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  ABSTRACT 

Kenya and the Murray Darling Basin (MDB) of Australia are largely arid or semi-

arid and are important agricultural areas. However, persistent dry periods and the 

timing of dry spells directly impact on availability of soil moisture and hence crop 

production in these regions. Research in these regions has not yielded desirable 

impacts in addressing this problem. This study aimed at examining the characteristics 

of dry spells and development of monthly dry spell forecasts in these regions.   

Daily rainfall datasets from 30 locations in Kenya and 47 locations in the MDB were 

used in the analysis of monthly dry spells. The length of both monthly dry spells and 

dry spells going across months were separately calculated and compared. The best 

parametric distribution functions (pdfs) describing the empirical dry spell distribution 

were examined. A generalized linear model (GLM) and a generalized additive model 

(GAM) were used to determine the temporal and spatial trends in dry spell length 

and in forecasting of dry spells at 1-, 3-, and 6-month lead times.   

Overall, the monthly dry spell lengths mostly followed a lognormal distribution. The 

mean monthly dry spell length underestimated the observed dry spell length in these 

regions while the monthly dry spell parameters were negatively correlated with the 

mean annual and monthly rainfall in Kenya and in the MDB.  

Increasing dry spell trends occurred in most months and in some locations and the 

probability of drought risk in the cropping season reach up to 50% in Kenya and 77% 

in the MDB. The greatest increases were in June-September in Kenya and in autumn 

season in the MDB. Increasing rates in observed trends in both regions were ≥ 0.026 

days/year or 1 day to 37 days increase over the entire period.  

The performance of binary and continuous forecasts at 1-, 3-, and 6-month lagged 

SOI  phases and SSTs showed modest skill (R
2
) ranging from < 20% – 72% in 

Kenya and MDB for the total number of dry days and the maximum dry spell length 

in a month but better skill was indicated in Kenya than in the MDB. The challenge 

still remaining is to find a way to capture all the inter-intra annual variability in the 

dry spell series at the monthly and seasonal time frames. The current skill may be 

improved by including other predictors in the model such as NINO4, Pacific Ocean 

thermocline and tropospheric wind anomalies. The current findings can have 

implications for agriculture in these regions.   
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CHAPTER 1  

GENERAL INTRODUCTION 

Dry spells, generally defined as sequences of days without precipitation are used to 

describe dry conditions. Prolonged dry spells also known as ‘drought’ are believed to 

be one of the greatest challenges to farming systems in arid to semi-arid (ASALs) 

lands (Mupangwa et al. 2011) and often cause deleterious impacts to agriculture and 

the economies of many regions (Ahmed et al. 2002, IPCC 2007, Howden et al. 

2010). For instance, Kenya and the Murray Darling Basin of Australia are mostly 

arid and drought prone and often experience agricultural losses. Drought 

vulnerability in these regions is probably due to the fact that agriculture is primarily 

dependent on rainfall which is highly variable. This suggests that examining rainfall 

patterns may be important in the understanding of  drought characteristics in these 

regions. 

The current study investigates the temporal and spatial characteristics of dry spell 

lengths (days) rather than drought. Whereas drought is broadly understood to be 

water shortage either; rainfall, soil moiture or ground water deficit it also has 

challenges particularly related to its definition and characteristics. This may at times 

give the wrong impression of what is the actual representation of dry conditions. In 

contrast, the attractiveness of considering dry spell lengths is the ease with which 

statistical analysis can be applied to consecutive dry days or dry spells at varied time 

scales. Furthermore, such analysis may improve the current understanding of drought 

characteristics.  

In Kenya and the MDB, stochastic approaches, mainly Markov Chain models are 

popular in the analysis of drought (e.g. Sharma 1996, Thyer & Kuczera 2000, Barron 

et al. 2003, Kiem & Franks 2004). Equally, cumulative rainfall anomalies are used to 

represent drought (e.g. Rockström et al. 2003, Lodge & Johnson 2008). Stochastic 

models are criticised for inadequate representation of drought characteristics (e.g. De 

Groen 2002, Mul & Savenije 2013), whereas, the use of cumulative rainfall masks 

the actual distribution of dry days. In this light, other ways may be better to represent 

drought characteristics. Specifically, dry spells, normally represented by cumulative 

days with zero or extremely low rainfall in historical records, can reveal the 

variability in behaviour of dry conditions at finer and longer temporal scales which 

may improve considerably, the understanding of drought impacts on agriculture. 
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Even though numerous studies have previously examined dry spells in Kenya and the 

MDB (e.g. Suppiah & Hennessy 1998, Barron et al. 2003), it appears that an in depth 

analysis of the characteristics of dry spells lengths is less highlighted. Furthermore, 

whereas advances in drought forecasting in these regions are not very clear, there is 

little evidence of attempts to forecast dry spells lengths.  

Due to the complexity of drought dynamics in ASALs as mentioned earlier, a 

starting point would be to identify suitable probability distribution functions that can 

reliably describe the observed dry spells distributions. These distributions can 

facilitate the fitting of appropriate models for drought forecasting. The two parameter 

gamma distribution for instance has been applied to describe rainfall in Australia and 

Eastern Africa as it suits many distribution shapes (e.g. Stern & Coe 1984, Groisman 

et al. 1999, Jothityangkoon et al. 2000, Husak et al. 2007).  

Whilst regression based approaches remain attractive in modelling drought in Kenya 

and MDB, there is still a need to improve the skill of current seasonal forecasts 

which are relatively low in order to improve monitoring and management of 

agriculture against climate variability. In particular, dry spells at the monthly scale 

and across months can pose a great challenge to modelling drought due to the 

mismatch between the timescale and ability to calculate dry spells at arbitrary times. 

In addition, dry spells may exhibit both linear and non-linear patterns which may 

also add some difficulty in the analysis.  

In this thesis, statistical regression methods, mainly the generalized additive model 

(GAM) will be used to examine the temporal and spatial characteristics of dry spells 

and later on to forecast intra-inter seasonal and annual dry spell length in Kenya and 

the MDB. The beauty of using GAM lies in their flexibility to model both linear and 

non-linearity in the time series. In agriculture application, the value of drought 

forecasts may be assessed by looking at how farming decisions are taken and as such, 

a farmer’s survey in Kenya may provide some useful information that can be 

integrated in the management of climate extremes in Kenya and the Murray Darling 

Basin of Australia.  

 

1.1.  Motivation    

This thesis presents analysis of dry spells characteristics in two different but uniquely 

similar regions: Kenya and the Murray Darling Basin of Australia (MDB). Kenya 

and the MDB are located in the eastern parts of Africa and Australia and border the 
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western edges of the Indian and Pacific Oceans respectively. Interestingly, most of 

the land surface areas of these regions are dry but used for agriculture production. 

Agriculture happens to be the most important economic activity in both regions. 

However the two regions have interesting contrasts. Kenya lies in the tropics but the 

Murray lies in the sub-tropics. This makes their climates distinctly unique. Kenya 

experiences two main rainfall seasons (March-May and October-December) due to 

the monsoon or the double migration of the Inter-Tropical Convergence Zone (ITCZ) 

across the equator between the northern and southern hemispheres. In contrast, the 

MDB has two rainfall patterns: summer dominant (December-February) in the north 

and winter dominant (June-August) in the south. Both patterns are a result of the 

differences in synoptic weather patterns in the northern and southern hemispheres. 

More interesting, the rain seasons (months) in Kenya turn out to be relatively dry in 

the MDB and vice versa. It is not surprising therefore, that, when the El Niño 

Southern Oscillation (ENSO) phenomena is in the La Niña phase in the equatorial 

Pacific, Kenya experiences severe or extreme dry (droughts) conditions while much 

of the eastern MDB experience excessive rainfall or flooding.   

I first learned about Australia from children story books when I was a little boy 

newly in school. These were picture books which illustrated numerous stories about 

Australia and particularly about the adventures of the Kangaroos in the fast 

Australian jungle. The stories were made more captivating and thrilling by our 

teacher who acted for us. I had no idea that my journey to Australia would be a 

reality more than 30 years later. Thanks to Willem Vervoort who accepted to 

supervise my PhD research project at the University Of Sydney. My experience 

during this time is a story for another day. 

My research interests should focus on forecasting rainfall considering that I am a 

meteorologist. However, after reviewing the published literature, it seemed that it 

was more interesting to examine drought than rainfall in these regions. This decision 

was motivated by the fact that drought is less understood and a major problem for 

agriculture in my country which heavily depends on agriculture. As a matter of fact, 

drought is a serious issue not only in Kenya but also Australia which is the driest 

continent in the world (e.g. Webb & Reardon 1992, White & O'Meagher 1995). 

During my childhood days, I had some bad experiences with drought. In fact I am a 

die-hard survivor of the vagaries of drought. For example, I recall vividly the 

negative impacts of the 1981 drought in Kenya which is popularly known as “money 
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in the pocket” because there was no food to buy from the shops although people had 

money. I remember how my mum fed us on pumpkins and pumpkin leaves or 

“mahuti ma marenge” as locally known each day, since it was the only food available 

after the drought dried up all the crops. In 1984, it happened again while I was in a 

boarding school in a pastoral region. Hunger was everywhere and we had to put and 

shut up on one meal per day (essentially, a small plate of boiled yellow maize or 

corn) via the kind generosity of the World Food Programme (WFP) of the United 

Nations. Today, I know that it wasn’t just me who was a victim of these natural 

monsters but, the impacts of drought had led to death of over 70% of the livestock in 

pastoral areas, and thousands of people went without food (Homewood & Lewis 

1987, Oba & Lusigi 1987, Fratkin & Roth 1990, Smucker & Wisner 2008). For 

Australia, just like in Kenya, the scars of drought (e.g. Leblanc et al. 2009) remain 

reminiscent of the words “lest we forget” from Rudyard Kipling’s poem 

‘Recessional’.  

Looking back, most farmers just like many of us do not see drought coming because 

it “creeps in slowly” (Wilhite et al. 2005) and only becomes clearer when the damage 

has already set in. In other words, past droughts that brought misery to farmers and 

the world may have sneaked in silently. This thesis may not demystify the intrigues 

of droughts that occurred in the past or those that will occur in future. However, it is 

my hope that this study can go a long way in providing some new insights and 

enlightenment on the science and provide some help in the management of 

agriculture and other sectors against drought in these regions. 

 

1 .2 .  Research Objectives  

The main aim of this thesis is to forecast intra-inter seasonal and annual dry spell 

lengths in Kenya and the Murray Darling Basin of Australia. This will provide a tool 

that may be useful to agriculture managers and other stakeholders in Kenya and the 

MDB in decision making. 

In order to understand the challenges related to drought, this thesis’ first objective 

will focus on Kenya as an example to analyse farmers’ perceptions on climate 

variability and management options they use in response to climate variability. In 

addition, farmers perceptions are explored by identifying the level of adoption and 

value of indigenous forecasts (IF) and seasonal climate forecasts (SCFs) in farm 

decisions, quantitative analysis of the benefits of SCFs and IF on farmers (maize) 

http://en.wikipedia.org/wiki/Rudyard_Kipling
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yields, and establishment of inventory of indigenous and evidence based climate 

forecasts to manage climate variability. Secondly, the temporal and spatial dry spells 

distribution in Kenya and the MDB will be investigated by establishing the best 

parametric distributions to describe the observed monthly dry spell lengths (DSL) 

and subsequently, the temporal and spatial variations in the distributions of DSL are 

examined. The third objective investigates the temporal and spatial trends in the DSL 

by looking for evidence of long term trends in the DSL at the annual scale and also 

the historical trends at the month and seasonal scale. The last objective is devoted to 

the development of dry spell length forecasts at 1, 3 and 6 months lead times. 

  

1.3.  Thesis  outl ine  

This thesis comprises of 8 chapters which outlines the research activities on 

forecasting of dry spell lengths in Kenya and the Murray Darling Basin of Australia.  

Chapter 1 gives some background information on dry spells and drought in Kenya 

and the MDB.  

Chapter 2 gives a review of the literature related to climate variability particularly, 

rainfall and drought characteristics and current climate forecasting tools in 

agriculture in Kenya and the MDB. Both scientific and non-scientific forecasting 

tools are discussed to highlight the status of agriculture management to climate 

variability.  

Chapter 3 focuses on temporal distribution of dry spell lengths. It starts with the 

calculation of dry spells from daily rainfall from several locations and subsequently 

investigates the characteristics of dry spell parameters. In this chapter, the challenge 

of calculating dry spells at the monthly boundaries and across months is 

demonstrated when dealing with the derivation of the mean monthly dry spell lengths 

and forecasting of dry spells lengths.    

Chapter 4 examines trends in dry spell lengths within the framework of the 

Generalized Linear Models (GLMs). Both temporal and spatial characteristics are 

analysed for the overall long-term trends as well as the monthly and seasonal trends.  

Chapter 5 is dedicated to the prediction of dry spell lengths at monthly and seasonal 

time scales. The Generalised Additive Models (GAM) is used for logistic regression 

of categorical forecasts and to model numerical forecasts as a continuous variable 

using the Southern Oscillation Index (SOI) phases and sea surface temperatures 

(SST).  
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Chapter 6 and Chapter 7 scrutinize farmers’ perceptions in Kenya in regard to 

climate variability and application of climate and indigenous forecasts in farm 

decisions respectively. Chapter 6 looks at how farmers perceive climate variability in 

2 different agro-climates: a wet and high potential agriculture area and a semi-arid 

agricultural area both of which grow maize, the staple crop in Kenya. Chapter 7 

extends on Chapter 6 but specifically focuses on how farmers use indigenous and 

scientific forecasts in farm decisions in the 2 regions. This reveals interesting 

information on how farmers’ opinions and decisions differ across the 2 regions and at 

the farms level. 

In chapter 8, a general overview of the thesis is given and the key research findings 

outlined. The implications in Kenya and Australia are discussed. Research 

limitations are pointed out and future research directions proposed before the final 

conclusions are given at the tail end.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1.  Introduction  

The Inter-governmental panel on climate change (IPCC) fourth assessment report 

indicates that the Pacific region agricultural production is expected to decline sharply 

by 2030 due to a rise in temperatures and severe droughts (Park et al. 2009). 

Similarly, negative agricultural impacts are projected in the sub-Saharan Africa 

region (SSA) where drought is increasingly common (Olsson et al. 2005, Sheffield & 

Wood 2008). Moreover, the risks of drought affecting agriculture in the past may 

exhibit recurrent patterns in these areas (Houghton et al. 1996, Fischer et al. 2005, 

Schlenker & Lobell 2010). More specifically, the recurrence of drought in semi-arid 

agro-pastoral regions of Kenya and Australia underline a need to strengthen the 

adaptive capacity of agriculture systems.  

There is a considerable amount of research on drought impacts on crop yields in 

Australian landscapes (Heathcote 1988, Colls 1993, Horridge et al. 2005) and 

livestock losses in agro-pastoral areas of Kenya (Ndikumana et al. 2000, Aklilu et al. 

2002, Huho et al. 2011). Despite this research it is still unclear whether those impacts 

have increased or declined in time and what further changes may occur in future.  

Rather than drought, a number of studies that have analysed dry spells in these 

regions also indicate that these cause crop failures in a number of occasions (Barron 

et al. 2003). However, relatively very few studies provide information on the 

temporal and spatial characteritics of dry spells (Sharma 1996, Suppiah & Hennessy 

1998). These studies however, provide some basis for further research in this area. 

Loukas & Vasiliades (2004), suggest that in order to understand drought better, as 

many features as possible that are associated with drought, such as dry spells, the 

number of hot days,  or temperature patterns should assessed.  

Whereas drought is a recurring phenomena that affects many regions, it is defined 

differently (Palmer 1965, Yevjevich 1967, Dracup et al. 1980, Rossi 2000, Tsakiris 

& Vangelis 2005). Among the varied definitions of drought, 3 categories are the 

most common: meteorological, hydrological and agricultural droughts (Tsakiris et al. 

2007, Wong et al. 2013). Meteorological or hydrological droughts occur when 

precipitation or streamflow is below the longterm average for a prolonged period of 

time, whereas agriculture drought is indicated by a reduction in soil moisture that 
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leads to crop failure. One of the recent definitions of drought suggests several years 

with less than median rainfall (Kirby et al. 2013). Studies give the impression that 

any one of the definitions may not be suitable for all purposes. For instance, although 

precipitation deficit is one of the key aspects for characterizing meteorological 

droughts (Palmer 1965), how is drought different if this proxy is used to characterize 

an agricultural or hydrological drought? When is a dry spell long enough to typify a 

drought class such a meterological etc.? In general, many studies define drought as  a 

prolonged dry period or water deficit relative to normal conditions, but in view of the 

above question, this is ambiquous and hard to apply. In a recent study, Lloyd-Hughes 

(2013) concluded that as a result of numerous climatological considerations in the 

analysis of drought and the difficulty in quantifying the human influence, it was 

virtually imposible to come up with a generalized objective definition of drought. 

Due to these varied views on drought, this study chooses to assess dry spells which 

are generally successive dry days in order to improve our understanding of  drought. 

There has been debate on whether the frequency and severity of droughts in semi-

arid SSA has increased compared to previous decades (Andresen et al. 2008, 

McSweeney et al. 2008, Tøttrup et al. 2012, Funk et al. 2013). In contrast, over much 

of Australia's agricultural regions, drought has been declared more often than the 

recommended 1 in 20 - 25 years which means that, the frequency of drought may 

have increased. Even so, recent extreme drought conditions over eastern Australia, 

between 1997 and 2009, compare in magnitude with other previous droughts e.g. the 

federation drought of the 1900s (Nicholls 2004, Murphy & Timbal 2008). However, 

Keating & Meinke (1998) argue that trends for the worst droughts prior to 1995 are 

unclear.  

In Kenya, analysis of rainfall indicate no clear trends in the average annual drought 

patterns since the 1960s (Rowntree 1989, Andresen et al. 2008). However some case 

studies suggest that there has been some rainfall reduction in western and central 

highland areas of Kenya consistent with increasing temperatures (Mugalavai & 

Kipkorir 2013, Ngetich et al. 2014).  Given these situations, it is necessary to 

investigate and have a comprehensive assessment of drought characteristics in the 2 

regions. 

In general, drought characteristics are relatively less predictable than rainfall 

patterns. Nonetheless, accurate identification and forecasting of drought conditions 

can benefit agricultural management and adaptation to drought (Colls 1993, Manton 



9 
 

et al. 2001, Dessai et al. 2004). For instance, seasonal forecasts enabled the US 

government to save about$19 billion in benefits and an estimated $4 billion reduction 

in losses following the 1997/1998 El Niño Southern Oscillation events (Changnon 

1999).  

This review explores the characteristics of dry spells and the role of seasonal and 

drought forecasts in farming systems for Kenya and Australia for a better 

understanding of drought and its management in the regions. This includes a review 

of climate and drought variability in these regions and how farmers utilize 

indigenous and evidence based climate forecasts in dealing with dry spells risks 

forms part of the discussion.  

 

2.2. Climate and Climate variability in Australia 

The climate of Australia is inherently variable with over 80% of the land surface area 

being arid to semi-arid. The climate is tropical in the north and temperate in the 

south. The subtropical high pressure systems (anticyclones) off the western coast 

contribute to the dry and hot climate and relatively low average annual rainfall over 

most of Australia (BOM 2010). The continental mean annual rainfall is about 465.3 

mm and the highest annual rainfall exceeds 12,000mm (Queensland).  

The  El Niño-Southern Oscillation (ENSO) is the largest driver of Australian climate 

and the main trigger of the  high seasonal to inter-annual variability of rainfall 

(Nicholls et al. 1996, Power et al. 1998) particularly over the eastern and southern 

regions. Nevertheless, ENSO explains far less of the variance in rainfall over most 

parts and other less known factors appear to play a major role in driving the climate 

of the region (Klingaman et al. 2013). One recent study suggest that the Indian 

Ocean Dipole overrides ENSO in cooler seasons in eastern Australia (Pepler et al. 

2014). In general, the Australian rainfall patterns and climates are complex and thus 

numerous causes or drivers have been proposed. Australia has one of the most 

extreme climates, as indicated by drought and bushfires, compared to other parts of 

the world (BOM 2010). 

 

2.2.1. Rainfall characteristics and trends in Australia 

Rainfall in Australia is widely studied (e.g. Nicholls 1983, Drosdowsky 1993, 

Suppiah & Hennessy 1998). Australian rainfall exhibits high seasonal and inter-
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annual variability (Drosdowsky & Williams 1991, Nicholls 1992) compared to 

similar climatic zones in the world (Finlayson & McMahon 1991).  

Nicholls & Lavery (1992) indicate increasing trends in rainfall during summer in 

eastern Australia and declining trends in south-western Australia in winter. 

Subsequently, Hennessy et al. (1999) estimates that annual rainfall increased by 15% 

across New South Wales and other states due to an increase in heavy rainfall events 

and the number of rain days. More recently, Drost & England (2008) indicated that 

there is a decline in precipitation in the last half of the 20
th

 century over eastern 

Australia and an increase in northern and western regions during summer and 

autumn. The Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) and the IPCC have predicted that rainfall will decline over much of 

Australia by 2030 (IPCC 2000, Preston & Jones 2006). In the recent decade rainfall 

has declined in some parts of south eastern Australia (Bradstock et al. 2013). 

Analysis of the annual total rainfall across Australia (Figure 2.1) from 1900 - 2010 

shows that the mean annual rainfall from 1900 – 1960 was lower (435.4 mm) relative 

to that from 1961 – 2010 (478mm). A step change of the annual rainfall around 1960 

has been suggested by Plummer et al. (1999) and the increased mean rainfall in the 

latter period might have been due to an increase in high rainfall (totals) events. A 

linear regression fit to the rainfall indicates a significant increasing trend (p=0.002) 

in rainfall throughout the period at a rate of 0.7mm per year although most studies 

say this is only significant in some seasons or regions (e.g. Nicholls & Lavery 1992, 

Hennessy et al. 1999) in contrast to a recent study in the region (Bradstock et al. 

2013). 

 

F i g u r e  2 . 1 :  T r e n d s  i n  A u s t r a l i a n  a nn u a l  t o ta l  r a i n f a l l  f ro m  1 9 0 0  –  2 0 1 0 .  Th e  

d e c a d a l  a v e r a g e  i s  i nd i ca t e d  b y  t h e  d a s h ed  ( b l u e)  l i n e  t ha t  s t a r t s  a t  1 9 1 0  w h i l e  t h e  

l i n e a r  f i t  i s  i n d i c a t e d  b y  t h e  d o t t e d  ( r e d )  l i n e  r u n n i ng  f r o m  t h e  l e f t  t o  t h e  r i g h t  

e d g e s  o f  th e  p lo t .   D a ta  so u r c e :  A u s t r a l ia n  B u r e a u  o f  M e t e o r o lo g y  ( B O M )  
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2.2.2. Rainfall /drought variability for Australia in grain growing areas 

The focus is on Murray Darling Basin (MDB), which is the main grain growing area 

located in the south-eastern part of Australia. The average annual rainfall in the 

MDB is about 480 mm and ranges from 1200 mm per annum (Great Dividing 

Range) to < 200 mm per year in the western parts (Haisman 2004). Evaporation 

varies from 1000 mm per year in the east to over 2000 mm in the west. 

One study shows increasing trends in heavy rainfall in summer and winter in the 

MDB between 1910 and 1990 (Suppiah & Hennessy 1998). Some areas had drought 

prior to 1948 and floods in the following period (Jones et al. 2001). In the last decade 

alone, low rainfall or prolonged droughts occurred in 2001, 2002/2003, 2005 to 2007 

and 2008/2009 with significant impacts on agriculture and water supply (Nicholls 

2004, Murphy & Timbal 2008). Most of the rainfall deficits occurred in autumn. 

According to BOM (2008), the average seven year basin wide rainfall deficits during 

recent years were slightly higher compared to similar past dry periods (1937-1946, 

1895-1903).  

Figure 2.2, displays the rainfall deciles for Australia between 2001 and 2008 in 

which rainfall was well below average (decile 1) over most parts of the MDB. 

  

 

Figure 2.2: Australian rainfall deciles from October 2001 to September 2008. Map source: 

http://www.bom.gov.au/ 

 

2.3. Climate and Rainfall variability in Kenya 

Kenya has a tropical climate and the rainfall distribution can describe its climate. The 

interannual rainfall variations in Kenya are closely associated with the El Niño 

Southern Oscillation, with more rainfall occurring during El Niño and drier 

http://www.bom.gov.au/
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conditions in La Niña years (Wolff et al. 2011). Several studies have examined the 

climate and rainfall variability patterns in Kenya (Bärring 1988, Ogallo 1989, 

Nicholson 1996, Camberlin & Wairoto 1997, Ovuka & Lindqvist 2000). The rainfall 

distribution across the country varies remarkably with altitude as does the 

temperature range which varies substantially from about 15°C in central highland 

regions to 29°C at the coastal areas. Temperatures are slightly higher in ASAL 

regions in the north (McSweeney et al. 2008).  Note that most of the country is either 

arid or semi-arid (ASAL) (Sombroek & Braun 1980). 

Figure 2.3, shows an evaluation of the average total rainfall based on the 1961 - 2009 

period during MAM and OND seasons for different regions in Kenya. Clearly, the 

western and coastal regions indicate more rainfall in MAM season compared to the 

other regions. In contrast, during the OND season rainfall seems to be roughly 

similar in western, central and Nairobi (SE) regions. These patterns of rainfall 

highlight important information with regards to management of food production in 

Kenya. From a practical context, however, the average or cumulative rainfall 

anomalies commonly used to indicate drought occurrence in this region, should be 

regarded cautiously as it may not be representative of the actual drought 

characteristics (distribution, duration, severity etc.). 

March - May average rainfall across Kenya
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October - December average rainfall across Kenya
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Figure 2.3: Seasonal average rainfall for long (MAM) and short (OND) (bottom) rain seasons across selected 

stations over Kenya from 1961 to 2009 based on 30 year climatology  

 

2.3.1. Temporal - spatial rainfall characteristics and trends in Kenya 

In most parts of Kenya there is no statistically significant trend in rainfall since 1960 

(Ogallo 1993, McSweeney et al. 2008). As an example, rainfall analysis of a few 

locations in the ASAL of Kenya suggests some declining trends in the MAM season 

since 1950 (Figure 2.4). At Moyale for instance, the trend in rainfall was statistically 

significant (p=0.01) and declined by 2.4 mm per year over the entire period.  

However, rainfall, shows diverse temporal-spatial characteristics over Kenya (Ogallo 

et al. 1988, Beltrando 1990, Camberlin 1995) and particularly indicates greater 

variability in the rainfall amounts (Ovuka & Lindqvist 2000) in the short rain season 

(OND) than in the long rain season (MAM) (Conway et al. 2005). Rainfall variability 

is larger over high altitude areas in eastern and western Rift Valley compared to low 

land areas (Ogallo 1989) although  the  day to day variability is more marked due to 

heavy precipitation events compared to seasonal or inter-annual variations 

(McSweeney et al. 2008). One question however, is whether the temporal and spatial 

rainfall patterns reflect the nature and magnitude of drought in Kenya.  For example, 

a recent study by Shisanya et al. (2011) revealed that most locations in semi-arid 

areas of Kenya had below average rainfall in most of the MAM and OND seasons in 

both the El Niño and La Niña years from 1960 – 2003. This can be interpreted to 

mean that drought or drier conditions persisted in these years which appear to 

contradict the above results. What this suggests is that, a clear link between rainfall 
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and drought or dry spells with climatic drivers e.g. ENSO needs to be investigated in 

order to understand the current characteristics of climatic variability in Kenya.  

Given this, the temporal and spatial uncertainty in the rainfall patterns may pose a 

challenge in quantifying and predicting drought characteristics in Kenya. 

Nevertheless, it might be possible that the indication of declining rains reflect 

increasing trends in drought conditions and vice versa in Kenya. 

 

Figure 2.4:  Total rainfall over Moyale, Marsabit and Narok in the MAM season from 1950-2010.  Linear 

regression trends are indicated by the dotted (Moyale.lm, adj.R2 = 0.1, p-value=0.01), solid (Marsabit.lm, adj.R2 

= 0.03, p-value= 0.08) and dashed (Narok.lm, adj.R2 = 0.02, p-value=0.1) lines. 

 

2.4. Climate extremes and relevance in agriculture 

Climate extremes such as prolonged dry spells cause damage to agricultural 

production (Sivakumar 1992, Battisti & Naylor 2009). For example, the 1998-2000 

La Niña related droughts in Kenya cost about 14% of the GDP, most of which is 

linked to reduced agricultural production and water resources degradation (Davis et 

al. 2006). It is therefore useful for any study on drought to consider analysis of 

impacts.  

From Table 2.1, it can be seen that between 1991 and 2005 droughts accounted for 

8% of all natural disasters globally (EM-DAT 2005). Climate related disasters alone 

constituted > 70% of the total global (EM-DAT 2005). For example, in Africa, the 

1983 Ethiopian drought alone caused 300,000 deaths, whereas the drought of 

1994/1995 drought resulted in about 50% decrease in agriculture production in 

Australia (ABARE 1995).  

Shorter climate extreme events have also been known to have severe impacts on 

agriculture. For example, the 1997/1998 ENSO related floods and drought of 2000 

over eastern Africa, led to huge agriculture losses and millions of people affected  

http://www.bom.gov.au/climate/glossary/lanina.shtml
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equivalent to what would be expected from normally longer drought events (Collette 

2000). In other words, droughts often lead to food crises in Kenya (Campbell 1999).  

Clearly, drought can cause major damage to agriculture and other human activities. 

Due to most of the agriculture dependence on rainfall in this region, it is important to 

assess drought.  

 

Table 2.1: Comparison between climate and non-climate related disasters globally from 1991-2005.  

Type of extreme event  Percentage distribution 

Wildfire 

Extreme temperature 

Drought 

Windstorms 

Floods 

Tsunamis 

Insect infestation 

Volcano 

Land/mud slides 

Earthquakes 

Epidemics 
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2.4.1. What is drought? 

Three main drought types are recognized globally: meteorological, hydrological and 

agricultural droughts. The drought types relate to periods of below normal long term 

rainfall (Palmer 1965), deficient surface and subsurface water (Palmer 1965), and 

deficient soil moisture that leads to crop failure (FAO 1983) respectively. 

Economists have also related drought to a period of low water supply which erodes 

society’s production and consumption needs (Dracup et al. 1980). Some of the 

fundamental aspects of drought studies include the identification and estimation of its 

occurrence, duration, severity and spatial scale (Pelletier & Turcotte 1997, Agnew & 

Chappell 1999, Rojas et al. 2011). 

Drought definitions have continued to be modified and multiplied. For example, a 

review by Wilhite & Glantz (1985) identified more than 5 categories of droughts. It 

is possibly due to the varied definitions that the quantification and characterisation of 

drought continues to be a problem. This may be an obstacle to developing efficient 

drought monitoring systems (Wilhite & Glantz 1985). Some general aspects related 

to drought definitions and dry periods are discussed in Byun & Wilhite (1999) and 
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the studies therein. Some of these concepts include; consideration of consecutive dry 

days with no precipitation or little rainfall over a specified period of time. A range of 

daily precipitation thresholds (amounts) such as; <0.1mm, <1mm, <5mm, have been 

used to quantify drought (Dracup et al. 1980, Moon et al. 1994, Wauben 2006). Byun 

& Wilhite (1999) argue that concepts like dry days and precipitation thresholds, 

quantify drought intuitively rather than objectively. A number of studies also feature 

the concept of “severity” in defining drought.  (e.g. Byun & Wilhite 1999).  

Alternatively, other studies distinguish between what is assumed “drought” and what 

it is not. For instance, Tsakiris & Vangelis (2005) distinguish between aridity and 

drought, terming aridity to be “a more or less permanent dry climatic condition” 

whereas drought is a temporary condition. In this case, aridity can mean desert like 

conditions (Maliva & Missimer 2012). In this regard, aridity indices have been used 

as proxies for quantifying the magnitude and severity of drought in many regions 

(Arora 2002, Ntale & Gan 2003, Croitoru et al. 2013). An aridity index expresses the 

ratio of potential evaporation to precipitation, which indicates the level of dryness 

over a climatological region. One of the weaknesses of using aridity index to 

represent drought is the usage of monthly period (precipitation, evaporation and 

time) which is not represenative of the actual natural cycle of drought occurrence.  

Whereas drought is a time period of water deficit, definitions can change from one 

place to another and across time due to the close link between local rainfall patterns 

and the atmospheric and synoptic features of an area (Rossi et al. 1992, Tsakiris & 

Vangelis 2004, Mishra et al. 2009). This makes that the understanding of drought 

differs with place and situation. The Australian Bureau of Meteorology (BOM) 

categorizes drought in terms of rainfall as either “lowest on record”, “serious” or 

“severe” rainfall deficiency whereas Kenya upholds the meteorological definition of 

a period of below normal rainfall to identify drought. 

In contrast to a meteorological context, it has been argued that drought should be 

assessed not only based on precipitation but also on other environmental and social 

factors (Tsakiris & Vangelis 2005). Tsakiris & Vangelis (2005) suggests that drought 

conditions are a function of interactions between atmospheric processes, physical, 

social, environmental and economic factors. This includes factors such as 

precipitation amounts, evapo-transpiration and soil and vegetation characteristics. 

However, quantifying or modelling some of the parameters in order to represent 
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drought is difficult. Moreover, most of these datasets are difficult to find in many 

regions. 

In conclusion for the identity of drought, it is clear that opinions on drought are 

divided. Even so, it can be seen that most of the definitions are of meteorological 

nature and generally attempt to characterize the magnitude and coverage of drought. 

While, drought definitions are constantly being updated to suit the needs of a 

particular sector, region or situation, pursuit of a better way to represent drought is 

still required. Following this, the current study opts to focus on dry periods rather 

than defining drought in order to characterize dry conditions in Kenya and Australia. 

Taking up dry spells is motivated by the fact that they are more objective, 

quantifiable using daily rainfall and can easily be applied in any region where 

historical rainfall records are available. Furthermore, for agriculture 

drought/applications, opting for dry spells is more appropriate since crop growth is 

highly dependent on short-term moisture conditions, and crops maybe more sensitive 

to dry conditions during critical growth  stages.  

 

2.4.2. Drought indices 

Drought indices (DI) are the most popular tools for drought monitoring (Tsakiris et 

al. 2002). DI can be used to quantify the moisture condition of a region and hence 

determine the risk of drought (Sivakumar et al. 2010). Several DI exist and are used 

across many regions including US (e.g. Wehner et al. 2011); Asia (Smakhtin 2004, 

Patel et al. 2007, Cai et al. 2011), Africa (Ntale & Gan 2003, Touchan et al. 2011), 

and Australia (Stephens 1998, Mpelasoka et al. 2008). Review by Heim (2002) for 

example identified 13 major DI applied in the United states in the 20
th

 century alone, 

while Niemeyer (2008) identifies more than 100 DI. Table 2.2 summarizes some of 

the major drought indices that are used in the analysis of drought.  

The Palmer’s Drought Severity Index (PDSI) is the most extensively used DI 

globally and is suggested to give effective estimates of drought (Oladipo 1985, Kari 

et al. 1987, Heim 2002). The PDSI is derived using a soil moisture/water balance 

algorithm which is based on daily air temperature, precipitation and soil moisture 

data. The PDSI has been used in Europe to assess trends in drought in the 20th 

century and in the US to determine when to provide drought assistance (Briffa et al. 

1994, Quiring & Papakryiakou 2003). When compared with the Standardised 

Precipitation Index, droughts over Europe were found to exhibit insignificant 
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extreme and moderate trends (Lloyd-Hughes & Saunders 2002). Recently and in sub 

Saharan Africa, PDSI was used to assess drought between 1945 and 2005 and 

findings showed that increasing drought trends increased incidences of water and 

fertile land conflicts by 45% (Couttenier & Soubeyran 2011).  

Several articles however fault PDSI and other DI [see for example: Heddinghaus & 

Sabol (1991); Byun and Wilhite (1999); Heim (2002); Mishra & Singh (2010)]. 

Some of the weaknesses of PDSI include: reliance on climatological mean although 

drought strongly correlates to specific times, durations and consecutive occurrences 

of precipitation deficits (Byun & Wilhite 1999), complexity in interpretation 

(Guttman 1998) and also the use of other factors other than rainfall masks the 

reliability of detecting meteorological droughts. PDSI has also been accused of 

giving unrealistic drought estimates in the tropical and other regions (Bhalme & 

Mooley 1979, Oladipo 1985).  

The SPI has been suggested to give better drought estimates compared to PDSI due 

to its direct link with precipitation (Guttman 1998, Livada & Assimakopoulos 2007). 

The SPI which is based on probability density function and derived from 

standardized precipitation can be calculated for any location with long-term 

precipitation records. However SPI dependency on rain alone may cause initial data 

value changes when other climatological factors predominate (Tsakiris et al. 2002) 

and inaccuracies may occur due to rainfall measurements and availability of gauging 

stations (Zargar et al. 2011). The SPI and PDSI did not exhibit the same spatial 

variation across regions with the later indicating much differences (Alley 1984, 

Guttman 1998, Heim 2002). Few studies however have analysed the spatial stability 

of SPI (e.g. Vicente-Serrano 2006). A number of papers indicate that the SPI can be 

used to identify different types of drought (agricultural, hydrological etc.) (e.g. Hayes 

et al. 1999), is generally simple to interpret, time flexible compared to PDSI and can 

be calculated for a number of time scales (Komuscu 1999, Patel et al. 2007).  

The BMDI proposed by Bhalme & Mooley (1980) is simple compared to PDSI and 

although it utilizes similar principles as PDSI, it is based on rainfall only whereby the 

moisture index in PDSI has been substituted with a simple rainfall index (Oladipo 

1986). Generally, it has been observed that patterns of drought duration also vary 

among the different indices (e.g. Soulé 1992).   

Although drought indices enable the detection of onset and other attributes of 

drought across many regions, the Normalized Difference Vegetation Index (NDVI), 



19 
 

Crop Moisture Index (CMI) and Vegetation Condition Index (VCI) cannot be good 

tools for monitoring the long-term impacts of drought due to their short time scales 

although they may be better for short term events such as agricultural drought. The 

vegetation based indices are based on the presumption that as drought evolves the 

NDVI decreases, surface reflectivity and temperature increases and soil moisture 

depletes (Ghulam et al. 2007). Liu & Kogan (1996) for example found that images of 

VCI gave better indication of drought severity at the regional level over Brazil 

compared to NDVI and suggested that better temporal and spatial estimates of 

agriculture production could be obtained using VCI. The NDVI index also suffers 

from other ailments ranging from soil to atmospheric and vegetation effects (Huete 

1988, Ji & Peters 2003).  

 

Table 2.2: Examples of major drought indices used in the monitoring of drought around the world 

Drought Index and source Time scale Concept 

Palmer’s Drought Severity 

Index (PDSI)  and Moisture 

Anomaly Index (Z-Index), 

(Palmer 1965)  

Monthly - 

2weeks 

Based on precipitation and temperature inputs 

using a water and soil balance model. Considers 

both meteorological and hydrological droughts. 

Standardized Precipitation 

Index (McKee et al. 1993, 

Chambers & Gillespie 2000) 

3-48 months Takes droughts and wet spells at multiple time 

scales based on precipitation deficit. The index 

utilizes the gamma distribution to fit 

precipitation totals.  

Crop Moisture Index (CMI) 

(Palmer 1968) 

Weekly Focuses on agricultural drought drawn from 

weekly mean temperature and total precipitation. 

CMI values are obtained using evapo-

transpiration and wetness anomalies  

Normalized Difference 

Vegetation Index (NDVI)  

(Strommen et al. 1980, 

Tucker & Choudhury 1987) 

Monthly/ Year Calculated from AVHRR data from NOAA and 

is based on the differential reflectivity of green 

vegetation  

Vegetation Condition Index 

(VCI) 

(Kogan 1995) 

Weekly - 

(3month) 

Based on Satellite AVHRR percentage of NDVI 

to the maximum amplitude and measures 

duration, onset and intensity of drought on 

vegetation.   

Deciles  (Gibbs & Maher 

1967) 

Monthly Based on distribution of long term rainfall and 

drought is classified according to ranks of 

rainfall totals being in the lowest below 10 % 

(decile 1) of recorded rainfall. Its mainly used to 

monitor drought in Australia 

Bhalme and Mooley Drought 

Index (BMDI)  (Bhalme & 

Mooley 1980) 

Monthly/Year Based on precipitation and calculated as the 

percentage deviation of rainfall from the long 

term mean.  

Percent of normal 

precipitation [Operationally 

used in many meteorological 

centres globally] 

Month - Years Generally used as a meteorological drought 

index based on rainfall departure from the 

average (normal) - 30 years is the climatological 

base period used.  
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Deciles on the other hand give fairly accurate statistical estimates of drought 

although require consistent long precipitation records which are hard to find in many 

regions. For further detailed description of drought indices, readers are referred to 

Heim (2002); Niemeyer (2008); Zargar et al. (2011).   

In conclusion for DI, they can be useful tools for assessment of drought but none of 

the studies used a common definition of DI. Similar to drought definitions, DI have 

also been changing or modified to suit different situations, which may suggest 

uncertainty in their ability to accurately detect and represent drought conditions. 

 

2.4.3. Can forecasting drought benefit agriculture? 

Reliable climate forecasts can arguably enable decision-makers to examine a wide 

range of management strategies for climate extremes in agriculture (e.g. Meinke & 

Hochman 2000). However, the predictability of climate extremes is not easy (Katz & 

Brown 1992). Although sparse spatial coverage and limited long term data sets, 

particularly in ASAL regions, are a major limitation to prediction of extreme events 

(Easterling et al. 2000), the rare nature and variability of extreme events also 

complicates forecasting (Frei et al. 2000). 

If drought can be forecasted accurately and in advance, it can be easier to define crop 

management strategies such as sowing time and selection of crop to plant. This can 

minimize losses or maximize benefits linked to climate extremes (Nelson et al. 

2002). Forecasts have been found to reduce crop damage in extreme drought years in 

Latin America regions, such as Peru and Brazil (Charvériat 2000), enhance 

identification of crop benefits in Australia (Meinke & Hochman 2000, Kokic et al. 

2007) and facilitate improvement of crop simulations in Kenya (Hansen & Indeje 

2004).  

Previous efforts to forecast drought and other extremes have resulted in higher or 

lower probabilities of occurrence of extreme events compared to actual observations 

(e.g. Sharma 1996, Ebert & McBride 2000, Ash et al. 2007). The challenge is to 

develop more robust ways of predicting drought particularly now that climate change 

may increase the uncertainty of forecasting drought. 

 

2.4.4. Impacts of dry spells and droughts on agriculture  

Studies on impacts of climate extremes on agriculture have been rising steadily in 

recent years (e.g. Kane et al. 1992, Frich et al. 2002, Morton 2007, Piao et al. 2010). 
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A search on “impacts of climate extremes on agriculture” in the Web of Science for 

instance indicates that, publications increased by 16% in the last 10 years (Figure 

2.5) with over 800 citations in the overall period.  

Even if prolonged dry spells severely affect agriculture, their impacts on agriculture 

raises questions such as; what is “extreme” for agriculture; what “extremes” are 

relevant to agriculture and how long is “extreme” for agriculture and so on. 

Addressing these questions is challenging and proving difficult, particularly due to 

climate change (Steffen et al. 2011). 
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Figure 2.5: Number of publications on “impacts of extreme climate on agriculture” since 1996. Source: 

Web of Science 

2.4.5. Impacts of dry spells and drought on Australian Agriculture  

Growing seasons in Australia are crop specific and depend on rainfall patterns (e.g. 

Collins et al. 2000). Drought is a significant factor affecting rainfall patterns in 

Australia (Nicholls 2005). Many studies show that, at the inter-annual scale, the El 

Niño Southern Oscillation has a major impact on rainfall patterns and droughts 

across Australia and particularly eastern Australia (Nicholls 1992, 2004, Pudmenzky 

et al. 2011, Broich et al. 2013). The 6-month total rainfall (June-November) for the 

12 strongest El Niño years between 1905 and 1998, for instance, were "below 

average" (decile 2 or 3) across much of eastern Australia 

(http://www.bom.gov.au/climate/ahead/soicomp.shtml). Dry (more wet) conditions 

in eastern Australia are often linked to the El Niño phase (La Niña phase).  

A “serious” drought from one or 2 dry years can become “severe” and more 

detrimental to agriculture if it is followed by a long period of below-average rainfall 

such as the “Federation drought" and the 1991-1995 drought over Australia 

http://www.bom.gov.au/climate/ahead/soirain.shtml
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(http://www.bom.gov.au). However, quantifying drought characteristics on the basis 

of severity and other attributes can be tricky due to problems related to objectivity 

(Vicente‐Serrano et al. 2011). For instance, rainfall that gave a bumper wheat yield 

in the 1880’s in Australia can be categorized as drought in the 1980’s. In agricultural 

terms, this may suggest that coping mechanisms for wheat under similar conditions 

in the 2 periods has changed. In the latter period, it seems that the same rainfall could 

not sustain a wheat crop. Nevertheless, focus of wheat improvement has been more 

on maximizing production given plentiful input (Richards 1991, Eagles et al. 2001), 

although in recent times focus seems to shift to wheat improvement against “drought 

resistance” (e.g. Passioura 2006, Biswas et al. 2010, Zheng et al. 2012).   

Shorter droughts of 1 or 2 years can also have a major effect on crops. For example, 

1982-1983 was one of the severest droughts over Australia in 20 years and caused 

widespread wheat crop failure in eastern regions (Colls 1993). Howden et al. (2010) 

argues that small incremental changes to farming systems could prolong production, 

but more severe climates can cause crops to fail.  

Drought can also impact large spatial areas. According to BOM, 97% of Australia 

had below median rainfall in the 2002 drought, again leading to large scale crop and 

pasture loss nationwide. Such impacts may be explained by other factors, like high 

evaporative demands and hydrological processes, rather than only rainfall (Verdon-

Kidd & Kiem 2010, Gallant et al. 2013). 

The frequency of drought over Australia has increased, and drought has been 

declared in most agricultural areas in more than 5% of the years since 1900 (e.g. 

Hennessy et al. 2008). These situations necessitated a drought declaration criterion 

change from 1 in 20-25 years to more than 1 drought in 20-25 years (Smith & 

McKeon 1998).  

While focus has mainly been on drought impacts, no study as yet has explored 

whether dry spells (which are normally shorter) have similar or different impacts on 

agriculture in this region. For example, is the impact of a one month long dry spell 

on a particular crop different from a 3 months long drought? Or when is a dry spell 

long enough to be considered a threat? Nonetheless, increasing dry spells/days or 

exceptionally dry years should translate to increasingly dry climate (Hennessy 2008).   

http://www.bom.gov.au/


23 
 

 

2.4.6. Impacts of dry spells and drought on Agriculture in Kenya  

Several studies have examined the impacts of low rainfall in Kenya (e.g. Nicholson 

1989, Verschuren et al. 2000). In the recent past, dry conditions persisted in 

consecutive seasons over Kenya (Figure 2.6). It is the occurrence of inadequate 

rainfall, rather than rainfall failure, which causes crop losses. Rojas et al. (2011), 

suggests that the probability of drought occurrence in Kenya is higher in the shorter 

(OND) rain season than in the longer (MAM) rain season. However, as yet, there 

seems to be no study that has examined the variability of drought in the two seasons. 

Prolonged droughts such as 1999 - 2001 and 2007 - 2009 were both highly intense 

and extensive (> 2 years) and marked with extremely low rainfall in all seasons. The 

1999 - 2001 droughts specifically affected both marginal and high-potential 

agricultural areas leaving 4 million livestock dead and 3 million agro-pastoralists 

affected (Aklilu et al. 2002). The losses due to floods and droughts in Kenya are 

estimated at Kshs 16 billion (approx. 215M AUD) per year (Mogaka et al. 2006). A 

summary of past droughts in Kenya is given in table 2.3. It appears that droughts in 

Kenya re-occur every 1 to 2 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6: Percentage total seasonal rainfall over Kenya for (a) MAM 2006 (b) MAM 2007 (c) OND 2007 

(d) MAM 2008 (e) OND 2008 (f) MAM 2009. Main agriculture areas are ringed in blue dots.  
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Table 2.3: Agricultural impacts of some selected droughts in Kenya 

Drought 

Period 

Impacts Spatial coverage and reference  

1983/1984 Over  50 - 75% of livestock lost in ASAL / pastoral areas Pastoral areas most affected (Sperling 1987)  

1995/1997  Marginal/pastoral areas affected (Kandji 2006) 

1999-2001 3 million people affected. 4million livestock lost. Food aid distributed 

worth US$ 200 million. Loss of pasture 

Country wide and mostly pastoral areas except the 

coastal region  (Aklilu et al. 2002, Anyamba et al. 2002) 

2000 4million people in need of emergency food. Power generation losses 

~ US $20 million. Decline in GDP ~0.3% 

Most of the country  (Duran 2005, Kandji 2006) 

2004/2005 Failure of long rains (March–June). Total crop failure and 2.3 million 

people in need of assistance. Drought declared  as a  “national 

catastrophe” 

Most of the country  (Kandji 2006) 

2007-2009 10 million facing hunger. The Kenya Red Cross Society distributed a 

total of 200 MT of seeds to 20,000 farming households. More than 

70% of livestock numbers lost. 

Most parts of the country (IFRC 2010, Wangai et al. 

2013) 

2011 3.7million people affected and massive crop failure. Most agro-pastoral areas (Janzen & Carter 2013) 

Other previous droughts  

1914-19, 1928, 1931-34, 1939-40, 1943-1944, 1948, 1954, 1960-1961,1964-

1965,1970-1971, 1973 1974, 1979-1980 

(Jackson 1976, Nyamwange 1995) 
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Indirectly, drought is related to pests’ infestation on crops in Kenya (Rose et al. 

1988, Musebe et al. 2011, Tefera et al. 2011). Mostly, locusts and army worms attack 

during crop seasons, whereas weevils invade during postharvest and storage (e.g. 

Hoskinson 1997). Additionally, wind storms during dry conditions can cause severe 

damages to crops in semi-arid areas such as Laikipia as well as in other areas 

(Oteng'i et al. 2000, Stigter et al. 2002). In general, there is less information about the 

extent of impacts associated with the last 2 factors.   

In conclusion, for drought impacts in Kenya and Australia, it seems there is very 

little exact quantification of the damage of agriculture due to drought events. For 

instance, no studies show how much rainfall in millimetres increase translates to x or 

y crop damage increase or number of livestock losses. An increase of drought by a 

certain number of days e.g. 5 days equating to crop damages of z magnitude would 

be a better quantification scheme of the impacts of extreme climates than current 

cumulative estimates. This might probably be because drought characteristics are not 

fully understood in the 2 regions. 

 

2.5. Managing drought risks for agriculture in Kenya and Australia: Role of 

Seasonal forecasts 

In recent years, there has been increased interest in conditioning agriculture to 

climate variability (e.g. Campbell 1999, Mendelsohn & Dinar 1999, Jones et al. 

2007, Niggli et al. 2009, Meinke 2010). One of the main motivations has been the 

increase in severity and frequency of drought occurrence and other climate risks (Le 

Houérou 1996, Hobbs 2007).  

Generally, managing risks of drought on agriculture largely depends on individuals 

rather than collective actions (Risbey et al. 1999, Pannell 2010). It is of benefit to 

manage drought because agriculture is a very important economic activity in Kenya 

and accounts for 30% GDP and 70% of employment in the rural areas (GOK 2010). 

Similarly, Murray Darling Basin (MDB) agriculture contributes to over $8 billion 

annually or 1/3 of the whole agricultural output (Crabb & Milligan 1997). Whereas, 

it is of interest to clearly understand the role of seasonal forecasts in the management 

of drought risk for agriculture, it is important to examine both indigenous (personal 

experiences and knowledge) and evidence based climate forecasts. This is because 

farmers in these regions use both at one time or the other.  However, the critical 

question also is: what to forecast? 
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2.5.1. What is managing drought in Agriculture? 

In agriculture, managing drought risks might be taken to mean a process of 

maintaining various farming goals such as yield and sustainability (Risbey et al. 

1999) or actual farmer behaviour response, such as early or delayed planting and 

harvest dates, use of fertiliser, and crop choice (Mendelsohn 2000) which is expected 

to ensure success or limiting of crop yield losses. It also includes policy decisions to 

manage climate risks (e.g. Salinger et al. 2005, Howden et al. 2007, Jones et al. 

2007). Policy, in this context means actions taken by state governments, such as 

legislation and regulations which facilitate changes that may lead to a reduction in 

vulnerability to climate change and variability (Burton et al. 2002, Pielke Jr & 

Conant 2003).  

More importantly, managing drought risks in agriculture should involve examining 

of how uptake of climate forecasts (indigenous and science (evidence) based) 

influence agronomic decisions. Studies suggest that climate information can improve 

farmers adaptive capacity to climate risks (Marshall et al. 2010). Such assessments 

may be used to form a basis for formulations or implementation of agricultural 

policies or potential coping options. 

 

2.5.2. Problem in contextualising agriculture management of drought 

A major problem in designing an agriculture management system for drought is that 

the future is unknown. One key question would then be: how do we measure or 

quantify a successful system? As yet, no universal way has been proposed. Previous 

assessments focus on key impacts of climate on agriculture and not drought in 

particular, whereas the potential or actual benefits of managing drought impacts on 

agriculture have received little attention (e.g. Callaway 2004, Tubiello & Fischer 

2007). Most common approaches evaluate agricultural gross outputs based on given 

climate scenarios (for example,  Reilly 1995) and this has been criticised to ignore 

the short term impacts of managing drought (e.g. Maddison 2007).  

One obstacle towards contextualising an agricultural drought management system is 

that a long time is required to build more effective and sustainable systems (Cash et 

al. 2003) which is practically not possible. In other words, if we consider the use of 

climate forecasts there might be uncertainty in quantifying the quality of such as 

system or choice and how this will work in practice (Neil Adger et al. 2005).  
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Nevertheless, no perfect system can exist in practice and therefore it is worth testing 

and improving on the existing options in order to experience whatever benefits may 

be achieved. 

  

2.5.3. Nature and context of agriculture management of drought in Kenya 

Drought and famine are well documented features of Kenyan ASALs (e.g. Oba et al. 

1987, Rowntree 1989, Holmgren & Öberg 2006). Studies in Kenya, show that, 

farmers and pastoralist have numerous agronomical and livestock production 

practices that facilitate them in the management of drought (Porter 1965, 

Kabubo‐Mariara 2008). For example, due to drought, pastoralists in Kenya have 

derived some characteristic watering mechanisms and grazing habits. Camels and 

goats are more browsers than cattle and sheep (Campbell 1999), whereas indigenous 

dominated or mixed species ensure disease and drought resilient herds during dry 

periods (e.g. Western 2003, Huho et al. 2011).  

Diversification into crop farming by herders (Campbell 1999) and also mixed 

cropping and drought tolerant crops are important features characterising resilience 

to drought in Kenya. Small scale on-farm water harvesting systems (RWH) have 

been tested not only in boosting maize production in ASALs but also to deal with 

drought (Rockström et al. 2003). However, RWH may have the challenge of a lack 

of sufficient space considering that most farms in Kenya are small. 

In general, indigenous based drought management options are an important aspect of 

all the agricultural practices in Kenya (Luseno & Winnie 2003). Although, the use of 

scientific forecasts (SCF) by farmers has been low, it seems there is some interest 

since the last decade (e.g. Luseno et al. 2003, Lybbert et al. 2007). Overall, the above 

studies suggest that IK is useful in the agriculture management of drought risks in 

Kenya. 

 

2.5.4. Nature and context of agriculture management of drought in the Murray 

Darling Basin 

Management of drought in Australia in general, is driven by modern agricultural 

innovations including: farm choices, choice of planting dates, moisture conservation 

and soil nutrient inputs (e.g. Gomez-Macpherson & Richards 1995, Robertson & 

Holland 2004). These are supplemented by Decision support systems such as Yield 

Prophet (D’Souza et al. 1993), simulation models (Jochinke et al. 2007) and seasonal 
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forecasts (Hochman et al. 2009). Tillage practices in the MDB such as retention of 

crop residues improve the humus content of the soil, reduce soil erosion, and 

improve yields (Freebairn 1992, Lawrence & Vanclay 1994). While crop varieties 

combined with other coping mechanisms are common in the MDB, their use is 

driven by the growing season rather than climate variability (Finlay & Wilkinson 

1963, Meinke & Stone 2005). These practices increase the ability to manage drought 

risks on farming enterprises (Rounsevell et al. 1999). 

Even though irrigation is one of the key agricultural strategies in Australia, its 

sustainability continues to attract debate (Adamson et al. 2007). Whereas some 

irrigation types such as micro-irrigation techniques yield very high return per unit of 

water used (Quiggin 2001), it is argued that all irrigation schemes in Australia cannot 

be justified on economic grounds, because they increase rather than reduce the 

effects of severe drought (Hart 2004, Anderies et al. 2006). 

Table 2.4 gives a summary of ways of managing drought risks and other climatic 

threats in Australia as discussed in the reviewed literature. In general, it appears that 

most of the strategies are aimed at boosting agriculture productivity and driven by 

profitability rather than risk evasion. 

Table 2.4:  Agricultural management strategies in Australia 

Adaptation type Category & Aim  Location  Resultant impact 

1. Diversification of farm 

/crop businesses (e.g. 

Risbey et al. 1999, Kokic 

et al. 2007) 

Short term / To 

provide higher 

returns and crop 

insurance.  

Australia Most farms increased 

productivity under different 

climate conditions 

2.Access to innovations, 

such as agribusiness 

services (Risbey et al. 

1999, Kingwell 2006) 

Long term / Increased 

ability to respond to 

climate impacts 

S.W. Australia 

and most other 

parts of 

Australia 

Maintenance of profitability 

for farmers from 1995 to 

2002 despite drier 

conditions. 

3. Farm  deposits of 

1999/2000 and Exceptional 

Relief Payment (Martin et 

al. 2005) 

Short term  /  To 

build cash reserves 

for  farmers as a 

cushion for drought 

Broad acre and 

dairy farms    

in Australia 

Farmers obtained tax 

benefits if the deposits were 

held for a minimum of 

twelve months.  

4. Agronomic 

improvements e.g. early 

and delayed sowing (Loss 

et al. 1998, Turner 2004)  

Short term / Long 

term. Delayed sowing 

to control black spot 

disease  

South-western 

and southern  

Australia  

Improved management of 

faba beans under low 

rainfall.  

5. Use of seasonal forecasts  

in crop management 

(Risbey et al. 1999, Keogh 

et al. 2004)  

Short term / Long 

term / To improve 

farm decisions  

NE. Australia 

and  NSW 

Provide support system such 

as Whopper cropper and 

crop diversification.  

6. Government related 

drought policies (Nelson et 

al. 2002) 

Short /Long term 

strengthen  farmers’ 

ability to manage risk 

NSW and 

Queensland 

Enhancement of  self-

reliance to farmers to 

respond to Climate risks 
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7. Conservation measures 

e.g. planting of trees, 

(Lawrence & Vanclay 

1994, Turner 2004) 

Long term /  

Increase agriculture 

production 

NSW and S. 

Australia  

Implementation of on-going 

government policies on 

ways to improve 

conservation 

8. Investments in crop 

insurance and research 

(Quiggin & Chambers 

2006) 

Short term / To make 

tactical and strategic 

agricultural decisions 

Australia  Benefited farmers from 

drought and flood related 

losses 

9. Adoption of crop 

varieties (McCallum et al. 

2001)  

Short & Long-term / 

improved seed yield 

under a range of 

seasons. 

South western 

Australia 

Prior to 1997 

10. Application of 

fertilizer, and pesticides 

(SiddiqueABD et al. 1999, 

Howden et al. 2003)  

Short-term/Long-

term/ Control pest 

peak seasons and 

boost soil quality. 

Southern 

Australia 

Increase in crop production 

11. Irrigation (Haisman 

2004) 

Since early 1900 MDB  Currently contributes to 3% 

GDP 

 

2.5.5. Indigenous based knowledge on climate for Agriculture management of 

drought  

In recent times, indigenous knowledge (IK) has become important in climate change 

management (e.g. Duerden 2004, Morton 2007, Adger et al. 2009). So far, one major 

obstacle in using IK is how to integrate it with science (e.g. Dennis 1998, Newton et 

al. 2005, Chalmers & Fabricius 2007). Whereas the science view of IK is biased such 

that it is accused of not factual and unquantifiable (Johannes 1993), Moss (1976) 

argues that scientific decisions can also be wrong in making the differences between 

observation and interpretation clear.  

 

2.5.6. How indigenous based knowledge is understood and defined  

Generally, understanding IK is difficult (McKinley 2007). Berkes and Folke (2002) 

differentiate IK from local knowledge (LK). They say, LK is part of IK but a generic 

term that refers to knowledge accumulated from observations of the local 

environment and by a specific group of people but in contrast, IK refers to LK held 

by indigenous people. This however, shows no clear cut difference between the two 

arguments. Green (2008), discusses Horsthemke’s (2008) article’s criticism of IK. 

Horsthemke see IK as an incomplete and questionable form of knowledge and adapts 

a universal view that knowledge is not relative to a particular culture or social 

context. Green argues that, while this can be correct in some aspects, diverse 

knowledge should be evaluated on the basis of its ability to advance understanding. 

Aikenhead and Ogawa (2007) see IK as diverse cultural ways of understanding 

nature. This gives a multi-faceted meaning to IK comprising of indigenous, western-
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scientific view and a mix of the two. This assertion does not demystify the meaning 

of IK. Warren et al. (1995) modifies this view and distinguishes LK from that of the 

international education system. More elaborately, Berkes et al. (2000) define IK as a 

cumulative body of knowledge, practice, and belief, evolving by adaptive processes 

and handed down through generations and relates to living things and environment. 

This corroborates Agrawal (1995) assertion that IK is contextual, specific to a 

community, and passed from one generation to another. 

The Oxford English Dictionary as cited in Dove (2006) defines indigenous as: 1). 

Born or produced naturally in a land or region; native or belonging naturally to (the 

soil, etc.) and (2). Of pertaining to, or intended for the “natives”. In application, LK 

is understood to be new and different data from the typical scientific data that may 

have been available but never used because its usage was not known or was 

discredited (Mackinson & Nottestad 1998).  

In Australia, IK has generally been understood to refer to knowledge related to the 

Aborigine people and LK as informal knowledge of communities in the rural areas 

(e.g. Grenier 1998, Chambers & Gillespie 2000). In Brazil, knowledge of local 

fishermen is classified as LK (Gerhardinger et al. 2009) but in the Solomon island, 

both IK and LK mean the same thing (Aswani & Lauer 2006) as is elsewhere (e.g. 

Chalmers & Fabricius 2007, Leach et al. 2007, Raymond et al. 2010). In Kenya, 

McCorkle (1989) refer to LK as IK to show its role and significance in framing 

successful agricultural research, development, and extension. 

As highlighted, it is clear that the understanding of IK and its difference with other 

forms of knowledge remains problematic. Subsequently, the interactions between IK 

and scientific knowledge may be crucial towards understanding quantifications of 

benefits to farmers from management of climate risks. As an example, a study in 

Kenya is used to evaluate how indigenous and evidence (scientific) based climate 

forecasts benefit agriculture in the management of climate risks.  

 

2.5.7. Indigenous Knowledge use in agriculture management of drought in 

Kenya 

In Kenya, IK is used more by agro-pastoralists than other farmers in the management 

of drought (Western 2003). One of the earliest uses of IK is documented by Hollis 

(1909), in which a traditional doctor proclaimed magical measures to stop calamities 

such as severe droughts and pests infestations.  
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Rainmaking is a popular practice in some parts of Kenya and other regions globally 

(e.g. Davis 1972, Taube 1995, Wade 1997). In eastern and western Kenya, some 

communities use traditional experts to diagnose causes of drought, or too much 

rainfall, and to reverse the situation (Akong'a 1987). This information helps the 

farmers decide on the best time to prepare their farms and plant. Rainmakers use 

changes in natural features as indicators of weather (DMC 2004). 

Some of the traditional ways of managing drought by pastoralists in Kenya include 

grazing early in the morning and migration to other areas during bad years. Use of 

local cultivars such as Katumani, burning of weeds and crop residues and use of ash 

as a pesticide to control some pests during the growing period are other  agricultural 

mechanisms used by farmers to deal with climate variability in ASALs. These 

approaches are tactical. For example, grazing livestock early in the morning ensures 

palatability of a dew laden pasture as well as reducing the rate at which stocks 

require water (Huho et al. 2011), while maintaining multiple traditional varieties of 

crops, such as sorghum and tuber crops, provides drought resistance compared to 

modern cultivars (Conelly & Chaiken 2000).  

Some communities use traditional conservation agriculture or “agro-forestry”, 

popularly known as the “shamba system” where crops are grown together with trees 

in high potential areas of Kenya (Oduol 1986). This also doubled as a government 

plan to encourage conservation of traditional species and to boost food security for 

small scale farmers. However, this system has since led to encroachment and wanton 

destruction of forest land (Baldyga et al. 2008). During famine periods, traditional 

indigenous plant species such as wild fruits and leafy vegetables (Maundu 1997) 

become useful sources of food in the ASAL regions. 

  

2.5.8. Indigenous Knowledge use in agriculture management of drought in the 

Murray Darling Basin 

The earliest forms of IK practices in the MDB are reviewed in Allen (1974). The 

indigenous people in the basin exploited aquatic food and cereals along the 

riverbanks and migrated away from the rivers only during rainfall seasons. In 

contrast, during dry seasons they dug out roots of water-storing plants and during 

winter, acacia seeds, fruits and tubers became alternative sources of food. Collection 

of seeds has been an arid land coping strategy in northern and eastern parts of the 

basin. In modern Australia, many native acacia species continue to be used in sand 
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dune stabilisation plantings in dry environments and provide fodder and green 

manure (Thomson 1987). Similar to Kenya, indigenous people across Australia use 

some 10,000 native plant species for food (Twarog & Kapoor 2004).  

The, in1988 established, MDB commission, which brings together state and special 

interest groups such as indigenous people and farmers (MDBC 2011), appears to be 

an informal basis for inclusion of IK in resource management. The commission’s 

structure for instance, recognises the generation and access of all forms of knowledge 

including research (Haisman 2004) and the involvement of indigenous people in 

decision making (MDBM 2001).  

Numerous studies (e.g. Martin & Lockie 1993, Millar & Curtis 1999, Crase et al. 

2005) underscore the importance of IK in management practices in MDB. Millar & 

Curtis (1999) show that farmers’ knowledge was useful in the establishment of 

native and added perennial grasses in the upland pasture areas of MDB. Inclusion of 

land-holders can provide more information on agricultural management (Robertson 

et al. 2000). Incidentally, some practices in the MDB such as collection of seeds and 

construction of fences to control stock access into creeks (Curtis et al. 1998) are 

traditional by nature and date back to practices by early farming communities in 

Australia. The formation of LandCare groups is a strategy similar to the group 

alliances in traditional systems in the pastoral areas of Kenya (e.g. Huho et al. 2011) 

different only in terms of their formal context.  

Comparing Kenya and MDB, migration in search of pasture is the most common 

drought evasion mechanism by pastoralists in Eastern Africa (Campbell 1999) which 

is similar to farmers’ in the MDB temporarily excluding stocks from flood plain 

grasslands and allowing regeneration before resuming grazing (Roberts & Marston 

2000). In other words, the traditional pastoralism in Kenya resembles the commercial 

pastoralism across some parts of Australia rangelands (Cook et al. 2010) and is based 

on ideas borrowed from Africa (Ampt 2013). Similar to Kenya, it seems from these 

studies that, there isn’t any effort to formally transform or integrate these practices 

into a scientific framework in the MDB. 

  

2.6. Using seasonal climate forecasts in management of drought 

Seasonal climate forecasts (SCF) can be used in managing drought risks and SCFs 

have been found to influence agricultural activities (e.g. Agrawala et al. 2001, 

Willows & Connell 2003). As an example, mitigation efforts by the US, based on the 
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1997/1998 climate predictions, returned benefits estimated at $19 billion and reduced 

losses to $4 billion (Changnon 1999). Likewise, the World Food and Agriculture 

Organisation (FAO) made climate data more available, to enable monitoring of 

weather and agriculture in Africa following the 1997/98 El Niño related events 

(Blench & Marriage 1998). These examples underscore the potential of SCFs in 

management of climate risks.  

However, one of the current challenges of understanding the potential of SCF in the 

management of drought is the lack of a solid framework to analyse and evaluate 

potential management strategies. This means that research should focus on how 

climate forecasts can be used to adapt agriculture to drought and other climate 

extremes.  

 

2.6.1. Application of SCF in management of drought for agriculture in Kenya  

Application of seasonal forecasts for epidemic outbreaks rather than other climate 

risk sensitive sectors is perhaps one of the most studied examples in Kenya (e.g. 

Linthicum et al. 1999, Thomson et al. 2000, Hay et al. 2001, Checchi et al. 2006, 

Indeje et al. 2006). Linthicum et al. (1999), showed that, the Rift Valley Fever 

(RVF), which is linked with widespread livestock losses in pastoral areas of Kenya, 

can be predicted 5 months in advance. 

Climate forecasts in the Kenyan context require inclusion of local or indigenous 

forecasts (IF) because they are the mostly used (Onduru & Du Preez 2008, Ogallo 

2010). As an example, one study shows that only 20% of the agro-pastoralists in 

Kenya and Ethiopia choose SCF compared to those in favour of, or having more 

confidence in, indigenous forecasts (IF) (Barrett 2001). In general, indigenous 

forecasts (IF) are related to the use of bio-physical and natural features and 

farmers’experiences to indicate the local weather patterns. While pastoralists use IF 

in response to drought (e.g. Oba & Lusigi 1987), it is not well understood how 

farmers implement climate information in management decisions.  

Increased variability in climate patterns and the frequency of droughts in recent years 

is making it more difficult, even for pastoralists, to rely on traditional (IF) forecasts 

only (Kaitho et al. 2010). This means that skillful SCFs may provide a better tool for 

farmers in the management of extreme risks in Kenya. One challenge is that 

availability of forecasts may not necessarily lead to better risk preparedness if a 
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prediction of the 1997-1998 ENSO in Kenya is anything to go by. Despite timely 

predictions, big losses in agriculture and other sectors still occurred (Magadza 2000). 

In general, climate forecasts in Kenya are not specifically developed for drought 

monitoring but rather for rainfall evaluation. By looking at the seasonal forecasts 

from the Kenya Meteorological Department (e.g. http://meteo-

kenya.net/Wx/seasonal.pdf) one common feature is that they show the expected 

rainfall probabilities for various regions which are used to give advise on various 

sectoral impacts. Drought /dry conditions are normally highlighted in terms of 

‘depressed’ or below normal rainfall. In recent years, a drought modeling experiment 

for Africa based on remote sensing and in-situ hydrological information was 

launched (http://drought.icpac.net/Resources/ADM_Background.pdf). However, the 

performance of the drought system, its operational use and accessibility to farmers 

and other stakeholders is unclear. 

While SCFs can be of benefit to farming in Kenya, farmers show more interest in 

forecasts when depressed rainfall/drought or other extremes are predicted. Barrett 

(2001) for example, show that, farmers are more likely to respond to predictions of 

above or below-normal rainfall, than normal rainfall. This means that a drought 

forecast may be a better indicator of risk compared to a rainfall probability forecast. 

This may however be challenged by the lack of technical adaptation capacity and 

often erratic rainfall patterns, although farmers may still voluntarily increase the use 

of drought forecasts alongside other coping mechanisms to boost their resilience. In a 

practical sense, there is little success (e.g. Frenken et al. 1993, Hansen & Indeje 

2004, Nyangweso et al. 2010) in linking seasonal climate forecasts with crop 

predictions in Kenya, which suggests that new and better ways may be required to 

achieve this. 

Drought forecasts need to be accurate and reliable if they have to be accepted by 

farmers in Kenya. Few studies have tried to improve the skill of seasonal forecasts in 

Kenya. Hansen and Indeje (2004) used statistical methods while Stigter et al. (2002) 

assigned an economic value to SCF. Hansen and Indeje (2004) predicted 36% and 

54% of the variance of total precipitation and rainfall frequency, respectively, in the 

OND rain season which suggests low reliability for crop predictability. Hansen et al. 

(2009) further used GCM based forecasts which indicated that SSTs offered 

insignificant skill in 2 semi-arid locations in Kenya with relatively low crop 

predictions. More recently, Masinde & Bagula (2010), in an ongoing project, are 

http://meteo-kenya.net/Wx/seasonal.pdf
http://meteo-kenya.net/Wx/seasonal.pdf
http://drought.icpac.net/Resources/ADM_Background.pdf
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testing the integration of indigenous and/or farmer innovations or non-climatic data 

outputs to seasonal forecasts using mobile phones and wireless sensors techniques. 

From the above studies, the gaps in the application of SCF in Kenya are the lack of 

downscaled localised forecasts and difficulty in interpretation. However, recent 

decentralisation of meteorological services in Kenya, may boost the interest for 

localised forecasts. Ndegwa et al. (2010) suggests that it may be possible to assess 

the quality of localised SCF in farm management through participatory approaches 

involving farmers and the scientific community. Again, there appears to be no clear 

information on the quality of climate forecasts or more so the skill of drought 

forecasts in Kenya. This may be due to a lack of any major quantitative assessments 

of forecasts across sectors. 

 

2.6.2. Application of SCF in management of drought for agriculture in the 

Murray Darling Basin 

In the MDB, there are various examples of how SCFs have been applied in adapting 

agriculture to climate change (e.g. Meinke & Stone 2005, Predo et al. 2007, Rebgetz 

et al. 2007, Marshall et al. 2010). Most of these studies are based on agricultural 

farming systems and more specifically assess the value of climate forecasts (Hammer 

et al. 1996, Podbury et al. 1998, Ritchie et al. 2004, Wang et al. 2009).  

In the MDB, two-thirds of the farmers were found to apply SCFs in their farm 

decisions (Keogh et al. 2004). These maybe determining planting areas and making 

other cropping decisions (e.g. Ritchie et al. 2004). Previously, wheat farmers in 

northern New South Wales had shunned SCFs in their activities (Hayman & Alston 

1999). Meinke and Stone (2005) and the studies there in, indicate that the use of 

SCFs in Australia need 3 main attributes: consistency, skill, and value, for them to be 

applied in the management of climate risks.  

The SOI based forecasts have been useful predictors of spring and summer rainfall in 

the Basin and most farmers use them in farm-decisions (Keogh et al. 2004). For 

wheat farmers, it has been suggested that, the forecasts lead to higher wheat returns 

(Abawi et al. 1995). In another example cotton farmers in Queensland have used 

cycles of MJO to realise crop benefits, although only 20% expressed high confidence 

in the use of SCF (Keogh et al. 2004). Nonetheless, while most farmers use SCFs in 

the MDB, most farmers had low confidence in the SCFs. Although this was based on 

irrigation farmers, the results suggests that there may be other issues which may need 
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addressing in order to improve forecast use. Hayman et al. (2007) says that, 

integrating SCFs in Australian agriculture decisions is a bigger challenge than 

previously thought. The low confidence in forecasts may be because some farmers 

prefer old farming methods which are largely driven by financial stability and 

wellbeing (Hogan et al. 2010).  

Others argue that explicitly providing skilful seasonal forecasts may improve use of 

forecasts and possibly lead to better management decisions (e.g. Hammer et al. 1996, 

Challinor 2009).  However this is in contrast to studies that suggest that the skill of 

SCFs has improved over the last few decades (e.g. McIntosh et al. 2005, Saha et al. 

2006, Smith et al. 2007). While this may be expected to translate in better decisions, 

there is still a need for deeper understanding of whether skill alone is sufficient for 

improving acceptability of SCFs in decision making. Issues such as capital base 

(Byron et al. 2004), and whether SCF translate to farm profitability (e.g. Scoccimarro 

et al. 1994, Hammer et al. 1996, Meza et al. 2008) affect farmers’ ability to use 

forecasts. Apart from accuracy, there should be improvements in the relevance, 

reliability, stakeholder engagements and so on.  

The above studies reveal that farmers in the MDB utilize climate forecasts in farm 

decisions. However, similar to Kenya, it appears that the use of climate forecasts in 

the MDB is not specifically for drought management. 

   

2.6.3. Analysis and characterization of dry spells  

As mentioned before, drought is generally a prolonged dry period. However, the 

temporal patterns of dry spells can be important indices of drought in a region. Dry 

spells can be derived using the number of consecutive days without rain. In other 

words, the sum of successive dry days defines the length of a dry spell. The analysis 

of dry spells for several locations in a region can identify temporal and spatial 

behaviour of dry spells lengths. Several methods for single sites or regional analysis 

have been proposed. In most cases, they attempt to identify homogeneous areas, 

select some suitable probability distributions and finally approximate precise 

parameters to describe the observed distribution. 

Stochastic models are the most commonly used tools in the analysis of dry and wet 

spells (Gabriel & Neumann 1962, Gregory et al. 1993, Sharma 1996, Ochola & 

Kerkides 2003). Markov Chain Models (MCMs) which assumes that the chance of 

current day rain is governed by the state of rain or no rain in the preceding days 
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(Miall 1973) are the most popular. They are preferred for their easy application 

(Mishra & Desai 2005) particularly in obtaining transition probabilities rather than 

direct theoretical calculations (Nobilis 1986). They also allow for estimation of 

extremes and future expected values (Logofet & Lesnaya 2000) as well as 

accounting for uncertainty surrounding variable relationships (Pfeifer & Carraway 

2000). They have been applied in Greece (Anagnostopoulou et al. 2003), semi-arid 

regions of Kenya and Australia (Sharma 1996, Barron et al. 2003) and many other 

places (e.g. Gabriel & Neumann 1962, Stern et al. 1981, Berger & Goossens 1983, 

Woo 1992, Smith et al. 1997, Ochola & Kerkides 2003, Tesfaye & Walker 2004, 

Tolika & Maheras 2005, Lennartsson et al. 2008, Frei & Schär 2010), generally to 

generate and fit dry spells of different durations from daily rainfall.  

However, MCMs estimate parameters poorly (Sharma & Lall 1999). They tend to 

create problems for small samples and heavy tailed distributions (e.g. Gregory et al. 

1993, Kyselý 2008) and over or under-estimate short or longer dry spells (e.g. 

Cancelliere & Salas 2004, Paulo et al. 2005). Several studies cited in de Groen 

(2002) indicate that MCMs represent the variability in monthly rain days poorly. 

Moreover, MCMs are limited to the exponential distribution, but climatic data may 

not necessarily be exponential in nature (Fuqua 2003). Again, MCMs are unsuitable 

for short term records as they require longer daily weather records to estimate the 

model parameters more accurately (Geng et al. 1986). 

Alternatively, numerous probability distribution models have been used to estimate 

dry and wet spell distributions. Most of these are based on transformations of the 

normal distributions for rainfall analysis and aim at satisfying assumptions for 

normality and constant variance in the errors. The disadvantage of these, however, is 

that different transformations may be required for different periods of the year and 

the presence of zero value data for dry days  invalidates the constant error variance 

(e.g. Stern et al. 1982a, Fletcher et al. 2005).   

Distributions such as the truncated negative binomial distribution did not give 

solutions for likelihood equations for 10 periods for Kansas City rainfall records 

resulting in unacceptable values and poor estimates for data records <30 years 

(Roldan & Woolhiser 1982). However, some distribution extensions such as the 

generalized extreme value (GEV) and generalized Pareto distributions from the 

Gumbel distribution (Lana et al. 2006, Su et al. 2009) give good estimates of annual 

extreme dry and wet spells such as in the case of Spain and China but again the 
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return of one extreme value per year may have less significance for the timing of 

agriculture activities such as planting time or cropping.  

As it may not be possible to identify a suitable distribution to describe observed dry 

spells from the existing large number of probability functions, it is much easier to 

assume that such distributions may come from the commonly used distribution 

functions in climate analysis. Specifically, the two parameter gamma distribution 

(e.g. Mooley 1973, Stern & Coe 1982, Husak et al. 2007) represents the skewness of 

precipitation in many places. The gamma distribution has the capability to represent 

different distribution shapes and has only positive values. However, the estimation of 

the shape and scale parameters is difficult (Gupta & Kundu 2001).  

Direct methods can be described as those that obtain the sequences of days with 

rain/no rain from daily rainfall by summing successive days of observations for 

arbitrary periods such as 30 days and other statistics such as the onset of rains. 

According to Stern et al. (1982a) a direct method is one that estimates the 

unconditional probability of a dry period, assuming that it can start at any point 

before the period of interest and continue in or beyond the period. Direct methods are 

mainly useful for being conventional and simple to apply and require little 

assumptions made on the distribution of rainfall amounts/days as in other methods. 

By specifying the temporal scale of interest (e.g. monthly) at any location, one can 

obtain useful agronomical information such as significant trends, periods or areas 

already under drought. In contrast, indirect methods (e.g. stochastic models) 

generally give probabilities of rain conditioned on an initial rainy day and allows for 

calculation of the probability that a dry spell lasts exactly n days e.g. n=14 or 30 days 

(Wilks 1995) which may not necessarily be true. Furthermore, it is more difficult to 

allow re-parameterisation of future projected statistics from such models (Srikanthan 

& McMahon 2001). Stern et al. (1982a) suggests that conditional probabilities are 

more suitable for analysing probability of planting following a rainy day which may 

not be feasible when it comes to having no rain on the initial day.  

Numerous studies suggest that direct methods for dry/wet spells identification can 

yield acceptable results (Cheng 1978, Douguedroit 1987, Serra et al. 2006, Tammets 

2010). For instance, Cheng (1978), found that dry spells in southern China from 

1884 -1970 exhibited 3 distinct dry periods in a year with nearly same time year to 

year occurrences. Furthermore subsequent studies, e.g.  Zhai et al. (2005) and Bai et 

al. (2007) and Wang et al. (2010), show that there have been changes in the seasonal 
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trends over China since 1951 with the longest wet spells decreasing from the 

southeast to the northwest regions.  

As indicated earlier, one common criteria in the analysis of dryspells is the use of 

rainfall amounts to define a dry day or a dry spell. On other occassions,  some studies 

use  fixed periods of time to characterize a dryspell. For example, analysis over 

Estonia used a moving average of daily rainfall totals to investigate the months with 

extreme dry or wet days (Tammets 2007). An extreme dry spell was defined as a 

period of 20 successive dry days with no rain and an extreme wet spell as a period of 

10 successive wet days with ≥10mm rainfall. Although the study by Suppiah et al. 

(Suppiah & Hennessy 1998), found trends in dry days between 1910 and 1990 (a dry 

day was defined as a day with rain ≤ 0.1mm) over Australia there was no attempt to 

examine the trends in dry spell lengths (cumulative dry days). Subsequent studies 

have similarly indicated increased number of dry days and rainfall decline (Murphy 

& Timbal 2008, Potter & Chiew 2011).   

Similarly, drought is invariably a major constraint to food security in Kenya and 

relatively few studies have assessed dry spells in relation to agriculture, e.g. Barron, 

Rockström et al. (2003). To the best of our knowledge, published evidence of 

assessment of the spatial characteristics in dry spells in Kenya and the Murray 

Darling Basin are limited.  

 

2.6.4. Analysis of trends in dry spells  

Analysis of trends in dry spells may provide new information that may be important 

in the prediction, monitoring and management of agriculture to drought impacts. 

Increasing spatial and temporal trends can be good indicators of the periods and 

regions that have higher drought risks while declining trends may suggest areas with 

improved precipitation patterns. This information can be used in planning and 

decision making.  

Generally, spatial trend patterns are often used to map drought and other extreme 

events (e.g. Vicente-Serrano 2006) and can give a better picture of where and how 

different dry spell characteristics are distributed. In using dry spell characteristics we 

are more likely to capture a more detailed picture of the drought situation at a 

location than using the commonly used drought metrics such as cumulative rainfall 

anomalies or indices. For example, a good comparison between the observed dry 
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spell lengths and the estimated probability distribution may be used to accurately 

predict the risk of drought.  

This analysis is important because studies in Kenya and the MDB suggest that 

drought will increase in these regions. Therefore, there is great interest in 

determining trends in drought in order to mitigate associated risks. The few studies 

that specifically analysed trends in dry spells in Kenya and the MDB focused on 

fairly limited timescale and scope which may may not give a comprehensive picture 

of drought risk in these regions (Suppiah & Hennessy 1998, Timbal 2004, Alexander 

et al. 2007, Alexander & Arblaster 2009, Gitau et al. 2013). Curiously, all the studies 

consistently used the monthly time stamp (calender dates: 1 - 30 etc) in their analysis 

without providing any justification. Does a dry spell or drought start on the first day 

of the month and end before or at the end of that month? Moreover, do crops or 

ecosystems sense the environment as “month”? Again, is there agreement between 

trends in the dry spells (length) analysed using the monthly time stamp and when this 

is not taken into account?  

Furthermore, there seems to be uncertainty between different GCM models 

suggesting different trends directions in future, at least for MDB (CSIRO 2001a, 

Hughes 2003), and therefore examining the climate of these regions may contribute 

some knowledge towards improving our understanding of future drought patterns in 

the 2 regions.  

Relationships between dry spells and climatic factors are important in the 

understanding of bio-physical processes of drought and how this may impact on 

agriculture adaptation to climatic risks. Spatial analysis in the MDB for instance 

indicates significant relationships between drought and crop yields (e.g. Stephens 

1998, Robinson et al. 2009) and between rainfall and ENSO (Potgieter et al. 2005, 

Liu et al. 2007).  

Although rainfall is one of the most important climatic factor, it is less significant in 

explaining the spatial distribution of surface water availability compared to other 

predictors in southern MDB (Brown et al. 2012). Dry spells would be expected to 

exhibit strong correlation with rainfall. For example, Keating et al. (2002) suggests 

that the annual average rainfall across the MDB exhibits an east - west effect around 

latitude 33
0
S and varies from 300 to 850 mm while a second effect shows a north - 

south pattern with rainfall estimated at 600 mm while the average annual rainfall in 

winter indicated an increasing pattern southwards. It is possible that dry spells may 
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follow a similar pattern which is likely the variation in winter (frontal system) 

dominated and summer (convective system) dominated rainfall in the region. 

  

2.6.5. ‘What to forecast?’ – Forecasting or Predicting dry spell lengths 

There is much overlap between prediction and forecasting and most times 

researchers use them interchangeably. However, predictions can be viewed as an 

interface between weather forecasting and climate forecasting and are sensitive to 

initial (the starting conditions of the lower atmosphere’s boundaries) conditions 

when used for modelling climate/weather (Palmer & Anderson 1994). Forecasting on 

the other hand implies integration of a weather-prediction model and improving on 

the length and dynamically coupling with the lower boundaries and most importantly 

the Oceans (Shukla 1998).  

In climate forecasting, only certain climate information may practically be useful in 

the management of climate risks (Kiem & Verdon‐Kidd 2011). This means that, to 

identify and address climatic needs satisfactorily, the right climate information must 

be provided. In general, three ways can used to forecast drought:  

1) Probabilistic forecasts which are based on historical climate data in which some 

probability distribution functions are used to establish the likelihood of an event of a 

given magnitude occurring (e.g. rainfall amount, drought duration, severity etc).  

2) Statistical forecasts, which can incorporate lagged relationships between climatic 

data such as monthly rainfall and SSTs.  

3) Deterministic forecasts , which model climate systems.   

In spite of these choices and as earlier mentioned, understanding and forecasting of 

drought is difficult. But, addressing the question; ‘what to forecast?’ may be a good 

start towards achieving what is possibly relevant and useful to forecast. Opting to 

forecast dry spell lengths may be one option which may be useful but challenging. 

For instance, a skilful forecast of a dry spell or number of dry days maybe more 

useful for cropping during the critical flowering period (Patt & Gwata 2002) 

compared to a probabilistic rainfall forecast since crops are highly sensitive to 

shorter extreme climatic variations such as mid-season dry spells or extreme high or 

low temperatures. One of the challenges would be how to deal with the mismatch 

between start and end of dry spells and the time stamp for potential predictors like 

SSTs which are normally recorded at a monthly time scale. Secondly, a good 
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relationship must exist between dry spells and potential climatic predictors so as to 

achieve some skilful forecast.  

Generally, climate modellers assume stationarity in historical observations in order to 

forecast the future which can be interpreted as a drought event in one year is more 

likely to be similar to that of another year and in the future. This reasoning may not 

be realistic considering that several temporal/spatial variations (seasonal, multi-year, 

decadal etc.) and physical mechanisms and processes may exist in the climate system 

and trigger different patterns in drought. For example, rainfall and temperature in the 

MDB has been shown to be non-stationary (Kamruzzaman et al. 2011).  

To be able to have some predictability between potential predictors and the observed 

dry spell data, one possibility is to consider forecasting the number of dry days or the 

maximum dry spell length in a month. Still, dry spells extending across monthly 

boundaries may complicate the analysis and hence the predictability of this 

relationship may be lost. It is likely that this issue of the temporal differences 

between observations and potential predictors will remain. There are a number of 

examples that suggest studies disregard this aspect (e.g. Farmer 1988, Barros & 

Bowden 2008, Hansen et al. 2009, Wittwer & Griffith 2011, Charles et al. 2013).  

Different modelling methods have been used to forecast rainfall/drought in Kenya 

and the MDB of Australia. Multiple linear regression (MLR) models are the 

dominant seasonal forecasting systems used in Kenya (Owen & Ward 1989), 

whereas, the coupled general circulation models (CGCM) are common in Australia 

(Power et al. 1998). In recent years the Australian Bureau of Meteorology (BOM) 

have developed a dynamical model (POAMA) (Elliot et al. 2005). Few studies 

however, have attempted to evaluate the skill of drought forecasts in these 2 regions.  

As indicated earlier, the skill of seasonal models in East Africa and Australia is 

relatively low (~60%) but reasonably better in summer (December - February-DJF) 

(e.g. Palmer et al. 2008). The latter being due to the fact that summer rainfall is 

strongly correlated with the ENSO (Nicholls 1992). In Australia, this relationship has 

been used in the SOI-phase forecasting system of Stone & Auliciems (1992). The 

skill of the MLR based forecasts in Kenya is poorly known as there has been limited 

verification of the forecasts (Ogallo et al. 2008) but the skill of the CGCM based 

forecasts are low (~50%) (Hunt 1991, Hansen & Indeje 2004).  

In view of the above, there is clearly a need to improve the quality of drought 

forecasts in Kenya and the MDB. Moreover, while modest advances have been 
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achieved in climate forecasting in the 2 regions, clearly these have literary been more 

on “rainfall” estimates and less on “drought”. Towards improving the skill of climate 

forecasts, some recent studies such as; Barros & Bowden (2008), Hwang & Carbone 

(2009), and Wong (2010) indicate that still, only little improvement (<70%)  on the 

skill of drought forecasts has been achieved.   

Coming from these studies, the use of rainfall probabilities to analyse drought rather 

than the raw data itself e.g. dry days may be one of the reasons for the low 

performance of drought forecasts in the 2 regions. Secondly, the models used to 

forecasts drought are not precise enough in indicating the onset and end of drought 

periods. Lastly, similar to rainfall forecasts in these regions, drought forecasts may 

be less useful in monitoring drought because they are based on a monthly exception 

which may also be a factor linked to the low skill. Whether this is or is not be the 

case, the current study will attempt to forecast dry spell lengths and number of dry 

days with the hope that this will improve the current performance of drought forecast 

in the 2 regions.  

 

2.7. Conclusions 

From this review, extreme events, and mainly drought, in Kenya and Australia have 

significant impacts on agricultural production. In order to develop a useful drought 

forecast for the two regions, a clear understanding of the effects of drought on 

agriculture and management of negative impacts is important. Both indigenous and 

scientific forecasts are shown to be useful, particularly to compliment other 

agronomic and technological strategies, but the actual benefits from the use of 

forecasts in farm decisions remain unclear. 

Modelling drought is problematic in these regions and whereas statistical approaches 

continue to be used to forecast drought, the skill of current climate forecasts remains 

relatively low. Examining the characteristics and forecasting of dry spells may be a 

potential tool for improving our understanding and management of drought in these 

regions.  

Whilst, dry spell forecasts are expected to provide improved management of climate 

change and variability impacts on agriculture in Kenya and the MDB, robust ways to 

relate dry spells length to the key climate drivers in this regions, such as the Southern 

Oscillation Index and sea surface temperatures, will be the main challenge.  
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CHAPTER 3 

CHARACTERISING MONTHLY DRY SPELL DISTRIBUTIONS 

IN KENYA AND THE MURRAY DARLING BASIN, AUSTRALIA 

(PART 1) 

Abstract   

Understanding the temporal and spatial distribution of dry spells can benefit rain-fed 

agriculture production in (semi) arid lands (ASAL). This study examines how 

parametric distributions can describe monthly and annual dry spells, as well as the 

temporal and spatial variations in these distributions in Kenya and the Murray 

Darling Basin (MDB) in Australia based on 50 year daily rainfall records from 30 

locations in Kenya and 47 locations in the MDB. 

Log normal distributions best described the distributions of dry spell lengths at both 

locations. The parameters (shape and scale) of the fitted distributions are mostly 

linearly correlated with annual mean rainfall, but relationships with mean monthly 

rainfall were also non-linear. This reflects that the spatial variation in observed dry 

spell lengths is strongly related to total rainfall. The spatial analysis suggests slightly 

stronger trends in dry spells with latitude than with longitude in both Kenya and the 

MDB. The temporal variations in dry spells in these regions are most likely sea 

surface temperature related.  

To demonstrate that the derived dry spell distributions can be applied as an indicator 

of the degree of dryness, the probability of exceeding 5, 10 or 15 dry days in a 

growing season was calculated. It varied between 1% to ~ 60% in the growing 

seasons in Kenya but reached more than 70% in the MDB. Using estimated dry spell 

probabilities based on annual rainfall or spatial coordinates show potential to make 

predictions in ungauged locations. This information can be useful for crop 

management in Kenya and the MDB. 

 

3.1. Introduction 

In semi-arid and arid lands (ASALs), rainfall amounts and distributions vary sharply 

in time and water deficiency becomes a key constraint to agricultural production 

(Smith 2000). The ASALs cover over 1/3 of the global surface area,  80% of which 

is agricultural land (Reynolds et al. 2000). Agriculture in these areas is rain-
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dependent and returns low yields (Rockström et al. 2003) and drought is a critical 

factor (Webb & Reardon 1992, Horridge et al. 2005, Dinar et al. 2012).  

In East Africa, the frequency and severity of drought appears to be increasing 

(Wakabi 2006, Huho & Mugalavai 2010) leading to food shortages (Benson & Clay 

1998, Goston 2011). For instance, over the last 3 decades, serious droughts have 

occurred in Kenya at least 10 times (Huho 2011, Mwangi 2013) and the frequency 

has increased from 20 years 3 - 5 decades ago to about a year at the present time 

(Kalungu et al. 2013). In parallel with the trends in Kenya, severe droughts, at least 

since the mid 1990’s, have dominated in the Murray Darling Basin (MDB) of 

Australia (Erskine & Warner 1998, Horridge et al. 2005, Tan & Rhodes 2008, 

Ummenhofer et al. 2009) with serious effects for agriculture and other sectors 

(Kirkup et al. 1998, Kiem & Franks 2004, Bond et al. 2008). According to Gallant et 

al. (2013) the frequency of drought events has declined over western and eastern 

areas of the MDB from 1960 - 2009 although the length of droughts have increased 

compared to the previous decades. In view of a growing global population and 

increasing food demand (Schneider et al. 2011), the above studies raises fundamental 

questions about the impact of changes in drought on agricultural production in 

ASALs.  

Research on drought in Kenya and the MDB has mostly focused on its impacts and 

adaptation to agriculture (e.g. Akong'a et al. 1988, Downing et al. 1989, Keating & 

Meinke 1998, Baethgen et al. 2003, Howden et al. 2007). Mostly, global circulation 

models (GCMs) (e.g. Howden et al. 1999), have been used to simulate crop scenarios 

or to make climate predictions (e.g. Ringius et al. 2009) and study potential 

adaptations such as drought-resistant crops (e.g. Gregory et al. 2002, Luo et al. 

2009).  

Whereas most studies highlight drought in relation to agriculture, the term “drought”, 

generally defined as a prolonged dry period, is not appropriate to describe the 

occurrence of short dry periods or dry spells. Dry spells are known to induce crop 

failures. For instance, dry spells of 10 or more days during the growing season are a 

major cause of crop failures in rain-fed agriculture systems in semi-arid areas (e.g. 

Kassie et al. 2013). Crop simulations in Brazil show that up to 65% of yield 

reductions can occur if dry spells occur in the flowering phases (Sousa & Frizzone 

1997), whereas, Traore et al. (2013) indicated that a one day increase in dry days 

during the growing period in West Africa led to yield losses of 41kg/hectare. In 
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Kenya and other similar semi-arid environments, dry spells occur in almost all the 

planting seasons (Barron et al. 2003) and have the severest impacts on crops if the 

growing season is shorter due to delay in the onset or early cessation of the rains 

(Sivakumar et al. 2005). This underscores the critical role of the occurrence of dry 

spells in the growing season in rain-fed agriculture systems over ASALs.  

According to Leclerc et al. (2013), “Drought is an ambiguous concept because 

climatology, hydrology, or agronomy can define it differently”. In this light 

concentrating on dry spells which generally refer to a number of consecutive days 

without appreciable rainfall (Ngetich et al. 2014), may be more important in the 

context of farmers.  

One of the important aspects in characterizing dry spells is the definition of a dry 

day. A daily rainfall threshold below a certain amount is normally used to denote a 

dry day whereas consecutive dry days are used to define a dry spell. A threshold of 

0.1 mm per day is often used for rain gauge precision (e.g. Wauben 2006) and in 

several studies it defines a rain/dry-day (e.g. Adedoyin 1989, Traore et al. 2013). It is 

argued that a daily rainfall amount not exceeding 0.1 mm is of no significant impact 

on dry spell characteristic. Nevertheless, several other authors have used different 

rainfall thresholds and typification of dry spells (e.g. Huth et al. 2000, Frich et al. 

2002, Porto de Carvalho et al. 2013). For example, Huth (2000) define a dry spell as 

a period of 10 consecutive days with precipitation not exceeding 1mm but Porto de 

Carvalho et al. (2013) defines a dry spell as 10 successive days without any rainfall. 

Interestingly, Frich et al (2002) uses 1 mm threshold to define the maximum or 

longest dry period. Clearly, the definition of a dry day varies and is generally taken 

to be either a day without or not exceeding some rainfall threshold and a dry spell as 

a sequence of dry days.  

Parametric distributions have been used extensively to characterise the properties of 

dry spells (Douguedroit 1987, Lana & Burgueno 1998, Dobi-Wantuch et al. 2000, 

Vicente‐Serrano & Beguería‐Portugués 2003, Lana et al. 2006, 2008, Deni & Jemain 

2009, Sushama et al. 2010, Vargas et al. 2011). For example, Lana et al. (2006) used 

the Generalized Extreme Value (GEV) and Generalized Pareto distribution (GPD) 

distributions (Table 3.1) to calculate the annual maximum dry spell lengths (AM) 

and shorter dry spells for the Iberian Peninsula using daily rainfall thresholds of 

0.1mm, 1.0mm and 5.0mm. They found that the GEV gave a better fit between the 

empirical and theoretical distributions of dry spells compared to the GP and the 
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spatial distribution of the statistical dry spells parameters tended to show a north to 

south orientation. In contrast, Sushama (2010) had applied the GEV and GPD to AM 

and other extreme dry spells over Canada and found that the distributions 

underestimated the mean number of dry days and return periods of the dry spells. It 

appears that the GEV has mainly been used for ‘extreme’ values and might be less 

appropriate to characterise the full distribution. In the recent past, Modarres (2010) 

analysed the AM over Iran and found that while the AM exhibited a homogenous 

pattern over the region using the L-moment method, the frequency distribution 

followed the generalized logistic distribution (GLOG), with the cluster analysis 

depicting a west and east regimes consistent with the GLOG and Pearson Type III 

distributions in each of the 2 regimes. In addition and as can be seen from Table 3.1, 

there are several other parametric distributions that have been used to describe the 

empirical distributions of dry spells in specific regions.  

 

Table 3.1: Example of dry spell distributions from selected studies in different regions  

Region (no. of 

locations) 

 Dry spell type Parametric distribution Reference 

Austria 

Catalona-Spain 

Hungary  

Iberian-Spain 

Malaysia(north) 

Isfahan  

Malaysia -south 

Botswana 

(81) 

(69) 

(20 

(43) 

(10) 

(31) 

(17) 

(13) 

≥monthly 

>20 days 

monthly 

Annual 

All dry spells 

Annual/maximum 

all dry spells 

Seasonal/Annual  

truncated negative binomial 

Poisson 

Mixed geometric  

generalized extreme value 

truncate negative binomial  

generalized logistic  

weibull 

generalized logistic  

(Nobilis 1986) 

(Lana & Burgueno 1998) 

(Dobi- et al. 2000) 

(Lana et al. 2006) 

(Deni et al. 2008) 

(Modarres 2010) 

(Yusof & Hui-M 2012) 

(Kenabatho et al. 2012) 

 

Despite the importance of the above studies, some pertinent issues can be identified. 

Firstly, it is unclear as to when a dry spell should be considered to be a drought and 

often the two terms are used interchangeably. Secondly, variations in rainfall 

thresholds used to define a dry day or dry spell suggests that dry spells remain 

inadequately understood and therefore there is a need to further characterise dry 

spells such as the temporal distribution, occurrence and duration. Thirdly, very few 

of the studies evaluated the variation in the spatial patterns of parameters that relate 

the distributions to local factors such as rainfall and latitude and other climatic 

factors. This may assist in understanding the spatial variability in the dry spell length 
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and relationship with other climatic drivers such as the El Niño Southern Oscillation 

(ENSO).  

Because dry days can cross monthly boundaries, it is of great interest to understand 

how probability distributions of such dry spells behave at monthly and across 

monthly boundaries. The question is whether a distribution of dry spells lengths 

calculated within monthly boundaries (e.g. Gitau et al. 2013) is similar to a 

distribution of the dry spell lengths when calculated from the actual starting or end 

time (at a different month)?  

This study builds on previous work in the 2 regions (e.g. Suppiah & Hennessy 1998, 

Ochola & Kerkides 2003), and current work on drought at the seasonal scale (Gallant 

et al. 2013, Mwangi et al. 2013). The study answers 2 main questions: (1.) What is 

the best parametric distribution to describe monthly and annual dry spells in Kenya 

and the MDB; and (2.) What is the temporal and spatial pattern in parameters 

describing these distributions. Additionally, the probabilities of exceeding dry spells 

at selected critical thresholds in the growing seasons (growth stages) for maize in 

Kenya and wheat crop in the MDB are examined. 

 

3.2. Methods 

In the following, a dry spell is defined as the number of successive dry days within a 

month. However, in some cases, there are more successive dry days than the number 

of days in the month. This is dealt with separately. We chose to focus on case study 

areas in Kenya and the MDB, Australia as these two areas are ASALs, but with 

different climate characteristics. 

 

3.2.1. Data and study areas description 

Kenya is located between latitudes 5
0
 N - 5

0
 S and longitudes 34

0 
E - 42

0
 E while the 

MDB, Australia is between latitudes 24
0
 S - 38

0
 S and longitudes 136

0
 E- 153

0
 E 

(Figure 3.1). 

Much of Kenya has 2 main rainfall seasons (March-May and October-December) 

complemented by a third season (June-September) in the western highlands (Davies 

et al. 1985). The average annual rainfall ranges from about 2000 mm in the western 

and central highlands to < 300 mm in the northern and south eastern regions 

(Kabubo‐Mariara 2008).  
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The northern MDB has summer dominated rainfall, while rainfall in the southern 

MDB is winter dominant (Chiew et al. 2008). Average annual rainfall ranges from 0 

- 400 mm in the western areas to 600 – more than 1000 mm in the southern and 

eastern parts of the MDB (MacDonald & Young 2000). Up to 80 % of both regions 

are classified as semi-arid or arid with annual potential evaporation ranging from 

more than 1700 mm in the north to 1000 mm in the south.  

Daily rainfall data for 1961 - 2010 was obtained from the Kenya Meteorological 

Department and the Australian Bureau of Meteorology and used to analyse monthly 

dry spells in both regions. The rainfall data for 30 locations in Kenya (Figure 3.1a) 

and 47 locations in the MDB (Figure 3.1b)  were selected based on data record 

consistency, allowing < 4% of data missing, and a climatic range in locations from 

north to south. Selected locations in the MDB had < 1% missing data and the Kenyan 

locations 0.2 – 3% missing. The missing data was filled with the 30 year daily 

averages if less than 2 weeks of data was missing; otherwise it was interpolated or 

filled with data of the same period from nearby stations and with similar 

climatological characteristics. 

 

 

 

Figure 3.1: The study locations (1-30) in (a) Kenya (latitudes 50 N - 50 S and longitudes 340 E - 420 E) and (1-

47 ) (b) Murray Darling Basin of Australia (latitudes 240 S - 380 S and longitudes 136 0 E- 1530 E). The mean 

annual rainfall for all the locations in the 2 regions is given in Appendix A1 & A2 respectively. 
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3.2.2. Calculation of the monthly dry spell length  

A threshold of q ≤ 0.1mm daily rainfall denotes a dry day, and i=1, 2..., is the day of 

the month. The length of a dry or wet spell is the sum of consecutive days below or 

above the threshold. The daily rainfall data is converted into a binary vector (Xi): 

 












daydryqrainif
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X

i

i

i
,,1

,,0
                    [3.1] 

Where, raini is the daily rainfall amount for any particular day (i). 

 

To calculate the length of the dry spells in a month, the vector Xi was summed over 

consecutive days after sub-setting the overall time series by month.  
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Where, D0 is the initial dry spell length count, set to 0 for each month and Di the dry 

spell length at day i. 

 

3.2.3. Calculating the dry spell length incorporating ‘Long’ dry spell into 

the next month  

The previous analysis results in a maximum dry spell length between 28 and 31 days 

for a completely dry month. This might underestimate the “true” dry spell length as 

sometimes dry spells might be longer than 1 month (i.e. ‘Long’ into the next month), 

or dry spells start half way the month and continue into the next. Hence forth we call 

this dry spells, ‘Long’ since they are generally longer than the monthly dry spells. 

Such ‘Long’ dry spells would have important implications for crop production. In 

this second case, the continuing dry days were incorporated in the subsequent month. 

This resolves part of the problem but makes the term “monthly” questionable. 

Incorporating the ‘Long’ into the next month in the calculation of the dry spell length 

using equation [3.2] involves dividing by month after equation [3.2], rather than after 

equation [3.1].   
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3.2.4. Deriving the mean and maximum dry spell length  

The vector P calculates the dry spells similarly for spells within each month and 

beyond the month (‘Long’).  



 




OtherwiseNA

DDDifD
P

iiii

i

11
                     [3.3] 

In both cases Pi is assigned to the day/month where the dry spell ends. NA’s will be 

returned in cases where dry spells do not end in a particular month but only in a 

subsequent month. The vector P is subsequently subset by month for the ‘Long’ 

method. Mean and maximum dry spell length were calculated using different 

methods.  

 For method 1, the mean monthly dry spell length equals the number of dry days 

divided by the number of dry spells in a month.  

 For method 2, the mean monthly dry spell length including ‘Long’, is again the 

sum of the dry days divided by the number of dry spells in a month. This means 

dry spells crossing into the next month are included in the calculation of the mean 

monthly dry spell length for the month in which the dry spell ends. 

 For method 3, the mean monthly dry spell length including ‘Long’ was calculated 

from dry spells within a month as well as dry spells starting in the month, but 

ending in the subsequent next month. This method calculates some dry spells 

lengths twice. 

 The maximum monthly dry spell length was calculated as the longest dry spell 

within a month (Max method 1). If no dry spell is recorded in a month, “NA” is 

returned. 

 As an alternative, the maximum dry spell length (Max method 2) was calculated 

as the longest dry spell in the month or the longest (cumulative) dry spell crossing 

into the next month(s). Compared to Max method 1, NA’s are returned if there is 

no dry spell starting and ending in a month and some maximum dry spells will be 

duplicated (because they are counted in both the month they start and the months 

they end).  

 

3.2.5. Annual dry spell length 

Annual dry spells are simply the number of consecutive dry days in a year. The mean 

annual dry spell length was calculated as the total length of dry spells divided by the 
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number of dry spells in a year and the annual maximum dry spell length is the 

longest dry spell in a year. No dry spells were assumed to cross annual boundaries. 

 

3.2.6. Probability distribution functions (pdfs) of the dry spells 

Empirical dry spell distributions were fitted to parametric distribution functions 

using the fitdist function in the fitdistrplus package in R (Delignette-Muller et al. 

2010) which estimates parameters using a maximum likelihood method (Chambers 

& Hastie 1992). More specifically, the lognormal, weibull and gamma distributions 

were fitted to the dry spell data series using the minimum Akaike Information 

Criterion (AIC) (Akaike 1974). In addition to the above analysis, parameters of the 

best fitting distribution were correlated with mean annual and monthly rainfall, for 

both regions. 

 

3.2.7. Spatial analysis of the distribution function parameters 

A generalized additive model (GAM) was used to investigate the spatial distributions 

of the dry spell distribution parameters. GAMs are non-parametric extensions of the 

Generalized Linear Models (GLMs) (McCullagh & Nelder 1989) whereby the 

predictors are defined in terms of a sum of smooth functions of the covariates (Buja 

et al. 1989, Maindonald 2010). A GAM model differs from the Generalized Linear 

Model (GLM) in that a flexible smooth predictor can replace the linear predictors. 

GAMs have the general form: 

 

  )()(
1 i

n

i ii Xfg  
                 [3.4] 

 

Where g (.) is a link function of the mean μ and each of the f i ( ) is a function that 

smoothes the i
th

 component of the predictor X. 

GAMs were fitted to the lognormal distribution parameters of the ‘Long’ dry spells 

using latitude and longitude as covariates (X). A GAM model was first fitted with 

independent covariates using smoothing splines (Wood & Augustin 2002). The 

performance of the model was checked using the model error residual plots and 

estimated convergence information. Subsequently, the interaction between the 

covariates was modelled, as dry spell parameters would most likely be correlated to 
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an interaction of latitude and longitude representing locations in space. Generally the 

GAM model residuals were better described by a gamma distribution. 

  

3.2.8. Probabilities of exceeding of a dry spell length during the growing season  

The probability of exceeding 5, 10 and 15 dry spell days during the growing stages 

for maize in Kenya and wheat in the MDB are considered. The 3 thresholds are 

based on the literature and experimental studies (e.g. Jackson et al. 1983, Rockström 

et al. 2002, Fox et al. 2005, Mkhabela et al. 2010, Semenov & Shewry 2011). The 

most critical periods for maize crop occur around tasseling, flowering and grain 

filling or from >60 to 100 days after sowing and after anthesis and during flowering 

and grain filling (stages) for wheat or from 100 - 120 days after sowing. Dry spells ≥ 

10 days at flowering and grain filling stages are considered to be critical and can lead 

to crop failure.  

In Kenya the assumed sowing date is at the start of March (long rain season) and 

maturity in August/September. In the MDB sowing date varies between the northern 

and the southern regions and ranges from 5
th

 May – 16
th

 August in the North and 

from April – 15
th

 September in the southern regions, while ‘big differences in 

flowering time can occur in winter wheats and varieties” from late August to October 

(GRDC (a) & (b) 2011) depending on early or late planting (Stapper & Lilley 2001). 

Maturity may occur in November or later (http://www.dpi.vic.gov.au). In this study, 

August is used as an example for the optimal flowering time assuming early planting 

in the MDB. The entire growing season (all cropping stages) and the flowering/grain 

filling stages are examined separately. The lengths of the stages for maize are 30, 50, 

60 and 40 days (n=180) while the lengths for wheat stages are 30, 140, 40 and 30 

days (n=240) respectively (FAO 1998). The datasets for the months of the growing 

seasons is subset from the entire dry spell series for each location.  

From these data sets, the probabilities of exceedances (PE) for each dry spell 

threshold (i=5, 10, and 15) are generated from the empirical cumulative function of 

the ‘Long’ dry spell lengths using:    

   idsPE 1                                [3.5] 

Where ds is the i
th

 value of the observed cumulative probabilities 

 

http://www.dpi.vic.gov.au/
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3.3. Results 

 

3.3.1. Overall distributions of the monthly and ‘Long’ dry spells in Kenya and 

MDB 

Figure 3.2 gives the overall distributions of the monthly and ‘Long’ dry spells 

lengths for all locations in Kenya and the MDB. In Kenya, the monthly dry spell 

lengths vary between a day to a full month across all the months and the median is 

highest in January and February (~5 days) (Figure 3.2a). Similarly, in the MDB, 

monthly dry spells range from 1 day to a full month across all months, and the 

median is highest in February and March and lowest in July (Figure 3.2b). In Kenya 

and the MDB, there is less variation in the monthly dry spells across the months. In 

contrast, the overall distribution in the ‘Long’ dry spells in Kenya and MDB 

indicates a more variable pattern. Dry spells increase from January - April and from 

May - December in Kenya with the lowest values occurring in May in the main 

monsoon season. Similar to the monthly dry spells, the highest median dry spell is 

indicated in January and February. The ‘Long’ dry spells lengths in the MDB seem 

to increase from January - May but, at the scale of the figure (d), the overall 

distribution is roughly even across all the months. This is mainly due to the very high 

variation in the dry spells across the months. The highest median dry spell is 

indicated in March and April (~6 days) and the lowest in July-September. 
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Figure 3.2:  Box plots for the overall monthly (left panel) and ‘Long’ (right panel) dry spell length in (a) and 

(b) Kenya and (c) and (d) MDB. 

 

Overall, the median dry spell length for both the monthly and ‘Long’ dry spells is 

longer in the MDB compared to Kenya (Table 3.2). 

 

 

Table 3.2: Median dry spell lengths for Kenya and the MDB for the monthly and ‘Long’ dry spell 

lengths 

 Kenya MDB 

 Monthly ‘Long’ Monthly ‘Long’ 

January 5 4 4 5 

February  

March  

April 

May 

June 

July 

August 

September 

October 

November 

December 

5 

3 

2 

2 

2 

2 

2 

3 

2 

2 

3 

5 

3 

2 

2 

2 

2 

2 

3 

3 

2 

3 

5 

5 

5 

4 

4 

3 

3 

3 

4 

4 

4 

5 

6 

6 

5 

4 

3 

3 

3 

4 

4 

5 
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Although the median is relatively low for both types of dry spell lengths, there is 

some difference across locations and regions. In Kenya, the median monthly dry 

spell length is highest in locations in north eastern and south eastern regions and 

varies from 1 to 24 days and is far lower in the wetter regions of the central, western 

and coastal regions areas (1 - 3 days). The inclusion of dry spells for wet regions in 

the calculation of the overall median dry spell lengths may be the cause of the low 

overall median values observed. In the MDB, higher median dry spell lengths are 

indicated in northern (~4 - 12 days) and central locations (~4 - 10 days) and the 

shortest in the southern locations (2 - 8 days). Overall, the longest median dry spell 

length in the northern (and central) locations is around July and August while this is 

around January - March in the southern locations. This agrees with the seasonal 

variation in rainfall in the MDB. 

 

3.3.2. Distributions in overall dry spell lengths (lumped by all months) 

Figure 3.3 shows typical distributions of the mean monthly, monthly and ‘Long’ dry 

spell and a clearly right skewed distribution for the monthly dry spells lengths. The 

majority of the drier locations indicate bimodal distributions for the mean monthly 

dry spell length. This is logical as those locations would have several dry spells 

longer than one month (‘Long’) (Figure 3.3c) and these are lumped at the end of the 

month in the mean monthly dry spell calculation. Figure 3.3 further indicates that 

there are no mean monthly dry spells between 15 – 27 days which is not visible in 

the underlying monthly dry spells (Figure 3.3b). This is probably due to the monsoon 

effect as, on the average, dry spells either cover the whole month in the dry season or 

are much shorter in the monsoon period. The latter case is probably why humid areas 

do not show strong bimodal behaviour. The bimodal distributions also do not show 

up for the ‘Long’ calculations, as longer dry spells can now be included (Figure 

3.3c). 
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Figure 3.3. Histograms for (a) mean monthly, (b) mean ‘Long’ and (c) ‘Long’ dry spells for Katumani in 

Kenya 

 

However it is important to highlight the differences in the calculation methods of the 

different dry spells. The mean dry spell length at the monthly scale resulted in a 

truncated distribution which underestimates the actual dry spell lengths within the 

monthly boundaries. The analysis for monthly dry spells also resulted in a maximum 

dry spell length equal to the month length for a completely dry month, which is 

biased if dry spells continue into the next month. Therefore considering dry days in 

the following month(s) (‘Long’) might achieve a better estimate of the true 

distribution of dry spell lengths. The parametric distribution fitting concentrates on 

the underlying empirical distributions of dry spell length. 

The analysis of the cumulative distribution functions (CDF) fitted to the monthly and 

‘Long’ dry spells suggest that the gamma and lognormal distributions fit most of the 

points of the empirical data better than the weibull distribution (at p ≤ 0.05). For 

example, based on the AIC values, the monthly and ‘Long’ dry spells distributions 

for Katumani are best described by the lognormal distribution (Table 3.3).  

 

Table 3.3: Comparisons between the 3 distribution functions fitted to the empirical dry spell length 

data for Katumani in Kenya.  

Dry spell type Gamma 

(AIC value) 

Weibull 

(AIC value) 

Lognormal 

(AIC value) 

Maximum             (Method 1) 

                          (Method 2) 

4634.2 

4934.5 

4637.6 

4960.7 

4627.4 

4908.8 

Monthly 12424.1 12421.3 12063.2 

‘Long’ 10789.3 10695.1 10236.0 

Mean Annual 201 206 201.2 

 

However, in all cases for Kenya and the MDB the differences between the fits of the 

distributions were found to be small (Figure 3.4). Given that the lognormal 
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distribution gives a slightly better fit, the rest of this study only uses this parametric 

distribution 

 

 

Figure 3.4: Box plots of AIC values for the gamma, weibull and lognormal distributions for monthly (left 

panel) and ‘Long’ (right panel) dry spells in Kenya and MDB 

 

3.3.3. Correlations for the dry spell length distribution parameters with 

rainfall  

The log normal distribution is characterised by two parameters: the shape parameter 

(mu), representing the mean of the log transformed data, and the scale parameter 

(sigma), representing the variance of the log transformed data. The scatter plots in 

Figure 3.5a correlate the parameters of the lognormal distributions for monthly dry 

spells with mean annual rainfall at locations in Kenya. In all cases, the linear 

correlations are strong (p < 0.01). Negative correlations between the shape (r = -0.9) 

and scale (r = -0.84) parameters and rainfall indicate that both the mean (shape) and 

the variance of the dry spell length increases with decreasing rainfall.  In contrast, all 

the correlations for parameters of the overall ‘Long’ dry spells lengths with rainfall 
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are lower (r < 0.4) and do not show strong patterns (Figure 3.5b). However, the 

negative linear relationships with rainfall are significant (p < 0.05) for both the shape 

and scale parameters of the log normal distributions. 

 

 

Figure 3.5: Scatter plots for the overall monthly and ‘Long’ dry spell lognormal parameters and rainfall in 

Kenya fitted with a linear regression (solid=monthly and dashed=‘Long’) trend line. 

 

In the Murray Darling Basin, the parameters fitted to the distributions of the overall 

monthly dry spells lengths have less strong relationships with mean annual rainfall, 

ranging from r = -0.46 to r = -0.54 (Figure 3.6) and similar to Kenya, show declining 

trends (p < 0.01) and negative correlations between the lognormal parameters and 

rainfall. Note that the scatter in the data in the figure represents the spatial variability 

of the parameters. In contrast, the correlations between the ‘Long’ monthly dry spells 

parameters and mean annual rainfall in the Murray Darling Basin are insignificant 

(NS) and do not indicate any clear trend.  
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Figure 3.6: Scatter plots for the overall monthly and ‘Long’ dry spell lognormal parameters and rainfall in the 

MDB fitted with a linear regression (solid=monthly and dashed=‘Long’) trend line. 

 

3.3.4. Relationships between ‘Long’ monthly dry spell length distribution 

parameters and mean monthly rainfall  

Correlations between the parameters fitted to the empirical distributions for the 

‘Long’ monthly dry spells with mean monthly rainfall differ from those with annual 

rainfall. For Kenya (Figure not shown), the distribution parameters for ‘Long’ 

monthly dry spells are again negatively correlated to mean monthly rainfall 

(p<0.001), which is physically most logical. The highest correlations occur in August 

(r= -0.96 – -0.83) and the weakest in October and November. As would be expected, 

correlations with the shape (log mean) parameter are higher than those of the scale 

(variance) parameter, suggesting that rainfall amount explains the mean dry spell 

length better than the variance in dry spell lengths.  

As an example, the correlations related to the distribution parameters in the months 

of April (normally wet) and August (normally dry) are given in Figure 3.7. Note that 

the trend in April (wet) is linear but the trend for August (dry) is actually non-linear. 

In general, the parameters for the normally dry months of January, February, June 

through September indicate non-linear patterns while the wet months indicated linear 

patterns with the exception of May (normally wet) where the shape and scale 

parameters indicated opposite (linear and non-linear) patterns respectively. 
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Figure 3.7: Scatter plot for ‘Long’ monthly dry spell lognormal parameters (shape= ‘o’, scale= ‘Δ’) and 

monthly mean rainfall for April (left) and a log-log plot for August (right) in Kenya fitted with linear 

regression line (April: solid=shape, dashed= scale). 

 

In the MDB, the negative correlations between the parameters of the ‘Long’ monthly 

dry spell distributions and monthly mean rainfall are significant in most months (p < 

0.05) but the strongest correlation coefficients occur in August, September and 

December and the weakest in May. Interestingly, non-linear relationships in the 

MDB occur from May - September (End of autumn - start of spring), similar to 

Kenya, but linear patterns occur in November - March. In contrast, the shape and 

scale parameters had a linear and a non-linear pattern in October. This might also 

explain why in the MDB, in May through July the scale parameter is more correlated 

to monthly rainfall than the mean (shape parameter). Thus, variations in monthly 

mean rainfall in space cannot explain the variation in the mean dry spell length. 

Similar results were visible when all months were considered together (Figure 3.6). 

The correlation results for Kenya and MDB, suggest that both the mean dry spell 

length and the variability of the dry spells decreases with increasing rainfall across 

the region. Linear patterns are indicated in the normally wet and non-linear patterns 

in the normally dry months in Kenya. Similar patterns occur in the MDB, with May 

(in Kenya) and October (MDB) as exceptions. This might be because these are 

transitional months, where May marks end of the long (growing) rain seasons and 

October the peak of spring season.  
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3.3.5. Analysis of seasonal patterns in the lognormal dry spell length parameters 

The monthly analysis suggests that the spatial pattern of the parameters of the 

distributions for all dry spell types varies by season. In Figure 3.8, the main dry 

seasons in Kenya are January - February (JF) and June - September (JJAS), while 

March – May (MAM) and October – December (OND) are the wet seasons. The 

results for the monthly dry spells are not presented here as they are similar to those 

of the ‘Long’ monthly dry spells. The magnitudes of the shape parameters, 

representing the log mean dry spells, in Figure 3.8(a) are evenly distributed in each 

season with half of values being below or above the median shape parameter. The 

widest spatial variability across the region in the mean and the variance (scale 

parameter) occurs in the JJAS dry season. Surprisingly for the scale parameter (3.8b), 

values are relatively high in the wet (MAM & OND) seasons, which would be 

expected to have fairly short dry spells. It is possible that this variance is caused by 

one or two longer dry spells skewing the distribution. Such longer dry spells would 

have a greater impact on the distribution in the wet season than in the dry season. It 

appears that the median of the log normal parameters representing the ‘Long’ dry 

spell distributions decreases from the start (JF) to the end of the year (OND).  

    

Figure 3.8: Box plots of (a) shape and (b) scale parameters for the lognormal distribution for all seasons in 

the ‘Long’ dry spells for the period 1961-2010 in Kenya. The JJAS seems to be the most uncertain but longest 

period.  

In the MDB, there are 4 distinct seasons: summer (December – February), autumn 

(March - May), winter (June – August) and spring (September – November). The 

temporal rainfall distribution is mainly summer dominant in the north and winter 

dominant in the south. Therefore the analysis is split between the northern (N) and 

southern (S) parts (Figure 3.9).  
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The shape parameter for the ‘Long’ monthly dry spell distribution has substantial 

spatial spread in the northern winter and autumn seasons with values ranging from 

1.25 to greater than 2.0. Moreover the shape parameter seems to increase from the 

northern summer to autumn but roughly decline thereafter. In contrast, the lowest 

variability in the shape parameters occurs in winter and spring in the south, 

indicating that locations in space are more similar in this region (Figure 3.9a).  

Similarly, the scale parameters indicates the greatest spatial spread in the northern 

autumn with values ranging from 0.95 to >1.2. In contrast to the shape parameter, the 

scale parameter appears to decline from autumn in the north through to spring in the 

south. The spatial variation is similar for the scale parameter, but smaller in the shape 

parameter between the MDB than in Kenya.  

 

Figure 3.9: Box plots of (a) shape and (b) scale parameters for the lognormal distribution in MDB for all 

seasons in the ‘Long’ dry spells split by northern (N) and southern (S) regions 
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3.3.6. Spatial patterns in the distribution parameters  

For the monthly dry spells, the spatial distribution in the shape parameters in Kenya 

generally increases with latitude and longitude, with the lowest values occurring at 

the equator and in the western regions (humid regions), as would be expected.  

Latitude is a significant predictor (p ≤ 0.03) of the log mean (shape) of the 

distribution of the monthly dry spells (Model 1) and explains 30% of the spatial 

variance (r
2
) in the shape parameter (Table 3.4). Combining latitude and longitude 

(Model 2), explains 93% of the spatial variation.  

The spatial trend in the scale parameter for the monthly dry spells (Figure not shown) 

shows a slightly stronger trend with longitude (r
2 

= 34%) than with latitude (r
2 

= 

30%) suggesting a minor west - east generally increasing trend. While the mean 

monthly length of dry spells was more related to latitude (North – South), the 

variability of the dry spells thus shows more of an East-West trend. The spatial 

distributions for shape and scale parameters in Kenya look similar (Figure 3.10), 

meaning that, on the average, longer mean dry spells are related to higher variability 

in dry spells. 

  

Table 3.4: GAM models to predict the shape parameter (mu) and scale of the monthly and ‘Long’ 

dry spells in Kenya and the MDB  

GAM model Measure of fit (AIC) Variance explained (r
2
) 

(a) Monthly dry spells (shape) 
Model 1 (mu ~ Lat) 
Model 2 (mu ~ (Lat, Lon)) 

(b) Monthly dry spells (scale) 
Model 3 (sigma ~ Lat) 
Model 4 (sigma ~ (Lon)) 
Model 5 (sigma ~ (Lat, Lon)) 
(c) ‘Long’ dry spells (shape) 
Model 6 (mu ~ Lat) 
Model 7 (mu ~ (Lat, Lon)) 
(d) ‘Long’ dry spells (scale) 
Model 8 (sigma ~ Lat) 
Model 9 (sigma ~ (Lat, Lon)) 

Kenya 
12.8 
-55.8 

 
-44.1 
-49.1 
-89.6 

 
14.7 

-66.45 
 

-27.0 
-91.6 

MDB 
-23.3 
-73.4 

 
-151.5 
-134.5 
-210.3 

 
-9.1 

-61.3 
 

-117.7 
-177.3 

Kenya 
0.30 
0.93 

 
0.30 
0.34 
0.85 

 
0.29 
0.95 

 
0.30 
0.93 

MDB 
0.46 
0.84 

 
0.38 
0.13 
0.85 

 
0.47 
0.85 

 
0.38 
0.85 

 

Similar to the monthly dry spell lengths, latitude explains 30% of the spatial 

variation in the shape and scale parameters of the ‘Long’ dry spells. The patterns in 

space suggest that the shape and scale parameter for these ‘Long’ dry spells increase 

with latitude (northwards) confirming the earlier relationship with the rainfall trend 

in Kenya (Figure 3.10a). The interaction between latitude and longitude describes 

more variability in the parameter distributions of the ‘Long’ dry spells (Table 3.4d).  
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Figure 3.10: Effects of latitude on the (a) shape parameter of the ‘Long’ dry spells in Kenya and (b) scale 

parameters of the ‘Long’ dry spells in MDB and (c) combined effect of latitude and longitude on the scale 

parameter in the MDB and partial residuals (blue dots) and upper and lower 95% confidence limits of the 

GAM estimate (grey shade-dashed lines) overlaid.  

  

In the MDB, latitude explains 47% of the variance in the shape and 38% of the 

variance in the scale parameter, of the monthly dry spell length (Table 3.4). The 

relationships for the ‘Long’ dry spell lengths were similar in explaining power. The 

interaction between latitude and longitude explains about 85% of the variation in the 

shape and scale parameter for the monthly dry spell length again indicating relatively 

strong spatial trends. Both the shape and scale (Figure 3.10b) parameter for the 

‘Long’ dry spell lengths increase in southerly direction and with increasing rainfall 

(Figure 3.7b).  

This is interesting as rainfall in the MDB is normally considered to have a strong 

East-West trend (Longitude) (Drosdowsky 1993, Cook & Heerdegen 2001, 

Ummenhofer et al. 2008). Possibly the variation in dry spell lengths is more related 

to the variation in summer and winter rainfall between the North and South of the 

basin.  

The rest of the analysis concentrates on the ‘Long’ monthly dry spells, due to the 

similarities in results with the regular monthly dry spells.  

 

3.3.7. Probability of dry spell occurrence/exceedances in the growing seasons  

As an example of the application of the derived ‘Long’ dry spell distributions, the 

probabilities of exceeding (PE) certain dry spells lengths can be useful in agricultural 

planning. In Kenya, the empirical probabilities of exceeding 5 dry days in the 

growing season range from about 30% in the southern locations to a maximum of 

about 63% in the northern regions (Figure 3.11a).  
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As it would be expected, slightly lower empirical probabilities (20% - 40%) are 

indicated for exceeding 10 dry days, whereas they vary from 3% - 38% for exceeding 

15 dry days. In contrast, and during the flowering and grain filling stage (Figure 

3.11b), the empirical probabilities, for exceeding the 3 dry spell lengths, are slightly 

lower, ranging between 2% and 50%.  

Overall, the empirical probability of exceeding the dry spells in Kenya increases 

from south to the north. This confirms that the risk of dry spells, lasting at least 5 

days or more in the growing season, are higher in the northern ASAL regions than in 

the relatively wet southern areas. 

The overall dry spell probabilities were based on the empirical data directly, 

however, more useful would be if these can be estimated from the parameters 

derived earlier (i.e. based on the shape and scale parameters) or directly from the 

relationships with mean rainfall and latitude and longitude (sections 3.3.3 -3.3.6). In 

some instances, the estimated probabilities (Figure 3.11c – h) over and under 

estimate the empirical probabilities (Figure 3.11a – b). Over a crop season, the 

overall mean estimated probability for exceeding 5 dry days is slightly higher than 

the empirical probabilities (Table 3.5). However, this is lower (up to 40%) for the 

estimated probabilities of exceeding 10 or 15 dry days in the season. The over or 

under estimation of the empirical probabilities is logical due to the uncertainty in the 

earlier model fits. 

In contrast, the estimated probabilities during the flowering and grain filling stages 

are higher than the empirical probabilities and with the highest difference of 86% 

occurring for the estimated probability based on the mean rainfall parameters. 

Overall, the differences are higher in the (shorter) flowering stage than over the 

whole cropping season. The higher difference for the shorter flowering stage is most 

likely due to the downscaling of the relationship between monthly dry spell length 

distribution parameters and mean annual rainfall (or spatial coordinates) to the 

shorter time frame. 
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Figure 3.11: Probabilities of exceeding dry spells of 5 (circled lines), 10 (squared lines) and 15 (triangle lines) 

days for: (a) March - August season and (b) May (flowering stage) for maize in Kenya compared with the 

probabilities of exceedances for the parametric distribution estimate (lognormal) (c & d), parameter estimated 

from mean annual rainfall (e & f) and parameter estimated from latitude and longitude (g & h). 

 

Table 3.5: Probabilities of exceedances for maize and wheat growing seasons in Kenya and the MDB 

estimated from the observed dry spell length (observed), parameters of the fitted density functions of 

dry spell lengths, mean annual rainfall and latitude and longitude. 

Probability 

Variable in Kenya 

Growing season Flowering stage 

5days 10days 15days 5days 10days 15days 

Observed 0.38 0.23 0.16 0.22 0.08 0.03 

Fitted distribution 0.39 0.15 0.08 0.28 0.09 0.04 

Mean Annual Rain 0.36 0.12 0.06 0.38 0.39 0.39 

Latitude and Longitude 0.39 0.15 0.08 0.28 0.09 0.04 

Probability 

Variable in MDB 

Growing season Flowering stage 

5days 10days 15days 5days 10days 15days 

Observed 0.48 0.27 0.17 0.38 0.20 0.09 

Fitted distribution 0.66 0.28 0.16 0.58 0.23 0.13 

Mean Annual Rain 0.46 0.15 0.06 0.56 0.20 0.10 

Latitude and Longitude 0.57 0.22 0.12 0.40 0.23 0.12 
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In the MDB, the probability of experiencing more than 5 dry days in the wheat 

season ranges between 15% and 77% (Figure 3.12a). On the other hand, the 

probability of exceeding 10 dry days lies between 4% and 57% and for 15 dry days 

between < 1% to  37%. Interestingly, the exceedances probabilities during the 

flowering/grain filling stage in the MDB are similar to those in the entire season 

(Figure 3.12b) in most locations. Similar to Kenya, the probabilities of dry spell 

occurrence in the MDB decline southward, even though this is not the general 

rainfall trend in the MDB, but is again related to the North South summer-winter 

gradient in the rainfall. The winter rainfall season in the south is more aligned with 

the wheat growing stages. 

 

 

Figure 3.12: Probabilities of exceeding dry spells of 5 (circled lines), 10 (squared lines) and 15 (triangle lines) 

days for: (a) May - November season and (b) August (flowering stage) for wheat crop in the MDB compared 

with the probabilities of exceedances for the parametric distribution estimate (lognormal) (c & d), parameter 

estimated from mean annual rainfall (e & f) and parameter estimated from latitude and longitude (g & h). 
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The estimated probabilities exceed the empirical probabilities by 8% to 40% in the 5 

dry day category but the estimated probabilities are lower for dry spells longer than 5 

days across the cropping season (Table 3.5). In the critical flowering/grain filling 

stage the estimated probabilities exceed the empirical probabilities from <1% to 20% 

but in some cases are less than 44%.   

Comparing the two regions, the overall exceedances probabilities of the specific dry 

spell lengths are higher in the MDB than in Kenya, thus indicating a higher drought 

risk in the MDB.    

While the estimated probabilities are uncertain relative to the empirical probabilities, 

they offer a first cut approximation of drought risk that is not dependent on a long 

rainfall series to estimate the empirical dry spell distributions. 

 

3.4. Discussion 

3.4.1. Dry spell distribution patterns 

In spite of several studies on climate variability and drought in Kenya and Australia, 

there is still limited knowledge regarding the temporal and spatial characteristics of 

dry spells in these regions. This is most likely the first attempt to study the spatial 

characteristics of the actual dry spells lengths in these regions.  

The dry spell patterns in Figure 3.2 show that ‘Long’ dry spells are more variable 

and longer compared to monthly dry spells. Subsequent results indicate that the 

parametric distributions of longer (‘Long’) dry spells compare well with the actual 

variations and patterns of the observed dry spells lengths, while the parameters of the 

distributions understandably show some correlation with precipitation and latitude in 

the two regions. 

In general, dry spells lengths appear to follow a lognormal distribution in both Kenya 

and the MDB despite differences in their rainfall patterns, similar to other studies in 

Africa (Tilahun 2006, Mzezewa et al. 2010). While other distributions have been 

suggested (Tate & Freeman 2000), the current results indicate that there is little 

difference between the fits of the different distribution functions. In this case, the 

often used GEV distribution (Lana et al. 2006; Sushama  2010) is less relevant, as 

this study is interested in the full distribution rather than estimating the extremes. 

This contrasts previous work in Kenya (e.g. Sharma 1996, Ochola & Kerkides 2003) 

in which the cumulative density functions of dry spells in single sites underestimated 

the observed dry spell lengths probably due to the truncation of transitional 
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probabilities of the dry spell lengths at monthly boundaries. A recent study by 

Chowdhury & Beecham (2013) is perhaps the only analysis to fit theoretical 

distributions to dry spells in the MDB (Australia). Consistent with our results, the 

study indicated that the theoretical distributions fitted to dry spells for Adelaide and 

Melbourne agreed with the observed dry spells. However the above studies were 

based on periods prior to 2004, which might not be representative of the current 

patterns in the climate for the last 10 years. Moreover, the previous studies did not 

account for dry days going into the next month which suggests the dry spell 

distributions are truncated. The study of Chowdhury & Beecham (2013) contrasts 

Suppiah & Hennessy (1998) which looked at trends in the number of dry days rather 

than dry spells over Australia during the November–April and May–October periods 

between 1910 and 1990. Suppiah and Hennessy (1998) found that, in that period, the 

number of dry days decreased by 9% over south eastern Australia (MDB) during the 

winter half year (May – October) season.  

While the mean monthly dry spell length is commonly used to represent drought 

conditions (e.g. Gong et al.  2005) the results from this study suggest that this should 

be used with caution. Results in Figure 3.3 demonstrated that, the mean monthly dry 

spell lengths had a truncated distribution and do not represent the underlying 

observed dry spell length. This means that the mean monthly dry spell length would 

underestimate the mean of the actual dry spell length (‘Long’) at the monthly scale as 

this can include dry days from the previous month or in the following months. 

Different physical processes might be related with the observed dry spell lengths 

spatial patterns in these two regions. In Kenya and the MDB, local or large-scale 

effects such as topography, monsoon (easterly) trade winds and the El Niño Southern 

Oscillation [ENSO] have considerable influence on rainfall and drought patterns in 

these regions (Pittock 1975, Anyamba & Eastman 1996, Mutai & Ward 2000, Cook 

& Heerdegen 2001). The interaction between all these factors would influence the 

observed spatial and temporal dry spell patterns. Trenberth & Guillemot (1996), 

found that the temporal variation in drought was linked to extreme SST anomalies. 

Other studies (e.g. Parry 2007, Taylor et al. 2012, Van Lanen et al. 2012) also 

suggest that climate factors are associated with prolonged dry spell occurrence. Some 

of the spatial variations are related to general rainfall trends away from the coast in 

the MDB. In contrast, in Kenya, elevation and monsoon seasons appears to be a 
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major factor, such as related to the eastern highlands which intercept the monsoon. 

Future research could focus on investigating these links. 

 

3.4.2. Relationships (and variability) between dry spell distribution parameters 

and rainfall amounts  

The substantially weaker or non-existent relationship between dry spells distribution 

parameters in the MDB compared to Kenya may be due to the relatively larger 

spatial variability in the rainfall patterns (Nicholls 2004, Lodge & Johnson 2008, 

Potter et al. 2010, Nicholls et al. 2012). Possibly, the lack of correlation with mean 

rainfall in the MDB suggests stronger large scale climate influences affecting the 

year to year variability, rather than within year variability. For example, Smith et al. 

(2008) suggest that climatic drivers, such as ENSO, affect the duration of seasonal 

events rather than the mean.  

Furthermore, the rainfall patterns in the MDB are possibly more complex. For 

example, in the southern MDB, frontal systems dominate and the variability in the 

dry spells parameters is relatively small (Figure 3.11) while the northern MDB is 

affected by monsoonal troughs (Evans & Allan 1992, Bonell et al. 1998).   

Therefore, weaker correlations between the shape parameters (representing the mean 

dry spell length) and the mean annual rainfall in the MDB, compared to the scale 

(representing the variance) parameter and the mean annual rainfall, highlight the 

local variability in the occurrence of dry spells periods. Part of this can be due to the 

spatially variable nature of convective rainfall in summer (Holland 1986).   

The stronger trend between the mean annual and monthly rainfall and the monthly 

dry spells do not occur with the ‘Long’ dry spell parameters. In this case dry days 

from earlier months can be part of the monthly distribution. Hence, the direct 

relationship between monthly rainfall and dry spells is broken. This means, the 

month where the long dry spell ends does not necessarily have the lower rainfall and 

thus the “monthly” rainfall comparison for the ‘Long’ dry spell length parameters 

might not be valid possibly because the estimates of PE for the latter might be worse 

than for the normal dry spell length (monthly). Overall, dry spells lengths in MDB 

are shorter than in Kenya probably as a consequence of the monsoon effect in Kenya.  

Slightly stronger spatial trends in dry spells with latitude than with longitude in 

Kenya and MDB would possibly be related to local and synoptic scale factors that 
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influence climate variables such as drought and precipitation in the tropics (Wagesho 

et al. 2013).  

 

3.4.3. Risk of drought in the growing seasons 

According to Barron et al. (2003), maize crops in Kenya tend to experience dry 

spells longer than 10 days more than once in their development stages, which is 

consistent with this analysis. In the MDB, probabilities of exceeding decile 1 (lowest 

10% precipitation) dry spells range from 10% - 40% in different seasons (Mpelasoka 

et al. 2008). In northern Australia, the probability of 10-dry days occurring ranged 

from <10% in the wet monsoon season to over 80% in the dry season (e.g. Cook & 

Heerdegen 2001). The previous analyses seem to indicate lower probability values 

than our analysis, probably because they were for shorter periods prior to 2004, and 

thus did not include the extreme droughts of 2001 – 2009. The lower probability 

values may also have been due to a focus on a shorter (rainfall/season) period rather 

than the entire growing season. The probabilities in the MDB are much higher 

compared to Kenya reflecting the local climate conditions. In particular the 

alignment of the growing season with the monsoon rainfall in Kenya reduces drought 

risk which in practical terms may not necessarily be the case as the cropping season 

is normally longer than the monsoon season alone. Nevertheless, consistent with one 

recent study which considered the Australian wheat belt regions (MDB), severe 

stress can be common starting before flowering with up to 44% occurrence and 

around grain filling with up to 77% occurrence (Chenu et al. 2013). 

Due to a highly variable seasonal rainfall in the ASALs (Cooper et al. 2008), the 

estimates of PE might be useful to choose and advise on crops. Moreover, integrating 

this information (probabilities) with rainfall distributions and other factors like soil 

type may thus enhance farmers’ ability to manage climate variability in ASALs.  

Other studies (Ntale & Gan 2003, Van der Schrier et al. 2011) have used different 

drought proxies, such as the Palmer (PDSI) or the Standard Precipitation Indices 

(Chambers & Gillespie), to assess drought risk in these regions. In Australia, Van der 

Schrier et al. (2011) indicate that the PDSI underestimated drought risk by up to 30% 

in 70% of the region while, in contrast, Ntale & Gan (2003) showed that the SPI 

represented drought over most of East Africa better than other indices.  

The differences between the empirical and estimated probabilities indicate further 

influences on dry spell length, such as elevation and other local geographical factors. 
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The estimated and empirical dry spell probabilities in Kenya also indicate smaller 

differences for locations near the equator compared to locations further away from 

the equator. This is probably because locations that are far away from the equator 

experience larger seasonal variations in temperature and other climate factors (Ntale 

& Gan 2003). 

 

3.5. Conclusions 

This study indicates that dry spells lengths are mainly log-normally distributed in 

Kenya and the Murray Darling Basin. Latitude is the single most important factor 

explaining the spatial variations in the mean and variance of the distributions of the 

dry spell lengths, but spatial location is explains the majority of the variation in 

observed dry spell length distributions.  

Furthermore, the spatial variation in the scale and shape parameters in Kenya is more 

related to annual rainfall than in the MDB, but for both regions, rainfall amount is 

negatively correlated to the mean and variance of the dry spell length distribution at 

different locations. This is a reflection of the local climate distribution. In the MDB, 

there is more variation in space which causes the relationship with rainfall to be less 

strong. 

The probability of exceeding 5, 10 or 15 days during the growing season indicates 

that there is significant drought risk in both regions and shows an application of the 

derived dry spell distributions as a drought indicator. This may have significant 

implications for agriculture planning in these regions. 

Lastly, the relationships between dry spell lengths, rainfall and spatial coordinates 

have the potential to predict dry spell lengths at ungauged locations or into the future. 
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CHAPTER 4 

CHARACTERISING MONTHLY DRY SPELLS IN KENYA AND 

THE MURRAY DARLING BASIN, AUSTRALIA PART 2: LONG 

TERM TRENDS IN DRY SPELLS 

Abstract  

Key agricultural regions in Kenya and the Murray Darling Basin (MDB) of Australia 

regularly experience drought. Drought severity appears to be increasing, particularly 

in the arid - semi arid areas where most of the agriculture activities occur. In part 1 

(Chapter 3) of this series the spatial and temporal variation in the dry spell length 

distributions was investigated. To further improve understanding of drought 

occurrence, the temporal trends in dry spell length for the period 1961 - 2010 are 

quantified. The aim in this part is to investigate whether long term trends in the dry 

spell length occur at the annual, monthly and seasonal scale. 

Significant increasing and decreasing trends in longer (“Long”) monthly dry spells 

occur in Kenya and the MDB in most months. In Kenya, the greatest increases and 

decreases occur in July and June while in the MDB these occur in August and July. 

Most of the increases in Kenya occur in the southern half of the country whereas the 

spatial trends tended to follow the spatial rainfall distribution in both areas. Trends in 

longer dry spells reflected trends in the shorter (“<month”) and month long (“full 

month”) dry spells. 

All the seasons in Kenya and the MDB had increasing trends in the DSL with most 

occurring in the JJAS season in Kenya and autumn and winter seasons in the MDB. 

Annual dry spells increased, while maximum annual dry spells indicated little change 

in both regions. Bootstrap analysis confirmed that the number of locations indicating 

trends in observed dry spells is statistically significant in most of the periods.  

Dry spell length increased from 0.02 - 0.75 days per year and declined from 0.001 - 

0.46 days per year in Kenya and rose from 0.02 - 0.21 days per year and declined 

between 0.02 and 0.29 days per year in the MDB. The current trends reflect the 

historical rainfall data in the two regions, but also point to possible future problems 

with increasing droughts. 

4.1.  Introduction  

Trends in drought have attracted many studies (Dai & Trenberth 1998, Easterling et 

al. 2000, Sheffield & Wood 2007, Alexander & Arblaster 2009, Funk et al. 2010). 
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Trends in drought and precipitation are important to detect changes in drought 

severity which has direct implications on people, property and the environment 

(Tsakiris & Vangelis 2005, Ghosh et al. 2009).  

Hoerling et al. (2006) report declining seasonal rainfall in northern and southern 

Africa since the 1950’s, while prolonged declines have been shown over west Africa 

and the African Sahel by Nicholson (2001). Mixed trends are indicated over eastern 

Africa (Nicholson 2000, Lu & Delworth 2005) while increasing rainfall trends 

occurred in Turkey from 1951 - 1998 (Karabörk 2007), in northern China (Zhai & 

Pan 2003) and over most of the United States (Andreadis & Lettenmaier 2006). 

In recent times, trends in droughts have shifted to more severe droughts in the Horn 

of Africa (HOA), with serious impacts (Wolff et al. 2011, Viste et al. 2013). 

Coincidentally, the frequency of drought over Eastern Africa has also increased to 

more than one drought in every 3 - 5 years in the last decade (Herrero et al. 2010). 

The latest severe drought occurred in 2010 – 2011 (Dutra et al. 2013). Williams & 

Funk (2011) and Lyon & Dewitt (2012) suggest that the March -  May (MAM) 

rainfall season over the region has been drying since 1999. The MAM season 

contributes over 70% of the annual rainfall and is the most important to agricultural 

production in Kenya and the region. These patterns are consistent with those of 

Williams et al. (2012) and Omondi et al. (2014) which show that precipitation over 

the region declined since 1980. In contrast, Sheffield et al. (2012) suggest that there 

has been little change in drought globally over the past 60 years. 

Regardless, the drying patterns in Kenya are possibly linked with anomolous 

warming in the Atlantic and Indian Ocean, which tends to suppress the moisture 

incursions to the inland areas of the region (e.g. Williams & Funk 2011) and the 

shifts in Pacific sea surface temperatures (SSTs), which tend to intensify the Walker 

Circulation (Lyon & DeWitt 2012). However, Tierney et al. (2013) suggest that the 

Indian Ocean SSTs remain the main drivers of the East African rainfall on the 

multidecadal time scales while Williams et al. (2012) is of the view that the 

underlying causes of the drying climate in the region remain unclear. 

Drought is a regular occurrence in Australia. According to Plummer et al. (1999), 

there has been extreme dryness over much of Australia prior to 1990’s, whereas 

winter rainfall appears to have decreased over south-western Australia since the 

1960’s (Allan & Haylock 1993). Between 1995 and 2010, rainfall has reduced 

significantly over south eastern Australia (Dijk et al. 2013, Risbey et al. 2013).  
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Numerous mechanisms driving the changes in the drought patterns in this region 

have been suggested: El Niño Southern Oscillation (ENSO) (Ummenhofer et al. 

2011, Smith & Timbal 2012), Indian Ocean Dipole (Ummenhofer et al. 2009) and 

Southern Annular Mode (SAM) (Cai et al. 2014). However, there is still ongoing 

debate on the relative roles of Indian and Pacific Ocean in driving climate variability 

over the region (e.g. Nicholls 2009, Cai et al. 2011, Smith & Timbal 2012).   

For both Kenya and the MDB, it is suggested that dry conditions have increased in 

recent decades. Focus of most studies seems to be on long term changes in prolonged 

dry periods (drought) while very little investigation has been done on the changes in 

the trends of short dry periods or dry spells which normally cannot be defined as 

drought. Changes in dry spells can have adverse effects on crops, especially if they 

occur in the critical flowering and grain filling stages (e.g. Kassie et al. 2013). 

Understanding the changes in the patterns and trends of dry spells may benefit the 

semi-arid agricultural systems in Kenya and the MDB. 

In  the MDB, both decreases (Suppiah & Hennessy 1998) and increases (Deo et al. 

(2009); Nicholls (2006)) have been indicated, possibly due to the marked dry periods 

from 1996 through 2007 (Murphy & Timbal 2008). In contrast, Donat et al. (2013) 

suggest non-significant trends in consecutive dry days over eastern Australia. In 

Kenya limited studies focus on some seasonal attributes of dry spells. For example, 

Mugalavai et al. (2013) concluded that reduction in seasonal rainfall and increasing 

temperatures between 1982 and 2009 over western Kenya reflected increasing dry 

spell occurrence in the region. Global climate models suggest a dry future in both 

Kenya and the MDB (Schreider et al. 1996, Butterfield 2009). 

Cumulative rainfall (Williams et al. 2012, Gitau et al. 2013, Verdon-Kidd & Kiem 

2013) and stochastic models (Sharma 1996) are often used alongside other indices 

(Mpelasoka et al. 2008, Rojas et al. 2011) to estimate dry spells and drought in these 

regions. Both parametric (model-based) and non-parametric methods (Suppiah & 

Hennessy 1998, Chenu et al. 2013) have been used to estimate temporal trends in 

these regions. Trends estimated using different ways may differ slightly but overall 

indicate similar patterns in the dry spell (e.g. Mpelasoka et al. 2008, van der Schrier 

et al. 2011). 

No studies have systematically looked specifically at historical trends in dry spell 

lengths in space and time for the two regions. The earlier analysis of the distribution 
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of dry spell lengths in chapter 3 suggested some spatial coherence in the dry spell 

patterns but it is not known whether these patterns also occur in time. 

The objective of this study therefore is to investigate characteristics of the trends in 

the historical data for the 2 regions: 1) whether there is evidence of temporal and 

spatial long term trend in the dry spell lengths at the annual scale 2) if long term 

historical trends exist in the dry spell lengths at the month and seasonal scale. 

  

4.2.  Methods  

4.2.1.  Data and study area description  

The study areas are Kenya, between latitudes 5
0
N - 5

0
S and longitudes 34

0 
E - 42

0
E, 

and the MDB, between latitudes 24
0
S - 38

0
S and longitudes 136

 0
 E- 153

0
E. Rainfall 

in Kenya is mainly bimodal (March-May & October-December) and ranges from 

2000mm in western to < 300mm in the northern and south eastern regions. In the 

MDB, rainfall occurs mainly in summer (north) and in winter (south) and ranges 

from ≤ 400mm in the west to > 1000mm in the southern and eastern parts of MDB. 

Much of the 2 regions are semi-arid or arid with annual potential evaporation ranging 

from 1700mm in the north to 1000mm in the south in both regions. 

Dry spell calculation methods and data are similar to those used in chapter 3, which 

described the distribution of dry spells. The analysis of dry spells is based on the 

1961 - 2010 period daily rainfall for 30 locations in Kenya (obtained from Kenya 

Meteorological Department) and 47 locations in the Murray Darling Basin (obtained 

from the Australian Bureau of Meteorology (http://www.bom.gov.au/climate/data/)). 

In Kenya, the analysis and homogeneity of the rainfall time series (as well as 

continuity) for these periods/locations has been a focus of many studies (e.g. Bärring 

1988, Ogallo 1989, Funk et al. 2010) suggesting that, it represents the regions’ 

climate well. Similarly, in the MDB, this period was considered ideal as it represents 

reasonably, historical patterns consistent with most other studies on extreme droughts 

or wet periods in this region (e.g. Whetton 1988, Nicholls et al. 1997, Suppiah & 

Hennessy 1998, Nicholls et al. 2012). 

A preliminary examination of the historical rainfall records from the 2 regions was 

done to see whether it characterises the longer historical data correctly. Rainfall data 

for 4 locations in Kenya and 4 locations in the MDB was used (Figure 4.1). In Kenya 

(Figure 4.1a), the coefficient of variation (CV) for the monthly rainfall across the 

locations in 1935 - 1960, ranges from 130.6% - 181.8%, 143.5% - 197% in 1961 - 
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2010 and 146.5% - 194.8% in the overall period (Appendix A3). This suggests that, 

rainfall variability in the current period (1961-2010) is not very different from the 

preceding or the overall period. Further, a paired-test of the means (and CV) between 

the 3 respective periods (1935-1960, 1961-2010, 1935 - 2010) in Kenya, indicate 

that, the rainfall data for these locations do not provide any evidence that the 

means/CV differ (p<0.05).  

In the MDB (Figure 4.1b), the CV of the monthly rainfall across the 4 locations 

varies from 71.7 - 118.7 % overall, with the highest variability being indicated 

between 1910 and 1960 (Appendix A3). Although the t-test results suggest that the 

means differ between the 4 locations, CV between the respective periods do not 

suggest a strong difference between the rainfall series (p<0.1).  

The above suggests that, the historical rainfall represents the climate variability in 

those locations and the region.  

A dry day was taken to be a day with a threshold q ≤ 0.1mm daily and a dry spell 

was defined as the number of successive dry days within a month. Two categories of 

dry spell lengths were calculated: (i) monthly dry spells (dry spells within monthly 

boundaries) and (ii) “Long” dry spells (dry spells including those dry spells that 

continue into consecutive months).  

 

 

Figure 4.1: Monthly total rainfall for Moyale (3.530N, 39.050E), Lodwar (3.120N, 35.620E), Marsabit (2.320N, 

37.980E) and Wajir (1.750N, 40.070E) in (a) Kenya from 1935 – 2010 and for Augathella P.O (25.80S, 

146.590N), Wondalli (28.50S, 150.590E), Groongal (34.440S, 145.560E) and Redesdale (37.020S, 144.520S) in 

the MDB from 1910 – 2010. 
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4.2.2.  Analysis  of  trends  

4.2.2.1.  Binomial  model  

A binomial model (Cox et al. 1979) can be applied to monthly dry spells that are 

equal to the month length (also defined as “full month”) against dry spells that are 

shorter than a month (also defined as “<month”). This is because dry spells that are 

exactly as long as a month (“full month”) might be truncated dry spells running into 

consecutive months. Trends in the “<month” dry spells are then analysed separately 

within a generalized linear model. In the analysis, dry spells running into consecutive 

months are “Long” dry spells as defined in chapter 5.  

 

4.2.2.2.  General ized Linear Model  

More generally, the trends in the monthly and annual dry spells in Kenya and MDB 

for the period 1961 - 2010 are analysed using a Generalized Linear model (GLM) 

(Nelder & Wedderburn 1972). Generalized linear models have been used widely to 

examine climate relationships (Mestre & Hallegatte 2009, Wang et al. 2010). A 

GLM is a linear predictor that allows a wide range of distributions and can be 

expressed as: 

  nn xxg ..............)( 110               [4.1]  

Where a link function g (.) describes how the mean (µ) relates to the linear predictors 

and a variance function similarly relates the variance to the predictors.  However this 

analysis only concentrates on the mean function. The βi=1…n are linear regression 

coefficients and describe the partial rate of change of the response variable g (µ) as a 

function of changes in the predictors. The error term (ε) is the noise in the linear 

relationship. Because dry spells are typically positively skewed and best described by 

a lognormal distribution in the study areas, we directly model the dry spell data 

within the GLM framework using a log link function (Chambers & Hastie 1992).  

The regression coefficients were estimated by maximum likelihood or MLE method 

(Chambers & Hastie 1992) using R (R Development Core Team 2010). Compared 

with the traditional Ordinary Least Squares estimation (OLS), MLE is less biased 

and efficient for non-zero mean and highly skewed data like dry spells (Buntin & 

Zaslavsky 2004).  
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(a)  Long term dry spel l  trends  

The fitted GLM models for each month are as follows: 

 

Model1: glm (dryspell_length (Month (i)) ~Year, data=dryspelldata, family=binomial ()) 

Model2: glm (dryspell_length (Month (i)) ~Year, data=dryspelldata, family=gaussian 

(link="log")) 

 

Where, Model1 is for “full month” and Model2 is for “< month” and “Long” dry 

spells. Note in Model 2 that the “dryspelldata” for each of the 2 dry spell types is 

different. 

For statistically important trends, only values in months with p-values between 0 to 

0.1 were extracted as these are commonly used in most climate studies as evidence of 

statistically significant or strongly insignificant trends (e.g. Singh & Kripalani 1986, 

Cayan et al. 1998, Hannaford & Marsh 2006, Chamaillé-Jammes et al. 2007, Ellis et 

al. 2009, Batisani & Yarnal 2010, Shahabfar et al. 2012).  

In Kenya the growing seasons are defined as March to May (MAM or long rains) and 

October to December (OND or short rains) while the dry seasons are January to 

February (short dry) and June-September (long dry). Similarly, in the MDB, May – 

October is defined as the growing season for important winter crops such as wheat 

(Nicholls 2004) as well as summer (December-February or DJF) and autumn 

(March-May or MAM). May-August (MJJA) is defined as winter and September-

November (SON) as spring.  

 

(b)  Testing trend s ignif icance by bootstrapping  

A bootstrap resampling procedure similar to Westra et al. (2012) is used to 

investigate the reliability of the regression results. This approach constitutes 

jumbling the temporal structure of the dry spell series such that the coupling between 

the time (years) and dry spells is lost but the spatial dependencies are preserved. This 

enables testing whether trends in observed dry spells are statistically significant by 

chance or not. 

For all series, 1000 bootstrap realisations were sampled and the percentage of 

locations showing significant trends recorded. This percentage of trends would occur 

purely by chance in random data (Westra et al. 2012). The percentage of locations 

from the bootstrap analysis is compared with the percentage locations from the 
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original observations (regression results). This indicates whether the percentage 

locations with significant trends are purely by chance (within the bootstrap 

distribution range) or real (outside the bootstrap distribution range).  

 

4.3.  Results  

As an example of a typical time series, the monthly and “Long” dry spells for 

Katumani (latitude 1.58
0
 S,  longitude 37.23

0 
E) in Kenya and Tongio (Brooklands) 

(latitude 37.18
0
S, longitude 147.71

0
 E) in the MDB are highlighted in Figure 4.2. For 

comparisons, the 2 locations were selected as they depict the dry agro-climate of the 

2 regions, both are the southern parts and have relatively low mean annual rainfall 

(Katumani = 731.1mm, Tongio = 618.3mm). 

 

 

Figure 4.2: Monthly (blue-solid) and “Long” (red-dashed) dry spells length for (a) Katumani and (b) Tongio 

(Brooklands) for the period 1961 -2010 

 

The dry spell series in Figure 4.2 indicate different patterns for the two semi-arid 

locations. At Katumani, the monthly dry spells are typically about a month long, 

while the “Long” dry spells can be over 50 days long. In contrast both the monthly 

and “Long” dry spells over Tongio-Brooklands never exceed the length of the month. 

At the Kenyan location, the monthly dry spell lengths are far less than the actual dry 

spell lengths. Given this shortcoming the monthly dry spells are analysed in two 

parts as a binomial model and a GLM as discussed in the methods. 
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4.3.1.  Long term trends patterns in Kenya and Murray Darl ing 

Basin 

In Kenya and MDB, significant trends (p < 0.1) in all the 3 dry spell types vary and 

occur in most months. As would be expected, fewer trends occur in the “full month” 

dry spells in both regions. The actual trends in days per year (increase and decrease) 

in the “Long” dry spell lengths in Kenya and the MDB for the period 1961 - 2010 is 

given in Table 4.1. Overall, increases in the dry spell lengths ranged from about 

0.026 days/year in December with a standard deviation (SD) of 0.01 days/year to an 

average of 0.75 days/year in August (SD = 0.33 days/year). This equates to a 1 day to 

37 days increase over the whole time period. Notably, high increases are indicated in 

the normally wet months of March ranging from 0.15 - 0.37 days/year. Conversely, 

decreases range from < 0.01 days/year to a maximum of 0.46 days/year in June 

which equates to 23 days decrease over the entire period. 

 

Table 4.1: Range of trends (days/year) of increase and decrease (p < 0.1) in “Long” dry spells lengths 

in Kenya and MDB 

Month Kenya (Trends in days/year) MDB (Trends in days/year) 

 Increasing decreasing Increasing decreasing 

January 0.1 - 0.32 0.11 - 0.16 0.05 - 0.19 0.05 - 0.12 

February 0.03 - 0.48 0.09 - 0.14 - 0.04 - 0.18 

March 0.15 - 0.37 0.09 - 0.33 0.07 - 0.17  0.08 

April 0.05 - 0.09 - 0.11 - 0.20 0.06 

May 0.03 - 0.21 0.001 - 0.01 0.04 - 0.15 0.03 - 0.19 

June 0.12 - 0.33 0.02 - 0.46 0.03 - 0.04 0.02 - 0.24 

July 0.03 - 0.65 0.02 - 0.23 0.03 0.03 - 0.29 

August 0.02 - 0.75 0.03 - 0.32 0.02 - 0.21 0.23  

September 0.03 - 0.46 - 0.02 - 0.13 0.02 - 0.04 

October 0.05 - 0.22 0.02 - 0.30 0.07 - 0.20 0.03  

November 0.03 0.03 - 0.16 0.02 - 0.06 0.03 - 0.14 

December 0.026 - 0.034 0.08 - 0.33 - 0.03 - 0.16 

 

4.3.2.  Trends in  the monthly dry spel l  lengths in  Kenya  

The p-values for significant trends for “< month”, “full month” and “Long” dry 

spells in Kenya are given in Figure 4.3. In the “< month” dry spells, significant 

increasing trends occur in all the months and the greatest numbers of locations (23%) 

with such trends are in February. Significant declining trends occur again in all 
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months but the greatest number of locations (13%) is in June. Unlike the “<month>  

trends, increasing trends in the “full month” dry spells only occur in January, 

February, June, August and September in 3% of the locations. Declining trends, 

however, occur in most of the months apart from March, April, August and 

November but at only a few locations (3 - 17%).  

Significant increasing trends in the “Long” dry spells occur in all months, but most 

occur in July. Similarly, significant decreasing trends are shown in all months except 

April and September and most (27%) of the declining trends occur in June, 

confirming the “< month” and “full month” results. It seems that, increasing trends in 

the “< month” and “Long” dry spells occur in monsoon seasons/months (April and 

May) (long rains) and October to November (short rains)) in Kenya.  

 

 

Figure 4.3: Scatter plots of trends by month showing positive/increasing () and negative/declining () 

trends at p < 0.05 (y-axis) for “< month” (top panel), “full month” (middle panel), and “Long” dry spells 

lengths (bottom panel) for locations in Kenya. The scatter plots for the trend patterns for < month and the 

‘Long’ dry spells show some similarities while such pattern is missing in most of the months for to the ‘full 

month’ dry spells.  

 

4.3.3.  Trends in  the monthly dry spel l  lengths in  the Murray 

Darl ing Basin  

In the MDB, increasing significant trends in the “<month” dry spells occur in 

January, March, May, July and August (Figure 4.4) with most of the increasing 

trends occurring in 28% of all locations in August. Declining trends occur in most 

months except in March, April, August and October although these trends occur 
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consistently from September - December. However, the largest number of locations 

(26%) with declining trends is in June. In the “full month” dry spells, increasing 

trends occur only in April, May, August and September in 4 - 6% of the locations 

while declining trends occur in 2% of the locations in May through July and 

November. As indicated earlier only very few locations in the MDB had any full 

month dry spells. 

In contrast, increasing trends in “Long” dry spells lengths occur in most months but 

mainly in January, March - May, and July - October with 17% occurring in August, 

confirming the “<month” and “full month” result. While this suggests that “Long” 

trends capture the monthly dry spells patterns well, increasing trends only occur in 

April and October in the ‘Long’ dry spells and not in the later (<month).  

Similarly, decreasing trends are shown in all the months apart from April and 

October with most of the declining trends occurring in July (19% of all locations). It 

seems for the ‘<month’ and ‘Long’ dry spells, February, June, July, November and 

December indicated declining trends relative to the other months (Figure 4.4, top and 

bottom panels). In contrast, May and August had increasing trends for both methods.  

 

Figure 4.4: Scatter plots of trends by month showing positive / increasing () and negative/declining () 

trends at p < 0.05 (y-axis) for “< month” (top panel), “full month” (middle panel), and “Long” dry spells 

lengths (bottom panel) for locations in the MDB. The scatter plots for the trend patterns for < month and the 

‘Long’ dry spells show some similarities while such pattern is missing in most of the months for to the ‘full 

month’ dry spells.  

Dry spell length increased from less than 0.021 - 0.21 days per year (SD = 0.05 

days/year) with the highest increases being in August. In contrast dry spell length 
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declines varied from 0.02 - 0.29 days per year which translates to a maximum 

decrease of about 15 days over the entire period in  July (SD = 0.08 days/year) 

(Table 4.1). 

Comparing trends between Kenya and the MDB, significant increasing and declining 

trends in the “<month” dry spells occur across all months in Kenya, and in specific 

months in the MDB. The trends in the “full month” dry spells generally differ 

(months) for increasing trends in both areas and again for declining trends which 

occur over most months in Kenya but concentrate in only a few months in the MDB. 

This might be due to the limited number of “full month” dry spells in the MDB. In 

Kenya, increasing trends in the “Long” dry spells occur in few locations but in 

relatively more locations in the MDB.  

Interestingly however, trends in the “Long” dry spells roughly appear to be similar in 

Kenya and MDB between March and June (evenly increasing and decreasing) and 

November and December (mostly declining trends) but indicating opposite trends in 

February.  

 

4.3.4.  Seasonal  trends in  the “Long” dry spel ls .  

The above results suggest that dry spells are seasonal. In Kenya, increasing trends in 

the “Long” dry spells occur in all the seasons with the highest number of locations 

(23%) showing significant increasing trends in the JJAS season (Figure 4.5: solid 

asterisk and red lines). Interestingly, declining trends also peak (13% of locations) 

during the JJAS season although similar trends occur in all the seasons, but only in a 

few locations. 

In the growing seasons (MAM and OND), only 3% of locations had an increasing 

trend during the “Long rains” season while 7% of locations indicated an increasing 

trend in the “Short rains” (OND) season. Declining trends only occurred in 2 

locations (7%) in each of the seasons. Compared with results in Table 4.3, it seems 

that the seasonal trends mainly occur in the short (“< month”) and “Long” dry spells 

during MAM and OND seasons. 

Table 4.2 shows the increase and decrease in days per year in the seasonal and 

annual dry spell lengths in Kenya and MDB. In the wet seasons, it seems the largest 

increases and smallest declines occurred in MAM compared to OND. These rain 

seasons in Kenya normally follow the driest months of the year and this probably 

influences trends in the dry spells lengths in the following months. For example, the 
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90
th

 percentile dry spells length for March and October (start of the 2 rain seasons in 

Kenya) were similar to those of the previous months (January and February and 

June-September) which are normally dry. This suggests either the actual onset of 

rainfall in these months is delayed, or relatively low rainfalls occur.  

In MDB, increasing trends in the “Long” dry spells were significant in all the seasons 

although the highest number of locations (15%) with increasing trends occurred in 

the autumn and winter (JJA) seasons (Figure 4.5). Declining trends were mainly in 

Summer (DJF) and in winter (JJA). The largest number of locations (17%) with 

declining trends occurred in winter. In summary, increasing and decreasing trends in 

“<month”, “full month” and “Long” dry spells occur in most of the months and in all 

seasons in Kenya and the MDB. In the growing seasons, these trends appear more 

pronounced in the short rains season in Kenya and in winter in the MDB.  

In comparison, it appears that increasing trends in the dry spell lengths at the 

monthly scale in Kenya are much higher than in MDB (Table 4.1). For example, the 

greatest increasing trends were in August for both regions: 0.75 days per year in 

Kenya and 0.21 days per year in MDB. Both the seasonal and the annual trends are 

greater in Kenya than in the MDB with the exception of the MAM (autumn) season. 

In contrast, declining trends at the monthly and seasonal scales are roughly similar in 

both regions with some differences: January, the JF and JJAS seasons and the annual 

scale had greater declining trends in Kenya than in the MDB. 

 

Table 4.2: Trends (days per year) of increase and decrease in seasonal and annual dry spells lengths 

in Kenya and MDB between 1961 and 2010 

Season & Annual Kenya 

(Rates in days/year)  

Season & Annual MDB 

(Rates in days/year) 

 Increasing Decreasing  Increasing Decreasing 

JF 0.30  0.13  DJF 0.038 - 0.042  0.04 - 0.33  

MAM 0.01 - 0.10  0.01 - 0.02  MAM 0.04 - 0.17  0.05  

JJAS 0.02 - 0.60  0.02 - 0.14  MJJA 0.01 - 0.05  0.01 - 0.06  

OND 0.01 - 0.04  0.02 - 0.04  SON 0.02 - 0.03  0.01 - 0.04  

Annual 0.27 - 1.90  0.31 - 0.95  Annual 0.34 - 0.54 0.27 - 0.60  

Annual maximum 0.59 - 0.67  0.38 - 0.66  Annual maximum 0.21 - 0.46  0.30 - 1.1  
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Figure 4.5: Proportion of locations (%) showing significant trends at p < 0.05 for “Long” dry spells in JF, 

MAM, JJAS, and OND seasons in Kenya (red lines/dashes with asterisks) and in DJF, MAM, MJJA (growing 

season), and SON seasons in the Murray Darling Basin (blue lines/dashes with triangle symbols). Increasing 

and decreasing trends are shown in solid and dashed lines respectively.  Note that winter includes the month of 

May for MDB to indicate the growing season as defined in the methods. In addition, the seasons for Kenya 

and MDB do not exactly overlap 

 

4 .3 .5 .  Dry spel l  trends at  the annual  scale  

Annual trends are vital indicators for socio-economic impacts such as food insecurity 

(Butterfield 2009). Increasing trends in the maximum annual dry spell lengths 

(MDL) in Kenya occurred in 7% of locations but for the annual dry spells (ADL) this 

occurred in more locations (17%). Declining trends in the MDL occurred in 17% of 

locations while such trends in the regular ADL occurred in 13% of locations. 

Similarly, in the MDB, only 6% of locations suggest upward trends in the maximum 

annual dry spells compared to 11% of locations with such trends in the annual dry 

spells. Significant declining trends in the MDL occurred at extremely few locations 

whereas, a modest number of locations (19%) indicate declining trends in the ADL.  

In summary, for the annual series, increasing trends in Kenya and MDB occur mostly 

in the ADL rather than in the MDL. Increasing trends in ADL are relatively even in 

both regions although, as mentioned earlier, the annual trends are much greater in 
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Kenya than in the MDB. More declining trends occur in the MDB relative to Kenya 

but again the trends are much greater in Kenya.  

 

4 .3 .6 .  Bootstrap resampling results  

For trends in Kenya, the observed proportion of locations with increasing and 

decreasing trends tended to be outside the null (bootstrap) distribution (Figure 4.6a & 

b), suggesting that the calculated fraction of locations with trends was not a random 

occurrence. For instance, the percentage of locations in the random bootstrap sample 

showing significant increasing trends in January ranged from 4.1 - 6.4 % (Figure 

4.6a), but the calculated trends based on the observed data occurred in 17% of 

locations (asterisk points). In contrast, percentage of locations with increasing trends 

in the observed data in April and locations with decreasing trends in January and 

February occurred inside the bootstrap range (Table 4.3).  

In the MDB, the observed percentage of locations with increasing trends in the 

observed data (Figure 4.6c, triangles) was within the boundaries of the bootstrap 

distributions in September (Table 4.3). Similarly, in January, August and September, 

the observed percentage of locations with declining trends was within the bootstrap 

range (Figure 4.6d). Locations in January (summer season), August and September 

(Winter/Spring) therefore can be considered to show no trends as they fall within the 

bootstrap distribution.  

From the bootstrap analysis in both regions, it can be concluded that for at least part 

of the year the observed data showed a much higher proportion of locations with 

significant trends than would be expected from purely random chance.  
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Figure 4.6: Line graphs for percentage of locations (legend: % increase or decrease) showing observed trends 

in the “Long” dry spells and box plots of the percentage of locations from 1000 bootstrapped replicates 

(sampled) trends in (a) & (b) Kenya and (c) & (d) MDB (p < 0.05, significant increasing/positive (red/ blue 

solid box plots) and decreasing/negative (red/ blue dashed box plots) trends). The y-axis in all the panels shows 

the percentage of locations with observed significant increasing (solid lines) and decreasing (dashed lines) 

trends in Kenya (asterisk points) and MDB (triangle points) while solid and dashed box plots indicate the 

percentage of the bootstrap samples (locations) with increasing/decreasing trends respectively. The months 

where observed trends are within the bootstrap range are marked with “K*” (increasing) and “k*” 

(decreasing) for locations in Kenya and “M*” (increasing) and “m*” (decreasing) for locations in MDB.  
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Table 4.3: Proportion (%) of locations showing trends at p < 0.05 in the “<month”, “full month” and “Long” dry spells in Kenya and MDB. The proportion of locations (% 

range) for the bootstrapped trends for the “Long” dry spells at p < 0.05 is also shown. The bootstrap range in which the significant observed trends at p < 0.05 occur is in 

bold and underlined 

% Observed (locations) in Kenya 

(at p<0.05) 

Bootstrap range 

(“Long” dry spells) 

(at p < 0.05) 

% Observed (locations) in MDB 

(at p<0.05) 

Bootstrap range 

(“Long” dry spells) 

(at p < 0.05) Dry spell  

type 

 

<month 

 

full month 

 

Long 
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4.3.7.  Spatial  trends in  dry spel ls  

Figure 4.7 gives the spatial distribution of trends in the “Long” dry spells in Kenya. 

Increasing trends in the “Long” dry spells occur mostly in July, and mainly in 

locations in the southern half of the country, but this is somewhat similar to the 

patterns throughout the year. The patterns in the “Long” dry spells suggest two 

regions. The northern transect, being mostly arid-semi arid, is associated with no 

significant increasing trends and the southern transect, constituting humid - semi 

humid locations, is linked with increasing trends. An exception to this generalisation 

is the coastal region where consistently decreasing trends are shown in most of the 

months. In June significant decreasing trends occur in the majority of locations and 

yet again most are in the coastal region. This pattern is again indicated in the 

normally wet months of October and December.  

In the “<month” dry spells (not shown), increasing trends occurred mostly in 

locations in the northern half of the country and appear to shift to locations 

southward from July – September. Declining trends however, are indicated mostly in 

the coastal regions in most of the months but at a few locations. In contrast such 

patterns are less visible in the “full month” dry spells. In other words, the spatial 

patterns for the shorter dry spell lengths were different to the more general “Long” 

dry spell length spatial pattern. 

At the seasonal level, some replication of the monthly scale patterns occurs (not 

shown). Increasing trends are indicated in the JJAS season in the southern transect. 

This could be expected as this is the longest dry period in Kenya. In contrast, 

significant decreasing trends during JJAS season occur at the coast. 

Interestingly, dry spells at the annual scale exhibit somewhat opposite patterns to the 

seasonal trends. At the annual scale, significant trends appear to be mainly in the 

western half of the country. An increasing trend in maximum annual dry spells is 

indicated in only one location in the eastern and southern regions. In contrast, 

increasing annual dry spells trends occur in locations in western, southern and central 

highlands. However, decreasing trends for both maximum annual and annual dry 

spells are indicated in some locations in eastern, southern and coastal areas.  
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Figure 4.7: Spatial (increasing () and decreasing (), p < 0.05) trends by month in the “Long” dry spells 

for the period 1961 – 2010 in Kenya.    
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4.3.8.  Spatial  trends in  the Murray Darl ing Basin  

The spatial distribution trends for the “Long” dry spells in the MDB are given in 

Figure 4.8. Increasing trends in the “Long” dry spells in August predominantly occur 

from north to south and mostly in eastern locations. The declining trends in July are 

mainly in locations to the east, west and south of the basin. Declining trends in 

February and December are only in locations in the extreme north eastern parts of the 

basin (Queensland). While the number of locations showing significant trends was 

not different from the random boot strap sample in these months, the spatial 

organisation might suggest it is not a random occurrence. Increasing trends in the 

“<month” dry spells in August occur from north to south of the MDB, while in 

March (start of autumn) they occur in locations in the north and in May (end of 

autumn) in locations in the south (Figure not shown). In contrast, decreasing trends 

mostly dominate June (start of winter) in several locations across the whole basin 

except in extreme north western parts and the same trends continues into July but 

with a slight shift to locations southwards. Again, the number of locations was not 

different from the bootstrap sample, but the spatial organisation might suggest 

differently.  

Just as in Kenya, extremely few trend patterns are shown in the full month dry spells. 

The patterns in the “<month” spells suggests that dry spells in the MDB reflect the 

summer and winter dominant rainfall patterns in the north and south respectively. 

Again, the trends in the monthly dry spells suggest patterns similar to the rainfall 

modes in the MDB (i.e. winter and summer). In MJJA/winter season, both increasing 

and decreasing trends occur in several locations across the entire basin except in 

central and extreme north/south-western parts of the MDB. However, in DJF 

(summer season), decreasing trends are dominant mainly in locations in the east of 

the MDB. Contrasting the trends in summer, increasing trends dominate the 

MAM/autumn season in the north and southern areas.  

Significant increasing trends in maximum annual dry spells occur only in locations 

north of the basin while declining trends are only in a few locations in the south and 

southwest of the basin. Compared to trends in the maximum annual dry spells, 

declining trends in the annual dry spells are indicated in locations in the north and 

south of MDB. However, a substantial number of locations in the southern parts of 

the basin show significant increasing trends.   
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Figure 4.8: Spatial (increasing () and decreasing (), p < 0.05) trends by month in the “Long” dry spells 

for the period 1961 – 2010 in MDB 
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4.3.9.  Long term trends using General ised Additive Models  

(GAM) 

It is possible that the trends in dry spell lengths observed in this study are non-linear 

rather than linear, and analysing linear trends might overstate the magnitude of the 

trend. As a test, a generalised additive model (GAM) was fit to the “Long” dry spells 

for 4 locations from each region. GAMs extend GLMs (McCullagh & Nelder 1989) 

and allow flexibility in modeling underlying long-term trends in a data series using 

smooth functions (Underwood 2009) and for being able to capture non-linear trends. 

The GAM model for each location was: 

 

)),""(),()( tadryspelldadataidentitylinkgaussianfamilyyearfdryspellg 
 
[4.2]

 

 

Where, g () and f () are the link and smooth functions respectively, with the year 

term as the only covariate. Temporal trends were examined from the patterns 

indicated in the GAM plots. Again, our analysis concentrates on the mean function 

and not the variance. 

 

The GAM results in Figures 6.9 shows that dry spells in Kenya and the MDB exhibit 

both linear and non-linear behaviours. As an example, a non-linear pattern occurs at 

Malindi in Kenya (Figure 4.9d) while a linear pattern is indicated at Kisumu (Figure 

4.9c).   

The GAM results suggest more complex behaviour in the trends than can be 

concluded from the previous linear analyses. However, for several locations, the non-

linear trend could be summarized with a linear trend such as in Chinchilla, Narrabri, 

Pinnaroo, Colcheccio and Meru. Some of the non-linearity might be due to variations 

in major climatic drivers such as the El Niño Southern Oscillation (ENSO) which 

influences the rainfall patterns in the two regions.  
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Figure 4.9:The effect of year on “Long” dry spells trends for (a) Colcheccio, (b) Meru, (c) Kisumu and (d) Malindi in Kenya and (e) Chinchilla, (f) Narrabri, (g)  Pinnaroo and (h) Tongio 

(Brooklands) in MDB. The upper and lower 95% confidence limits of the GAM estimate are indicated by the gray shades.  
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4.4.  Discussion 

This analysis present some possible evidence of temporal and spatial long term 

trends in dry spell lengths in Kenya and the Murray Darling Basin (MDB) of 

Australia. The findings support previous assertions that there are changes in dry 

conditions in the two regions. This study also contrasts from the previous studies in a 

number of ways. Consistent with this study, a mixture of increasing and declining 

trends in dry spells have been reported before in both regions (e.g. Suppiah & 

Hennessy 1998, Usman & Reason 2004, Seleshi & Camberlin 2006, Hennessy et al. 

2008, Murphy & Timbal 2008, Braganza et al. 2011). While previous studies tended 

to focus on the seasonal time scale, the current analysis focused in both the short, 

intra seasonal and annual timescales. For instance, Suppiah & Hennessy (1998) 

analysed block seasons/months i.e. November – April as summer and May–October 

as winter and identified that declining trends in the number of dry days (not dry spell 

lengths) occurred more in the latter period than in summer over eastern Australia 

(MDB).  

In contrast, this study found that increasing and decreasing trends are roughly even in 

winter and spring (SON) in MDB, while the greatest increases are in autumn 

consistent with some more recent studies (Murphy & Timbal 2008, Cai & Cowan 

2012), and most of the declines occurred in summer. In addition, significant trends 

occurred in both short and longer dry spells in Kenya and MDB with 1/3 of locations 

showing upward trends in the JJAS and winter seasons respectively. Even though 

there are limited comparative studies on dry spell trends in Kenya, in the 

wet/monsoon seasons, most drying trends coincided with the short rains (OND), 

suggesting a tendency of dryness in this period rather than in the long rain season as 

corroborated in some studies in the region (e.g. Funk et al. 2005, Sheffield & Wood 

2008, Funk et al. 2010). 

Considering the characteristics of the historical rainfall time series in these regions 

(Figure 4.1), it was expected that the trends in the dry spells lengths in both Kenya 

and MDB reflect the longer historical data and the diverse climates of the regions 

(i.e. arid –semi- arid - humid). In contrast to previous studies and to assist better 

understanding of the regions climates, the current study assessed the trends for 3 

types of dry spells lengths: short, monthly and across consecutive months. In Kenya, 

increasing trends in short and long dry spells are more prominent in the southern 

transect in most of the months compared to the northern parts (e.g. Figure 4.7), 
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possibly reflecting the homogenous nature of the region (north and south/east are 

mostly ASALs). A recent study found that the observed wet and dry spell 

characteristics in the global tropics were primarily dependent on whether a region is 

humid or arid (Ratan & Venugopal 2013). In contrast, in the MDB most of the 

increasing trends in the long dry spells occurred mainly in the relatively wetter 

southern half and eastern sectors of the region and declining trends in both north and 

southern parts (e.g. Figure 4.8). This suggest that the different patterns of increasing 

or decreasing trends in dry spell lengths in the region may be due to local weather 

patterns as well as the differences between the synoptic weather patterns in the 

northern – summer and southern - winter climate regimes.  

While the rates of increase in dry spell length per year in the growing seasons for 

both regions were more or less similar, overall, the trends in Kenya were much 

higher than in the MDB. This could be due to the effect of the monsoon in Kenya 

relative to the MDB. Sheffield & Wood (2008) suggest that the largest trends in dry 

spells tend to coincide with the retreat of the inter- tropical convergence zone 

(ITCZ), such as in the JJAS season (longest dry season in Kenya) in East 

Africa/Kenya, when the monsoon is weakest and local convection is minimal 

(Verschuren et al. 2009). The ITCZ drives the inter-annual rainfall variability over 

eastern Africa between the wet (MAM & OND) and dry (January-February & JJAS) 

seasons and being an oceanic feature possibly interacts with other climatic systems 

(Marchant et al. 2007), such as ENSO or Indian Ocean SSTs.  

In contrast with the results in this study, Williams & Funk (2011) indicate drying 

trends in the March – May long rains season in Kenya between 1980 – 2009 and 

attributed this to the warming over the Indian Ocean. This study found that more 

locations indicated increasing trends in the OND season compared to the MAM 

season. Warming of the SSTs over the western Indian Ocean tends to suppress 

convection and enhance dry air mass over tropical eastern Africa. Similar to William 

and Funk (2011), results from climate model simulations by Lyon & DeWitt (2012) 

confirm the declining trends in the long rains seasons but instead links this to abrupt 

changes in SST in the tropical Pacific. Behera et al. (2005) has shown that the 

variability in the short rain season (October – December) is largely linked to the 

Indian Ocean Dipole (IOD) in the tropical Indian Ocean rather than the El Niño-

Southern Oscillation (ENSO) in the tropical Pacific although Omondi et al. (2013), 
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shows that both the El Niño and Indian Ocean dipole modes are associated with 

rainfall variability in the region.   

While the current trends are consistent with other studies that show increase in 

drought in the MDB (e.g. Speer et al. 2011, Dai 2012), the current increasing trends 

in dry spell length in the growing season are likely due to increase in more severe dry 

conditions in the last decade. For instance, Speer et al. (2011) shows that rainfall has 

declined at up to 50 mm per decade since 1970, whereas Chenu et al. (2013) suggest 

that, between 1999 and 2011 was one of the longest and most severe periods of 

drought since around 1940. Some studies however, suggest that the current 

increasing trends are due to global warming (Chiew et al. 2011, Dai 2012) and other 

studies have linked these patterns with the large scale climate drivers such as the El 

Niño-Southern Oscillation (ENSO), the inter-decadal Pacific oscillation (IPO) and 

the southern annular mode (SAM) and the Indian Ocean Dipole (Ummenhofer et al. 

2009, Speer et al. 2011, Cai et al. 2014).  

The bootstrap analysis confirmed that the number of locations indicating observed 

trends in dry spells in these regions did not merely occur by chance. However, varied 

patterns show up across months. Increasing and declining trends within the bootstrap 

only occur early in Kenya (April, January) (Figure 4.6) but later in MDB (August, 

September). In general, the majority of locations showing increase in dry spell length 

in both regions tend to shift from January to May and July in Kenya, and only occur 

in August in the MDB. Interestingly, the highest number of locations indicating 

increasing trends in Kenya (July) and MDB (August) follow after declining trends 

occur in the largest number of locations in the two regions (Kenya (June) and MDB 

(July)).   

The results of this study have implications for agricultural production in these 

regions depending on how we interpret the changes in the dry spell trends in different 

seasons. The occurrence of significant increasing trends in the “Long” dry spell in 

March, April and May compared to June and July suggest that agricultural 

production in the MDB may experience higher drought risk in autumn than in winter. 

This echoes previous findings that rainfall in autumn has declined in south eastern 

Australia (e.g. Cai & Cowan 2008, Potter & Chiew 2009). Rainfall in autumn, 

although not as reliable as in winter, has the greatest impact on crop and pasture 

production in MDB (Austen et al. 2002, Clark et al. 2003). Therefore any increase in 

dry spell lengths in this period is crucial for Australia’s agricultural economy. In 
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Kenya, the long rain season, although more abundant, is less reliable for crops and 

pasture for ASAL regions than the short rain season, suggesting that increased 

dryness in the short (OND) season can also have profound effects on agriculture in 

the region.  

Dry spells vary at different time and space scales (Table 4.3). The fact that shorter 

dry spells to a large extent indicated similar spatial trends as longer dry spells 

suggests an overall increase in drought risk. In relation to part 1 (Chapter 3) of this 

series, this would be a shift in the shape parameters of the derived distributions. Our 

analysis cannot establish whether there would also be an equivalent change in the 

scale parameter. 

From a farmers point of view, short maturing crops should be promoted where 

increasing drying trends are anticipated (Singh & Reddy 1988, Sivakumar 1992). For 

example, extended drying may lead to a delay in the onset of the growing season 

such as for the long rain season in western Kenya and farmers may still benefit by 

planting early maturing crops such as millet instead of maize (Mugalavai et al. 2008). 

Water harvesting for supplementary irrigation might become a key strategy under a 

drying trend.  

As mentioned earlier, the temporal and spatial patterns in dry spells trends might be 

linked to the large scale and regional climate factors like the sub-tropical cut-off 

lows, SSTs and ENSO (Nicholson 1989, Drosdowsky 1993, Mutai & Ward 2000, 

Camberlin & Philippon 2002, Murphy & Timbal 2008, Risbey et al. 2009) as they 

principally drive rainfall in these regions. A warmer Pacific and negative Indian 

Ocean SSTs are strongly associated with drought patterns in eastern Australia or 

MDB (Nicholls 1985, Drosdowsky 1993) while the opposite patterns are associated 

with drier conditions in Kenya (Anyamba et al. 2002, Funk et al. 2008).  

Although no climate change (CC) was considered in this analysis, it is prudent to 

examine the trends in terms of the CC studies in these regions. Most model studies 

focus on low rainfall as an indicator of drought rather than dry spells in relation to 

future changes. Findings from GCM models suggest declining rainfall trends in the 

winter half of the year over much of MDB (eastern and southern) under enhanced 

GHGs and associated increasing rainfall trends in summer half of the year (e.g. 

Kothavala 1999, Hughes 2003, IPCC 2007). More recently, Mpelasoka et al. (2008), 

indicate 20-30% increases in drought frequency by 2030 under CC scenarios over 

most of Australia based on the 1975-2004 historical data. Compared to our results in 
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the winter months, the observed declining trends in June and July in the MDB seem 

to affirm the previous findings. Moreover the observed increasing trends in autumn 

could also be a reflection of the decline in winter rainfall predicted by GCM models. 

In contrast, in a recent study (Fu et al. 2013), GCM results indicated mixed results 

such that some models project simultaneous declines and increases in summer 

rainfall while others predict a decrease in winter rainfall and increase in the 

maximum length of dry spells in the southern MDB.  

Similar studies in Eastern Africa (Hulme et al. 2001, Shongwe et al. 2011) suggest a 

decline in drought in the Austral summer (DJF) and increase in the JJAS season 

under enhanced GHGs. In contrast, our study found increasing trends in the DJF 

months. However, in the JJAS months, our study also found increasing trends. 

Kabubo-Mariara & Karanja (2007) suggest that the number of drying trends in arid - 

semi areas is higher than in relatively humid areas although the current analysis 

found more trends in the wetter and coastal areas. In Kenya for instance, the IPCC 

and other studies seem to suggest that the warming in the Indian Ocean SSTs is 

related to global warming and is partly responsible for extreme dryness in the recent 

years (e.g. Anyamba et al. 2002, IPCC 2007, Marchant et al. 2007, Funk et al. 2010).    

 

4 .4 .1 .  Interpreting the  difference between “<month”,  “full  

month” and “Long” dry spel ls  trends  

In this study, trend patterns for “<month” dry spells are fairly similar to the “Long” 

dry spells (Figure 4.3 and 6.4). While trends occurred in more locations in the 

“Long” dry spells relative to “< month” trends, the overall patterns in time and space 

were similar. This is probably because the “< month” dry spells are a subset of the 

true distribution of dry spells. It also shows that the increasing trends in the dry spells 

occur in both the short and longer dry spells. 

More importantly, trends in the dry spells appeared to be more seasonal in Kenya 

than in the MDB again emphasizing the differences in the climates. Increases in 

“<month” dry spells trends characterises the weather patterns in Kenya as most occur 

at the end of the short rain season (February: Figure 4.3), (gradually declines more in 

the following months (wet/MAM season)) and shifts to July in the “Long” dry spells 

(mid of the long dry season). As mentioned earlier this trend appears to be related to 

the ITCZ when it lies further away from the equator/country around these times. 

Consistent with this study, Camberlin & Wairoto(1997) suggest that, dry days are 
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more common in months of the long monsoon seasons (March-April) than in the 

short monsoon season (October-December) in which dry days over most of the 

country are linked with strong easterly wind anomalies at the 700hpa level.   

 

4 .5 .  Conclusions 

In conclusion, significant increasing and decreasing trends in Kenya and MDB 

occurred in a number of locations and at specific times for both the shorter (“< 

month”) and longer (“Long”) dry spells. The greatest increases in dry spell lengths in 

the MDB over the period from 1961 - 2010 occurred in the autumn season, which 

has major implications for local agricultural production. In Kenya, the major 

increases occurred in the short rains season (OND), again related to the most 

important agricultural production period. Overall trends in Kenya were much higher 

than in the MDB, possibly linked to the difference between tropics and subtropics. 

Relatively very few trends occurred in the “full month” dry spells, but this could be 

due to a lower number of observations. The bootstrap analysis revealed that of the 

number of locations with observed trends in the “Long” dry spells were not merely 

by chance. The relationship between the “Long” and “< month” trends suggests that 

these trends are similarly real. The current trends reflect the historical rainfall data in 

the two regions, but also points to possible future problems with increasing droughts. 
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CHAPTER 5 

SEASONAL CLIMATE FORECASTING: PROBABILISTIC 

FORECASTING OF DRY SPELL LENGTHS IN KENYA AND 

THE MURRAY DARLING BASIN 

Abstract 

Monthly dry spell statistics (Total dry days (TDD) and Maximum dry spell length 

(MDS)) are predicted for Kenya and the Murray Darling Basin (MDB) of Australia 

using 1-, 3- and 6 lags of the Southern Oscillation Index (SOI) phases and SSTs 

derived from the global Oceans. Drought forecasting at the monthly scale has 

received less attention in these regions compared to seasonal or longer time scale 

forecasting. 

Using a generalized additive model (GAM), binary and continuous forecasts were 

constructed after identification of tangible correlations between SOI-phases and SST 

and dry spell statistics. Two forms of forecast evaluation were used; [1] in the binary 

forecast a 70/30% split calibration/validation was used and [2] a one step-ahead 

validation, where the model was trained on all data up to a time point and then the 

next relevant time point was forecast and model skill of the forecasts evaluated. 

The skill of binary forecasts varied from 40% to >60% while that for continuous 

forecasts reached up to 67% (SOI) and 72% (SST) in both regions. The impact of 

SOI-phase for binary forecasts was better in the 3 months lead time in Kenya and 

MDB in over 35% of the locations. For continuous forecasts, the SOI-phase was 

most significant in lag 6 in Kenya and in lag 3 in the MDB for both MDS and TDD 

whereas SSTs indicated better skill in some locations.  

Better forecast skill is indicated in locations near the equator (2 / 3 
0
S – 2

0
N) in 

Kenya and in locations in southern higher latitudes in the MDB and appear to 

increase from southern (SOI-phases) and northern (SST) locations in Kenya and 

increasing southerly latitude in the MDB. These findings can have implications for 

agriculture in these regions. 

 

 5.1. Introduction 

Forecasting drought in advance can potentially minimize agriculture losses. Studies 

however indicate that, drought predictability is not easy (e.g. Oguntoyinbo 1986, 

Peters et al. 2002, Moreira et al. 2008) although there is potential for improvement 
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(Cordery et al. 1999). The difficulty in forecasting drought might be because the 

onset of drought is slower, gradual and confusing making drought hard to identify 

(Agnew 2000, Tsakiris et al. 2013). Often drought is identified when the impacts 

have appeared or the damage has already set in.  

Drought predictions in Kenya and MDB (see, among many others, Ogallo 1989, 

Chiew et al. 1998, Stone & de Hoedt 2000) are mainly based on regression and 

correlation analysis using “teleconnections” between local events (rainfall) and 

climatic drivers such as sea surface temperature (SST). For example, indices such as 

the Southern Oscillation Index (SOI), the Indian Ocean Dipole (Saji et al. 1999, 

Black 2003, 2005) and other SST based indices are among the strongest sources of 

seasonal predictability (e.g. Fiddes et al. 1974, Mutai et al. 1998, Cai et al. 2009). 

Research suggests that these predictors can be good estimators of the local/regional 

climatic factors such as rainfall and dry spell onsets (e.g. Nicholls 1992, Camberlin 

& Philippon 2002). For example, Kirono et al. (2010) examined the relationships 

between several climate predictors (SOI, Niño 3, SST etc) at 1 – 2 month lead times 

and seasonal rainfall across Australia and found that the strongest correlations over 

eastern Australia were in spring and summer. 

In Australia, drought is mainly linked to El Niño and cooler Indian Ocean SSTs and 

in Kenya drought is generally associated with the opposite patterns (La Niña) 

(Verdon et al. 2004, Black 2005). The El Niño-Southern Oscillation (ENSO) is the 

anomalous warming of SSTs in the eastern (equatorial) Pacific and influences 

rainfall globally. Chiew et al. (1998) for example, show that dry conditions in 

Australia are closely related to El Niño. The SOI phases on the other hand have been 

used to predict rainfall in some parts of Australia (Fawcett & Stone 2010, McCown 

et al. 2012, Cobon & Toombs 2013, O'Reagain & Scanlan 2013). Over eastern 

Africa, the European Centre for Medium-Range Weather Forecasts (ECMWF) 

system has been used to monitor and assess drought. Dutra et al. (2013) show that 

products derived from the ECMWF (SSTs, Niño3.4 etc) correlate better with 

precipitation in the short rain season (October–December) than in the long rain 

(March-May). However, the forecast system does not accurately replicate drought 

response to SST patterns in the Indian Ocean. The SSTs over the Indian Ocean are 

believed to play a critical role in suppressing moisture and convection over eastern 

Africa (Williams & Funk 2011). Consistent with Dutra et al. (2013), Mwangi et al. 
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(2014) indicate that the skill of ECWRF has higher skill in the short (October–

December) rain season compared to the long (March-May) season. 

Although, statistical approaches are common tools for drought prediction in Kenya 

and MDB, Palmer et al. (2008) suggest that the skill of seasonal models in these 

regions remain relatively low. For example, the maximum correlation of SOI with 

rainfall of 1 - 3 months lead time was at 40% against the persistent value of 44% 

(Hunt 1991). There have been many attempts to improve forecast skills using; 

integration of SOI and SST trends (Casey 1995), bias correction (Johnson & Sharma 

2009), and model simulations (Evans & McCabe 2010). Using linear regression 

techniques, Casey (1995) indicated a 10 % increase in the skill of seasonal forecasts 

for Australia. Similarly, Mwale & Gan (2005) found that artificial neural networks 

provided a better skill with residual errors ranging between 0.4 and 0.75 than linear 

correlation forecasts (rmse = 0.4 - 1.2) for the September-November season in east 

Africa. In the more recent time, Abbot & Marohasy (2014) using the Artificial 

Neural Networks (ANN) to forecast rainfall in Queensland suggest that the forecast 

skill was better than that of forecasts from the Predictive Ocean Atmosphere Model 

for Australia (POAMA) of the Bureau of Meteorology (BOM). Currently, for both 

Kenya and Australia, forecast skill remains unclear and is suggested to be not better 

or about climatology (Diro et al. 2012, Abbot & Marohasy 2014). The probability of 

exceeding the long term average which is normally used to gauge climate forecasts in 

these regions have the limitation of giving no information on the expected deviations 

from the median forecast value.  

In other occasions, there has been failure in adequately forecasting extreme events in 

both Kenya and Australia. For example, the forecast models did not capture 

satisfactorily the extreme summer rainfall event of 2010 - 2011 which had serious 

social and economic impacts over eastern Australia (van den Honert & McAneney 

2011) whereas the 2014 seasonal forecast in Kenya under estimated the March – 

May rainfall (http://www.meteo.go.ke/ranet/Wx/seasonal.pdf) where many areas 

experienced depressed and poorly distributed rainfall.  

The above examples reiterate that the skill of rainfall forecasts in these regions are 

generally low or modest (Ash et al. 2007) and suggests that there is a need to 

accurately capture and forecast the variability of observed rainfall time series in these 

regions. 

http://www.meteo.go.ke/ranet/Wx/seasonal.pdf
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SOI-phases based forecasts are provided for rainfall, pasture and dry-land wheat in 

Australia (www.longpaddock.qld.gov.au, http://www.daff.qld.gov.au/26_6256.htm) 

but this has not been tested in Kenya. The SOI-Phases which has persistently been 

used to forecast rainfall in Australia might potentially predict drought in these 

regions. Similarly and as earlier indicated, SSTs which are used to forecast 

precipitation in these regions (Ogallo 2009, Kirono et al. 2010, Schepen et al. 2011) 

may also be used to model drought.  

This study therefore explores climatic predictors as described earlier mainly SOI-

Phases and global SSTs because of their link with rainfall patterns in Kenya and the 

MDB of Australia. Rather than model drought, this study forecasts dry spells which 

are successive dry days without precipitation as an alternative to better understand 

drought occurrence. It has been argued that the degree of dryness (dry conditions) 

requires both rainfall and evapo-transpiration (Tsakiris & Vangelis 2005). The later 

however is hard to determine since climatic data used to derive it is not available in 

many places. Under water limiting environments such as Kenya and MDB, evapo-

transpiration would exceed precipitation during extreme dry conditions (dry spells), 

meaning that dry spells can be considered over cumulative rainfall in estimating 

drought. According to Usman & Reason (2004), it is preferable to consider other 

factors such as dry spell during the cropping season since the variability of 

cumulative rainfall does not fully explain impacts on agriculture and a few heavy 

rainfall events may lead to an erroneous impression of good (growing) season. 

The aim of this study therefore is to forecast monthly dry spell statistics using a 

Generalized Additive Model (GAM). The selection of predictors builds on previous 

studies in the regions (Stone & Auliciems 1992, Jury et al. 1994, Kirono et al. 2010). 

In order to select predictors, correlations between the predictors and dry spell 

statistics are first examined using simple correlation and Principal Component 

Analysis (PCA) with VARIMAX rotation.  

 

5.2. Methods 

5.2.1. Data and study area descriptions  

Dry spell data sets are similar to the ones used in chapters 3 and 4. The analysis is 

confined to the period 1961-2010 and 30 locations in Kenya and 47 locations in the 

MDB. Kenya [region 5
0
 N - 5

0
 S and 34

0 
E - 42

0
 E] has 2 main rain seasons: Long 

(March-May (MAM)) and short (October-December (OND)) seasons and annual 

http://www.daff.qld.gov.au/26_6256.htm
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rainfall ranges from <300mm in the northern and southern regions to 2000mm in the 

central and western regions. The MDB [region 24
0
 S - 38

0
 S and 136

 0
 E- 153

0
 E] has 

summer dominated rainfall in the north and mainly winter rainfall in the south and 

mean annual rainfall range from ≤400 mm in the western parts to > 600 mm in the 

south and eastern parts.  

 

5.2.2. Selection of predictors and modeling schemes 

In this study, the SOI phases (Stone & Auliciems 1992) and SSTs are used to predict 

the total number of dry days (TDD) and maximum dry spell length (MDS) in a 

month. This study does not include dry days going across months but rather those 

within the 1
st 

to the last day of a month.  

In their pioneer work, Stone & Auliciems (1992) show that rainfall can be associated 

with 5 distinct phases in the SOI. Stone et al. (1996) define the 5 SOI phases as; 

consistently negative [1], consistently positive [2], rapidly falling [3], rapidly rising  

[4] and consistently near zero [5]. The SOI phases are based on a 2-month grouping 

of SOI values i.e. current value and the value in the preceding month. The data for 

the study period was obtained from the Queensland department of primary industries 

(http://www.LongPaddock.qld.gov.au/RainfallAndPastureGrowth/NSW).  

Global Oceanic SSTs indices were obtained from the United States (US) National 

Oceanic and Atmospheric Administration (NOAA) official website 

(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.oisst.v2.html) and included 

both in situ and satellite SST observations. A total of fourteen (14) SST indices were 

extracted from specific regions along the Pacific, Indian, and Atlantic Oceans (Table 

5.1) based on their relative correlation with the dry spell length statistics. 

Pearson’s correlation and Principal Component Analysis (PCA) with VARIMAX 

rotation (Demšar et al. 2013) was used to examine the strength of relationships 

between SOI-phases and SSTs and dry spells statistics. Principal components (PCs) 

were calculated using the ‘psych’ package (Revelle 2014) in the R Statistical 

Program (R Development Core Team,  2013). The advantage of VARIMAX rotation 

compared to unrotated PCs was to achieve better physical interpretation of the PCs 

and extraction of localized spatial patterns of variability of underlying climatic 

mechanisms (Zeleke et al. 2013). Moreover, an advantage of VARIMAX rotated PCs 

is that they are uncorrelated (Westra et al. 2010, Daneshvar et al. 2013).  

http://www.longpaddock.qld.gov.au/RainfallAndPastureGrowth/NSW
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.oisst.v2.html
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Correlations between SST indices and TDD and MDS in Kenya ranged from r = 3% 

- 54% (-62%) (MDS), and r = 1% - 53% (-72%) (TDD) (Table 5.1). In the MDB, the 

correlations reached up to r = 57% (-59%) for MDS and up to 67% (-70%) for TDD 

(Table 5.2). Subsequently, the first two predictor variables with the highest 

correlations (each location) with dry spell statistics were used in the forecast models. 

  

Table 5.1: MDS and TDD predictors for locations in Kenya and the corresponding highest 

correlation coefficients using monthly SST 

Ocean Region Predictors Longitude Latitude Pearson Correlation Coefficient (r) 

MDS TDD 

Atlantic ATB1 20W - 15E 10 - 20S 0.37 -0.34 0.29 -0.45 

ATB2 20W - 15E 20 - 30S 0.50 -0.35 0.41 -0.45 

ATB3 40 - 15W 20 - 10N 0.32 -0.39 0.42 -0.33 

ATB4 40 - 10W 30 - 20N 0.35 -0.42 0.44 -0.35 

ATB5 40 - 10W 40 - 30N 0.44 -0.44 0.52 -0.37 

Equatorial Atlantic EQAT1 25 - 15W 5S - 5N 0.22 -0.42 0.26 -0.46 

EQAT2 40 - 30W 5S - 5N 0.06 -0.31 0.10 -0.32 

North Atlantic NAT1 20 - 10W 30 - 40N 0.41 -0.44 0.50 -0.36 

NAT2 50 - 40W 25 - 35N 0.43 -0.45 0.52 -0.39 

NAT3 80 - 70W 35 - 40N 0.52 -0.52 0.52 -0.48 

South Atlantic SAT1 25 - 15W 40 - 30S 0.52 -0.36 0.45 -0.44 

SAT2 5 - 15E 20 - 10S 0.42 -0.43 0.36 -0.49 

SAT4 40 - 30W 15 - 5S 0.32 -0.37 0.28 -0.45 

East Atlantic EATL 10W - 10E 5N - 5S 0.34 -0.49 0.35 -0.52 

Equatorial Pacific EQPA1 150 - 140W 5S - 5N 0.06 -0.28 0.03 -0.36 

EQPA2 120 - 110W 5S - 5N 0.04 -0.24 0.01 -0.30 

North 

Pacific 

NPA1 150 - 160E 25 - 35N 0.40 -0.46 0.50 -0.39 

NPA2 140 - 150E 10 - 20N 0.40 -0.54 0.46 -0.49 

NPA7 170 - 160W 30 - 35N 0.43 -0.46 0.50 -0.38 

South 

Pacific 

SPA1 179 - 170W 20 - 10S 0.45 -0.40 0.41 -0.44 

SPA2 160 - 170E 30 - 20S 0.53 -0.43 0.48 -0.46 

SPA3 100 - 80W 40 - 30S 0.54 -0.35 0.47 -0.44 

SPA4 150 - 160E 25 - 15S 0.56 -0.50 0.53 -0.47 

Equatorial Indian EQIND1 50 - 60E 5S - 5N 0. 10 -0.54 0.04 -0.61 

Indian Ocean INDB1 35 -70E 20 - 30S 0.53 -0.42 0.47 -0.45 

INDB2 40 - 70E 10 - 20S 0.47 -0.46 0.40 -0.50 

INDB4 50 - 75E 20 - 10N 0.03 -0.54 -0.05 -0.64 

North Indian NIND1 60 - 70E 15 - 20N 0.12 -0.60 0.11 -0.65 

NIND2 80 - 90E 10 - 20N 0.24 -0.68 0.28 -0.72 

NIND3 70 - 80E 5 - 15N 0.14 -0.51 -0.09 -0.62 

South Indian 

 

SIND1 45 - 55E 25 - 15S 0.51 -0.43 0.44 -0.47 

SIND2 80 - 90E 20 - 10S 0.47 -0.47 0.41 -0.49 

SIND4 120 - 130E 15 - 5S 0.41 -0.62 0.46 -0.60 

SIND7 70 - 80E 15 - 5S 0.40 -0.49 0.35 -0.52 

East Indian EIND 90 - 110E 5N - 5S 0.20 -0.48 0.21 -0.56 

East Pacific EPAC 100 - 80W 5N - 5S 0.28 -0.28 0.20 -0.36 

Equatorial Pacific EQPA1 150 - 140W 5S - 5N 0.06 -0.28 0.03 -0.36 

EQPA2 120 - 110W 5S - 5N 0.04 -0.24 0.01 -0.30 
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Table 5.2: MDS and TDD predictors for locations in MDB and the corresponding highest correlation 

coefficients using monthly SST 

 

Ocean Region Predictors Longitude Latitude Pearson Correlation Coefficient (r) 

MDS TDD 

Atlantic ATB1 20W - 15E 10 - 20S 0.44 -0.10 0.47 -0.14 

ATB2 20W - 15E 20 - 30S 0.52 -0.09 0.57 -0.24 

ATB3 40 - 15W 20 - 10N 0.00 -0.42 0.14 -0.44 

ATB4 40 - 10W 30 - 20N 0.06 -0.44 0.19 -0.49 

ATB5 40 - 10W 40 - 30N 0.13 -0.51 0.25 -0.60 

Equatorial Atlantic EQAT1 25 - 15W 5S - 5N 0.39 -0.10 0.44 -0.12 

EQAT2 40 - 30W 5S - 5N 0.28 -0.06 0.27 -0.10 

North Atlantic NAT1 20 - 10W 30 - 40N 0.11 -0.50 0.24 -0.58 

NAT2 50 - 40W 25 - 35N 0.13 -0.51 0.26 -0.62 

NAT3 80 - 70W 35 - 40N 0.20 -0.59 0.32 -0.70 

South Atlantic SAT1 25 - 15W 40 - 30S 0.52 -0.12 0.60 -0.29 

SAT2 5 - 15E 20 - 10S 0.50 -0.11 0.58 -0.24 

SAT4 40 - 30W 15 - 5S 0.41 -0.03 0.47 -0.16 

East Atlantic EATL 10W - 10E 5N - 5S 0.48 -0.10 0.59 -0.23 

Equatorial Pacific EQPA1 150 - 140W 5S - 5N 0.28 -0.06 0.25 -0.11 

EQPA2 120 - 110W 5S - 5N 0.30 0.04 0.32 0.04 

North 

Pacific 

NPA1 150 - 160E 25 - 35N 0.11 -0.52 0.25 -0.61 

NPA2 140 - 150E 10 - 20N 0.14 -0.55 0.27 -0.61 

NPA7 170 - 160W 30 - 35N 0.13 -0.52 0.26 -0.62 

South 

Pacific 

SPA1 179 - 170W 20 - 10S 0.50 -0.13 0.60 -0.23 

SPA2 160 - 170E 30 - 20S 0.55 -0.21 0.63 -0.33 

SPA3 100 - 80W 40 - 30S 0.54 -0.14 0.61 -0.29 

SPA4 150 - 160E 25 - 15S 0.57 -0.27 0.66 -0.38 

Equatorial Indian EQIND1 50 - 60E 5S - 5N 0.32 0.02 0.37 -0.05 

Indian Ocean INDB1 35 -70E 20 - 30S 0.56 -0.18 0.65 -0.33 

INDB2 40 - 70E 10 - 20S 0.55 -0.14 0.65 -0.28 

INDB4 50 - 75E 20 - 10N 0.22 -0.20 0.24 -0.23 

North Indian NIND1 60 - 70E 15 - 20N 0.23 -0.36 0.32 -0.40 

NIND2 80 - 90E 10 - 20N 0.32 -0.46 0.41 -0.55 

NIND3 70 - 80E 5 - 15N 0.27 0.01 0.23 0.03 

South Indian 

 

SIND1 45 - 55E 25 - 15S 0.55 -0.16 0.65 -0.31 

SIND2 80 - 90E 20 - 10S 0.57 -0.14 0.67 -0.27 

SIND4 120 - 130E 15 - 5S 0.48 -0.30 0.59 -0.39 

SIND7 70 - 80E 15 - 5S 0.55 -0.13 0.65 -0.25 

East Indian EIND 90 - 110E 5N - 5S 0.28 -0.31 0.29 -0.42 

East Pacific EPAC 100 - 80W 5N - 5S 0.39 0.03 0.40 -0.07 

Equatorial Pacific EQPA1 150 - 140W 5S - 5N 0.28 -0.06 0.25 -0.11 

EQPA2 120 - 110W 5S - 5N 0.30 0.04 0.32 0.04 

 

5.2.3. Binary forecast 

A generalized additive model (GAM) for logistic regression is used to develop 

binary forecasts using 1, 3 and 6 months lagged SOI phases. A logistic regression 

model allows for development of linear relationships between binary outcome 

variables, for example above or below median TDD or MDS, and a set of covariates, 

lagged SOI phases. The advantage of a GAM is that it can model both linear and 
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non-linear relationships between a binary outcome and the covariates. The 

parameters of the model are estimated via maximum likelihood method. The logistic 

regression model is of the form:  

 

jj j elagSOIPhasMonthf  
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Where, ln/ln1 () represents the log odds of the response variable (above or below 

median TDD or MDS) with   being the probability of occurrence and 1 , the 

probability of non-occurrence of above or below median TDD or MDS. The f () is a 

smooth function that smoothes the Month term to represent the seasonal behavior of 

TDD and MDS. There are 5, j=1:5, SOI phases (lagSOIPhase), the βj’s are the 

estimated model coefficients for each phase. The lagSOIPhase covariate can only 

take on a value of 0 or 1 and only one phase will have a value one and the other four 

zero, depending on which phase the lagged SOI is in at any model run. The g () is a 

smooth function or a thin plate spline while, i is the i
th

 selected SST predictor with n 

being the total number of SST predictors used.  

Split calibration/validation was used to evaluate model performance. This involved 

training the model on the first 70% of the data, then running the model on the last 

30% of the data and calculating forecast skill. 

 

5.2.4. Forecast Accuracy 

For a two-category forecast of above/below median rainfall, the contingency table 

(Table 5.3) can be used to determine the accuracy of the forecasts. A forecast where 

the probability of above median rainfall is greater than 50 per cent is categorised as a 

‘yes’, and where it is less than 50 per cent is categorised as a ‘no’. 

To evaluate binary forecast skill, a total of 5 measures or scores were used. The 

scores used are mostly based on the results of a 2 x 2 contingency table such as 

shown in table 5.3 where the cell (i) represents a Hit (Forecast = below, Observed = 

below), (ii) False Alarm (Forecast = below, Observed = above), (iii) Miss (Forecast = 

above, Observed = below), and (iv) Correct rejections (Forecast = above, Observed = 

above). When the contingency table uses a two-category forecast of above/below 
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median dry spell/days to establish the skill of the forecasts, a forecast with a 

probability of the above median event or observation of above median event >50% is 

categorised as a ‘yes’ and a forecast or observation of median dry spell < 50% as a 

‘no’. A forecast therefore can only be accurate or correct if it is either a Hit or 

Correct rejections or inaccurate/incorrect if the score is either a False Alarm or a 

Miss.  

 

Table 5.3: Example of contingency table and related skill scores 

 

Forecast 

Observed 

    Below Above Marginal Total 

Below (i)               73 (ii)               79 152 

Above (iii)             7 (iv)              81 88 

Marginal Total 80 160 240 

 

The Hit Rate (H) (also known as the probability of detection –POD) is the fraction of 

occurrences of an event that were correctly forecast or the estimated frequency of an 

event that is forecast happening assuming that the observed event have occurred. The 

score for correctly forecasted events range from 0 (no skill) – 1 (highest skill). The 

hit rate alone may however not be enough to measure forecast skill of a system since 

it relies on the highest number of hits and minimal number of false alarms which 

may not necessarily be easy to achieve. The Hit rate can be calculated from the 

contingency table (Mason 1982) as; 

  
)( iiii

i
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                    [5.2] 

In contrast to the Hit Rate, False Alarm Rate (F), also known as probability of false 

detection is the fraction of non-occurrences of an event that were inaccurately 

forecast. From the contingency table, the False Alarm Rate can be derived as; 

   
)( ivii

ii
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                          [5.3] 

The Proportion Correct (PC) on the other hand represents the proportion (%) of 

correct forecasts in given forecast samples (n). It is a measure that can directly 

examine the quality of non-probabilistic forecasts for discrete events and penalizes 

forecast errors (false alarms and misses) (Wilks 2011). The PC provides the 
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probability of a “yes” or “no” forecast occurrence with scores ranging from 0 for 

poor score to 1 for perfect score. It is given by;  

n

ivi
PC


                     [5.4] 

Heidke skill score (HSS) is based on Proportion Correct (PC) score modified to take 

into consideration the proportion of forecasts perceived to be correct by chance 

assuming there is no skill. It is formulated for forecasts with more than two (binary) 

categories in the contingency table (Jolliffe & Stephenson 2012). The value for HSS 

ranges from  to 1 and represents the standardized number of correct hits and 

rejections when randomized forecasts have no skill. A score of 1 indicates perfect 

skill and a zero (0) indicates no skill. The HSS is defined as; 

    
)1(

))((2

FHBBHF

FHHB
HSS




                 [5.5] 

The Brier Score (BS) a popular measure of forecast quality (Pappenberger et al. 

2011, Ferro & Fricker 2012, Weisheimer & Palmer 2014). The Brier Score (BS) 

measures the magnitude of the forecast errors (Murphy 1973) and ranges from 0 

(perfect score) to 1 (no skill). The BS can further be broken into 3 main components 

measuring; resolution, reliability and uncertainty. For instance, uncertainty measures 

the expected value of the score if climatology is used as the baseline strategy.  

         2
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Where, qp


is the estimated probability of occurrence for the first of the two forecast 

outcomes at verification point q, and qx is the outcome for the first binary [1] or 

second [0] event.  

All verification scores were calculated using the verification package in R (NCAR - 

Research Application Program, 2012). A detailed guide to verification principles can 

be found in Jolliffe and Stephenson (2012).  

 

5.2.5. Continuous Forecasts 

Continuous forecasts were developed using the following GAM models 

jj j elagSOIPhasMonthfxh  
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Where h/h1 is a link function of the mean μ [the expected value of dry spell length 

(y)] and the Month, lagSOIPhase and lagSST terms are as described in the binary 

model (Equation 5.1). The data was assumed to be normally distributed and an 

identity link function was used. 

Two forms of forecast evaluation were used, 1) as in the binary forecast a 70/30% 

split calibration/validation was used and 2) a one step-ahead validation was used, 

where the model was trained on all data up to a time point and then the next relevant 

time point was forecast and model skill of the forecasts were evaluated. 

 

5.2.6. Quality of continuous forecasts 

Formal inferences on quality of the gam models were through checking normality in 

the model error residuals and adjusted r
2
 (Wood 2006). Absolute diagnostic measures 

of accuracy used are the root mean square errors (RMSE), the coefficient of 

determination (R
2
) and the 95% prediction confidence intervals (CI) (Wilks 2011, 

Jolliffe & Stephenson 2012). The lower the RMSE and the higher the R
2 

scores, the 

better the skill of the forecast (model). 

 

5.2.7. Further model diagnostics 

Model residuals were tested for serial correlation using the Ljung-box test. 

Furthermore, the model residuals were checked for normality using a normal 

quantile- quantile plot. 

  

5.3. Results 

5.3.1. Results of Varimax – PCA analysis of dry spell statistics 

After subjecting the predictors (SST/SOI-Phases) to PCA, the first 3 dominant 

VARIMAX rotated principal components explained 85.3% of the variance in the 

SSTs and SOI-Phases data (Table 5.4). Figure 5.1 shows scree plots of the dominant 

factors and Eigen values from the Varimax – PCA analysis of MDS, TDD and the 

selected SST/SOI–Phases predictors for the study locations in Kenya and the MDB.  

In Kenya, the first 5 modes accounting for 64.6% of the explained variance in the 

MDS and 4 modes accounting for 71% of the variance in the TDD were statistically 

significant with eigen values greater than 1.0 (Sass & Schmitt 2010) (Table 5.1). In 

the MDB, the first four modes explained 66.7% of the total variance in the MDS and 

75.1% of the variance in the TDD.  For the SST and SOI-Phases data sets, only 3 of 
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the dominant factors accounting for 85.3% of the variance were significant (eigen 

values > 1) for both Kenya and the MDB. For example, factor 1 with 11 variables 

comprising the climatic predictors’ characteristics explained 62.4% of the total 

variance with eigen value of 6.9. 

Table 5.4: Total (cumulated) variance explained by selected mode of the monthly MDS and TDD in 

Kenya (K) and Murray Darling Basin (M). 

Factor 

 

Eigen values Variance extracted (%) Cumulative variance (%) 

MDS TDD MDS TDD MDD TDD SST/ 

SOI- 

phases 

Ken MDB Ken MDB Ken MDB Ken MDB Ken MDB Ken MDB K/M   

1 

2 

3 

4 

5 

10.6 

5.1 

1.6 

1.1 

1.0 

18.8       

8.8       

1.9       

1.8 

- 

12.4       

6.0        

1.7  

1.2 

-       

19.9      

11.2       

2.0       

1.5 

- 

35.2 

17.1 

5.2 

3.7 

3.4 

40.0      

18.7       

4.1       

3.9 

- 

41.5      

20.0        

5.7 

3.8 

-        

43.2      

24.3       

4.4       

3.2 

- 

35.2 

52.3 

57.5 

61.2 

64.6 

40.0 

58.7 

62.8 

66.7 

- 

41.5 

61.5 

67.2 

71.0 

- 

43.2 

67.5 

71.9 

75.1 

- 

62.4    

74.2      

85.3 

- 

- 
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(b) Scree Plot: TDS
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(c) Scree Plot: MDS
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(d) Scree Plot: SST/SOI-Phases (Ken/MDB)
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Figure 5.1: Scree’s test selection of dominant principal components for (a) MDS and (b) TDD in a month in 

Kenya and (c) MDS in MDB and dominant PC modes for SST and SOI – Phases 
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5.3.2. Binary forecasts 

Figure 5.2 shows the smoothed seasonal term in the logistic model for the median 

monthly dry spell lengths at Isiolo at 1 month lagged SOI phases. Importantly it 

shows that the seasonal term captures the two wet seasons (the short and long wet 

seasons). No strong evidence of serial correlation in model residuals was found in 

most of the locations in Kenya and the MDB. Furthermore, the standardized model 

residuals for the binary models, such as for Isiolo in Kenya, generally follow a 45 

degree line indicating they are normally distributed (Figure 5.2b). 

The quality of categorical forecasts for TDD in Kenya and MDB are given in Figure 

5.3. The PC and Hit scores are slightly lower in all lags in Kenya (PC=0.41 - 0.66) 

than in the MDB (PC = 0.42 - 0.67). However, the forecast bias for TDD is larger in 

the MDB (max>2) than in Kenya (max < 2), suggesting a tendency to over-predict 

the frequency of dry days in the MDB. This might probably be the reason why the 

False alarms (F) are again higher in the MDB than in Kenya. Moreover, the brier 

scores (BS) are slightly lower 0.5 and appear to increase with the lag in Kenya 

topping 0.45 in lag 6 and 0.43 in the MDB.  

Overall, the skill of binary forecasts averages 52% in both regions but appear to be 

slightly better in Kenya than in the MDB. The binary forecasts appear to show better 

skill at 1 and 3 month lead times in Kenya. At 6 months, the HSS shows no skill for 

most locations in Kenya. In contrast, the 6 months lead time shows marginally better 

skill in the MDB, in particular, the false alarm rate has decreased slightly.  

In addition, for the binary forecasts in Kenya, the SOI-phase term was significant in 

lag 3 for the MDS (33% of locations) and TDD (40% of locations). Similarly, the 

SOI-phase was significant in the MDB in lag 3 for the MDS (28% of locations) and 

TDD (32% of locations). In other words, the SOI-phase is important in the 3 month 

lead time prediction in these regions. Even when SOI was not significant, it was 

found that including it in the model generally slightly improved the adjusted r
2
.   
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Figure 5.2: Effects of (a) Month (seasonal term) on the median monthly dry spell lengths for binary forecast 

for Isiolo at one month lagged SOI phases and (b) normal Q-Q plot of the residuals. The blue dots in (a) are 

the partial residuals and the grey shade is the GAM estimate for upper and lower 95% confidence limits.  

 

 

Figure 5.3: Skill scores for total dry days (TDD) by 1, 3 and 6 months lagged SOI phases in Kenya (top panel) 

and MDB (bottom panel). BS.unc is the uncertainty component of the brier score (BS). A perfect score for H, 

POD and HSS is 1. A perfect score for F and BS is 0 and for BIAS is 1 but ranges from 0 to infinity. 

 

5.3.3. Continuous forecasts 

An example for the results for 1-month lead time forecasts using lagged SOI-phases 

for Isiolo in Kenya is given in Figure 5.4 and Figure 5.5. The 3-month lead time 

forecasts for Lake Eildon in the MDB are appended in Figure 5.6. Both model 

evaluations methods yielded similar results with the one-step ahead yielding a R
2
 = 

56% and a RMSE=6.3 (Figure 5.4b). For TDD (Figure 5.5b) the R
2
 is 57% and 
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RMSE=6.3. The observed MDS is higher than the forecasted upper bounds (95% CI) 

for most of the periods. In contrast, the skill of lagged SST models for Isiolo 

improved slightly over those of the lagged SOI-phases (R
2
 = 57.5%, RMSE=6.0 

(MDS)) while the skill for TDD forecasts reduced slightly (R
2
 = 54%, RMSE=6.6). 

Similarly, for Lake Eildon, the forecast skill (TDD) improved from R
2
 = 66.1% 

(lagged SOI-phases (3-Month lead)) to R
2
 = 71% (lagged SST).  

A summary of the results for all locations in Kenya and MDB are displayed in Figure 

5.7 and Figure 5.8 respectively. In Kenya and the MDB, the distribution of the R
2
 

and RMSE was similar for all three lead times for the lagged SOI-phases forecasts 

but tended to improve for some locations for lagged SST forecasts. In Kenya (Figure 

5.7) for example, skill for lagged SST forecasts for MDS ranged from R
2
 = 21.9% - 

68% (lag 1), R
2 

= 20.6% - 68.3% (lag3) and R
2
 = 22.3% - 66.7% (lag6). For TDD, 

the skill varied from R
2
 = 30.5% – 68% for lag1, R

2
 = 27.2% – 69.3% for lag3 and 

R
2
 = 28% - 64.7% for lag6. In the MDB (Figure 5.8), the skill (R

2
) of lagged SST 

forecasts ranged from 3% - 49.1% (lag1), 5.4% - 46% (lag1) and 8.5% - 45.3% 

(lag6) while those for TDD ranged between 14% and 71% (lag1), 10.1% and 68.4% 

for lag3 and R
2
 = 5.7% - 72% for lag6. Overall, forecasts for TDD tended to be better 

than those for MDS for both Kenya and MDB in both cases. In general, forecasts 

skill tended to be higher in Kenya than in MDB indicated by the central mass of the 

box plots having higher R
2
 in Kenya than in MDB as well as the differences In the 

RMSE values between the 2 areas (Figures 5.7 and 5.8)  

For continuous forecasts, the SOI-phase in Kenya was most significant in lag 6 for 

the MDS and TDD (40% of locations in each case). Similar to the binary forecasts, 

the SOI-phase in the continuous forecasts in the MDB was most significant in lag 3 

for the MDS (21% of locations) and TDD (28% of locations). In the case of lagged 

SST, the highest forecast skill (R
2
~70 %) occur in lag 3 in Kenya and in lag 6 in the 

MDB suggesting the potential for higher skill in longer lead times in the regions.  

Comparing this with climatology in these regions (R
2
 = 32% (Kenya) and R

2
 = 34%) 

the skill of the forecasts at the 3 lead times improved by about 25% in Kenya and 

22% in the MDB. 
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Figure 5.4: (a) Numerical forecast of MDS versus the observed for Isiolo in Kenya by 1 month lagged SOI 

phase. The plain solid line indicates the predictions calibrated from the 1961-1995 dry spell data sets. The 

dotted and dashed lines indicate the upper and lower 95% confidence intervals respectively. (b) Numerical 

forecast of MDS (bottom panel) based on the one-step procedure and 1 month lagged SOI phase. The dotted 

(predicted1) and dashed (predicted2) lines represent the predictions from the procedure in (a) and in the one 

step respectively. 

 

Figure 5.5: (a) Numerical forecast of TDD (top panel) versus the observed for Isiolo in Kenya based on 1961-

1995 calibration periods and by 1 month lagged SOI phase. As in Figure 5.4, the dotted and dashed lines 

indicate the upper and lower 95% confidence intervals respectively. (b) Numerical forecast of TDD (bottom 

panel) for Isiolo from the one-step procedure and by 1 month lagged SOI phase. The dotted (predicted1) and 

dashed (predicted2) lines represent the predictions using the procedure in (a) and in the one step respectively. 
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Figure 5.6: (a) Numerical forecast of TDD (top panel) versus the observed for Lake Eildon in MDB based on 

the 1961-1995 calibration periods and by 3 month lagged SOI phase. The dotted and dashed lines indicate the 

upper and lower 95% confidence intervals respectively. (b) Numerical forecast of TDD (bottom panel) for Lake 

Eildon from the one-step procedure and by 3 month lagged SOI phase. The dotted (predicted1) and dashed 

(predicted2) lines represent the predictions from the methods in (a) and one step respectively. 

 

 

Figure 5.7: Box and whisker plots for R2 and RMSE values for numerical forecasts of MDS (solid lines) and 

TDD (dashed lines) based on (a & c) lagged SOI-Phases and (b & d) SST predictors in Kenya validated at one-

step ahead. 
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Figure 5.8: Box and whisker plots for R2 and RMSE values for numerical forecasts of MDS (solid lines) and 

TDD (dashed lines) based on (a & c) lagged SOI-Phases and (b & d) SST predictors in MDB validated at one-

step ahead. 

 

5.3.4. Variation of forecasts skill by location   

Forecast skill can vary from one location to another. To find out, the skill of 

continuous forecasts are plotted for each location by latitude and presented in Figure 

5.9 and Figure 5.10.  Figure 5.9, shows that higher forecast skill, occur mostly in 

locations near the equator (-2
0
S – 2

0
N) in Kenya and in locations in southern higher 

latitudes in the MDB (Figure 5.10). Forecast skill in Kenya seems to gradually 

increase from southern locations to near 2
0
N and increase with increasing southerly 

latitude in the MDB at least for locations > 33
0
S .   

In contrast to the spatial variation in forecast skill of lagged SOI-phases (Figure 

5.9a), the skill for lagged SST tend to be highest in locations around 2
0
S and 3

0
S 

with a tendency to declining trend northwards. In the MDB, forecasts skill tend to 

increase southwards for lagged SSTs (Figure 5.10b) with an average of 5% 

difference relative to forecast skill for lagged SOI phases (Figure 510a).   

Overall, the skill in the MDB is lower (lower R
2
) than in Kenya. The low 

performance in forecasts skill in locations north of the MDB may be due to weak 

relationship of SOI with drought in these regions. Moreover, 20% of locations in 

Kenya had skill (R
2
) ≥50% for MDS forecasts and 57% of locations, had skill ≥50% 

for TDD forecasts. In contrast, only 11% of locations indicated skill exceeding 50% 
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in the TDD forecasts and none of the locations had skill exceeding 41% for MDS dry 

spells in the MDB. This however was different for SST based forecasts for locations 

in the south of 34
0
 in which the forecast skill exceeded 44% with the maximum 

reaching 72% at about 38% of the locations.    

Again, the spatial variation in skill of forecasts for lagged SSTs was dominant in the 

3-month lead time in Kenya and the 6-month lead time in the MDB. 

 

Figure 5.9: Variation of R2 scores by location (latitude) for (a) lagged SOI and (b) lagged SST based forecasts 

at 1-, 3-, and 6- month lead times in Kenya. 

 

 

 

Figure 5.10: Variation of R2 scores by location (latitude) for (a) lagged SOI and (b) lagged SST based 

forecasts at 1-, 3-, and 6- month lead times in the MDB. 
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5.4. Discussion 

Drought forecasting at the monthly time step has received less attention compared to 

seasonal or longer time scale forecasting (e.g. Barnston et al. 1994, Mishra & Desai 

2005, Fernández et al. 2009). Forecasting of dry spell length at a monthly time scale 

can be important for agriculture planning particularly in Kenya and the MDB. One 

particular motivation from the present findings is that in some locations, 1-, 3- and 6-

month lead time forecasts captured some of the seasonal to inter-annual variability 

and turning points in the observed dry spell data series in Kenya and MDB (e.g. 

Figure 5.11). 

This study found that monthly forecasts of dry spells over these regions have some 

skill which range between 10% and 66% using lagged SOI-phases and up to skill of 

72% using SST based forecasts. In contrast to our findings, there is a lack or no clear 

information regarding accuracy of drought forecasts in these regions. A study by 

Krishnamurti et al. (1995) for example, examined the predictability of wet and dry 

spells in Northern Australia in only the 30-60 day oscillation monsoon and for March 

1992 period. They observed that SSTs indicated low skill of about 25days in the 30-

60 circulation. Even with formal tests of accuracy of rainfall forecasts, studies 

concentrate on the value of using forecasts rather than the nominal skill of forecasts 

(de Jager et al. 1998).  

The current forecasts skill was obtained based on the 1996-2010 validation period, 

which coincidentally, corresponds to a period when severe droughts and some 

extremely wet conditions were experienced in these regions (e.g. Botterill 2003, 

Speranza et al. 2008). Goddard et al. (2003) cites a lack of knowledge about most 

real-time operational skill of forecasts as the greatest obstacle to use of forecasts 

which means the validity of forecasts remain questionable. For example, despite 

numerous studies on regional crop yields suggesting skill in rainfall forecasts in 

Australia (MDB) (e.g. Hammer et al. 1996, Meinke & Stone 2005), these studies do 

not objectively verify the forecasts accuracy. One exception is the work of Barros & 

Bowden (2008) in which drought forecasts 12-month in advance were predicted for 

the MDB with variances reaching up to 60%.  

In light of the above, it appears that accurately forecasting dry spells can be of 

benefit where the rainfall forecasts have failed. In these regions, modest skill of dry 

spells at the - 1, -3 and 6 months lead times can open a new avenue for farmers to 

cushion against drought risk by integrating the forecasts information in farm plans to 
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complement other risk management measures. Considering that drought is a key 

threat to agriculture production in Kenya and the MDB, rainfall forecasts or 

cumulative rainfall may not be so useful in detecting consecutive occurrences of 

water deficiency (dry days) particularly if heavy rainfall events occur in 2 different 

days separated by long dry periods (e.g. 1 June and 18 July). In this case, a dry spell 

forecast may be more appropriate for agriculture management of risk. Moreover, in 

agriculture terms, the most suitable time to make a decision for the forthcoming 

season in response to a dry spell forecast is during the wet or transitional season such 

as in January – February in Kenya and in summer in the MDB. However, even where 

dry spell or rainfall forecasts are of reasonable skill, they can only be valuable if they 

can be integrated in agriculture management plans (Ash et al. 2007).  

In Kenya, no study as yet has formally tested the skill of drought forecasts based on 

the SST or SOI-phase regime and dry spells. However, one study (Farmer 1988) 

indicated a skill no better than climatology in the prediction of seasonal rainfall 

based on lagged SOI relationships while Mwangi et al. (2013) evaluated the probability 

of drought using the European Centre for Medium-Range Weather Forecasts 

(ECMWF) products in East Africa and showed that precipitation indicated better 

skill for the short (October–December) rain season compared to the long (March–

May) rain season. 

Climatology is the proxy used to define forecast probabilities for 2 category forecast 

i.e. below a normal category (e.g. median) or above a normal category, generally 

indicates the assumed average climate of a location or region (Gigerenzer et al. 

2005).   

This study, found teleconnections between the observed dry spell statistics variability 

patterns and SOI phases and SST variability modes over the Atlantic, Indian and 

Pacific oceans from which, the highest (significant) correlations between MDS and 

TDD and the 2 predictors provided useful indices to forecast dry spells at the 

monthly scale in these regions. In contrast to this study, relationships between 

precipitation and global Oceanic SST derived indices have been documented in these 

regions with a greater emphasis on the linkage with the ENSO phenomena and other 

climate drivers such as the Indian Ocean Dipole (Black et al. 2003, Wang & Hendon 

2007, Ummenhofer et al. 2011, Smith & Timbal 2012, Mwangi et al. 2014).  

In the current study, binary forecasts demonstrated modest skills ranging from 40-

67% which is better than climatology. Comparing with skill of a climatology forecast 
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is useful in assessing the overall performance of a new forecast (Piechota et al. 

1998). Binary forecasts have been used by Chifurira and Chikobvu (2010) to predict 

inter-annual droughts in Zimbabwe. They found that a 10% and 90% probability of 

current drought was predicted if a -ve and a +ve SOI value respectively from the 

previous year was used. Moreover, skill >70% for drought forecasts utilizing past 

drought indices (values) have been reported for longer lead times (Özger et al. 2012).  

As well as obtaining some skill for continuous forecasts in this study; the 

predictability of dry spells using SOI-Phases seems to be more viable in Kenya than 

in the MDB while using SSTs to predict dry spells improved the skill substantially in 

some locations in both regions. The SOI phases were found to be significant in the 3 

and 6 month lead times in over 1/3 of the locations in Kenya whereas this was found 

in lag 3 for locations in the MDB. There has been suggestions that the lower 

predictive power of SOI in the latter region might be due to the high sensitivity of 

Australian rainfall to the spatial structure of the SST anomalies during El Niño in the 

Pacific (Troccoli et al. 2008, Lim et al. 2009). Furthermore, while some skill was 

obtained with the SOI phases, this research did not examine whether forecasts can 

indicate better skill in certain seasons or months or whether they can also be tailored 

to suite specific cropping stages in these regions. The dependence on the past 

observations of the climate tend to occur most strongly at various underlying 

seasonal lags (e.g. Chiew et al. 1998, Kim & Valdés 2003). However, results 

obtained using lagged SSTs in these regions suggest that improvement in dry spell 

forecasts can be achieved if Oceanic SST areas with stronger correlations with the 

localized climate can be identified.  

This study considers the SOI phases as a predictor of dry spell as it is a reasonably 

well understood climate index whereas SSTs have extensively been used to develop 

relations with rainfall in these regions. Ogallo et al. (1988) showed that the SOI was 

strongly related with rainfall over eastern Africa but in contrast Ropelewski & 

Halpert (1987) suggests that the SOI is weakly related to rainfall in the region but 

can cause enhanced precipitation during the El Niño events. The impact of ENSO 

differs between Kenya and the MDB. The magnitude of drought is enhanced in 

eastern Australia (MDB) and in Kenya during El Niño and La Niña periods 

respectively (Usman & Reason 2004, Ummenhofer et al. 2009).  

The skill associated with SOI phase suggests that there may be prospects of skillful 

drought forecasts in these regions. However, there are more potential predictors of 
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drought as indicated from the results using SSTs in these regions. In Australia, SST-

based skill for seasonal rainfall has the potential to exceed 60% (Lim et al. 2009) 

whereas in Kenya this ranges between 30% and 60% (Mutai et al. 1998). These 

studies seem to be in agreement with this study and also reflect the potential skill for 

seasonal drought forecasts in these regions. Some studies have suggested that the 

Inter-decadal Pacific Oscillation (IPO) may indicate some skill in long lead drought 

forecasts over Australia (e.g.Kiem & Franks 2004) although others (e.g. Verdon-

Kidd & Kiem 2009) suggest that the predictability of drought may be related to 

different climatic patterns in the Pacific, Indian and Southern Oceans. Furthermore, 

there is evidence that NIÑO4 (region 5
0
 S to 5

0
 N, 150

0
 E to 160

0
W),  and the Pacific 

Ocean thermocline may be better predictors of precipitation (drought) in Australia 

(Kirono et al. 2010). Similarly, the tropospheric wind anomalies and tropical 

cyclones activities in Indian Ocean may also provide better predictors of drought in 

Kenya (Ambenje 2000, Camberlin & Philippon 2002). Finally, dynamical models 

such as the Predictive Oceanic and Atmospheric Model of Australia (POAMA) 

currently used by the Australian Bureau of meteorology have been shown to predict 

drought 3 months in advance but tends to underestimate the magnitude of drought in 

the region (Lim et al. 2009).    

Better skill indicated for the total number of dry days compared to maximum dry 

spell length maybe of some benefit for agriculture in these regions. Whereas, the 

occurrence of dry days during the growth stages of crops is one of the main causes of 

crop failures (Mishra & Desai 2005), forecasting the number of dry days or the 

maximum dry spell can increase the level of preparedness and influence better 

agriculture management. In other words, dry spell forecasts can be used to advice on 

water conservation where agriculture management measures designed during wetter 

seasons may fail if drier conditions are predicted in the following season. For 

instance, dry land winter and summer cropping in north eastern parts of MDB 

benefits from water stored in heavy clay soils across fallows, which is used  to and 

act as cushion for the next crop against likely low seasonal rains are very low 

(Meinke & Stone 2005). In addition, forecasts can be used to advice farmers on food 

security such as the case of the forecast of the 1986 -1987 drought in Ethiopia where 

the government advice to farmers enable significant saving on the amount of relief 

food required. However, this alone may be insufficient where the ability of the 
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farmer to respond to the forecasts is constrained by other operational or long term 

factors.   

Whereas drought prediction remains a major challenge, this study has demonstrated 

that using SOI phase and SST; it is possible to obtain some skilful forecasts.  
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Figure 5.11: Predicted versus observed TDD for Voi in Kenya at the 3 month lead time using lagged SOI-

phases. 

 

5.5. Conclusions 

This study shows that the skill of SOI phases in predicting monthly total number of 

dry days and the maximum dry spell length in Kenya and the MDB ranges from 

<20% – 67% while the skill extends to a maximum of 72% using SSTs. The skill of 

TDD supersedes that of MDS in both regions but skill for both MDS and TDD is 

better in Kenya than in the MDB.  

In addition, impact of SOI-phase for binary and continuous forecasts was found to be 

better in the 3 and 6 month lead time in Kenya but in the 3-month lead time in the 

MDB. Nevertheless, better forecast skill was indicated in locations near the equator 

(2
0
S – 2

0
N) in Kenya with the SOI phases and around 2

0
S - 3

0
S for SST and in 

locations in southern higher latitudes (>34
0
S) in the MDB and skill appears to 

increase from southern locations (SOI phase) and from northern locations (SST) in 

Kenya and increasing southerly latitude in the MDB in both cases.  

The challenge still remaining is to find a way to capture all the inter-intra annual 

variability in the observed time series both at the monthly and seasonal time frames. 

Some prospects may be the inclusion of other predictors in the model such as 

NIÑO4, Pacific Ocean thermocline, tropospheric wind anomalies and tropical 
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cyclone activities in the Indian and Pacific Ocean or the principal components 

derived from the relationships with SSTs. The current findings can have implications 

for agriculture in these regions.   
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CHAPTER 6 

MANAGING THE WATER CYCLE IN KENYAN SMALL-SCALE 

MAIZE FARMING SYSTEMS (PART 1): FARMER 

PERCEPTIONS OF DROUGHT AND CLIMATE VARIABILITY 

Abstract 

Examining ‘dryness’/drought variability in Kenya, is motivated by farmers 

perceptions that there has been decline in rainfall and yields in recent years. In 

recognition, farmer’s perceptions of climate variability were examined in the 2 agro-

ecological regions of Kenya: Laikipia west (semi-arid) and Vihiga district and 

compared with observed meteorological data. 

Data was obtained through a questionnaire and semi-structured interviews and the 

results were analysed using both descriptive and inferential statistical methods. A 

total of 133 and 111 farmers were sampled from the 2 regions, respectively. 

Most farmers perceived changes in the seasonal and long term patterns of rainfall and 

dry conditions in both areas, with significant changes occurring after the 1980’s. 

Actual records indicated that rainfall and drought conditions varied more in the short 

rain season than in the long rain season in Laikipia compared to Vihiga. Rainfall 

patterns in the two regions showed no significant trends in the overall period, while 

farmers reported that the onset of rains and the planting times are later. Interestingly, 

farmers managed climate variability on their farms mainly through short term 

actions; changing planting times, crop diversification, water conservation and 

replanting in response to factors such as delay or early rainfall onset. 

This study recommends that more research should establish why farmer’s 

perceptions are opposite to observed climatic patterns and whether this could be 

related to climate change. This can improve advice to farmers to monitor and manage 

climate variability.  

 

6.1. Introduction 

Climate change and variability (CCV) is a major global debate (Akong'a et al. 1988, 

IPCC 1996, Handmer et al. 1999, Griggs & Noguer 2002, Blanc 2009, Bulkeley 

2013). Scientific analyses point at human activities as the cause of CCV and global 

warming (Stocker et al. 2013) which in turn is affecting climatic patterns globally 

(Parry et al. 2004, Lobell et al. 2011). More specifically, temperature increases due 
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to global warming have altered the distribution and quantity of rainfall in many 

places and affected agriculture production and other activities (Rosenzweig et al. 

2001, Schmittner et al. 2008, Kurukulasuriya & Rosenthal 2013). 

In the Sub-Saharan Africa (SSA), agriculture is mainly rain-fed and farmers 

recognise that erratic rainfall patterns affect their farming (Ngigi et al. 2005) and this 

makes the SSA one of the most vulnerable regions to climate impacts (Kotir 2011). 

Climate analysis by Ferede et al. (2013) show that a 3
0
C rise in temperature and a 

12.0 mm decline in precipitation will result in a 10% loss in crop production in the 

SSA region. Overall, these have far reaching implications for food security in the 

region since agriculture covers most of the cultivated land and about ¾ of the 

population depends on it for their livelihoods (Calzadilla et al. 2013). In this regard, 

some studies have assessed the impacts of CCV on agriculture in Africa with a view 

to understand and manage climate variability (e.g. Downing et al. 1997, Mendelsohn 

et al. 2000, Jones & Thornton 2003, Schlenker & Lobell 2010, Ferede et al. 2013). 

Cropping is tightly intertwined with the seasonal rainfall in Eastern Africa (EA). 

Rainfall in EA emenates from complex interactions between sea surface 

temperatures (SST) and other global or local climate patterns (Ogallo et al. 1988, 

Mutai & Ward 2000, Gitau et al. 2013). As such, much of the interannual climate 

variability in Kenya and the region can be described using rainfall patterns (e.g. 

Ogallo 1989, Camberlin et al. 2009).  

Of all climate variability in Kenya, dry spells and droughts are significant factors that 

can affect agriculture and often have been linked with crop losses (Huho et al. 2011). 

Since Kenyais an agricultural economy (Hassan & Karanja 1997), understanding 

theseasonal variability in ‘dryness’ (drought) becomes very important because 

planting corresponds with the rainfall seasons. The country experiences about 1 to 2 

major droughts every 5-7 years and normally lead to severe food crisis (Herrero et al. 

2010).  

Examining ‘dryness’/drought variability in Kenya, is motivated by the fact that 

farmers in Kenya and the region, perceive that there has been decline in rainfall and 

yields in recent years (Ovuka & Lindqvist 2000, Gbetibouo 2009, Mertz et al. 2009, 

Moyo et al. 2012, Yaro 2013). This notwithstanding that agriculture in most semi-

arid tropical regions is found  to be mostly characterized by relatively low yields 

associated with dry spells or low rainfall (e.g. Rockström et al. 2003). 
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Drought impacts and variability and how farmers perceive and respond to climate 

variability in maize farming systems in Kenya has been examined (Campbell 1999, 

Speranza et al. 2008, Calzadilla et al. 2013), with participatory methods most 

frequently used (e.g. Roncoli et al. 2010, Ogalleh et al. 2012). A recent survey across 

several agroecological zones of Kenya, revealed that over 80% of farming 

households had experienced drought over the last 5 years while drought and erratic 

rains were mentioned to be the most critical climate-related shocks (Bryan et al. 

2011). Most farmers observed that the average rainfall had declinedand temperature 

increased in the last 20 years although the observed actual rainfall and temperature 

showed no significant trends in most of the locations. Esperanza et al. (2008)had 

looked at the linkage between farmers actions (farm practices) and vulnerability to 

drought and food insecurity in semi-arid areas of Kenya. Characteristic of most semi-

arid areas, the study revealed presence of high temporal rainfall variability in both 

long and short rain seasons and significant variation in the onset in contrast to 

farmers’ perception that onsets were later than expected. High temporal variability of 

rainfall in semi-arid areas is probably due to few rainfall events which account for 

most of the total rainfall in the season. The study concluded that other than drought 

and rainfall variability, lack of inputs and other constraints also contibute to 

vulnerability of farmers to food insecurity, a view shared by others in the region (e.g. 

Carter & Wiebe 1990, Barron 2004, Thornton et al. 2011).  

Ovuka & Lindqvist (2000) showed that rainfall in central highland of Kenya (humid) 

exhibited high interannual variability, which seems counterintuitive. Whereas 

declining trends in rainfall were indicated in both rain seasons and dry spells tended 

to be more frequent in the short rains season than in the long rains seasons, it was 

consistent with farmers perceptions in the region. As would be expected, the 

occurrence of dry spells during the short rain season contributed to reduced yields. 

This contrasts with semi arid areas, where the short rains are deemed more reliable 

for cropping than the long rains. In most areas of Kenya, food shortages are often 

related with occurrence ofdrought or insufficient rainfall (Rockström et al. 2003, 

Bryan et al. 2011). 

To analyse drought, stochastic and water balance models and other indices such as; 

standardized rainfall anomalies, the Palmer Drought Severity Index (PDSI) and 

Standardized Precipitation Index (SPI) (Ntale & Gan 2003, Speranza et al. 2008, 
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Chumo et al. 2011). Detailed reviews on drought indices can be found in many 

studies (e.g. Alley 1984, Hayes 2000, Heim 2002, Tsakiris & Vangelis 2005).  

While drought and rainfall patterns in Kenya appear to change, farmers perceptions 

either match or are opposite of actual climate observations in different areas. In 

addition,clear quantitative analysis of actual crop yields relative to drought 

variability is lacking. Understanding the relationship between true climate variability 

(degree of dryness or wetness) and maize yields in different seasons would allow 

farmers to adjust management. 

Few studies focussed on recent years (seasons) even though a number of significant 

droughts have occurred in recent years. Most of the previous analyses have been 

based on rainfall, mainly at the seasonal or annual timescales. Dry spell lengths 

might offer another view on drought as it describes both the intensity and the 

occurrence of drought.   

The objective of this study therefore is to analyse meteorological data for Laikipia 

(semi-arid) and Vihiga (humid) districts of Kenya and specifically to:  

i. Explore intra-seasonal to seasonal variability in ‘dryness’ using the indicators 

‘dry spell’ and ‘Aridity index’ 

ii. Explore relationships between actual climatic observations (climatic indicators) 

and farmer perception of climatic variability 

iii. Establish and provide an inventory of management options farmers use in 

response to climate variability 

 

6.2. Research methods 

6.2.1. Study area 

Laikipia west district lies in the central region of Kenya (Figure 6.1), near the 

equator and covers 9322.9 Km
2
. It has a warm, temperate climate and a bimodal 

rainfall distribution ranging between 400mm - 1200mm per annum. The agro-climate 

ranges from semi-arid to high potential and 20.5% is classified as medium or high 

potential (ROK 2011). The main economic activity is rain-fed agriculture and 

ranching (Karanja 2006). The main subsistence crops consist of maize, beans, 

potatoes, millet and wheat. Maize is the main food crop and covers an area of 32560 

ha. Farms range between 3.5 Ha (small scale) to 16 Ha (large scale). The soils are 

fairly fertile, but increased production is constrained by soil moisture deficit and 

frequent dry spells due to poorly distributed rainfall (Ngigi et al. 2006, ROK 2011). 
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Vihiga district is located in western Kenya, about 5 km north of the equator. Western 

Kenya is the major producer of maize in the country (Salasya et al. 1998). Vihiga is 

one of the most densely populated rural areas in Kenya and is a high agricultural 

potential area at an altitude of 1300 to 1800 metres above sea level. It receives 

between 1,800 mm - 2,000 mm of rainfall annually (Ongadi et al. 2007). It has two 

main agro-ecological zones which are used to grow both cash and subsistence crops 

(Karanja 2006). Maize is the major staple food grown for average farm sizes between 

0.5 Ha - 8.0 Ha (Salasya et al. 1998). 

According to the 2009 census, the population of Vihigaand Laikipia was 554,622 and  

399,227, respectively (ROK 2010). 

 

 

Figure 6.1: Map of Kenya (centre) showing (a) Vihiga district (left) and (b) Laikipia district (right).  (Map 

sources: http://mapsof.net/map/kenya-districts/; http://unjobs.org/duty_stations/kenya/western-

province/vihiga/photos/; http://www.kenyampya.com/index.php?county=Laikipia) 

 

6.2.2. Data collection 

6.2.2.1. Sample size estimation 

Both quantitative and qualitative methods were used for the data collection in the 2 

locations. Quantitative methods are based on data from structured questions within 

the semi structured interviews and the questionnaire was used as a qualitative 

(unstructured) follow up. The sample population (farmers) was first estimated using 

empirical methods and using agro-ecological zone, farm sizes and population census. 

For example, the total population of the farmers in the two areas estimated using the 

agro ecological zone crop area divided by the average farm size is shown in Table 

http://mapsof.net/map/kenya-districts/
http://unjobs.org/duty_stations/kenya/western-province/vihiga/photos/
http://unjobs.org/duty_stations/kenya/western-province/vihiga/photos/
http://www.kenyampya.com/index.php?county=Laikipia
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6.1 and was about 2.4% of the population in Vihiga district and 2.3% in Laikipia 

west district. The actual sample size was 111 farmers in Vihiga and 133 farmers in 

Laikipia.  

Sample size determination is a key question in a survey (Lenth 2001) as it limits 

errors caused by incomplete sampling and other statistical problems (e.g. Sackett et 

al. 1986, Ruggles 1995, Whitley & Ball 2002).   

 

Table 6.1: Estimated population of farmers in Vihiga and Laikipia districts 

Zone 

(District) 

Total 

population 

Cropping area 

(Ha) 

 

 

 

Average arm 

size (Ha) 

 

 

 

Estimated 

population 

Vihiga 554,622 54100  4.0  13,525 

Laikipia 399,227 32560  3.5  9,302 

 

In addition, the Cochran (1963, 1977) formula, which utilises 3 sampling criteria 

(Miaoulis & Michener 1976) was used to estimate the sample population: 

2

2 ))((

e

qpZ
no                   [6.1] 

Where no is the sample size, Z is the value of the alpha (α) level, p and q are 

guessed/estimated variances and e is the margin of error for the proportion being 

estimated. By applying equation [6.1] we can be certain that the outcomes of the 

survey represent the best guess of the "true" values within the population.  

A precision/sampling error of ±5% at 95% confidence level was selected which is the 

standard margin of precision commonly used (e.g. Kalton 1983, Kotrlik & Higgins 

2001). As it was difficult to know the variability of the sample size that was to 

undertake the survey, a maximum variability for p = q = 0.5 was assumed as is used 

in similar surveys (e.g. Pons & Petit 1995, Deaton 1997, Israel 2003). This was likely 

to enable detecting a meaningful scientific difference at the given sampling error 

(Chow et al. 2007).  

By applying the assumptions in [1], and choosing the 3 criteria indices at maximum 

values of; Z (α) = ±0.05 or 95% confidence level, p = 0.5, q = 0.5 and e = 0.05, the 

estimated sample size of farmers arrived at was;  

farmersno 384
)05.0(

)5.0)(5.0()96.1(
2

2
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Whereas the survey had several questions, the current analysis used data extracted 

from farmers’ comments in regard to their experiences of rainfall and drought 

patterns and based on 3 main questions. Firstly, farmers were asked to rate their 

maize yields in the last 5 years and give explanations in terms of climate variability 

and impacts. In this regard, farmers (interviews) provided extra information on 

historical climatic patterns in the study areas. For example, one farmer aged 79 years 

gave a chronology of more than 15 droughts (and floods) that impacted western 

Kenya and other parts of the country since 1954 and narrated how on one occasion, 

the president visited the region to plead with the popularly known rainmakers to end 

a severe drought that had caused widespread hunger and livestock losses in the 

country. The second question sought to know the source of climate information that 

farmers used in which >70% of the farmers indicated that they obtained through long 

term personal experiences and observations. Some of the information (notes) 

highlighted the years when yields were low or completely lost to drought. This was 

translated to mean that farmers’ remember climatic occurrences from the past which 

could form a basis for probing climate variability. The last question regarded absence 

or occurrence of dry spells (dry periods) during the planting seasons. This question 

was generally aimed at understanding the occurrence of dry spells and drought and 

how farmers coped with impacts of drought.  

In addition, a Focus Discussion Group (FDG) from each of the study areas was used 

to validate the earlier results. Some of the additional questions guiding the FDGs 

included: (1) what impact did the severe drought in 2011 had on maize crop in the 

study areas? (2) Do you remember any other similar drought or extreme events like 

floods in your area? Please list as much as you can remember and explain how 

droughts affected your crop (maize). (3) In your opinion, has rainfall increased or 

declined in your area in the last 10 years or more years? (4) Are there any climatic or 

others factors you think have influenced maize production / yields in your area in the 

last 5 or more years? 

 

6.2.3. Selection criteria, size and questionnaire administration 

The farmers were sampled from 8 zones in Vihiga which were sub-divided into 

north, south, east or west and comprised a total of 72 villages. In Laikipia, farmers 

from 17 zones (areas) were sampled, consisting of a total of 32 villages. Vihiga was 

selected because it represents a region of high rainfall potential and population 
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density and comprises a large number of the popular traditional rainmakers from 

Western Kenya. In contrast, Laikipia district is mostly semi-arid with low rainfall 

and its farmers are suggested to be less reliant on traditional forecasters. However, 

both study areas produce maize in large quantities during abundant rainfall seasons. 

Firstly, the local (district) agriculture officers (Vihiga office based in Mbale town 

and Laikipia offices based in both Rumuruti and Nyahururu town) were visited to 

obtain some background information and area maps on the status of agriculture and 

farming practices in the 2 areas. 

The questionnaire used in the survey and containing 2 sections and a total of 27 

questions (Appendix A4), was given to each farmer in the 2 areas. The 2 sections 

were designed to collect: 1) farming or farmer information; and 2) usage of forecasts 

in decision making. Two questions (9a & b and 9c & d) originally not included in the 

questionnaire were added after a pre-survey was conducted in the first week using a 

small sample of 24 randomly selected farmers from Emuhaya division in Vihiga. To 

assist in the exercise, two field enumerators were hired from each of the two areas. 

After the first 2 days of the survey, it was clear that most farmers preferred to answer 

the questions on “a face to face” or on the spot basis (“interview”). In other words, 

one had to be physically present as the farmer completed the process. Farmers who 

could not read or write preferred the interviewer to fill out their responses. Moreover, 

the questions were both in English and Kiswahili (national language) but where a 

farmer had difficulties and prefered to use the local language, a field assistant acted 

as an interpreter.   

The survey started in Vihiga in February 2012 and ended in April. The survey in 

Laikipia started in May and ended in June 2012. Selection of a farm was random 

with at least 4 farms being skipped after the selection of a farmer, to avoid bias in the 

results. Towards the end of each survey a group discussion with about 24 farmers 

was held in each of the two areas to validate some of the issues raised in the 

questionnaires (Appendix A5). Overall, there were a total of 111 responses and one 

discussion group response from Vihiga, while a total of 133 questionnaires and one 

discussion group response were collected in Laikipia. This means that the overall 

number of respondents was lower than the estimated sample size but still large 

enough to have confidence in the results. 

A summary of the conceptual sampling design modified from Dillman (2007) for the 

entire selection process from desk top review to field survey is shown in Figure 6.2.  
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Sampling Design Process 

Literature review: 

Hypothesis: Local Knowledge and SCFs are 

used in farming decisions 

Survey objectives 

 

 

Sampling Units selection 

(Specific locations in study area) 

Identification 

of study area 

 

Identification of climate-agriculture 

related characteristics, and farming 

history 

Rain - fed Farming 

 

Selection Criteria 

Exact number of farmers 

Population and sample size estimation methods 

Agro ecological 

zones and farm size 
2009 Census  

Sample size formula: 

Cochran (1963, 1977) 

Choice of optimum and range 

of sample size 

Purposive Random sampling: 

Selection of farms from study areas 

 

based  

ASgro ecological zones 

Use of Area map from local agriculture office 

to obtain sampling sub units 

 

Use local elders/discussion groups to get 

additional information discussion groups 

(a) Data collection-mixed methods 

(b) Questionnaire administration: 

 

1. Face to face (hand) delivery 

2. Face to face interview 

3. Group discussions 
 

Use/non-use of SCF/IF 

Agronomic practices  

 

Farm to Farm distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Sampling design process for the survey of farmers in Vihiga and Laikipia districts of Kenya  
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6.2.4. Climate data collection and analysis 

a) Precipitation and dry conditions characteristics 

The long term characteristics of rainfall and dryness patterns in the 2 study areas 

were analysed using historical rainfall, minimum and maximum temperature, wind 

speed, sunshine hours, relative humidity and cloud cover data for periods between 

1961 and 2012. This data was obtained from the Kenya Meteorological Department. 

Apart from rainfall, the rest of the data was only available from 1980.  Missing data 

were minimal and were filled with the long term average, apart from the rainfall for 

1998 (a strong El Niño year), which was missing from all the locations selected. This 

might have resulted in an overall underestimation of the monthly drought extremes. 

  

b) Dry spell analysis and Aridity Index (AI) calculation and their characteristics   

Dry conditions (‘dry spell’) were calculated using the methods in chapter 3 and 4. A 

dry day is considered to be any day with rainfall amount not exceeding 0.1 mm and a 

dry spell the sum of consecutive dry days in a month. To see if there are trends in dry 

spells, a generalized linear model (GLM) was used. 

To answer the question ‘how dry is dry” both rainfall and evapo-transpiration need to 

be considered (Tsakiris & Vangelis 2005). To complement method (b), Aridity Index 

(UNEP 1992) was used assess the degree of dryness. The Aridity Index (AI) is 

calculated as a numerical indicator using the ratio:  

PET

P
AI                               [6.2] 

where P (mm) is the average monthly rainfall and PET is the Potential evapo-

transpiration expressed as average monthly PET (mm).  

To estimate PET, the FAO Penman-Monteith method described in Allen et al. (1994, 

1998) was used. The FAO Penman-Monteith method require minimum and 

maximum temperatures (
◦
C), radiation/sunshine hours (h), relative humidity (%), 

wind speed (meters per hour) and precipitation (mm). The Penman-Monteith method 

to estimate PET/ETo is expressed in mm per month and can be given as:  
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             [6.3] 

Where ETo/PET is reference evapotranspiration (mm per day), Rn net radiation at the 

crop surface (MJ m
2
 per day), G soil heat flux density (MJ m

-2
 per day), T mean 
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daily air temperature at 2 m height (°C), u2 wind speed at 2 m height (m/h), es 

saturation vapour pressure (kPa), ea actual vapour pressure (kPa), es - ea saturation 

vapour pressure deficit (kPa), Δ  slope vapour pressure curve (kPa /°C), and γ 

psychrometric constant (kPa/°C). 

Table 6.2 shows the classification of climates (aridity indices) according to the 

UNESCO (Penman) and UNEP (Thornthwaite) methods. 

 

Table 6.2: Degree of aridity according to UNESCO (1979) and UNEP (1992) 

Zone UNESCO (1979) 

P/PET(Penman method) 

UNEP (1992) 

P/PET(Thornthwaite method) 

Hyper-arid 

Arid 

Semi-arid 

Sub-humid 

Humid 

<0.03 

0.02 – 0.20 

0.20 – 0.50 

0.50 – 0.75 

>0.75 

<0.05 

0.05 – 0.20 

0.20 – 0.50 

0.50 – 0.65 

>0.65 

 

c) Standardized Precipitation Index 

Due to difficulties in obtaining daily data sets in the study areas, the analysis of daily 

rainfall from neighbouring areas (GLM) was used to strengthen the monthly analysis 

(dry spells and AI calculations) using the standardized precipitation index [SPI] 

(McKee et al. 1993). The SPI is simple to apply and only requires monthly rainfall 

totals which may be easier to obtain compared to daily data and other climatic factors 

such as temperature. Positive [SPI] values indicate wet periods and negative [SPI] 

values indicate drought periods. 

 

6.2. 5. Analysis of farmer based information 

(a) Questionnaire data analysis 

Responses in regard to climate information were organised using MS excel spread 

sheets and qualitative and quantitative responses analysed using both descriptive and 

inferential statistical approaches such as; correlations and cross tabulations in R 

statistical program (R Development Core Team 2011). 

  

(b)  Associations between climate observations and farmers’ perceptions 

To explore relationships between different observations (indicators), a generalized 

linear model (GLM) was used within the frame work of the survey package in R (R 

Development Core Team 2013). 



139 
 

6.3. Results 

6.3.1. Monthly and seasonal rainfall patterns in Laikipia and Vihiga 

Variable rainfall patterns occur in the study locations (Figure 6.3 and Figure 6.4). In 

Laikipia (Rumuruti & Marmanet), the highest monthly total rainfall between 1961 

and 2011 was 354 mm with peaks occurring in April, July/August and November 

(Figure 6.4) whereas in Vihiga the highest rainfall was > 600 mm in the same period. 

The highest peaks in Vihiga were in March/April and November. Rainfall seems to 

be tri-modal in Laikipia and bimodal in Vihiga. In these regions, the long rain season 

is from March - May (MAM) and the short growing season from October - 

December (OND). 

The seasonal variability in the long and short growing seasons varied between the 2 

study areas. In Laikipia, the coefficient of variation (CV) of the mean seasonal 

rainfall was higher in the OND season (CV= 54.3% - 61.9%) compared to the MAM 

season (CV = 48% - 52.4%). Similarly, the CV of the mean seasonal rainfall in 

Vihiga was higher in OND (CV = 26.9% – 38.6%) than in MAM (CV = 19.2% - 

22.1%) season, but overall it was lower than in Laikipia. 

Across and within the seasons, there is a significant declining trend in rainfall for 

Marmanet (p=0.01) in MAM, an insignificant increasing trend in Rumuruti in both 

seasons and insignificant declining trends in both seasons in Vihiga and Sabatia, 

respectively. For individual months, no trends were indicated in most of the months, 

apart from significant trends in January and February in Vihiga.   

 

Figure 6.3: Monthly total rainfall for Laikipia west district between 1961 and 2011 
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Figure 6.4: Monthly total rainfall for Vihiga between 1961 and 2011 

 

6.3.2. Monthly and seasonal variability using dry spells and aridity index 

Figure 6.5 and 6.6 give the dry spell lengths (DSL) for locations in Laikipia and 

Vihiga from 1961-2012. The DSL increased from January - March/April at 

Colcheccio and Nyahururu (Laikipia) and again from June – October (Figure 6.5). 

Increases in DSL in Kakamega and Kisumu (Vihiga) occur from May - February 

(Figure 6.6). These patterns match those of the SPI results (ranging between -2.0 

(extreme dryness) and +2.0 (extreme wetness)). Negative SPI values occur in most of 

the months apart from April-May and July-August in Laikipia. This means that wet 

periods occur in the monsoon months and in July-August. In contrast negative SPI 

values occur in Vihiga in most of the months, apart from March-May and around 

November.  

Dry spell lengths in Colcheccio declined significantly (p=0.01) by 0.1 days per year 

or by 5 days in the overall period but showed no trends in Nyahururu. In contrast, 

DSL increased by 0.01 days per year in Kisumu but showed no trend in Kakamega. 

This seems to concur with the rainfall patterns in these regions which suggested 

declines in drought conditions over Laikipia relative to Vihiga.  
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Figure 6.5: Dry spell lengths based on 1961-2012 period for Colcheccio and Nyahururu in Laikipia district 

 

 

Figure 6.6: Dry spell lengths based on 1961-2012 period for Kakamega and Kisumu in western Kenya (Vihiga) 

 

 

Figure 6.7 displays the degree of aridity (AI) using the Penman-Monteith (Pen) 

method and plotted alongside the mean dry spell length for Nyahururu (Laikipia) and 

Kakamega (Vihiga) from 1980 to 2012. According to the classification in Table 1, 

Nyahururu was drier (AI ≤ 0.50) in 77% of the time compared to 52% of the time 

over Kakamega between 1980 and 2012. In other words Nyahururu seems to have 

been drier than Kakamega.  
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Figure 6.7: Aridity Index (AI) for Kakamega (top panel) and Nyahururu (bottom panel) for the period 1980-

2012. The horizontal dashed lines bounding the letters marked ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’ shows the AI values (y-

axis) according to the FAO Penman-Monteith aridity classification described in Table 6.1.  

 

In both the MAM and OND seasons, the degree of aridity tended to be similar to the 

monthly patterns (Figure 6.8). In Nyahururu, it was drier (AI ≤ 0.50) in 77.7% of the 

time compared to 28.3% of the time over Kakamega in the MAM season. In contrast 

aridity was higher in the OND than during the MAM season where Nyahururu was 

dry (AI ≤ 0.50) in 87.8% of the time compared to 65.7% of the period in Kakamega. 

A paired-test of the means between the monthly, MAM and OND patterns, indicate 

that, the AI for the 2 locations do not provide any evidence that means differ (p < 

0.05). This results corroborate the earlier ones in which the rainfall was highly 

variable (CV) in OND season than in the MAM season for the period starting in 

1961.  

For both the monthly and seasonal analysis, no significant trends in aridity were 

indicated in both locations using the 2 indices. The lack of trends may be attributed 

to the short period (1980-2012) since analysis based on the 1961-2012 period (results 

not shown) had indicated some trends in both regions. 
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Figure 6.8: Comparison of Aridity Indices for the monthly, MAM season and OND seasons for (a) Nyahururu 

and (b) Kakamega for the period 1980-2012.  

 

6.3.3. Farmers Perceptions of ClimateVariability 

Perceptions obtained from the Focussed Discussion Groups (FDG) and individual 

farmers from both study areas indicate that the seasonal rainfall patterns have 

changed in the last 2 decades (Table 6.2). More than 50% of the farmers from the 2 

study areas were aged at least 45 years meaning that their perceptions on local 

climate for the period under study was reasonably informed. This is consistent with 

the number of the farmers (>55%) who indicated having a good knowledge 

(memory) of the local climate. Most of the farmers had indicated that the local 

climate never used to “misbehave” before the 1980’s and therefore this year (1980) 

was used as proxy to assess climate patterns/variability over 2 periods (before and 

after 1980) as perceived by the farmers.  

Most of the FDG/farmers perceive that the rainfall seasons were more regular and 

predictable before the 1980’s compared to later. For example, 75.4% of farmers in 

Laikipia believe that the seasonal rains were regular as were 78.7% of their 

counterparts in Vihiga before the 1980’s. In contrast, more than 79% of farmers in 

both study areas indicate that the rainfall patterns were not regular after the 1980’s. 

Consistent with the rainfall patterns, most farmers considered that the rainfall 

amounts were more before the 1980’s compared to the latter period.This however is 

ironical because a substantial number of farmers (30% - Laikipia & 20% - Vihiga) 

had shown that they did not know whether the rainfall amounts had changed, a 

situation that appears to reflect the number of farmers who considered not having 

good knowledge of the local climate in both regions. Farmers’ sentiments on rainfall 
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and drought characteristics was principally in relation to declining or increasing 

agricultural production in their areas (see Table 6.3). 

Results from the analyses of seasonal patterns of dry conditions, show that about 

80% of farmers noticed regular patterns in the dry spells in the past (1960’s-1980’s) 

but a slightly lower (70%) number of farmers reported the opposite patterns in the 

later period in both areas. These results were almost similar to those reported by 

farmers that dry spells were more frequent in the later period in Laikipia (68.9%) and 

Vihiga (77.3%) than in the first period. This is consistent with climate data showing 

frequent trends (peaks) in dry spells in Kakamega and Laikipia (Figure 6.7). 

The views in regard to magnitude (duration) of dry conditions and change in the 

length of the growing season, was only limited to the FDG responses which were 

done after the overall survey (farmers) ended in each of the study areas. The majority 

of the discussants (FDG) from Laikipia (76.7%) and Vihiga (83.1%) felt that the 

duration of dry conditions have increased since the 1990s. Interesting however, was 

that, a large proportion of FDGs in Vihiga (>50%) reported that dry conditions 

declined in the first period compared to the proportion of those in Laikipia (2% & 

9%) who felt that dry conditions had declined in both periods. The later case might 

be a reflection of the most of the majority of FDGs (90%) who reported they didn’t 

know whether there were changes in the magnitude of dry conditions. Almost all the 

group indicated that the length of the growing season did not change in the first 

period in both areas. However, a substantial number of farmers (>47%) in both areas 

feel that the growing seasons have increased in the latter period. This might be due to 

the delay of the onset of the rains seasons. 

 

Table 6.3. Farmers’ perceptions of rainfall and ‘dryness’ patterns in Laikipia and Vihiga districts. 

The definition of the terms Good, Poor, Regular, Not regular,  Don’t know are used to mean the 

farmers’ judgement of the climate pattern, More, Less,No change, Increase and Decrease  as the 

farmer’s perception of quantity or magnitude of climate variable  (Rain and degree of dryness).  

Variable 

 

 

Age (years) 

 

Local knowledge of 

climate >20years  

 

 

 

20-45 

>45 

Good 

Poor 

Laikipia (N=133), FDG (N=24) 

               % of N 

Before 1980s, after 1980s 

33.1 

68.4 

55.4                89.2 

42.3                  8.2 

Vihiga (N=111), FDG (N=26) 

% of N 

      Before 1980s, after 1980s 

43.2 

56.8 

58.9                    96.5 

40.1                     4.5 
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Rainfall (pattern) 

 

 

Rainfall (amount) 

Regular 

Not regular 

Don’t know   

More 

Less 

No change 

Don’t know 

75.4 

12.3 

10.4 

65.2 

2.2 

2.3 

30.1 

9.2 

85.4 

5.4 

49.8 

30.3 

13.7 

5.8 

78.7 

8.4 

12.1 

73.1 

2.7 

3.6 

20.1 

7.5 

79.2 

12.7 

14.0 

63.5 

12.6 

9.3 

Dryness (pattern) 

 

 

Dryness (frequency) 

 

 

 

Regular 

Not  regular 

Don’t know   

More 

Less  

No change 

Don’t know 

78.3 

3.4 

18.2 

9.3 

84.1 

5.6 

<1 

11.3 

70.8 

17.1 

68.9 

2.9 

11.1 

14.7 

80.1 

5.3 

13.6 

8.4 

81.2 

1.4 

5.4 

17.3 

68.9 

12.2 

77.3 

7.7 

3.3 

10.1 

 

 

Dryness (duration) 

 

 

 

Growing season 

(length) 

 

 

Increase 

Decrease 

No change 

Don’t know 

Increase 

Decrease 

No change 

% of N =  24 

(FDG) 

1.3 

2.4 

- 

90 

2.5 

- 

95.8 

% of N =  24 

(FDG) 

76.7 

9.2 

2.1 

- 

58.2 

43.0 

1 

% of N =  26 

(FDG) 

2.4 

54.4 

9.4 

21.3 

5.7 

30.0 

92.6 

% of N =  26 

(FDG) 

83.1 

5.7 

2.8 

7.3 

48.5 

12.4 

36.3 

 

 

Comparing the results for the rainfall and ‘dryness’ patterns (Table 6.3), it seems that 

most farmers from both locations indicate that the rainfall and dryness patterns were 

consistent in the 1960-1980’s period but more irregular in the following period. 

Farmers from both areas also appear to be concerned that the rainfall amounts were 

more in the first period but less in the second period consistent with the majority of 

farmers who felt that dry conditions have become more frequent and longer in the 

later period than in the previous period. However, a larger number of farmers in 

Laikipia relative to Vihiga report more rainfall and less dry conditions. 

The perceptions between the climate patterns and the changes in the growing seasons 

are not clear cut but suggest that in both study areas farmers did not perceive any 

changes in the length of the growing season before the 1990’s. This might be related 

to farmers’ reports that there has been delay or changes in the start of the rains 

seasons which may have delayed/prolong planting/length of crop maturity. However, 

it might also have to do with the length of time that can be remembered accurately. 
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6.3.4. Relationships between climate variability and farmers’ perceptions in 

Laikipia and Vihiga 

In addition to probing farmers’ perceptions on climate variability and change, Table 

6.4 presents different ways in which farmers from the two study areas expressed the 

behaviour and variability of rainfall and dryness conditions in the past. The terms 

rainfall and dryness characteristics were mentioned by 56.3% and 44.0% of the 

farmers in Laikipia and 1/3 and 65.4% of the farmers in Vihiga respectively. While 

these do not directly indicate climate variability in temporal terms, they specify how 

farmers notice climate variability in varied ways. Moreover, these perceptions seem 

to match earlier reports by farmers on climate variability such that wetter than dry 

conditions occurred in Laikipia in the recent decades in contrast to opposite patterns 

in the past and the reverse patterns in Vihiga. 

More specifically, whereas farmers in Laikipia and Vihiga perceived larger changes 

in rainfall amounts and dry conditions after the 1980’s (Table 6.2) the analysis of the 

observed monthly and seasonal dry spell length in the 2 areas (Figure 6.4, Figure 6.5) 

over the period 1961-2011 only show trends in some months and locations and no 

significant trends in most of the months and seasons. However, rainfall indicated 

high variability (CV) in the short rain season compared to the long rain season in 

Laikipia and Vihiga (dry spell lengths tended to increase in some locations 

(Kakamega and Kisumu (Vihiga) and Colcheccio and Nyahururu (Laikipia)) which 

appears to reflect farmers perceptions that drought conditions have increased (more 

frequent) after 1980 in Laikipia (69%) and Vihiga (77%) (Table 6.3). This is also 

evident from Figure 6.6 whereby, longer dry periods (higher peaks and low AI 

values) are indicated in Nyahururu and Kakamega from around 1995 compared to 

the first period.   

Farmers’ perceptions may be influenced by recent trends in rainfall patterns where 

prolonged and severe dry periods have been witnessed, at least since 2006. For 

instance, a majority of farmers in both areas indicated that the rainfall patterns were 

more regular previously but have become more irregular since the 1980’s. This 

maybe a reflection of the rainfall patterns across both study areas (not shown), which 

indicates distinct variations between the years and across seasons during the period. 

Analysis of rainfall showed the greatest variability in the short (OND) season. 

Claims of shortening of the growing seasons suggest that farmers perceive greater 

variability in the rainfall and drought patterns than may be highlighted in the actual 
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observations. Whereas this concept is supported by farmers’ perceptions of climate 

change (Laikipia (3.5%) and Vihiga (11.5%)), change in rainfall patterns (15.4%) in 

Vihiga and increased rainfall amounts (11.8%) in Laikipia and so on (Table 6.4), 

analysis of dry spell lengths (Figure 6.5 and 6.6) indicates that there are variations in 

the climate of the two areas. There were also reports of warmer night and day 

temperatures in Laikipia (6%) and Vihiga (4.5%) in the last recent decade which was 

consistent with analysis of the maximum (max) and minimum (min) temperatures in 

which a rise of 0.03
0
C/year (max, p=0.001) and 0.02

0
C/year (min, p<0.0001) 

occurred in Kakamega while an increase of 0.02
0
C/year in the minimum temperature 

(p=0.01) was observed in Nyahururu. The farmers’ perceptions are generally in 

agreement with other studies in the region that suggest that temperatures have 

substantially risen in the last several years (Kilavi 2008). 

More specifically, farmers mentioned the occurrence of severe droughts in the years 

2000, 2009 and 2011 which tend to be similar with patterns in Figure 6.7. The AI 

values for these years varied from 0 – 0.006 in Laikipia and from 0.02 – 0.08 in 

Vihiga. This indicates that farmers in Laikipia seem to have experienced harsher dry 

conditions than their counter parts in Vihiga during the 3 respective droughts.  

 

Table 6.4: How farmers in Laikipia and Vihiga districts described climate variability. Terms used 

are indicators expressing how farmers perceive rainfall and dryness characteristics 

Laikipia (% of N=133)  Vihiga (% of N=111) 

Rainfall related characteristics  

High rainfall variability 3.5 

Better rains 10.5 

Climate change 7.0 

Early rains 1.8 

Favorable rains  1.8 

Good rains 7.0 

Improved rains 5.3 

Increased rainfall amounts 11.8 

Rainfall sufficiency 1.8 

Timely rains 1.8 

Too much rains 3.5 

Rainfall related characteristics  

Better rains 7.7 

Floods 3.8 

Good rains 3.8 

Hailstorms 7.7 

High rainfall 3.8 

Improved rains 3.8 

 

Dryness related characteristics 
Unreliable rains 1.8 

Dry spells occurrence  1.8 

Erratic rains  3.5 

Reduced rains 10.5 

Less rainfall 3.5 

Low rainfall 5.3 

Poor rains 3.5 

Rainfall deficit 12.3 

Frost effect 1.8 

Dryness related characteristics 
No change in rainfall 3.8 

Poor rains 3.8 

Wind destruction 7.7 

Dry spells 3.8 

Erratic rains 11.5 

Low rainfall 7.7 

Climate change 11.5 

Change in rain patterns 15.4 

Frost effect 3.8 
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6.4. Coping with climate variability in Laikipia and Vihiga 

In Kenya, planting times correspond to the rainfall season, but at times, occurrence 

of dry periods may break this pattern and affect cropping decisions. All the farmers 

in Laikipia and 97% of those in Vihiga said they experience dry spells in some 

cropping seasons. The mean and variance of the DSL in these regions indicates that, 

the average DSL for Laikipia in the long March – May cropping season is about 5 – 

10 days and 4 -10 days in the short October-December cropping season. For Vihiga, 

the average DSL is about 3 days in each of the two growing seasons. Between the 2 

study areas and as indicated earlier, dry spells are more highly variable in Laikipia 

than in Vihiga consistent with the climates of the two areas.  

 

Table 6.5: Mean and variance of dry spell length in Laikipia and Vihiga 

Area Location  Seasonal mean  

 dry spell length (days) 

Seasonal dry spell  

length variance (days) 

  MAM OND MAM OND 

Laikipia 

 

Vihiga 

Colcheccio 

Nyahururu 

Kakamega 

Kisumu 

9.8 

5.1 

2.7 

2.6 

10.1 

  4.3 

  3.0 

  3.0 

321.4 

  72.9 

  12.0 

    8.4 

250.4 

  24.1 

  11.0 

    8.8 

 

To deal with climate variability, farmers in the 2 locations use varying coping 

mechanisms (Table 6.6). Comparatively, more farmers from Laikipia (62%) than in 

Vihiga (41%) indicated that their first option, to cope with dry periods, was to replant 

the same crop, or an alternative crop. However, a key difference between the two 

areas is that farmers in Laikipia said they experienced dry periods often, which in 

turn forced them to have more coping mechanisms in place compared to their counter 

parts in Vihiga. These results are consistent with the dry spells statistics (at most 

DSL = 10 days in Laikipia but DSL = 3 days in Vihiga) in these regions and what the 

farmers reported.  

Multiple options were preferred as they ensured more resilience to drought and hence 

they were used in combination at the same time. In Laikipia, digging of trenches to 

conserve water, mixed cropping, short and fast maturing crops, alternative farming or 

businesses such as raising poultry, doing nothing and use of previous season’s yields 

to get income, supplementary irrigation and prayers, all formed an integrated 

framework for coping with drought risk. Although less coping mechanisms were 

practiced by farmers in Vihiga, it is interesting that 15% of the farmers indicated that 

they uprooted their crops before replanting afresh. This is a strange strategy as one 
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would expect crop residuals would act as a barrier against soil evaporation during a 

dry period. 

In addition, farm households purchased food in response to drought conditions after 

their stocks (previous harvests) ran out. About 34% of farmers in Laikipia and 43% 

from Vihiga also reported purchasing subsidized fertilizer and seeds from the 

National Cereals and Produce Board before the planting seasons as a way of boosting 

agriculture production and food security. However most complained that there are 

often delays and forces them to purchase from private traders mostly at higher prices. 

Yet, some farmers mentioned selling assets and other things such as livestock and 

portions of their land to cope with climate extremes. 

 

Table 6.6: Coping mechanisms and adaptation strategies to climate variability in Laikipia and Vihiga 

Climate  

perception 

Indication      Coping or adaptation strategy   

Late rainfall 

onset 

 

 

 

Seasonal rains come after 

mid-March or in April and 

late October 

 Soaking of seeds over night  

 Planting of quick maturing crop varieties 

(Katumani or 511 maize breed etc.) 

 Digging of trenches to conserve rain water 

 Use of climate and indigenous forecasts 

Early or normal 

rainfall onset 

 

 

 

Seasonal rains come in 

February-very early March 

and late September  to early  

October 

 

 

 Planting of late/long maturing crop varieties 

and livestock feeds (Napier grass)  

 Mixed cropping (early & late maturing crop) 

Enhances food availability early in the season 

 Double ploughing before planting 

 Use of climate and indigenous forecasts 

False start of the 

rains 

Few days of heavy rainfall 

followed by long breaks of 

dry days. 

 Delaying of planting (some farmers risk and 

hope the rains will resume shortly) 

 Replanting of same crops or alternative crop 

 Seek advice from local agriculture office  

Increased 

rainfall amounts 

as the season 

progresses 

 

Increased soil moisture due 

to continuous light to mild 

rainfall in the season  

 

 

 Digging of trenches and small water pans  

 Mixed cropping and continuous weeding 

 Planting of trees  

 Planting of vegetables (e.g. Kales) 

 Use of treated seed fertilizer and manure 

Erratic or poor 

rains as the 

season progresses 

 

 

Poor patterns in distribution 

of rainfall and spacing and 

mostly characterized by little 

daily rainfalls amounts 

 Planting of short maturing or drought 

tolerant crops e.g. millet, sorghum, cassava  

 Change to other types of enterprises such 

chicken, pigeon or rabbit rearing 

 Use of supplementary irrigation 

Rainfall failure 

 

 

 

The rains occur in few 

occasional storms or normal 

rainfall events and suddenly 

disappears throughout the 

season 

 Shifting to other businesses or look for 

casual (temporary) jobs. 

 Planting and use of mulching to limit 

evaporation 

 Prayers and doing nothing 

 Uprooting of crops  
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Increase in 

occurrence of 

dry spells 

Dry spells occur in the 

season after the crop 

development and around 

when maize crops are knee 

or waist high. Dry spells on 

some occasions occur earlier 

 Mulching around the crop to limit 

evaporation   

 use of supplementary irrigation or water 

conserved in trenches or pans 

 Continuous weeding 

 Uprooting of crops  

Increase in heavy 

rains e.g. 

1997/1998, 2006 

Continuous heavy rains lead 

to much flooding in the 

season and water logging of 

the soils as well as erosion in 

some areas   

 Digging of trenches around farms to take 

water away 

 Planting of water resilient crops such as 

arrow roots and Kikuyu/Napier grass  

 Move to other areas 

Other views: 

Prolonged 

droughts  

Rains in harvest 

times 

Increased 

temperatures 

Continuous dry periods 

spanning several 

months/years or rains during 

harvest times 

Incidences of pests such as 

army worms, locusts and 

moths 

 Purchase food, sale of assets (livestock 

etc.) 

 Premature harvesting  

 Migration to towns to look for 

employment 

 Application of pesticides 

 Consult agriculture extension officers 

 

6.5. Discussion 

The current study shows that, farmers discern and analyse climatic patterns through 

observation and experience. This study had > 90% response rate, a standard deemed 

good and therefore likely to give results that are representative of the entire 

population (Button et al. 2013). 

Observed rainfall patterns in the study areas are generally consistent with the agro-

climatology of these regions (Sombroek et al. 1982) which are humid (Vihiga) to 

semi-arid (Laikipia). Analysis of dry spells and degree of aridity from the historical 

rainfall records in these regions gave some interesting results. Considering that 

Laikipia is a dry region and Vihiga a humid region that are characterised by low and 

high rainfalls respectively, it was expected that these areas would exhibit drier and 

wetter patterns. However, the rainfall patterns in Laikipia showed that in the last 50 

years, less dry periods occurred compared to Vihiga. This concurs with farmers 

reports which indicated better yields in Laikipia than in Vihiga Changes in rainfall 

distribution and amounts can affect crop production (Riha et al. 1996) and prolonged 

dry periods during the critical cropping periods cause crop failure or reduced yields 

(Sivakumar 1992). The above results contrasts with those of a recent study in eastern 

Laikipia where farmers indicated increased droughts in the last few decades (Huho et 

al. 2010, Ogalleh et al. 2012) while prevailing declining rainfall trends in western 

Kenya (Vihiga) are consistent with those reported recently (see, for example, 

Omondi et al. 2013).  
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Some key differences can be identified between the two areas. For example, farmers 

in Laikipia tended to adapt water conservation approaches to respond to the perennial 

problem of dry spells or drought in the region whilst farmers in Vihiga proactively 

adopted agronomic strategies (Table 6.7). The tendency to use several coping 

strategies in Laikipia is probably due to the frequency and increased occurrence of 

drought (Ayeri et al. 2012, Gitau 2014) whereas the need to ensure food availability 

relative to occurrence of drought drives the agronomical actions of farmers in Vihiga 

(Figueroa et al. 2008). Trends in aridity patterns between the 2 areas appear to occur 

at different times (Table 6.7). The degree of dryness and DSL tended to increase in 

prior to the monsoon season in Laikipia (January-March and June – October) 

whereas this occurred after the long rain season (May – February) in Vihiga. This 

might be due to the differences in the synoptic patterns controlling the local climate 

in these regions. 

    

Table 6.7: Key differences between Laikipia and Vihiga 

Attribute Explanation 

Laikipia Vihiga 

Seasonal rainfall pattern  Coefficient of variation is 

highest in OND compared to 

MAM, and monthly total 

rainfall averages <200mm – 

350mm 

Coefficient of variation highest 

in OND compared to MAM and 

monthly total rainfall averages 

400mm – > 600mm 

Average dry spell length 

(DSL) 

DSL range from 5 days – 10 

days in MAM and 3.5 days – 10 

days in OND 

DSL range from 2.5 days – 2.8 

days in MAM and 2.7 days –  3 

days in OND 

Dry spell length/ Aridity 

trends 

Between 1961 and 2012, DSL 

and degree of aridity increased 

from January – March  and from  

June  - October 

Between 1961 and 2012, DSL 

and degree of aridity increased 

from May  - February 

Coping mechanisms Strategies to cope with weather 

changes such as dry 

periods/drought occurrence are 

mostly related to water 

conservation and change of crop 

choices 

Strategies to cope with weather 

changes such as dry 

periods/drought occurrence are 

more related to change in 

planting times and other 

agronomic decisions 
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Farmers’ responses indicate that they are aware of the general climate patterns in 

their locations, which they said had changed. Similar claims from farmers, have been 

reported in central Kenya (Ovuka & Lindqvist 2000, 2010) and Uganda (Roncoli et 

al. 2010). While farmers perceived variability in the rainfall and drought patterns, the 

observed climatic data show no significant trends in most of the months and seasons 

with the exception of few locations where declining or increasing trends were 

indicated. Rainfall analysis of locations in ASAL areas in the north and north eastern 

parts of Kenya show declining trends in rainfall in the MAM season compared to the 

OND season since 1960. Although the current findings agree with those by Bryan et 

al. (2010) in which most farmers perceived that the long term average temperatures 

had increased while precipitation declined across several regions in Kenya, the 

results were limited to data for the period 1957-1996 and not specifically focused on 

intra-seasonal patterns. The current results might then question farmers’ perceptions 

of changes in the climate when the actual data doesn’t seem to support such notions. 

It is possible that farmers’ perceptions are correct in qualitative terms but the 

differences with the observed historical data could be related to other factors not 

considered in the assessments. This might be related to the fact that climatic data is 

naturally non stationary. For instance, the actual minimum and maximum 

temperatures in the study areas increased (Funk et al. 2010) consistent with farmers’ 

reports and might have had a significant effect on evaporation and water availability, 

and aggravated drought conditions. Currently, no study appears to have specifically 

examined the relationship between temperature and drought conditions in these 

regions. Dagg & Blackie (1970) had examined the variation of evaporation in eastern 

Africa and found that it was more dependent on solar radiation than on temperature 

and suggested a possible association between evaporation rates and cloud cover or 

sunshine hours rather than temperature. It is therefore likely that the use of several 

climatic data sets (rainfall, sunshine hours, cloud cover etc.) in this study gives a 

better picture of the drought patterns in the study regions. 

Farmers in Kenya recounted that the timing of the monsoon which normally occurs 

between March and May (long season) and again in October - December (short 

season) appears to have changed since the 1980’s. Specifically, planting and 

harvesting times occur late due to a delay in the monsoons. Consistent with the 

current results (see Table 6.3 and 6.5), farmers memory length may span several 

years back (Lundqvist 2001) and how far in the past farmers may remember is 
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influenced by exceptional events which may have occurred, such as extreme 

precipitation and drought (Nazarea 2006). While farmers planted with the start of the 

monsoons, in Vihiga, they reported planting 3-5 days after the onset in contrast to 

their counter parts in Laikipia where planting occurred 2 days after the rainfall onset. 

This, on one hand, suggests that, planting occurred “late” not because of delayed 

monsoon, but rather because farmers choose to delay as a precaution against false 

start of the rains. On the other hand, planting came later, because the actual start of 

the monsoon often delays. Farmers said they used to plant towards the end of 

February or early March in the past but now they plant late in March or early April. 

Some farmers in Laikipia said the onset comes after rains occur in Nairobi (capital 

city), which means the highlands east of the rift valley. 

Matching this views, some evidence of later onset of the monsoon season has been 

shown in central Kenya (Ovuka & Lindqvist 2000). Camberlin and Okoola (2003) 

suggest that the onset of the monsoon seasons in Kenya exhibits unexplained year-

year variability. In contrast to perceptions of changes in onset times, Mugalavai et al. 

(2008) indicates that, the onset of the monsoon in western Kenya has not changed. 

Based on rainfall for 1960 - 2003 from 26 locations, they found that the onset of the 

monsoon progressed southwards in the region. This would mean that changes 

perceived by farmers in the region are the opposite of the observed historical records.  

Considering the long term patterns between the rainfall seasons, the actual climate 

data show that dry conditions were more variable during the OND (short) season 

than in the MAM (long) season. The inter-annual variability of rainfall in Kenya has 

been shown to be higher in the short rains season than in the long rain season 

(Nicholson 1996), although much of the annual rainfall is accounted for in the long 

rain season. Farmers indicated that before the 1980’s, the seasons had been more 

regular and less dry compared to the latter periods. This seems to compare well with 

the findings of Zhu et al. (2011) which show that over much of Kenya there was no 

significant droughts in more than half of the years between 1957 and 1983, similar to 

farmers feeling that they enjoyed better seasons. However, the perception of 

irregularity in the seasons after the 1980s signals a possibility of changes in the 

mechanisms driving the climate systems of the regions. An analysis of the last few 

years, indicate that, out of the 10 monsoon seasons between 2007 and 2012, about 4 

of the long rains seasons recorded low rainfall or more dry conditions compared to 

the short rains and was possibly the reason why farmers reported low yields in the 2 
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regions. The delay in the monsoon might be related to farmers’ reports indicated 

earlier that planting and harvesting times occur late. Delay of the monsoon and 

planting and harvesting dates in Laikipia have been documented recently (Huho 

2011) while no changes in the onset of the monsoon are indicated in Vihiga 

(Mugalavai et al. 2008). One possible explanation for changes perceived by farmers 

in Vihiga might be driven by changes in rainfall patterns since 2008 which were 

characterised by more dry seasonal conditions than previous years.  

Studies looking at malaria trends in the western highland regions (e.g. Minakawa 

2012) have associated the shifts in malaria transmission with increasing temperatures 

and rainfall patterns in higher altitude areas in the region after the 1990’s. Whereas 

farmers perceived that the rainfall amounts had declined since the 1990s, linear 

regression of the rainfall data only revealed that declining rainfall amounts occurred 

more in MAM relative to OND season in Laikipia and opposite trends in Vihiga. The 

results for Laikipia reflect those of Williams & Funk (2011) which indicate that 

rainfall has declined in the MAM season at least between 1980 and 2009 but contrast 

to Vihiga which seem to reflect Intergovernmental Panel on Climate Change reports 

for increased precipitation over eastern Africa. 

Analysis of farmers’ perceptions in regard to climate variability revealed that farmers 

have been managing their farms using numerous coping mechanisms. Similar to 

several other studies globally (e.g. Wilhelmi & Wilhite 2002, Ciais et al. 2005, 

Hertzler et al. 2006), farmers mentioned the frequency of droughts as one of the key 

obstacles they had to cope with. Crop (yields) reductions due to drought are a 

common feature in Kenya. Interestingly, farmers from the 2 areas selected their 

coping strategies according to the perceived behaviour of the rainfall and drought 

patterns (Table 6.6). For instance, in response to dry spell occurrence, farmers opted 

to mulch around their crops and use supplementary irrigation from trenches or pans, 

whereas a delay in the rainfall onset triggered delayed planting and replanting when 

crops failed. In other words most of the strategies are short-term or instant responses 

to climate variability, which suggests that long-term adaptation mechanisms are 

limited in the regions. Other studies in the region depict a similar picture (Speranza 

et al. 2008, Roncoli et al. 2010, Ogalleh et al. 2012). Because farming in sub-Saharan 

Africa is marred by poor adaptive capacity and technological capabilities, this 

requires integrated efforts between farmers, the government and other stakeholders. 

Access to community based micro-credits by farmers for instance is one way that has 
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started to enhance farmers’ ability to deal with climate variability (Duran 2005) and 

the government efforts to supplement rain-fed agriculture with irrigation schemes in 

some parts of the country. 

The limitation to this study was a lack of climatological data for most locations in the 

study areas. The scarcity of long-term contextual information on farmers’ 

perceptions of climate hindered adequate statistical or inferential comparisons 

between observations and farmers perceptions. 

 

6.6. Conclusions 

The study showed that, most farmers perceived changes in the seasonal and long 

term patterns of rainfall and dry conditions, with significant changes occurring after 

the 1980’s while the actual records indicated that rainfall and drought conditions 

varied more in the short rain season than in the long rain season. This was more 

reflected in Vihiga compared to Laikipia. Nevertheless, rainfall patterns in both 

regions showed no significant trends in the overall period although a slightly higher 

number of farmers in Vihiga compared to Laikipia perceived the rainfall patterns to 

be regular prior to the 1980’s than later.  Farmers in Vihiga reported that the onset of 

rains and the planting times have changed and are later compared to Laikipia.  

Farmers overwhelmingly responded to climate variability through short term actions 

mainly; changing planting times, crop diversification, water conservation and 

replanting, with more coping options being used in Laikipia compared to Vihiga. 

The current results update the existing knowledge in regard to farming and 

management of climate variability in this region and maybe used to guide decisions 

of farmers and other stakeholders and future research in the region. 
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CHAPTER 7 

THE CHANGING WATER CYCLE AND KENYAN SMALL-

SCALE MAIZE FARMING SYSTEMS: PART 2. COMPARING 

FARMER AND FORMAL BASED CLIMATE FORECASTS 

Abstract  

Agricultural development policies might have failed because local knowledge and 

how it influences farmers’ decision making has been ignored. In Kenya, benefits of 

use of indigenous (IF) or seasonal climate forecasts (SCF) by farmers in Kenya have 

not been quantified. This study focuses on maize farmers from semi - arid (Laikipia) 

and humid (Vihiga) locations of Kenya in relation to application of IF and SCF 

forecasts in agronomic decisions. 

Using qualitative and quantitative approaches, this study revealed that, more (>50%) 

farmers from each of the areas used IF. About 60% of farmers in Laikipia indicated 

increasing maize yields in the last 5 years, which was consistent with the rainfall 

records in the area. Actual yields reached up to a maximum of 7.65 tonnes per 

hectare. In Vihiga, 67.6% of farmers indicated declines in maize yields which 

averaged <2 (90 kg) bags per hectare in the same period which again reflected the 

rainfall patterns in the period. Non-climatic factors were attributed to yields increases 

and climatic factors to yield declines in Laikipia. In Vihiga, yield increases and 

declines were linked to non-climatic factors. In other words, forecasts were probably 

not used because farmers believed they had little direct effect on maize yields. 

The application of forecasts indicates clear differences between humid (Vihiga) and 

semi-arid (Laikipia) agriculture systems such that, less adaptive mechanisms feature 

in Vihiga compared to Laikipia. There is a gap between agriculture policies and use 

of forecasts by farmers in these regions. There is still need for more research to 

understand the trade-offs between use of IF and SCF in farm decisions in this 

regions. 

 

7.1. Introduction 

In several countries, agricultural development policies are thought to have failed 

because local knowledge and how it influences farmers’ decision making was 

ignored (e.g. Moock & Rhoades 1992, Schoonmaker 1994, Hommes et al. 2009). 

Numerous studies (e.g. Holloway & Ilbery 1997, Graef & Haigis 2001, Letson et al. 
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2001, Roncoli et al. 2002, Luseno & Winnie 2003, Keogh et al. 2004, Hageback et 

al. 2005) indicate that farmers’ perceptions that relate to climate and farming help 

them respond positively to climate variability. Such studies hypothesise that farmers 

hold some local knowledge that is useful for managing climate variability impacts in 

agriculture (e.g. Sulyandziga & Vlassova 2001, Borron 2006). Particularly the use of 

indigenous knowledge in sub-Saharan Africa is found to be multi-faceted, ranging 

from better conservation measures to carbon sequestration (e.g. Nyong et al. 2007). 

More specifically, farmers’ responses to climate variability (see chapter 3) in the 

planting seasons were tailored according to how climate (rainfall onset, dry spells 

occurrence etc.) patterns evolved or were perceived by the farmers. In this context, it 

is now widely accepted that while the science of climate has been growing in the last 

several years, farmers experiences and knowledge must be integrated in agriculture 

policies to enable use of improved innovations in the management of climate risks 

(e.g. Stigter et al. 2005, Meinke et al. 2006). However, to achieve this, more effective 

and innovative links between farmers’ knowledge and scientific knowledge should 

be created (DeWalt 1994). 

In Kenya, a close relationship exists between climate variability and agriculture 

production since agriculture largely depends on rainfall. Drought has a greater 

impact on agriculture in Kenya than any other factor. The use of farmers’ knowledge 

to respond to such impacts has been useful, but constrained by insufficient resources 

and poor agricultural practices (Eriksen et al. 2005, Sivakumar et al. 2005). For 

example, agro-pastoralist farmers extensively use indigenous forecasts (IF) which are 

bio-physical indicators of climate to manage drought in semi-arid regions of Kenya 

(e.g. Oba et al. 1987, Campbell 1999, Ngugi 2002, Western 2003, Wasonga et al. 

2011) by adjusting their food production and grazing patterns to maintain stocks and 

yields (Fleurett 1986, Oba 2001, Ngugi 2002). Farmers’ perceptions in Kenya have 

also been useful in the examination of soil and moisture characteristics (e.g. Okoba 

& De Graaff 2005, Mairura et al. 2007, Odendo et al. 2010), water conservation (e.g. 

Bahame 2009), land degradation (e.g. Roba & Oba 2008) and pest control (e.g. 

Chitere & Omolo 1993).  

Despite numerous studies on the use of indigenous forecasts in Kenya, there is very 

little empirical analysis if farmers assess or know the quality of indigenous forecasts. 

However, a recent study in Kenya suggests that fuzzy logic can be used to 

contextualize indigenous climate knowledge by differentiating farmers experiences 
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of extreme climatic events (Leclerc et al. 2013). The study demonstrated that 

farmers’ perceptions on crop losses due to extreme climatic events were accurate and 

consistent with the historical climate records. Lybbert et al. (2007), had examined 

how pastoralists in Ethiopia and Kenya adjusted their beliefs in IF in response to 

SCF. Most of the pastoralists adjusted their perceptions upwards in response to the 

climate information but the study did not establish the skill of their choices. Kalungu 

et al (2013) reported that despite most farmers in semi-arid areas of Kenya have 

improved their farming practices through indigenous knowledge and other ways and 

are adapting to climate variability, their productivity remained low.  

Whereas the use of IF predominate African farming systems, the use of more formal 

seasonal climate forecasts (SCFs) has been documented in Kenya (e.g. Ogallo et al. 

2000, Ngugi 2002, Thornton et al. 2004). These studies mostly focus on the potential 

value of SCFs in agriculture (e.g. Patt et al. 2007), economic yield analysis (e.g. 

Amissah-Arthur et al. 2002, Hansen & Indeje 2004) and humanitarian and disaster 

planning (e.g. Orindi et al. 2007, Rarieya & Fortun 2010). However, farmers show 

high confidence in IF compared to other forecasts (e.g. Lybbert et al. 2007, Bahame 

2009). A case study by Recha et al. (2008), found that most small scale farmers, 

using SCFs in semi-arid regions of Kenya, lacked confidence in SCFs and made farm 

decisions based on what they perceived, rather than what actually was. In contrast an 

earlier study showed that most farmers had increased confidence in SCFs, mostly due 

to awareness raised by the 1997/98 El Niño event (Ngugi 2002). A recent study 

conducted in Kenya, indicated that most farmers were likely to use climate forecasts 

for adapting to climate variability (Bryan et al. 2013).  

Although it’s clear that IF forms an essential part of the farming systems in Kenya, it 

is unclear how this knowledge can be translated into quantitative and scientific terms. 

In addition, there appears to be a need to integrate IF and SCFs at the local level. The 

main aim of this study therefore is to examine the use of indigenous forecasts (IF) 

and seasonal climate forecasts (SCF) by farmers in Vihiga and Laikipia districts of 

Kenya in response to climate variability. The specific objectives of this study are to:  

i. Assess the associations between indigenous forecasts and observations of 

weather 

ii. Explore farmer preferences with respect to indigenous and evidence based 

forecasts and relate climate patterns and maize (Zea mays L) yields 

iii. Provide an inventory of indigenous and evidence-based forecasts  
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7.2. Research methods  

7.2.1. Study area and data collection 

The study locations used in this analysis are similar to those described in chapter 6. 

The study focuses on Laikipia west district which is semi-arid, with annual rainfall 

ranging from 400 mm -1200 mm and located in the central region of Kenya and 

Vihiga district which is humid and receiving about 1800 mm – 2000 mm of rainfall 

per year and located in western Kenya.  

Both qualitative and quantitative methods were used to obtain information from 

farmers in regard to use of forecasts in farm decisions. Both empirical methods and 

other demographic data was used to estimate the sample size in both regions. During 

the survey, a total of 111 responses and one discussion group response was collected 

from Vihiga and 133 responses and one discussion group response obtained from 

Laikipia.  

 

7.2.2. Characteristics of dry spell length and Aridity Indices for 2007-2011 

The rainfall and dry condition patterns in the 2 study areas were analysed for the 

period between 2007 and 2011. Similar to Chapter 6, dry spell length in the study 

locations was calculated from daily rainfall as the sum of consecutive dry days while 

the Aridity Index (UNEP 1992) was used examine the degree of dryness whereby the 

Penman-Monteith method was used to calculate the Potential Evapo-transpiration. 

 

7.2.3. Data analysis 

(a) Questionnaire data analysis 

Qualitative and quantitative responses extracted from questionnaires were subjected 

to both descriptive and inferential statistical analysis and results tabulated or 

presented in graphical forms.  

 

(b)  Associations within farmers’ perceptions of climate and maize yields and 

between the use of IF and SCF attributes 

Farmers’ perceptions such as, why yields declined or increased, or the choice of 

seasonal forecasts rather than daily forecasts in farm decisions, may be influenced by 

other factors. Data on maize yields is analysed in 3 ways: Current actual yields for 

2011 are defined as “Yield 2”, yields 5 years earlier (2007/2008) are defined as 

“Yield 1” and the best guess scenario yields are identified as “Ideal Yield” or the 
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yields that farmers would expect under the best conditions. In order to test the 

accuracy or skill of forecasts farmer’s perceived score is based on a scale of 1 - 5 in 

which 1 means that a farmer deems the forecasts are least accurate and a score of 5 

that the forecasts are extremely accurate or about 100% correct. This may be 

different with the statistical measure of accuracy which is based on the differences 

between a forecast and the actual or hind cast occurrence.     

To test for significant associations between different variables (choices), a 

generalized linear model (GLM) was used within the frame work of the survey 

package in R (R Development Core Team 2013). In order to use the survey package 

and analyse the selected sample information on farmer’s perceptions, a survey object 

or design must first be created. The svydesign () object simply stores the data to be 

used in the analysis and also defines how the variables are stratified according to the 

selected index or proxy such as gender or level of education, clusters and sampling 

weights. The sampling weights were generated using the 2009 population census in 

the 2 regions and were used to account for population variability between variable 

groups.  

 

7.3. Results 

7.3.1. Rainfall characteristics  

Figure 7.1 shows the monthly total rainfall distribution for locations in Laikipia (a) 

and Vihiga (b) between 2007 and 2011. In Laikipia, the highest monthly rainfall was 

297.6 mm (June 2007) in Rumuruti, 219.4 mm (August 2011) in Marmanet, 299.1 

mm (September 2007) in Nyahururu. Overall the lowest rainfall amounts occurred in 

2008, 2009 and 2011. In Vihiga, the highest rainfall amount was 625.8 mm (August 

2011) in Vihiga, 330.1 mm (August 2011) in Sabatia and 353.1 mm (September) 

2007) in Kakamega. Similar to Laikipia, the lowest rainfalls were recorded in 2008, 

2009 and 2011.  Clearly, the highest rainfall amounts were recorded in non-monsoon 

months in all the locations in the 2 study areas.  

Linear regression results indicate that there is insignificant increasing trend in rainfall 

for most of the locations in both study areas during the period. Again, no trends are 

indicated in March – May (long) and October – December (short) rain seasons in 

both regions apart from increasing trend (p = 0.02) over Marmanet (Laikipia) in the 

long rain season.  
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Figure 7.1: Monthly total rainfall for (a) Rumuruti, Marmanet and Nyahururu in Laikipia and (b) Vihiga, 

Sabatia and Kakamega in western (Vihiga) Kenya 

 

7.3.2. Dry spells and aridity characteristics 

The patterns in the dry spells lengths and aridity index (AI) for Nyahururu and 

Kakamega are given in Figure 7.2. Consistent with the rainfall patterns in the 2 study 

locations, the aridity index for Nyahururu and Kakamega shows that the driest 

periods (AI < 0.4) occurred in the first halves of 2007, 2008, 2009 and 2011 and the 

wettest periods (AI > 0.8) between May and August 2007 at Nyahururu and in 

August and September 2007 and June and November 2011 in Kakamega. The 

longest dry period was from September 2007 – May 2008 in Nyahururu and from 

September 2010 – March/April 2011. Clearly, in the 5 years period, some of the 

driest periods occurred around the growing seasons while wet periods were occurred 

after the monsoon seasons in the two locations.  

A negative relationship was indicated between rainfall and the maximum dry spells 

lengths for these locations (Appendix A7), as would be expected. The coefficient of 

variation of the maximum dry spell length and aridity index exceeded 50% in both 

locations [Nyahururu (CV = 67.5%, AI = 88.3%) and Kakamega (CV=66.1%, 

AI=55%)]. Figure 7.2 shows the aridity index for Kakamega and Nyahururu between 

2007 and 2012. Hyper-arid to semi-arid conditions (AI < 0.5) occurred in over 50% 

of the time in Kakamega (Vihiga) and Laikipia although Kakamega tended to 

indicate more dry conditions towards the end of the period. These results seem to be 

similar to those of the dry spells patterns (not shown) and those obtained for other 

locations from the two regions.  
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Considering the humid and semi-arid climates of these 2 areas, locations in Vihiga 

appeared to indicate drier conditions compared to Laikipia in the last 5 years. 

     

 

Figure 7.2: Box plots of Aridity index for Kakamega (top panel) and Nyahururu (bottom panel) for the period 

2007 -2012. 

 

7.3.3. Farm level information 

Most farm sizes in Laikipia range from 1 - > 5 Ha (94.7 %) and 0.5 - > 0.5 Ha in 

Vihiga (92.8%). In Laikipia, over 50% of farmers are men and 43.6% are women. In 

contrast, most farmers in Vihiga (70.3%) are women. These results suggest farm size 

and gender differences in both areas. In both areas, most farmers are older than 45 

years, regard maize as the most important crop, and farming is the main source of 

income (Table 7.1). Consistent with small-scale farming systems in Africa, more 

than half of farmers grow other crops such as beans and potatoes on a third of their 

farms. A relatively big number of farmers have high school or college education in 

Laikipia compared to Vihiga but more farmers have some agriculture skills in Vihiga 

(48%) relative to Laikipia (38%). Agriculture skills, in this context, mean attendance 

at agricultural seminars, shows, workshops or formal agricultural training. In general, 

family size per farm in both areas is roughly even, although the density is higher in 

Vihiga as the farms are much smaller. 
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Table 7.1: Frequency distribution (percentages of total) of farmer’s responses on cropping and yields 

factor questions in Laikipia and Vihiga   

Factor Variable Laikipia (N=133) 

% of N 

Vihiga (N=111) 

% of N 

Education Primary 

High 

College & above 

none 

42.1 

32.3 

9.8 

15.8 

64.9 

21.6 

3.6 

9.9 

Agriculture training With training 

With no training 

38.3 

61.7 

47.7 

52.3 

Income. Source 

 

Farm 

Employment 

Business 

Others 

94.0 

1.5 

1.5 

6.0 

100.0 

0.9 

14.4 

4.5 

Farm. Size (Hectares) 

 

Laikipia Vihiga  

5.3 

71.4 

23.3 

 

7.2 

38.7 

54.1 

<1 

1 - 5 

>5 

<0.5 

  0.5 

>0.5 

Maize. Rating 

 

 

Least important 

Somewhat important 

Important 

Most important 

Extremely important 

0.8 

3.8 

15.8 

15.0 

64.7 

3.6 

3.6 

6.3 

4.5 

82.0 

Proportion of other crops 

(%) 

0 

33 

34 - 66 

67 - 100 

Don’t know 

12.8 

54.1 

21.1 

5.3 

6.8 

0.9 

70.3 

16.2 

10.8 

1.8 

 

7.3.4. Farmers’ perceptions on yields in the last 5 years 

Results from both areas show that in the last 5 years (2007-2011) there were 

perceived changes in the yields (Table 7.2). About 70% of the farmers in Laikipia 

said that yields were “average” with an overall mean of 23.6 bags or 2.1 tonnes per 

hectare. Almost 60% of farmers indicated yield increases and only 1/3 of the farmers 

indicated yield declines. However, 10% of the farmers with yields “above average” 

had the highest yields (mean=3.4 tonnes per hectare). Overall, this results show that 

over 80% of farmers in Laikipia had “average” to “outstanding” yields which is 

consistent with the majority of farmers (57%) who indicated increasing yields. 

Actual yields reached up to a maximum of 7.65 tonnes per hectare. 
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In Vihiga, 67.6% of farmers indicated declines in yields with only about 20% 

indicating yield increases. These yield indications reflect the yield ratings which 

show that about 80% of the farmers indicated “below average” yields with an 

average of < 2 bags per hectare (Table 7.2).   

Comparing the results with the rainfall and dry spell/aridity indices (Figure 7.1 and 

7.2), there seems to be some consistency with the majority of farmers in Laikipia 

district indicating better yields possibly due to less dry conditions than Vihiga, where 

yields were relatively low.  

 

7.3.5. Factors attributed to yields patterns 

Numerous factors were linked to yield declines or increases in these regions. In 

broad terms, the factors can be classified as climatic and non-climatic and include 

agronomic, financial and technological factors (Appendix A6). Factors in this case 

are considered to be the terms that farmers use to express the performance of their 

yields. For example, a farmer used the term “lack of fertiliser” to mean a non-

climatic factor and the “occurrence of dry spells” to mean a climatic factor in relation 

to yield declines, whereas the term “good rains” means a climatic factor relative to 

yield increases.  

Table 7.2 shows that non-climatic factors were attributed to increases in yields by 

more than 50% of the farmers in Laikipia. However yield declines were linked to 

climatic factors by a few more farmers (24.1%) than non-climatic factors (21.8% of 

farmers). Similarly, most of the yield increases in Vihiga were attributed to non-

climatic issues by 19.8% of farmers but in contrast to Laikipia, 60.4% of the farmers 

in Vihiga mentioned non-climatic factors as causes of yield declines, while only 

about 20% of the farmers said declines were due to climatic factors.  

Of particular interest is whether there was any association between the yield 

estimates of farmers and the degree of dryness in the 2 regions. Results indicate that, 

out of all the climatic factors linked to yield declines by farmers (Laikipia = 24.1% 

and Vihiga = 19.8%), conditions of dryness i.e. dry spells, low rainfall, erratic rains 

was mentioned by over half of the farmers or 12.3% in Laikipia and 10.8% of the 

farmers in Vihiga as the causes of yields reductions. This suggests that, consistent 

with the rainfall and drought patterns in the 2 regions, dry conditions played a critical 

role in the determination yields and crop performances in the last 5 years. 
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Since cropping in Kenya is intricately linked with the rainfall seasons, farmers 

estimates of yields can be related with the climatic patterns in the long (March -  

May) and short (October – December) seasons. In view of the earlier results on yield 

performances, more dryness (AI < 0.4) was indicated in all the long growing seasons 

in all the 5 years (2007 – 2011) compared to the short growing seasons where it was 

only indicated in 2007, 2010 and 2011 in the study areas (Figure 7.2). Moreover, the 

rainfalls in these seasons and years were below 300mm which is the minimum 

amounts required for maize crop to mature (Figure 7.1). This means that, most of the 

yield declines may have been attributed to the long rain seasons in both study areas. 

 

Table 7.2: Frequency distribution (%) of farmer’s perceptions on yields (per acre) in Laikipia and 

Vihiga from 2007 - 2011  

Factor Variable  Laikipia (N=133)  

 

Vihiga (N=111)  

% of N Current mean  

yield(bags/acre) 

% of N Current mean  

yield (bags/acre) 

Yield Rating 

(Last 5years) 

 

Outstanding 

Above average 

Average 

Below average 

Poor 

Not able to rate 

 

 

 

 

 

 

3.8 

9.8 

69.9 

9.0 

3.0 

3.0 

29.0 

38.1 

23.6 

23.2 

21.3 

- 

 

 

 

 

 

 

7.2 

11.7 

27.0 

29.7 

23.4 

0.9 

5.8 

4.2 

2.8 

1.4 

1.7 

- 

Direction of Yield 

 

 

Decline 

Increase 

No change 

Not indicated 

 

 

 

 

32.3 

57.1 

4.5 

5.3 

31.4 - 20.9 

19.3 - 28.5 

12.4 

- 

 

 

 

 

67.6 

18.9 

6.3 

7.2 

4.5 - 2.0 

1.8 - 4.2 

1 .0 

- 

Yield causal factors 

 

 

Climatic (Increase) 

Non-climatic (Increase)  

Climatic (decrease) 

Non-climatic (decrease)  

 No responses 

 

 

 

 

 

18.8 

51.1 

24.1 

21.8 

16.5 

 

 

 

 

 

 

 

 

 

 

4.5 

19.8 

19.8 

60.4 

15.3 

 

 

 

 

 

 

The current yields (Yield 2) are compared with the yields 5 years earlier (Yield 1) 

and for the best guess scenario yields (Ideal Yield) as reported by farmers. Results 

indicated that, while maize yields varied between the two regions in the last 5 years, 

overall, “Yield1” was somewhat less than “Yield2” in Laikipia but the reverse was 

true in Vihiga (Figure 7.3). Moreover, farmers’ expectations of maize yields or 

“Ideal Yield” was higher than their current situation in both regions, suggesting that 

factors earlier attributed to poor yield returns were a major obstacle to maximising 
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agricultural potential in these regions. Whereas high variability in yields may not 

necessarily be “ideal”, it suggests that if farmers were given the right weather, inputs 

and incentives they would most probably increase their yields. Moreover, a look at 

the yields perceptions relative to the degree of aridity in the regions (inset Figure 7.2) 

might explain the cause of low yields. A long dry period starting in October 2007 to 

about mid 2008 suggests that farmers in Laikipia relative to Vihiga had poor yields 

probably due to failed or poor seasonal rains 5 years ealier. Similarly, drier 

conditions in 2011 could be linked to declines in yields 5 years later, consistent with 

the farmers’ reports. Prompted to describe what their ideal rainfall forecasts would be 

for good maize yields, over 60% of farmers in Laikipia indicated moderate rainfall. 

A similar number of farmers in Vihiga however, indicated high rainfall as their ideal 

forecast for good yields. This reflects farmers expectations in Laikipia who had 

mentioned that higher rainfall may lead to flooding and destroy crops, whereas their 

counterparts in Vihiga had mentioned that their maize variety requires more rainfall 

to achieve the desired yield outputs. 

 

 

Figure 7.3: Comparisons between farmers yields in Laikipia (left) and Vihiga (right), 5 years earlier (Yield1), 

currently (Yield 2) and at the farmer’ best (guess) situation (Ideal Yield) 

 

7.3.6. Farmers’ forecasts preferences and perceptions on forecasts accuracy 

and basis for forecasts usage  

Farmers in Kenya, use both scientific and indigenous forecasts. A significantly high 

number of farmers in Vihiga (76%) use indigenous forecasts (IF) in farm decisions 

compared to 64% of the farmers in Laikipia (Figure 7.4a and 7.5d). In contrast, 

45.9% of farmers in Laikipia indicated using SCF in farming decisions, which is 
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almost double to those in Vihiga. This is strange as a higher proportion of farmers 

(88.3%) in Vihiga relative to Laikipia (78.2%) indicated that they preferred seasonal 

forecasts rather than other classes of forecasts like daily or weekly (Figure 7.4b and 

7.5e). While a large number of farmers in Laikipia used SCFs, it is interesting that 

about one quarter of the farmers also used daily forecasts. This would probably be 

because, rainfall availability is more uncertain in Laikipia (dry location) and 

therefore farmers would require more regular (daily forecast) information than their 

Vihiga counterparts. On the other hand, a slightly higher number of farmers in 

Laikipia (19.5%) compared to Vihiga (16.2%) combined SCF and IF in their farm 

decisions. Farmers, who neither use SCF or IF, indicated that they used other forms 

of options, such as reliance on prayers, crying, doing nothing or climatology. 

Accurate forecasts can facilitate better farming decisions and lead to better crop 

productivity. The farmers’ view of forecast accuracy also varied between the two 

regions and seemed to take opposite directions. On a scale of 1 - 5 (1 = forecasts are 

least accurate and 5 = forecasts are extremely accurate), 44.4% of farmers in Laikipia 

deemed the skill of forecasts’ were average (3) for either SCF or SCF and IF 

combined together, but, in contrast, 67% of farmers in Vihiga indicated that SCF 

were incredibly accurate compared to average skill (3) when combined with 

indigenous forecasts (Figure 7.4c and 7.5f). This is illogical since farmers in this 

region are mostly users of indigenous forecasts. A possible reason for the low 

number of farmers indicating a combination of SCF with IF being skilful could be 

attributed to a slightly higher proportion of farmers who did not combine (DC).  

As would be expected the level of satisfaction with forecasts in Laikipia was average 

(3) and extremely satisfactory in Vihiga consistent with the views given on forecast 

accuracy.  
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Figure 7.4: Left panel (a & d): Usage of forecasts by farmers (%) (SCF=seasonal, IF=indigenous, SCF_IF= 

combined SCF & IF, NA=non-user of forecasts), mid-panel (b & e): Category of forecasts used (%) 

(DL=daily, WL=weekly, ML=monthly, SL=seasonal, other=other type of option) and right-panel: (c & f) 

Forecast accuracy opinions (%) (1-5=accuracy level, DN=those who don’t know, DC=those who don’t 

combine SCF and IF, and DU=those who don’t use forecasts) in Laikipia and Vihiga respectively.  

 

Farmers obtained forecast information from numerous sources. The most common 

source was through personal experience and observations in Laikipia (83%) and 

Vihiga (77%). Some variations however existed in the forecast sources between the 2 

areas. Farmers in Vihiga obtained more information from rainmakers, radio, prayers 

and from their neighbours. This was not the case in Laikipia with the exception of 

the use of radio. This can be because farmers from Laikipia can more easily access 

TV, radio, newspapers or the internet compared to their Vihiga counterparts due to 

their proximity to better infrastructure and trading network. Curiously, 3% of the 

farmers from Vihiga obtained their information by listening to both the radio and 

rainmakers which suggests that they may have been comparing the scientific and 

indigenous information. Moreover, slightly over 90% of farmers in both regions had 

indicated using various forms of forecasts for over 5 years, which means that they 

clearly knew where to obtain information. Farmers also showed that their neighbours 

were using similar forecast information in both regions but only <50% of those in 

Laikipia knew if their neighbours used forecasts compared to over 60% of those in 

Vihiga. This suggests that farmers in the later region shared more information 

compared to those in Laikipia. 

One problem with scientific forecasts is the interpretation. In particular, when rainfall 

probabilities “normal”, “above normal” and “below normal” are given, farmers and 
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other users may not entirely understand them. In Laikipia, a majority of farmers 

understood below normal, normal and above normal to mean low, moderate and high 

rainfalls, respectively, apart from 12% of the farmers who regarded the latter 

category to mean extremely high rainfall (Figure 7.5). Differently from Laikipia, 

about half of the farmers in Vihiga did not have any idea what the 3 rainfall 

categories meant, which was far less than the proportion of those in Laikipia who 

didn’t know the meaning of the terms. These suggest that, the higher number of 

farmers in Laikipia using SCF (Figure 7.4) compared to Vihiga understood climate 

forecasts.  
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Figure 7.5. Bar plots of the percentage of farmers’ level of understanding of the terms “normal”, “below 

normal” and “above normal” in Laikipia (left) and Vihiga (right). The categories low = low rainfall, mod = 

moderate rainfall, high = high rainfall, ext.high = extremely high rainfall and DK = don’t know.  

 

7.3.7. Forecast indicators and usage 

Forecasts utilise bio-physical environmental indicators, for example, farmers cited 

rainfall deciles, amounts, onset dates and temperature, as the main aspects they 

considered when using SCFs. In contrast, wind direction was crucial for farmers 

using IF to forecast rainfall. Table 7.3 is an inventory of the forecasts aspects that 

farmers considered important when forecasting in Laikipia and Vihiga. Wind 

direction is the key aspect mostly relied upon by farmers in Laikipia (65.4%) and 

Vihiga (57%). For example, in Vihiga, farmers regarded a west - east wind as a 

signal of the coming of seasonal rains, but the opposite wind direction as coming of 

dry conditions. To farmers in Laikipia, a west - east wind can bring rains, but it is 
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more of a local effect, as opposed to the south easterly wind, normally linked with 

the main rain seasons. The use of climatic indicators by farmers in Vihiga was much 

higher than in Laikipia which reflects the higher rates of IF usage in Vihiga (Figure 

7.6). In this regard, a unique difference between the study areas was the choice of 

precursors of drought in Laikipia, such as locusts’ invasion  and and weather in other 

regions, while in Vihiga pointers of a wet season were mentioned, such as birds 

singing and morning dew. 

 

Table 7.3: Inventory of IF and SCF forecasts aspects used by farmers (%) in Laikipia and Vihiga and 

what they indicate.  

Forecast aspects  Laikipia 

(%) n=133 

Vihiga 

(%) n=111 

What forecast aspects indicate  

Clouds 

Rainfall onset 

Wind direction  

High temperatures 

Rainfall amounts 

Rain decile 

Croak of frogs 

Migration of butterflies 

Appearance of black/safari ants 

Moist roof tops in the morning 

Migration locusts and rare weeds 

Moon and stars  

Weather in other regions  

Birds singing 

Change in leaves colour  ("omusengeli") 

Falling of leaves 

Spotting of black birds 

Birds singing 

Rainmakers proclamation 

Unusual morning dew after a dry season 

Cooler than normal water 

Warmer than normal water 

Thunderstorms 

Weakening of the body 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.3 

18.8 

65.4 

  6.0 

13.5 

  4.5 

  6.0 

  3.0 

  4.5 

  1.5 

  0.8 

  0.8 

       0.8 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

-     

     21.6 

     11.7 

     57.0 

4.5 

8.1 

- 

     17.1 

2.7 

0.9 

- 

- 

0.9 

      - 

8.1 

1.8 

3.6 

0.9 

7.2 

0.9 

     12.6 

3.6 

0.9 

5.4 

     0.9 

Darkening of clouds, unusually 

high night temperatures, black 

ants, specific wind direction, 

migrating butterflies and the croak 

of frogs indicated the coming of 

rainfall whereas late appearances 

of the moon and stars indicate 

delay in rain onset, locusts’ signal 

an impending drought, and the 

change in weather patterns 

elsewhere such as floods 

occurrence in Bangladesh suggest  

poor rainfall season. 

Change of colour of leaves from 

dark green to pale suggests low 

rains season and falling of leaves 

the time for planting as rains are 

near. Cool water than usual 

suggests rains while warm water 

than usual suggests a dry season. 

Unusual appearance of dew in 

early morning signals the 

likelihood of early onset and good 

rains as does singing of birds.  

 

7.3.8. Relationship between forecast indicators and farm decisions  

Environmental predictors used by farmers are structured according to specific 

farming needs. According to farmers, the rainfall onset date is critical for 



171 
 

determining activities like planting times and what crop to plant. Most farmers 

generally prepared their land in advance, bought seeds, and prepared seed holes on 

their farms, a few weeks prior to the start of rain season based on forecast 

expectations. While this is shown in both regions, a slightly higher proportion of 

farmers in Laikipia (18.8%) than in Vihiga (11.7%) considered the onset dates to be 

important, possibly due to the information being readily available in the daily and 

seasonal forecasts provided by the climate services providers.  However, other local 

indicators such as, the croak of a frog or morning dew after a dry season were 

popular aspects of rainfall onset in western Kenya (Table 7.3), where most farmers 

mentioned that this triggered the selection of their seeds and spread of manure in 

preparation of planting before the rainfall onset.    

Wind direction, as mentioned earlier, was important not only as a precursor of 

rainfall activities but was also associated with the general preparation of the land by 

most farmers. In both regions, farmers ploughed their land when the winds originated 

from the inland or dry continental regions and close to the planting season. Farmers 

indicated that during such times, they noted a sudden increase in the wind speeds 

which would calm down gradually and change toward the opposite directions before 

the start of the rains. Strong winds have been reported by some farmers to cause 

destruction of crops in western Kenya. Interestingly, warmer than normal night 

temperatures, were used by farmers to indicate the possibility of heavy rainfall 

occurring later in a few days, or even hours, particularly following a prolonged dry 

season. This reinforced the farmers’ confidence, to go ahead, or continue, with land 

preparation. In contrast, when temperatures were unusually high during the day, this 

did not generate activities, since drier conditions were going to prevail. In such cases, 

low rainfall may occur in the season and lead to poor crop performance.  

Although some indicators are useful in farm decisions, it is, for example, unclear 

how abnormal cooling of water in Vihiga was associated with the triggering of 

normal rains and warmer than normal water related to heavy rainfall. One possible 

explanation may be that water, because of its higher specific heat capacity, may 

create a suitable condition for local condensation of the available moisture in the 

atmosphere.  

7.3.9. Relationships between yield performances and other factors 

The performance of maize yield may be related to specific factors or attributes 

indicated by farmers in the 2 regions. To find out, yield directions (increase, declines 
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or no change) were regressed against farmers responses to use or not use of forecasts 

and other factors as predictors. The results are summarised in Table 7.4 and Table 

7.5. 

It can be seen from Table 7.4 and 7.5 that there is a strong statistical relationship 

between yield performance and some of the farmers perceptions (factors). Where 

yields increased in Laikipia for instance (Table 7.4), not using forecasts had a 

positive impact (p=0.004) with a similarly strong but negative impact related to 

family size and the proportion of other crops. The last 2, can be interpreted to mean 

that yield increases less for larger family sizes and when more other crops rather than 

maize were grown. On the other hand, declining maize yields were affected by 

growing of other crops and a combination of both climatic and non-climatic factors 

such as low rainfall and poor seeds. Whereas having some agriculture training may 

enhance better farming practices and yields, it was insignificant, as was the effect of 

using SCF or IF. 

In contrast, for the results in Laikipia, agriculture training, the proportion of other 

crops and non-climatic factors had a positive impact (p<0.003) on yield increases, 

while not-using forecasts had a negative impact in Vihiga (Table 7.5). Interestingly, 

yield declines in Vihiga were negatively related with family size, having or not 

having education as well as growing of other crops. In contrast to Laikipia,  yields 

increase with larger family size and growing other crops but this is insignificant in 

the first case. The relationship with climatic and non-climatic factors was 

insignificant. 
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Table 7.4:  Relationship between yield performances and farm size, family size, level of education, agriculture training, use and non-use of forecasts and other crops in 

Laikipia. Significance is at 95% (0.05) CI. The estimated effect (slope) (of the factors) on yield direction is indicated by (-) or (+) symbols (values). 

Factor Yield Effect 

significance (p-value) and slope 

95% Confidence intervals 

  Increases Declines Constant Dont know  (Yield Increase effect) 

Lower  -    Upper 

Farm size 

Family size 

Education: primary  

                     high 

                     college 

                     None 

Agriculture training 

SCF usage (Yes) 

IF usage    (Yes) 

SCF.IF combined 

Non-use of forecasts 

Other crops:  0 % 

                       1 -33% 

                      34 - 66% 

                      67 -100 

                          DN 

Non -climatic  

Climatic 

Climatic & Non climatic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 

0.048 *(-) 

- 

- 

- 

- 

- 

- 

- 

- 

0.004 **(+) 

- 

- 

- 

0.017 *   (-) 

0.004**  (-) 

0.075 . (+) 

- 

- 

- 

0.095 .(+) 

- 

- 

- 

- 

- 

- 

- 

- 

0.011  *(-) 

- 

- 

- 

0.008 **(+) 

0.003 **(+) 

- 

- 

0.001 **(+) 

- 

- 

- 

- 

- 

- 

0.028 * (+) 

- 

- 

- 

- 

- 

- 

- 

- 

0.068 . (-) 

0.025 *(-) 

- 

0.024 * (-) 

- 

- 

0.064 .(-) 

0.091 .(-) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 0.02  

- 

- 

- 

- 

- 

- 

- 

- 

0.17  

- 

- 

- 

- 0.75 

- 0.93 

-0.02  

 

 

- 

0.01 

- 

- 

- 

- 

- 

- 

- 

- 

0.85 

- 

- 

- 

- 0.08 

- 0.19 

0.44 

- 

- 
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Table 7.5: Statistical relationships between yield performances and farm size, family size, level of education, agriculture training, use and non-use of forecasts and other 

crops in Vihiga. Significance is at 95% (0.05) CI. The estimated effect (slope) (of the factors) on yield direction is indicated by (-) or (+) symbols (values). 

Factor Yield Effect 

significance (p-value) and slope 

95% Confidence intervals 

  Increase Decrease Constant Dont know  (Yield Increase effect) 

Lower  -    Upper 

Farm size 

Family size 

Education: primary  

                     high 

                     college 

                     None 

Agriculture training 

SCF usage (Yes) 

IF usage    (Yes) 

SCF.IF combined 

Non-use of forecasts 

Other crops:  0 % 

                       1 -33% 

                      34 - 66% 

                      67 -100 

                          DN 

Non -climatic  

Climatic 

Climatic & Non climatic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 

0.087 .(+) 

- 

- 

- 

- 

0.003 ** (+) 

- 

- 

- 

0.047 * (-) 

- 

0.008 **(+) 

0.032 * (+) 

0.034 * (+) 

0.009 **(+) 

0.024 *(+) 

- 

- 

- 

<0.0001*** 

<0.0001***  

<0.0001***  

- 

<0.0001*** 

- 

- 

- 

- 

0.021 *(+) 

- 

0.003 **(-) 

0.006 ** (-) 

- 

0.036 *(+) 

0.062 . (-) 

- 

- 

- 

- 

- 

- 

- 

0.060. (-) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.068  .(-) 

0.018 *(-) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 0.003   

- 

- 

- 

- 

0.09 

- 

- 

- 

- 0.65 

- 

0.12 

0.04 

0.03 

0.09 

- 

- 

- 

- 

0.06 

- 

- 

- 

- 

0.40 

- 

- 

- 

- 0.02 

- 

0.74 

0.78 

0.57 

0.60 

- 

- 

- 
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7.4. Responses in regard to Focus Discussion Groups (FDG) 

Discussions from focus groups (FDG) in both regions were intended to validate 

individual farmers’ responses. The FDG in Laikipia said that yields were fairly good 

across the region in the last 5 years with 2009 being a bad drought year in most areas 

compared to 2011. Due to changing climatic patterns, few farmers mainly from the 

lower south western parts changed to small irrigation farming owing to presence of 

seasonal rivers and wetlands in those areas. The farmers mainly grow vegetables 

such as cabbages which are not only a drought evasion strategy but an income 

generating activity. This area was again the only one that was frequently affected by 

frost in the region. Climate forecasts (SCF) raised more interest mainly when 

extreme weather (above normal or below normal rainfall) was predicted but this only 

complemented their observations and experiences.  

In Vihiga, responses from the FDG reaffirmed that indigenous forecasts were the 

most used tools to manage climate risks on their farms. For example, if rains 

occurred in January, it was an indication of an impending drought in the coming 

(planting) season (MAM) and farmers would mostly plant a local maize variety 

which was more drought resistant compared to a hybrid maize variety. Similar to 

Laikipia, the FDG were instrumental to giving more information about the climate of 

the region in the last over 3 decades. Although climate forecasts were less popular in 

the region, the FDG expressed that SCF, may help to manage the erratic climate 

patterns and particularly, if used together with IF. However, an interesting issue was 

that, farmers listening to radio said that the forecasts (SCF) given seemed to 

contradict the actual weather occurrence. This suggests that farmers are keen on the 

reliability and skill of climate forecasts in this region.  

In summary for the FDGs and farmers in both areas, some of the factors identified as 

important in facilitating better use of IF and SCF in these regions was that: 

 Farmers should be educated on understanding the climate patterns in their region 

and how this is linked to forecasts for their areas. They believed this can help 

them make better decisions. Additionally, meteorologists should help farmers 

understand/interpret the terminologies used in the SCFs because these are often 

hard to understand. 

 The government should set up research centres in the farming areas to manage 

climate issues and especially drought. This should include testing the soil fertility 
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which they think has decreased over the years and dealing with the changing 

climate. 

 Quality seeds and fertiliser should be provided at subsidised prices to boost more 

crop production in these regions. Economists may disagree with this but the 

farmers and FDGs believed that better seeds and fertilizer combined with reliable 

and skilful forecasts can help them mitigate climate extremes. 

 Indigenous forecasts must be recognised by the government and the scientific 

community, and ways of harmonising them with climate forecasts should be 

sought. Farmers are willing to work with the meteorologists and agricultural 

experts to see how best this knowledge can be tapped and used. 

 There should be regular and continuous monitoring of climate forecasting and 

dissemination as well as awareness to farmers rather than the normally ad hoc 

pattern in which forecasts become important only around the growing seasons. 

 The government should put in place a system of alleviating farmers suffering from 

the negative effects of drought which is a major problem in these areas. In 

particular, farmers should be given some financial or farm-input relief to enable 

them get back to productivity. The FDG recommended that forecasts should be 

developed specifically for when drought (dry spells) will occur so that farmers can 

know in advance how to avoid losing their seeds and inputs.  

 

7.5. Other interventions in farming in Laikipia and Vihiga 

Whereas the survey was focussed on assessing the role of forecasts in farm decisions, 

the role of the government as the custodian of agricultural policies was examined. 

From the information obtained from the local agriculture administrators in the 2 

regions, there is little or no clear efforts in place to integrate climate or indigenous 

forecasts with agriculture plans in these regions.  

In summary for the agriculture related interventions/policies in the 2 areas; 

 Agricultural shows, farmers’ forums and extension services are the main tools 

used to interact with farmers. 

 Promotion of high quality and early maturing crops and afforestation are the main 

tools encouraged to cope with climate risk. 

 Less attention has been placed on the use of climate/indigenous forecasts in 

agriculture policies and interventions. 
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7.6. Discussion 

7.6.1. Relationship between climatic patterns, use of forecasts and maize yields  

Climatic patterns and agronomic practices in Kenya can shape the understanding of 

farmers’ perceptions on scientific (SCF) and indigenous (IF) forecasts. For example, 

according to Table 7.3, various forecast indicators inform farmers’ expectations and 

push to use forecasts in farm decisions, and from Table 7.2, perceived actual yields 

and possible reasons for crop/yield performances can be related to the climate 

patterns of the study areas (Figure 7.1 and 7.2).   

Interviews with farmers in the 2 study areas revealed that, maize yields were better in 

Laikipia compared to Vihiga, consistent with the rainfall and drought patterns in the 

2 areas. These results contrast with those of a recent study in eastern Laikipia where 

farmers indicated poor yields due to increased droughts (Ogalleh et al. 2012). Huho 

et al. (2010) had earlier reported yield declines in the region prior to 2007. Prevailing 

declining rainfall trends in western Kenya (Vihiga) are consistent with those reported 

recently (see, for example, Omondi et al. 2013).   

In light of the above, the impact of climate forecasts in farm decisions relative to use 

of indigenous forecasts was more highlighted in Laikipia than in Vihiga. However, 

no relationship was indicated between the use of forecasts and maize yields 

(indicator of rainfall) in the 2 areas. This may not necessarily imply that farm 

decisions based on forecasts were absent and this can be argued using a number of 

examples. Firstly, a majority of farmers (>50%) from both regions identified the 

wind direction as the most significant factor they used to forecast rainfall among 

other factors. This agrees with climatological and atmospheric processes related to 

wind (Wagner & da Silva 1994). It has been suggested that as a result of the easterly 

winds weakening of the westerly wind anomalies over the central Indian Ocean, 

rainfall is enhanced in eastern Africa but reduced in the sub-Indian region (Black et 

al. 2003). As opposed to Laikipia, rainfall patterns in western Kenya are influenced 

by local factors, mainly Lake Victoria currents and the Congo equatorial air-mass 

(Anyah et al. 2006). For instance, Camberlin (1997) show that, above normal daily 

rainfall is strongly associated with westerly wind anomalies over western Kenya. 

However, the rainfall patterns in Laikipia are mainly linked to the general north-

easterly and south-easterly wind regimes (e.g. Sun et al. 1999). This confirms that 

wind is a significant determinant of rainfall occurrence in these regions.  
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Secondly, climatic factors were suggested to be responsible for yield declines in 

Laikipia (~25% of farmers) and Vihiga (~20% of farmers). This agrees with similar 

studies that link climate extremes in the growing seasons to crop losses (e.g. Roncoli 

et al. 2002, Orlove et al. 2010, Ogalleh et al. 2012). Furthermore, most of the 

forecast indicators used by the farmers in these areas (Table 7.3) are technically 

related with climatological processes or aspects normally applied in contemporary 

scientific forecasts. For example, weather in other regions such as cyclones and 

clouds are used in the prognosis of future weather.  

Thirdly, farmers consulted various sources for climate information prior to the 

planting seasons. It is shown that substantial number of farmers in Laikipia relied on 

daily forecasts which they received through radio, whereas those in Vihiga sought 

the information from their neighbours or rainmakers, among other sources. Field and 

other studies suggest that climate information is needed by both small-scale and 

large-scale farmers as one way to increase food security (e.g. Carberry et al. 2000, 

Meinke & Stone 2005, Blench 2009). Additionally, due to climate change and 

variability some of the indicators used by farmers are becoming increasingly 

uncertain and therefore climate forecasts may become more useful to farmers 

(Ndegwa et al. 2010).  

 

7.6.2. Impacts of level of education on use of forecasts 

Farmers’ responses in relation to education or agriculture training would be expected 

to have some impact on use of forecasts in farm decisions. As indicated earlier in this 

study, <30% of farmers in Vihiga and 42% of the farmers in Laikipia have a high 

school or college education. This means that the majority of the farmers have 

primary education or no formal education in these regions. Without additional 

explanations, it may be difficult connecting farmers’ levels of education and use of 

forecasts. However, Table 7.4 indicates that, in Laikipia, no significant relationship 

exists between farmers who have high school or primary school education or with no 

training in agriculture, and the usage of climate (SCF) or indigenous (IF) forecasts. 

Nevertheless, farmers with college education are negatively related and those with 

and no formal education have positive relationships with the usage of indigenous 

forecasts (p ≤ 0.05). There was a further positive relationship with those combining 

SCF and IF (p = 0.04) and having agriculture training. In contrast, use of indigenous 

forecasts has a positive relationship (p = 0.02) with farmers who have primary 
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education in Vihiga. Interestingly, a strong positive correlation occurs between 

farmers who have agriculture training and the usage of climate forecasts. In contrast, 

those with no formal training do not use climate forecasts. This was probably due to 

the fact that climate forecasts may be of some interest to the farmers (positively 

related to training) in boosting their farm decisions. Whereas an estimated 80% of 

the farmers in Vihiga used IF, a large proportion (64%) of the farmers had primary 

education which might be the reason for the positive and strong relationship. This 

may support the results in Table 7.5 from which, agriculture training (farmers) had a 

positive effect on increasing yields in Vihiga. Whereas O'Brien & Vogel (2003) says 

that, usefulness of forecasts depends on the characteristics of farmers such as having 

education, they also admit that the value of climate forecasts in small-scale African 

farming systems is less evident despite the use of forecasts by most farmers in the 

region.  

In Laikipia, the regression results are less transparent and appear to exaggerate the 

impact of college education on use of IF. Never the less, it can be speculated that, 

there is something to do with the large number of farmers (>60%) using indigenous 

forecasts compared to farmers using climate forecasts. This is simplistic, but may be 

a valid reason, considering that out of all the farmers having a college education, a 

significant number (1/3) plus almost all those without education use indigenous 

forecasts. Besides, there was a positive relationship between farmers with agriculture 

training and constant yields in this region (Table 7.4) implying that, there may be a 

link with the strong effect occurring with combined use of SCF and IF (Table 7.6).  

In a nutshell, farmers’ level of education in relation to forecasts use does not draw 

concrete scenarios for meaningful generalisations. This may be because farmers are 

not essentially the most receptive to forecasts (Meinke & Stone 2005) although 

Ingram et al. (2002) suggests that different levels of education and training have 

potential to influence the use of forecasts. Agricultural training and other factors may 

be more effective if they are specific to use of forecasts in decision making. If 

farmers are trained to understand the various aspects of forecasts, they may be in a 

better position to apply them. One suggestion for farmers to use forecasts, is that they 

must be willing to appreciate the concepts of probability and climate variability and 

how this influences their activities (Hammer et al. 1996). 

In view of forecast usage and level of education in the 2 regions, results suggest that 

stronger framework for usage of IF can be developed in the regions if more emphasis 
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is given to educating or training farmers and in addition provide an opportunity to 

also integrate climate forecasts in the region. 

 

Table 7.6: Relationship between level of education and forecast use in Laikipia and Vihiga: Agric-TR 

and No Agric-TR means agriculture training and no agriculture training respectively and No Edu. = 

No Education 

Level of 

education  

Laikipia Vihiga 

Slope estimate  p-value Slope estimate  p-value 

 SCF IF SCF/IF SCF IF SCF/IF SCF IF SCF/IF SCF IF SCF/IF 

Primary  

High  

College 

No Edu.  

Agri-TR 

No Agri-TR 

- 

+ 

+ 

- 

+ 

+ 

- 

+ 

- 

+ 

- 

- 

- 

+ 

+ 

- 

+ 

+ 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

0.05 

0.001 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

0.01 

0.04 

>0.1 

+ 

- 

- 

+ 

+ 

- 

+ 

- 

- 

- 

+ 

- 

- 

+ 

+ 

- 

- 

+ 

>0.1 

>0.1 

>0.1 

>0.1 

0.05 

0.05 

0.02 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

>0.1 

    

7.6.3. Monsoon and the value of indigenous forecasts  

Because indigenous forecasts are used most often by farmers in the study areas, it is 

expected that they may influence the times of planting in the monsoon seasons. For 

instance, some indicators identified by farmers (Table 7.3), were used to ascertain or 

estimate the occurrence, intensity or start of the monsoons. Late appearance of the 

moon or the stars for example, suggested a delayed onset while the migration of 

locusts was linked with shorter rainfall season or prolonged dry conditions although 

unusual appearance of dew in early morning signalled early onset. Similar findings 

have been reported in other parts of the world (e.g. King et al. 2008, Anderson 2009, 

Chaudhary & Bawa 2011). However, indigenous knowledge fails at times to capture 

changes in the weather patterns (Roncoli et al. 2002) probably due to climate change 

and variability (Ndegwa et al. 2010), in which case, Laux et al. (2008) suggests that 

farmers’ demand for scientific forecasts may increase.  

Despite some relationship between farmers’ perceptions (IF) and climate patterns, no 

study has analysed the ability of IF in predicting onsets and cessation of the monsoon 

seasons in the region. No significant relationship was established from farmers 

responses in regard to changes in planting times (early, late, 50/50, or no change) and 

IF in Laikipia and Vihiga. One exception however is that, a significant association (p 

= 0.02) was found for IF and the 50/50 (planting comes early or late) scenario in 

Vihiga. In this view, while it is difficult to quantitatively predict onsets or other 
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climate characteristics using IF, the last result suggests that it may be possible to 

regularly monitor and predict onset and cessation of the monsoon if an elaborate 

framework to collect and update the information is developed.  

  

7.6.4. Does growing other crops have an impact on maize yields? 

In Kenya, rainfall is highly variable and erratic, making agriculture more 

vulnerability to drought. One of the strategies frequently used to manage drought in 

the region is mixed or inter-cropping (e.g. Mendelsohn & Dinar 1999, Morton 2007, 

Rockström et al. 2009). This study found that, alongside maize, farmers grow other 

crops such as beans, millet and cassava. While these provide food, growing of other 

crops and mainly drought tolerant crops ensures resilience to food insecurity 

(Campbell 1990). Currently, most farmers in Laikipia (54.1%) and Vihiga (70.3%) 

indicated that other crops comprised 1/3 (33%) of the total crop grown in the regions 

(Table 7.1), which confirms that maize remains the single most important crop in 

Kenya (Hassan & Karanja 1997, Songa 2012). These results further corroborate other 

studies in the region which show that crop diversification or mixed cropping is a very 

popular risk aversion strategy (e.g. Downing et al. 1989, Campbell 1999, Speranza 

2010, Ogalleh et al. 2012).   

Regression results in Table 7.4 indicated that the overall increasing maize yields in 

Laikipia were not influenced by other crops while growing of up to 60% of other 

crops had a negative impact (p<0.01) on maize yields in Vihiga, consistent with the 

overall decline in maize yields in the region (Table 7.2). Omamo (1998) recognises 

that, staple food like maize can be impacted by choice of other crops while Van 

Rheenen et al. (1981) opines that, mixed-cropping is associated with nutrient 

competition and disease or pest infestations which may lead to yield reductions. 

Nevertheless, growing other crops will continue in the region as this might ensures 

food availability when maize fails. 

  

7.6.5. Relationship between family size and yields 

A high global population is expected to increase the demand for food (Daily et al. 

1998). However production may be slowed by the effects of climate change 

(Schmidhuber & Tubiello 2007). Family sizes in the 2 study areas reflects the 

population statistics in the country but varies and is about ½ million in each of the 

study areas (Chapter 3, Table 3.2). As shown before, maize yields increased in 
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Laikipia and declined in Vihiga in the last 5 years.  Out of the non-climatic factors 

attributed to yield declines, a small fraction (5%) of the farmers in Vihiga cited 

family size as the cause of yields reductions consistent with maize yields decline 

(p<0.0001) in the region.  Different from Vihiga, family size was not mentioned to 

affect maize yields in Laikipia but was negatively related to increased yields (p < 

0.05) rather than decline in yields, meaning that the family size can impact yields in 

the region. Other studies in SSA (Conway & Toenniessen 1999, Smith et al. 2000, 

Baro & Deubel 2006) suggest that bigger families can impact the food supply. Smith 

et al. (2000) for instance, shows that, food availability and access in developing 

countries are strongly related to poverty and poor farming systems. While it can be 

argued that bigger families are a distraction to better yields as they may require more 

food, it may not be entirely true if other factors that (non-climatic factors (mainly 

inputs) led to yield increase and decreases) enhance crop production such as good 

rains and quality inputs are available.  

 

7.6.6. Can the results of the survey be used to develop better forecasts?  

The proportion of farmers who combined climate and indigenous forecasts (20% in 

Laikipia and 16% in Vihiga) suggests that there is a potential of increasing use of 

combined forecasts in the 2 areas. Farmers in Laikipia think that the accuracy of the 

climate forecasts are at best average in contrast to farmers in Vihiga who think the 

forecasts are less skilful. Whereas farmers were not asked to indicate their views in 

regard to the skill of indigenous forecasts, the large number of farmers using IF 

suggests that they have relatively higher confidence in their skill. This finding further 

strengthens the above arguments that incorporation of IF with SCF can benefit 

farmers in managing climate variability.   

In view of the above, by integrating some features of IF and SCF, it might be 

possible to develop better forecasts. Firstly, historical climate records by 

meteorologists can be cross-checked against farmers’ responses on climate 

variability. More dry conditions were associated with reduced yields in Vihiga and 

less dry conditions to better yields in Laikipia which compared well with empirical 

evidence from the climate records in the 2 areas. This means that, farmers were able 

to identify the connection between yields and poor weather as reflected in the 

historical rainfall records. Farmers in these regions can identify changes in the local 
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climate and have evolved numerous coping options (e.g. Oba et al. 2002, Hassan & 

Nhemachena 2008, Speranza et al. 2010). 

The bio-physical factors indicated by farmers can be identified with climate variables 

that are used to analyse and predict climate. While farmers identified wind as the 

most significant forecast indicator of the rains/drought in the 2 regions, surface and 

upper air winds for large spatial areas are normally analysed by meteorologists in 

preparation of weather forecasts. This shows that climate forecasts can be 

downscaled using the local (indigenous) features to improve prediction in the local 

areas. Wind direction (and speed), dew in the morning, temperatures and other 

indicators can act as proxies in the formulation or development of integrated 

forecasts. In the recent times, there has been some efforts towards combining SCF 

and IF (e.g. Ndegwa et al. 2010, Guthiga & Newsham 2011). Similar studies have 

also been conducted in Malawi (Kalanda-Joshua et al. 2011), Tanzania and 

Zimbabwe (Kijazi et al. 2013). Ndegwa et al (2010) incorporated indicators used by 

farmers in south-eastern Kenya to downscale seasonal forecasts to the local level. 

Evaluation of the forecasts revealed that, farmers were able to identify and select 

appropriate farm decisions which helped in the selection of seeds, onset of the rains 

and other decisions. Some of the limitations to these efforts is the lack of technical 

capacity, framework and information delivery systems in the local areas and the 

forecasts skills are not yet clear. 

 

7.7. Conclusions   

This study focussed on indigenous forecasts and observations of weather in relation 

to farmer preferences and maize yields in Kenya. Results revealed that, >50% of the 

farmers used IF and <50% used SCF along other agronomic options to make farm 

decisions. Forecasts were an effective way to monitor and know when climatic 

conditions such as start of rains or type of rains were expected. 

Forecasts were found to have little direct effect on maize yields but both climatic and 

non-climatic factors had impacts on maize yield. The benefits of IF and SCF on 

maize yields therefore were intricately related with other agronomic factors but 

climate factors (rains) were consistent with the observed yields. 

More than 15% of the farmers in the study locations combined IF and SCF in farm 

decisions, suggesting that there is potential for integration of IF and SCF as a way to 

improve forecasts in the region. This area is still under explored in many regions and 
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requires further research, particularly, how to translate and update IF into 

quantitative and scientific terms.  

Most farmers from the 2 regions used numerous indigenous and scientific options to 

cope with climate variability and which were mostly related to timing and occurrence 

of rainfall or dry conditions in the regions.  
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CHAPTER 8 

GENERAL DISCUSSION AND THESIS CONCLUSIONS 

The impacts of drought on agriculture in Kenya and Australia are well documented. 

However, the greatest challenge of drought research in these regions is its 

predictability. The aim of this thesis is to forecast dry spell lengths at 1, 3 and 6 

months lead times and also at the annual scale. The contribution of this is to improve 

the management of climate impacts for agriculture in these regions. 

 

8.1. Main findings 

1) The observed dry spell distributions in Kenya and the MDB can be summarised 

using the log-normal distribution.  

2) The mean monthly dry spell length based on averaging of dry days in a month 

cannot represent drought conditions in a region reliably, because it 

underestimates the observed dry spells. 

3) It is difficult to calculate the mean monthly dry spell length and to use this in 

forecasting. Dry spell length calculated by taking into account series of dry days 

which go across monthly boundaries give the real picture of the observed 

underlying drought conditions but this results in some double counting of dry 

spells.  

4) Drought probabilities for critical dry spells derived from empirical cumulative 

density functions of observed dry spell length can be used as an indicator of 

drought risk.  

5) Crop production in the short rain season (OND) in Kenya and in winter in the 

MDB is at a higher risk because there appear to be more increasing trends in dry 

spell lengths compared to the longer and abundant rainfall season (MAM) in 

Kenya and Autumn in the MDB. 

6) The existence of trends in the dry spells lengths cannot always be summarised 

using linear relationships because both linear and non-linear trends exist across 

time and locations, in a more complex manner. 

7) The spatial variation of the log-normal distribution parameters of the dry spell 

lengths shows stronger trends with latitude than with longitude in Kenya but also 

seem to increase with southerly latitudes and increasing rainfall in the MDB.   
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8) Specific phases of the Southern Oscillation Index (SOI) have an impact on dry 

spells   lengths across locations in Kenya and the MDB at 1, 3 and 6 months lead 

times but this may vary in time and space in these regions. 

9) Climatic factors cannot in general be taken to be the key determinants of farm 

decisions as would be expected. Mostly, non-climatic factors control what 

farmers do relative to climatic factors. 

 

8.2. Implications in Kenya and Australia 

8.2.1  Dry spell lengths distribution 

The log-normal distribution was used to fit the dry spell data series in Kenya and the 

MDB. It was found to describe the observed dry spell data best in most of the 

locations based on the minimum Akaike Information Criterion. The density 

estimation and key feature of the observed dry spell data in these regions was found 

to be heavy-tailed and positively skewed, similar to that of some other geo-physical 

or climatic variables such as streamflow, windstorms and rainfall (e.g. d'Almeida 

1987, Berg & Chase 1992, He et al. 2012), which also tend to follow the lognormal 

distribution.  

Considering that most areas in these regions are semi – arid and have limited or no 

data, the implication of this is that the lognormal probability distribution functions 

can be used to estimate the dry spell statistics or climatic conditions in such areas and 

hence provide better estimates of drought in contrast to traditional proxies such as 

climatology or analogues (e.g. Unganai & Kogan 1998, Sorooshian et al. 2000, 

Gergis et al. 2012). For example, the correlations of the log-normal distribution 

parameters with rainfall in chapter 3, suggest a strong negative relationship in Kenya 

and a clear relationship with latitude which is correlated to the rainfall. This means 

that, drought conditions for locations with similar rainfall and latitude can be derived 

from such relationships. This is may particularly have some implications in the 

MDB, where rainfall normally has a strong east-west (longitude)  trend (e.g. 

Drosdowsky 1993, Cook & Heerdegen 2001, Ummenhofer et al. 2008). The analysis 

of dry spell length distribution parameters in chapter 3 indicated that latitude 

explained 47% and 38% of the variance in the shape and scale parameters but 

longitude explained very little variation. Again the shape and scale parameters 

increased with southerly latitude and increasing rainfall. This would suggest that 

drought has a strong North-South orientation with dry spells relative to longitude. In 
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other words, latitude can be used to estimate dry spell patterns and prediction of dry 

spells in semi arid regions. 

 

8.2.2. Actual observed dry spell lengths distribution and understanding of 

drought 

Calculation of the mean monthly dry spells length using dry days at the monthly 

scale and also dry days that go across months has complications.  Averaging dry days 

only within the monthly boundary leads to under-estimation of the actual mean 

dryspell length and including dry days going across months may under or over 

estimate the mean dry spell length depending on whether a dry spell starts or ends in 

a previous, current or the next month.   This suggests that the use of the mean 

monthly dry spell length which is frequently used to represent the state of drought in 

a region may not be reliable. Drought is particularly sensitive since the length of 

drought tends to indicate its severity. This scenario yet again brings to light the 

increasingly complex definition of drought. However, dry spells can arguably be a 

better way to explain drought in a region. Dry spells can be taken to mean drought if 

the precipitation during the period is below the normally occurring levels and cannot 

support maturity of crops (MacDonald 1998). A general view of drought is that, a 

deficiency in precipitation leads to water shortage which fails to adequately meet the 

needs of some activities (Wilhite & Glantz 1985). Drought is seen as an extreme 

event. For agriculture, this requires definitions of: what is “extreme” for agriculture; 

what “extremes” are relevant to agriculture and how long is “extreme” for 

agriculture.  

In general, it may therefore be more practical to consider a number of options rather 

than the mean monthly dry spell length. This can be counting the number of dry days 

in a month or the longest dry spell length in a month. Alternatively, shorter dry spells 

(“<month”) within cropping stages may be useful. In the case of counting the number 

of dry days, again, there remains an issue with dry spells going across successive 

months. However, one study (Stern et al. 1982a) suggests that in such a case, where a 

dry spell goes across 2 months, it can contribute to the individual dry spell lengths 

ending in either month (periods). This argument however, can only apply if one 

considers counting dry days/spells starting from the first to the last day in each 

month and not across consecutive months.   For agronomic purposes, the number of 

dry days or the dry spell in different crop stages can be an indicator of the level of 
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water stress. The impacts of water stress on crop growth during different phenology 

stages of crop has been studied and found to indicate crop failure or yield reductions 

(e.g. Pantuwan et al. 2002, Blum 2005). This information can complement the 

rainfall amounts (soil moisture) available for crops at different stages and facilitate 

improvement of crop water management against drought conditions in Kenya and the 

MDB. 

 

8.2.3. Drought risk 

In chapter 3, the application of the derived dry spell distributions was demonstrated 

in the derivation of the probabilities of exceeding any given dry spells lengths in the 

planting season for maize in Kenya and wheat in the MDB. This contrasts some 

previous studies that only considered probabilities of the occurrence (e.g. Stern et al. 

1982b). A study by Barron et al. (2003) using Markov models had found that the 

probability of exceeding 10 dry days in the long (March-May) and short (October-

December)  growing season was <20% for 2 semi-arid locations in east Africa. This 

result differs in this study (chapter 3) for most of the semi-arid locations analysed in 

which, higher probabilities of exceeding 10 dry days (> 20%) in the long growing 

season were indicated. This would probably be because Baron et al (2003) used a 

higher daily rainfall threshold (0.85mm) to define a dry day which may have 

included relatively wet days in the calculation. Whereas maize or wheat yields 

reductions due to drought have been documented before (e.g. Ribaut et al. 1997), 

these are generally based on the cumulative effects of drought (e.g. Vasic et al. 1997, 

Hlavinka et al. 2009).  

The implication of the probabilities of exceedances of dry spells in the growing 

seasons is that they can be used to develop drought risk maps which may be used in 

management decisions for agriculture in these regions. In other words, the 

probabilities can be used as indicators of drought risk in contrast to other drought 

indices such as the drought severity index (Palmer 1965) and the standardized 

precipitation Index (McKee et al. 1993) which are not suitable for the relatively 

shorter cropping stages. Moreover, the dry spell probabilities can complement 

seasonal climate forecasts which often double in the provision of climate information 

for both rainfall and drought conditions. 
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8.2.4. Chance of crop failure 

Using a generalized linear model (GLM), it was shown that the risk of crop failure is 

higher in the short rain season (OND) in Kenya and also in the winter season in the 

MDB because of more increasing trends in dry spell lengths in these seasons 

compared to the longer and abundant rainfall season (MAM) in Kenya and drying 

autumn season in the MDB. Several studies have suggested that crop failures in 

Kenya occur more in the long rain season than in the short rain season (Downing et 

al. 1989, Wafula 1995, Rao & Mathuva 2000, Ngigi et al. 2005). The long rains 

contribute to 70% of the total annual rainfall in Kenya and would therefore be 

expected to be more useful for crop production. Crop failures in the long rain seasons 

could be due to its unpredictable nature. Crop failures and yield reductions occurred 

as a result of delay in the long rains (e.g. Wafula 1995) or occurrence of low rainfall 

(e.g. Ong et al. 2000).  Another reason may be the tendency of poor rains occuring 

more frequently in the MAM season than in the OND season (e.g. Muti & Kibe 

2009, Speranza et al. 2010). Regardless, it is the occurrence of inadequate rainfall, 

rather than rainfall failure, that causes crop failure. In the MDB, increasing drying 

trends in rainfall patterns in the past have been highlighted more in autumn compared 

to other seasons. Autumn rainfall has a greater impact on crop and pasture 

production in the MDB but is less reliable than winter rainfall (e.g. Austen et al. 

2002, Clark et al. 2003). Therefore increasing trends indicated in dry spell length in 

Kenya and the MDB could  have significant ramifications for crop production in 

these regions because the short rain season in former is more reliable for crops and 

pasture production in the semi-arid and pastoral areas and particularly for short 

maturing crops whereas winter crops such as wheat in the MDB (Nicholls 2004) 

contribute to the larger proportion of the total agriculture output for Australia (e.g. 

Sandhu et al. 2012, Ejaz Qureshi et al. 2013) 

 

8.2.5. Consistency in short and longer dry spell lengths trends 

In chapter 4, long-term trends in the dry spell lengths were analysed at the annual 

and monthly seasonal time scales. Results suggested that the estimated trends for 

shorter (”<month”) were similar to those of the longer (“Long”) dry spells in the 

study locations and occurred more often than by chance. This finding is significant 

and contrasts to other analysis that mostly focussed on longer time scales (e.g. 

Seleshi & Camberlin 2006, Nasri & Modarres 2009). For instance, Nasri & Modarres 
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2009 found trends in the annual maximum dry spells over Iran but the regional trends 

were more a random occurrence. This means that for agriculture, whereas increasing 

trends for longer dry spells may suggest increased and prolonged drought 

risk/conditions and hence severe effects on crops, similarly severe effects may also 

occur due to shorter dry spells occurring in the crucial cropping stages. This is to say, 

for successful formulation of adaptation strategies for agriculture; both the short and 

longer effects of dry spells/drought must be considered. 

   

8.2.6. Linear and non-linear trends 

Analysis of trends in dry spell lengths using a generalised additive model (GAM) 

indicated that some locations had more complex patterns. Both linear and non-linear 

trends emerged which suggest that dry spells trends cannot only be summed up as 

linear. These 2 trend types suggest there is variability in the climates of the regions 

that may be explained by other processes in local or climatic factors like the El Niño 

Southern Oscillation (ENSO).  For example, fitting a GAM model to the observed 

dry spell lengths for Lodwar (Kenya) using only the El Niño and La Niña years 

shows more variability in the long-term (year-year) and monthly trends for La Niña 

years (p≤0.05) compared to the El Niño years (Figure 8.1). Whereas the long-term 

trend is insignificant in El Niño years, a non-linear and possibly positive trend occurs 

with La Niña years. Both monthly trends follow seasonality in Kenya. The trend in 

La Niña years could be because the La Niña phenomena is strongly associated with 

low or deficient rainfall in Kenya (Mati et al. 2006, Nduru & Kiragu 2012) and El 

Niño years with higher rainfalls (Usher 2002, Ambenje 2004). La Niña is related to 

severe droughts in Kenya and intense rainfall in eastern Australia (MDB) with El 

Niño events giving the opposite rainfall patterns in both regions. 

Generally, trends at the monthly scale would be noisier than the year – year 

variability because in the latter, long periods smooth out the seasonal cycles and 

highlight the long-term cycles. As a result, estimating non-linear trends and their 

statistical significance may be problematic for the finer (monthly) temporal scale 

compared to the longer (annual) scale. This may be why most drought studies 

consider longer time scales (annual) than shorter periods to analyse non-linear trends 

(e.g. Griffiths et al. 2003, Bordi et al. 2009). 

The implication of this is that, statistical approaches that have the ability to model 

complex temporal patterns in drought should be used. In this study, GAMs were used 
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to model the temporal and spatial characteristics and prediction of dry spell length 

because they are flexible and efficient for modelling both linear and non-linear 

behaviours in a data series. 

     

 

    

Figure 8.1: The effect of year and month on dry spell length for Lodwar (Kenya) during El Niño years ((a) 

and (b) respectively) and La Niña years ((c) and (d))) between 1961 and 2010. 

 

8.2.7. Spatial characteristics of dry spell length lognormal parameters 

The effects of droughts are mostly felt at a regional or broader scale as opposed to 

local (Booth et al. 2006). It therefore makes sense to examine whether trends in dry 

spell length are visible at a larger scale. This can be useful to better understand the 

geo-physical dynamics or processes driving drought in different regions. The 

information may also be used to adjust plans for food security, agricultural marketing 

and so on at the national, regional and local level.  
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In Kenya, the present analysis indicated strong increasing trends in the dry spell 

length in the long dry (June –September) season compared to the short dry (January 

– February) season and again in the short wet (October-December) season compared 

to the long wet (March-May) season. Interestingly, most of these increases occurred 

in locations in southern half of the country which contains over 80% of the high 

potential agricultural areas. The result of this is that, the country is at a higher risk of 

a food crisis as drought conditions may increase in the high potential regions 

normally referred to as the maize basket. This suggests that these areas should be 

prioritised for study so as to understand the effects of drought on agriculture 

production and the best way to mitigate or manage the impacts. One way to start can 

be to integrate dry spell information together with rainfall distributions in these 

regions. 

In contrast to Kenya, a significant number of locations with increasing trends in dry 

spell lengths occurred in autumn and winter in the MDB as mentioned in section 

4.3.4 and the spatial distribution of these trends (chapter 4: Figure 4.7) indicated that 

these mostly occurred in locations in the southern half of the basin and the eastern 

parts. This suggests that changes in drought may be felt more in the winter-dominant 

rainfall (south and east) regions than in northern regions. Crop production in this 

regions may not only be affected by drought. Because agriculture is the single most 

greatest employer (60%) in rural Australia, unemployment, income losses among 

other issues can occur if the drought impacts of the “2002 -2003” magnitude reoccur. 

Efforts should therefore be scaled up to improve agriculture adaptation to such 

changes. 

   

8.2.8. Relationships between dry spells and El Niño Southern Oscillation 

Significant correlations between rainfall and ENSO in Kenya and Australia (MDB) 

are widely documented (e.g. McBride & Nicholls 1983, Kane 1997, Indeje et al. 

2000, Camberlin et al. 2001, Amissah‐Arthur et al. 2002, Risbey et al. 2009). This 

has been the basis for precipitation and drought predictability in these regions (e.g. 

Drosdowsky 1993, Mutai et al. 1998). Using lagged Southern Oscillation Index 

(SOI) phases, it was shown that different patterns occurred with dry spells lengths at 

each phases and time lag. The importance is that specific lagged SOI phases were 

better determinants or predictors of dry spells length of specific characteristic (e.g. 

median or maximum dry spell length or lags) and for specific locations or regions. 
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This has potential implications for forecasting dry spell lengths in this regions. For 

example, Stone & Auliciems (1992) demonstrated this concept for rainfall in 

Australia, arguing that using the correlations between Southern Oscillation Index 

(SOI) alone and rainfall did not explain most of the variability as “within cycles” of 

the SOI (phases) held some of this information. For instance, they found that one 

SOI phase represented well ‘above median’ rainfall and another ‘below median’ or 

‘median’ rainfall. 

   

8.2.9. Farmers perceptions on forecasts and effect on farm decisions   

In chapter 6, it was shown that most farmers in Kenya used indigeneous forecasts 

compared to climate forecasts as they were easily accessible (through experience and 

observation). But significant differences exist in the use of climate forecasts between 

farmers in the high rainfall and dry (semi-arid) study areas. This strengthens other 

studies which indicate that farmers first utilise what they know best relative to other 

innovations (e.g. Orindi et al. 2007, Onduru & Du Preez 2008, Ogallo 2010). 

Application of forecasts in farm decisions have the potential of improving farmers 

ability to cope with climate extremes such as dry spells. However, constraints to 

adequately use forecasts also exist (e.g. Ingram et al. 2002). Factors such as the level 

of forecast skill, interpretation, lack of taking into account users needs and context of 

the information are some of the obstacles highlighted in forecasts usage (Lemos et al. 

2002, Blench 2009). For example, farmers in the Sahel interpreted climate forecasts 

according to their own expectations, experiences and observations (Roncoli et al. 

2002). According to Blench (2009), farmers or users of forecasts typically have a 

broader range of management options to respond to climate risks and would 

therefore not just focus on say “skillful” forecasts. However, a majority of farmers in 

Kenya expressed the need for dry spell forecasts because dry spells occurred in 

several occassions during the planting seasons. This means that, there is potential to 

increase forecast usage and food security if reliable dry spell/drought forecasts are 

provided and used by farmers in their decisions. 

Whereas the results from the current analysis showed that climatic factors (use of 

climate forecasts etc.) were secondary to non-climatic factors (agronomic factors 

etc.) in the  determination of farm decisions/choices, an important implication is that 

recommendation of management strategies based only on non-climatic factors would 

be counter-productive in the management of climate risks. This is because farmers in 
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Kenya and other regions are interested in climate information such as onset of rains, 

amounts of rainfall, and chance of dry spells in the season (O'Brien et al. 2000, 

Ziervogel 2004, Blench 2009) which can be provided through sound scientific 

framework. Moreover, this means that integration of both scientific and indigenous 

forecasts may help farmers to improve their adaptive capacity to climate change. 

     

8.3. Research limitations  

There are a number of limitations to this thesis. Firstly, a single rainfall threshold 

was used to define a dry day for all the locations in the study areas. This may have 

the limitation of misrepresenting the true picture of drought in a location because the 

climates for the different areas are not homogeneous. Secondly, calculating the mean 

monthly dry spell length is challenging due to the fact that dry days/spells that go 

across months contribute to both periods. This also poses a problem at how the 

observed actual (“Long”) dry spells that go across 2 or more months can be matched 

with covariates that are usually at a monthly step. Thirdly, in modelling of dry spell 

length, one major limitation is how to account for uncertainty of extremes in the dry 

spell length predictions. For instance, the model outputs under-predicted longer dry 

spells in some occasions and no schemes were used to account for uncertainty in 

these models. Again, the skewed nature of the dry spell distributions meant that 

adjustments/transformations of underlying observed distribution was needed in order 

to adequately accommodate the covariates in the model. For instance, the log 

transformation was applied on the dry spell lengths for some locations. These 

patterns may be due to the presence of both linear and non-linearities in the dry spell 

distribution. 

Lastly, research on application of forecasts in farm decisions indicate that there is a 

disjoint between the knowledge farmers (indigenous/scientific forecasts or 

experiences) have and how this is translated into benefits for agricultural 

management of climate risks in the study areas. For instance, wind direction was 

mentioned as the key indicator used by most farmers to forecast rainfall but how this 

can be integrated into quantitative structure and used for planning remains unclear. 
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8.4. Future research directions 

This thesis was divided into 4 main research themes and thus numerous additional 

research questions arose. Some of the research questions which may be important in 

the future include; 

1. Does a daily threshold rainfall amount make a difference on definition of a dry 

day? Further investigation on whether by varying the definition of a dry day using 

different daily rainfall thresholds for different climatic zones / locations would yield 

different results or conclusions. This is motivated by the fact that different studies 

use varied thresholds (e.g. Brunetti et al. 2002, Wauben 2006) but it is unclear how 

this affects the analysis or understanding of drought. 

2. Mean dry spells length versus the monthly and across month boundaries 

Whereas difficulties were met in the calculation of the monthly mean dry spell 

lengths at the monthly and across monthly scales, it may not be entirely possible to 

ignore the fact that the mean monthly dry spell length will still be useful in the 

analysis of drought. For example, when forecasting drought, covariates normally 

used are monthly sea surface temperatures, SOI and so on. And because more than 

one dry spell may exist in a month, taking the average or using the median or 

maximum dry spell length as a response variable would mostly be the only option. 

Future work will need to explore how best the mean dry spell length can be 

calculated without compromising the actual underlying dry spell length.  

3. Development of dry spell length index 

Dry spell indices such as the standardized precipitaion index (McKee 1993) are used 

to monitor drought in many regions. While the SPI has its pros and cons just like any 

other drought monitoring tool, the development of a dry spell length severity index 

may be a better tool. The question however will be how to scale the dry spell length 

versus the rainfall amount prior and after a dry spell.  

4. Examine novel ways that can address under-prediction of long dry spell length 

In chapter 5, the problem of under-prediction of dry spells was noted. Future research 

can investigate if the dry spells can be modelled in two parts possibly using mixed 

distribution models. Possible candidates may include generalized additive or linear 

mixed models (GAMM/GLMM). Such models can allow addition of random effects 

that account for  over-dispersion due to seasonal or  other effects (McCulloch & 

Neuhaus 2006). 

5. Prediction of dry spells at the seasonal and long term time scales 

http://onlinelibrary.wiley.com/doi/10.1111/1467-9876.00229/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1467-9876.00229/abstract
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The current thesis concentrated on forecasting dry spells at 1 month and 3 month 

lead times and using only the SOI (phases) and Niño3. As a continuation of this, 

focus can shift to modelling seasonal to long term dry spell lengths in both regions 

and including other potential predictors and combinations. At the same time, this can 

be extended to exploring how to improve the quality of the monthly forecasts in the 

current study.   

6. Integration of farmers perceptions into scientific terms 

In the study on farmers survey in Kenya, one of the objectives was to determine how 

indigenous forecasts (IF) could be translated into quantitative and scientific terms 

and then integrated with seasonal climate forecast (SCFs). As this was not achieved, 

this objective will be pursued as an extension of this research. This question still 

remains a major research challenge (e.g. Hansen 2002, Roncoli 2006, Orlove et al. 

2010, Hansen et al. 2011). It was noted in this study that both indigenous and 

scientific forecasts rely on environmental factors that are intricately connected and in 

both cases the forecasts provide probabilities of expected conditions such as rain, 

onset and so on but with uncertainty. This suggests that there could be ways of 

integrating the two paradigms to better predict and manage climate change and 

variability. 

7. Explore the value and quality of dry spell forecasts in farm decisions. 

In chapter 6, farmers indicated that the number of dry days was one of the key factors 

that affected crop production during the planting season. To better understand this 

issue, the ability of the dry spell models developed in the current thesis and 

subsequent analysis can be tested in practice using a sample of farmers. Forecasts 

specifically predicting dry spells or drought conditions are not normally in use or 

available since seasonal climate forecasts are provided. This may later be compared 

with the seasonal climate forecasts by the meteorological service providers.  The 

outcome of this research may provide additional information that may help in 

improving the quality or application of forecasts.  

    

8.5. Conclusions 

The outcomes from this research have the potential to improve the management of 

climate extremes in Kenya and Australia and other regions. In particular, dry spells 

characteristics such as the temporal and spatial distributions are useful and potential 

for planning and boosting the resilience of rain-fed agriculture for these regions. 
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Short-term (monthly) and medium-term (3 & 6 month) forecasts can provide much 

needed information about future farming activities. 

Because Kenya and Australia are typical semi-arid environments and water and dry 

spells are  a limiting factor to agriculture production, this thesis is expected to form a 

basis for future developments of robust prediction models for drought in these 

regions. This can compliment the numerous other coping innovations farmers and 

water managers use in these regions.  
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APPENDIX 

A1: The mean annual rainfall for the study locations in Kenya  

Station Name  Latitude  

(
0
North (+) / 

0
South (-) ) 

Longitude  

(
0
East) 

Mean Annual Rainfall 

 (mm) 

Mandera 3.93 41.87 282.5 

Moyale  3.53 39.05 712.3 

Lodwar  3.12 35.62 206.4 

Marsabit 2.32 37.98 721.4 

Wajir 1.75 40.07 339.5 

Namandala  1.05 34.93 1107.6 

Chorlim 1.03 34.8 1124.5 

Colcheccio 0.63 36.8 600.4 

Eldoret 0.53 35.28 1085.9 

Isiolo DAO 0.35 37.58 679.6 

Nyahururu 0.33 36.37 999.9 

Kakamega 0.28 34.77 1856.1 

Meru 0.08 37.65 1330.2 

Timau  0.08 37.25 660.5 

Laikipia Air Base 0.05 37.03 685.9 

Kisumu -0.1 34.75 1374 

Nakuru -0.28 36.07 973.1 

Garissa -0.48 39.63 534 

Kisii -0.68 34.78 1940.6 

Thika  -1.02 37.1 956.4 

Narok  -1.1 35.87 781.8 

Dagoretti -1.3 36.75 1055.8 

Katumani -1.58 37.23 731.1 

Lamu -2.27 40.9 1056.9 

Makindu  -2.28 37.83 606.2 

Malindi -3.23 40.1 1340.5 

Msabaha -3.27 40.05 1150.6 

Voi -3.4 38.57 581.7 

Mtwapa -3.93 39.73 1295.1 

Mombasa  -4.05 39.63 1080.5 
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A2: The mean annual rainfall for the study locations in the Murray Darling Basin  

Station Name  Latitude 

(
0
South) 

Longitude  

(
0
East) 

Mean Annual Rainfall  

(mm) 

Augathella Post Office  25.8 146.59 577.7 

Charleville Aero  26.41 146.26 483.7 

Waverley Downs  26.61 148.54 564.7 

Chinchilla Water T.W 26.74 150.6 720 

Westbrook  27.62 151.83 712.7 

Condamine Plains 27.72 151.29 658.8 

Cunnamulla Post Office 28.07 145.68 401.1 

Wondalli 28.5 150.59 605.8 

Boggabilla Post Office  28.6 150.36 736.8 

Gum Lake (Albemarle) 32.53 143.37 264.6 

Mungindi Post Office 28.98 148.99 558.4 

Enngonia (Shearer Street)  29.32 145.85 384.3 

Collarenebri (Bundabarina) 29.54 148.4 512 

Collerina (Kenebree)  29.77 146.52 409.5 

Inverell Research Centre 29.78 151.08 804.7 

Narrabri (Mollee) 30.26 149.68 623.8 

Barraba Post Office 30.38 150.61 721.4 

Cobar (Tambua)  31.42 145.25 382.6 

Quirindi Post Office 31.51 150.68 700 

Broken Hill (Kars) 32.22 142.03 235.2 

Wellington 32.56 148.95 655.5 

Ivanhoe Post Office 32.9 144.3 334.7 

Lake Cargelligo Airport  33.28 146.37 440.7 

Pooncarie (Tarcoola)  33.43 142.57 281.4 

Bathurst Agricultural Station 33.43 149.56 661.1 

Cowra Agric. Research Station 33.8 148.7 643.4 

Marrabel  34.14 138.88 558.6 

Mildura Airport  34.24 142.09 281.9 

Groongal (Groongal Station)  34.44 145.56 412 

Euston (Sunnyside)  34.56 143.08 293.1 

Yas (Linton hostel) 34.83 148.91 693.2 

Murray Bridge Comparison  35.12 139.26 361.4 

Wagga Wagga AMO 35.16 147.46 574.2 

Nyah (Yarraby Tank) 35.17 143.28 349.4 

Ainslie Tyson St  35.26 149.14 654.6 

Pinnaroo 35.27 140.91 393.1 

Huntly  35.28 148.98 706.9 

Lake Boga  35.46 143.63 350.3 

Echuca Aerodrome 36.16 144.76 419 

Tallangatta (Bullioh)  36.19 147.36 841.8 

Cooma (Kiaora) 36.2 149.06 536.1 

Yackandandah 36.33 146.85 1057.2 

Raywood 36.53 144.21 446.4 

Horsham 36.7 142.2 432.7 

Redesdale 37.02 144.52 607.9 

Tongio (Brooklands) 37.18 147.71 618.3 

Lake Eildon 37.23 145.91 860.5 
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A3: Summary statistics for rainfall in various locations between 1935 and 2010 in (a) Kenya and (b) 

MDB 

 

Location 

Statistics summary 

(a) Kenya 1935 - 1960 1961 - 2010 1935 -2010 

Mean (mm) CV (%) Mean (mm) CV (%) Mean (mm) CV (%) 

Moyale 54.3 152.7  59.8 143.5 57.9 146.5 

Lodwar 13.3 181.8  17.2 176 15.9 178.8 

Marsabit 69.4 130.6  60.1 160.6 63.3 149.5 

Wajir 20.1 172.1  28.3 197 25.5 194.8 

(b) MDB 1910 - 1960  1961 - 2010 1910 - 2010 

Augathella 43.3 118.7  48.1 115.8 45.7 117.3 

Wondalli 50.2 94.8  50.5 90 50.3 92.4 

Groongal 29.6 95  34.3 94.6 32.0 95.3 

Redesdale 44.8 87.1  50.7 71.7 48.0 78.5 
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A4: Questionnaire used in the farmers survey in Kenya 

 

This survey aims at understanding how farmers make decisions using climate 

information. The information you provide will be kept anonymous and used for 

intended research purpose only. This information will be used to improve the future 

ability to forecast variability in climate and hence provide farmers with better 

decision making tools. We will share with you the key results from this survey on the 

Kenya Meteorological Department website and the local agriculture office in your 

area or if you provide an e-mail address.   

 

Please answer all questions using [X]. Select more than one where applicable  

(Acronyms: KMD=Kenya Meteorological Department, SCF=Seasonal Climate Forecasts, 

IF=Indigenous Forecasts) 

 

Section A: Participant and other farming practice information 

 

1 a) Name:_______________________  b) Sex: [ ] Male    [ ] Female    

c) Age:   [ ] 20 – 45 years [ ] Over 45 years 

d) Level of education [ ] Primary [ ] High School [ ] College and above 

e) Do you have any agricultural training [ ] Yes [ ] No 

f) Location of farm: _______________Sub-location ________________Village 

g) Size of family on farm: _________________ 

h) Sources of income:  Farm only [ ]  Employment [ ]  Business [ ] 

 Other [ ]  Prefer not to answer [ ] 

i) Size of your farm? ______________ (acres/hectares)  

 

2 a) How important is Maize crop in your farming on a scale of 1 to 5?  

Least important>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>most important 

[ ] 1        [ ] 2  [ ] 3        [ ] 4  [ ] 5 

b) If you grow other crops on your farm, what is the percentage? 

[ ] 0%  [ ] 1 - 33% [ ] 34 - 66% [ ] 67 - 100% [ ] Don’t know 

c) Which of the following best describes your maize yields in the last 5 years? 

 

 Rating Please explain your rating (e.g. bags per hectare etc) 

Outstanding  [ ] 

Above average [ ] 

Average  [ ] 

Below average             [ ] 

Poor   [ ] 

Unable to rate  [ ] 

 

 

A survey looking into how farmers plan their 

decisions using climate information in KENYA 
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Section B: Forecasts and farm decision making information 

 

3 a) Please characterize your use of the following by selecting what applies to you 

I am User of:  Type of information I use is: I get my information from 

Seasonal Climate Forecasts [ ] 
 

Indigenous Forecasts    [ ] 
 

Seasonal Climate Forecasts & 

Indigenous Forecasts [ ] 
 

None of the Above [ ] 

Daily forecasts  [ ] 

Weekly forecasts  [ ] 

10 day forecasts  [ ] 

Monthly forecasts  [ ] 

Seasonal forecasts (3 month) [ ] 

Other [ ] 

 _______________________ 

 

Personal experience [ ] 

Observations [ ] 

KMD website [ ] 

Newspaper [ ] 

Television [ ] 

Radio  [ ] 

Consult rainmaker  [ ] 

Local Agriculture office [ ] 

Others [ ] 

 

b) How long have you been using the forecasts or your choice(s) in 3 (a)? 

 Less than 5 years  [ ]  Last 5 years [ ]  Over 5 years [ ] 

 

c) Why did you use the forecasts?  

____________________________________________________________________

____________________________________________________________________ 

 

c) With respect to rainfall forecasts explain briefly what you understand by the 

terms “Normal”, “Above normal” and “Below normal” rainfall 

 

Forecast term Explanation 

Below normal 

rainfall 

Extremely high rainfall [ ]  

high rainfall     [ ]  

moderate rainfall    [ ]  

low rainfall     [ ] 

Don’t know    [ ] 

0 mm   [ ] 

1 - 50 mm   [ ]  

51 - 100 mm  [ ] 

101-150 mm  [ ] 

151 -200 mm  [ ] 

Above 200 mm [ ]  

Normal rainfall Extremely high rainfall [ ]  

high rainfall     [ ]  

moderate rainfall    [ ]  

low rainfall     [ ] 

Don’t know    [ ] 

0 mm   [ ] 

1 - 50 mm   [ ]  

51 - 100 mm  [ ] 

101-150 mm  [ ] 

151 -200 mm  [ ] 

Above 200 mm [ ]  

Above normal 

rainfall 

Extremely high rainfall [ ]  

high rainfall     [ ]  

moderate rainfall    [ ]  

low rainfall     [ ] 

Don’t know    [ ] 

0 mm   [ ] 

1 - 50 mm   [ ]  

51 - 100 mm  [ ] 

101-150 mm  [ ] 

151 -200 mm  [ ] 

Above 200 mm [ ] 

 

d) What would you describe to be the ideal rainfall forecast you have used for a 

good maize yield from your farm? 

Extremely high rainfall [ ] high rainfall [ ] moderate rainfall [ ] low rainfall [ ] Don’t 

know [ ] 
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Please provide details of how much maize you harvested in response to (d) 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

 

e) Please give a practical example and show how you applied any aspects in the 

forecasts in making farm decisions such as; crop to plant in the short or long rain 

season 

 

Farm decision Forecast aspect  

(Indicator used). 

What did you do? 

 

 

Rainfall decile  [ ] 

Rainfall amount  [ ] 

Wind direction  [ ] 

Croak of frogs  [ ] 

Falling of leaves  [ ] 

Onset dates  [ ] 

Others    [ ] 

(list)_______________ 

___________________ 

___________________ 

 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________

_____________________________ 

_____________________________ 

 

4. In your opinion, how best would you describe the accuracy of the forecasts you 

have been using on a scale of 1 to 5? 

 

Not accurate>>>>>>>>>>>>>>>>>>>>>>>>Extremely Accurate I don’t know 

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ] [ ] 

 

5. In your opinion, by combining SCF and IF how best would you describe the 

accuracy of the forecasts? 

 

Not accurate>>>>>>>>>>>>>>>>>Extremely Accurate I don’t 

know 

I don’t 

combine 

SCF/IF 

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ] [ ] [ ] 

 

6. How satisfied are you with the forecasts you have been using? 

 

Very Dissatisfied>>>>>>>>>>>>>>>>>>>>>>>>>>Very Satisfied I don’t know 

1 [ ] 2 [ ] 3 [ ] 4 [ ] 5 [ ] [ ] 

 

7. Do your neighbours make use of forecasts in farm decisions? 

 i) Yes [ ]  ii) No [ ] iii) Don’t know [ ]   
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8. Is there anything you would like to suggest regarding the use of forecasts? (E.g. 

Constraints etc) 

____________________________________________________________________ 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

____________________________________________________________________

____________________________________________________________________ 

 

9 a) During the rain season, have you ever experienced dry periods after planting?  

[ ] Yes   [ ] No 

 

   b) If you said ‘Yes’ in 9(a) give one example of how you dealt with the situation 

____________________________________________________________________  

____________________________________________________________________

____________________________________________________________________ 

____________________________________________________________________

____________________________________________________________________ 

 

c) In your opinion, have the planting and harvesting dates changed? [ ] Yes [ ] No 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

 

d) If you said ‘Yes’ in 9(c) how have planting and harvesting dates changed? 

 

Change in planting dates [ ] Comes early [ ] Comes late [ ] have not changed [ ] I don’t 

know 

 

Change in harvest dates [ ] Comes early [ ] Comes late [ ] have not changed [ ] I don’t 

know 

 

10. Please indicate if you would like to participate in future research Yes [ ] No [ ] 
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A5:  Focus Group Discussion Questions 

These QUESTIONS are intended to inquire about specific issues regarding use of 

climate information in Kenya. The questions will revolve around similar or emerging 

issues from the individual responses on the main questionnaire administered in the 

areas. The following questions will guide the discussions. 

1. Is maize the most important crop in your area? Please explain, why you think 

maize is important. 

2. Do you have other crops you think are important in your area and what 

benefits do they give you? 

 

3. How on average can you describe the performance of the crops in your area 

in terms of yields? 

 

4. Are there any climatic or others factors you think have influenced maize 

production / yields in your area in the last 5 or more years. What strategies 

did you use to cope with these?  

 

5. The year 2011 was a severe drought year in Kenya in the recent times.  

i) Was maize crop in your area affected by this drought? (Provide some 

evidence, yields, market prices etc) 

ii) Do you remember any other similar drought or extreme events 

(floods, pests etc) in your area? Please list as much as you can 

remember and explain how it affected your crop (maize).  

iii) In your opinion, has rainfall increased or declined in your area in the 

last 10 years? 

 

6. i) Are you aware of climate forecasts (Meteorological and Indigenous)? 

ii) Do you know what the terms “Below normal rainfall”, “Normal” and 

“Above Normal” mean? Discuss 

iv) Do you have any indicators from the environment that you use in your 

forecasts? 

 

7. Do you use the forecasts in planning your farm activities?  

i) What specific attributes do you use from the forecasts 

ii) Please discuss how you use them before the rain season, during and 

after the rain season. (selection of crop/ seeds, land preparation etc) 

iii) Give 2 examples of how you planned your farm activities when and if 

you had below normal rainfall and above normal rainfall forecast. 

 

8. Are the forecasts you use accurate? Discuss how you determine the accuracy 

in the forecast 

 

9. Are there any obstacles or constraints you have experienced regarding use of 

forecasts in your area? Please list or explain. 

 

10. Do you have any other suggestions you want to discuss regarding use of 

forecasts? 
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A6: Perceived reasons related to yield increase or declines in Laikipia and Vihiga districts 

Yield effect Terms used as indicators of decline or increase in yield 

Climatic Non-climatic 

Increase 

 
 Good weather patterns  

 Good rains 

 Favourable rainfall 

 Improved rains 

 Increased rainfall amounts 

 Rainfall availability 

 Better rains 

 Timely rains 

 Early rains 

 Correct timing of rains season 

 Sufficient rainfall 

 improved weather 

 

 Use of fertilizer 

 More farming experience 

 Increased cost of farm inputs 

 Use of improved quality seeds 

 Improved farm practices 

 Better agricultural practices 

 Use of treated seed fertilizer and manure 

 Improved agriculture practice 

 Reduced cost of inputs 

 Combining manure and fertilizer 

 Double ploughing before planting 

 Appropriate planting methods 

 Advice from local agriculture office 

 Use of better quality seeds 

 no tillage  

 Use of pesticides  (cat worms) 

 Change of farm inputs   

 change from local to hybrid seeds 

 use of manure 

 early land preparation 

 welfare financial support 

 additional agricultural training 

 Use of advanced farming equipment 

(tractor) 

 Fallowing of land 

 Appropriate weeding 

 

Declines  Frost effect 

 Too much rains 

 Rainfall failure 

 Erratic rains 

 Delay in rains 

 Reduced rains 

 Less rainfall 

 Unreliable rains 

 Weather and climate change 

 Occurrence of dry spells  

 Low rainfall 

 Poor rainfall 

 Rainfall deficit  

 No change in weather 

 Wind destruction 

 Hailstorms 

 Change in rain patterns 

 Occurrence of floods 

 High rainfall 

 

 Old age 

 Insufficient farming skills 

 Change to other crops 

 Big  family size 

 Low soil fertility 

 Lack of fertilizer 

 Poor farm practices 

 Lack of quality seeds 

 Poor seeds and fertilizer quality 

 Poor farming methods 

 inadequate capital 

 reduction of farm size 

 not using fertilizer   

 reduced land size 

 theft 

 pests invasion 

 lack of subsidies 

 negative  fertilizer effect on yield 

 new weeds variety  invasion 

 poor land preparation 
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A7: Correlation between monthly total rainfall and the maximum dry spell length for Nyahururu 

(red dots) and Kakamega (blue (+) symbols. Inset is the temporal distribution of AI values for the 

period 2007 – 2012 
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