pattern 

recognition, calibration and regression modelling and estimation of structure-

property relationship. In the case of the chemical fingerprint analysis, pattern 

recognition and calibration and regression modelling are the two most common 

techniques employed. As compared to traditional analytical method, which 

consists of a few independent variables, the chemical fingerprint analysis normally 

involves a large number of independent and/or dependent variables. Therefore, 

instead of univariate analysis, multivariate analysis is usually involved in 

interpreting the relationship between the dependent and independent variables in 

the chemical fingerprint analysis (Massart et al., 1997; Otto, 2007; Varmuza and 

Filzmoser, 2009; Wold and Sjostrom, 1977). 
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1.2.3.1 Data pre-processing 

Prior to any multivariate analysis, pre-processing techniques are applied to 

remove undesired variability from the raw data due to analytical 

instrument/operator differences, and to improve the quality and interpretability of 

the data by removing redundant variables (Brereton, 2003; Gemperline, 2006).  

 

For chromatographic fingerprint analysis, the most important procedure is to 

ensure that all the peaks in the chromatograms from different samples are aligned 

at their respective retention time. In chromatographic analysis, individual peaks 

can shift between injections due to variations in mobile phase composition, column 

ageing, instrumental instability and operator handling (Brereton, 2003; 

Gemperline, 2006; Joshi, 2012). Many approaches have been suggested to solve 

the peak alignment issue, including correlation optimised warping (COW), target 

peak alignment, fuzzy warping, dynamic time warping, parametric time warping, 

semi-parametric time warping and peak alignment by a genetic algorithm (Alaerts 

et al., 2010; Gad et al., 2013; Tistaert et al., 2011a). Among them, COW is the 

most common method and has been proven to be effective in correcting the 

retention time shift. COW is a piecewise data pre-processing algorithm which 

involves the alignment of a sample chromatogram in the form of a vector with a 

reference chromatogram (Skov et al., 2006; Tomasi et al., 2004). The process is 

achieved by the combination of stretching or compressing of sample segments 

using linear interpolation. One of the major advantages of using COW in the 

chemical fingerprint alignment is its ability to preserve the peak area and shape 

after alignment. However, it is important to note that three parameters including 

the target chromatogram, slack number and the number of segments need to be 
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determined and optimised before the application of COW for peak alignment (Skov 

et al., 2006; Tomasi et al., 2004). 

 

For spectroscopic fingerprint analysis, however, the undesired variability of the raw 

data are mainly due to light scattering and differences in the effective path length, 

especially when performing NIR spectroscopic analysis (Mark and Workman Jr., 

2007). Light scattering is a complex phenomenon and could be linear or non-

linear. There are three major types of scattering effects. The first one is a simple 

baseline shift due to the additive effect. The second type of scattering effect called 

multiplicative effect, scales the entire spectrum by a given factor. The last type 

contributes to the wavelength-dependent baseline shift, in which the degree of 

baseline shift varies with wavelength (Mark and Workman Jr., 2007; Rinnan et al., 

2009). To minimise the variability due to the light scattering effect, several 

commonly used pre-processing algorithms namely Savitzky-Golay polynomial 

derivatives, multiplicative scatter correction, extended multiplicative signal 

correction, standard normal variate and de-trending can be employed (Joshi, 

2012; Mark and Workman Jr., 2007). 

 

Apart from the instrumental specific pre-processing techniques, there are several 

algorithms that are commonly applied to the raw data to remove variability 

unrelated to the property of interest (Joshi, 2012; Mark and Workman Jr., 2007). 

Normalisation is a row-wise algorithm which makes overall intensity scales 

comparable across samples, by dividing each variable with the sum of the 

absolute value of all the variables for a given sample (Afseth et al., 2006). In 

contrast, standard normal variate (SNV) is a weighted normalisation method which 
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divides the variables with the standard deviation of all variables for a given 

sample. Apart from the row-wise methods, the matrix can be pre-processed by 

column-wise algorithms such as mean centering, median centering class 

centering, auto-scaling, poisson scaling, pareto scaling and variance scaling. In 

most cases, one of these techniques will be the last algorithm to be applied to the 

data matrix and is an essential step in many pattern recognition algorithms such 

as principal component analysis (PCA) and partial least square (PLS) analysis. 

The most popular centering method is mean centering, which involves the 

subtraction of variables with the mean value of each column (Tistaert et al., 

2011a).  

 

In general, data pre-processing is needed prior to the application of multivariate 

analysis. When analysing a chemical fingerprint, it is advisable that one should try 

different pre-processing techniques and their combinations to determine which 

approach generates the best result by comparing with the subsequent model 

performance (Massart et al., 1997; McLachlan, 2004; Otto, 2007; Varmuza and 

Filzmoser, 2009).  

 

1.2.3.2 Variable selection 

Variable selection selects a subset of variables that is most representative of the 

relationship between the independent and response variable matrices, particularly 

if the number of observations (samples) is much smaller than the number of 

independent variables (  matrix) or if the data matrix contains much redundant 

data (Balabin and Smirnov, 2011).  
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1.2.3.2.1 Successive projection algorithm  

Successive projection algorithm (SPA) is a deterministic algorithm which does not 

involve random factors. The aim of SPA is to minimise collinearity and the 

propagation of measurement noise in the calibration set. Initially, a maximum 

number of variables are pre-defined. The variables are projected onto an 

orthogonal sub-space. The vector with the highest projection value is selected and 

employed as the new starting vector. The aforementioned steps are repeated until 

the iteration reaches the maximum number of variables. For each iteration, the 

choice of orthogonal sub-space is made in such a way that only non-collinear 

variables are selected. The variable subsets are used to establish multivariate 

linear regression models and their root mean square of leave-one-out cross-

validation (RMSECV) are calculated. The variable subset with the smallest 

RMSECV is selected (Araujo et al., 2001). 

 

1.2.3.2.2 Genetic algorithm  

Genetic algorithm (GA) is a probabilistic search algorithm inspired by Darwin’s 

evolution theory, which incorporates biological concepts such as inheritance, 

natural selection, chromosome crossover and mutation. First, an initial population 

is randomly generated based on the uniform distribution of the data matrix and 

coded as a number of chromosomes, which refers to a legal solution to the 

predefined problem and is composed of a string of genes. Next, the chromosomes 

are divided into pairs of subsets and crossover to generate daughter 

chromosomes, which will replace the parent chromosome in the new generation. 

Mutation is then carried out with a user-defined mutation rate. Once the new 

population is generated, each chromosome is subjected to multivariate regression 



Chapter One: Introduction 

 42 

analysis and its fittest value is calculated. The algorithm is repeated until the 

termination condition is fulfilled (Broadhurst et al., 1997).  

 

1.2.3.3 Unsupervised pattern recognition 

Pattern recognition analysis can be broadly divided into two major categories, 

namely unsupervised and supervised pattern recognition analysis (McLachlan, 

2004). Figure 1.9 illustrates a schematic diagram of the composition of 

unsupervised and supervised pattern recognition analysis. In an unsupervised 

pattern recognition analysis, the chemical fingerprints are rearranged into a two-

dimensional data matrix   (  x  ). In the   matrix,   indicates the number of 

fingerprints (observations) included, whereas   represents the signal intensity at a 

certain time point (chromatogram) or wavenumber (spectrum). The number of data 

points depends on the resolution of the analytical instrument and the number of 

data points acquired per unit of time or wavenumber (Brereton, 2003; McLachlan, 

2004). On the contrary, supervised pattern recognition analysis utilises the 

information from both   and   matrices. The   matrix refers to the response(s) 

such as the total amount of chemical component and pharmacological activity of 

samples (McLachlan, 2004; Varmuza and Filzmoser, 2009). The supervised 

pattern recognition can be broadly divided into three major categories, including 

exploratory data analysis, similarity analysis and clustering analysis. 
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Figure 1.9 Schematic diagram of the composition of unsupervised and 

supervised pattern recognition analysis. 

 

1.2.3.3.1 Exploratory data analysis 

There are several exploratory data analyses available, such as PCA, robust PCA, 

projection pursuit and factor analysis (Massart et al., 1997). Among them, PCA is 

the most common unsupervised pattern recognition method and is used as a 

preliminary step for separating a pool of samples into different clusters (species) 

and identifying outliers within the cluster. PCA is a variable reduction algorithm 

that allows the visualisation of the data in a low dimensional space (Otto, 2007). 

This is achieved by projecting the variables in the   matrix from the original data 

space onto a new dimensional space called principal component (PC). Each PC is 

a linear combination of the original variables and each successive PC is 

orthogonal to the previous PC. As a result, the   matrix is decomposed into a 

number of PCs that describe the maximum amount of variance between variables 

in the data. The first PC accounts for the maximum covariance between variables. 
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The second PC is unrelated to the first PC and accounts for the next maximum 

covariance. This procedure continues until it reaches the pre-defined maximum 

number of PC, and the remaining unexplained data are expressed as residual ( ) 

(Brereton, 2003). 

 

The decomposition of the   matrix by PCA includes two matrices, scores and 

loadings matrix. The scores are the new coordinates of the samples in the PC. In 

the case of a herb, each point represents a single chemical fingerprint in the 

scores plot, and the distribution of the points on the scores plot can be used to 

reveal patterns, trends, clusters and outliers of the data. In other words, the points 

that are located close to each other have similar chemical characteristics, whereas 

the points that are located far from each other have dissimilar or different chemical 

characteristics (Brereton, 2003; Otto, 2007; Varmuza and Filzmoser, 2009). 

Loadings describe the correlation coefficients between the original variable and 

the PCs. In a loading plot, the loading value indicates the importance of a variable 

in a model during decomposition and can be used to determine which variable is 

important in the separation clusters or groups. The PCA model can be described 

in the formula as follows (Brereton, 2003; Otto, 2007; Varmuza and Filzmoser, 

2009):  

         

where   is the chemical fingerprints matrix (  x  ),   is the matrix of scores (  x 

 ), with   representing the number of calculated PCs,   is the loading matrix,    is 

the transposed of loading matrix (  x  ) and   is the residual matrix. 
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1.2.3.3.2 Similarity analysis 

Similarity analysis is one of the conventional methods in unsupervised pattern 

recognition and has been used to investigate the relationship between the 

chemical fingerprints of herbs (Goodarzi et al., 2013). The Chinese 

Pharmacopoeia Committee has developed a specialised software named 

‘Similarity evaluation system for chromatographic fingerprints of TCM’ to evaluate 

the similarity between fingerprints based on the Pearson’s correlation coefficient 

( ) as follows (Ganzera, 2009):  

          
           

      
 

  
∑        ̅         ̅  

 
   

√∑        ̅    
 
   ∑        ̅   

 
   

 

where (  = 1, 2, 3, … n),     and     are the ith elements of    (fingerprint 1) and    

(fingerprint 2), n is the number of variables in the fingerprints,             is the 

covariance of the vectors    and    and     and     are the standard deviation of 

   and   . 

 

1.2.3.3.3 Clustering analysis 

There are two types of clustering analysis: non-hierarchical and hierarchical 

analysis (Massart et al., 1997). One of the examples in non-hierarchical clustering 

analysis is the fuzzy clustering analysis, which pre-defines a number of set points, 

and all samples are then assigned with a point value. The clustering is based on 

the distance between the samples and the set points or inclusion within a 

prescribed distance to a specific seed point (Chen and Wang, 1999). In 

hierarchical analysis, the samples are grouped into clusters and expressed as a 

tree structure called a dendrogram. The clustering creation can be divided into 
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agglomerative and non-agglomerative approaches (Johnson, 1967). In an 

agglomerative approach, each sample is considered as an individual object and is 

grouped together based on their similarity. In a non-agglomerative approach, all 

the samples are first grouped into a large cluster, followed by division into smaller 

clusters based on their dissimilarity (Romesburg, 2004). Two parameters, linkage 

and similarity function, need to be determined prior to clustering analysis. The 

examples of a linkage function include single linkage, complete linkage, Ward’s 

method and centroid method. The similarity between samples can be calculated 

using common algorithms such as Euclidean, Mahalanobis, Minkowski and 

Chebychev distance (Johnson, 1967; Romesburg, 2004). Among them Euclidean 

distance is the most common algorithm employed and the formula is expressed as 

follows:  

                    √∑          
 

   
 

where   = 1, 2, 3, … n,              and              are the two sets of n 

measurements from chemical fingerprints (Massart et al., 1997). 

 

1.2.3.4 Supervised pattern recognition 

In general, supervised pattern recognition refers to a group multivariate analyses 

that utilise a calibration or training set with prior knowledge about the classes or 

properties of interests in the   matrix to construct a calibration model. The model’s 

performance is evaluated by comparing the predictability and/or accuracy of the 

true class of the validation set before applying the mode to unknown samples 

(Tistaert et al., 2011a). The calibration model can be used as a classification 

(discriminant) or regression model. In a classification mode, the   matrix 
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represents the class memberships of the samples in   matrix. The   matrix is 

qualitative and discrete and normally coded in vectors (Otto, 2007; Varmuza and 

Filzmoser, 2009). For example, class 1 coded as 0, class 2 coded as 1, … class n 

coded as n-1. On the contrary, the   matrix in a regression model indicates the 

properties of the samples. However, it is important to note that most of the 

supervised pattern recognition algorithms, except soft independent modelling of 

class analogies, can be applied for the purpose of both classification and 

regression (Gad et al., 2013; Joshi, 2012).  

 

In addition, the supervised pattern recognition algorithms can be categorised as 

parametric or non-parametric and linear or non-linear algorithm. Linear algorithms 

include linear discriminant analysis, whilst support vector machines and artificial 

neural network are considered as non-linear algorithms (Brereton, 2003; 

Gemperline, 2006; Mark and Workman Jr., 2007; Otto, 2007). In parametric 

algorithms such as linear discriminant analysis and partial least squares analysis, 

statistical parameters of the normal distribution of the sample from   matrix are 

used in the decision rules and vice versa for the non-parametric algorithms. 

Examples of non-parametric algorithms include K-nearest neighbors and 

classification and regression tree (Brereton, 2003; Gemperline, 2006; Mark and 

Workman Jr., 2007; Otto, 2007).  

 

1.2.3.4.1 Linear discriminant analysis 

Linear discriminant analysis (LDA), also known as Fisher’s linear discriminant 

analysis, is a variable reduction algorithm similar to PCA (Welling, 2005). In the 

LDA model, the data are projected to a lower-dimensional vector space (latent 
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variable) such that the ratio of the between-class variance is maximised while the 

ratio of the within-class variance is minimised. The latent variable obtained in LDA 

is a linear combination of the original variables from the data set and hence, the 

discriminant boundaries are also linear (Lachenbruch, 1975). Unlike the PC in 

PCA that aims to maximise the number of explained variables in a lower 

dimensional space, the latent variable in LDA aims to maximise the separation 

among the given classes (Figure 1.10) (Lachenbruch, 1975; Massart et al., 1997). 

 

Figure 1.10 Difference in projection dimension between PCA and LDA. 

 

The first step in determining the optimal latent variable is to maximise the 

separation between classes. The data matrix is decomposed into two scatter 

matrices, namely between-class (  ) and within-class matrix (  ) (Varmuza and 

Filzmoser, 2009). The mean of each sample class ( ̅ ) is defined as: 

    ∑     ̅   ̅   ̅   ̅  
 

   
 

 

where    is the number of data point in a sample class,   is the number of sample 

class,  ̅  is the class mean,  ̅ is the mean of the whole data set and   indicates 

transposition (Varmuza and Filzmoser, 2009). 
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    ∑       ∑ 
 

   
 

where ∑   is the covariance matrix 

 

Since the covariance matrix relates to (    ) and it has to be greater than zero, 

the maximum number of data points that a LDA model can handle must be smaller 

than (    ). In other words, the number of samples in the data set must be 

greater than the number of variables from each sample (Otto, 2007). To address 

this criterion, the aforementioned variable selection methods can be applied to the 

data set. This will allow the selection of variables that are informative in 

discriminating the classes (Alaerts et al., 2010; Gad et al., 2013).  

 

1.2.3.4.2 Partial least squares  

Another approach to solving the limitation of number of variables raised by LDA is 

to use partial least squares-discriminant analysis (PLS-DA). PLS, also known as 

projection to the latent structures, is a supervised pattern recognition method 

which reduces the dimensionality of the data matrix similar to PCA and projects 

variables onto a newly formed dimensional space called latent variable (LV) 

(Gemperline, 2006; Mark and Workman Jr., 2007). The purpose of PLS is to find 

the least number of LVs in the   matrix that describe the maximum variation 

between variables and, simultaneously, have maximal correlation to the variables 

in the response   matrix. One of the major differences that distinguishes PLS from 

PCA is that PLS utilises both   and   matrices and hence, maximises the 

covariance between them. As in PCA, the PCs explain the variance between 

variables within the   matrix, and have little or no relevance to the response   
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matrix. PLS is often used in analysing chemical fingerprint data as it can deal with 

multicollinearity amongst the   matrix and in a condition where the number of 

samples/observations is smaller than the number of   variables (Geladi and 

Kowalski, 1986; Rosipal and Krämer, 2006). PLS model is constructed by 

arranging the   and   matrices as follows: 

        

        

where X (  x  ) is the chemical fingerprint matrix, with   = number of variable in 

each spectra and   = number of samples;   and   are the score and loading of the 

X matrix, respectively;   (  x 1) is the response matrix;   and   are the score and 

loading of the   matrix, respectively;   and   are the residue matrices of the   and 

  matrix, respectively. The score value is defined as the projection of the data on a 

weighted vector  , while the loading value refers to the contribution to the score 

value to the matrix. 

 

It can be observed that the decomposition of the   and   matrices are inter-

related. The loading values of   matrix are calculated from the score values of   

matrix, whereas the loading values of matrix   are determined from the score 

values of   matrix. As a result, the PLS forms a bidiagonal matrix during 

decomposition, whilst a diagonal matrix is generated from PCA. PLS algorithm can 

be used as both classification and regression (Massart et al., 1997; Varmuza and 

Filzmoser, 2009). In PLS regression, the coded vector   matrix is replaced by 

experimental data. The regression coefficients of PLSR are calculated as follows:  
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where    is the (  x  ) matrix of  -weights that represents the common LV space 

(  x  ) relating the   and   matrices;   is the number of LV;   is the regression 

coefficient. 

 

Finally, the predicted response value      is determined by the   number of LVs 

as follows: 

        

 

Unlike unsupervised pattern recognition methods, PLS-DA maximises the 

separation between pre-defined classes, rather than explaining the variations 

within a data set. In comparison to PCA-discriminant analysis, PLS-DA aims to 

maximise the inter-class variance rather than capturing the variations within each 

class. PLS-DA calculates the probability of each sample belonging to each class, 

and then the   predicted value from each sample is fitted to the Gaussian 

distributed model from the validation set. A probability density function is 

established for each class based on the mean and standard deviation of their   

predicted value. The classification threshold is defined as the y predicted value at 

which the probability of both classes is equal. The class of unknown sample is 

assigned by its   predicted value and the classification threshold of each model.  

 

1.2.3.4.3 K-nearest neighbors  

K-nearest neighbors (KNN) is a non-parametric classification method that does not 

form any mathematical assumption on the calibration set distribution. This 

approach utilises the distance between samples in the p-space as its criterion 
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(Coomans and Massart, 1982a, b, c). Euclidean distance is the most common 

metric algorithm used to measure the nearness between samples. An unknown 

sample is categorised by its proximity to the K samples that have been placed in 

pre-defined categories in the calibration set (Zadeh, 1965). Figure 1.11 illustrates 

the concept of the classification of samples in KNN. In this diagram, each point 

represents a sample, and the sign (positive or negative) represents the class. 

Firstly, a point of interest (e.g.   ) is chosen from the   matrix and a boundary is 

formed depending on the pre-defined K value. In this case, the K value is defined 

as 5. Therefore, five other samples with the closest proximity are selected. The 

class of the point of interest is based on the majority class of the nearest 

neighbors. 

 

Figure 1.11 Schematic diagram of the concept of sample classification in 

KNN. 

 

The determination of K value is one of the most important procedures required 

before analysis. If the K value is too small, the model will be unstable as there is 

not enough information to classify new samples. On the other hand, if the K value 

is too large, the model will contain bias, as some of the neighbors used to make 

predictions will no longer be similar to the one being predicted. To solve this 
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problem, leave-one-out cross-validation (LOOCV) can be used to select the 

optimal number of the nearest neighbors (K value) (Beckonert et al., 2003; Ni et 

al., 2009; Roggo et al., 2007).  

 

1.2.3.4.4 Classification and regression tree  

Classification and regression tree (CART) is a non-parametric classification 

algorithm that involves splitting the data into mutually exclusive sub-classes to 

form a decision tree in a binary recursive manner (Breiman et al., 1984). The 

construction starts from the root, which represents all the samples in   matrix. The 

root splits into two nodes called parent node, and each parent node further splits 

into two nodes called child node. This binary division procedure is repeated until 

all subjects in the terminal node are as pure or homogenous as possible. The 

node without a child node is called terminal node. The CART procedure consists 

of three major steps. Initially, the aforementioned binary partition process forms a 

complete decision tree, which is also known as the maximal tree. Secondly, an 

overgrown tree is pruned so that a series of less complex trees are formed. This 

pruning step is essential to minimise over-fitting. Lastly, the optimal tree size is 

determined by the best pruned sub-tree, which is chosen based on the LOOCV 

(Breiman et al., 1984). The splitting criterion is calculated by the Gini index as 

follows (Milanovic, 1997; Zang et al., 2011): 

      ∑    

 

   
(      )   ∑

   

  
     

   

  
 

 

   
 

where   is the number of class,    is the number of objects in node   and     is the 

number of objects from class   present in the node  . 
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If the dependent variables (response   matrix) are categorical, a classification tree 

is generated, whilst a continuous variable will produce a regression tree. In 

general, the splitted sub-classes are more homogeneous with respect to the 

original data matrix. This approach estimates the discriminating surface directly 

without losing the degree of freedom of each class (Breiman et al., 1984). 

 

1.2.3.4.5 Soft independent modelling of class analogy 

Soft independent modelling of class analogy (SIMCA) minimises assumptions on 

the linearity of relationships between samples and pre-defined classes. One of the 

major differences that separates SIMCA from other classification techniques is the 

term ‘soft’, which means that an unknown sample can be classified as multiple 

classes rather than restricted to a discrete (non-overlapped) class (Wold and 

Sjostrom, 1977). To establish a SIMCA classification model, a PCA model is built 

for each class separately. Unlike PCA-DA which describes the overall variance in 

the data, the SIMCA model comprises of a collection of PCA models which define 

the characteristics of each class (Frank and Lanteri, 1989). The optimal number of 

PCs is determined by LOOCV. To classify an unknown sample, its matrix is 

projected to each established PCA model and the residual distance is calculated. 

The residue PC is used to create boundaries around each class. The residual 

standard deviation (  
 ) of an object   to a class   in the calibration set can be 

expressed as (De Maesschalck et al., 1999; Wold and Sjostrom, 1977): 

  
   √

∑     
    

   

     
 

where    
  is the residual between object   and the PC along variable   and 

(     ) is the degree of freedom 
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The residual standard deviation    
   of an unknown object    from the validation 

set is calculated as:  

  
    √

∑ ∑     
     

   
 
    

                 
 

where            and         are the degrees of freedom 

 

An unknown sample is categorised by comparing its residual distance to the mean 

residual variance of the PCA model from each class.  

 

1.2.3.4.6 Support vector machine-discriminant analysis 

Support vector machine-discriminant analysis (SVM-DA) represents samples as 

points in a space by generating a hyperplane boundary between the two classes. 

The hyperplane maximises the distance between classes and is unrelated to the 

probabilistic distribution of the samples in the calibration set. The idea of a SVM 

model is to determine the optimal hyperplane that has a maximum margin 

between the two separated classes. It can be applied to both linear and non-linear 

data sets and to separate multiple classes. However, this approach projects points 

to a higher dimensional space by a suitable kernel function. The class of an 

unknown sample is assigned by mapping it as a point onto the same dimensional 

space of the calibration set, and then determining the side it belongs using the v-

support vector classification (Vapnik, 1999).  

 

1.2.3.5 Validation of a model 

One of the crucial procedures in pattern recognition analysis is the validation of the 

established calibration model. It is essential to ensure that the calibration model is 
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able to accurately predict the class or property of interest of an unknown sample. 

In order to investigate the performance of a model, the   matrix is first divided into 

a calibration and a validation set (Gemperline, 2006; Massart et al., 1997; Otto, 

2007). The calibration set builds a calibration model, whilst the validation set tests 

the accuracy and robustness of the established model. The validation set is 

completely independent of the model establishment procedures such as variable 

selection, parameters optimisation and the determination of optimal PCs or LVs. 

Both calibration and validation sets comprise of samples from each representative 

class (Brereton, 2003; Varmuza and Filzmoser, 2009).  

 

As a rule of thumb, approximately 60% of the total amount of samples is classified 

as the calibration set and the remaining 40% is used as the validation set. To 

avoid bias in subset division, several types of sample selection algorithms such as 

Kennard-Stone (K-S), Duplex algorithm and random selection can be employed 

(Esbensen and Geladi, 2010; Kennard and Stone, 1969; Snee, 1977). Among 

them, K-S algorithm is the most popular method in pattern recognition analysis. K-

S selects a subset of samples from a large population, which provides uniform and 

diverse coverage over the data matrix. According to the K-S algorithm, it assumes 

that if two samples share similar characteristics, then the distance between them 

is short, whilst two samples that are far apart have low similarity. Euclidean 

distance is the most common geometric algorithm used in the determination of 

distance of the samples in K-S algorithm. The algorithm selects an object that is 

closest to the mean of the data matrix and adds it to a subset. Then, the 

dissimilarity between the remaining objects within the original data matrix and the 

object(s) in the subset is calculated. Subsequently, the object with the highest 
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dissimilarity from the original data matrix is selected and added into the subset. 

These procedures are repeated until the number of objects in the subset reaches 

a pre-defined limit (Esbensen and Geladi, 2010; Kennard and Stone, 1969). 

 

1.2.3.5.1 Root mean square errors and regression coefficient 

To validate the predictability and stability of the calibration model, LOOCV is 

adopted. LOOCV is a special case of k-fold cross validation in which the k value is 

equal to the number of objects. Figure 1.12 illustrates the concept of LOOCV. In 

LOOCV, the model performance is determined by removing one sample from the 

calibration set at a time and using it as a validation set (Esbensen and Geladi, 

2010; Kohavi, 1995).  

 

Figure 1.12 Schematic diagram of the leave-one-out cross-validation. 

 

To access the model performance, the root mean square error of calibration 

(RMSEC), root mean square error of leave-one-out cross-validation (RMSECV) 

and root mean square error of validation (RMSEV) can be calculated as follows 

(Chen et al., 2008b; Wu et al., 2010):  

       √
∑   ̂         
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where  ̂  ,  ̂    and  ̂   are the calculated value of sample   in the calibration, cross 

validation and validation set, respectively,     and     are the measured value of 

sample   in the calibration and validation set, respectively, and    and    are the 

number of samples in the calibration and validation set, respectively. 

 

In a regression model, the regression coefficient of the calibration (r2 cal), cross-

validation (r2 CV) and validation set (r2 val) are calculated as follows (Massart et 

al., 1997; Wold and Sjostrom, 1977): 

   √   
∑   ̂       

 
   

∑       ̅   
   

 

where  ̂  and    are the calculated and measured value of sample  ,  ̅ is the mean 

of the reference measurement results and   is the number of samples. 

 

1.2.3.5.2 Confusion matrix 

A confusion matrix displays the performance of a classification model in a 

contingency table (Todeschini et al., 2008). Figure 1.13 illustrates a classic binary 

confusion matrix.  Each column represents the predicted class (identity) of the 

sample, whereas each row represents the true class of the sample. 
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Figure 1.13 Classic binary confusion matrix. 

 

The matrix on the main diagonal refers to the number of correct class 

assignations, while off diagonal refers to the classification error. True positive (TP) 

is the number of class 1 correctly classified as class 1. True negative (TN) is the 

number of class 2 correctly classified as class 2. On the contrary, false negative 

(FN) is the number of class 1 misidentified as class 2, while false positive (FP) is 

the number of class 2 misidentified as class 1. There are four major parameters 

commonly used to assess the classification model’s performance, including 

sensitivity, specificity, non-error rate (NER) and error rate. Sensitivity refers to the 

model’s ability to correctly identify samples belonging to that particular class. 

Specificity represents the model’s ability to reject sample of all other classes 

(Todeschini et al., 2008). NER measures the quality of the classification model, 

while the error rate evaluates the efficiency of the model. These parameters are 

calculated as follows: 
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1.2.3.5.3 Ratio of performance to deviation 

Ratio of performance to deviation (RPD) is normally used to assess the 

predictability of a model. RPD measures the accuracy of the calibration model by 

dividing the standard deviation of the experimental values by the standard error of 

the estimated values obtained from the validation set. The higher the RPD value, 

the greater the predictability of a model (Williams and Sobering, 1993).  

 

1.3 Current issues in the quality control of PLR and PTR 

Quality control is an essential procedure to ensure the quality, safety and efficacy 

of a herb and its products. Table 1.4 illustrates the extraction method, mobile 

phase, stationary phase and other HPLC chromatography parameters for the 

detection of chemical marker(s) from the PPRC (PPRC, 2010a, b), EP (EP, 2012a, 

b), BP (BP, 2014a, b), JP (JP, 2011) and HKCMMS monograph (HKCMMS, 

2010a, b). 
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Table 1.4 Summary of the extraction method and chromatographic parameters for the authentication of PLR and PTR in 

various pharmacopoeias and monographs (BP, 2014a, b; EP, 2012a, b; HKCMMS, 2010a, b; JP, 2011; PPRC, 2010a, b). 

 PPRC EP/BP HKCMMS JP 

Extraction method Reflux for 30 mins Reflux for 30 mins Sonicate for 30 mins Reflux for 30 mins 
Solvent 30% ethanol 30% ethanol 70% ethanol 50% methanol 
Mobile phase A: water; B: methanol A: 0.1% acetic acid in water; 

B: acetonitrile 
A: 0.1% formic acid in 
water; B: acetonitrile 

A: 0.05 M sodium 
dihydrogen phosphate in 
water; B: acetonitrile 

 N/A 0 – 16.5 min: A 90 – 71% 0 – 40.0 min: A 90 – 
65% 

N/A 

Detection 
wavelength (nm) 

250 260 250 250 

Column  Octadecylsilanised 
silica gel 

Octadecylsilanised silica gel  Octadecylsilanised silica 
gel  

Octadecylsilanised silica 
gel  

     
Dimensions N/A 5 μm particle size 

I.D. 4.6 mm; L 15 cm 
5 μm particle size 
I.D. 4.6 mm; L 25 cm 

5 μm particle size 
I.D. 4.6 mm; L 15 cm 

Flow rate (mL/min) N/A 3 1 N/A 

Chemical marker(s) Puerarin  Puerarin and total 
isoflavonoids  

Puerarin  Puerarin  

Content (w/w) PLR ≥ 2.4% 
PTR ≥ 0.3% 

PLR ≥ 6.5% total 
isoflavonoids with ≥ 45% 
puerarin 
PTR ≥ 0.4% total 
isoflavonoids with ≥ 55% 
puerarin 

PLR ≥ 2.6% 
PTR ≥ 0.16% 

PLR ≥ 2.0% 
 

N/A: not available.  
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Puerarin is used as the chemical marker in PPRC, JP and HKCMMS for the 

authentication of PLR and PTR due to its high abundance among other chemical 

constituents (HKCMMS, 2010a, b; JP, 2011; PPRC, 2010a, b). It was observed 

that the extraction method, extraction solvent and chromatographic parameters 

varied among monographs. These factors could significantly alter the amount of 

the extracted chemical. As a result, the amount of puerarin content for the 

authentication of PLR ranges from 2.0% to 2.9% (w/w), whereas for the 

authentication of PTR, the puerarin content ranges from 0.16 to 0.30% (w/w) (BP, 

2014a, b; EP, 2012a, b; HKCMMS, 2010a, b; JP, 2011; PPRC, 2010a, b). In 

addition to puerarin, the amount of total isoflavonoids including puerarin, 3’-

hydroxypuerarin, 3’-methoxypuerarin, 6”-O-D-xylosylpuerarin and daidzin is 

recommended by EP and BP (BP, 2014a, b; EP, 2012a, b). This approach might 

provide additional information on the chemical differences between PLR and PTR, 

which is currently missing in other monographs. However, the reason why these 

chemical markers were chosen is not disclosed. Furthermore, 3’-hydroxypuerarin, 

3’-methoxypuerarin and 6”-O-D-xylosylpuerarin are not available as authentic 

reference standard and hence, identification of these compounds may need 

hyphenated instruments such as HPLC-mass spectrometry. The lack of 

standardisation between monographs might cause confusion in differentiating PLR 

from PTR. Thus, this could explain why these two herbs are used interchangeably 

in clinical practice. 
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1.4 Rationale and objectives 

In clinical practice, PLR and PTR are substituted for each other even though it is 

recognised that these two herbs are different. This would have an impact on 

patient dosages and the efficacy of the treatment. The current monographs need 

to be updated and standardised to reflect the macroscopic, microscopic and 

chemical differences (both qualitative and quantitative) between PLR and PTR.  

 

Although numerous studies have attempted to differentiate PLR from PTR, these 

studies mainly focused on the quantification of individual compounds such as 

puerarin, which does not completely represent the complex chemical profile of 

PLR and PTR. Conventional quantification processes using HPLC are time-

consuming and are difficult to adopt as a daily, on-line procedure during the 

manufacturing process to monitor the quality of a herbal product. Thus, simpler 

methods using HPTLC and Raman spectroscopy need to be examined and 

compared. 

 

Chemometrics has been shown to be a useful tool for the authentication of herbal 

medicines and differentiation of closely related species and is recommended by 

the WHO and various pharmaceutical organisations around the world. However, 

the application of chemometrics on the quality control of PLR and PTR is currently 

lacking.  

 

Furthermore, it has been observed that most of the in vitro studies focus on the 

pharmacological activity of individual compounds from PLR and PTR. There are 

limited studies investigating the pharmacological activity of the extracts and 
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whether the chemical differences between the two species could impact on their 

respective pharmacological activity. Therefore, the aim of the study was to 

differentiate PLR from PTR using qualitative and quantitative methods and various 

analytical instruments in coupled with chemometrics analysis. 

 

The specific objectives of this thesis were to: 

 

1. Provide an up-to-date and comprehensive study on the macroscopic and 

microscopic characteristics of PLR and PTR. 

 

2. Characterise the phytochemical profile of PLR and PTR by quantifying the 

major chemical constituents and comparing the total phenolic content and 

antioxidant capacity. 

 

3. Develop a PLS-DA model for the differentiation of PLR and PTR using 

UPLC chromatographic fingerprints.  

 

4. Develop multivariate classification models for the differentiation of PLR and 

PTR using HPTLC chromatographic fingerprints and comparing their 

model’s performance and productivity with the models generated from the 

UPLC chromatographic fingerprints. 

 

5. Develop PLS regression models for the prediction of TPC and antioxidant 

capacity using Raman spectroscopy. 
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6. Elucidate whether the chemical differences between PLR and PTR 

influence the in vitro pharmacological activity in models pertaining to the 

inhibition of carbohydrate hydrolysis enzymes α-amylase and α-

glucosidase, the cytoprotective effect against stimuli on human endothelial 

EA.hy926 cells and the cytotoxicity on human prostate cancer PC3 cells. 

 

Therefore, in this thesis, PLR and PTR were differentiated using qualitative and 

quantitative methods. Rapid and accuracy classification models were developed 

by combining different analytical instruments and variable selection algorithms with 

the aim of reducing the analytical time, while at the same time preserving the 

predictability and accuracy of the model. With the aid of chemometrics, in 

particular supervised classification model, and supported by bioactivity data, it is 

hypothesised that the two species can be rapidly differentiated in an objective and 

systematic manner. 

 



Chapter Two: Morphological identification of PLR and PTR  

 66 

 

 

 

 

 

 

Chapter Two                                          

Morphological identification of Puerariae Lobatae 

Radix and Puerariae Thomsonii Radix  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Two: Morphological identification of PLR and PTR  

 67 

2.1 Introduction 

Correct species identification is regarded as one of the fundamental procedures 

for ensuring the quality, safety and efficacy of a medicinal herb (Upton et al., 

2011). The substitution and misidentification of medicinal herbs readily occurs in 

clinical practice, especially if they share similar macroscopic features or 

nomenclature, including analogous species names. This can lead to dire 

consequences especially if the substituted herb is toxic when used inappropriately 

(Nortier et al., 2000). 

 

Morphological traits are the fundamental criteria for authenticating a medicinal 

herb, and whenever possible, should be carried out before any further analyses 

are undertaken (Liu, 2011). These techniques have been recommended as the 

first step for assessing the identity of a medicinal herb by the World Health 

Organisation (World Health Organisation, 2011), Pharmacopoeia of the People’s 

Republic of China (PPRC) (PPRC, 2010a, b), European Pharmacopoeia (EP) (EP, 

2012a, b), British Pharmacopoeia (BP) (BP, 2014a, b), Japanese Pharmacopoeia 

(JP) (JP, 2011) and various monographs around the world (Blumethal et al., 1999; 

HKCMMS, 2010a, b; Upton et al., 2011). The procedure involves the comparison 

of the morphological traits between an unknown sample and an authenticated 

reference. In general, the morphological traits of a medicinal herb can be divided 

into two major groups, macroscopic and microscopic characteristics (Liu, 2011; 

Upton et al., 2011). The macroscopic characteristics refer to the shape, size, 

colour, smell and texture of a medicinal herb. On the other hand, microscopic 

characteristics refer to the features of cell types and organelles when observed 

with the aid of a microscope (Ruzin, 1999).  
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In the case of PLR and PTR, the misinterpretation is related to the confusing 

taxonomical nomenclature and monograph descriptions in various 

pharmacopoeias. Many TCM practitioners and herbal dispensers think that these 

two species are the same and hence, are used interchangeably in clinical practice 

(Wong et al., 2011). Table 2.1 to 2.4 summarises the macroscopic and 

microscopic characteristics described in the PPRC, EP, BP, JP and Hong Kong 

Chinese Materia Medica Standards (HKCMMS) monograph (BP, 2014a, b; EP, 

2012a, b; HKCMMS, 2010a, b; JP, 2011; PPRC, 2010a, b). PLR and PTR are 

separated into two monographs in the latest versions of the PPRC, EP, BP and 

HKCMMS, whereas in the JP only PLR is noted. In JP, “Puerariae Radix” refers to 

the root of P. lobata (Willd.) Ohwi while the root of P. thomsonii Benth. is not 

considered as a medicinal herb (JP, 2011). In general, the monographs in the BP 

are direct copies of the EP (BP, 2014a, b; EP, 2012a, b). Clearly, most of the 

monographs are based on the descriptions in the PPRC and hence, PPRC is 

considered as the primary focus in this study. Any changes in the PPRC could 

significantly impact on the descriptions of other monographs.  

 

Since the inclusion of Puerariae Radix as a medicinal herb in the first edition of the 

PPRC (1965), the macroscopic and microscopic characteristics described in the 

content have not been changed considerably. Prior to the 2005 edition, Puerariae 

Radix referred to the roots of both Pueraria lobata (Willd.) Ohwi and P. thomsonii 

Benth. The macroscopic section is separated into two parts to describe the two 

species, whilst the microscopic features are the same (PPRC, 1997, 2000). The 

accumulating scientific evidence suggests that these two species have different 
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chemical and DNA profile. In 2005, the Commission of the PPRC separated the 

two species into two distinct monographs. Nonetheless, the contents of the 

monographs are almost identical. The only major difference is the content of the 

chemical marker puerarin. The content of puerarin in PLR should not be less than 

2.4% (w/w), whereas in PTR the puerarin content should not be less than 0.3% 

(w/w) (PPRC, 2005).  

 

Since PLR and PTR are obtained from two different species, their morphological 

and microscopic characteristics should not be assumed to be identical. However, 

without detailed descriptions and photographic illustrations in the PPRC, it 

becomes a difficult task to correctly differentiate PLR and PTR. In addition, 

morphological identification is rather subjective and the results may vary between 

different investigators and laboratories. Therefore, it is necessary to update and 

measure the morphological characteristics in an objective manner.  

 

To provide additional information to support the results obtained from the 

morphological characteristics, two colorimetric methods, which determine the total 

content of starch and dietary fibre, are introduced. This approach would provide 

quantitative data supporting the morphological features observed under the 

microscope, and is relatively fast compared to the preparation of microscopic 

slides preparation. These two assays have been widely used in the field of food 

chemistry and have been applied to determine the starch and dietary fibre content 

in grains, crops and fruits (Englyst and Hudson, 1987; Rose et al., 1991). 

However, their application in herbal medicine is limited (Englyst and Hudson, 

1987; Laurentin and Edwards, 2003; Rose et al., 1991).  



Chapter Two: Morphological identification of PLR and PTR  

 70 

Therefore, the aims of this chapter were to compare the macroscopic and 

microscopic characteristics of PLR and PTR and examine whether the quantitative 

colorimetric assays are useful as an authentication criterion. Comprehensive 

descriptions on the morphological traits of these two species using quantification 

techniques, in addition to individual observation, will promote the correct species 

to be used in clinical practice. 
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Table 2.1 Comparison of the macroscopic characteristics of PLR and PTR in different editions of PPRC (PPRC, 1997, 2000, 

2005, 2010a, b). 

 PPRC prior to 2005  PPRC after 2005  

 PLR and PTR  PLR PTR 

Shape PLR: Small square pieces; Longitudinally 
rectangular thick slices, length 5 – 35 cm, 
thickness: 0.5 – 1 cm 

  Small square pieces; 
Longitudinally rectangular thick 
slices, length 5 – 35 cm, 
thickness: 0.5 – 1 cm 

Cylindrical, subfusiform or 
semi-cylindrical, length 12 
– 15 cm, diameter 4 – 8 cm 
Longitudinally or obliquely 
cut thick slices, varying in 
size 

PTR: Cylindrical, subfusiform or semi-cylindrical, 
length 12 – 15 cm, diameter 4 – 8 cm; 
Longitudinally or obliquely cut thick slices 

 

Colour PLR: Outer bark: pale brown with longitudinal 
wrinkles and rough; Inner: yellowish-white 
and indistinct striations 

 Outer bark: pale brown with 
longitudinal wrinkles and rough; 
Inner: yellowish-white and 
indistinct striations 

Outer bark removed; 
Unpeeled: greyish-brown; 
External: yellowish-white or 
pale brown 
 

PTR: Outer bark removed; Unpeeled: greyish-
brown; External: pale brown 

 

Texture PLR: Pliable and strongly fibrous  Pliable and strongly fibrous Heavy, hard and starchy 

PTR: Heavy, hard and starchy  

Smell PLR: Slightly odour   Slightly odour Same as PLR 

PTR: N/A  

Taste PLR: Slightly sweet   Slightly sweet Same as PLR 

PTR: N/A  

Other 
features 

PLR & PTR: Collected in autumn and winter  Collected in autumn and winter Same as PLR 
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Table 2.2 Comparison of the macroscopic characteristics of PLR and PTR in various pharmacopoeias (BP, 2014a, b; EP, 

2012a, b; HKCMMS, 2010a, b; JP, 2011). 

 EP/BP   HKCMMS   JP 

 PLR PTR  PLR PTR  PLR 

Shape Small and square 
pieces; Thick and 
rectangular slices, 
length: 5 – 35 cm, 
thickness: 0.5 – 1 cm 

Cylindrical, 
subfusiform or semi-
cylindrical, length 12 – 
15 cm, diameter 4 – 8 
cm; Longitudinally or 
obliquely cut thick 
slices, varying in size 

 Small irregular cube; 
Thick and 
longitudinally cut 
slices, length, 0.4 – 
36.2 cm, width: 0.4 – 
10 cm, thickness: 0.2 
– 5.4 cm 

Longitudinally or 
obliquely; 
cylindrical, 
subfusiform or 
conical, length 0.4 
– 39.3 cm, 
diameter, 27 – 84 
cm 

 Small pieces of 
irregular hexagons: 
0.5 cm cube 
longitudinally plate-
like pieces, length: 
20 – 30 cm, width: 5 
– 10 cm, thickness: 
1 cm 

Colour Outer bark: pale 
brown; Inner: 
yellowish-white and 
indistinct striations 

Outer bark removed; 
External: yellowish-
white or pale brown 

 External: brown, with 
longitudinal wrinkles; 
Inner: pale yellowish-
brown, concentric 
annular rings 

Outer bark: pale 
brown; External: 
yellowish-white 

 Greyish-yellow or 
greyish-white 

Texture Strongly fibrous Heavy, hard and 
starchy 

 Tough, pliable and 
strongly fibrous 

Heavy, hard and 
starchy 

 Extremely fibrous 

Smell N/A N/A  Odourless  Same as PLR  N/A 

Taste N/A N/A  Slightly sweet Same as PLR  Slightly sweet 
followed by 
bitterness 

Other 
features 

N/A N/A  Collected in autumn 
and winter 

Same as PLR  N/A 
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Table 2.3 Comparison of the microscopic characteristics of PLR and PTR in different editions of PPRC (PPRC, 1997, 2000, 

2005, 2010a, b). 

 PPRC prior to 2005  PPRC after 2005  

 PLR and PTR  PLR PTR 

Xylem vessels N/A  N/A N/A 

Fibre bundles Thickened and lignified fibre, 
surrounded by a calcium prism sheath 

 Thickened and lignified fibre, 
surrounded by a calcium prism sheath 

Same as PLR 

Starch granules Numerous, simple or 2 – 20 
compound 

 Simple or 2 – 20 compound Numerous 

Shape Spheroidal, semi-rounded or 
polygonal with a hilum pointed, cleft or 
stellate  

 Spheroidal, semi-rounded or polygonal 
with a hilum pointed, cleft or stellate 

Same as PLR 

Size (diameter) 3 – 37 μm  3 – 37 μm 8 – 15 μm 

Others Border pitted vessels relatively large 
Pits hexagonal or elliptical, arranged 
very densely 

 Border pitted vessels relatively large 
Pits hexagonal or elliptical, arranged 
very densely 

Same as PLR 

Presence of photos or 
diagrams 

N/A  N/A N/A 
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Table 2.4 Comparison of the macroscopic characteristics of PLR and PTR in various pharmacopoeias (BP, 2014a, b; EP, 

2012a, b; HKCMMS, 2010a, b; JP, 2011).  

 EP/BP   HKCMMS   JP 

 PLR PTR  PLR PTR  PLR 

Xylem vessels N/A N/A  Relatively large, 
numerous, densely and 
alternately arranged with 
fibre bundles 

Same as PLR  Distinct vessels and 
xylem fibres 

Fibre bundles Thick-walled lignified 
fibre, surrounded by a 
calcium prism sheath 

Same as 
PLR 

 Thicken and lignified wall 
and surrounded by a 
calcium prism sheath 

Same as PLR  Accompanied by 
crystal cells in phloem 

Starch 
granules 

Numerous, simple or 2 
– 20 compound 

Same as 
PLR 

 Numerous, simple or 2 – 
12 compound 

Numerous, 
mostly 2 – 15 
compound, rarely 
simple 

 Numerous, 
paranchyma, polygonal 
simple grains, or 2- to 
3-compound grains 

Shape Spheroidal, semi-
rounded or polygonal 
with a pointed, cleft or 
stellate hilum 

Same as 
PLR 

 Spherical, hemi-spherical 
or ellipsoidal with dotted, 
cleft or asteroidal hilum 

Spheroidal or 
sub-globose 

 Hilum or cleft in the 
center with straie 

Size 
(diameter) 

15 μm  Same as 
PLR 

 Single: 2 – 53 μm 
Compound: 8 – 87 μm 

Single: 4 – 38 μm 
Compound: 8 – 
78 μm 

 2 – 18 μm, mostly 8 – 
12 μm 

Others N/A N/A  Narrow cortex and cork 
board with several rows 

Same as PLR  N/A 

Presence of 
photos or 
diagrams 

N/A N/A  Both macroscopic and 
microscopic diagrams 
were present 

Same as PLR  N/A 

N/A: not available
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2.2 Methods and materials 

2.2.1 Solvents and chemical reagents 

Analytical grade methanol, chloroform, ethyl acetate, absolute ethanol (99.5% 

w/w), glacial acetic acid and acetone were purchased from Thermo Fisher 

Scientific (VIC, Australia). Deionised water was purified by Siemens Ultra Clean 

Series water purification system (Siemens Water Technologies, NSW, Australia). 

All other chemicals and solvents were of analytical grade and were obtained from 

Sigma-Aldrich unless otherwise stated (NSW, Australia). 

 

2.2.2 Herbal samples  

A total of 46 samples were purchased from various herbal pharmacies located in 

Australia, China and the U.S.A., and were authenticated by Dr George Li from the 

Faculty of Pharmacy, The University of Sydney, Australia. The authentication 

criteria were based on the macroscopic (Table 2.1) and microscopic 

characteristics (Table 2.3) and further confirmed by quantifying the puerarin 

content using ultra-performance liquid chromatography (UPLC) in Chapter 3 

(p.98). Twenty-three samples were authenticated as PLR, whereas 23 samples 

were authenticated as PTR (Table 2.5). Voucher specimens were kept at the 

Faculty of Pharmacy, The University of Sydney. Principal component analysis 

(PCA) coupled with UPLC chromatographic fingerprints obtained was used to 

detect outliers. Four outliers were detected based on the Hotelling T2 versus Q 

residuals and scores plot from the PCA Chapter 4 (p.126) and were removed from 

the subsequent analysis.  
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Table 2.5 Sample code and place of location of PLR and PTR. 

PLR   PTR  

Sample code Purchase location  Sample code Purchase location 

PLR1 Sydney, Australia  PTR1 Sydney, Australia 

PLR2 Nanning, China  PTR2 Sydney, Australia 

PLR3 Henan, China  PTR3 Guangzhou, China 

PLR4 Sydney, Australia  PTR4 Sydney, Australia 

PLR5 Hong Kong, China  PTR5 Sydney, Australia 

PLR6 Hong Kong, China  PTR6 Sydney, Australia 

PLR7 Hong Kong, China  PTR7 Sydney, Australia 

PLR8 Guangzhou, China  PTR8 Sydney, Australia 

PLR9 Guangzhou, China  PTR9 Sichuan, China 

PLR10 Auhui, China  PTR10 Hong Kong, China 

PLR11 Auhui, China  PTR11 Hong Kong, China 

PLR12 Auhui, China  PTR12 Hong Kong, China 

PLR13 Auhui, China  PTR13 Macau, China 

PLR14 Auhui, China  PTR14 Hong Kong, China 

PLR15 Auhui, China  PTR15 Melbourne, Australia 

PLR16 Auhui, China  PTR16 Shanghai, China 

PLR17 Auhui, China  PTR17 Shanghai, China 

PLR18 Auhui, China  PTR18 Guangzhou, China 

PLR19 Hebei, China  PTR19 Guangzhou, China 

PLR20 Tianjin, China  PTR20 Pennsylvania, U.S.A. 

PLR21 Zhejiang, China  PTR21 Sydney, Australia 

PLR22 Nanning, China  PTR22 Auhui, China 

PLR23 Beijing, China  PTR23 Hunan, China 
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2.2.3 Microscopic characterisation 

As the preparation of microscopic slides is a relatively time-consuming and labour 

intensive procedure, eight samples, including four PLR and four PTR, were 

randomly selected for microscopic characterisation. The histological preparations 

were performed at the Discipline of Pathology, University of Sydney, Australia. 

Each sample was fixed by immersing in a solution with formalin, glacial acetic acid 

and 70% ethanol (5:5:9 v/v/v) for two days. The fixed sample was dehydrated by 

passing through a series of ethanol and water mixture of increasing ethanol 

strength as follows: 70% ethanol (5 mins); 80% ethanol (5 mins); 90% ethanol (5 

mins); 95% ethanol (5 mins); 100% ethanol (5 mins); 100% ethanol (10 mins), and 

subsequently immersed in 100% xylene for 15 mins. The dehydrated sample was 

embedded in paraffin wax in accordance to the procedures described previously 

(Ruzin, 1999). The embedded sample was sectioned by a microtome and was 

subsequently stained with safranin-fast green solution. An optical microscope 

(Olympus DP70) equipped with a digital camera was used to acquire the 

microscopic features of each sample. To validate the key authentication 

parameters, the values of various cells and tissues were obtained by taking at 

least 100 measurements from three different random views for each sample.  

 

2.2.4 Total starch content assay 

The total starch content assay measures the starch polymer present within the 

cells. The powdered sample (50 mg) was placed in an oven at 100 oC for 1 hour 

and was then mixed with 5 mL of solution contained methanol, chloroform and 

water (12:5:3 v/v/v). The mixture was placed in a sonication bath for 10 mins and 

was centrifuged at 4,500 rpm for 5 mins. The supernatant was carefully removed 
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with a pipette. To ensure removal of the chemicals which could interfere with the 

glucose measurement, the above extraction steps were repeated at least 3 times 

or until the supernatant became colourless. The residue was dried in an oven at 

50 oC for 4 hours. The dried residue was macerated with 15 mL 35% perchloric 

acid and was shaken continuously for 1 hour to extract and solubilise the starch 

granules. The mixture was filtered through a Whatman No.1 filter paper (Rose et 

al., 1991). Concentrated sulfuric acid (5 mL) was added to hydrolysis the 

remaining starch. The amount of glucose presented in the filtrate was determined 

by the anthrone-sulfuric acid colorimetric assay. Briefly, an anthrone solution was 

made by dissolving 0.1146 g anthrone in 50 mL concentrated sulfuric acid and 20 

mL deionised water on ice. The filtrate (100 μL) was added to a test tube, then 

mixed with 1 mL anthrone solution and boiled in a water bath for 10 mins. The 

mixture was allowed to cool down to room temperature for 15 mins. The mixture 

(200 μL) was transferred to a 96 well microplate and measured at 655 nm 

(Laurentin and Edwards, 2003) using a Bio-Rad Model 680 microplate reader (Bio-

Rad Laboratories, NSW, Australia). The experiment was carried out in triplicates. 

Glucose (1 – 100 μg/mL) was used as the positive control and to generate a 

calibration curve. The results were calculated and expressed as milligrams of 

starch per gram of dried mass (DM) using: 

    
             

  
 

where   is the mg of starch/ g of DM,    is the glucose concentration,    is the 

dilution factor,   is the original volume of starch extract (15 mL),   is the starch 

hydrolysis factor (0.9), which refers to the conversion factor that contributes to the 

hydrolysis from starch to glucose, and    is the original dry weight of the samples 

(100 mg). 
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2.2.5 Total dietary fibre content assay 

The total dietary fibre content colorimetric assay measures the non-starch 

polysaccharides within the plant sample. The powdered sample (100 mg) was 

placed in an oven at 100 oC for 1 hour and was then mixed with 2 mL dimethyl 

sulfoxide for 10 mins. The mixture was placed in a boiling water bath for 1 hour to 

disperse and hydrolyse starch granules. Without cooling, the mixture was 

combined with 8 mL of 0.1 M sodium acetate buffer (pH 5.2) and incubated at 40 

oC for 5 mins. α-Amylase (5 mL; 5 U/mL) and pullulanase (0.1 mL; 2.5 U/mL) 

solutions were added and the mixture was incubated at 42 oC for 16 hours. 

Subsequently, 40 mL absolute ethanol was added to the mixture at room 

temperature and left for 1 hour and was centrifuged at 1500 g for 10 mins. The 

supernatant was removed and the residue was washed twice with 50 mL of 85% 

ethanol, and then 40 mL of acetone. The residue was placed in an oven at 65 oC 

for 1 hour. The dried residue was macerated with 2 mL of 12 M sulfuric acid and 

incubated at 35 oC for 1 hour, which was then mixed with 22 mL of water and 

placed in a boiling water bath for 2 hours. This mixture was considered as the 

hydrolysate of the dietary fibre. The total dietary fibre content is expressed as the 

sum of the amount of uronic acid and reducing sugar present in the mixture after 

hydroxylation (Englyst and Hudson, 1987). 

 

To determine the amount of uronic acid, hydrolysate (0.3 mL) was mixed with 0.3 

mL sodium chloride/boric acid solution, which was prepared by dissolving 2 g of 

sodium chloride and 3 g of boric acid in 100 mL deionised water. Then, the mixture 

was mixed with 5 mL concentrated sulfuric acid and incubated at 70 oC for 40 

mins. Dimethylphenol solution was prepared by dissolving 0.1 g of dimethylphenol 
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in 100 mL glacial acetic acid. The mixture was allowed to cool at room 

temperature for 15 mins and was mixed with 0.2 mL dimethylphenol solution. The 

mixture was incubated at room temperature for 15 mins and 200 μL was 

transferred to a 96 well microplate and measured at 450 nm. Heparin was used as 

the positive control and to generate the calibration curve (Englyst and Hudson, 

1987). 

 

To determine the total reducing sugar, dinitrosalicylate solution was prepared by 

dissolving 1 g of 3,5-dinitrosaliylate, 1.6 g of sodium hydroxide and 30 g of sodium 

potassium tartrate in 100 mL of deionised water. The hydrolysate (1 mL) was 

mixed with 2 mL of dinitrosalicylate solution and boiled in a water bath for 10 mins. 

The mixture was allowed to cool down at room temperature for 15 mins and 200 

μL of mixture was transferred to a 96 well microplate and read at 530 nm. Glucose 

was used as the positive control and to generate calibration curve. The total 

dietary fibre content was calculated as the sum of the uronic acid and total 

reducing sugar content as previously described (Englyst and Hudson, 1987). The 

experiment was carried out in triplicates, and the results were expressed as 

milligrams of starch per 100 g DM. 

 

2.2.6 Data analysis 

The statistical analyses were performed on GraphPad Prism version 6.01 

(GraphPad Software, CA, U.S.A.). The data was analysed using either one way 

analysis of variance (ANOVA) or Student’s t-test. 
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2.3 Results and discussion 

2.3.1 Morphological characteristics 

2.3.1.1 Macroscopic characteristics 

Figure 2.1 and 2.2 illustrate the macroscopic characteristics of PLR and PTR, 

respectively. As shown in Figure 2.1, the PLR samples were previously cut into 

small irregular cube with variable sizes. Two out of 23 samples were cut 

longitudinally. The outer surface was dark brown in colour with longitudinal 

wrinkles. The inner surface was yellowish-brown with numerous small pores and 

several distinctive concentric annular rings. The texture was tough, and porous 

with a slightly sweet odour and taste.  

 

In contrast, most of the PTR samples purchased were cut longitudinally into thin 

slices as per pharmacopoeias and monographs (Table 2.1 and 2.2), with only 6 

out of 23 samples in a cubical shape (Figure 2.2). Most of the samples were 

peeled and there were 5 out of 23 samples with outer skin. The peeled outer 

surface is light brown, while the inner surface is yellowish white with several 

distinctive concentric annular rings. The texture is pliable and starchy with a 

slightly sweet odour and taste. 

  

An additional feature that was observed in this study and is normally absent in the 

monographs is the presence of abundant xylem vessels (porous texture) in PLR. 

However, the macroscopic results alone could not differentiate between PLR and 

PTR using these macroscopic characteristics. In addition, the original shape and 

size of the PLR and PTR samples varied significantly. If authentication is based on 

these criteria, PLR10 and PLR23 would be classified as PTR as they are in slices, 
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whereas PTR9, PTR12, PTR13, PTR20, PTR22 and PTR23 would be classified 

as PLR as they are in cubical shape. 

 

It is important to note that smell and taste is one of the crucial features in 

determining the nature of a herb according to TCM theory. Although, these 

characteristics were mentioned in the PPRC, JP and HKCMMS, they were absent 

in the EP and BP. Therefore, the EP and BP may need to be revised to 

incorporate these aspects. 

 

 

Figure 2.1 Morphological characteristics of PLR (Photos taken by Ka H. 

Wong). 
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Figure 2.2 Morphological characteristics of PTR (Photos taken by Ka H. 

Wong). 

 

2.3.1.2 Microscopic characteristics 

In this study, the microscopic characteristics were significantly different between 

PLR and PTR, which were further supported by the results obtained from the 

colorimetric assays. Figure 2.3 shows the microscopic characteristics of fibre 

bundle and calcium oxalate crystals in PLR and PTR. It can be observed that fibre 

bundles were the dominant cell type in PLR. The fibre bundles were thick-walled, 

lignified and surrounded by parenchyma cells with calcium oxalate crystals. They 

were mainly located at the cortex, sometimes positioned around the vessels. Table 
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2.6 illustrates the microscopic characteristics, total starch content and total dietary 

fibre content of PLR and PTR. In general, PLR has dramatically larger fibre 

bundles (area: 0.0075 ± 0.0003 mm2; p<0.01) associated with a greater number of 

fibres per each bundle (32.6800 ± 2.8780; p<0.01) as compared to PTR (area: 

0.0025 ± 0.0002 mm2; number of fibre per bundle: 16.5900 ± 0.9982).  

 

Dietary fibre is defined as the polysaccharides and lignin that are not digested or 

absorbed in the human small intestine. There are two common methods to 

determine the total dietary fibre content, including the use of digestive enzymes 

coupled with high-performance liquid chromatography-mass spectrometry and 

chemical hydroxylation coupled with colorimetric assay (Van Soest et al., 1991). In 

this study, the colorimetric approach was chosen as it utilises a simple chemical 

procedure as compared to the sophisticated analytical instruments. The 

quantitative colorimetric assay demonstrated that the mean of the total dietary 

fibre content in the PLR powdered samples (4.2886 ± 0.3466 g/ 100 g DM) was 

significantly lower (p<0.001) than that in the PTR samples (12.4148 ± 0.4541 g/ 

100 g DM). The lower total dietary fibre content obtained in the PLR samples was 

related to the large and densely distributed xylem vessels which occupied most of 

the space within the cortex and hence, reduced the population of other cell types. 

Additionally, a higher total dietary fibre content was observed in the PTR samples, 

which further supports its application as a food source in Chinese cuisine. 
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Table 2.6 Microscopic characteristics, total starch content and total dietary 

fibre content of PLR (n=4) and PTR (n=4). 

 PLR  PTR 

Xylem diameter (mm) 0.1390 ± 0.0184**  0.0471 ± 0.0109 

Xylem area (mm2) 0.2222 ± 0.0042**  0.0037 ± 0.0015 

Number of fibres per bundle 32.6800 ± 2.8780**  16.5900 ± 0.9982 

Fibre bundle area (mm2) 0.0075 ± 0.0003**  0.0025 ± 0.0002 

Starch diameter (μm) 5.2830 ± 0.5495  4.6790 ± 0.4455 

Total starch content  

(mg starch/ g DM) 

0.5288 ± 1.2559***  76.7954 ± 2.9905 

Total dietary fibre content  

(g/ 100 g DM) 

4.2886 ± 0.3466***  12.4148 ± 0.4541 

 
mg starch/ g DM: milligrams of starch per grams of dried mass; g/ 100 g DM: 

grams of dietary fibre per 100 grams of dried mass** p-value < 0.01; *** p < 

0.001.  

 

Figure 2.4 illustrates the microscopic characteristics of xylem vessels in PLR and 

PTR. It was found that the xylem vessels were elliptical, thick-walled and arranged 

either in radial multiples or solitary for PLR. In addition, it can be observed that 

PLR had significantly larger xylem vessels (diameter: 0.1390 ± 0.0184 mm; area: 

0.2222 ± 0.0042 mm2; p<0.01) distributed densely in the cortex and stele as 

compared to PTR (diameter: 0.0471 ± 0.0109 mm; area: 0.0037 ± 0.0015 mm2). 

The high xylem vessel distribution explains the porous texture of PLR. 

 

Figure 2.5 illustrates the microscopic characteristics of starch granules in PLR and 

PTR. It was observed that starch granules were abundant and distributed in both 

PLR and PTR. In PLR, the granules were spherical, hemispherical or ellipsoidal, 

with a mean diameter of 5.2830 ± 0.5495 μm. They were mostly singular, and at 

times, existed as a compounded granule consisting of 2 to 10 starch granules. In 
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contrast, the starch granules in PTR were frequently found to be a compounded 

granule, which comprised of 2 to 20 individual granules. They were in the shape of 

a sphere or ellipse, with a mean diameter of 4.6790 ± 0.4455 μm. These results 

revealed that the diameter of starch granules was similar between the two species 

(p>0.05) and may not be a suitable criterion for differentiating them. In contrast, 

the mean total starch content in PTR (76.7954 ± 2.9905 mg starch/ g DM; 

p<0.001) was at least seven times greater than that in PLR (10.5288 ± 1.2559 mg 

starch/ g DM). The quantification of the starch content was in agreement with the 

macroscopic and microscopic characteristics observed. Thus, the high total starch 

content explained the starchy texture of PTR and was found to be a suitable 

parameter for the differentiation of PLR and PTR. 
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Figure 2.3 Microscopic characteristics of fibre bundle in (a) PLR and (b) PTR at magnification of 10x and calcium oxalate 

crystal in (c) PLR and (d) PTR at magnification of 40x (objective lens 10x). 
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Figure 2.4 Microscopic characteristics of xylem vessel in (a) PLR and (b) PTR at magnification of 10x and xylem vessel in 

(c) PLR and (d) PTR at magnification of 20x (objective lens 10x). 



Chapter Two: Morphological identification of PLR and PTR  

 89 

 

Figure 2.5 Microscopic characteristics of starch granule in (a) PLR and (b) PTR at magnification of 40x and starch granule 

in (c) PLR and (d) PTR at magnification of 60x (objective lens 10x).
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2.4 Conclusion 

This is the first extensive investigation to demonstrate the macroscopic and 

microscopic differences between PLR and PTR. In addition, these morphological 

differences were further supported by the results obtained from the two 

colorimetric assays. It is anticipated that the combined methods of macroscopy, 

microscopy and colorimetry will contribute towards a detailed understanding of the 

morphological characteristics of PLR and PTR. The results will provide important 

information for the quality control of these two species and subsequently, the use 

of the correct species in clinical practice. Therefore, it is proposed that these 

techniques are employed as part of the criteria for the authentication of PLR and 

PTR in the pharmacopoeias and monographs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Three: Comparing the chemical profiles of PLR and PTR  

 91 

 

 

 

 

 

 

Chapter Three                                                    

Comparing the chemical profiles of Puerariae 

Lobatae Radix and Puerariae Thomsonii Radix  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Three: Comparing the chemical profiles of PLR and PTR  

 92 

3.1 Introduction 

The chemical profile of the herb is defined by the types of chemical constituents 

within the herb. One approach that provides a preliminary indication of the types of 

chemical families present or absent in the herb is to carry out several qualitative 

experiments (Table 3.1). These qualitative tests are based on treating the sample 

with a succession of reagents, which only react with a particular group of chemical 

family (Raaman, 2006). These tests have been applied to identify the presence of 

triterpenoids, tannins, starch and proteins in Thespesia Populneae Radix (Patil et 

al., 2012), and saponins, glycosides, phytosteroids and phenolic compounds in 

Costus Speciosus Rhizoma (Verma and Khosa, 2012). The experimental 

procedures are simple and convenient and the results are generated instantly. 

 

Another approach for analysing the chemical profile of a herb is to use colorimetric 

assays, which takes into account of all the chemical constituents from a specific 

chemical family. The most commonly used colorimetric method is quantifying the 

total amount of phenolics and flavonoids in a herbal sample (Chang et al., 2002). 

Although PLR has been shown to have a different chemical profile as compared to 

PTR, there is no study on quantifying the total flavonoid content using colorimetry 

and investigating how these chemical differences between PLR and PTR could 

impact of their respective antioxidant capacity. In a previous study (Zhang et al., 

2011a), the 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity of PLR and 

PTR was assessed by HPLC coupled with flow injection chemiluminescence. 

Hierarchical clustering analysis demonstrated that the DPPH-active 

chromatographic fingerprint of PLR was significantly different from PTR. However, 

this approach is time-consuming and requires special instruments, which restricts 



Chapter Three: Comparing the chemical profiles of PLR and PTR  

 93 

its application as a screening method. On the contrary, the adaptation of 

colorimetry with ELISA 96 well plate is rapid and convenient and hence, can be 

applied as a high-throughput screening method. Therefore, the investigation on 

the total flavonoid content (TFC) (Chapter 1 p.33) and DPPH antioxidant capacity 

(Chapter 1 p.34) of PLR and PTR using colorimetry could provide further insight 

on the chemical profiles of these two species and might potentially be used as a 

quality control method. 

 

The quantification of major chemical constituent puerarin using high–performance 

liquid chromatography (HPLC) is recommended by various pharmacopoeias and 

monographs for the authentication of PLR and PTR (BP, 2014a; EP, 2012a, b; JP, 

2011; PPRC, 2010a, b). Ultra-performance liquid chromatography (UPLC) refers 

to the use of a sub-2 micro particle size with narrow bore column operated under 

high pressure (≥1000 bar) (Grumbach et al., 2009; Lough and Wainer, 1995; 

Naushad and Khan, 2014). A recent study demonstrated that UPLC significantly 

decreased the analytical run time 10-fold and solvent consumption 20-fold as 

compared to conventional HPLC in analysing ginsenosides from Ginseng Radix 

(Yang et al., 2010). UPLC has been applied for the quality control of Salviae 

Miltiorrhizae Radix (Zhong et al., 2009), Panax Quinquefolii Radix (Zhang et al., 

2011b), Coptidis Rhizoma (Kong et al., 2009) and Magnoliae Officinalis Cortex 

(Wang et al., 2010). However, the application of UPLC in comparing the chemical 

profile between PLR and PTR has not yet been explored. 

 

As compared to the vast amount of literature which focuses on the isolation and 

identification of chemical constituents from PLR and PTR, there are only a few 
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studies focusing on comparing and quantifying the chemical components of these 

two species. Therefore, the aim of this chapter was to compare the chemical 

characteristics of PLR and PTR (1) qualitatively using established chemical tests 

and (2) quantitatively using a newly established UPLC method (verified by UPLC-

MS). In this study, the TFC of PLR and PTR was quantified and correlated to their 

respective DPPH activity. In addition to the results obtained from the 

morphological characteristics in Chapter 2, the qualitative and quantitative analysis 

of the chemical constituents will provide definitive information on the identity of the 

samples. The validated UPLC condition will be subsequently used in obtaining 

chromatographic fingerprints in Chapter 4 and 5. 

3.2 Methods and materials 

3.2.1 Solvents and chemical reagents 

HPLC-graded acetonitrile were purchased from Thermo Fisher Scientific (VIC, 

Australia). Puerarin (>98%), daidzin (>99%), daidzein (>99%), genistin (>98%) 

and genistein (>99%) were obtained from Tauto Biotech (Shanghai, China). All 

other chemicals and solvents were of analytical grade and were obtained from 

Sigma-Aldrich unless otherwise stated (NSW, Australia). 

 

3.2.2 Herbal samples 

The details were mentioned in Chapter 2, section 2.2.2 (p.75). 

 

3.2.3 Qualitative chemical tests 

The powdered PLR and PTR samples were extracted using solvents with 

increasing polarity as follows: hexane, dichloromethane, ethyl acetate, ethanol and 
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water. The mixture was filtered through a funnel with a Whatman No.1 filter paper. 

The filtrate were then subjected to ten common qualitative chemical tests for the 

identification of alkaloids, carbohydrates, anthraquinone glycosides, saponin, 

proteins, amino acids, phytosterols, flavonoids, indoles and tannins as previously 

described (Raaman, 2006) (Table 3.1). Briefly, the extract was mixed with the 

testing reagent (2 – 3 mL) and the colour change was recorded. A chemical family 

was regarded as “present” if the colour change was the same as the positive 

control, whereas no colour change was regarded as “absent” of such a chemical. 

 

3.2.4 Herbal samples extraction - sonication 

The herbal materials were dried at 40 oC for 24 hours and were kept in a 

desiccator prior to use. Each sample was ground into a fine powder using a 

pulveriser and was sieved by a No.188 (177 µm) sieve. The powdered sample 

was extracted by mixing with absolute ethanol (1g: 50 mL) and was then placed in 

a sonication bath at a frequency of 40 Hz for 30 mins. The mixture was filtered 

through a Buchner funnel using a Whatman No.1 filter paper under vacuum. The 

ethanolic filtrate was evaporated at 40 oC under vacuum for 2 hours using a rotary 

evaporator. Then, the dried ethanolic extract was stored in a glass scintillation vial 

at −20 oC prior to further analysis. 
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Table 3.1 Summary of the experimental procedures of common qualitative tests (Raaman, 2006). 

 Reagent preparation Procedures Positive control Indication 

Alkaloid     

    Dragendroff’s 
test 

Boil 5.2 g Bi2O2CO3 + 4 g NaI in 50 mL 
acetic acid; Filtrate and mix with 160 mL 
ethyl acetate and 1 mL water 

Mix 5 mL extract + 2 mL 
reagent 

Berberine Orange colour 
mixture 

    Wagner’s test Dissolve 1.27 g I2 + 3 g NaI in 5 mL water; 
Add water to 100 mL 

Mix 5 mL extract + 3 drops 
reagent 

Berberine Reddish-brown 
precipitate 

Carbohydrates     

    Fehling’s test Dissolve 6.932 g CuSO4 in 100 mL water; 
Dissolve 34.6 g KNaC4H4O6 + 10 g NaOH 
in 100 mL water; Mix the two solution in 
equal volume 

Mix 1 mL extract + 1 mL 
reagent 

Starch Red precipitate 

    Benedict’s test Boil 17.3 g Na3C6H5O7 + 10 g Na2CO3 in 80 
mL water; Mix with 1.73 g CuSO4 

Mix 1 mL extract + 1 mL 
reagent; Boil for 5 mins 

Starch Orange 
precipitate 

    Molish’s test Dissolve 10 g α-naphthol in 100 mL 
absolute ethanol 

Mix 1 mL extract + 0.2 mL 
reagent; Add 1 mL H2SO4 

Starch Purple ring 

Anthraquinone glycosides 

    Borntrager’s test Boil 10 mL extract with 10 mL HCl for 2 hrs Mix 2 mL extract + 3 mL 
CHCl3; Remove aqueous 
layer and add 10% NH3 

 

 

Emodin Reddish-
orange-
coloured 
mixture 
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Saponins     

    Froth test  Dissolve 10 mL extract in 10 
mL water; Shake for 5 mins 

Total saponins Stable foam 

Proteins     

    Biuret’s test Dissolve 10 g NaOH in 100 mL water; 
Dissolve 1 g CuSO4 in 100 mL water 

Mix 2 mL extract + 2 mL 
NaOH; Add 3 drops CuSO4 

Gelatin Purplish-pink-
coloured 
mixture 

Amino acids     

    Ninhydrin test Dissolve 5 g ninhydrin in 100 mL acetone Mix 2 mL extract + 2 mL 
reagent 

Amino acid Purple-
coloured 
mixture 

Steroids     
    Salkowski’s test  Mix 1 mL extract + 2 mL 

CHCl3 + 2 mL H2SO4 
Steroid Deep red-

coloured 
mixture 

Flavonoids     
    Shinoda’s test  Mix 1 mL extract + 2 mL 95% 

EtOH + 5 drops HCl + 0.3 g 
magnesium 

Rutin Pink-coloured 
mixture 

Sodium 
hydroxide test 

Dissolve 10 g NaOH in 100 mL water Mix 1 mL extract + 1 mL 
reagent + 5 drops HCl  

Rutin Pink-coloured 
mixture 

Indoles     
    Ehrlich’s test Dissolve 1 g p-dimethylaminobenzaldehyde 

in 50 mL absolute ethanol + 50 mL HCl 
Mix 1 mL extract + 1 mL 
reagent 

Hydroxytryptami
ne 

Change from 
yellow to 
colourless 

Tannins     
    Vanillin              

hydrochloric acid 
test 

Dissolve 4.8 g vanillin in 60 mL methanol + 
30 mL HCl + 10 mL water 

Mix 1 mL extract + 1 mL 
reagent 

Catechin Reddish-pink-
coloured 
mixture 
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3.2.5 UPLC condition 

The UPLC analyses was performed on a Waters Acquity UPLC® H series 

(Waters, MA, U.S.A.) equipped with Waters Empower 3 Chromatography Data 

software as described in my previous study (Wong et al., 2013). Acetic acid (0.3%) 

in water was used as the aqueous phase (solvent A), while 0.3% acetic acid in 

acetonitrile was used as the organic phase (solvent B).  The flow rate was set at 

0.2 mL/min and the binary elution is shown in Table 3.2 (Wong et al., 2013). The 

system was connected to a Waters BEH C18 column (1.7 µm, 2.1 mm × 150 mm) 

with a Waters BEH C18 guard column. The injection volume was 0.5 µL, while the 

detection wavelength was set at 254 nm. For the UPLC analysis, the PLR and 

PTR ethanolic extracts were redissolved in absolute ethanol (PLR: 1 mg/mL; PTR: 

5 mg/mL) and filtered through a 0.22 μm polyvinylidene fluoride (PVDF) syringe 

filter. 

 

Table 3.2 UPLC gradient profile for analysis of chemical constituents of PLR 

and PTR. 

Retention time (min) Solvent A (%) Solvent B (%) 

0 90 10 

7 75 25 

8 72 28 

12 68 32 

13 60 40 

15 60 40 

16 90 10 

20 90 10 
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3.2.6 UPLC method validation 

The method was validated according to the International Conference on 

Harmonisation guideline (ICH, 2005). The stock standard solutions of the five 

standard compounds, including puerarin, daidzin, genistin, daidzein and genistein 

were prepared and diluted with methanol to appropriate concentrations for the 

construction of the calibration curves. Each calibration curve was established by 

running the authentic standard compound at ten different concentrations (0.2 – 

800 μg/mL) in triplicate. The calibration curve was obtained by plotting mean peak 

area versus the concentration of each reference compound. The limit of detection 

(LOD) and limit of quantification (LOQ) were defined as 3 and 10 times of the 

signal-to-noise ratio, respectively. The precision and accuracy of the 

chromatographic method were established by analysing five replicates of quality 

control samples at low, medium and high concentrations (puerarin and daidzin: 

160, 320, 640 μg/mL; genistin, daidzein and genistein: 100, 200, 400 μg/mL). To 

determine the intra-day precision and accuracy for each standard compound, the 

quality control samples were examined six times within one day. The inter-day 

precision and accuracy were determined by analysing the quality control samples 

on three consecutive days, in which each sample was injected six times daily. The 

precision was expressed as the relative standard deviation (RSD (%)) of repeated 

measurements, whereas accuracy was expressed as the relative error (RE (%)), 

which was calculated using the formula: RE (%) = [(mean of observed 

concentration – spiked concentration)/ spiked concentration] × 100.  
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3.2.7 Identification of chemical constituents using UPLC-MS/MS 

The mass spectrometry analysis was carried on a similar Waters Acquity series 

consisting of a H class binary solvent manager, an Acquity sample manager-FTN, 

an Acquity DAD detector and a Xevo tandem triple quadropole mass spectrometer 

equipped with a Zspray ESI interface (UPLC-MS/MS; Waters, MA, U.S.A.). 

Standard autotune was applied to adjust the MS parameters for full mass scan 

range prior to analysis. ESI positive mode was chosen to detect the ion 

fragmentation throughout the experiment. Nitrogen was used as a nebulising gas 

with a temperature of 300 oC and at a flow rate of 1000 L/hr. The capillary voltage 

was set at 3.5 kV with a cone voltage of 85 V. All analyses were performed with a 

mass precision of 0.5 atomic mass units (amu). In multiple reaction monitoring 

(MRM) mode, the collision energy for each standard was optimised using direction 

infusion with increasing energy from 5 – 50 eV. The optimal collision energy for 

puerarin, daidzein, genistin, daidzin and genistin was set at 20, 30, 30, 20 and 15 

eV, respectively. 

 

3.2.8 Total flavonoid content 

Total flavonoid content (TFC) was measured as described previously (Bao et al., 

2005). Briefly, 0.5 mL of diluted ethanolic extract was mixed with 2.0 mL of 

deionised water and 0.15 mL of sodium nitrite (5% w/v). After 5 min, 0.15 mL of 

aluminium chloride (10% w/v) was added. Five minutes later, 1 mL of sodium 

hydroxide (1M) was added to the mixture and mixed thoroughly. The reaction 

mixture was kept for another 15 min at room temperature. The absorbance was 

measured at 415 nm and was expressed as gram of quercetin equivalents 

(QE)/100 g of dried extract (DE). 
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3.2.9 2,2-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay 

The DPPH free radical scavenging activity was carried out as previously described 

(Cheng et al., 2006). The DPPH stock solution was prepared by dissolving 24 mg 

in 100 mL methanol. The stock solution was further diluted with methanol until the 

absorbance of the solution reached 1.0 ± 0.05 Abs at 550 nm. The DPPH working 

solution was prepared daily. Subsequently, 10 µL of diluted ethanolic extract was 

mixed with 200 µL of DPPH solution. The mixture was incubated in the dark at 

room temperature for 30 mins. The absorbance was measured at 550 nm and was 

expressed as milligram trolox equivalent antioxidant capacity (TEAC)/100 g of DE. 

 

3.2.10 Data analysis 

The statistical analyses were performed on GraphPad Prism version 6.01 

(GraphPad Software, CA, U.S.A.). The data was analysed using either one way 

analysis of variance (ANOVA) or Student’s t-test. 
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3.3 Results and discussion 

3.3.1 Qualitative phytochemical characterisation 

As shown in Table 3.3, PLR and PTR shared similar types of chemical families 

such as flavonoids, saponins and carbohydrates. Flavonoids were present in the 

ethyl acetate, ethanol and water extracts. Carbohydrates were found in both the 

ethanol and water extract. The presence of carbohydrates was in good agreement 

with the colorimetric assay results obtained in Chapter 2 (Table 2.6 p.85), which 

suggested that starch was the main type of carbohydrate in both species. On the 

contrary, alkaloids, anthraquinone glycosides, protein, amino acids, phytosterols, 

insoles and tannins were not detected in any of the solvent extracts for both 

species.  

 

Traces of saponins were detected in the water extracts of both PLR and PTR, but 

were absent in the non-polar solvent extracts. Previous studies suggested that 

oleanene-type triterpene glycosides are the major type of saponins in PLR and 

PTR, which are soluble in water and methanol under heat. The yield of the total 

flavonoid fraction was three times greater than that of the total saponin fraction, 

suggesting the dominance of the flavonoid compounds (Arao et al., 1996; Arao et 

al., 1997). 

 

To determine which solvent was more suitable for extracting chemical constituents 

from PLR and PTR, several factors needed to be considered. Since it has been 

found that flavonoids, in particular isoflavonoids, are the major chemical 

component and is believed to contribute to the pharmacological activities of PLR 

and PTR, solvents with high polarity such as ethanol and water should be chosen. 
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However, the use of water as the extraction solvent would extract more 

carbohydrates as compared to ethanol. From previous experience, it has been 

observed that carbohydrates are more likely to block the PVDF filter during 

filtration and the pre-column during chromatographic analysis. Additionally, the use 

of ethanol provides a complete chemical profile as it extracts both polar and non-

polar compounds and is easier to concentrate down as compared to water. 

Therefore, ethanol was chosen as the extracting solvent and this extract would be 

used in the subsequent analyses. 

 

3.3.2 UPLC method validation 

The LOD, LOQ and calibration curve parameters of puerarin, daidzin, genistin, 

daidzein and genistein are illustrated in Table 3.4. The LOD and LOQ of the 

standard compounds were less than 0.08 and 0.27 μg/mL, respectively. These 

results were similar to a previously published HPLC method (Du et al., 2010). 

Correlation coefficients (r2 ≥ 0.9995) with wide linear ranges (0.2 – 800 μg/mL) 

were obtained, which indicated that the relationships between the reference 

compounds and peak area were highly correlated. In addition, this wide linear 

range is suitable for analysing samples with a variable amount of chemicals. The 

intra- and inter-day precisions and accuracies are summarised in Table 3.5. The 

average RSDs of the intra-day precision at low, medium and high concentrations 

were 0.37%, 0.17% and 0.65%, respectively, whereas the average inter-day 

precision was 2.69%, 1.59% and 1.14%, respectively. Furthermore, the average 

intra-day accuracies at low, medium and high concentration were 1.54%, 2.97% 

and 2.56%, respectively, whereas the average inter-day accuracies were 2.29%, 

3.89% and 4.34%, respectively.  
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Table 3.3 Qualitative chemical characteristics of various solvent fractions extracted from PLR and PTR. 

 Puerariae Lobatae Radix Puerariae Thomsonii Radix 

 Hexane  Dichloromethane Ethyl 

acetate 

Ethanol  Water  Hexane  Dichloromethane Ethyl 

acetate 

Ethanol  Water  

Alkaloids 

Dragendroff - - - - - - - - - - 

Wagner - - - - - - - - - - 

Carbohydrates 

Fehling - - - + + - - - + + 

Benedict - - - + + - - - + + 

Molish - - - + + - - - + + 

Anthraquinone glycosides 

Borntrager - - - - - - - - - - 

Saponins 

Froth - - - - + - - - - + 

Proteins 

Biuret - - - - - - - - - - 

Amino acids 

Ninhydrin - - - - - - - - - - 

Phytosterols 

Salkowski - - - - - - - - - - 

Flavonoids 

Shinoda - - + + + - - - + + 

NaOH - - + + + - - - + + 

Indoles 

Ehrlish - - - - - - - - - - 

Tannins 

Vanillin-HCl - - - - - - - - - - 
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These results revealed that the developed chromatographic method had good 

accuracy and repeatability and hence can be applied to analyse the samples in the 

subsequent experiments. 

 

Table 3.4 Limit of detection (LOD), limit of quantification (LOQ) and 

calibration curve parameters of five standard compounds. 

 Linear range 

(μg/mL) 

Correlation 

coefficient (r
2
) 

Slope  y-intercept LOD 

(μg/mL) 

LOQ 

(μg/mL) 

Puerarin  0.2 – 800  0.9995 1.055 × 10
7
 2.084 × 10

4
 0.04 0.13 

Daidzin  1 – 800  0.9996 1.039 × 10
7
 2.568 × 10

4
 0.08 0.27 

Genistin  1 – 600  0.9995 1.257 × 10
7
 1.687 × 10

4
 0.07 0.23 

Daidzein  1 – 600  0.9995 1.535 × 10
7
 3.860 × 10

4
 0.06 0.20 

Genistein  0.2 – 500  0.9996 1.964 × 10
7
 4.650 × 10

3
 0.05 0.17 
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Table 3.5 Validation of the intra- and inter-day precisions and accuracies of five standard compounds at low, medium and 

high concentration levels. 

Compounds Spiked 

concentration 

(μg/mL) 

Intra-day (n = 6) Inter-day (n = 18) 

Observed concentration  

(μg/mL) 
a
 

Precision 

RSD (%) 
b
 

Accuracy 

(%) 
c
 

Observed concentration  

(μg/mL) 
a
 

Precision 

RSD (%) 
b
 

Accuracy 

(%) 
c
 

Puerarin  160 163.985 ± 0.510 0.307 2.490 164.856 ± 4.777 2.863 3.035 

 320 331.499 ± 0.469 0.141 3.593 334.001 ± 5.344 1.591 4.375 

 640 665.703 ± 4.431 0.664 4.016 677.678 ± 8.193 1.205 5.887 

Daidzin 160 150.871 ± 0.600 0.391 -5.705 151.861 ± 4.292 2.781 -5.087 

 320 306.030 ± 0.478 0.155 -4.366 308.348 ± 5.118 1.647 -3.641 

 640 611.741 ± 3.914 0.637 -4.416 622.155 ± 7.365 1.179 -2.788 

Genistin 100 105.176 ± 0.406 0.381 5.176 105.835 ± 2.858 2.666 5.835 

 200 213.231 ± 0.326 0.152 6.615 215.003 ± 3.441 1.590 7.502 

 400 425.478 ± 2.823 0.661 6.370 433.123 ± 5.275 1.214 8.281 

Daidzein 100 101.404 ± 0.391 0.377 1.404 102.369 ± 2.583 2.463 2.369 

 200 206.980 ± 0.327 0.156 3.490 209.447 ± 3.039 1.434 4.724 

 400 414.831 ± 2.736 0.656 3.708 423.727 ± 4.410 1.035 5.932 

Genistein 100 104.318 ± 0.430 0.411 4.318 105.289 ± 2.804 2.657 5.289 

 200 211.009 ± 0.462 0.219 5.504 212.966 ± 3.543 1.662 6.483 

 400 412.496 ± 2.565 0.621 3.124 417.631 ± 4.348 1.041 4.408 

 

aMean ± standard deviation (SD) 

bRelative standard deviation (RSD) % = (SD/mean) × 100 

cAccuracy % = [(mean observed concentration – spiked concentration) / spiked concentration] x 100 
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3.3.3 Quantification of chemical content by UPLC  

Using UPLC, mean chromatograms of the PLR and PTR and the amount of the 

major chemical constituents are illustrated in Figure 3.1 and 3.2, respectively. The 

mean amount of puerarin (peak 2), daidzin (peak 5), genistin (peak 6), daidzein 

(peak 7) and genistein (peak 8) was found to be 60.69 ± 4.51, 11.83 ± 1.10, 3.00 ± 

0.35, 2.31 ± 0.25 and 0.99 ± 0.05 mg/g DM, respectively in PLR. As anticipated, 

the overall chemical content in PTR was significantly lower than that in PLR. In the 

PTR samples, the mean amount of puerarin, daidzin, daidzein and genistein was 

found to be 5.08 ± 0.49, 1.37 ± 0.35, 4.73 ± 0.75 and 0.72 ± 0.06 mg/g DM, 

respectively. Genistin was not detected in the PTR ethanol extracts.  

 

Furthermore, the UPLC results revealed that puerarin at 6.24 min was the 

dominant chemical constituent in both species and was higher in the PLR samples 

(6.07 ± 0.05% (w/w)) as compared to the PTR samples (0.51 ± 0.05% (w/w)). This 

result indicates that all the samples met the minimal requirement of puerarin 

content illustrated in the PPRC, EP, BP and HKCMMS (Table 1.4 p.64). Indeed, it 

was observed that peak 1 at 4.75 min, peak 3 at 6.17 min and peak 4 at 6.36 min 

were only found in PLR and were absent in PTR.  
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Figure 3.1 Mean UPLC chromatograms of 22 PLR (red) and 20 PTR (green) samples. (1) Unknown; (2) Puerarin; (3) 

Unknown; (4) Unknown; (5) Daidzin; (6) Genistin; (7) Daidzein; (8) Genistein. 
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Figure 3.2 Quantification of major chemical constituents from 22 PLR and 20 

PTR samples using UPLC. (a) Puerarin; (b) Daidzin; (c) Genistin; (d) Daidzein; 

(e) Genistein; mg/g DM: milligrams of chemical per gram of dried mass; * p < 

0.05; ** p < 0.01; *** p < 0.001. (n = 42) Experiment was performed in triplicate. 

 

3.3.4 Identification of the major chemical markers using UPLC-MS/MS 

The identities of the major chemical components were identified by comparing the 

retention time and UV spectrum (Appendix I p.230) of the reference standards and 

were confirmed by comparing with the fragmentation pathway (Appendix II p. 232) 
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described in previous studies (Li et al., 2007; Lin et al., 2005). Preliminary runs were 

performed to compare the two different ionisation modes, ESI positive and ESI 

negative. Higher signal intensity and enhanced fragmentation were obtained with ESI 

positive mode and hence, it was chosen in the subsequent UPLC-MS/MS analysis. 

The peaks at 6.01, 7.37, 9.44, 12.87 and 16.21 min were identified as puerarin 

(417.10 m/z), daidzin (416.97 m/z), genistin (432.91 m/z), daidzein (255.07 m/z) and 

genistein (270.82 m/z), respectively. Both puerarin and daidzin share the same 

molecular mass (416.38 g/mol) and formula (C21H20O9). What differentiates them is 

the position of the attached glucose. In puerarin, the glucose is attached to the C-8 

position of the aromatic A ring, forming a C-glucosidic bond. Since the C-glucosidic 

bond is much more rigid than the O-glucosidic bond, a different fragmentation 

pathway was observed (Prasain et al., 2003; Zhang et al., 2010). Firstly, a fragment 

of C4H8O4 was lost, resulting in a cation [M+H-C4H8O4]
+ with a mass of 297.07 m/z. 

The glucose remnant further disintegrated into a [M+H-C4H8O4-CHO]+ ion, which 

contributed to the loss of a CHO fragment with a mass of 29 m/z (Figure 3.3) (Li et 

al., 2007; Lin et al., 2005). 

 

Figure 3.3 Fragmentation pathway of puerarin in ESI positive ion mode. 
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By comparing the molecular weight and fragmentation pathway with literature, peaks 

at 4.75 (peak 1) and 6.36 (peak 4) min were identified as 3’-hydroxypuerarin (433.04 

m/z) and 3’-methoxypuerarin (447.15 m/z), respectively. These two compounds 

share the chemical structure as puerarin, except with the addition of either a hydroxyl 

(-OH) or methoxy (-OCH3) group on the C-3 position of the aromatic B ring (Figure 

3.4). These two compounds followed the same fragmentation pathway as puerarin, 

except that for each individual ion fragment, the mass is higher by 16 and 30 m/z, 

respectively (Lin et al., 2005; Prasain et al., 2003).  

 

The peak at 6.17 (peak 3) min was identified as 6”-O-D-xylosylpuerarin, which 

generated a [M+H]+ ion at 549.18 m/z. Interestingly, the chemical structure of 6”-O-D-

xylosylpuerarin is similar to that of puerarin, with an addition of an xylose moiety 

attached to the glucose moiety of puerarin. After the detachment of the xylose 

moiety, a fragment cation [M+H-xyl]+ with a mass of 417.82 m/z was generated, 

which is the same as the [M+H]+ ion of puerarin. Hence, this fragment ion followed 

the same fragmentation pathway as puerarin (Li et al., 2007; Prasain et al., 2007). 
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Figure 3.4 Fragmentation pathway of 3’-hydroxypuerarin, 3’-methoxypuerarin  

and 6”-O-D-oxylosylpuerarin to puerarin in ESI positive ion mode. 

 

3.3.5 Total flavonoid content and antioxidant capacity 

Figure 3.5 illustrates the TFC and DPPH free radical scavenging capacity of the 

ethanolic extracts of PLR and PTR. The results showed that the PLR ethanolic 

extracts had significantly greater TFC (p<0.001) and DPPH antioxidant capacity 

(p<0.001) as compared to PTR. For PLR, the mean values of the TFC and DPPH 

assay were 108.28 ± 2.49 g QE/ 100 g DE and 133.70 ± 3.10 µM TEAC/ 100 g DE, 

respectively. For the PTR ethanolic extracts, the mean TFC and DPPH values were 

24.51 ± 2.84 g QE/ 100 g DE and 27.24 ± 1.80 µM TEAC/ 100 g DE, respectively. 

The mean values of TFC correlated well with the mean values of the DPPH activity 

with a correlation coefficient of 0.9430 (Figure 3.5c). 
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Figure 3.5 Correlation between total flavonoid content and DPPH antioxidant 

capacity. (a) Total flavonoid content assay; (b) DPPH free radical scavenging 

assay; (c) Correlation between total flavonoid content and DPPH capacity of 

PLR and PTR; mg GAE/ 100 g DE: mg gallic acid equivalent per 100 g of dried 

extract; µM TEAC/ 100 g DM: µM trolox equivalent antioxidant capacity 

(TEAC)/100 g of dried extract; (n = 42) *** p < 0.001. Experiment was performed 

in triplicate. 

 

The chemical profiles of PLR and PTR were summarised in Table 3.6. Isoflavonoids 

have been shown to possess strong reducing power and can act as an electron 

donor in a redox reaction. The chemical colorimetric assays revealed that the TFC in 

the PLR ethanolic extracts were significantly greater than in the PTR ethanolic 

extracts, which was in a good agreement with the results obtained from the UPLC 

quantification. Additionally, the DPPH antioxidant assay demonstrated that the PLR 

ethanolic extracts possessed superior free radical scavenging activity as compared 
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to the PTR ethanolic extracts. These results were correlated to their differences in 

the chemical contents obtained from the TFC colorimetric assay and were in good 

agreement with previous studies, which suggested that the chemical content 

contributed to the antioxidant activity of a herb. The higher the content of phenolic 

and flavonoid compounds, the greater the free radical scavenging capacity (Kam et 

al., 2013; Malencic et al., 2007). This phenomenon explained the superior radical 

scavenging capacity of PLR as it has a significantly greater amount of TFC compared 

to PTR. In another study (Jiang et al., 2005), HPLC and peroxyl radical 2,2’-azo-bis-

(2-amindinopropane) dihydrochloride were used to assess the chemical content and 

antioxidant capacity, respectively of PLR and PTR. The results showed that the 

amount of puerarin, daidzin and daidzein in the PLR water extract was five, three and 

three times, respectively greater than in the PTR water extract. Furthermore, the free 

radical scavenging capacity of the PLR water extract was five times greater than in 

the PTR water extract (Jiang et al., 2005). Such reducing capacity is beneficial to 

various diseases as it may rebalance the cellular ROS and hence, offset the 

oxidative stress. The higher antioxidant capacities in PLR may also related to the 

presence of 3’-hydroxypuerarin and 3’-methoxypuerarin, which are absent in PTR. 3’-

Hydroxypuerarin and 3’-methoxypuerarin have been reported to possess antioxidant 

property against peroxynitrite, nitric oxide, superoxide anion and DPPH free radical 

(Jin et al., 2012).  
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Table 3.6 Summary of the chemical profiles of PLR and PTR. 

 PLR PTR 

Chemicals types 

detected in qualitative 

assays 

Flavonoids, saponins, 

carbohydrates 

Flavonoids, saponins, 

carbohydrates 

Chemicals detected in 

UPLC 

Puerarin, daidzin, genistin, 

daidzein, genistein 

Puerarin, daidzin, 

daidzein, genistein 

TPC High Low 

DPPH High Low 

 

3.4 Conclusion 

In this study, the qualitative and quantitative chemical assays confirmed that 

flavonoids, in particular isoflavonoids, were the major chemical constituents in both 

PLR and PTR. To support these results, a rapid UPLC method for the quantification 

of chemical constituents in PLR and PTR was developed and validated. Puerarin was 

the major chemical constituent in both species. Puerarin, daidzin and daidzein are 

the common chemicals found in both species. The amount of 3’-hydroxypuerarin, 3’-

methoxypuerarin, 6”-O-D-oxylsylpuerarin and genistin in PLR were significantly 

greater than PTR. Furthermore, the PLR ethanolic extracts has been shown to 

possess significantly higher amount of total phenolic content and DPPH scavenging 

capacity as compared to the PTR ethanolic extracts. The results obtained from this 

study provide further information in authenticating the species of the samples and the 

confirmed species identity will be used as one of the criteria to build the classification 

models in subsequent analyses. 
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Pueraria lobata and Pueraria thomsonii using partial least squares discriminant 

analysis (PLS-DA). J Pharm Biomed Anal., 84 5-13. 
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4.1 Introduction 

Single or a few chemical markers are commonly used as a tool for the quality 

control of herbal materials and their products. However, there are obvious 

problems with this approach as the chemical marker may not be the most 

pharmacologically active component of the herb. It may be present in other 

species or herb families and may not be available as a reference standard. For the 

authentication of PLR and PTR, the major chemical component puerarin is used 

as the chemical marker. Puerarin alone does not represent the complexity of PLR 

and PTR. Puerarin also exists in other species within the Pueraria genus, including 

Pueraria omeiensis and P. phaseolides and its content varies vary due to harvest 

season, habitat, rainfall, latitude, soil conditions and other factors (Wong et al., 

2011). Therefore, it is necessary to examine whether the use of puerarin alone is 

sufficient to differentiate PLR from PTR. 

 

To address the issues of using a single chemical marker, chemical fingerprint 

analysis is introduced, which defines a unique pattern of a herb and reflects the 

presence of multiple chemical constituents. This approach follows the fundamental 

holistic theory of traditional Chinese medicines as all chemicals may contribute to 

the quality, safety and efficacy of a herbal medicine as therapeutic effects are 

based on the additive and/or synergistic interactions of numerous components 

(Tistaert et al., 2011a). Another major advantage of using the entire 

chromatographic fingerprint is that calibration curves and the quantification of 

chemical marker(s) are not required (Liang et al., 2010). In this study, 

chromatographic fingerprints of PLR and PTR based on the UPLC condition 

established in Chapter 3 are investigated.  
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The complexity of the whole fingerprint of the herb makes it difficult to assess the 

subtle differences between samples manually. Thus, multivariate statistical 

analysis combined with the fingerprint pattern has been widely used for metabolic 

profiling and the characterisation of various plants, food and biological tissues 

(Arvanitoyannis and Vlachos, 2009; Gad et al., 2013; Madsen et al., 2010). 

Several multivariate analytic methods have been applied in the quality control of 

herbal medicines (Alaerts et al., 2010; Berrueta et al., 2007; Tistaert et al., 2011a). 

Zhang and his colleagues (Zhang et al., 2011a) used HPLC in conjunction with 

flow injection chemiluminescence to correlate chromatographic peaks with their 

corresponding antioxidant activity. Similarity analysis was unable to differentiate 

PLR from PTR, whereas two distinct clusters of the species were obtained in 

hierarchical clustering analysis. In another study, similarity analysis failed to 

determine the geographical origins of PLR using the HPLC chromatographic 

fingerprints (Zhao et al., 2011). Furthermore, Lau and his colleagues (Lau et al., 

2009) used near-infrared (NIR) spectroscopy to authenticate PLR and PTR. Linear 

discriminant analysis and soft independent modelling of class analogy models 

were constructed and achieved a 100% classification rate. However, unlike liquid 

chromatographic analyses, the use of NIR spectroscopy alone was unable to 

identify important chemical components, which could differentiate the two species.  

 

It can be observed that the failure of most of the previous studies may be related 

to an inappropriate choice of analytical measurement and/or multivariate analysis. 

The limited samples size could also impact on the quality of the data obtained. In 

this study, partial least squares-discriminant analysis (PLS-DA) was employed as 

it determines the maximal covariance between   and   matrix, which is lacking in 
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supervised pattern recognition analysis such as similarity analysis and hierarchical 

clustering analysis. This technique has been successfully applied in the 

differentiation of Citri Reticulatae Pericarpium from Citri Aurantii Pericarpium 

(Tistaert et al., 2011b), Scutellariae Radix from six different geographical origins 

(Li et al., 2011b) and Phyllanthus Niruri Herba and Phyllanthus Tenellus Herba 

from Phyllanthus Urinaria Herba, Phyllanthus Caroliniensis Herba, Phyllanthus 

Amarus Herba and Phyllanthus Stipulates Herba (Martins et al., 2011).  

 

The authentication of raw herbal materials used in manufacturing herbal products 

is particularly important if there are one or more similar species available in the 

market as with Pueraria species. Herbal granules are now becoming one of the 

major dosage forms for delivering herbs in Asian and Western countries due to 

their ease of administration, transport and storage. Granules are formulated by 

mixing the concentrated water extract of a herb, combined with other excipients 

such as starch, dextrin, lactose and soluble fibre and presenting as a dried powder 

(Luo et al., 2012). Unlike orthodox prescription medicines, herbal granules are less 

strictly regulated and hence, their formulations and qualities may vary from 

different manufacturers. This could have a major impact on their quality, safety 

and efficacy.  

 

To the best of my knowledge, there is no publication focusing on the differentiation 

of PLR and PTR using PLS-DA and no studies have investigated the quality of 

commercial PLR granules available in the market. Therefore, the aims of this 

chapter were to differentiate PLR from its related species PTR and to examine the 

raw herbal material used in manufacturing PLR granules using PLS-DA. In this 
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study, the UPLC chromatograms of 46 raw PLR and PTR and 17 granule products 

were evaluated. There are limited studies employing the entire chromatographic 

fingerprint for the quality control of PLR and PTR and this was compared to using 

the single chemical marker, puerarin. In hindsight, it is important to investigate the 

raw materials used in the manufacturing of herbal products so that consumers are 

confident with the products they are taking. 

 

4.2 Materials and methods 

4.2.1 Solvent, standard compounds and chemical reagents 

HPLC-graded acetonitrile and glacial acetic acid were obtained from Thermo 

Fisher Scientific (VIC, Australia). Deionised water was purified by a Milli-Q water 

purification system from Millipore (MA, U.S.A.). Puerarin (>98%), daidzin (>99%), 

daidzein (>99%), genistin (>98%) and genistein (>99%) were purchased from 

Tauto Biotech (Shanghai, China). All other chemicals were purchased from Ajax 

Finechem (NSW, Australia) unless otherwise stated. 

 

4.2.2 Herbal samples  

Forty-six dried PLR and PTR (Chapter 2 p.75) and 17 commercial PLR granules 

were purchased from herbal pharmacies in various regions of China, Australia and 

U.S.A. (Table 4.1). Voucher specimens were deposited at the Faculty of 

Pharmacy, The University of Sydney, Australia. 
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Table 4.1 Sample code and production location of commercial PLR granules. 

Sample code Production location 

G1 Nanning, China 

G2 Taichung, Taiwan 

G3 Taoyuan, Taiwan 

G4 Yilan, Taiwan 

G5 Guangdong, China 

G6 Taichung, Taiwan 

G7 Taichung, Taiwan 

G8 Pintong, Taiwan 

G9 Guangzhou, China 

G10 Sichuan, China 

G11 Guangzhou, China 

G12 Beijing, China 

G13 Guangdong, China 

G14 Jiangsu, China 

G15 Beijing, China 

G16 Guangdong, China 

G17 Beijing, China 

 

4.2.3 Herbal sample extraction - reflux 

The herbal samples were dried at 40 oC for 24 hours before use. Each dried 

sample was ground to fine powder using a pulveriser and passed through a No. 

180 (177 µm) sieve. To mimic the granules extraction procedure, the sample was 

extracted with deionised water. Each sample (10 g) was accurately weighed and 

macerated with 400 mL of deionised water. The mixture was extracted under 

reflux at 95 oC for 3 hours. The mixture was allowed to cool to room temperature 

and centrifuged at 10,000 g for 10 mins. The supernatant was filtered through 

Whatman No.1 filter paper under vacuum. The filtrate was evaporated at 40 oC 

and subsequently lyophilised. The dried residue was considered as the water 

extract. The water extracts and commercial granules were further extracted with 
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methanol (1:40 g/mL) in a sonication bath for 30 mins. Granules are prepared by 

freeze- or spray-drying the concentrated decoction in combination with other 

pharmaceutical excipients such as dextran and starch powder. This step 

eliminated starch and other hydrophilic excipients in granules. This procedure was 

repeated three times and the filtrates were combined. The final solution was 

evaporated and lyophilised. The dried residue was stored in a glass scintillation 

vial at -20 oC prior to analysis. During chromatographic analysis, the methanolic 

extract was re-dissolved in methanol (PLR and granules: 1 mg/mL; PTR: 5 mg/mL) 

and filtrated through a 0.22 μm syringe filter. 

 

4.2.4 UPLC measurement 

The details of the UPLC conditions are outlined in Chapter 3 (p.98). The 

chromatograms were documented by Waters Empower 3 Chromatography Data 

software at a frequency of 0.5 s/data point with a total of 2401 data points per 

sample.  

 

4.2.5 Chemometrics data processing 

Several pre-processing techniques were applied on the raw chromatographic 

matrix to improve the interpretability of the discriminant models. Correlation 

optimised warping (COW) removed retention time shift and the reference 

chromatogram, slack number and the number of segments were optimised as 

proposed by Skov et al. (Chapter 1 p.38) (Skov et al., 2006). The aligned 

chromatographic fingerprints were subjected to baseline removal, followed by 

standard normal variate (SNV) (Chapter 1 p.39) and column centering (Chapter 1 

p.40). The pre-processed chromatographic fingerprints were then divided into a 
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calibration and a validation set using Kennard-Stone (K-S) algorithm (Chapter 1 

p.56). Furthermore, variable selection algorithms such as genetic algorithm (GA) 

(Chapter 1 p.41) and successive projection algorithm (SPA) (Chapter 1 p.41) 

selected important variables from the pre-processed chromatographic fingerprints. 

In SPA, the maximum number of selected variables was set at 26. The GA routine 

was performed on 100 generations with a population size of 30 in each generation. 

Mutation rate and convergence were set at 1% and 50%, respectively. Partial 

lease squares (PLS) regression with 10 latent variables was chosen to validate the 

model, associated with a full random cross-validation of five splits. The selection of 

the optimal number of latent variables was based on the RMSECV from the 

LOOCV. The algorithm was repeated ten times. Apart from using automatic 

algorithm, variables were selected using PLS-DA loading plot presented by 

Tistaert et al. (Tistaert et al., 2011b). In addition, the use of the single chemical 

marker puerarin, proposed by the PPRC, was compared to the entire 

chromatographic matrix. Principal component analysis (PCA) (Chapter 1 p.43) was 

used to detect the presence of outliers. PLS-DA (Chapter 1 p.49) models using the 

entire chromatographic fingerprint, variables selected by GA, SPA, loading plot 

and puerarin were established and their model’s performance such as root mean 

square values and correlation coefficient were compared. Lastly, the established 

PLS-DA models were applied to assess the quality of commercial PLR granules. 

The models were validated using root mean square errors and regression 

coefficient (Chapter 1 p.57). Similarity analysis (Chapter 1 p.45) based on the 

mean chromatograms was used to assess the similarity of the chromatographic 

characteristics between granules, PLR and PTR. 
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4.2.6 Software 

Data processing and modelling were performed on MATLAB R2012b (The 

MathWorks, MA, U.S.A.). The algorithms for PCA, PLS-DA and GA were from the 

PLS toolbox (Eigenvector Research Incorporated, WA, U.S.A.). The K-S and COW 

algorithms were written on MATLAB m-file as previously described (Daszykowski 

et al., 2002; Skov et al., 2006). The SPA toolbox 1.0 was developed by Araujo et 

al. (Araujo et al., 2001). The similarity was assessed by Similarity Evaluation 

System for Chromatographic Fingerprints of TCM (2004A version, Chinese 

Pharmacopoeia Commission, China). All other statistical analyses were performed 

on GraphPad Prism 5 (GraphPad Software, CA, U.S.A.).  

 

4.3 Results and discussion 

4.3.1 Data pre-processing  

4.3.1.1 Peak alignment 

Several data pre-processing techniques were performed on the raw data matrix to 

reduce noise and inconsistency as well as to improve the data quality. Figure 4.1 

shows the chromatograms of 46 methanolic extracts before and after peak 

alignment, baseline subtraction and concentration correction. The diagrams 

revealed that the retention time shifts within chromatograms were perfectly 

corrected after treatment. The reference chromatogram, segment length and slack 

number were optimised according to the automated selection approach proposed 

by Skov et al. (Skov et al., 2006). In this experiment, PTR1 was chosen as the 

reference chromatogram, whilst the segment length and slack number were 

determined as 49 and 2, respectively. 
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Figure 4.1 UPLC chromatograms of 23 PLR and 23 PTR methanolic extracts 

between retention time 4 and 9 min. (a) Raw data and (b) after peak 

alignment, baseline subtraction and concentration correction. 
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4.3.1.2 Outliers detection 

Prior to constructing a multivariate calibration model, it was important to identify 

possible anomalous samples since such samples could affect the quality of the 

model and therefore, should be removed beforehand. To identify possible outliers, 

PCA was performed on the chromatographic data matrix, which was pre-

processed with COW, baseline subtraction, concentration correction, SNV and 

column centering. The determination of outliers was assessed by Hotelling’s T2 

versus Q residuals plot and score plot as shown in Figures 4.2a, 4.2c and 4.2e. 

Samples with high values of Hotelling’s T2 and Q residuals and located in an 

extreme position in a score plot were considered as outliers. After preliminary PCA 

analyses, four outliers (PLR9 and PTR5, PTR13 and PTR23) were found and 

removed for the subsequently analysis. The occurrence of such outliers may be 

due to variations in the plant source such as growth habitat, soil condition, climate 

and harvest season. Hence, the data set was reduced to 42 samples, consisting of 

22 PLR and 20 PTR. Figure 4.2b, 4.2d and 4.2f shows the PC1-PC2 scores plots 

of the pre-processed data before and after the four outliers were eliminated. It can 

be observed that the outliers were located far from the major cluster (Figure 4.4b). 

In contrast, after removing the outliers, PLR and PTR were well separated into two 

distinct clusters (Figure 4.4f). The PCA model was constructed using two principal 

components, which explained 79.02% of the original information of the variables.  
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Figure 4.2 Pre-processed chromatographic data of the 46 samples. (a) Hotelling’s T2 versus Q residuals and (b) score plot 

with PLR9, PTR13 and PTR23 excluded (c) Hotelling’s T2 versus Q residuals and (d) score plot with PLR9, PTR5, PTR13 

and PTR23 excluded (e) Hotelling’s T2 versus Q residuals and (f) score plot.
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4.3.2 Variables selection algorithms 

4.3.2.1 Variables selected by GA and SPA 

Recent studies have demonstrated that variable selection in association with PLS 

can improve the model’s predictability and reduce its complexity (Ebrahimi-

Najafabadi et al., 2012; Silva et al., 2012). In this chapter, GA and SPA were 

compared. To avoid over-fitting and minimising the search domain in GA, the 

original 2401 variables from chromatograms were reduced in two steps. The initial 

180 and the last 242 data points were eliminated due to lack of information. 

Variables from these regions were located before solvent front and during 

equilibrium time. The remaining 1980 data points were reduced to 66 intervals. 

Each interval consisted of 30 variables, which was equivalent to average peak 

width from the chromatograms. Auto-scaling was chosen as pre-treatment method 

before performing GA analysis. After 100 generations with 10 repeated cycles, 8 

intervals (240 variables) were selected based on their fitness values and are 

illustrated in Figure 4.3. In contrast to GA, all the variables from the 

chromatographic data matrix were used when performing SPA. From the SPA 

results, 26 variables were selected and are shown in Figure 4.4. 
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Figure 4.3 Pre-processed chromatograms of 22 PLR and 20 PTR samples 

with variables selected by genetic algorithm (GA). 

 

 

Figure 4.4 Pre-processed chromatograms of 22 PLR and 20 PTR samples 

with variables selected by successive projection algorithm (SPA).  
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4.3.2.2 Variables selected by PLS-DA X-loading plots 

The pre-processed chromatograms of 22 PLR, 20 PTR, five reference standards 

and X-loading plots, which were generated from the PLS-DA model of the entire 

chromatographic matrix in the calibration set, are shown in Figure 4.5. The X-

loading plot is useful for detecting important variable/peaks. Using this approach, 

Tistaert and his colleagues (Tistaert et al., 2011b) had successfully identified 

potential chemical markers for the authentication of Citri Reticulatae Pericarpium. 

The higher the loading score of a variable in the X-loading plot, the more likely it 

can differentiate PLR from PTR. By comparing the latent variable (LV) 1 and LV2 

X-loading plots with the PLR and PTR chromatograms, four regions (155 

variables) with large loading scores were selected. These regions consisted of six 

dominant peaks, in which three chemical constituents were identified, including 

puerarin at 6.01 min, daidzin at 7.37 min and daidzein at 12.87 min. The identities 

of these peaks were confirmed by comparing their retention times and MS spectra 

with the standard compounds. The UPLC-MS results from Chapter 3 (p.109) 

revealed that the three remaining peaks at 4.75, 6.17 and 6.36 min were 3’-

hydroxypuerarin (Hirakura et al., 1997), 6”-O-D-xylosylpuerarin (Du et al., 2010) 

and 3’-methoxypuerarin (Hirakura et al., 1997), respectively.  
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Figure 4.5 Pre-processed chromatograms of PLR and PTR with variables 

selected by X-loading plots. (a) 22 PLR and 22 PTR samples; (b) Latent 

variable (LV) 1 loading plot; (c) LV2 loading plot; Five references: (1) 

Puerarin; (2) Daidzin; (3) Genistin; (4) Daidzein; (5) Genistein. 

 

4.3.2.3 Variables selected by puerarin 

To evaluate a single chemical marker to authenticate PLR and PTR as proposed 

by the PPRC, the peak corresponding to puerarin (21 variables) was also adopted 

in the subsequent PLS-DA analysis. By comparing the ranges of variables 

selected, it was revealed that the variables selected by SPA and six selected 

peaks from X-loading plots were mainly located between 4.6 to 13 min, which 

corresponds to the majority of the compounds detected. On the other hand, 

variables selected by GA focused on the regions before 4.6 min and after 13 min, 

with only four intervals from GA overlapping with the regions selected by SPA and 

X-loading plots.  
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4.3.3 PLS-DA classification 

4.3.3.1 Calibration set 

PLS-DA discriminant models were constructed using the entire chromatographic 

matrix and variables selected from GA, SPA, X-loading plots and puerarin. A 

model was established from 28 samples (14 samples from each species), which 

was selected in accordance to the K-S algorithm, while the remaining fifteen 

samples (PLR: 9 samples; PTR: 6 samples) were considered as an external 

validation set. To avoid model over-fitting, the number of optimal LVs for each 

calibration model was determined by the leave-one-out cross-validation method. 

Statistical performances of the models were evaluated in terms of the root mean 

square error of calibration (RMSEC), root mean square error of cross-validation 

(RMSECV), root mean square error of validation (RMSEV) and correlation 

coefficient as shown in Table 4.2. In general, a good model should have low root 

mean square error vales, a high correlation coefficient and small differences 

between RMSECV and RMSEV. 

 

In this study, the model using the entire chromatographic matrix as the reference 

was compared to the models established by the different approaches (Table 4.2). 

Comparing the entire chromatographic matrix and puerarin alone, the former 

model provided superior model’s stability, simplicity and performance. In addition, 

the possibility of preserving the characteristics of the chromatographic fingerprints 

(multiple components), but at the same time, reducing the amount of information 

that needed to be analysed was examined. Herein, the model performances of 

GA, SPA and X-loadings plots were compared to that of the entire 

chromatographic matrix. The model established by GA exhibited the lowest root 
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mean square error values (RMSE: 0.0610; RMSECV: 0.0655; RMSEV: 0.0422) 

and the highest correlation coefficient (r2 cal: 0.9851; r2 CV: 0.9828; r2 val: 

0.9991). The models based on SPA and X-loading plots provided comparable root 

mean square error values and correlation coefficient in comparison to that of the 

entire chromatographic matrix. These results revealed that the use of variables 

selection could generate comparable or even superior results when compared to 

the use of the entire chromatographic fingerprint.  

 

Table 4.2 Comparison of the statistical performance of various variable 

selection algorithms on the PLS-DA models. 

Method LV(s) RMSEC RMSECV RMSEV r2 cal r2 CV r2 val 

Entire 
matrix 

2 0.1183 0.1452 0.0854 0.9440 0.9159 0.9938 

GA 1 0.0610 0.0655 0.0422 0.9851 0.9828 0.9991 

SPA 2 0.1298 0.1606 0.1593 0.9326 0.8973 0.9898 

X-loading  3 0.1220 0.1700 0.1206 0.9405 0.8864 0.9812 

Puerarin  3 0.2893 0.3725 0.2049 0.6653 0.4868 0.9158 

 
LV: optimal number of latent variables used; RMSEC: root mean square 

error of calibration; RMSECV: root mean square error of leave-one-out 

cross-validation; RMSEV: root mean square error of validation; r2 cal: 

correlation coefficient of the calibration set; r2 CV: correlation coefficient of 

the cross-validation set; r2 val: correlation coefficient of the validation set. 

 

4.3.3.2 Validation set 

To evaluate the performance of the established models on predicting species 

differences, discriminant analyses were performed using 14 samples (8 PLR and 6 

PTR) from the validation set. Table 4.3 illustrates the species (class) classification 

results of the various PLS-DA models. For the models established by the entire 
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chromatographic matrix, GA, SPA and X-loading plots achieved a 100% correct 

prediction rate in the validation set. In contrast, the model using puerarin alone 

misidentified two samples with a correct prediction rate of 86.67%. Therefore, 

there is a nearly 14% of chance for incorrect authentication of unknown Pueraria 

samples when the puerarin model is selected. The results demonstrate that the 

model established with the use of puerarin as the single marker for quality control 

of PLR and PTR is unsatisfactory.  

 

The variables selected by GA yielded the best classification model, with lower 

model complexity and root mean square error values as well as higher correlation 

coefficient as compared to the model based on the entire chromatographic matrix. 

However, they were located in the regions that contained relatively small peaks 

and generally could not be quantified. The aim of GA is to determine variables that 

can generate the best performance in the PLS-DA model, but these variables 

might not correspond to the compounds that can be detected in UPLC. Previous 

studies demonstrated that GA provided a superior performance in enhancing root 

mean square values and predictive ability for ascertaining the addition of 

vegetable oil in olive oil (Ruiz-Samblas et al., 2012) and barley in coffee (Ebrahimi-

Najafabadi et al., 2012).  In this study, GA was inadequate in identifying potential 

chemical makers for the authentication of PLR and PTR. In contrast, the model 

based on the six selected peaks from the X-loading plots provided similar 

correlation coefficient and root mean square error values in the calibration set and 

the same classification ability in the validation set as compared to the models 

using the entire chromatographic matrix. These results suggested that these six 

compounds are important factors determining the model’s performance and 
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hence, can be used as potential chemical markers for authenticating PLR and 

discriminating it from its related species, PTR. Additionally, variables selected 

using SPA shared similar pattern and were overlapped with those from the X-

loading plots, revealing that this approach could provide additional information to 

support the variables/peaks obtained from the X-loading plots. 

 

Table 4.3 Confusion matrices of various variable selection algorithms from 

the validation set. 

  Entire matrix GA SPA X-loading  Puerarin 

True 

class 

 Predicted 

class 

Predicted 

class 

Predicted 

class 

Predicted 

class 

Predicted 

class 

 N PLR PTR PLR PTR PLR PTR PLR PTR PLR PTR 

PLR 9 9 - 9 - 9 - 9 - 8 1 

PTR 6 - 6 - 6 - 6 - 6 1 5 

 
N: number of samples employed from each species in the validation set.  
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4.3.4 Classification of commercial granules 

Table 4.4 illustrates the classification results of 17 PLR granules using the PLS-DA 

models established above. Prior to analysis, variables from the chromatographic 

matrix of granules were pre-processed and selected as aforementioned. All the 

granules tested in this study were labelled PLR as the raw material. According to 

the results, the herbal materials of four brands of granules, including two brands 

manufactured in Taiwan (G3 and G6) and two brands manufactured in China (G9 

and G17) were classified as PTR, and the remaining 13 were classified as PLR, 

based on the models from the entire chromatographic matrix, SPA, GA and six 

selected peaks from the X-loading plots. Figure 4.6 illustrates the chromatograms 

obtained from 22 PLR, 20 PTR and the four alleged mislabelled granules. It can be 

observed that the chromatograms of the four granule products shared similar 

chromatographic characteristics with PTR, rather than PLR. In addition to the 

visual inspection, the chromatograms were evaluated and compared using 

similarity analysis. In Table 4.5, the similarity values of G3, G6, G9 and G17 were 

0.977, 0.977, 0.970 and 0.981, respectively when compared to PTR (0.952 ± 

0.038), and the similarity values of G3, G6, G9 and G17 were 0.929, 0.916, 0.901 

and 0.924, respectively when compared to PLR (0.991 ± 0.007). The smaller 

differences between the similarity values of these four mislabeled granule products 

and the PTR extracts suggested that they are relatively similar to PTR rather than 

PLR. Based on this evidence, it can be concluded that these granules were 

manufactured using PTR as the raw herbal material and were mislabelled as PLR. 

The problem of substitution may relate to the confusing nomenclature and 

monographs for the two species as outlined in Chapter 1 and 2.  
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Table 4.4 Classification of commercial PLR granules using various PLS-DA 

models. 

Samples Entire matrix GA SPA X-loading 
plots 

Puerarin 

G1 PLR PLR PLR PLR PLR 
G2 PLR PLR PLR PLR PLR 
G3 PTR PTR PTR PTR PTR 
G4 PLR PLR PLR PLR PLR 
G5 PLR PLR PLR PLR PLR 
G6 PTR PTR PTR PTR PTR 
G7 PLR PLR PLR PLR PLR 
G8 PLR PLR PLR PLR PLR 
G9 PTR PTR PTR PTR PLR 
G10 PLR PLR PLR PLR PLR 
G11 PLR PLR PLR PLR PLR 
G12 PLR PLR PLR PLR PLR 
G13 PLR PLR PLR PLR PLR 
G14 PLR PLR PLR PLR PLR 
G15 PLR PLR PLR PLR PLR 
G16 PLR PLR PLR PLR PLR 
G17 PTR PTR PTR PTR PTR 

 

 

Figure 4.6 Pre-processed chromatograms of PLR and PTR samples and 

granules. (1) 22 aligned PLR samples; (2) 20 aligned PTR samples; (3) G3; (4) 

G6; (5) G9; (6) G17.  
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Table 4.5 Comparison of the similarity values between granules, PLR and 

PTR. 

PLR 

Similarity 

value* Granules 

Similarity 

value* PTR 

Similarity 

value* Granules 

Similarity 

value* 

PLR1 0.98 G1 0.997 PTR1 0.959 G1 0.96 

PLR2 0.975 G2 0.975 PTR2 0.969 G2 0.939 

PLR3 0.992 G3 0.929 PTR3 0.97 G3 0.977 

PLR4 0.998 G4 0.975 PTR4 0.959 G4 0.934 

PLR5 0.995 G5 0.989 PTR6 0.878 G5 0.956 

PLR6 0.998 G6 0.916 PTR7 0.978 G6 0.977 

PLR7 0.988 G7 0.966 PTR8 0.864 G7 0.943 

PLR8 0.98 G8 0.954 PTR9 0.926 G8 0.95 

PLR10 0.994 G9 0.901 PTR10 0.968 G9 0.97 

PLR11 0.991 G10 0.962 PTR11 0.983 G10 0.943 

PLR12 0.994 G11 0.955 PTR12 0.951 G11 0.956 

PLR13 0.99 G12 0.957 PTR14 0.947 G12 0.946 

PLR14 0.997 G13 0.963 PTR15 0.962 G13 0.949 

PLR15 0.997 G14 0.953 PTR16 0.911 G14 0.936 

PLR16 0.99 G15 0.955 PTR17 0.996 G15 0.942 

PLR17 0.997 G16 0.951 PTR18 0.978 G16 0.951 

PLR18 0.997 G17 0.924 PTR19 0.982 G17 0.981 

PLR19 0.998   PTR20 0.968   

PLR20 0.991   PTR21 0.991   

PLR21 0.991   PTR22 0.896   

PLR22 0.982       

PLR23 0.994       

 
*Similarity values of the granule samples were calculated by comparing the 

chromatographic characteristics with the mean chromatogram of PLR and 

PTR. 
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In comparison, the results from the model using puerarin alone only partially 

agreed with other models. This model correctly identified three out of four brands 

of granules, which were manufactured using PTR as the raw herbal material. This 

result further confirmed that the use of puerarin alone was insufficient in 

authenticating PLR and its commercial products. 

 

4.4 Conclusion 

This study has demonstrated that UPLC PLS-DA, coupled with GA and SPA and 

X-loading plots, can be applied as a screening method for the quality control of 

PLR and PTR. The results showed that models developed from GA, SPA and six 

potential chemical markers could provide similar classification ability compared to 

the entire chromatographic matrix. Furthermore, the results suggest that puerarin 

alone is not sufficient to be used as the sole chemical marker and current 

regulations for the manufacturing, labelling and quality control of PLR products 

needs to be reassessed. In conclusion, this study indicates that PLS-DA is an 

effective technique for the quality control of PLR and PTR and other herbal 

materials used in the manufacture of granules and other dosage forms in the 

pharmaceutical industry. 
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The materials presented in this chapter were extracted from Wong, K. H., 

Razmovski-Naumovski, V., Li, G. Q., Li, K. M. & Chan, K. (2014) Differentiating 

Puerariae Lobatae Radix and Puerariae Thomsonii Radix using HPTLC coupled 

with multivariate classification analyses. J Pharm Biomed Anal., 95 11-19. 
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5.1 Introduction 

Thin-layer chromatography (TLC) is regarded as one of the fundamental 

authentication methods in various pharmacopoeias and monographs. Recent 

advances in TLC, especially the development of high performance thin-layer 

chromatography (HPTLC), have made it an attractive alternative to the more costly 

and sophisticated analytical methods used for the quality control of herbal 

medicines (Fried and Sherma, 1996, 1999; Spangenberg et al., 2011).  

 

HPTLC offers several advantages over conventional analytical methods such as 

HPLC including reliability, simplicity, flexibility, fast analytical time, low running 

cost, low organic solvent consumption and the analyses of numerous samples 

simultaneously (Marston, 2011). In terms of PLR and PTR, there is only one study 

that employs HPTLC to investigate the chemical differences between PLR and 

PTR (Chen et al., 2006). In this study, two different solvent systems detecting the 

glycoside and aglycone fraction were developed and validated. The results 

revealed that the total chemical content in PLR was 21.58 times greater than in 

PTR. However, this study focused on the quantification and identification of a few 

chemical components such as puerarin, daidzein and genistein. From the results 

in Chapter 4, it has been shown that the use of a single or few chemical markers is 

insufficient to differentiate PLR from PTR. In addition, the HPTLC results were not 

compared to the other chromatographical methods. 

 

HPTLC is based on the visualisation of the plate and comparison to a reference 

sample, which is rather subjective, and the results may vary between different 

investigators. Furthermore, it would be a difficult task to assess the differences 
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with larger sample sizes, and rather cumbersome to adopt as a daily routine 

procedure in industry. To solve this problem, multivariate statistical analysis 

named pattern recognition classification methods can be used. Pattern recognition 

classification algorithms, including both unsupervised and supervised, determine 

the class of samples based on the data matrix. This approach provides a systemic 

and objective way of analysing the HPTLC plate. One of the major advantages of 

adopting multivariate analysis for chromatographic fingerprints is that it scrutinises 

the subtle differences within the chromatogram. It does not rely on the comparison 

to a reference sample or compound, or quantifying a particular chemical 

compound(s), which can be difficult to discern for an unknown sample (Alaerts et 

al., 2010; Tistaert et al., 2011a). In addition, these classification algorithms have 

been applied to classify different descriptors in the field of food chemistry (Munck 

et al., 1998), forensic chemistry (Thanasoulias et al., 2003), environment 

chemistry (Mas et al., 2010), bioinformatics (Yetukuri et al., 2007), pharmaceutics 

(Roggo et al., 2007), metabonomics (Rousseau et al., 2008), proteomics (Lee et 

al., 2003), genomics (Eriksson et al., 2004) and so on. Recently, three 

comprehensive review articles (Alaerts et al., 2010; Gad et al., 2013; Tistaert et 

al., 2011a) were published which summarised the application of various 

classification algorithms for differentiating medicinal herbs of different species, age 

and geographical origins. 

 

In literature, there are limited studies using TLC or HPTLC coupled with 

chemometrics for the quality control of herbal medicine (Gad et al., 2013; Tistaert 

et al., 2011a). This is mainly due to the difficulty of converting digitalised HPTLC 

plate into chromatographic fingerprints. For the first time, simple built-in functions 
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from the Matlab were combined with a series of pre-processing algorithms to 

generate HPTLC chromatographic fingerprints in this study.  

 

Therefore, the aim of this study was to compare the classification accuracy of 

HPTLC multivariate analysis to UPLC in differentiating PLR from its closely related 

species PTR using a digitised HPTLC plate. This combined technique could 

provide a rapid and low-cost quality control method for the differentiation of 

species in the production process. 

 

5.2 Methods and materials 

5.2.1 Chemicals and solvents 

Analytical grade methanol, chloroform, ethyl acetate, absolute ethanol (99.5% 

w/w), glacial acetic acid and HPLC-grade acetonitrile were purchased from 

Thermo Fisher Scientific (VIC, Australia). Sulfuric acid was obtained from Sigma-

Aldrich (NSW, Australia). The details of standard compounds were described in 

Chapter 3 (p.94). 

 

5.2.2 Herbal samples and extraction 

The details of herbal samples and extraction were described in Chapter 2 (p.75) 

and Chapter 3 (p.95), respectively. 

 

5.2.3 HPTLC measurement 

The HPTLC measurement was performed as previously described with some 

modifications (Jiang et al., 2005). Briefly, the ethanolic extract was reconstituted in 
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absolute ethanol (PLR: 5 mg/mL; PTR: 5 mg/mL) and filtered through a 0.22 μm 

PVDF syringe filter. The filtered ethanolic extract was applied onto a 10 cm (width) 

x 10 cm (height) pre-coated silica gel 60 plate (Catalogue number: 105547; Merck, 

Darmstadt, Germany) using a CAMAG Linomat IV semi-automatic TLC sampler 

(Muttenz, Switzerland) equipped with WinCATS 1.2.3 software. Both 10 and 20 cm 

plates are recommended for HPTLC (CAMAG, 2014), however, a 10 cm width 

plate was chosen in this study as it was easier to handle and presented a more 

even coating when spraying reagent was applied. Nitrogen was used as a carrier 

gas. Application volume was set at 5 µL, with a bandwidth of 6 mm and an 

application speed of 125 nL/s, 10 mm from the edges, 4 mm apart and 15 mm 

from the bottom. The mobile phase (8 mL) consisting of chloroform-ethyl acetate-

methanol-water (20:40:22:10 v/v) was added to a CAMAG twin-trough chamber. 

The chamber was saturated with the mobile phase vapour for 30 mins at ambient 

temperature and humidity. The pre-loaded plate was developed vertically from the 

lower edge to 8 cm. After development, the plate was air-dried for 5 mins and was 

sprayed with 10% sulfuric acid in methanol. The plate was then incubated in an 

oven at 105 oC for 5 mins until the colour of the polyphenols on the plate appeared 

(Chen et al., 2006). The plate was observed under UV light at 366 nm in a 

CAMAG TLC visualiser and was documented using a digital camera. 

 

5.2.4 HPTLC data matrix pre-processing 

Figure 5.1 summarises the procedures involved in the digitalisation and 

transformation of HTPLC plate images into chromatographic fingerprint matrices. 

The original HPTLC fluorescent images were RGB triplet matrices composed of 

red, green and blue colour channels. To reduce the dimensions of the data, the 
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images were converted to 8-bit monochromatic grayscale using Matlab R2012b 

(The MathWorks, MA, U.S.A.). The number of pixel per sample was set as 1450 

pixels. The pixel intensity of each sample was measured using the “improfile” 

function from Matlab. The measurement was performed in triplicate and the mean 

of three measurements was used as the final pixel intensity. The mean pixel 

intensity of each sample was combined to form a chromatographic data matrix 

consisting of 42 rows (number of samples) and 1450 columns (number of pixels 

per sample). The matrix was smoothed using Savitzky-Golay filter with a filter 

width of 15 and a zero order polynomial (Bromba and Ziegler, 1981). The baseline 

offset was removed by automatic Whittaker algorithm at 100 λ (Eilers, 2003). 

Correlation optimized warping (COW) (Chapter 1 p.38) was employed to correct 

the inter- and intra-plate peak shift due to variations in mobile phase composition, 

humidity, temperature, operator handling and instrumental instability. The COW 

parameters were optimised using a systemic algorithm proposed by Skov et al. 

(Skov et al., 2006). 
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Figure 5.1 Conversion and 

pre-processing of HPTLC 

results prior to the 

chemometric analyses.  

(a) Digitalised HPTLC RGB 

colour space images 

converted to greyscale.  

(b) Data matrix consisting 

of 42 samples (22 PLR and 

20 PTR), in which each 

sample has 1450 variables.  

(c) Raw data matrix 

subjected to several pre-

processing algorithms 

such as Savitzky-Golay 

smoothing, baseline 

removal and correlation 

optimised warping.  
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The chromatographic data matrix was separated into calibration and validation set 

using K-S random selection algorithm to minimise the selection bias (Chapter 1 

p.56) (Kennard and Stone, 1969; Wu et al., 1996). Hence, the data was separated 

into two matrices: a calibration matrix containing 14 PLR and 14 PTR samples (28 

in total), and a validation matrix consisting of 8 PLR and 6 PTR samples (14 in 

total). Additionally, several pre-processing techniques such as normalisation 

(Chapter 1 p.40), standard normal variate (SNV) (Chapter 1 p.39) and mean 

column centering (Chapter 1 p.40) were applied to the data matrices to enhance 

the signal-to-noise ratio and the interpretability of the classification models. The 

influences of various pre-processing methods on the partial least square-

discriminant analysis (PLS-DA) models were evaluated and compared. The 

technique with the best species classification ability was selected for subsequent 

analyses. 

 

5.2.5 UPLC measurement and data pre-processing 

The UPLC measurement was performed as described in Chapter 3 (p.98) and the 

data was pre-processed as previously described in Chapter 4 (p.124). 

 

5.2.6 Multivariate classification analyses  

The pre-processed HPTLC and UPLC chromatographic fingerprints were 

subjected to seven multivariate classification algorithms, namely K-nearest 

neighbors (KNN; Chapter 1 p.51), classification and regression tree (CART; 

Chapter 1 p.53), successive projection algorithm-linear discriminant analysis 

(SPA-LDA; Chapter 1 p.47), principal component analysis-discriminant analysis 

(PCA-DA; Chapter 1 p.43), soft independent modelling of class analogy (SIMCA; 
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Chapter 1 p.54), PLS-DA (Chapter 1 p.49) and support vector machine-

discriminant analysis (SVM-DA; Chapter 1 p.55). The calibration set was used to 

build the classification model, whereas the validation set was used to assess the 

accuracy of the established model. The models were compared using confusion 

matrix (Chapter 1 p.58). 

 

5.2.7 Software 

Data pre-processing and classification modelling were performed on PLS toolbox 

(Eigenvector Research Incorporated, WA, U.S.A.) and classification toolbox 

version 2.0 (Ballabio and Consonni, 2013) under Matlab environment. The details 

of SPA toolbox 1.0, K-S and COW algorithm m-files were described in Chapter 4 

(p.124). 

 

5.3 Results and discussion 

5.3.1 Detection of outliers 

PCA detected the presence of possible outliers and provided a general idea of the 

samples’ distribution, as well as the relationship between classes. Figure 5.2 

illustrates the Hotelling’s T2 versus Q residues plot and PCA scores plot obtained 

from the HPTLC chromatographic data matrix, which has been pre-processed with 

Savitzky-Golay smoothing, baseline removal and COW. Hotelling’s T2 reflects the 

variation in each sample within the model, whereas Q residuals indicate the 

difference between the original and projected data. A sample is considered as an 

outlier when it has high Hotelling’s T2 and Q residuals value and located at an 

extreme position in the scores plot. Such an outlier should be avoided and 
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eliminated before further multivariate analysis as it could dramatically affect the 

model’s quality. Fortunately, no such outlier was observed from the data (Figure 

5.2a) and hence all the samples obtained from the HPTLC analyses were used in 

the subsequent classification. As shown in Figure 5.2b, PLR and PTR were 

separated into two clusters, suggesting that these two species had distinct 

chromatographic characteristics. 

 

 

Figure 5.2 PCA plots obtained from pre-processed HPTLC chromatographic 

data matrix. (a) Hotelling's T2 versus Q residuals plot, (----) line represents 

95% confidence interval; (b) PC1-PC2 scores plot. 

 

5.3.2 Optimisation of pre-processing methods 

It is well known that the application of pre-processing algorithms prior to 

multivariate analysis can significantly improve the data quality and enhance the 

interpretability of the classifications models. However, there is no standard 

protocol on which pre-processing algorithms should be used, as each data set and 

analytical method is unique. As a result, it is necessary to determine the optimal 

pre-processing techniques before establishing a model.  
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PLS-DA compared and evaluated the effect of different pre-processing methods 

and their respective order on the model’s performance. After the application of 

preliminary pre-processing methods such as smoothing, baseline removal and 

peak alignment, the data matrix was subjected to column centering, normalisation 

and SNV. The impact of various pre-processing methods on the PLS-DA model’s 

performance was determined according to the root mean square of calibration 

(RMSEC), root mean square of cross validation (RMSECV), root mean square of 

validation (RMSEV) and correlation coefficient from leave-one-out cross-validation 

(LOOCV) as shown in Table 5.1. It was observed that all the pre-processing 

techniques were able to increase the correlation coefficient. However, the PLS-DA 

model pre-processed with SNV followed by column centering presented the 

highest correlation coefficient, the lowest complexity and the smallest root mean 

square error deviation between the calibration and validation set. It was, therefore, 

chosen as the optimal pre-processing method and was applied to the both HPTLC 

and UPLC chromatographic data matrices in the subsequent analysis. 

 

5.3.3 SPA variable selection 

The number of variables employed in establishing a LDA classification model 

needed to be smaller than the number of samples. Thus, SPA reduced the number 

of variables. The optimal variables number was evaluated by LOOCV and was 

determined as 25 and 23 for the HPTLC and UPLC matrix, respectively. Figure 5.3 

and 5.4 shows the distribution of selected variables for the chromatographic 

fingerprints. For the HPTLC chromatograms, the selected variables were mainly 

located before Rf 0.3 and after Rf 0.7, whilst for UPLC, the variables were evenly 

distributed. Additionally, the peak at Rf 0.32 representing puerarin was the 
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predominant peak in the HPTLC chromatograms at 254 nm but not at 366 nm, 

suggesting that the intensity of puerarin diminished after derivatisation. Instead, an 

unknown peak at Rf 0.5 generated the highest intensity, which was absent at 254 

nm. It is important to note that the intensity of a nominated peak may no longer be 

proportional to its respective concentration after derivatisation and this should be 

taken into account when quantifying chemical constituents in future studies.
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Table 5.1 Comparison of the statistical performance of various pre-processing methods on the HPTLC calibration and 

validation set. 

Pre-processing method(s) LV(s) RMSEC RMSECV RMSEV Deviation between 

RMSEV and RMSEC 

(%) 

r2 cal r2 CV r2 val 

None 2 0.2486 0.2659 0.3094 19.63 0.7547 0.7198 0.7654 

Normalisation + mean centering 2 0.5119 0.5097 0.5333 4.01 0.9517 0.9190 0.9391 

SNV + mean centering 2 0.5110 0.5109 0.5135 0.50 0.9556 0.9279 0.9401 

Mean centering + normalisation 2 0.4805 0.4969 0.5094 5.68 0.9309 0.8914 0.9082 

Mean centering + SNV 3 0.4564 0.4666 0.3908 -16.78 0.9137 0.8876 0.8749 

 
LV: optimal number of latent variables; RMSEC: root mean square of calibration; RMSECV: root mean square of leave-one-

out cross-validation; RMSEV: root mean square of validation; r2 cal: correlation coefficient of calibration set; r2 CV: 

correlation coefficient of leave-one-out cross-validation set; r2 val: correlation coefficient of validation set. Deviation is 

calculated as [RMSEV – RMSEC)/RMSEV] × 100%. 
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5.3.4 Comparison of various classification models 

The parameters from each classification model were optimised using LOOCV 

based on the calibration set and are summarised in Table 5.2. To evaluate the 

performance of the classification models, both the pre-processed HPTLC and 

UPLC chromatographic matrices were randomly separated into calibration (28 

samples with 14 PLR and 14 PTR) and validation (14 samples with 8 PLR and 6 

PTR) set using K-S algorithm. The calibration set was used to establish and train 

the classification model, whilst the validation set was employed in the final stage to 

evaluate the predictive ability of the calibrated model.  

 

Table 5.2 Optimisation of parameters in various classification models 

 HPTLC UPLC 

KNN   

    Optimal K value 3 6 

CART none none 

SPA-LDA   

    Optimal number of variables 25 23 

PCA-DA   

    Optimal PCs 3 2 

SIMCA   

    Optimal PCs for PLR 3 6 

    Optimal PCs for PTR 5 2 

PLS-DA   

    Optimal LVs 2 2 

SVM-DA   

    X-block compression none none 

    Probability estimation zero zero 
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Figure 5.3 Comparison of the pre-processed HPTLC chromatograms (22 PLR 

and 20 PTR) with variables selected by successive projection algorithm. (1) 

Puerarin; (2) Daidzin; (3) Genistin; (4) Daidzein; (5) Genistein. 

 

Figure 5.4 Comparison of the pre-processed UPLC chromatograms (22 PLR 

and 20 PTR) with variables selected by successive projection algorithm. (1) 

Puerarin; (2) Daidzin; (3) Genistin; (4) Daidzein; (5) Genistein. 
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The confusion matrices of the different classification techniques obtained from the 

pre-processed HPTLC and UPLC chromatographic fingerprints are demonstrated 

in Table 5.3 and 5.4, respectively. The LOOCV accuracy illustrated the 

interpretability of a model, whereas the model’s predictive ability was represented 

by the accuracy of the validation set (Val). For the HPTLC data (Table 5.3), the 

classification models established by PCA-DA, PLS-DA and SVM-DA provided the 

greatest interpretability (100.00%) and predictability (100.00%) for both LOOCV 

and validation set, while the models from SPA-LDA (CV: 100.00%; Val: 92.86%), 

KNN (CV: 96.43%; Val: 100%) and CART (CV: 78.57%; Val: 64.29%) generated a 

moderate interpretability and predictability, with misidentification in either the 

LOOCV or validation set. In contrast, the SIMCA model delivered the worst model 

performance (CV: 80.00%; Val: 60.00%), with 13 (2 PLR and 11 PTR) and 4 (2 

PLR and 2PTR) samples not assigned to the LOOCV and validation set, 

respectively. 

 

It was observed that the models obtained from the UPLC data provided a relatively 

higher model’s classification ability compared to the HPTLC data. Table 5.4 

showed that KNN, PCA-DA, PLS-DA and SVM-DA classification models were 

given the highest interpretability (100.00%) and predictability (100.00%) in both 

LOOCV and validation set. Additionally, the models from SPA-LDA (CV: 96.43%; 

Val: 100%) and CART (CV: 96.43%; Val: 100%) generated a slightly lower 

interpretative ability, and misclassified a PTR sample as PLR. Similar to the results 

obtained from the HPTLC data, the model established using SIMCA had the least 

model performance (CV: 62.50%; Val: 75.00%), with 12 (8 PLR and 4 PTR) and 
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Table 5.3 Confusion matrices obtained from the validation set of the pre-processed HPTLC data. 

   CV      Val    

   Predicted class      Predicted class    

 True class N PLR PTR NA Accuracy (%)  N PLR PTR NA Accuracy (%) 

SPA-LDA PLR 14 14 − − 100.00  8 7 1 − 92.86 

 PTR 14 − 14 −   6 − 6 −  

CART PLR 14 12 2 − 78.57  8 3 5 − 64.29 

 PTR 14 4 10 −   6 − 6 −  

KNN PLR 14 13 1 − 96.43  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

SIMCA PLR 14 12 − 2 80.00  8 6 − 2 60.00 

 PTR 14 3 − 11   6 4 − 2  

PCA-DA PLR 14 14 − − 100.00  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

PLS-DA PLR 14 14 − − 100.00  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

SVM-DA PLR 14 14 − − 100.00  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

 
CV: LOOCV set; Val: validation set; N: number of samples; NA: not assigned. 
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Table 5.4 Confusion matrices obtained from the validation set of the pre-processed UPLC data. 

   CV      Val    

   Predicted class      Predicted class    

 True class N PLR PTR NA Accuracy (%)  N PLR PTR NA Accuracy (%) 

SPA-LDA PLR 14 14 − − 96.43  8 8 − − 100.00 

 PTR 14 1 13 −   6 − 6 −  

CART PLR 14 14 − − 96.43  8 8 − − 100.00 

 PTR 14 1 13 −   6 − 6 −  

KNN PLR 14 14 − − 100.00  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

SIMCA PLR 14 − 6 8 62.50  8 − 2 6 75.00 

 PTR 14 − 10 4   6 − 6 −  

PCA-DA PLR 14 14 − − 100.00  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

PLS-DA PLR 14 14 − − 100.00  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

SVM-DA PLR 14 14 − − 100.00  8 8 − − 100.00 

 PTR 14 − 14 −   6 − 6 −  

 
CV: LOOCV set; Val: validation set; N: number of samples; NA: not assigned. 
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6 PLR samples not assigned to the LOOCV and validation set, respectively. 

 

To further investigate the classification ability of the various classification 

algorithms, the error rate (ER), non-error rate (NER), specificity and sensitivity of 

each class were compared and evaluated and are shown in Table 5.5. The 

sensitivity was defined as the model’s ability to correctly classify samples 

belonging to a specific class, while the ability to reject the samples of all other 

classes was expressed as specificity. Since PLR and PTR were the only two 

classes in this study, the specificity and sensitivity of the two classes were 

symmetrical. In other words, the specificity of PLR will be equivalent to the 

sensitivity of PTR, and vice versa. Therefore, only the specificity and sensitivity of 

PLR was described herein.  

 

As shown in Table 5.5, KNN, PCA-DA, PLS-DA and SVM-DA for the HPTLC data 

gave a perfect score of one in both specificity and sensitivity, suggesting that the 

models were able to correctly classify all the samples with zero error rate in both 

classes. This minimal deviation between specificity and sensitivity indicated that 

there was no particular trend displayed by the models in recognising either PLR or 

PTR. However, the model established using CART provided a relatively low 

specificity value (0.55). This indicated that the model was more favourable in 

discriminating PTR rather than PLR. Furthermore, the small ER (0.23) and high 

NER (0.77) suggested that there was a higher chance of misidentifying PLR as 

PTR, rather than incorrectly identifying PTR as PLR. In agreement with the results 

obtained from Table 5.4, the SIMCA model was unable to classify any of the PTR 

samples in the validation set (ER: 0.7; NER: 0.3; specificity: 0; sensitivity: 0.6). For 
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the UPLC data, all the classification models, except SIMCA, were able to correctly 

identify samples from both classes in the validation set with a high specificity (1), a 

high sensitivity (1) and zero error rate. In comparison to the SIMCA model from 

HPTLC, the model from UPLC had zero sensitivity towards PLR, suggesting that it 

was unable to classify any of the PLR samples in the validation set (ER: 0.63; 

NER: 0.38; specificity: 0.75; sensitivity: 0). In terms of the preference of 

classification model, KNN and CART were the most favourable algorithms for 

differentiating of PLR and PTR as they required minimal data handling procedures 

and parameter optimisation and short calculation time. Nonetheless, if the focus of 

a study is to investigate the distribution of classes and the relationship between 

independent and response variables, PCA-DA, PLS-DA and SVM-DA are 

preferred, as these techniques provided detailed information of the data matrices 

from the score and loading plot. 

 

Table 5.5 Classification parameters of the pre-processed HPTLC and UPLC 

data obtained from the validation set. 

 HPTLC    UPLC    

   PLR     PLR  

 ER NER Specificity Sensitivity  ER NER Specificity Sensitivity 

SPA-LDA 0.07 0.93 1 0.86  0 1 1 1 

CART 0.23 0.77 0.55 1  0 1 1 1 

KNN 0 1 1 1  0 1 1 1 

SIMCA 0.7 0.3 0 0.6  0.63 0.38 0.75 0 

PLS-DA 0 1 1 1  0 1 1 1 

PCA-DA 0 1 1 1  0 1 1 1 

SVM-DA 0 1 1 1  0 1 1 1 

 
ER: error rate; NER: non-error rate. 
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Similar results were obtained from a previous study which compared the efficacy 

of seven classification methods on the quality control and identification of motor oil 

adulteration using NIR spectroscopy. The results demonstrated that the 

classification error rates of the models established from SVM-DA and KNN were 

significantly smaller than that from SIMCA and PLS-DA (Balabin et al., 2011). In 

another study (Martins et al., 2011), PLS-DA and KNN gave a 100% correct 

prediction rate in classifying six different Phyllanthus species using HPLC, while 

SIMCA had a 12% correct prediction rate with more than 80% of the samples not 

assigned. On the contrary, SIMCA and SVM-DA have a 100% correct 

classification rate in identifying rice seed samples from four different cultivars 

using NIR, whereas only 80% of the samples were correctly classified using PLS-

DA and KNN model. It can be revealed that a classification method with high 

classification ability in one data set does not mean that it will achieve a similar 

result in another data set or analytical method as each data set is unique.  

 

In conjunction with the results from Table 5.3 to 5.5, the data matrices obtained 

from UPLC generated a better classification performance in various classification 

models. More importantly, the results showed that the models established from the 

HPTLC data matrices provided comparable classification abilities to the UPLC 

data matrices. These results suggested that HPTLC can be applied as an 

alternative analytical method in the differentiation of PLR and PTR.  
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5.4 Conclusion 

In this study, the classification accuracy of HPTLC coupled with seven multivariate 

classification methods was evaluated and compared to that of UPLC. The 

application of Matlab enabled information to be rapidly extracted from a digitalised 

HPTLC plate. The results indicate that chromatographic fingerprints obtained from 

HPTLC provide comparable classification ability to UPLC. In particular, KNN, PLS-

DA, PCA-DA and SVM-DA from HPTLC achieved a 100% correct species 

classification rate, whilst SIMCA gave the lowest correct classification rate (60%). 

HPTLC coupled with multivariate classification methods provides a simple and 

user-friendly approach for the quality control and authentication of PLR and PTR. 

The application of this technique can be adopted as a template for authenticating 

other herbal materials.  
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6.1 Introduction 

PLR and PTR is an abundant source of polyphenols such as puerarin, daidzin and 

genistin, which have been found to exert anti-diabetic, anti-apoptotic, anti-

hypertensive, anti-inflammatory and vasodilatory properties in various in vitro and 

in vivo studies (Wong et al., 2011). Recent studies have suggested that the 

beneficial pharmacological effects of polyphenols may be related to their high 

antioxidant capacity (Jin et al., 2012; Rice-evans et al., 1995). The prevention of 

oxidative stress damage is particularly important for the treatment of 

cardiovascular and cerebrovascular diseases (Procházková et al., 2011). 

Therefore, the determination of polyphenol content and antioxidant capacity in 

PLR and PTR is necessary to provide information on their potential beneficial 

effects and can be applied as one of the criteria for the differentiation and thus, the 

quality control of these two herbs. 

 

Currently, there are two major conventional methods for the quantification of total 

phenolic content (TPC) within a herb. The first approach is to use Folin-Ciocalteu 

colorimetric method (Ainsworth and Gillespie, 2007). The second technique 

involves the use of sophisticated analytical instruments such as high-performance 

liquid chromatography (HPLC) or thin-layer chromatography to quantify individual 

chemical component (Gómez-Caravaca et al., 2013). To determine antioxidant 

capacity, colorimetric methods such as 2,2’-azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid) (ABTS) (Re et al., 1999) and cupric reducing antioxidant capacity 

(CUPRAC) assays (Apak et al., 2004) are employed. However, these time-

consuming techniques involve tedious extraction procedures, large organic solvent 

consumption and establishing calibration curve(s), which is impractical if numerous 
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samples are required to be analysed. As a result, the development of an 

alternative method for high throughput screening of herbal material is necessary. 

 

To address this issue, spectroscopic fingerprint coupled with multivariate 

regression analysis has been proposed.  The spectroscopic fingerprint of a herbal 

sample refers to a unique pattern resulting from the combination of spectral 

characteristics of all chemical components within a herb. As compared to 

conventional chromatographic analyses, the major advantage of adopting 

spectroscopy is that the analyses are rapid, non-destructive and require minimal 

sample preparation whilst taking into account the chemical components within a 

herb (Wartewig and Neubert, 2005).  

 

The combination of spectroscopic fingerprint with multivariate regression analysis 

has been used in the field of pharmaceutics (Sacré et al., 2010), agriculture (Yu et 

al., 2009), food science (Rambla et al., 1997), forensic chemistry (Macleod and 

Matousek, 2008) and petrochemistry (Blanco and Villarroya, 2002; Breitkreitz et 

al., 2003). Recently, two comprehensive reviews have been published which 

summarise the application of the spectroscopic fingerprint in food science (Lu and 

Rasco, 2011) and pharmaceutics (Roggo et al., 2007). Near-infrared (NIR) 

spectroscopy coupled with partial least squares regression (PLSR) has been 

applied to predict TPC and antioxidant capacity in green tea (Zhang et al., 2004). 

Total polysaccharide and triterpenoid content in Ganoderma species was 

predicted using NIR spectroscopy coupled with PLSR (Chen et al., 2012). 

Attenuated total reflectance-fourier transform mid-infrared spectroscopy coupled 
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with PLSR predicted the total phenolic and flavonoid content and antioxidant 

capacity in Moscatel dessert wine (Silva et al., 2014). 

 

NIR spectroscopy combined with partial lease squares-discriminant (PLS-DA) has 

effectively differentiated PLR from PTR (Lau et al., 2009). However, the spectral 

range measured by NIR spectroscopy (4,000 - 10,000 cm-1) is located in the 

region responsible for broad overlapping overtone and the combination bands of 

fundamental vibrational modes, making it difficult to interpret specific functional 

groups (Rodriguez-Saona and Allendorf, 2011). In another study done by Chen 

and his colleagues (Chen et al., 2013), the one- and two-dimensional 1H nuclear 

magnetic resonance (NMR) fingerprints of the PLR and PTR were investigated. 

The results demonstrated that PLS-DA coupled with NMR fingerprints is a 

beneficial tool for the authentication of PLR and PTR. However, the acquisition 

time of high resolution 2D NMR is longer than conventional vibrational 

spectroscopies and the high cost of the instrument and the requirement of highly-

trained personnel would restrict its application as a screening method in industry. 

 

Fortunately, recent advances in the development of Raman spectroscopy has 

made it become one of the fastest growing analytical instruments due to its 

simplicity, sensitivity and versatility (Das and Agrawal, 2011). Raman 

spectroscopy is able to analyse sample in different physical states (e.g. gas, liquid 

and solid) with minimal sample preparation. It has been employed for the 

determination of ethyl esters in soybean oil (Ghesti et al., 2006), α-tocopherol in 

vegetable (Feng et al., 2013) and omega-3 and omega-6 fatty acids in pork 

adipose tissue (Olsen et al., 2008).  
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Furthermore, the recent advances in Raman handheld devices have made it an 

affordable instrument which can potentially be applied as a quality control device 

for industry and on-site investigation (Markert et al., 2011). Recent studies have 

been demonstrated that a handheld Raman spectrometer can effectively 

differentiate extra virgin olive oil from soybean oil, corn oil and sunflower oil 

(Zhang et al., 2011c) and to predict the quality of olive oil based on the olive fruits 

(Guzman et al., 2012). However, the application of Raman spectroscopy in the 

analysis of herbal medicine is very limited, and therefore, the capability of this 

technique in predicting the chemical profile of PLR and PTR and other herbal 

species should be investigated. 

 

To the best of my knowledge, there is no study combining multivariate regression 

analysis with the Raman spectra of PLR and PTR in the literature. Therefore, the 

aim of this chapter was to develop a rapid method for the prediction of TPC 

(Chapter 1 p.34) and antioxidant capacities (Chapter 1 p.35) using Raman 

spectroscopy in combination with PLSR. This novel approach could provide an 

alternative method in predicting the chemical properties of a herb, without 

physically performing the ‘wet’ laboratory experiments. This would be beneficial to 

industry for the quality control of their herbal products. 
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6.2 Methods and materials 

6.2.1 Chemicals and solvents 

HPLC grade methanol and absolute ethanol were purchased from Thermo Fisher 

Scientific (VIC, Australia). All other chemicals and solvents were of analytical 

grade and were obtained from Sigma-Aldrich (NSW, Australia) unless otherwise 

stated. 

 

6.2.2 Herbal samples and extraction 

The details of the herbal samples and extraction were described in Chapter 2 

(p.75) and Chapter 3 (p.95), respectively. 

 

6.2.3 Raman spectroscopy measurement 

The measurement was carried out as described in previous studies with slight 

modifications (Daferera et al., 2002; Schrader et al., 2000). The spectra were 

acquired with a Bruker MultiRam Fourier transform Raman spectroscopy equipped 

with a diode pumped neodymium-doped yttrium aluminium garnet laser and a high 

throughput module using software OPUS version 6.5.92 (Karlsruhe, Germany). 

The excitation wavelength was set at 1064 nm and the scatter light was collected 

by a liquid-nitrogen cooled germanium detector. The powdered samples (10 mg) 

were loaded onto a black 96 well microplate with a transparent quartz bottom. One 

hundred scans were averaged for each sample (measured in duplicate). The laser 

power was set at 100 mW. The spectra were recorded at a resolution of 4 cm-1 

with a spectral range between 50 cm-1 and 3600 cm-1 at room temperature. The 

run time for each sample in duplicate was 3.5 mins.  
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6.2.4 Colorimetric measurement 

6.2.4.1 Total phenolic content  

The TPC was determined according to the Folin-Ciocalteau method with slight 

modifications (Ainsworth and Gillespie, 2007). The diluted ethanolic extract (0.5 

mL) was mixed with 2.5 mL of 0.2 N Folin-Ciocalteau’s phenol reagent, which was 

pre-diluted 10 times with deionised water. Sodium carbonate (2 mL; 7.5% w/v) 

was added five minutes later, and the mixture was incubated at room temperature 

for 2 hours. The absorbance of the reaction mixture was measured at 760 nm 

using a Bio-Rad Model 680 microplate reader (Bio-Rad Laboratories, NSW, 

Australia). The results were expressed as gram of gallic acid equivalents 

(GAE)/100 g of dried mass (DM). 

 

6.2.4.2 ABTS assay 

The ABTS free radical scavenging activity was assessed as previously described 

(Re et al., 1999). The ABTS free radical solution was prepared by mixing 7 mM 

ABTS solution with 2.4 mM potassium persulfate (1:1 v/v) and was stored in the 

dark for at least 12 hours. The absorbance of the ABTS working solution was 

adjusted to 1.00 ± 0.005 at 760 nm prior to analysis. Subsequently, 10 µL of 

diluted ethanolic extract was mixed with 200 µL of ABTS working solution. The 

mixture was incubated in the dark at room temperature for 30 mins. The 

absorbance was measured at 760 nm and was expressed as milligram trolox 

equivalent antioxidant capacity (TEAC)/100 g of DM. 
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6.2.4.3 CUPRAC  

The cupric ion reducing capacity was measured using the CUPRAC method 

proposed by Apak et al. (Apak et al., 2004). The CUPRAC working solution was 

prepared by mixing equal volumes of 10 mM copper (II) chloride solution, 7.5 mM 

neocuprine solution and 1M ammonium acetate buffer solution at pH 7.0. 

Subsequently, 10 µL of diluted ethanolic extract was mixed with 300 µL of the 

CUPRAC working solution. The mixture was incubated at room temperature for 30 

mins and the absorbance was measured at 450 nm. The results were expressed 

as GAE/100 g of DM. 

 

6.2.5 Data pre-processing 

Principal component analysis (PCA) was used to detect outliers (Chapter 1 p.43). 

Prior to the construction of a PLSR model, the Raman spectra were pre-processed 

to improve the quality and interpretability of the data matrices (Tistaert et al., 

2011a). The influences of standard normal variate (SNV) (Chapter 1 p.39), 

multiplicative scatter correlation (MSC) (Chapter 1 p.39) and mean centering 

(Chapter 1 p.40) on the PLSR model performance were evaluated and compared. 

The combination of pre-processing technique with the best predictability was 

chosen as the optimal method and was used in the subsequent calculations. The 

models were validated using root mean square error (RMSE), correlation 

coefficient (Chapter 1 p.57) and ratio of performance to deviation (Chapter 1 p.59). 

 

6.2.6 Software 

All the multivariate analyses and variable selection algorithms were performed on 

MATLAB R2012b (The MathWorks, MA, U.S.A.). PLS toolbox (Eigenvector 
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Research Incorporated, WA, U.S.A.) was used to calculate multivariate regression 

analyses. The K-S algorithm m-files were developed by Daszykowski et al. 

(Daszykowski et al., 2002).  

 

6.3 Results and discussion 

6.3.1 Detection of outliers 

To provide a visual representation of the dominant patterns in the Raman spectra 

of PLR and PTR, the data matrix was analysed by PCA. Figure 6.1a illustrates the 

Hotelling’s T2 versus Q-residual plot of the samples after the spectra was 

decomposed by PCA. The Hotelling’s T2 represents the variation in each sample 

within the PCA model, whereas Q-residual measures how well the reduced 

dimensional data conforms to the model. A sample was considered as an outlier if 

Hotelling’s T2 and Q-residual value is high (Wong et al., 2013). As shown in Figure 

6.1, no outlier was detected and hence, all the samples were used in the 

subsequent analysis. Figure 6.1b demonstrates the principle component (PC)1-

PC2 scores plot of the Raman spectra. The PCA model was constructed using two 

PCs which represented 95.83% of the original information from the data matrix. As 

expected, two distinct clusters were formed in the scores plot, suggesting that the 

PLR samples had different spectroscopic characteristics as compared to the PTR 

samples. 
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Figure 6.1 PCA plots obtained from pre-processed Raman spectroscopic 

data matrix. (a) Hotelling's T2 versus Q residuals plot, (----) line represents 

95% confidence interval; (b) PC1-PC2 scores plot. 

 

6.3.2 Raman spectroscopic characteristics of PLR and PTR 

The normalised Raman spectra of the samples (the average of 22 PLR and 20 

PTR) in the range of 190-1900 cm-1 are shown in Figure 6.2. The spectral 

characteristics of PLR were significantly different from that of PTR, especially in 

the region of 400 and 1500 cm-1. This region denotes the biochemical composition 

of carbohydrates and is regarded as a unique fingerprint for the assignment of 

starch. The spectral characteristics of PTR in this region shared a similar pattern 

with corn, potato and wheat starch reported in previous studies (Almeida et al., 

2010; Kizil et al., 2002). The peaks at 440, 478 and 576 cm-1 were due to the 

skeletal vibrations of the pyranose in the glucose unit of starch (Kizil et al., 2002). 

The strong peak observed at 478 cm-1 reflects the degree of polymerisation in 

polysaccharides (Bulkin et al., 1987) and has been used to detect the presence of 

starch in pharmaceutical formulations (de Veij et al., 2009) and carrots (Baranska 

et al., 2005). The peak at 866 cm-1 was assigned to the deformation of C-H bond, 
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whereas the peak at 941 cm-1 was attributed to the C-O-C skeletal vibration of α-

1,4-glycosidic linkages (Tu et al., 1979). The peak at 1050-1128 cm-1 

corresponded to the combination of the stretching mode of C-O, C-C and C-O-H 

bonds. The peak at 1262 cm-1 originated from the deformation of the CH2OH 

bond, while the peak at 1460 cm-1 was due to the stretching of the C-H bond (Kizil 

et al., 2002). It was observed that the peak intensities of PTR within this region 

were, in general, much greater than PLR, and this may be related to the amount of 

starch present within the samples. In Chapter 2 (p.85), the content of starch of 

PTR was more than 70% (w/w) of starch per dried mass, whereas PLR had less 

than 11% (w/w). Therefore, the starch spectral characteristics were the dominant 

pattern for PTR and correlated to the quantitative results.  

 

A strong peak at 1626 cm-1 was observed for PLR and not for PTR. This was 

attributed to the C=C stretching vibration from the aromatic ring and is regarded as 

the characteristic peak for polyphenols (Schulz and Baranska, 2007) and has been 

observed for gallic acid (Calheiros et al., 2008) and curcumin (Baranska et al., 

2004). This result was in good agreement with previous observations, which 

showed that the total flavonoid content in PLR was 4.42 times greater than that in 

PTR (Chapter 3 p.113). 
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Figure 6.2 Pre-processed mean Raman spectra of 22 PLR and 20 PTR 

samples. 

 

6.3.3 Quantitative analysis of TPC and antioxidant capacities  

Table 6.1 illustrates the descriptive statistics of the TPC, ABTS activity and 

CUPRAC of the PLR and PTR ethanolic extracts. It is important to note that a wide 

range of variability presented in the data matrix is crucial for generating a robust 

and stable PLSR calibration model, whereas a narrow-ranged data matrix can 

negatively affect the stability and predictability of the model (Tistaert et al., 2011a). 

In general, the PLR ethanolic extracts had significantly greater TPC and 

antioxidant capacity than the PTR ethanolic extracts (p<0.001). For the PLR 

ethanolic extracts, TPC, ABTS and CUPRAC were 55.24 ± 10.47 GAE/100 g DM, 

161.41 ±17.68 TEAC/100 g of DM and 104.77 ± 15.43 GAE/100 g of DM, 

respectively. For the PTR ethanolic extracts, TPC, ABTS and CUPRAC were 5.08 

± 2.17 GAE/100 g DM, 28.56 ± 3.58 TEAC/100 g of DM and 24.50 ± 2.84 

GAE/100 g of DM, respectively. The relatively higher TPC found in PLR 
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contributes to a greater antioxidant capacity as compared to PTR. The TPC results 

obtained from this study were in good agreement with a previous study, which 

demonstrated that the TPC in PLR was six times more than PTR quantified by 

high performance liquid chromatography (Chen et al., 2008a). A study by Jiang 

and his colleagues (Jiang et al., 2005) showed that PLR aqueous extract was five 

times more effective than PTR aqueous extract in preventing the 2,2’-azo-bis-(2-

amidinopropane) dihydrochloride free radical medicated haemolysis in rat red 

blood cells.  

 

Table 6.1 Summary of the TPC, ABTS activity and CURRAC statistics of the 

tested samples. 

  mean SD min max 

PLR TPC* 55.24 10.47 42.95 74.32 

 ABTS* 161.41 17.68 117.91 186.91 

 CUPRAC* 104.77 15.43 64.52 136.40 

PTR TPC 5.08 2.17 2.12 10.59 

 ABTS 28.56 3.58 22.61 35.66 

 CUPRAC 24.50 2.84 19.89 30.33 

 
SD: standard deviation; min: minimum value; max: maximum value. 

* Value obtained in PLR was significantly greater than that in PTR (p<0.001). 

 

6.3.4 Optimisation of pre-processing methods 

To improve the data quality and interpretability of the Raman spectra, various pre-

processing techniques were compared and evaluated. Preliminary PLSR models 

using different combinations of the aforementioned techniques were constructed. 

Their model performances were assessed by LOOCV and are summarised in 

Table 6.2. A desired model should have low complexity, low RMSE values and 
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high regression coefficient value (Rinnan et al., 2009; Tistaert et al., 2011a). Since 

the aim of the regression model is to predict the response   matrix, ratio of 

performance to deviation (RPD) was adopted to assess the model’s predictability. 

RPD measures the accuracy of the calibration model by dividing the standard 

deviation of the experimental values by the standard error of the estimated values 

obtained from the prediction set (Williams and Sobering, 1993). It has been 

proposed that a RPD value above 8.1 is classified as an ‘excellent’ regression 

model, whereas a between 6.5 and 8.0 is classified as a ‘very good’ regression 

model. A value between 5.0 and 6.4 is categorised as a ‘good’ model (Escuredo et 

al., 2013; Williams and Sobering, 1993). The higher the RPD value, the better the 

productivity of the model. It can be observed that the PLSR model pre-processed 

with normalisation followed by mean centering yielded the lowest RMSE values 

(RMSEC: 0.4476; RMSECV: 3.7654; RMSEV: 2.7927) and the highest regression 

coefficient (r2 cal: 0.9992; r2 cal: 0.9458; r2 pred: 0.9721) and RPD value (9.84) 

among others. Therefore, it was chosen as the optimal pre-processing 

combination and was applied to the Raman spectra in the subsequent analysis.  
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Table 6.2 Comparison of the PLSR model parameters obtained from various pre-processing methods. 

 LVs RMSEC RMSECV RMSEV r2 cal r2 CV r2 val RPD 

None 2 4.7053 5.1339 4.1175 0.9149 0.8989 0.9488 3.60 

Nor + MC 5 0.4476 3.7654 2.7927 0.9992 0.9458 0.9721 9.84 

MSC + MC 7 0.3083 3.9347 3.1301 0.9996 0.9408 0.9646 8.91 

1st Derivative (5) + MC 3 1.8575 4.6996 4.6415 0.9867 0.9155 0.9317 5.28 

1st Derivative (9) + MC 4 1.3012 4.5935 5.5496 0.9935 0.9193 0.8936 4.82 

1st Derivative (13) + MC 4 1.3080 4.6960 5.6316 0.9934 0.9161 0.8867 4.75 

2nd Derivative (5) + MC 2 2.2277 4.7239 4.5150 0.9809 0.9153 0.9311 5.12 

2nd Derivative (9) + MC 3 1.2440 4.4746 5.5727 0.9941 0.9232 0.8989 4.82 

2nd Derivative (13) + MC 3 2.0631 4.5103 4.7412 0.9836 0.9222 0.9321 5.06 

 
1st Derivative: First order Savitzky-Golay derivative with bracket represents the window number; 2nd Derivative: Second 

order Savitzky-Golay derivative; MSC: multiplicative scatter correction; MC: mean centering; LVs: latent variables; 

RMSEC: root mean square error of calibration; RMSECV: root mean square error of leave-one-out cross-validation; 

RMSEV: root mean square error of validation; r2 cal: regression coefficient of the calibration set; r2 CV: regression 

coefficient of the leave-one-out cross-validation set; r2 val: regression coefficient of the validation set; Deviation: deviation 

between RSMEV and RMSEC; RPD: ratio of performance to deviation. 
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6.3.5 PLSR model performance of Raman spectra 

6.3.5.1 Calibration model 

By employing the optimal pre-processing techniques, three PLSR models were 

constructed which enabled the prediction of the TPC, ABTS and CUPRAC of PLR 

and PTR using the entire Raman spectra. The number of LVs employed for each 

model was assessed by the RMSECV generated from LOOCV of the calibration 

set. The LV with the lowest RMSEC was considered as the optimal number of 

LVs, and was determined as 5, 4 and 4 in the TPC, ABTS and CUPRAC model, 

respectively. Figure 6.3 illustrates the correlation between the values measured by 

the reference analytical methods and the values predicted by the PLSR models. A 

linear relationship was obtained for each model, suggesting that the predicted 

values were highly correlated with their respective values measured in the actual 

experiments. For the TPC model, the regression coefficient of calibration (r2 cal) 

and leave-one-out cross-validation (r2 CV) were determined as 0.9992 and 0.9458, 

respectively, with a RMSEC and RMSECV of 0.4476 and 3.7654, respectively. 

Comparatively, the regression coefficients obtained from the antioxidant capacity 

models were slightly lower than that from the TPC model. In the ABTS model, the 

r2 cal and r2 CV were calculated as 0.9972 and 0.9595, respectively, with a 

RMSEC and RMSECV of 2.0857 and 7.9320, respectively. In the CUPRAC model, 

the r2 cal and r2 CV were calculated as 0.9966 and 0.9305, respectively, with a 

RMSEC and RMSECV of 0.3250 and 1.4721, respectively. 
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Figure 6.3 Comparison of the measured and predicted values using the 

calibration and validation PLSR model. (a) Total phenol content; (b) ABTS 

activity; (c) CUPRAC. 
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6.3.5.2 Validation model 

The 14 samples (8 samples from PLR and 6 samples from PTR) selected by K-S 

algorithm were used as a validation set to assess the robustness of the 

established PLSR models. The TPC model yielded the highest regression 

coefficient of validation (r2 val: 0.9721) with a RMSEV of 2.7927 in the validation 

set. Similar to the results from the calibration set, the regression coefficients 

obtained from the antioxidant capacity models were smaller than those of the TPC 

model. The r2 val and RMSEV in the ABTS model were determined as 0.9439 and 

9.1348, respectively. For the CUPRAC model, the r2 val was calculated as 0.9396 

with a RMSECV of 1.2492. Furthermore, the RPD values of the TPC, ABTS and 

CUPRAC model were calculated as 9.84, 7.11 and 7.13, respectively, suggesting 

that these models are either ‘excellent’ or ‘very good’ regression models in 

predicting the response   matrix. The residual values of the three models from the 

validation set were calculated to assess the models’ fitness in predicting new 

samples. The residual refers to the amount of variability from a dependent value 

that is unexplained in a regression analysis which represents the differences 

between the measured and predicted value. Consequently, the lower the residual 

value, the more accurate the regression model is. From the residual plot, the 

absolute mean residual values from the TPC, ABTS and CUPRAC models were 

determined as 0.55, 1.11 and 0.11, respectively, suggesting that these models 

provided similar estimated values comparable with those obtained from the 

reference analytical methods.  
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6.3.5.3 Loading plot 

The loading plot can be used to identify important variables/peaks. Figure 6.4 

illustrates the X-loading plot of the first LV from the TPC, ABTS and CUPRAC 

models in the calibration set. If a peak in the X-loading plot had a large loading 

score, this suggested that the corresponding peak in the Raman spectrum was 

important in predicting the TPC and antioxidant capacity of the samples. For 

Figure 6.4, the first LV for each model shared a similar spectral pattern in the X-

loading plot. In addition, the peak at 1626 cm-1 possessed the highest intensity, 

indicating that the polyphenol characteristic peak was the most influential peak in 

estimating the response variables. In addition, eight dominant peaks were also 

observed in the range of 400 cm-1 to 1500 cm-1, which is the spectral region 

responsible for the identification of starch. These results suggested that the 

presence of starch and polyphenols presence in the sample are important factors 

in differentiating PLR from PTR, which was in good agreement with the results 

from previous chapters. 

 

Figure 6.4 Loading plot of the PLSR model using full Raman spectra. 
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6.4 Conclusion 

In this study, a rapid and non-destructive method coupling Raman spectroscopy 

with multivariate regression analysis PLSR for the prediction of TPC and 

antioxidant capacities was presented. High RMSE and regression coefficient 

values suggest that the proposed PLSR models can be used to predict the TPC 

and antioxidant capacity in PLR and PTR using Raman spectra. Raman 

spectroscopy coupled with PLSR is an efficient technique for the quality control 

application of PLR and PTR in industry, and can be potentially applied as a 

template for the prediction of major chemical families in herbal materials. With the 

practicality of portable Raman devices, these models can serve as a potential on-

site or on-line screening method in the quality control of natural products. 
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7.1 Introduction 

According to the PPRC, PLR and PTR are indicated for the treatment of diabetes 

and cardiovascular diseases. Although PLR and PTR are separated into two 

distinct monographs in the PPRC, their indications and recommended doses are 

identical (10 - 15 g) (Wong et al., 2011). From the results obtained from previous 

chapters, the chemical profile of PLR was significantly different to that of PTR. As 

a result, it is necessary to compare the in vitro pharmacological activities of PLR 

and PTR.  

 

PLR and PTR are a rich source of antioxidants, in particular isoflavonoids (Jiang et 

al., 2005; Wong et al., 2011; Zhang et al., 2011a), and have been shown to 

possess anti-diabetic, anti-hypertensive and anti-hyperlipidaemia properties in 

several clinical trials (Liu et al., 2008; Liu, 2004; Lu, 2004; Tam et al., 2009).  

 

The major chemical constituents from PLR and PTR such as puerarin, genistein 

and daidzein have been found to significantly decrease the baseline fasting 

plasma glucose, total cholesterol and insulin levels in several mice models (Choi 

et al., 2008; Hsu et al., 2003; Lee, 2006). One of the therapeutic approaches in the 

management of diabetes is to prevent postprandial hyperglycaemia (Bischoff, 

1994). The absorption of glucose is delayed after a meal by inhibiting the activities 

of intestinal carbohydrate hydrolysis enzymes such as α-amylase and α-

glucosidase. α-Amylase is a major endoglycosidase secreted by the salivary 

glands and pancreas, and catalyses the initial hydrolysis of starch into shorter 

oligosaccharides (Sales et al., 2012). Subsequently, α-glucosidase further digests 

the mixture and releases the monosaccharide α-glucose (Tadera et al., 2006). The 
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inhibition of these enzymes prolongs carbohydrate digestion time, causing a 

reduction in the rate of glucose absorption in the small intestine and, 

consequently, minimising the occurrence of the post-prandial serum glucose spike 

(Bischoff, 1994; Hanefeld, 1998).  

 

The apoptosis of endothelial cells disturbs the integrity of the endothelial 

monolayer and is considered as the initial step in the pathogenesis of 

atherosclerosis, which leads to the development of various vascular disorders 

(Davigon and Ganz, 2004). Recent studies have reported that the rebalance of the 

cellular reactive oxygen species (ROS) equilibrium by antioxidants is beneficial in 

counteracting the endothelial injury. Puerarin has been found to effectively 

attenuate ROS-induced damage in various in vitro and in vivo studies (Jiang et al., 

2003; Xiong et al., 2006).  

 

The pharmacological activities of other major chemical compounds in PLR and 

PTR such as genistein and daidzein have been reported in the literature. Genistein 

and daidzein are widely distributed in the plant kingdom (Barnes, 2010), with many 

studies focusing on their potent anti-cancer and phytoestrogenic properties. 

Genistein and daidzein inhibited the growth of hormonal-related cancers such as 

prostate, breast and cervical cancer (Adjakly et al., 2013; de Lemos, 2001). 

Recent studies have suggested that the pre-treatment of puerarin effectively 

inhibited growth and induced apoptosis in breast (Lin et al., 2009) and colon 

cancer (Yu and Li, 2006). These findings suggest that PLR and PTR might be 

beneficial in the treatment of cancer therapy.  
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Most of the previous pharmacological studies focused on the activities of individual 

compounds in PLR and PTR, with a handful of studies investigating the 

pharmacological activities of PLR extract. The investigation of the extract provides 

a better simulation of TCM therapy. To the best of my knowledge, no study on the 

activity of PTR extract has been reported. Therefore, the pharmacological 

differences between PLR and PTR extracts were investigated in this study. Since 

it is believed that the chemical composition could significantly impact on the 

pharmacological activity of a herb, it is hypothesised that the pharmacological 

activity and/or potency of PLR should be different to PTR. 

 

In particular, the potential beneficial effect of PLR and PTR extracts on the activity 

of carbohydrate hydrolysis enzymes α-amylase and α-glucosidase, cyto-protective 

effect against hydrogen peroxide (H2O2)-induced cell death on human endothelial 

EA.hy926 cells and cytotoxic effect on human prostate cancer PC3 cells have not 

yet been reported. This study will provide preliminary evidence to support the 

traditional use of PLR for treating diabetes and cardiovascular diseases and also 

generate information on whether the clinical recommended dose for the two 

species should be reviewed in the near future. 
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7.2 Methods and materials 

7.2.1 Herbal sample extraction 

The details of herbal samples extraction was described in Chapter 3 (p.95). Four 

samples (PLR4, PLR7, PLR15 and PLR23; PTR3, PTR6, PTR15 and PTR17) 

from each species with the highest total phenolic content, total flavonoid content 

and antioxidant capacities from Chapter 3 and Chapter 7 were chosen. 

 

7.2.2 Porcine pancreatic α-amylase inhibition assay 

The experiment was performed as previously described with minor modifications 

(Kam et al., 2012b). Briefly, the ethanolic extract (10 µL) was mixed with 20 mM 

sodium phosphate buffer (10 µL; pH 6.9), which contained 33.3 U/mL of porcine 

pancreatic α-amylase. The mixture was incubated at 25 oC for 10 mins. 

Subsequently, 10 µL of soluble potato starch solution (1.5% w/v) was added and 

the mixture was incubated at 25 oC for 10 mins. The enzymatic reaction was 

terminated by adding 96 mM dinitrosalicylic acid (20 µL) and boiled in a water bath 

for 15 mins. The cooled mixture was diluted with 150 µL of deionised water and 

was analysed at 550 nm. The final absorbance of the reaction mixture was 

calculated as the absorbance of the experimental reaction mixture minus the 

absorbance of the mixture without the addition of enzyme solution. Acarbose (1 

µM – 8 mM) was used as the positive control. The concentration of sample 

required for inhibiting 50% of the enzymatic activity under the assay conditions 

was the IC50 value.  
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7.2.3 Rat intestinal α-glucosidase inhibition assay 

The experiment was carried out in accordance to a previous study (Gao et al., 

2007). To obtain an α-glucosidase working solution, 100 mg of rat intestinal 

acetone powder was dissolved in 3 mL of water and was shaken for 1 hour. The 

mixture was centrifuged at 4,500 rpm for 5 mins and the supernatant was 

collected. The ethanolic extract (10 µL) was mixed with 10 µL of α-glucosidase 

solution and the mixture was incubated at 25 oC for 5 mins. Subsequently, 10 µL 

of 40 mM sucrose solution was added and the mixture was incubated at 37 oC for 

30 mins. The enzymatic reaction was terminated in a boiling water bath for 5 mins. 

The glucose content was determined by adding 200 µL of Glucose C2 (Wako Pure 

Chemical Industries, Osaka, Japan) colour reagent. The mixture was incubated at 

37 oC for 10 mins and was read at 490 nm. The final absorbance of the reaction 

mixture was calculated as mentioned in 7.2.2 (p.186). Acarbose (0.61 µM – 500 

µM) was used as the positive control. 

 

7.2.4 Cell cultures 

Human vascular endothelial cell (EA.hy926) and human prostate cell (PC3) were 

kindly donated by Dr Shanhong Ling (Monash University Central Clinical School, 

Australia) and Dr Qihan Dong (Department of Medicine, The University of Sydney, 

Australia), respectively. The cells were cultured in Dulbecco’s modification Eagle’s 

medium (DMEM)/ Ham’s F12 supplemented with 15 nM of HEPES and L-

glutamine, 100 U/mL of penicillin, 100 U/mL of streptomycin and 10% of foetal 

bovine serum (Life Technologies, Australia) at 37 oC under 5% carbon dioxide in 

humidified air. The PLR and PTR ethanolic extracts were dissolved in DMEM and 



Chapter Seven: Comparing the bioactivities of PLR and PTR  

 188 

filtered with a 0.2 µm PVDF membrane. The filtered ethanolic stock solutions (5 

mg/mL) were further diluted with DMEM to desired concentrations. 

 

7.2.4.1 Cyto-protective effect against oxidative stress 

EA.hy926 cells were seeded in 96-well plates at a density of 1.0 x 105 cell/mL and 

allowed to grow until confluent for 24 hours. The cells were pre-treated for 4 hours 

with 1, 10, 50, 100, 150, 200, 400, 500, 600 μg/mL of PLR and PTR ethanolic 

extracts, and then exposed to 0.4 mM of hydrogen peroxide (H2O2) for another 20 

hours. The cell viability of the endothelial cells after exposure to oxidative stress 

was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) dye reduction assay as previously described (Chapter 1 p.36) (Kam et al., 

2012a). Briefly, MTT solution (5 mg/mL) was added to each well and the plates 

were incubated for 4 hours at 37 oC. After the medium was aspirated, the purple 

dye crystal formed inside the viable cells was dissolved in dimethyl sulfoxide. The 

optical density of each well was measured on a microplate reader at 550 nm. The 

experiments were performed in triplicates, and the optical density of formazan in 

the control was taken as 100% viability (Chapter 1 p.36). Gallic acid (20 μg/mL) 

was used as the positive control. DMEM without the addition of PLR and PTR 

ethanolic extract was used as the negative control. The experiment was performed 

in triplicates. 

 

7.2.4.2 Prostate cancer cell growth inhibition assay 

The cytotoxicity of the PLR and PTR ethanolic extracts on PC3 cells was 

investigated using a standard MTT colorimetric assay. PC3 cells were seeded at a 

density of 1 x 104 cell/mL onto a 96-well plate and incubated at 37 oC for 24 hours. 



Chapter Seven: Comparing the bioactivities of PLR and PTR  

 189 

The cells were untreated (negative control) or treated with 10, 50, 100, 500, 1000, 

2000, 3000, 4000, 5000 µg/mL of ethanolic extract and incubated at 37 oC for 72 

hours. The cell viability of endothelial cells after treatment was assessed by the 

MTT colorimetric assay. Gallic acid (20 μg/mL) was used as the positive control. 

DMEM without the addition of PLR and PTR ethanolic extract was used as the 

negative control. The experiment was performed in triplicates. 

 

7.2.5 Data analysis 

The statistical analyses were performed on GraphPad Prism version 6.01 

(GraphPad Software, CA, U.S.A.). The data was analysed using either one way 

analysis of variance (ANOVA) or Student’s t-test. 

 

7.3 Results and discussion 

7.3.1 Porcine pancreatic α-amylase inhibition assay 

The activities of the PLR and PTR ethanolic extracts on α-amylase are presented 

in Figure 7.1a. The ethanolic extracts of PLR and PTR demonstrated a 

concentration-dependent inhibitory effect on porcine pancreatic α-amylase activity. 

In the concentration range of 97.66 µg/mL to 250.00 mg/mL, the percentage of 

inhibition ranged from 23.54 ± 1.50% to 95.29 ± 0.69% for PLR; for PTR, the 

inhibition ranged from 29.45 ± 3.73% to 94.91 ± 1.28%. However, a significantly 

lower IC50 value (4.67 ± 0.68 mg/mL; p<0.001) was obtained for the PLR ethanolic 

extracts suggesting that it was more potent in inhibiting α-amylase activity as 

compared to the PTR ethanolic extracts (IC50: 14.46 ± 0.73 mg/mL).  
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7.3.2 Rat intestinal α-glucosidase inhibition assay 

As illustrated in Figure 7.1b, PLR and PTR ethanolic extracts inhibited rat intestinal 

α-glucosidase activity in a concentration-dependent manner. In the concentration 

range of 18.31 µg/mL to 150.00 mg/mL, the percentage of inhibition ranged from 

3.45 ± 0.98% to 95.08 ± 0.49% for PLR; for PTR, the inhibition ranged from 15.58 

± 1.53% to 92.10 ± 1.97%. As for the α-amylase inhibition assay, the PLR 

ethanolic extracts showed superior inhibitory activity (IC50: 2.70 ± 0.40 mg/mL; 

p<0.001) on α-glucosidase as compared to the PTR ethanolic extracts (IC50: 11.40 

± 0.27 mg/mL). Comparing the IC50 values of the two inhibition assays, both PLR 

and PTR ethanolic extracts had a higher potency towards the inhibition of α-

glucosidase activity than that of α-amylase activity.  

 

Figure 7.1 Effect of the PLR and PTR ethanolic extracts on the activity of 

carbohydrate hydrolysis enzymes. (a) Porcine pancreatic α-amylase (n = 8); 

(b) Rat intestinal α-glucosidase (n = 8). Experiment was performed in 

triplicate. Acarbose was used as the positive control. 

 

PLR extract has previously been shown to have anti-diabetic activity (Prasain et 

al., 2012), while the potential anti-diabetic effect of PTR has not yet been 

examined. The anti-diabetic effect of PLR and PTR might be partly related to the 
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inhibition of α-amylase and α-glucosidase. A previous study has compared the 

inhibitory effect of 16 common polyphenols on porcine-originated α-amylase and 

rat small intestinal and yeast-originated α-glucosidase. Among them, isoflavonoids 

was one of the polyphenol groups that possessed potent inhibitory effects on all 

three types of carbohydrate hydrolysis enzymes (Tadera et al., 2006). This potent 

inhibitory effect exerted by isoflavonoids is related to the presence of hydroxyl 

groups on aromatic ring A and B of the isoflavonoid skeleton, especially at C-5 and 

C-7 position of ring A, which facilitates the binding to the active site of the 

enzymes (Xiao et al., 2013a; Xiao et al., 2013b).  

 

7.3.3 Cytoprotective effect against oxidative stress 

The effects of the PLR and PTR ethanolic extracts on human endothelial 

EA.hy926 cells against H2O2-induced cell death are presented in Figure 7.2. PLR 

ethanolic extracts significantly attenuated (p<0.001) the H2O2-induced cell injury 

and restored the cell viability as compared to the H2O2-treated group. The 

cytoprotective effect of the PLR extract was initiated at 200 µg/mL (60.49 ± 3.54%) 

and increased to 1000 µg/mL (96.00 ± 1.17%) in a concentration-dependent 

manner as compared to the H2O2-treated group (47.86 ± 2.46%). In contrast, the 

PTR ethanolic extracts had an insignificant protective effect on EA.hy926 cells 

against H2O2-induced apoptosis in the concentration range of 100 to 1000 µg/mL 

(p>0.05) as compared to the H2O2-treated group (48.36 ± 1.08%). 
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Figure 7.2 Effects of the (a) PLR and (b) PTR on H2O2-induced cell death on 

human endothelial EA.hy926 cells ** p < 0.01; *** p < 0.001 (n = 8). The 

experiment was performed in triplicate. Gallic acid was used as the positive 

control. 

 

Oxidative stress induced by ROS, including H2O2, superoxide and peroxynitrite, is 

regarded as a key factor in endothelial cell dysfunction (Higashi et al., 2009). 

Excess H2O2 affects ROS generation and impairs cellular antioxidant defenses, 

resulting in an increase of ROS production (Pennathur and Heinecke, 2007). 

Excess ROS can damage the macromolecules such as nucleic acids, lipids and 

proteins and/or trigger apoptotic pathways. Therefore, the inhibition of this process 

could prevent the cellular injury, and subsequently halt the progression of various 

cardiovascular and cerebrovascular diseases (Ogita and Liao, 2004). Puerarin has 

been found to protect PC12 neuronal cells (Jiang et al., 2003) and rat pancreatic 

islets from Wistar rats (Xiong et al., 2006) against H2O2-induced apoptosis. Apart 

from puerarin, other major chemical constituents in PLR such as genistein and 

daidzein have also been demonstrated to possess protective effect against 

oxidative stress by restoring the activity and protein expression of 
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malondialdehyde and the decreased superoxide dismutase in streptozotocin-

induced diabetic rats (Baluchnejadmojarad and Roghani, 2008; Roghani et al., 

2013). Malondialdehyde is a highly active by-product from lipid peroxidation, 

whereas superoxide dismutase is an anti-oxidant defense metalloenzymes for the 

homeostasis of intracellular ROS. The activation of superoxide dismutase could 

restore the intracellular ROS imbalance and hence prevent cell injury (Roghani et 

al., 2013). 

 

The results from Figure 7.2 indicate that PLR extracts, but not PTR extract, have 

the potential to protect EA.hy926 cells against injury induced by H2O2, which may 

be partly related to the high abundance of puerarin and the presence of certain 

unique chemical constituents such as 3’-methoxypuerarin. The UPLC results from 

Chapter 3 (p.107) illustrated that the amount of puerarin in PLR was 11.95 times 

greater than in PLT and 3’-methoxypuerarin was absent in PTR. In a previous 

study, the cytoprotective effect of 3’-methoxypuerarin against cerebral 

ischaemia/reperfusion injury in rats was investigated (Liu et al., 2010). 3’-

Methoxypuerarin (60 mg/kg) was administrated intraperitoneally daily for 3 days 

after ischaemic insult. The results demonstrated that the number of surviving 

hippocampal neuron cells in the 3’-methoxypuerarin-treated group was 

significantly greater than the non-treatment control group. This cytoprotective 

effect was related to the β-adrenergic effect in combined with the reduction of PGI2 

release, which prevented cerebrovascular spasm and enhanced the vascular 

permeability and blood flow (Liu et al., 2010; Zhao et al., 2007). 
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7.3.4 Prostate cancer growth inhibition assay 

The effects of the PLR and PTR ethanolic extracts on the cell viability of prostate 

cancer PC3 cells are illustrated in Figure 7.3. PLR and PTR dramatically 

diminished the PC3 cell growth in a concentration-dependent manner. A 

significantly higher IC50 value (833.19 ± 1.74 µg/mL; p<0.001) obtained from the 

PTR ethanolic extracts suggested that it was less potent in inhibiting PC3 cell 

growth as compared to the PLR ethanolic extracts (IC50: 451.83 ± 1.12 µg/mL).  

 

Figure 7.3 Effects of the PLR and PTR ethanolic extracts on the cell viability 

of human prostate cancer PC3 cells (n = 8). Experiment was performed in 

triplicate. 

 

Puerarin has been shown to effectively inhibit growth and induce apoptosis in 

various cancer cell lines (Hien et al., 2010; Lin et al., 2009; Yu and Li, 2006). In a 

study done by Yu and Li (Yu and Li, 2006), puerarin pre-treatment (50 – 100 μM) 

for 72 hours effectively decreased the cell viability of HT-29 cells in a 

concentration-dependent manner. The cell death was triggered by the activation of 

intrinsic apoptotic pathway, via down-regulation of B-cell lymphoma-2 (Bcl-2) and 

the up-regulation of caspase-3 and Bcl-2-associated X protein expression. The 

high anticancer potency in PLR may also be related to the presence of minor 
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constituents such as daidzin, genistin and genistein, which have been shown to 

effectively inhibit the growth of prostate and ovarian cancer cell lines, via both 

intrinsic and extrinsic apoptotic pathways (Adjakly et al., 2013; de Lemos, 2001). 

 

7.4 Conclusion 

In this chapter, the pharmacological activities of PLR and PTR were evaluated and 

compared and this correlated to the chemical profile. The inferior potency of PTR 

in these preliminary studies suggests that it should not be used interchangeably 

with PLR in clinical practice. Clinical studies could provide additional information 

on whether the recommended therapeutic dose of PTR should be reviewed. The 

enzymatic and cyto-protective assays further verify the clinical use of PLR for the 

treatment and management of diabetes and cardiovascular diseases. 

Furthermore, the cytotoxic effect showed in this study reveals that PLR and PTR 

might be potentially useful as a functional food for the management of cancer.  
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8.1 General discussion and summary 

The use of herbal medicines for the prevention and treatment of diseases has 

increased worldwide (World Health Organisation, 2002). Although there is much 

research supporting their potential role in mainstream medicine, their safety and 

efficacy remains inconclusive. One of the major reasons is the inconsistency of 

bioactive components within a herb which can be significantly affected by 

environmental factors and production processes. Another issue is the 

misidentification and substitution of herbal material. This could be due to incorrect 

nomenclature and taxonomical classification, similar descriptions in the 

monographs and identical indications and recommended doses for species from 

the same genus. 

 

As a result, the quality control of herbal materials is considered as the most crucial 

step in the field of herbal medicine as it could dramatically impact on the safety 

and efficacy of the herbal products (Jiang et al., 2010; Liang et al., 2009). For 

Puerariae Lobatae Radix (PLR) and Puerariae Thomsonii Radix (PTR), it has 

been found that these two species are used interchangeably in the clinical practice 

(Wong et al., 2011). To date, there has not been an exhaustive study on the 

differences in their morphological, chemical profile and biological activity. 

Consequently, these two herbs might produce different clinical effectiveness. 

 

In this thesis, four major differentiation procedures were examined: 

1. The morphological characteristics of PLR and PTR. 

2. The qualitative and quantitative analysis of the chemical profiles of PLR and 

PTR. 
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3. The use of chemometrics coupled with analytical instruments as an efficient 

and rapid method for differentiating PLR and PTR. 

4. The biological activity of PLR and PTR. 

 

Currently, the morphological characteristics of PLR and PTR have similar 

descriptions in the monographs. However, the macroscopic and microscopic 

characteristics such as the size of xylem vessels and the size and number of fibre 

bundles in PLR were observed to be significantly higher than PTR. Higher total 

dietary fibre content and total starch content was found in PTR, which correlated to 

the starchy texture and high starch abundance observed under the microscope.  

 

The quantitative colorimetric assays revealed that the total flavonoid content and 

DPPH antioxidant capacity in PLR were significantly greater than in PTR. 

Chemical quantification using a newly developed ultra-performance liquid 

chromatography (UPLC) method revealed that isoflavonoids such as puerarin, 

daidzin, daidzein and genistein were the primary chemical constituents in both 

species, while only genistin, 3’-methoxypuerarin, 3’-hydroxypuerarin and 6”-O-D-

xylosylpuerarin were present in PLR.  

 

To show that the chromatographic fingerprint is superior to a single chemical 

marker, chromatographic fingerprint coupled with multivariate discriminant analysis 

was adopted. A partial least squares-discriminant analysis (PLS-DA) model 

constructed using the entire chromatographic fingerprint from a newly developed 

UPLC method achieved a 100% correct species classification rate, while the 

model established by puerarin alone achieved a correct species classification rate 
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of 86.6%. The model was applied to granule products and showed that four out 

seventeen granule products, which were labelled as PLR, were manufactured 

using PTR. 

 

For the industry, maintaining expensive instruments and examining multiple 

samples is a challenge. In this study, a simple and effective HPTLC method was 

developed to directly extract information from a digitalised data of HPTLC into 

chromatographic fingerprints. As compared to a UPLC chemometrics approach to 

classify samples, HPTLC was equally effective in differentiating PLR from PTR, 

with a high specificity and sensitivity and zero error rate. 

 

Another analytical method that can be used as an on-line method during different 

manufacturing processes and requires minimal sample preparation is the 

adaptation of spectroscopy. The current study has shown that Raman 

spectroscopy of the presence of starch and phenolic components in the two herbs 

was important factors and useful in differentiating PLR from PTR. The high 

correlation coefficient and ratio of performance to deviation indicated that the 

partial least squares regression models were accurate and robust in predicting the 

TPC and antioxidant capacities in both PLR and PTR. 

 

To examine the influence of the chemical profile, pharmacological studies were 

undertaken. PLR extracts showed significantly greater inhibitory activity of α-

amylase and α-glucosidase and the growth of prostate cancer PC3 cells in a 

concentration-dependent manner than PTR extracts. For the oxidative stress on 

endothelial EA.hy926 cells induced by H2O2, the cytoprotective effects were only 
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observed for the PLR extracts. The higher pharmacological potency observed in 

PLR is likely due to the relatively high puerarin, total phenolic and flavonoid 

content, and the presence of different chemical constituents such as genistin, 3’-

methoxypuerarin and 3’-hydroxypuerarin which have been shown to possess anti-

inflammatory, antioxidant and cytoprotective effects in various in vitro and in vivo 

models (Lee, 2006; Liu et al., 2010; Zhao et al., 2007). 

 

In summary, PLR exhibited significantly different morphological, chemical and 

pharmacological properties as compared to PTR and thus, revision of the 

monographs is warranted. Simple analytical instruments such as HPTLC and 

Raman spectroscopy presenting the whole chemical profile combined with 

chemometrics can effectively differentiate PLR from PTR. The application of 

various chemometric techniques can be employed as a template for the quality 

control of PLR and PTR in the pharmaceutical industry. The differences in 

pharmacological activities between PLR and PTR suggest that the substitution of 

PLR with PTR should be reviewed. Further study on pharmacological activities 

and efficacy of PLR and PTR would provide much needed knowledge on these 

popular herbal medicines. 

 

8.2 Limitations and future directions 

Due to the limited time frame, only 42 samples were purchased and analysed in 

this thesis. The major acquired locations were restricted to China and Australia. 

Since Pueraria species have been naturalised in different countries around the 

world, the analysis of samples from various regions could provide a much 

complete picture about the influence of different continents on the morphological, 
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chemical and pharmacological characteristics of PLR and PTR (Banks, 2008; 

DPI&F, 2008; NWO, 2008; US Congress, 1993; Wong et al., 2011). In addition to 

the increase of sample size, the inclusion of other species within the Pueraria 

genus such as P. mirifica, P. tuberosa and P. edulis might generate a more robust 

and accurate model for the quality control of Pueraria species. 

 

Since it is believed that isoflavonoids, which are sensitive to UV, are the major 

chemical components within PLR and PTR, UPLC coupled with diode array 

detector (DAD) recorded at 245 nm was used for the acquisition of 

chromatographic fingerprints (Jiang et al., 2005; Rong et al., 1998). However, this 

approach might ignore the presence of non-UV sensitive chemical constituents 

such as saponins (Park et al., 2000; Zhang and Qu, 2013), which might also 

contribute to the chemical and pharmacological differences of PLR and PTR. To 

solve this problem, DAD detector measured at multi-wavelength and/or 

hyphenated analytical instruments including UPLC-MS and UPLC-NMR can be 

used. Recent studies have demonstrated that chromatographic fingerprints 

measured at multiple wavelengths are useful in detecting different chemical 

compositions and can be employed for the quality control of herbal materials 

(Lucio-Gutiérrez et al., 2012a; Lucio-Gutiérrez et al., 2012b). PLS-DA model 

constructed using chromatographic fingerprints measured at four wavelengths 

(226, 254, 280 and 326 nm) has been shown to effectively differentiate Valerianae 

Officinalis Radix from other species within the Veleriana genus such as Valerianae 

Wallichii Radix and Valerianae Edulis Radix, with a 100% correct species 

classification rate (Lucio-Gutiérrez et al., 2012a).  
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In the preparation of TCM, water and sometimes Chinese white wine such as 

Kaoliang were used to extract chemical constituents of the herbs (Kastner, 2011). 

Nonetheless, in this study absolute ethanol was employed as it presented the 

highest TPC and antioxidant capacity. Therefore, to emulate conventional TCM 

preparation, water and/or water/ethanol mixture can be used in the future study. 

The ratio of water and ethanol used to extract chemical constituents from PLR and 

PTR can be optimised using a chemometrics technique, namely response surface 

methodology, which aims to explore an adequate functional relationship between a 

number of explanatory variables (experimental conditions, e.g. ethanol 

concentration, extraction time and temperature) and one or more response of 

interests such as total phenolic content and amount of bioactive chemical 

component (Bezerra et al., 2008). This approach has optimised ethanol 

concentration and extraction duration and temperature on Saposhinikovlae Radix 

(Li et al., 2011a), Astragali Radix (Xiao et al., 2008), Hypericum Perforatum Herba 

(Liu et al., 2000) and Morinda Citrifolia Fructus (Thoo et al., 2010).  

 

In regard to the pharmacological activities of the current thesis, the experiments 

were limited to enzymatic and in vitro molecular assays. It is important to note that 

the enzymatic and cellular assays used in this study are non-specific and serve as 

a preliminary screening method. Despite PTR demonstrates inferior anti-diabetic, 

cyto-protective and cytotoxic effects as compared to PTR in current study, these 

results need to be re-examined in the in vivo model. The in vitro approach might 

not completely reflect the in-vivo process of metabolism, pharmacokinetic and 

pharmacology in the human body. As a result, further studies on the therapeutic 

effects of PLR and the impact of substituting PTR with PLR in clinical practice 
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should be investigated. Bioassay-guided fraction to isolate individual potential 

active constituents may provide information on the active constituent(s). Further 

investigation on the signaling pathways and mode of actions of the 

pharmacological effects exerted by PLR and PTR extracts and/or compounds are 

urgently warranted. 

 

According to the TCM practice, a herb is seldom used on its own and is usually 

combined with other herbs and presented in a formula, which consists of at least 

two and up to 20-30 herbs (Ung et al., 2007). The most fundamental and simplest 

form in a formula is the herb pair, which comprises of two TCM herbs that 

complementary to each other. This approach is based on the Yin and Yang theory 

and is believed to enhance certain therapeutic effects by mutual enhancement, 

assistance and restraint (Wang et al., 2012). Therefore, instead of investigating 

the pharmacological effect of a single herb, the effect of herb pairs and formulae 

can be explored in a future study.  
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Figure A.3.1 Spectra of reference compounds detected at 245 nm using 

ultra-performance liquid chromatography coupled with photodiode array. (a) 

Puerarin; (b) Daidzin; (c) Genistin; (d) Daidzein; (e) Genistein.  
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Figure A.3.2 Total ion chromatograms of chemical constituents detected in 

ESI positive ion mode using ultra-performance liquid chromatography-mass 

spectroscopy. (a) 3’-Hydroxypuerarin; (b) Puerarin; (c) 6’-O-D-

xylosylpuerarin; (d) 3’-Methoxypuerarin; (e) Daidzin; (f) Genistin; (g) 

Daidzein; (h) Genistein. 

 

 


