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Economists often use matched samples, especially when dealing with earn-

ings data where a number of missing observations need to be imputed. In

this paper, we demonstrate that the ordinary least squares estimator of the

linear regression model using matched samples is inconsistent and has a non-

standard convergence rate to its probability limit. If only a few variables are

used to impute the missing data then it is possible to correct for the bias. We

propose two semiparametric bias-corrected estimators and explore their asymp-

totic properties. The estimators have an indirect-inference interpretation and

their convergence rates depend on the number of variables used in matching.

We can attain the parametric convergence rate if that number is no greater

than three. Monte Carlo simulations confirm that the bias correction works

very well in such cases.
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1 Introduction

Suppose that we are interested in estimating a linear regression model

Y = X ′1β1 +X ′2β2 + Z ′γ + u := W ′θ + u, E (u|W ) = 0, (1)

using a random sample, where X1 ∈ Rd1 , X2 ∈ Rd2 and Z ∈ Rd3 . (The reason

for distinguishing between the regressors X1, X2 and Z will become clear shortly.)

While d1 = 0 is allowed (see, e.g., Example 2 below), the intercept term is assumed

to be included as a component of X2 so that d2 ≥ 2 must be the case. When W =

(X ′1, X
′
2, Z

′)′ ∈ Rd, where d := d1 + d2 + d3, is exogenous and a single random

sample of (Y,W ) can be obtained, the ordinary least squares (OLS) estimator of θ =

(β′1, β
′
2, γ
′)′ is consistent and even Gauss-Markov when the error term u is conditionally

homoskedastic.

In reality, however, we often face the problem that (Y,W ) cannot be taken from

a single data source. It is not uncommon in labor and public economics to collect

the variables necessary for regression analysis from more than one sources. Examples

include Lusardi (1996), Björklund and Jäntti (1997), Currie and Yelowitz (2000), Dee

and Evans (2003), Borjas (2004), and Fujii (2008), to name a few. This is the setting

in which we are interested. Specifically, suppose that instead of observing a complete

data set (Y,W ), we have the following two overlapping subsets of the data, (Y,X1, Z)

and (X2, Z). That is, some of the regressors are not available in the initial data set,

where the initial data set is the data set containing observations on the dependent

variable along with a few other regressors. In such a setting, it is natural to construct

a matched data set via exploiting the proximity of the common regressor(s) Z across

the two samples. A common method of constructing matched samples is the nearest

neighbor method (NNM; see, e.g., Abadie and Imbens, 2006, 2012a). Here are a few

examples of the setting.
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Example 1. (Earnings data) Matching is currently used for imputing missing

records of earnings in important economic data sets. For example, the U.S. Cur-

rent Population Survey (CPS) files use the so called “hot deck imputation” proce-

dure of the Census (see, e.g., Little and Rubin, 2002; Hirsch and Schumacher, 2004;

Bollinger and Hirsch, 2006), which allocates to nonrespondents the reported earnings

of a matched respondent who has similar recorded attributes. The share of imputed

values is as high as 30%. The resulting earnings data have been used to uncover much

of what is known about the labor market dynamics and outcomes.

Example 2. (Intergenerational income mobility) Let Y denote (the logarithm

of) son’s earnings, X2 (the logarithm of) father’s earnings and father’s individual

characteristics, and Z father’s education. In this example, X1 is absent and all the

new regressors we can obtain (aside from Z) will come from matching on Z. A

complete data set of (Y,W ) is unavailable but we can take the two data sets (Y, Z)

and (X2, Z) separately from two Panel Study of Income Dynamics (PSID) waves with

a gap of 20 years, for instance, and construct a matched data set of (Y,W ) where the

matching is based on Z.

Example 3. (Return to schooling) Let Y denote (the logarithm of) earnings,

X1 individual characteristics, X2 ability measured by test scores, and Z education.

Although (Y,X1, Z) is available in PSID, for instance, it is often the case that (X2, Z)

can be found only in a different, psychometric data set. Again, we must construct a

matched data set of (Y,W ) with respect to Z. Unlike in Example 2, here we use the

matched observations for only a subset of regressors.

This paper demonstrates that the OLS estimation of (1) using NNM-based match-

ing is inconsistent. The source of the inconsistency is a non-vanishing nonparametric

bias term, which can be viewed as a measurement error bias stemming from replacing
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unobservables X2 with their proxy in the matched data. In this sense, the paper is

related to the literature on the classical problem of generated regressors and missing

data (see, e.g., Pagan, 1984; Prokhorov and Schmidt, 2009). Moreover, we show that

the rate of convergence to the probability limit of OLS depends on the number of

matching variables. In particular, the parametric rate is attained only when d3 = 1,

i.e. when there is only one matching variable. In line with these findings, the paper

proposes two semiparametric bias-corrected estimators. The first estimator is based

on the original regression (1), which is in levels, and is designed only for the case with

d3 = 1. The second estimator attempts to remedy the curse of dimensionality in d3

by using first differences in (1). We show that it attains the parametric convergence

rate as long as d3 ≤ 3. Both estimators can be interpreted as indirect inference

estimators (Gouriéroux, Monfort and Renault, 1993; Smith, 1993) in the sense that

they can be obtained by taking the probability limit of the OLS estimator from the

regression as the “binding” function.

Correspondingly, this paper makes contributions in three important areas. First,

we provide new asymptotic results for regressions involving matched data. Such

results have been limited to the literature on matching estimators of the average

treatment effect (ATE). For example, Abadie and Imbens (2006) show that when

there is only one matching covariate, the bias in NNM-based matching estimators of

the ATE may be asymptotically ignored; they attain the parametric convergence rate

in that case.

Second, the estimation theory we develop provides a guidance on repeated survey

sampling when some covariates are found to be completely missing after the initial

survey. Our theory suggests (approximately) how many observations should be

collected in a follow-up survey and how to estimate the linear regression model of

interest consistently using the matched data from it.

Finally, the paper offers an alternative to other estimation methods based on two
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samples. A number of such methods have been designed within the framework of

instrumental variables (IV) or generalized method of moments (GMM) estimation,

where we can construct required moments off the two samples individually so no

matching is required (e.g., Angrist and Krueger, 1992, 1995; Arellano and Meghir,

1992; Inoue and Solon, 2010; Murtazashvili, Liu and Prokhorov, 2013). This approach

is not applicable in the setting of a linear regression where some regressors are missing

and two-sample moment based estimation is infeasible.

In this paper we assume that the two samples jointly identify the regression mod-

els. There are other two-sample estimators, e.g., Imbens and Lancaster (1994) and

Hellerstein and Imbens (1999), that cover the cases where the first sample alone iden-

tifies the models and the second sample is used for efficiency gains. These are not the

settings we consider.

The paper is organized as follows. Section 2 shows inconsistency of the OLS

estimation of the regression model in (1). Section 3 proposes two bias-corrected

estimators and explores their convergence properties. We also discuss a consistent

estimation of the covariance matrix in Section 3. Section 4 discusses the results

of Monte Carlo simulations, which examine how the bias correction works in finite

samples. Section 5 concludes with a few questions for future research. All proofs

are given in the Appendix.

The paper adopts the following notational conventions: ‖A‖ = {tr (A′A)}1/2 is the

Euclidian norm of matrix A; 0p×q signifies the p× q zero matrix, where the subscript

may be suppressed if q = 1; and c (> 0) denotes a generic constant, which is different

from one statement to another.
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2 Inconsistency of OLS Estimation Using Matched

Samples

In order to explain how a matched sample is constructed, we need more notations.

Denote the two random samples by S1 and S2. Also let n and m be the sizes of S1

and S2, respectively. Specifically, the two samples can be expressed as S1 = S1n =

{(Yi, X1i, Zi)}ni=1 and S2 = S2m = {(X2j, Zj)}mj=1. A natural way to match based on

Z is by using the NNM, which chooses

Zj(i) := arg min
1≤j≤m

‖Zj − Zi‖

for each Zi (1 ≤ i ≤ n).

There are many other methods based on various metrics (see, e.g., Smith and

Todd, 2005), but we focus on the NNM because it seems to be most prevalent in

applied research, especially in the ATE literature. Also, we consider the NNM based

on a single match, where matching is done with replacement, and each element of the

matching vector Z is assumed to be continuous. So our setting can be viewed as a

special case of M matches for the ATE estimation considered, e.g., by Abadie and

Imbens (2006) and as a foundation for more complicated methods of kernel-based

matching (see, e.g., Busso, DiNardo, McCrary, 2014). Matching with replacement,

allowing each unit to be used as a match more than once, seems to be standard in

econometric literature, while the inclusion of discrete matching variables with a finite

number of support points does not affect the subsequent asymptotic results. Finally,

for simplicity, we ignore ties in the NNM, which happen with probability zero as long

as Z is continuous.

Applying the NNM we obtain a matched data set Sn =
{(
Yi, X1i, X2j(i), Zi, Zj(i)

)}n
i=1

,

where X2j(i) is the observation paired with Zj(i) in S2. Throughout, it is assumed

that we estimate θ by regressing Yi on Wi,j(i) :=
(
X ′1i, X

′
2j(i), Z

′
j(i)

)′
. Alternatively,

we could use Zi in place of Zj(i). However, both alternatives are first-order asymp-
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totically equivalent, after the bias correction, and so we concentrate exclusively on

the former case.

The OLS estimator

θ̂OLS := Q̂−1
W R̂W :=

(
1

n

n∑
i=1

Wi,j(i)W
′
i,j(i)

)−1
1

n

n∑
i=1

Wi,j(i)Yi

is referred to as the matched-sample OLS (MSOLS) estimator hereafter. It will be

shown shortly that the MSOLS estimator is inconsistent. Demonstrating this re-

sult and deriving the bias-corrected, consistent estimators of θ require the following

assumptions.

Assumption 1. Two random samples (S1,S2) = (S1n,S2m) are drawn indepen-

dently from the joint distribution of (Y,W ) with finite fourth-order moments, where

the two sample sizes satisfy n/m→ κ ∈ (0,∞) as n,m→∞.

Assumption 2. The matching variable Z is continuously distributed with a convex

and compact support Z, with the density bounded and bounded away from zero on

its support.

Assumption 3.

(i) The regression error u satisfies E (u|W ) = 0 and σ2
u (W ) := E (u2|W ) ∈ (0,∞).

(ii) Let g (Z) :=
[
g1 (Z)′ g2 (Z)′

]′
:=
[
E (X1|Z)′ E (X2|Z)′

]′
and let η :=[

η′1 η′2
]′

:=
[
X ′1 − g1 (Z)′ X ′2 − g2 (Z)′

]′
. Then, Σ1 := E (η1η

′
1) > 0,

Σ2 := E (η2η
′
2) ≥ 0 with rank (Σ2) = d2 − 1, E (η1η

′
2) = 0d1×d2 , and g (·) is

first-order Lipschitz continuous on Z.

These regularity conditions are largely inspired by those in the literature on semi-

parametric, partial linear regression models (e.g., Robinson, 1988; Yatchew, 1997),

matching estimators for the ATE (e.g., Abadie and Imbens, 2006), and regression
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estimation based on two samples (e.g., Angrist and Krueger, 1992; Inoue and Solon,

2010). Assumption 1 refers to the same divergence rate of the two sample sizes.

This condition can be commonly found in the literature on two-sample regression

estimation. Assumption 2 plays a key role in controlling the order of magnitude

in the matching discrepancy (Abadie and Imbens, 2006), the definition of which can

be found in the Appendix. The rank condition in Assumption 3(ii) comes from the

fact that the row and column of Σ2 corresponding to the intercept are identically

zero. While uncorrelatedness between η1 and η2 in this assumption appears to be

restrictive, the condition simplifies subsequent analysis considerably.

We start our asymptotic analysis from rewriting Yi in a ‘partial linear’-like format.

A straightforward calculation yields

Yi := W ′
i,j(i)θ + λi,j(i) + εi,j(i), i = 1, . . . , n, (2)

where

λi,j(i) = λ
(
Zi, Zj(i)

)
=
{
g2 (Zi)− g2

(
Zj(i)

)}′
β2 +

(
Zi − Zj(i)

)′
γ, and

εi,j(i) = ui +
(
η2i − η2j(i)

)′
β2.

The reason why this is not exactly a partial linear model is that there is a common

regressor Zj(i) included in Wi,j(i) and λi,j(i). In this formulation, Wi,j(i) is employed

as the regressor of the fully parametric part W ′
i,j(i)θ, whereas the semiparametric part

λi,j(i) could be viewed as an analog to the summand for the conditional bias in the

matching estimator investigated in Abadie and Imbens (2006). A key difference from

the partial linear regression models studied in Robinson (1988) and Yatchew (1997)

is that the matched regressor X2j(i) is endogenous, i.e., X2j(i) and the composite error

εi,j(i) are correlated. The theorem below is established for the model in (2); it provides

the probability limit of θ̂OLS with the rate of convergence.
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Theorem 1. If Assumptions 1-3 hold and QW := E
(
Wi,j(i)W

′
i,j(i)

)
> 0, then

θ̂OLS = Q−1
W PW θ + Op

(
n−min{1/2,1/d3}

)
, where PW := QW − Σ and Σ is a d × d

block-diagonal matrix of the form Σ := diag {0d1×d1 ,Σ2, 0d3×d3}.

The theorem states that MSOLS is inconsistent in general. The term Σ in PW ,

which is the source of the inconsistency, is generated by misspecifying the regression

of Yi on Wi as the one of Yi on Wi,j(i), or equivalently, employing X2j(i) as a proxy of

the latent variable X2i. Therefore, the non-vanishing bias in MSOLS can be thought

of as a measurement error bias. We can also find from a straightforward calculation

that the OLS estimator of β2, which is the coefficient vector on the matched regressor

X2, is biased toward zero in the limit.

A quick inspection also reveals that θ̂OLS would be consistent if either (i) β2 = 0,

i.e. X2 were irrelevant in the correctly specified model; or (ii) Σ2 = 0, i.e. X2 were

expressed as a nonlinear deterministic function of Z. The nonlinearity in g2 (·) is

important because perfect multicollinearity would occur if the function were linear

but also because the nonlinearity plays a key role in our bias-corrected estimation

of θ (see Remark 1 in Section 3). However, even if either one of the above condi-

tions were true, θ̂OLS might not be
√
n-consistent. Clearly, there exists a curse of

dimensionality with respect to the matching variable Z. The proof of Theorem 1 in

the Appendix suggests that when d3 = 1,
√
n
(
θ̂OLS −Q−1

W PW θ
)

has a normal limit.

When d3 = 2, θ̂OLS is still
√
n-consistent, but we could only demonstrate asymptotic

normality of θ̂OLS after subtracting the bias term due to the matching discrepancy,

i.e. the best we can do in this case is to apply the central limit theorem (CLT) to

√
n
(
θ̂OLS −Q−1

W PW θ −BOLS2

)
. These limiting distributions would reduce to the

usual one of OLS if a complete data set of (Y,W ) were available. When d3 ≥ 3, the

convergence rate of θ̂OLS is slower than the parametric one, and it becomes slower as

d3 increases.
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3 Bias-Corrected Estimation of the Parameter

3.1 An Overview

This section develops a bias-corrected, consistent estimator of θ. As suggested by the

proof of Theorem 1 in the Appendix, inconsistency of MSOLS comes from the fact

that Q̂W
p→ QW whereas R̂W

p→ PW θ = (QW − Σ) θ. Therefore, the non-vanishing

bias in MSOLS can be eliminated if either

(a) the denominator Q̂W is replaced by a consistent estimator of PW with the nu-

merator R̂W left unchanged; or

(b) an extra term consistent for Σθ is added to R̂W with Q̂W held as it is.

Bias correction in each strategy is semiparametric in that a consistent estimate of

Σ2 (covariance matrix of the nonparametric regression error η2) is required. Moreover,

because implementing (b) must result in a two-step estimation with an initial consis-

tent estimate of θ plugged in, we first explore strategy (a). As discussed shortly, this

idea can be interpreted as a variant of indirect inference (II) by Gouriéroux, Monfort

and Renault (1993) and Smith (1993). On the other hand, strategy (b) is reminiscent

of the fully-modified (FM) least squares estimation for cointegrating regressions by

Phillips and Hansen (1990), and it is investigated at the end of this section.

3.2 MSOLS-Based Bias Correction

To obtain a
√
n-consistent and asymptotically normal estimator of θ based on strategy

(a), we assume that d3 = 1. The estimator can be interpreted as an II estimator.

Take the probability limit of θ̂OLS as the binding function b (θ), i.e. b (θ) = Q−1
W PW θ.

1

Provided that P−1
W exists, the II estimator can be built on the inverse mapping of

θ̂OLS = b (θ), i.e. θ = P−1
W QW θ̂OLS. The interpretation then follows from replacing

1Typically the binding function is unknown, and it must be approximated via simulations. How-
ever, when the function has a closed form, there is no need for simulations; see Carrasco and Florens
(2002) for another example.
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PW with its
√
n-consistent estimator P̂W and regarding R̂W as a ‘sample analog’ to

QW θ̂OLS. Accordingly, we call this estimation method the matched-sample indirect

inference (MSII) estimation hereafter. We also refer to the estimator

θ̂II−L = P̂−1
W R̂W

as the MSII-L estimator. The last letter “L” stands for the level regression (2),

reflecting that later MSII is also applied to the first difference of (2).

Our remaining task is to deliver a consistent estimator of PW . Obviously, Q̂W

is a natural estimator of QW . Furthermore, it turns out that when estimating

Σ = diag {0d1×d1 ,Σ2, 0d3×d3}, we can do without a nonparametric estimation of g2 (·).

Assume that S2 is reordered by the ordering rule in Lemma A2 in the Appendix.

Then, Σ2 can be consistently estimated by

Σ̂2 =
1

2 (m− 1)

m∑
j=2

∆X2j∆X
′
2j, (3)

where ∆X2j := X2j−X2j−1. This is known as the difference-based variance estimator

suggested by Rice (1984), and Lemma A2 implies that Σ̂2 = Σ2 + Op

(
m−1/2

)
as

long as d3 ≤ 3. In the end, the estimator of PW is given by P̂W := Q̂W − Σ̂ =

Q̂W − diag
{

0d1×d1 , Σ̂2, 0d3×d3

}
.

The next theorem establishes
√
n-consistency of θ̂II−L and derives its limiting

distribution.
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Theorem 2. If Assumptions 1-3 hold, d3 = 1 and P−1
W exists, then θ̂II−L

p→ θ and

√
n
(
θ̂II−L − θ

)
d→ N (0, VW ) := N

(
0, P−1

W ΩWP
−1
W

)
, where

ΩW = ΩW,11 +
√
κ
(
ΩW,12 + Ω′W,12

)
+ κΩW,22,

ΩW,11 = E
(
φi,j(i)φ

′
i,j(i)

)
,

ΩW,12 =
[

0d×d1 E
(
φi,j(i)ω

′
j(i)

)
0d×d3

]
,

ΩW,22 = diag
{

0d1×d1 , E
(
ψjψ

′
j−1

)
+ E

(
ψjψ

′
j

)
+ E

(
ψjψ

′
j+1

)
, 0d3×d3

}
,

φi,j(i) = Wi,j(i)εi,j(i) + Σθ,

ωj(i) =
(
η2j(i)η

′
2j(i) − Σ2

)
β2, and

ψj =

(
∆η2j∆η

′
2j

2
− Σ2

)
β2.

Remark 1. There are two important observations here. First, some nonlinearity

in all elements of g2 (·) other than the intercept is necessary for a non-singular PW

and thus for identification of θ. To see why, observe that the lower-right block of PW

collapses to E
(
X2j(i)X

′
2j(i)

)
− Σ2 E

(
X2j(i)Z

′
j(i)

)
E
(
Zj(i)X

′
2j(i)

)
E
(
Zj(i)Z

′
j(i)

)  =

[
E
{
g2 (Z) g2 (Z)′

}
E {g2 (Z)Z ′}

E
{
Zg2 (Z)′

}
E (ZZ ′)

]
,

which becomes singular if one or more elements of g2 (·) other than the intercept are

linear. Second, Theorem 2 suggests that in the special case where n = o (m), ΩW

reduces to ΩW,11 = V ar
(
φi,j(i)

)
.

3.3 Consistent Estimation for Two or More Matching Vari-
ables

While MSII-L yields a consistent estimate of θ, its apparent deficiency is that it can be

applied only for the case with a single matching variable. The curse of dimensionality

in the NNM can be commonly observed in other applications. With regards to the

ATE estimation, Abadie and Imbens (2006, Corollary 1), for instance, show that the
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matching discrepancy bias can be safely ignored only when matching is done on a

single variable.

To provide a remedy for this issue, we follow the strategy in Yatchew (1997).

Assume that S1 and S2 are both reordered with respect to Zi and Zj, respectively,

by the ordering rule in Lemma A2 in the Appendix. Then, taking the first-order

difference of regression (2) yields

∆Yi := ∆X ′i,j(i)β + ∆µi,j(i) + ∆εi,j(i), i = 2, . . . , n, (4)

where Xi,j(i) =
(
X ′1i, X

′
2\0j(i)

)′
, β =

(
β′1, β

′
2\0

)′
, ∆µi,j(i) = ∆Z ′j(i)γ + ∆λi,j(i) ={

∆g2\0 (Zi)−∆g2\0
(
Zj(i)

)}′
β2\0 + ∆Z ′iγ, and the subscript “•\0” denotes “with the

intercept excluded”. Note that both β0 (the intercept) and γ (the coefficient on the

matching variable Z) are not identified from the first-difference regression (4). We

can estimate these parameters consistently from the level regression (2) after obtain-

ing a consistent estimate of β.

As in the MSII-L estimation, we start our analysis by deriving the first-order bias

of the OLS estimator for this regression

β̂FD := Q̂−1
∆XR̂∆X :=

(
1

n− 1

n∑
i=2

∆Xi,j(i)∆X
′
i,j(i)

)−1
1

n− 1

n∑
i=2

∆Xi,j(i)∆Yi,

where the abbreviation “FD” stands for the first-difference. The theorem below

provides the probability limit of β̂FD and its convergence rate.

Theorem 3. If Assumptions 1-3 hold and Q∆X := E
(

∆Xi,j(i)∆X
′
i,j(i)

)
> 0, then

β̂FD = Q−1
∆XP∆Xθ + Op

(
n−min{1/2,2(1−δ)/d3}

)
, where P∆X := Q∆X − 2ΣFD, ΣFD =

diag
{

0d1×d1 ,Σ2\0
}
, Σ2\0 is the (d2 − 1) × (d2 − 1) matrix that can be obtained by

dropping the row and column corresponding to the intercept from Σ2, and δ (> 0) is

a constant arbitrarily close to 0.

Theorem 3 suggests that a
√
n-consistent estimator of β based on regression (4)

can be obtained if d3 ≤ 3, i.e. if the number of (continuous) matching variables does

12



not exceed three. Then, taking the binding function b (β) = Q−1
∆XP∆Xβ implies that

the MSII-FD estimator

β̂II−FD = P̂−1
∆XR̂∆X

is a
√
n-consistent and asymptotically normal estimator of β corresponding to strat-

egy (a), where P̂∆X := Q̂∆X − 2Σ̂FD = Q̂∆W − 2 diag
{

0d1×d1 , Σ̂2\0

}
, and Σ̂2\0 :=

{2 (m− 1)}−1∑m
j=2 ∆X2\0j∆X

′
2\0j. The next theorem presents the convergence re-

sults for β̂II−FD. The proof is found to be a minor modification of the one for

Theorem 2, and thus it is omitted.

Theorem 4. If Assumptions 1-3 hold, d3 ≤ 3 and P−1
∆X exists, then β̂II−FD

p→ β

and
√
n
(
β̂II−FD − β

)
d→ N (0, V∆X) := N

(
0, P−1

∆XΩ∆XP
−1
∆X

)
. In particular, the

analytical expression of Ω∆X is Ω∆X = Ω∆X,11 + 2
√
κ
(
Ω∆X,12 + Ω′∆X,12

)
+ 4κΩ∆X,22,

where

Ω∆X,11 = E
(
ξi,j(i)ξ

′
i−1,j(i−1)

)
+ E

(
ξi,j(i)ξ

′
i,j(i)

)
+ E

(
ξi,j(i)ξ

′
i+1,j(i+1)

)
,

Ω∆X,12 =
[

0(d1+d2−1)×d1 E
(
ξi,j(i)ζ

′
j(i−1)

)
+ E

(
ξi,j(i)ζ

′
j(i)

)
+ E

(
ξi,j(i)ζ

′
j(i+1)

) ]
,

Ω∆X,22 = diag
{

0d1×d1 , E
(
ζjζ
′
j−1

)
+ E

(
ζjζ
′
j

)
+ E

(
ζjζ
′
j+1

)}
,

ξi,j(i) = ∆ηi,j(i)∆εi,j(i) + 2ΣFDβ, and

ζj =

(
∆η2\0j∆η

′
2\0j

2
− Σ2\0

)
β2\0.

Remark 2. To recover the unidentified parameter α := (β0, γ)′, we exploit the level

regression (2) in the second step. Let Ỹi := Yi−X ′i,j(i)β̂II−FD and Z̃j(i) :=
(

1, Z ′j(i)

)′
.

Because E
(
Z̃j(i)εi,j(i)

)
= 0, α can be estimated by OLS from the regression of Ỹi on

Z̃j(i). However, by a similar argument to the one used in the proof of Theorem 1,

the OLS estimator

α̂II−FD =

(
1

n

n∑
i=1

Z̃j(i)Z̃
′
j(i)

)−1
1

n

n∑
i=1

Z̃j(i)Ỹi

13



admits the expansion α̂II−FD = α +Op

(
n−min{1/2,1/d3}

)
. As a consequence, α̂II−FD

is
√
n-consistent and asymptotically normal only when d3 = 1. However, there is

little incentive to adopt the two-step estimation in this case, because MSII-L yields a

consistent estimate of the full parameter θ in one step. When d3 = 2, α̂II−FD is still

√
n-consistent, but its limiting distribution could be evaluated after the Op

(
n−1/2

)
bias term due to the matching discrepancy is subtracted. When d3 = 3, the conver-

gence rate of α̂II−FD is a nonparametric rate of n1/3. These complications could be

viewed as the potential price to pay for higher-dimensional matching.

3.4 Covariance Estimation

Covariance estimation is essential for inference. First, consider a consistent estima-

tor of VW = P−1
W ΩWP

−1
W , the asymptotic variance of

√
n
(
θ̂II−L − θ

)
. Because P̂W

is consistent for PW , it suffices to deliver a consistent estimator of ΩW = ΩW,11 +

√
κ
(
ΩW,12 + Ω′W,12

)
+ κΩW,22. Let the MSII-L residual be ε̂i,j(i) := Yi −W ′

i,j(i)θ̂II−L.

Also denote the MSII-L estimator of β2 as β̂2,II−L. Moreover, define φ̂i,j(i) :=

Wi,j(i)ε̂i,j(i) + Σ̂θ̂II−L and ψ̂j :=
{(

∆X2j∆X
′
2j/2

)
− Σ̂2

}
β̂2,II−L. Then, a natural

estimator of ΩW,11 is

Ω̂W,11 =
1

n

n∑
i=1

φ̂i,j(i)φ̂
′
i,j(i).

In addition, E
(
ψjψ

′
j−k
)
, k = ±1, 0, can be consistently estimated as

Ê
(
ψjψ

′
j−k
)

=
1

m− 1

min{m,m+k}∑
j=max{2,2+k}

ψ̂jψ̂
′
j−k

=
1

m− 1

min{m,m+k}∑
j=max{2,2+k}

(
∆η2j∆η

′
2j

2
− Σ̂2

)
β̂2,II−Lβ̂

′
2,II−L

(
∆η2j−k∆η

′
2j−k

2
− Σ̂2

)
+op

(
m−1/2

)
,

where the second equality holds for d3 ≤ 3. Hence, a natural estimator of ΩW,22 is

given by

Ω̂W,22 = diag
{

0d1×d1 , Ê
(
ψjψ

′
j−1

)
+ Ê

(
ψjψ

′
j

)
+ Ê

(
ψjψ

′
j+1

)
, 0d3×d3

}
.

14



Moreover, it follows from the proof of Theorem 2 thatE
(
φi,j(i)ω

′
j(i)

)
= 2E

(
φi,j(i)ψ

′
j(i)

)
.

Then, a consistent estimator of E
(
φi,j(i)ω

′
j(i)

)
takes the form of

Ê
(
φi,j(i)ω

′
j(i)

)
= 2Ê

(
φi,j(i)ψ

′
j(i)

)
=

2

n

n∑
i=1

φ̂i,j(i)ψ̂
′
j(i)

=
2

n

n∑
i=1

(
Wi,j(i)ε̂i,j(i) + Σ̂θ̂II−L

)
β̂′2,II−L

(
∆η2j∆η

′
2j

2
− Σ̂2

)
+ op

(
n−1/2

)
as before. Therefore, ΩW,12 can be estimated as

Ω̂W,12 =
[

0d×d1 Ê
(
φi,j(i)ω

′
j(i)

)
0d×d3

]
.

Since n/m = κ+ o (1), we finally obtain an estimator of VW as

V̂W = P̂−1
W Ω̂W P̂

−1
W = P̂−1

W

{
Ω̂W,11 +

√
n

m

(
Ω̂W,12 + Ω̂′W,12

)
+
( n
m

)
Ω̂W,22

}
P̂−1
W .

Second, consider a consistent estimator of V∆X = P−1
∆XΩ∆XP

−1
∆X , the asymptotic

variance of
√
n
(
β̂II−FD − β

)
. As before, we only need to consider a consistent

estimator of Ω∆X = Ω∆X,11 + 2
√
κ
(
Ω∆X,12 + Ω′∆X,12

)
+ 4κΩ∆X,22. Let the MSII-FD

residual be ∆̂εi,j(i) := ∆Yi −∆X ′i,j(i)β̂II−FD. Also denote the MSII-FD estimator of

β2\0 as β̂2\0,II−FD. Furthermore, define ξ̂i,j(i) := ∆Xi,j(i)∆̂εi,j(i) + 2Σ̂FDβ̂II−FD and

ζ̂j =
{(

∆X2\0j∆X
′
2\0j/2

)
− Σ̂2\0

}
β̂2\0,II−FD. Then, natural estimators of Ω∆X,11,

Ω∆X,12 and Ω∆X,22 are

Ω̂∆X,11 = Ê
(
ξi,j(i)ξ

′
i−1,j(i−1)

)
+ Ê

(
ξi,j(i)ξ

′
i,j(i)

)
+ Ê

(
ξi,j(i)ξ

′
i+1,j(i+1)

)
,

Ω̂∆X,12 =
[

0(d1+d2−1)×d1 Ê
(
ξi,j(i)ζ

′
j(i−1)

)
+ Ê

(
ξi,j(i)ζ

′
j(i)

)
+ Ê

(
ξi,j(i)ζ

′
j(i+1)

) ]
, and

Ω̂∆X,22 = diag
{

0d1×d1 , Ê
(
ζjζ
′
j−1

)
+ Ê

(
ζjζ
′
j

)
+ Ê

(
ζjζ
′
j+1

)}
,
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respectively, where, for k = ±1, 0,

Ê
(
ξi,j(i)ξ

′
i−1,j(i−k)

)
=

1

n− 1

min{n,n+k}∑
i=max{2,2+k}

ξ̂i,j(i)ξ̂
′
i−k,j(i−k),

Ê
(
ξi,j(i)ζ

′
j(i−k)

)
=

1

n− 1

min{n,n+k}∑
i=max{2,2+k}

ξ̂′i,j(i)ζ̂
′
j(i−k), and

Ê
(
ζjζ
′
j−k
)

=
1

m− 1

min{m,m+k}∑
j=max{2,2+k}

ζ̂j ζ̂
′
j−k.

In the end, V∆X can be estimated as

V̂∆X = P̂−1
∆XΩ̂∆XP̂

−1
∆X = P̂−1

∆X

{
Ω̂∆X,11 + 2

√
n

m

(
Ω̂∆X,12 + Ω̂′∆X,12

)
+ 4

( n
m

)
Ω̂∆X,22

}
P̂−1

∆X .

The following proposition refers to consistency of the covariance estimators. This

proposition can be established by the techniques employed for the proofs of Theorems

1-4, and thus the proof is omitted.

Proposition 1. Suppose that Assumptions 1-3 hold. If d3 = 1 and P−1
W exists,

then V̂W
p→ VW . If d3 ≤ 3 and P−1

∆X exists, then V̂∆X
p→ V∆X .

3.5 FM-type versus II-type Estimators

So far consistent estimation of the parameter has been explored based on strategy

(a). Here, following strategy (b), we derive the asymptotic properties of the two-step

FM-type estimators. Specifically, given θ̂II−L as the first-step estimate, the FM-type

estimator for the level regression in (2) is defined as

θ̂FM−L = Q̂−1
W

(
R̂W + Σ̂θ̂II−L

)
.

Likewise, given β̂II−FD as the first-step estimate, the FM-type estimator for the first-

differenced regression (4) is also defined as

β̂FM−FD = Q̂−1
∆X

(
R̂∆X + 2Σ̂FDβ̂II−FD

)
.
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Each of the two estimators is consistent by construction. Moreover, they are first-

order asymptotically equivalent to their corresponding first-step estimates, although

they may differ numerically in finite samples. The proposition below summarizes

these claims. Because our Monte Carlo study also indicates that there is very little

difference in finite sample performance between FM- and II-estimators for a given

regression model, we do not pursue FM-type estimation any further.

Proposition 2. Suppose that Assumptions 1-3 hold. If d3 = 1 and P−1
W and Q−1

W

both exist, then θ̂FM−L
p→ θ and

√
n
(
θ̂FM−L − θ

)
d→ N (0, VW ). If d3 ≤ 3 and P−1

∆X

and Q−1
∆X both exist, then β̂FM−FD

p→ β and
√
n
(
β̂FM−FD − β

)
d→ N (0, V∆X).

4 Finite Sample Performance

4.1 Monte Carlo Setup

We conduct Monte Carlo simulations to examine finite sample properties of the MSII

estimation. Consider the regression model

Y = β0 + β1X + γZ + u, (5)

where the two samples, namely, S1 = {(Yi, Zi)}ni=1 and S2 = {(Xj, Zj)}mj=1, are as-

sumed to be observable. The simulation setup corresponds to the setting of Example

2 in the Introduction, with the regressors (1, X) denoted by X2 in (1). The data

are generated in the following manner. First, we draw two independent samples

{Zi}ni=1 , {Zj}
m
j=1

iid∼ U [−2, 2]. Second, given {Zi}ni=1 and {Zj}mj=1, {Xi}ni=1 and

{Xj}mj=1 are generated by X = g (Z) + η, where η
iid∼ N (0, 1) and g (z) takes one

of the following six functional forms:

A : g (z) = z2

B : g (z) = z3

C : g (z) = exp (z)
D : g (z) = z + 2 sin (πz)
E : g (z) = z + (5/τ)φ (z/τ) , τ = 0.9
F : g (z) = z + (5/τ)φ (z/τ) , τ = 0.3
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with φ (·) being the pdf of N (0, 1). Model A is convex, and each of Models B and C is

monotone increasing. While these three functions are purely nonlinear, the remaining

three models may be thought of as ‘intermediate’ cases between linear and nonlinear

functions in that each of these is constructed as a linear combination of linear and

nonlinear functions. In particular, Model D is specified as linear with a cycle. Models

E and F, inspired by the Monte Carlo design of Horowitz and Spokoiny (2001), can be

viewed as linear with a ‘spike’. Third, using {(Xi, Zi)}ni=1, we generate {Yi}ni=1 based

on the regression model (5), where β0 = β1 = γ = 1 and u
iid∼ N (0, 1). This procedure

provides us with two observable samples S1 = {(Yi, Zi)}ni=1 and S2 = {(Xj, Zj)}mj=1, as

well as an unobservable complete sample S∗ = {(Yi, Xi, Zi)}ni=1. Finally, the matched

sample S =
{(
Yi, Xj(i), Zi, Zj(i)

)}n
i=1

can be constructed via the NNM with respect

to Z.

With regards to sample sizes, for each of n ∈ {500, 1000, 2000}, m is chosen as

one of m ∈ {n/2, n, 2n} so that the values of κ are κ = 2, 1 and 1/2, respectively.

For each combination of sample sizes (n,m) and the functional form of g (z), we gen-

erate 1,000 Monte Carlo samples. The following three estimators of θ = (β0, β1, γ)′

are examined: (i) the infeasible OLS (denoted by OLS* in Table 1) estimator using

the unobservable complete sample S∗; (ii) the MSOLS estimator using the matched

sample S; and (iii) the MSII-L estimator using the matched sample S. For each esti-

mator, averages, standard deviations (in parentheses) and root-mean squared errors

(RMSEs) (in brackets) over 1,000 replications are reported.

TABLE 1 ABOUT HERE

4.2 Simulation Results

Table 1 reports simulation results for the two slope estimates to save space. Since

there is only one matching variable, each of the three estimators has a
√
n-rate of

convergence. Moreover, because of conditional homoskedasticity of the error term u,
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OLS* is the Gauss-Markov estimator, regardless of the specification of g (·) and the

sample sizes. Each panel illustrates that OLS* is unbiased and yields small standard

deviations. As expected, the standard deviations tend to be smaller as n increases.

However, OLS* is an infeasible, oracle estimator. Instead, we should focus on

the realistic comparison between MSOLS and MSII-L, and use OLS* as the bench-

mark to measure the efficiency loss when all variables cannot be taken from a single

data source. Table 1 illustrates that MSOLS is inconsistent and that the MSOLS

estimate of β1 is biased toward zero, as predicted. It can be also seen that the bias

is non-vanishing; each panel in fact indicates that simulation averages of the MSOLS

estimates do not vary across sample sizes. However, the magnitude of the bias de-

pends on the specification of g (·). It can be also seen that their standard deviations

shrink with n, as Theorem 1 suggests.

Now we turn to MSII-L. A first glance reveals that the bias correction works

very well in that simulation averages of the MSII-L estimates are close to the truth.

After a closer look, we can see that the performance of our bias correction depends

on the specification of g (·). The estimates are often slightly biased when n = 500;

the tendency is pronounced for Models B, C and E, which are either monotone or

somewhat close to a linear function. For these models, standard deviations also tend

to be large. In contrast, Models A, D and F are highly nonlinear, and for these cases

biases and standard deviations are quite small even when n = 500. However, each

panel indicates that biases vanish and standard deviations also shrink as n increases,

which leads to a decrease in RMSEs and thus confirms consistency of MSII-L. It can

be also seen that standard deviations for each n tend to be smaller as κ decreases, as

Theorem 1 suggests.

Comparing MSII-L with OLS*, we have the following two findings. First, unlike

OLS*, MSII-L is not unbiased. However, it is nearly unbiased for large sample sizes.

Second, standard deviations of the latter are always greater than those of the former.
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This relative efficiency loss can be thought of as the price to pay for identifying and

estimating the regression using two samples jointly. The magnitude of the efficiency

loss depends on the degree of nonlinearity in g (·). In particular, when it is close to

linear (e.g., Models B, C and E), the standard deviations of MSII-L are four to six

times as large as those of OLS*. In contrast, for highly nonlinear g (·) (e.g., Models

A, D and F), the standard deviations are confined within three times those of OLS*.

To sum up, the simulation results indicate that the bias correction in MSII-L works

reasonably well. While the size of the estimation error is subject to the functional

form of g (·), it is likely to be fairly small for large samples even if the nonlinearities

in g (·) are not very pronounced.

5 Conclusion

Regression estimation using samples constructed via the NNM from two sources is

not uncommon in applied economics. This paper has demonstrated that the OLS

estimation using matched samples is inconsistent and thus an appropriate bias correc-

tion is required. It has been also shown that the convergence rate to the probability

limit of OLS depends on the number of matching variables. Two versions of bias-

corrected estimators have been proposed, and each can be interpreted as a variant

of II estimators. The MSII-L estimator attains the parametric convergence rate for

the cases with only one matching variable, whereas the parametric convergence of the

MSII-FD estimator can be achieved for the cases with no more than three matching

variables.

Several research extensions would be fruitful. First, we may adopt the propensity

score matching for further dimension reduction in matching variables. In a closely

related paper, Abadie and Imbens (2012b) deliver asymptotic properties of the match-

ing estimators for average treatment effects using an estimated propensity score as

a plug-in. It is worth pursuing a similar idea for matched-sample regression esti-
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mation. Second, combining our matched-sample estimation theory with IV/GMM

estimation would be also of interest in the presence of endogeneity in regressors. This

is particularly relevant to empirical studies using earnings data, which are thought

to include measurement errors and imputation biases. Third, the estimation theory

may be extended to kernel estimation of varying coefficient models using matched

samples. It is not difficult to see that kernel estimators of the varying coefficients are

also inconsistent, and appropriate bias-correction methods similar to those proposed

in this paper are worth investigating.

A Appendix: Technical Proofs

A.1 Useful Lemmas

Before proceeding, we provide two lemmas about the error bounds from NNM, which

are repeatedly applied in the technical proofs below. The first lemma, taken from

Abadie and Imbens (2006), considers NNM between two samples, whereas the second

lemma, taken from Yatchew (1997), refers to NNM within the same sample.

First, we provide the formal definition of the matching discrepancy in Abadie and

Imbens (2006). Let z ∈ Z be a fixed value of the matching variable Z, where, in

practice, z is one of {Zi}ni=1 in S1. Then, the closest matching discrepancy U = U (z)

is defined as U := Zj(z) − z if Zj(z) is the closest match to z among all {Zj}mj=1 in S2.

The following lemma states uniform moment bounds of the matching discrepancy

with the number of closest neighbors M set equal to 1 in Lemma 2 of Abadie and

Imbens (2006).

Lemma A1. (Abadie and Imbens, 2006, Lemma 2) Under Assumptions 1-2,

all the moments of n1/d3 ‖U‖ are uniformly bounded in n and z ∈ Z.

Second, for NNM within the same sample, the following lemma applies. In

our context N is either n or m. Also observe that the ordering rule reduces to
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Z1 ≤ · · · ≤ ZN when d3 = 1.

Lemma A2. (Yatchew, 1997, Lemma) Suppose that Assumptions 1-2 hold and

that the support Z is the unit cube in Rd3 without loss of generality. Let N be

the sample size. Select δ positive and arbitrarily close to 0. Cover the unit cube

with sub-cubes of volume 1/N1−δ each with sizes 1/N (1−δ)/d3. Within each sub-cube

construct a path using the nearest neighbor algorithm. Following this, knit the paths

together by joining endpoints in contiguous sub-cubes to obtain the reordered sample

{Zk}Nk=1. Then for any δ > 0, (1/N)
∑N

k=2 ‖∆Zk‖
2 := (1/N)

∑N
k=2 ‖Zk − Zk−1‖2 =

Op

(
N−2(1−δ)/d3

)
.

A.2 Proof of Theorem 1

It is easy to see from (2) that R̂W := Q̂W θ + BRW 1 + BRW 2 + ERW
, where BRW 1 =

E
(
Wi,j(i)εi,j(i)

)
, BRW 2 = (1/n)

∑n
i=1 Wi,j(i)λi,j(i), and ERW

= (1/n)
∑n

i=1

{
Wi,j(i)εi,j(i)−

E
(
Wi,j(i)εi,j(i)

)}
. It follows that θ̂OLS := θ + BOLS1 + BOLS2 + EOLS + Op

(
n−1/2

)
,

where BOLS1 = Q̂−1
W BRW 1, BOLS2 = Q̂−1

W BRW 2 and EOLS = Q̂−1
W ERW

correspond to the

first-order (or leading) bias, the second-order bias due to the matching discrepancy

and the weighted average of errors, respectively.

We begin with evaluating BOLS1. First note that E
(
X1iη

′
2i

)
= E {g1 (Z) η′2} +

E (η1η
′
2) = 0d1×d2 , E

(
X2j(i)η

′
2j(i)

)
= Σ2, and ith and j (i)th observations are indepen-

dent. Then, BRW 1 =
[

01×d1 (−Σ2β2)′ 01×d3

]′
= − diag {0d1×d1 ,Σ2, 0d3×d3} θ :=

−Σθ. Because Q̂W = QW + Op

(
n−1/2

)
, we obtain BOLS1 = −Q−1

W Σθ + Op

(
n−1/2

)
.

Next, Lemma A1 implies that max1≤i≤n
∥∥Zj(i) − Zi∥∥ = Op

(
n−1/d3

)
. Then, by

Cauchy-Schwarz inequality and Lipschitz continuity of g2, ‖BRW 2‖ is bounded by

Op

(
n−1/d3

)
. Hence, BOLS2 = Op

(
n−1/d3

)
. Finally, ERW

= Op

(
n−1/2

)
by CLT, and

thus EOLS = Op

(
n−1/2

)
. Therefore, θ̂OLS = θ−Q−1

W Σθ+Op

(
n−1/d3

)
+Op

(
n−1/2

)
=

Q−1
W PW θ +Op

(
n−min{1/2,1/d3}

)
by denoting PW := QW − Σ. �
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A.3 Proof of Theorem 2

Consistency of θ̂II−L can be established in line with the proof of Theorem 1. To

derive the asymptotic distribution of
√
n
(
θ̂II−L − θ

)
, we first obtain

R̂W =
(
Q̂W − Σ

)
θ +BRW 2 + ERW

= P̂W θ +
(

Σ̂− Σ
)
θ +BRW 2 + ERW

(A1)

by the proof of Theorem 1. Substituting this into
√
n
(
θ̂II−L − θ

)
yields

√
n
(
θ̂II−L − θ

)
= P̂−1

W

{√
n
(

Σ̂− Σ
)
θ +
√
nBRW 2 +

√
nERW

}
. (A2)

When d3 = 1, BRW 2 = Op (n−1) and thus
√
nBRW 2 = Op

(
n−1/2

)
= op (1). Using

P̂−1
W = P−1

W + op (1),
√
n
(

Σ̂− Σ
)
θ =

√
n
(

Σ̂2 − Σ2

)
β2, and n/m = κ + o (1), we

finally have

√
n
(
θ̂II−L − θ

)
= P−1

W

{√
nERW

+
√
κ
√
m
(

Σ̂2 − Σ2

)
β2

}
+ op (1) ,

where, by CLT, each of
√
nERW

and
√
m
(

Σ̂2 − Σ2

)
β2 is asymptotically normal.

Therefore,
√
n
(
θ̂II−L − θ

)
d→ N

(
0, P−1

W ΩWP
−1
W

)
, where ΩW is some d × d long-run

variance matrix implied by two summandsWi,j(i)εi,j(i)−E
(
Wi,j(i)εi,j(i)

)
= Wi,j(i)εi,j(i)+

Σθ and {(∆X2j∆X2j
′/2)− Σ2} β2 in ERW

and
(

Σ̂2 − Σ2

)
β2, respectively.

The remaining task is to provide the analytical expression of ΩW . Observe that

ΩW may be rewritten as

ΩW := ΩW,11 +
√
κ
(
ΩW,12 + Ω′W,12

)
+ κΩW,22,

where ΩW,11 and ΩW,22 are the long-run variance matrices of Wi,j(i)εi,j(i) + Σθ and

{(∆X2j∆X2j
′/2)− Σ2} β2, respectively, and ΩW,12 is their long-run covariance. Now,

let φi,j(i) := Wi,j(i)εi,j(i) + Σθ. Clearly, this has no serial dependence, and thus

ΩW,11 = V ar
(
φi,j(i)

)
= E

(
φi,j(i)φ

′
i,j(i)

)
.

Next, similarly to Lemma A3, Σ̂2 = (m− 1)−1∑m
j=2

(
∆η2j∆η

′
2j/2

)
+ op

(
m−1/2

)
as

long as d3 ≤ 3, where E
(
∆η2j∆η

′
2j/2

)
= Σ2. Because ψj :=

{(
∆η2j∆η

′
2j/2

)
− Σ2

}
β2

23



is one-dependent, its long-run variance is E
(
ψjψ

′
j−1

)
+ E

(
ψjψ

′
j

)
+ E

(
ψjψ

′
j+1

)
and

thus

ΩW,22 = diag
{

0d1×d1 , E
(
ψjψ

′
j−1

)
+ E

(
ψjψ

′
j

)
+ E

(
ψjψ

′
j+1

)
, 0d3×d3

}
.

Lastly, for each i, η2j(i) in φi,j(i) is correlated with ψj(i) and ψj(i+1). Now we decompose

ψj(i) as follows

ψj(i) =
{(
η2j(i)η

′
2j(i) − Σ2

)
/2 +

(
η2j(i−1)η

′
2j(i−1) − Σ2

)
/2

−η2j(i)η
′
2j(i−1) − η2j(i−1)η

′
2j(i)

}
β2

Because ith and j (i)th observations are independent, only the expectation between

φi,j(i) and the first term is non-zero. Defining ωj(i) :=
(
η2j(i)η

′
2j(i) − Σ2

)
β2, we have

E
(
φi,j(i)ψ

′
j(i)

)
= E

(
φi,j(i)ω

′
j(i)

)
/2. Similarly, E

(
φi,j(i)ψ

′
j(i+1)

)
= E

(
φi,j(i)ω

′
j(i)

)
/2

also holds. Therefore,

ΩW,12 =
[

0d×d1 E
(
φi,j(i)ψ

′
j(i)

)
+ E

(
φi,j(i)ψ

′
j(i+1)

)
0d×d3

]
=
[

0d×d1 E
(
φi,j(i)ω

′
j(i)

)
0d×d3

]
,

which completes the proof. �

A.4 Proof of Theorem 3

The proof largely follows from the one of Proposition 1 in Yatchew (1997). Before

proceeding, the proof requires the following lemma.

Lemma A3. Let gi,j(i) :=
(
g1 (Zi)

′ , g2\0
(
Zj(i)

)′)′
and ηi,j(i) :=

(
η′1i, η

′
2\0j(i)

)′
. Then,

under Assumptions 1-3,

1

n− 1

n∑
i=2

∆gi,j(i)∆µi,j(i) = Op

(
n−2(1−δ)/d3

)
, (A3)

1

n− 1

n∑
i=2

∆ηi,j(i)∆µi,j(i) = op
(
n−1/2

)
, and (A4)

1

n− 1

n∑
i=2

∆gi,j(i)∆εi,j(i) = op
(
n−1/2

)
, (A5)

where δ (> 0) is a constant arbitrarily close to 0.
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A.4.1 Proof of Lemma A3

By Lipschitz continuity of g (·),

‖∆g1 (Zi)‖ ≤ c ‖∆Zi‖ ,∥∥∆g2\0
(
Zj(i)

)∥∥ ≤ c
(
‖∆Zi‖+

∥∥Zj(i) − Zi∥∥+
∥∥Zj(i−1) − Zi−1

∥∥) , and∥∥∆µi,j(i)
∥∥ ≤ c

(
‖∆Zi‖+

∥∥Zj(i) − Zi∥∥+
∥∥Zj(i−1) − Zi−1

∥∥) .
Then, (A3) can be established by applying Cauchy-Schwarz inequality and Lemmata

A1-A2.

Furthermore, to show (A4), notice that

E
(
∆ηi,j(i)∆µi,j(i)

)
= E

{
E
(

∆ηi,j(i)
∣∣Zi, Zi−1, Zj(i), Zj(i−1)

)
∆µi,j(i)

}
= 0.

To evaluate the order of magnitude in V ar
{

(n− 1)−1∑n
i=2 ∆ηi,j(i)∆µi,j(i)

}
, consider

that among all summands of (n− 1)−2∑n
i=2

∑n
k=2 ∆ηi,j(i)∆η

′
k,j(k)∆µi,j(i)∆µk,j(k), only

∆ηi,j(i)∆η
′
i,j(i)

(
∆µi,j(i)

)2
, ∆ηi,j(i)∆η

′
i−1,j(i−1)∆µi,j(i)∆µi−1,j(i−1) and

∆ηi,j(i)∆η
′
i+1,j(i+1)∆µi,j(i)∆µi+1,j(i+1) have non-zero expectations. Because, for each

of k = i, i± 1,

1

(n− 1)2

∥∥∥∥∥
n∑
i=2

∆ηi,j(i)∆η
′
k,j(k)∆µi,j(i)∆µk,j(k)

∥∥∥∥∥ ≤ Op

(
n−{1+2(1−δ)/d3}

)
,

V ar
{

(n− 1)−1∑n
i=2 ∆ηi,j(i)∆µi,j(i)

}
is bounded by Op

(
n−{1+2(1−δ)/d3}

)
= op (n−1)

and thus (A4) follows. Likewise, (A5) can be also demonstrated. �
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A.4.2 Proof of Theorem 3

Using ∆Xi,j(i) = ∆gi,j(i) + ∆ηi,j(i), ∆εi,j(i) = ∆ui +
(
∆η2\0i −∆η2\0j(i)

)′
β2\0, and

Lemma A3, we may write R̂∆X := Q̂∆Xβ +BR∆X1 +BR∆X2 + ER∆X
, where

BR∆X1 = E
(
∆ηi,j(i)∆εi,j(i)

)
=

[
0d1×1

−2Σ2\0β2\0

]
= −2 diag

{
0d1×d1 ,Σ2\0

}
β := −2ΣFDβ,

BR∆X2 =
1

n− 1

(
n∑
i=2

∆gi,j(i)∆µi,j(i) +
n∑
i=2

∆ηi,j(i)∆µi,j(i) +
n∑
i=2

∆gi,j(i)∆εi,j(i)

)
= Op

(
n−2(1−δ)/d3

)
+ op

(
n−1/2

)
, and

ER∆X
=

1

n− 1

n∑
i=2

{
∆ηi,j(i)∆εi,j(i) − E

(
∆ηi,j(i)∆εi,j(i)

)}
= Op

(
n−1/2

)
.

Then, the result immediately follows from Q̂∆X = Q∆X +Op

(
n−1/2

)
. �

A.5 Proof of Proposition 2

Consistency of each estimator is obvious. For asymptotic normality, we only demon-

strate that
√
n
(
θ̂FM−L − θ

)
=
√
n
(
θ̂II−L − θ

)
+ op (1) (A6)

to save space. By (A1) and (A2),

R̂W + Σ̂θ̂II−L = Q̂W θ + Σ
(
θ̂II−L − θ

)
+
{(

Σ̂− Σ
)
θ +BRW 2 + ERW

}
+ op

(
n−1/2

)
= Q̂W θ +

(
P̂W + Σ

)(
θ̂II−L − θ

)
+ op

(
n−1/2

)
.

Therefore,

√
n
(
θ̂FM−L − θ

)
= Q̂−1

W

{
Q̂W −

(
Σ̂− Σ

)}√
n
(
θ̂II−L − θ

)
+ op (1)

=
{
Id +Op

(
m−1/2

)}√
n
(
θ̂II−L − θ

)
+ op (1) ,

and thus (A6) indeed holds. �
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Table 1: Monte Carlo Results

Model A: g (z) = z2

m = n/2 (κ = 2) m = n (κ = 1) m = 2n (κ = 1/2)
n Estimator β1 γ β1 γ β1 γ
500 OLS* 0.9986 0.9993 0.9978 1.0003 0.9998 1.0007

(0.0292) (0.0378) (0.0300) (0.0400) (0.0295) (0.0391)
[0.0292] [0.0378] [0.0301] [0.0400] [0.0295] [0.0391]

MSOLS 0.5930 1.0016 0.5867 1.0002 0.5878 1.0000
(0.0513) (0.0741) (0.0498) (0.0708) (0.0483) (0.0654)
[0.4102] [0.0741] [0.4163] [0.0708] [0.4150] [0.0654]

MSII-L 1.0338 1.0028 1.0152 0.9993 1.0114 0.9976
(0.1455) (0.0971) (0.1184) (0.0838) (0.1071) (0.0752)
[0.1493] [0.0972] [0.1193] [0.0838] [0.1077] [0.0752]

1000 OLS* 0.9998 1.0011 1.0000 1.0001 0.9999 1.0009
(0.0202) (0.0282) (0.0211) (0.0275) (0.0207) (0.0272)
[0.0202] [0.0283] [0.0211] [0.0276] [0.0207] [0.0272]

MSOLS 0.5884 1.0006 0.5885 1.0001 0.5882 1.0018
(0.0360) (0.0536) (0.0342) (0.0487) (0.0338) (0.0479)
[0.4131] [0.0536] [0.4130] [0.0487] [0.4131] [0.0479]

MSII-L 1.0090 0.9989 1.0139 1.0015 1.0099 1.0016
(0.0927) (0.0681) (0.0794) (0.0576) (0.0718) (0.0542)
[0.0931] [0.0681] [0.0806] [0.0576] [0.0725] [0.0543]

2000 OLS* 0.9990 0.9991 0.9995 0.9998 0.9995 1.0004
(0.0148) (0.0186) (0.0143) (0.0193) (0.0144) (0.0192)
[0.0148] [0.0186] [0.0143] [0.0193] [0.0144] [0.0192]

MSOLS 0.5877 0.9997 0.5869 0.9985 0.5866 1.0005
(0.0262) (0.0379) (0.0244) (0.0349) (0.0236) (0.0321)
[0.4131] [0.0379] [0.4138] [0.0349] [0.4141] [0.0321]

MSII-L 1.0062 0.9996 1.0019 0.9984 1.0040 1.0006
(0.0650) (0.0484) (0.0551) (0.0413) (0.0528) (0.0358)
[0.0653] [0.0484] [0.0551] [0.0413] [0.0529] [0.0358]
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Table 1: Continued

Model B: g (z) = z3

m = n/2 (κ = 2) m = n (κ = 1) m = 2n (κ = 1/2)
n Estimator β1 γ β1 γ β1 γ
500 OLS* 1.0002 0.9988 0.9991 1.0026 1.0000 1.0008

(0.0289) (0.0784) (0.0292) (0.0815) (0.0273) (0.0764)
[0.0289] [0.0784] [0.0292] [0.0816] [0.0273] [0.0764]

MSOLS 0.6002 1.9593 0.5957 1.9695 0.5949 1.9705
(0.0531) (0.1435) (0.0482) (0.1317) (0.0463) (0.1255)
[0.4033] [0.9700] [0.4072] [0.9784] [0.4078] [0.9786]

MSII-L 1.0369 0.9153 1.0209 0.9499 1.0103 0.9728
(0.1438) (0.3586) (0.1106) (0.2787) (0.0988) (0.2485)
[0.1485] [0.3684] [0.1125] [0.2832] [0.0993] [0.2500]

1000 OLS* 0.9996 1.0020 0.9999 1.0004 1.0009 0.9987
(0.0203) (0.0575) (0.0205) (0.0574) (0.0205) (0.0565)
[0.0203] [0.0575] [0.0205] [0.0574] [0.0206] [0.0566]

MSOLS 0.5952 1.9720 0.5953 1.9708 0.5954 1.9712
(0.0371) (0.1016) (0.0331) (0.0886) (0.0342) (0.0910)
[0.4065] [0.9773] [0.4061] [0.9749] [0.4061] [0.9755]

MSII-L 1.0108 0.9733 1.0119 0.9731 1.0083 0.9816
(0.0901) (0.2275) (0.0733) (0.1838) (0.0711) (0.1774)
[0.0907] [0.2291] [0.0742] [0.1857] [0.0716] [0.1783]

2000 OLS* 0.9997 0.9999 0.9998 1.0002 0.9996 1.0014
(0.0144) (0.0388) (0.0146) (0.0404) (0.0138) (0.0384)
[0.0144] [0.0388] [0.0146] [0.0404] [0.0138] [0.0384]

MSOLS 0.5945 1.9724 0.5948 1.9707 0.5933 1.9767
(0.0265) (0.0720) (0.0240) (0.0670) (0.0231) (0.0635)
[0.4064] [0.9750] [0.4059] [0.9730] [0.4074] [0.9788]

MSII-L 1.0059 0.9854 1.0053 0.9856 1.0019 0.9960
(0.0650) (0.1615) (0.0548) (0.1403) (0.0507) (0.1276)
[0.0653] [0.1622] [0.0551] [0.1411] [0.0507] [0.1276]
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Table 1: Continued

Model C: g (z) = exp (z)

m = n/2 (κ = 2) m = n (κ = 1) m = 2n (κ = 1/2)
n Estimator β1 γ β1 γ β1 γ
500 OLS* 0.9986 1.0012 0.9974 1.0042 0.9998 1.0010

(0.0349) (0.0635) (0.0358) (0.0667) (0.0351) (0.0654)
[0.0349] [0.0635] [0.0359] [0.0668] [0.0351] [0.0654]

MSOLS 0.4123 1.8591 0.4052 1.8690 0.4076 1.8660
(0.0583) (0.1044) (0.0584) (0.1023) (0.0569) (0.0993)
[0.5906] [0.8655] [0.5976] [0.8750] [0.5951] [0.8716]

MSII-L 1.1123 0.8402 1.0505 0.9258 1.0328 0.9500
(0.4245) (0.6211) (0.2455) (0.3677) (0.2008) (0.3029)
[0.4391] [0.6413] [0.2507] [0.3751] [0.2034] [0.3070]

1000 OLS* 0.9996 1.0017 0.9999 1.0003 1.0002 1.0006
(0.0241) (0.0452) (0.0253) (0.0467) (0.0250) (0.0458)
[0.0241] [0.0452] [0.0253] [0.0467] [0.0250] [0.0458]

MSOLS 0.4072 1.8673 0.4068 1.8662 0.4076 1.8669
(0.0412) (0.0743) (0.0400) (0.0685) (0.0398) (0.0712)
[0.5942] [0.8705] [0.5945] [0.8689] [0.5937] [0.8699]

MSII-L 1.0295 0.9557 1.0320 0.9548 1.0236 0.9671
(0.1799) (0.2743) (0.1463) (0.2205) (0.1312) (0.1977)
[0.1823] [0.2778] [0.1497] [0.2251] [0.1333] [0.2004]

2000 OLS* 0.9988 1.0008 0.9994 1.0006 0.9994 1.0012
(0.0176) (0.0320) (0.0171) (0.0320) (0.0172) (0.0318)
[0.0177] [0.0320] [0.0171] [0.0320] [0.0172] [0.0318]

MSOLS 0.4067 1.8666 0.4067 1.8656 0.4055 1.8693
(0.0300) (0.0536) (0.0282) (0.0505) (0.0278) (0.0492)
[0.5941] [0.8682] [0.5940] [0.8670] [0.5952] [0.8706]

MSII-L 1.0164 0.9757 1.0084 0.9861 1.0094 0.9869
(0.1211) (0.1832) (0.0993) (0.1521) (0.0960) (0.1459)
[0.1222] [0.1848] [0.0996] [0.1528] [0.0964] [0.1465]
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Table 1: Continued

Model D: g (z) = z + 2 sin (πz)

m = n/2 (κ = 2) m = n (κ = 1) m = 2n (κ = 1/2)
n Estimator β1 γ β1 γ β1 γ
500 OLS* 1.0004 0.9991 0.9995 1.0006 1.0001 1.0007

(0.0278) (0.0401) (0.0276) (0.0434) (0.0271) (0.0414)
[0.0278] [0.0401] [0.0276] [0.0434] [0.0271] [0.0414]

MSOLS 0.6381 1.1904 0.6320 1.1919 0.6317 1.1917
(0.0495) (0.0787) (0.0483) (0.0739) (0.0461) (0.0685)
[0.3653] [0.2060] [0.3712] [0.2056] [0.3712] [0.2036]

MSII-L 1.0333 0.9851 1.0158 0.9911 1.0129 0.9907
(0.1196) (0.1171) (0.1033) (0.1011) (0.0922) (0.0896)
[0.1242] [0.1181] [0.1045] [0.1015] [0.0931] [0.0901]

1000 OLS* 0.9996 1.0013 0.9996 1.0004 0.9994 1.0012
(0.0187) (0.0296) (0.0189) (0.0296) (0.0191) (0.0288)
[0.0188] [0.0297] [0.0189] [0.0296] [0.0191] [0.0288]

MSOLS 0.6303 1.1939 0.6295 1.1948 0.6305 1.1942
(0.0353) (0.0562) (0.0330) (0.0491) (0.0312) (0.0496)
[0.3714] [0.2019] [0.3719] [0.2009] [0.3708] [0.2004]

MSII-L 1.0083 0.9946 1.0060 0.9985 1.0072 0.9975
(0.0805) (0.0813) (0.0718) (0.0666) (0.0620) (0.0634)
[0.0809] [0.0815] [0.0721] [0.0666] [0.0624] [0.0635]

2000 OLS* 0.9991 0.9996 0.9997 1.0000 1.0003 1.0002
(0.0135) (0.0204) (0.0135) (0.0208) (0.0136) (0.0204)
[0.0136] [0.0204] [0.0135] [0.0208] [0.0136] [0.0204]

MSOLS 0.6300 1.1932 0.6301 1.1922 0.6293 1.1942
(0.0246) (0.0399) (0.0236) (0.0362) (0.0231) (0.0332)
[0.3708] [0.1972] [0.3706] [0.1956] [0.3714] [0.1970]

MSII-L 1.0035 0.9979 1.0041 0.9963 1.0036 0.9988
(0.0550) (0.0563) (0.0491) (0.0496) (0.0447) (0.0425)
[0.0551] [0.0563] [0.0493] [0.0498] [0.0448] [0.0426]
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Table 1: Continued

Model E: g (z) = z + (5/τ)φ (z/τ) , τ = 0.9

m = n/2 (κ = 2) m = n (κ = 1) m = 2n (κ = 1/2)
n Estimator β1 γ β1 γ β1 γ
500 OLS* 1.0006 0.9987 0.9991 1.0013 1.0001 1.0006

(0.0361) (0.0523) (0.0377) (0.0561) (0.0374) (0.0538)
[0.0361] [0.0523] [0.0377] [0.0561] [0.0374] [0.0538]

MSOLS 0.3539 1.6457 0.3481 1.6518 0.3474 1.6510
(0.0615) (0.0908) (0.0586) (0.0882) (0.0560) (0.0838)
[0.6490] [0.6521] [0.6545] [0.6577] [0.6550] [0.6564]

MSII-L 1.1524 0.8469 1.0852 0.9142 1.0652 0.9321
(0.5282) (0.5627) (0.3125) (0.3283) (0.2794) (0.2902)
[0.5497] [0.5832] [0.3239] [0.3393] [0.2869] [0.2980]

1000 OLS* 0.9991 1.0020 1.0000 1.0002 0.9995 1.0014
(0.0253) (0.0385) (0.0252) (0.0381) (0.0250) (0.0357)
[0.0253] [0.0385] [0.0252] [0.0381] [0.0250] [0.0357]

MSOLS 0.3449 1.6557 0.3458 1.6549 0.3466 1.6536
(0.0430) (0.0622) (0.0399) (0.0582) (0.0382) (0.0572)
[0.6565] [0.6586] [0.6554] [0.6575] [0.6545] [0.6561]

MSII-L 1.0543 0.9444 1.0357 0.9659 1.0297 0.9719
(0.2480) (0.2583) (0.1935) (0.2005) (0.1709) (0.1771)
[0.2539] [0.2642] [0.1968] [0.2034] [0.1734] [0.1793]

2000 OLS* 0.9999 0.9993 1.0004 0.9994 1.0009 0.9995
(0.0177) (0.0261) (0.0191) (0.0280) (0.0181) (0.0261)
[0.0177] [0.0261] [0.0191] [0.0280] [0.0182] [0.0261]

MSOLS 0.3464 1.6531 0.3465 1.6528 0.3456 1.6549
(0.0309) (0.0453) (0.0287) (0.0438) (0.0276) (0.0403)
[0.6543] [0.6547] [0.6541] [0.6543] [0.6549] [0.6562]

MSII-L 1.0220 0.9778 1.0227 0.9756 1.0144 0.9863
(0.1491) (0.1554) (0.1325) (0.1418) (0.1170) (0.1218)
[0.1508] [0.1570] [0.1344] [0.1439] [0.1179] [0.1226]
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Table 1: Continued

Model F: g (z) = z + (5/τ)φ (z/τ) , τ = 0.3

m = n/2 (κ = 2) m = n (κ = 1) m = 2n (κ = 1/2)
n Estimator β1 γ β1 γ β1 γ
500 OLS* 1.0001 0.9992 0.9997 1.0007 0.9998 1.0008

(0.0120) (0.0398) (0.0117) (0.0419) (0.0118) (0.0408)
[0.0120] [0.0398] [0.0117] [0.0419] [0.0118] [0.0408]

MSOLS 0.9363 1.0659 0.9363 1.0635 0.9357 1.0616
(0.0280) (0.0947) (0.0235) (0.0846) (0.0225) (0.0757)
[0.0696] [0.1154] [0.0679] [0.1057] [0.0681] [0.0975]

MSII-L 1.0035 0.9990 1.0027 0.9969 1.0015 0.9958
(0.0315) (0.0995) (0.0265) (0.0881) (0.0245) (0.0782)
[0.0317] [0.0995] [0.0266] [0.0882] [0.0246] [0.0783]

1000 OLS* 0.9997 1.0014 0.9997 1.0005 0.9999 1.0010
(0.0081) (0.0295) (0.0079) (0.0287) (0.0079) (0.0278)
[0.0081] [0.0295] [0.0079] [0.0287] [0.0079] [0.0278]

MSOLS 0.9365 1.0625 0.9338 1.0677 0.9355 1.0656
(0.0191) (0.0671) (0.0166) (0.0565) (0.0154) (0.0541)
[0.0663] [0.0917] [0.0683] [0.0882] [0.0663] [0.0851]

MSII-L 1.0025 0.9964 0.9993 1.0023 1.0011 1.0005
(0.0220) (0.0707) (0.0185) (0.0590) (0.0169) (0.0557)
[0.0221] [0.0708] [0.0185] [0.0590] [0.0170] [0.0557]

2000 OLS* 1.0001 0.9990 1.0004 0.9994 1.0004 1.0000
(0.0057) (0.0194) (0.0059) (0.0203) (0.0060) (0.0197)
[0.0057] [0.0194] [0.0059] [0.0203] [0.0060] [0.0197]

MSOLS 0.9353 1.0644 0.9358 1.0627 0.9352 1.0654
(0.0138) (0.0475) (0.0115) (0.0422) (0.0109) (0.0363)
[0.0661] [0.0800] [0.0652] [0.0756] [0.0657] [0.0748]

MSII-L 1.0005 0.9992 1.0010 0.9974 1.0005 1.0002
(0.0155) (0.0497) (0.0130) (0.0441) (0.0121) (0.0374)
[0.0155] [0.0497] [0.0131] [0.0442] [0.0121] [0.0374]

Note: For each estimator, simulation averages of estimates, simulation standard
deviations (in parentheses) and RMSEs (in brackets) are presented.

34


