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ABSTRACT 

The effective (or bulk) transport and optical properties of inhomogeneous ma

terials such as ceramic metal composites depend not only on the properties of 

the constituent materials but also on their geometrical arrangement. Periodic 

composites containing spherical or cylindrical inclusions of one material (often 

a metal) embedded in a background phase of another material (often a dielec

tric) are useful models since they possess most of the qualitative behaviour of 

more complex systems and yet can be treated both analytically and numerically. 

Equations describing a large class of such structures are derived and solved using 

a combination of analytical and numerical techniques. 

The qualitative behaviour of a composite can depend strongly on the propor

tions of the constituent phases. In particular, as the relative proportion of the 

metallic component increases a threshold is reached where a transition occurs 

from dielectric behaviour to metallic behaviour. A number of specific structures 

are studied over a large range of compositions, particularly near this thresh

old where standard analytical and numerical techniques become inadequate. A 

method is devised for efficiently obtaining the effective properties near this thresh

old by calculating the asymptotic behaviour between a pair of nearest neighbour 

inclusions in a sufficiently simple analytic form. Knowledge of such pairwise in

teractions allows the calculation of the effective properties much more accurately 

and with much less numerical computation. In addition, the optical resonances 

(absorption spectrum) of the nearest neighbour pair are obtained by this method 

and related to the resonances of the entire structure. 

The asymptotic and resonant behaviour is used to determine the long wave

length absorption properties of metal-dielectric composites and to relate this be

haviour to the analytic structure of the function giving the effective dielectric 

constant in terms of the permittivities of the constituent phases. This asymp

totic behaviour is also important in studying the critical behaviour of percolating 

composites because it relates the physical interactions of the inclusions to the 

geometric structure of the composite. 
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Chapter 1 

INTRODUCTION 

1.1 Preamble 

There is a vast literature on the calculation of the effective transport and optical 

properties of composite materials. Many excellent reviews of the field exist (Lan

dauer, 1978; McPhedran et al., 1983). Composite materials, in the most general 

sense, are heterogeneous structures containing domains of different materials (or 

the same material in different states). If the size of the domains is comparable 

with the atomic or molecular spacing, the problem will require in almost all cases 

a quantum mechanical treatment. If the domain size is much larger than the 

atomic or molecular spacing and large enough to possess macroscopic proper

ties (such as conductivity or viscosity), then the problem can be analysed using 

classical theories which assign locally to each domain its bulk properties. The 

structures studied here satisfy these conditions. 

Many macroscopic properties describe the response of a material to an applied 

disturbance. For example, electrical conductivity, thermal conductivity, magnetic 

permeability and dielectric permittivity can all be described by the same model 

of an induced flux produced by an applied field (or potential gradient) In these 

examples the potential is scalar and satisfies the Laplace or Poisson equation. 

Other properties such as viscosity and bulk modulus can be modelled by a vector 

potential satisfying a vector Laplace equation. Other more complicated cases 

requiring different differential equations can occur with hydrodynamic and elec

tromagnetic phenomena. Batchelor (1974) gives a comparison of many different 

transport properties and tabulates the analogous parameters. 

In this thesis, only the scalar potential case is considered, and since the var

ious physical problems are identical mathematically, the dielectric permittivity 

(dielectric susceptibility, refractive index) will be used almost everywhere. In 

some circumstances, the electrical conductivity will be used because some of the 

concepts are more familiar in this context. 
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The composite material can now be regarded as composed of domains where 

the dielectric permittivity varies from one domain to another, but it is fixed 

within each domain. When the composite material is examined on length scales 

much larger than the domain sizes, it can be characterized by an effective per

mittivity. That is, it can be modelled by a homogeneous material having a 

permittivity which is a macroscopic average of the domain permittivities. This 

effective permittivity depends not only on the domain permittivity but on the 

detailed geometric arrangement of the domains. Another important parame

ter is the dimensionality D of the system. Thin film composites may exhibit 

two dimensional behaviour, and composites which are translationally invariant in 

one direction have geometries which are essentially two dimensional. In general, 

three dimensional and two dimensional structures may exhibit quite different 

behaviours, but much of the mathematical analysis for them is similar. 

Many different approaches are possible. Results can be obtained for structures 

whose complete geometric arrangement (microstructure) is known. Approximate 

results can be obtained for structures with partially specified geometries. Given 

certain geometrical information about a structure, rigorous bounds can be placed 

on the range of possible values of its effective permittivity. For any given geom

etry, the effective permittivity can be considered a function of the permittivity 

of the constituent phases. The analytic properties of this function (especially its 

singularities) provide valuable information about the behaviour of the composite. 

Several of the above ideas and approaches will be used in this thesis. 

The historical development of this problem and the various models and tech

niques developed to explain some of the phenomena associated with composite 

materials is now briefly traced. 

1.2 Historical Background 

This historical survey is not intended to be comprehensive as the field is vast and 

covers many disciplines including chemistry, biology and geology. Only the more 

important papers and those that have had a direct bearing on this thesis have 

been included. For a more detailed history and discussion the reader is referred 

to the excellent review by Landauer (1978). 

Composite structures were first proposed as models of dielectrics by Avogadro 

about 1806 and in 1837 by Faraday (Gillispie, 1971 ). The models consisted of iso

lated metallic regions (representing the molecules) in an insulating background. 

The first analysis of such a structure was performed around 1850 by Mossotti 

(Gillispie, 1971), and later by Maxwell (1873) and Clausius in 1879 and Lorenz 

in 1880 (Landauer, 1978). In Clausius' derivation the molecules are metal spheres 
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and each sphere is considered to be surrounded by a uniform material charac

terized by the effective dielectric constant. The value of the effective dielectric 

constant is obtained by a self consistency argument. This is an example of an 

effective medium theory. In the same year, Lorentz introduced the concept of an 

effective field: the field that acts on one molecule due to the averaged effects of 

all the other molecules (Lorentz, 1909). If the external field is denoted by E and 

the net polarization (or dipole moment per unit volume) by P then the effective 

field is given by E + P /3e0 • 

If f 1 is the fraction of space occupied by the material of dielectric constant e1 

and j 2 = 1-ft is the fraction occupied by the background material with dielectric 

constant e2 , then according to the Clausius-Mossotti approximation (also known 

as the Lorenz-Lorentz approximation) the effective dielectric constant eeff is given 

by 
Eeff - €2 E1 - E2 

--:----,-=-.;;;.....,.- = !1 --""::,..--:. 
eeff + (D -1)e2 e1 + (D- 1h 

(1.1) 

where D is the dimensionality. Notice that the two phases do not appear symmet

rically. The Clausius-Mossotti approximation (CM) will arise in many contexts. 

The first rigorous mathematical analysis of the problem was performed by 

Lord Rayleigh in 1892: he formulated the problem in terms of solving Laplace's 

equation in a periodic structure (the approach adopted in this thesis) and thus de

termined the region of validity of the effective medium and effective field theories 

and approximations. 

The remarkable formula, arrived at almost simultaneously by L. Lorenz and 

H.A. Lorentz, and expressing the relation between refractive index and den

sity, is well known; but the demonstrations are rather difficult to follow, and 

the limits of application are far from obvious. Indeed, in some discussions 

the necessity for any limitation at all is ignored. I have thought that it might 

be worth while to consider the problem in the more definite form which it 

assumes when the obstacles are supposed to be arranged in rectangular or 

square order, and to show how the approximation may be pursued when the 

dimensions of the obstacles are no longer very small in comparison with the 

distances between them. (Rayleigh, 1892) 

J.C. Maxwell Garnett in 1904 also derived the CM relation (Landauer, 1978) 

but based on the full electromagnetic equations and not just electrostatic be

haviour. When used in optics the above relation is referred to as the Maxwell 

Garnett (MG) approximation. 

If the wavelength of the incident light is much longer than the scale size of 

the inhomogeneities, the quasi-static approximation is valid: electrostatic theory 

is used but with the dielectric constants of the phases given by their wavelength 
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dependent values. Ashcroft (1982), McPhedran et al. (1982), Bell et al. (1982) 

and Smith (1979) have discussed the applicability of the quasi-static approxima

tion in various contexts. In the quasi-static approximation the effective dielectric 

constant depends on wavelength only indirectly through the wavelength depen

dence of the dielectric constants of the constituents and not through geometrical 

effects. The dielectric constants of metals at optical wavelengths are complex 

(the imaginary part representing absorption) with large negative real parts. 

The MG approximation has a pole when E1 = -e2(D- 1 + /1)/(1- / 1). This 

value of e1 is non-physical, being real and negative. However, the composite will 

exhibit strong absorption when the dielectric constant of the metal is near this 

value. As a function of wavelength, a strong isolated absorption peak is observed 

which is absent from both the pure metal and the pure dielectric. This absorption 

is referred to as the dielectric anomaly. 

The spectral selectivity of ceramic metal composites was first described by 

Zeller and Kuse (1973) and a few years later Gittleman (1976) showed the appli

cability of semiconductor ceramic metals to solar energy conversion. An excellent 

review of composite materials as spectrally selective surfaces for solar energy col

lection has been given by Sievers (1979). Recently, Gajdardziska-Josifovska et 

al. (1989) have studied the properties of magnesium fluoride cermets with silver 

inclusions, especially their absorption in the visible and infra-red parts of the 

spectrum. 

As the fraction of metal in a composite is increased a point is reached (per

colation) where the metallic component forms a connected path through the 

composite and the behaviour of the composite changes from dielectric behaviour 

to metallic behaviour. This is an example of percolation and the percolation 

threshold in this case corresponds to a metal-insulator transition. The MG ap

proximation does not predict such a transition. 

In 1935 Bruggeman provided two effective media theories, one of which treated 

the two materials unsymmetrically as in the MG approach: treating one as the 

inclusions and the other as the background, and a symmetrical theory which does 

exhibit a percolation threshold. The symmetric Bruggeman result is 

ft - fefl' €2 - €eft' 
h +h =0 

Et + (D -l)E"ff f2 + (D -1)E"ff 
(1.2) 

which defines e•ff implicitly. Although this formula exhibits a transition it does 

not exhibit a dielectric anomaly. 

From this point several different paths can be taken. The MG formula has 

been generalized to include not only dipole-dipole interactions but also higher 

order multipole interactions. In general the single pole or dielectric anomaly is 

replaced by a discrete or continuous spectrum of poles. It is interesting to note 
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that such a spectrum of poles results from the interaction of just a pair of isolated 

particles. In fact many qualitative features of more complicated systems can (and 

will) be obtained from the interaction of pairs. This is one of the approaches taken 

in this thesis, where details of the geometry are used with multi pole interactions to 

calculate the effective dielectric constant. These interactions are highly dependent 

on the specific geometry of the composite but have the advantage that they are 

capable of displaying both a percolation threshold and dielectric anomalies. 

The simplest geometries to study are periodic structures and hopefully there 

are properties of general structures which can be discerned from periodic struc

tures. Ashcroft (1982) has suggested that periodic arrays with a large basis can 

approximate random structures. The periodic structure will increasingly resem

ble a disordered structure as the size of the basis is increased. Recently, Sangani 

and Yao (1988) have shown that for some properties the size of the basis need 

only be increased to about 16 elements before the behaviour becomes indistin

guishable from that for structures with even larger numbers of elements in their 

basis. Regular structures are not only interesting as models for more complicated 

structures, but also in their own right and Craighead and Mankiewich (1982) have 

recently produced regular structures using electron-beam lithography. 

Another approach seeks to obtain results of general validity which are not 

dependent on the specific details of the geometry. These results are often in the 

form of rigorous bounds on the possible values of the effective properties of a 

class of composites. The first bounds were obtained by Wiener in 1912, showing 

that the effective dielectric constant always lies between the weighted arithmetic 

and harmonic means of the constituents 

ft f2 eff 

f f 
< f < /tft + /2f2· (1.3) 

tf2 + 2ft 

These bounds are actually attained by laminar (anisotropic) composites with 

alternating slabs parallel or perpendicular to the applied field. 

Imposing the additional condition of isotropy gives stricter bounds. Hashin 

and Shtrickman (1962) demonstrated that the MG formula, and the conjugate 

relation obtained by interchanging the roles of inclusion and background 

f•ff - ft f2 - ft 
--;;-----,..:.. = h...:::...._--=.=... 
feff + 2ft f2 + 2ft 

(1.4) 

are maximal and minimal bounds for all macroscopically homogeneous and isotropic 

media characterized by ft, f 2 , ft and /2. These bounds are also realized by fractal 

structures where all space is filled by spheres or cylinders of varying radii. In re

cent years many additional bounds and techniques for calculating them have been 

developed (Bergman, 1978b; Bergman, 1980; Milton, 1980; Bergman, 1981; Mil

ton, 1981a; Milton, 1981b; Milton, 1981c; Milton, 1981d; McPhedran and Milton, 

5 



1981; Bergman, 1982; Milton and McPhedran, 1982; Golden and Papanicolau, 

1983; Torquato, 1985; Milton, 1987; Torquato and Lado, 1988). 

Bounds have also been obtained for composites containing anisotropic mate

rials and for polycrystals (Francfort and Milton, 1987) where the composite is 

made of a single anisotropic material but different domains have principal axes 

in different directions. Bounds have also been calculated for other problems such 

as effective elastic moduli (Phan-Thien and Milton, 1983; Berryman, 1985) and 

hydrodynamic quantities (Beasley and Torquato, 1989). Bounds and variational 

principles for diffusion-controlled reactions have also been developed (Rubinstein 

and Torquato, 1988). 

Milton has developed a set of bounds which incorporate geometrical informa

tion (in the form of n-point correlation functions) and in fact relate the poles and 

zeros of the effective dielectric constant to the bounds. However, the calculation 

or measurement of these correlation functions (Berryman, 1985) is not very easy 

and the lower order correlation functions do not give much information about 

composites close to percolation. McPhedran and Milton (1981) have studied the 

numerical convergence properties of these bounds for regular structures of cylin

ders and spheres. Specific structures have been found for which these bounds are 

realizable, thus showing them to be optimal bounds (Bergman, 1980; McPhedran 

and Milton, 1981; Milton, 1981b; Francfort and Milton, 1987). Specific structures 

realizing various effective media approximations have also been found (Milton, 

1985). 

Other types of geometrical information can also be incorporated, increasing 

our information about the composite and hence improving the bounds. Informa

tion such as the mean size of clusters and cluster concentration (Sen and Torquato, 

1988; Torquato et al., 1988) has been considered. Pair-connectedness functions 

can also be used (Lee and Torquato, 1988). In this thesis, nearest neighbour 

interactions are examined closely, especially with regard to the information they 

provide about resonances and percolation. 

Others have considered variations to the basic transport problem. A full elec

tromagnetic treatment (as opposed to the quasi-static approximation) of periodic 

arrays has been given by Lamb et al. (1980) and has been used to obtain results 

at low volume fractions. Waterman and Pedersen (1986) have also studied the 

full electromagnetic problem. The effects of resistance across the boundaries be

tween phases (which changes the nature of the boundary conditions) has been 

considered by Chen et al. (1977) and in this case many of the results and bounds 

obtained by those above do not apply. Others (Fuchs and Claro, 1987) have 

adopted non-local dielectric constants for the inclusions. 
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1.3 Outline of Approach 

For mathematical simplicity, only two classes of structures are considered. The 

first class of structures model three dimensional structures and contain only spher

ical inclusions. The second class of structures model two dimensional structures 

(or structures which are translationally invariant in one direction) and contain 

only cylindrical inclusions, with all the cylinder axes along the line of transla

tional symmetry. In both cases the inclusions and the background are isotropic 

and homogeneous. Spheres and cylinders are the easiest shaped inclusions to 

study because of their maximal symmetry in three and two dimensions respec

tively. Others have considered spheroidal inclusions (Chen et al., 1977) and cubic 

and rectangular particles (Langbein, 1976). Square shaped inclusions in two di

mensions have also been considered (Milton et al., 1981). 

The main emphasis in this thesis is on non-intersecting cylinders and spheres 

(for mathematical reasons), however some analysis is also presented for the inter

secting case. Allowing the cylinders and spheres to intersect produces composites 

with a much greater variety of shapes of inclusions; but many analytical results 

which are obtained for the non-intersecting case could not be reproduced for the 

intersecting case. 

Chapter 2 contains the derivations and explanations of many of the basic 

mathematical results used to analyse structures of cylinders and spheres. The 

effective dielectric constant for a given structure containing either cylindrical or 

spherical inclusions is obtained by solving Laplace's equation for the potential and 

applying the appropriate boundary conditions at the surfaces of the inclusions. 

The potential is obtained using a series (or moment) expansion method which 

yields a matrix equation. Two derivations of this matrix equation are given. In 

the first derivation the potential is written as a series expansion and in the second 

derivation the charge densities on the surfaces of the inclusions are expanded. 

Suitable sets of complete and orthogonal functions are chosen with which to 

expand the potential. The common procedure is to choose functions suited to the 

shape of the inclusions. Here these are the cylindrical and spherical harmonics. 

Using these functions it is easy to satisfy the boundary conditions at the surface 

of each inclusion and obtain a local expansion of the potential. These local ex

pansions must agree where they overlap and also result in the correct behaviour 

at infinity (this is determined by the choice of applied field). The orthogonality 

properties of the expansion functions are used to reduce these consistency con

ditions to a system of linear equations for the expansion coefficients (multipole 

moments). 

In the second derivation, the charge density on the surface of each inclusion 
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is expanded in a series of surface harmonics. The expansion coefficients are then 

simply related to those of the potential expansion. An expression is obtained for 

the potential in terms of integrals over the charge distributions using a Green's 

function. Requiring the potential to satisfy the boundary conditions and using 

the orthogonality of the expansion functions produces a system of linear equations 

equivalent to that obtained using a potential expansion. 

The system of linear equations is infinite and contains one equation for each 

harmonic function (multipole moment) for each inclusion in the structure. For 

a general periodic lattice of inclusions with an arbitrary basis the number of 

equations is reduced by the translational symmetries of the lattice. There is 

now one equation for each multipole moment of each inclusion in the basis. The 

system is made finite by ignoring all multipole moments beyond a given order 

(the consequences of this truncation are also examined). The resulting finite 

system can be solved by standard matrix techniques. Previous work on regular 

structures has usually been limited to isotropic structures and structures with 

a basis of one (or sometimes two) elements. The system of equations derived 

here is not restricted and can describe anisotropic structures and structures with 

arbitrarily large bases. Of course the computational complexity increases as the 

symmetry and simplicity of the regular structure decreases. 

The above method exploits the particular symmetry of the inclusions and the 

matrix equation must be solved to satisfy the periodicity requirements. It is also 

possible to start with a set of expansion functions which satisfy the requirements 

for periodicity and derive a matrix equation to satisfy the boundary conditions 

on the surface of the inclusions. Ouroushev (1985) has used elliptic functions to 

generate some potentials which are periodic in three dimensions. The solutions 

he obtained describe various unit cells containing point charges. This approach 

has not been generalized to describe arbitrary lattices with arbitrary bases. 

For periodic structures the calculation of various lattice sums (which describe 

the various interactions between the inclusions) is required. For infinite struc

tures, some of these lattice sums are conditionally convergent and thus there is 

some ambiguity in their values. By carefully considering an infinite structure 

to be the limit of a sequence of finite structures the ambiguity can be resolved. 

The resolution involves introducing the depolarization field produced by induced 

polarization charges on the external boundary of any real finite structure. 

The effective dielectric constant is obtained in terms of the polarizability of 

the inclusions, which can in turn be obtained from either the potential expansion 

or the charge distributions on the inclusions. 

The remainder of Chapter 2 contains the derivation of a number of identities, 

reciprocal relations and exact solutions. If the structure possesses any symmetries 
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these can be used to derive identities involving various sets of lattice sums. In 

particular, the translational symmetry implied by periodicity provides identities 

that can be used to obtain exact solutions to the homogeneous matrix equation for 

certain degenerate structures. These solutions are also related to the behaviour 

of the solution in certain asymptotic limits discussed in Chapter 7. Various vec

tor integral identities are used to derive relationships between different solutions 

based on the same lattice structure. These reciprocal relationships can be used 

to check the accuracy of solutions. They can also be used to obtain perturbation 

formulae about known solutions. In the last section of Chapter 2 the derivation 

of the matrix equation is generalized to allow intersecting cylinders and spheres. 

The system of equations obtained is very complicated and no attempt is made 

to solve them here. The possible advantages of this approach are compared with 

other possible techniques for intersecting inclusions. 

Various approximate solutions to the matrix equation derived in Chapter 2 

are presented in Chapter 3. Approximate inclusions are easy to obtain if the 

composite is dilute (the size of the inclusions is small compared with the distance 

between inclusions) or if the contrast is small (the dielectric constant of the inclu

sions is not very different from that of the background). Solutions can be found 

in the form of a series (in the sizes and contrasts of the inclusions). These series 

solutions converge to the exact solution as the number of terms is increased. So

lutions can also be found in the form of ratios of infinite series. This form is very 

useful as it corresponds to the rational functions (Pade approximants) used in the 

theory of bounds. It can also describe some of the singularities of the effective di-

-electric constant because the denominator can become zero. These values can be 

found approximately by truncating the series expansion for the denominator and 

finding its zeros. These series and rational function expansions possess a useful 

truncation property: the coefficients in a truncated series expansion can be found 

exactly from the appropriately truncated system of equations. That is, including 

additional equations will not vary the series coefficients already obtained but will 

allow more terms to be included in the series expansion. A variety of regular two 

and three dimensional structures are considered and low order (truncated series) 

approximations are given for their effective dielectric constants. 

These techniques are sufficient for dilute or low contrast composites. When the 

composite is dense and of high contrast, the methods above converge extremely 

slowly and are not suitable for these structures. The high order multipoles and 

terms in the series correspond physically to short range interactions. Thus, it 

should be possible to determine the high order terms from a knowledge of the 

arrangement and distribution of nearest neighbour inclusions (analogous to the 

first stage of a cluster expansion). These nearest neighbour interactions will be 
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more important than the long range interactions when the inclusions are very 

close together (almost touching). Thus, before being able to obtain the nearest 

neighbour solutions it is necessary to calculate the asymptotic behaviour of the 

interaction between just two inclusions. 

Chapter 4 is entirely devoted to the solution of pair interactions. The elec

trostatic behaviour of pairs of cylinders or pairs of spheres in arbitrary external 

fields is determined in as much generality as possible. Rather than use moment 

expansions, the method of images is used, taking advantage of the properties of 

circular boundaries. In the first section the method of images itself is analysed 

carefully and some misapprehensions clarified. The method of images introduces 

image charges to represent the induced surface charge distributions. Exact ex

pressions for the image charges corresponding to different types of applied fields 

and charge distributions are given for both cylinders and spheres. A pair of in

clusions produce a sequence of images and recurrence relations are derived and 

solved giving the location and magnitude of these images. Exact results can be 

obtained for cylinders and for conducting spheres. An approximation is developed 

for dielectric spheres which allows an explicit solution to be obtained. 

Once the images have been obtained, the potential and charge distributions 

can be obtained from them in the form of infinite series (that is without the need 

to invert matrices). In certain special cases these series can be evaluated in terms 

of known special functions. The availability of symbolic algebra packages and 

special software for special functions makes the computation of these special cases 

much easier than direct summation of the series. Series solutions are obtained 

for a pair of cylinders or spheres used as a capacitor and for the same structures 

placed in a uniform applied field. The method of images is also used to obtain 

solutions for intersecting cylinders and spheres in certain special cases. 

In general, the series are quite cumbersome to use (though not as cumbersome 

as the inverse of an infinite matrix) and it is only the asymptotic behaviour of 

the solutions which is relevant to a nearest neighbour analysis. 

In Chapter 5 the method of images is used with continuous charge distribu

tions (as opposed to sets of point charges) and so instead of obtaining infinite 

series, one obtains integrals. The equivalence of the two methods is demonstrated. 

The recurrence relations are replaced by functional equations. The potentials and 

multi pole moments are obtained as integrals over the solutions to these functional 

equations. Fortunately, the integrals can be evaluated in terms of known special 

functions and the asymptotic behaviour of these functions is well known. It is 
also easy to obtain the resonant solutions from the integrals and special functions. 

The resonant solutions are charge distributions which can exist in the absence of 

an external field. For dielectric cylinder or sphere pairs this is only possible for 

10 



certain values of the permittivity and these values are always real and negative. 

No physical material can have such a value for its dielectric constant, but met

als can have dielectric constants which are close to these values. The resonant 

solutions are important in explaining the absorption spectra of composites. 

In Chapter 6, the variation of the effective permittivity (and hence the refrac

tive index) with wavelength is examined. In particular, the anomalous infrared 

absorption in dilute metal composites is examined. It has been known for many 

years that the observed absorption is a couple of orders of magnitude larger than 

that predicted by theories using the CM approximation or effective field theories. 

One popular mechanism for enhancing the absorption is to allow clustering of 

inclusions. The simplest type of cluster is a pair of inclusions, and the simplest 

example of a composite containing clustered inclusions is a dilute array of pairs. 

The effective dielectric constant for a dilute array of pairs of silver cylinders or 

spheres is obtained by first calculating the polarizability of a single pair and then 

(because the composite is dilute) using this polarizability in the CM approxi

mation. The absorption as a function of wavelength is calculated for various 

pair separations and the absorption peaks and long wavelength absorption tail 

are explained using the resonant solutions mentioned above. This idea (of using 

resonances) is explored further by studying the spectral representation of the ef

fective permittivity. The singularities of the effective permittivity (as a function 

of the complex dielectric constant of the inclusions) can either occur as isolated 

poles or as a continuous branch cut where the spectral density represents the con

centration of poles on this branch cut. Expressions are obtained for the spectral 

density for dilute arrays of touching pairs. The spectral density (especially near 

the branch point) determines the long wavelength behaviour. A critical wave

length is introduced which defines two regions. At very long wavelengths the 

behaviour is similar to that predicted by simpler theories, but below the critical 

wavelength the behaviour is modified. If this critical wavelength happens to be 

in the far infrared then the infrared behaviour will not exhibit the expected very 

long wavelength behaviour. Explicit expressions are given for the long wavelength 

behaviour above and below this critical wavelength for both cylinder pairs and 

sphere pairs. 

Having thoroughly studied the interactions of pairs, these results are used in 

Chapter 7 to determine the asymptotic behaviour of many of the structures in

vestigated in Chapter 3. It is assumed that the asymptotic behaviour of a dense, 

high contrast structure can be determined from the interactions between nearest 

neighbour inclusions. The asymptotic results for cylinder and sphere pairs are 

combined to describe the nearest neighbour interactions. This asymptotic ap

proximation can then be used together with the matrix equations of Chapter 2 
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to numerically improve the approximation. If one were to try numerically solving 

the matrix equations for such a structure without starting from the asymptotic 

approximation extremely large matrices would be required to obtain an accu

rate result. Further, the size of the required matrix would increase rapidly as 

the density or contrast increased. However, if one starts with the asymptotic 

approximation then one discovers that very small matrices (of the order of ten 

to fifty rows) suffice for structures of arbitrarily large contrasts and densities as 

close as desired to the critical density. The initial asymptotic approximation is 

compared with the numerically improved results to demonstrate over what re

gion the original approximation is accurate. The long wavelength behaviour and 

spectral representations for dense composites are obtained and compared to the 

corresponding results for dilute composites. 

In the final sections of Chapter 7 a number of algorithms for generating and 

analysing random or disordered structures are discussed. The model of near

est neighbour interactions can be applied to these structures to estimate their 

effective permittivities especially near the percolation threshold. Finally, based 

on all the results obtained for regular structures a number of conjectures are 

made about the behaviour of irregular and random structures, including their 

long wavelength behaviour and spectral representations. 

In summary, the work here follows closely the philosophy of first studying 

very simple structures in the hope of finding exact or simple solutions. These 

solutions can then be developed into approximation schemes for more complicated 

structures or even give insight into some exact results for this structures. Of 

course, what can be regarded as a 'simple solution' depends greatly on the ability 

to manipulate these results algebraically and numerically. 
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Chapter 2 

FIELD EXPANSION 
TECHNIQUES 

2.1 Introduction 

In this chapter the effective properties of composite materials are studied using 

field expansion techniques. The types of structures for which this method is 

most suitable are composites containing cylindrical or spherical shaped inclusions 

whose properties differ from those of the background. No restrictions need to 

be made about the size or properties of these inclusions except that it will be 

assumed the inclusions are homogeneous and isotropic. The initial derivation 

will also assume the inclusions are non-intersecting. The background phase of 

the composite is also assumed to be homogeneous and isotropic. 

In this chapter everything is treated in terms of electrostatic charges and 

dielectric constants. A set of moment equations will be derived which yield a 

rigorous solution to the electrostatic problem. It will be shown how the equations 

can be greatly simplified when the composite is periodic or has other symmetry 

properties. Various special cases of the moment equation have been derived 

previously. Doyle (1978) derived the equations for cubic lattices of spheres and 

also pointed out some numerical errors in the original derivation by Rayleigh 

(1892). Other derivations for the cubic lattices have been given by Zuzovsky and 

Brenner (1977), McKenzie et al. (1978), McPhedran and McKenzie (1978), Suen 

et al. (1979), Sangani and Acrivos (1983), Claro (1984). The equations for linear 

chains of spheres and planar arrays of spheres have also been derived by Claro 

(1984). Sphere pairs have been studied by Rojas and Claro (1986). Lam (1986) 

derived the equations for a simple cubic lattice of magnetic spheres and used 

them to calculate the effective permeability. A derivation (McPhedran, 1984) has 

also been given for a non-Bravais lattice having the Cesium Chloride structure. 
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Arrays of cylinders have also been studied (Perrins et al., 19i9; McPhedran and 

McKenzie, 1980). The derivation given here is completely general and applies to 

any structure with cylindrical or spherical inclusions. 

The matrix derivation requires the calculation of various sums over pairs of 

inclusions in the structure. Some of these sums are not absolutely convergent. 

This problem is investigated in full detail by studying the depolarization fields 

produced by the induced charge distributions on the external boundary of the 

composite. This procedure is carried out in as much generality as possible. The 

effective dielectric constant of the composite is obtained in terms of the multi pole 

coefficients appearing in the matrix equation. 

In addition, the matrix equation is rewritten as an eigenvalue equation, where 

the dielectric constant of the inclusions appears as an eigenvalue. The eigenvalues 

correspond to resonant solutions (i.e. non-zero charge distributions that can exist 

in the absence of an applied field). The eigenvalues are always associated with 

non-physical values of the dielectric constant. 

A reciprocal relation is derived between the solutions for different but related 

structures. Various identities between the lattice sums are presented and some of 

these are used to obtain exact solutions to the matrix equation in special cases. 

These exact solutions will turn out to be the limiting forms of the asymptotic 

approximations found in later chapters. 

In the last section, the analysis is generalized to intersecting cylinders or 

spheres. 

2.2 Moment Equations 

Consider a composite with background dielectric constant fb containing inclusions 

centred at the points r; with radii a; and dielectric constants €; respectively. The 

region inside the ith inclusion is denoted by S; and its boundary by 8S;. The 

background region is denoted S0 • The first derivation given follows the ideas of 

Rayleigh (1892). The potential is expanded in the immediate vicinity of the ith 

inclusion in an appropriate set of harmonic functions 

where 

l ~ A~Z~(r- r;) + B~Y~(r- r;) 

V(r) = . 
L:C~Z~(r- r;) 
~ 

Z~(r) = R~(r)C~(r) 

Y~(r) = I~(r)C~(r) 
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lr- r;l <a; 
(2.1) 
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and C;.( r) is a general surface harmonic, R;.(r) and l;.(r) are regular and irregular 

radial functions respectively (which are real) and Z >. ( r) and 11:1 ( r) are referred 

to as regular and irregular solid harmonic functions. The specific form of these 

functions in cylindrical and spherical coordinates is given in Appendix A. The 

general form is used here for brevity and to emphasize the similarity of the results 

for two and three dimensions. Two properties that will be required are the 

behaviour under complex conjugation 

C;.(r)* = c;.C;.·(r) (2.3) 

and under spatial inversion 

C;.( -r) = p;.C;.( r) (2.4) 

where c;. and P>. are real quantities and the index A • is related to the index A 

(Appendix A). 

The boundary conditions at the surface of the inclusion are continuity of 

the potential and of the normal component of the displacement vector. The 

orthogonality of the harmonic functions gives 

A~R>.(a;) + Bif>.(a;) 
. 8 . 8 

Eb{AA 8a; R>.(a;) + B~ 8a; I>.( a;)} 

- ClR>.(a;) 
-8 

- E;Cl<>R>.(a;). 
vai 

(2.5) 

(2.6) 

At this point, the potential field has been expanded locally in the neighbour

hood of each inclusion. These separate local expansions must be consistent where 

they overlap. Observe that the regular harmonic functions Z>.( r- r;) are well be

haved at r; and increase with distance. The regular part of the potential can thus 

be attributed to external fields and sources that lie out3ide S; (that is sources 

on the other inclusions). On the other hand, the irregular harmonic functions 

Y>.(r- r;) are singular at r; and decrease with distance. The irregular part of 

the potential can thus be attributed to sources in3ide S; (that is sources on this 

inclusion). Thus, for consistency, the regular part of the potential about the ith 

inclusion must equal the sum of the external potential and the irregular parts of 

the potentials from all the other inclusions. This identification gives the Rayleigh 

field identity 

L:AiZ>.(r- r;) = V..-1(r) + L:L:B!Y~(r- ri)· (2.7) 
>. #i ~ 

The right hand side of this identity is expanded in functions of r - r; using 

the addition theorem (Appendix A) for the irregular harmonics. The inclusions 

are non-intersecting, thus there exists a region just outside the ith inclusion 

15 



(extending to the nearest inclusion) where Jr- r;J < Jr;- r; \ for all j f. i. In this 

region the addition theorem gives 

I: A~Z,~( r- r;) = .L:v;z,~(r- r;) +I: I: B! I: N~,,~Z,~(r- r;)Y.+,~.(r;- r;) 
,\ ,\ #i~ ,\ 

(2.8) 

where N.,.l are coefficients appearing in the addition theorems. Invoking orthog

onality: 

A~= v; + LL B!N~.-~y~+-~·(r;- r;). (2.9) 
j-:Fi IC 

Finally, everything can be expressed in terms of Bi by using the boundary con-

ditions. Writing this in the form of a matrix equation 

where 

"' "' M;,; Bi = V:' .L..i L....J A,..c IC A 
i ~ 

M1·.~ = W,~(a;, e;/eb)6;,;6~,.1- N.,,~Y~+.I•(r;- r;)(1- 6;,;) 

(2.10) 

(2.11) 

and W,~(a;,e;/eb) is obtained by solving the boundary conditions (2.5) and (2.6) 

for a relationship between A~ and Bi 

W,~(a;, e;/eb) = €bR,~(a;)/;;f.1(a;)- e;I,~(a;)f.;R,~(ai) 
(e;- eb)R,~(a;) 8~,R,~(a;) 

Notice that the boundary conditions affect only the diagonal terms. 

(2.12) 

An important parameter is T; = (e;- eb)/(e; + €b) which can be regarded as 

a rescaled dielectric contrast. For T = 0 there is no contrast between inclusions 

and background. For T positive the inclusions have higher permittivity than the 

background and this contrast tends to infinity as T tends to unity. For T negative 

the inclusions have lower permittivity than the background and this contrast 

tends to infinity as T-> -1. In terms of this parameter 

W-1( a;, T;) = 
R,~(a;)f.-;I,~(a;)- I,~(a;)f.-;R,~(a;) 

2r;R,~( a;) 8~, R,~( a;) 

R,~(a;)f.-;I,~(a;) + I,~(a;)f.-;R,~(a;) 
2R,~( a;) a:, R,~( a;) 

w,~(a;) + v,~(a;). 
- Ti 

(2.13) 

(2.14) 

The matrix equation can be solved to give the expansion coefficients Bi which 

via the boundary conditions give the other coefficients and thus the potential ev

erywhere. This gives us complete knowledge about the problem. However, before 

relating the above quantities to the effective dielectric constant, it is worthwhile 

giving an alternative derivation. 
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This derivation does not rely on the arguments leading to the Rayleigh field 

identity (and in fact can be used to derive it) and starts from the physical surface 

charge distributions. In addition, this derivation can also be generalized to allow 

intersecting cylinders or spheres. The charge density on the surface oS; of each 

inclusion is given by ui ( r) for lr - r i I = a;. The potential is given by 

V( r) = V.xt( r) + lt las, G( r - r 1)ui ( r 1)dr1 (2.15) 

where G(r- r 1
) is the appropriate Green's function. The Green's function can 

be expanded in terms of the harmonic functions (see Appendix A) 

!
:EG~ZK.(r;- r1)Y~(r- r;) 

G( r - r 1
) = ~ 

1 2: G~YK·(r;- r )Z~(r- r;) 

lr;- ,.~I < lr- r;l 

lr; -r 1
1 > lr -r;l. 

Define 

~ 

Q!. = J. ui(r1)GKZK.(r;- r 1)dr1 

as, 

R~(a;) 1 i( I)G Y. ( l)d I - I ( ·) . u r ~ ~· r; - r r ' ,.. a3 as, 

(2.16) 

(2.17) 

(2.18) 

where Q~ are the multipole moments of the charge distribution. Using the ex

pansion for the Green's function and the definition of Q~ the potential can be 

reconstructed as follows. At each point r there will be a contribution V.,1( r) 

from the external field. H r lies inside the jth inclusion there will be a contribu

tion Q~~:<(::>)z~(r- r;), if it lies outside the jth inclusion the contribution will 

be Q~Y~(r- r;). Each inclusion will contribute either one or the other of these 

terms. The result can be written 

V(r) = V.,t(r) + 2: :EQ~YK(r -r;) 
j,r«S; " 

"" "" · I~( a;) + L..J L..JQ',.R ( ·)Z~(r-r;). 
j,res1 " "' a, 

(2.19) 

In this form, the expression for the potential is completely general, and does not 

even assume that the inclusions are non-intersecting. Comparing the irregular 

part of this equation with Equation (2.1) reveals that Q~ = B~. Using the 

addition theorems and the non-intersecting property the form of the potential 

inside the ith inclusion is 

V(r) = "" ; "" ; h( a;) L..JV~Z~(r-r;)+ L..JQ~R ( ·)Z~(r-r;) 
~ ~ ~ a, 

+ 2:2:Q~2:N~.~Z~(r -r;)Y~+~·(r; -r;) (2.20) 
j:J;i " .\ 
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and outside the ith inclusion is 

V(r) = l:V1Z.x(r-r;)+LQ~Y,x(r-r;) 
,\ ,\ 

+ L L Q~ L NK,.xZ.x(r- r;)YK+.x•( r;- ri)· (2.21) 
j¢i I( .\ 

The potential is continuous by construction and the discontinuity in its radial 

derivative at the surface of the inclusion gives the surface charge density: 

u'(r) = l:Q~ [R,x(a;)/;;I,x(a;)- l,x(a;)a:;R.x(a;)] 
.x R.x(a;)l,x(a;) Y.x(r- r;). (2.22) 

The material properties enter into the calculations by requiring that the normal 

component of the displacement vector be continuous across the boundary: 

o = (c;- cb) L:v; "'8 
R.x(a,)C.x(r) 

>. uai 

+c; L Q~ ~,x~a;)) t R.x(a;)C.x(r)- cb L Q~ "'
8 

l.x(a;)C.x(f) 
>. ..\. a, ua, ..\ ua, 

+(c;- Eb) L L Q~ L NK,.\ "'
8 

R.x(a;)C.x(r )YK+-X•(r;- ri) (2.23) 
" j:f:.i >. uai 

and the orthogonality of the expansion functions yields the following set of equa

tions 

" " M'·i Qi = V:' L_, L_, ..\,x; IC ). 

j K 

where the matrix elements are the same as before. 

(2.24) 

This is the general form of the moment equations. The specific form of the 

quantities appearing in the moment equations in two and three dimensions are 

given in the appendices and also in later sections for the particular structures in

vestigated. The matrix can be shown to be Hermitian, M~·.~ = M~;~ ·,by using the 

properties of the harmonic functions under inversion and complex conjugation. 

Consider now a periodic structure, specifically a lattice with a basis of M 

elements. Let T be the set of lattice vectors. If r;- ri E T then Q). = Q{ by 

periodicity and the matrix elements are simplified to 

M{;~ = W,x(aJ,ci/cb)- NK,.\UK+-X•(r 1- r J) 

where the lattice sums U are defined by 

U.x(r) = l:Y.x(r + t). 
teT 

Any singular term is omitted from the summation. 
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The high order lattice sums are always absolutely convergent and can be 

numerically evaluated by direct summation. However, in two dimensions those 

sums with terms that only fall off as the distance squared and in three dimensions 

those that fall off as the distance cubed are only conditionally convergent. That 

is, their value depends on the order of summation. This ambiguity is resolved in 

Section 2.5. 

2.3 The Non-convergence Problem 

The conditional convergence of the lattice sums led many to doubt the validity 

of Rayleigh's method and various 'renormalization' schemes were developed to 

assign definite values to these sums. Even in the analysis of structures which 

are not periodic, various multiple integrals appear some of which have exactly 

the same type of conditional convergence as the lattice sums. Such an integral is 

obtained in the calculation of the pairwise interactions in an infinite suspension 

of spheres. The ambiguity was 'resolved' (Jeffrey, 1973; Batchelor, 1974) by 

modifying the integrand in such a way that the correct value of the mean local 

field gradient was obtained. Although this yields the correct result it obscures 

the important physical reason for the ambiguity. More recently, McPhedran and 

McKenzie (1978) have explained the ambiguity as arising from the depolarization 

field. They show that the ambiguity is not mathematical but physically real and 

that the shape of the boundary of the composite is important even if the boundary 

is at infinity. The ambiguity in the value of the lattice sums and the value of the 

depolarization field both depend on the shape of the boundary in precisely the 

same way, allowing the equation to be written unambiguously. This procedure is 

carried out in the next two sections. The mean local field used by others is then 

just the sum of the external field and the depolarization field. 

Recently, a similar problem has been discussed in the context of the calculation 

of Madelung's constant where lattice sums also appear. Borwein et al. (1985) 

resolve the problem mathematically by analytical continuation into the complex 

plane and obtain an unambiguous result. Later, Young (1987) showed how this 

mathematical treatment corresponds to the physical explanation in which the 

charge density on the crystal surface is taken into account. This is completely 

analogous to including the effects of a depolarization field. 
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2.4 The Depolarization Field 

Define the polarization per unit area (or volume) P to be 

1 M 

P = V "£!a ui(r)rdr 
i=1 as, 

1 M { 
- V L, }, ui(r)(r -ri)dr 

i=1 as; 

(2.27) 

(2.28) 

where V is the area (or volume) of the unit cell. The second form is obtained 

from the first using the charge neutrality of each inclusion. 

Using Equation 2.17 and the explicit expressions for the harmonic functions 

given in Appendix A the following relationships are obtained between the multi

pole coefficients and the Cartesian components of the polarization vector. In two 

dimensions 

Equivalently 

In three dimensions 

and 

. -V 
"£CJ1±1 = -(P'" 'f iPy)· 

j 411"€b 

-211"Eb M · . 
Pr = '" "£[Q1 + Q-1_1] 

j=1 

-i27r€b L,M [ni Qj ) P.y = '<'1- -1. 
" j=1 

L,Q{,o 
v 

- --P, 
47r€b j 

L,Q{,±1 
V P., =FiPy 

- 'f 47reo y'2 
1 

-47reo M · · 
Pr = r.: •• "£[~,1- ~.-1] 

j=1 
4 . M 

- 171"€o"" . . 
Py = v'2v ~[Q1,1 + Ql,_tJ 

47r€Q M . 
P, = VL,Ql,o. 

j=1 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

If the composite is replaced by a uniform dielectric medium having the effec

tive dielectric constant and placed in the same external field then polarization 

charges up(r') = P · n will develop at the boundary. The depolarization field is 

given by 

ydepol(r) - f up( r')G( r - r')dr' 
lav 

- f up(r')dr''L,G"Z"(r -r1)Y".(r1 -r'). 
lw " 
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Expanding the depolarization field about the jth inclusion gives 

ydepol(r) = 2::VAdepolzA(r- r;). (2.35) 
A 

Note that because the boundary is infinitely far away the expansion coefficients 

are the same for all the inclusions. Then 

ydepol 
A - f up(r')GAYA·( -r')dr' lw 

- r Up(r')pAGAYA·(r')dr'. 
lw 

In two dimensions only the I= ±1 terms are relevant: 

vt~pot = ..::.!_ [ P · nY"'t(r)dr. 
47reb lav 

In three dimensions only the I = 1 terms are relevant: 

udepol ( -1)m !a p y; ( )d 
•t m = 4 . n 1-m r r. 

' 1reb av ' 

2.5 Boundary Dependent Lattice Sums 

(2.36) 

(2.37) 

(2.38) 

An infinite structure can be considered as the limit of a sequence of finite struc

tures. Any finite structure has an external boundary and the conditional con

vergence of the lattice sums implies that the shape of this boundary remains 

important even when the boundary is infinitely far away. Physically, an applied 

field induces polarization charges not only at the surface of each sphere but also 

on the external boundary. These boundary charges produce a field which is called 

the depolarization field. The effective dielectric constant is then the ratio of an 

averaged local displacement field in the composite to the averaged local electric 

field in the composite. However, the local electric field in the composite is not the 

same as the applied electric field, it is in fact the sum of the applied and depo

larization fields. In the moment equations, the conditionally convergent part of 

the lattice sums can be identified with the contribution due to the depolarization 

field, as is proved now. 

Let lt, ... , lv be primitive lattice vectors where Dis the number of dimensions. 

Then the lattice sum defined in (2.26) is 
00 00 

UA(rr-r;)= L ... L YA(rr-r;+ntlt+ ... +nvlv). (2.39) 
n1=-oo no=-oo 

The sum is divided into two parts, a sum over all points within a distance R, and 

a remainder which is replaced by an integral. Then 

UA(rr-r;) = lim L YA(r)+ lim [ YA(r)dnt···dnv 
R-oo IJ'I<R R-oo Jlri>R 

- UA(rr-r;)+SA(rr-r;) (2.40) 
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where 

r = r1- r J + n1l 1 + ... + nvlv. (2.41) 

Changing variables from n1 , ••• ,nv tor= (r1 , .•• ,rv), the Jacobian for the trans-

formation is the inverse of the area or volume of the primitive unit cell, V. Thus, 

the integral becomes 

S>. = lim V
1 

{ Y>.(r)dr. 
R-oo }ITI>R 

(2.42) 

Since the region of integration is infinitely far way S >. does not depend on its 

argument. If this limit is zero the lattice sum is absolutely convergent, otherwise 

it depends on the shape of the external boundary where lrl goes to infinity. The 

calculation of these integrals is given in Appendix B. Replacing the lattice sums 

in the matrix equation by just the term U>., the contribution from the integralS>. 

lS 

Xi = L: N~.>.S~+>.• L: Q~. (2.43) 
~ j 

The new term Xi is shown in Appendix B to be directly related to the depolar

ization field 
Xi = vf·depol + (3 L: Q{. (2.44) 

j 

The matrix equation can now be rewritten 

L: L: Ml·~Q~ = v; + f3 L: Qi (2.45) 
j K j 

where 

Ml'~ = W>.(a;, e;/eb)li;,jli~,>.- N~,>.fj~+>.•(r;- ri) 
' 

(2.46) 

and 
v; = v; + v>.depol (2.47) 

and (3 is the boundary integral coefficient (Appendix B). In two dimensions 

(3 = -7r/Vliz,±1 and in three dimensions (3 = -47r/(3V)liz,1 . 

The above results depend on the specific choice of a circular or spherical 

inner boundary in (2.40) and the way in which U>. is separated into U>. and 

S>,. McPhedran and McKenzie (1978) redefined their lattice sums so that there 

was no additional term involving (3, they were able to do this because they only 

considered external fields in one direction. If the external field is in a different 

direction then the lattice sums must be redefined accordingly. This can be seen 

in another way. The inner boundary used in (2.40) can be chosen to make the 

depolarization field in any given direction zero. However, it is not possible to 

make the depolarization fields zero in all directions simultaneously. Thus for any 

choice of boundary which is not isotropic, (3 will depend (non-trivially) on the 

index A and although one or other of the f3>. can be made zero the others will 
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remain non-zero. The method used above is simultaneously valid for all directions 

of the applied field and f3 is independent of the external field. 

2.6 Effective Dielectric Constant 

Let E be the average electric field, D be the average displacement field and P be 

the polarization of the inclusions per unit volume. If e•ff is the effective dielectric 

tensor then 

D = e•ffE = EbE + P. (2.48) 

( Note that if ptot = P + pb includes the polarization pb of the background 

medium as well then the usual relation D = e0E + ptot is obtained.) The polar

izability can be written as 

P =(eel£- Eb)E. (2.49) 

The individual elements of the dielectric tensor can be obtained in terms of the 

induced dipole moments. Writing the dependence on the external field explicitly 

asP= P(E,, Ey) or P = P(E,, Ey, E,) the dielectric tensor is given by 

( 
P,(1, 0) 

e•ff = Eb + Py(1, 0) 
P,(O, 1) ) 
Py(O, 1) 

in two dimensions and by 

( 

P,(1,0,0) 
€elf = €b + Py(1, 0, 0) 

P,(1, 0, 0) 

P,(0,1,0) P,(0,0,1)) 
Py(0,1,0) Py(0,0,1) 
P,(0,1,0) P,(0,0,1) 

(2.50) 

(2.51) 

in three dimensions. The components of the matrix can also be written in terms 

of Q±1 or Q1,m using the results given earlier. The above expressions can also be 

obtained from the reciprocal relations derived in Section 2.8. 

2. 7 Eigenvalue Equation 

The matrix equation can be rewritten so that the quantity r appears as an eigen

value. This gives a way of calculating the values of €; for which there exists 

a resonant solution (i.e. a solution to the homogeneous equation). Write the 

homogeneous matrix equation in the form 

LLN~,.\Y~+.\•(r;- ri)Q~ = W.\(a;,r;)Q~ (2.52) 
j ~ 

(2.53) 
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Define a new variable 

Q~ = Q~ Jw>.(a;) (2.54) 

and divide the equation throughout by Jw>.(a;). Then 

"" M'·i Qi = ..!_Q' L..., L..., A,~e IC T: A 
j IC I 

(2.55) 

where 
M'·i _ N>.,KYK+>.•(r;- ri)- v>,(a;)8K,>.8;,j 

>.,K- Jw>.(a;)wK(ai) 
(2.56) 

Further, if T; = T for all i then the above is an eigenvalue equation with eigenvalue 

1/ T. If the original matrix is Hermitian then so is this matrix. If all the T; are 

different things are slightly more complicated. Write T; = t;r for each i and define 

Q~ = Q~jw>.(a;)/t;. (2.57) 

An eigenvalue equation is obtained forT but the matrix depends on the t;. 

Various theorems are available in the literature (Bergman, 1978a; Bergman, 

1979b) about the number and distribution of the eigenvalues and their relation

ship to spectral representations of the effective permittivity. 

2.8 Reciprocity Relations 

Consider two different structures with the same underlying lattice and basis but 

whose inclusions have different sizes and dielectric constants. The applied fields 

for the two structures may also be different. Denote the parameters of the first 

structure with unprimed variables and those of the second with primed variables. 

Let V denote the region inside a unit cell, excluding cylindrical or spherical 

regions concentric with the inclusions and having radii R; with R; > a;, a:. An 

example of such a region is shown in Figure 2.1. Let 8V be the boundary of this 

reg10n. 

Let 4> and 4>' be the potential fields for the two structures. Both satisfy 

Laplace's equation in the region V. Let E be the average electric field. Then if 

T is any lattice vector 

4>( r + T) = 4>( r) - E · T. (2.58) 

Let D be the average displacement field. In two dimensions, if L is the side of a 

unit cell and l is the corresponding primitive lattice vector, then 

Dxl= ke"V4>xdl. (2.59) 
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Figure 2.1: Gaussian surface and region used to derive the reciprocal rela
tions between different solutions. The boundary of the region is indicated 
by the dashed lines and the region V itself is shown shaded. 

In three dimensions if F is the face of any unit cell and A is the normal to that 

face with magnitude equal to the area then 

D · A = h. e"V ¢> • dA. (2.60) 

In two dimensions the analog of Green's second identity is 

f (\12 ¢> - "2 t/>')dV = 1 ( l<P' - tf>"3<P )dl. 
}R kR On On (2.61) 

In three dimensions Green's second identity is 

f ('12 ¢> _ v2 tf>')dV = f ( ¢> v ¢' _ tf>'"V ¢>) • dS. lv lav (2.62) 

In both cases the left hand side is zero since both functions satisfy Laplace's 

equation. The contribution from the boundaries of the unit cell is calculated in 

Appendix Band is 

[E. D'- E'. D]V (2.63) 

where V is the volume or area of the unit cell. 

The contribution from the boundary of each inclusion (also calculated in Ap

pendix B) is given by 

[-E · D' + E' · D]V = (2D- 2)11" L: L: B{B{.'[W{ - W~], (2.64) 
j ~ 

where the arguments a; and e; of W~ have been suppressed. 

There are several important special cases of the reciprocal relation. 

Consider the case where i; = eb. Then </>' is just the potential produced by 

the uniform field E' and D' = ebE'. Since there iS no dielectric discontinuity, the 
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multipole moments are B~ = 0 and A~ = 0 except for those coefficients which 

describe a uniform field. In two dimensions the non-zero coefficients are 

A~1 = E~ ±iE~ 

and the reciprocal relation reduces to 

E' · [(e'11 - Eb)E] = 211" L:[B{(E~ + iE~) + B~1(E~- iE~)] 
j 

- E'·P 

which is the same result derived in Section 2.6. In three dimensions 

A~.o 
A~.±I 

- E' • 
- (E~ ± iE;)/.;2 

and the reciprocal relation reduces to 

(2.65) 

(2.66) 

(2.67) 

E' · [( e•ff - Eb)E] 
E, 'E' E' 'E' 

"' , I . "'- t Y) j ( "'+ t y )] - 411" L.JB~,oE. + BLI( y'2 + B1,-1 y'2 
J 

_ E'. P (2.68) 

which was also obtained in Section 2.6. 

Combining these results with the reciprocal relation gives 

E · P'- E' · P = (2D- 2)7r L: L: B{B{.'[W~- W~]. (2.69) 
j ~ 

Finally, consider two structures which only differ infinitesimally: a: = a;+ 6a; 

and ei = e; + Oe;. In the lilnit the reciprocal relation becomes 

.. aw~ 
8(E.D) _ (2D- 2)7r L: B~B~. 8a; 

(2.70) 
- ~ 

8a; .. aw~ 
8(E.D) = (2D- 2)7r L: B~B~. 8e; . -- ~ 8e; 

These relations can be used to calculate small perturbations in the effective di

electric constant due to small changes in the radii or dielectric constants. 

2.9 Lattice Identities 

The global symmetries of a structure imply various relationships amongst the 

lattice sums for that structure. Usually, the coordinate system is chosen to take 

advantage of these symmetries and reduce as many lattice sums as possible to 

zero. 
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2.9.1 Rotational Symmetries 

If a two dimensional system has M-fold symmetry at a point z, then the lattice 

sums U1(z) are zero unless I is a multiple of M. In three dimensions, if a structure 

has M-fold symmetry about a line parallel to the z-a.xis passing through z, then 

U,m(z) is zero unless m is a multiple of M. Rotational symmetry about lines in 

other directions is more complicated in three dimensions. 

For rotation about lines parallel to the x-a.xis, we obtain 

U,m = L ei.-(m-n)/2 d:,_n (II)U,n (2. 71) 
n 

and similarly for the y-a.xis 

u,m = I: d:..n (t~)Uin. (2. 72) 
n 

The rotation coefficients d:,.n(l~) are defined in Appendix A. 

The only other special case of interest is the 3-fold symmetry about the (1, 1, 1) 

direction found in cubic systems. This gives 

'""" i "'"' l 1r u,m = L.J e 2 dmnC2 )U,n. 
n 

(2.73) 

When a structure has many symmetries all of these identities will not be inde

pendent but they must be consistent. The lattice sums for all the cubic structures 

satisfy identical relations (since they all have the same symmetry group), which 

can be found using the above identities. Some examples are 

U4,4 - ../friu, 14 4,0 Us,4 - -ffiu, 
2 6,0 

Us,4 - wu, 
33 8,0 Us,s - y1430 u, 

66 8,0 (2.74) 

Uw,4 - -,m90u 
65 10,0 Uw,s - -.J2431ou 

130 10,0· 

2.9.2 Reflection Symmetries 

In two dimensions the property U,(z) = U_1(z)* always holds. If a two dimen

sional system has reflection symmetry about a line parallel to the x-a.xis passing 

through the point z, then U,(z) is real and U1(z) = U_1(z). If it has reflection 

symmetry about a line parallel to the y-a.xis, then U,(z) = (-1)1U_,(z). Thus 

u2,(z) is real and u21+I(z) is pure imaginary. 

Analogously, in three dimensions for reflection symmetry about planes parallel 

to X= 0, Ulm(z) = Ulm(z)* = (-1rUI,-m(z). Reflection in planes parallel to 

y = 0 gives U,m(z) = (-lrU1m(z)* = U1,-m(z). For reflection in planes parallel 

to z = 0, U,m(z) = 0 unless I+ m is even. 
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2.9.3 Translational Symmetries 

The above symmetries are of some interest in checking the numerical calculation 

of the sums, but have not otherwise helped to improve the method of solution. 

On the other hand, translational symmetries give quite useful identities. 

Consider the lattice sums U>.(O),U>.(A) and U>.(B) where A and Bare not 

lattice points and lie within the first unit cell. The addition theorem can be used 

to expand U>.(A) in terms of U>.(O). 

If [A[ < [T[ for all lattice vectors T =f 0 then 

U>.(A) = Y>.(A) + L:'Y>.(A + T) 
T 

- Y>.(A) + L:L:'N>.,KZK(A)Y>.w(T) 
K T 

- Y>.(A) + L:NA,KZK(A)U>.+K·(O) (2.75) 
K 

where the prime indicates that the origin is omitted from the summation over 

lattice vectors. 

If t is a primitive lattice vector and [A-t[ < [T[ for all lattice vectors T =f 0 

then 

U>.(A) = Y>.(A- t) + L:'Y>.(A- t + T) 
T 

- Y>.(A- t) + L:L:'NA,KZK(A- t)Y>.+K·(T) 
K T 

- Y>.(A- t) + L:N>.,KZ,.(A- t)UA+K·(O). 
K 

(2.76) 

Thus, combining these two different expansions of U>.(A) gives the first family 

of lattice sum identities 

L: N>.,,.[Z,.(A)- Z,.(A- t)]U>.+K·(O) = -[Y>.(A)- Y>.(A- t)] (2.77) 
" 

provided that the inequalities [A[, [A - t[ < [T[ hold for all non-zero lattice 

vectors T. 

Next, a family of identities relating two sets of lattice sums is derived. The 

addition theorem can be used to expand U>.(A) in terms of U>.(B). 

If [A- Bl < [B + T[ for all lattice vectors T then 

U>.(A) = L: N>.,,.Z,.(A- B)U>.+K·(B). (2.78) 
" 

Since B is not a lattice vector and the inequality is satisfied for all lattice vec

tors there is no additional term which must be isolated out of the lattice sum. 

Combining equations (2.75) and (2.78) gives 

L:N>.,,.[Z,.(A- B)U>.+,..(B)- Z,.(A)U>.+K·(O)] = Y>.(A) (2.79) 
K 
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provided that 

lA- Bl < IB + Tl for all lattice vectors T 
IAI < ITI for all non-zero lattice vectors T. 

(2.80) 

The family of identities (2.77) or (2.79) is used in Section 2.10 to obtain exact 

solutions to certain structures with a basis of one or two elements respectively. 

2.10 Some Exact Solutions 

The lattice identities can be used to obtain exact solutions to the matrix equa

tions in the absence of an applied field and when the dielectric constants of the 

inclusions is infinite and the inclusions form a connected path spanning the entire 

structure in at least one direction. 

Consider the structure with a basis of one element shown in Figure 2.2. 

Figure 2.2: Example of a geometry with a basis of one inclusion satisfying 
the conditions for the existence of the exact solution given in the text. A 
connected path of inclusions exists spanning the composite in at least one 
direction. 

The equation for such a structure is 

I:, N~,>.Q~U~+>.·( 0) = -Q>.I>.( a)/ R>.(a). (2.81) 
~ 

If t = 2A is a lattice vector and !AI = a then 

Q>. = Z>.(A)*- Z>.( -A)* (2.82) 

is a solution to the equation. This can be seen by substituting the above expres

sion into the equation, taking the complex conjugate and comparing the result 
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with (2.77). The relation (N~.~U~+~·(r)]* = p~p~N~.~u~+~·(r) is used. The nec

essary inequalities can be seen to be satisfied from an examination of Figure 2.2. 

The above exact solution is the limiting behaviour of the solution for an applied 

field in this direction with the inclusions almost touching and with dielectric 

constants approaching infinity. This is further discussed in Chapters 5 and 7. 

Consider the structure with a basis of two elements shown in Figure 2.3. 

Figure 2.3: Example of a. geometry with a. basis of two inclusions satisfying 
the conditions for the existence of the exact solution given in the text. A 
connected path of inclusions exists spanning the composite in a.t least one 
direction. 

The equation for this structure is 

L: N~.~[Q~1>u~+~·(O) + Q~2>u~+~·(d)J _ 
~ 

L; N~.~[Q~1>U~+~·( -d)+ Q~2>U~+~·( 0)] -
~ 

Q~1 ) I~( a1) 

R~(a1) 

Q~2> I~( a2) 
R~(a2) · 

(2.83) 

If t is the primitive lattice vector in the direction that the inclusions form a 

connected chain and d is the vector between the basis elements and also 

Ia I = lbl = a1 and ld- al = ld- b-tl = a2, then a solution is 

Q~1> = Z~( -a)* - Z~( -b)* 

Q~2> = -Z~(d- a)*+ Z~(d- b- t)•. 
(2.84) 

The corresponding identity is constructed from (2.79) as follows. In equation 

(2.79) successively let A= a and B = d, and then let A= band B = d- t. 
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The necessary inequalities (2.80) are satisfied. Subtracting the equations obtained 

and using the periodicity property u~(r + t) = u~(r) gives 

:EN~,K{[ZK(a- d)- ZK(b- d + t)]U*·(d) 
K 

-[ZK(a)- ZK(b)]U*·(O)} = Y~(a)- Y~(b). (2.85) 

Likewise a complementary relation is obtained by letting A = a-d and B = -d, 

and then A = b - d + t and B = -d + t. Subtracting the equations obtained 

gives 

:EN~,K{- [ZK(a- d)- ZK(b- d + t)]UHK·(O) 
K 

+[ZK(a)- ZK(b)]U*·( -d)}= Y~(a- d)- Y~(b- d + t). (2.86) 

The solution (2.84) is verified by substitution into the equation, taking the 

complex conjugate and using the parity and conjugation rules for N~,K and u~+K•(r) 

and comparing it with the two identities derived above. As for the single basis 

case the above solution is the limiting form of the asymptotic solution for the 

structure where the inclusions are almost touching and the dielectric constants 

are very large. 

The exact solutions can also be used as one of the solutions in the reciprocal 

relations. The resulting identity involves a sum over the multipole coefficients, 

and can be used as a convergence test in numerical calculations. 

2.11 Intersecting Cylinders and Spheres 

For a composite made from intersecting cylinders or spheres the analysis can pro

ceed as before except that the matrix equation is more complicated and many of 

the nice properties arising from orthogonality of the harmonic functions are lost. 

The same expansion functions will be used, rather than adopting a different set 

of functions which are orthogonal over the partial surface of the inclusions. This 

is done for two reasons. Firstly, the expansion coefficients retain their physical 

meaning of electrostatic multipole moments and secondly, the functions are inde

pendent of the inclusion shape (essentially the radii of the cylinders or spheres) 

and thus the lattice sums do not need to be separately evaluated for each choice 

of radii. The basic idea behind the expansion scheme is demonstrated by the 

following simple example. 

Consider the four different regions shown in Figure 2.4. The solid lines repre

sent physical boundaries between materials of different dielectric constants, and 

polarization charges will appear at these boundaries. The dashed lines are not 
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Figure 2.4: Intersecting pairs divide space into four distinct regions. If the 
pair have the same dielectric constant then only the solid lines represent 
boundaries between different phases, but the dashed lines represent bound
aries between regions where different expansion series are valid. If the dielec
tric constant of region III is different from that of I and II then the dashed 
lines also represent real boundaries. 

physical boundaries and no charges appear here nor are there any discontinu

ities. However, since our expansion functions are orthogonal only over the entire 

boundary (of a cylinder or sphere), the behaviour of the potential on the dashed 

lines must also be treated and continuity of the normal derivative across these 

lines must be explicitly required. In addition, the dashed lines separate regions 

where different series expansions of the fields are valid. The reason for this will 

be apparent in the derivation. 

As before, consider a distribution of cylinders or spheres at points r; with radii 

a;. The volume of each cylinder or sphere is represented by S; and the complete 

boundary by aS;. The region external to all inclusions is denoted by So. In Figure 

2.4 So corresponds to region IV. The left cylinder or sphere is denoted by i and 

the right one by j. The segment of the boundary aS; that separates cylinder or 

sphere i from the background is denoted aS;0 and corresponds to the solid line 

between regions I and IV. Likewise aSio is the solid line between regions II and 

IV. The segment of aS; that lies inside cylinder or sphere j is denoted asii and 

corresponds to the dashed line between regions II and III. Likewise asii is the 

dashed line between I and III. In general, if the ith cylinder or sphere intersects 

a number of other cylinders or spheres then 

as; = as;o + L: asij· (2.87) 
J 

Assuming that any two cylinders or spheres which overlap have the same dielectric 
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constant then the only discontinuities occur across segments aS;0. If a( 8;) is the 

charge distribution on as, then it is non-zero only on the segment aS,0 and zero 

on the remainder as, - as,o. 
Starting from (2.19) the discontinuity Ll(8;) in the normal component of the 

displacement vector is constructed and required to be zero. 

For points on the boundary between different materials 8; E aS;0 and 

Ll( 8;) = ( )aV..-1(8;) ( ) "' Qi aY~(8;- r;) 
€;-€& a + e;-eb L...., ~ a 

ai ~.i#:i ai 

( e; - €&) L: Q~ w~( a,, e,; eb) az~(8, - r,) 
~ aa; · 

(2.88) 

For other points 8; ¢ aS;0 and there is no discontinuity in the dielectric constant 

and 
Ll(8;) = -(€;- €&) L Q~W~(a;, e;/eb) az~~·- r;) 

K a1 
(2.89) 

where 

( e; - e&)W~( a;, e;f eb) = lim {( e; - e&)W~( a;, e;f eb)} 
t:b-fi 

. .... ' aa., "' ' ..., ' aa., "' ' (2 90) 
[
R·(a·)..P_J,(a·)- J,(a·)..P_R,(a·)] 

- e, 8 • • 
RA( a;) aa; RA( a;) 

A system of equations for the Q~ is obtained by calculating 

{ Ll(8;)YA*(8;- r;) d8; = 
0 las, (e;-e&) 

(2.91) 

for each A,and j. The result is a matrix equation 

M'JQi = E' 
A,~e " ,\ (2.92) 

where 
Ei = -1 YA(8;- r;)*aV..,t(8;) d8· 

as,0 8a; ' 
(2.93) 

andifji'i 

M'·i = { y: (8· _ r·)*aY~(8;- r;)d . 
A,~ las· A t • a 8, .o a1 

(2.94) 

whereas if j = i 

Mi,i = 
A,~ 1 .az~(8;-r;) 

-W~(a;,e;/eb) YA(8;- r;) a d8; 
as,o a; 

( I )1 ( ).az~(8;-r;) -W~ a;,e; €b YA 8;- r; a d8;. 
aS; -aS;o a; 

(2.95) 

The first term in (2.95) arises from the di8continuity in the dielectric constant 

across the real boundaries (solid lines in Figure 2.4), whereas the second term 
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arises from maintaining continuity across the fictitious boundaries (dashed lines 

in Figure 2.4). 

The addition theorem is used to express all the integrands as functions of 

s; -r; and the resulting integrals can be written in terms of the standard integrals 

(~>l>.)as (Appendix A). The results are 

; " ; aRA(a;) 
E>. =- L.J VAI>.(a;) a (>.IA)as,. 

A ai 
(2.96) 

M~·~ = -[Wx( a;, e;/eb)(~>l>.)as,0 + Wx( a;, e;f Eb)(~>l>.)as,-as,.]I>.( a;) a~x( a;) 
' 

( I ) ( )aR>.(a;)( I ) ( )aix(a;)( I ) - -W>. a;, €; €b I>. a; " >. >. 8x,>.- I>. a; a ">. oS;-oS;o· 
ai ai 

(2.97) 

If j =I i and a;< lr;- ril then 

·,i aRA(a;) Ml,x = LNx,AYx+A·(r;- rj)I>.(a;) a (>.IA)as,. 
A ai 

(2.98) 

otherwise if j =I i and a; > lr;- ril then 

i,j " ( ) ( )aix+A•(a;)( I .) M>.,x = 7 Nx,AZA r;- Tj I>. a; aa, >."+A oS;o· (2.99) 

Note that even in the intersecting case the only dependence upon the dielectric 

constant is through the factors W>. (a;, e;/ Eb) which occur only on the diagonal. 

If the cylinders and spheres are non-intersecting then as,0 = as, and 

(>.IA)as,0 = (>.1>.)8>.,A and also a; < lr;- ril for all i and j. Under these con
ditions the matrix reduces to that derived earlier. 

It is expected that a large number of harmonic modes will be needed to 

accurately represent the singular variation of the fields near the cusps formed by 

the intersecting boundaries. It is not clear that accurate approximate solutions 

can be obtained from solving truncated versions of the matrix equation as is the 

case for non-intersecting inclusions which are not too close together. Clearly, 

an alternate method or an extension of this method which treats the singular 

behaviour analytically would be advantageous. 

At least one alternative procedure is available in two dimensions (Milton et 
al., 1981) which expands the potential in the vicinity of the cusps formed by the 

intersecting surface in terms of various singular functions. This method relies 

heavily on analytic properties of functions in the complex plane and it is not 

clear how to generalize it to three dimensions. 

Some solutions for intersecting cylinders and spheres are given in Chapter 4 

but these are only for pair8 of cylinders and spheres alld the solutions are obtained 

using the method of images. 
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Chapter 3 

LOW ORDER EXPANSIONS 

3.1 Introduction 

Exact solutions to the matrix equations derived in the previous chapter cannot 

be found except in the most extreme special cases. Approximate solutions can be 

obtained for dilute composites (where the area or volume fraction of inclusions c: 

is small) and for weak contrast composites (where the dielectric constants of the 

inclusions are not too different from that of the background). These approxima-

tions are referred to as low order approximations because they can be obtained by 

solving finite order matrix equations which have been obtained by truncating the 

infinite matrix equations of the previous chapter. The CM or MG approximation 

is the simplest example of a low order approximation. It can be obtained from the 

matrix equation by retaining only the lowest order moment (the dipole moment) 

for each inclusion. Increasing the order of the matrix equation improves the accu-

racy of the approximation or, equivalently, allows the approximate results to be 

applied to denser composites or composites with greater contrast. Such low or-

der approximations or expansions are useful in constructing general formulae for 

dilute or weak contrast systems and are also useful in testing general analytical 

results and ideas. In principle, the order of the approximation can be increased 

to describe composites of arbitrary density but in practice the procedure must 

be modified to be efficient at high densities. 

Approximate results for a variety of regular structures are available in the 

literature. Low order approximations for the effective permittivity or conductiv

ity of the square and hexagonal arrays of cylinders have been given by Perrins 

et al. (1979). Results for the three cubic Bravais lattices have been given by 

Bertaux et al. (1975), Zuzovsky and Brenner (1977), Doyle (1978), McPhedran 

and McKenzie (1978), McKenzie et al. (1978), Sangani and Acrivos (1983) and 

Claro (1984). Results for chains and planar arrays of spheres have been given by 

Claro (1984). Results for the cesium chloride lattice of spheres have been given 
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by McPhedran (1984). 

These authors have generally obtained numerical results by numerical inver

sion of the matrices and presented them in either graphical or tabular form. 

Some, however, have also given the results as series expansions in either the size 

or concentration of the inclusions, or as a series in the dielectric contrast. The 

coefficients in these series expansions are determined numerically. 

Although all these methods are suitable for dilute or weak contrast composites, 

they fail to describe (even qualitatively) the behaviour for dense, high contrast 

composites. In particular, they cannot describe the divergent behaviour of the 

effective permittivity for a metal-insulator composite as the metal inclusions begin 

to form a connected network (connectivity threshold) through the composite. In 

later chapters, analytical methods are developed for treating dense, high contrast 

composites and, in particular, the asymptotic behaviour near the connectivity 

threshold. In this chapter, numerical and analytical methods are used to obtain 

the maximum amount of information from a truncated matrix equation and also 

to investigate the accuracy and limitations of such approximations. 

Various series expansions are possible for the effective dielectric constant or, 

equivalently, the polarizability by taking advantage of the special form of the 

matrix. The polarizability can be written as a ratio where the numerator and 

denominator are infinite series in the radii and dielectric contrasts of the inclu

sions. Truncating the series produces a rational function approximation, similar 

to those obtained with Pade approximants. Approximation by a rational func

tion is more informative than using a series because it can exhibit poles wherever 

the denominator vanishes. These poles not only provide an approximation of the 

divergent behaviour of the effective permittivity near the connectivity threshold 

but also describe the resonant behaviour for dielectric constants in the complex 

plane. 

Consider the dependence of the matrix on the radii a; and contrasts T; which 

occur only on the matrix diagonal. As one goes down the diagonal the elements 

are of the form 
1 1 1 

--2,--4,--s, ... 
ra Ta ra 

in two dimensions and of the form 

3-T 5-T 7-T 
2ra3 ' 4ra5 ' 6ra7 '··· 

(3.1) 

(3.2) 

in three dimensions. In both cases the further one goes down the diagonal the 

larger the power of a but the terms remain of the same order in T. 

Consider a truncated matrix where the first neglected diagonal element is 

of order a-L. If the dielectric constant is written as a power series in a with 
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coefficients that are functions of T: 

e = Fo(T) + F1(T)a + F2(T)a2 + ... (3.3) 

then the coefficients F;( T) can be obtained exactly from the truncated matrix up 

to terms of order aL-l. Now consider writing the dielectric constant as a power 

series in T with coefficients that are functions of a: 

e = Uo(a) + Ul(a)T + g2(a)T2 + ... (3.4) 

Unlike the previous case, none of the coefficients g;(a) can be obtained exactly 

from a truncated matrix. The best that can be done is to find each of the g;( a) 
correct to order aL-l. The same considerations apply when e is written as the 

ratio of two power series or as the reciprocal of a power series. This behaviour is 

typical for periodic structures, but for certain classes of structures (Bruno, 1989) 

the two series in a and T are closely related and one can be obtained from the 

other. 
Likewise, the values of T(a) for which the series are zero can be found in the 

same way. In particular, 1/T can be expanded as a power series in a up to order 

aL-l using information from the truncated matrix. 

A number of different structures are investigated in both two and three di

mensions. The first structure is a pair of cylinders. This very simple problem 

has been solved in numerous contexts in a large variety of ways. It is solved 

here with the formalism of the previous chapter so that it can be compared with 

more complex structures. Both its longitudinal and transverse polarizabilities 

are calculated. The poles and zeros of the polarizability are also investigated in 

detail. The accuracy- and limitations of low order approximations are examined 

by comparing the series expansions with exact results (these exact results are 

derived in Chapter 4). 

The next structure examined is the infinite chain of cylinders. Because it is 

an infinite structure, its longitudinal polarizability (for infinite contrast) diverges 

as the cylinders touch and form a connected chain. 

Two lattice structures are examined. The first has square symmetry and a 

basis of two cylinders. The other is the hexagonal lattice. 

The three dimensional structures investigated are the pair of spheres, the 

infinite chain of spheres, the three cubic Bravais lattices and the non-Bravais 

sodium chloride and cesium chloride lattice structures. 

3.2 Series and Rational Function Expansions 

The matrix can be written as the difference of two terms: 

M=D-U (3.5) 
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where U is independent of the radii a; and the dielectric constants e; or contrasts 

r; of the inclusions and Dis a diagonal matrix which contains increasing inverse 

powers of a; down the diagonal. The properties of the inclusions appear only 

on the diagonal of the matrix. Various interesting expansions can be obtained 

by exploiting this property. The solution to MQ = E can be written (using the 

binomial expansion) as 

Q = (D-U)- 1 E 

- [I+D-1U+D-1UD-1U+ ... ]D-1E. (3.6) 

Note that because D is diagonal, D-1 is easy to obtain and that U does not 

need to be inverted. The diagonal matrix D-1 contains increa3ing powers of 

a; down the diagonal, and truncating the matrix U generates a power series 

solution for Q where the order of the series obtained is determined by the size of 

the truncated matrix used. Increasing the size of U provides additional terms in 

the series without altering the lowest order coefficients already obtained. Thus, 

a consistent series approximation can be obtained from truncated matrices. 

One can also generate rational function solutions for Q by using Cramer's 

rule of determinants. Expressing Q as ratios of determinants and writing the 

determinants as ratios of polynomials in a; and e; produces the desired rational 

functions. The series in the numerator and denominator have the same properties 

as before, namely increasing the size of the matrix introduces additional terms 

without changing the coefficients of the lower order terms. This form (although 

harder to obtain) is much more informative than the series expansion since the 

denominator contains information on the singularities of the effective dielectric 

constant. The general form of these rational functions is now derived. 

Begin by defining the following set of functions: 

n~ n~ 

'PAl,A2.····AnAi···i"l!IC2, ... ,Kn" (a~, Et; ... ;aM, EM)= II w.\i(at, Et)-
1 

... II WKj(aM, fM )-
1 

i=l j=l 

(3.7) 

where the W~(a, e) are the impedance coefficients defined earlier. The P functions 

are all of the form 
Pt( et)IJ2( f2) ... L K 

at a2 ... 
q1( et)q2( e2) ... 

(3.8) 

where the p; and q; are polynomials and L, K, ... are non-negative integers. A 

similar form 
r1(rt)r2h) ... L K 
--=-7-=7--.o..;-;o..;--- at a2 ... 
s1(rt)s2b) ... 

(3.9) 

where the r; and s; are also polynomials is also obtained in terms of the dielectric 

contrasts. 
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In the matrix equation the only dependence on a; and e; is through the terms 

Wil (a, e) appearing on the diagonal. Thus the minors and determinants can all 

be written in terms of products of the W!l(a, e). The effective dielectric constant 

can be written in terms of ratios of series containing the various P functions as 

terms. Writing the effective dielectric constant in terms of the polarizability per 

unit cell: 

e=1+27rP/V 

in two dimensions and 

e = 1 +47rP/V 

in three dimensions; the polarizability has the form 

where 

N(a~, e1; ... ;aM, fM) 

N(a~, e1; ... ;aM, fM) p = ="--=..:......:..:...__.:_"-'-'-~ 
D(a1, e1; ... ; aM, €M) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

2: 2:: n.xl···..\n.>..i···i~l···~tn"' p.\11···•.\n.>..i···inlo ... ,ten~e ( a1' fl; · .. ;aM' fM ), 
).1 , ... ,.\n.>.. "'I•···•"'"" 

D(a1 ,e1 ; ... ;aM, eM) (3.14) 

2: L d;.,l···.\n>.i···i"'l···J(nK p)!.J, ... ,.\n.xi···i"'l•·"•"n" ( al' ft; ... ;aM' fM ) . 
.\l , ••. ,.\n.>.. ICJ 1 ••• 1 1Cn~e 

The particular indices for which the coefficients n and d are non-zero are 

determined by the overall symmetry properties of the composite. The actual 

values of the coefficients depend on the lattice structure. The first few coefficients 

for some of the structures are given in the text where the particular structures 

are discussed. Additional coefficients are tabulated in Appendix C. 

3.3 Specific Two Dimensional Structures 

3.3.1 Cylinder Pair 

The geometry and the orientation of the coordinate axes for this structure are 

shown in Figure 3.1. 

The moment equations for a cylinder pair are given by 

Qfl~ ... + f: ( _1y (111 1~ 1 lkl) ........ ~~~) .. " _ 
k=-oo,kl<O 

Qj
2

~ ... + f: ( -1)k (llll~llkl) ..... . ~~l) .. .. -

k=-oo.ki<O 

-Vi 
(3.15) 

-Vi. 
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a1 LX 
d 

Figure 3.1: Geometry of a pair of cylinders. 

For a uniform field in the x direction (longitudinal) we have V±1 = E and 

all other V, are zero. The charge distributions are symmetric about the x-axis 

and thus Q-1 = Q1. Alternatively, if the uniform field is in the y direction 

(transverse) then V±1 = ±E with all other V, zero. The charge distributions are 

anti-symmetric about the x-axis and thus Q_1 = -Q1. In either case we need 

only consider positive values of l and the equations are reduced to 

Q(l) 
1 oo ( lr1 a~1 ± {;C -1)1 1

: k) .... ~~
2

) " _ 

Q(2) 

1 

00 

( /r2a~1 ± (;C -1)" 
1: k) .... ~~~) " 

-E61,1 

(3.16) 

- -E611 - . 

for l = 1, 2, .... The upper sign is for the longitudinal case and the lower sign for 

the transverse case. 

Writing the polarizability per cylinder as a rational function, the numerator 

and denominator of the polarizability can be written in the form 

N( a1, fti a2, f2) = L N;i( ft, f2)a~ aU lf'+i 
ij 

D(at,ftia2,f2) = _ED;j(ft,f2)a~aUd'+i. 
ij 

(3.17) 

The coefficients satisfy Ni;( ft, f2) = N;i( f2, ft) and Di;( ft, f 2) = D;i( f 2, f 1). The 
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first few coefficients for the longitudinal and transverse fields are given by 

No,o - 0 Do,o - 1 

N2,o - T1 D2,2 - -T1T2 

N2,2 - ±2T1T2 D2,4 - -T1T2 

N2,s - -T1Tf D2,s - -T1T2 (3.18) 

N2,s - -T1Tf D2,s - -T1T2 

N4,6 - -(9/4hTi D4,4 - -(9/4)T1 T2 

D4,6 - -4T1T2• 

The coefficients in the denominator are a function of the product T1 T2 only (this 

property will be proved from the form of the exact solution in Chapter 4). 

When the two cylinders are identical we have Ql2) = -( -1)1QP) in both cases 

and the equations reduce to 

Q(1) 00 (l + k) Q(1) 
lT 

1
a21 'f I)-1)1

+k k J,_..,;. ,_, = -E81,1· 
1 1 k=1 

(3.19) 

The polarizability as a function of radius for the symmetric case a1 = a2 in the 

limit <1 , e2 -+ oo (i.e. T -+ 1) is shown in Figure 3.2. 

p 
0.4 

0.3 

0.2 

0.1 _· ... '""" 
, 

.,. ... """ ... ,, 
-, 

t ~ 0 a 
0 0.1 0.2 0.3 0.4 0.5 

Figure 3.2: Variation of polarizability with radius for T = 1 for both a 
longitudinal and a transverse field. The longitudinal polarizability is always 
larger than the transverse polarizability and they tend to the values rr2 /24 
and rr2 /48 respectively as a tends to d/2. 

The polarizability as a function ofT for the symmetric case a1 = a2 = d/2 is 

shown in Figure 3.3. 

Figure 3.3 suggests that the transverse and longitudinal polarizabilities for 

a1 = a2 = d/2 are related by 

PT(T) = -PL(-T) (3.20) 

In fact this relation is true for any values of the radii and can be seen by observing 

that the transverse equations can be transformed into the longitudinal equations 
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-0.4 

Figure 3.3: Variation of polarizability with r for a1 = a2 = d/2 for both a 
longitudinal and a transverse field. The solid line is the longitudinal case 
and the dashed line the transverse case. 

by replacing r by -r and E by -E. This is essentially a special case of the 

reciprocal relations (Nevard and Keller, 1985) relating the polarizations induced 

in different directions by fields applied in different directions. 

For a1 = a2 = d/2 and r1 = r2 = r, the following exact results are available 

for the polarizability of a pair of touching cylinders 

oo Tn+l 

PL(r) = f 4(n + 1)2 

oo -( -r)n+l 
Pr(r) = f 4(n + 1)2 • 

(3.21) 

The above series are derived in Chapter 4. To demonstrate the limitation of low

order truncated series expansions: if PL( r) for r = 1 is calculated using 100 terms 

in the series (this corresponds to solving a 100 X 100 matrix equation) the error 

is 0.6%. The 'truncation error' decreases only linearly with the number of terms 

in the series, whereas the number of calculations required to obtain results from 

the matrix increases as the cube of the size of the matrix. It is likely that this 

undesirable behaviour is also typical of other structures where the inclusions are 

almost touching and r is very close to one. Thus series expansions are not efficient 

in this regime. For smaller values of r the above series converge geometrically, 

and for values of a1 and a2 where the inclusions are not close to touching the 

corresponding series also converge faster. 

The poles and zeros of P are given by the zeros of D and N respectively. The 

poles and zeros for the transverse field are simply the negative of those for the 

longitudinal field. The behaviour of the first few of these is given in the case 
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a1 = a2, e1 = e2 and d = 1 as a series expansion for x = 1/r: 

XD 1 = ±(a2 + 2a4 + 5a6 + 14a8 + 42a10 + 132a12 + ... ) 
XD 2 = ±( a4 + 4a6 + 14a8 + 48a10 + 165a12 + ... ) 

xf = ±(a6 + 6a8 + 27a10 + 110a12 + ... ) 
xD 

4 = ±(as+ 8a1o + 44a12 + ... ) (3.22) 
xN 1 = ±(3a4 + 8a6 + 22a8 + 63.7777a10 + ... ) 
xN 2 - ±(2a6 + 11.3333a8 + 47.6111a10 + ... ) 
XN 

3 = ±(1.6666a8 + 13.1111a10 + 70.6074a12 + ... ) 

To the number of terms given above, the series for x{? agree with 

X~ = ±( 1 - V1 - 4a2 2a )2n. (3.23) 

This result is actually exact, and will be proved in Chapter 5. No similar result 

has been found for x~. Expanding the above exact result as a series expansion 

in a, the truncation error in xf for 100 terms is 16% for a = ~ and this error 

decreases only as the square root of the number of terms used. To reduce the error 

to less than 1% requires over 25,000 terms. For values of a significantly less than 

~ the convergence is much more rapid and the series expansion techniques are 

suitable for estimating the poles and zeros of the polarizability. The resonances 

are shown in the Figure 3.4. 
XD 

n 

1 

0.8 

0.6 

0.4 

0.2 
I .-- ~ 

0 0_
5

a/d 

Figure 3.4: The values of x = 1/T for the first five resonances of the sym
metric cylinder pair are shown as a function of a. Note that they all tend to 
1 as a tends to d/2. 

3.3.2 Cylinder Chain 

The geometry and orientation of the coordinate axes for the alternating chain of 

cylinders is shown in Figure 3.5. 

The lattice sums for the chain can be expressed in terms of the Riemann zeta 

function ((n) and the function .\(n) = (1- 2-n)((n). Because of the symmetry 
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Figure 3.5: Geometry of a chain of cylinders. 

about lines parallel to the y-axis through the centres of the cylinders, only the 

lattice sums with L even are non-zero. For L even and positive 

UL(O) 
2((£) 

- L(2d)L 
2A(L) 
LdL . UL(dz) -

(3.24) 

If the field is longitudinal the charge distributions are symmetric about the 

x-axis and antisymmetric about the y direction. Thus Q21 = 0 and Q1 = Q-1· 

If the field is transverse the charge distributions are antisymmetric about the 

x-axis and symmetric about they direction. Thus Q21 = 0 and Q1 = -Q-1. The 

moment equations for both cases are given by 

Q(l) 
21+1 

(21 + 1}rta~l+2 'f 
f: (2z;k2k72) _ ~~v~~cc2~~2~-:.~! _ 
k=O + 

Q(2) 
21+1 

(21 + 1 ha~1+2 

oo (21 + 2k + 2) Q~~+1 A(21 + 2k + 2) 
'f {; 2k + 1 (21 + 2_k + 2)d21+2k+2 = -Eol,o 

'f f: (21 ;k 2k 7 2) ' ~~~~~ ((2~~ 2~ _-:- ~~ -
k=O + 
00 

(21 + 2k + 2) Q~V+l A(21 + 2k + 2) 
'f {; 2k + 1 (21 + 2k + 2)d21+2k+2 = -Eor,o 

(3.25) 

(3.26) 

for I = 0, 1, 2, .... The upper sign is for the longitudinal case and the lower sign 

is for the transverse case. 

The numerator and denominator of the longitudinal and transverse polariz

abilities can be expanded as a doubles series in a1 and a2 similar to that for the 

cylinder pair. Using the same notation the lowest order coefficients are 

No,o = 0 Do,o = 1 

N2,0 = TJ D2,0 = 'f0.822467Tt 

N2,2 = ±3.28987Tt T2 D2,2 = -5.4ll62TtT2 
(3.27) 

N2,s = 'f0.31792Tt T2 D2,s = -12.0934Tt T2 

N2s = • -ll.8084TtTf Ds,o = 'f0.3179Tt 

Ns,o = 'f0.31792rf Ds,o = 0.206568rf. 
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The polarizabilities as a function of radius and contrast are shown in Figures 

3.6 and 3. 7 respectively. Like the pair, the polarizability for the chain satisfies 

p 
0.5 

0.4 

0.3 

0.2 

0.1 

Pr(a,r) = -h(a,-r). 

--· 
0 I ~---- afd 

0 0.1 0.2 0.3 0.4 0.5 

(3.28) 

Figure 3.6: Polarizability of the cylinder chain as a function of radius for 
the symmetric case. The solid line represents the longitudinal polarizability 
which diverges as a tends to d/2 and the dashed line represents the transverse 
polarizability. 

p 
1 

i I ~----,,--=- 0 T 
,' 1 , 

I 
I 

I 
I -1 

Figure 3.7: Polarizability of the cylinder chain as a function ofT for the 
symmetric case. The solid line represents the longitudinal polarizability and 
the dashed line the transverse polarizability. 

The behaviour of the first few poles and zeros is given in the case e1 = e2, 

d = 1 as a series expansion for x = 1/r. 

xf -
xf -
xf -
XN -

1 

±(3.28987a2 + 4.27284a6 + 27.1687a10 + ... ) 
±(16.074a6 + 130.071a10 + 1335.43a14 + ... ) 
±(95.0112a10 + 1286.29a14 + 16851.1a18 + ... ) 
±(20.3469a6 + 145.675a10 + 1358. 7la14 + ... ) 

x!J - ±(106.576a10 + 1458.11a14 + 18824.7a18 + ... ). 
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As observed in the previous section, truncated series can become very inaccurate 
1 as a--+ 2. 

The resonances and zeros are shown in Figure 3.8. 

1 

0.8 

0.6 

0.4 

0.2 

X 

0 

___ .,. 

0.5a/d 

Figure 3.8: The first few resonances (solid curves) and zeros (dashed curves) 
of the symmetric cylinder chain are shown as a function of a. The zeros and 
resonances are interlaced. They should all tend to 1 as a tends to d/2. The 
departure from 1 is an indication of truncation error. 

3.3.3 The Square and Hexagonal Arrays 

The geometry and orientation of the coordinate axes for a general square array 

with a basis of two cylinders is shown in Figure 3.9. 

oQoOoO 
OoOoOo oQoOoO CJC)OoOo - d 

y 

Lx 

Figure 3.9: Geometry of of an alternating square array of cylinders. The 
radii of the cylinders are a1 and a2 and the separation of the centres is d. 

The lattice sums for this square array cannot be expressed in terms of simple 

functions and are tabulated in Appendix C. The four-fold rotational symmetry 
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implies that U L is zero unless L is divisible by four. The lattice sums are given 

by 
U4n(O) = U,(4n)laBn 

U4n(dz) = U.(4n)laBn = [1- 2-n]U,(4n)laBn. 
(3.30) 

This structure has an isotropic polarizability and hence it is sufficient to consider 

only the case where the field is in the x direction. 
The charge distributions are symmetric about the x-axis and antisymmetric 

about they direction. Thus Q21 = 0 and Q1 = Q-1· The moment equations are 
given by 

Q(!) (I) {2)) 
21±1 - [-E + 1r(Qt + Qt ]6 (3.31) 

(2/ + 1)rtatl+2 V . l,o 

00 ( ) [ (!) ) {2) ( ] _ '""" 2/ + 2k + 2 Q 2k+t U,(2l + 2k + 2 Q2k+t u. 2/ + 2k + 2) 
- L.. 2k + 1 ( 2d2)1+k+l + d21+2k+2 

k=0,2II+ktl 

Q (2) (!) {2)) 
21+t - [-E + 1r(Qt + Qt ]6 (3.32) 

(2/ + 1)r2a~1+2 V 
1
'
0 

_ ~ (21 + 2k + 2) [Q~~tl u,(2l + 2k + 2) Q~~±l u.(2l + 2k + 2)] 
- L.. 2k + 1 (2d2)1+ktl + d21+2k+2 

k=0,2II+k+t 

for l = 0, 1, 2, ... where the area of the primitive unit cell is V = 2~. The area 

fraction is defined by f = 1r(a~ +aD IV. The maximum possible area fraction (for 

non-intersecting inclusions) is denoted fc· 

Note that in the symmetric case the equations reduce to 

Q~~~! - f: (21 + 2k + 2) QW+! U,(21 + 2k + 2) 
(21 + 1 )rt atl+2 k=0,2II+ktl 2k + 1 d21+2k+2 

- [-E + ~Qp>]o1,o (3.33) 

for I= 0, 1,2, ... where V = ~-

If TJ denotes the ratio of the radii of the inclusions, then for TJ = 1 the structure 

reduces to the simple (or symmetric) square array. For TJ = 0 the structure is also 

the simple square array but rotated through an angle 1r I 4 and magnified by a 

factor v'2. In both these cases the critical or maximum area fraction is fc = 1r I 4. 
For intermediate values of TJ the critical area fraction is higher. Its maximum 

value is fc = 1r[2- v'2]12 which occurs for TJ = v'2- 1. In general, 

lc(TJ) = 11"[1 + TJ 2]14 0 <., < v'2- 1 

lc(Tf) = 11"[1 + '7 2]/[2(1 + '1?1 v'2 -1 < '7 < 1. 
(3.34) 

For the symmetric case with d = 1 the numerator and denominator of the 

polarizability are given by 

N(a, e) = ra2[1- 13312.r2a16
- 2.50614 x l06r 2a24 + ... ] (

3 35
) 

D(a, e) = 1 -1rra2 - 29.7904r2a8 - 13438.8r2a16 + 41821.r3a18 + ... · 
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The effective dielectric constant is given by 

Eetr 27r N(a,e) 
-=1+ 
Eb V D(a, e) 

(3.36) 

and is shown as a function off and Tin Figures 3.11 and 3.12. 

The behaviour of the first few poles and zeros is given in the case e1 = e2 by 

xD 
1 - 1ra2 + 9.48258a6 - 28.6222a10 + 213.142a14 + ... 

XD 
2 - -9.48258a6 - 1375.22a10 + 207617.a14 + ... 

xD 
3 - 1403.84a10 - 206626.a14 + 6.1 x 107 a18 + ... (3.37) 

XN 
1 - 115.378a8 + 10860.6a16 + 654830.a24 + ... 

XN 
2 - 17787.9a16 + 982958.a24 + 1.6 x 108a32 + ... 

The geometry and orientation of the coordinate axes for the hexagonal array 

of cylinders is shown in Figure 3.10. 

oOoOoO 
0o0o0o1d 
oOoOoO 

Figure 3.10: Geometry of a hexagonal array of cylinders. The radii of each 
cylinder is a and the distance between centres is d. 

The six-fold rotational symmetry implies that UL is zero unless Lis divisible 

by six. The hexagonal lattice sums Uh(6n) are tabulated in Appendix C. This 

structure also has an isotropic polarizability and hence it is sufficient to consider 

only the case where the field is in the x direction. 
The charge distributions are symmetric about the x-axis and antisymmetric 

about they direction. Thus Q2z = 0 and Qz = Q_z. For an applied field in the x 
direction the six-fold symmetry implies that the Q3z are not coupled to Q1 and 

thus Q3z = 0. The moment equations are given by 

Q 21+1 _ ~ (2/ + 2k + 2) Q2k+1 Uh(2l + 2k + 2) = -[E ::_Q ]c 
(2/ + l)r a41+2 ~ 2k + 1 d21+2k+2 + V 1 1

•
0 

1 1 k=0,3II+k+1 

(3.38) 
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where the area of the primitive unit cell is V = ,j3J2 /2. The critical volume 

fraction is v's1r/6 which occurs when a= d/2. 

The numerator and denominator of the polarizability for d = 1 are given by 

N(a, e) = ra2(1- 5.50621 x 106r 2a24 - 9.19411 x 109 r 2a36 + ... ] 

D(a, e) = 1- 3.6276ra2 - 171.876r2a12 - 5.50661 x 106 r 2a24 + ... 
(3.39) 

The behaviour of the first few poles and zeros is given in the case e1 = e2 as 

a series expansion for x = 1/r. 

XD 
1 - 3.6276a2 + 47.38a10 - 618.83a18 + ... 

xD 
2 - -47.38a10 + 618.83a18 - 2.5 x 107 a26 + ... 

xD 
3 - 6.2 x 108a26 + 1.2 x 108a34 + ... (3.40) 

XN 
1 - 2346.53a12 + 1.96 x 106 a24 + ... 

XN 
2 - 6.5 x 106a24 + 3.7 x 109 a36 + ... 

All the above series can also be written as power series in f = 1ra2 /V. For 

f < < 1 the CM or MG approximation 

is obtained. 

e•ff 2r f 
-=1+-~ 
eb 1-T/ 

(3.41) 

Figures 3.11 and 3.12 compare the effective dielectric constants of the square 

and hexagonal arrays as a function of their area fraction f = 1ra2 /V and as a 

function of T. Geometric considerations lead us to expect e•ff to diverge as f 
approaches fc = Tr<f2/(4V) forT= 1 or as T approaches 1 for f = fc· 

3.4 Specific Three Dimensional Structures 

3.4.1 Sphere Pair 

The geometry and orientation of the coordinate axes for a pair of spheres are 

shown in Figure 3.13. 

The moment equations for a sphere pair in the general case are 

Q(1) 
lm 

00 

TF)a2l+t +2::(-1)/+m 
1 k=1 

Q(2) 
lm 

00 

T?)a21+1 + 2::( -1l+m 
2 k=1 

( 
I + k ) ( I + k ) Q~~ 
k+m k-m ...... 

(:: ~) (: ~ ~) .9~~- -

= -Vim 
(3.42) 

-Vim 

forl-1 2 - ' , ... where 

,.,.,(i) _ e; - eb _ 2lr; 
.Lt - -e; + eb + eb/1 21 + 1- T;• 

(3.43) 
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I , 
lOf /,/ 
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0 0.2 0.4 0.6 0.8 1.0! 

Figure 3.11: Effective dielectric constants of the square and hexagonal arrays 
as a function of area fraction f for T = 1. The solid line represents the 
square array and the dashed line the hexagonal array. The effective dielectric 
constant for each array diverges at a value off given by fc = 7rd2 /(4V). For 
small values of f the two arrays behave similarly. This is also the region 
where the CM approximation is valid. Truncation errors for large f cause 
e•ff to diverge at values off slightly larger than those predicted. 

e•ff 

20 

-----====C~~--~T 
-1 0 1 

Figure 3.12: Effective dielectric constant of the square and hexagonal arrays 
as a function ofT for f = fc· The solid line represents the square array and 
the dashed line the hexagonal array. 
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Figure 3.13: Geometry of a pair of spheres. 

For a uniform field in the z direction (longitudinal) V1,0 = E and all other V 
are zero. The charge distributions are symmetric about the z-axis and Q1m = 0 

unless m = 0. Alternatively, if the uniform field is in the x direction (transverse) 

then Vi,±1 = E with all other V zero. The charge distributions satisfy Q1,1 = 

Ql,-1· Thus, it is only necessary to consider m = 1. In both cases the above 

equations can be used with Vim = E8t,1 and m = 0 (longitudinal field) or m = 1 

(transverse field). In two dimensions the transverse and longitudinal equations 

are related by a simple change of signs. There is no such simple relation in three 

dimensions. 

As before the numerator and denolninator of the polarizability can be ex

panded in a double series in a1 and a2 • Both sets of coefficients satisfy Nji( e1 , e2 ) = 

N;j(e2 , e1 ), but the coefficients for the longitudinal and transverse cases are not 

simply related. The first few coefficients for the longitudinal field are given by 

No,o - 0 Do,o - 1 

N3,o - TP) D3,3 - -4TP>Tp> 

N3,3 - 4TP>T1(
2> D3,s - 9T(1)T(2) 

- 1 2 

N3,s - -9TP>Tp>TJ2> Ds,s - -36TJI>TJ2l (3.44) 

Ns,s - -36TJI>Tf2lTJ2l D3,7 - -16TP>TJ2> 

N3,1o - -16T(1)T(2)T(2) 
1 1 3 Ds,7 - -lOOTJI>TJll 

D3,9 - -25TP>Tp>. 
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The corresponding coefficients for the transverse field are given by 

No,o - 0 Do,o - 1 

N3,o - -T}'l D3,3 - T(t)T(2l - 1 1 

N3,3 - 2T(1JT(2) 1 1 D3,s - -3TPlTFl 

N3,s - 3T}'lT}2lTpl Ds,s - -16TJ1lTFl (3.45) 

Ns,s - 16T(1lT(2JT(2J 
2 1 2 D3,7 - -6T}llTpl 

N3,to - 6T}llTPlTpl Ds,7 - -5oTPlTPl 

D3,9 - -10T}llTpl. 

The polarizability as a function of radius for the symmetric case a1 = a2 = 

d/2, in the limit €t, e2 --+ oo is shown in Figure 3.14. 

p 
0.5 

0.4 

0.3 

0.2 

0.1 

~--~-=~~---------a 
0 0.1 0.2 0.3 0.4 0.5 

Figure 3.14: Variation of polarizability for both a longitudinal and a trans
verse field with radius. The longitudinal polarizability is always larger than 
the transverse polarizability and they should tend to the values ((3)/2 and 
3((3)/8 respectively as a tends to d/2. Truncation errors result in values 
which are slightly to small. 

The polarizability as a function of contrast r for the symmetric case a1 = 

a2 = d/2 is shown in Figure 3.15. 

The only exact results for the sphere pair are for a1 = a2 = d/2, e1 = e2 = oo 

where PL = ((3)/2 and PT = 3((3)/8. These results are derived in Chapter 4. 
The behaviour of the first few poles and zeros is given in the longitudinal case 

for e1 = e2 as a series expansion for x = 1/r. 

xD 1 - 1/3 + 4/3a3 + 36a8 + 48a10 - 360a11 + ... 
xD 

2 - 1/5 + 34.572a7 - 206.442a10 + 3474.17a13 + ... 
XD 3 - 1/7 + 458.408a11

- 366.037a14 + 4839.96a17 + ... (3.46) 
XN 1 - 1/7 + 34.572a7 + 188917.a18 + 605398.a22 + ... 
XN 

2 - 1/11 + 458.408a11 
- 188917.a18 + 1.2 x 108a25 + ... 
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-1 --=-· --

-0.4 

Figure 3.15: Variation of polarizability for both a longitudinal and a trans
verse field with T. The solid line is the longitudinal case and the dashed line 
the transverse case. 

The corresponding results for a transverse field are 

xD 
1 - 1/3- 1.60274a3 + 77.4158a10 + 651.407a13 + ... 

xD 
2 - 1/7- 25.929a7

- 77.4158a10651.407a13 + ... 
XD 

3 - 1/11- 382.007a11 -152.515a14 -1008.33a17 + ... 
XN 

1 - 1/7- 25.929a7 + 118073.a18 + 397292.a22 + ... 
XN 

2 - 1/11- 382.007a11 -118073.a18 - 5.9 x 107a25 + ... 

3.4.2 Sphere Chain 

(3.47) 

The geometry and orientation of the coordinate axes for the alternating chain of 

spheres is shown in Figure 3.16. 

C)CJQoQo )-, 
d 

Figure 3.16: Geometry of a chain of spheres. 

The lattice sums for the chain can be expressed in terms of the Riemann zeta 

function (( n ): 

UL(O) = (1+(-1)L)((L+1)(2d)L+l) 

UL(dz) = (1 + ( -1JL)((L + 1)(2d)L+l ). 
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Because of the symmetry about planes normal to the z-axis through the centres 

of the spheres, only the lattice sums with L even are non-zero. 

If the field is longitudinal the charge distributions are symmetric about the 

z-axis. Thus Qlm = 0 unless m = 0. The distributions are also anti-symmetric 

about the planes normal to the z direction, thus Q21,m = 0. The moment equations 

for the longitudinal case are given by 

Q(1) 
21+1,0 

T(1) a41+3 
21+1 1 

Q(2) 
21+1,0 

T(2) a41+3 
21+1 2 

for I= 0,1,2, .... 

f: (21 + 2k + 2) QW+1,02((21 + 2k + 3) 
k=O 2k + 1 (2d)21+2k+3 

~ (21 + 2k + 2) Q~~+1,02>.(21 + 2k + 3) 
LJ 2k + 1 -"'l+2k+3 = - E81,o 
k=O u-

(3.49) 

f: (21 + 2k + 2) Q~~+1 ,02((21 + 2k + 3) 
k=O 2k + 1 (2d)21+2k+3 

~ (21 + 2k + 2) QW+1.o2>-(21 + 2k + 3) 
~ 2k + 1 d21+2k+3 = -E81,o (3.50) 

If the field is transverse the charge distributions satisfy Q1,1 = Ql,-1 and all 
the other Q are zero. Also Q21,m = 0. The moment equations for the transverse 
case are given by 

(1) 00 

Q21+1,1 + 2: 
(1) 41+3 k=O 21+1 a1 

(
21 + 2k + 2) (2/ + 2k + 2) Q~~+1,12((2/ + 2k + 3) 

2k + 2 21 + 2 (2d)21+2k+3 
(3.51) 

+ ~ 1 (21 + 2k + 2) (21 + 2k + 2) Qw+1,12>.(21 + 2k + 3) __ 
~ ~ 2k + 2 21 + 2 tfll+2k+3 - Eo1,o 

Q (2) 
21+1,1 

T(2) a41+3 
21+1 2 

+ f: (21 + 2k + 2) (21 + 2k + 2) Q~~+1,12((2/ + 2k + 3) 
k=O 2k + 2 2/ + 2 (2d)21+2k+3 

(3.52) 

00 

+ 2:\ 
k=O 

(
2/ + 2k + 2) (2/ + 2k + 2) Q~~+1,12>.(2/ + 2k + 3) -

2k + 2 21 + 2 cf.21+2k+3 - - Eo1,o 

for I = 0, 1, 2, .... 

The first few coefficients in the numerator and denominator of the polariz

ability for a longitudinal field are given by 

No,o = 0 Do,o = 1 

N3,o = o.5Tp> D3,o = -3.6276Tp> 

N3,3 - 1.1592TfllT}2> D3,3 = -4.5355Tp>T}2> 
(3.53) 

N3,7 = 0.3151Tp>TJ2> D1o = -0.3151TJ!l 
' 

Nto,o = -0.3151TP>TJ1> D3,7 = -63.437TP>TJ2> 

DlO,O = 1.076Tfl>TJ!l. 
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The corresponding coefficients for a transverse field are given by 

No,o = 0 Do,o = 1 

N3,o - -TP) D3,o = -0.300514TP) 

N3,3 = 3.6062TP)TF) D3,3 = -4.3348TP)TF) 
(3.54) 

N31 = -0.2363TP)TJ2
) D (t) 

• 1,o = 0.2363T3 

Nto,O = -0.2363TP)TJI) D3,7 = -24.147TP)TJ2) 

Dto,O = o.0458TP)TJI). 

The polarizability as a function of radius for the symmetric case a1 = a2 in 

the limit Et, e2 -+ oo is shown in Figure 3.17. 

p 
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0.6 

0.4 

0.2 ~~· 

~------~~~-~-~-------a 
0 0.1 0.2 0.3 0.4 0.5 

Figure 3.17: Variation of polarizability for both a longitudinal and a trans
verse field with radius. The longitudinal polarizability (solid curve) diverges 
as a tends to d/2. The transverse polarizability remains finite. 

The polarizability as a function of T for the symmetric case a 1 = a2 = d/2 is 

shown in Figure 3.18. 

p 
1.0 

i"-~~= ol ~~-- 1 r 

-1.0 

Figure 3.18: Variation of polarizability for both a longitudinal and a trans
verse field with T. The solid line is the longitudinal case and the dashed line 
the transverse case. 

The behaviour of the first few poles and zeros is given in the longitudinal case 
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for E1 = E2 as a series expansion for x = 1/ T. 

XD 
1 

xf 
x{? 
xf 
x!j 

-

-

-

-

-

1/3 + 3.20549a3 + 206.442a10 - 3474.17a13 + .. . 
1/7 + 34.572a7

- 206.442a10 + 3474.17a13 + .. . 
1/11 + 458.408a11 - 366.037a14 + 4839.96a17 + ... 
1/7 + 34.572a7 + 188917.a18 + 605398.a22 + ... 
1/11 + 458.408a11 

- 188917.a18 + 1.2 x 108a25 + ... 
The corresponding results for a transverse field are 

xf 
xf 
xD 

3 

XN 
1 

x!/ 

-

-

-
-

-

1/3- 1.60274a3 + 77.4158a10 + 651.407a13 + .. . 
1/7- 25.929a7

- 77.4158a10 - 651.407a13 + .. . 
1/11- 382.007a11 - 152.515a14 - 1008.33a17 + ... 
1/7- 25.929a7 + 118073.a18 + 397292.a22 + ... 
1/11- 382.007a11 - 118073.a18 - 5.9 x 107 a25 + ... 

3.4.3 The Cubic Lattices 

(3.55) 

(3.56) 

It is convenient to discuss all the cubic lattices together because they all have 

the same group of symmetries. The three cubic Bravais lattices are the simple 

cubic (SC), body-centred cubic (BCC) and face-centred cubic (FCC) lattices. 

The spacing of the spheres in the SC lattice is d. The volume of the primitive 

unit cell is ~. The conventional unit cell of the BCC lattice has sides of length 

d, which makes the volume of the primitive unit cell ~ /2. The conventional unit 

cell of the FCC lattice has sides of length 2d, which makes the volume of the 

primitive unit cell 2~. The lattice sums for these structures are tabulated in 

Appendix C. 

The two non-Bravais lattices considered here are the sodium chloride (NaCl) 

and cesium chloride (CsCl) structures which are shown in Figures 3.19 and 3.20. 

TheN aCl structure is obtained from the SC structure by making alternate spheres 

in the lattice different. A conventional unit cell of side 2d contains 8 spheres, 4 

of each type, and thus the primitive unit cell has a basis of two and a volume of 

2~. When the radius of one of the basis spheres shrinks to zero (or its dielectric 

contrast T becomes zero) the structure becomes the FCC lattice. The CsCl 

structure is obtained from the BCC structure by making the spheres at the body

centres different from the spheres at the corners of the conventional unit cell. This 

cell then becomes a primitive unit cell with a basis of two and a volume of~. 

When the radius or contrast of one of the basis spheres becomes zero the structure 

becomes the SC lattice. 

All the structures have four-fold rotational symmetry about the z-axis and 

reflection symmetry in the xy-plane, thus only those lattice sums with l even and 

m divisible by 4 are non-zero. Since all the structures have cubic symmetry the 

56 



Figure 3.19: Arrangement of spheres for the sodium chloride structure. The 
dark spheres on their own form an FCC lattice and likewise with the light 
spheres. When all the spheres are the same the structure becomes a SC 
lattice. 

Figure 3.20: Arrangement of spheres for the cesium chloride structure. The 
light spheres on their own make up a simple cubic lattice with the dark 
spheres at the body centres of the unit cells. The dark spheres on their own 
are thus also a SC lattice. When the spheres are all the same the structure 
becomes a BCC lattice. 
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effective dielectric tensor will be isotropic, and attention can be confined to the 

effect of a uniform applied field in the z direction. The non-zero multipoles are 

those with I odd and m divisible by 4. Symmetry in the yz-plane also means that 

Ql,m = Ql,-m· This last symmetry can be used to halve the number of unknowns 

for computational convenience but it is still simpler to write the moment equations 

with the full set of unknowns since this preserves the algebraic structure of the 

equations. 

For the three Bravais lattices the moment equations take the form 

Q21+1,4m 
T21+1a41+3 

00 k/2 
L L N21+1,4m,2k+1,4nU2k+21+2,4m-4nQ2k+1,4n 
k=On=-k/2 

47rQt,O 
= [-E + n" ]8/,oDm,O (3.57) 

for I = 0, 1, 2, ... and m = 0, ±1, ±2, .... The relevant parameters for each lattice 

are given in Table 3.1. 

Table 3.1: The following geometric parameters and definitions are given for 
the SC, BCC and FCC lattices. The volume of the pritnitive unit cell V, 
the critical value of the radius a0 for which all the spheres first touch, the 
volume fraction fc for this critical radius and the definition of the lattice 
sum Ulm· 

sc BCC FCC 

v cP d!/2 2cf3 

ac d/2 v'3d/4 d/V2 
fc 71'/6 ,;37!' /8 .,;27!' /6 

U1,m Usc( I, m)/d1+1 UBcc(l, m)/d1+1 UFcc(l, m)/d1+1 

The first few terms in the rational fraction expansions are given below for 

each of the lattices. For the SC lattice 

N(a,e) = T1a3[1-11.467T3a 7 + 113.033T5a11 + ... ] 

D(a, e) = 1- 4.18879T1a3 -11.467T3a 7 

+6.546TtT3a10 + 113.033T5a 11 + ... 

For the BCC lattice 

N(a,e) = T1a3[1-108.931T3a 7 -1052.425T5a11 + ... ] 

D(a, e) = 1- 8.3776T1a3 - 108.931T3a7 

+758.188TtT3a10 -1052.425Tsa11 + ... 
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For the FCC lattice 

N(a,e) = T1a3[1+4.1617T3a7 -0.08336T5a11 + ... ] 

D(a,e) = 1-2.094395T1a3 +4.1617T3a7 

-9.5997T1T3a10 - 0.08336Tsa11 + ... 

Further coefficients are tabulated in Appendix C. 

(3.60) 

The effective dielectric constants for the three cubic Bravais lattices are shown 

in Figures 3.21 and 3.22 as a function of volume fraction for the case E -+ oo and 

as a function of r for the critical volume fraction f = fc respectively. 

e•ff 
12 

9 

6 

3 

0 0.2 0.4 0.6 0.8 
- _J 

Figure 3.21: The effective dielectric constants of the three cubic Bravais 
lattices as a function of volume fraction for the case r = 1. The SC results 
are shown by the solid line, the BCC results by the short dash line and 
the FCC results by the long dash line. Geometric considerations predict 
that the effective dielectric constants for these structures should diverge at 
1r /6,..;3tr /8 and ../?.tr /6 respectively. Truncation errors shift the divergences 
to slightly higher values. 

Series expansions for the resonant values of r can be obtained from the se

ries expansion for D( a, r ). The lowest order resonance is given for each lattice. 

For the SC lattice 

1 
1/r = 3 + 2. 79253a3 + 463. 732a10 - 6798.66a13 + ... (3.61) 

For the BCC lattice 

1 
1/r = 3 + 5.58505a3 + 463.175a10 - 1358l.a13 + ... (3.62) 

For the FCC lattice 

1 
1/r = 3 + 1.39626a3 + 2.65034a10 - 19.428a13 + ... (3.63) 

The non-Bravais lattices considered here have a basis of two spheres. The 

NaCl structure includes two special cases: if a1 = a 2 and e1 = e2 , the structure 
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Figure 3.22: The effective dielectric constants of the three cubic Bravais 
lattices as a function ofT for f = fc· The curves are as for Figure 3.21. All 
the curves diverge at T = 1 (truncation errors not withstanding) but do not 
go to zero at T = -1 since the background phase remains connected even 
when the spheres are at their maximum packing fraction fc· 

becomes the SC lattice; if a2 = 0 or e2 = Eb the structure becomes the FCC 

lattice. The condition that the spheres are non-intersecting places limits on the 

possible values of a1 and a2: 

a1 + a2 ::; d 

0 ::; 2a1 ::; ../2d (3.64) 

0 ::; 2a2 ::; ../2d. 

If e1 = e2 = oo then the effective dielectric constant diverges when a1 and a 2 

attain their upper limiting values. 

The volume fraction is given by f = 47r(a~ + aD/(3V). The limiting volume 

fraction fc depends on the ratio 7J of a1 and a2 : 

/c(IJ) = ../21r[1 + 7]
3]/6 0 < T/ < ../2- 1 

/c(IJ) = 27r[1 + 7]
3]/[3(1 + TJ?J ../2- 1 < T/ < 1. 

(3.65) 

The CsCl structure also includes two special cases: if a1 = a 2 and e1 = e2 , the 

structure becomes the BCC lattice; if a 2 = 0 or e2 = eb the structure becomes 

the SC lattice. The condition that the spheres are non-intersecting places the 

following limits on the possible values of a1 and a2 : 

a1 + a2 ::; d,.J3j2 
0 ::; 2at ::; d 
0::; 2a2 < d. 

The limiting volume fraction fc is given by 

/c(IJ) = 1r[1 +7J3]/6 0 < 7J < ,.J3 -1 

/c(IJ) = ,.j31r[1 + 7]3]/[2(1 + 7J)3
] ,.J3- 1 < T/ < 1. 
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The moment equations for the non-Bravais lattices take the form 

(1) (Q(1) Q(2)) 
Q21+1,4m _ [-E + 47r 1,0 + 1,0 ]8 8 

(1) 41+3 3V 1,0 m,o 
T21+1a1 

(3.68) 

00 k/2 
"' "' (1) Q(2) l = L..., L..., N21+1,4m,2k+1,4n[U2k+21+2,4m-4nQ2k+l,4n + V2k+21+2,4m-4n 2k+1,4n 
k=O n=-k/2 

Q
(2) (Q(1) Q(2)) 
21+1,4m _ [-E + 47r 1,0 + 1,0 ]8 8 

(2) 41+3 3V l,o m,o 
T21+1a2 

(3.69) 

00 k/2 
"' "' (2) Q(1) l = L..., L..., N21+1,4m,2k+1,4n[U2k+21+2,4m-4nQ2k+1,4n + V2k+21+2,4m-4n 2k+l,<n 
k=On=-k/2 

for I = 0, 1, 2, ... and m = 0, ±1, ±2, .... The parameters and expressions for the 

lattice sums are given in Table 3.2. 

Table 3.2: The following geometric parameters and definitions are given for 
the NaCl and CsCl structures: the volume of the primitive unit cell V, the 
maximum critical volume fraction max fc and the value "lmax for which this 
occurs and the definition of the two lattice sums U1m, Vim occurring in the 
moment equations. 

NaCl CsCl 

v 2cP cP 
ma.xfc 7r[5- 3¥2]/3 7r[2v'3- 3]/2 

TJmax ¥2-1 v'3 -1 

U1,m UFcc(l,m)/d1+1 Usc(l,m)fd1+1 

Vi,m [Usc(l,m)- UFcc(l,m)Jid1+1 [UBcc(l,m)- Usc(l,m)]/d1+1 

Rational function expressions can also be obtained for the non-Bravais lattices. 

Some of the coefficients for these series are tabulated in Appendix C. 

The effective dielectric constants for both lattices are shown in Figures 3.23 

and 3.24 as a function of volume fraction when e -+ oo for various values of the 

ratio Tf· The solid curves are for the extreme cases Tf = 0, TJ = 1 and Tf = Tfmax· 

The dashed curves represent intermediate values of Tf with 0 < Tf < Tfmax and 

Tfmax < Tf < 1 respectively. 
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Figure 3.23: Effective dielectric constant of the N aCl structure as a function 
of the volume fraction for various values of the ratio "'· From left to right 
the curves correspond to T'f = 1, 0.6, 0, 0.3, v'2- 1. The value off for which 
e•ff diverges depends on "'· 

e•ff 
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Figure 3.24: Effective dielectric constant of the CsCl structure as a function 
of the volume fraction for various values of the ratio "'· From left to right 
the curves correspond to T'f = 0, 0.5, 1, 0.8, v'3 - 1. The value of f for for 
which eel£ diverges depends on "'· 
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Chapter 4 

SOLUTION METHODS FOR 
PAIR INTERACTIONS 

4.1 Introduction 

In this chapter a complete analysis of the electrostatic interaction of sphere pairs 

and cylinder pairs is presented. Initially, simple configurations of charges and 

multipoles are found that have fields satisfying the boundary conditions on two 

cylindrical or spherical boundaries simultaneously. From these, the most general 

charge distributions which can satisfy the boundary conditions exactly are con

structed. It is shown how the solutions to various electrostatic problems can be 

generated from these charge distributions. 

The methods used in this chapter are all derived from the method of images. 

Others have also used the method of images to calculate the interactions of pairs 

of cylinders or spheres. Jones (1986) obtained approximate results for chains of 

conducting spheres by only retaining the first few images. O'Meara and Saville 

(1981) have calculated not only the capacitance for touching spheres but also 

the forces acting between the spheres. Touching sphere pairs have also been 

studied by Smith and Rungis (1975). Intersecting conducting spheres have also 

been treated using the method of images (Moussiaux and Ronveaux, 1979; Jones, 

1987; McAllister, 1988). Alternatively, Love (1975) has studied dielectric sphere 

pairs using bispherical coordinates. 

There are two approaches to the method of images. In the first approach, 

given a potential field, a second potential field can be constructed such that 

the superposition of the two fields satisfies the boundary conditions. This second 

potential is then referred to as the image potential. In the second approach, given 

a set of charges (lying on one side of the boundary) another set of charges (lying 

on the other side of the boundary) can be found so that the combined potential 
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produced by all the charges satisfies the boundary conditions. This second set 

of charges is fictitious, and the expression for the potential is valid only in the 

region where there are no fictitious charges. Expressions for image potentials 

can be found for planar and cylindrical boundaries between dielectric materials 

in two dimensions and for planar boundaries in three dimensions. The image 

potential for a perfectly conducting spherical boundary can also be found. Image 

charges can be found in all these cases. In addition, a new result is presented here, 

allowing image charges to be found for spherical boundaries between dielectric 

media. The only 'drawback is that the image charges are more complicated than 

the original charges and in the general case involve an integral over the original 

charge distribution. 

It is important to clarify the differences (at least in electrostatics) between 

a conductor and a dielectric with infinite permittivity. If a conductor is placed 

in an electrostatic field, the charges on its surface will redistribute themselves 

so that the field inside the conductor is zero. If a dielectric is placed in an 

electrostatic field, it will become polarized and the polarization charges on its 

surface will reduce the field inside the dielectric; if the permittivity is infinite, 

then the internal field is reduced to zero. The internal and external electric fields 

are the same in both cases. For the dielectric, the problem is completely specified 

by giving the external field and the shape and permittivity of the dielectric. 

However, for the conductor, different solutions can be obtained corresponding 

to different amounts of net charge present on the conductor. This is because a 

conductor can have a net charge in the absence of any external field, but it is 

commonly assumed that the polarization of a dielectric is zero in the absence 

of an applied field. (Spontaneously polarized dielectrics and electrets are not 

considered here.) Thus, in the limit of infinite permittivity a dielectric behaves 

like a conductor with the additional property that the net charge on the conductor 

is always zero. 

Surprisingly, one of the boundary conditions (continuity of the potential) is 

easy to overlook when applying the method of images. In these cases the electric 

field on both sides of the boundary is still perfectly correct but the potential 

fields differ across the boundary by a fixed constant. It is especially difficult 

in two dimensions to choose a common gauge on both sides of the boundary 

since the potential cannot be set to zero at infinity. This does not affect any 

calculations except those of potential differences between points on opposite sides 

of the boundary. The internal (or external) solution can be redefined by adding 

some constant to maintain the continuity condition. This redefinition does not 

require any charge distributions to be modified. 

When the spheres or cylinders are conducting it is usual to allow free charge 
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to reside on the surface, but when they are dielectric the condition is that there 

be no free charge. Appropriate image rules can be obtained under either set of 

conditions. A useful technique (which will be used here) is to generate appropriate 

solutions with free charge present but then to construct a solution, by linear 

superposition, with no free charge. This has been found to be the easiest way to 

enforce the charge neutrality conditions. 

Series solutions are found for pairs of cylinders and spheres. In particular 

cases these series are evaluated in terms of special functions. In the last section, 

series solutions are obtained for intersecting conducting cylinders and spheres. 

4.2 Image Rules for Cylinders and Spheres 

According to Maxwell (1873) the concept of an image charge was first put forward 

by Sir William Thomson (Lord Kelvin) in 1848. Basically, an electrical image is 

a charge or simple system of charges on one side of a surface whose field, when 

summed with the applied field, satisfies the boundary conditions at that surface. 

Consider an arbitrary distribution of charge u( r) outside a cylinder of radius a 

and dielectric constant e (or dielectric contrast T ). The potential produced by this 

charge alone is denoted by V0 ( r) = Vo(r, ll). Observe that the following function, 

defined in terms of the potential above, not only satisfies Laplace's equation but 

also satisfies the boundary conditions at the surface: 

V(r,ll) = { Vo(r,ll)- rVo(a2fr,ll) 

(1- r)V0(r,ll) 

r>a 

r <a. 
( 4.1) 

The term -T Vo( a2 /r, ll) is the image potential and (1 - T )V0 (r, ll) is the interior 

potential. 

In three dimensions, an expression for the image potential in terms of the 

original potential has not been found except in the case where the ratio e/ Eb is 

infinite. In this case the exterior potential is given by 

V(r,ll,¢) = V0(r,ll,¢)- '!:.v0(a2/r,ll,¢). 
r 

(4.2) 

The interior potential is of course zero. However, by analogy with two dimensions, 

the following 'approximate' potential can be defined 

V0(r,ll,¢)- r-Vo(a /r,ll,¢) r >a 

{ 

a 2 

V(r,ll,¢) = r 
(1-r)Vo(r,ll,¢) r<a. 

(4.3) 

The accuracy of the approximation improves as T approaches 1. The usefulness 

(and limitations) of this approximation will become apparent later. 
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In two dimensions the potential of a uniform field E can be written 

Vo(r,8) = -Exrcos8- Eyrsin8. (4.4) 

The image potential is 

cos 8 sin 8 
Vim(r, 8) = Px-- + p.--. 

r r 
(4.5) 

where p = T Ea2 • This is just the potential due to a point dipole p at the centre 

of the cylinder. The interior potential corresponds to a uniform field (1- r)E. 
Similarly using (4.3), the approximate image of a three dimensional uniform 

field E is the dipole p = T Ea3 at the centre of the sphere. The interior potential 

has the same form as in two dimensions. For a uniform field, the exact image can 

be found and is given by p = ~ Ea3
• The approximation is valid for T near 1. 

3-T 
Image rules for charges and various charge distributions (rather than poten-

tials and fields) are now derived. 

4.2.1 Two Dimensions 

The potential due to a point charge q at the point r = z,8 = 0 can be written 

V0 ( r, 8) = _q_log v'r2 - 2rz cos 8 + z2. 
27r€b 

The image potential is (after rearrangement) 

(4.6) 

-Tq v a 2 a4 Tq Tq 
Vim(r, 8) = -

2 
-log r2 - 2r- cos 8 + 2 + -

2 
-log(r)- -

2 
-log(z) (4.7) 

7r€b z z 7r€b 7r€b 

and the interior potential is 

(1- r)q 
Vint(r, 8) = .., log v'r2 - 2rz cos 8 + z2. 

7r€b 
(4.8) 

The image potential can be interpreted as being due to an image charge 

I q = -Tq (4.9) 

at the image point 

z' = a2 /z, (4.10) 

and in addition a neutralizing charge -q' = rq at the origin and a potential 

shift of _ _!_!L log(z ). The neutralizing charge is required to satisfy the condition 
27r€b 

that there be no free charge on the cylinder. As mentioned earlier, the potential 

shift is necessary for continuity of the potential between the interior and exterior 

solutions. 
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Figure 4.1: A small patch of charge CTdA at the point ( r, II) is mapped 
onto the patch <T1 dA' at the point ( r', II') under inversion in a circle of 
radius a. Simple geometrical considerations yield rr1 = a2 , II = II' and 
dAfr2 = dA' fr 12 • 

The image of a continuous distribution of charge <T(r, 0) is determined as 

follows. A patch of charge CTdA and its image CT1 dA' are shown in Figure 4.1. 

From (4.9), 

CT1 dA' = -r<TdA 

for very small patches. The geometry yields 

Thus, the imaging rule is 

dA' /r'2 = dA/r2 

rr' = a2 

()' = 0. 

a4 a2 
CT1(r, 0) = -r4<T(-, 0). 

r r 

There is also a neutralizing charge at the centre given by 

j• {2" 
- r=O lo=O CT

1
(r, O)rdrdO 

and a potential shift 

T joo {2" 
- 21l"fb •=• }

6
=

0 
<T(r, 0) log(r )rdrdO. 

(4.11) 

( 4.12) 

( 4.13) 

(4.14) 

(4.15) 

In addition to point charges and planar charge distributions, the images of 

linear charge distributions are also very important. If .\(r) is the line charge 

density on a radial line (fixed 0), then its image is given by 

a2 a2 
.\'(r) = -r2 .\(-). 

r r 
(4.16) 
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Expressions for the neutralizing charge and potential shift are given in the sum

mary in Table 4.1. 

The images for point dipoles can be obtained either from the limiting be

haviour of pairs of charges, or by writing the continuous charge distributions as 

derivatives of delta functions. The results for both radial and transverse dipoles 

are summarized in Table 4.1. 

Table 4.1: The images of various types of charge distributions lying outside 
a cylinder of radius a and contrast r are given below. The original point 
distributions are located at z' and their images are at z' = a2 / z. In each case 
the image is of the same type as the original distribution (i.e. the image of a 
dipole is a dipole, that of a line charge is a line charge etc.). The neutralizing 
charge is always located at the centre of the cylinder. 

Original Distribution Image Neutralizing Charge Potential Shift 

Point Charge, q -Tq Tq 
-rqlog(z) 

2'11'Eb 

. •' 
T /.~ >.(r)dr -T ~.~ >.(r)log(r) dr Line Charge, >.( r) --r(-)' >.(-) 

r r a 21fEb 

. •' f.~[~ f.~[~ Planar Charge, u(r, B) --r(-)'u(-,B) T " 

0 

O'(r, 8)rdrd0 
-T u(r, B) log(r) rdrdB 

r r a 0 211'fb 

Radial Dipole, p -r( ~)'P 0 ....::.L 
z 211't:bZ 

Transverse Dipole, p 
• 2 --r(-) p 
z 

0 0 

- ---- L_ - --

4.2.2 Three Dimensions 

The three dimensional image rules are derived here in detail. Except for one 

example (Iossel, 1971) which is in Russian, no one else, to the author's knowledge, 

has given an expression for the image of a point charge in a dielectric sphere. The 

derivation given here of the image rule for a dielectric sphere is similar to that of 

Iossel but was obtained before being aware of his work. The image is not a point 

charge but a continuous distribution. Granted that the image is more complicated 

than in the other cases, having an expression for the charge distribution is quite 

useful. The general result is now derived. 
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The potential due to a point charge q at r = z, B = 0, r/> = 0 is 

q 
Vo(r,B,r/>) = 

47r€b v' r2 - 2r z cos(} + z2 

_ _q_ f: r
1 H( cos B) 

47r€b zi+I 
1=0 

( 4.17) 

where the potential has been expanded in azimuthally symmetric harmonic 

functions about the origin. Using the boundary conditions (2.5) and (2.6) for 

azimuthally symmetric three dimensional potentials, the external potential can 

be written in the form 

V(r,B,r/>) = Vo(r,B,r/>) + Vim(r,B,r/>) 
oo ra21+I ra21+1 

- L A![r1 
- _,.._, - "_ , 1 , , ,_,.._, ]P1( cos B). ( 4.18) 

1=0 

Comparing this with (4.17) gives A1 = q/(47rebz1+1). Consider each of the three 

terms in the brackets in ( 4.18). The summation over the first term gives the 

original potential. Sumtning over the second term gives 

-r(afz)q 
(4.19) 

47rebJr2 - 2r( a2 / z) cos B + ( a4/ z2) 

which is the potential due to the image charge 

' a q = -r-q 
z 

(4.20) 

at z' = a 2 fz. 
The third term can be evaluated as follows: 

4
:! f: , a~:~~ ~1( cos II)_. 

b 1=0 

= Tq (a2 /z)!(T+l) f: !'I( cos II) r•'/z U/-!(T+l)dU 

411"£ba ( £ + 1) I=O r 1+1 lo 

= _1_ r•'l• A(u)du (4.21) 
411"£b lo yr2- 2ur cos II+ u2 

where the line charge distribution is given by 

2 
A(u) = rq (~)!(T+l)_ 

a(e + 1) zu 
(4.22) 

This line charge has an integrable singularity at the centre of the sphere (u = 0) 

and the total charge in this distribution is 

1•
2 /z a 

A(u)du = r-q 
0 z 

(4.23) 

which exactly neutralizes the image charge. Thus, A( u) is the three dimensional 

equivalent of the neutralizing charge that occurs at the centre of the cylinder in 
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Figure 4.2: Image system for a dielectric sphere. A point charge of magni
tude q at a distance z has a point image of magnitude q' = -Tq I az at a 
distance a2 I z and a continuous neutralizer shown by the curved function. 
The area under the curve is equal to the magnitude of the image charge, but 
is of opposite sign. As the dielectric constant of the sphere increases, the 
line charge becomes more concentrated towards the centre of the sphere. 
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two dimensions. As e-+ oo (or T-+ 1) the line charge becomes A(u)-+ q;8(u) 

which is a point charge at the origin. A potential shift is not necessary in three 

dimensions. The image system, including the neutralizer, is shown for a point 

charge in Figure 4.2. 

The corresponding results for a volume charge density distribution p(r, 0, r/>) 
can be obtained as in two dimensions. Volume elements are related under inver

sion by 

and using ( 4.20) 

Thus, 

dV'fr'3 = dVfr3 

p'dV' = -T<:_pdV. 
r 

2 

p'(r,O,r/>) = -T(<:)5p(l!:....,o,¢). 
r r 

The corresponding neutralizer is given by 

A(u) = (.I!:....)~(T+l) (r (} "')~ T 1•'/u 2 2d 
a(e+l) a ru P '•'I' u2 · 

(4.24) 

(4.25) 

(4.26) 

( 4.27) 

Images and neutralizers for line charges, planar charges and dipoles are given 

in Table 4.2. However, unlike in two dimensions, an image is not always of the 

same type as the original distribution. For example, the image of a radial dipole 

p is not just a dipole p' but a superposition of a dipole p' and a point charge 

q'. Also, the neutralizing distribution for a transverse dipole is not a line charge 

A( u) but a line dipole density 1r( u) where 1r( u) is the transverse dipole moment 

per unit length at u. 

The above results are completely general but are too complicated to use when 

there are several images or even an infinite sequence of images. Two (unrelated) 

simplifications will be made. The main focus of this chapter is the interaction of 

pairs of cylinders or spheres, and so only charge distributions which are axially 

symmetric about the line joining the centres of the spheres will be considered. 

Specific rules for non-axially symmetric charge distributions are developed in 

Appendix D. The transverse dipole and the line dipole density are examples 

of such non-axial charge distributions. It is also shown in that appendix that 

only the axially symmetric distributions can yield a singular behaviour in the 

asymptotic limit (i.e. large contrast and small separation). 

The second simplification is to approximate the continuous neutralizer ( 4.22) 

by a point charge at the origin (i.e. its limiting form for e -+ oo ). This approx

imation makes the two and three dimensional image rules similar in form and 

both cases can be handled together. This approximation is also equivalent to 

using (4.3) for the imaging of potentials. No simple solutions have been found 
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Table 4.2: The images and neutralizers of various types of charge distri
butions lying outside a sphere of radius a and contrast T are given below. 
The original point distributions are located at z' and their images are at 
z' = a 2 I z. The neutralizing distributions for point charges and dipoles ex
tend from u = 0 to u = a2 I z. Except for the radial dipole, the images given 
in this table are of the same type as the original distribution. 

Original Distribution Image Neutralizer 

q' = -r~q ' Point Charge, q A(u) = ___2!_(!.-j!(r+l) 
z •(• + 1) zu 

. •' ['I• Line Charge, .>.( r) -r(-)>.(-) A(u) = __ r_ .>.(r)( 02 j!(r+l)dr 
r r a(t:+ 1) a. ru 

. •' ['I• Planar Charge, u(r, 0) -r(-)3 u(-,0) E(u,O) = ~ u(r,O)("'J!(r+l)rdr 
r r at:+la ru u 

Volume Charge, p(r,O,o'>) . •' -r(- )5 p( -, 0, o'>) 
r r 

!.•'1• ' 'd 
P(u,O,o'>) = a(<:l) • p(r,O,o'>)(:,.J!(r+l)ru'r 

Radial Dipole, p p' = r(~)3p A(u) =- r(r + l)p ( •' J!(r+l) 
z 2(e: + l)az uz 
• 'p 

q' = r(-) -
z • 

p' = -r(~)3p ' Transverse Dipole, p .. (u) = rpu (!.-J!(r+l) 
z a(e: + l)z uz 
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for the equations that arise when the continuous neutralizer distribution is re

tained, although a series solution for an integral-functional equation is given in 

Section 5.2.3. Unlike other series solutions presented here, even the coefficients 

in this series could not be obtained in closed form. The validity of this ( neces

sary) approximation will be justified on the basis of its success in describing the 

asymptotic behaviour of sphere pairs. 

The image solutions are obtained in two parts. First, the neutralizing charges 

are neglected and only the image charges are considered. Then, the neutral

ity condition is satisfied by the linear superposition of various appropriate so

lutions. This yields the exact solution for cylinders, but only an approximate 

solution for spheres because in three dimensions the neutralizing distribution has 

been approximated by a point charge. The approximation becomes exact in the 

asymptotic limit. 

4.2.3 Multipole Moments 

The multipole moments Q~ can be obtained directly from the image distributions 

using a variant of equation (2.17). For axial distributions (in general a combina

tion of point charges qn, radial dipoles Pn and line charges .\( x) on a radial line 

along 9 = 0) the moments are given by 

in two dimensions and 

I -Ql = ( -1) GIQIII 

I -Qlm = (-1) G1mQ18m,o 

in three dimensions, where in both cases 

01 = Lqna~ + LPnla~-1 + j .\(x)x1dx. 
n n 

( 4.28) 

(4.29) 

( 4.30) 

For a sequence of transverse dipoles Pn lying along that line or a line dipole 

distribution 1r(x), the corresponding results are 

. I -
Q±l = ±'( -1) Gll'JII (4.31) 

in two dimensions and 

( -1/Gim fl+l-
Qim = 'f 

2 
y ~-1-H Om,±1 (4.32) 

in three dimensions, where in both cases 

P1 = LPnla~-1 + j 1r(x)lx1
-

1dx. 
n 

( 4.33) 
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4.3 Images for Cylinder and Sphere Pairs 

Consider a pair of cylinders or spheres as shown in Figure 4.3 with radii a and 

a' and place a point charge q0 in the first at a distance a0 from the centre along 

the axis of symmetry and a point charge q~ in the second at a distance a~ from 

its centre. 

The boundary conditions at the surfaces can be satisfied by successively in

troducing new image charges, each one chosen to match the induced surface 

charge distribution produced by the previous image charge. An infinite sequence 

of charges is produced which cluster around two limit points. Simultaneously, 

neutralizing charges must be introduced at the centre of each cylinder or sphere. 

These neutralizing charges will in turn produce their own infinite image sequences. 

The principle of linear superposition allows the problem to be solved self consis

tently, by initially ignoring the neutralizing charges, and later introducing a point 

charge at the centre of each cylinder or sphere such that the total charge of the 

image sequence produced exactly neutralizes the cylinder or sphere. The mag

nitudes qn, q~ and the positions an, a~ of the image charges can be obtained 

from solving the following recurrence relations. As there is complete symmetry 

between the primed and unprimed variables, all equations and results occur in 

pairs; for brevity only one of each pair is given, the other can be obtained by 

interchanging primed and unprimed variables. Equations ( 4.9), ( 4.10) and ( 4.20) 

are combined to obtain 

an == a2/(d-a~_1 ) 

qn = -T(an)D-2q~-1 
a 

where D = 2 for cylinders and D = 3 for spheres. 

The equations can be solved by first making the substitution 

Wn 

an= a w~+l 

( 4.34) 

(4.35) 

(4.36) 

and its primed counterpart. This yields a pair of coupled second order linear 

difference equations with constant coefficients 

J.. 'w' -UY.In- a n-1 

tk.J' - awn-1 -n 

I 
awn+ I 

a'wn+I· 
(4.37) 

The above equations can be solved by standard techniques for linear difference 

equations (Jordan, 1960). Using the initial conditions the solution can be written 

w~ sinh( n{) + niJ') - w0 sinh( niJ + niJ' - fJ) 
sinll {) 

w1 sinh( n{) + niJ' + fJ') - w~ sinll( niJ + nfJ') 
sinll {)' 

W2n -

( 4.38) 

W2n+1 -

74 



... 
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•• -a' 
00 

Figure 4.3: The electrostatic charge distributions on a pair of dielectric 
cylinders or spheres with dielectric constants £ and E' and dimensions as 
shown can be found by the method of images. The location of the first three 
image points for each inclusion is shown, as well as the location of the limit 
points. 
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where 

A = exp( {) + {)') ( 4.39) 

is the solution of 

aa'.X2 + (a2 + a12
- d2 ).X + aa' = 0. ( 4.40) 

Some important relations are 

aoo - aexp( -{}) 

a' - a' exp(-{)') 
00 

d = a cosh {) + a' cosh {)' 
( 4.41) 

0 - a sinh{) - a' sinh t9'. 

The 3eparation parameter3 {) and {)' tend to zero as the separation between the 

inclusions decreases. 

The solution for q is given by 

n a I 

q2n = qo( rr't IT ( lna2n-ll-2 
i=l aa' 

w' 
- q0( rr't(-, _l_)D-2 

w2n+l 
( 4.42) 

q2n+I 
I a n I 

- -q
0
r( rr't 2n+I Il(a2na2n-l D-2 

a i=I a'a ) 

- -q~r(rr')n(~l-2. 
w2n+2 

( 4.43) 

All physical quantities can be derived from the images. The multipole mo
ments are given by 

00 00 

- " I " I Q1 = LJ q2na2n + LJ q2n+la2n+l 
n=O n=O 

1 ~( ')n(asinht1)D-2[asinh(nt1 + nt1')- aosinh(nt1 + nt11
- {))jl 

= qoa "-' rr . . n=O [asmh(nt9 + n{)' + 11)- aosmh(nt1 + nt1')]D 2+1 

1 1 ~( ')n(a'sinht1')D-2[a'sinh(nt1+nt1'+t1')-absinh(nt1+nt1')jl 
-q0a r "-' rr . . 

n=O [a' sinh( n{) + n{)' + {) + {)') - ab smh( n{) + n{)' + {))]D-2+1 

( 4.44) 

Note that the solutions depend parametrically on a0 and ab and are linear 

in q0 and qb. Thus, solutions for various problems can be generated by the 

superposition of various solutions with different values of a0 and ab. 
The recursion relation for transverse dipoles analogous to ( 4.35) is 

an)D 1 
Pn = -r(- Pn-1 · a 
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Apart from the power to which (an/a) is raised this is identical in form to (4.35). 
Thus, by analogy, 

00 00 

n " 1 1-1 + " 1 1-1 r l = L.-J P2n a2n L....t P2n+ 1 a2n+ 1 
n=O n=O 

I 1_ 1 .:p.._( ')n(asinhU)D[asinh(nU + nU')- aosinh(nU + nU'- u)F-1 

= p0 a L.. rr 
n=O [asinh(nU + nU' + U)- a0 sinh(nU + nU')]D+I-1 

'I r- 1 .:p...( ')n (a' sinh U')D[a' sinh( nU + nU' + U') - a~ sinh( nU + nU')jf-1 

-p0 a T L.. TT ) 1 • D I · n=O [a'sinh(nU + nU' + U + U' - a0 s1nh(nU + nU' + U)] + I 

( 4.46) 

In the next section solutions are obtained in series form for a pair with non

zero net charge on each cylinder or sphere and also for a pair in a uniform field 

when there is no net charge. 

The image sequences for pairs when the initial charges q0 and qb do not lie on 

the axis of symmetry are considered in Appendix D. In addition, some results 

for the images of triplets of cylinders or spheres are given there. 

4.4 Series Solutions 

4.4.1 The Pair Capacitor 

The initial point charges q0 and qb are placed at the centre a0 = ab = 0 of each 

cylinder or sphere. The image system is generated by recursively applying the 

image rules given in the previous section. 

The potential field obtained from this image system is examined in detail for 

both two and three dimensions to determine the effects of neglecting (or including) 

the neutralizing charge and the potential shift. For a capacitor, a net cl!arge on 

eacl! cylinder or sphere is required and so the 'solutions' are not neutralized (the 

other boundary conditions are maintained). These solutions are physical only for 

conducting spheres and cylinders where the net cl!arge can be regarded as free 

cl!arge. For dielectric spheres and cylinders there is usually no free charge - only 

bound or polarization charges. Further, the net polarization charge must be zero. 

Two Dimensions 

The exterior potential is given by 

oo q I 
V(r,B)=L-

2
n logyr2 -2anrcosB+a~ 

n=O 11"Eb 
00 q' .------------------------

+ L _n_log..jr2- 2(d- a~)rcosB + (d- a~)2 
n=O 211"Eb 

(4.47) 
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where r, (} are measured from the centre of the left cylinder. The interior potential 

in the left cylinder is written in the form 
00 I 

V(r, 0) = (1 - r) L ...!l!J._ log .,jr2 - 2( d- a~)r cos(}+ ( d- a~)2 + Vcorr ( 4.48) 
n=O 27rfb 

where Vcorr may be required to maintain continuity. Rather than apply the po

tential correction or shift to the exterior solution as was done earlier, it is more 

convenient to correct the internal solution. In general, the correction for the two 

cylinders will not be identical. By evaluating both expressions at the boundary 

and using the image rules to express primed quantities in terms of unprimed 

quantities and vice versa the correction is determined to be 

loga 00 r 00 

Vcorr = -
2 

- L qn + -
2 

- L q~ log( d- a~). ( 4.49) 
7r fb n=O 7r fb n=O 

The free charge at the boundary is calculated from the discontinuity in the 

normal displacement. The free charge distribution is given by 

1 00 Qo 
-2 L qn = -. ( 4.50) 

1ra n=O 27ra 

Since this is independent of(} it means that the free charge can all be considered 

to be due to a point charge at the origin as expected from the imaging rules. In 

later sections this solution will be used to neutralize other solutions. 

Three Dimensions 

For a pair of spheres the exterior potential is given by 

V(r,O) = f: qn 1 
n=O 47rfb Jr2 - 2anr cos(} + a~ 

00 q' 1 + L n 
n=O 47reb Jr2 - 2(d- a~)rcos(} + (d- a~)2 

(4.51) 

The interior potential is given by 

00 q~ 1 
V(r, 0) = (1 - r) L + Vcorr· 

n=O 47rfb .jr2 - 2(d- a~)r cosO+ (d- a~)2 
(4.52) 

The constant is determined to be 

qo ( Vcorr = -
4 
-. 4.53) 

7rfba 

Thus, in both two and three dimensions, the correct fields can be obtained 

by retaining only the image charges (and neglecting neutralizing charges) and 

later introducing a constant to obtain continuity of potential. This procedure is 

much simpler than keeping track of each neutralizing charge (and potential shift 

or correction) at each step of the recursive imaging process. 
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Some Exact Results 

The total charge on each cylinder or sphere is written in the form 

Qo = qoCn + qbC12 

Q~ = qoC21 + qbC22 

where using equation (4.44) 

Cn - ~( ')n( sinh{) ]D-2 
~ 7'7' sinh( n{) + niJ' + iJ) 

00 • h{)' 
"'( ')n( sm ]D-2 

-7' ~ 7'7' sinh( niJ + niJ' + {) + iJ') c12 -

c21 - '~( ')n( sinh{) ]D-2 
-7' ~ 7'7' sinh(niJ + niJ' + {) + iJ') 
00 • h{)' "'( 't[ sm ]D-2 
~ 7'7' sinh( n{) + niJ' + {)') · c22 -

(4.54) 

( 4.55) 

When the spheres or cylinders are identical, qb = -qo and Q0 = q0 C where 

~ n( sinh{) ]D-2 
C=L.J7' 'h(iJ iJ) . (4.56) 

n=O smn+ 

In two dimensions all the above series are trivial geometric series and can 

be evaluated analytically. In three dimensions the series cannot be evaluated in 

closed form. The charge coefficient C for three dimensions is plotted as a function 

of 7' for various values of {) in Figure 4.4. 

5 

4 

c 3 

2 

lf 77fE:7' 
0 0.2 0.4 0.6 0.8 1 

Figure 4.4: The charge coefficient C for a pair of spheres is plotted as a 
function of 7' for various values of the parameter {). The curves correspond 
to (from top to bottom){)= 0,0.2,0.4,0.6,0.8,1,2. 

The series can be evaluated in certain cases in terms of special functions. A 

particular class of series appears very often and can be evaluated in terms of the 

Lercll transcendent .P(z, s, a) which is defined by 

oo zn 
.P(z,s,a) = ,!;(n+a\•' (4.57) 
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One advantage of expressing the series in terms of this function is that numerical 

and algebraic packages are available (Wolfram, 1988) for its evaluation. It reduces 

to other known functions in the following special cases 

<ll(z,O,a) = (1-z)-1 

<ll(z, 1, 1) = -z-1log(1- z) 

<ll(z,s,1) = z-1Li.(z) (4.58) 

<ll(1,s,1) = ((s) 

<ll(-1,s,1) = (1-2-•)((s) 

where Li.(z) is the polylogarithm function (Lewin, 1958) and ((s) is Riemann's 

zeta function (Abramowitz and Stegun, 1965). The following identity is useful 

for constructing the symmetric limit T
1 -+ T, a'-+ a: 

<ll(z2, s, ~) ± z<ll(z2, s, 1) = 2•<ll(±z, s, 1). ( 4.59) 

The results for a touching pair are obtained by taking the limit{),{)'-+ 0 with 

{) / {)' = a'/ a. The results are 

C11 = (a'/d)D-2<ll(rr',D- 2,a'/d) 

C12 = -T( a/ d)D-2<ll( TT1, D - 2, 1) 

C22 = (a/d)D-2<li(TT1,D- 2,a/d) ( 4.60) 

c21 = -T'( a' I d)D-2<ll( TT1, D - 2, 1) 

c = <ll( T, D - 2, 1 ). 

The net dipole moment Q1, Q~ on each cylinder or sphere is also of interest. 

If 

then using ( 4.44) 

'Dn 

1)12 

1)21 

Q1 = qo'Dn + q&'D12 

Q~ = qo'D21 + q&'D22 

L:
oo ( ')n (sinh !9)D-2 sinh( nt9 + nt9') 

- a TT 
n=O sinh( n{) + n{)' + {))D-1 

00 
1 n (sinh t9')D-2 sinh(nt9 + nt9' + {)') 

- -aT~ ( TT ) "----s-:-inh...,....,.( n!....!9-::--+-n-{)""' ""+-t9""'+.:.......,t9"'')""'D:--_:-1 -'"' 

, , ~( ')n(sinh t9)D-2 sinh(nt9 + n{)' + t9) 
- -aT£.... TT 

n=O sinh(m? + nt91 + {) + t9')D-1 

1)22 = , ~ ( 't (sinh t9')D-2 sinh( nt9 + nt9') 
a f:'o TT sinh( nt9 + nt9' + t9')D-1 

For a symmetric pair Q1 = q0V where 

1) = a f: Tn (sinh t9)D-2 sinh( nt9) 
n=O sinh( nt9 + {))D-1 
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In the touching limit these results become 

'D11 = a( a'/ d)D- 2 [<P( rr', D- 2, a' /d) - (a'/ d)<P( rr', D - 1, a'/ d)] 

'D12 = -ar(a/d)D-2 [<P(rr',D -2,1)- (a'/d)<P(rr',D -1,1)] 

'D22 = a'(a/d)D-2 [<P(rr',D- 2,a/d)- (afd)<P(rr',D -1,a/d)] (4.64) 

'D21 = -a'r'(a'/d)D-2 [<P(rr',D- 2, 1)- (a/d)<P(rr',D -1, 1)] 

V = (d/2)[<P(r,D-2,1)-<P(r,D-1,1)]. 

The dipole coefficient V is plotted as a function ofT for various values of{) in 

Figure 4.5 for symmetric cylinder pairs and in Figure 4.6 for symmetric sphere 

prurs. 
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Figure 4.5: The dipole coefficient V for cylinders is plotted as a function of 
T for various values of the parameter {). The curves correspond to (from top 
to bottom) {) = 0, 0.2, 0.4, 0.6, 0.8, 1, 2. 
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Figure 4.6: The dipole coefficient V for spheres is plotted as a function ofT 
for various values of the parameter {). The curves correspond to (from top 
to bottom) {) = 0, 0.2, 0.4, 0.6,0.8, 1, 2. 

These series will be used to neutralize the solutions obtained for a pair of 

spheres in a uniform field. It turns out that for a pair of cylinders in a uniform 

field the solution obtained from the images is already neutral. 
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4.4.2 Uniform External Field 

If the pair of inclusions is in a uniform external field E pointing along the line join

ing the pair, the initial images are dipoles at the centres of the inclusions parallel 

to the external field. The magnitudes of the dipoles are given by Po = r Ea2 and 

p~ = Er'a'2 in two dimensions and Po= 2rEa3 /(3-r) andp~ = 2r'Ea'3 /(3- r') 

in three dimensions. The dipole Po can be considered the limit of two charges of 

magnitude ±Po/(2ao) at the points ±a0 as a0 -> 0. This limit is equivalent to 

taking derivatives with respect to a0 • 

The multipole moments are then given by 

Q- _ 0· ~ q2n 1 I _ t _!_,_ ~ q2n+1 I I I- Po-- LJ a2n Po , L- , a2n+1 
8ao n=O qo •o=O 8ao n=O qo ·~=O 

( 4.65) 

and an analogous expression for Q(. 
Substituting the expressions for qn and an and performing the derivatives 

g1ves 

Q- Po 1 ~ ( ')n [I( sinh 19)D sinh( n19 + n19')1
-

1 
I= -a LJ TT 

a n=O sinh( n19 + n19' + 19)D+I-1 

( D - 2)( sinh 19)D-2 sinh( n19 + n19')'+1] 
+ sinh( n19 + n19' + 19)D+I-1 

+ ....!2a1r "'(rr't 
p' 00 [I sinh 19(sinh 19')D-1 sinh(n19 + n19' + 19')1- 1 

a' f='o sinh(n19 + n19' + 19 + 19')D+I 1 

+ ( D - 2) sinh( n19 + n19' + 19)( sinh 19')D-2 sinh( n19 + n19' + 19')'] .(
4

.
66

) 
sinh( n19 + n19' + 19 + 19')D+I-l 

The first term in each summand represents the contribution from a point 

dipole, the second term in each summand (which is zero when D = 2) represents 

the contribution from a point charge. This agrees with the result that the image 

of a point dipole in three dimensions is the superposition of a point dipole and a 

point charge. The behaviour for a tran8ver8e applied field can be obtained using 

the imaging rules and results for transverse dipole moments. The transverse 

dipole moment produced by a transverse field is obtained using ( 4.46): 

p1 = oo (sinh !?)D 
Po 2: ( rr't sinh( n19 + n19' + 19)D n-O 

- oo (sinh 19')D 
-p~r l:(rr't sinh(n19 + n19' + 19 + 19')D. 

n=O 
(4.67) 

In each case the corresponding results for Q/ and P{ are obtained by analogy. 

For the limiting case of touching pairs results can be obtained in terms of the 

Lerch transcendent. In two dimensions there is no net charge and Q0 is zero. In 
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three dimensions 

- p a' a' Po a' a' 
Qo = : ( d )<J>( rr', 1, d) - ~( d )2<J>( TT', 2, d) 

I I 

+p0 T( _da)<J>(TT1
, 1, 1)- PoT( _da)2<I>(TT1

, 2, 1). 
a' a' 

( 4.68) 

The longitudinal and transverse dipole moments can be obtained from 

- Poa'D [ , a' 2( D - 2) , a' 
Q1 = ---;]iJ (D-1)<I>(TT,D,d)- (a'/d) <I>(TT,D-1,d) 

(D- 2) , a' ] + (a'/ d)2 <I>( TT , D - 2, d) 

p~aDT [ , 2(D- 2) , + dD (D -1)<J>(TT ,D,1)- (aa'fd2) <J>(TT ,D,1) 

(D- 2) I ] + (aa' fd2) <I>(TT 'D, 1) ( 4.69) 

and 

A= -Po(a'/d)D<I>(TT1,D,a'fd) + p~(afd)DT<J>(TT',D, 1)]. ( 4. 70) 

For symmetric pairs the expressions reduce to 

- Po Qo = -(<J>(T,1,1)- <J>(T,2, 1)] 
a 

(4.71) 

Ql = Po[(D -1)<1>( T, D, 1)-2(D- 2)<1>( T, D -1, 1) + (D- 2)<1>( T, D- 2, 1)] ( 4. 72) 

A = -Po <I>( -T, D, 1). ( 4. 73) 

Note that in three dimensions Q1 diverges as T, T
1 -+ 1. This is non-physical 

and occurs because the neutralizing charges have not been included yet. There 

is no divergence in two dimensions or in the three dimensional transverse case 

because these solutions are already neutral and are in fact the physically valid 

solutions. 

The physically valid solution for a pair of spheres in a longitudinal field is 

obtained by linear superposition of the above solution with the pair capacitor 

solution. The net charges on the spheres in the pair capacitor are chosen to 

exactly cancel the net charge in the above solution. The corrected expression for 

Ql is 

Q~orrected = Q
1 
+ (C22"Dn- C21"D12)Qo + (Cn"D12- C12"Dn)Q~ 

C12C21- CnC22 
(4.74) 

where the coefficients of capacitance and polarizability are given in equations 

( 4.55) and ( 4.62). 
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For touching spheres, in the symmetric case, this reduces to 

Q~onected 

where 

- VQo 
- Ql--c 

2Li3( r) log(1 - r) + Li2 ( r )2 

- Po Tlog(1- r) 
( 4. 75) 

2rEd_3 
Po=8(3-r)" (4.76) 

In particular, the induced dipole moment is always finite. 

uncorrected values of Q1 are compared in Figure 4.7. 
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Figure 4.7: The value of Q1 as a function of T is shown before (dashed 
curve) and after (solid curve) the superposition of a neutralizing solution. 
The unneutralized solution diverges at T = 1. The neutralized solution still 
has an infinite slope at T = 1 but its value is finite (~((3)). 

The longitudinal and transverse polarizabilities, PL and PT, introduced in 

Chapter 3 can now be written as exact series where 

PL = (Qt+ Qi)/EdD 

PT = (Pl +FD/EdD 
(4.77) 

and the corrected values of Q1 are used in three dimensions. For touching cylin

ders with infinite contrast (r = 1) the induced dipole moments are PL = ((2)/2 

and PT = ((2)/4. For touching spheres with T = 1 the induced dipole moments 

are PL = ((3)/4 and PT = 3((3)/32. 
In two dimensions the results agree with the low order approximations over the 

entire range where the low order results are accurate. In three dimensions exact 

agreement is only expected for T = 1. The effect of replacing the continuous line 

charge neutralizing distribution with a point charge (the imaging approximation) 

can be seen in Figures 4.8 and 4.9, where the above imaging result is compared 

to the low order approximation. The low order approximation is expected to 
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become inaccurate as r approaches 1 but this is also the region where the imaging 

approximation is most accurate. For small values of r the imaging approximation 

is not expected to be accurate. However, the very first image (that of the uniform 

external field) dominates for small r (since each successive image is a factor of r 

smaller), and this image was calculated exactly. Thus, agreement is expected for 

small r, as shown in the figures. 
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Figure 4.8: The longitudinal polarizability for dielectric spheres obtained by 
approximating the continuous neutralizer by a point charge (dashed line) 
and the exact results obtained from numerically inverting matrices (solid 
curve) are compared over the range of r. 
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Figure 4.9: The transverse polarizability for dielectric spheres obtained by 
approximating the continuous neutralizer by a point charge (dashed line) 
and the exact results obtained from numerically inverting matrices (solid 
curve) are compared over the range of r. 

The above results demonstrate that the imaging approximation works well 

in three dimensions. In the next chapter the imaging rules for line charge dis

tributions will be used to determine the asymptotic and resonant behaviours of 

cylinder and sphere pair interactions. The imaging approximation will be used 

there as well. 
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4.5 Intersecting Pairs 

The imaging rules for charges can also be used for intersecting pairs of cylinders 

or spheres in the limit of infinite contrast. The analysis is identical to that for 

non-intersecting pairs except that the parameter .X appearing in ( 4.40) is now 

complex and the parameters{) and{)' are replaced by i{) and iiJ'. The results are 

w~ sin( n{) + niJ') - w0 sin( m9 + niJ' - {)) 
sin( iJ) 

w1 sin( n{) + n{)' + {)') - w~ sin( n{) + niJ') 

sin( iJ') 

W2n -

W2n+l -

All the other results of Section 4.3 follow analogously. Further 

d = acosiJ +a' cos{)' 

0 = a sin{)- a'siniJ' 

( 4. 78) 

( 4. 79) 

and therefore{) and{)' have the geometric interpretation shown in Figure 4.10. 

Figure 4.10: Geometry for a pair of intersecting cylinders or spheres. The 
solid circular arcs represent the physical boundaries of the inclusion formed 
by the intersecting pair. The radii a and a' and the distance between the 
centres d form a triangle whose base angles are given by the parameters {}, 
{}' appearing in the text. 

Unlike non-intersecting pairs, the system of image charges generated by the 

expressions ( 4. 78) represents a physical solution only if all the image points lie 

within the region common to both members of the intersecting pair. This only 

occurs for certain values of {) and {)' and further in these cases there are only a 

finite number of images. If{) + {)' = N 71' then there are 2N + 1 image charges. 
+1 

If the initial charge is placed at the centre of one of the cylinders or spheres, the 
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final charge will fall at the centre of the other cylinder or sphere and no further 

image charges will be needed to satisfy the boundary conditions. 

If t? + t?' = p7r for p and q integers then there are still a finite number of image 
q 

charges but some of them lie outside the common region and so cannot be used 

to represent the external potential. For other values oft?+ t?' there are an infinite 

number of image points lying on the line through the centres of the pair, and 

these points densely cover that line. Similar considerations apply to the images 

produced by a uniform external field. 

The locations of the images satisfy 

a2N-n +a~= d ( 4.80) 

showing that the image points in the sequence {an} are at the same physical 

locations as those in the sequence {a~}. If the image charge at each image point 

is to have a unique value then the above relation implies 

I 
q2N-n = qn. ( 4.81) 

This relation will always hold true if q0jaD-2 = q~ja'D-2 . Thus, unlike before, 

q0 and q~ cannot be specified independently. This is reasonable because for sepa

rated inclusions the net charge on each inclusion can be specified independently, 

whereas here there is only one inclusion and hence only one net charge to be 

specified. 

4.5.1 Charge and Dipole Coefficients 

The charge coefficient 6 is defined as ratio of the total charge on the intersecting 

pair to the charge qo. 

2N 

6 = Qo/qo = 2: qnfqo 
n=O 

_ smv _ smv 
4 82 

N [ · .o ] D-2 N-t [ . _0 ] D-2 

~ sin( nt? + nt?' + t?) ~ sin( nt? + nt?' + t? + t?1) G • ) 

The coefficient 6' is defined analogously. Only for a discrete set of values, 

d = 2acos[·n'f(2N + 2)] are there solutions of the form given above. 

The ratio of total charge to q0 for non-inter3ecting pairs (assuming the same 

relation between qo and q~ as for intersecting pairs) is given by 6 = C11 + C21 + 

(a'/ a )D-2 [ C12 + C22]. (The results of the previous sections are used and care is 

taken in performing the limit r, r'-+ 1.) 

In two dimensions 6 is equal to 1 for all separations regardless of whether 

the cylinders are intersecting or not. The results for three dimensions are given 
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Figure 4.11: The charge coefficient of a sphere pair as a function of sep
aration. For intersecting spheres ( d < 2a) the solid circles indicate those 
values of the separation for which a finite sequence of images occurs and the 
results in the text apply. For non-intersecting spheres ( d > 2a) results can 
be obtained for all separations. As the separation increases C tends to 2. 
For d = 2a (touching spheres) C = 2log 2. 

in Figure 4.11. Both the non-intersecting and intersecting results agree in the 

touching limit: C = 2log 2 for d = 2a when a = a'. 
The dipole coefficients V and iY are defined as the ratio of the dipole moment 

of the system to the charges q0 and qb respectively. 

2N 2N 

2:: qnan = 2:: q~(d- a~)= qoV = dQo- q~i>'. ( 4.83) 
n=O n=O 

The above dipole moment has been calculated with respect to the centre of the 

cylinder or sphere with radius a. The net charge on the system is non-zero 

and therefore the dipole moment of the system depends on the origin to which 

the moment is referred. For the symmetric case, the moment about the point 

midway between the centres is zero. Therefore, the moment about the centre of 

the inclusion with radius a is !dQ0 or V = !dC. 

For non-intersecting pairs, the total dipole moment referred to the centre of 

the inclusion with radius a is Q1 + (dQ~- QD and therefore (remembering the 

relation between qo and qb) 

V = (Du - D21 + dC2t) +(a' ja)D-2(D12- D22 + dC22). (4.84) 

In the symmetric case this reduces to !dC. 

4.5.2 Intersecting Pairs in Uniform Field 

For an applied uniform field the image dipoles can be obtained by analogy with 

the above derivation and satisfy 

I 
P2N-n = Pn 
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and 

I D '/ ID E poa =p0 a =. ( 4.86) 

For a longitudinal field 

Q _ f_ [ (sin ~)D (D- 2)(sin ~)D-2 sin(n~ + n~')2 ] 
1 - Po n=O sin( n~ + n~' + ~)D + sin( n~ + n~' + ~)D 

N-1 [ sin ~(sin ~')D-1 
+Poi: . . . ···-

n=O 

(D- 2) sin(n~ + n~' +~)(sin ~')D-2 sin(n~ + n~' + ~')] ( 
4 87

) 
+ sin(n~ + n~' + ~ + ~')D · 

and in three dimensions the un-neutralized charge and corrected dipole moment 

are 

Q _ Po { N sin~ sin(n~ + n~') N-
1 sin ~sin(n~ + n~' + ~')} 

0
- a E sin(n~ + n~' + ~)2 + E sin(n~ + n~' + ~ + ~')2 

Q~orrected = Q 1 _ QoVJC, 

where C and V were given in the previous section. 

For a transverse field the dipole moment is 

P- =u _ =u N [ · .o ] D N-1 [ · .o ] D 
1

- PoE sin(n~ + n~' + ~) PoE sin(n~ + n~' + ~ + ~') 

( 4.88) 

( 4.89) 

( 4.90) 

The longitudinal and transverse dipole moments for both intersecting and 

non-intersecting cylinders and spheres are shown in Figures 4.12 and 4.13. 

4 

3 

Pja2 2 

1 

00 

. ·\,_ 

. .. -
2a 6a d 

Figure 4.12: The upper set of points and curve represent the longitudinal 
polarizability for a pair of cylinders. The lower set of points and curve repre
sent the transverse polarizability for a pair of cylinders. For zero separation 
both polarizabilities are a2 • For infinite separation both polarizabilities are 
2a2 • For the touching case PL = ~1r2a2 and PT = ~1r2a2 • 

In both two and three dimensions the tran.~ver8e polarizability decreases uni

formly from 2aD for infinitely separated pairs to aD for completely overlapping 

89 



5 

41 • 
• 

3 
Pfa3 

21 .-
1 

00 2a 6a d 

Figure 4.13: The upper set of points and curve represent the longitudinal 
polarizability for a pair of spheres. The lower set of points and curve repre
sent the transverse polarizability for a pair of spheres. For zero separation 
both polarizabilities are a3 • For infinite separation both polarizabilities are 
2a3 . For the touching case PL = 4((3)a3 and PT = ~((3)a3 . 

parrs. However, the longitudinal polarizability of a touching pair is higher than 

the polarizability for both intersecting and separated pairs. The sharp cusp in 

the results suggests that a narrow neck between intersecting pairs or a small gap 

between separated pairs enhances the polarizability. As the width of the neck 

or gap is decreased the polarizability increases. This section has only considered 

intersecting conducting spheres and cylinders (i.e. r = 1 ). A suitable gener

alization of the method of images to intersecting dielectric pairs has not been 

found. 

4.6 Summary 

Discrete sequences of image charges and dipoles have been used to obtain exact 

and approximate results for pairs of cylinders and spheres under a number of 

different situations. These solutions are all in the form of infinite series which 

can be evaluated in closed form in certain limiting cases. However, although an 

infinite series is much easier to handle than the inversion of an infinite matrix 

these results cannot easily describe the limiting behaviour for small but finite 

separations of cylinders and spheres. Also, it is difficult to obtain resonances 

from these series representations. 

Results for intersecting pairs of cylinders and spheres were also obtained and 

used to examine the variation of the polarizability of a pair with its centre to 

centre separation. The greatest polarizability occurs in the longitudinal direction 

when the pair is just touching and decreases rapidly with both separation and 

increasing overlap. In the next chapter, the imaging rules for line distributions are 

used instead of discrete charges. The results are obtained in the form of integrals 
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rather than infinite series. These integrals can be evaluated in terms of special 

functions with known asymptotic and resonant properties. It is these solutions 

which will be used to construct the solutions for dense arrays of cylinders and 

spheres. 
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Chapter 5 

RESONANT AND 
ASYMPTOTIC BEHAVIOUR 
OF PAIR SOLUTIONS 

5.1 Introduction 

The imaging rules for line charge distributions are used to develop and solve 

functional equations giving the line charge densities. These functional equations 

possess a complete family of solutions which can be used to represent (by su

perposition) the general solution to the electi"ostatic interaction between pairs of 

cylinders or spheres in an external field. The fields and multipole moments can 

then be represented as integrals over these line charge distributions. This repre

sentation is much easier to use than the infinite series obtained in the previous 

chapter. Expressions are obtained for the potential and for the surface charge 

distributions. The pair solutions are analysed to obtain their asymptotic and res

onant behaviour. The major advantage of this formalism is that the asymptotic 

(or divergent) behaviour of the general solution is easily isolated and studied. 

The asymptotic formulae obtained are uniformly valid for small separations 

and large contrasts. Previously, only the separate limiting cases of close sep

aration with infinite contrast or zero separation with large contrast had been 

considered. Batchelor and O'Brien (1977) obtained the asymptotic behaviour 

of the interaction between pairs of nearly touching conducting spheres, touch

ing dielectric spheres and also spheres which had a circle of contact (intersecting 

spheres). They obtained the results by making plausible assumptions about the 

field in the vicinity of the gap or contact point between the spheres. Similar 

methods had been used by Keller (1963) and by Keller and Sachs (1964) for 

conducting spheres or cylinders and also for dielectric cylinders. The method of 
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images was used to obtain the asymptotic behaviour for conducting spheres by 

Suen et al. (1979). The asymptotic behaviour of conducting cylinder pairs has 

also been obtained using conformal mappings (McPhedran, 1986). The behaviour 

of touching dielectric cylinders has been given by McPhedran and Milton (1987). 

For specific values of the dielectric contrast (which depend on the separation) 

the integrals obtained by this procedure diverge. These values of the contrast 

correspond to the resonant values of the contrast calculated in Chapter 3. The 

resonances of cylinder pairs have been studied by McPhedran and Perrins (1981) 

and McPhedran and McKenzie (1980). The resonances of sphere pairs have been 

studied by Olivares et al. (1987). The resonances are related to absorption 

properties in the next chapter. 

5.2 Line Charge Images 

5.2.1 Functional Equation 

The image rules for line charges are applied to the two cylinder or two sphere 

problem. The charge distribution in each inclusion is referred to the centre of 

the inclusion and the coordinates x and x' are measured along the line joining 

the centres of the inclusions towards the other inclusion. Thus, if >.( x) is the 

line charge distribution in the left cylinder or sphere and >.'(x') is that in the 

right cylinder and the centre to centre separation is d then these distributions are 

mutual images of each other if 

12 
>.'(-a-) -

d-x 
a2 

>.L _,) -

1 d- X )4-D ).(X) -r ( a' 

I ') d-x )4-D>.'(x . -r( 
a 

(5.1) 

These functional equations were solved by the following method. First, the 

fixed points were found and these corresponded to the limit points x = d-x' = a00 

and x' = d- x = a~. At these points the functions >.( x) and >.( x') must be either 

zero or infinity for the equations to hold. Therefore, a power law behaviour was 

assumed near these points. This was in fact sufficient to find an exact solution 

and from this an infinite family of solutions. 

A complete set of solutions to the equations is given by 

An(x) 
1 a 1 - cr>( ;)-•"(aoo-x)""-2+D2(d-a~-xr•n-2+D/2 

>.~(x') 
1 a' 

- -c( .:..1tr'>( ;,' )-•"(a:.O- x')<n-2+D/2(d- aoo- x')-•n-2+D/2 

(5.2) 
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where 
1 log( TT

1
) + 2imr 

.Sn =- . 
2 log(a00 a:X,/aa') 

(5.3) 

The arbitrary constant c is set equal to 1 for simplicity. In Appendix F it is 

proved that this family of solutions forms a complete and orthogonal basis set 

for the solutions to the functional equation. The real part of An(x) for n = 0, 1,2 

and D = 2, 3 is shown in Figure 5.1. 

The general solution can be written 

00 

A(x) = L AnAn(x) 
n=-oo (5.4) 00 

A'(x') = L AnA~(x'). 
n=-oo 

The coefficients An are determined by the details of the applied field. 

The moments are given by 

Q1 = {~ x1A(x)dx 

¢: = ['oo(-x'YA'(x')dx'. 
(5.5) 

The above integrals can be expressed in terms of the hypergeometric function 

(Abramowitz and Stegun, 1965) 

Qt = L Anv'T(aoo )'nai+Iav-4 r(l + l)r(sn - 1 + D/2) 
n a oo r(l+sn+D/2) 

a2 
xF(I + l,sn + 2- D/2; I+ sn + D/2; ";) (5.6) 

a 

Q' = L( -It Anv'T'(a:X, )'n( -a' )l+la'v-4r(l + l)r(sn -1 + D/2) 
In a1 00 r(l+sn+D/2) 

a'2 
xF(I + l,sn + 2- D/2; I+ sn + D/2; 00

2 
). (5.7) 

a' 

The equivalence with the discrete images can be made by letting the contin

uous charge distributions be the sums of discrete delta functions 

A(x) = LqnS(x- an) 
n (5.8) 

A'(x') = Lq~S(x'- a~). 
n 

Substituting the above sums into the functional equations and requiring self con

sistency leads precisely to the recurrence relations derived in the previous chapter. 

As an example, the coefficients An are determined for the two cases studied 

in the previous chapter: a pair capacitor and a pair in a uniform external field. 
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An(x) 

n = O,D = 2 

An(x) 

n = l,D = 2 

An(x) 

n =2,D =2 

II 
I 

X 

X 

X 

An(x) 

n = O,D = 3 

An(x) 

n = l,D = 3 

An(x) 

n = 2,D = 3 

I 
I 

Figure 5.1: Functional equation solutions for pairs of cylinders (D = 2) or 
spheres (D = 3) for the modes n = 0, 1, 2 (from top to bottom). The charge 
distributions all diverge at the point x = a00 • The solution for n = 0 is also 
the envelope for all the other solutions. As n increases the solutions oscillate 
faster and the oscillations also become faster and larger as x approaches the 
limit point. 
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For a pair capacitor the charge distribution near the centre of each sphere or 

cylinder is given by ,\(x) = q06(x) near x = 0 and A'(x') = q~8(x') near x' = 0. 

Using the expressions derived in Appendix F the coefficients An are given by 

An = 
2-D(d- aoo - a;,.,) a , 

aoo )-•· aooaoo) 
.,(-;;- 2,;;'iog( oo' d I 

12-D(d - aoo -
00 I a I 

1 aoo )-•• aooaoo) 
-(-1tqo(-;,- 2v'?log( aa' 

(5.9) 

For a pair in a uniform field the initial image of the field is a point dipole at 
the centre of each inclusion. The charge distribution is given by ,\(x) = Po6'(x) 

near x = 0 in the left inclusion and ,\'(x') = -p~8'(x') near x' = 0 in the other 
inclusion. Using the expressions derived in Appendix F the coefficients An are 
given by 

Po(aoo)-••(d- aoo -a:X,)[(l- D/2)(d- a:X, +~oo) -sn(d- a00 - a:X,)] 

a 2 '- D I ( aooaoo ) yTa og --
1
-

aa 

An = 

+(-l)n 1 (a:X, )-•· (d- aoo - a:X,)[(l- D /2)( d- aoo + a:X,)- sn(d- a00 - a:X,)]_ 
Po a' a a' 

2Ra'D log(~) 
a a' 

(5.10) 

In three dimensions, the charge neutrality condition can be satisfied by using 

a superposition of equations (5.9) and (5.10) with q0 and qb appropriately chosen. 

The real advantage of the functional equation method will become apparent 

when the asymptotic behaviour of the solutions is analysed. 

5.2.2 Limiting Forms for Touching Pairs 

The limiting forms of the solutions to the functional equations for touching pairs 

must be obtained carefully because as the separation parameter f) goes to zero 

the contrast to separation ratio s goes to infinity. 

The line charge distribution becomes 

where 

1 a 
s.(- ---) 

An(x) = y'T(a- x)D-4e 2 a-x 

a' 
Sn = -d[log(rr') + 2imr]. 

The corresponding multipole moments become 

Q1 = y'Te-f5•ai+D-3f(l + 1)U(I + 1,4- D,Sn) 
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where U(a, b, z) is a confluent hypergeometric function (Abramowitz and Stegun, 

1965). Corresponding results are obtained for ..\'(x1
) and Qf. 

If n = 0 and the pair is symmetric then the moments reduce to 

Q1 = ra1+D-3r(I + 1)U(l + 1,4- D,-logr). (5.14) 

5.2.3 Integral-Functional Equation 

If the continuous line charge neutralizing distribution is included in three di

mensions, then the functional equations are modified by the addition of integrals 

over the image distributions. Using the expressions in Table 4.2 the modified 

equations are 

a2 
A(d-x') -

12 

-r( - x )A'(x1) + T ~ A1(u1)( - x )!(T+Jldu1 d I 1~ d I 

a a(E + 1) x' d- u1 

A'(-a-) -
d-x 

-r'(d-x)A(x)+ T' r·~ A(u)(d-x)!(T'+J)du. 
a' a'(e'+1)lx d-u 

(5.15) 

No closed form solutions to these equations were found. However, two possible 

series solutions are considered. The first is a perturbation expansion in inverse 

powers of E + 1 and E' + 1, starting with the solution A(O) ( x) to the functional 

equations without the integrals. 

The solution is written 

oo AUl(x) 
A(x) = ~ (H 1)i (5.16) 

and similarly for A'(x'). At each step in the perturbation method a functional 

equation is obtained for AU+Il(x) containing an integral over AUl(x) which itself 

is assumed to have been determined at the previous stage: 

2 d I a' d I 

A(j+I)( a ) = -T( -x )A'(j+Il(x')+2:: f ~ A'Ul(u')( -x )!(T+!)du'. (5.17) 
d - x' a a lx' d- u1 

The companion equation is obtained by interchanging primed and unprimed vari

ables. Unfortunately, these inhomogeneous functional equations are no easier to 

solve than the original integral-functional equations. 

Alternatively, the equations possess a singular behaviour near x = a00 and 

solutions of the form 
00 

A(x) = :L:AiCaoo -x)'•-!+i (5.18) 
j=O 

can be sought. The parameters Sn are the same as before and the equation 
possesses an infinite family of solutions n = 0, ±1, .... Substituting into the 
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equations and expanding everything in powers of ( a00 - x) and (a:, - x') and 
equating powers gives a set of recurrence relations for A; and Aj: 

(a: ?'• f Am a;:;,( -1)M-m (sn ~ ~:, M) = -rAM(d- a:,.,)M 
m=O 

M-1 A' (d 1 )m M-m-1 ( 1)M-m-l-1 
_ """' T m - aoo """' ct(r-1)) ct(r+1)+M-m-k) - . 

L.. £ + 1 L.. k M-m-k-1 8 _ ! + M _ k 
m=O k=O n 2 

( 5.19) 

At each stage, A;+1 is given in terms of all the previously obtained A; and Aj. 

An analogous relation gives Aj+1 in terms of the previously obtained A; and Aj. 

The coefficients rapidly become very complicated. 

5.2.4 Intersecting Pairs 

For intersecting pairs the solutions to the functional equations become 

i11 
>..n(x) = (x2- 2axcos!9 + a2)D/2-2( ae. - x )•~':.> 

ae-u?- x 
(5.20) 

where !9 and !9' are the same as in Section 4.5. A single charge distribution is 

sufficient for both cylinders or spheres because they are intersecting and form a 

single inclusion. 

If the coordinate X is measured from the foot of the altitude of the triangle 

shown in Figure 4.10, then X = x - a cos !9 and the solutions can be written in 

the nice form 
mr 

>..n(X) = (X2 + h2)D/2-2(: ~ ~~)!9 + !9' (5.21) 

where h = a sin !9. The real parts of these solutions are shown in Figure 5.2. 

5.3 Potential Fields and Surface Charges 

5.3.1 Two Dimensions 

The potential is written as a sum over the various modes with coefficients An 

1 00 

V(x,y) = -
2

- L AnVn(x,y). 
71"Eb n=-oo 

(5.22) 
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Figure 5.2: The real parts ofthe functional equation solutions for intersecting 
pairs for the modes n = 0, 1, 2 (from top to bottom) in both two (left) and 
three (right) dimensions. 
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The potential at any point ( x, y) is given by 

a' 
(1-r)(-1t+1r't( ";'t'•I'(d-x,y,sn) x2+y2 <a2 

a 

Vn(x,y) = 
(1- r')rt(aoot'"l(x,y,sn) 

a 
(d-x)2+y2<a'2 

, a 
r'i( ~ r·· I(x, y, Sn) 

a ' 
+( -1 t+lr't(a";' r·· I'( d- x, y, sn) 

a 
otherwise 

(5.23) 

where 

I(x, y, s) =fa"~ (a00 - u)'-1(d- a:X,- u)-•-1 log .j(x- u)2 + y2 du (5.24) 

and a corresponding integral for I'(x, y, s). These integrals can always be evalu

ated in terms of hypergeometric functions and the results are given in Appendix 

G. 
The surface charge density distribution is given by the discontinuity in the 

normal derivative of the potential: 

1 00 

21r I: Anu(9,sn) 
n=-oo 

(5.25) 

where 

u(e, sn) - y'T( aoo r·· aa I( a cos e, a sine, Sn) 
a a 

a' a 
+( -1t+1rH( _21. r··-a I'(d- a cos e, a sine, sn)· (5.26) 

a' a 

5.3.2 Three Dimensions 

As in two dimensions, the potential is written as a sum of terms: 

1 00 

V(x,y,z) = -- I: AnVn(x,y,z). 
4'1rEb n=-oo 

The potential at any point ( x, y) is given by 

Vn(x, y, z) = 

a' 
(1 - T )( -1t+lr't( ";' r•• J'( d- z, p, Sn) 

a 

(1- r')rt(aoor••J(z,p,sn) 
a 

l(aoo)-••J( ) r> - z,p,sn 
a ' 

+( -1t+lr't(a00 r•• J'(d- z, p, Sn) 
a' 

100 

(5.27) 

p2 + z2 < a2 

p2 + ( d - z )2 < a12 

otherwise 

(5.28) 



where 
I I 

1
·~ (aoo- u)•->(d- a;,- u)-•-,. 

J(z,p,s) = du 
o VP2+(u-z)2 

(5.29) 

and p2 = x 2 + y2
• Note that azimuthal symmetry has been explicitly assumed 

here. Although these integrals cannot always be written in terms of hypergeomet

ric functions or other reasonably well known special functions, their asymptotic 

behaviour can be calculated and is given in Appendix G. 

The surface charge density distribution for three dimensions is given by 

1 00 

4?r I: A.a(e,s.) 
n=-oo 

(5.30) 

where 

a(e, s.) _ v'T(oot•·: J(acos0,asin0,s.) 
a va 

a' 8 
+( -1)"+1n/;=l( _$. r··,J'(d- a cos e, a sine, s.). (5.31) 

a' ua 

5.4 Asymptotic Behaviour of Moments 

The asymptotic behaviour of the moments given by the functional equation so

lutions can be determined using the asymptotic behaviour of the hypergeometric 

functions (Appendix G). The natural variables to work with during the asymp

totic calculations are the radius a, the centre-to-centre separation d, the separa

tion parameter iJ (defined in Section 4.3), the ratio of the inclusion permittivities 

( = f! / e, the ratio of the radii TJ = a/ a' ~ iJ' fiJ' and the separation to contrast 

parameters s •. However, the final results are expressed in terms of physical and 

geometric parameters only. In particular the gap size h = d- a - a' is related to 

the other variables by 
1 

h ~ 2a(1 + TJ)iJ2
• (5.32) 

In two dimensions 

Q1 ~ L;A.a1
-

1 {~ + l[log(2iJ) + 'Y- 1/;(2) + ,P(l + 1) + ,P(s. + 1)J} 
n 2snu 

- A a'
1
-

1 
{ 1 } Q; ~ ~ ( _;)l+n+I 2s.iJ' + l[log(2iJ') + 'Y- 1/;(2) + ,P(l + 1) + ,P(s. + 1)] . 

(5.33) 

The parameter s. depends on the variables iJ and f)' and also on the variables e 

and f!. Asymptotically, the combination 

(.a .a') €b €b . s. u + v ~ - + - - 2zn?r 
e e' 

(5.34) 
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tends to zero if n = 0 but remains finite for non-zero n. The behaviour of the ,P 
function must also be considered. For large s, ,P(s + D diverges logarithmically, 

but the quantity ,P(s + !) -log(s + !) remains finite for all s. Thus, the terms 

within the square brackets can be rewritten 

log(219sn + 19) +finite terms. (5.35) 

This quantity diverges logarithmically only if n = 0. 

In the expression for the moments there is only one term which diverges as 

the inverse power of 19 or e, the remaining terms being finite or diverging only as 

log 19 or log e. Thus, only the coefficient A0 is needed to describe the asymptotic 

behaviour. The other coefficients merely describe corrections to this behaviour. 

Of course, Ao depends on the specifications of the problem and may itself depend 

on the variables 19, 19' and Sn· This dependence for two important cases, a fixed 

applied field and a fixed potential difference, is calculated in the next section. 

The dipole moment is of most interest and its dominant asymptotic behaviour 

is given in terms of the physical parameters by 

Q
1 
~ Ao dee' 

2a'( e + e')eb 
Q' ~ Ao dee' . 1 2a(e + e')eb· 

(5.36) 

In three dimensions the asymptotic behaviour of the moments is given by 

- '"""' I 1 Q1 ~ LJ Ana [-2-y- 1/;(1 + 1)- ,P(sn + 2) -log(219)] 
n 

Qf ~ I:(-1)1+n+IAna'1[-2-y-,P(I + 1)- ,P(sn + ~) -log(219')]. 
n 2 

(5.37) 

As above, the dominant singularity can also be written 

log(219sn + t?). (5.38) 

If n is non-zero, the argument of the logarithm is always finite and non-zero. If 
n is zero, then the singularity is either log 19 or log e. 

The dipole moment is of most interest and its dominant asymptotic behaviour 

is given by 

- eb eb ~d Q1 ~ -Aoalog[- +- + -] 
e e' 2aa' 

-, t eb eb {gd Q1 ~ -Aoa log[-+-+ -
2 

-]. 
e e' aa' 

The behaviour of Ao in three dimensions is discussed in the next section. 

(5.39) 

In the limit t? = t?' = 0, e = e' = oo, the multipole moments in both two and 

three dimensions satisfy the relations 

Q1 = Q1a1- 1 

Q-, _ Q-'a'l-1 
I - 1 • 
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The above set of multipole moments describe the resonant charge distribution 

on a touching pair of conducting cylinders or spheres and corresponds to a special 

case of the exact solutions obtained in Section 2.10 for the homogeneous matrix 

equation. 

5.5 Potential Differences 

In a uniform external field the coefficients An are given by (5.10). The asymptotic 

behaviour is 

An~ -a
2
:a;' {a(1- D/2- Sn11] + (-1ta'(1- D/2- sn19']}. (5.41) 

In two dimensions the coefficient A0 tends to 

aa' 2 fb fb 
Ao ~ 4E(-) (- + -). 

d e e' 
(5.42) 

In three dimensions the result is 

Ao ~ Eaa'. (5.43) 

The above results are obtained when the external field is kept fixed and the 

separation or contrasts of the pair are varied. Under these circumstances the 

potential difference between the cylinders or spheres also varies. The variation 

of potential differences is calculated below and in the next chapter the asymp

totic results will be used for structures containing many cylinders or spheres. In 

such cases it is appropriate to require that the potential differences between the 

cylinders and spheres be kept fixed. There are a number of potential differences 

associated with cylinder or sphere pairs that will be of some importance in the 

asymptotic analysis. In what follows the parameter s0 is abbreviated to s. Only 

the leading order terms are given. When the leading order is logarithmic the 

term of order unity is also given. 

The first important quantity is the potential difference across the gap be

tween the pair. The potential difference can be written in terms of the functions 

I(x,y,s) and J(z,p,s), and using the asymptotic behaviour of these functions 

(Appendix G) the potential difference is 

~Vg.p ~ Ao d 1 + s- 2sF(s) 
27rfb 2aa' s(1 + 8 ) + 0( 19) (5.44) 

in two dimensions and 

~Vg.P ~ Ao d -1- 2s + 4sQ(s) 
47rfb 2aa' (1 + 28) + 0( 19) (5.45) 
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in three dimensions, where the functions :F and g are given in Appendix G. 

The next important quantity is the potential difference between the centre of 

a cylinder or sphere and the edge of the gap. Using the asymptotic results from 

Appendix G 

6. Vint(O) = V( a, 0) - V(O, 0) (5.46) 
-e'd.Ao 1 Sa'h 

~ 27reb(He')aa'(1+s)[(1 +s)(l+2log( ad )+1/>(s+ 1))-:F(s)] 

in two dimensions and 

6. Vint(O) = V(O, 0, a)- V(O, 0, 0) 
Ao 2e'ds9( s) 

~ --
41l"Eb ( e + e')aa'(1 + 2s) 

(5.47) 

in three dimensions. 

Similar expressions can be obtained for the potential difference inside the other 

sphere or cylinder, 6. V';n1(0), by interchanging primed and unprimed quantities. 

Finally, the potential difference between the centre of a cylinder or sphere and 

a point on its boundary in a direction e or (6, .P) from the line joining centres, 

will be important in the next chapter. It is given by 

6.Vint(e) - V(acos6,asin6)- V(O,O) 

....,-,i....,d_Ao7-....., log[2 sin e l ~ 

27reb( e + e')aa' 2 

in two dimensions and 

6.Vint(6) = V(asin6cos.P,asin6sin.P,acos6)- V(O,O,O) 

Ao { 1- 2sin~ 1 ffjhd 
~ -4- . 62 [i+l/>(s+-2)+log -,] 

1l"Eb ea sm 2 aa 

1 [(a+ d) sin~+ J4adsin
2 ~ + a'2]} 

+ ·6log ·6 easm 2 8dsm 2 

(5.48) 

(5.49) 

in three dimensions provided e is non-zero. If e = 0 then the results from the 

previous paragraph apply. It is important to remember that the analysis in three 

dimensions was made possible by neglecting the integral term in the functional 

equation. The potential difference (5.49) is of comparable order to the neglected 

integral and can itself be neglected in a first order asymptotic analysis. The 

effects of neglecting (or retaining) this term are analysed in Chapter 7. 

Similar expressions can be obtained for the potential difference in the other 

sphere or cylinder, 6.V';n1(6), by interchanging primed and unprimed quantities. 

The potential difference between the centres of the cylinders or spheres is 

given by 

6. Vpair = Vint(O) + Vg.p + V,~,(O). (5.50) 
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Using the results above 

.6-V.air ~ --- log(-)--+ 1 + -1og(8h/d) + ,P(s + 1) Ao d { e-e' a 1 1 } 
P 27r€b aa' 2( e + e') a' 2s 2 

(5.51) 

in two dimensions and ( ) 
.6-V,air ~ -A: 1 

+ '7 (5.52) 
7r€ba 

in three dimensions. These expressions relate A0 to a fixed potential difference 

in the same way that (5.42) and (5.43) relate Ao to a fixed applied field. 

5.6 Resonant Solutions for Pairs 

The continuous image charge distributions derived in Section 5.2.1 have a non

integrable singularity when the parameter s satisfies s ::; -1 in two dimensions 

and s ::; -3/2 in three dimensions. Negative values of s correspond to negative 

values of the dielectric constant and it is known (Bergman, 1978a; Stroud et al., 

1986) that the poles of the effective dielectric constant (considered as a function of 

e) lie on the negative real axis. Meaning can be given (by analytic continuation) 

to quantities normally obtained by integrating over such charge distributions. 

If f is some function for which the integral 

I(f,s)= fo"~(a00 -x)•J(x)dx (5.53) 

is well defined for all positive s and f is analytic at a00 , then, using the Taylor 

series expansion, 
I(f,s) =- f:: (-1ta~n+IJ(nl(aoo) 

n=O - ~ · 
(5.54) 

This expression is defined for all s except 8 = -1, -2, -3, .... These exceptions 

are the resonant values of 8. 

This expansion is now applied to the integrals appearing in the solution to 

the pair problem. The integral I(x,y,s) defined in (5.24) can be expanded in a 

series of resonant solutions which are given by 

In(x, Y) - lim (sm+n)I(x,y,sm) 
"m-+-n 

( -1)" an 
·-'---:','-a n [(d- aoo- a:X,r1 log j(x- aoo)2 + y2]. (5.55) 

n. aoo 

Likewise, the integral J(z,p,s) defined in (5.29) can be expanded in a series of 

resonant solutions given by 

Jn(z,p) = 1 
•mE~-~ (sm + n + 2)J(z, p, Sm) 

(-1)" an (d-aoo-a:X,)" 
--[ ]. 

n! aa:;, j(z- aoo)2 + p2 
(5.56) 
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The primed quantities are obtained by analogy. 

The resonant potential fields can be constructed from the resonant functions 

I,.(x,y), I~(x,y), J,.(z,p) and J~(z,p) as in the preceding section. The resonant 

surface charge density distributions can also be constructed similarly (Appendix 

G). These resonant solutions and charge distributions correspond to fields and 

charge distributions that can exist in the absence of any applied field: they are 

solutions to the homogeneous problem. 

In two dimensions the resonances occur for 

Zffi11" 

s = -n + log( aooa'oc,/ aa') (5.57) 

which corresponds to 

'TT
1 = (aooa'oofaa')-2

n. (5.58) 

The above expression is the exact result that was compared with the numerical 

series in Section 3.3.1 the resonances of a pair of cylinders. 

In three dimensions the resonances occur for 

which correspond to 

1 im1r 
s = -n - - + ,----,----..,---:7" 

2 log( a00 a'oc,/ aa') 

1 ( 1 / ')-2n-1 TT = a00 a
00 

aa . 

If e = e' and a = a' the resonances occur at the points 

1 ± (aoo/a)-2n+2-D 
€ = ---:'--'-'"'-:--"--::-:-::--;:: 

1 'f (aoo/a)-2n+2-D 

These values all lie on the negative real axis. 

In general, e and e' lie on the hyperbolae 

where 
e,. 

€b 

(e + e,.)(e' + e,.) = e~- e~ 

(a
00

a'..x,jaa')-2n+2-D + 1 
- (a

00
a'oc,jaa1 )-2n+2-D _ 1 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

A number of resonance curves (hyperbolae) are shown in Figure 5.3. Notice that 

no resonances lie in the first quadrant (where both e and e' are real and positive). 

In two dimensions, the simplest resonance (s = 0) is given by a pair of charges 

located at the conjugate image points. The surface charge distribution for the 

symmetric case r = r' = 1 is given by 

uo(8) = 
-[ a-a00 cose _ a-(d-a'..x,)cose 

(a cos e- aoo)2 + a2 sin2 e (a cos e- d + a'oc,)2 + a2 sin2 el 
(d-a00 -a'oc,) 

(5.64) 
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Figure 5.3: The curves in the (-C plane which are the resonances of the 
two cylinder problem. The solid curve is for n = 0, the short dashed curve 
for n = 1 and the long dashed curve for n = 2. As the order increases 
the asymptotes of the hyperbola approach closer to the lines ( = -1 and 

"= -1. 

The potential fields and charge distributions of the first three resonances are 

shown in Figure 5.4. 

The resonant solutions are precisely those fields produced by pairs of multi

poles at the conjugate image points. Resonant fields are also shown in Figure 5.5 

for the cases where the two cylinders are different sizes, or have different dielec

tric constants (and, in particular, for the extreme case where one cylinder has an 

infinite dielectric constant). 

In three dimensions, the lowest order resonance is s = -! and the surface 
charge distribution for the symmetric case T = r' = (afa00 ) is given by 

o-o(0 ) = -[ a- a00 cos 0 __ 
3 

{(acos0- a00 )2 + a2 sin2 0}2 
a-(d-a~)cos0 ,] (5.65) 

{(acos0- d + a~)2 + a2 sin2 0}2 

The first three resonant solutions are shown in Figure 5.6. 

Resonant fields are also shown in Figure 5. 7 for the cases where the two spheres 

are different sizes, or have different dielectric constants. 
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<7o(8) 
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<71(8) 

-7r 

s = -1 

<72(8) 

-7r 

s = -2 

Figure 5.4: Resonant potential fields and surface charge density distributions 
for the three lowest modes (s = 0, -1, -2) of a pair of cylinders. 
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a) Equal radii, equal contrast 

b) Unequal radii, equal contrast 

c) Equal radii, unequal contrast 

Figure 5.5: Resonant potential fields for the second mode of a pair of cylin
ders illustrating the effects of different sizes or dielectric constants. 
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1 s = -2 

3 s = -2 

5 s = -2 

ao(0) 

-'lr 

<7t(0) 

-'lr 

<72(0) 

-'lr 

Figure 5.6: Resona.nt potential fields a.nd surface charge density distributions 
for the three lowest modes (s = -1/2,-3/2, -5/2) of a sphere pair. 
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a) Equal radii, equal contrast 

b) Unequal radii, equal contrast 

c) Equal radii, unequal contrast 

Figure 5.7: Resonant potential fields for the second mode illustrating the 
effects of different sizes or dielectric constants. 
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5.7 Summary 

In this chapter the wealth of behaviour possessed by field solutions for cylinder 

and sphere pairs has been demonstrated. The functional equation approach, 

utilizing continuous line charge distributions, is useful in determining both the 

asymptotic and resonant behaviour. It has also been demonstrated that the 

singular behaviour of a pair can be determined using only the fundamental (n = 0) 

solution to the functional equation. This also implies that the singular behaviour 

is insensitive to the details of the external field (terms with n =P 0). 

The pair solutions obtained in this chapter are used in the next two chapters 

to examine the properties of dilute arrays of cylinder or sphere pairs and also for 

dense arrays using a nearest neighbour analysis. 

112 



Chapter 6 

LONG WAVELENGTH 
ABSORPTION IN DILUTE 
COMPOSITES 

6.1 Introduction 

The absorption of long wavelength radiation (in the quasi-static limit) by com

posites is determined (in part) by the polarizability of the inclusions within the 

composite. In the quasi-static limit, a complex dielectric constant (and refrac

tive index) can be defined for the metallic inclusions. The imaginary part of 

the refractive index describes absorption by the inclusions. The imaginary part 

_of the effective refractive index of the composite describes the effective or bulk 

absorption by the composite. The results derived in the previous chapters are 

used to calculate the variation of polarizability with wavelength for pairs of silver 

cylinders or spheres. The variation with wavelength for a pair can be completely 

different from that for an isolated sphere or cylinder. The results are used to 

investigate how the formation of pairs (or clusters) of inclusions in a dilute com

posite can alter its properties. 

Of particular interest is the absorption in the far infrared. It has been known 

for nearly 15 years that this absorption is much larger than the predictions of 

classical theories. An excellent review of the far infrared properties of inhomo

geneous materials h_as been given by Carr et al. (1985). Experimental results 

and comparisons with theory have been given by Carr et al. (1981), Devaty and 

Sievers (1984) and Kim and Tanner (1989) among many others. One particular 

mechanism for enhancing the absorption is the strong interactions of clusters or 

pairs of particles (Claro and Fuchs, 1986; Rojas and Claro, 1986). Other at

tempts at explaining the anomaly have included the presence of oxide coatings 
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(Kim and Tanner, 1989) and the inapplicability of the Drude model because of 

quantum-mechanical effects (Granqvist, 1978). 

The absorption for a dilute array of pairs is calculated and it is shown that the 

pairing of particles can substantially enhance the absorption at long wavelengths. 

The behaviour for dense arrays is considered in the next chapter. 

The formulae derived here are of interest for a number of reasons. While it 

may be rare for dilute composites to contain significant numbers of inclusions 

very close to touching, the closed form approximations derived here provide a 

useful extreme case on variations due to geometric factors. Also, the mechanism 

for enhanced absorption here is the presence of large field gradients in the narrow 

gaps between inclusions. Similarly enhanced absorption may occur near sharp 

cusps or asperities on the rough surfaces of inclusions, but formulae for such 

structures have yet to be derived. 

6.2 Complex Refractive Indices and Polarizabil

ities 

The complex refractive index ii = n + iK; of a material is related to its complex 

dielectric constant f/ E{J = fr + if; by 

ii2 = (n2
- K;

2
) + 2inK; = fr +if;= f/fo (6.1) 

For real materials both n and K; (according to convention) are positive. Figure 

6.1 shows the variation of the refractive index of silver with wavelength over the 

important spectral range 0.2 to 2 microns. 

If the material is magnetic, then the refractive index is given by 

-2 f p. n =--
€{) P.o 

(6.2) 

where p. is the magnetic permeability of the material. In an inhomogeneous 

material, eddy currents can be induced in the conducting inclusions and the 

inclusions can develop a net magnetic moment. The magnetic polarizability of 

an isolated conducting sphere (due to eddy current effects) has been calculated 

by Landau and Lifshitz (1960). For an isolated sphere, a pseudo-permeability p. 

can be defined and manipulated in the same way as the permittivity f. However, 

if pairing or clustering occurs, then the magnetic polarizability is quite different 

from that for an isolated inclusion, and hence a different pseudo-permeability 

must be assigned. Unlike the permittivity, the pseudo-permeability (due to eddy 

current effects) is not an intrinsic property of each inclusion but depends on the 

properties and locations of the other inclusions. 
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Figure 6.1: The real part n a.nd imaginary part K. of the complex refractive 
index of silver as a function of wavelength >.. over the range 0.2 to 2 microns. 
(Data taken from Palik ( 1985 ). ) 

It would be extremely useful to generalize the analysis of the electrostatic 

interactions of pairs given here to include eddy current effects. Unfortunately, 

the governing equation is then no longer the Laplace equation, but the Helmholtz 

equation, and all the imaging results derived so far are no longer applicable. 

The analysis here is restricted to electric dipole absorption. The absorption 

coefficient a is proportional to the imaginary part K. of the refractive index and 

is given by 

where >.. is the wavelength. 

27l"K. 

a=T (6.3) 

Consider a dilute array of polarizable entities. These entities may either be 

single particles or clusters of particles. In particular, dilute arrays of sphere pairs 

or cylinders pairs are considered. If the pairs are randomly oriented, then the 

average polarizability (P} is related to the longitudinal and transverse polariz

abilities by 
(P} = PL + (D- 1)PT 

D 
where D is the dimensionality of the system. 

(6.4) 

If the number of pairs per unit volume (or area) is N and the composite is 

sufficiently dilute, then the effective permittivity €elf is given by the Clausius-

Mossotti or Maxwell-Garnett expression 

eelf = 1 + N(P)D 
eb 1-N(P} 

(6.5) 
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(Note that iff is the volume (or area) fraction and 1 is the polarizability per 

unit volume (or area) then N(P) = fl and the above equation will take on a 

more familiar form.) 
The effective absorption a•ff is proportional to the imaginary part of the square 

root of the above quantity. In the dilute limit 

7r 
,.e~r = ;:.N(P;)D (6.6) 

where P; is the imaginary part of the polarizability. 

6.3 Absorption Spectra 

The polarizability of a pair of cylinders or spheres as a function of wavelength 

is calculated using various expressions for the induced dipole moment. Using 

the results from Chapter 4, the following series expressions are obtained for the 

dipole moment of symmetric pairs in a longitudinal field. In two dimensions 

oo sinh iJ ]2 
Ql = T Ea2 L rn[sinh(n + l)iJ 

n=O 
(6.7) 

and in three dimensions 

Ql = 2r E 3 { f: n [ sinh
3 

iJ sinh{) sinh
2 
niJ] 

3- T a n=O T sinh3(n + 1)iJ + sinh3 (n + 1)iJ 

r f: n sinh{) sinh( niJ)] 
2 

[ 
00 

n sinh{) ] } 
- ~=o T sinh2(n + 1)iJ / E T sinh(n + l)iJ 

(6.8) 

where the charge neutrality condition has been properly included. 

verse field the dipole moment is given by 

For a trans-

oo sinh iJ ]D 
A= PoL( -rt[sinh(n + 1)iJ 

n=O 
(6.9) 

where Po = T Ea2 in two dimensions and Po = 2r Ea3 /(3- T) in three dimensions. 

The induced dipole moments can also be written as a sum over the solutions 

to the functional equations analysed in Chapter 5, and as suggested earlier it 

is possible to obtain a good approximation by retaining only the fundamental 

(n = 0) solution. The coefficient Ao is obtained using Equations (5.9) and (5.10). 

For an applied longitudinal field E the functional equation method gives 

Ql = 
e-2D sinh{) F(2, s + 2 -If; s + 1 + If; e-2D) x 

{) (s + ¥)(s- 1 + ¥) 
X{Po[(2- D)coshiJ -2ssinhiJ] +(D- 2)qoa} (6.10) 
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where charge neutrality implies 

Po e-~ F(2, s + !; s + ~; e-2~) 
qo----

- a s+~F(1 s+l·s+~·e-2~)· 
2 ' 2' 2' 

(6.11) 

The above results can also be obtained by applying the Euler-Maclaurin expan

sion (Abramowitz and Stegun, 1965) to the series expressions (see Appendix H) 

and retaining only the first term (i.e. the integral) in the expansion. Later, it is 

shown how the hypergeometric functions form part of the analytic continuation 

of the series for IT I larger than 1. 

In the touching limit the series can be identified with a known class of special 

functions (the polylogarithms Lim(r)) and an analytic continuation to lrl > 1 

can be obtained directly. In two dimensions the limiting form of the series is 

Q1 = Ea2Li2 ( T) 

and in three dimensions 

- 2 3 { • Li2(r)
2

} 
Q1 = 3 _ 

7
Ea 2L13(r)- Li

1
(r) · 

The transverse dipole moment is given by 

in two dimensions and 

- 2 P1 = -Ea Li2(-r) 

- 2 3 . 
P1 = ---Ea L13( -T) 

3-T 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

in three dimensions. The dilogarithm solution for a pair of touching cylinders has 

also been obtained by McPhedran and Perrins (1981) and later used for arrays 

of touching cylinders (McPhedran and Milton, 1987). 

The real and imaginary parts of the polarizability are shown for a pair of 

touching cylinders and also for an isolated cylinder in Figure 6.2. The corre

sponding results for spheres are presented in Figure 6.3. 

The behaviour for the longitudinal and transverse polarizabilities is qualita

tively different. For a transverse applied field a single sharp peak is observed in 

the absorption spectrum (the imaginary part of the polarizability). At the same 

wavelength, the real part of the polarizability has an edge or abrupt change in 

direction (from decreasing to increasing). Apart from the magnitude of the peak 

the behaviour is not very different from that for an isolated sphere or cylinder. 

For a longitudinal field, the peak is much broader and has a very slowly decaying 

tail. The real part of the polarizability does not have the same variation as in 

the transverse case and tends to a higher constant value at long wavelengths. 
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Figure 6.2: The real part Pr and imaginary part P; of the complex polar
izability (per cylinder) of a pair of touching silver cylinders as a function 
of wavelength A over the range 0.2 to 2 microns. The top two graphs were 
calculated using the series expressions for a longitudinal field. The middle 
two graphs were calculated using the series expressions for a transverse field. 
The bottom two graphs were calculated for an isolated cylinder. 
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Figure 6.3: The real part Pr and imaginary part P; of the complex polar
izability (per sphere) of a pair of touching silver spheres as a function of 
wavelength A over the range 0.2 to 2 microns. The top two graphs were 
calculated using the series expressions for a longitudinal field. The middle 
two graphs were calculated using the series expressions for a transverse field. 
The bottom two graphs were calculated for an isolated sphere. 
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To understand the origin of this broad peak in the longitudinal polarizability 

it is necessary to examine the polarizability for various non-zero separations of 

the pair of cylinders or spheres. 

The series solutions are very difficult to evaluate except in limiting cases. 

Furthermore, the series are only convergent when 1-rl < eL~ (where L = 1, 2 or 

3 depending on the particular series), which means the series cannot be used 

to calculate the polarizability of metals in the optical and infrared part of the 

spectrum where 1-rl can be much larger. The integrals obtained in Chapter 5 can 

be expressed in terms of the hypergeometric functions and can thus be analytically 

continued throughout the complex 7" plane. The exact relation between the series 

and the integrals is derived in Appendix H using the Euler-Maclaurin expansion 

and an analytic continuation of the series is obtained. 

The first term in the Euler-Maclaurin expansion (i.e. the integral) corresponds 

precisely to the integral obtained from the fundamental solution to the functional 

equations in Chapter 5 and can thus be written in terms of the hypergeometric 

functions. The remaining terms represent corrections to the integral. The en

tire expression can be written in terms of simple functions and known special 

functions. The availability of efficient numerical software for calculating special 

functions makes the expressions much easier to evaluate than summation over 

the original series. In addition, the expression is defined over the entire complex 

plane. 

In the remainder of this section, the wavelength profiles are calculated using 

the hypergeometric functions only (the correction terms do not change qualitative 

the appearance of the profil~, and only the imaginary part of the polarizability 

for a longitudinal field is presented. 

The variation in the imaginary part of the longitudinal polarizability for a 

range of separations iJ is shown in Figure 6.4 for a pair of cylinders and in Figure 

6.5 for a pair of spheres. 

The results for two and three dimensions are qualitatively similar. There is al

ways a strong absorption peak at smaller wavelengths (0.3 to 0.4 microns) whose 

strength and position does not depend on the separation. A number of peaks 

occur at longer wavelengths. As the separation decreases these peaks move to 

longer wavelengths and additional peaks appear. When the separation is zero, 

only the first peak remains with a very long slowly decaying tail. This tail pro

duces a much larger infra-red absorption than is obtained from the polarizability 

of an isolated sphere or cylinder. 

There is a definite relationship between the absorption peaks and the reso

nances discussed in Section 5.6. This relationship is seen most clearly by display

ing the results in the complex 7" plane (Figures 6.6 and 6.7 ). The spiral curve is 
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Figure 6.4: The imaginary part P; of the complex polarizability (per cylin
der) of a pair of silver cylinders as a function of wavelength A over the range 
0.2 to 2 microns for various separations IJ. 
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Figure 6.5: The imaginary part P; of the complex polarizability (per sphere) 
of a pair of silver spheres as a function of wavelength >. over the range 0.2 
to 2 microns for various separations {}. 
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the locus of points T( >.) as the wavelength >. varies from 0.2 microns to 2 microns 

and the curve is traced out in the clockwise direction. For long wavelengths T 

approaches 1. 

The resonances (which are simple poles of the function P(T) ) are shown 

by the sequence of dots along the real axis. As the separation decreases, these 

resonances become more closely spaced and in the limit of a touching pair fill the 

entire line T > 1. Mathematically, this corresponds to a branch cut along T > 1 

with a branch point at T = 1. The nature of the singularity at (or near T = 1) 

strongly affects the long wavelength behaviour of the absorption. 

The wavelengths at which peaks occur in the absorption are indicated by the 

dots which lie on the spiral curve. Each of the long wavelength peaks can be 

associated with one of the poles as shown in the close-up views of the complex T 

plane near T = 1. The peaks occur for those wavelengths where the real part of T 

is equal to one of the resonant values. The peaks corresponding to the remaining 

poles are obscured by the broad tail of the peak at shorter wavelengths which 

corresponds in some average way to the combined effect of all the poles as T -+ oo. 

6.4 Spectral Representations 

The effective dielectric constant can be related directly to the distribution of its 

singularities by a spectral representation. 

For composites, it is known that all the singular points lie on the real axis 

with e negative (or equivalently ITI > 1) and if the singular points are poles, then 

they must be simple poles with positive residue (Bergman, 1978a; Stroud et al., 

1986). It is convenient to introduce a new parameter v = 1/T so that all the 

poles will lie in the bounded interval -1 < v < 1. 

Suppose that the dependence of the dielectric constant e•ff on the parameter 

v can be written in the form 

eff( ) "' Wn J g( v')dv' e v=eb+~ + 
n V- Vn V- V1 

(6.16) 

where the Vn are a discrete set of resonances or poles with weights or residues Wn 

and g(v') is the spectral density of a continuous spectrum of resonances. 

There has been much discussion in the past concerning the nature of the spec

trum of poles. Originally, it was believed that only a discrete spectrum of poles 

was possible (Bergman, 1978a) and a continuous spectrum was only appropri

ate for describing the average behaviour for an ensemble of random structures. 

Later, it was considered that the poles may accumulate around certain special 

points and these points would become essential singularities (Bergman, 1979a). 
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Figure 6.6: These graphs drawn in the complex r-plane show the relationship 
between the poles of the polarizability P(r) (shown by the dots on the axis) 
and the peaks in the absorption spectrum (shown by the dots on the curve) 
for a pair of silver cylinders. The spiral curve is the locus of the complex 
contrast parameter r(.X) as the wavelength varies from 0.2JLm to 2JLm. It is 
traced out in the clockwise direction. The graphs on the right are expanded 
views of the region near r = 1. The top two graphs are for {) = 0.05 and the 
bottom two are for {) = 0.01. 
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Figure 6.7: Same as in Figure 6.6 but for a pair of spheres. 
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Several exact solutions have been exhibited which possess branch points, such as 

the two dimensional checkerboard structure where e•ff = Eb~· The branch 

cut in these cases is chosen along the negative real axis and can be represented by 

a continuous distribution of poles. Approximate formulae for arrays of cylinders 

have also indicated the presence of a branch cut (McPhedran and McKenzie, 

1980). Effective medium theory again predicts a branch cut (McPhedran and 

Perrins, 1981) as do the asymptotic formulae obtained by Batchelor and O'Brien 

(1977). The above examples all apply to structures which are above a percolation 

or connectivity threshold or are singular in some respect. By contrast, the exact 

solutions presented in this section possess branch cuts for all volume fractions, 

even in the dilute limit. 

The spectral representation of a function f(s) with a branch cut is given by 

f(s) = j g(s') ds' 
s- s' 

(6.17) 

where the spectral density function g( s) is related to the discontinuity across the 

branch cut of f 
1 

g(s)=-
2 

.[f(s+iO)-f(s-iO)]. 
?n 

(6.18) 

The integral is restricted to the branch cut. The above result can be obtained by 

taking a contour integral of the function f(s')f(s- s') along a contour encircling 

the entire complex plane but excluding the branch cut. 

In particular, for dilute composites the effective dielectric constant can be 

written 
e•ff = Eb + f j g( ll')dll' 

v- v' 
(6.19) 

For a dilute array of cylinder pairs aligned along the direction of the applied 

field the appropriate representation is 

and 

Li2(T) = Li2(1/11) = r g(11')d11
1 

lo 11- 11' 

g( 111
) = -log 111 0<11'<l. 

(6.20) 

(6.21) 

For transverse pairs the result is obtained by changing the signs of 11 and 111 and 

the branch cut is -1 < 111 < 0. The result for randomly oriented pairs is the 

average of the two results, with the branch cut occupying -1 < 11 < 1: 

g(111
) = -log \11'\. (6.22) 

The branch cut is present for all non-zero values off and the spectral density is 

proportional to f in the dilute approximation. 
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The corresponding the results for a dilute array of longitudinal sphere pairs 

are 

where 

2Lia(1/v) + Li2(1/v)
2 

_ r 9L(v')dv' 
log(1- 1/v) - }0 v _ v' 

( ') [f- Li2(1- 1/v')]2 
9L V = 

1!'2 + log2(1/v' -1) 
0 < v' < 1. 

For a dilute array of transverse sphere pairs 

Lia( -1/v) = jo 9T(v')dv' 
-1 v'- v 

where 

9T(v') = ~ log2( -v') -1 < v' < 0. 

For randomly oriented pairs g(v') = [gL(v') + 2gT(v')]f3. 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

In all the above cases, the spectral density goes to zero at the branch point. 

This is a necessary requirement for structures below percolation (Claro and Fuchs, 

1986). The long wavelength absorption (discussed further in the next section) is 

related to the manner in which the spectral density tends to zero. For the two 

dimensional solution, the spectral density varies linearly near the branch point. In 

three dimensions it varies quadratically for transverse pairs, but for longitudinal 

pairs the derivative of the spectral density at the branch point is actually infinite: 

1 
g(v)- log2(1- v) v--+ 1. (6.27) 

If the spectral density approaches zero more slowly, then the long wavelength 

absorption is more enhanced and vice versa. Claro and Fuchs (1986) assumed that 

the spectral density was linear near the branch point for structures containing 

finite clusters of spheres. They were able to predict that the long wavelength ab

sorption was enhanced by a logarithmic factor. Numerical studies using a diffuse

cluster model (Fuchs, 1987) for aggregated spheres suggest an approximately lin

ear dependence near the branch point. The assumption of linear behaviour is in 

fact true for a dilute array of cylinder pairs and the predicted enhancement is 

demonstrated in the next section. For sphere pairs, the dependence is singular 

near the branch point implying an enhancement much stronger than that sug

gested by Claro and Fuchs (1986). The long wavelength behaviour is considered 

in detail in the next section. The spectral density and long wavelength behaviour 

for den,e composites are studied in the next chapter. 
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6.5 Long Wavelength Absorption 

At long wavelengths, the complex contrast T is expected to vary as 

.Ao A~ 
T = 1 + !-:\ +A A2 + ... (6.28) 

The coefficient Ao can be obtained by either fitting this expression to experimental 

results or by relating it to physical parameters appearing in, say, the Drude model 

or a more elaborate model. For wavelengths longer than a few microns a numerical 

fit of the results tabulated in Palik (1985) gave 

Ao ~ 5 x 10-3pm (6.29) 

and A~ 5 x 103. Thus the second term in (6.28) is negligible for A~ 20pm. 

The algebraic form of the absorption coefficient is calculated for both a dilute 

array of isolated spheres or cylinders and for a dilute array of pairs. 

For a dilute array of isolated cylinders the absorption is given by 

a•ff .:!: N a 21m[ T J - A 
1 lAo+ 0(3) 

- A2 A 

where I is the area fraction occupied by the cylinders. 

For a dilute array of isolated spheres the absorption is given by 

elf 7r 2T 
a = - N a 31m(--] 

A 3-T 
9/Ao 1 

- 8A2 +0(A3) 

(6.30) 

(6.31) 

where I is the volume fraction occupied by the spheres. For both cylinders and 

spheres the long-wavelength absorption is inversely proportional to the square of 

the wavelength and directly proportional to the volume (or area) fraction (for 

small!). 

The dipole moment for pairs at long wavelengths and small separations is 

calculated in Appendix H by finding an analytic continuation of the series in 

equations (6.7) and (6.8). 

Two different results are obtained depending on the ratio of the separation 

parameter{) to the inverse wavelength 1/A. At any given separation, a critical 

wavelength Ac = A0 j{) can be defined. Note that this critical wavelength diverges 

as the separation goes to zero. For sufficiently long wavelengths A ~ Ac the 

absorption for a dilute array of cylinder pairs is given by 

aetr = Lim(P] 
A 
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f { 1r
2 

i>.0 } ~ -Im -- {)- -[-1-1 + log(2fJ)] 
). 6 ). 

Ao 
~ f ).2 [1 + 1- log(2fJ)]. (6.32) 

However, at any given wavelength, for sufficiently small separations the wave

length will satisfy >. <t:: Ac and the absorption is given by 

elf f { 11"
2 

iAo -iAo } a ~ -Im - + -[1 -log(-)] 
). 6 ). ). 

Ao Ao 
~ f ).2 [1 -log( A)]. (6.33) 

At very long wavelengths the absorption still varies as the inverse square of 

the wavelength but it is enhanced with respect to that for isolated cylinders by 

the logarithm of the separation parameter. At wavelengths shorter than the criti

cal wavelength (if the separation is very small these shorter wavelengths may still 

be in the infrared part of the spectrum) the actual dependence on wavelength 

changes and an additional factor of log( Ao/).) is introduced. The logarithm is a 

very slowly varying function and the departure from a simple quadratic depen

dence would not be easily discerned in either numerical calculations or experi

mental results. 

The corresponding results for dilute arrays of sphere pairs are: in the very 

long wavelength limit >. ::> Ac 

a elf ~ f Ao 1!"6 

A2 144fJ[I-log(fJ/2)j2 (6.34) 

while in the very small separation limit >. <t:: Ac 

elf J 1 7!"5 a ~ 

>. 72["; +log( f )2] 
(6.35) 

As for cylinders the wavelength dependence at very long wavelengths remains 

quadratic but is enhanced by a factor depending on the pair separation. At 

shorter wavelengths the wavelength dependence is very different and is greater 

than that for isolated spheres by a factor 

7r5A 

81Ao[: +log( f )2] 
(6.36) 

For silver in the infrared this factor is of the order of a few hundred. 

The above analysis demonstrates that enhancement by a least two orders of 

magnitude can be obtained for the electric dipole absorption of touching sphere 

pairs. Further, the actual wavelength at which the very long wavelength be

haviour will set in depends inversely on the separation and therefore at very 
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small separations a different (and stronger) wavelength dependent absorption is 

expected. 

Several modifications and extensions of the above results are possible. Firstly, 

there will in general be a range of separations between particle pairs from zero 

separation to a separation beyond which the spheres (or cylinders) can be con

sidered isolated. This may change the wavelength dependence of the absorption 

but the magnitude of the absorption will remain large. Secondly, magnetic dipole 

absorption may be important and could provide even greater enhancement and 

a different wavelength dependence. Further, while the analysis here is for pairs, 

the enhancement for clusters of spheres (or cylinders) is expected to be even 

larger. In any event, it should be clear that simple geometrical and proximity 

effects play an important (and perhaps dominant) role in the behaviour of the 

long wavelength absorption of dilute composites. 

6.6 Summary 

The variation with wavelength of the induced dipole moment on a pair of silver 

cylinders or spheres has been calculated using the results from the two previous 

chapters. Multiple absorption peaks are observed and the absorption at long 

wavelengths is enhanced over that expected from a single resonance. The num

ber of absorption peaks increases as the separation decreases. The absorption 

peaks also move to longer wavelengths. When the separation is zero, the long 

wavelength peaks are replaced by a slowly decaying tail. The absorption profile 

is related to the singularities of the effective dielectric constant and a number of 

spectral representations are obtained. The analysis of the polarizability indicates 

that the long wavelength behaviour depends critically on the separation of the 

pairs. At very long wavelengths, the absorption varies as the inverse square of 

the wavelength and is enhanced by a factor depending logarithmically on the 

separation of the pair. If the separation is very small, wavelengths in the infra

red may not satisfy the condition A ~ .A0 /1J for very long wavelength behaviour 

and a different wavelength dependence is predicted. Under these conditions, the 

apparent enhancement of the absorption can be about two orders of magnitude. 
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Chapter 7 

ASYMPTOTIC ANALYSIS OF 
DENSE COMPOSITES 

7.1 Introduction 

In this chapter the results of Chapter 5 are used to deduce the behaviour of dense 

arrays of cylinders and spheres. Of particular interest is the way in which the 

effective conductivity of a metal-in-insulator composite diverges as the area or 

volume fraction of the metal component approaches a critical value. The basic 

hypothesis which will be used is that the asymptotic behaviour of the polarizabil

ity of the cylinders or spheres in a dense array can be obtained by looking only 

at the pairwise interactions of nearest neighbours. It is assumed that the induced 

charge distribution on a sphere or cylinder can be obtained as an appropriate 

superposition of the charge distributions that would be induced by each of the 

nearest neighbours acting alone. This idea is investigated for periodic lattices 

and tested by writing the exact solution as the sum of the nearest neighbour con

tributions and some residual contribution. The residual contribution is obtained 

numerically by solving the matrix equation developed in Chapter 2. 

Several important results are obtained. The residual contribution is usually of 

order unity, and in these cases the nearest neighbour contribution fully describes 

the singular or asymptotic part of the solution. The residual contribution arises 

from non-nearest neighbour effects and thus depends predominantly on longer 

range interactions. This implies that higher order multi poles are not necessary for 

calculating the residual contribution. In other words, once the singular behaviour 

has been accounted for and extracted, the residual behaviour can be obtained by 

the solution of a conveniently small matrix. The size of the matrix required 

is seldom more than about 40 rows and is often less than five rows, whereas 

to try to determine the singular behaviour directly from a matrix may require 
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several hundreds of rows and this number will increase rapidly as the singularity 

is approached. 

The long wavelength behaviour for dense arrays is investigated and a criti

cal wavelength is introduced which separates regions with different wavelength 

behaviour. Spectral representations are obtained for the effective dielectric con

stants of touching arrays of cylinders and spheres. The nature of the spectrum 

as the the area or volume fraction approaches its critical value is discussed. 

Disordered or random structures are much more complicated to treat than 

periodic structures. A variety of random structures formed from cylindrical or 

spherical inclusions are compared with each other and also with an example of 

a ceramic metal (cermet) composite. Such structures can exhibit percolation. 

That is, as the density of inclusions is increased, a critical point is reached where 

the probability that the inclusions form a connected path becomes equal to one. 

Below this critical density or fraction, the behaviour of the composite on large 

length scales is qualitatively similar to that of the material making up the back

ground phase. Above this point the behaviour becomes similar to that of the 

material making up the inclusions. Excellent reviews of percolation theory have 

been given by Essam (1972) and Stauffer (1979). There have also been many 

experimental studies of percolation in gold and silver films (Cohen et al., 1973; 

Gadenne et al., 1988; Gajdardziska-Josifovska et al., 1989). 

An algorithm is outlined for calculating the effective dielectric constant or 

conductivity of such a disordered structure. It is assumed that only the nearest 

neighbour interactions need to be retained to obtain a good approximation to the 

behaviour near the percolation threshold. 

Such an algorithm allows the properties of any specific realization of a disor

dered composite to be estimated. Suggestions are also given for studying ensem

bles of disordered or random structures and obtaining the universal and statistical 

properties of such ensembles. 

Various studies (Bergman and lmry, 1977; Bergman, 1979a) have been made 

of the pole spectrum and wavelength dependence of the effective permittivity 

near the percolation threshold. A number of conjectures are made about ran

dom structures, including the long wavelength behaviour and the nature of the 

spectrum and its representation. 

7.2 Nearest Neighbour Interactions 

The charge distribution on each inclusion is considered to be the sum of charge 

distributions induced by each nearest neighbour inclusion acting independently 

plus some residual charge distribution due to non-nearest-neighbour effects. Let 
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Q~'11 be the multipole moments describing the charge distribution induced on 

the ith inclusion by the jth inclusion (assumed to be a near neighbour). Since 

the induced distribution depends on the strength of the interaction between the 

inclusions, a normalization constant N;,j = Nj,i is introduced (this normalization 

constant takes the place of the coefficient A0 introduced in Chapter 5). Further 

if the line joining the centres r;, 'rj of the inclusions is not along the polar axis 

of the co-ordinate system, the induced moments can be obtained by performing 

a rotation transformation on the expansion harmonic functions. 

The total charge distribution on the ith inclusion is then written 

Q~ = I: N;,iC~( n;JQ~'11 + Q~ ... (7.1) 
j 

where Q~·il is the asymptotic part of the solution to the problem of two inclusions 

with radii a;, ai and centre to centre separation d;j = \ri- r;\. The unit vector 

in the direction ri- r; is denoted n;i· The harmonic function C~(n;i) performs 

the rotation of coordinates from a coordinate system with its polar axis along the 

direction joining the centres to one with its axis in the z-direction. 

The potential difference V.,; = -V;,; between the centres of the ith and jth 

inclusions can be written as the sum of a gap potential, a potential drop across 

a radius of inclusion i and one across a radius of inclusion j: 

Vi,; = Ni,j V9ap( ai, a;, c4;, €i, e;) 

+I: N;,k V.nt( a;, ak, d;k, e;, ek, e}k) 
k 

+I: N;,k V.nt( a;, ak, dik, e;, ek, 6fk) (7.2) 
k 

where e~k is the angle between the vectors ri- r; and rk- r; (see Figure 7.1). 

Thus V.,i is a linear function of the normalization coefficients N;,j and vice 

versa. Since one normalization coefficient and one potential difference can be 

associated with each nearest neighbour pair a linear system can be formed and 

inverted to give the normalization constants in terms of the potential differences. 

This linear system is analogous to the matrix equation obtained when solving for 

the currents or voltages in a resistor network. 

In a regular structure, the potential differences may be determined completely 

by symmetry and periodicity arguments, in an irregular structure, the structure 

as a whole must be solved self-consistently. Batchelor and O'Brien (1977) argued 

that even in a random structure the potential differences were equal to that given 

by the external field, (i.e. the normalization constants were known a priori), at 

least in some average sense. However, even without this assumption, the above 

analysis transforms the complex problem of an irregular structure to the level of 

a connected network of known linear elements. 
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Figure 7.1: An inclusion i and two of its nearest neighbours j and k. The 
potential difference between i and j also depends on the interaction of i and 
k. The angle 0~k is shown in the figure. 

Once the asymptotic part of the solution Qi has been found the residual 

contributions can be obtained numerically. The solution Qi = Qt•ymp + Q~r•• is 
substituted into the matrix equation derived in Chapter 2. The resulting equation 

is rewritten as a matrix equation for the unknowns Q~re•: 

Mi,j Qj,res = [Ei _ Mi,j Qi,a•ymp] 
,\,~ 1(, ,\ ..\,K, 1(, 

(7.3) 

At first it would appear that the resulting equation is no easier to solve than 

the original equation (especially since the same matrix appears on the left hand 

side). The only difference is the right hand side of the equation. The advantages 

are seen when the solution of successively larger truncated versions of the equa

tions are considered. If the asymptotic part of the solution has been successfully 

obtained, then the higher order multipole components of Q~r•• will tend to zero 

very rapidly. The original unknown variables Qi do not enjoy this useful prop

erty. An accurate solution can thus be obtained from a truncated matrix. It is 

important to note that the condition for this improvement in the accuracy of the 

solution is that the higher order multipoles be correctly given by the asymptotic 

formula. The lowest order multi poles need not be correct at all since they will be 

solved for numerically. 

In most of the examples which follow, the asymptotic formula for the lowest 

order multipole (i.e. the dipole moment) correctly describes the singular be

haviour in the asymptotic regime and the residual corrections are of order unity. 

The leading term in the corrections is therefore a constant (with respect to the 

asymptotic variables), and this constant is obtained numerically for all the struc-
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tures considered in this chapter. Two structures which have the same nearest 

neighbour configurations but different long range structures will have the same 

asymptotic behaviour but differ in the constant term. Therefore, this constant 

term depends on long range structure and cannot be determined from purely 

nearest neighbour properties. 

7.2.1 Asymptotic Variables and Functions 

The relevant results from Chapter 5 are summarized here and the asymptotic 

variables and notation for this chapter are introduced. The two cylinders (or 

spheres) shown in Figure 7.2 have radii a; and ai and dielectric constants e; and 

€j respectively. 

0 'B 
A,'"' 

I(} , 
I , 
I , 1,-e 0 ,., ______ _ 

Figure 7.2: The cylinder (or sphere) with centre 0 has radius a; and dielec
tric constant €;. One of its nearest neighbours has radii ai and fj and lies in 
the direction (J (or in three dimensions, the direction ( 9, 4>) ) with respect to 
the coordinate system used to define the multipole moments (vertical dashed 
line)- The points A and B lie on the edges of the gap and the point C lies 
at an angle El (in three dimensions, ( El, ~) ) from the direction of the gap. 
The distance between the centres of the neighbours is d;j. 

The following asymptotic variables will be very useful in the analysis which 

follows 

X 
.. - [eb + eb 4- D 2d··h·· -1 
'3- - - + '1 'J 

€· --
• €j 2 a·a· • J 

(7.4) 

and 
€b €b J a;ai 

Sij = (- + :-:-) 2d· h · 
Ei <;;;.J IJ IJ 

(7.5) 
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where h;i = d;i- a;- ai is the width of the gap AB and D is the dimensionality. 

Note that both S;j and X;j axe symmetric in i and j. The paxaxneter S;j describes 

the relative importance of the contrast to the sepaxation, whereas the paxaxneter 

X;i is the asymptotic variable which becomes large for fixed s;j as either the 

sepaxation decreases or the contrast increases. 

The following results axe based on the equations in Sections 5.4 and 5.5 and 

have been rewritten in terms of the asymptotic variables defined above. The 

multipole moments induced on the cylinder centred on 0 by the neaxest neighbour 

axe given by 

il8 Ql(a;,aj,d;j,e;,ej,8) = e Ql(a;,aj,d;j,f;,ej,O) 

where 

In particulax 

uo 1_ 1 f(l + l)f(s;1) ( ) 
=e a; f(l )F l+l,s;j+l;l+s;j+1;1-z;j + S;j + 1 

Zij = 
8a1h;i 
a;d;i . 

Ql(a;, aj, d;j, e;, en 8) = e;o d;3 (s;i + 1)X;j 
2ai s;i 

The corresponding moments for spheres axe 

Qlm (a;, aj, d;j, e;, fj, 8, <P) = Clm( 8, <P )Qm( a;, ai, d;j, e;, fj, 0, 0) 

(7.6) 

(7.7) 

(7.8) 

1 r( 1 + 1 )r( s;j + D 1 3 = Clm(8, <P)a; r(l 3) F(l + 1, S;j + -2; I+ S;j + -; 1- Z;j) (7.9) 
+ s·· +- 2 '3 2 

and 

1 1 
Q1,0(a;,aj,d;j,f;,e;,8,</J) ~ a;cos8{1og[X;j(S;j + 2)(1 +11)]-1/J(s;i + 2)} (7.10) 

where 11 = a;fai. 

The potential difference across the gap AB is given by 

1 d;j 1 + S;j - 2S;j:F( S;j) 
Vg •• ( a;, a;, d;;, e;, fj) = 21t"fb 2a;ai s;j(1 + s;/ (7.11) 

for cylinders and 

Vg •• ( a;, ai> d;j, e;, fj) = _1_ d;j -1 - 2s;j + 4s;19(s;i) 
411"eb 2a;ai (1 + 2s;/ 

(7.12) 

for spheres, where :F(s) and 9(s) axe defined in Appendix G. 

The potential between the points 0 and A is given by 

1 d;j fj Vin1(a;,aj,d;j,f;,fj,2n1r) = -
2
-- X 
1t"fb a;ai e; + fj 

[ 
:F(s· ) ] 

X log(X;j(S;j + 1)(1 + 11)]- 'Y -1/J(s;j + 1) + ( '3 
) 

1 + S;j 
(7.13) 
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for cylinders and 

1 d;j €j 2s;j9(s;j) 
V.nt(a;,aj,dij,€;,ej,2n1r) = --- ( 

2 
) (7.14) 

47r€b a;aj €; + €j 1 + Sij 

for spheres. The potential between the points B and 0' is given by interchanging 

i and j in the above expressions. 

The potential between the points 0 and C is given by 
1 d·· e e 

V.nt (a;' aj, d;j, €;, €j, e) = 2 ., J log[2 sin -2 l 
7r€b a;aj e; + €j 

(7.15) 

for cylinders provided e # 2n7r. 

The corresponding result for spheres was also obtained in Chapter 5 but, 

as pointed out there, the result is of the same order as the integral which was 

neglected in the functional equations. Thus, there is little point in retaining this 

term when terms of the same order have been neglected. If this term is ignored 

completely, then the results obtained will still be asymptotically correct for large 

dielectric contrast. To investigate the possible effect of this term for dielectric 

contrasts which are not too large the following ansatz is made: 

1 d;j €j Sij 
V.nt(a;,aj,d;3 ,e;,€j,8) = 4 (1 2 )X X 

7r€b a;aj e; + €j + S;j ij 

X [a(8) + ,8(8){log[X;j(S;j + ~)(1 + 77)] + ?jJ(Sij + ~)}] (7.16) 

where the correct form of a(8) and ,8(8) can only be obtained by solving the full 

integral-functional equations of Chapter 5. The form of the ansatz was chosen 

to agree with equation (5.49) and to be consistent in appearance with the other 

results given above. Fortunately, this term is only of secondary importance and 

does not affect either the long wavelength behaviour or the functional form of the 

spectral density function near the branch points (see Section 7.4). 

7.3 Two Dimensional Structures 

7.3.1 Infinite Chain of Cylinders 

Singular behaviour will occur if the applied electric field is along the direction 

of the chain. Thus, only the longitudinal polarizability is discussed here. Each 

cylinder has two identical nearest neighbours, one in either direction along the 

chain. The superposition of the interactions gives 
2 

Qjtl = N12 L cos(n1r)Q1(alo a2, d, e1, €2, n1r) 
n=l 

2 

- N12Q1( a1, a2, d, €1, €2, 0) L cos(n1r)eiln" 
n=l 

- [1- (-1)1
]N12QI(at,a2,d,et,€2,0) (7.17) 
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! 
where N12 is the normalization constant. A corresponding result is obtained for 

Qf2l. Evaluating the above expression for the dipole moment (I = 1) in terms of 

the asymptotic variables gives 

QP) ~ N12 d (s12 + 1)Xt2 
a2 St2 

(7.18) 

The potential difference Vi2 = Ed between each cylinder and its neighbour is 

Vi2 = N12Vgap(at,a2,d,el,e2) 
2 

+ N12 I: cos(mr)l!int( a1, a2, d, e1, €2, mr) 
n=l 

2 

+ N12 I: cos(mr)llint( a2, a1, d, €2, €t, mr) 
n.=l 

Evaluating this in terms of the asymptotic variables gives 

(7.19) 

N12d 1 logry 
Vi2 ~ ~ [-

2 
+ log(X12(s12 + 1)(1 + ry)]- 'Y- ,P(s12 + 1)- --,,.] (7.20) 

?r€bal a2 s12 1 + ., 

where '7 = at/a2 and ( = e2/e1. 

This gives the following asymptotic expression for the polarizability per unit 

length of the chain 

QP) + Q~2) 
p -

4?rebE 
(s12 + 1)X12 

- - l 
1 + 2s12{log(X12(s12 + 1)(1 + ry)]- 'Y- ,P(s12 + 1)- ~!(} 

+.6. + O(log(Xl2]-1) (7.21) 

where .6. is the leading correction to the asymptotic result. 

Numerical studies indicate that .6. is independent of s12 and fairly insensitive 

to ( but it does depend on the ratio '7 of the radii. 

For equal radii '7 = 1 the results of the numerical calculations are compared 

to the asymptotic formula above in Figure 7.3. The correction constant is ap

proximately .6.(1) = -0.8. 

The variation of .6.( '7) was also investigated numerically and the values ob

tained are shown in Figure 7.4 with an empirical fit. By symmetry, .6.(ry) = 

.6.(1/ry) and the simplest fit to the numerical results was 

.6.(ry) ~ -1.49 + 0.324('7 + 1/'7). (7.22) 

Note that as '7 tends to zero or infinity, the correction constant diverges. This 

is to be expected because if the ratio of the radii is very different from unity then 
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X 
100 

Figure 7.3: Comparison of the numerical (dots) and asymptotic (curves) re
sults for the polarizability per unit length of a chain of alternating cylinders. 

1 ., 
0 4 

Ll(.,) 

-1 

Figure 7.4: The value of the additive constant t:l.("'l) is compared with an 
empirical fit of the form a+ b(T/+ 1/"'1)· 
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a very small cylinder separates two larger cylinders and the effects of next-nearest 

neighbours become as important as nearest neighbours. 

The behaviour of ~( 17) for the alternating square array is even more interesting 

since this structure shows different asymptotic behaviours depending on the value 

of 17 (see Section 7.3.6). 

7.3.2 Symmetric Square Array of Cylinders 

In this structure, each cylinder has four identical neighbours. If the external 

field is directed along one of the primitive lattice directions then the multipole 

moments are given by 

Q, = 
4 n~ n~ 

N11 L cos( 2 )Q,(at, a1, dn, e1, ft, 2) 
n=l 

4 

- NnQI( a1, a1, dn, e1, e1, 0) L cos( n~ )einhr/l 
n=l 2 

- Nn[1- ( -1)1]Q,(at, a1, dn, ft, ft, 0). (7.23) 

Notice that only two of the four neighbours actually contribute to the asymptotic 

behaviour (since cost = cos 3
; = 0). The other two are at the same potential 

as the centre cylinder. The formula is the same as that for a symmetric chain of 

cylinders. 

The potential difference between cylinders is 

Vit = Nn Vg.p(at, a1, dn, ft, ft) 
4 n~ n~ 

+2Nn L cos( 2 )Vint(al> a17 dn, ft, ft, 2 ). 
n=l 

(7.24) 

For the same reason as above, this expression is the same as that for a symmetric 

chain of cylinders. 

The effective dielectric constant is given by 

e•ff 

fb 
- 1+2~QtfE 

~(sn + 1)Xn ~ 
~ 1 + 2sn {log[2Xn ( Sn + 1 )j - '"( - 1/J( sn + 1)} + square· 

(7.25) 

The asymptotic formula is compared with the numerical results in Figure 7.5. 

The correction constant is approximately ~square= -1.9. 

7.3.3 Hexagonal Array of Cylinders 

In this structure, each cylinder has six identical neighbours. If the external field is 

directed along one of the primitive lattice directions then the multi pole moments 
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Eeff 

Eb 

00 ~: 100X 

Figure 7.5: Comparison of asymptotic and numerical results for the 
square array of cylinders. From top to bottom the curves correspond to 
s = 0, 0.1, 0.2, 1, oo respectively. 

are given by 

6 n~ n~ 
Ql = N11 I:cos(3)QI(at,at,dn,Et,Et,3) 

n=l 
6 

- Nu Ql( at, at, du, Et, Et, 0) I: cos( n3~ )einhr/J 
n=l 

- 3 N11QI(at,a1 ,du,e1 ,e1 ,0) I= 1,5, 7,11,13, ... (7.26) 

Note that Q1 = 0 if I is divisible by 2 or 3. 

The potential difference between cylinders is 

Vit = Nu Vg.p(at, at, dn, Et, Et) 

~ n~ n~ 
+2Nn L.. cos( 3 )Vint(at, at, dn, Et, e,, 3) 

n=l 

Nnd [ 1 1 ] - - -
2 

· + log(2X,t(sn + 1)]- "(- l/;(s11 + 1) + -
2

log3 . (7.27) 
~Eba1a1 sn 

Thus the effective dielectric constant is 

va~(sn + 1)Xn A 

- - ] 1 } + Uhex• Eb 1+2s11 {log(2Xn(sn+1) -"(-l/;(sn+1)+ 2 log3 

Eeff 
(7.28) 

The additive constant is approximately D.hex = -4.0. 

The asymptotic formula is compared with the numerical results in Figure 7.6. 

7.3.4 Isotropic Property 

The square and hexagonal arrays have isotropic effective dielectric constants. 

This property is demonstrated by calculating the asymptotic behaviour when the 
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Figure 7.6: Comparison of asymptotic and numerical results for the hexag
onal array of cylinders. From top to bottom the curves correspond to 
s = 0, 0.1, 0.2, 1, oo respectively. 

applied field is in a different direction (say, at an angle 8 to one of the principal 

axes). The multipole moments are given by 

1 
M 2mr 2mr 

N11 L cos(8 + M )Q1(at, a1, du, e1, e1, 8 + M ) 
n=l 

Ql = 

M 
- N;I Q1( a~, a~, du, e~, e1, 0) L cos(8 + 

2
n1r )e'l(e+lj;j') 

n=l M 
(7.29) 

where M is the number of nearest neighbours. 

Using various trigonometric identities, the summation appearing above is 

M ~ !Mcos(/-1)8 1=1,M+1,2M+1, ... 
~ cos(8 + 

2~1!" )e'1(e+~) = !M cos(/+ 1)8 I= M ~ 1, 2M- 1, ... 

- 0 otherwise 
(7.30) 

Thus the dipole moment Q1 does not depend on 8 other than possibly through 

the normalization factor N~ 1 • The potential difference V{1 = E cos 8d is given by 

V{1 = N;1cos8Vgap(at,at.du,et,et) 

M 2n1l" 2n1l" 
+2N;1 L::cos(8+ M )Vint(at,at,du,et,et, M) 

n=l 

- N;1 cos 8Vg.p( a~, a1, du, e~, et) 

M 2n1l" 2n1l" 
+2N;l cos 8 I: cos( M )Vint(at, al, du, Et, Et, M ) 

n=l 

M 2n1r 2n1!" 
-2N;l sin 8 I: sin( M )Vint(at, al, du, Et, Et, M ). 

n=l 

(7.31) 

Now, Vint( a~, a1, d11 , Et, Et, 0) is an even function of 0, therefore the last summation 

above is identically zero because the summand is an odd function of angle summed 

over a symmetric range of angles. Thus, the factors of cos 8 cancel when the final 
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results are written in terms of the electric field E. The resulting expression for 

the effective dielectric constant is independent of 8, as required for isotropic 

structures. 

7.3.5 Limiting Form of Moments 

In the limit of touching and conducting cylinders the expression for the moments 

can be written as the product of two factors: 

Q, ~ L cos(--)ai-le2•1n,./M X 
[ 

M 2mr . ] 

n=l M [
Nn(sn + 1)Xn]. 

sn 
(7.32) 

The first factor arises from the nearest neighbour geometry and provides the 

dependence on I, the second factor describes the asymptotic behaviour of the 

interaction and is independent of l. In particular, the moments can be written in 

the form 
M 2mr 

Q1 = CI;cos( M )Z,(r,.) 
n=l 

(7.33) 

where the vectors r,. specify the positions of the nearest neighbours and C does 

not depend on I. This result corresponds to the form of the exact solutions derived 

in Section 2.10 when each cylinder has M nearest neighbours and a connecting 

path exists across the composite. 

An analogous result can be obtained in three dimensions for regular arrays of 

spheres. 

7.3.6 Variations in Coordination of Nearest Neighbours 

The general structure for the alternating square array of cylinders is shown in Fig

ure 7.7. This structure will be used to demonstrate how the asymptotic methods 

can describe classes of structures where the coordination between nearest neigh

bours can change. All eight neighbours are considered in the initial analysis. The 

applied field is in the direction joining cylinders 0 and E. 

The central cylinder 0 has eight relevant neighbours. Which neighbours are 

nearest neighbours depends on the ratio of the radii of the two types of cylinders. 

The different types of coordination are shown in Figure 7.8. For .j2 - 1 < TJ < 
V2+ 1, each cylinder has four neighbours of opposite type and exhibits the same 

behaviour as the alternating chain. For 0 < TJ < .j2- 1 or .j2 + 1 < TJ, the co

ordination changes and each large cylinder (assume a > a') has four neighbours 

of the same type and exhibits the same behaviour as the symmetric square array 

(with the applied field at 45° to the principal axes). 
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8<10 
8fl 

0llG 
Figure 7.7: Nearest neighbour geometry for alternating square array of cylin
ders. The central cylinder 0 has four like neighbours A, B, C and D; and 
four unlike neighbours E,F,G and H. 

The charge distribution on the central cylinder is written 

(1) ~ mr mr 
Q1 = N12L...,cos(2)QI(a1,a2,d12,e1,e2,2) 

n=l 
4 

7l' n 7l' 7l' n 7l' 
+Nu 2: cos(4 + 2 )QI(ababdn, €1, e1, 4 + 2 ). 

n=l 

(7.34) 

A corresponding expression containing the normalization constants N12 and N22 

is obtained for Qj2). 

The potential between cylinders of type 1 and type 2 (for example 0 and E 

in Figure 7. 7) is written 

Vi2 = N12 Vg.p( a1, a2, d12, e1, e2) 
4 n1l' n1l' 

+N12 2: cos(-)Vint(ab a2, d12, e1, e2, 2) 
n=1 2 

4 n1l' n1l' 
+N12 2: cos( 2 )V.nt(a2, ab d12, e2, e1, 2) 

n=l 

4 7l' n 7l' 7l' n 7l' 

+Nu 2: cos(-+ 2 )V.nt(a1, a1, du, e1, e1, 4 + 2) 
n=1 4 

4 7l' n 7l' 7l' n 7l' 

+N22 2: cos( 4 + 2 )Vint(a2, a2, d22, e2, e2, 4 + 2 ). 
n=l 

(7.35) 
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7]<v'2-1 7]=v'2-1 

7]=v'2+1 77>v'2+1 

Figure 7.8: Different co-ordination structures of the alternating square array 
for values of 7] above and below the transition values 7]c = v'2 + 1 and 
7];;1 = v'2- 1. 
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The potential between cylinders of type 1 and type 1 (for example 0 and A 
in Figure 7. 7) is written 

Vu = Nu V.ap( ar, ar, du, Er, Er) 
4 7r n7r n7r 

+2N11 L cos( 4 + 2 )Vint(ar, ar, du, €r, €r, 2) 
n=l 

4 n1r 1r n1r 
+2N12 L cos( 2 )Vint(ar, a2, dr2, Er, €2, 4 + 2 ). 

n=l 

(7.36) 

A corresponding result is obtained for V22. 

The above equations together provide a three-by-three linear system relating 

the normalization constants N;j to the potential differences V;i. The normal

ization constants can thus be eliminated from the expressions for the multipole 

moments. 

The effective dielectric constant is given by 

Nu [du (su + 1)Xn] N22 [d22 (s22 + 1)X22] - 7r - + 7r-:--=::: 
47rebE ar su 47rEbE a2 s22 

€elf 

Eb 

+1r N12 [( d12 + d12) (sr2 + 1)Xr2] + ~(ry). 
47rebE 2ar 2a2 s12 

(7.37) 

The explicit form of the above expression in terms of the V;i is not given be

cause of its complexity. Before considering the general case, a number of limiting 

approximate forms are considered. 

If ry;1 < 17 < Tic the dominant interaction is between cylinders of type 1 and 

type 2 and the terms involving N11 and N22 are of smaller order than the term 

in N12 . If N11 , N22-+ 0 then one can write 

€elf 

Eb 

N12 ( d12 d12 )(sr2 + 1)Xr2 A ( ) 
- 7r - +- +ur2 17 

47rebE 2a1 2a2 s12 
1r(s12 + 1)Xr2 A ( ) 

- 1 + L>I2 17 • 
1 + 2sr2{log(X12(s12 + 1)(1 + ry)]- 'Y- ,P(s12 + 1)- ~!('} 

(7.38) 

The asymptotic form is identical to the result for an alternating chain of cylinders, 

but ~12( 17) is different from ~( 17) for the chain. The functional form of ~12( 17) is 

discussed later. 

If 17 > Tic the dominant interaction is between cylinders of type 1 and type 1. 

In this case N12 and N22 are neglected and 

€elf - Nu du (su + 1)Xu A ( ) -- + uu 17 
47rebE ar su Eb 

1r(su + 1)Xu ~ ( ) 
1 + 2su {log(2Xu ( su + 1 )] - 'Y - ,P( s11 + 1)} + 

11 17 • 
(7.39) 
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A corresponding result in terms of N 22 , 8 22 , X22 and .6.22 (7)) is obtained if 1) < 7)~ 1 . 

By symmetry 
.6.12(7)) = .6.12(7)-1) 

.6.u(7J) = .6.22(1]-1) 

The numerical estimates for .6.;i(1J) are shown in Figure 7.9. 

15 

.6.;j ( 1)) 

-5 

~ 

I 
~ 

I' • 

ol 
I 

•I 
•I 
• 

• 1) 
~ __. -·- ..... + -41 

10 

Figure 7.9: The value of the additive constants ~;j(l)) is shown over the 
entire range of coordinations. The vertical dashed lines show the transition 
points between different coordinations, and the horizontal dashed line shows 
the value for a simple (symmetric) square array. 

(7.40) 

All the above special cases are encompassed by the general formula (7.37). In 

particular, relationships between .6.(7)) and the .6.;j(7J) can be obtained. 

H 7)~ 1 < 7J < 1Jc then in the asymptotic limit X12 diverges, 8 12 can take any 

value, but X11 , X22 tend to constant limits (depending on 7J) and 8 11 , 8 22 tend 

to zero. Substituting these limiting values into the general formula (7.37) and 

comparing it with (7.38) gives 

.6.12(7)) = rrJ(1 +27J)7Jc [ 1 + 1 ] + .6.(7)). (7.41) 
V1Jc 1) V1J1Jc - 1 

Similarly, if 7J > 1Jc then X11 diverges but X12 and X 22 tend to constants. 

Comparing (7.37) with (7.39) gives 

Similarly, 

1) 
.6.n(7J) = 2rr 1) + 1 

1 
) - 2rr -.6.22( 1) - 1) + 1 

1Jc (I. 
.../2(7) -l)c) +'Try 1) -1 + .6.(7)). 

1)c fl 
.../2(1/7) -l)c) + rry ~ + .6.(1) ). 

(7.42) 

(7.43) 

Note that the above formulae for .6.;j predict divergent behaviour at the ap

propriate values of 7J· The dependence of .6.(7)) on 1) should be relatively weaker 

than the dependence of the .6.;]{7)) on 1). This is observed in Figure 7.10. 
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Figure 7.10: The value of the additive constant .:l(TJ) is shown over the entire 
range of coordinations. The vertical dashed lines show the transition points 
between different coordinations. 

7.3.7 Some General Results in Two Dimensions 

The effective dielectric constant for periodic lattices of cylinders with a single 

basis element can be written in the general form 

e•ff M(s + 1)X 
-~ 

fb 1 + 2s{log[X(s + 1)]- t/J(s + 1) + C}' 
(7.44) 

where M and C are numerical constants which depend on the specific nearest 

neighbour geometry of the structure. 

If fc is the critical area fraction (the area fraction for which the cylinders in the 

lattice first touch and form a connected network) then the asymptotic parameter 

X can be recast as 

X = [2fb +. @1-
1 
~ [2fb + J4(/c- f)] -1 

e V~J e h 
(7.45) 

and 
2eb~ 

s~--;-y~· (7.46) 

If s ~ 1 (very large contrast limit) then 

eel£ M f> 
-~-(1--p. 
fb 2 fc 

(7.47) 

For a random array of cylinders near the percolation threshold one expects a 

power law variation similar to that above. However, it is unlikely that the critical 

exponent for a random array would be equal to the exponent obtained above for 

a highly regular lattice of cylinders. Possible relationships between the exponents 

for regular and random arrays are conjectured at the end of this chapter. 
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If s ~ 1 (very small separation limit) then 

E 
eff 4 ~~M Eb_ 

E • 
Eb log(-)+ C 

2Eb 

(7.48) 

The importance of the constant C is demonstrated by examining the leading 
E 

order singularities of the above expression. The leading order behaviour is -
1
-. 

age 

However, the second order term is of the form (lo; e)2 which is also singular. In 

fact there are an infinite number of terms of the form _, E \ contributing to the 
ogE n 

singular behaviour. 

In numerical calculations it is imperative to correctly describe the full sin

gularity and factor it out of the numerical calculations. Thus, if the constant 

C is not known there will always be singular terms left over and the numerical 

convergence will be affected. 

The long wavelength behaviour and spectral representations of the above re

sults will be considered after some three dimensional structures have been inves

tigated. 

7.4 Three Dimensional Structures 

7.4.1 Alternating Chain of Spheres 

Using the asymptotic results the moments are given by 

Q(l) 
lm 

2 

- N12Q1( at, a2, d12, Et, E2, 0, 0) L cos(mr)P,( cos(mr))8m,o 
n=l 

- (1- (-1)']Nt2QI(at,a2,dt2,Et,E2,0,0)8m,O· 

In particular, 

(1) 1 1 Q1,0 ~ 2at{log(Xt2(st2 + 2)(1 + TJ)] + I/J(s12 + 2)}. 

The potential difference between each sphere and its neighbour is 

Thus, 

Vi2 = N12 Vg.p( a1, a2, d, Et, E2) 
2 

+ N12 L cos(mr)Vint(at, a2, d, Et, E2, mr) 
n=l 

2 

+ N12 L cos(mr )Vint( a2, a1, d, E2, e1, mr ). 
n=l 

N12 d 
Vi2 ~ --. (1 + D12(a, ,8)]. 

47rEb a1a2 
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(7.52) 



and 

s12 1 1 
D12(o:,/3) = ( 1)X [o: + /3{log[X12(s12 + -

2
)(1+ 1J)] + 1/>(s + -

2
)}] (7.53) 

S12 + 2 12 

where o: and {3 are two numerical coefficients that arise from the ansatz made to 

obtain Equation (7.16). Note that, asymptotically, the second term is an order 

(in X) smaller than the first term and thus the ansatz is not necessary to describe 

the asymptotic behaviour. 

The above expressions give the following asymptotic expression for the polar-

izability per unit length of the chain 

P 
_ 4aa' log[X12(s12 + !)(1 + 1J)] + !j>(s12 + !) A - +u. 

tP 1 + D12( o:, /3) 
(7.54) 

This expression is compared to the numerical results for a symmetric chain in 

Figure 7.11 where the term D 12(o:,{3) has been neglected. This is equivalent to 

taking o: = {3 = 0. The correction term is approximately .6. = -1.38. There 

is excellent agreement for large X, although the agreement for smaller X gets 

worse ass increases. The agreement is considerably improved by choosing o: = 2.3 

and {3 = -0.4 (see Figure 7.12). The above values are fairly approximate, and 

reasonable agreement occurs for a range of o: and {3. 

5 

p 

0 
0 

X 
100 

Figure 7.11: Comparison of the numerical and asymptotic results for the 
polarizability per unit length of a chain of spheres for various values of s. 
From top to bottom the curves correspond to s = 0, 0.1, 0.2, 1, oo. 

The variation of .6.( 1)) for a chain of alternating spheres was also investigated 

numerically and the values obtained are shown in Figure 7.13 with an empirical 

fit. The simplest fit to the data is 

.6.(7)) ~ -2.99 + 0.82(7) + 1/7)). (7.55) 

This fit is of the same form as that used for a chain of cylinders. 
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Figure 7.12: Comparison of the numerical and asymptotic results for the 
polarizability per unit length of a chain of spheres. The agreement has been 
improved by the use of an ansatz. 

TJ 
o1 3 

Ll( TJ) 

-2 

Figure 7.13: The value of the additive constant ~(TJ) is compared with the 
empirical fit of the form a+ b( TJ + 1/TJ). 
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7.4.2 The Cubic Lattices of Spheres 

In the simple cubic structure, each sphere has six identical neighbours. However, 

if the external field is directed along one of the primitive lattice directions then 

only two of the six neighbours contribute to the asymptotic behaviour, the other 

four being at the same potential as the central sphere. 

Under these conditions, the asymptotic formula is identical to that for the 

symmetric chain. The effective dielectric constant is given by 

e•f£ ~ 7r log[Xt2(St2 + !)J + t/J(8 t2 + !) + t:;.SC· 

eb 1 + D12( a, /3) 
(7.56) 

The value of!:;. is of course different from that for the chain. However, because a 

and f3 are local geometric parameters they should be the same as for the symmetric 

chain. 

Rather than repeat the entire analysis for the BCC and FCC lattices, the 

results are summarized by Equation (7.57) and Table 7.1. 
The effective dielectric constant for all three structures has the form 

eel£~ 1rMlog[Xt2(s12 + !)J + t/J(st2 + !) +!:;. 

eb 1 + D12( a, /3) 
(7.57) 

where M, a and f3 are geometric parameters which can be determined (in prin

ciple) from the nearest neighbour coordination and !:;. is the leading term in the 

correction from non-nearest neighbours. 

Table 7.1: The following asymptotic parameters are given for the SC, BCC 
and FCC lattices: the asymptotic amplitude M is given exactly by the anal
ysis; the correction term ~ is obtained numerically to reasonable accuracy; 
the ansatz parameters a and (3 are chosen to give reasonable fit over a wide 
range of values of X and are only approximate. 

sc BCC FCC 

M 1 v'3 2v'2 
!:;. -3.6 -7.4 -15.3 
a 2.3 3.2 4.7 

_f!_ -0.4 -0.6 -1.3 
---

Figures 7.14 to 7.19 compare the asymptotic approximation with the numer

ical results for the three cubic Bravais lattices. The agreement with and without 

the inclusion of the ansatz is shown. Note that the parameters a and f3 increase 

as the number of nearest neighbours increases. 
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Figure 7.14: Comparison of the numerical and asymptotic results for the SC 
array. The contribution from the ansatz has been ignored. 
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Figure 7.15: Comparison of the numerical and asymptotic results for the SC 
array. The agreement has been improved by the use of the ansatz. 
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Figure 7.16: Comparison of the numerical and asymptotic results for the BCC array. 
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Figure 7.17: Comparison of the numerical and asymptotic results for the 
BCC array. The agreement has been improved by the use of the ansatz. 
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Figure 7.18: Comparison of the numerical and asymptotic results for the FCC array. 

40 

e•ff 

Eb 

0 
0 

• 
•I 

1 
•• 
•• •• •• 

X 
100 

Figure 7.19: Comparison of the numerical and asymptotic results for the 
FCC array. The agreement has been improved by the use of the ansatz. 
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It is possible to examine the coordination change that takes place in a lattice 

with a basis of two spheres (such as the sodium chloride or cesium chloride struc

tures) as the ratio of the radii of the spheres is altered. However, while the basic 

procedure is the same, the analysis is even more complicated than that for the 

alternating square array of cylinders and is not attempted here. 

7.4.3 Some General Results in Three Dimensions 

The effective dielectric constant for periodic lattices of spheres with a single basis 

element can be written in the general form 

eeff 1 1 
- ~ M{log[X(s +- )]-1/;(s + -

2
)} + C 

fb 2 
(7.58) 

where M is a numerical constant which depends on the specific nearest neigh

bour geometry of the structure. The constant C depends on non-nearest neigh

bour properties. The dominant singularity is only logarithmic and because the 

logarithm is a very slowly varying function the constant C must be retained in 

numerical studies. Unfortunately, the constant C cannot be predicted solely from 

a knowledge of the nearest neighbour geometry. 

If fc is the critical volume fraction for which the spheres in the lattice first 

touch and form a connected network, then the asymptotic parameter X can be 

recast as 

and 

[
2eb 

x~ -e-+ 

2eb 
s~

e 

2(/c- f)] -l 

3/c 

3/c 
8(/c- !)" 

If s ~ 1 (very large contrast limit) then 

eeff M f 
- ~ --log(1- -). 
fb 2 fc 

(7.59) 

(7.60) 

(7.61) 

In three dimensions the singular behaviour is weaker than in two dimensions, 

and the power law is replaced by a logarithmic variation. Again, there may be a 

relationship between the above variation and the critical behaviour for a random 

array of spheres. 

If s > 1 (very small separation limit) then 

eff e 
e Mlog-
-~ fb 
fb 

(7.62) 

The singular behaviour here is also weaker than the corresponding two dimen

sional results. 
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Both of the above limiting behaviours agree with the asymptotic calculations 

of Batchelor and O'Brien (1977) and several other authors. However, a single 

formula (such as equation (7.58)) which encompasses the two limiting behaviours 

has not been given before. 

7.5 Long Wavelength Behaviour 

The long wavelength behaviour of the effective properties of dense arrays can be 

obtained in the same manner as for dilute arrays. The effective refractive index 

is the square root of the effective dielectric constant and the imaginary part K of 

the index is related to the absorption. 

At long wavelengths the asymptotic variables behave as 

X = 

~ 

and 

[
2eb 4-D~h -

1 

-+ -
€ 2 d 

[
-i.Ao 4- D J8(/c- f)] -1 

A + 2 Dfc 

-i.AoJ Dfc 
8 ~ -.A- 8(/c - f) . 

A critical wavelength Ac can be defined by 

Ac = .AaJ fc ~ f '> .Aa 

(7.63) 

(7.64) 

(7.65) 

which diverges as the area or volume fraction approaches its critical value. The 

two regimes .A0 ~ .A ~ Ac and .A '> Ac ';> .A0 are investigated separately. 

7.5.1 Two Dimensional Structures 

As a function of wavelength the effective dielectric constant is given by 

e•ff M.Ac 1 

~ ~ 2.Aa 1 - i.Ac [log(~ - 1/1(1 - i.Ac) + C] 
.A 2.Aa 2.A 

iM .A [ .A i1r ] -
1 

2.Aa log( _x) + 2 + C .A ~ Ac 
~ { 

M.Ac [ i.Ac{ ( Ac ) }] , 
2.Ao 1 + T log 2.Ao + 1 + C " '> Ac. 

(7.66) 
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The refractive index is given by 

n+i~<:-

i + 1 {i:fi [ A i1r ] -t 
-2-y~ log(Ao) + 2 + C 

{M>:; [ iAc{ ( Ac }] 
y 2>; 1 + 2A log 2Ao ) + ; + C 

A< Ac 
(7.67) 

A~ Ac. 

The real and imaginary parts of the refractive index are shown in Figure 7.20. 

Plotting the results on a log-log scale highlights the different wavelength depen

dencies in the two regimes. 
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Figure 7.20: Effective refractive index for two dimensional structures. The 
real part of the refractive index is shown by the solid curve and the imaginary 
part is shown by the dashed curve. The parameters chosen were Ac = 104 .Xo, 
M = 1 and C = 1. At very long wavelengths the real part is constant 
and the imaginary part decays as the inverse power of the wavelength. At 
shorter wavelengths both the real part and the imaginary part increase as 
the square root of the wavelength, modified by a logarithmic factor. 

The absorption coefficient is given by 

27rK --·-a- A 

7r I MA 
-:\" \ Ao log( {. ) 

{M>:; [ Ac ] Ac 
7rV2>; log(2Ao)+;+C} A2 

A< Ac 

(7.68) 

A~ Ac. 

Once again the absorption varies as the inverse square of the wavelength at very 

long wavelengths and the multiplicative factor is 

~ 3 

AJ log Ac- -(fc- Jt• log(fc- f) (7.69) 

which diverges as the critical volume fraction is approached. At shorter wave

lengths the absorption decays only as the inverse square root of the wavelength 

and the variation is independent of the volume fraction. 

158 



7.5.2 Three Dimensional Structures 

As a function of wavelength, the effective dielectric constant is given by 

~ M[log( {i Ac)- ,P(~- i {i Ac)] + C 
VsAo 2 VsA 

e•ff 

fb 

A i1r 
M(log( Ao) + 2! + C A~ Ac 

[ 
,.;;Ac C .M1r2 /3Ac 

M log(v6 Ao) + -y] + + ~-2-y 8>: 
~ (7.70) 

A~ Ac. 

The refractive index is given by 

n + iK; ~ 

A'[ i1!M+C] (Mlog(A
0

)]' 1 + 2~log(~) A~ Ac 

[ ( Ac )]' [ . 1r
2 

/3 Ac ] 

(7.71) 

MlogAo' 1+~4V8Alog(t.) A~Ac· 

The real and imaginary parts of the refractive index are shown in Figure 7.21. 
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Figure 7.21: Effective refractive index for three dimensional structures. The 
real part of the refractive index is shown by the solid curve and the imaginary 
part is shown by the dashed curve. The parameters chosen were Ac = 104 Ao, 
M = 1 and C = 1. At very long wavelengths the real part is constant and 
the imaginary part decays as the inverse power of the wavelength. At shorter 
wavelengths the real part increases as the square root of the logarithm of 
the wavelength and the imaginary part decreases as the square root of the 
logarithm of the wavelength. 
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The absorption coefficient is given by 

~
2 

~ M 
_ 2~~~: 1 2>. log( .l) 

>.<>. 
0-- ilo 

c 

>. ~ 
I ~31 3M - Ac 

2 \ Slog( to) ).2 
). ~ Ac. 

(7. 72) 

Once again the absorption varies as the inverse square of the wavelength at very 

long wavelengths and the multiplicative factor is 

Ac[log>.crt ~ Uc- f)-1[-log(fc- nrt (7.73) 

which diverges as the critical volume fraction is approached. At shorter wave

lengths the absorption decays only as the inverse of the wavelength and the 

variation is independent of the volume fraction. 

7.6 Spectral Representations 

The general formula for the asymptotic behaviour of the effective dielectric con

stant of a periodic array of touching cylinders is 

eff M€ 
€ ~ 

log(€/fb) + C 
(7.74) 

where M and C are constants depending on the specific nature of the coordination 

of the lattice. A spectral representation can be found in terms of the parameter 
1 €+ fb 

v=-=--: 
T €- fb 

where 

feff(v) -

v+1 
M(v -1)€b 

v+1 
log(--)+C 

v-1 
Mfb 11 g(v')dv' 

- --+fb 
C -1 v- v' 

M1+v 

( ) 1- v 
g v = 1+v 

[log( 1 - ) + C]2 + ~2 

An example of the spectral density function is shown in Figure 7.22. 

(7. 75) 

(7.76) 

Unlike the spectral representations in Chapter 6, the expression for feff is not 

an exact expression, but an asymptotic approximation valid as € -+ oo. Thus, the 

spectral density obtained is only valid asymptotically as v -+ 1. Fortunately, the 
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Figure 7.22: The spectral density function for a touching array of cylinders. 
The inclusions form a connected pathway through the composite and, there
fore, the spectral density at the branch point v = 1 is non-zero (in fact it 
is infinite). The background does not form a connected pathway and the 
spectral density at the other branch point v = -1 is zero. 

behaviour near the branch point is sufficient for determining the long wavelength 

behaviour of the composite. 

In a touching array of cylinders the inclusions form a connected pathway 

through the composite and, therefore, the spectral density at the branch point 

v = 1 is non-zero (in fact it is infinite). Interchanging the dielectric constants of 

the two phases reverses the sign of v and the behaviour near the other branch 

point v = 1 describes this reciprocal structure. The background phase does not 

form a connected pathway and the spectral density at the other branch point 

v = -1 is zero. 

The general formula for the asymptotic behaviour of the effective dielectric 

constant of a periodic array of touching spheres is 

elf e v+1 
e ~ Meblog(-) = Meblog(--) 

fb l/ - 1 
(7. 77) 

where M is a constant depending on the specific nature of the coordination of 

the lattice. A spectral representation can be found where 

g(v) = M -1<v<1. (7.78) 

That is, the spectral density is a constant. However, as pointed out above the 

expression for e•ff is only an asymptotic approximation valid as e -+ oo. Thus, 

the result that g( v) is a constant is not of great importance, but its behaviour 

near the branch point v = 1 is important. 

In a touching array of spheres the inclusions form a connected pathway through 

the composite and, therefore, the spectral density at the branch point v = 1 is 
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non-zero. Unlike in two dimensions, in three dimensions the background phase 

does form a connected pathway (such a structure is called bi-connected) and the 

spectral density at the other branch point v = -1 is also non-zero. 

For area or volume fractions f < fc the spectrum of resonances is discrete 

(Bergman, 1979b; Stroud et al., 1986) and consists of simple poles. However, if 

fc - f is very small the poles will be closely spaced and may be approximated by 

a branch cut. 

In two dimensions when fc - f is small, the effective dielectric constant can 

be approximated by 

eJ£ M 
€ ~ • 

~ + 4eb[C -log(2eb + J2(fc- f))] y-y:- € € fc 

This function has a branch cut given by 

or equivalently 

n;-
-eby~<e<O 

- 1 < V < 1 _ 2J fc - f 
fc 

(7.79) 

(7.80) 

(7.81) 

where the upper limit is an approximation for small fc- f. This branch cut 

must be regarded as an approximation to the distribution of discrete poles (the 

relationship between the spectral density and the residues of the poles can be 

obtained by applying the Euler-Maclaurin expansion to the discrete spectral rep

resentation). 

In three dimensions the effective dielectric constant is given by 

eeff ~ -Mlog(2:b + pu~-; !)) +c. 

This function has a branch cut given by 

or equivalently 

{61:"" 
-Ebv~ < E< 0 

- 1 < V < 1 _ 2J fc - f 
6fc 

where the upper limit is an approximation for small fc- f. 

(7.82) 

(7.83) 

(7.84) 

In both cases the upper branch point approaches v = 1 as f --+ fc· The long 

wavelength behaviour is determined by the nature of the spectrum near v = 1. 

H the closest singularity to v = 1 is an isolated pole, a finite distance away, 

then the long wavelength absorption will fall off as the inverse square. (This is 
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most easily seen by writing the discrete spectral representation and retaining only 

the pole closest to !I = 1.) The magnitude of the absorption is determined by the 

distance of the pole from !I = 1 and its intrinsic strength. 

However, at shor.ter wavelengths additional poles will contribute to the long 

wavelength behaviour. If all these poles are closely spaced the combined effect 

will be similar to that produced by a branch cut with a branch point at a finite 

distance from lJ = 1. The departure from a simple inverse square law observed 

for >. < < >.c is due to this effect. 

For a branch cut extending all the way to !I = 1 the long wavelength behaviour 

is no longer an inverse square law, but depends on the nature of the spectral 

density near !I = 1. 

The above results have been observed for a variety of periodic structures and 

probably apply to all regular arrays of cylinders or spheres. Some conjectures 

(based on these observations) are made about the behaviour of random structures 

at and near percolation in the last section of this chapter. 

1.1 Random Structures 

Several different models for random structures are possible, and each model may 

be more or less suited to describing a particular physical system. The models 

considered here consist of randomly placed cylindrical or spherical inclusions. 

The first model is that of randomly distributed, non-intersecting, equal sized 

inclusions. An example is shown in Figure 7.23. The properties of such a structure 

depends strongly on the algorithm used to generate it. 
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Figure 7.23: Example of a structure containing non-intersecting equal sized inclusions. 
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A more complex model allows different sized inclusions (Figure 7.24). A range 

of sizes allows the structure much more freedom especially when the structure is 

close packed. Such structures are suitable for analysis by the methods developed 

in this thesis and several conjectures will be made about their properties. 

oQ oO QoO' 0 .• 0 o0 o onooon ~ 
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Figure 7.24: Example of a structure containing non-intersecting inclusions 
having a continuous range of sizes. 

Both of these structures were generated using the following algorithm. A large 

number of inclusions are placed in a unit cell of given size with their centres chosen 

randomly. The radii of the inclusions may either be fixed or chosen randomly. 

Those inclusions which intersect the boundaries of the unit cell are replicated 

at the opposite end of the cell to maintain periodic boundary conditions. The 

effect of the boundary conditions can be decreased by making the mean size of the 

inclusions much smaller than the size of the unit cell. The location and number of 

all the intersections between inclusions are now calculated. The inclusion making 

the largest number of intersections is removed (along with any of its periodicity 

replicas), and this removal is repeated until the remaining inclusions are non

overlapping. At this stage, more inclusions are randomly placed in the unit cell 

and the above process is repeated. At each stage a few additional inclusions are 

added to the cell until it is no longer effective to repeat the process. The total 

fraction of area or volume occupied by the inclusions is easy to obtain. Likewise 

the total length or area of interfacial boundary is also easy to calculate since the 

inclusions do not overlap. 

For a structure with equal sized inclusions the structure obtained is usually 

referred to as a cramped structure and has a filling fraction much lower than 

structures generated by more sophisticated algorithms. A review of different 

algorithms has been given by Tory and Jodrey (1983). 
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An alternative class of models allows the inclusions to overlap. The intersec

tion of inclusions need not have any physical meaning, but is simply a device 

for generating complex shapes from simple elements. If all the elements are the 

same size, a structure like that in Figure 7.25 is obtained. Such structures can 

easily form long winding chains, or large clusters containing voids or many other 

formations. 

Figure 7.25: Example of a structure containing equal sized inclusions which 
are allowed to interpenetrate or overlap. 

If the elements have a variety of sizes, even more interesting structures are 

possible (Figure 7.26). This structure is the one which most qualitatively resem

bles structures found in certain ceramic-metal (cermet) composites. An example 

of a silver-magnesium fluoride cermet is shown in Figure 7.27. 

The algorithm used to generate these 'overlapping' structures is initially sim

pler since the inclusions are just placed at random. The difficulty here lies in the 

calculation of the area and perimeter (volume and surface area) of the clusters 

of inclusions formed. An algorithm has been developed for the two dimensional 

case. All the points of intersection were found, and the circles were divided into 

arcs by these intersection points. Only those arcs which separate the interior 

of an inclusion from the background phase are retained. These arcs form the 

boundaries of the clusters shown in Figures 7.25 and 7.26. The clusters can be 

partitioned into polygons and segments of circles for the purposes of calculating 

their areas and perimeters. Algorithms for these and related tasks are also avail

able in various image processing packages developed for electron microscopes. A 

similar algorithm in three dimensions is much more difficult, because intersecting 

spheres can produce geometric surfaces and shapes which are difficult to charac

terize, let alone calculate their volumes or areas. Of course these volumes, areas 
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Figure 7.26: Example of a structure containing inclusions having a range of 
sizes which are allowed to interpenetrate or overlap. 

Figure 7.27: Reproduction of a micrograph of a silver-magnesium fluoride 
cermet. The inclusions are metallic and form a variety of shapes from simple 
globules to long filaments. (Original micrograph provided by Mary Gajdard
ziska-Josifovska, Dept. of Applied Physics, University of Sydney) 
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and perimeters can also be calculated by Monte Carlo methods (choosing points 

at random and seeing how often they fall within a cluster or within a certain 

distance of its boundary). 

7.7.1 Equivalent Circuit Networks 

At this point it is convenient to introduce the mathematically equivalent (but 

physically different) problem of a composite made from material with different 

conductivities. The inclusions will be assumed to have a conductivity much higher 

than that of the background phase. If an electric field is applied across the com

posite a current will flow in response to the field. Just below percolation, the 

amount of current flowing will be strongly determined by the size of the gaps 

and the width of the necks between nearest neighbour or intersecting inclusions, 

and the current density will also be greater in these critical regions. The action 

of the gaps and necks can be modelled by an equivalent conductance (or resis

tance) whose magnitude is determined by the local geometry. For example, the 

asymptotic results used in this chapter can be used to relate the conductance 

of a gap to its size and the conductivities of the inclusions on either side. The 

analogous approach for composites made from dielectrics replaces each gap by 

an equivalent capacitance which (locally) produces the same charge separation 

across the gap at a given potential difference. The mathematical expressions for 

the equivalent capacitance are identical to those for the equivalent conductance. 

For other physical interactions, analogous 'circuit elements' may be used. 

The effective conductivity or dielectric constant is then obtained by calcu

lating the equivalent resistance or capacitance of the resulting network. This 

calculation can be performed using the techniques of linear network theory. An 

efficient algorithm for random resistor networks has been developed by Frank and 

Lobb (1988). 

The continuum percolation of discs in the plane has also been studied by 

McCarthy (1987) and he has developed an algorithm for replacing the discs by 

an exactly equivalent network of bonds. The bonds have only two values or states: 

a bond is present if the corresponding pair of discs overlap, and absent if they 

do not. An interesting generalization would allow various bond strengths (these 

correspond to the magnitude of the conductances above) depending on the degree 

of separation or degree of overlap of the discs. 

An alternative computational procedure for a disordered distribution of in

clusions is the random walk or diffusion algorithm. A point particle executes.a 

random walk in a given composite. At each point, the step size and time in

crement are related by the local values of the conductivity (or other property). 

After a sufficient number of steps the net distance travelled and time taken are 
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used to calculate the effective conductivity. An example of such an algorithm has 

been used by Lee et al. (1989). The algorithm is suitable for structures where 

it is easy (i.e. numerically efficient) to determine which inclusion the particle is 

in at any given point and time. An important factor is the correct choice of step 

size (or having an adaptive step size). The step size must be much smaller than 

the smallest critical structure such as a gap between two clusters and yet the 

number of steps taken must be large enough to sample a sufficient region of the 

composite. 

The above algorithms allow the calculation (or approximation) of the prop

erties of any given realization of a random or disordered structure. Ideas for 

dealing with ensembles of such structures and their statistical properties are now 

discussed. 

It is possible (in principle) for the techniques of percolation theory to predict 

the distribution of gap sizes and neck widths of a random distribution of cylinders 

or spheres (at least close to percolation). The result may not be universal but 

may depend strongly on the particular ensemble or way the random structures 

are generated. However, this is a purely geometric calculation independent of 

the physical properties of the inclusions. The physical properties are introduced 

by assigning a bond strength to each gap size or neck width. The results of 

this thesis provide a specific relationship between the geometric parameters of 

the gaps and the strength of the interactions that take place across these gaps. 

Thus, a distribution of bond strengths is obtained. The problem has been reduced 

to that of a random resistor (or bond) network with a specified distribution of 

bond strengths. Such networks have been studied by Straley (1977). The critical 

exponents and other properties of such structures may depend very strongly on 

the specific distribution of bond strengths used. The non-universality of critical 

exponents has been discussed by Hui and Stroud (1985), Smith and Anderson 

(1981a) and compared with experiment by Smith and Anderson (1981b). Other 

experimental studies are discussed by Song et al. (1986). 

7. 7.2 Some Conjectures 

Based on the results already obtained for regular structures, the following con

jectures are made about random or disordered composites. 

A critical wavelength Ac can be defined for a metal-in-dielectric composite. 

Below the percolation threshold the critical wavelength will vary as 

Ac = Ac Ao ( fc h J t(J (7.85) 

where the coefficient Ac and critical fraction fc depend on the specific composite, 

.A0 depends on the particular metal and dielectric used but the exponent f3 is some 
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positive number that may only depend on very general geometric and symmetry 

properties of the composite. 

At very long wavelengths ). ~ Ac the absorption a will vary as the inverse 

square of the wavelength 
a ~ ( fc -f)-" ).0 

fc ).2 
(7.86) 

and the magnitude of the absorption increases as f --+ fc· The power law be

haviour may be modified by logarithmic factors. However, if).~ Ac (in particular 

at percolation Ac --+ oo) then the absorption will vary as 

a~ >,-5 (7.87) 

where the exponent 8 is less than 2 and again the power law may be modified by 

logarithmic factors. Both of the exponents 1 and 8 may exhibit some degree of 

universality. 

In the previous chapter a dilute composite was presented that had an infinite 

critical wavelength. This was the array of touching cylinder (or sphere) pairs. 

This structure violates the conjecture that the critical wavelength diverges only 

at the percolation threshold. However, such a structure is hardly random and 

quite exceptional. It is strongly suspected that Ac is infinite because this structure 

contains sharp cusps where pairs of inclusions touch at a point. If there is a finite 

gap then Ac becomes finite and it is conjectured that if the inclusions overlap to 

produce a neck of finite width then Ac will also become finite. This last conjecture 

is made on the basis that a pair of overlapping cylinders becomes more and more 

similar to a single cylinder as the degree of overlap increases. In a random 

composite, a range of gap sizes and neck widths will occur and a perfect point 

contact will only occur with probability zero. Thus, Ac will be finite for such a 

structure (below percolation). A dilute composite will have Ac = oo only if there 

is a non-zero probability of finding a sharp cusp or a sharp point in any given 

finite volume. 

The long wavelength dependence is closely related to the spectral representa

tion of the effective dielectric constant and some conjectures are also made about 

the spectra of random composites. 

Below percolation the spectrum is expected to be discrete for any given real

ization of a random structure. However, an ensemble average will in general turn 

such a discrete spectrum into a continuous distribution. The nature of this distri

bution near the point v = 1 in the complex plane determines the long wavelength 

properties of the composite. Two different conjectures are made. 

Firstly, below percolation the location of the closest singularity (usually a 
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branch point) to the point v = 1 is given by 

1- V ~ (/c- /)13' 
fc 

(7.88) 

where (3' is some positive exponent. As percolation is approached the branch 

point moves towards v = 1. 

Alternatively, the branch point is always at the point v = 1 but the spectral 

density g( v) at the branch point is zero below percolation. As percolation is 

approached the slope of g(v) near the branch point increases as 

g'(l) ~ (!c- f roy' 
/c 

(7.89) 

and becomes infinite at percolation. A similar suggestion has been made by Claro 

and Fuchs (1986). 

In both cases the spectral density at the branch point becomes non-zero above 

percolation. The functional form of the spectral density near the branch point 

near percolation (and whether such a functional form has any degree of univer

sality) is a very interesting problem. 

7.8 Summary 

The asymptotic results for cylinder and sphere pairs have been successfully used 

to analyse dense composites. The higher order multipole moments are given 

directly by a superposition of the asymptotic pairwise interactions between near

est neighbours. Knowledge of the higher order moments obviates the need to 

invert large matrices numerically. The asymptotic results for the polarizability 

and effective dielectric constant of several different structures have been shown 

to agree with numerical calculations over a very large range of volume fractions 

and contrast ratios. The singular behaviour of the effective dielectric constant 

at and near the critical area or volume fraction has also been obtained from the 

asymptotic analysis. These results are able to predict the functional form of the 

singularity as a function of both the contrast and the area or volume fraction. 

General results, valid for any regular array of cylinders or spheres, have been 

postulated. The long wavelength absorption in dense arrays has been obtained 

from these results and compared with the results for dilute arrays. Similarly, 

spectral representations have been obtained for dense arrays and compared with 

those for dilute arrays. 

A number of algorithms for generating and analyzing disordered structures 

have been discussed and some suggestions and conjectures have been made about 

the relationship between the results for regular and random structures. The 
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asymptotic results which relate the geometry of a nearest neighbour pair of in

clusions to the strength of their interaction provide one of the essential ingredients 

required to analyze the critical behaviour of percolating structures. 

Although random and percolating structures are extremely interesting, there 

is still a lot of useful information that can be obtained from the analysis of regular 

structures, as this chapter has shown. 
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Appendix A 

HARMONIC FUNCTIONS 

A.l Definitions 

We begin by defining the un-nonnalized surface harmonics C>.(r) of parameter 

A. In two dimensions the parameter becomes l which is the degree and runs over 

all integers: 
Ct( 0) = eilB. (A. I) 

In three dimensions the parameter becomes (/,m) where the degree lis non

negative and the order m satisfies -/ ~ m ~ /. Define for non-negative m 

where 

C ((} "-) 1 (/- m)! nm( 0) im.P 
lm,'l' ='(l+m)!r1 cose 

Ct,-m = ( -l)mCtm(O, ¢)* 

P
1
m(x) = (-l)m(l- x2)mf2d"'Pt(x) 

dxm · 

(A.2) 

(A.3) 

(A.4) 

and Pt(x) is the Legendre polynomial of degree/. This definition agrees with that 

of Brink and Satchler (1968) for their un-nonnalized spherical harmonics. The 

first few spherical harmonics are given explicitly: 

Co,o(O,¢) = 1 

Ct,o(O,¢) = cosO 

Ct,±t(O,¢) = =F ~sinOe±i.P 
1 2 

C2,o(O, ¢) = 2(3 cos 0- 1) (A.5) 

v'3 n C2,±1 ( (}, tjJ) = =F v'2 sin (}cos Oe • 

c ( (} tjJ) v'3 . 2 (} ±2i.P 2,±2 , = 
2
v'2 sm e . 
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We can now define the regular and irregular solid harmonics in terms of the 

surface harmonics where 

In two dimensions 

and in three dimensions 

Z"(r) = R"(r)C"(r) 
Y-'(r) = h(r)C-'(r). 

Rt(r) = R-t(r) = r1 I;:: 0 

lt(r)=Lt(r) = r-1/1 1>0 
Io(r) = logr 

Rtm(r) = rl 
ltm(r) = r-(l+l). 

(A.6) 

(A.7) 

(A.S) 

It is also convenient to write the the two dimensional harmonics as complex 

functions. Writing 

then 

z = rei6 

Zt(r) = z1 

Yi( 1') { 
(ztt/1 

- ! log(zz) 
1>0 
I= 0. 

The impedance coefficient W-' (a, e) is defined by 

W.\(a, e)= R.\(a)IA(a)- el.\(a)R'-'(a) 
( e- 1 )R.\( a)R~( a) 

(A.9) 

(A.10) 

(A.ll) 

(A.12) 

where the prime denotes differentiation with respect to the argument. In two 

dimensions 

Wt(a,e) = 
e+1 

In three dimensions 

Wtm(a,e) = 

( e- 1)1a21" 

le +I+ 1 
(e -1)1a21+1 · 

A.2 Conjugation and Parity 

Under complex conjugation the harmonics behave like 

C,\(;. )* = C,\C,\•(;.) 

and under spatial inversion 

C-'( -r) = p-'C-'(r). 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

In two dimensions the conjugate parameter >. • becomes -I and q = 1 and 

PI = ( -1 )1. In three dimensions the conjugate parameter becomes (I, -m) and 

c1m = ( -1r and Ptm = ( -1)1. 
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A.3 Orthogonality and Closure 

The inner product of two surface harmonics is written (.AI~~:). A partial inner 

product (over only some portion of the surface) is denoted by a subscript on the 

inner product specifying the surface of integration. 

In two dimensions the surface harmonics are the trigonometric functions and 

satisfy all the standard orthogonality and closure properties from Fourier Theory. 

In particular, 

(Ilk) = f" ei/9( eik9)*d9 

- 27rlilk· (A.17) 

For problems involving intersecting cylinders, integrals over only portions of 

the cylinder boundary are required. Some of these are defined by 

r"-<> ei/9 ( eik9 )* d9 

(Ilk)[,] = ), 2sin(l- k)a(1-lilk) 
_ (21r _ 2a)lilk- (I- k) (A.18) 

(Ilk)[,,,_<>] - ( r-a + r"-"')eil9(e'k9)*d9 
Ja Jtr+a 

_ (2 _ 4 )< _2[1-(-1/-k]sin(/-k)a(1 _<) 
7r a U{k (I - k) U/k • (A.19) 

In three dimensions the inner product is defined to be 

{+1 {2" 
(lmlkn) = lcos 9=-l }q,=o Clm(9, r/>)Ckn(9, r/>)*d(cos 9)drf> 

47r 
- 21 + 1limnlilk· (A.20) 

A.4 Coordinate Transformations: Translation 

The addition theorems describe the behaviour of the harmonics under translation 

of coordinates. 

Y.\(r + r') = 'EN.\,~Z~(r<)Y.\+••(r>) 
~ 

Z.\(r + r') = L:c.p.N.\,.Z~(r)Z.\-•(r') 
~ 

(A.21) 

(A.22) 

where r< is the smaller (in magnitude) of rand r' and r>. The addition theorem 

for the spherical harmonics can be found in Tough and Stone (1977) and in 

Weniger and Steinborn (1985). Unfortunately, both papers use different notations 
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and normalization conventions from each other and from here. In two dimensions 

N>.,~ is given by 

N1k= 

and in three dimensions by 

( -1 )k (lll~ikl) 

-~( -1)k 
1 

0 

l f 0, lk ~ 0 

l = 0, k f 0 
l = O,k = 0 

otherwise 

Nlmkn = ( -1 rn ,j e+~~::,+m) e+kk~n-m) . 

(A.23) 

(A.24) 

The Green's function can be expanded in terms of the harmonic functions and 

is a special case of the addition theorem. 

{ 
L:. G~Z~(r<)Y~·(r>) 

G(r< + r>) = L:~G~Z~·(r<)Y~(r>)· 

In two dimensions the Green's function is 

G(r- r') = -
1
-log lr- r'l = -

1
-Yo(r- r') 

21l'Eb 21l'Eb 

and thus comparing the above expansions with the addition theorem 

No,k _ f 
Gk = 21l'Eb -l 

(-1)k kfO 
- 41l'Eb 

1 

21l'Eb 
k = 0. 

In three dimensions 

G(r- r') = , 1
1 

'I = -
4

1 
Yo,o(r- r') 

1l'Eb r - r 1l'Eb 

and thus 
Gkn = Nookn _ (-1)k+n 

41l'Eb - 47rEb • 

A.5 Coordinate Transformations: Rotation 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

If the coordinate axes are rotated through Euler angles 01, f3, 'Y the point ( 9, tjJ) 
becomes (!?, <p) then the following result holds: 

I 

Clm(9,tjJ) = L: 'D~~(a,f3,-y)ClM(!?,<p) (A.30) 
M=-1 

where 
'D!:}M(a,/3,-y) = e-i(ma+M-y)d~M(f3) (A.31) 

175 



and 

d~M(,B) = cos(,B /2)21+m-M sin(,B /2)M-m 

X L J e+,m) e-,M) (1~-;,.M__,) C~"M"'_,) ( -1)' tan(,8/2)2t. (A.32) 

Two special cases where the rotation coefficients can be written in closed form 

are 

V~b(a,,B,-y) = Cim(,B,a)* (A.33) 

V~)m (a, ,8, -y) = e'fiiae-im..,( -1ji-m J G!i,.) cos(,B /2)i±m sin(,B /2)i'fm. (A.34) 

The rotation coefficients satisfy the following contraction theorem 

(
A B c) (c) • "' (A B c) (A) (BJ a' II c' Vee' (a,,B,-y) = £..., a b e v ••. (a,,B,-y)Vw (a,,B,-y). 

a.b,a+b+c=O 

(A.35) 

When A = 1, B = I and C = I+ 1 the contraction theorem gives a recurrence 

equation for generating the rotation coefficients of order I + 1 from those of order 

I. Alternatively, if A= lei, B = C -lei, a' = e and b' = -e- e' the contraction 

theorem express any rotation coefficient in terms of the two special cases given 

above. 

A.6 Differential Relations 

Starting from the following definition of the directional derivative 

• ny: ( ) 1. Y>.(r + nh)- Y>.(r) 
n·v>.r=tm 

h-o h 
(A.36) 

and using the addition theorem to expand the first term in the numerator the 
following results are obtained 

n · Y'Yi(r) = Nt,tCl(n)Yi-l(r) + Nt,-lC-l(n)Yi+l(r) 
1 

n. Y'Yim(r) = L Ntm,lnCln(n)Yi+l,m-n(r). 
n=-1 

Specifically, the Cartesian derivatives are given by 

(! ± i ~)Yi(r) = 2NI,'f1Yi±l(r) 

and 

(! ± i ~)Yim(r) = ±v'2Ntm,l,'f1Yi+l,m±l(r) 

a az Yim( r) = Ntm,l,OYi+l,m( r ). 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

The derivatives of Z>. can also be obtained in this manner, but are not required 

here. 
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Appendix B 

SHAPE DEPENDENT 
INTEGRALS AND 
RECIPROCAL RELATIONS 

This appendix contains the calculation of various integrals that arise in the text. 

B.l Shape Dependent Integrals 

B.l.l Two Dimensions 

Starting from equation (A.39) for I= ±1, both sides are integrated over a volume 

V which lies between a circle of radius Rand the external boundary to obtain 

{ 
0
° Yi(r)dr = i { 

0
° Yi(r)dr = VN1-1S2 N X N y . 

I :xY-1(r)dr = -i I ~Y-1(r)dr = VN_1,1S_2 

(B.l) 

Now from equation (2.43) 

X±1 = N'f1,±1S'f2 L: Q~1 (B.2) 
j 

Writing the Q'f1 in terms of Cartesian dipole moments and substituting for the 

s'f2 from above gives 

X±1 
-1 { 

- 47rEb lv p · Y'Y'f1( r )dr 

-1 { 
- 47rEb lv V' · [PY'f1(r)]dr (B.3) 

The last result is obtained by noting that P is a constant vector. Using the 

divergence theorem over the region V gives 

-1 i 1 1 X±1=-- P·nY'f1(r))dr+-- P·nY'f1(r))dr 
47rEb 8V 47rEb r=R 

(B.4) 
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The first integral is recognizable as the moment of the depolarization field. Now 

P · n = P, cos (} + Py sin(} 
-2~Hb · · - - 2)Qf C1(B) + Q:.1 C-1(6)] (B.5) 

J 

The second integral can now be written in terms of standard inner products 

1 · · r · 
-

2
V 2:::(Qf (11 =F 1) + Q:.1 (-11 =F 1}] = - V 2::: Q~1 (B.6) 

J J 

Thus 

X V depol r '"' Qj 
±1 = ±1 - v ~ ±1 

J 

(B.7) 

B.1.2 Three Dimensions 

The differential relations for Yi,-m are used to obtain 

fvc! ± i ~)Yi.-m(r) = ±J2VN1,-m,1,'f1S2,-m±1 

- =F(-1)mJ2VN1,±1,1,mS2,±1-m (B.S) 

fv ! Y1,-m( r) = V N1,-m,1,0S2,-m 

- ( -1)mVN1,o,1,mS2,-m (B.9) 

where the second expression in each equation is obtained using 

N ( 1)l+k+m+nN 
lmkn = - k,-n,l,-m• (B.10) 

Now 
1 

X1,m = I: N1,n,1,mS2,n-m I: Qf,n (B.ll) 
n=-1 j 

Writing the Q1 ,n in terms of Cartesian dipole moments and substituting for the 

S2,n-m from above gives 

_ (-1)mV { P·V'Yi,-m(r)dr 
X1,m - 4reb Jv 

= (-:1)mV fv V'. (PYi.-m(r))dr (B.12) 

The last result is obtained by noting that P is a constant vector. Using the 

divergence theorem over the region V gives 

( -1)mv l ( -1)mv 1 
X1,m = P · nYi,-m(r))dr- P · nYi,-m(r))dr (B.13) 

4rfb 8V 4rfb r=R 
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The first integral is recognizable as the moment of the depolarization field. Now 

P · n = Px sin() cos ¢; + Py sin () sin ¢; + Pz cos () 

47rEb 1 
j - V 2:: C1,n( (}, ¢) 2:: Q1,n 

n=-1 j 

(B.l4) 

The second integral can now be written in terms of standard inner products 

Thus 

B.2 

1
1 

"' 47r. - V "2:: (1, nil, m} L,., Qi,n =-
3

V "2:: Qi,m 
n=-1 J J 

(B.15) 

depol 47r " Qj 
X1,m = V1,m - 3V L.. 1,m 

J 

(B.16) 

Calculation of integrals in reciprocal rela

tion 

Let the primitive lattice vectors be a, b, c. For two dimensional structures c will 

be replaced by the unit vector in the z direction (direction of translational sym

metry). The following reciprocal lattice vectors are hi-orthogonal to the primitive 

lattice vectors 

A= b X c 
ax b. c' 

B= cxa 
ax b. c' 

C= axb 
ax b·c 

(B.l7) 

Since the structure is periodic and the external field is uniform the potential must 

satisfy 

¢( r + a) = ¢( r) - E. 

¢( r + b) = ¢( r) - E& (B.18) 

¢;( r + c) = ¢( r) - Ec 

where E., E&, Ec are constants depending on the external field. In particular, if 

E is the average electric field in the composite and D is the average displacement 

field then 

E. = E ·a 

EA = E·A 

(B.19) 

(B.20) 

with similar relations for the other components and forE', D and D' and also 

E = E.A+E&B+EcC 

- EAa+EBb+Ecc 

and similarly for the other fields. 
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B.2.1 Two Dimensions 

Consider first the boundary integral of <P V' ¢' over the sides AB and CD shown 

in Figure B.l, 

r <PC") 8<P'C") dz _ r <PC") 8<P'C") dz 
JreAB OnB JreDC OnB 

- r [<P(r)8<P'(r) -<P(r+b)8<P'(r+b)Jdl 
lreAB 8nB 8nB 

- Eb r 8<P'C") dl 
JreAB OnB 

- EbD' ·(ax i:) = EbD~ ax b · i:. (B.23) 

Il 

0
----

1 \ 
I I 
I I 
\ I 

' .. __ ... 

A B 
a 

Figure B.l: Unit cell in two dimensions, showing the lattice vectors a and 
b. The third lattice vector is chosen as the unit vector normal to the plane, 
z. A cylindrical inclusion (solid circle) and .a suitable boundary enclosing it 
(dashed circle) are also shown. 

If V = a x b · i: is the area of the unit cell, then the total contribution from 

all four sides is 

(E.D~ + EbD~)V = E · D' V. (B.24) 

The contribution from the integral over ¢/V' <P is likewise 

-E'·DV. (B.25) 
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B.2.2 Three Dimensions 

Consider first the integral of ¢>\1 </>' over the pair of opposite faces ABC D and 

EFGH shown in Figure B.2. 

f </>( r) ot/>'( r) dS- f </>( r) o¢'( r) dS 
lreABeD One lreEFGH One 

- { [t/>(r)ot/>'(r)- t/>(r + c)ot/>'(r + c)]dS 
lreABeD one one 

- Ec { ot/>'( r) dS 
lreABeD one 

- EcD' ·(a X b)= EcD~ a X b ·c. (B.26) 

' 
A 

I 

I 
I 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 

0
----, ' I I 

I I 

' ' .... __ ... 

~--------------z"---~ ///,// V/0 

Figure B.2: Unit cell in three dimensions, showing the lattice vectors a, 
b and c. The order is chosen to obtain a. right handed set. A spherical 
inclusion (solid circle) and a suitable boundary enclosing it (dashed circle) 
are also shown. 

If V = a x b · c is the vohune of the unit cell, then the total contribution from 

all six faces is 

(E.D~ + EbD~ + EcD~)V = E · D' V. (B.27) 

The contribution from the integral over t/>1\1 </> is likewise 

-E'·DV. (B.28) 

B.2.3 Integral over boundary of inclusion 

Consider now the boundary integral over one of the cylindrical or spherical regions 

shown by the dashed circles in Figures B.1 and B.2. In this region using the earlier 
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results the potential is given by 

,P(r) = L:A.\Z.\(r) + B.\Y.\(r) 
.\ 

- L:B.\[W.\(a,e)Z.\(r) + Y.\(r)] (B.29) 
.\ 

,P'(r) = L:A~Z.\(r) + B~Y.\(r) 
.\ 

- L: B~[W.\(a', e')Z.\(r) + Y.\(r)]. (B.30) 
.\ 

Suppose the dashed boundary has radius n and using the following abbreviation 

fh(a, e, R) = W.\(a, e)R.\(R) + I.\(R) (B.31) 

the integral over ¢> 'V ¢>' becomes 

L: B.\B:n.\(a, e, R) &~n.(a', e', R) nD-1 (..\I~~;) 
.\,• 

(B.32) 

where the factor nD-1 (..\I~~;) comes from the angular integration over the product 

of the surface harmonics. Interchanging primed and unprimed variables and 

subtracting and using orthogonality the total boundary integral becomes 

L: B.\B~.[il.\( a, e, R) &~ n.\( a', e', R) - Q.\( a', e', R) &~n.\( a, e, R)]nD-1 (..\1~~;) 
.\ 

(B.33) 

which simplifies to 

L: B.\B~.[W.\(a, e)W.\(a', e')](..\1..\)[R.\(R) &I;S,R) - h(R) &R~R)]nD-1 (B.34) 
.\ 

The above expression is actually independent of R. For validity of the expansions 

used the condition n > a, a' must hold. 

Substituting explicit expressions for the radial functions R and I and the 

impedance coefficients W gives 

in two dimensions and 

in three dimensions. 

I 1 ___ 1 ___ ] 
211' L: B,B, [ a'2'r' - a21r 

I 

1 1 l 
211' L: BlmB!,-m[ai21+1T( - a21+17] 

lm 

182 

(B.35) 

(B.36) 



Appendix C 

TABLES OF NUMERICAL 
VALUES 

C.l Lattice Sums 

While some of the lattice sums appearing in this thesis can be written in terms of 

simple functions or in terms of well known special functions such as the Riemann 

zeta function, the rest must be evaluated by direct summation. The lattice sums 

can be expressed in terms of the following basic sums. In each case the singular 

term at the origin is excluded from the sum. 

The square sum is defined by 

U.(l) = I:;Yi(iz +jy) 
i,j 

The hexagonal sum is defined by 

) ""Yi(. v'3 i . ) Uh(l = ~ 1 z2z + 2y + JY 
I,J 

The simple cubic sum is defined by 

Usc(l,m) =I:; Yim(iz + jy + kz) 
i,j,k 

The body centred cubic sum is defined by 

UBcc(l,m) = I:;Yim(iz+jy+kz) 
iJ,k 

(C.l) 

(C.2) 

(C.3) 

+I:; Yim(iz + jy + kz + ~(z + y + z)) (C.4) 
i,j,k 

- I:; Yim(iz + jy + ~k(z + y + z)) (C.5) 
i,j,k 
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The face centred cubic sum is defined by 

UFcc(l,m) = l:Yim(i(y+z)+j(z+z)+k(z+y)) (C.6) 
i,j,k 

2:: Yim(iz + jy + kz) 
i,j,k;2lr+y+z 

Table C.l: Table of Values of the lower order square and hexagonal lattice 
sums. The higher order sums are given by the approximations in the text. 

I U,(41) Uh(61) 

1 0.787803 -0.9771721 
2 0.531972 0.500803 i 

3 0.328237 -0.333318 

4 0.250981 0.250001 

5 0.199805 -0.200000 i 

6 0.166707 0.166667 

7 0.142848 -0.142857 

8 0.125002 -0.125000 . 

Table C.2: Table of values of the lower order SC, BCC and FCC lattice 
sums. The higher order sums are given by the approximations in the text. 

(l,m) Usc(l,m) UBcc(l, m) UFcc(l,m) 

(4,0) 3.108227 -3.106360 -0.234980 

(4,4) 1.857521 -1.856465 -0.140427 

(6,0) 0.573329 5.446557 -0.208085 

(6,4) -1.072601 -10.189574 0.389292 

(8,0) 3.259293 7.648391 0.158567 

(8,4) 1.225660 2.876183 0.059629 

(8,8) 1.867444 4.382220 0.090853 

(10,0) 1.009224 -9.396657 -0.000744 ' 

(10,4) -1.016958 9.468663 0.000750 

(10,8) -1.210422 11.269964 0.000893 
' 

(C.7) 

For small values of I the lattice sums are tabulated. For larger values of I, the 

lattice sums can be approximated by only summing over the adjacent sites in the 

lattice. For the specific structures studied the nearest neighbour lattice sums are 

given explicitly. 
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Square: 

UINN = 4/1 

Hexagonal: 

urm = 6/1 

Simple Cubic: 

NN 1(/-m)! m 
U1m =2+4\ (l+m)!P1 (0) 

Body Centred Cubic: 

2 )1+1 ur:.N = 8( v'3 (I - m )! pm( ....!_ )eim,./4 
(l+m)! 1 v'3 

Face Centred Cubic: 

ur:.N = (~y+l [8 (1-m)!Pm(_l )+ 4 1(1-m)!Pm(O)e'm,./4] 
(l+m)! 1 y'2 ~(l+m)! 1 

C.2 Series Expansion Coefficients 

(C.8) 

(C.9) 

(C.lO) 

(C.ll) 

(C.l2) 

For structures with a single basis element the coefficients in the series expansions 

for N (a, e) are defined by 

N(a,e) = L ni, ... I.,PI,, ... ,I.,(a,e) (C.l3) 
'1·····',., 

and analogously for D( a, e). The corresponding expansion for structures with a 

basis of two elements is 

N(at,e1;a2,e2) 

I: L nh···'nrikt•••kn,t 'P~t .... ,lnrikt, ... ,kn~; (at, Et; a2, e2) (C.l4) 
l1 , ... ,ln1 kt , ... ,knlc 

The numerical values of the first few coefficients nt;,k, and dl;,k; are given in the 

following tables for several structures studied in Chapter 3. All of the structures 

with a basis of two are symmetric under the interchange of the two basis elements. 
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Table C .3: Coefficients appearing in the series expansions for the numerator 
and denominator of the polarizability of a pair of cylinders. The coefficients 
are all exact rational numbers. The results for a longitudinal field are given. 
The results for a transverse field can be obtained by using the reciprocal 
formula. 

Cylinder Pair Cylinder Pair 

{l;} {k;} n, d, { l;} {k;} n, d, 

0 1 3 3 0 -400/9 
1 2 0 3 4 0 -100 

1 1 4 -4 3 5 0 -196 

1 2 0 -4 3 6 0 -3136/9 
1 3 0 -4 3 1, 2 -32 0 
1 4 0 -4 3 1, 3 -800/9 0 
1 5 0 -4 3 1, 4 -200 0 
1 6 0 -4 3 1, 5 -392 0 
1 7 0 -4 4 4 0 -1225/4 
1 8 0 -4 4 5 0 -784 
1 1, 2 -8 0 4 1, 2 -50 0 
1 1, 3 -8 0 4 1, 3 -200 0 
1 1, 4 -8 0 4 1, 4 -1225/2 0 
1 1, 5 -8 0 5 1, 2 -72 0 
1 1, 6 -8 0 5 1, 3 -392 0 
1 1, 7 -8 0 6 1, 2 -98 0 

2 2 0 -9 1, 2 1, 2 -12 4 

2 3 0 -16 1, 2 1, 3 -32 16 
2 4 0 -25 1, 2 1, 4 -60 36 
2 5 0 -36 1, 2 1, 5 -96 64 
2 6 0 -49 1, 2 2, 3 0 4 
2 7 0 -64 1, 2 2, 4 0 16 
2 1, 2 -18 0 1, 2 1, 2, 3 8 0 
2 1, 3 -32 0 1, 3 1, 3 -1120/9 784/9 
2 1,4 -50 0 1, 3 1,4 -320 256 

2 1, 5 -72 0 1, 3 2, 3 0 256/9 
2 1, 6 -98 0 
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Table C.4: Coefficients appearing in the series expansions for the numerator 
and denominator of the polarizability of a chain of cylinders. The results 
for a longitudinal field are given. The results for a transverse field can be 
obtained by using the reciprocal formula. 

Cylinder Chain 

{1;} {k;} nl dl I 

0 1 

1 2 -1.645 X 10° 

3 0 -2.119 x 10-1 

5 0 -9.854 x 10-2 

7 0 -5.985 x 10-2 

9 0 -4.122 x 10-2 

1, 3 -4.239 x 10-1 +2.754 x 10-1 

1, 5 -1.971 x 10-1 +1.580 x 10-1 

1, 7 -1.197 x 10-1 +9.821 x 10-2 

3, 5 0 +8.824 x 10-3 

1, 3, 5 +1.765 x 10-2 -1.o22 x 10-2 

1 1 +6.580 X 10° -2.165 X 101 

1 3 -4.239 x 10-1 -1.612 X 101 

1 5 -1.971 x 10-1 -1.588 X 101 

1 7 -1.197 x 10-1 -1.591 X 101 

1 1, 3 +6.554 x 10-1 +2.097 X 101 

1 1, 5 -1.470 x 10-1 +2.602 X 101 

1 1, 7 -2.688 x 10-1 +2.700 X 101 

1 3, 5 +1.765 x 10-2 +1.439 X 10° 

3 3 0 -1.782 X 102 

3 5 0 -7.842 X 102 

3 1, 3 -3.565 X 102 +2.674 X 102 

3 1, 5 -1.568 X 103 +1.277 X 103 

5 1, 3 -1.568 X 103 +1.233 X 103 

I 
1, 3 1, 3 -7.835 X 102 +2.036 X 103 
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Table C.5: Coefficients appearing in the series expansions for the numerator 
and denominator of the polarizability for the square and hexagonal arrays. 

Square Array 

{I;} n, d, 

0 +1 
1 +2 0 

1, 3 0 -3.972 X 101 

1, 7 0 -7.245 X 101 

1, 11 0 -6.206 X 101 

1, 15 0 -6.450 X 101 

3, 5 0 -3.550 X 103 

3, 9 0 -2.086 X 104 

3, 13 0 -7.902 X 104 

5, 7 0 -2.703 X 105 

5, 11 0 -4.807 X 106 

7, 9 0 -3.298 X 107 

1, 3, 5 -7.100 X 103 0 

1,3, 9 -4.172 X 104 0 

1, 3, 13 -1.580 X 105 0 
1, 5, 7 -5.407 X 105 0 

1, 5, 11 -9.615 X 106 0 
1, 7, 9 -6.595 X 107 0 

1, 3, 5, 7 0 +7.671 X 106 

Hexagonal Array 

{I;} n, d, 

0 +1 
1 +2 0 

1, 5 0 -1.375 X 102 

1, 11 0 -1.445 X 102 

1, 17 0 -1.440 X 102 

5, 7 0 -6.293 X 105 

5, 13 0 -3.262 X 107 

7, 11 0 -4.501 X 108 

1, 5, 7 -1.259 X 106 0 
1, 5, 13 -6.525 X 107 0 

1, 7, 11 -9.002 X 108 0 
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Table C .6: Coefficients appearing in the series expansions for the numerator 
and denominator of the polarizability for the sphere pair. Separate results 
are given for longitudinal and transverse applied fields. 

Longitudinal Transverse 

{I;} {k;} n, d, n, d, 

0 1 0 1 

1 2 0 -1 0 

1 1 8 -16 1 -1 

1 2 0 -36 0 -3 

1 3 0 -64 0 -6 

1 4 0 -100 0 -10 

1 5 0 -144 0 -15 

1 6 0 -196 0 -21 

1 1, 2 -72 0 3 0 

1 1, 3 -128 0 6 0 

1 1, 4 -200 0 10 0 
1 1, 5 -288 0 15 0 

1 1, 6 -392 0 21 0 

2 2 0 -144 0 -16 

2 3 0 -400 0 -50 

2 4 0 -900 0 -120 

2 5 0 -1764 0 -245 

2 6 0 -3136 0 -448 1 

2 1, 2 -288 0 16 O! 

2 1, 3 -800 0 50 0 
2 1, 4 -1800 0 120 0 

2 1, 5 -3528 0 245 0 

3 3 0 -1600 0 -225 

3 4 0 -4900 0 -735 I 
3 5 0 -12544 0 -1960 

3 1, 2 -800 0 50 0 

3 1, 3 -3200 0 225 0 

3 1, 4 -9800 0 735 0 

4 4 0 -19600 0 -3136 

4 1, 2 -1800 0 120 0 
4 1, 3 -9800 0 735 0 

5 1, 2 -3528 0 245 0' 

1, 2 1, 2 -288 144 -4 1 

1, 2 1, 3 -1280 1024 -20 8 
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Table C. 7: Coefficients appearing in the series expansions for the numerator 
and denominator of the polarizability for the sphere chain. Separate results 
are given for longitudinal and transverse applied fields. 

Longitudinal Transverse 

{I;} {k;} n, dt n, d, 

0 +1 0 +1 
1 +2 -1.202 X 10° -1 +3.005 X 10-1 

3 0 -6.302 X 10-1 0 +2.363 X 10-1 

5 0 -4.924 X 10-1 0 +2.052 X 10-1 

7 0 -4.190 X 10-1 0 +1.833 X 10-1 

9 0 -3.709 X 10-1 0 +1.669 X 10-1 

1, 3 -1.260 X 10° +4.888 X 10-1 -2.363 X 10-1 +4.582 X 10-2 

1, 5 -9.849 X 10-1 +5.562 X 10-1 -2.052 X 10-1 +5. 794 X 10-2 

1, 7 -8.379 X 10-1 +4.997 X 10-1 -1.833 X 10-1 +5.465 X 10-2 

3, 5 0 +1.182 X 10-1 0 +1.846 X 10-2 

1 1 +1.442 X 101 -6.936 X 101 +1.803 X 10° -4.335 X 10° 

1 3 -1.260 X 10° -2.576 X 102 -2.363 X 10-1 -2.415 X 101 

1 5 -9.849 X 10-1 -5.760 X 102 -2.052 X 10-1 -5.999 X 101 

1 7 -8.379 X 10-1 -1.024 X 103 -1.833 X 10-1 -1.120 X 102 

1 1, 3 +7.038 X 10° +2.143 X 102 -3.299 X 10-1 -5.023 X 10° 

1 1, 5 +1.905 X 10° +6.508 X 102 -9.921 x w-2 -1.695 X 101 

3 3 0 -6.406 X 103 0 -9.008 X 102 

3 5 0 -5.018 X 104 0 -7.841 X 103 

3 1,3 -1.281 X 104 +6.529 X 103 +9.008 X 102 -2.295 X 102 
·--
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r-

..... 
<0 ..... 

{I;} 

1 

3 

5 

7 

9 

1, 3 

1, 5 

1, 7 

t, 9 

3, 5 

3,7 

5,5 

Table C.8: Coefficients appearing in the series expansions for the numerator 
and denominator of the polarizability for the SC, BCC and FCC arrays. 

sc BCC FCC 
n, d, n, d, n, d, 
0 +1 0 +1 0 +1 

+2 -8.378 X 10° +2 -1.676 x 101 +2 -4.189 X 10° 

0 -2.293 X t01 0 -2.179 X 102 0 +8.323 X t0° 

0 -5.086 X 102 0 +4.736 X 103 0 +3.751 X 10-1 

0 -7.919 X 103 0 -1.049 X 105 0 +6.108 X 101 

0 -1.223 X t05 0 +8.238 X t05 0 +7.264 X t0° 

-4.587 X 101 -4.262 X t02 -4.357 X t02 +3.033 X 103 +1.665 X 101 -3.84 X 101 

-l.Ot7 X 103 +4.2t4 X t03 +9.472 X t03 -8.362 X tO' +7.503 x 10-1 -7.806 X 10° 

-1.584 X 10' +6.362 x to• -2.097 X t05 +1.742 X t06 +1.222 X t02 -2.623 X 102 

-2.447 X 105 +1.024 X t06 +1.648 X t06 -1.384 X 107 +1.453 X t01 -3.043 X 101 

0 -1.2t6 X 105 0 -1.766 X 106 0 -3.t23 X t02 

0 +1.229 X t05 0 +1.776 X t07 0 +5.083 X 102 

0 -2.365 X t05 0 -2.051 X 107 0 -1.287 x 10-1 

1, 3, 5 -2.432 X 105 +1.209 X t06 -3.53t X 106 +3.037 X t07 -6.246 x to2 +LOSS X 103 



Table C.9: Coefficients appearing in the series expansions for the numerator 
and denominator of the polarizability for the sodium chloride and cesium 
chloride structures. 

Sodium chloride Cesium chloride 

{I;} {k;} n, d, n, d, 

0 +1 0 +1 
1 +2 -1.676 X 101 +2 -1.676 X 101 

3 0 +8.323 X 10° 0 -2.293 X 101 

5 0 +3.751 x 10-1 0 -5.086 X 102 

1, 3 +1.665 X 101 -1.430 X 102 -4.587 X 101 -2.341 X 102 

1, 5 +7.503 x 10-1 -1.252 X 101 -1.017 X 103 +8.475 X 103 

3, 5 0 -3.123 X 102 0 -1.216 X 105 

1 1 -2.513 X 101 +2.632 X 102 0 0 

1 3 +1.665 X 101 -8.548 X 102 -4.587 X 101 -2.088 X 103 

1 5 +7.503 x 10-1 -9.421 X 101 -1.017 X 103 +5.103 X 103 

1 1, 3 -3.168 X 102 +1.466 X 104 -3.709 X 103 +9.320 X 104 

1 1, 5 -6.873 X 101 +1.873 X 103 +7.100 X 102 +4.461 X 104 

3 1 +1.665 X 101 -8.548 X 102 -4.587 X 101 -2.088 X 103 

3 3 0 -9.077 X 102 0 -3.747 X 104 

3 5 0 -1.206 X 105 0 -2.300 X 105 

3 1, 3 -1.815 X 103 +1.237 X 104 -7.494 X 104 +1.181 X 106 
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Appendix D 

NON-AXIALLY SYMMETRIC 
IMAGES 

D.l Differential Operator Method 

The formalism of Chapter 4 is extended to derive image rules for charge distribu

tions which are not axially symmetric about a central line running to the centre 

of the sphere. 

Consider a multipolar charge distribution Q,,.. of degree 1 and order m at 

point zn where n is the unit vector in the polar direction of a spherical polar 

coordinate system. The potential due to this charge is 

Q,,..}j,..(r- zn) (D.l) 

However, the image cannot be written in the form 

2 

Q;,..Y/,..(r- ~n) 
z 

(D.2) 

unless 1 = lml. Multipoles which satisfy this condition are called sectoral multi

poles. 

Using the image rule (4.3) for the field l'iml.m(r - zn), and applying the 

addition theorem to expand all the fields about the centre of the sphere, the 

result 

V(r) = { l'iml,m(r- zn)- r(~)2lml+tl'iml,m(r _ :
2 
n) 

(1- r)Yiml,m(r- zn) 

is obtained. The identity 

lrl >a 

lrl <a 
(D.3) 

Nlml,m,k-lml,oCk-lml,o( -n) = Nlml,m,k,mCk+lml,o( -n) = (~ ~ ::D (D.4) 
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was used to obtain the final form of this expression. Thus the image of Qlml,m is 

Q(ml,m = -r(alz)21mi+1Qiml,m at z1 = a21z. Form= 0 this reduces to the result 

for a point charge. 

Repeated application of the differential relations ( A.41) gives 

Q Ql-lml 
QlmYim(r-zn)=(l I nr'; 81-lmlrJml,m(r-zn) (D.5) 

m . l,m,lml,m z 

Using the differential relation above the image of the field QlmYim(r- zn) is 

- 7' m a 2lml+l a2 • Q1 Ql-lml { 
(1 -\mi)!NI,m,lml,m 8z1-lml C;) rJml,m( r - -;n)} (D.6) 

If the charge distribution Qlm is represented by the differential operator 

Qlm Ql-lml 

(1-\m\)!NI,m,lml,m 8zl-lml 
(D.7) 

then its image is the differential operator 

Q <>1-lml 
_ 7' lm U (~flml+l 

(1-\m\)!NI,m,lml,m 8zl-lml z 
(D.S) 

This must be rewritten in terms of derivatives with respect to z1 = a2 I z. 

I 
Qlm -z

12 ~ y-lml(~ )2lmi+J 
-r IN ( a2 8z1 a 

(1-\ml). l,m,lml,m . 
1 

ai-lml ) 
1 z

1
l+J+! . (D.9 

= -rQ1m L; C(1,j,m) a2l+J (j -\m\)!Nj,m,lml,m "·'·-'~' 
i=lml 

where C(l,j, m) is an exceedingly complicated function of l,j and m. The above 

result can be interpreted as follows: The image of a multipole Q1m at the point z 

is a superposition of multipoles Qjm for j = \m\, \m\+ 1, ... , l at the point z1 = a2 I z 

where 
zll+i+J 

Qjm = -TQlmC(1,j, m)-.-. -. (D.lO) 

Consider a superposition of multipoles Qlm at the point z all with the same 

azimuthal variation m and define the following differential operator 

n~m) = f: Qlm &-lml 
l=lml ( 1 \m\)!NI,m,lml,m 8z1-lml 

(D.ll) 

The image operator 

Ql-lml oo Q~m 1
(m) "' 8 II lml D z' = L.., (1- \m\)!NI,m,lml,m Z l=lml 

(D.12) 
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which corresponds to a superposition of multipoles Q/m at the point z' is given 

by 
D'~';') = -r D~m)( ~ )2lml+l 

z 
(D.13) 

If the derivatives are all written with respect to z' and expanded out, then the 

expressions for Q/m can be obtained by comparing coefficients. It is much simpler 

to work only with the differential operators which can be manipulated like point 

charges qn. 

In particular, if Dif and Drim are placed at the center of each sphere then 

an infinite sequence of images { D~m), D~m)} are obtained. (Note that Dn is a 

differential operator that contains derivatives with respect to an.) 
The image differential operators satisfy recurrence relations analogous to 4.35: 

D(m) = -T D'(m)( a )2lml+l 
n n-1 d 1 

-an-1 
(D.14) 

and its counterpart. 
The solutions are given by 

D(m) 
2n = TT

1 "D (
m) [ asinhll ]2lml+l 

(m) 
D2n+l 

( ) 0 a sinh( nil + nil' + II) - a0 sinh( nil + nil') 
1(m) [ a' sinh II' ] 21ml+1 

= -T TT1 nn 
( ) 0 a' sinh( nil+ nil' +II + 111) - ari sinh( nil +nil' +II) 

(D.15) 

The moments are given by 

- 00 

Q - }l " D(m) 1-lml lm - l,m,m,m L..J n an (D.l6) 
n=O 

where the differential operator acts on a~-lml. This is a direct generalization of 

( 4.44 ). In fact the expression ( 4.46) for transverse dipoles can be obtained in the 

special case m = 1 and D~1) =Po· 

The convergence properties of these series depend on the value of m. If m f 0 

then the series converge for all values of r,r',9 and 9'. If m = 0 the series exhibit a 

divergence as r, r'--+ 1 and 9, (}' --+ 0. This is why only the azimuthally symmetric 

fields (m = 0) contribute to the singular asymptotic behaviour. 

D.2 Line Multipole Distribution Method 

It was observed earlier that point multipoles with I = lml have images of the 

same type. The continuous analog of a sequence of such point multipoles is a line 

multipole distribution _A(ml(x). The potential produced by such a distribution is 

V(r) = 
4
:eb j _A(ml(x)Yjml,m(r- xn)dx (D.17) 
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and the multipole moments are given by 

(Jim= j ,\(m)(x)x1-lmldx 

The line multipole distribution has the following image 

2 
,\'(m)(r) = -r(~)2lml+t ,\(m)(~) 

r r 

The neutralizing distribution will not be considered here. 

For a pair of spheres, the appropriate functional equations are 

12 
,\'(m)(_a_) -

d-x 
2 

,\(m)( a ) -
d- x' 

1 d- X)2lml+t ,\(m)(x) 
-T ( 1 

a 
d- x')2lml+l ,\'(m)(x') -r( 

a 

(D.lS) 

(D.l9) 

(D.20) 

This is the same as in Chapter 5 apart from the power to which d- x is raised. 
a 

The complete set of solutions to these equations is given by 

,\~m)(x) 

,\~m)(x') 

= rt(a00 )-'n(a
00 

_ x)'n-lml-t(d _ a:X, _ x)-•n-lml-! 
a 

1 a' I I 1 I I 1 = -( -ltr'>( -E!l. )-'n(a:X,- x')•n- m -,. (d- a00 - x')-•n- m -; 
a' 

(D.21) 

where Sn is as in Chapter 5. Further results can be obtained by direct analogy 

with the results of Chapter 5. 
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Appendix E 

MORE COMPLEX IMAGE 
SYSTEMS 

E.l Off Axis Imaging 

Figure E.l: A point P which does not lie on the line between 0 and 0' is 
shown and also its image Q in the left cylinder or sphere. Successive images 
of P and Q all lie on the thick curves which are actually arcs of the same 
circle which also passes through the limit points X and X'. 

Consider the point P in the right cylinder or sphere and its image Q in the 

left cylinder or sphere as shown in figure E.l. The polar coordinates of Q relative 

to 0 are (rn+b8n+t) and those of P relative to 0' are (r~,lf,.). The image rules 

specify that OQ.OP = a2
• Taking orthogonal components, the co-ordinates are 

related by 

2 

a"" '""' --SlllrTn+l = TnS1llun (E.l) 
Tn+l 
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' I 

[ 
I 

i 

~ 

2 
a () ' ' -- cos n+l + r n cos ()n 

rn+l 
= d. (E.2) 

The first equation is the height of triangle 00' P and the second is the length of 

its base. If we continue imaging, the images move closer to the limit points X 
and X' and 9n,()~-+ 0, rn-+ a00 and r~-+ a:X,. Observe now that all the image 

points in the left circle lie on the curve 

(rncos()n d- a~+ aoo )2+(rn sin9n- Y)2 = Y2+(d- a~- a:X, )2 = R2. (E.3) 

The curve for the image points in the right circle is given by interchanging the 

primed and unprimed quantities. The two curves are in fact the same curve 

referred to different coordinates, namely a circle of radius R passing through both 

limit points with centre at (!(d + a00 - a:X,), Y). The undetermined parameter Y 
depends on the location of the initial image point and thus parametrizes a family 

of circles of different radii but all passing through the two limit points. 

Although the image rules suggest that we must solve recurrence relations for 

both r and 9, since they are related by the equation of the circle it is possible to 

obtain a recurrence relation for only one variable. 

One possible choice of new variable is 

d- a' - rn cos9n 
(n = ;: sin8n (E.4) 

and its primed counterpart. The parameter (n can be given a geometric inter

pretation. If if>n is the angle subtended by the chord QX at the centre of the 

image circle through QXX'P then (by considering the angle subtended by the 

same chord at X' on the circumference) 

(n = cot( if>n/2). (E.5) 

Now the recurrence relation for (is 

r 2Y d - a:X, r' 
~n+l=-+ ~n· 

aoo aoo 
(E.6) 

This and its counterpart yield a pair of coupled linear recurrence relations with 

constant coefficients, the solutions being 

(2n -

(2n+l = 

and their counterparts. 

2Y d/( aooa:X,) + ( a
00

a:X,/ aa't2n 

1- (a00 a:X,/aa') 2 

( I ) a2 
1 1)-2n 2Yd/ aooaoo + -(a

00
a

00
/aa 

1 - ( aooa:X,/ aa')-2 a;, 
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Using the equation for the circle gives the result 

and 

rncos8n = a
00 

+ (d- aoo- a;,)- 2Y(n 
1 + (~ 

2Y + (d- a=- a;,)(n 
rn sin 8n = 1 + (~ 

Combining these results gives 

2 4Y(Y- aoo(n) + (d- a;,)2 +a~(~ 
rn= 1+(~ . 

The recurrence relations for Qn are 

Qn+! = -r(rn+J/a)D-2 Q~ 

(E.9) 

(E.10) 

(E.ll) 

(E.12) 

and its counterpart. These can be solved in terms of products over r; and r: from 

i = 1 to n but unlike the on-axis results, these products do not simplify to closed 

expressions except when D = 2, where the results are the same as for the on-axis 

case. 

Generalizing to charge distributions along the curves QX and P X' the corre

spondence 

Qn +-+ :A( (n)'Rd</>n (E.13) 

is used to obtain the following equation 

:A(~" ) d</>n+J ( I )D-2 :A'(~"') d</>~ d(~ 
'on+! ~ = -T rn+! a '>n d~"' -dl" 

'""~n+l "::n ":r.n+l 
(E.14) 

which simplifies to 

F(2Y +d-a;,(')=-r a"", (rn+J/a)D-2F'(() 
aoo aoo d - aoo 

(E.15) 

where 

F(() = :A(()I((2 + 1) (E.16) 

and the corresponding primed counterparts. For the discrete case, solutions have 

only been found in the case D = 2 which are 

Am(() _ y'T~((2 + 1)(2Y + (d- a;, - aoo)( )Pm (E.17) 
aPm+l a' 

00 

:>.:,( (') _ -( _ 1)mv0 a;, (('2 + 1)( 2Y + (d- a;,- aoo)(' )Pm (E. 1S) 
a'Pm+l aoo 

where 
log( rr') + 2im7r (E.19) 

P - -1- I ') m - 2log( aooa:X, aa 
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E.2 

03 

PI, ----

' / ', ~ .. \ _ _....----...,_ ,'1 ' 

: I 
!......J.__ I , ; $ 

f-....._).\:;~) 02 

Figure E.2: Images for three disjoint circles. The thick solid lines represent 
the image charge distribution. The dashed circle shows how all the image 
curves lie on the same circle, and are terminated by the lines joining the 
centres of the three circles. The limit points are denoted P, Q, R, S, T, U. 

Images in Triples 

Consider three non-collinear and disjoint circles. To determine what simple 

image systems might exist, we work backward from the limit points. Observe 

the six limit points P, Q, R, S, T, U shown in figure E.2. The images produced by 

starting with P and imaging back and forth between circles 1 and 2 all lie on the 

circle passing through P, Q and R. Since the point U satisfies 

01U.01P =a~= 01Q.01R (E.20) 

it also lies on the same circle. Similar reasoning implies that S, T, U, P are cocyclic 

and Q,R,S,T are cocyclic. 

Denote the distance between the centres of circles 1 and 2 by d3 , the distance 

between the centres of 2 and 3 by d1 and the distance between the centres of 3 

and 1 by d2 • Using the results of the previous section we calculate the radius R 
of the circle through P, Q, R. It is given by 

R2 _ [2::; a~4][2::;( a~ + 4)] - 2::;[2a~4( a~ + 4) + a~a~a~4 /a~] - dM~ 
- l:;(dt- 24~4/4) 

(E.21) 

Note that this expression is completely symmetric in a1,a2 and a3 and in d1, d2 

and d3• Thus all three circles have the same radii and since they each share at 

least two points, they are in fact the same circle as suggested by the figure. 
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The aim is now to consider line charges lying along these arcs and determine 

the charge density distributions along them so that they simultaneously satisfy 

the imaging conditions. Unlike the two body interaction, a simple functional 

equation possessing solutions in closed form could not be found. 
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Appendix F 

PROPERTIES OF THE 
FUNCTIONAL EQUATIONS 

F.l Equations and Solutions 

Combining the results of Chapter 5 and Appendix D the basic imaging equations 

(neglecting the continuous neutralizer in three dimensions) are 

a2 
AmL _,) - -r(d ~ x

1 
)2lmi+D-4 ;..:,.(xl) 

a12 
)..1 (-) 

m d-x 

I 

_ -rl(_a_)2lmi+D-4)..m(x) 
d-x 

(F.l) 

where D is the dimensionality and m is the azimuthal order. In two dimensions 
only m = 0 is necessary. An infinite family of solutions is given by 

Am,n(x) 

)..1 (xl) m,n 

where 

= c( ~ )'•rt(aoo _X )lml+•n-2+D/2(d _a:, _X )lml-•n-2+D/2 (F.2) 
aoo 

I 

= c( -1 t+l( a~ )'•rl!(a:,., _ x1)1mi+•.-2+D/2(d _ aoo _ xl)lml-•n-2+D/2 
00 

I 

Sn = s + imr /log( aooaoo) 
aa1 

(F.3) 

and s is the principal solution to 

I I aooaoo )2" = TT · 
( aa1 

(F.4) 

The constant c is arbitrary and is taken to be 1 for convenience. Writing out the 

dependence on n explicitly the solutions become 

Am,n(x) = (afa
00

)•rt(a
00

- x)lmi+•-2+D/2(d _ a:X, _ x)lmi-•-2+D/2 

. a(a00 - x) a00 a1 

X exp{m71"log(_ u _, _,)/log( __ ,"")} (F.5) 
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>.;..,n(x') = ( -lt+I(a' /a:,)''T't(a:,- x')lmi+•-2+D/2(d- aoo- x')lmi-•-2+D/2 

a'(a' -x') a a' 
x exp{imrlog( (d 00 ))/log( 

00 00
)}. (F.6) 

a' -a - x' aa' 00 00 

The completeness and orthogonality properties of the solutions are now demon

strated. 

F.2 Expansion of Solutions 

Suppose the value of >.m(x) at the point x0 is specified (with -oo < x0 < a00 ). 

Then the functional equations determine the values of >.m(x) and >.;,.(x') at an 

infinite number of points x~, x2 , x~, x4 , etc. However the values of >.m(x) in 

the intervals between these points are left undetermined. Repeating this process 

with different points, we can see that >.m(x) can be freely specified on an interval 

[xo, x2) where 
a 2 a2(d-xo) 

X2 = d I = d( d ) 12 (F. 7) - x1 - Xo -a 

and that this will uniquely determine >.m(x) and >.;,.(x') everywhere else. Of 

course, any image of this interval (under application of the functional equations) 

could also be used. Alternatively, >.m(x) can be specified on the interval [x0 ,x1 ) 

and >.;,.(x') can be specified on the interval [x~, x;). Several other combinations 

of initial specifications are possible by taking various images of the subintervals. 

The above situation is analogous to defining a function on the interval [a, a + 21r) 

of the real axis and extending the definition by periodicity. Any such function 

can be expanded uniquely in a Fourier series. In the present case the extension 

is not by periodicity but by application of the imaging rules, and the expansion 

will use the family of solutions given earlier. 

Let F( x) be any arbitrary function on the interval [x0 , x2 ). The aim is to find 

solutions >.m( x) and >.:,. ( x') which are solutions to the functional equations and 

agree with F(x) on the given interval. 

Define a new function 
1 

'T-,c-)' F(x) 
G(x) = (aoo _ x)lml+s-2+D/2(d _a;,_ x)lmi-•-2+D/2 (F.8) 

and choose a new variable t defined by 

= 1 ( a(aoo-x) )/l (a00a:,) 
t 1r og (d 1 ) og . a00 - a

00 
- X aa' 

(F.9) 

The interval [x0 , x2) becomes [to, to+27r) where to is the value oft at xo. Regarding 

G as a function of this new variable, it can be expanded in a Fourier series 
00 

G(t) = L: An exp(int). (F.lO) 
n=-oo 
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The exponential functions form a complete and orthogonal set of expansion func

tions and these properties are retained under a change of variables. 

Reverting to the original variables and functions gives the expansion 

00 

F(x) = 2: AnAm,n(x) (F.ll) 
n=-oo 

on [x0 , x 2 ) which extends by virtue of the functional equations to give the expan-

stons 
00 

Am(x) - 2: AnAm,n(x) 
n=-oo 

00 

.>.:,. ( x') - 2: An>.;..,n(x') 
(F.12) 

n=-oo 

for Am(x) and .>.:,.(x') which are valid everywhere. 

The expansion coefficients An are given by 

An 
1 1to+2" - - G(t)exp(-int)dt 

211" to 

1
.,, 

- F(x)Am,-n(x)w(x)dx 
"• 

(F.l3) 

where the weight function w(x) which arises from the transformation of coordi

nates is given by 

-(d _ a
00 

_ a~)(a00 _ x)3-D-2Iml-2•(d _a~_ x)3-D-2Iml+2• 
w( x) - ---'-----=:=---="'-'-=----'----,----'----""--'----

- 2T log( a0::1!.e )( ~ )-2" 

The orthogonality property is 

1"2 

Am,n(x)Am,-N(x)w(x)dx = 6n,N· 
"• 

(F.14) 

(F.l5) 

The solution is given by specifying F( x) on an interval [a, b) and F'( x') on an 

interval [a', b'). Then provided that the intervals have been chosen correctly to 

completely and uniquely specify the solution, the coefficients are given by 

J.
b b' 

An= F(x)Am,-n(x)w(x)dx + J. F'(x')>.;,.,-n(x')w'(x')dx' . ~ 
(F.16) 

where w'(x') is defined by analogy with w(x). 
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Appendix G 

HYPERGEOMETRIC 

FUNCTIONS AND 
INTEGRALS 

This appendix contains the asymptotic behaviour of the various integrals that 

arise in the calculation of potentials and multipole moments using the functional 

equation solutions. The results are written in terms of the asymptotic variable 

iJ and the parameters s, a, Tf and (. The conjugate parameters iJ', a', Tf 1 = 1/Tf 

and('= 1/( also appear in intermediate results. These are the parameters most 

suitable for asymptotic calculations. 
The asymptotic behaviour of the hypergeometric functions appearing below 

and in the main text are given by 
00 f(a + b)(1- z)n (a)n(b)n 

F(a, b; a+b; z) = ~ f(a)f(b) ( n!)2 [2,P(n+l)-,P(a+n)-,P(b+n) -log(1-z)] 

(G.1) 

f(a+b-1) 1 
F( a, b; a + b - 1; z) = f( a - 1 )f( b - 1) [ ab( 1 - z) 

-f: c,~)n(bi),[.P(n+ 1) +.P(n+2) -.P(a+n)- .P(b+ n) -log(1- z)](1- zt] =0 n. n+ . 
(G.2) 

for z near 1. 

The asymptotic behaviour of the poly gamma function 1/;( s) for large s is given 

by 
1 00 B2n 

tf;(s) ~logs- -
2 

- L 2ns2n 
S n:::l 

(G.3) 

where B 2n are the Bernoulli numbers. If z is near -1 then a standard Taylor 

series can be used. The following expressions are introduced for conciseness 

:F(s) = F(1,s + 1,s + 2; -1) (G.4) 
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1 3 
Q(s) = F(1,s + 2's + 2; -1). (G.5) 

G.l Two Dimensions 

The potential can be written in terms of integrals of the form 

I(x, y, s) =fa"~ (aoo - u)•-1(d- a:,.,- ur•-1 log V(x- u)2 + y2 du. (G.6) 

The integrands are first simplified by integrating by parts to eliminate the loga

rithms 

I(x,y,s) _ ( a00 )• log y'x2 + y2 
d- a:X, s(d- a00 - a:X,) 

-2 r·~ (aoo- u)•(d- a:X,- u)-•(x- u)du 
lo s(d- a00 - a:X,)[(x- u)2 + y2 ] • 

(G.7) 

If the denominator is factored and partial fractions are used, the resulting inte

grals can be seen to be hypergeometric functions upon substituting 

u = a2(1- t)/(d- a:X,- a00t). Thus, 

z$ z 
I(x,y,s) = (d 

1 
)[logy'x2+y2---

1
F(1,s+1;s+2;z) (G.8) 

s - aoo - aoo s + 
+ _, (,,y _,F(1,s + 1;s +2;(,,y) + "'~"'·~""F(1,s + l;s +2;(r,-y)] 

where 
aoo 

z = (d _ a:X,) (G.9) 

and 
( _ a00 x+iy-(d-a:X,) 

r,y - ( d - a:X,) X + iy - a
00 

. (G.lO) 

Analogous expression can be obtained for l'(x,y,s). 

If {) < < lx + iy - al then 

log[(x- a)
2 

+ Y
2
] + O(log{)). 

I(x,y,s) = 4as{) (G.ll) 

For certain values of x, y the above condition does not hold and the asymptotic 

behaviour must be calculated separately for each case. 

I( 0 ) _ log {) .,_[lo-=g"'-( a-'-) _-_:F...;.(....:.s )'--/ ('--s _+-:1"-) +-:-'-'Y _-_lo-=g'-2_--'1/;...;.( s_+----'-'-1)] 
a, ,s - +-

2u{) 2u{) 

+log{)+ :F(s) + -1+4s['Y-1+log2+tf;(s+1)] +O({)lo {)) 
a 2a(s + 1) 4as g 

(G.12) 
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and 

I(d-a',O,s)= logt9 + [log(a)-F(s)/(s+1)+!-log2-,P(s+1)] 
2ast9 2ast9 

logt9 (2+ry)F(s) ry+4s[l-1+log2+,P(s+1)] O(·al .a) +--- + + v ogv 
a 2a(s + 1) 4as 

(G.13) 

and 
log( a/ry) 

I(d,O,s) = a + O(logt9). 
2as· 

(G.14) 

Expressions for I' ( x, y, s) can be obtained interchanging primed and unprimed 

quantities. 
The surface charge density can be constructed using the following expressions 

for the normal derivatives 

ai(acos0,asin0,s) = f: -(-l)n an ((d-a00 -a:X,)n-1(a-aoocos0)] (G.lS) 
aa n=O (s + n)n! aa~ (acos0- a00 )2 + a2sin2 0 

al'(d-acos0,asin0,s) = ~ -(-l)n an [(d-aoo-a~)n-1 {a-(d-a~)cos0}]. 
aa ~ (s + n)n! aa~ (d- acos0- a;,,)2 + a2 sin2 0 

G.2 Three Dimensions 

The potential can be written in terms of integrals of the form 

J(z,p,s) = r·~ (aoo- u)•-t(d- a:, ut•-t 
lo V du p2 + (u- z)2 

where p2 = x2 + y2. 

Substituting u = a2(1- t)/(d- a:,- a00t) the integral becomes 

1 1 
(aoo/(d- a:,))•+;ll u•-,du 

J(z,p,s) = I I' . 
VP2+(z-aoo)2 o 1-~u 

where 
( = a00 z + ip - d + a:, 

d - a~ z + ip - a00 

In the special case p = x = y = 0 we have 

(aoo/(d- a' ))•+t 1 
J(z,O,s)= ( 1 )( 

00 
) F(1,s+-2;s+3/2;(). 

s+- z-a 2 00 

(G.l6) 

(G.17) 

(G.18) 

(G.19) 

(G.20) 

The following asymptotic formulae can be obtained from the hypergeometric 

express10n: 
2Q(s) 

J(a, 0, s) ~ (2s + 1)at9 
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1 + 2s + 2sQ(s) 

2a(2s + 1) 
(G.21) 



and 

29(s) 
J(d- a', 0, s) ~ (2s + 1)a19 

(2 + 7J)(2s + 1) + 47Js9(s) 
2a(2s + 1) 

J(d,O,s) ~ !)log'!?_ 7J[/- pog(2+27J) +1/>(s + ~)] 
a a 

(G.22) 

(G.23) 

For ( close to 1 the asymptotic behaviour of the following integral is given by 

r u·-~du r du r (u•-! -1)du 
lo 11-(ul ~ lo 11-(ul+ }0 (1-u) +O(I1 -(Ilogl1-(l). 

1£19 << lz+ip-al then 

-log'!? 
J(z,p,s) ~ + 

V(z- a)2 + p2 

1 1 (1 a(z-a) v' P2
+z

2 
) ·'·( 1) 

-1 + 2 og + ;>i+(z-a)2 + ,J(z-a)'+•' -'I' S + 2 

J(z- a)2 + p2 

(G.24) 

(G.25) 

Expressions for J'( z, p, s) can be obtained by interchanging primed and un

primed parameters. 
The surface charge density can be constructed using the following expressions 

for the normal derivatives 

aJ(acosE>,asinEl,s) = f: -(-l)n an [(d-aoc.-a:X,)n(a-aoocosE>)l 
aa n=0 (s+n+4)n!aa~ {(acosE}-a00)2+a2sin2 E>}~ 

(G.26) 
aJ'(d-acosEl,asinE>,s) = f: -(-l)n an [(d-aoo-a:X,)n{a-(d-a:X,)cosE>}J. 

aa n=O (s + n + 4)n! aa~ {(d- a cos E)- a~,,)2 + a2 sin2 El}~ 
(G.27) 
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Appendix H 

EULER-MACLAURIN 
EXPANSIONS 

The Euler-Maclaurin formula as it will be used here is 

oo laoo 1 oo B 2k (2k-1) ~f(n,a,r) ~ 
0 

f(n,a,r)dn + 2/(0,a,r)- {; (2k)!f (O,a,r) 

assuming that f and all its derivatives are zero at n = oo. 

(H.1) 

The Euler Maclaurin expansions for the following summands are required: 

rn+l 
ft(n, a, r) = 

sinh[(n + 1)a] 
7 n+l 

fz(n,a,r) = 
sinh2[(n + 1)a] 

rn+l 
!J(n,a,r) = 

sinh3
[( n + 1 )a] 

(H.2) 

rn+I cosh[( n + 1 )a] 
/4(n, a, r) = 

sinh2[(n + 1)a] 
rn+I cosh[ ( n + 1 )a] 

fs(n,a,r) = 
sinh3

[( n + 1 )a] 

where 

r=e -2.911 (H.3) 

If the formula is applied directly to the series above, the terms involving 

the derivatives are all of the same order in a. However, if the function f is 

chosen carefully (by adding and subtracting known series from the series above), 

the series of derivatives will be a series in increasing powers of a and a useful 

expansion will have been found. 
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The Euler-Maclaurin expansion is applied to the following summands 

1 n+l 

f1(n, 19, r)- (n + 1)19 

Tn+l 

fz(n,19,r)- (n+ 1)2192 

n+l ;n+l 
T +--j3(n, 19, r)- (n + 1)3193 2(n + 1)19 (H.4) 

Tn+l 
f4(n,19,r)- (n+1)2192 

rn+l ,n+l 
f 5(n,19,r)- (n + 1)3193- 2(n + 1)19" 

The additional terms have been chosen because the resulting summand con

tains only positive powers of 19 in its series expansion. In addition, the summation 

and integration over the additional terms can be written in terms of known special 

functions: 
00 L: 1 n+l _ . 

n=O (n + 1)m - L1m(r) (H.5) 

and roo ,.n+l 
Jn=O (n + 1)m dn = Em(logr) (H.6) 

where Lim(z) and Em(z) are the polylogarithm and exponential integral of order 

m respectively. 

The integrals over f( n, 19, T) are evaluated by changing variables from n to 

x = asinh(n19)/ sinh[(n + 1)19]. The following relations are useful 

sinh[(n + 1)19] 
1 1 

- asinh19(aoo- xf 2(d- aoo- xf> 

cosh[(n + 1)19] 
1 l l 1 1 1 

- z(aoo- x)- 2 (d- aoo- x)> + Z(aoo- x)'(d- a00 - xf' 

dn = a19-1sinh19(a00 -x)-1(d-a00 -xf1dx 

1 n+l - (aoo- x)'(d- aoo- xr•. (H.7) 

The resulting integrals can be evaluated in terms of hypergeometric functions: 

1 + 3. -2D) 
(H.S) 1:J1(n, 19, r)dn 

F(1,s + 2;s 2•e 
- e(2•+l)d(s + ~)19 

1:
0 

fz(n, 19, r)dn 
F(1, s; s + 2; e-ZD) 

(H.9) - e(2•+1)11( s + 1 )19 sinh 19 
1 5. -2D) 1:

0 
h(n, 19, r)dn 

F(1,s- 2iS + 2•e 
(H.lO) -

e(2•+1)11(s + ~)19sinh2 19 
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1:J4(n,t9,T)dn -
F(1 s-l·s+~-e-2d) 

' 2' 2' 
e2•d(2s + 1 )19 sinh t9 

F(1 s+l·s+2-e-2d) + ' 2' 2' 
e2(s+l)d(2s + 3)t9 sinh t9 

(H.ll) 

1:
0 

fs(n, t9, T)dn 
F(1 s + l·s + I-e-2d) 

' 2' 2' 
- 2J2•+3Jd(2s + 5)t9 sinh2 t9 

F(1 s- !. s + 2. e-2d) + ' 2' 2' 
e(2•+l)d(2s + 3)t9 sinh2 t9 
F(1 s- ~-s + ~-e-2d) + ' 2' 2' 

2e(2•-l)d(2s + 1 )t9 sinh 2 t9 · 
(H.12) 

Combining all of the above results and evaluating the first few derivatives in 
the Euler-Maclaurin series the following results are obtained. 

00 100 1 L ft(n, t9, T) = n=
0

ft(n,t9,T)dn + -;9[Li1(T)- E1(logT)] 
n=O 

5 s 2 3) --t9 + -t9 + 0( t9 
72 9 

(H.13) 
00 100 1 L f2(n, t9, T) = n=O h(n, t9, T )dn + 192 [Li2( T) - E2(log T )] 

n=O 

-~ 5s t9 _ 10s
2 

- 1192 O( t93) 
6 + 18 45 + (H.14) 

00 100 1 L h(n, t9, T) = n=Oh(n,t9,T)dn + 193 [Lb(r)- E3(logT)] 
n=O 

1 [ . ( ( )] 17 17 s 2 3 -
219 

Lt1 T)- E1 logT + 
28
l-

180 
t9 + O(t9 ) (H.15) 

00 100 1 Lf4(n,t9,T) = n=J4(n,t9,T)dn + 192 [Li2(r)- E2(logT)] 
n=O 

1 5s 40s2 - 7 2 3 
+ 12 - 36 t9 + 360 t9 + O( t9 ) (H.16) 

00 100 1 
Efs(n,t9,T) = n=Js(n,t9,T)dn + 193 [Li3(T)- ~(logT)] 

1["( ( l 1 s 2 3 +2t9 Ltt T)-EtlOgT)- 96t9+ 60t9 +0(t9 ). (H.17) 

All the special functions appearing above are defined over the entire complex 

plane and so the right hand sides are the analytic continuations of the series on 

the left hand sides correct to third order in t9. The accuracy can be improved by 
retaining additional terms in the Euler-Maclaurin expansion. 
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For small separations the above expressions have simpler asymptotic forms. 

00 

I: ft(n,19,r) 
n=O 

1 
- -[log(2) + log(19) + ,P(s + 2)]/19 

1 s 2 

+s + (
72

- 6 )19 + 0(192) (H.18) 
00 

2:: h(n,19,r) 
n=O 

11"2 
- 6192 +[-1+2s{-1+log(219)+,P(s+1)}]/19 

1 
+(6- s2) + 0(19) (H.19) 

00 

I: /3(n, 19, r) 
n=O 

((3) ?r2 s 1 + 36s2 + ( 6 - 24s2){log(219) + ,P( s + m 
- Ts - 3192 + 1219 

+0(1) (H.20) 
00 

I: f 4 (n,19,r) 
n=O 

11"2 
- 6192 + [2s{ -1 + log(219) + ,P(s + 1)}]/19 

1 
+( -

12
- s2) + 0(19) (H.21) 

00 

2:: fs(n,19,r) 
n=O 

((3) ?r2s 1 + 36s2 + ( -6- 24s2){log(219) + ,P(s + m 
- Ts - 3192 + 1219 

+0(1). (H.22) 

The dipole moment for a cylinder in a pair as given in terms of the above 

series by 

00 

p = sinh219 2:: h(n, 19, r) a2 
n=O 

11"2 
- 6 + [-1 + 2s{ -1 + log(219) + ,P(s + 1)}]19 + 0(192). (H.23) 

The corresponding dipole moment for a sphere pair is given by 

p 

a3 

2 sinh3 19 00 

_ {2 2::[!3 (n, 19, T) +cosh 19(!2(n, 19, T) - Un, 19, T ))] 
- T n=O 

00 00 

-[2:: f 2(n, 19, T )]
2 /[2:: !t(n, 19, T)]} 

n=O n=O 
11"4 

~ 2((3) + 36[log(219) + ,P(s + t)]" (H.24) 

At long wavelengths T = 1 + iA0 / A and correspondingly s = -iA0 /(2A19). 

Two different limiting behaviours occur for the dipole moment depending on the 

relationship between A and 19. 
At any given separation, for sufficiently long wavelengths A~ A0 ja, the dipole 

moment for cylinders is 

P 1r
2 iAo 2 

- ~- -19 + -[1 +!-log(219)] + O(A-) 
a2 6 A 

(H.25) 
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and for spheres it is 

11"4 i>. 11"6 

P- 2((3) + '"'' _ ,__1 _0 /n\1 + ),O, "-"'- ,__1 _0 /n\1? + 0(>.-
2

). (H.26) 

However, at any given wavelength, for sufficiently small separations satisfying 

1J < >.0 / >., the dipole moment for cylinders is 

2 . ' . ' 11" !AQ -!AQ 1 
P-- + -[1-log(-)] + 0(>.-) 6 ), . ), 

(H.27) 

and for spheres it is 

11"4 

p- 2((3) + 36log( ~) + 0(>.-llog >.). (H.28) 

The imaginary parts of the above expressions are used in the text to calculate 

the absorption. In two dimensions 

l 
>-o 

p -:\[1 + 1 - log(21J)] >. ~ >.0 /1J 
Im[-]-

a2 Ao Ao 
-:\[1 -log(-:\)] ), < >,0 f1J. 

In three dimensions 

p 
lm[-]-a3 

>.0 11"6 

>. 144[1 -log( 1J /2)]2 ), ~ >-o/1J 
11"5 

72[':t'+ log2
( ~ )] 

>. < >.of1J. 
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