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Thesis Summary
The monitoring of water quality is necessary to ensure that the health of catchments
is maintained. Water quality monitoring is often undertaken by government agencies
to identify trends, assess management strategies and the state of catchments. Many
water quality studies attempt to identify the quantity and timing of nutrients exported
from a catchment. The accuracy of the monitoring scheme is largely controlled by
the sampling scheme. Financial constraints are one of the limiting factors and under
this constraint, sampling schemes often combine limited sample sizes with estimation
methods. The use of statistical methods allows catchment managers to improve the
information on expensive water quality properties based on the relationship with
low cost properties. Many water quality monitoring programs have access to limited
historical data, therefore there is a requirement for methods which can use this limited
data to improve water quality monitoring schemes. This thesis aims at examining
the effect of event-based sampling, using historical data to improve sample designs
and the use of model-based geostatistical methods to improve the quantification of
nutrient exports.

Rainfall events are often associated with the export of large quantities of sediment
and nutrients. This relationship is exaggerated in catchments with long periods of
base-flow conditions and short rainfall events. Monthly routine sampling is commonly
used in Australia due to financial constraints. Increasingly, event-based sampling is
being used in conjunction with routine sampling to improve load estimates. The use
of event-based sampling is still limited as this form of sampling requires additional
equipment and maintenance. Therefore the benefit of including event-based sampling
on the accuracy of load estimates is of interest. However, without access to continu-
ously sampled water quality data it is difficult to determine the effect of event-based
sampling on load estimates. One approach to overcome the lack of data is to simulate
continuous water quality data using stream discharge. Chapter 3 outlines a simulation
procedure using a linear mixed model to characterise the relationship between total
phosphorus and stream discharge. The benefit of including event-based sampling is
evaluated based on the accuracy of annual load estimates. The results showed that
event-based sampling improved the accuracy of load estimates for all catchments.
Relating these findings to catchment characteristics found event-based sampling had
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a greater effect on the accuracy of load estimates in catchments with a large relief
and high annual rainfall.

Based on the information gained from chapter 3, it is clear that accurate load es-
timates require the combination of event-based and routine (base-flow) sampling.
The next logical question which should be addressed is; how many samples should be
taken? Evaluations of the required sample sizes are often based on the uncertainty of
precision. The estimation of the uncertainty of the mean is easily obtained when prob-
abilistic sampling schemes are used. However, in situations where non-probabilistic
sampling schemes are used, a model-based approach is required to ensure the esti-
mated uncertainty of the mean is unbiased. Generally there is little information on
the form of sampling scheme used for the collection of historical water quality data.
In addition, most water quality sampling schemes are non-probabilistic and generally
auto-correlated in time. Therefore a model-based approach is required to estimate
the uncertainty of the mean in relation to the estimated mean. As the samples are
generally not equally spaced through time, a variogram model is used to characterise
the temporal auto-correlation between samples. A simulation based approach is then
used to estimate the standard error of the mean based on different sample sizes. The
results of the analysis indicated that there is little improvement in precision for both
annual base-flow and event-flow estimates above 12 samples. The improvement in
precision for both base and event-flow conditions was most related to the urban cover
in each catchment.

The results of chapters 3 and 4 show the importance of event-based sampling as these
periods are associated with large nutrient and sediment exports and increased un-
certainty. Of particular interest for several reasons is the event mean concentration.
Equally spaced temporal sampling is one of the most commonly applied event-based
sampling schemes. However using this form of sampling requires the use of a model
to obtain unbiased estimates of the event mean concentration. Probabilistic based
sampling schemes do not require a model-based approach. Several probabilistic meth-
ods have been evaluated for event-based estimates. These schemes have been shown
to provide accurate estimates of event-mean concentrations, however these methods
have not been widely implemented possibly due to the complexity of the methods.
Therefore, chapter 5 evaluates the use of a simplified time stratified sampling scheme
for event-based sampling. The proposed method stratifies the mean event hydrograph
based on key hydrological components (e.g. the rising and falling limbs). As each
event is not identical to the mean event hydrograph, re-stratification after each event
is presented as a method to estimate the mean concentration of the key hydrolog-
ical components. The results showed that the method can provide accurate event
mean estimates of two water quality properties controlled by different hydrological
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transport processes.

Load estimation methods are commonly used in water quality studies to characterise
the mass of nutrients or sediments which are exported from a catchment over a given
period of time. Many prediction methods use information from other hydrological
properties for these estimations. However, many of these load estimation methods
should not be used as these methods assume the use of probabilistic sampling meth-
ods. With this restriction, there is a requirement for estimation methods which do
not require probabilistic sampling. Linear mixed models are presented as an alter-
native estimation method. Linear mixed models provide the ability to account for
the temporal auto-correlation between water quality samples and allow for covariates
to improve predictions. Chapter 6 investigates the use of stream discharge, stream
discharge derived variables and turbidity as covariates for predicting total nitrogen
and total phosphorus. All fitted models found significant temporal auto-correlation
between the samples. The inclusion of turbidity as a covariate improved the accuracy
of the total nitrogen and total phosphorus predictions by 15%. In addition to improv-
ing predictions during base-flow conditions the inclusion of turbidity as a covariate
improved the predictions of total phosphorus during storm events by 24%.

This research has applied various model-based geostatistical methods to examine the
effect of different sampling schemes and sample sizes on the accuracy of water quality
monitoring schemes. In regards to water quality sampling this research has found that
event-based sampling is important in providing accurate load estimates. This research
has lead to the following recommendations in relation to water quality sampling:

• There is little improvement in accuracy above 12 samples per year on the estima-
tion of mean annual base-flow concentrations in several south-eastern Australian
catchments.

• To simplify and improve the accuracy of event mean concentrations, a time-
stratified sampling scheme should be applied.

In relation to water quality load estimation, this research does not recommend the
use of traditional load estimation methods due to their assumptions. Instead of these
methods this thesis recommends;

• The use of linear mixed models combining routine and event-based samples and
low cost continuously monitored explanatory variables (e.g. stream discharge,
turbidity) to estimate annual loads.
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• This research recommends the use of affordable water quality surrogates to be
incorporated in the linear mixed models to increase the accuracy of the load
estimates.
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Chapter 1

General introduction

Water is one of the most important substances for human life. Therefore, the main-

tenance of water quality is vital to ensure continuous water supply for agricultural,

recreational, ecological, industrial and drinking requirements. With growing pressure

from land-use change and population growth, governments are under increasing pres-

sure to maintain water quality. Water quality monitoring must be undertaken by

government agencies to provide information on how to secure the quality of water

into the future. The monitoring of water quality is complex and its accuracy and

efficiency is determined by the sampling scheme and the statistical analysis used to

quantify the state of the system. One of the largest constraints of water quality

monitoring programs is cost which is largely due to; the number of sites, the number

of water quality variables analysed, the travel time to each monitoring site, and the

maintenance of each site. These high costs restrict the amount of samples and the

number of sites which can be monitored.

Several studies have examined the effects of different water quality sampling schemes.

These studies have often focused on the required frequencies of systematic sampling.

Different sampling frequencies have been recommended; weekly (Johnes, 2007), daily

or even sub-daily (Wade et al., 2012). These studies have provided great insight into

the relationship between sample frequencies and water quality processes. However,

the collection of data for these studies is extremely expensive and requires specialised
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equipment or high analytical costs. For example the study of Wade et al. (2012)

involved the use of in-situ phosphorus digestion based equipment. The equipment

required mains electricity and a large housing unit (Wade et al., 2012). In addition

to these requirements large quantities of reagents were required which increased the

maintenance of the equipment (Wade et al., 2012). The use of this equipment allows

for advances in the understanding of water quality properties, however it is unrealistic

for this technology to be widely implemented in the near future. In addition, as these

studies are based in Western Europe it is difficult to draw direct comparisons to

Australian catchments.

There is a distinct difference between the recommendations of scientific studies and

the sampling schemes used by catchment managers. Due to financial constraints

monthly sampling is the most commonly used sample frequency by catchment man-

agers (Bartley et al., 2012; Wade et al., 2012). This form of sampling has been found

to provide accurate estimates for catchments which do not have large rainfall events

(Harris et al., 2007). However, this form of sampling will often miss key rainfall events

associated with large proportions of sediment and nutrient exports. This is especially

important in Australia where catchments are generally characterised by long dura-

tions of base-flow and large rainfall events (Drewry et al., 2009; Hopmans and Bren,

2007), which can contribute up to 60% of 6 years of sediment in one event (Drewry

et al., 2009). Based on this, catchment managers are increasingly combining monthly

sampling with event-based sampling. Event-based sampling is often undertaken us-

ing automatic pumping devices which use stream discharge to determine when to

commence sampling. The inclusion of event-based sampling provides information on

sediment and nutrient exports during these periods.

For many catchment managers it is a statutory requirement of government agencies

to annually report the state of catchments. In Australia, catchment managers use

the ANZECC guidelines (ANZECC, 2000) to assess the state of a catchment. The

guidelines provide target concentration ranges for various chemical, physical, and

biological properties. For example, the Sydney Catchment Authority reports the

percentage of samples over the government guidelines (Sydney Catchment Authority,
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2011). Percentage values are given for event and base-flow condition by dividing the

samples based on the associated stream discharge. This form of reporting may not

be a true representation of the state of the catchment due to the small sample size.

In addition, this form of reporting does not provide a measure of uncertainty which

is important for assessing the usefulness of the information (Harmel et al., 2009).

Therefore there is a requirement for statistical methods which can provide a more

useful analysis. As sampling, and analytical costs are often too high, alternative

methods are required to improve estimates which can incorporate low cost variables

which are related to water quality.

A common objective of water quality studies is to estimate the total quantity of sed-

iment or nutrient exports during a period of time. There are many different load

estimation methods (> 30), however there is no method which is clearly the best

(Marsh and Waters, 2009). These methods are very beneficial in providing informa-

tion on the state of a catchment water quality trends. However Australian catchment

managers relate water quality to the ANZECC guidelines, which are based on con-

centration values. Therefore ratio and averaging based methods may not be the most

appropriate methods for Australian catchment managers in regards to the ANZECC

guidelines. Based on this catchment managers should use trend based estimation

methods (e.g. regression models) which use explanatory variables to predict concen-

tration. A major benefit of these estimation methods is the ability to incorporate

information from low cost variables which are related to water quality.

There are several issues related to using trend estimation methods. These meth-

ods generally require normally distributed data, a form of probabilistic sampling,

and use a linear trend between water quality and the explanatory variables. Water

quality data is generally non-normally distributed and highly positively skewed. To

overcome the non-normality, many studies use a log transformation (Kuhnert et al.,

2012). In most cases the logarithm transformation meets the requirement of normally

distributed data. However, in some situations there is a non-linear rather than linear

trend between the transformed water quality and stream discharge (Kuhnert et al.,

2012). Recently, generalised additive models (GAMs) have been used to overcome
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this problem. GAMs use a smoothing function instead of a linear relationship which

allows for greater flexibility in the relationship (Kuhnert et al., 2012).

A further limitation of trend estimation methods is the assumption that the samples

are independent and identically distributed (iid) (Lark and Cullis, 2004) i.e. the

samples have no serial correlation. This can be achieved by using a probabilistic

sampling scheme e.g simple random sampling. This assumption of iid samples is of

significance in regards to water quality as many water quality sampling schemes do

not use simple random sampling. Without the use of random sampling it can not be

assumed that the data is independent and identically distributed (iid). Therefore the

applied model must examine and account for the potential temporal auto-correlation

between the samples. Without accounting for the temporal auto-correlation between

the samples, the uncertainty of the estimates may be biased (Lark and Cullis, 2004).

Due to the temporal nature of water quality, temporal auto-correlation may be present

in situations where the data is iid. In these situations, the model will be valid, however

it may be possible to improve the uncertainty of the estimates by accounting for this

temporal auto-correlation.

The uncertainty of the estimates is an important component and should not be ig-

nored. Uncertainty estimates provide valuable information which can be used to

improve monitoring programs (Harmel et al., 2009). Using the uncertainty of the wa-

ter quality estimates, it is possible for catchment managers to re-design the sampling

scheme in order to minimise the amount of samples in relation to the uncertainty of

the water quality estimates (de Gruijter et al., 2006). Another desire of catchment

managers is to assess how many more samples are required, therefore the relationship

between the sample size and the uncertainty of the water quality estimates can be

used (de Gruijter et al., 2006). In addition, catchment managers need unbiased un-

certainty estimates of predicted water quality to ensure correct management decisions

are implemented (Horowitz, 2003).

Water quality monitoring is an expensive and complex task. Currently there are dif-

ferences between the recommendations of scientific studies and The methods used by

catchment managers. Catchment managers require methods which utilise information
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from historical data to improve the accuracy and efficiency of monitoring programs.

In relation to Australian catchments, there is a requirement for methods which can

provide continuous concentration estimates. Uncertainty estimates are also required

to ensure appropriate management decisions are made. These estimation methods

must incorporate additional information from variables which are less expensive to

minimise the cost of the monitoring program.

The aims of this thesis are:

• Outline a method to evaluate different temporal sampling schemes using limited

historical data. Using this method, quantify the reduction of uncertainty from

the inclusion of event-based sampling.

• Examine the sample size requirements in relation to the uncertainty of the mean

estimates based on historical temporal data. Outline the use of geostatistical

methods to recommend sample size requirements for events and base-flow con-

ditions.

• Design and outline a simple but flexible event-based sampling scheme. The de-

sired sampling scheme must be flexible enough to account for different transport

pathways.

• Examine the use of a geostatistical based method to estimate continuous water

quality concentrations. The method must account for a biased sampling scheme

and provides unbiased uncertainty estimates.
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Chapter 2

Literature review: an overview of

water quality monitoring

2.1 Introduction

Within Australia, there is growing pressure on the supply of water for; agricultural,

recreational, industrial and drinking requirements. With increasing population and a

changing climate there is increasing difficulty in maintaining water quality across the

country. Water quality monitoring is undertaken throughout the country by many

different government agencies and is estimated to cost over $142 million annually

(Bartley et al., 2012). At a smaller scale, monitoring of 10 sites in the upper Mur-

rumbidgee catchment had an annual cost of $150,000 (Newham et al., 2001). In

addition to growing pressure on the quality of the available water, severe droughts

over the past decade have had a large effect on water supply (Palmer, 2012). This

shortage is causing a greater pressure on the quality of the available water as it is

becoming increasing difficult to supply potable water. Appropriate water quality

monitoring schemes are therefore required to provide the best achievable assessment

of the state of catchments.

Understanding and developing a clear and concise objectives is vital to ensure a suc-

cessful water quality monitoring scheme is implemented. The aim of the monitoring
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will effect the two major questions of a water quality monitoring scheme; What form

of sampling should be used? and How many samples are required? Having a clear

aim for the monitoring scheme will assist in the development of an appropriate sam-

pling scheme, as the use of incorrect sampling schemes will restrict the information

attainable about the system. However, many monitoring schemes use a single sam-

pling scheme to address several different aims which can reduce the efficiency of the

applied sampling scheme.

The monitoring of water quality is expensive (Bartley et al., 2012). One of the most

expensive components of the monitoring schemes is the analysis of the samples. This

cost places a large restriction on water quality sampling and is exaggerated by the

monitoring of several sites which results in additional costs due to travel. Many

catchment management agencies rely on monthly sampling; however this form of

sampling will often miss key rainfall events (Drewry et al., 2009). Therefore the

addition of event based sampling is becoming more common. The combination of

these two forms of sampling increases the complexity of the analysis required to

provide clear and meaningful annual reports.

As many monitoring schemes have limited data and rely on a mixture of sampling

methods, there is a need for statistical based methods which maximise the information

gained from this data. This information is required in order to detect trends and assess

the state of the catchment. One of the main objectives of these methods is to provide

an estimate of the exported load of a particular water quality variable (e.g. suspended

sediments) over a given period (e.g. a year). Annual loads are often used as these

allow for the comparison between years and catchments. There are however, a large

number of load estimation methods available. A single study by Marsh and Waters

(2009) compared 34 different methods. Several studies have examined the ability of

each method to provide accurate estimates (Cassidy and Jordan, 2011; Johnes, 2007;

Jordan and Cassidy, 2011; Marsh and Waters, 2009), however there is still no single

method which is universally recommended. In addition to statistical based methods,

several mechanistic water quality methods exist (e.g. SWAT (Arnold et al. , 1998),

QUAL2E (Brown and Barnwell, 1987)), however these methods are out of the scope
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of this review.

This literature review will focus on the two major components of water quality mon-

itoring;

1. sampling schemes and

2. load estimation methods.

An analysis of commonly used sampling schemes will be given with particular atten-

tion given to the suitability of event-based sampling schemes. With an overview of

common used sampling schemes, load estimation methods will be reviewed in regards

to the effect of sampling schemes on the suitability and accuracy of these estimation

methods.

2.2 Water quality aims

The first stage of the design of a monitoring scheme is the development of its ob-

jectives. The aims of the monitoring scheme are important as they will affect the

decisions made about the sampling scheme and the most appropriate form of statis-

tical analysis. de Gruijter et al. (2006) define three aims of monitoring schemes:

• trend monitoring,

• status monitoring, and

• compliance monitoring.

Trend monitoring aims at detecting changes through time and generally involves long

term monitoring (de Gruijter et al., 2006). In regards to water quality monitoring,

this form of monitoring is often used to detect changes in the land management/use

(e.g. Lane et al. (2006)). Status monitoring is used to characterise the state of the

system through time (de Gruijter et al., 2006). For example, this form of sampling is
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used by the Sydney Catchment Authority to assess the improvement from upgrading

sewage treatment plants (Sydney Catchment Authority, 2012) and has been used

by Hopmans and Bren (2007) to estimate suspended sediment export changes under

forest plantations. Compliance monitoring is the the process of determining if the

state of the monitored property complies with guidelines (de Gruijter et al., 2006).

This is a common aim of water quality monitoring schemes in Australia which use the

guidelines of the Australian and New Zealand Environmental Conservation Council

(ANZECC) (ANZECC, 2000).

Water quality monitoring schemes often address all of these aims using a single sam-

pling scheme. For example, the Sydney Catchment Authority (SCA) uses a combi-

nation of monthly sampling and rainfall event sampling downstream of the sewage

treatment plant in Goulburn, New South Wales, Australia. Using these samples the

SCA annually reports the number of samples which are above the recommendations of

the ANZECC guidelines (Sydney Catchment Authority, 2011). For example, the sam-

pling scheme used to estimate the frequency of samples which exceeded the ANZECC

guidelines (Sydney Catchment Authority, 2008a) was also used to estimate the reduc-

tion in nutrient loads from sewage treatment plants (Sydney Catchment Authority,

2008b). Under these situations it is important that the selected sampling scheme is

suitable for all aims.

2.3 Sampling schemes

For the purposes of this literature review it is important to clarify the terminology

used to describe sampling schemes. A sample is an individual observation which is

collected at a point in time during a certain period. However, the collection of one

sample is not instantaneous and therefore the period of time over which the physical

act of collecting the water sample is undertaken is separated into sample units. In

regards to temporal water quality monitoring, sample units are of equal length and are

generally based on the time required to collect a single sample. The sample frequency

of a sampling scheme refers to the temporal interval at which regular sampling is
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applied. The sample size of a sampling scheme is the term given to the number of

samples collected within a certain time period.

When designing a sampling scheme it is important to consider what nutrients are

of interest (Johnes, 2007). In addition to quantifying nutrient exports, information

about the controlling processes of nutrient exports are also of interest. There are

two main sources which contribute to nutrient exports in a catchment, point and

diffuse (Cassidy and Jordan, 2011; Chen et al., 2013; Lam et al., 2010; Johnes, 2007).

When a nutrient enters a stream from a single point (e.g. a wastewater treatment

plant) these sources are clearly defined spatially in a catchment. Alternatively, when

a nutrient enters a stream via large scale pathways (e.g groundwater), the sources

of these nutrients are more complex and are defined as diffuse. It is important to

understanding the affect of these sources on nutrient loads and the what form of

sampling is required to correctly quantify these loads (Cassidy and Jordan, 2011;

Johnes, 2007).

There are two categories of sampling schemes; probabilistic (design-based) and non-

probabilistic (model-based) (de Gruijter et al., 2006). Probabilistic sampling schemes

use inclusion probabilities to determine sample statistics such as the mean and vari-

ance. This form of sampling allocates an inclusion probability to each sample based on

the randomisation used in the sampling scheme. Non-probabilistic approaches do not

require a well defined sampling scheme or known inclusion probabilities. These forms

of sampling require the use of a model to describe the uncertainty of the estimates.

Non-probabilistic water quality sampling schemes are the most common. An example

of this is the use of regular intervals through time (e.g. weekly, monthly, quarterly)

for sampling. This form of sampling is commonly used in water quality studies due

to the ease of implementation and the temporal nature of the sampling. However, as

this sampling scheme is non-probabilistic, the use of this form of sampling requires

the use of a model to account for the potential temporal correlation between the

samples (de Gruijter et al., 2006; Lark and Cullis, 2004). In addition, it is important

that the time between samples is short enough to adequately characterise short range

variation. (Lohr, 2009; Madrid and Zayas, 2007; Thomas, 1985).
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Water quality sampling is often undertaken using two forms of sampling schemes;

routine and event-based sampling (Drewry et al., 2009; Marsh and Waters, 2009;

Moosmann et al., 2005). These two schemes are often used focussing on two separate

aims. Routine sampling is often used to monitor base-flow conditions in catchments

and provide information on long term trends (Hopmans and Bren, 2007). This is the

most common form of sampling scheme, and generally only used in conjunction with

event-based sampling where finances allow. Event-based sampling is used to sample

streams during periods of high flows associated with rainfall events.

2.3.1 Diffuse and point source nutrients

Point sources and diffuse sources have a large effect on the required sample sizes

and the form of sampling required in a catchment (Johnes, 2007). Several studies

have investigated the effect of both point an diffuse sources on the timing and the

quantity of nutrients exported from a catchment (Cassidy and Jordan, 2011; Chang,

2008; Chen et al., 2013; Lam et al., 2010; Johnes, 2007). In addition, these papers

have also investigated the required sampling frequencies in catchments with certain

sources of pollutions (Cassidy and Jordan, 2011; Johnes, 2007). These sources have

often been linked to dominant land types with many studies using land uses and types

to reflect theses sources (e.g urbanisation cover to reflect the effect of waste water

treatment plants) (Chang, 2008; Johnes, 2007).It is therefore important to consider

the dominant land use and cover in a catchment

A common source of diffuse nutrients are agriculture activities which increase the

amount of nitrogen in the catchment, either via the growth of livestock or by the ad-

dition of fertilisers (Cassidy and Jordan, 2011). In addition suspended sediment is a

major source of nutrients in Australian catchments and is often closely related to par-

ticulate phosphorus (Drewry et al., 2009), which is often delivered into a stream bound

to suspended sediments with the largest exports occurring during rainfall events.

These events are often quite short in duration, but contribute large proportions to

annual loads (Drewry et al., 2009; Hopmans and Bren, 2007).
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A common point source in Australian waterways are waste water treatment plants

which are often responsible for releasing water with high nutrient concentrations into

streams (Cassidy and Jordan, 2011; Johnes, 2007). These plants often alter the stream

discharge of the stream by releasing water a constant rate, which can have a positive

affect on the health of the stream. However, during rainfall events, these facilities

are often required to release excess and often untreated effluent into the streams as

they reach maximum capacity. The effect of these point sources on streams are often

complex, but in general, often require sub-daily sampling to accurately characterise

these processes (Johnes, 2007).

As different sources of nutrients have different flow paths and different temporal dy-

namics it is important for the dominant sources of nutrients in a catchment to be

considered when designing a sampling scheme. The complexity from the combina-

tion of different sources may also increase the complexity of the sampling scheme,

by requiring sampling at different frequencies through time and the requirement of

catchment specific sampling schemes.

2.3.2 Routine sampling

Non-probabilistic sampling schemes are the most commonly used sampling schemes

for routine sampling. Several studies have used near continuous water quality data to

evaluate the effect of sampling frequencies on the accuracy of load estimates (Wade

et al., 2012; Cassidy and Jordan, 2011; Bowes et al., 2009; Johnes, 2007). These

differences in the required sample frequencies between catchments and studies pro-

vides information on the effect of catchment characteristics on the uncertainties of

estimates. Regular interval sampling schemes, are commonly used by government

agencies, including agencies in Australia (Bartley et al., 2012). Probability based

sampling schemes have received very little attention for base-flow sampling, however

the results of these studies have shown these methods to provide accurate estimates

(Arabkhedri et al., 2010; Cassidy and Jordan, 2011).

Linking the required sample size to catchment characteristics is important to provide
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information on the form of sampling in an unmonitored catchment. Catchment size

has been shown to have an effect on the required sample frequency (Moatar et al.,

2006). Moatar et al. (2006) found the size of the catchment was inversely related

to the required sample frequency. The results of the study by Cassidy and Jordan

(2011) were similar as they found near continuous sampling was required in small

upland catchments. The recent study by Wade et al. (2012) found daily sampling

was required for a catchment in which daily releases from a sewage treatment plant

were within the catchment.

Table 2.1 provides a summary as an example of several recent studies which have

compared the effect of different sampling frequencies on the accuracy of annual load

estimates. The majority of these studies have been based in Europe in small catch-

ments (<100 km2). The general consensus of these studies is that the use of sub-daily,

or at least daily, sampling is recommended to provide accurate annual load estimates.

For long term trend analysis, Wade et al. (2012) and Bowes et al. (2009) recommend

weekly sampling. The results of these studies are often based on the accuracy of

annual load estimations. In contrast to these findings, Horowitz (2003) suggests that

fewer than 12 samples per year are adequate to estimate annual suspended sediment

exports. Horowitz (2003) shows how the combination of samples from multiple years

can be used to provide accurate annual estimates using only 6 samples. In addition,

Horowitz (2003) suggests the use of sampling of the stream discharge distribution

may be more appropriate than sampling through time.

There is a distinct difference between the recommendations of the majority of pa-

pers shown in Table 2.1 and that of the practices of catchment management agencies

(Bowes et al., 2009). For example, the environmental agency in the UK is responsible

for collecting water quality samples at monthly or at best fortnightly frequencies at

the majority of monitoring sites (Bowes et al., 2009). This practice is similar to that of

the applied frequencies in Australia (Bartley et al., 2012). Table 2.2 summaries com-

mon routine sampling schemes used in Queensland, New South Wales and Victoria.

Quarterly sampling is the most commonly used sampling frequency in Queensland.

In New South Wales and Victoria monthly sampling is the most commonly used sam-
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ple frequency. As these sampling frequencies often miss key rainfall events (Cassidy

and Jordan, 2011; Drewry et al., 2009; Wade et al., 2012), many catchment agen-

cies are using or currently in the process of combining these base-flow samples with

event-based sampling.

Few studies have examined the use of probabilistic sampling schemes for base-flow

conditions. The use of simple random sampling for annual load estimates was eval-

uated by Cassidy and Jordan (2011). The results indicated that sample sizes of

365 provided accurate base-flow estimates. However this form of sampling did not

capture the exports during events throughout the year (Cassidy and Jordan, 2011).

By using other probabilistic sampling schemes which use information on the hydro-

logical processes, improvements in accuracy and reductions in the sample size are

possible (Thomas, 1985). In this regard, Arabkhedri et al. (2010) evaluated adaptive

cluster sampling to provide unbiased estimates of suspended sediments. Adaptive

cluster sampling is commonly used in ecological studies investigating rare popula-

tions (de Gruijter et al., 2006; Lohr, 2009). In regard to suspended sediment exports,

rainfall events are treated equivalent to rare populations where large quantities of

suspended sediment are exported (Arabkhedri et al., 2010). Arabkhedri et al. (2010)

explains how this form of sampling uses systematic sampling at regular intervals,

and a cluster of samples is collected when stream discharge is found to be above a

pre-determined threshold. The results showed adaptive cluster sampling was more

accurate than model based methods (Arabkhedri et al., 2010).

2.3.3 Event based sampling

With large proportions of nutrients and sediments being exported during rainfall

events, a form of sampling is required to monitor these exports. A study from the

UK by Johnes (2007) found that the 5 largest rainfall events contributed 42% of the

annual exported total phosphorus. This requirement is more pronounced in Aus-

tralian catchments which are generally characterised by long base-flow conditions

and short sporadic rainfall events (Drewry et al., 2009; Hopmans and Bren, 2007).
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A study based in south eastern Australia found 70% of 6 years of sediments were

exported during a single rainfall event (Hopmans and Bren, 2007). Similar to routine

sampling, event-based sampling is limited by financial constraints. In addition, the

available equipment to collect samples also limits the available sampling schemes.

Cassidy and Jordan (2011); Jordan and Cassidy (2011); Wade et al. (2012) used

continuously measured total phosphorus at a sub-hourly basis. These experiments

provided great insight into the controlling processes in catchments, but they are not

typical, are expensive and require access to electricity (Burt et al., 2011; Wade et al.,

2012). Catchment managers therefore require the use of less dense sampling schemes

which requires consideration of which sampling scheme to use. Both probabilistic

and non-probabilistic sampling schemes have been evaluated in terms of the accu-

racy of event load and event mean estimates. However, similar to that of base-flow,

non-probabilistic sampling methods are most commonly used for event-based sam-

pling (Harmel et al., 2006; King and Harmel, 2003). Several probabilistic sampling

schemes have been designed in an attempt to improve the accuracy of event load and

event mean estimates.

Many catchments are located in remote locations with limited access and no power

supply Drewry et al. (2009); Wade et al. (2012). For example, the monitoring sites of

the Sydney Catchment Authority have limited access and due to safety reasons after

10-15 mm of rainfall, access to sites is restricted to helicopters (Sydney Catchment

Authority, 2011). Without a power supply, monitoring schemes must rely on battery

powered sampling devices which use a pump to collect and store samples. Once

collected, the samples are often stored in an open container until a field technician can

retrieve the samples from the field. This equipment is expensive which has restricted

its use by catchment managers (Burt et al., 2011; Drewry et al., 2009; Wade et al.,

2012). By using these devices, the sampling scheme is restricted to the options of the

software controlling the sampler. This is easily programable without any additional

hardware with the commonly used ISCO 3700 automatic sampler (Teledyne ISCO,

USA). An alternative method is the use of passive siphon sampling bottles described

by Graczyk et al. (2000). These bottles have a one way valve attachment which
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allows the bottles to be filled once the stream reaches a pre-determined height and

restricts the mixing of the sample. By using siphon sampling bottles it is only possible

to sample during the rising stage of the hydrograph (Graczyk et al., 2000) at pre-

determined heights. This form of sampling is often combined with manual samples

during the receding limb of the hydrograph (Drewry et al., 2009). The use of siphon

sampling devices requires a model based approach to provide unbiased estimates of

the mean and its uncertainity (de Gruijter et al., 2006).

Non-probabilistic sampling schemes are the most common forms of event sampling

schemes (Harmel et al., 2006; King and Harmel, 2003). Equally spaced samples in

regards to stream discharge and time are the two most common sampling schemes

(Harmel et al., 2006; King and Harmel, 2003). Many of these sampling schemes use a

pre-determined stream height to commence the sampling, and have a length of time

or stream height to reflect the end of the event where sampling stops (Gall et al.,

2010; Harmel et al., 2002). Equally spaced temporal samples were used in the study

by Hopmans and Bren (2007) to estimate the export of suspended sediments. The

same method was used by Birkel et al. (2011) to separate the event and base flow

contributions during an event using isotopes. Equally spaced stream discharge sam-

pling has been used by Romeis et al. (2011); Harmel et al. (2009) to sample rainfall

events. Two studies examining the effect of bush-fires on sediment and nutrient ex-

ports have collected samples based on the stream height levels, during the rising and

falling limbs of the event (Smith et al., 2010; Lane et al., 2006). Lopez et al. (2000)

outlines how the 1st derivative (flux ) of stream discharge is a more accurate predictor

variable for suspended sediments in small flashy streams. What is often overlooked

with these sampling schemes is the requirement of statistical methods which account

for the auto-correlation between the samples. Due to the temporal nature of the sam-

ples, it should be assumed that there is auto-correlation in the observations. Drewry

et al. (2009) presented the auto and cross correlation between stream discharge and

total phosphorus, total nitrogen and suspended sediments. Therefore models which

are used with these sampling schemes must account for this correlation within the

samples (Thomas, 1985, 1988; Crawford, 1991; Cohn et al., 1992; Cooper and Watts,



22 Literature review: an overview of water quality monitoring

2002; Cohn, 2005).

Two alternative methods incorporate the acquisition of real time data to improve

sampling schemes. Investigating sediment exports, Lewis (1996) used a turbidity sen-

sor to monitor real-time changes and collected samples as pre-determined threshold

levels were reached on both the rising and falling limbs of the hydrograph. This

sampling scheme is based on the strong correlation between suspended sediments and

turbidity (Lewis, 1996). The purpose of this sampling scheme is to optimise sampling

to improve the relationship between sediments and turbidity (Lewis, 1996) and is

designed to improve predictions of suspended sediments by using continuously mea-

sured turbidity (Lewis, 1996). More recently Gall et al. (2010) presented a sampling

scheme which uses historical data to predict the receding limb of the hydrograph

at the peak of each hydrograph in real time. Gall et al. (2010) outlined how this

can be combined with equally spaced samples in relation to stream discharge. This

sampling, combined with the sampling at pre-determined stream heights, ensures the

rising limb of each event is captured (Gall et al., 2010). These two sampling schemes

outline how the incorporation of real time data for variables related to water quality

can be used to improve the sampling schemes. These methods are model-based and

require appropriate models to provide unbiased estimates.

Several studies have investigated probabilistic sampling schemes for event-based sam-

pling (Thomas, 1985, 1988; Thomas and Lewis, 1993, 1995), however these meth-

ods often require equipment in addition to automatic samplers (Thomas and Lewis,

1993). Such methods allow for unbiased estimates without the requirement of models

to account for biased sampling schemes and auto-correlation. Probabilistic methods

which have been assessed include; selection-at-list-time (Thomas, 1985), time strat-

ified sampling (Thomas and Lewis, 1993) and flow stratified sampling (Thomas and

Lewis, 1995). Selection-at-list-time is an improvement of probability proportional

to size sampling which uses a list of random numbers to determine when a sample

should be taken in relation to stream discharge in real time (Thomas, 1985). The

time stratified sampling method outlined by Thomas and Lewis (1993) divides the

hydrograph into strata of different lengths designed to concentrate sampling during
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large changes in stream discharge. Flow-stratified sampling stratifies the event based

on the stream height and direction of the stream hydrograph (Thomas and Lewis,

1995). An evaluation of the three methods found time-stratified sampling was the

most accurate of the three methods (Thomas and Lewis, 1995). The results of these

studies have shown that it is possible to sample key areas of event hydrographs and

obtain accurate event means (Thomas and Lewis, 1995). These sampling schemes

have received little attention which may be due to the focus on sediment exports and

not nutrients exports and the perceived complexity of the methods.

2.4 Common load estimation methods

As continuous sampling is not feasible for most monitoring schemes, catchment studies

require methods to estimate water quality during unsampled periods. Several studies

have examined the accuracy of these methods for different water quality variables.

These estimation methods are generally assessed on the accuracy of load estimates

over a given period (e.g. annually). However, there has been no clear outstanding

method from these studies, and Marsh and Waters (2009) evaluated 34 different meth-

ods in a single study. There are three main types of estimation methods; averaging,

ratio and regression based methods (Marsh and Waters, 2009). The assumption of

simple random sampling is a requirement of these commonly used estimation methods

(Cohn et al., 1992; Thomas, 1985), which is generally overlooked. Recently, studies

have examined alternative flexible estimation methods which do not require a linear

trend between water quality and the explanatory variables. Several studies have ex-

amined and compared the three load estimation methods (Aulenbach and Hooper,

2006; Cassidy and Jordan, 2011; Horowitz, 2003; Johnes, 2007; Quilbé et al., 2006;

Salles et al., 2008; Webb et al., 1997). The results of these studies have provided

insights into the effects of the different methods on the precision and bias of annual

load estimates. These studies have found similar levels of accuracy between the meth-

ods and a general underestimation of annual loads. For example, Cassidy and Jordan

(2011) found that annual total phosphorus was underestimated by up to 60% and
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Webb et al. (1997) found annual suspended sediment was underestimated by up to

57.2% by load estimation methods.

Retrospective load calculations are based on calculating the mass of nutrients/sedi-

ments which are exported over a given period (Aulenbach and Hooper, 2006). The

relationship between stream discharge and nutrient/sediment loading is widely used

in the literature, and is represented by the equation;

L =

∫
CtQtdt (2.1)

where the total load (L) is the product of the solute concentration (C) and the

discharge (Q) over time (t) (Aulenbach and Hooper, 2006). Eq. 2.1, assumes that

there is a constant ( ∼15 minutes) record of both discharge and the concentration.

Due to the expensive nature of water quality monitoring this equation is rarely used

without the prediction of water quality concentration.

Many load estimation methods assume the data was collected using simple random

sampling (Cohn et al., 1992; Thomas, 1985). If the sampling was not random, the

model must examine the data for the potential of temporal auto-correlation (de Grui-

jter et al., 2006; Lark and Cullis, 2004). If the model does not account for the temporal

auto-correlation the uncertainty estimates may be biased (de Gruijter et al., 2006;

Lark and Cullis, 2004). However, due to the temporal nature of the water quality

data, the presence of temporal auto-correlation is likely.

Ideally, a load estimation would not require probabilistic sampling and would provide

the ability to account for the auto-correlation between observations.

2.4.1 Averaging estimation methods

Averaging methods are the simplest form of load estimation methods. These methods

use the average concentrations multiplied by the average discharge over the same
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period (Aulenbach and Hooper, 2006). An example of this method is;

L̂ = Kc̄q̄ (2.2)

where c̄ and q̄ is the average concentration and average discharge respectively for a

certain period of time and K is a unit-conversion factor (Cooper and Watts, 2002).

Salles et al. (2008) found averaging methods gave accurate load estimates when sam-

pling frequencies were sub-daily. Load estimates using these methods tend to un-

derestimate annual loads where sampling frequencies are large as rainfall events are

often missed (Cooper and Watts, 2002; Quilbé et al., 2006). It is important to note

that these methods assume the use of simple random sampling (Cooper and Watts,

2002; de Gruijter et al., 2006). If this assumption is not met, which is often the case

then the estimators can be highly biased (Cooper and Watts, 2002; de Gruijter et al.,

2006).

2.4.2 Ratio estimation methods

Ratio estimators are designed to improve estimations by including all observed dis-

charge observations. Therefore this method does not only rely on the discharge coin-

cident with WQ samples but all collected discharge values. The most simplified form

of this calculation is:

L̂ =
l̄

q̄
Q (2.3)

where l̄ and q̄ are the average of concentration and discharge respectively, and Q is the

total discharge (Cooper and Watts, 2002). This simple form of ratio-estimator will

lead to biased load estimates (Cooper and Watts, 2002). Several correction methods

have been developed to minimise this bias (Cooper and Watts, 2002). One of the

most commonly used ratio-estimators for load estimates is the Beale-ratio estimator

equation (Beale, 1962)

L̂ =
l̄

q̄
Q

(
1 + 1

n
cov(l,q)

l̄q

1 + 1
n
var(q)
q̄2

)
. (2.4)



26 Literature review: an overview of water quality monitoring

The Beale ratio estimator has been found to provide almost unbiased estimates

(Cooper and Watts, 2002). Ratio estimators have been recommended in situations

where no linear relationship between the concentration and stream discharge is present

(Quilbé et al., 2006). Evaluating several estimation methods based on annual total

phosphorus exports in the UK, Johnes (2007) found ratio estimators to be the most

accurate methods in catchments with low population density and a high base flow in-

dex, based on weekly sampling frequencies. However, these methods performed poorly

with less frequent monthly observations Johnes (2007). However, ratio-estimators as-

sume a form of probabilistic sampling has been used (de Gruijter et al., 2006). Citing

Royall and Cumberland (1981); Cooper and Watts (2002) suggest that probabilistic

sampling is not required if the model is a straight line through the origin. In addi-

tion to this, ratio-estimators require the concentration to be proportional to that of

the discharge and that the concentration variance increases as the discharge variance

increases (Cooper and Watts, 2002; de Gruijter et al., 2006).

2.4.3 Regression estimation methods

Regression estimation methods (rating curves) are often used to model the linear

relationship between log concentration and log stream discharge. Using the contin-

uous stream discharge, concentration is predicted (Cassidy and Jordan, 2011). The

regression method is;

c(t) = Xβ + ε, (2.5)

where c(t) is the log transformed concentration, X is the trend matrix based on

the log transformed stream discharge and β is a vector of the model coefficients.

The error term of the regression model ε; is a vector of independent, normally dis-

tributed errors. Several studies have investigated the use of regression based methods

(Aulenbach and Hooper, 2006; Cooper and Watts, 2002; Horowitz, 2003; Johnes,

2007; Quilbé et al., 2006). These methods are known to underestimate suspended

sediment during events and overestimate suspended sediment during base-flow pe-

riods (Horowitz, 2003). Cooper and Watts (2002) found poor estimates based on
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a single year of monthly observations, but accurate estimates using several years of

observations. Regression methods have been suggested to be used in situations where

strong correlations are present (i.e. r2 ≥ 0.5)(Quilbé et al., 2006). In addition Cooper

and Watts (2002) found the estimates of these regression methods are unbiased and

accurate where the model was correct.

Regression models are often fitted using ordinary-least-squares, however this assumes

the errors are iid with the distribution; ε ∼ N (0, σ2) (Lark and Cullis, 2004). If

simple random sampling has not been used the estimates will be biased (Lark and

Cullis, 2004) and this requires the model to examine and account for temporal auto-

correlation between the samples (de Gruijter et al., 2006; Lark and Cullis, 2004;

Thomas, 1985).

2.4.4 Generalised additive models

Recently several studies have used Generalised additive models (GAMs) to model

water quality (Kuhnert et al., 2012; Morton and Henderson, 2008; Smith et al., 2013;

Wang et al., 2011). These studies have shown how GAMs offer the ability to ac-

count for the complexity of the non-linear nature of water quality data (Morton and

Henderson, 2008). Morton and Henderson (2008) also note that the complexity can

be further accentuated by errors from data collection or laboratory analysis. GAMs

use smoothing functions to model the relationship between the explanatory variables

and water quality (Wood, 2006), this provides a flexible method to account for the

complexity of many non-linear water quality processes (Morton and Henderson, 2008).

GAMs have been used for a variety of applications. For example, Smith et al. (2013)

used GAMs to examine long term trends of nitrogen and phosphorus in three catch-

ments with dairy farming. Using stream discharge, year, and month as covariates the

study found a trend between milk production and nitrogen and phosphorus exports

(Smith et al., 2013). Wang et al. (2011) used a GAM with several stream discharge

derived variables to estimate suspended sediments and nitrogen in north eastern Aus-

tralia. Using this approach Kuhnert et al. (2012) included additional covariates to
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improve the estimates. In addition, Kuhnert et al. (2012) also outlined how to provide

unbiased confidence intervals of the predictions.

2.4.5 Accounting for auto-correlation within observations

The form of statistics used to analyse the sampled observations is determined by

the aim of the monitoring scheme and sample design adopted. If the water quality

monitoring scheme used a systematic sampling scheme with regular temporal intervals

then a standard auto-regressive time series analysis would suffice. However, since

many sampling schemes use a combination of systematic sampling schemes and event-

based sampling, standard time series statistical methods are not appropriate. As

the samples are sampled through time, the potential of auto-correlation between

the samples cannot be ignored,as it can be highly likely that the current state is

in some way affected by the previous state of the system through time. Therefore

the samples must be examined for auto-correlation. There are two main approaches

used to account for the auto-correlation between samples. The first method includes

a temporal component in the estimation method (Cohn et al., 1992; Diebel et al.,

2009; Guo et al., 2002; Kuhnert et al., 2012; Smith et al., 2013; Wang and Tian,

2013). The second method uses traditional time series based methods in the form

of auto-regressive models are also used to account for the auto-correlation between

observations (Kuhnert et al., 2012; Morton and Henderson, 2008; Ömer Faruk, 2010;

Wang et al., 2011).

Several studies have included temporal components such as seasonal components in

models to account for temporal changes (Rode and Suhr, 2007). It is important to

consider these seasonal terms in areas which have seasonal controlling factors (e.g.

snowmelt, tropical climates) (Kuhnert et al., 2012). This approach generally includes

an additional term to the estimation model which accounts for the seasonality of the

variables. Cohn et al. (1992) introduced a sinusoidal component in a simple regression

model to account for seasonality in the form of two terms:

β5 sin(2πT ) + β6 cos(2πT ), (2.6)
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where T is the time of year in decimal years since the origin. These two additional

terms were used in a linear regression model, similar to equation 2.5 to predict the log

transformed concentration (Cohn et al., 1992). An example of a time series produced

using these two terms is shown in figure 2.1. This seasonal term can be thought of

as a surrogate to represent a variety of different seasonal processes in the catchment.

Cohn et al. (1992) also explains how the amplitude of the peak and the day of the

year that the peak day is can be set using β5 and β6. The inclusion of this term

can improve the estimation of the seasonality in the observed data if this exists. This

approach has been undertaken by several other studies (Diebel et al., 2009; Guo et al.,

2002; Wang and Tian, 2013). Another method is to include decimal days into the

model (Diebel et al., 2009; Smith et al., 2013) and a term to represent the month of

the year (Smith et al., 2013). The study by Smith et al. (2013) found the inclusion of

a term representing the month of the year increased the adjusted r2 from 79 to 84.3%.

These studies have shown how the inclusion of terms representing the time of year

or seasonality can increase the accuracy of the estimates. However, it is important

to distinguish that these methods rely on additional model terms to account for

temporal correlation, and do not attempt to use a model to directly account for the

auto-correlation between the observations.

Correlation between observations is based on the linear association between the two

samples at different points in time. Samples collected through time are often serially

correlated, which implies samples which are closer to each other in time are more

correlated than samples further apart (Heuvelink et al., 2010). An example of a

temporally correlated process is provided by Diggle (1990). Figure 2.2.a. presents

hourly luteinizing hormone blood samples. An auto-correlation function is often used

to examine the auto-correlation between samples at differing temporal lags. The lag

k auto-correlation is defined by

ρk =
(zt − µz)(zt+k − µz)

σ2
z

, (2.7)

where zt is the observation at time t, µz and σ2
z are the mean and variance of z.

Figure 2.2.b. shows the auto-correlation of the process shown in 2.2.a.. The par-
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Figure 2.1 – An example of the seasonal term over three years based on equation 2.6
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tial auto-correlation function is similar to the auto-correlation function yet examines

the correlations between observations, k, time intervals apart while removing the

impact of intervening observations and is shown in figure 2.2.c.. Based on this auto-

correlation between the samples through time is the use of an auto-regressive (AR)

model. These models make estimates against those observations that are k time

intervals apart. An example of this is represented by an AR-1 model:

Z(t+1) = µ+ a{Z(t) − µ}+ ε(t), (2.8)

where a is the AR parameter, Z(t) is a value of a process at a discrete time, t and µ is

the mean of the process, with an absolute value < 1 describing how Z(t) effects Z(t+1)

and ε(t) is an uncorrelated residual with zero mean and variance.

Figure 2.2 – An example of an auto-correlated time series (a) and the auto-correlation
between samples based on an auto-correlation function.

For most studies it is not possible to use auto-regressive based methods to model
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water quality as the samples are often collected using a combination of event-based

and systematic sampling. Under this limitation, studies must average samples into

larger time intervals (Morton and Henderson, 2008). Using this method, the aver-

aging of observations to a monthly interval would suffice for long term trends, but

short term trends would require sub-daily to daily sampling (Morton and Hender-

son, 2008). An alternative method, which several studies have applied, is the use

of auto-regressive models to account for the auto-correlation in the residuals of the

water quality predictions (Kuhnert et al., 2012; Morton and Henderson, 2008; Wang

et al., 2011). The study of Smith et al. (2013) found auto-correlation in the residuals,

however noted the reduction of auto-correlation by the inclusion of a temporal term

reduced the auto-correlation. Another study by Cohn et al. (1992) found temporal

auto-correlation in the residuals of 23 out of 24 models. These findings re-enforce the

importance of examining the data for temporal auto-correlation.

2.5 Explanatory variables other than stream discharge

Most estimation based models use stream discharge as a predictor of water quality

concentration, due to the availability and the general log linear relationship. How-

ever, many water quality variables are not always directly related to stream discharge

(Lewis, 1996). One major limitation of using stream discharge as an explanatory

variable is the inability to account for hysteresis during events (Eder et al., 2010).

In addition, short term diurnal (Cassidy and Jordan, 2011), seasonal changes (Cohn

et al., 1992) and different transport flow-paths increase the complexity of the relation-

ship between stream discharge and water quality. Under these restrictions, several

studies have investigated the use and potential improvement of other predictors for es-

timating water quality variables (Cohn et al., 1992; Kim and Furumai, 2012; Krueger

et al., 2009; Lewis, 1996; Mano et al., 2009; Wang et al., 2011). These additional

explanatory variables fall into two broad categories; stream discharge derived and

indirect measures of water quality.

In an attempt to account for different hydrological controlling processes, several pa-
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pers have derived explanatory variables from stream discharge (Cohn et al., 1992;

Krueger et al., 2009; Mano et al., 2009; Wang et al., 2011). Cohn et al. (1992) intro-

duced a quadratic term to model the relationship between water quality and stream

discharge. More recently additional variables have been included to account for the

rising and falling limbs during events (Krueger et al., 2009) and to account for the

hysteresis within each event. This was also combined with an additional variable to

represent each individual event. Daily stream discharge characteristics such as mean

and maximum stream discharge were included in a regression model to reflect daily

stream variations (Mano et al., 2009). The term first-flush refers to the higher levels

of nutrient and sediment exports during the first rainfall event after a long dry season

(Wang et al., 2011). To account for this phenomenon, Wang et al. (2011) introduces

an additional term which uses a weighted average of recent discharge measurements

to reflect the state of the catchment. Although the inclusion of these terms has

had mixed results, the significance of these terms to estimate water quality provides

insight into the controlling hydrological processes.

Turbidity is often used instead of stream discharge for improving estimates of sus-

pended sediments (Lewis, 1996; Sun et al., 2001; Jastram et al., 2010; Jones et al.,

2011). Strong correlations between turbidity and total phosphorus (Jones et al., 2011)

and total nitrogen (Kim and Furumai, 2012) have also been identified. The use of

in situ turbidity sensors is becoming more popular due to the relatively low cost and

limited maintenance requirements, with several sensors using wipers to ensure a clean

surface. The use of in situ turbidity measuring devices should be strongly considered

to improve estimates of sediment related variables until alternative direct measuring

devices become affordable (Jones et al., 2011). Based on this strong relationship, in

situ turbidity monitoring is used throughout the state of California to monitor the

impacts of forestry activities (Harris et al., 2007). It is important to consider the

differences between the commercial sensors which will lead to differences in turbid-

ity readings (Harris et al., 2007; Sun et al., 2001). Under this constraint it may be

necessary to develop site, instrument and storm specific relationships for estimation

(Harris et al., 2007; Sun et al., 2001).
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Seasonality and related processes have also beeen included as explanatory variables

(Cohn et al., 1992; Kuhnert et al., 2012; Wang et al., 2011). Cohn et al. (1992)

included a component to account for seasonal trends. In a catchment in tropical

Australia, the study of Wang et al. (2011) found no signifiant effect of a seasonal

term. Following the work of Wang et al. (2011), Kuhnert et al. (2012) found the

inclusion of a term reflecting the amount of bare ground was a significant explanatory

variable. The results indicated a 2.1% decrease in suspended sediment exports with

each percentage increase in vegetation cover Kuhnert et al. (2012).

2.6 Review summary and project outline

This literature review has summarised commonly applied water quality monitoring

schemes. The accuracy of these monitoring schemes are affected by the form of sam-

pling and statistical analysis. Sample size recommendations of several studies have

suggested the use of daily/sub-daily sampling. However, the sampling frequencies

of many government agencies is much lower due to financial constraints. Compen-

sating for this low sample frequency, government agencies often include event-based

sampling to capture periods of large exports. The combination of routine and event

samples restricts the types of statistical analysis which can be used. The three com-

mon load estimation methods assume a form of probabilistic sampling. In addition,

these estimation methods do not account for the temporal auto-correlation between

samples.

Systematic sampling is the most widely used water quality sampling scheme. This

form of sampling often uses a monthly interval, however it often misses key rainfall

events, which are associated with large nutrient and sediment exports. Increasingly,

event-based sampling is being used to sample these periods. However the combination

of routine and event-based samples increases the complexity of the statistical analysis

required. As event-based exports contribute large proportions of annual load exports

it is important to use an appropriate sampling scheme. Several probabilistic sampling

schemes have shown how these methods provide an easy method to derive unbiased
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event-based statistics. These methods have received little attention with the majority

of event-based sampling schemes being systematic.

One of the largest financial constraints on water quality monitoring programs are lab-

oratory costs. Due to these costs, most government agencies use monthly sampling.

This form of sampling does not reflect the current literature which suggests the use of

daily/sub-daily sampling. With this difference between scientific literature and gov-

ernment practices, future scientific research must consider this difference to provide

meaningful results to catchment managers. Many catchment monitoring programmes

have access to limited historical data, however there are some tools available which

can provide meaningful information from this data.

As many of the applied sampling schemes use systematic sampling and often com-

bine this with event-based sampling the load estimation method must accommodate

these forms of sampling. Unfortunately the common sampling schemes do not meet

the assumptions of the three most commonly used load estimation methods. These

estimation methods assume the use of probabilistic sampling. Recently, studies have

investigated the use of GAMs to estimate water quality loads using explanatory vari-

ables. A major benefit of GAMs is the ability to use smoothing functions to represent

the relationship between water quality and explanatory variables. The inclusion of

more affordable variables which reflect water quality has been shown to reduce the

uncertainty of estimates without the requirement of additional samples.

Many studies have investigated the impact of sample frequencies and estimation meth-

ods on the effect of load estimates. However, these studies have not taken into account

the use of additional low cost explanatory variables. Several studies have examined

the inclusion of various explanatory variables which reflect the hydrological processes

of water quality. These studies have shown how the inclusion of these variables in

estimation methods increases the accuracy of water quality estimates. Therefore the

use of explanatory variables increases the accuracy of the estimates without increasing

sample sizes.

As water quality samples are collected through time, the potential of temporal auto-

correlation between samples cannot be ignored. Very few studies have accounted for
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the auto-correlation between samples. By combining routine and event-based sam-

pling it is not possible to use auto-regressive methods, therefore several studies have

included temporal components in regression models and GAMs. Studies have exam-

ined the residuals of these models for auto-correlation. These studies have identified

auto-correlation in the residuals and recommended that load estimation methods ex-

amine the residuals for this correlation.

The accuracy of water quality monitoring programmes are heavily affected by the

form of sampling and the statistics used to summarise the data. This review has

highlighted the current methods of water quality monitoring, and the limitations of

these methods. The objectives are to develop and investigate;

1. Methods to evaluate the importance of event-based sampling using historical

data is required (chapter 3).

2. Catchment managers require a method to estimate the effect of sample sizes on

the uncertainty of mean estimates using historical data (chapter 4).

3. A new stratified sampling scheme to provide unbiased water quality event means

without the use of load estimation models (chapter 5).

4. Using linear mixed models to incorporate additional explanatory variables and

account for the temporal auto-correlation between samples (chapter 6).
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Chapter 3

A simulation based approach to

quantify the difference between

event-based and routine water quality

monitoring schemes

3.1 Summary

Rainfall events are often associated with large exports of nutrients and sediments.

Many water quality monitoring schemes use a form of event-based sampling to quan-

tify these exports. Water quality studies which have evaluated different sampling

schemes often rely on continuously monitored water quality data. However, many

catchment authorities only have access to limited historical data which consists of

event-based and monthly routine samples. Therefore there is a requirement for a

method to assess the importance of sampling events using information from limited

historical data. This work presents an approach using unconditional simulation based

on historical stream discharge. Such an approach offers site-specific information on

optimal sampling schemes. A linear mixed model is used to model the relationship

between total phosphorus and stream discharge and the auto-correlation of total phos-
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phorus. The inclusion of event-based sampling improved annual load estimates for

all sites with a maximum RMSE difference of 16.11 tonnes between event-based and

routine sampling. Based on the accuracy of annual loads, event-based sampling was

found to be more important in catchments with a large relief and high annual rain-

fall. Using this approach different sampling schemes can be compared based on limited

historical data.

3.2 Introduction

The accuracy of water quality load estimates is directly related to the monitoring

design used to collect the water samples. Ideally, the load of a water quality vari-

able would be derived using continuously sampled data. However, it is not finan-

cially viable for most water quality monitoring programmes to collect continuous

data (Bartley et al., 2012; Burt et al., 2011; Drewry et al., 2009). Therefore water

quality sampling schemes must be designed to provide accurate load estimates with

limited samples. Monthly sampling is commonly used throughout Australia (Bartley

et al., 2012). However, monthly sampling often misses key rainfall events (Drewry

et al., 2009), therefore many sampling schemes include a form of event sampling.

Most studies examining the effect of different sampling schemes have been limited to

catchments with access to continuous sampled data. Therefore there is a need for

methods which can use site-specific historical water quality data to assess the effect

of different sampling schemes on load estimation (e.g. event-based sampling).

Based on studies with access to sufficient data (Drewry et al., 2009; Johnes, 2007;

Hopmans and Bren, 2007), it is generally accepted that a form of sampling is required

during rainfall events to capture periods of high nutrient and sediment exports. This

is especially important in catchments with long periods of base-flow as large exports

of nutrients and sediments occur during short rainfall events (Jones et al., 2011;

Drewry et al., 2009; Gao, 2008; Hopmans and Bren, 2007). A study by Hopmans

and Bren (2007) observed large sediment exports during events, with 70% of 6 years

of sediment load being exported during a single event in south east Australia. One
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particular water quality property of interest is total phosphorus (TP), as in large

concentrations TP can cause algal blooms (Davis and Koop, 2006; Kristiana et al.,

2011). A study focusing on 17 streams in the UK, found 20% of annual TP was

exported during a single day and the largest 5 events within a year contributed to

42% of the annual TP load (Johnes, 2007).

To improve monitoring schemes it is important to understand the relationship be-

tween catchment characteristics and water quality variable exports. This information

is required to help the design of monitoring schemes in unmonitored catchments.

The relationship between catchment characteristics (catchment size, slope, rainfall,

stream discharge, land use and land cover) has been investigated by several studies

(Ahearn et al., 2005; Banner et al., 2009; Sliva and Williams, 2001). Relationships

between phosphorus and agriculture land uses (Ahearn et al., 2005) and catchment

size (Ahearn et al., 2005; Johnes, 2007) have been found. Focussing on phosphorus,

Banner et al. (2009) found a relationship between phosphorus, catchment topogra-

phy and land use for 2 sites in Kansas, USA. In addition, urbanisation (Sliva and

Williams, 2001) and population density (Johnes, 2007) have been found to have an

effect on water quality. Johnes (2007) also found a relationship between the base-flow

index and the uncertainty of TP load estimates, with catchments with a low base-flow

index having larger uncertainty than streams with a high base-flow index.

Sampling schemes can be divided into two main categories; probability and non-

probability based (de Gruijter et al., 2006). Probability based methods rely on known

inclusion probabilities to provide unbiased estimates of the mean and its uncertainty.

Non-probability sampling should use a model-based approach as the inclusion prob-

abilities are unknown (de Gruijter et al., 2006; Lark and Cullis, 2004). Several prob-

ability based sampling schemes have been shown to provide accurate estimates of

suspended sediments (Lewis, 1996; Thomas, 1985, 1988; Thomas and Lewis, 1993,

1995). However, non-probabilistic sampling schemes are more commonly used. One

of the most commonly used schemes is to sample at equal intervals in time (for ex-

amples see Salles et al. (2008); Birkel et al. (2011)). This is one of the most common

event-based sampling schemes due to ease of implementation with available automatic
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sampling equipment.

Load estimation methods offer the ability to provide estimates over different time

intervals (e.g. event-based or annually). Many estimation methods exist with Marsh

and Waters (2009) comparing 34 different load estimation methods. Several studies

have compared the various load estimation methods in relation to annual load esti-

mates (Kronvang and Bruhn, 1996; Cooper and Watts, 2002; Cassidy and Jordan,

2011; Johnes, 2007; Marsh and Waters, 2009) with the majority of these methods

falling into three main categories; average, ratio and regression methods. However

the majority of these cannot be used with commonly applied sampling schemes (e.g.

monthly or a combination of monthly and event-based sampling) as the sampling

schemes are non-probabilistic, i.e. it is not possible to determine the probability of

taking a sample at a specific time. Therefore average, ratio and regression based

load estimation methods should not be used as they require a form of probabilistic

sampling, a requirement that has been noted by several water quality based studies

(Cohn et al., 1992; Cohn, 2005; Cooper and Watts, 2002; Crawford, 1991; Thomas,

1985, 1988).

Linear mixed models (LMM) provide unbiased water quality load estimates without

the assumption of probabilistic sampling schemes. Differing from simple linear mod-

els, LMM account for auto-correlation between samples within the error term of the

model. Linear mixed models are regularly applied in soil science to account for the

spatial auto-correlation between samples (Lark and Cullis, 2004). Temporal water

quality data is similar to spatial soil data as water quality data has been shown to be

auto-correlated through time (Kuhnert et al., 2012; Wang et al., 2011). In addition

to removing the need to meet the assumption of probabilistic sampling, LMMs offer

the ability to incorporate additional covariates (e.g. stream discharge and turbidity)

to improve predictions.

A lack of data is a major limitation of water quality studies. Several studies have

found strong linear trends between water quality variables and low cost continuously

measured surrogates (e.g. stream discharge and turbidity) and have used these rela-

tionships to provide continuous predictions of water quality variables (Webb et al.,
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2000; Kim and Furumai, 2012; Lewis, 1996; Wang et al., 2011; Kuhnert et al., 2012).

Webb et al. (2000) simulated numerous water quality variables using a linear relation-

ship with continuously monitored stream discharge data. These simulations provided

a method to explore the accuracy of various load estimation methods based on limited

historical water quality data (Webb et al., 2000), However, the simulation method

of Webb et al. (2000) did not examine the potential for temporal auto-correlation

between the observed water quality samples and used a single realisation of the re-

lationship with stream discharge. An alternative approach is to use unconditional

Gaussian simulation to simulate data based on a model fitted using a LMM. The

advantage of this approach is that the model used to simulated the TP data is based

on a valid statistical model describing the (co-)variation between water quality and

discharge. The simulated data is based on the linear relationship with stream dis-

charge while respecting the temporal auto-correlation of the observed water quality

variables (Gebbers and Bruin, 2010).

In this work we simulate continuous TP using its relationship with stream discharge

based on the LMM. Using these simulations we investigate the effect of using event-

based sampling (in addition to routine sampling) in terms of the accuracy of annual

load estimates. In addition, the effect of including event-based sampling is related to

catchment characteristics as the information from this may help improve the design

of monitoring schemes in unmonitored catchments. Therefore the aims of this work

are to:

1. Illustrate a general approach to examine the effect of different sampling schemes

on load estimates based on limited historical data.

2. Examine the effect of event-based sampling on estimates of the annual load of

TP.

3. Investigate the relationship between catchment characteristics and improve-

ments on load estimates using event-based sampling.
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3.3 Materials and methods

3.3.1 Catchment description

The 9 monitoring sites considered in this work are located upstream of several storage

dams which contribute the majority of Sydney’s drinking water. The study sites are

located west of Sydney with their location provided in figure 3.1. A summary of

the topographical and hydrological features of each catchment is provided in table

3.1. The number of each monitoring site in table 3.1 is indicated in figure 3.1. The

catchment size of the monitoring sites ranges from 20.2 to 4825.1 km2. The annual

rainfall of each catchment was estimated using thessian polygons based on data from

nearby Bureau of Meteorology stations. Rainfall is highest in the east near the coast

and to the north of the region with the lowest rainfall in the south west of the region.

Forest is the main land-cover across the region, however grassland is the dominant

land-cover in the Berrima Weir and the Jooriland catchments. Berrima Weir and

Kedumba Crossing catchments both have more than 10% urban cover, while all other

catchments have less than 3% urban cover. In addition to percentage of urban cover,

population density was also estimated for each catchment based on data obtained

from the Australian Bureau of Statistics (2011). The Australian Bureau of Statistics

(2011) publishes population density data, based on defined statistical local areas

which are sub-divisions of local government areas. Estimates of population density

were made based on the coverage of these areas within each catchment.
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Figure 3.1 – Map of greater catchment area and location of monitoring sites and the
location of the catchment within Australia.
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3.3.2 Data description

Table 3.2 summarises the total phosphorus data for each site. The data was ob-

tained from the Sydney Catchment Authority. Routine monthly sampling was used

at all sites and this was combined with event-based sampling at most sites after 2001.

Stream discharge was recorded every 15 minutes at each location. Total phosphorus

was analysed using acid digestion methods at contracted laboratories meeting the

standards outlined by Standard Methods (1995). The minimum total phosphorus in-

cluded in this analysis for each site was restarted to 0.005 mg L-1. Summary statistics

are provided for each site with the mean total phosphorus ranging from 0.02 to 0.08

mg L-1. Sample sizes of the sites ranges from 153 to 553 over the monitoring period

of each site.

Table 3.2 – Water quality data summary.

site start date end date mean min max sd skewness n
Berrima Weir Dec 1993 Dec 2010 0.08 0.006 0.87 0.09 4.75 392
Smallwoods Crossing Jan 1991 Mar 2010 0.06 0.006 0.70 0.09 4.21 323
Little River Aug 1991 Apr 2007 0.02 0.006 0.46 0.05 6.35 153
Jooriland Feb 1994 Dec 2010 0.06 0.006 0.45 0.07 2.38 527
Werombi Jan 1991 Dec 2010 0.04 0.006 0.73 0.05 6.99 535
Burke River Oct 1991 Dec 2010 0.02 0.006 0.17 0.01 4.94 454
Kelpie Point Jan 1991 Dec 2010 0.03 0.006 0.92 0.07 7.50 392
Cedar Ford Jan 1991 Dec 2010 0.04 0.006 0.87 0.10 5.33 553
Kedumba Crossing Jan 2002 Dec 2010 0.04 0.006 0.67 0.06 5.52 241

3.3.3 Statistical analysis

The simulation procedure used to compare the two sampling schemes is provided as

a flowchart in figure 3.2. The procedure comprises 5 steps which are described below.
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Fit LMM
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Estimate annual load
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Figure 3.2 – Flow chart of the simulation process for each site.
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3.3.3.1 Fitting a linear mixed model

In this work a LMM is used to model the relationship between TP and stream dis-

charge. The LMM structure allows for the inclusion of quadratic terms to allow for

non linear trends between TP and stream discharge, however this was not investi-

gated in this study. In addition, the LMM accounts for the temporal auto-correlation

between samples. The LMM used here has the form:

z(t) = Xβ + η, (3.1)

where the concentration of TP (z(t)) is treated as a random process through time

t, X is a n x p matrix of the explanatory variables and β is a n x 1 vector of

model coefficients (Lark and Cullis, 2004). The LMM does not require independently

and identically distributed (iid) samples because the η has a correlation structure

η ∼ N (0,V), where V is a positive definite matrix of the variance (σ2) and the

covariance. However the LMM does require z(t) to be Gaussian, therefore a Box-Cox

power transformation (Box and Cox, 1964) is used conditional on the value of lambda

(λ),

z(t)∗ =

log z(t) if λ = 0

z(t)λ−1
λ

otherwise.
(3.2)

The LMM fitted in this work uses residual error maximum likelihood (REML) to fit

the model using the geoR package (Ribeiro Jr and Diggle, 2001) in the R environment

R Core Team (2012). By using REML the model coefficients (β) are fitted conditional

on the parameters of the variance-covariance matrix (V) and the lambda (λ) value of

the Box-Cox transformation (for a detailed description see Lark and Cullis (2004)).

Several different covariance structures are available to model the auto-correlation

(Lark and Cullis, 2004). In this study an exponential function is used to account for

the auto-correlation between samples where the correlation matrix is defined as;

Vi,j = σ2s exp
(
−|xi−xj|

a

)
, i 6= j

σ2, i = j,

(3.3)
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where the variance σ2 is the diagonal and |xi − xj| is the temporal distance between

two samples and a is the distance parameter of the exponential function. The tem-

poral auto-correlation is described by s which is defined as;

s =
c

c0 + c
, (3.4)

where c0 is the nugget variance or unexplained variance often referred to as the sam-

pling error and c0 + c describes the maximum variance between two variables. The

temporal structure of the fitted model is dependent on the observed samples, therefore

it is important that samples are collected nearby in time to enable accurate estimation

of the distance parameter and nugget semivariance.

3.3.3.2 Evaluation of the LMM

Each LMM is assessed for significance of the linear relationship with discharge and

the temporal auto-correlation model. In addition to this, model validation is used to

ensure the model (both the predictions, prediction variance) is a true representation

of the observed total phosphorus. In this work, three steps are used to evaluate each

model:

1. test the significance of the linear relationship with stream discharge,

2. test the significance of the temporal auto-correlation, and

3. validation of the prediction variance using leave-one-out-cross-validation (LOOCV).

Wald tests are used to test the significance of the relationship with stream discharge,

see Lark and Cullis (2004) for a detailed description. The Akaike information criteria

(AIC) (Akaike, 1974) is used to test the significance of the temporal auto-correlation of

each model, by comparing the LMM with and without the temporal auto-correlation

model. Cross validation methods, such as LOOCV are required to validate models

in studies with limited data. LOOCV uses the LMM to predict each observation
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using all other observations for each observation used in fitting the LMM. Using the

predictions the following is derived;

θi =
{c (ti)

∗ − C̃∗(−i)}2

σ2
(−i)

, (3.5)

where c (ti)
∗ is the ith transformed concentration observation, C̃∗(−i) is the correspond-

ing estimated concentration based on all other samples and σ2
(−i) is the estimated

kriging variance. If the models a true representation of the process, θ has a mean

θ̄ = 1 and median θ̆ = 0.455 (Marchant et al., 2010). Based on the methods of

Marchant et al. (2010) it is possible to estimate 95% confidence intervals (CI) for the

median and mean θ. If the θ statistics are within the CI, it is assumed the models

are valid.

3.3.3.3 Simulation of total phosphorus.

The purpose of the simulation approach here is to generate comparable realisations

of continuous water quality based on the fitted LMM conditional on the observed dis-

charge data. From this the continuous water quality data can be sampled, and load

estimation predictions can be based on these samples and compared with the con-

tinuous time series. Geostatistical based simulations provide the ability to simulate

a random process while preserving the auto-correlation of the random field (Gebbers

and Bruin, 2010). Simulation is a commonly applied tool in geostatistics to gener-

ate spatially correlated fields, however as stated by Gebbers and Bruin (2010) there

is no reason why it cannot be used to simulate temporally correlated fields. There

are two forms of geostatistical simulation; conditional and unconditional (Gebbers

and Bruin, 2010). Conditional simulation preserves the observed values while un-

conditional simulation uses a random starting point to simulate a random field with

the same temporal auto-correlation as that of the observed correlation (Gebbers and

Bruin, 2010). In this work unconditional Gaussian simulation is performed to gener-

ate 2000 realisations of TP at each site based on the LMM based on the correlation

with observed discharge. A total of 2000 realisations were used as it was believed
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that this would be a sufficient amount for comparisons and would not take too many

computation hours to complete. The simulation is based on the code of the gstat

package (Pebesma, 2004) in the R environment. The simulation is performed using

the coefficients and auto-correlation structure of the LMM (eq. 3.1). The simulations

for each site are determined using;

r(t)j = Xβ + sj, (3.6)

where r(t)j represents a realisation, sj is a temporally correlated random field based

on the temporal auto-correlation of the fitted LMM with mean 0 and j is the real-

isation and the trend described by (β) with stream discharge in the design matrix

(X). The simulations are based on the box-cox transformed TP models and there-

fore the simulations are back-transformed using the inverse of the Box-Cox power

transformation.

3.3.3.4 Sampling schemes.

For each realisation event-based and routine sampling are performed. Routine sam-

pling is defined as monthly sampling with the sample being taken on the first Wednes-

day of each month. The event-based sampling scheme is a combination of the routine

samples and event-based samples. The event-based samples are defined in a way to

reflect commonly applied sampling schemes under the restrictions of commonly used

auto-samplers. A common approach used for event-based sampling schemes is to use

a trigger level to start event sampling, and continue sampling until all 24 samples

are collected (the capacity of most auto-samplers). Therefore event-based sampling

schemes were determined using the following steps;

1. Define the trigger level as the upper 5th percentile of stream discharge (Q95).

2. Find all events using this trigger level.

3. Find the mean duration of all events which are longer than 6 hours.
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4. Equally space 24 samples for each event over a period of time equal to the mean

event length.

3.3.3.5 Load estimation.

As the two sampling schemes are non-probabilistic, LMM are used to estimate TP

using a log linear relationship with stream discharge. For each realisation at each

site a LMM is fitted for both routine and a combination of routine and event-based

sampling. A major limitation of fitting LMM using REML is the computational

power and time required to optimise the likelihood function of the model (Minasny

and McBratney, 2007). To overcome this limitation and to maximise the efficiency

of the model fitting the following procedure was used;

1. Fit a simple linear model to the sampled data.

2. Fit a variogram to the residuals of the linear model.

3. Use the values of this variogram as initial values to fit a LMM to a subsample

of the observations.

4. Fit a LMM to all observations using the correlation structure of the previous

LMM as the initial values.

Each LMM is fitted using a optimised implementation of the LMM likelihood function

based on the geoR package using the RcppArmadillo package (Francois et al., 2011;

Sanderson, 2010) in the R environment.

The AIC was used to determine if the temporal auto-correlation was significant,

based on this, either universal kriging or simple linear regression is used to predict

the TP (see Bivand et al. (2008, p 209) for a detailed description of universal kriging).

Universal kriging is used where the temporal auto-correlation of the LMM is found

to be significant and simple linear regression is used where there is no temporal auto-

correlation found in the sampled data. Using the predicted TP the annual load of each

realisation is estimated for years with < 10% stream discharge missing. Comparisons
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of the load estimates are made based on the root-mean-squre error (RMSE) between

the observed and predicted annual load of each sampling method.

3.3.4 Relating annual load uncertainties to catchment charac-

teristics

The effect of catchment characteristics on the accuracy of the load estimations is ex-

amined using the mean difference of the RMSE between the two sampling schemes,

over all realisations. The catchment characteristics used are defined in table 3.1. The

correlation between the mean difference of the RMSE and the catchment characteris-

tics is examined. In addition, backwards elimination of a linear model is used to the

find the most parsimonious model to explain the variation in the difference in RMSE,

between catchments.

3.4 Results

General results are presented for all catchments but more detail is presented for Kelpie

Point catchment to clearly illustrate all the steps presented in the flowchart (Figure

3.2).

3.4.1 LMM used for simulation

Table 3.3 summarises the model coefficients for each site. The temporal auto-correlation

of all models was found to be significant. The range of the temporal auto-correlation

was less than 7 days for 7 of the 9 catchments. This finding highlights the im-

portance of accounting for temporal auto-correlation when modelling water quality.

Stream discharge was found to be a significant predictor for all catchments.

Figure 3.3 shows the fitted linear trend of the LMM for the Keplie Point catchment.

It may appear that the trend of the LMM is not the best fit of the data, however it is
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Table 3.3 – Model coefficients of each site (*indicates significance).

site β0 (model β1 (stream range (days) sampling error variance lambda
intercept) discharge) (a) (c0) (c0 + c) (λ)

Berrima Weir -6.45 0.26* 30.00 0.92 2.45 -0.30
Smallwoods Crossing -14.59 1.07* 5.56 5.33 14.47 -0.50
Little River -71.82 5.65* 19.44 391.54 629.82 -0.86
Jooriland -7.44 0.34* 2.96 0.60 2.16 -0.17
Werombi -12.03 0.89* 2.33 1.49 6.27 -0.35
Burke River -44.76 1.69* 2.25 31.71 166.71 -0.73
Kelpie Point -28.6 1.96* 2.25 4.92 31.95 -0.54
Cedar Ford -25.06 1.3* 4.20 3.52 45.54 -0.54
Kedumba Crossing -15.08 1.01* 2.33 3.62 19.14 -0.44
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important to note that the fitted linear trend is conditional on the Box-Cox transform

and the temporal auto-correlation model. Figure 3.4 shows the fitted temporal auto-

correlation with the experimental variogram for the Kelpie Point catchment. As the

exponential structure of the temporal auto-correlation describes the variance between

samples of different temporal distances, samples greater than 10 days apart are not

correlated.
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Figure 3.3 – Relationship between TP and stream discharge for the Kelpie Point
catchment.

The LOOCV procedure predicts each observation using all surrounding observations

where information from observations within the practical range (3a) of the temporal

auto-correlation is included in the predictions. Figure 3.5 presents the transformed

observed TP against the LOOCV predictions for Kelpie Point catchment. It appears

that smaller TP observations are overestimated by the LMM. Using the estimated

LMMs of each site, LOOCV was performed and is summarised in table 3.4. The
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Figure 3.4 – Temporal structure with experimental variogram for the Kelpie Point
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table reports the estimated mean (θ̄)and median (θ̂) (eqn. 4.8), and the estimated

95% CI for both θ̄ and θ̂. In addition, Lin’s correlation coefficient (Lawrence and

Lin, 1989) between the observed and LOOCV predicted values is provided. Lin’s

correlation coefficient is a measure of how closely the points fit to a 45 degree line.

All sites except the Little River catchment had a correlation value greater than 0.6.

The estimated θ̄ of each site was close to 1 and within the CI. Based on the θ̂ of the

LOOCV only 5 sites fell within the estimated CI. This is important as Marchant et al.

(2010) showed the θ̂ is a better measure of how close the estimated prediction variance

represents the observed error. Therefore, simulations of TP were only conducted at

the following 5 sites:

a. Smallwoods Crossing,

b. Little River,

c. Burke River,

d. Kelpie Point,

e. Kedumba Crossing.

Table 3.4 – Cross validation statistics of LMMs.

site θ̄ θ̂ θ̄ CI95% θ̂ CI95% correlation (Lin’s)
Berrima Weir 1.01 0.25 (0.84 - 1.15) (0.36 - 0.57) 0.6
Smallwoods Crossing 0.91 0.36 (0.86 - 1.17) (0.35 - 0.58) 0.7
Little River 0.97 0.55 (0.78 - 1.23) (0.3 - 0.64) 0.49
Jooriland 0.95 0.25 (0.8 - 1.21) (0.31 - 0.63) 0.76
Werombi 0.99 0.30 (0.88 - 1.14) (0.37 - 0.56) 0.77
Burke River 1.03 0.40 (0.87 - 1.14) (0.36 - 0.56) 0.6
Kelpie Point 1.02 0.44 (0.86 - 1.16) (0.36 - 0.58) 0.68
Cedar Ford 0.99 0.33 (0.88 - 1.14) (0.37 - 0.56) 0.76
Kedumba Crossing 1.02 0.46 (0.86 - 1.14) (0.36 - 0.56) 0.63
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Figure 3.5 – TP model LOOCV predictions for the Kelpie Point catchment.
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3.4.2 Simulation of total phosphorus

By using a LMM for each site and continuously monitored stream discharge it is

possible to create auto-correlated simulations of total phosphorus. Figure 3.6 provides

a box-plot of the simulated load of all realisations separated by each year for the Kelpie

Point catchment. The figure highlights the differences in annual load between each

year. Years 1992 and 1998 have the largest annual TP and within these years the

annual load is highly varied. There is little variation in annual load in years with

low annual loads (e.g. 2001 and 2002). These simulations provide a method to use

historical data to compare the effect of different sampling schemes.
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Figure 3.6 – Simulated annual load for the Kelpie Point catchment.

3.4.3 Estimating annual load

Table 3.5 summarises the key features of the routine and event-based sampling schemes

of the simulated data. The trigger level is different for each catchment, however the
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event length of the catchments is similar, with the event length of the catchments

being between 3 and 4 days for 4 of the 5 sites and less than 4 days for all sites. The

sample size of the event-based sampling scheme combines the event samples with the

routine monthly samples. The event-based sample size was at least twice as large

as the routine sampling scheme, and more than 10 times as large for the Kedumba

Crossing catchment.

Table 3.5 – Sample scheme characteristics of each site.

site trigger level event length event samples routine samples
(ML day-1) (days)

a. Smallwoods Crossing 114.10 3.39 521 213
b. Little River 24.14 3.31 736 181
c. Burke River 80.14 2.64 994 233
d. Kelpie Point 787.07 3.89 784 237
e. Kedumba Crossing 76.64 1.48 1050 102

An important aspect of the LMMs is the modelling of the temporal auto-correlation.

Table 3.6 summarises the mean temporal range of the models fitted to the two sam-

pling schemes. The table also indicates the percentage of realisations where the

temporal auto-correlation is significant. For all catchments except the Little River

catchment, most realisations did not find significant temporal auto-correlation for

routine sampling, with less than 6% of realisations finding temporal auto-correlation

with a mean of over 100 days. For the routine sampling based models of the Little

River catchment significant temporal auto-correlation was found for 18.75 % of real-

isations with a mean of 72.67 days. In contrast to routine sampling based models,

event-based sampling models found significant temporal auto-correlation for over 90%

of realisations with a mean correlation of less than 3 days for all catchments except

the Little River catchment. The event-based sampling models of the Little River

catchment found significant temporal auto-correlation in 52.05% of the realisations

with a mean of 2.08 days. A potential reason for the differences in the Little River

catchment is due to the temporal range of 19.44 days, where all other catchments used

in the simulation procedure had a temporal range of less than 6 days. The difference

in temporal significance and temporal range between the routine and event-based

sampling models is due to the distances between the samples of the respective sam-
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pling schemes. The inclusion of the temporal structure is beneficial as the prediction

procedure uses WQ information from nearby observations to improve predictions.

Table 3.6 – Temporal auto-correlation statistics of LMMs of simulated data.

site event-based routine-based

mean range temporally mean range temporally
(days) significant (%) (days) significant (%)

a. Smallwoods Crossing 2.50 90.30 112.62 5.35
b. Little River 2.08 52.05 72.67 18.75
c. Burke River 1.43 99.65 126.93 5.75
d. Kelpie Point 1.52 98.75 116.36 5.00
e. Kedumba Crossing 1.76 100.00 116.68 4.50

Figure 3.7 presents the estimated annual load against simulated annual load for both

the event-based and routine sampling schemes for all realisations for the Kelpie Point

catchment. Annual load estimates using the event-based models (Fig. 3.7a.) shows

how the variance of the predicted annual load increases as the simulated annual load

increases. Figure 3.7b. shows the routine based annual load estimates. The routine

based estimates underestimate annual loads over 20 tonnes. The under estimation of

the routine based sampling indicates that event-based sampling will improve estimates

of years with large annual loads.

The RMSE is used to evaluate the accuracy of each realisation. As an aim of the work

is to determine the benefit of including event-based sampling on load estimation, the

difference between the RMSE of event-based and routine sampling is used. Figure

3.8 is a box-plot of the difference between the routine RMSE and the event-based

RMSE for the Kelpie Point catchment. For each realisation if the difference between

the RMSE is positive, the event-based estimate is more accurate than the routine

estimate. Table 3.7 provides a summary of the differences between the RMSE of the

catchments. The table also includes the improvement of event-based sampling (IES)

which is the percentage of realisations where the inclusion of event-based sampling

did not improve the accuracy of load estimates. The IES of all sites, except the Little

River catchment is less than 10% and 20.9% for the Little River catchment. This

indicates that the inclusion of event-based sampling increases the accuracy of the
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Figure 3.7 – Event-based (a) and routine (b) annual load estimates for the Kelpie
Point catchment.
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load estimations for the majority of the realisations. Within the realisations where

the inclusion of event-based sampling did not improve the estimates, the correlation

between TP and stream discharge was stronger for the routine models. In addition,

there was a higher percentage of event-based models without significant temporal

auto-correlation for these realisations therefore there was a less of a benefit to be

gained from event-based samples.
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Figure 3.8 – RMSE difference of all realisations for the Kelpie Point catchment.

Table 3.7 – Summary of differences between routine and event

site min RMSE max RMSE mean RMSE IES
difference (tonne) difference (tonne) difference (tonne) (%)

a. Smallwoods Crossing -1.77 5.94 0.55 8.40
b. Little River -0.74 1.54 0.11 20.90
c. Burke River -0.12 0.39 0.05 6.90
d. Kelpie Point -10.42 16.11 1.93 5.60
e. Kedumba Crossing -0.14 0.74 0.17 3.35
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3.4.4 Relating event-based sampling improvement with catch-

ment characteristics

Finding relationships between the IES and catchment characteristics is important for

the improvement of sampling schemes at sites without historical data. The correlation

between catchment characteristics and the IES at each site is provided in table 3.8.

Annual rainfall, elevation range, urban cover and population density are the most

correlated with the IES. All catchment characteristics except elevation range are

negatively correlated with the IES. In addition the percentage of urban land cover

and population density had similar correlation values of -0.51 and -0.5 respectively.

Backwards elimination resulted in a final model including annual rainfall and elevation

range. Figure 3.9 shows the predicted values against the IES. It is important to note

that this model is not intended to be used for prediction for other sites, but to provide

a guide to the relationship between the IES and catchment characteristics. The

results of the backwards elimination indicate that annual rainfall and elevation range

decreases the improvement of accuracy from the inclusion of event-based samples

decreases. This indicates that event-based sampling is more important in small flashy

upland catchments as opposed to large lowland catchments. This response may be

due to the faster hydrological responses in upland catchments.

Table 3.8 – Correlation between catchment characteristics and mean RMSE difference.

catchment characteristic correlation
Catchment area -0.28
Annual rainfall -0.62
Annual stream discharge -0.35
Urban cover -0.51
Population density -0.5
Elevation range 0.6
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Figure 3.9 – Relationship between mean RMSE difference and predicted mean RMSE
difference.



3.5 Discussion 75

3.5 Discussion

It is important to consider the temporal auto-correlation of water quality observations

(Wang et al., 2011). The LMMs used in this work combine fixed effects (e.g. stream

discharge) with the temporal auto-correlation (random effects) to provide unbiased

TP parameters. By accounting for the auto-correlation between the samples, the

LMM does not require the use of probabilistic sampling. Stream discharge was found

to be a significant predictor of total phosphorus for all catchments. In addition,

temporal auto-correlation was found for all catchments. Of the 9 catchments it was

only possible to fit a valid statistical model for 5 catchments in terms of how well

the prediction variance matches the errors. One reason for this may be that some

of the catchments had unusual observations which may or not have been erroneous.

These were difficult to model. The use of additional covariates which characterise

hydrological processes (e.g. hysteresis) may improve how the prediction variance

matches the errors. Several studies have investigated robust methods to increase the

flexibility of the models and account for the statistical outliers (Marchant et al., 2010).

Recent work of Papritz et al. (2012) may be beneficial for water quality modelling,

as it allows the use of robust LMM. Another option is to use additional covariates to

account for other hydrological processes which improve the ability of the model to fit

the unusual observations.

The characterisation of the effect of event-based sampling on load estimation is often

performed using continuously sampled water quality. However, as many water qual-

ity monitoring studies only have access to limited historical data, simulation based

methods offer the ability to assess different water quality sampling schemes based

on site-specific models describing the variation in WQ. The geostatistical simulation

approach used in this work allowed for the simulation of auto-correlated TP using

a LMM to describe the relationship with stream discharge TP. Using simulated TP

data it is possible to compare different sampling schemes, and load estimation meth-

ods without the requirement of continuously sampled data. Results of this study also

support the findings of other studies such as Marsh and Waters (2009), as models

which included event-based sampling were more accurate. The procedure outlined in
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this work provides the ability for site specific analysis without the need of continuous

WQ data. In addition, these simulations could be used by catchment managers to

compare other forms of sampling schemes and load estimation methods. Using the

same procedure outlined in this work, it would be easy to simulate other water quality

properties using cheap covariates such as; electrical conductivity and turbidity.

Linking the IES to the catchment characteristics is important to identify the control-

ling hydrological processes. The results of this study indicate that the combined effect

of the range of elevation and annual rainfall have negative correlation with importance

of event-based sampling. This indicates that as the elevation range (the catchment

becomes flatter) and rainfall in a catchment decrease the improvement of accuracy by

including event-based sampling also decreases. This trend indicates that event-based

sampling is not as important in catchments with little relief and small annual rainfall,

however the inclusion of event-based sampling improved the annual load accuracy of

all catchments. The negative relationship between the IES and population density

was similar to that of urban cover. This relationship reflects the findings of Sliva and

Williams (2001); Johnes (2007) where population density and urban cover has been

shown to increase nutrient exports.

3.6 Conclusions

Simulation based methods are necessary for catchment managers and researchers

to investigate the impact of different monitoring practices on the accuracy of load

estimations. These simulation based methods remove the requirement of access to

continuously sampled water quality data to assess different sampling schemes. Using

this simulation based approach this work has outlined how;

• The use of event-based sampling improved the accuracy of annual loads for all

study catchments.

• The improvement of accuracy was less for catchments with a smaller relief and

lower annual rainfall.
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• Simulation of TP provided the ability to compare different sampling schemes

using limited historical data.

The LMMs used in this work provide the ability to model the temporal auto-correlation

in the TP data, however some catchment models were not found to be valid repre-

sentations of the observed data. The LMM allowed for the simulation of TP based

on the LMM for catchments where the LMM was found to be a valid representation.

Methods such as this are beneficial in situations with limited data.
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Chapter 4

Estimating the effect of sample size

on the precision of total phosphorus

mean estimates with limited

historical data.

4.1 Summary

The effect of the sample size on the precision of the mean is well understood. However

many water quality studies have relied on continuous sampling to assess this relation-

ship. Therefore, catchment managers require a method to estimate this relationship

using historical data. By characterising the effect of sample size on the precision of

the mean it is possible for catchment managers to adjust the sample size in relation to

both the cost and the precision of the mean estimate. Historical data is often sparse

and generally collected using several different sampling schemes requiring a model-

based approach to provide meaningful analyses. Using total phosphorus data from 17

sub-catchments in south east Australia the ability of a model-based approach to esti-

mate the effect of sample size on the precision of mean concentrations is examined.

The effect of sample size on the precision of the mean estimate is examined for base
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and event-flow conditions. The effect of catchment characteristics on the precision

of the mean estimates was also examined. The results showed annual base flow con-

ditions require similar sample sizes to event-flow estimates, with little improvement

in precision above 12 samples for both flow conditions. In addition the precision of

both base and event flow was related to the percentage of urban cover in each sub-

catchment. This chapter outlines a method in which a model-based approach can be

used to examine the relationship between the sample size and mean total phosphorus

estimates.

4.2 Introduction

Water quality monitoring is undertaken to understand the state of a catchment, to

help with management strategies and to identify water quality trends. Most mon-

itoring schemes attempt to determine how much and when nutrients are exported

from a river. In many Australian catchments the majority of nutrients are exported

during rainfall events (Drewry et al., 2009). Many monitoring schemes reflect this

with an increased sample size during these periods. These samples are often used to

provide estimates of the exported nutrient load. The accuracy of these load estimates

is directly related to the monitoring scheme, in particular the sample size. There-

fore a critical question that must be answered for a monitoring scheme is; how many

samples should be taken during events and base flow?

The effect of the sampling schemes on water quality studies are often carried out based

on near continuous data (Strobl and Robillard, 2008). These studies are limited, as

the collection of near continuous data is extremely expensive. The general approach

of these studies is;

1. collect near-continuous water quality data,

2. sample the water quality data using different sampling schemes,

3. use various load estimation techniques to estimate the load based on the sampled

data for a given period, and
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4. use the accuracy and bias of the predictions to compare the different sampling

schemes.

Kronvang and Bruhn (1996) investigated different estimation methods and sampling

schemes on two catchments in Denmark. In this study several different sampling

schemes were compared including a combination of event and base-flow sampling;

where several samples are collected during an event while fewer samples are collected

during base-flow. The study found that the most accurate sampling scheme was fort-

nightly sampling. A study conducted by Johnes (2007) compared several different

sampling schemes for 17 catchments in the UK and found daily sampling schemes

were the most effective, but highly unlikely to be implemented due to costs. With

this Johnes (2007) suggests the use of a combination of weekly sampling and a form

of annual high flow sampling as a compromise. More recently Cassidy and Jordan

(2011) examined different sampling schemes and load estimation methods using near-

continuous total phosphorus (TP) data from 3 small catchments in Ireland. Their

results showed that sampling schemes needed to include storm events of different sizes

to minimise uncertainty in load estimates. These studies have highlighted the impor-

tance of sampling events and sampling frequencies on the accuracy of load estimates,

however this approach requires near continuous observations of water quality prop-

erties. A disadvantage of these studies are that the results are site and scale specific

and do not necessarily give good estimates of sample size at other sites. They are

also expensive so cannot be performed at all water quality monitoring sites.

The site-specific nature of variation in WQ is shown by several studies that have inves-

tigated the relationship between catchment characteristics (CCs) and water quality

variables. These variables include catchment size, slope, rainfall, stream discharge,

land use and land cover. The aim of these studies is to determine if a relationship ex-

ists between water quality concentrations across multiple catchments. Relationships

between phosphorus concentration and agriculture (Ahearn et al., 2005) and catch-

ment size (Banner et al., 2009) have been shown to exist in a variety of catchments.

In a study of 25 sites within Kansas, USA, Banner et al. (2009) found no relationship

between annual stream discharge and phosphorus, but did find a relationship between
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phosphorus and land use and catchment topography. Grassland cover has also been

found to have a relationship with nitrogen concentrations (Ahearn et al., 2005). Sliva

and Williams (2001) found a relationship between both forest cover and slope with

several different water quality variables. In addition they found percentage of urban-

isation had the greatest effect on water quality. These relationships offer valuable

information for the design and implementation of sampling schemes in catchments

without prior information.

Sampling schemes can be divided into two categories; design-based and model-based

(de Gruijter et al., 2006). Design-based sampling relies on a form of randomised

sampling with known inclusion probabilities to estimate the sample statistics and

their associated uncertainty, while model-based sampling relies on a model to pro-

vide unbiased estimates of the uncertainty (de Gruijter et al., 2006). An example

of design-based sampling is given by Thomas and Lewis (1993); in which stratified

random sampling is used during events. Thomas and Lewis (1993) explain that the

benefit of this method is that the mean and its variance are unbiased and simple

to derive because there is no requirement of a model to estimate the uncertainty.

Most monitoring schemes do not have access to continuously sampled water quality

properties, however many do have access to historical data. It is therefore possible to

examine the relationship between samples sizes and the standard error of the mean

(SEM). By using this information it is possible to determine the required sample sizes

to meet a desired accuracy for estimation of the mean concentration. In addition to

this, it is possible to provide estimates of the associated costs of the required sample

sizes (de Gruijter et al., 2006). This information is required to improve monitoring

schemes in relation to monitoring costs and to improve the accuracy of mean esti-

mates. The method outlined in this study can be extended to relate the uncertainty

of the mean estimate to the financial costs related to the sample size. These methods

are outlined in Särndal et al. (2003, p 106). As it is difficult to characterise the costs

associated with water quality sampling such as travel times, laboratory analysis.

It is common for water quality monitoring schemes to have used several different

sampling schemes or not have a record of the sampling design (Bartley et al., 2012).
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Therefore a method that uses historical data regardless of the sampling scheme is

required to estimate the effect of sample size on the precision of mean estimates is

required. A model-based approach is provided by Domburg et al. (1994), where a

variogram is used to estimate the SEM of the sampled property. They provide an

example of using a variogram to model the variance of the mean phosphate in soil, and

the effect of sample size. By combining land use maps with a small sample Visschers

et al. (2007) used the procedure of Domburg et al. (1994) to design a more efficient

sampling design for measuring the phosphate sorption capacity of soil. By using this

method the sampling cost was reduced by 13% Visschers et al. (2007).

Using TP data collected from 17 sub-catchments west of Sydney, Australia, this

chapter will apply the method outlined by Domburg et al. (1994) to estimate the

SEM for different sample sizes. The analysis will use this method to model the

variance between the samples and estimate SEM of TP focusing on the following

questions;

1. Is there a difference in sample size requirements between event-flow and base-

flow?

2. Can the relationship between sample size and the precision of mean estimates

be linked to CCs?

4.3 Methods

4.3.1 Catchment description

The 17 sub-catchments are within the main supply area for Sydney’s drinking wa-

ter. The region is located west of Sydney with the location of each stream gauging

station shown in figure 4.1. Table 4.1 provides a summary of the topographical and

hydrological characteristics of each sub-catchment. In table 4.1 each sub-catchment

has been grouped into a larger catchment based on the main river of the catchment.

The location of each sub-catchment in table 4.1 is provided in figure 4.1. There is
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a wide variety of sub-catchment sizes, ranging from 7.27 km2 to 4852.12 km2. The

rainfall was determined for each sub-catchment using Thessen polygons with data

obtained from nearby Bureau of Meteorology weather stations. Across the region

annual rainfall tends to be higher to the east, near the coastline and in the north

west area. Forest is the dominant land cover for all sub-catchments except for the

sub-catchments within the Wollondilly catchment which are dominated by grass/pas-

ture. The distribution of event lengths for each sub-catchment is positively skewed.

The mean and the median event lengths for each sub-catchment is provided in table

4.1.

Figure 4.1 – Location of sub-catchment stream gauging stations.

4.3.2 Data description

For each sub-catchment water quality samples were collected using a combination

of monthly grab samples and event-based samples. The event-based samples were
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mostly collected using an automatic sampler designed to collect samples during rain-

fall events. For this study we focus on TP and we divided the observations based on

base and event-flow, where event-flow was defined as greater than the annual 90th

percentile of stream discharge. Table 4.2 provides an summary of base and event-

flow observations. In most sub-catchments the event-flow mean is greater than the

base-flow mean. In three sub-catchments noticeable step changes were observed in

concentration at three sampling locations directly downstream of sewage treatment

plants (STP)s. These changes coincided with upgrades or the decommissioning of

these STPs. Due to these changes data from sampling sites downstream of these

STPs were restricted to the period after the change to ensure land use was consistent

for the period of sampling.

4.3.3 Statistical analysis

In water quality studies with known inclusion probabilities the mean of a sampled

property z̄ is estimated using;

ˆ̄z =
n∑
i=1

πiz (ti) (4.1)

where n is the sample size, πi is the weight of sample z (ti) of the ith sample through

time t. The weights of each sample are based on the inclusion probabilities of each

sample using design p where 1 =
∑n

i=1 πi (Domburg et al., 1994). Sampling design

p is unbiased over repeated sampling and therefore the expected estimation of the

mean under this design is defined as;

Ep
[
ˆ̄z
]

= z̄. (4.2)

Using this, a measure of accuracy of the estimated mean can be assessed using the

standard error of the mean (SEM);

r =

√
Ep

[(
ˆ̄z − z̄

)2
]
. (4.3)
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If the period of time and the mean ˆ̄z are assumed to be fixed, r equals the sampling

variance (Domburg et al., 1994). Many water quality sampling schemes do not use a

form of probabilistic sampling (i.e the inclusion probabilities are unknown) (Thomas

and Lewis, 1995). Therefore the samples cannot be assumed to be independent and

a form of temporal correlation must be considered. In this situation, where non-

probabilistic sampling has been performed it is necessary to use a model to estimate

the variance of the samples (Lark and Cullis, 2004; Domburg et al., 1994). The

procedure outlined by Domburg et al. (1994) provides a method which uses a model-

based approach to estimate the design-based SEM. Figure 4.2 is a flowchart which

outlines the methodology used in this chapter. We will now outline the steps in detail.

4.3.3.1 Variogram estimation

To estimate the temporal correlation between the samples, the observed concentration

through time is modelled as;

z(t) = Xβ + η, (4.4)

where the (n × 1) design matrix (X) is a vector of 1’s and β is the estimate of

the mean conditional on the correlation structure of η using the REML likelihood

function (see Lark and Cullis (2004) for a detailed description). The covariance

structure η ∼ N (0,V) is assumed to be in the form of an exponential function where

V is defined as;

Vi,j = σ2s exp
(
−|xi−xj|

a

)
, i 6= j

σ2, i = j,

(4.5)

where the diagonal is equal to the variance σ2 and the covariance between two samples

is defined by the exponential function where |xi − xj| is the temporal distance between

samples and a is the distance parameter of the exponential function and

s =
c

c0 + c
, (4.6)
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Figure 4.2 – Procedure for estimating the standard error of the mean.
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where c0 is the unexplained temporal variance (nugget) and c0 + c is the maximum

variance between two samples (Lark and Cullis, 2004). It would also be possible

to used a different model form to account for the auto-correlation between samples

in the LMM. Equation 6.4 assumes the observed z(t) has a Gaussian distribution,

however this is highly unlikely for water quality concentration values. A flexible

transformation to overcome this problem is a box-cox transformation (Box and Cox,

1964). The box-cox transformed concentration is defined as;

z(t)∗ =

log z(t) if λ = 0

z(t)λ−1
λ

otherwise,
(4.7)

where the value of λ is estimated within the fitting of the model. The model was

fitted using the geoR package (Ribeiro Jr and Diggle, 2001) within the R statistical

software (R Core Team, 2012)

4.3.3.2 Variogram validation

There are two steps in the validation of each model:

1. The temporal correlation structure is tested for statistical significance, and

2. leave-one-out-cross-validation (LOOCV) is undertaken to validate the predic-

tion variance estimates of each model.

To determine if the temporal structure of the model is significant, the model is fitted

with and without the temporal correlation structure. It is then possible to use the

Akaike Information Criteria (AIC) (Akaike, 1974) of these two models to determine

if the temporal structure of the model is significant. Using the predictions of the

LOOCV it is possible to calculate,

θi =
{z (ti)

∗ − Z̃∗(−i)}2

σ2
(−i)

, (4.8)



4.3 Methods 95

where z (ti)
∗ is the ith transformed concentration observation, Z̃∗(−i) is the correspond-

ing estimated concentration based on all other samples and σ2
(−i) is the estimated

kriging variance. Since the approach here is dependent on the semivariogram repre-

sentation of the variation in the data, the model needs to be valid. Here a perfect

model has a mean θ̄ = 1 and median θ̆ = 0.455. We use the working of Marchant et al.

(2010) to estimate the confidence intervals for the mean and median θ. Essentially

if our prediction variance (the denominator in eqn 4.8) represents the actual error

(numerator in eqn 4.8) then the model is representing the variation well. If our theta

statistics fall with the CI then we assume the model is valid.

4.3.3.3 Adjusting for statistical outliers

A potential problem in water quality modelling is the occurrence of observations

which appear to be temporally localised anomalies. These observations may be due

to incorrect data entry, measurement error or due to insufficient observations of the

underlying processes (Díaz Muñiz et al., 2012). In the last situation this could oc-

cur because there are too few observations of extreme events, so the ones that do

exist look like outliers relative to other observations. Based on the work presented

by Marchant et al. (2010) we have applied a winsorising method for models with

suspected statistical outliers. The winsoring method is applied to models where the

θ statistics do not fall within the 95% CI.

1. Using a similar approach to LOOCV the kriging weights (kwj(−i) = 1, ..., i −
1, i+ 1, ..., n) are estimated, as is the kriging variance σ(−i)of each observation.

2. For each observation the weighted median is calculated. The weighted median

solves;
n∑

j=1,j 6=i

kwj(−i)sign{z̆(−i)(ti)− z(tj)} = 0 (4.9)
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3. Using the weighted median the data z(ti) is winsorized using;

z1.5(ti) =


z̆(−i) + zσ−i if zi(ti)− z̆(−i) > 1.5σ(−i)

z(ti) if |zi(ti)− z̆(−i)| ≤ 1.5σ(−i)

z̆(−i) − zσ−i if zi(ti)− z̆(−i) < −1.5σ(−i),

(4.10)

where z̆(−i) is the weighted median for the observation at ti, estimated without the

inclusion of this observation. The model is then fitted using the winsorized data.

With the updated model LOOCV is performed and if both θ̄ and θ̆ are within the

95% CI the model is accepted.

4.3.3.4 Estimating the standard error of the mean

Domburg et al. (1994) describes the process to use a fitted variogram model to esti-

mate the design based SEM. The estimated SEM (r̄) is determined using the model

based variance from the fitted variogram by modifying eqn 4.3:

r̄ = E
[ γ̄T
n

]
, (4.11)

where γ̄T is the mean semivariance of the model, T is the temporal length of interest

(e.g. a year) and n is the number of samples. Based on Domburg et al. (1994) the

procedure to estimate the sample variance using a variogram model is;

1. Estimate γ̄T by drawing two random times within period T and determining the

semivariance between the two samples. Repeat this 10,000 times to estimate

the mean semivariance between all pairs in T .

2. Estimate the SEM (r̄) for different sample sizes (n).

The values of n are different for both event and base-flow observations, and based on

commonly applied sample sizes. The sample design assumes simple random sampling

over the period of T , which is defined as 365 days for base-flow model, and the mean
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event flow duration based on the annual 90th percentile for event-flow models. For

each site the mean event flow duration was estimated based on the duration of events

which were greater than the annual 90% stream discharge. The mean event duration

for each site is presented in Table 4.1. Sample sizes are defined as 365, 52, 24, 12,

4 and 48, 24, 12, 6 for base-flow and event-flow respectively. The sizes were chosen

based on commonly used sample frequencies daily, weekly, fortnightly, monthly and

quarterly for routine based sampling. Sample sizes for event-based models are based

on the use of an automatic sampler capable of collecting differing numbers of samples

per event.

4.3.3.5 Estimating the CI of the mean.

In order to compare the effect of sample size on the precision of the estimate of

the mean ( as represented by the 95% confidence interval) both the mean and the

confidence intervals (CI) are back transformed to the original scale. The mean is

taken as the β0 estimate of the model and is back-transformed using;

µ = (1 + λβ0)
1

λ−2 (1 + λβ0)2 +
1− λ

2
σ2. (4.12)

The upper and lower bounds of confidence intervals are estimated using;

CI = β0 ± tn−1
0.975

√
r̄n, (4.13)

where tn−1
0.975 is the t-statistic for the 0.975 quantile with n−1 degrees of freedom. The

CI is then back-transformed by substituting β0 with the lower and upper bound of

the CI in equation 4.12.

4.3.3.6 Relating the precision of the estimate of the mean to catchment

characteristics

To explore the relationship between the precision of the mean estimate and the catch-

ment characteristics (CC) a standardised CI is used. Standardisation of the CI for
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each sub-catchment is required as box-cox transformations with different lambda val-

ues have been applied. In addition to different transformations, each catchment has

a different mean TP. The standardisation is performed using;

CIstd =
CIn
β0

, (4.14)

where n is 12 observations for base-flow and 24 observations for event-flow. Eqn 4.14

standardizes each CI relative to its mean enabling a comparison between catchments.

It is based on the coefficient of variation which enables comparison of variation be-

tween datasets with different means. Two sample sizes are chosen as they reflect

typical values; monthly sampling for base-flow and 24 samples for events as this re-

flects the amount of samples within an automatic sampler.

4.4 Results

Table 4.3 provides a summary of the coefficients of each model (if valid) and indicates

if winsoring was applied. Based on the results of the cross validation analysis 12

base-flow models and 7 event-flow models were accepted. Of the accepted models 5

base-flow and 2 event-flow models required the data to be winsorised. Only 5 of the 17

sub-catchments had both a base-flow and event-flow model pass the cross validation

requirements. Outliers at some locations and observations at the minimum detection

limit may have contributed to the rejection of some of the models. In addition to these

potential causes, some gauging stations had limited samples during events, which may

have been identified as outliers.

The mean temporal correlation of the base-flow models was 38.9 days with 9 of the 12

models having a temporal correlation greater than 30 days. Event-flow models had a

shorter temporal correlation structure with a mean of 7.1 days and 4 of the 7 models

with a shorter correlation than 9 days.
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4.4.1 Differences between the precision in the estimates of the

base and event flow means

Using Kedumba Crossing (sub-catchment 15) a detailed explanation is given of how

the estimates of estimates of the precision of the mean is estimated using the proce-

dure outlined in figure 4.2. The first stage of the process is to estimate a variogram

model which reflects the variance of the observed data. Figure 4.3 shows the expo-

nential model of the base-flow and event-flow used to model the temporal variance

structure.The figure shows how the temporal range a is different for both models. For

observations further apart than ∼ 3a there is no temporal correlation. The temporal

range for the base-flow and event-flow models is 63.37 and 1.74 days respectively.
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Figure 4.3 – Variogram models of base and event-flow for Kedumba Crossing.

Using the modelled variance the next stage is the estimation the SEM. Figure 4.4

shows the estimated SEM for both the base and event-flow models. The SEM is

on the box-cox transformed scale, therefore direct comparisons of the standard error

cannot be made between event and base-flow. However the trend between sample

size and the standard error can be observed. The reduction of the base-flow standard

error is greatest when n < 100, increasing n when n > 100 has little effect on the

SEM.

To simplify the effect of sample size on the precision of the mean estimates, and allow
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Figure 4.4 – Estimated standard error of base and event-flow for Kedumba Crossing.
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comparisons to be made, the model estimates of the mean and the CI were back-

transformed. Figure 4.5 shows the back-transformed means, and CI of base-flow and

event-flow for commonly used sample sizes. The mean TP is larger during event-flow

than during base-flow conditions. The figure shows that the CI of the mean based on

48 event-flow samples is larger than the CI of 12 base-flow samples. The CI of base-

flow mean with 4 samples for a year is relatively large compared with the CI of 12

samples per year. This difference is partly contributed by the different df associated

with each of CI, where the df = 3 when n = 4 and df = 11 when n = 12. Based on

the selected sample sizes of event-flow, there is not a linear reduction of the CI when

the sample size is increased. For example, doubling the sample size from 12 to 24

samples does not half the CI of the mean. The CI of the mean for different sample

sizes decreases as the sample size increases with a noticeable reduction in uncertainty

between 6 and 12 samples. There is a reduction of the CI between 24 and 48 samples,

however for most water quality sampling schemes a sample size of 48 would require 2

automatic samplers which would double the installation costs.
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Figure 4.5 – Estimated CI and model estimated means of base and event-flow for
Kedumba Crossing.
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4.4.2 Sub-catchment comparisons

Figure 4.6 shows the mean and the CI of the base-flow models for each sub-catchment.

As expected the the CI decreases as the sample size increases for all sub-catchments.

The effect of sample sizes on the CI is different for each sub-catchment. For example

Berrima Weir and The Crags sub-catchments have similar means, 0.043 and 0.038

respectively and similar CI for each sample size. The sub-catchments generally have

similar CI if the mean concentrations are similar. The Mittagong sub-catchment is

quite different to the other sub-catchments. This sub-catchment has the highest mean

TP (0.14) of all sub-catchments and the largest CI width of 1.19 with n = 4. The

sampling site for this sub-catchment is directly downstream of a STP, which may

explain the high TP concentration.

The mean and CI of the event-flow models of each sub-catchment are shown in figure

4.7. Kelpie Point and Kedumbda Crossing sub-catchments have similar means, 0.03

and 0.04 respectively and similar CI widths for n = 6 of 0.04 and 0.06 respectively. As

with base-flow, the Mittagong sub-catchment has the highest mean (0.23) of the sub-

catchments, and the largest CI width (0.53) with n = 6. This result indicates waste

water treatment plant effects both base and event-flow conditions. In addition to

the Mittagong sub-catchment, Murrays Flat gauging station is also downstream of a

waste water treatment plant, this site had the second highest mean TP concentration

during events (0.1).

4.4.3 Is there a difference between the precision of the base

and event-flow mean estimates?

Figure 4.8 shows the distribution of CI for each sample size of both base and event-

flow based models. There is a clear difference in the CI between base and event flow

estimates. By examining the distribution of CI with n = 12 it is clear that there is

more uncertainty in the estimate of the mean for event-flow periods, even though the

samples are taken within a shorter period of time. The reduction of the uncertainty
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Figure 4.6 – Back-transformed base-flow mean and CI of each sub-catchment.
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Figure 4.7 – Back-transformed event-flow mean and CI of each sub-catchment.
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of the mean estimate for base-flow shows that there is little improvement for all

catchments between n = 24 and n = 365 sample sizes. The outlier for both event

and base-flow comparisons is the Mittagong sub-catchment which has an STP located

directly upstream of the sampling site. In addition to this sub-catchment, Murrays

Flat sub-catchment has a STP upstream of the gauge station. After sub-catchment

Mittagong, Murrays Flat had the highest mean and CI for both base and event-flow

conditions.
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Figure 4.8 – Box-plot of the back-transformed standardised CI across all sub-
catchments.

4.4.4 Can the relationship between sample size and the preci-

sion of mean estimates be linked to CCs?

If it is possible to relate the precision of the mean estimates to CCs it may help with

future sample designs and provide help determining factors which control TP mean

uncertainty. Table 4.4 provides Pearson correlation values between the standardised

CI and common catchment characteristics. The percentage of urban cover is the
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most highly correlated CC with base-flow CIs with a correlation of 0.49. Grassland

percentage cover and catchment size are highly correlated with event-flow CIs with

correlations of -0.52 and -0.57 respectively. The correlation between annual flow and

event and base-flow CIs are similar with correlations of -0.32 and -0.27 respectively.

Annual flow, rainfall and urban cover are have similar correlations for both base and

event-flow CIs. For both base and event-flow, the percentage of urban cover is the

strongest positively correlated CC. In addition to the correlation between CCs and

CIs the correlation to the sample size used for each model was determined as -0.32

and -0.54 for base and event-flow respectively. The sample size being the number of

observations used to fit the linear mixed models.

Table 4.4 – Correlation between standardised CI and catchment characteristics.

covariate base-flow event-flow
annual rainfall (mm) 0.11 0.11
elevation range (m) 0.20 -0.12
urban cover (%) 0.49 0.47
forest cover (%) 0.20 0.34

grassland cover (%) -0.32 -0.52
catchment size (km2) -0.13 -0.57
annual flow (ML) -0.27 -0.32

n -0.32 -0.54

In addition to the correlation between individual CCs, a linear model using backwards

elimination was fitted to estimate the standardised CI for base and event flow. Figure

4.9 shows the predicted and observed standardised CI based on the linear models

with the number indicating each sub-catchment. The Lin’s correlation concordance

(Lawrence and Lin, 1989) for the base and event-flow models were 0.83 and 0.43

respectively. It is not the intention of these linear models to be used to estimate

the standardised CI of catchments, but to indicate that differences between the CIs

can be related to common CCs. The final model for the base-flow standardised

CI included elevation range, percentage of urban cover, catchment size and annual

discharge. All CC except stream discharge were positively related to the standardised

CI. This indicates that the uncertainty of the mean decreases in relation to the annual

amount of stream discharge. Percentage of urban cover was the only CC not to be

removed from the backward elimination process. Table 4.4 shows that urban cover
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is not the most correlated CC, however the backwards elimination process highlights

the importance of the examination of the combined effect of CCs. Urban cover was

positively related to the standardised CI, indicating the larger the percentage of urban

area the higher the variation of the water quality during events.
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Figure 4.9 – Observed and predicted standardised CI of each sub-catchment.

4.5 Discussion

The results indicate that approach shown here can be used to model the temporal

variance of TP data. This is very beneficial as it provides a method to estimate the

variance of legacy water quality data where the inclusion probability is unknown. By

applying the simulation based method of Domburg et al. (1994) it was possible to

estimate the precision of the estimate of the mean with different sample sizes. With

this approach it is possible to describe the usefulness of different sample sizes without

the need of near-continuous datasets or the use of load estimation methods. When

evaluating water quality sampling schemes it is important to consider the effect of
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sample size on the precision of the mean estimates, especially when this is often the

main goal of water quality monitoring schemes.

The precision is different between base and event-flow conditions, with a worse preci-

sion for estimating event-flow mean concentration. The worse precision during event-

flow is to be expected as streams in south east Australia are known to have larger

exports during these periods and are also affected by other factors including hystere-

sis (Kuhnert et al., 2012). This finding also supports previous studies which have

stressed the importance of event-flow water quality sampling (Cassidy and Jordan,

2011; Drewry et al., 2009). The base-flow mean precision indicated that 365 samples

a year had the best precision, which is similar to the findings of Cassidy and Jordan

(2011).

There was a good relationship between the event mean precision and catchment char-

acteristics which indicates different catchments have different sample size require-

ments. The percentage of urban cover is positively correlated with the standardised

CI for both base and event-flow. This indicates that catchments with larger urban

coverage require larger sample sizes in order to account for the increased variation.

The correlation of catchment size with the standardised CI suggests that as the size

of the catchment increases, the estimate of the mean becomes more precise, which

may be a reflection of how smaller catchments tend to experience shorter events. It is

difficult to relate these findings to previous studies as previous studies have focused

on mean concentration, and loads rather than the preciseness of the estimates of the

mean concentrations. In terms of allocating sampling effort between a group of moni-

toring sites the approach here can be used to identify which sites require more or fewer

samples. In many applications each of these sub-catchments would have similar sam-

ple sizes. A common alternative to this would be to use a catchment specific sampling

design based on expert knowledge. The approach here can base it on the the existing

data and repeatable statistics. In this study we assumed simple random sampling

throughout the sample periods. Simple random sampling would most likely not be

appropriate in practice especially over a year. A more likely probabilistic sampling

approach would use a form of stratified sampling to reduce the variance as described
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by Thomas and Lewis (1993). For the purposes of this study the assumption of simple

random sampling provides valuable information which can be used to assess current

monitoring schemes. Given the financial constraints of most water quality monitoring

schemes it is unlikely that it would be affordable for most monitoring schemes to use

a sampling scheme where n > 52 a year for base-flow sampling. The method outlined

in this paper can be used to estimate a suitable sample size of each sub-catchment to

provide a mean within a pre-determined precision.

The results of the standardised CI suggest that there is little benefit from sample sizes

greater than 12 for both base and event flow conditions, however the Mittagong and

Murrays Flat sub-catchments require a larger sample size to provide estimates of the

mean with similar precision as these two sub-catchments have waste water treatment

plants.

Water quality data is generally highly skewed and legacy data often contains outliers,

however it is often difficult to determine which observations should be classified as

outliers. We have used a winsorising approach to remove the effect of outliers. This

step was necessary for several sub-catchments to ensure the prediction variance re-

flected the actual error. The model for several sub-catchments failed the requirements

of the cross-validation and it was not possible to estimate the precision of the mean

for these sub-catchments. Research is being undertaken to develop robust methods

which can be used to fit models to data with outliers. (Papritz et al., 2011; Marchant

et al., 2010).

4.6 Conclusions

As it is not financially possible to apply continuous sampling for all water quality

monitoring schemes a method is required to characterise the effect of the sample

size on the precision associated with mean estimates. With many sampling schemes

using a form of non-probabilistic sampling, a model is required to obtain an unbiased

estimate of the variance of the samples. By using the methods of Domburg et al.

(1994) we have shown that;
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• variograms can be used to model the temporal variance of water quality and

provide estimates of the SEM of the mean.

• the estimates of the event-flow means are less precise than the estimates of the

base-flow means.

• the precision of the mean estimates for base and event-flow can be related to

catchment characteristics.

As found in previous studies, variograms are sensitive to outliers. It was not possible

to use this method for all sub-catchments, however the results indicated that it is

possible to use this method to estimate the effect of sample size on the SEM using

historical data.
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Chapter 5

Characterisation of events using

stratified random sampling

5.1 Summary

Short rainfall events contribute to large portions of annual sediment and nutrient ex-

ports. Most water quality sampling schemes rely on regularly spaced temporal sampling

and increasingly monitoring schemes are including a form of event-based sampling. A

typical approach is to sample each event using equal intervals in time using an auto-

matic sampler. The use of this form of sampling is systematic in nature and requires

model-based statistics to be analysed correctly. Probabilistic based sampling methods

allow for easier and more defendable statistical inference as the assumptions are not

based on a model, rather they are based on the sample design. Several probabilis-

tic methods have been developed, however these methods commonly require additional

hardware to implement. In this paper we present a method using a stratified ran-

dom sampling procedure for automatic samplers which does not require any additional

hardware. Our approach is to divide the mean event hydrograph into strata based on

key features such as the rising and falling limbs. Random sampling is applied within

each strata. A problem of this approach is that the length of the event and strata

must be defined before each event. We therefore outline how the samples can be post-
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stratified after each event based on the key hydrological components of each event.

The sampling scheme is outlined using continuously sampled electrical conductivity

and turbidity data of three events from a creek in south eastern Australia. Limited to

24 samples per event, estimated event mean CIs were within the observed event means

for all three events. Both the stratified and re-stratified estimates provided unbiased

estimates of key event hydrological components.

5.2 Introduction

It is widely accepted that event-based water quality sampling is required to accurately

characterise the temporal variation in water quality. This is especially evident in

catchments characterised by long durations of base-flow, where short rainfall events

are responsible for exporting the majority of nutrients (Kronvang and Bruhn, 1996;

Johnes, 2007; Drewry et al., 2009). Recent studies using continuously measured data

have highlighted the importance of high frequency sampling and the information this

can provide for understanding hydrological processes (Kirchner et al., 2004; Burt

et al., 2011; Cassidy and Jordan, 2011; Wade et al., 2012). However, due to financial

constraints it is unlikely that these new technologies will be widely implemented

in the near future (Wade et al., 2012), with the majority of catchment managers

relying on automatic samplers to sample during rainfall events (Bartley et al., 2012).

Furthermore, for many water quality properties there are no options for field based

continuous sensors.

Without access to continuously monitored data, catchment managers often rely on

a combination of grab samples and automatic samplers to collect samples during

rainfall events. However during rainfall events access to water quality monitoring

sites is often limited. For example, safety constraints require the Sydney Catchment

Authority (in Australia) to use helicopters to access sites after 10-15 mm rainfall

events (Sydney Catchment Authority, 2011). Under these restrictions it is necessary

for catchment managers to rely on field based equipment to take samples during an

event. This equipment generally consists of two devices; a stream discharge measuring
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device and an automatic sampling device (Wang et al., 2011). The use of these devices

introduces additional limitations on the sample scheme. One of the largest constraints

of automatic samplers is the number of bottles, which is typically 24, and therefore

the maximum samples possible per event.

Common objectives of event-based sampling studies are for estimation of load (Drewry

et al., 2009) and event mean concentration (Bartley et al., 2012). It is important to

assess the objectives of the sampling schemes to determine the most appropriate

design (de Gruijter et al., 2006). The research of Marsh and Waters (2009) found

that event load estimation requires samples to be collected during both the rising and

falling limb to ensure accurate estimates are obtained. If the objective of event-based

sampling is to estimate the event mean concentration then continuous sampling would

be preferred. As this is rarely possible it is important that the selected sampling

scheme is unbiased and therefore provides unbiased estimates of the mean and its

uncertainty (Thomas and Lewis, 1993). Several water quality models now require a

form of event mean concentration for parameterisation (Bartley et al., 2012).

In general, sampling schemes can be divided into two categories; probabilistic (design-

based) and non-probabilistic (model-based) (de Gruijter et al., 2006). Non-probabilistic

sampling designs do not require known inclusion probabilities (i.e. the probability of

a sample being taken at time t), however these methods require the use of a model

to provide unbiased estimates of the uncertainty of the mean (de Gruijter et al.,

2006; Lark and Cullis, 2004). Probabilistic sampling schemes rely on known inclusion

probabilities and therefore do not require a model to provide unbiased estimates of

the uncertainty of the mean (de Gruijter et al., 2006). The most commonly used

event-based sampling scheme is systematic sampling based on equally spaced sam-

ples through time or flow volume (Harmel et al., 2006). This form of sampling is

known to provide unbiased mean estimates when used with a random starting time

(de Gruijter et al., 2006; Lohr, 2009) or by using a model which accounts for the

correlation between samples (Lark and Cullis, 2004; de Gruijter et al., 2006). Under

this form of sampling one must assume the sample interval is short enough to provide

adequate coverage of the sampled property throughout the event, which may not be
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true especially during the rising limb of an event.

Probabilistic sampling schemes provide unbiased estimates of the event mean and

its uncertainty. The use of probabilistic sample designs for water quality sampling

has been investigated by Thomas (1985, 1988); Thomas and Lewis (1993, 1995);

Arabkhedri et al. (2010). Focusing on suspended sediments they evaluated several

different probabilistic methods. The methods evaluated include selection at list time,

which is a form of probabilities proportional to size sampling (Thomas, 1985, 1988;

Thomas and Lewis, 1995) , simple random sampling (Thomas, 1988), flow propor-

tional (Thomas, 1988), flow-stratified (Thomas and Lewis, 1995) and time-stratified

(Thomas and Lewis, 1993, 1995) sampling schemes. More recently Arabkhedri et al.

(2010) has demonstrated the use of adaptive cluster sampling to estimate suspended

sediments. The results of these studies showed that it is possible to provide accu-

rate unbiased event based estimates using probabilistic sample designs, however these

methods have not been widely implemented. We believe the main reason for the lack

of use is due to the perceived complexity of the design and possibly due to the focus on

suspended sediment exports and the additional hardware and software requirements.

We are therefore proposing a method which is a variation of that of Thomas and

Lewis (1993). The time-stratified method outlined by Thomas and Lewis (1993) used

a scheduled based approach, with the sampling strata based on the size and extent

of real time changes of stream discharge during an event, in combination with short

strata with small sample sizes to maximise sample coverage. The implementation of

this method requires additional hardware and programming knowledge. Therefore

we have attempted to simplify their method by using a simplified design, based on

historical stream discharge data. In contrast to predicting strata lengths in real-

time, we propose the use of one stratification based on a mean hydrograph combined

with post-stratification which provides the ability to re-stratify the samples into key

components of each observed event hydrograph (e.g. rising and falling limbs).

In this paper we evaluate a simplified time-stratified sampling scheme to estimate

different water quality properties affected by different transport pathways. Using

turbidity and EC will we evaluate the use of event-based time-stratified sampling to
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provide estimates that relate to two distinctly different flow transport paths. The two

flow paths of interest are overland flow and baseflow, using turbidity and electrical

conductivity to reflect these paths respectively. Turbidity has been used to improve

estimates of TP (Biggs, 1995) and TSS (Biggs, 1995; Lane et al., 2006) whereas

EC has been used for base-flow separation (Pellerin et al., 2008) and to estimate

dissolved nitrogen and particulate nitrogen (Kim and Furumai, 2012). By sampling

continuously turbidity and EC data we examine the use of stratified sampling for

event-based water quality monitoring. Therefore the aims of this paper are to:

1. illustrate the use of stratified sampling for estimating event mean concentrations

for different water quality properties, and

2. outline the method used to restratify samples after each event based on the ob-

served stream discharge to provide information on key hydrological components

of events.

5.3 Methods

5.3.1 Catchment description

Figure 5.1 presents the Muttama Creek catchment (1061km2) which is located in the

south west slopes of New South Wales in south eastern Australia. Agriculture is

the main land use in the catchment with winter cropping and pastures the dominant

agricultural practices. A main feature of the catchment are several north-south fault

lines on the eastern side of the main stream (Conyers et al., 2008). These fault lines are

associated with ultrabasic rocks with frequent outcrops of serpentine (Conyers et al.,

2008). In contrast the western side is dominated by slates and rhyolite (Conyers et al.,

2008). The geological variety in the catchment has lead to a variety of soil types,

of particular importance are Sodosols in the north west of the catchment (Warren

et al., 1995) which are highly dispersive soils (Isbell, 2002). These areas are also

associated with saline areas (Conyers et al., 2008). Several catchment characteristics
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are provided in table 5.1. Annual rainfall within the catchment is 507 mm with an

annual discharge of 578.98 GL. The main township of Cootamundra is in the north

of the catchment with a population of 7729 (Australian Bureau of Statistics, 2010).

Figure 5.1 – Muttama Creek catchment and location.
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5.3.2 Event data description

A YSI sonde (Hydrolab Corporation, Austin, Texas) was used to collect turbidity data

for each event. Rainfall, stream discharge and electrical conductivity data was ob-

tained from the government monitoring stations (http://waterinfo.nsw.gov.au). Fig-

ure 5.2 shows the observed rainfall, stream discharge, turbidity and EC of the three

events. The first event (fig. 5.2 a.) occurred in August 2011, and is representative of

events for this catchment. The observed double peak in the hydrograph is a common

feature of event hydrographs at this site which is possibly due to the figure 8 like shape

of the catchment (Gordon et al., 2004, p. 67). The second event (fig. 5.2 b.) occurred

in March 2012 and was the largest event on record. Three peaks occurred during this

event with two distinct rainfall events. The third event (fig. 5.2 c.) occurred in July

2012 and is similar but smaller than the first event, however rain during the falling

limb caused an additional smaller peak.

Table 5.1 – Summary statistics for the Muttama catchment

Catchment characteristics Statistic
Topographical features
Catchment area (km2) 1061
Maximum overland flow distance to outlet (km) 74.31
Minimum elevation (m) 227
Mean elevation (m) 402.39
Maximum elevation (m) 719

Mean annual rainfall (2004- 2012)
Berthong Station (mm)a 507

Stream discharge statistics (2000 - 2012)
Mean annual discharge (GL year-1) 578.96
Minimum daily discharge (ML d-1) 0
Mean daily discharge (ML d-1) 67
Maximum daily discharge (ML d-1) 15746.43

a See Figure 5.1 for rainfall station location.
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5.3.3 Defining strata and sample sizes

To perform event-based sampling it is necessary to define certain aspects of an event.

To use a probabilistic based sampling design, the start and end of the event and the

sample sizes, length and number of strata are also required. We propose a simple 4

step process to define a general time-stratified sampling scheme;

1. determine the event trigger height based on the upper 5% of the stream height

distribution,

2. find all events using the trigger height as the start and end of each event,

3. determine the length of the event using the mean duration of these events, and

4. create a mean event hydrograph using the trigger height and the mean event

length. Use this to define strata and sample sizes.

Event based sampling is generally commenced using a trigger consisting of a pre-

determined stream height reached during the rising limb. It is therefore important

that this height is not too low as to be triggered by small rises of stream height, but

not too large which would commence the sampling to late (Harmel et al., 2002). Our

approach is to use the stream height which corresponds to the 95th percentile stream

height. The flow duration curve for Muttama Creek is based on the last 10 years of

observations and is shown in figure 5.3 with the corresponding 95th percentile stream

height (1.4 m). To define the duration of the mean event, all events are found by

defining the start of the event as the time where the trigger height is exceeded and the

end of the event as the time where the stream height recedes below the trigger height.

Using these events, the mean event length is defined as the mean of all events which

are longer then 12 hours. Figure 5.4 shows the event mean hydrograph based on the

trigger height with the mean event strata boundaries. The initial strata are defined

based on the mean event hydrograph and are such that they provide good coverage of

rapid changes of stream discharge. Strata 1, 2 and 3 are designed to cover the rising

limb, initial peak and second peak of the hydrograph. Strata 4 and 5 are longer and
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designed to capture the tail of the event. Assuming a maximum sample size of 24,

the sample size of each strata is defined as; 6, 6, 4, 4 and 4. Larger sample sizes are

given to the initial two strata, as these strata are associated with sharp changes in

stream discharge.

Figure 5.3 – Stream height exceedance percentile plot with event trigger height.

Figure 5.4 – Mean event hydrograph with strata boundaries.

5.3.4 Strata and event analysis

Stratified sampling is a common sampling design, a detailed description of its appli-

cation is provided by de Gruijter et al. (2006, p. 82). Using this information the mean
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of an event is estimated using;

ˆ̄zst =
1

T

H∑
h=1

Th ˆ̄zh, (5.1)

where H is the number of strata in the event, T is the total time of the event, Th
duration of time in strata h and ˆ̄zh is the mean of stratum h. In this study, T = 107

hours (the mean event duration), Th = {5, 9, 26, 35, 32} hours. The variance of each

stratum mean is estimated by

V̂ (ˆ̄zh) =
1

nh(nh − 1)

nh∑
i=1

(zhi − ˆ̄zh)
2, (5.2)

where nh is the sample size of stratum h, therefore nh ≥ 2 is needed to estimate the

variance of the mean. Using eq. 5.2 the variance of the event mean can be estimated

using

V̂ (ˆ̄zst) =
1

T 2

H∑
h=1

T 2
h V̂ (ˆ̄zh), (5.3)

which can be used to estimate the standard error of the event mean (

√
V̂ (ˆ̄zst)).

Confidence intervals are easily estimated for each strata by;

ˆ̄z ± t1−α/2 ·
√
V̂ (ˆ̄zh), (5.4)

where t1−α/2 is the t-critical value of the student distribution with degrees of freedom

and α is the probability value which is set to 0.025 if we wish to estimate the 95%

confidence interval around the mean. Similarly, eqn. 5.4, can be used to estimate the

confidence interval around the event mean concentration.
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5.3.5 Post event stratification

Post event stratification is the term given to the reclassification of samples into new

strata. To simplify and reduce confusion new strata are referred to as domains. In this

paper, this process is used to combine samples from multiple strata into domains. The

major benefit of this process is the ability to perform this task based on the observed

stream hydrograph of each individual event. The only limitation of this process is

the requirement that at least 2 samples from each stratum fall within the domain to

estimate the variance of the domain mean. Using event 2 as an example, the samples

from multiple strata are reclassified into domains based on the three peaks of the

event. Figure 5.7 shows the hydrograph of the event with the three domains and

locations of the samples. In addition to mean estimates, the rising and falling limbs

are also examined. In this chapter the rising limb is from the start of the event to

the maximum value of the first peak and the falling limb is the remaining part of the

event. A detailed description of reclassification of stratified sampling into domains

can be found in (Särndal et al., 2003, p. 390). Based on this description the mean of

a stratum within each domain can be estimated using

ˆ̄zdh =

∑nh
i=1 Idhizhi
ndh

, (5.5)

where Idhi is an indicator vector where 1 indicates the sample is within the domain

and 0 the sample is not within the domain, zhi is the ith observation of domain h and

ndh is the amount of samples in stratum h and domain d. Therefore the mean of the

domain is estimated using

ˆ̄zd =

∑H
h=1

Thndh
nh

ˆ̄zdh∑H
h=1

Thndh
nh

. (5.6)

The associated standard error of the domain mean can be estimated by

se(ˆ̄zd) =

√√√√ 1

T 2
d

H∑
h=1

T 2
h

(ndh − 1)s2
dh + ndh(1− ndh

nh
)
(
ˆ̄zdh − ˆ̄zd

)2

nd(nd − 1)
(5.7)
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where Td is the duration of time of the domain, nd is the amount of samples with

domain d and the variance is estimated using;

s2
dh =

∑nh
i=1 Idhi

(
zdi − ˆ̄zd

)2

ndh − 1
. (5.8)

It is important to note that each domain requires ndh ≥ 2 to allow for an estimate of

s2
dh (Särndal et al., 2003).

5.4 Results

5.4.1 Time-stratified sampling: sampling locations

Figure 5.5 shows the location of each sample within each strata of the three observed

events. The shape of the hydrograph of the first event (fig. 5.5 a.) closely resembles

the mean event hydrograph (fig. 5.4) with the strata boundaries closely matching

the desired components of the hydrograph. The second event (fig. 5.5 b.) is not

similar to the mean event hydrograph due to additional rainfall during the event and

only the first and second strata match the changing conditions of the first peak of

the event. In addition to this the pre-determined time of the event did not meet

the extended duration of the event. The third event (fig. 5.5 c.) is similar to both

the first event and the mean event hydrograph with the strata matching the desired

hydrograph components. However a small peak occurred during the falling stage

of the hydrograph. The use of the mean event strata closely matched 2 of the 3

observed events. Such variation would be expected and shows the importance of

post-stratification if we wish to extract mean values from different components of the

event hydrograph.
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Figure 5.5 – Location of strata and samples for each event; a. event 1,b. event 2,b.
event 3.
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5.4.2 Stratified estimates

The stratified mean estimates, with confidence intervals, of turbidity and EC of each

event are shown in figure 5.6. In addition to the strata estimates, the observed con-

tinuous data is also provided with the mean estimates of each strata also provided.

Observed means for all strata estimates for both turbidity and EC of all three events

are within the associated confidence intervals, except for the third strata for turbidity

for event 3 ( fig. 5.6 c.). Confidence interval width related to the number of samples

and variation within the strata, therefore strata with the greatest variation require

additional sampling effort to increase the precision of the mean estimates. The confi-

dence intervals of event 1 (fig. 5.6 a.) indicate that the underlying trend of turbidity

varies most during the first and third strata. This variation is shown by the continu-

ously sampled turbidity data. Similarly the first strata of EC in this event was also

the largest CI of this event. Event 2 (fig. 5.6 b.) was the largest event on record for

the site, in terms of maximum stream height, and it had three distinct peaks within

the event hydrograph. The first and last strata have large CI widths indicating a

large amount of variation during these times which is confirmed by the continuously

monitored data. A similar trend can also be seen in event 3 (fig. 5.6 c.) where the CI

width of the first strata is quite wide compared with other strata CI widths of this

event. The third strata CI estimate does not cover the observed mean turbidity, with

the observed mean falling outside the CI by 9.96 NTU. By examining figure 5.5c.,

it can be seen that 3 of the 4 samples were collected towards the end of this strata,

after the peak of observed turbidity (fig. 5.6 c.). Observed mean EC of each strata do

fall within the CI of the estimates for this event, with relatively large CI widths for

the first and third strata. These results indicate that this simple application of strat-

ified sampling provides accurate estimates of key hydrological components of event

hydrographs and can provide information about transport pathways during events.
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5.4.3 Event estimates

By combining the strata mean estimates it is possible to obtain event mean estimates.

Table 5.2 provides event mean estimates and observed means for each event. Using

the time-stratified event estimates it is possible to observe the trends between the

three events. This trend indicates that the event means of turbidity and EC are

directly related to the size of each event, with the largest event (event 2) having the

largest turbidity event mean and the smallest event (event 3) having the smallest

estimated mean turbidity. This trend is inversely true for EC of the three events.

These event estimates are confirmed by the observed turbidity and EC event means.

Observed turbidity (224.73) was overestimated by 62.42 for event 2 but within the CI

of the estimate. In this situation the large estimated uncertainty provides additional

information, indicating the large variation during this event. In contrast to this,

the estimated mean turbidity of event 3 was very accurate and had CI of ±18.22

NTU. This accuracy was achieved with a sample size of 24 for the 107 hour period

comprising 428 possible sample times, reinforcing the ability of design based methods

to provide accurate estimates of event means.

Table 5.2 – Stratified sampling event mean estimates.

Event turbidity (NTU) EC (µS cm-1)
estimated CI(±) observed estimated CI(±) observed

1 202.12 81.62 194.38 467.09 96.50 457.11
2 287.15 128.10 224.73 219.1 102.91 227.51
3 111.59 18.22 116.02 748.7 179.31 810.27

5.4.4 Re-stratified domain estimates

By re-stratifying the strata into domains it is possible to provide unbiased estimates

of key components of the event hydrograph. Table 5.3 provides the estimates of the

key components of each event hydrograph. For each event, estimates were made of

the rising limb, falling limb and peak of the event. The boundaries of each peak in an

event is based on the start, minima between each peak and the end of the event. For
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example, the boundaries of each peak for the second event are shown in figure 5.7.

Three peaks were observed for the second event, but there was no easily definable

rising and falling limb. Therefore the rising and falling limbs were not estimated for

this event.

Figure 5.7 – Event 2 with domain boundaries and sample locations and strata number.

The observed EC mean for each domain is within the CI of the estimates for the

rising limb, falling limb, and all peak estimates for the three events. The observed

means of turbidity were within the estimated CI of the rising limb, falling limb and

peak 1 domains for all events. The estimation of the peak 2 of event 1 was over-

estimated and the observed mean fell outside the CI. This is most likely due to only

2 samples being available to estimate the domain mean. Peak 2, event 3 was also

poorly estimated with the observed mean falling outside the estimated CI.

5.5 Discussion

The majority of event based sampling schemes are non-probabilistic Wang et al.

(2011). The results of these sampling schemes are inherently biased and may be

affected by large intervals between samples (Thomas and Lewis, 1995). The impor-

tance of high frequency samples to accurately characterise variation in water quality

is well known (Kirchner et al., 2004; Burt et al., 2011; Cassidy and Jordan, 2011).
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However the majority of event-based sampling schemes rely on automatic samplers

with a maximum sample size of 24 to sample events. The presented time-stratified

sampling scheme offers the ability to provide accurate unbiased estimates under this

restriction, with the ability to reclassify strata after each event to estimate mean

values for key hydrograph components.

The simplified time-stratified design based on Thomas and Lewis (1993) used a mean

event hydrograph to design the strata for each event, however did not require any

additional hardware or software modifications to the standard automatic samplers.

For the three observed events these strata were quite close to events 1 and 3. The

defined strata did not match the shape of the second event. By using domain based

estimates it was possible to provide accurate mean estimates of both turbidity and

EC for the three peaks of this event, with the observed mean within the CI of each

domain. The flexibility of the proposed sampling scheme shows that it is possible to

derive accurate estimates using probabilistic sampling schemes.

Often water quality monitoring investigates multiple water quality properties affected

by multiple transport pathways, therefore proposed sampling schemes must be flexible

enough to reflect this. With access to stratified and domain estimates the controlling

processes of various water quality properties can be identified. The results of the

stratified sampling shows the mean turbidity of the first strata (rising limb) is greater

then the second strata of each event. In addition to this, the domain estimates also

help identify these controlling processes. For example during, the second event (fig

5.2 b.) the second peak of turbidity coincided with an additional rainfall event. The

controlling processes of EC are also evident. For example, the results of the domain

estimates of each of these individual peaks (table 5.3) improves the understanding of

groundwater sources of each individual peak. For events 1 and 3 the second peak had

a higher EC mean than the first peak of these events, however the second event had

a smaller EC mean for the second peak due to the additional rainfall.

Event-based sampling is often used to estimate event mean concentration or event

loads for water quality modelling (Wang et al., 2011; Bartley et al., 2012). Ratio

based methods are commonly used to estimate true loads, however these require
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probabilistic sample designs (Wang et al., 2011). These results show how a simple

time-stratified sample design can provide unbiased accurate mean estimates which can

be used in conjunction with ratio based methods, or used to directly estimate event

loads (Thomas and Lewis, 1995). Many water quality models now require estimates of

event mean concentration (Feikema et al., 2011; Bartley et al., 2012). Time-stratified

sampling offers the ability to provide unbiased accurate event mean concentrations

for these models.

5.6 Conclusion

We have successfully presented the use of a simple time-stratified sampling scheme

which can be implemented in the bounds of current hardware limitations. The method

provided accurate mean event estimates of two water quality properties affected by

different flow paths. Through this we have shown;

1. Probabilistic sampling schemes do not require great complexity to provide ac-

curate event mean estimates.

2. It is possible to use probabilistic sampling schemes to provide accurate event

means of two separate water quality variables affected by two different flow

paths without any additional hardware or software.

3. Estimates of key hydrograph components can be made using re-stratification

after each event.

Improvements to the sample design are possible by optimising the number of samples

per strata in order to get more precise estimates of the event mean. For example, more

variable strata would receive more samples. Unbiased meaningful sampling schemes

are required as it is highly unlikely that continuous monitoring devices will be widely

deployed. Event-based water quality sampling schemes require additional attention

to provide unbiased accurate estimates of event exports and should not be limited to

systematic sampling schemes.
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Chapter 6

Estimating water quality using linear

mixed models with stream discharge

and turbidity

6.1 Summary

Most water quality monitoring schemes rely on estimation methods as it is often too

expensive to monitor water quality properties continuously. Estimations are used to

evaluate management strategies and long term trends. It is critical that the methods

used provide accurate estimations of water quality and the associated uncertainty.

Currently the most common estimation methods assume observations are sampled

using a probabilistic sampling scheme, however this assumption is often not met.

This chapter evaluated the ability of a linear mixed model to estimate water quality

concentration values based on observations collected using non-probabilistic sampling.

The linear mixed models were used to predict total phosphorus and total nitrogen

observations from two catchments in south east Australia. A comparison between

stream discharge and turbidity as predictors is made to investigate the effectiveness

of turbidity to estimate water quality. In addition to stream discharge and turbidity,

several covariates were derived from stream discharge in an attempt to account for



142
Estimating water quality using linear mixed models with stream discharge and

turbidity

hydrological processes. To compare models and their covariates leave one out event

cross validation was performed. Event cross validation evaluated predictions during

periods of high stream discharge. For both catchments the use of turbidity instead

of stream discharge increased the accuracy of predictions by at least 15% for total

phosphorus and total nitrogen. However, event based cross validation indicated that

a combination of both turbidity and stream discharge based variables provided more

accurate predictions, increasing the event RMSE by 18% for total phosphorus and

24% for total nitrogen. In catchments characterised by long periods of base-flow and

short rainfall events the addition of turbidity measurements provide more accurate

predictions during base flow and during events.

6.2 Introduction

Water quality monitoring provides critical information about the health of a catch-

ment. In many situations catchment managers require accurate information to be able

to implement management strategies. In Australia the relationship between stream

discharge and other variables is quite complex (Davis and Koop, 2006; Drewry et al.,

2009). Total nitrogen and total phosphorus are two key nutrients in Australian catch-

ments, for example in large concentrations these two naturally occurring nutrients can

often cause algae blooms (Davis and Koop, 2006; Kristiana et al., 2011). As a result

catchment managers require estimates of nutrient fluxes to understand and manage

catchment processes.

However environmental sampling is expensive, and water quality is no exception.

With large catchments and numerous properties it is unrealistic to expect continuous

time series data for all properties at all sampling locations. Combined with large

analytical costs larger Australian catchments often have additional expenses due to

travel time. The annual expense of water quality monitoring in Australia is esti-

mated to be in excess of $142M (Bartley et al., 2012; Kristiana et al., 2011). Most

monitoring schemes can only afford to continuously monitor stream discharge and

rely on sparse water quality sampling. Therefore suitable and reliable methods are
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required to gain an understanding of the processes within a catchment. Many studies

rely on load estimation methods to evaluate water quality over a duration of time

(e.g. monthly or annually). Australian catchment managers use the Australian and

New Zealand guidelines for fresh and marine water quality (ANZECC) guidelines to

assess water quality (ANZECC, 2000; Bartley et al., 2012). The ANZECC guidelines

provide concentration based thresholds for various variables and catchment types. As

the guidelines provide threshold values in the form of concentrations, catchment man-

agers require methods to evaluate the observed data in relation to these thresholds.

Catchment managers also rely on load estimations to evaluate management practices

and perform trend assessments. Regression based methods use affordable covariates

such as stream discharge to estimate temporal water quality concentrations, which

can also provide load estimates, all at the frequency of stream discharge.

The most common water quality sampling scheme is based on sampling at equally

spaced intervals in time. In south eastern Australian catchments it is common for

catchment managers to use a monthly sampling scheme and in some instances a

form of storm based sampling as these events correspond to high nutrient exports

(Armstrong and Mackenzie, 2002; Drewry et al., 2009; Bartley et al., 2012). South-

east Australian rivers are characterised by short rainfall events. These short rainfall

events are often separated by long dry periods, increasing the amount of export in

following events (Drewry et al., 2009). Hopmans and Bren (2007) discovered that

70% of 6 years suspended sediments was exported during one rainfall event in a part

of the Buffalo River catchment in north eastern Victoria. Increasing complexity is

introduced as the relationship between water quality and stream discharge differs

within and between events (Drewry et al., 2009). One issue within events is the

hysteresis between stream discharge and water quality properties, which is caused by

different trends during the rising and falling stages of the hydrograph. In addition,

the distance between rainfall events can vary and may effect the amount of nutrients

exported during the initial rising stage of the event hydrograph.

The importance of load estimation methods for monitoring water quality is evident

by the the amount of load estimation methods available. In a single study Marsh
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and Waters (2009) evaluated 34 different load estimation techniques. More recently

artificial neural networks have been shown to provide accurate water quality load

estimates (He et al., 2011). However, the majority of load estimation techniques

fall into three main categories; average, ratio and regression methods (Marsh and

Waters, 2009). In the simplest form averaging methods use the product of the mean

concentration and the corresponding mean discharge

L = N (q̄c̄) (6.1)

where q̄ is the mean stream discharge at the sampling times, c̄ is the mean concen-

tration, and N is the total samples of the continuously sampled stream discharge Q

(Cooper and Watts, 2002). Ratio based methods extend the averaging methods to

include all observed stream discharge values

L =
N (q̄c̄)

q̄
Q̄ (6.2)

where Q̄ is the mean of all observed stream discharge values (Cooper and Watts,

2002). Both averaging and ratio based methods can only provide load estimations for

time intervals which have enough observations to calculate a mean. For example, for

monthly sampling this would be a 2 monthly average. On the other hand regression

methods provide a continuous concentration estimate and the integral multiplied by

Q provides a load estimate. The most commonly applied regression method is

c(t) = Xβ + ε, (6.3)

where c is the log transformed concentration at sampled time t, X is the design

matrix, often only using log transformed stream discharge (q) as a predictor, β is a

vector of coefficients, and ε is a vector of errors with a normal distribution. When

fitted using ordinary least squares it is assumed that the errors are independent and

identically distributed (iid) and have the following distribution; ε ∼ N (0, σ2) (Lark

and Cullis, 2004).
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The three common load estimation methods have been compared in many studies

(Cassidy and Jordan, 2011; Marsh andWaters, 2009; Johnes, 2007; Cooper andWatts,

2002; Kronvang and Bruhn, 1996). These studies often examine the effect of sample

size on load estimates. Ratio based methods have been shown to provide the most

accurate estimates of the three categories by Cassidy and Jordan (2011) and Johnes

(2007). Marsh and Waters (2009) found ratio based methods to provide the most

accurate load estimates when water quality sample sizes are smaller than 20 and

continuous stream discharge data is available. However, both Marsh and Waters

(2009) and Quilbé et al. (2006) proposed the use of a regression method in the presence

of a strong correlation between stream discharge and the water quality property.

Sampling schemes that use either routine sampling (e.g. monthly) or a combination

of routine and event based sampling are not probabilistic (i.e the samples times are

not selected randomly). By using this type of sampling scheme there is an unknown

inclusion probability of collecting a sample at a particular point in time. The three

main types of estimation techniques all assume probabilistic sampling. The bias due

to these sampling schemes and the assumptions of the load estimation methods has

long been acknowledged (Thomas, 1985, 1988; Crawford, 1991; Cohn et al., 1992;

Cooper and Watts, 2002; Cohn, 2005). Average and ratio based methods assume the

data is sampled using simple random sampling which is rarely the case (Cooper and

Watts, 2002). Regularly used regression methods fitted using ordinary least squares

will provide unbiased estimates of coefficients, however the variance estimates will be

biased when the sampling scheme is not probability based (Lark and Cullis, 2004).

This is a problem when both predictions and the prediction variance are required.

Linear mixed models (LMM) provide the ability to handle non-probability based sam-

pling schemes by using a model-based approach (Lark and Cullis, 2004). Lark and

Cullis (2004) compared ordinary least squares and LMM methods for estimating soil

attributes. Their results indicated that the variance estimates from OLS were bi-

ased, as the OLS methods assumed the samples where independent of each other and

had equal inclusion probabilities. They found an increase in variance with the use

of LMMs as the model accounts for the non-probabilistic sampling scheme. Water
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quality sampling shares many similarities to systematic soil sampling, as the sam-

ples are non-probabilistic and there is auto-correlation between samples. With these

similarities, LMM based estimations should provide less biased estimates of the pre-

diction variance, than conventional methods. Furthermore, since LMMs model the

auto-correlation in the model residuals, this can also be used to interpolate the model

residuals using kriging. The kriged residuals are added to regression predictions at

each prediction location to give an improved prediction (Bivand et al., 2008). Another

major benefit from using regression based methods is due to the ability to include

covariates other then stream discharge e.g. rising and falling limbs and time since the

last rainfall event. In addition to these covariates Wang et al. (2011) also proposed

the use of a discounted flow covariate which uses a weighting function to account for

stream discharge prior to events. Turbidity has also been used in regression based

models to estimate TP as it directly relates to the water quality of the stream. Jones

et al. (2011) found in-situ measurements of turbidity were significant covariates for

estimating TP in a catchment in Utah. With the existence of relative low cost reliable

turbidity sensors it is now feasible for catchment managers to use these sensors for

continuous monitoring.

Therefore the aims of this paper are to

• present the use of LMMs for predicting water quality

• compare the use of discharge-related predictor variables proposed by Wang et al.

(2011) with turbidity measurements

• focus the comparison on the prediction quality for flow events as these are when

most export of nutrients and sediments occurs under Australian conditions.

This will be illustrated with a dataset of TP and TN for 2 sub-catchments draining

into Lake Burragorang, the main reservoir for supplying Sydney’s drinking water.
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6.3 Materials and methods

6.3.1 Catchment description

This study involves the analysis of two sub catchments within the greater Lake Bur-

ragorang catchment. Lake Burragorang is located south west of Sydney, Australia.

The lake is responsible for delivering 80% of Sydney’s drinking water (Armstrong

and Mackenzie, 2002; Kristiana et al., 2011). The immediate surrounding area of

the lake is closed to the public and mainly consists of native forest. The remaining

areas of the catchment mainly consist of agricultural pasture, with small urbanised

areas. Two main land forms are found in the catchment; a gorge system nearest the

lake, and a plateau in the southern outer reaches (Armstrong and Mackenzie, 2002).

Approximately 105000 people reside in the greater catchment (Kristiana et al., 2011).

Figure 6.1 shows the location of the two sub catchments in relation to Lake Burrago-

rang. The two sub catchments are quite different in size, with the southern catchment

(Wollondilly) being 4800 km2 and the narrower northern catchment (Coxs) being 1448

km2, with lengths of 251 and 106 km respectively. The maximum length of overland

flow of each catchment was determined using the methods outlined by Jasiewicz and

Metz (2011). Table 6.1 highlights these differences. The Coxs catchment is domi-

nated by gorges, with 70% coverage by forest and only 25% pasture/grassland with

a mean elevation of 850 m. In contrast the Wollondilly catchment has 57% pasture/-

grassland, mainly in the mid/upper reaches with 39% forest, mainly located nearest

to the lake and a mean elevation of 710 m. Table 6.1 shows the northern part of the

main Lake Burragorang catchment has a higher annual rainfall as compared to the

southern part.

6.3.2 Data description

The outlet of both sub-catchments has a near continuous (15 minute) stream height

monitoring device, and a storm based ISCO 3700 automatic sampler (ISCO Inc. Lin-

coln, Nebraska, America). The current sampling scheme consists of routine monthly
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SYDNEY
Coxs

Goulburn airport

Wollondilly

Wallacia post office

Katoomba (Murri St)

Watercourse

Water quality site

Rainfall site

Figure 6.1 – Map indicating location of the two sub-catchments in relation to Lake
Burragorang, and location within Australia.

grab samples and storm based sampling which targets the upper 90 percentile of

stream discharge. The automatic samplers are designed to trigger at a predetermined

stream height which is the 90th percentile. Using two stratifications the automatic

samplers are setup to take samples at short regular intervals during the start of an

event, and longer regular intervals later in the event. Strata lengths and sampling

intervals are based on historical records at both sites, and have changed since the

samplers introduction. An almost continuous time series of stream discharge is avail-

able for both sub catchments for the study period (1991 - 2008). Total phosphorus

and total nitrogen have been sampled on a monthly basis at both sub catchments,

using acid digestion methods. Since the introduction of the storm based samplers,

both sites have sporadic samples from storm events, however the frequency of these

samples are varied, and based on several factors including actual storm frequency.
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Table 6.1 – Summary statistics for the two sub-catchments

Sub-catchment characteristics Wollondilly Coxs
Landcover (Main types)
Pasture/grassland (%) 57 25
Forest (%) 39 70

Topographical features
Maximum overland flow distance to outlet (km) 251 106
Minimum elevation (m) 85 115
Mean elevation (m) 710 850
Maximum elevation (m) 1176 1331

Mean annual rainfall (1991 - 2008)a
Goulburn Airport (mm) 507
Wallacia Post Office (mm) 740 740
Katoomba (Murri St) (mm) 1241

Mean annual stream discharge statistics (1991 - 2008)
Total discharge (GL year−1) 4609 767
Minimum daily discharge (ML d−1) 10 19
Mean daily discharge (ML d−1) 529 267
Maximum daily discharge (ML d−1) 36004 21501
a See Figure 6.1 for rainfall locations

The ANZECC (2000) guidelines for these sub-catchments recommend a threshold of

0.02 mg L−1 and 0.25 mg L−1 for TP and TN respectively. Table 6.2 shows that at

both sites both the observed median and mean (except TP at the Coxs sub-catchment)

are above the recommended levels. The total samples collected at each site is higher

for the Wollondilly sub-catchment for both TP and TN. The Coxs sub catchment has

a maximum observed TN value twice that of the Wollondilly sub-catchment, however

both sub catchments have similar observed TP values. For each site the hourly stream

discharge was assigned to each water quality observation. Table 6.2 also provides a

summary of observed turbidity for each sub-catchment, these values are derived from

laboratory analysis for all samples that were collected at the site. At each site the

upper detection limit of turbidity was 1000 NTU, therefore the maximum observed

value for both catchments is 1000 NTU. As it is not possible to determine the actual

turbidity for these samples, they have been excluded from the models. A greater
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amount of turbidity measurements have been conducted as it is cheaper to analyse.

We rely on lab measured turbidity to reflect the possibility of using an in-situ turbidity

probe to provide continuous turbidity measurements.

Table 6.2 – Summary statistics of water quality for each sub-catchment .

Sub-catchment Wollondilly Coxs
Variable TP TN Turbidity TP TN Turbidity

mg L−1 mg L−1 NTU mg L−1 mg L−1 NTU

min 0.001 0.17 0.54 0.001 0.05 0.2
mean 0.06 0.78 69.39 0.03 0.50 17.61
median 0.02 0.58 15.25 0.01 0.23 4.55
max 1.26 6.43 1000* 1.92 13.2 1000*

variance 0.01 0.37 18104.98 0.02 1.07 3342.6
skewness 6.39 3.5 3.97 11.25 9.62 11.12

n 454 464 1242 386 390 1062
* Maximum detection limit

6.3.3 Statistical analysis

The model applied in this paper is often applied in spatial sciences. The LMM is

beneficial in spatial sciences as it accounts for the spatial auto-correlation between

samples. In this paper the spatial auto-correlation is replaced by the temporal auto-

correlation between the water quality observations. It is important to note that the

LMM used in this paper relies on a variogram structure to model the temporal auto-

correlation and therefore requires samples at temporal distances that help build the

model of the temporal auto-correlation structure.

The LMM differs from the linear model (eq. 6.3) by treating all effects not taken

into account in the (n× p) design matrix X as a random variable η (Lark and Cullis,

2004)

c(t) = Xβ + η. (6.4)

There is no requirement of iid samples as β is now assumed to have a correlation

structure η ∼ N (0,V), where V is a positive definite matrix of the variance (σ2)
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and the covariance. There are many different model structures available for the

auto-correlation between the samples. In this paper the temporal auto-correlation is

assumed to be in the form of an exponential model. Therefore V has the following

structure:
Vi,j = σ2s exp

(
−|xi−xj|

a

)
, i 6= j

σ2, i = j,

(6.5)

with the variance σ2 as the diagonal and all other values characterised by the ex-

ponential covariance structure where |xi − xj| is the temporal distance between two

samples, a is the distance parameter of the exponential function, and s is defined as;

s =
c

c0 + c
, (6.6)

where c0 is the nugget component, which is the unexplained variance, often referred

to as sampling error from laboratory analysis, with c0 + c describing the maximum

variance between two variables. As the temporal structure of the model is heavily

dependent on the observed samples, it is important that samples are observed at

proximities that are within the range of auto-correlation. If the temporal distances

between samples are greater then the actual temporal structure of the auto-correlation

(∼ 3a) then this may result in a nugget model. (Marchant and Lark, 2007).

The estimation of the model requires the estimation of both the model coefficients (β)

and the parameters (θ) of the variance-covariance matrix (V). In this paper residual

maximum likelihood (REML) is used. As explained by Lark and Cullis (2004) the

estimation of β is conditional on θ when using REML. The models were fitted using

the optimisation methods of the geoR package (Ribeiro Jr and Diggle, 2001).

It is possible to predict concentration (c) at an un-sampled time t0 using a 1× p row

vector of x(t0) of the prediction design matrix (x). Based on the LMM (equation 6.4)

the prediction equation is defined as follows;

c(t0) = x(t0)β̂ + v′V−1
(
c(t)−Xβ̂

)
, (6.7)
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where β̂ = (X′V−1X)−1X′V−1c(t) is the least squares estimate of the trend coeffi-

cients. The equation is a combination of the regression estimate at the location x(t0)β̂

and the kriged residuals of the model (c(t)−Xβ̂) estimated from the auto-correlation

of the observed and prediction locations (v′V−1) (Bivand et al., 2008). Using this

method the residuals of nearby observations are used to improve the model predic-

tions. The associated prediction variance is;

σ2(t0) = σ2
0 − v′V−1v + δ

(
X′V−1X

)−1
δ′, (6.8)

where σ2
0 is the variance of c(t0) and δ = x(t0)− v′V−1X.

When all observations are uncorrelated with the prediction location v′V−1v equals

zero and equals σ2
0 when the prediction location coincides with an observation. The

last term in equation 6.8 is the estimation error, i.e var
(
β̂ − β

)
= (X′V−1X)

−1

(Bivand et al., 2008). In the context of this study the concentration values were log

transformed for the model. The back transformation of the predicted concentration

(c) is;

T (c(t0)) = exp
(
c(t0) +

σ2(t0)

2

)
(6.9)

and the back-transformed prediction variance is;

T (σ2(t0)) = exp
(
2c(t0) + σ2(t0)

) (
exp(σ2(t0)− 1

)
. (6.10)

The prediction quality of each model was assessed using leave-one-out-cross-validation

(LOOCV), where each sample is removed from the model and then predicted based on

the remaining samples. Prediction quality was assessed using three different measures;

Mean squared error (ME)

=
1

n

n∑
i=1

(
ˆ̄c(ti)− c(ti)

)
(6.11)

Residual mean square error (RMSE)

=

√√√√ 1

n

n∑
i=1

(c̄(ti)− c(ti))2 (6.12)
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Mean square deviation ratio (MSDR)

=
1

n

n∑
i=1

(
ˆ̄c(ti)− c(ti)

)2

σ̂2(ti)
, (6.13)

where ˆ̄c(ti) is the prediction and c(ti) is the observation at the time of the ith sample

based on the LOOCV results. The ME reflects the bias of the estimates and should be

close to zero, accuracy of the model is assessed using the RMSE, where smaller values

are desired. The MSDR reflects how the prediction variance represents the actual

error and should be close to 1. For each model the cross-validation was performed

using the predictions on the log scale. In addition to performing LOOCV on the

entire data set, cross validation was also performed on event based samples. As large

amounts of nutrients are exported during events it is important that the performance

of a model during these periods are examined. The cross validation of events was

performed by removing all observations within an event and predicting at these sample

times. This process was performed for each event and was assessed using the same

measures as the LOOCV.

6.3.4 Model covariates

Several covariates were examined for TP and TN at each site to explain additional

variation that is not explained by stream discharge. Four models were produced for

TP and TN at both sub-catchments. The covariates of the four models are based on;

model 1: stream discharge,

model 2: stream discharge and derivatives of stream discharge,

model 3: turbidity and

model 4: a combination of model 2 and model 3.

Stream discharge was examined first, as this is commonly measured and used in

load estimation studies. As explained by Wang et al. (2011) it is possible to derive
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covariates to reflect controlling factors of nutrient exports and these were included in

model 2. To account for hysteresis of the water quality-discharge relationship during

events, a covariate representing the direction of change of stream discharge during

an event was used to reflect if the stream was rising or falling. The "first flush"

phenomena is the relationship with larger exports during the start of the first event

after extended dry periods. Wang et al. (2011) describes this in regards to tropical

environments where during dry periods there is an accumulation of biomass in the

catchment, which is exported during the initial stages of the first rainfall event of

the wet-season. As south-east Australian catchments experience long dry periods

the first-flush effect will also be investigated. The first flush covariate was formed

based on the distance between periods when discharge was greater then the annual

90th percentile. Another approach proposed by Wang et al. (2011) to account for

different duration of base-flow between events is to use discounted flow. The formula

for discounted flow is

DF (d) =

∑j
i=1 d

j+1−iq̂j∑j
i=1 d

j+1−i
, (6.14)

where several different levels of d can be used. The formula is effectively the average of

j historical observations with the weight of each observation i decreasing exponentially

back to the jth time. Based on Wang et al. (2011) five levels of d were examined

(0.50, 0.75, 0.9, 0.95, 0.99), where 0.95 per day is equivalent to 0.5 per fortnight and

less then 0.5 is the current stream discharge (Wang et al., 2011).

Models 1 and 3 only included stream discharge and turbidity respectively. Model 2

was fitted using stream discharge, time since last event and the event direction as a

base model. Each DF level was added one-by-one to determine which DF covariate

was the most significant. Wald tests were used to assess the significance of each

covariate, this procedure is outlined by Lark and Cullis (2004). At this stage the

model included stream discharge, time since last event, event stream direction and

the most significant DF covariate. For each model backwards elimination was used

to determine which covariates were significant variables. Model 4 was a combination

of model 3 and model 2. With the combined model backwards elimination was used

to determine the effectiveness of turbidity as a covariate, and examine which if any
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covariates would be dropped from the model.

6.4 Results

6.4.1 Stream discharge models

By using a LMM it is assumed that the relationship between stream discharge and

the water quality variables form a linear relationship. Figure 6.2 shows the linear

relationship between the transformed stream discharge and water quality variables at

each site, with model 1 shown by the line. The R2 of the fitted values only using the

linear components of the model is also shown for each model. There is scatter at low

stream discharge levels in the relationship for both TN and TP at each site. This

scatter appears to affect the slope of the linear relationship causing underestimation

at higher stream discharge levels. In addition to the effect of the scattering at low

stream discharge there are also other factors controlling TP and TN during events.

Figure 6.4 a illustrates this as it shows the observed TP-discharge relationship for

the Wollondilly sub-catchment during an event in 2007 with the corresponding pre-

dictions of the stream discharge model (model 1). The observed values during this

event are well above the model, and the model does not intersect with the observed

samples, indicating that predictions based on this model would underestimate TP

during events.

A major benefit of using LMM is the ability to model the temporal auto-correlation

between the residuals, and use this to krige the residuals to improve the predictions.

Figure 6.3 shows the modelled correlation structure (line) of the stream discharge

based models (model 1) overlaying the semivariogram. The sill of both TP mod-

els indicate the maximum variance between the residuals with the auto-correlation

between samples of a greater distance then (∼ 3a) equal to that of the fitted sill.

Table 6.3 summaries the stream discharge based models (model 2) fitted using back-

ward elimination with the most significant discounted flow variable. For all models

the inclusion of the additional covariates reduced the RMSE for Wollondilly (TP, TN)



156
Estimating water quality using linear mixed models with stream discharge and

turbidity

−6

−4

−2

0

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●●

●

●

●●

● ●●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●● ●

●
●
●

●
●

●

●
●

● ●

●
●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

● ●

● ●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●
● ●●

●

●

●●●

●●●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●●
●

●

●

●

●

●
●●●

●
●
●

●●●

●

●
●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●
●

● ●

●●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

a.
TP (log) = − 5.42 + 0.25 Q (log)

R2 = 0.44

0 5 10

stream discharge (log ML d−1)

to
ta

l p
ho

sp
ho

ru
s 

( 
lo

g 
m

g 
L−1

)

−1

0

1

2

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

● ● ●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●
●●

●

●
●

●

●

●

●

●●

●
●
●
●

●

●

●●

●

● ●

●

●

●
●●

●

●

●
●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

b.
TP (log) = − 1.45 + 0.14 Q (log)

R2 = 0.42

0 5 10

stream discharge ( log ML d−1)

to
ta

l n
itr

og
en

 (
 lo

g 
m

g 
L−1

)

−6

−4

−2

0

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●
●

●
●
●

● ●

●
●

●

●

●

●

●● ● ●
●

●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●

●

●● ●

●●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

● ●●● ●●●●●●

●

●

●

●

●●● ● ●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●
●

●
●

●●●●

●

●●

●●● ● ● ●● ●●● ●●

●

●

●

●●

● ●●●

●

●●●

●

●●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

● ●●

●

●

●

●●

●

c.
TP (log) = − 6.27 + 0.32 Q (log)

R2 = 0.28

2 4 6 8 10

stream discharge ( log ML d−1)

to
ta

l p
ho

sp
ho

ru
s 

( 
lo

g 
m

g 
L−1

)

−2

0

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●●

●

●●

●

●

●

●

●

●

●●
●

●
●●●

●●

●●●●●●●●●

●

●

●●●●●●

●

●

● ●

● ●●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●●

●
●●●

●

●
●

●●
●

●

●

●

● ●●● ●

● ●

●

●

●

●

d.
TP (log) = − 3.06 + 0.29 Q (log)
R2 = 0.45

2 4 6 8 10

stream discharge ( log  ML d−1)

to
ta

l n
itr

og
en

 (
 lo

g 
m

g 
L−1

)

Figure 6.2 – Linear model between stream discharge and water quality variables (model
1). a) Total phosphorus for Wollondilly sub-catchment. b) Total nitrogen for
Wollondilly sub-catchment. c) Total phosphorus for Coxs sub-catchment. d) Total
nitrogen for Coxs sub-catchment.

and Coxs (TP, TN) from (0.78, 0.41, 0.82, 0.60) to (0.73, 0.39, 0.75, 0.58) respec-

tively. For each model the most significant discounted flow variable stayed in each

model with both Wollondilly models including discounted flow with d = 0.5. Event

distance remained in the final model for both TN and TP models at Wollondilly. The

event direction covariate remained in the TN models at both sites and the TP model

in the Coxs sub-catchment. The temporal range of the variogram structure was larger

for both models in the Wollondilly sub-catchment, where the range was less then 4

days for both TN and TP in the Coxs sub-catchment. LOOCV results show that

there is little bias in each model and based on the MSDR the predicted variance re-
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Figure 6.3 – Semivariogram of residuals for discharge only models. a) Total phosphorus
for Wollondilly sub-catchment. b) Total nitrogen for Wollondilly sub-catchment.
c) Total phosphorus for Coxs sub-catchment. d) Total nitrogen for Coxs sub-
catchment.

flects the actual error. Each model must be evaluated in regards to periods of higher

flows which relate to short events. The accuracy of predictions during events without

the support of event based samples showed that the accuracy of all models decreased,

however the MSDR indicates that the predicted variance of TN Coxs underestimated

the actual error, whereas the other three models over-estimated the actual error.

6.4.2 Turbidity models

Previous research in the catchment had found strong relationships between nutrients

and turbidity measurements. For each catchment, TN and TP were modelled using

turbidity instead of stream discharge. At each site model 3 using only turbidity

showed that turbidity was a significant covariate for TN and TP. By adding turbidity
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to the stream discharge model (model 2) several covariates were dropped from the

models. The discounted flow covariates were dropped from the TP and TN models

at Wollondilly. The TN model at Wollondilly also dropped stream discharge, but

kept event distance and event direction in the model. With the inclusion of turbidity

in both TP models both event direction and event distance were dropped from the

models. In regards to LOOCV turbidity (model 3) improved the accuracy by reducing

the RMSE of the best discharge based model (model 2) from (0.73, 0.39, 0.75, 0.58) to

(0.62, 0.33, 0.62, 0.47) for Wollondilly; TP, TN and Coxs; TP, TN respectively. Table

6.4 summaries the combination of stream discharge and turbidity models (model 4),

with values within parentheses representing results of the turbidity models (model

3). For model 4, there was little change in the RMSE for both TN and TP at

both catchments. Based on observed data non-soluble sources (nitrate, nitrite and

ammonium) of TN only contribute an average of 18% and 22% at the Wollondilly and

Coxs catchments respectively therefore turbidity is a good predictor. TP was plotted

against turbidity (figure 6.4 b) for the same 2007 event as stream discharge (figure 6.4

a). The main difference between the relationship between the TP-turbidity and the

TP-discharge relationship is that the turbidity based model intersects the observed

samples. The R2 of the model with the observations shown in figure 6.4 is 0.29 and

0.41 for stream discharge and turbidity model respectively.

The RMSE of the models with only turbidity and the turbidity-discharge models (ta-

ble 6.4) shows that there is little difference between the accuracy of the two model

types. However there are differences between the turbidity (model 3) and combined

turbidity models (model 4) in regards to event cross validation. All models except TP

at the Coxs sub-catchment were more accurate when hydrological based covariates

were included in the model. Separated by hydrological state the soluble sources of ni-

trogen are higher during events at both sub-catchments, contributing (17%, 25%,33%)

and (13%, 24% ,24%) during base-flow, rising and falling stages at Coxs and Wol-

londilly sub-catchments respectively. These differences between the hydrograph stages

is why the event direction covariate was kept in the final model and why the extra

variables give better predictions than turbidity alone. The increase in soluble nitrogen
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Figure 6.4 – An event in November 2007 at the Wollondilly sub-catchment with global

model and R2 for the observations of the event shown. a) Stream discharge rela-
tionship. b) Turbidity relationship.

sources may be due to a delayed response from soluble nitrogen entering the streams

from through-flow and groundwater interactions. Total phosphorus models that in-

cluded turbidity and hydrological based covariates had temporal correlation between

samples of less then 10 days. The temporal correlation between TN samples was

longer for the Coxs sub-catchment with correlation between samples up to 15.3 days.

The temporal correlation between samples for TN in the Wollondilly sub-catchment

was much greater then the other models with correlation between samples up to

244 days. This extended temporal correlation for TN may be due a combination of

catchment size and soluble sources of nitrogen which may effect the auto-correlation

between the samples at greater temporal distances.

6.4.3 Event concentration estimation

Using the best stream discharge based model (model 2) and the best turbidity based

model (model 4) predictions for a set of rainfall events were made for TP in the

Wollondilly sub-catchment. For the set of events, the predictions where made in the

absence of all the observed TP during the three events, to reflect the effectiveness

of each model when there are no observations made. In this scenario the predic-
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tion method does not benefit from the kriging of residuals based on the temporal

auto-correlation as there are no nearby observations. This comparison is designed to

compare the two methods in a situation where no observations have been made, and

an estimation is required. Figure 6.5 shows the observed stream discharge for the pe-

riod, the observed TP, stream discharge and turbidity based predictions. The stream

discharge based model over estimated the first smaller event, and underestimated the

next three events. The turbidity based model estimations were closer to the observed

TP values during the first event, and also underestimated TP for the following three

events. Based on the observations the mean of this period was 0.15 mg L−1. Using the

predictions of the corresponding observations the stream discharge based estimations

had estimated a mean TP of 0.11 mg L−1 and the turbidity based model estimated

a mean of 0.12 mg L−1. Using Lin’s correlation coefficient as a measure of accuracy

(Lawrence and Lin, 1989), the accuracy of the predictions is 0.63 and 0.17 for the

turbidity and stream discharge models respectively. The main difference between the

predictions of the two models is that during an event the trend of the turbidity based

predictions tends to follow the trend of the observed TP during each event. This is

because turbidity is directly measuring water quality so factors such as hysteresis and

antecedent conditions that add noise to the discharge model do not matter as much.

6.5 Discussion

Linear mixed models provide an unbiased variance estimate of the linear based pre-

diction in the presence of systematically collected samples, and provide a method to

model the temporal auto-correlation between water quality samples. In additional to

providing unbiased water quality estimates, it is possible to use or include covariates

other than stream discharge to improve water quality estimates. This ability of us-

ing other covariates is beneficial due to complex nutrient transport pathways. The

application of LMMs in this chapter has outlined several benefits of its use and how

the results of the fitted models can be used to characterise catchments and provide

information about the factors controlling water quality.
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Figure 6.5 – Observed and predicted TP for a series of events in June 2007. a) Observed
stream discharge during the period. b) Observed and predicted TP at corresponding
sample times. Model 2 predictions are based on the stream discharge model (table
6.3) and model 4 predictions are based on the combined stream discharge and
turbidity model (table 6.4).

The results indicate that the inclusion of turbidity was a significant covariate and im-

proved the accuracy of each model for TN and TP. This indicates that in catchments

where the main sources of TP and TN are non-soluble forms, turbidity is a significant

covariate and provides more accurate predictions then stream discharge alone. In

the Wollondilly sub-catchment turbidity accounted for the distance between events,

and in the Coxs sub-catchment turbidity replaced the direction of the event for the

TP models. This is because turbidity directly measures water quality and stream

discharge indirectly relates to water quality.
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The LOOCV results indicated that the predicted variance of the final models was

equivalent to actual error. This is important for catchment managers as it gives a

prediction and a validated uncertainty of prediction. The temporal range of TN in the

Wollondilly sub-catchment was quite large and possibly over estimated. Variograms

fitted using REML are sensitive to outliers and the fitted temporal structure is heavily

dependent on the available samples and the temporal distances between them. Re-

cently Marchant et al. (2010) have evaluated robust variogram estimation methods

that are less sensitive to outliers that may prove beneficial to LMM in regards to

water quality models.

Turbidity proved to be strong covariate for both TP and TN, however the event cross

validation indicated that TN models required a combination of hydrological based

covariates and turbidity in respect to predictions of events where no observations are

made. This is an important finding as most sampling schemes in Australia do have

a form of event sampling, however these sampling schemes do not provide complete

coverage of the each event. In catchments with high nutrient exports during short

rainfall events it is important to examine load estimation models for accuracy during

these periods.

Catchment managers would benefit from the use of low-cost novel turbidity sensors

with LMM to provide accurate TP and TN estimates. These high frequency esti-

mates would greatly improve the understanding of the dynamics in the catchment.

In regards to regulatory requirements, this approach would provide an estimate of

the percentage of time in a certain period that the government threshold is exceeded.

In addition, the accuracy of the estimate could also be reported.

The event predictions of the two models indicated that both models underestimate

the observed TP, however the inclusion of turbidity in the each model improve the

predictions as predictions with turbidity as a covariate tended to follow the trend

within each event. With both TN and TP being contributed to by mainly non-soluble

sources it should not be surprising that the turbidity was a significant covariate.
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6.6 Conclusion

The use of common estimation techniques; average, ratio and regression methods

must be applied in situations where systematic sampling has not occurred otherwise

these estimation techniques may introduce bias in the estimation of the prediction

variance. This investigation has highlighted that;

• there is temporal auto-correlation within TP and TN samples which needs to

be accounted for in order to create statistically valid models. Linear mixed

models provided the ability to linear based predictions in the presence of this

auto-correlation.

• turbidity outperforms discharge and discharge-related predictors for predicting

TN and TP. Therefore it’s recommended that where possible turbidity sen-

sors should be adopted but in their absence, discharge only methods should be

avoided.

• stream discharge derived covariates and turbidity can improve TP and TN es-

timation models,

• validation of water quality models must examine the effects of the model in

relation to storm events.

As many other studies have found estimating TP and TN is difficult during events.

The LMMs presented here offer a method to account for non-probabilistic sampling

often used in water quality monitoring programs. More work is required to determine

optimal sampling schemes for Australian conditions with a particular emphasis on

event based samples.
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Chapter 7

General discussion and future

research

The theme of this thesis has been to improve water quality monitoring with an em-

phasis on improving the applied sampling scheme and the statistical analysis methods

used for reporting the state of the catchment.

7.1 Water quality sampling

7.1.1 Event-based sampling

Monthly routine sampling is the most commonly used sample frequency by catch-

ment managers. However, this form of sampling often misses rainfall events. The

sampling of these events is necessary as large proportions of sediments and nutrients

are exported during these periods. Therefore catchment managers are increasingly

installing automatic sampling equipment which can sample these events. Currently,

the majority of studies which have examined the effect of sampling schemes on the

accuracy of load estimates require access to continuously sampled data. The collec-

tion of this data is extremely expensive, and therefore these studies have only been

carried out in a limited amount of catchments. As many catchment managers have
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access to historical data, statistical methods are required to gain information from

this data (Burt et al., 2011).

Chapter 3 presented a simulation based method which used a linear mixed model

to describe the relationship between total phosphorus and stream discharge. This

simulation method is commonly used in soil science to simulate spatially correlated

data (Gebbers and Bruin, 2010). Using this procedure it was possible to examine the

effect of including event-based sampling. Using several sites located west of Sydney

the results of this analysis found;

• event-based sampling improved the annual load estimates for each site.

• the level of improvement in accuracy was greater for catchments with larger

relief and higher annual rainfall.

• the simulation based procedure allows for the comparison of different sampling

schemes without the need of continuously monitored water quality data.

7.1.2 Estimating the required sample size

The sample size will directly effect the precision of the mean. As with the evaluation

of different sampling schemes, many studies have relied on access to continuous water

quality data. In order to improve the efficiency of a monitoring program catchment

managers require a method to relate the sample size to the precision with which the

mean is known. By characterising this relationship it is then possible to estimate the

cost of improving the precision of the mean. Many catchment managers have access

to limited historical data, however the sampling schemes are often not probabilistic.

Due to this sampling scheme, a model-based approach must be used to estimate the

precision of the mean.

Chapter 4 outlines how a variogram can be used to estimate the variance structure

of the data. It is necessary to use a variogram because this method does not require

equally spaced samples through time. The procedure used in chapter 4 is based on
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the method presented by Domburg et al. (1994) where the variance structure of the

variogram can be used to estimate the precision of the mean using different sample

sizes. Using total phosphorus data from 17 sites in south eastern Australia this

chapter found;

• variograms provided a suitable method to estimate the temporal auto-correlation

of the observations.

• the precision of the mean during events is less than that of base-flow as the

variation during events is higher.

• the results indicated there was little improvement from increasing the samples

size above 12 samples per year for estimating baseflow means and 12 samples

per event or estimating event mean concentrations.

7.1.3 An event-based probabilistic sampling scheme

With the knowledge of the importance of event-based sampling it is vital that the

event sampling scheme accurately describes the exports. Many event-based sampling

schemes use regular temporal intervals. Systematic sampling schemes for events may

introduce bias in the sampling scheme, as this form of sampling assumes the temporal

interval is small enough to cover the variation of water quality. In addition, it requires

a model-based approach in order to provide unbiased estimates which complicates any

statistical analysis. A probabilistic based sampling scheme does not require a model-

based approach and provides easily defendable statistics.

Chapter 5 outlines a stratified random sampling scheme for event sampling. A simple

but flexible method is presented which can be easily implemented using common

automatic samplers. The sampling method stratifies the mean event hydrograph into

key hydrological components (e.g. the rising and falling limbs). Random sampling

is then applied within each strata. One of the problems with this design is that not

every event is identical to the mean event hydrograph. Therefore, post-stratification
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is used to re-stratify the samples after each event. Using turbidity and EC data the

chapter showed;

• probabilistic sampling schemes do not require complex models to provide unbi-

ased estimates.

• probabilistic sampling schemes can be used to provide accurate estimates of the

mean value of events for both turbidity and EC.

• re-stratification of the samples allows for the detailed characterisation of indi-

vidual events.

Optimisation of the samples and strata is also easily achievable without the use of

models. For example, if suspended sediments were of interest more sampling and

shorter strata could be used during the earlier stages of the event.

7.2 Load estimation

Currently, it is too expensive for catchment managers to sample water quality con-

tinuously. Therefore, statistical methods are required to derive information from the

limited samples. The use of common estimation techniques; average, ratio and regres-

sion methods assume the use of simple random sampling. The use of these methods in

combination with systematic sampling schemes may introduce bias in the estimates

of the uncertainty of the predictions. In regards to Australian catchments, it is nec-

essary for the estimation method to also provide continuous temporal estimates of

concentration in order to relate these estimates to guidelines.

Linear mixed models do not require the use of probabilistic sampling. This method

was outlined in chapter 6. In addition, stream discharge and turbidity were exam-

ined as explanatory variables for total nitrogen and total phosphorus. Following the

research of Kuhnert et al. (2012) and Wang et al. (2011) additional stream discharge

derived explanatory variables were examined. To evaluate the accuracy of each model,
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leave-one-out-cross-validation (LOOCV) was used to evaluate each model. Event

cross validation was also performed to assess the accuracy of event predictions for

each model. The investigation highlighted that;

• the linear mixed models found temporal auto-correlation for the both total

phosphorus and total nitrogen.

• turbidity outperformed stream discharge and stream discharge derived variables

for both total nitrogen and total phosphorus.

• using stream discharge derived variables and turbidity in addition to stream

discharge can improve model predictions.

• it is important to consider the performance of the models for predicting events.

7.3 Recommendations for catchment managers

This thesis has focused on the use of statistical methods to improve water quality

monitoring programs. As many catchment managers do not have access to contin-

uous water quality data, the statistical methods must be able to utilise this limited

data. The results of this thesis are of relevance for Australian catchment managers.

Emphasis has been given for the design and improvement of sampling schemes and

suitable methods for the statistical analysis of these samples.

The design of water quality sampling schemes is important to minimise costs and

improve the precision of the estimates. The design of sampling schemes should be

an ongoing process which continually incorporates information to improve efficiency.

Based on the results of this body of work, it is highly recommended that event-based

sampling is used in order to improve water quality predictions. Using the methods

of Domburg et al. (1994), this work has found that monthly sampling is adequate in

most catchments to monitor base-flow conditions and event-based sampling should

collect at least 12 samples per event. It is highly recommended that where possible
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event-based sampling should be probabilistic. The use of probabilistic sampling for

these periods will allow for accurate event mean concentration estimates without the

requirement of complicated models. It is recommended that catchment managers

should combine monthly sampling with probabilistic event sampling with at least 12

samples per event.

Catchment managers in Australia report on the state of catchments based on the

guidelines in the ANZECC. A major limitation of these recommendations is the re-

quirement to report the state of the catchment in regards to concentration values. As

catchment managers are required to report on the state of the catchment, and there-

fore often report based on the percentage of samples which exceed the recommended

guidelines. However there are no recommendations on reporting the uncertainty of

the estimates. In addition, the highly dynamic nature of water quality it is diffi-

cult to determine when these thresholds have been exceeded with limited temporal

sampling capabilities. Reporting of the uncertainty of these estimates would help to

improve the understanding of the estimates and provide additional information on

the dynamic nature of the state of the catchment.

Estimation methods should be used to improve the understanding of the catchments

and help with the reporting on the state of the catchment. As routine sampling

is sparse and event sampling is dense, it is recommended that estimation methods

are used rather than using the percentage of samples above the guidelines. Linear

mixed models provide meaningful continuous estimations which account for possible

temporal auto-correlation within the data and therefore does not require probabilistic

sampling. In addition, this estimation method can take advantage of and improve

the precision of estimates using information from low-cost explanatory variables such

as turbidity and EC. Another advantage of this method is the unbiased uncertainty

estimates which should be used to assess how accurate the estimates are and provide

confidence when assessing management strategies.

The final recommendations for Australian catchment managers;

• event-based sampling should be included in monitoring programs. If possible
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it is highly recommended that probabilistic sampling be used to simplify the

analysis.

• combine event-based sampling with routine monthly sampling.

• where possible continuously monitor additional water quality properties with

turbidity and EC sensors.

• use linear mixed models to estimate water quality for reporting and evaluating

management strategies.

7.4 Future research

This thesis has investigated several statistical methods to improve the information

from historical data and improve sampling schemes, however there are several areas

which require additional research;

• future research examining water quality sampling must be of relevance to catch-

ment managers and their financial constraints.

• additional methods are required which can gain information from limited his-

torical data. With access to these methods, it will be possible for catchment

managers to acquire site specific information to improve the accuracy and effi-

ciency of monitoring programs.

• studies examining sample designs should consider how load estimation meth-

ods which can use information from low-cost sensors, can influence the sample

requirements.

• as non-normality is a major limitation of estimation methods, there is a re-

quirement for more flexible models (e.g. copulas based methods as presented

by Marchant et al. (2011) ).
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• statistical outliers are commonplace in water quality studies, and therefore more

robust methods are required to accommodate these. For example, robust esti-

mation methods presented by Papritz et al. (2011).
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