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Abstract 
Composite scaffolds are the core of tissue engineering therapeutics that are being used to revolutionise 

modern medicine. The porous scaffolds are designed to mimic bodily tissues so as to attract cells and 

accelerate healing. Recently, microbial interactions with composite scaffolds have become an important 

area of study as infection has been a major problem for these devices. This study explores means of 

controlling and modulating biotic activity through the use of differentiated coatings on a biocompatible 

polymer matrix.  Both antibacterial and pro-bacterial scaffold systems were developed for chronic skin 

wounds and ethylene-mediated spoilage respectively. The processes of scaffold fabrication and testing 

employed many commonalities for both, thereby allowing a parallel development of the dichotomous 

designs. 

Chronic skin wounds present a major problem for the health sector. Wound dressings and other 

treatments have many shortfalls making them relatively ineffective. Tissue engineered skin grafts are 

recognised as having great potential, but as yet these have remained costly and impractical owing in 

part to short shelf life and refrigerated storage.  They have also failed to address wound sepsis. An 

acellular tissue scaffold that can act as a synthetic graft to facilitate healing of chronic dermal wounds is 

proposed. The bi-phasic composite is comprised of a bioresorbable aliphatic polyester supporting a 

polyvinyl alcohol (PVA) hydrogel webbing capable of delivering erythromycin antibiotic and bioactive 

factors. The use of established synthetic biomaterials minimises the costs associated with biologically 

derived systems.  

Reliable and scalable methods were developed for forming bi-phasic scaffolds. 45S5 bioglass was 

manufactured, characterised and microparticles were coated on the scaffold surface to further increase 

tissue attachment. Varying concentrations of PVA solution were then assessed with porosity and 

morphology evaluated. The PVA was cross-linked using freeze-thaw cycles, dehydrated and sterilized. 

Erythromycin was loaded into the PVA employing ethanol as a carrier and sustained release assays were 

performed showing that Staphylococcus aureus could be inhibited for up to 5 days. A sophisticated in 

vitro co-culture was designed and used to validate the composite scaffold which proved it could 

simultaneously prevent bacterial biofilms while allowing for fibroblast adhesion and proliferation. 

The price of fresh food is on the rise and spoilage is a key inefficiency in the fresh food value chain. 

Spoilage is partially attributed to ethylene a simple gaseous molecule that is produced by fruits and acts 

as an aging hormone. In post-harvest storage facilities ethylene can build up and cause the food to spoil 



v 
 

before it reaches the consumer. Chemical based ethylene scrubbers are currently used to prevent this 

but they are expensive due to the active agents requiring regular replacement. Biofilters using viable 

microbes to breakdown ethylene have major advantages including their dramatically longer working 

lifetimes.  

A biofilter system was designed using tissue engineering principles that offers control of biofiltration 

properties. Mycobacterium strain NBB4 cells were immobilised to a highly porous polymer matrix in a 

thin agar coating. The agar coating contained trace element and minerals to enhance bacteria survival 

and metabolic efficiency. The coating thickness could be controlled by variations in the agar 

concentration. 0.4% w/v agar was found to be the optimal concentration, maintain high mass transfer 

while allowing high NBB4 biomass. The biofilter was able to degrade ethylene efficiently for > 85 days 

and had a shelf life up to > 60 days when in humidified packaging. The biofilters prevented bananas from 

rotting for up to 1 month compared to controls that spoiled in 2 weeks.  
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material 
Agar A natural polymer derived from seaweed 
Bioactive A feature of a material such that host tissues form interfacial bonds with it 
Biocatalysis The use of enzymes to catalyse useful reactions  
Biocompatible A feature of a material such that it does not provoke a negative immune 

response 
Biofilm A community of bacterial enveloped in bio-synthesised polymers 
Biofiltration The removal of waste from a fluid by bacterial metabolism 
Biomimetic Similar in design to natural biological systems 
Biore/absorbable A feature of a material such that it degrades and can be removed from the 

body by natural metabolism 
Calcination A process to remove unwanted reactant from a glass reaction 
Chitosan A protein derived from crustacean shells 
Collagen A natural protein component of connective tissue 
Composite A solid construct comprising two or more materials 
Cross-linking The physical/chemical bonding between separate polymer chains 
Cytotoxic Toxic to human cells 
Debridement Removal of necrotic skin and other unwanted material from a wound 
Fibroblast The main cell type of the dermis 
Housekeeper gene A highly conserved essential gene that is expressed at a fairly constant level 
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1 Introduction 
Composite scaffolds are key therapeutics being developed by tissue engineers to solve a multitude of 

health problems: Chronic skin wounds, bone deformations, osteochondral defects and heart valve 

replacement just to name a few. As tissue engineering solutions are moving from the lab bench to the 

clinic and finally to the market place companies are looking for solutions to finance the expensive and 

long-term development of the medical therapeutics they have innovated. Dr. David Mooney reported 

that some tissue engineering companies are leaping the financial hurdles by employing the capabilities 

they have developed in other fields, such as dentistry and cosmetics, which do not have as many 

regulatory barriers (Correspondence: Mooney, TERMIS-AM, 2013). This also serves to meet un-met 

needs in the market place with innovative designs stemming from the health sector. 

This thesis describes the design, fabrication and validation of two scaffold systems: One for treatment of 

chronic wounds and the other a biofilter for fruit preservation. The work relied on a soft tissue scaffold 

developed by Elizabeth Boughton. It was reasoned that the capabilities developed and knowledge 

gained from engineering the antibacterial aspects of the scaffold could be combined to engineer a 

scaffold where the affinity for bacteria could be modulated. This was taken a step further: Composite 

scaffolds could be synthesised by coating the same base aliphatic polyester scaffold with coatings that 

could be used for either antibacterial or pro-bacterial applications based on the nature of the coating. 

Dr. Nicholas Coleman had previously isolated an environmental Mycobacterium strain NBB4 which can 

degrade a number of harmful hydrocarbon pollutants. It was hypothesised that the NBB4 could be 

immobilized on the surface of a scaffold could serve as a biofiltration device. 

Scaffold systems with dichotomous design aims were developed in parallel to provide insights (see 

Figure 1). Composite scaffolds were fabricated by applying adjunct coating systems to identical base 

scaffolds and subsequently characterized for antibacterial activity on the one hand and pro-bacterial 

activity on the other hand. The results of this dichotomous study were used to refine each system. A 

number of overlapping theories, features and test methods were used during the dichotomous design 

study. Similar and contrasting elements were determined. The final scaffold designs were validated with 

in vitro pilot studies: The wound healing scaffold was tested in a co-culture to validate conduction of soft 

tissue and simultaneous prevention of bacterial infection. The biofilter scaffold system was tested in a 

fruit preservation study to validate the maintenance of freshness of fruit produce beyond the normal 

shelf life period. 
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Both scaffold designs are novel for their respective applications. The wound healing scaffold uses a 

combination of biomaterials and drugs that has not been utilised previously for wound healing. The 

biofilter scaffold is the first to utilise NBB4 bacteria as the active agent and is particularly novel in the 

use of tissue engineering principles and materials for the removal of ethylene gas. 

 

Figure 1. Dichotomous design road map. A schematic representation of the design and development 
of two separate scaffold systems from the same base scaffold through modulating the biotic activity. 

The two systems were developed in parallel to take advantage of overlapping features. 

ANTIBACTERIAL SYSTEM PRO-BACTERIAL SYSTEM 
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1.1 Notes of Reading this Thesis 

The simulataneous development of two separate devices is difficult to capture in a single thesis. The 

thesis has been structured to give the reader a sense of the parallel development and overlap of 

concepts (see Table 2) while attempting to minimalise confusion from discontinuity of topics. As such 

the thesis has sections where both devices are discussed and other sections where only a single device is 

dealt with. 

Table 1. Overlapping thesis concepts and their application in each scaffold system. 

 Application of Concepts 

Overlapping Concepts Wound Healing Device Biofilter Device 

Porous Scaffolds Transportation of nutrients and 

waste; cell migration; diffusion 

of antibiotics. 

Diffusion of ethylene; filtration 

kinetics, elution of waste 

Composite formation/Scaffold 

coatings 

Bioglass coating; PVA coating; 

structural alterations, thickness 

optimisation, emulating soft 

tissue modulus. 

Agar coating; structural 

alterations, thickness 

optimisation, mechanical 

stability 

Hydrogels Freeze-thaw crosslinking; 

antibiotic delivery; slow delivery 

Gel entrapment; humidified gel 

environments, Cell nutrition 

Biofilms Antibacterials; antibiofilm 

surfaces; biofilm inhibition  

Bacterial adhesion and 

immobilization; pro-bacterial 

activity; long-term biofilm 

survival 

 

The Background section is broken up into 3 smaller subsections: First composite scaffolds are discussed 

in a general sense followed by all aspects relating to the wound healing device and finally by the biofilter 

device. This is to avoid confusion and discontinuity, giving a holistic view of each device. The reader will 

note however that there is substantial repetition of ideas and concepts. The Methods and Results & 
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Discussion sections are structured based on the parallel development and as such each subsection 

contains information relation to both devices in a semi-integrated manner. That is experiments relating 

to each device is distinct but these are arranged into sections based on design phase rather than device 

type. A Device Design Summary section is included for each device so the reader can have a summarised 

view of the design inputs and outputs for each device separately. Finally the Conclusion section briefly 

deals with the project it its entirety assessing the dichotomous design process and whether bacterial 

activity could be modulated on the scaffold system. A visualisation of the structure of this thesis can be 

seen below (Table 2). 

Table 2. A guide for reading this thesis. Blue subsections are those common to both devices; purple 
sections relate specifically to the wound healing device; orange sections relate specifically to the 

biofilter device. 

Section Subsections 

Background Composites 

Wound Healing Grafts Ethylene Biofilters 

Methods Composite and Material Fabrication 

Biofilm Formation 

Antibacterial/Pro-bacterial Activity 

Device Pilot Studies 

Results and Discussion Composite and Material Fabrication 

Biofilm Formation 

Antibacterial/Pro-bacterial Activity 

Device Pilot Studies 

Device Design Summary Synthetic Skin Graft NBB4 Ethylene Biofilter 

Conclusion Conclusion 
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1.2 Aims 

 To control the microbiotic interactions of a biocompatible polycaprolactone (PCL) scaffold such 

that it can support and hinder bacterial activity. 

 To design and develop an antibacterial scaffold that will serve as a synthetic skin graft for 

treatment of chronic skin wounds. 

 To design and develop a pro-bacterial scaffold that will serve as a biofilter for ethylene to 

preserve fruit and minimise fresh produce spoilage. 

1.3 Hypotheses 

 The microbiotic interactions of a biocompatible PCL scaffold will be able to be modulated by 

forming composites using specific bioactive coatings. 

 An antibacterial composite scaffold can be formed which prevents the attachment and growth 

of common wound bacteria while facilitating dermal tissue growth. 

 A pro-bacterial composite scaffold can be formed which immobilizes viable ethylene degrading 

microbes while maintaining a high porosity, thus allowing the efficient filtration of ethylene and 

preservation of fruit. 
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2 Background 

2.1 Composite Scaffolds 
A Tissue Engineering scaffold is a medical device which acts as a template to grow biological cells in vitro 

and in vivo. The scaffold is a biomimetic device that forms the extra-cellular matrix (ECM) providing an 

initial support framework for cells to attach and grow[1]. There are some characteristics that are 

common in scaffolds, independent of their final function. These are biocompatibility, porosity, 

degradability and 3D structure [2]. However, generally the design of a scaffold’s properties is dependent 

on the intended use, which usually relates to the anatomical location the scaffold is trying to mimic and 

the type of cells it will host [1, 3-6]. The properties dependent on the anatomical location of the scaffold 

are mechanical properties, structural properties, surface chemistry and degradation rates.  

Scaffold properties are controlled by selecting biomimetic materials for the target location. It is rare that 

one material can provide all the key properties to properly mimic the complexity of the ECM. Therefore 

biomaterials are usually combined to form composite scaffolds containing multiple materials which each 

contribute to the scaffolds properties [1-2]. For example hydroxyapatite (HA) has excellent 

biocompatibility with hard tissues such as bone, but is mechanically brittle. Thus HA/collagen 

composites are formed to improve strength and further enhance biocompatibility [1]. 

2.1.1 Generic Properties 

2.1.1.1 Biocompatibility 

Interactions between implanted materials and their host tissue are of great importance for the fate of 

the implanted device. The interactions have effects both on the healing response and the long term 

organization of the surrounding tissue[7]. An ideal scaffold should have excellent biocompatibility with a 

high affinity for cells to attach and proliferate [1, 3-5]. An implanted scaffold must not trigger an 

immune response in the patient as this could lead to chronic inflammation posing risk to the patient and 

resulting in possible rejection of the scaffold [6].  

It is implied that the surface properties of the scaffold material play an important role in the 

biocompatibility [7] and whether an immune reaction will occur. Surface properties also affect the cell 

attachment sites further impacting the biocompatibility [8]. Biocompatibility of scaffold degradation 

products, released therapeutics or other diffusible products should also be considered. 
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Biocompatibility is clearly important, although it is important to note that “biocompatibility” is not an 

intrinsic property of a material, but depends on the biologic environment and the leeway that exists 

with respect to tissue reaction. For example, a scaffold that is biocompatible in subcutaneous tissue 

might not be so in nerve or in the peritoneum [6]. 

2.1.1.2 Porosity 

Scaffolds must have an interconnected porous network for a number of reasons: 

1. For transport of nutrients and wastes between cells via the interconnected network of pores. 

2. So cells can migrate and have sites for firm attachment. 

3. Angiogenesis, the formation of new blood vessels through the scaffold to supply newly formed 

tissues. 

4. To properly mimic the ECM of bodily tissues. 

Two types of pores can be differentiated, the micro- and the macropores. The size of the prior one is up 

to 100 µm, and the latter ranges in 100–500 µm. The pores below 100 µm are to improve the gas, air 

and nutritive transport, while the macropores are to give mechanical support and a temporary frame for 

cells to attach and proliferate [1, 5, 9]. A typical porosity of around 90% as well as a pore diameter of at 

least 100 µm is known to be compulsory for cell penetration and a proper vascularisation of the ingrown 

tissue [2, 10]. 

2.1.1.3 Degradability 

Initially when a scaffold is implanted it must act wholly as the tissue it is replacing. But, as time goes on 

and cells begin to inhabit the scaffold and lay down new ECM, the scaffold should degrade letting the 

new tissue take over. All scaffolds must be biodegradable, so that eventually the native tissue can 

completely heal and resume its normal function [1, 3-5, 8, 11]. Therefore controlling the degradation 

rate is crucial. Optimally the degradation of the scaffold should correspond with the natural healing time 

of the injury [12]. 

It is believed that degradation occurs in five stages: hydration, depolymerization, mass loss, absorption 

and elimination. The degradation of scaffolds depends on several parameters, namely the biomaterial’s 

intrinsic properties and the scaffolds morphology. It is of general acceptance that the higher the water 

uptake, the higher the hydration rate, the higher the degradation rate [11]. Cunha-Reis et al tested the 

impact of morphology on scaffold degradation rate. They found that scaffolds with smaller fibre 



8 
 

diameter lead to greater water uptake and increased degradation. This was due to the scaffold having a 

greater surface area of contact with the water. What’s more, scaffolds with the same fibre diameter 

were tested with different porosities; The porosity had no effect on either the water uptake or the 

degradation [11]. This illustrates the effect of porous scaffold structure on degradation rates. 

2.1.1.4 3D structure 

Scaffolds are 3D structures just the same as human tissues are [6]. Cells respond to positional cues and 

mechanical stresses ensuring proper tissue growth. This phenomenon is only seen in 3D culture 

situations as these stimuli are virtually non-existent in traditional 2D cell culture systems. As a result, 

contemporary culture methods are being replaced with 3D culture techniques [13]. This is a prominent 

non-clinical application for tissue engineering. 

2.1.2 Biocompatible synthetic polymers 

2.1.2.1 Natural vs Synthetic 

Biocompatible polymers and naturally occurring biopolymers are the most common biomaterials for 

scaffold fabrication. Synthetic polymers include relatively hydrophobic materials such as the α-hydroxy 

acids (polyglycolic acid (PGA) and polylactic acid (PLA)), aliphatic esters (Polycaprolactone (PCL)), 

polyanhydrides and many others. Naturally occurring biopolymers include hyaluronan, chitosan, elastin 

and collagen [6]. However, synthetic biopolymers offer an advantage over natural materials in that they 

can be tailored to give a wide range of properties, are less expensive and easier to manufacture [1]. In 

particular, many investigations have concentrated on synthetic biodegradable polymers that are already 

approved by the US food and drug administration (FDA). The most common biodegradable polymers 

being used or studied include PLA, PGA, and PCL (and their co-polymers) [1, 6, 14]. 

2.1.2.2 Bioabsorbability 

The synthetic polymers mentioned above have excellent biocompatibility; what’s more their 

degradation products of these polymers are present in the human body and are removed by natural 

metabolic pathways[3]. Thus they are ‘bioabsorbale’ [15].  

When polymers degrade, firstly breaks in the polymer chain occur reducing the molecular weight. 

Monomers are then released into solution decreasing the mass of the bulk polymer. It has been 

described that these degradation products are mildly acidic and when released in high concentrations 
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can result in an immune response in vivo [1]. In terms of the most common synthetic biopolymers, their 

erosion rates follow the order PGA > PGLA> PLA > PCL. This is mainly due to the polymers’ interactions 

with water, with PGA being the most hydrophilic and PCL being the most hydrophobic [1, 16-17]. The 

fast degradation rates of α-hydroxy acid biopolymer family (PGA, PGLA and PLA) coupled with acidic 

monomer products compromises their biocompatibility [3, 6, 8]. 

Table 3. Synthetic polymer property comparison for tissue engineering: α-Hydroxy Acids vs 
Polycaprolactone. 

α-Hydroxy Acids Polycaprolactone 

Stiff Flexible 

Fast Degradation Slow Degradation 

High mp Low mp 

 

High molecular weight PCL has mechanical properties that suit hard and soft tissue applications [1, 9, 

18]. PCL degrades the slowest out of synthetic biopolymers used for scaffolds, taking over a year to 

degrade. This is due to the five hydrophobic –CH2 moieties in its repeating units, making it very 

hydrophobic [16]. Because of this, some have criticised PCL’s use as a scaffold, limiting its application to 

long-term drug delivery or commercial sutures [1, 11, 16]. Furthermore degradation studies become 

somewhat inefficient to run without the use of a catalyst. Pseudomonas cepacia lipase has been 

reported to greatly increase the degradation rate of PCL, so meaningful results can be obtained within a 

week [8, 19].  However, slow degradation is not necessarily a disadvantage. Since PCL has a much slower 

rate of hydrolysis the deposition of acidic monomers is not a problem, as they are removed by the body 

before accumulating in large amounts [8]. Olah et al [9] also saw the potential of PCL as a suitable 

scaffold material for bone regeneration, because a slower degradation rate is needed due to the slow-

healing nature of bone. The very low melting temperature of PCL (60°C) makes it easier to process than 

other biopolymers. These advantages make PCL a versatile scaffold material. 

2.1.2.3 Surface properties 

As mentioned synthetic biopolymers have hydrophobic surfaces which adsorb key proteins conditioning 

the surfaces for cellular attachment – a necessary property for tissue engineering. PCL, PGA and PLA are 
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all tissue conductive materials that cells can actively attach to [1-2, 17]. However, being synthetic 

materials they lack the cell recognition signals of natural polymers. Their hydrophobic nature also 

inhibits cell seeding [20]. 

Cottam et al [8] demonstrated that Bovine chondroprogenitor cells attach and proliferate on PCL 

surfaces. Zhang et al [20] showed that the addition of hydrophilic collagen to PCL firbres, increased the 

surface attachment and migration of dermal fibroblasts. 

2.1.3 Hydrogels 

2.1.3.1 Gels vs Hydrogels 

Hydrogels are highly hydrated 3D matrices made up of crosslinked polymers. This is distinct from a gel 

which is merely a semi-solid arrangement of polymers. The crosslinked network gives hydrogels the 

unique swelling property. That is, hydrogels remain insoluble in aqueous solution and instead swell up 

while maintaining their 3D structure while gels dissolve [21]. This has made hydrogels useful in many 

biomedical applications including wound dressings, contact lenses and drug delivery systems. 

2.1.3.2 Structure 

Hydrogels are 3D arrangements of hydrophilic crosslinked polymer chains. It is the hydrophilicity of the 

polymer chains that draws water molecules into the system causing the swelling effect. While swollen, 

hydrogels form mechanical stable structures, held together by the crosslinks. These structures are 

elastic in nature due to the inherent shape memory, allowing repeated swelling and drying with 

negligible permanent deformation[21]. In dried form, hydrogels are often glassy and brittle.  

When in hydrated form, hydrogels possess some water-like properties such as permeability of water-

soluble substances through the polymer matrix. This is, amongst other things, governed by the nano-

porous network existing between the crosslinked polymers [22-23]. 

2.1.3.3 Fabrication 

Synthesis of hydrogels often occurs in three distinct steps: 

1. Preparation of polymer solution 

2. Crosslinking 
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3. Casting/forming 

In the first step, hydrophilic polymers usually in powdered form are added to water and with the 

application of heat and agitation made into an aqueous solution. The viscosity of this solution must be 

controlled as this may be important in casting/forming the desired structures. For example a very low 

viscosity is required for spray drying, such that Salama et al [24] used a relatively low PVA concentration 

in (1.5% (w/v)) water to achieve this. 

The second crosslinking step determines much of the hydrogel’s properties. Crosslinking is the chemical 

or physical process that connects the polymer chains together forming a networked structure and 

increasing the average molecular weight. Chemical processes act to create free radicals which break and 

then reconnect the polymer backbones for a net lengthening of the chains. Physical processes create 

crystal structures, mechanically locking polymer chains together [25-26]. The proportion of crosslinking 

can depend on the composition of the polymer solution as well as the temperature and other 

environmental conditions during the reaction.  

Casting and forming of hydrogels is usually performed by pouring the aqueous crosslinked hydrogel into 

a mould to achieve the desired shape. Hydrogels are often quite soft materials when hydrated and can 

be cut to size once solid. 

2.1.3.4 Types 

2.1.3.4.1 Natural 

Naturally derived hydrogels have been used regularly in tissue engineering and other biomedical devices 

because they are either biomimetic or components of the natural extra cellular matrix (ECM). This is 

thought to improve biocompatibility and accelerate tissue growth and differentiation in vivo[27].  

Collagen is the most abundant protein in the mammalian extra cellular matrix. Although there are many 

different types of collagen, they share a common structure of three polypeptide chains coiled around 

one another forming a rope shape. Collagen can self aggregate forming the network structure necessary 

for hydrogels. This network can be more densely crosslinked by the addition of physical (freeze-drying, 

heating) or chemical processes (UV-irradiation, glutaraldehyde, formaldehyde) [27]. Collagen is 

bioabsorbable since it is broken down collagenases and other proteases in vivo. 
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Despite advantages such as bioactivity and bioabsorbability, naturally derived hydrogel materials have a 

limited application because of their high cost and low shelf lives.  

2.1.3.4.2 Synthetic 

Synthetically derived hydrogels are gaining traction in biomedicine because of their controllable physical 

and chemical properties, reproducibility and relatively low cost in comparison to their naturally derived 

counterparts [27-28]. 

Poly(vinyl alcohol) (PVA) is a widely used hydrogel in drug delivery and space filling. It is biocompatible 

[29]and bioresorbable [15]. PVA is also known for its film and fibre forming properties [29]. PVA aqueous 

solutions can be physically crosslinked by freeze-thaw cycles which forms crystallites binding the 

polymers chains [22, 25, 30-33]. It can also be chemically crosslinked by glutaraldehyde, succinyl 

chloride, adipoyl chloride, and sebacoyl chloride[27]; as well as by electron beam, gamma [22, 34] and 

UV irradiation (in the presence of photocrosslinkers, like acrylamide) [35]. 

2.1.3.5 Hydrogel Properties 

The hydrogel materials and the fabrication method dictate the properties of the hydrogel. The material 

properties such as molecular weight and the chemical structure determine the final network structure 

and its interaction with the external environment. For example, pH-responsive hydrogels are composed 

of polymeric backbones with ionic pendant groups[21]. The fabrication method controls the polymer 

network structure and composition on a molecular level which in turn affects the macro properties [27].  

2.1.3.5.1 Molecular 

The density of crosslinking is the most important property which will govern the physical function of the 

hydrogel. Increasing crosslinking will typically increase the hydrogels mechanical properties and 

decrease the rate of swelling and the network pore size which is important for diffusion and 

transportation kinetics [22]. 

The polymer main chain and side chain chemical structure impact the mobility of the polymer and thus 

affect the Tg. The glass transition temperature (Tg) is the state in which polymer chains can move past 

one another facilitating the change from a glassy to a rubbery solid. Flexible groups such as ether 

linkages reduce the Tg, where as stiff chemical groups like benzene rings increase it [21-22]. 
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2.1.3.5.2 Macroscopic 

When dehydrated, hydrogels are often glassy solids with collapsed polymer chains. On contact with 

water or other aqueous media, the macroscopic pores become penetrated with liquid which imposes 

stresses on the matrix which open up the network. This is seen macroscopically as swelling [21].  

Tg is a crucial macroscopic property in hydrogels. Tg is the temperature at which a dehydrated glassy 

hydrogel will become rubbery and thus be allowed to swell. This property also mediates many of the 

hydrogels mechanical properties [21-22].  

2.1.3.5.3 Biological 

Hydrogels mimic biological tissues closely with their highly hydrated structures and soft rubbery 

consistency and water retentive capabilities [21].  

Hydrogels are composed of hydrophilic polymers which relates to low surface tension. This results in a 

minimal tendency to adsorb proteins in body fluid, prohibiting tissue ingress and platelet adhesion [21, 

29].  

Adsorption of proteins to the biomaterial surface is almost instant when it contacts the blood plasma. 

The adsorption of protein is governed by many complex interactions, but generally hydrophobic surfaces 

adsorb more proteins than hydrophilic ones [36]. Most mammalian cells require attachment to 

biocompatible substrates to grow and differentiate. Thus protein adsorption to biomaterials is crucial 

for cell adhesion [37]. However, protein adsorption is also important in mediating clotting and immune 

response. Thus the protein adsorption should be tailored for the medical device application. 

2.1.3.6 Hydrogel Characterisation 

Hydrogels can be characterised on a molecular, micro and macro level using a range of techniques and 

instruments.  

Important physical properties such as melting temperature, degree of crystallinity and glass transition 

temperature can be determined by dynamic scanning calorimetry (DSC) [29, 32, 38]. Melting 

temperature and degree of crystallinity can be used to validate crosslinking. Lian et al showed an 
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increase in Tg with addition to PEO to PVA hydrogels[32]. As mentioned above Tg is a crucial hydrogel 

property determining the rate of relaxation of the matrix and thus relates to drug delivery kinetics. 

Fourier transform infrared spectroscopy (FTIR) can be used to determine the type of bond used in 

hydrogel crosslinking [39]. The presence or absence of bonds is shown by the absorbance at specific 

wavelengths. For example, Basak et al crosslinked PVA with maleic acid for colon targeted drug delivery 

and found by FTIR analysis a sharp peak at 1640 characteristic of the C=C bond. This implied the C=C 

bond in the maleic acid backbone was preserved and not used in crosslinking. Analysing the full spectra 

gave a detailed picture of how the molecules interact during crosslinking [38]. 

The degree of swelling is an important characteristic of the hydrogel and reflects how much the 

hydrogel swells compared to the dry state. This characteristic is determined by gravimetric analysis. 

Dried films are pre-weighed then immersed in a liquid phase until swelling equilibrium is achieved. The 

surface water is removed from swollen films before re-weighing. The degree of swelling is then 

calculated as follows:  

 퐷푒푔푟푒푒 표푓 푆푤푒푙푙푖푛푔 % =  
푤 −  푤

푤
 × 100 (1)  

where, wd and ww are the initial dry weight and final wet weight of the hydrogel films, respectively [31, 

38-39]. 

The gel fraction of a hydrogel is another property that can be easily determined by gravimetric analysis 

and provides valuable information about the relative degree of crosslinking within the matrix. 

Preweighed hydrogels are immersed in solution for a long period to solubilise any un-crosslinked 

polymers. The samples are then dried and reweighed. The gel fraction is calculated as follows: 

 퐺푒푙 퐹푟푎푐푡푖표푛 % =  
푤
푤

 × 100 (2)  

where, we is the dry weight after long term leaching of polymers in solution and w0 is the initial dry 

weight [32]. 

2.1.3.7 Hydrogel/Polyester Composites 

Hydrogels do not generally have the blood adsorption properties to support cellular attachment for 

tissue engineering. This is attributed to the hydrophilic nature of hydrogels affecting the adsorption of 

key blood proteins such as fibronectin [27]. Synthetic hydrogels in particular are subject to this property 
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and this has been utilized in other fields of biomedical design. PVA has been used as a non-adhesive in 

tendon repair. Common ways around this problem that tissue engineers have utilized is introducing a 

bioactive co-polymer such as collagen and covalently coupling blood protein peptides that can bind 

directly to cell receptors [27]. Forming composites with hydrophobic polyesters and hydrophilic 

hydrogels may pose a solution for mimicking the water absorbing and cell binding properties of native 

ECM. 

Hydrogel/Polyester composites may also overcome shortfalls in mechanical stability of ordinary 

hydrogels. Mechanical properties are important for scaffolds to perform under mechanical strains of 

surrounding tissue and to support cell growth which is very much dependent on mechanical cues [27]. 

Pok et al [40] designed a multi-layered scaffold with a PCL core which provided mechanical support for 

the low strength chitosan-gelatin surface layer. 

Hydrogel scaffolds often have very small pore sizes. This limits the cell ingrowth and promotes bacterial 

infiltration of the scaffold which can enter the porous structure and remain protected from host 

immune cells which cannot follow. 

2.1.4 Bioactive Glass 

2.1.4.1 Bioactivity 

Bioglass is a synthetic, resorbable bioceramic that is highly bioactive. When Bioglass particles come in 

contact with body fluids a chemical change occurs resulting in a hydroxyapatite layer forming on the 

glass surface [41-45]. The step-by-step reactions of this process are summarised in Table 4. Native cells 

will interact with this layer as if it were “self”, binding to it readily and forming a strong adhesion to the 

material.  
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Table 4. Reaction Stages of Bioactive Glass [42]. 

 

 

Figure 2. Compositional dependence of bioactive glasses on bone and soft tissue bonding [42]. (A) 

Bioactive Region; within dashed line soft tissue bonding also occurs (e.g. 45S5). (B) Bioinert Region; 

non-resorbing glasses, fibrous capsule formation occurs. (C) Unstable; resorb too rapidly. (D) 

Impractical Glasses; untested. 
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The main constituents of Bioglass are SiO2, Na2O, CaO and P2O5. The level and type of bioactivity and 

stability of the Bioglass can be controlled by altering the chemical composition of these constituents. 

The bioactivity of different glass compositions has been tested and the results summarised in Figure 2.  

It has been found that the 45S5 Bioglass (signifying 45 wt% SiO2 as the network former and a 5 to 1 

molar ratio of Ca to P) has optimal bioactivity for both hard and soft tissues [42]. It has been suggested 

that the silica and phosphate composition of this class of bioactive glass are within the optimal range 

that allows dissolution and calcium phosphate formation at its surface while maintaining the 

appropriate rate of degradability. This composition has also been shown to up-regulate osteoblast 

activity and proliferation via a complex genetic mechanism involving seven gene families [41]. It is 

because of its versatility and high bioactivity that 45S5 composition is the most commonly used and 

tested Bioglass. 

2.1.4.2 Antibacterial Compositions 

More recently, studies have been conducted to dope bioactive glasses with a number of different metal 

oxides to incorporate antibacterial and other desirable properties into the material [41, 46-52]. When 

this doped bioglass comes into contact with body fluids, metallic ions will be released and elicit a local 

antibacterial effect, which is dependent on the doping metal/s chosen. Furthermore, the antibacterial 

effect will be gradual and long-term because the metallic ions are slowly released as the bioglass is 

resorbed. Robinson et al [52], states the important characteristics of bioresorbable anti-bacterial 

materials:  

i) Broad-spectrum antibacterial activity; 

ii) Non-toxic to surrounding host tissue; 

iii) Must not be susceptible to microbial resistance. 

Since ancient times, silver has been used in medicine for controlling infections [47]. Nowadays, silver is 

one of the preferred methods to confer microbial resiliency on biomedical materials and devices [41, 47-

48]. This is due to its rapid broad-spectrum bacteriostatic and bactericidal effects. Bellantone et al, 

compared the antibacterial action of silver doped bioglass (AgBG: wt %, was as follows: 76% SiO2; 19% 

CaO; 2% P2O5; and 3% Ag2O) to a novel bioglass (BG: wt% SiO2, 76%; CaO, 22%; P2O5 2%) and 45S5; on 

three common wound pathogens: E.coli, S. aureus, and P. aeruginosa. It was found that AgBG was 
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bacteriostatic at concentrations of between 0.05 – 0.2 mg/ml and rapidly bactericidal at 10 mg/ml 

(Figure 3). At the same concentrations BG and 45S5 had no antibacterial effect [48]. This result was 

reinforced in a similar study by Balamurugan et al [46]. It is important to note that some studies have 

found 45S5 Bioglass to be antibacterial due to sodium and calcium ions elevating pH [53-54]. However 

this occurred at much higher concentrations than in the study conducted by Bellantone [47-48, 52-54]. It 

is commonly mentioned that the optimal composition of AgBG, at which bioactivity is not compromised 

is 2-5 %wt [41, 43, 46-48]. 

 

Figure 3. Time-dependent killing of common wound pathogens by bioactive glasses (10 mg/ml) [48]. 

It is agreed that the antibacterial mechanism of silver is attributed to leaching of Ag+ ions rather than a 

change in pH because of the obvious uptake of Ag+ ions by bacteria [46-48, 51]. Although the precise 

interactions between Ag+ ions and microbial cells is not well understood. Balamurugan suggests that the 

main driving force for the antimicrobial activity are the interactions between silver ions and the bacterial 

nucleophilic amino acid residues in key proteins causing denaturation resulting in cell death [46]. 

Whereas Matsumoto [51] states that Ag+ ions that passed through the cell membrane were present in 

the interior of the cell, and not in the cell membrane; these ions interacted with a ribosomal subunit 

protein linked to thiol groups, and then they inhibited the expression of enzymes and protein products 

necessary for the functioning of adenosine triphosphate (ATP), resulting in cell death. Kumar et al [55] 

states that silver nanoparticles target electron transport proteins located on exterior of prokaryotes, but 

in eukaryotes this protein is inside cell mitochondria and thus requires greater dosage for cytotoxic 

effect. 
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In any case, silver doped bioglass is a potent candidate for an antibacterial resorbable material. It has 

broad-spectrum activity, not susceptible to microbial resistance [41, 46-47, 51], and has a rapid and 

concentrated bactericidal effect which is essential for a successful anti-biotic agent [46]. Furthermore, 

silver has been has been shown to aid in healing of sterile skin wounds in rat models, reducing 

inflammation and granulation tissue [41]. However, silver does have some disadvantages, firstly that it is 

non-essential to the host and can be cytotoxic [52]; Ag+ is considered a highly toxic metal ion [51]. 

Secondly, there is a challenge in preserving the 1+ oxidation state of the Ag2O. 

Although silver seems to be the most acclaimed antibacterial doping agent, there are a number of other 

additives to consider. Magnesium was shown to have an antibacterial affect on wound pathogens by 

Robinson et al [52]. Magnesium imposed an antimicrobial effect by leaching Mg2+ ions which in turn 

caused an increase in pH. High alkalinity cannot easily be resisted by bacteria and is not necessarily 

cytotoxic to cells. Saboori et al doped bioglass with silica and found it increased its stability and 

mechanical properties. The Mg-bioglass was non-cytotoxic and supported bone marrow stem cells [43, 

56].  Zinc and copper are well known antibacterial factors [51-52, 57-58]. Sheng et al, found that Zn2+ 

inhibited the bacterial catabolism of glutamate [57]. Matsumoto et al [51] studied the antibacterial 

effect of co-doped silver, zinc and copper tricalcium phosphate and found that the addition of zinc and 

copper lead to the creation of free radicals eliciting an enhanced bactericidal effect. Zinc bioglasses 

show higher surface areas which enhances bioactivity due to the increased number of nucleation sites 

on the calcium phosphate phase. However, zinc has been shown to decrease glass degradation rates. 

Both zinc and copper glasses have been suggested in the prevention of inflammation [43]. However, 

while considered essential to normal homeostasis, both have the potential for toxic sequelae [52]. 

Titanium is another possible antibacterial bioglass additive [59] and Vrouwenvelder et al [45] 

demonstrated that osteoblasts show superior histological and biochemical parameters grown on Ti-

doped 45S5. Although, some report that Titanium has no antibacterial effect [58]. 

Fluorine is a non-metallic bioglass additive with great antibacterial potential. Fluorine has been 

demonstrated as a potent antimicrobial toward oral anaerobes in the dental industry [58, 60]. Yoshinari 

et al [58] suggested that metal-fluoride complexes with their inhibition of enzymatic activity have a 

bactericidal effect on bacteria. When calcium fluoride was incorporated into 45S5, the Bioglass became 

more stable but exhibited decreased bone bonding [45]. Thus far, the antibacterial effect of Fluorine-

doped Bioglass has not been tested.  
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2.1.4.3 Manufacturing  

To date, clinical applications of silica-based bioactive glasses are limited to those materials synthesized 

by melting processes [43]. The raw ingredients, which normally consist of SiO2, Na2CO3, CaCO3 and 

Ca3(PO4)2 [44, 61-62], are well mixed and heated in a conventional furnace. A platinum crucible is usually 

used because of its low reactivity and high melting point [44, 61-63]. The heating cycle for melt-derived 

glass usually includes a calcination phase at around 1000°C before smelting at 1300-1450°C [44, 61-64]. 

Figure 4 clearly shows the entire process of making melt-derived bioglass. 

In the early 1990s bioactive glasses were for the first time prepared by the sol–gel process. Porous 

bioglasses could be prepared from the hydrolysis and polymerization of metal hydroxides, alkoxides 

and/or inorganic salts [43]. The induced porosity from the sol-gel process increases the compositional 

range of bioactivity for these glasses due to the increased surface area. The high porosity also yields 

excellent degradation properties [43, 47]. The sol-gel method has the added benefit of not being 

conducted at high temperatures. The disadvantage of porous sol-gel derived glasses is the decreased 

mechanical strength, which can result in the brittle fracture under rehydration stresses [2, 47]. 
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Figure 4. Schematic diagram of a typical melt-derived bioglass synthesis route [63]. 

Bioglass is usually milled into a fine powder so it can be incorporated into other materials as the 

bioactive component. This also increases the surface area for bioactive cell adhesion. Bioglass can be 

pulverized in a number of ways; ball milling, jet milling or flame spraying. The important thing is to limit 
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the level of contamination from the milling media. Our group has previously shown that the use of an 

alumina ball mill introduced aluminium contaminants into powdered bioglass [65]. 

It is mandatory to sterilize all artificial implants, preferably by gamma irradiation. The effect of 

sterilization on bioglass is an under-studied field. It has been reported that gamma irradiation may 

create defects in silicate glasses [66-67]. Interestingly Bharati et al [66], showed gamma irradiation 

improves scratch resistance of melt-derived bioactive and improves crystallization resulting in a 

different glass ceramic material having better set of mechanical properties. Given this information, the 

effect of sterilization should be considered when using bioactive glasses in particular applications. 

2.1.4.4 Polymer/Bioglass Composite Scaffolds 

In recent years, tissue engineers have focused on developing tissue scaffold composites. These 

composites usually consist of a supportive/structural material and a bioactive material [2, 62, 68]. In 

particular, the development of composite materials comprising a biodegradable polymeric phase and a 

bioactive inorganic phase, such as hydroxyapatite (HA) or bioactive glass (e.g. 45S5 Bioglass), is seen as a 

promising approach for scaffold production [69]. Biocompatible polymers are suitable materials for the 

structural composite phase due to their easily controllable structural and biomimetic mechanical 

properties [2, 70]. Bioglass is an excellent candidate for the bioactive phase due to its high cell-

conductivity and simple processing compared to organic bioactive components (e.g. collagen and BMPs). 

The addition of bioglass can also be used to modulate mechanical properties and degradation kinetics. 

Bioglass has been shown to affect hydrophilicity thus increasing water absorption. It has also been 

shown to have a pH buffering effect against acid bi-products of biopolymer degradation [2, 69].  

Biopolymer/bioglass composites have been tested in a number of biomedical applications: Blaker et al 

[41], coated sutures with silver-doped bioglass using a slurry dipping technique and found that the 

suture became bioactive while maintaining its mechanical properties. Day et al [71], used a similar 

coating method to produce PGA/45S5 scaffolds that greatly increased angiogenesis in rat models. 

However it was found that the bioglass had an inhibitory effect on fibroblast proliferation, suggesting 

some optimal concentration. Verrier et al [69], cultured human lung epithelial cells and osteosarcoma 

cells on homogenous PDLLA/45S5 bioglass composites fabricated by thermally induced phase separation 

and found that bioglass positively effects the growth of these cells and increases cell-scaffold adhesion 

in a dose dependent manner. Using similar scaffolds Helen et al [72], demonstrated increased 

proliferation and attachment of bovine annulus fibrosis cells. Cannillo et al  [62], used salt-leaching to 



23 
 

produce 45S5/PCL scaffolds with high porosity and interconnectivity for bone healing. However, the 

prolonged contact of the 45S5 particles with water used to remove the salt probably induced a reaction 

which promoted the development of calcite and altered the glass composition, suppressing the 

development of hydroxyapatite in vitro resulting in loss of bioactivity. 

It is plain that the composite fabrication process plays a major factor in determining scaffold properties 

and bioactivity. A review by Rezwan et al [2], neatly assesses current composite scaffold processing 

techniques (Table 5). 
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Table 5. Fabrication routes for 3D composite scaffolds with high pore interconnectivity and their 

advantages and disadvantages [2]. 

Fabrication route Advantages Disadvantages 

 

Thermally induced phase 

separation (TIPS) 

High porosities (~95%)  

Highly interconnected pore 

structures Anisotropic and 

tubular pores possible Control of 

structure and pore size by 

varying preparation conditions 

 

Long time to sublime solvent (48 

hours) 

Shrinkage issues 

Small scale production 

Use of organic solvents 

 

Solvent casting/particle leaching Controlled porosity  

Controlled interconnectivity (if 

particles are 

sintered) 

Structures generally isotropic  

Use of organic solvents 

 

Solid free-form Porous structure can be tailored 

to host tissue  

Protein and cell encapsulation 

possible Good interface with 

medical imaging 

Resolution needs to be improved 

to the micro-scale  

Some methods use organic 

solvents 

 

Microsphere sintering Graded porosity structures 

possible Controlled porosity  

Can be fabricated into complex 

shapes 

Interconnectivity is an issue  

Use of organic solvents 

 

Scaffold coating Quick and easy Clogging of pores, sometimes 

organic solvents used, 

coating adhesion to substrate 

can be too weak 
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2.1.5 Bulk Metallic Glasses 

Bulk Metallic Glass (BMG) is an amorphous metal alloy. The key advantage of BMGs compared with 

conventional crystalline alloys is that BMGs can be easily cast as opposed to machined to make various 

metal components. BMGs also have in some cases vastly different thermal, mechanical, corrosive and 

conductive properties. Many kinds of BMGs have been developed including MgCuY, LaAlNi, ZrAlNiCu, 

ZrAlNiCu(Ti, Nb), ZrTiCuNiBe, TiNiCuSn, CuZrTiNi, NdFeCoAl, LaAlNi, FeCoNiZrNbB, FeAlGaPCB, PrCuNiAl, 

PdNiCuP, etc [73].  

Recently BMGs have received attention for their biomedical potential due to their high strength and 

biodegradability. MgZnCa BMGs have been demonstrated to show good biocompatibility, mechanical 

properties matching bone and excellent corrosion properties [74-75]. Thus these materials have been 

recognised as outstanding candidates for biodegradable implants such as bone pins. The degradation 

rates for these alloys is between 0.5 – 3 mm/year [74].  

An unrecognised benefit of MgZnCa BMGs may be their biofilm disrupting and antibacterial properties. 

Mg and Zn ions are both known to have antibacterial effects [56-57]. Biofilms have been shown to be 

less resistant to metal ions compared to antibiotics [76]. 

2.1.5.1 Sputter Coating 

Sputtering devices are used primarily for blanket metal film deposition. Sputter coating is a physical 

deposition process wherein noble gas particles are accelerated to a ‘target’ (the desired metal coating) 

using a strong electrical potential. The gas particles hit the target and in a transfer of momentum eject a 

particle from the target’s surface. This particle then lands on the ‘substrate’ (the object which is to be 

coated). Over time as numerous particles are deposited on the substrate a homogenous film is formed. 

Secondary electrons are ejected from the collisions and are redirected back toward the target by a 

magnetron – this maintains the plasma and improves the sputtering efficiency. Magnetron sputtering 

makes a significant impact in application areas including hard, wear-resistant coatings, low friction 

coatings, corrosion-resistant coatings, decorative coatings and coatings with specific optical or electrical 

properties [77-79]. 

Sputter coating may represent a viable method for coating polymer scaffolds with biodegradable metals 

such as BMGs. These polymer/metal composite scaffolds could be used to deliver antibacterial metal 

ions and act as a degradable envelope to control the delivery of other bioactive substances. 
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Figure 5.Schematic of standard magnetron sputter coater set-up [80]. 

2.1.6 Scaffold Mechanics 

The mechanical properties of a scaffold must match those of the tissue for which it is intended. Different 

tissues have different stress states; tensile or compressive. For example, skin is generally under tension 

whilst bone is under compression [81]. Scaffolds designed for these purposes must have excellent 

mechanical properties relating to the tissue stress state so the scaffold can properly mimic the native 

ECM and survive the harsh in vivo environments [1-2, 6, 12]. Remarkably few studies have been done 

performing mechanical testing on scaffolds, almost always bulk materials are used.  

 A typical compression curve of foams can be described by characteristic points and lines (Figure 6). The 

modulus of elasticity (Eelasticity), which is the initial slope of the compression curve, characterizes the 

scaffold in the linear elastic region where all the deformations are reversible. The yield strength (selasticity) 

is the intersection of the slope of Eelasticity and Eplateau. Eplateau is in the connection with the non-reversible 

demolishment of the cell structure. Beyond the densification point the material is thought as non-

porous material, and the modulus converges to the value of the bulk modulus [9]. 
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Figure 6. Compression curve of polymer foams, the yield and densification points are indicated [81]. 

Tension curves for scaffolds appear very similar to ordinary stress-strain tension curves for flexible 

materials. That is; an initial linear elastic region, the slope of which gives the Young’s modulus; a non-

linear region of plastic deformation; and a point of failure, where stresses rapidly decrease. Odelius et al 

[82] tested different copolymer scaffolds in tension.  An example of a scaffold tension curve from this 

study is shown in Figure 7. 

 

Figure 7. Copolymer scaffold tension stress-strain curve [82]. 

Scaffold stiffness in particular has been shown to have a profound effect on cell growth, differentiation 

and migration[83]. The mechanical property relating to stiffness is the Young’s Modulus (E). Examination 

of dermal fibroblast behaviour seeded on biological hydrogels demonstrated the influence of hydrogel 

stiffness on cell migration and proliferation, where increased stiffness yielded normal proliferation rates 
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but retarded migration. Moreover, substrate stiffness exhibited a direct effect on actin cytoskeleton 

reorganization as shown in Figure 8. [84] 

 

Figure 8. The cytoskeletal organization of dermal fibroblasts seeded on biological hydrogels with two 
different degrees of stiffness was stained for actin (green). Cells had more linear, stretched arrays of 

actin microfilaments on stiffer hydrogels in comparison to those associated with compliant hydrogels. 
Scale bar 16 μm [84]. 

2.1.7 Scaffold Synthesis 

The porous structure of a scaffold is almost completely dependent on the fabrication method used in its 

synthesis. Table 6 outlines some of the present methods for making scaffolds and the resulting scaffold 

architectures that can be achieved [1]. 

Solvent casting, in combination with particulate leaching involves casting a polymer solution with water 

soluble particulates into a mould. After the evaporation of the solvent, the particulates are leached 

away using water to form the pores of the scaffold. The process is easy to carry out, but it works only for 

thin membranes or very thin 3D specimens. In thicker sample preparation, it is very difficult to remove 

all the soluble particulates from the polymer matrix [85]. The extensive use of solvents (some of which 

are toxic) in this method also presents a difficulty, as any residuals of the solvent would hinder the cell 

attachment and proliferation onto the scaffold [86]. A more recent publication which has shown that 

low toxicity solvents can be used in this technique and residues brought down to acceptable levels for 

application [1, 87]. 
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Table 6. Fabrication Techniques and there Resultant Structures, Problems and Biomaterials that can 
be used [1]. 

 

Fibre networking technique uses biodegradable fibres to fabricate scaffolds via a textile method, such as 

non-woven, knitting and fibre bonding routes [88-89]. Electrospinning method is reportedly capable to 

fabricate polymer fibres range from a few nanometres to hundreds of microns [90-91]. 

Solid freeform fabrication (SFF) is a developing technology that enables the fabrication of custom made 

devices directly from computer data such as computer aided design (CAD), computed tomography (CT) 

and magnetic resonance imaging (MRI) data [92]. The digital information is then converted to a machine 

specific cross-sectional format, expressing the model as a series of layers. The file is then implemented 

on the SFF machine, which builds customer designed 3D objects by layered manufacturing strategy [93]. 

The important message relating to these fabrication techniques is the control over the scaffold structure 

is related directly to the cost and complexity of the technique; Increased structural control  more 

costly and complex fabrication method. This is summarised in Table 6. Structural control is important to 
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ensure manipulation of scaffold properties, since properties are so dependent on the scaffold 

architecture. 

2.1.7.1 Sterilization 

Tissue engineering scaffolds are biomimetic structures with carefully controlled chemical and physical 

properties. Scaffolds are implanted medical therapeutics and as such are required to meet stringent 

sterility regulations to ensure patient safety [94-95]. Common sterilization methods involve harsh 

conditions that are required to inactivate tough microscopic pathogens. Unfortunately these conditions 

will commonly alter the susceptible scaffold biomaterials being sterilized, causing a multitude of 

chemical, morphological and mechanical changes which ultimately affect the function of the tissue 

engineering device.  

Cell containing scaffolds cannot be terminally sterilized. Growth factors such as bone morphogenic 

protein (BMP) will become denatured by many terminal sterilization methods. After all, the point of 

sterilization is to inactivate pathogen proteins and nucleic acids by denaturation and therefore cannot 

distinguish these materials from protein-based growth factors. A route to circumventing this problem is 

to aseptically process rather than terminally sterilise growth factors i.e. the recombinant human 

platelet‑derived growth factor‑BB (PDGF‑BB), GEM 21S™ which is incorporated into a dental bone filler 

composite has been processed in this way [28, 96]. Unfortunately aseptic processing is far more 

expensive and more difficult to scale. 

Natural polymers are sensitive to most sterilization methods. Collagens are the most widely distributed 

type of protein in human extracellular matrix (ECM) and are commonly used tissue scaffolds. They are 

heat sensitive and cannot be autoclaved. Radiation sterilization such as gamma and E-beam attack the 

molecular structure of collagen resulting in decreased mechanical properties and enzymatic resistance. 

Chemical methods have proved to be more promising. Ethylene oxide (EtO) sterilization was found to be 

less damaging than radiation depending on the collagen product [97]. The sterilization of collagen 

scaffolds has yet to be optimised [98]. 

Synthetic biocompatible polymers show the best resistance to common sterilization methods. They 

cannot be heat sterilized but both chemical and radiation techniques have been successful. The residues 

left behind from EtO sterilization are highly toxic and their complete removal is not always possible [7, 9, 

17, 82, 97]. Ionising radiation affects the performance bioresorbable polymer medical devices by making 
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alterations to the polymer chain organisation. [8-9, 17, 82, 99-100]. It has been found that synthetic 

biopolymer mechanical properties have actually been improved by gamma sterilization [8, 17, 81]. 

Tissue engineers need to consider the terminal sterilization method in the initial design process of tissue 

scaffolds to account for changes in properties and synthesis routes. Designing in this way may overcome 

the high cost shortfalls of current tissue scaffolds. 

2.1.8 Other Applications 

Composite scaffolds are used in the medical industry for wound dressings [12, 101], drug delivery [21, 

27] and tissue engineering of a number of organs and soft and hard tissues [1, 6, 28]. However, the 

generic properties and design aspects of composite scaffolds have made them useful for other 

applications in completely separate industries. 

2.1.8.1 Filter Systems 

The interconnected porosity of composite scaffolds makes them ideal filter materials. The high porosity 

and high surface area allows unimpeded diffusion of fluids and high reactivity. The controllable surface 

properties particularly lend themselves to the field of biofiltration where the surface can be modified to 

immobilize biocatalysts to perform industrial reactions such as epoxide formation, desulphurization and 

waste removal. In fact, porous polyurethane foams have been used as tissue engineered wound 

dressings [101] and for immobilization of bacterial viable cells for biofiltration [102].  

2.1.8.2 Advanced Materials 

The use of porous structures with controllable architectures similar to tissue scaffolds has been applied 

to the design of advanced materials. Schaedler et al [103] used photo-polymerisation to rapidly create 

polymer matrices. These were then coated in nickel-phosphorus by electroless plating. Finally the 

polymer was etched away leaving a metal material that was 99.99% air. The porosity allows the creation 

of ultra light materials with customisable properties and greatly enhanced mechanics. The Ni-P 

‘microlattices’ produced in this study were reported to be the strongest material compared to its 

density. 
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Figure 9. Ultralight Ni-P microlattice rests atop a dandelion (Image: Dan Little, HRL Laboratories, LLC). 

.  

 

2.2 Wound Healing Grafts 

2.2.1 Skin 

2.2.1.1 Structure and Function 

Skin is the largest organ in the human body. It acts as the barrier, protecting sensitive tissues from toxins 

and microorganisms in the external environment as well as preventing dehydration. Skin plays other key 

roles such as perspiration and sensory detection [12].  

Skin is comprised of two main layers: the epidermis and the dermis. The epidermis is comprised mostly 

of keratinocytes. The cells are constantly dividing. They slowly shift to the outmost part of the epidermis 

changing their morphology from round to flattened, where they eventually die from lack of blood 

supply. Once they reach the layer exposed to the environment, the sheets of dead keratinocytes flake 

off which helps to remove pathogens from the skin [104]. 
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Figure 10. Cross-sectional diagram of human skin [105]. 

The dermis is comprised mostly of fibroblasts. Fibroblasts produce collagen, the main constituent of the 

connective tissue giving the skin its mechanical strength [106]. The dermis holds a number of other 

important structures such as nerve endings, tough receptors and sweat gland ducts. It also contains a 

wide network of blood vessels and capillaries which provides nutrients and waste removal to 

surrounding tissues as well as allowing access of the immune system to repair damage and fight 

infections [107]. 

2.2.1.2 Mechanical Properties 

Mechanical properties of biomaterials and tissues should not be taken as absolutes, as different testing 

methods usually generate varying results.  

Agache et al [108] used a torsional set-up to test the tensile properties of a test subject’s skin directly 

and determined the Young’s Modulus as 850kPa in older individuals.  

Silver et al [109] tested human skin allografted samples and computed a modulus of 0.1MPa for strains 

up to 40% (Table 7). This is more than 8 times less than Agache’s calculation of the modulus for human 

skin. 
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Table 7. Slopes of incremental stress-strain curves [109]. 

 

Animal models of skin have also been used to determine mechanical properties. Common models are 

mouse and pig [106]. Animal models generally allow a larger amount of samples from an increased 

number of individuals. 

The majority of biomechanical testing of skin has been performed analysing tensile properties with very 

few analysing compressive properties. This is despite the fact that it is compressive type injuries that 

more often lead to chronic wounds such as bed sores [106].  

2.2.1.3 Wounds and healing 

A wound is a defect or a break in the skin, resulting from physical or thermal damage or as a result of 

the presence of an underlying medical or physiological condition. Acute wounds are those that take < 12 

weeks to fully heal. The primary cause for such wounds is mechanical in nature such as cuts, tears and 

abrasions [101]. When one suffers an acute wound normal wound healing ensues. 

Normal wound healing can be thought of in three consecutive stages: the inflammatory stage, the 

proliferative stage and the maturation stage [110]. During the inflammation stage platelets rapidly form 

a clot. Neutrophils and macrophage (inflammatory cells) migrate to the clot where they destroy any 

pathogens and secrete growth factors. This leads to the activation and proliferation of fibroblasts and 

endothelial cells. These cells migrate to the fibrin clot forming granulation tissue. Tissue ingrowth 

continues from the dermis providing new vasculature to the clot. The epidermis begins to grow over the 

clot while physiological function is returned to the wound site [12]. Dysfunction during this fine-tuned 

physiological process can prevent proper healing and cause a chronic wound (dermal ulcer) (Figure 11). 
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2.2.2 Chronic Skin Wounds 

Chronic Wounds are tissue injuries that persist beyond 12 weeks [101]. The initial injury can be 

incredibly varied (burn, abrasion, tear, cut, ischemia, etc.), but the slow healing is due to interruption of 

the healing stages by inhibited blood flow to the wound area and repeated aggravation of the damaged 

tissue, preventing normal physiological healing and return of function [110]. The result is a chronic 

opening in the skin called an ulcer that is prone to infection and can often end in amputation [12]. There 

are different types of ulcers such as diabetic ulcers, venous ulcers and pressure sores, but of these 

diabetic ulcers are by far the most common and represent the biggest health care challenge for the 

future [12].  

In the US, the prevalence of venous ulcers was 1.5-2 per 1000 individuals, for which the average total 

medical cost was $9685 [111]. In Australia, there are approximately 10,000 hospitalisations due to 

diabetic foot ulcers per year and these wounds account for 8% of all diabetic-related deaths [112]. The 

cost of treating chronic wounds in the US in 2001 was US$25billion. The economic impact is even 

greater when loss of work is also accounted for [113]. 

Chronic wounds are on the rise due to the increasing prevalence of obesity, an aging population and 

diabetes – key risk factors for chronic wounds [107, 113]. Chronic ulcers occur mostly in the elderly as 

this population often has impaired healing and other pathologies such as diabetes and cardiovascular 

disease [12, 101, 114]. Obesity is a major risk factor for becoming hyperglycaemic and developing type 2 

diabetes. Further obesity puts addition pressure on the feet such that wounds can develop [113]. 
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Figure 11. Wound healing pathology. a) Normal acute wound healing: fibrin clot with granulation 
tissue and neovascular ingress; b) Chronic wound: Dysfunction of normal wound healing processes. 
Bacterial biofilm growth, inflammatory cells and free radicals saturate fibrin clot preventing normal 

tissue proliferation [12]. 

 

2.2.2.1 Aetiology 

2.2.2.1.1 Ischemia 

Ischemia is the reduction in blood flow to tissue. In the context of wounds, ischemia prevents adequate 

delivery of immune cells to carry out normal healing hence forming a chronic wound. The lack of oxygen 

supply and other nutrients also causes tissue necrosis which further aggravates the problem. Ischemia is 

a key cause of chronic wounds and must be addressed before proper wound healing can occur [114-

115]. 

2.2.2.1.2 Diabetes 

The prevalence of diabetes in the US is 7% of the population and is on the rise [12]. During the period 

2005–2007, the total incidence of diabetes increased 13.5% [113]. Diabetics have a 15% chance to 

develop foot ulcers with 70% recurrence within 5 years [110].  
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Persons with diabetes are at higher risk of suffering from atherosclerosis resulting ischemia. Sweat 

glands do not function properly which dries the skin predisposing it to cracking and abrasion. Most 

importantly diabetics suffer from peripheral neuropathy, or the loss of feeling of the extremities. This 

loss of feeling includes loss of pain and is the major cause of deep skin traumas which can eventually 

become chronic [114-115]. Diabetic patients are often hyperglycaemic resulting in the superoxide 

production which neutralises nitric oxide (NO), a key wound healing factor produced by endothelial 

cells. This results in an excess of free radicals in the wound, impairing healing [110].  

 

Figure 12. Diabetic foot ulcer in a typical position [114]. 

2.2.2.1.3 Infection 

Infection in chronic wounds is common and can be detrimental to the healing process and even fatal 

[55, 101]. Invading microorganisms often produce toxins causing local cell death. These pathogens also 

elicit an inflammation response leading to further tissue destruction, further slowing healing. The 

fibrous wound milieu and necrotic tissue offer a prime location for microbes to form biofilms, providing 

resistance to antibiotics and phagocytosis. These biofilms serve as beachheads for pathogens that 

ultimately result in a systemic infection which can be fatal [116]. Infection can also lead to osteomyelitis, 

sepsis of the bone making the infection even more difficult to remove [114]. 
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Many different types of bacteria can become pathogenic within a wound. Common wound infecting 

bacteria include Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Streptococcus 

pyrogenes and some Proteus, Clostridium and Coliform species [101, 117].  

2.2.2.2 Treatments 

2.2.2.2.1 Debridement 

Debridement is the removal of necrotic tissue from the wound bed. Debridement is important in the 

diagnosis of a wound, because clearing dead tissue is often necessary to view and assess the underlying 

wound bed. Further, necrotic tissue increases the risk of infection and sepsis and prolongs the 

inflammatory phase of healing [101]. Surgical removal using scalpel and scissors are the main method of 

debridement. A curette is also used to scrape out necrotic tissue on the wound bed. Debridement is the 

most effective way to remove biofilms [118]. Abundant data shows that regular debridement of ulcer 

wounds and removal of devitalized tissues is the single most important therapeutic step leading to ulcer 

healing and limb salvage [115]. 

2.2.2.2.2 Pressure Off-Loading 

Pressure off-loading is an essential part of managing chronic skin wounds in areas that experience 

mechanical loading, such as the heel of foot. Specially cast orthotic medical-grade shoes fully support 

the patient’s foot and can reduce trauma of the chronic ulcer. This is especially important in the case of 

foot deformities which can often act as pressure points causing re-occurring wounds. In severe cases, 

orthopaedic surgical intervention may be required to remove such pressure points and produce 

improved outcomes. Medical-grade footwear can be very expensive, further adding to the cost of 

treating chronic wounds [112, 115, 118]. 

The most effective method of pressure off-loading is inactivity and rest. However, most patients are 

unlikely to comply with this, due to the inertia of day-to-day activities and the long periods required for 

healing [114]. Further, peripheral neuropathy prevents a painful reminder of pressure points [118]. 

2.2.2.2.3 Wound Dressings 

Kumar et al [55] states that an ideal wound dressing should: keep the wound moist, allow gas exchange, 

act as a microbial barrier, remove excess exudates, be non-toxic, non-adherent (easy to remove), 

antimicrobial and promote healing. It has become widely accepted that the wound should be kept moist 
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to promote an environment wherein epithelial cells can move unimpeded and vital nutrients can be 

effectively transported [101, 114].  

To treat infected wounds, dressings containing antimicrobial agents are used. The most common 

antimicrobial agent used is silver and most dressings have both normal and silver-containing types [101, 

118]. 

Although wound dressings do improve healing they are not a permanent solution and need to be 

changed regularly (in many cases daily) depending on the wound pathology [12, 115]. This represents a 

large burden on health systems to employ clinicians to perform the regular dressing changes required. 

Currently: “There is no evidence showing that one type of dressing is better than another, or that one 

type of dressing can be used on all wounds [112] [114].” 

2.2.2.2.4 Antibiotics 

As previously mentioned the main types of pathogens that infect chronic wounds are gram positive cocci 

such as Staphylococcus aureus. However, other type of pathogens including aerobes and even fungi can 

infect wounds thus the antibiotic treatment should be broad-spectrum [115]. Methicillin-resistant 

strains, such as methicillin-resistant Staphylococcus aureus (MRSA), are frequently encountered, so 

newer antibiotics, such as vancomycin, rifampicin and daptomycin, should be considered [114-115].  

Topical antibiotics can be used in more superficial wounds but do not properly interact with deeper 

ulcerations [118] and are not recommended for the treatment of diabetic foot ulcers [115]. Thus 

systemic antibiotics are used which require higher doses to maintain an impact at the wound site and 

have harmful side effects [101]. Tobramycin drug delivery devices can be inserted directly into the 

wound to provide extended and direct antibiotics, however these devices are expensive and introduce a 

pressure point into the wound which may provoke trauma [118]. Antibiotics including gentamycin and 

ofloxacin have also been impregnated into hydrogel wound dressings [101]. 

2.2.2.2.5 Skin Grafting 

Autografting (self-donor) and allografting (human donor) of skin is used in wound repair. However, 

allografting has the substantial disadvantage of host rejection of the transplanted tissue. While 

autografting requires surgery which has its own risk and the donor site can often be subject to morbidity 

[12]. Skin grafts are particularly ineffective on weight bearing defects because of the poor durability of 

the graft [115].  
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2.2.2.2.6 Tissue Engineered Skin Substitutes 

Tissue engineered wound healing devices have shown promise compared with classical dressings in 

recent studies. Tissue engineered dressings are made of biocompatible scaffolds that mimic skin 

connective tissue and biodegrade once the local tissue has healed. They also can be used to deliver cells, 

growth factors, genes, drugs and other antibacterial agents to the wound to expedite healing [101, 107, 

111]. Further advantages of tissue engineering scaffolds are they: retain a moist environment, allow 

permeation of gas, absorption of exudates and are easy to remove without trauma [55]. Highly porous 

mesh grafts are used so as to not entrap exudates. However, most commercial tissue engineered grafts 

are not genuine grafts as they are very thin and serve more as a dressing that delivers cells and 

extracellular matrix components to the granulating wound bed [115]. In essence wound healing 

scaffolds should provide an environment for cell adhesion and wound regeneration and prevent 

secondary infection [116]. 

Currently, tissue engineering skin substitutes have been ineffective at integrating with the wound. 

Chong et al [107] claims the reason to be a combination of low flexibility and high thickness scaffolds. In 

accordance with this, Chong et al designed an approach using a PCL/gelatin matrix, electrospun onto an 

existing polyurethane dressing (Tegaderm™) to build up the dermis in thin layers, but admits that 

“Ultimately [it] may be insufficient to replace the lost dermis in terms of thickness”. This contradiction, 

suggests that thickness may not be the issue, but possibly high porosity is needed to bridge the wound. 

However, some researchers see integration with the wound as a negative. Kumar et al used Scanning 

Electron Microscopy (SEM) to observe cells with globular morphology, indicating weak attachments to 

the β-Chitin/silver nano-particle hydrogel. This was seen as indicative of a non-adherent wound dressing 

and thus advantageous [55]. Viewing non-adherence as a positive characteristic affirms the point that 

most tissue engineered skin substitutes are closer to dressings and would need to be changed regularly. 

Kim et al [119] showcased the potential of an integrin receptor ligand (peptide RGD)-bound PLLA 

scaffold for delivery of endothelial progenitor cells. These stem cells that are native in the bone marrow 

and aid angiogenesis following tissue injury are currently not clinically utilised due to poor bio-

distribution and survival even when injected locally. The use of the endothelial cell-seeded RGD-g-PLLA 

scaffold greatly increased cell survival, targeted adhesion and vascularisation in a mouse wound model 

compared with local injection.  



41 
 

Breen et al [110] optimised a fibrin scaffold to increase the efficiency of adenovirus vector expressing 

endothelial NO synthase (AdeNOS). AdeNOS had been shown previously to upregulate eNOS expression, 

but had the disadvantages of short duration of transgene expression as well as a viral immune response. 

These were obviated by use of the scaffold which was able to deliver the eNOS gene for longer and at 

lower dosages which was shown to increase NO at the wound, prevent chronic inflammation and 

accelerate epithelialisation. 

Dermagraft™ (Smith and Nephew Plc) is a human fibroblast-derived dermal replacement for wound 

repair. The origin of the cells is human newborn foreskin. It consists of a bio-absorbable three-

dimensional scaffold containing growth factors, matrix proteins and glycosaminoglycans, on which 

fibroblasts are cultured to produce a living, metabolically active dermal tissue. Possible healing 

mechanisms include providing the wound bed with a metabolically active dermal matrix and/or 

promoting the expression of important mediators (VEGF, TGF-b, HGF/SF) and thus stimulating 

angiogenesis and subsequent wound healing [111]. 
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Table 8. Commercially available tissue engineered skin substitutes [101]. 

 

Most commercially available skin substitutes contain many biological components (Table 8). Concerns 

with biological scaffolds are their poor biostability, low mechanical properties, high cost, low shelf-life, 

risks of immunological rejection and lot-to-lot variability [116]. Organogenesis Inc. and Advanced Tissue 

Sciences Inc. suffered financially as a result of their overestimating the number of chronic wounds cases 

that were best solved by high-tech, tissue engineering skin substitutes as opposed to simpler, cheaper 

synthetic solutions that aid regeneration. As such there is now a philosophy emerging in tissue 

engineering to eschew biological materials and recreate the biomimetic solutions with synthetic 

materials that are more commercially viable [28].  

Song et al [116] developed a synthetic cell-adhesive polypeptide hydrogel with inherent antibacterial 

activity. The lysine and arginine polypeptides were used to both crosslink and impart hydrophobic and 

cationic properties to a Polyethylene glycol (PEG) based hydrogel resulting in both cell adhesive and 

antibacterial properties. However, the polypeptides could not be terminally sterilized and the cell-
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adhesion was still 10-fold less than collagen sponges. The non-adherence of hydrogels is a problem with 

true synthetic skin grafts and may be overcome by forming composites with more adherent polymers. 

2.2.3 Biofilm Forming Bacteria 

Biofilms are a collection of bacterial colonies that are tightly adhered to a surface within a polymer 

matrix created by those bacteria [120-123]. This behaviour has evolved as biofilms give the bacteria the 

best chance of survival by being able to shelter from harsh environments. 

Pathogens exist in the wound environment as biofilms. This enables the pathogens to persist in the 

wound for an extended period defending them from the host immune system and protecting them 

against other interventions such as cleaning and antibiotics. The biofilm chronically maintains the wound 

in the inflammatory phase, preventing it from healing [117]. 

 

Figure 13. Biofilm community of bacteria living within a chronic wound [117]. 

2.2.3.1 Formation  

The establishment of biofilms is a two part process: 1. Physical, reversible adhesion and; 2. Biological, 

irreversible adhesion [123-124]. 
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The first involves the bacteria coming into close contact with a surface; this is influenced by a number of 

physical interactions between bacteria, surface and solution. These include surface charge, ionic 

strength, pH, hydrophobicity, surface roughness, Brownian motion, Van der Waals forces, etc [123-128]. 

A number of theories try to explain this initial adhesion in terms of these physical forces but in reality all 

bacteria are different and certain biological features of the cell surface (e.g. pilli, fimbrae, slime layers, 

etc) are known to also play a crucial role in this initial adhesion [121, 123-124]. Common physical and 

biological factors affecting adhesion have been summarised by Pavithra et al [124]. (Figure 14) 

Once the cells are adhered to the surface certain genes are up-regulated and they begin to produce 

exopolymeric substances (EPS). These form a matrix around the cells that accounts for the vast majority 

of the biofilm. The EPS matrix can be made of proteins, polysaccharides, DNA, lipids, etc. They attach to 

the surface using rather weak H-bonds or electrostatic bonds but the long polymer chains means more 

binding points which actually make the adhesion of biofilms to the surface very strong and irreversible. 

 

Figure 14. Parameters that determine bacterial adhesion [124]. 

Oxygen has been shown to be an important factor in biofilm growth. Colon-Gonzalez [129] correlated a 

decrease in E. coli biofilm formation after 24 hours incubation in LB broth with oxygen deficiency rather 

than nutrient depletion and claimed biofilms could not form in anaerobic conditions. A more extensive 
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study by Bjergbaek et al [130] tested several clinical E. coli strains and proved that biofilms could form in 

anaerobic conditions but that this attribute is heavily variable between strains. 

2.2.3.2 Properties 

2.2.3.2.1 Architecture 

Biofilm structure is the spatial arrangement of cells in an EPS matrix. Biofilms are highly hydrated 

structures with interconnected pores and channels creating a network of nutrients for the bacterial 

community within. Recently it has been shown that biofilms are heterogeneous structures and have 

flowing water channels linking the non-uniform clusters of cells to the bulk liquid phase. Biofilm 

thickness is dependent on growth conditions, bacterial strains and time, but generally ranges from a few 

micrometres to a centimetre [121].  

The EPS layer composes 50-80% of the biofilm. It serves as a protective barrier and determines most of 

the biofilm chemical and physical properties such as resistance to antibiotics and mechanical stability 

[121]. The composition of the EPS layer determines its function and is differs between bacterial species.  

 

Figure 15. Change of thinking on Biofilm structure: From rough planar structure to complex 
heterogeneous architecture with water channels connecting microbial clusters. 

2.2.3.2.2 Resistance 

 Microbes in biofilms are more resilient than planktonic (free-floating) cells. They establish a network 

and share nutrients extending their survivability [131]. The EPS matrix and production of slime also 

protects them from antimicrobial agents, greatly reducing effects of common antimicrobials such as 

antibiotics. This layer importantly also protects the community from phagocytosis allowing the bacteria 

within to elude the immune system [124]. In clinical setting bacteria will often form biofilms in wounds, 

teeth, implants and the gastrointestinal tract which can lead to long-term infections [121, 123, 131].  
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Biofilm cultures have been shown to be far less susceptible to antibiotics than planktonic cells, with 

MIC/MBC measurements of a range of antibiotics being higher for biofilms by orders of magnitude [76, 

124, 132-133]. Diffusion of antibiotic molecules are slowed or unable to enter the EPS matrix due to size 

restrictions, EPS viscosity and EPS chemical interactions [131]. Due to high resilience and the formation 

of drug resistant strains [133], the prospect of using antibiotics in biofilm treatment in a traditional 

sense is minimal [132]. 

Heavy metal resistance of biofilms is a contentious field. It has been found that the EPS layer is capable 

of binding heavy metals [134]. Teitzel and Parsek [134] showed that P. aeruginosa biofilms were more 

resistant than planktonic cells through MIC/MBC assays. However, Harrison et al [76] later showed that 

metal-toxicity of biofilms was time-dependent and after long culture periods biofilms were just as 

susceptible to heavy metals as free cells. 

2.2.3.3 Biofilm-forming Bacteria Types 

2.2.3.3.1 Staphylococcus aureus 

Many different types of bacteria can become pathogenic within a wound, but it has been shown that 

94% of slow healing or recurring ulcers contained Staphylococcus aureus [101].  

Polysaccharide intercellular adhesin (PIA), composed of poly-β-1,6-linked-N-acetylglucosamine, is the 

main constituent of S. aureus biofilm matrix [135]. PIA is produced by the intercellular adhesion operon 

present in nearly all S. aureus strains. Many S. aureus strains were seen to be biofilm negative in 

standard biofilm assays despite being PIA positive. It was later found that PIA was highly regulated and 

that anaerobic conditions up-regulated ica transcription resulting in PIA production and biofilm 

formation [136].  

The way bacterial cells “talk to one another” is referred to as quorum sensing and is vital for biofilm 

formation. The S. aureus quorum-sensing system is encoded by the accessory gene regulator (agr) locus, 

which has been show to influence the antibiotic resistyance of the biofilm [137].  

2.2.3.3.2 Pseudomonas aeruginosa 

P. aeruginosa biofilm phenotype is dependent on the nutritional environment. With glucose as the 

carbon source P. aeruginosa biofilms formed as large mushroom shaped communities. With citrate as 

the carbon source the biofilms were flat, uniform structures [138].  
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Genetic factors also have a great impact on P. aeruginosa biofilm formation. P. aeruginosa is able to 

swim in liquid by means of flagella and to move on surfaces by means of type IV pilli. This results in 

colony aggregation on surfaces explaining the mushroom-shaped colonies described above [138]. 

P. aeruginosa use Acyl-Homoserine lactone (AHL) pathways for quorum sensing to coordinate biofilm 

formation. Quorum sensing pathway inhibitors are being developed and are shown to prevent biofilm 

formation [117]. 

2.2.3.3.3 Escherichia coli 

E. coli are a native gut flora in most warm-blooded animals. When E. coli are released into a non-host 

environment they can exist as biofilm communities and cause pathogenesis. A large number of cell 

surface components have been found to influence biofilm formation such as, flagella, type I fimbrae, 

conjugative pilli and extracellular polymeric substances [130].  

Both laboratory and clinical strains have been shown to form biofilm in vitro on abiotic surfaces. This 

growth is dependent on the strain and the nutritional environment and subject to great variation given 

different combinations of the two [129]. Bjergbaek et al [130] tested the biofilm formation of thirteen 

clinical strains and concluded that TSB media in the presence of oxygen provided the best biofilm-

forming conditions.  

E. coli quorum sensing occurs by cell-cell signalling thorugh the autoinducer-2 (AI-2). E. coli quorum 

sensing has been linked to virulence-associated factors, such as genes encoding the expression and 

assembly of flagella, motility and chemotaxis, were also activated by quorum sensing [139].  

2.2.3.4 Interaction with Biomaterials 

Biomaterial-associated infection poses a serious complication due to the increased used of biomaterial 

implants in modern medicine. These infections occur in 0.5 – 6% of all cases, strongly dependent on the 

implant site. Biomaterial associated infections are difficult to treat as the implant creates a favourable 

niche for biofilm communities [140-141]. 

 Targeting the EPS would be the obvious way to break up biofilms so the underlying bacteria can be 

targeted, but this is difficult due to the complex nature of the EPS and its variability in different bacterial 

communities. Thus focus is often on the prevention of biofilms using antimicrobial and non-adhesive 

surfaces. Al-ahmad et al [142] introduced tri-calcium phosphate (TCP) to PLLA scaffolds to decrease the 
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hydrophobicity and consequently decrease the adherence of common plaque bacteria. Wang et al [143] 

coated the surface of scaffolds with microgels impregnated with antibacterial peptides. This system took 

advantage of the non-adhesive properties of the hydrogel with the static antimicrobial nature of the 

peptides to prevent adhesion of Staphylococcus epidermidis. The microgels were spotted onto the 

surface of the base PCL-chitosan scaffold, leaving much of the tissue adherent surface exposed. The 

problem with antibacterial surface design is the initial layer of bacteria that die on contact with the 

biomaterial then condition the surface for biofilm colonisation by the next layer of bacteria. Thus far 

there is no ideal solution for dealing with biofilms on biomaterial. 

When a medical device is implanted, there is a “race for the surface”, between host cells and 

opportunistic pathogens [141, 144]. Encouraging rapid host cell migration and adhesion to the implant 

surface may simultaneously decrease the likelihood of biofilm formation. 

2.2.3.5 Measurement and Analysis 

2.2.3.5.1 Assays 

Firstly it needs to be made clear that adhesion is not necessarily biofilm formation. Many studies in the 

literature will make claims about biofilm formation but really what was being tested was bacterial 

adhesion. Biofilm formation as previously mentioned is not only adhesion it is also the following 

production and growth of EPS. A method for distinguishing biofilm studies from adhesion studies is 

examining growth conditions used. Adhesion studies are usually performed in buffer (transport media) 

and for a short time period (< 1 day). Biofilm assays are performed in growth media so cells have vital 

energy and nutrients to produce EPS. These studies typically run longer than adhesion studies (> 1 day) 

so cells have sufficient time to produce the biofilm matrix [133, 141, 145]. For Goa et al [133] 

Pseudomonas aeruginosa incubated from 108CFU/ml at 37C took 7 days to form a significant biofilm 

(Figure 16). 
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Figure 16. Bare titanium slide surfaces after incubation with Pseudomonas aeruginosa in ¼ BHI, 
magnification 1:600. Bacteria are stained using SYTO 9 (Invitrogen). [A] 1 day. [B] 2 days. [C] 3 days. 

[D] 7 days. [133] 

Biofilm growth can be quantified through a number of different assays. These are usually carried out in 

two distinct parts: 1) disruption of the biofilm and; 2) quantification of cells, proteins or DNA. Harrison et 

al [76] and others [142, 146] used sonication as the biofilm disruption technique followed by turbidity 

measurements in a plate reader or viable counts. Biofilm disruption followed by cell counts has been 

used by many others as a means of biofilm quantification. It has been claimed that sonication disrupts 

biofilms while having no impact on cell viability [76, 134, 147]. 

Characteristic stains are also in common use. Patel et al [148] soaked dried biofilms in crystal violet (CV), 

washed off the excess and re-solubilised the stain in ethanol. Absorbance at 600nm was then measured 

using a plate reader. This method was only used to quantify the biofilm matrix formation. Tote et al 

[132, 135] used CV for Pseudomonas aeruginosa and dimethyl methylene blue (DMMB) for S. aureus 

biofilm matrix quantification claiming DMMB was a more specific indicator binding only to 

glycosaminoglycans (GAGs), the major constituent of S. aureus biofilms. To get a sense of viable cells, 

Tote [132] used resazurin, a commonly used redox indicator that gives a fluorescent signal proportional 

to metabolic activity. A period of 30min incubation time in resazurin was used. 
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2.2.3.5.2 Microscopy 

Since biofilm bacteria are encased in EPS, assays may not accurately enumerate a given biofilm. Biofilms 

containing numerous bacterial species further complicates assay type analysis. Microscopy techniques 

allow characterisation of the biofilm and microbial community with minimal disruption to the biofilm. 

Specialised stains and microscopy coupled with appropriate software are used to count biofilm cells.  

Scanning electron microscopy (SEM), transmission electron microscopy (TEM), normal light microscopy 

(LM), fluorescence microscopy (FM) and confocal scanning laser microscopy (CSLM) all have been used 

to study biofilms. Most of these methods include sample preparation such as sectioning, staining, 

dehydration, freezing and many more [121].SEM can be used to view biofilms, providing a depth a view 

making it easy to identify different bacterial cells and extracellular structures. However, the dehydration 

required for SEM sample preparation affects the morphology of the highly hydrated biofilm EPS which 

experiences deformation and shrinkage [121].  

 

Figure 17. SEM image of Enterococcus faecalis biofilm on PLLA scaffold [142]. 

Stains are particularly useful for illuminating different components in the biofilm. Gao et al [133] used 

the fluorescent stain SYTO 9 (Invitrogen) to examine Pseudomonas aeruginosa on silicon wafers (Figure 

16).  
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2.2.4 Novel Tissue Engineered Graft 

2.2.4.1 Antibiotic Delivery 

2.2.4.1.1 Antibiotics 

2.2.4.1.1.1 Chloramphenicol 

Chloramphenicol is a bacteriostatic (bacterial growth-inhibiting) antibiotic [149-150]. Its antibacterial 

mechanism is the inhibition of protein synthesis by altering the 50S ribosomal unit in the bacterial 

ribosome, thus preventing bacterial growth and proliferation [151]. The drug has a half life of 1.5 to 4 

hours.  In the body and chloramphenicol is hydrophobic  which increases its binding affinity to 

biopolymeric scaffolds [152]. The antibiotic has a absorbs strongly in the UV spectrum primarily due to 

the aromatic ring present in the molecular structure as seen in Figure 18 [152-153]. 

 

Figure 18.Chemical structure of Chloramphenicol. 

2.2.4.1.1.2 Erythromycin 

Erythromycin is a macrolide antibiotic. Macrolides have a common macrocyclic lactone ring to which 

one or more deoxy sugar groups are attached. They are weak bases and only slightly soluble in water (2 

mg/ml) compared with ethanol (50 mg/ml) [154]. They are bacteriostatic and bactericidal (bacteria 

killing) depending on concentration; interfering with bacterial protein synthesis. Macrolides have low 

cytotoxicity, making them ideal antibiotics [155-156].  
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Erythromycin was the first macrolide to be discovered and marketed. It has a similar antibacterial 

spectrum as penicillin. Erythromycin is generally thought to be bacteriostatic [150], however time-

dependent killing of S. aureus has been reported [149]. Erythromycin concentrations of 0.5µg/ml and 

8µg/ml was found to be the MIC (minimum inhibitory concentration) of 86% and 99% (60 strains 

studied) of methicillin-resistant S. aureus as oppose to chloramphenicol for which the same 

concentrations only inhibited 4% and 91% of strains [157]. It occurs as a white/yellow powder. It exhibits 

characteristic UV absorption maxima when dissolved in water (pH 6.3) at 280nm (ε = 50). The pKa value 

is 8.8. Erythromycin is non-polar and has poor solubility in water. The chemical structure of 

erythromycin can be seen below [156]. 

Erythromycin has been reported to have relatively high toxicity to human skin fibroblasts compared to 

other well known antibiotics. The minimum concentration which caused no change in fibroblast viability 

was 300μg/ml compared with Gentamycin at 1000 μg/ml [158]. The mechanism of cytotoxicity of 

fibroblasts is not well documented but Zimmerman et al reported leakage of enzymes from Chang liver 

cells [159], suggesting modifications to the cell membrane. 

 

Figure 19. Chemical structure of erythromycin. 

Detection of macrolides is more complex then other antibiotics. They do not have sufficient 

chromophore groups to be detected by simple spectrophotometry and thus many standards still suggest 
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tedious microbial assays for low concentration determination. Recently, new methods have been 

developed to quantify macrolides. The most widely used method of detection is high performance liquid 

chromatography (HPLC). This technique uses low wavelength UV. The method is requires precolumn 

extraction and is thus time consuming [156]. However by reacting erythromycin with other chemicals 

such as acidic dyes, concentrated sulphuric acid, and ferric ions, erythromycin can then be measured by 

spectrophotometry. 

Macrolide antibiotics react with eosin Y dye in acetate buffer to instantaneously form a stable binary 

complex which can then be easily detected by spectrophotometry. The binary complex showed 

absorption maxima at 542–544 nm. The absorbance of the binary complexes obeyed Beer’s law over the 

concentration range of 2–20 μgmL−1 for erythromycin [155-156, 160]. 

Danielson et al [161] used 14-16N H2SO4 to react with the sugars in erythromycin. The resulting yellow 

product could be analysed by spectrophotometry at 470nm. However the reaction time needed for the 

product to reach its maximum absorption was 350min, somewhat mitigating the simplicity of this 

procedure. 

Erythromycin can be gamma sterilized in powder form up to 50kGy with no change in activity. In 

aqueous solution Erythromycin is 90% inactivated at 5kGy [162] which is much lower than the standard 

sterilizing dose of 25kGy [94-95]. 

2.2.4.1.2 Drug delivery systems 

2.2.4.1.2.1 Function 

Drug delivery systems (DDS) have been used for decades in the pharmaceutical industry and are 

becoming increasingly popular in tissue engineering systems. DDS are designed to suit the 

physiochemical and pharmacokinetic properties of the drug as well as its application [21]. DDS aim to 

control the rate of drug released to achieve a therapeutically effective dosage of the drug.   

DDS can be used to improve the delivery of a drug in a number of ways. Capsules and pills are commonly 

used to protect unstable drugs from early degradation allowing these compounds to be administered 

orally. These devices are made of gelling agents that protect the drugs until they are ready to be eluted. 

More recently DDS have are being incorporated into tissue engineered medical devices and scaffolds 

[21]. Very often the purpose of DDS in these devices is either delivering growth factors to up-regulate 
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the growth and differentiation of the tissues that need healing; or delivering antibiotics to inhibit 

infections. Bourke et al. [35] investigated photo-cross linked hydrogels for delivering platelet derived 

growth factor (PDGF) to chronic wounds to accelerate the growth of human dermal fibroblasts. Hwang 

et al, [29] impregnated PVA/Dextran wound dressings with gentamicin to improve wound healing in a 

rat animal model. 

2.2.4.1.2.2 Parameters 

The gel fraction is often measured when characterising a hydrogel DDS. The gel fraction is the amount of 

insoluble hydrogel compared with the amount of hydrogel after fabrication. This is commonly tested by 

gravimetric analysis of the hydrogel before and after long soaking in water. This is meant to remove any 

soluble polymers from the hydrogel, before drying and re-weighing. The gel fraction is directly 

proportional to the level of crosslinking, which locks polymers within the hydrogel. The gel fraction is 

inversely proportional to swelling ratio, because the less densely crosslinked hydrogel can better absorb 

water and swell [29]. 

The swelling of a hydrogel is a key parameter in its effectiveness as a DDS. The swelling kinetics will 

determine the onset of drug delivery. Generally swelling will occur at a linear rate before reaching a 

plateau when the hydrogel is saturated with fluid. The relative amount of swelling is also important as 

this partly controls the permeability and thus the diffusion through the hydrogel [21].   

2.2.4.1.2.3 Kinetics 

The drug release mechanism is a crucial property of the DDS as this controls the timing of drug delivery – 

one of the primary functions of DDS. Different mechanics can be utilised to attain the drug release 

profile that is most suitable for the intended medical application. 

In most hydrogel drug carriers the release of the drug is governed largely by diffusion through the 

hydrophilic network as well as the Tg. The rate-controlling factor is the resistance of the polymer 

network to an increase in volume and change in shape [21], that is reaching the Tg and swelling. But 

once this occurs diffusional parameters such as network pore size and drug-solvent solubility mediate 

release [22]. This results in a phenomenon whereby two interfaces are controlling drug release: The 

interface between the glassy polymer core and the rubbery hydrated polymer; and the interface 

between the exterior hydrated polymer and the dissolution media [22]. Depending on the interaction 

occurring at these interfaces, Fickian or non-Fickian drug transport may be observed. Fickian drug 

transport results from one of the interfaces having a large effect on the delivery of the drug relative to 
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the other. That is, relaxation of the polymer is dramatically faster than diffusion or vice versa. Non-

Fickian drug transport results from these two mechanisms having a virtually equal effect. The drug 

released through a thin polymer slab (Mt) proportional to the total drug released (푀 ) is expressed as 

follows: 

 푀
푀

= 푘푡  (3)  

The value of n determines the dependence of the release rate on time. The relationship between n and 

the drug transport mechanism through a polymer slab is shown below in Table 9. Time-independent 

drug release is described by values of n = 1.00. The constant k incorporates characteristics of the 

macromolecular network/drug system and the dissolution medium [22]. 

Table 9. Transport Mechanisms of a diffusible substance through a polymer slab [22] 

 

From analysis of drug release kinetics above it becomes obvious that the selection of the hydrogel/drug 

combination is crucial as the physical-chemical interactions in this system will determine the release rate 

of the drug.  

 

2.2.4.1.2.4 Sterilization 

Many DDS systems are classed as medical devices and must undergo terminal sterilization to ensure safe 

use for patients and physicians. However, many sterilization methods use high energy levels with 

altering effects on DDS systems.  

Gamma radiation is a common method for sterilizing medical devices and it is also known to crosslink 

hydrogels [22]. Thus, gamma irradiation may offer a way to simultaneously sterilize and crosslink 

hydrogel DDS. However, this needs to be carefully designed as many drugs that are gamma-stable in 

powder form are easily inactivated by gamma when in solution [162-163]. 



56 
 

2.2.4.1.3 PVA hydrogels for drug delivery  

Poly vinyl alcohol (PVA) is a highly hydrophilic, biocompatible, bioabsorbable material that has excellent 

film-forming properties making it suitable for use in pharmaceutical and medical devices [15, 38-39]. 

Crosslinked PVA has a high swelling ratio and good in situ stability making it useful for sustained release 

applications in particular [35, 38]. The properties of slow releasing PVA hydrogels can be tailored by 

controlling crosslinking density [35].  

 

Figure 20. Chemical formula and structure of PVA. 

2.2.4.1.3.1 Crosslinking PVA 

Crosslinking can be achieved by many physical or chemical methods. For the purpose of drug delivery 

devices, the interaction between the crosslinker, the drug and the host must be taken into account.  

Protein adverse affects from chemicals like glutaraldehyde and protein denaturation affects from freeze-

thawing forced Bourke et al to employ UV photo-crosslinking to form controlled release PVA devices for 

delivery of platelet-derived growth factor (PDGF) [35]. Hassan and Peppas point out the disadvantage of 

using chemical crosslinkers and catalysts in biomedical hydrogels: Residues in the resulting PVA hydrogel 

may have negative effects in patients and removing the residues is time-consuming and often not 

possible [26].  

Gamma irradiation can be used to crosslink PVA hydrogel. This method can only be used to crosslink 

hydrated PVA, as water is needed to both generate free radicals and allow for polymer chains to move 

freely. When solid PVA was gamma irradiated the resulting material dissolved in water rather than 

swelling, showing no crosslinks had formed [164]. Gamma irradiation addresses the toxic residue 

problem by introducing no chemicals or catalysts. However, gamma irradiation is a high energy method 
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that may damage the drug being carried. Drug inactivation is very likely to occur particularly if in 

aqueous solution, where the drug acts as a scavenger for oxidising and reducing radicals [162-163]. 

Effectively, gamma irradiation crosslinking of DDS (which must be hydrated) cannot contain the drug, 

which would be inactivated in the hydrated state.  The drug phase would need to be incorporated into 

the DDS afterward, preventing simultaneous terminal sterilization and crosslinking. This design catch-22 

is, to my knowledge, not identified in the literature. Another problem encountered in this method is 

bubble formation in hydrogel films [26].  

PVA has a crystalline structure. When polymer chains become folded small ordered regions are formed 

(crystallites) within the otherwise amorphous PVA matrix. Inducing this crystallite formation physically 

crosslinks the PVA matrix. Cyclic freeze/thawing is a commonly used method to produce PVA hydrogels 

by crystallite formation. This method also leaves no toxic residues because no chemicals are used in the 

process. Aqueous solutions of PVA are frozen to typically -20C and thawed back to room temperature. 

The level of crystallisation can be easily controlled by the number of freeze/thaw (F-T) cycles [22, 25-26] 

and hence control crosslinking and hydrogel properties. F-T formation of PVA hydrogels can be 

performed in the presence of organic solvents and has been used to create transparent hydrogel for lens 

biomaterials [26]. Hyon et al formed transparent PVA hydrogels using the F-T method with solvent-

polymer solutions that were up to 100% solvent. The decreased freezing temperatures (Figure 21) 

affected the F-T process. Crystallisation of the PVA network still took place. In the case of 50:50 ethanol-

water PVA solution (15% w/v) the optimal crystallisation settings were 3 hours maturation at -20C. The 

hydrogels became transparent due to crystallisation at lower temperatures resulting in smaller crystals 

and thus smaller pore size. This impacted mechanical properties with tensile strength increasing with 

higher solvent concentrations [165]. The decreased porosity may also be an advantage for slow drug 

release devices this was not discussed in the patent by Hyon et al. Nor was the opportunity for using the 

method for increasing the drug-loading efficiency of water-insoluble drugs such as erythromycin and 

chloramphenicol. 
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Figure 21. Melting point of water-ethanol mixtures [166]. 

 

The F-T method and gamma irradiation methods have been combined to examine the effects on 

PVA/chitosan hydrogels for wound dressings. Yang et al [167] performed F-T and gamma in that order 

and visa versa. It was found that F-T produced more desirable properties than gamma alone. Further the 

addition of gamma irradiation after F-T had little effect on the mechanical properties or swelling 

behaviour of the hydrogel. 

More recently, PVA cast gels have been developed that are also crosslinked from crystallite formation. 

These form transparent and more elastic hydrogels than those formed by freeze/thaw cycles. However, 

crack formation in PVA cast gels may affect their viability [168]. 

2.2.4.1.3.2 Slow release from PVA 

Due to its favourable properties, PVA has been extensively studied for many slow release applications. 

Adi et al [169] manufactured PVA microspheres by a spray drying technique for a respiratory spray 

treatment. These microspheres (2um diameter) were made using 90% w/w PVA solution. In a previous 

study this stock concentration produced the slowest drug release. Microspheres contained 10% w/w 

antibiotics (ciprofloxacin or doxycycline). During in vitro release testing < 50% of the drugs were 

released over a 6 hour period. A previous ovine model showed that these could continue to elute 
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antibiotics up to 6 days. Ciprofloxacin released slower than doxycycline apparently due to their relative 

aqueous solubilities (30 and 50 mg/ml respectively). 

Basak et al [38] manufactured pH-sensitive PVA hydrogels films by cross-linking with maleic acid for 

controlled drug release to improve the efficiency of oral drug administration. 10% w/v PVA films 

containing a higher concentration of maleic acid became more crosslinked. Crosslinking was found to 

have an inversely proportionate relationship to drug permeability and a proportionate relation ship to 

drug release time.  

Bourke et al [35] tested PVA hydrogels for delivery of bioactive proteins in wound healing. The study 

used 15% solid content PVA hydrogels containing uncrosslinked PVA fillers. The study concluded: “the 

release profiles of proteins from PVA hydrogels can be tailored by modifying 3 major parameters: solid 

content, initial protein loading and incorporation of hydrophilic fillers.” The last two parameters are 

especially relevant for protein delivery but the solid content parameter is applicable for other drug 

classes. In fact many studies perform a solid content (whether this be the PVA itself or another 

crosslinker) optimization experiment when testing PVA DDS. However, Sung et al [33] reported that in 

PVA/chitosan hydrogels the total solid content had little effect on release kinetics of minocycline, 

despite gel fraction and swelling ratios obviously being affected. This may be due to chitosan greatly 

increasing the porosity of PVA hydrogels such that all samples tested were eluting the antibiotic at the 

maximal rate.  

2.2.4.2 Wound modelling 

There have been a number of wound models developed to test the efficacy and safety of wound care 

devices. A wound model aims to represent features of a real clinical wound while simplifying the 

complexity of the wound healing interactions to provide insights [170]. Wound models can be split into 

two broad categories: In vitro and in vivo.  The different type of models in these two broad categories 

have been reviewed by Gottrup et al [170]. I will summarise this and include more recent models. In 

addition I will focus on septic wound models – an under-researched area. 
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2.2.4.2.1 In vitro models 

Table 10. Summary of in vitro wound and infection models 

Cultured Cell diversity Culture 

Architecture 

Infection level References 

Single cell type 2D Aseptic [171-172] 

Single cell type 3D Aseptic [171, 173] 

Single cell type 2D Septic [104, 174] 

Single cell type 3D Septic [175] 

Multi-cellular* 2D Aseptic [176] 

Multi-cellular* 3D Aseptic [177-178] 

Multi-cellular* 2D Septic [140-141, 179-180] 

Multi-cellular* 3D Septic none 

* ‘Multi-cellular’ systems are classified as allowing direct contact between 2 or more different cell types 

 

In vitro models, apart from their simplicity of set up and lower cost, have a number of other benefits 

over their in vivo counterparts. In vitro models have virtually no ethical considerations compared with in 

vivo (this is particularly true in septic wound models). They are more controlled as they lack the inherent 

heterogeneity of in vivo models. Further, mechanisms are easier to study due to the decreased 

biological interaction and complexity [170].  

Most in vitro wound models involve growing a monolayer of cells on tissue culture plastic. These cells 

are either healthy cells that were grown in vitro or explanted cells from subcutaneous wounds. 

Monolayer (2D) cultures are useful for characterising the phenotype of cells as well as for easy 

processing, however they lack the tissue architecture and the spatial and mechanical cues associated 

[171]. Fibroblasts, keratinocytes, macrophages and endothelial cells are the most commonly used cells 

in these wound models [170]. 



61 
 

The scratch assay is a common 2D wound healing model [170, 178]. Skin cells, either fibroblasts or 

keratinocytes are grown in a monolayer. Then a section of the monolayer is scraped off and washed 

leaving a standard area devoid of any cells. Scratch area closure can then be measured microscopically 

to model wound closure. There is no extracellular matrix or inflammatory system in this simple model 

but it does allow direct observation of how cells are affected by external agents [104, 174].  

In vitro co-culture of critical wound healing cells has been performed. Oberringer et al [176] designed a 

wound model co-culturing fibroblasts and endothelial cells then performed scratch assays. The cells 

were co-cultured on glass slides (2D) and were pooled together before seeding the slides resulting in 

random dispersion of the cells on the slide. The different cells were distinguished for analysis by 

immunocytochemical staining. This method would likely not be possible in 3D wound models as 

visualisation becomes too difficult. 

Two-chamber co-culture models have been used to study wound healing processes. Loo et al [172] used 

such a system to study wound epithelialisation in the presence of H2O2, co-culturing fibroblasts and 

keratinocytes. The model in essentially comprised of mono-layers of each cell type cultured in the same 

medium. This does not allow for direct cell-cell contact and interactions but the 2D nature and 

separation of the cells allows simple and direct analysis of each cell type. 

Gottrup et al [170] discusses 3D in vitro cultures briefly and concludes that most measurement 

techniques for migration, proliferation and other important wound healing metrics can be determined 

in the same ways as 2D culture. Gottrup cited Schor’s [173] work as an example, which used light 

microscopy to determine the migration of fibroblasts on collagen gels. However, important physical 

characteristics of the gels were not defined such as thickness and porosity. The processing method 

suggested the gels were thin films – similar to 2D. Further the microscopy method used data obtained 

by counting cells on the scaffold surface in a given area and calculating to find the percentage of cells 

inside the gel. This is 2D data obtained and converted into 3D and may not be representative of the 

culture condition. In our experience, light microscopy of 3D cultures yields qualitative results as cells are 

difficult to visualise and count with lacking depth of field. Removal of cells from the 3D matrix is also 

difficult due to entrapment in the porous matrix [181]. 

Recently more complex “skin equivalents” have been developed to model wound healing. These models 

involve multiple wound tissue cell types cultured on a 3D matrix. Defects are induced in these skin 

equivalents to model the wound. Herman et al [177] produced such a model growing microvascular 
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endothelial cells and human keratinocytes in a Matrigel/collagen matrix (BD Biosciences) to study 

wound angiogenesis in vitro.  Xie et al designed and manufactured human skin equivalents by culturing 

keratinocytes and fibroblasts on decellularised de-epidermised matrix. A punch biopsy was used to 

simulate a wound in these standardised skin samples. The morphology of the skin equivalents had a 

similar morphology to native skin when compared with multiphoton microscopy. Further, histological 

analysis wound area measurements allowed visualisation of wound healing [178]. 

2.2.4.2.2 In vivo models 

The advantage of in vivo wound models is they closely mimic the wound environment in clinical practice. 

The disadvantages are that analysis of a single cell type becomes difficult and that ethical issues arise 

when inducing wounds in animal models [170].  

The most common in vivo skin wound model uses an excision of a full thickness piece of tissue from an 

animal. This represents the actual loss of tissue seen in many acute and chronic wounds in the clinic. 

This model is mainly used in mouse, rat, rabbit and pig. The superficial wound allows analysis of 

different types of dressing, grafts and locally applied therapeutics. Wound healing can be visualised by 

biopsies and histology. Wound contraction and epithelialisation can also be measured although not 

easily independently from one another [170].  

Li et al [182] tested the bioactivity and degradation characteristics of PDGF (a co-factor with vascular 

endothelial growth factor [VEGF]) eluting polyurethane scaffolds in rat models. Scaffolds were 

implanted into excisional wounds made in the backs of male rats. The rats were then sacrificed at 

different time point. The scaffolds were harvested from the wounds and analysed using histological 

imaging. In this way the scaffold-granulation tissue ratio could be calculated and inflammatory cells 

could be observed. 

Recently a review paper was written assessing in vivo septic wound models. The author stressed the 

importance of modelling the interplay between bacteria and host cells in understanding wounds. Animal 

models included mouse, rat, rabbit and pig. The vast majority of the models were murine and the author 

emphasised that mouse skin wounds contract mediated by myofibroblast migration whereas human 

skin wounds contract by new tissue ingrowth. Yet most rodent wound healing studies ignore this 

variable. Either splinted wounds or wounds induced around cartilage can provide mechanical strength 

against contraction making the model more applicable to humans. The importance of modelling a 

biofilm-planktonic phase rather than one or the other was also mentioned [183].   
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It was stated that this interplay between host cells and bacteria cannot be evaluated in vitro. This is true 

to some degree: The complexity of the immune system and the interaction with microbes is virtually 

impossible to model outside of an organism, however, specific cells and tissues can be tested in the 

presence of bacteria and insights can be gained as showcased above (2.2.4.2.1). 

2.2.4.2.2.1 Clinical models 

Clinical models are the most meaningful as they test the therapeutic in the situation for which it is 

proposed to be used for. Since patients partaking in these studies are at risk, ethical and safety 

considerations are numerous. Finding patients that fit the appropriate demographics and have the 

appropriate pathology must be controlled for a meaningful study. This can mean these studies take a 

long time while appropriate patient participants are located. 

Dermagraft, a commercially available tissue engineered scaffold, was tested in a pilot study to treat 18 

patients with chronic venous leg ulcers. Patients were selected that had ulcers for at least 12 weeks 

without healing. Treatment with Dermagraft over a further 12 week period was compared to a control 

treatment which was a non-adherent dressing (Dermanet, Smith and Nephew Plc). Both treatments 

were used in combination with existing wound care standards: regular debridement, compression 

bandaging, etc. The healing rates were compared by measuring the change in wound area at defined 

time points [111].  

In terms of studying wound regeneration, clinical models can be unsuitable as human biopsies are 

difficult to acquire. This is because it is not advised to remove some of the tissue that needs to do the 

healing. Here especially in vitro models are preferable [176]. 

2.2.4.2.3 In vitro septic wound models 

Most septic wound models are performed using a single bacterial species. S. aureus is often the chosen 

pathogen as it is the most common in clinical septic wounds [104, 141, 174]. In reality, wound biofilms 

contain a number of diverse species: Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, 

Stenotrophomonas, Finegoldia, and Serratia species [174]. Bacteria exist predominantly in biofilms as 

this is what protects the pathogens from the host immune system. Planktonic bacteria are also present 

during initial infection and subsequent shedding from biofilms. Wound models often will limit bacterial 

state to planktonic or biofilm, rarely both.  
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An invasion model was designed by Mempel [179] and colleagues testing the virulence of different S. 

aureus strains on keratinocytes. Planktonic S. aureus cells were added directly to keratinocytes grown to 

confluence in 24-well plates. After 2 hours gentamicin and lysostaphin were added to the media to kill 

any bacteria that had not invaded the cell cytoplasm. The media was changed and the cells were 

cultured for varying times up to 24 hours. Cells were then detached, collected and analysed 

morphologically by trypan blue dye exclusion and TEM. The results showed dose dependent 

internalisation and time dependent cell death when invaded by all strains. This is not a wound model, 

but does illustrate the effects of direct contact between S. aureus and epidermal cells which is relevant 

to wounds. The removal of S. aureus after 2 hours of culture prevents the effect of other toxins and 

cytotoxic enzymes that are produced by the bacteria and would be present in septic wounds. 

A similar invasion model of S. aureus on keratinocytes was performed by Nuzzo et al [180] to study S. 

aureus intracellular survival and virulence. After antibiotic destruction of non-internalized S. aureus, 

further culture proceeded in media containing gentamicin to prevent further growth of bacteria and 

controlling the experiment. This limited the model to only intracellular effects. The authors mention that 

S. aureus is “primarily known as an extracellular pathogen”. The extracellular virulence factors may have 

an important synergistic effect. I suspect though that the extracellular factors were removed to simplify 

the method as these factors would rapidly kill keratinocytes in static cell culture. 

Kirker et al [104] tested the affects of S. aureus biofilms products on keratinocytes. Biofilms were grown 

in diluted trytone soya broth (TSB) on tissue culture inserts (10mm diameter plastic discs) for 3 days. 

These were then co-cultured with keratinocytes in scratch assays, however the biofilm was isolated from 

the cells. Biofilm culture media was also created by culturing the 3-day biofilms in the keratinocyte cell 

culture media. This too was used in scratch assays and compared to the biofilm co-culture and another 

altered culture media made with planktonic S. aureus. The 2D assay allowed visualisation of cell 

phenotype using brightfield and confocal microscopy. In summary, all cases prevented closure on the 

scratch in the keratinocyte monolayer. An XTT viability assay was also performed and revealed that 

there was significantly more apoptosis seen in keratinocytes cultured in the presence of biofilm altered 

media compared with planktonic media, but both bacterial media greatly reduced viability compared to 

the healthy cell controls. The authors conclude toxins are the cause of the cell death and hint at S. 

aureus biofilms producing increasing amounts of α-toxins which had previously been reported to be very 

cytotoxic to keratinocytes.  
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The same group carried out a similar study but tested S. aureus-toxified media on dermal fibroblasts. 

Enzyme-linked immunosorbent assay (ELISA) was used to test treated fibroblasts production of wound-

healing cytokines, growth factors, and proteases. There was no significant difference between the 

planktonic and biofilm toxified media in terms of scratch area reduction or fibroblast viability – the 

scratch could not be bridged and apoptosis was seen. ELISA showed, for most wound healing factors 

tested, a larger divergence from the healthy state when subjected to planktonic MRSA media over 

biofilm media. The authors reasoned this could demonstrate a bacterial strategy to decrease virulence 

when already infiltrated into the dermis (mainly consisting of fibroblasts) to in turn better evade the 

host immune system. The differing effects between fibroblasts and keratinocytes in the presence of S. 

aureus are difficult to explain but these cell types have been known to respond differently to other same 

bacteria (e.g. Peptostreptococcus spp.) before [174]. 

Werthen et al [175] grew biofilms of S. aureus and P. aeruginosa on separate collagen matrices to 

produce an infected chronic wound model. Biofilms were quantified by break down of the collagen 

matrix with collagenase followed by spread plating. Visualisation was conducted by laser confocal 

microscopy and histology. The model was developed for simulating the morphology of bioiflms in 

chronic wounds in vitro and testing therapeutics that may prevent wound infection. The obvious 

shortcoming of this model is no human cell type was used, so the interaction between cell-biofilm and 

cell-therapeutic cannot be tested. 

Subbiahdoss et al [140-141] designed and tested a model for the “race for the biomaterial surface” 

between osteoblasts and S. epidermidis. A modified culture medium was optimized for co-culture of 

bacteria and cells. Absolute numbers of each cell type attached to a glass slide was determined by 

counts with a light microscope. Both static and flowing cultures were tested. In static culture the S. 

epidermidis secreted toxins killing osteoblasts independent of the bacterial numbers. This was 

attributed to the build up of the toxins in static culture. In flowing culture conditions the bacterial-

dependent killing of osteoblasts was seen allowing the competitive testing of the biomaterial 

colonisation. This is one of the few bacteria-cell co-cultures that physically put cells and bacteria 

together in the same culture media. However, the model is only 2D, with species competing for the 

surfaces of a flat glass slide. Most implanted biomaterials are 3D and have complex porous geometries. 

This would make the visualisation of cells impossible and thus a new measurement method would be 

needed to update this method to a 3D model. 
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To my knowledge an in vitro experiment does not exist that combines the ideas of 3D culture on 

biomaterials and biofilm infection.  

2.2.4.2.4 RT-qPCR 

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a method of detection and 

quantification of RNA. Conventional PCR, which has become the corner stone method of molecular 

biology, is only possible with DNA. Thus to quantify RNA it is first converted to cDNA by a reaction with 

the enzyme reverse transcriptase. The cDNA can then undergo PCR or qPCR allowing the quantification 

of the initial RNA. 

Recently, RT-qPCR has been used to quantify bacteria by targeting the highly conserved 16s ribosomal 

RNA (rRNA) [184-185]. 16s rRNA contains both highly conserved and highly variable regions in the 

sequence allowing design of taxa specific and prokaryote universal primers as the study requires[185]. 

This method has the advantages over conventional plating methods of sensitivity, specificity and 

convenience; that is primers can be designed to target bacteria in a multi-cellular population and the 

process is high-throughput and scalable. rRNA has a high copy number per cell which makes RT-qPCR 

more sensitive than PCR [184]. Although, rRNA expression is more constant than other genes (and as a 

result it has been used as a reference housekeeper gene in many quantitative studies) [186], levels have 

been known to fluctuate depending on cellular growth rates. This may preclude its use for quantifying 

cells in studies where growth rate of cells changes dramatically, e.g. under stressed state, exposed to 

antibacterial, starvation, etc. rRNA is a convenient marker for viability as it degrades more rapidly than 

DNA [184]. It may be the viability marker of choice in situations where viable counts are impractical. 

Matsuda et al [184] designed different primers for 16s rRNA sequences in a number of bacteria. RT-

qPCR was used to quantify numbers of bacterial species including S. aureus and P. aeruginosa in blood 

and faecal samples by formation of standard curves relating cycle threshold (Ct) to bacterial samples of 

known number. A linear relationship was seen between Ct and bacterial numbers.  

As far as I know, 18s rRNA targeted qPCR has not been used to quantify eukaryotic cell types. However, 

18s is the most common housekeeper gene for relative qPCR analysis of eukaryotes [187-189] and is 

presumed to be essential for cell viability [190]. Therefore, utilising 18s rRNA as a marker for viable cells 

in co-culture may represent a convenient and relevant procedure. 
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2.2.4.2.4.1 RNA extraction from Staphylococci 

The septic wound model designed in this study uses S. aureus. Staphylococci species have a particularly 

tough cell wall making many standard RNA isolation techniques unreliable [191]. Enzymatic treatments 

(by enzymes such as lysostaphin) break down the cell wall but require extended amounts of time 

resulting in RNA degradation and low yields. This problem has been largely solved by using disruption by 

ceramic beads and vigorous shaking to mechanically break open the Staphylococcal cell wall in a 

chaotropic agent followed by phase separation and precipitation in isopropanol [184, 186, 191].  

Dobinsky et al [191] tested RNA extraction methods on S. eppidermidis biofilms. It was found that after 

biofilm formation bacterial cells were much more resistant to RNA extraction even after mechanical 

disruption with sonication followed by shaking with silica beads. Dobinsky introduced a very short (2 

minute) lysostaphin treatment before disruption which greatly increased the RNA yields. 

2.3 Ethylene Biofilters 

2.3.1 Ethylene 

Ethylene or ethylene (C2H4) is an alkene hydrocarbon compound with two double-bonded carbon atoms 

each with two hydrogen atoms (Figure 22). Ethylene is a gas at room temperature and is both naturally 

occurring and a by-product of industrial operations, largely related to petrochemicals and vehicle 

exhaust [192]. Ethylene is detected easily using a gas chromatographer equipped with a flame ionization 

detector [192-197]. 

 

Figure 22. The molecular structure of ethylene 
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2.3.1.1 Plant Hormone 

Ethylene is a plant hormone regulating a large number of physiological processes. As a hormone 

ethylene binds the ethylene receptor and a signal is transduced which elicits a biological response [198].  

Ethylene confers both negative and positive effects on produce depending on storage time, 

concentration and dosage. Initially ripening increases flavour and colour, but later it promotes rotting, 

senescence and physiological disorders [198-199]. Ethylene is also a stress hormone and its release is 

upregulated from both abiotic and biotic stresses [199]. 

Ethylene is biosynthesised by climacteric fruits (bananas, apples, mangos, tomatoes) in response to 

ethylene in a positive feedback mechanism – a trait in nature used to coordinate ripening. Thus these 

fruits are generally the most susceptible to ethylene effects [199-200]. However, in non-climacteric 

produce (citrus, strawberries, grapes), ethylene is not important for ripening, but still increases 

susceptibility to disorders and pathogens [198]. Table 11 below shows the relative ethylene production 

and sensitivity of fruits. 

Table 11. Ethylene production and sensitivity of several commodities [198]. 
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In nature ethylene synthesis by plants ensures their seed dispersal by animals that eat their fruits, but in 

agriculture ethylene is a problem as it accelerates ripening and causes fruits to spoil before reaching 

consumers [199]. A relationship between storage life for fruit and ethylene concentration has been 

found which states that levels greater than 0.1 ppmV causes distinguishable quality loss [198] 

Prices of fresh fruit are increasing. Factors like a growing population, climate change, growing incomes 

and health awareness are greatly increasing demand of fresh produce ensuring that price rises continue 

[201]. Food spoilage is a key inefficiency in the fresh produce value chain. Food growers, transporters, 

distributers and consumers all have an interest to decrease wastage. The current estimate is that ‘as 

much as half of all food grown is lost or wasted before and after it reaches the consumer’[202]. 

‘Spoilage’ specifically refers to wastage attributed to post-harvest stages of the value chain. 

Economically viable methods for ethylene removal are required to minimise this spoilage. 

2.3.1.2 Pollutant 

Ethylene is produced synthetically as a by product of hydrocarbon pyrolysis which is released as air 

pollution [198]. Ethylene is a pollutant and a suspected carcinogen. Even sustained dosages at the parts 

per billion (ppb) level have been shown to increase the risk of mutagenic effects [192]. It also causes air 

pollution problems like the production of carbon monoxide and ozone as well as preventing removal of 

chlorine from the stratosphere [203]. Ethylene pollution may also have an effect on plants in urban 

centres where concentrations consistently reach high levels. Control of ethylene emissions is therefore a 

priority for public health. 

2.3.2 Current Ethylene Removal Systems 

2.3.2.1 Chemical Filters 

Only two types of ethylene removal systems have found success on a commercial scale. The first is using 

potassium permanganate to absorb and to oxidise gaseous ethylene giving off carbon dioxide and water. 

However this method can only be applied to small storage rooms as the potassium permanganate is 

quickly consumed and must be replaced [196, 200, 203]. It has been reported that even its use in 

packaging may be limited due to the high accumulation of ethylene which would require a large amount 

of the oxidiser [198]. Potassium permanganate is highly toxic such that special packaging in required so 

it cannot contact food. Scott et al [195] showed that potassium permanganate preserved the firmness of 

Australian banana fruits stored in polyethylene bags for an extra two weeks compared to the control. 
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Bananas are known to produce an increasing amount of ethylene after harvest during which time the 

fruit becomes more sensitive to the gas [193]. 

The second system involves catalytic oxidation of ethylene at high temperatures (~ 200°C). Despite the 

need for expensive catalysts like platinum, copper and zinc, this method is thought to be more 

economical than potassium permanganate and more adaptable to large volume rooms. This method still 

has substantial costs primarily associated with energy usage. Blidi et al [200] trialled a low temperature 

(100-130°C) system using a catalyst which was a mixture of oxides of manganese and copper. The 

system successfully conserved Granny Smith apples for 134 days after harvest. 

Chemical scrubbers and filters are commercially used in agriculture and industry for removing ethylene 

in large volumes, but they have more recently been introduced into the home in the form of the 

Ethylene Gas Guardian (EGG). EGG comprises small sachets of potassium permanganate coated zeolite 

enveloped in a hard plastic slitted egg for protection. This is left in a refrigerator vegetable draw and 

prevents produce from spoiling as quickly. The potassium permanganate is either in pellet form or 

coated onto a high-surface area substrate, commonly zeolite – a natural volcanic rock. The sachets need 

to be replaced every 3 months to replenish the potassium permanganate, however the sachets are very 

cheap – $10 for eight sachets [204]. 

 

Figure 23. Ethylene Gas Guardian. Blue hard plastic perforated containers for sachets of potassium 
permanganate [204]. 
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2.3.2.2 Biofilters 

Biofiltration is the removal of pollutants from a fluid (gas or liquid) by microorganisms that are 

separated from the treated waste. This often involves immobilization of the microbes of porous 

supports which the waste flows through – like a filter [205]. The waste is broken down by the microbes 

by biodegradation performed by natural metabolic enzymes, which also serves as an energy source for 

the bacteria. Biofilters have proved useful on an industrial level for the treatment of hazardous air 

pollutants from gas streams [206].   

 

Figure 24.Schematic of a typical biofilter system. The bedding material contains waste-degrading 
microbes immobilized to support material [205]. 

Biofiltration is a method of ethylene removal with great potential. Biological agents immobilized on a 

filter consume the ethylene, simultaneously sustaining the biological agents and removing ethylene 

from surrounds. Theoretically biofilters can operate far longer than chemical oxidising agents such as 

potassium permanganate which need to be constantly replaced. Further, they can operate at ambient 

temperatures and require no energy to breakdown ethylene unlike chemical catalysts. This in turn 

makes biofiltration a less costly solution [196, 198, 207]. 
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Biofiltration of ethylene has been documented by Elsgaard et al [196-197]. The biofilter used live whole 

bacterial cells (strain RD-4) immobilized to peat soil in a hard plastic casing to form a column (678 cm3). 

Other favourable characteristics of the biofilter were that the operational stability extended for more 

than 75 day; the biofilter was able to remove ethylene at 5°C with 98% removal efficiency; and storage 

of the inoculated peat-soil for 2 weeks at 20°C caused only a halving of the ethylene removal efficiency.  

Kim et al [208] made a biofilter using Pseudomonas sp isolated from wastewater and immobilized to 

activated carbon. The biofilter exhibited an operational stability of 90 days and a removal efficiency of 

34g of ethylene m-3 day -1. De Heyder [209] had previously constructed a biofilter containing biofilms of 

Mycobacterium strain E3 on active carbon granules. It was found that moisture was essential to 

maintain the biological activity of the biofilter but that too much water decreased activity due to 

increased mass transfer resistance. 

Fu et al [203] isolated microbial populations from activated sludge and constructed a biotrickling filter 

system by immobilizing the bacteria in biofilms on natural zeolite. The mixed microbial community 

contained Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria. Liquid mineral salts 

medium was continuously fed through the biofilter to deliver nutrients and moisture to the cells. The 

biofilter was run for 110 days over which time the inlet ethylene concentration was stepped up from 

50ppm to 1000ppm. Up to 600ppm the biofilter demonstrated 100% removal efficiency but at 1000ppm 

this dropped off to <83% suggesting restriction of microbial activity or capability limitation of ethylene-

degrading bacteria at high ethylene concentrations. It was observed that the majority of bacteria settled 

at the bottom of the biofilter column near the gas inlet. The author suggested this is a result of 

adaptation as the ethylene concentration drops as it moves up through the biofilter. However, I suggest 

that the cells delivered in liquid biofilm may not have been adequately immobilized and settled and the 

majority of cells were pulled to the bottom by gravity. It is probable that a more even distribution of 

bacteria would have an impact on the removal efficiency as the ethylene removal capacity of cells would 

less likely be exceeded. 

Lee et al [210] tested a number of different biofilter and biotrickling system designs for removing a 

mixture of pollutants including ethylene, acetone, butanol and ammonia. Activated sludge containing a 

mixed community of microbes was circulated through the biofilters containing different packing media: 

polyurethane foam, perlite granules and a mixture of compost and wood chips. Biofilters were still 

soaked in mineral salts medium at regular intervals to preserve a moist environment. After 145 days of 

operation it was shown that biofilters had a higher elimination capacity compared to biotricklers due to 
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the poor water solubility of ethylene. The perlite biofilter had the highest elimination efficiency followed 

by the polyurethane biofilter, this is reportedly due to the high surface area of perlite despite it having 

less porosity (65% compared to 93%). 

Most biofilters described above are concerned with larger systems where gas streams are pumped 

through large columns containing biofiltering media. No studies so far investigate biofiltration on a 

smaller scale for stationary non-flowing filters or active packaging which remain key ethylene removal 

technologies [198]. 

2.3.3 Biofilter Design 

2.3.3.1 Bacterial Immobilization 

2.3.3.1.1 Immobilization of Biocatalysts 

Biocatalysis is the use of enzymes to catalyse useful reactions for industrial and environmental 

applications. In conventional biocatalysis, enzymes become deactivated on the completion of the batch 

reaction [211].  

In recent years, wide attention has been directed towards exploring the use of immobilized enzymes as 

biocatalysts [125]. Immobilization is the isolation of enzymes on a substrate preventing its movement to 

other parts of an aqueous system [212], allowing the enzymes to be re-used and enabling the continual 

large-scale biocatalysis of reactions [126, 211, 213]. In addition, immobilization seems to increase 

enzymatic stability and activity [125-126, 211-213] as well as ease of handling; separation of cells from 

products, smaller bioreactor sizes and reduced risk of contamination [125, 213-214].  

The immobilization of viable bacterial cells has received particular attention due to a number of key 

advantages compared with immobilized enzymes [102, 125-126, 212-213]: 

 Increased enzymatic stability due to the protection of enzymes by a bacterial cell membrane. 

 Potential of catalysing more complex multi-enzymatic reactions compared.  

 No need to extract and purify enzymes prior to immobilization. This is saves time and avoids the 

inactivation of enzymes during this process. 
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Immobilized cells can be dead or resting while preserving enzymatic activity. However, immobilized 

living cells are the most promising due to their ability to grow and regenerate, thereby retaining 

enzymatic activity long term [213, 215].   

 

2.3.3.1.2 Immobilization Methods  

The immobilization of cells can be carried out using a number of different methods (Figure 25) [126, 

128, 215]:  

1. Adhesion to a surface 

2. Entrapment within a porous matrix 

3. Containment behind a barrier 

4. Self aggregation 

 

 

Figure 25. The four methods of immobilizing whole cells [215]. 
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2.3.3.1.2.1 Adhesion to a surface 

Adhesion is the adsorption and immobilization of cells directly onto the surface of a supporting matrix. 

This immobilization technique requires less processing than the entrapment methods and is less likely to 

damage cells [126], meaning cell viability and enzymatic stability can be more holistically preserved. 

Adhesion is initially a weak reversible, physical attachment, the strength of which is governed by 

physiochemical interaction between the cells, matrix and surrounding liquid phase. Properties 

influencing these interactions include hydrophobicity, surface Free Energy, pH, surface charge, ionic 

strength and temperature [120, 126, 128]. Thus, certain combinations of matrices and bacterial strains 

will be more suited toward this technique than others [215]. This is followed by a strong irreversible 

attachment when the cells biosynthesise a polymer layer, fixing themselves to the surface and forming a 

biofilm [121, 126].  

Attachment of cells to a surface can also be achieved through covalent coupling. It involves covalent 

bonding between cells and support, allowing a stable and often permanent adhesion. However, due to 

the toxic nature of the coupling chemicals used in this method, it tends to be toxic resulting in a loss of 

viability and biocatalytic activity of the cells [128, 215]. 

A number of different supports can be used for this immobilization method. Natural fibres such as wood 

chips have been used to adsorb bacteria which were used in fixed bed reactors to produce acetic acid 

[215]. The other benefit of using natural fibres is that these supports are very cheap, often left over off-

cuts from some organic raw materials. This presents an extra environmental benefit by recycling these 

waste materials. Robeldo-Ortiz et al [128] used agave fibres, waste products from Agave Tequilana, the 

plant used to make Tequila, to immobilise Pseudomonas whole cells. Mixed culture biofilms are grown 

on sand or rock in fixed bed reactors for wastewater treatment [215]. 

Natural adhesion gives the maximum cell viability and bioactivity due to the formation of biofilms. 

Generally bacteria prefer the community-based, sedentary lifestyle experienced in biofilms [128]. In 

addition, Biofilms offer excellent protection to the bacteria within, even in environments where free 

cells and entrapped cells would perish [128]. This immobilization is also very simple, requiring minimal 

processing under very gentle conditions ensuring maximum cell viability. 
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As there is no barrier between the cells and the solution in these systems, there will be fewer problems 

with diffusion of substrates, nutrients and wastes to and from cells. However, it also means that this 

method cannot be used when a cell-free effluent is desired as some cell leakage is likely to occur [215]. 

 

2.3.3.1.2.2 Entrapment within a porous matrix 

There are two types of entrapment [215]:  

1. Cells diffuse into performed porous matrix, grow and become entrapped by mutual presence of 
other cells. 

2. Porous matrix is formed in situ around cells. 

Entrapment in preformed porous matrices is fast becoming a widespread immobilization technique. 

Porous materials used for this method include; cordierite, bricks, volcanic rock and various types of 

ceramics including glass. Surface attachment plays a minor role in these systems due to the small 

surface area of these supports. Self-flocculation on the other hand can be utilised in systems when using 

supports with large pores (> 100µm). High degrees of cell viability are maintained in these systems 

making them suitable for growing cells, however high cell densities are difficult to achieve. This method, 

like adsorption, has the problems associated with not being separate from the reaction effluent [215]. 

Entrapment of cells in an in situ formed porous polymer gel matrix is the most common immobilization 

technique [213-215]. The entrapment can be physical or chemical depending on whether there is cross-

linking with the polymer matrix and is usually achieved by mixing cells into a polymer solution which 

then is hardened into a gel, trapping the bacteria within its pores.  

Polyacrylamide gel was the most widely used gel matrix for this technique, but was replaced due to 

reactive cross-linking agents damaging cells [213]. The interaction between the cells and the matrix 

should be favourable and improve cell stability. Further, the immobilization condition should be mild 

enough to preserve cell viability [213, 215]. Carrageenan is a polysaccharide that can be used as an 

entrapment gel. The advantage of carrageenan is the immobilization method is carried out under very 

mild conditions; 10-37°C - This ensures a high survival ratio after immobilization [213]. Anisha et al [214] 

effectively immobilized S. griseoloalbus by entrapment in non-toxic sodium alginate beads. However 

testing was needed to optimize the concentration of matrix in relation to diffusional limitations and cell 

leakage.  In general, cross-linking and physical entrapment allow stable immobilization of cells in high 



77 
 

concentrations, but the entrapment media used such as gel networks often limit diffusion rates [128]. 

The most common confirmation of these systems is many small beads which can be used in fixed bed or 

fluidized bed reactors. 

Because of the emphasis on physical imprisonment of cells from their surroundings, diffusional 

limitations can be problematic in these systems. Although, highly hydrated gel matrices have been used 

allowing almost un-hindered diffusion [215]. These systems have the highest cell densities; up to 700 mg 

per gram of support material – much higher than adsorptive immobilization.  Also unlike adsorption, this 

form of entrapment is indiscriminate of cell surface characteristics, making it simpler from a design 

point-of-view [126].  

2.3.3.1.2.2.1 Gel Entrapment with Agar 

Agar is a natural polysaccharide gel that is commonly used in microbiological research and has been 

used to immobilize cells for bioreactor applications [215-216]. Cell leakage is a common shortcoming for 

immobilized cell systems using polysaccharide gels as the gel entrapment matrix in liquid phase 

bioreactors [217].  

Jouenne et al [217] entrapped bacteria in agar disc composites comprising cells inside agar discs and 

coated in a microporous membrane filter. This significantly decreased cell leakage compared to agar 

discs alone. Cell leakage is a common issue in liquid-media bioreactors. A later study showed E. coli 

entrapped in agar discs exhibited biofilm-like properties including resistance to antibiotics [218]. 

Zhu et al [219] immobilized Rhodobacter sphaeroides by gel entrapment in agar for hydrogen 

production. The cell suspension was added to the agar solution at 45°C as to keep the cells viable while 

maintaining the agar in a liquid state. 

Chen et al [220] found Methylibium petroleiphilum PM1 entrapped in agar cubes were able to degrade 

methyl tert-butyl ether more rapidly than when entrapped in other synthetic polymers such as PVA and 

polyacrylamide. This phenomenon was attributed to natural polymers better preserving the activity of 

microbial enzymes. 

2.3.3.1.2.3 Containment behind a Barrier 

This method involves immobilizing cells behind a semi-permeable membrane. Just like with entrapment, 

this barrier can be preformed or formed around the cells. Nutrients are delivered and products removed 

from the cells by diffusion [215]. 
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Preformed semi-permeable membranes have been used for the immobilization of live and resting cells. 

Both ultrafiltration and microfiltration membranes have been used for this purpose. Microencapsulation 

has been employed with a permeable barrier of polylysine being formed around microbes [215]. 

These systems are particularly useful when complete cell separation from the effluent is required. The 

disadvantages of these systems are that sampling cells for testing is difficult and delivery of nutrients to 

the cell mass can be problematic [215]. 

2.3.3.1.2.4 Self Aggregation 

Some cells will form aggregates naturally. This is considered a form of immobilization. Artificial 

flocculating agents can also be added to enhance this effect [215]. This method is particularly prone to 

biomass losses. 

2.3.3.1.3 Biofilter Characterisation 

Independent of the method chosen, the characterization of the immobilization procedure should be 

conducted using the following criteria [126]: 

1. Biomass loading; concentration of cells on the support 

2. Retention of biomass/strength of the adhesion; assessment of cell leakage under flow 

conditions 

3. Retention of the enzymatic activity of the biocatalyst; short-term stability - activity may be lost 

due to the immobilization process. 

4. Effectiveness/mass transfer/engineering; biocatalytic efficiency of the immobilization construct 

as a whole and determination of optimal operating conditions. 

5. Operational stability; determines life time of immobilized biocatalysts. 

 

2.3.3.1.3.1 Biomass Loading 

This is simply the amount of cells which can be packed into the immobilization support. The biomass 

loading is directly proportional to reaction efficiency, as more cells will be available to catalyse reactions. 

Using the gel entrapment method of immobilization, the highest biomass loading concentrations can be 

achieved, indiscriminate of cell taxonomy and physiology [126, 205]. In this method biomass loading is 

easily controlled and diffusional limitations resulting from high packing concentrations become the 

limiting factor. 
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In contrast, for entrapment and adsorption in preformed matrices, achieving high levels of biomass 

loading is a challenge and is dependent on a number of variables. Physical and chemical interactions 

between microorganisms, support matrix and liquid phase are vitally important. There are two 

theoretical approaches to describe the adsorption of a particle to a surface. The first is the DLVO-theory 

based on Van der Waals forces and electrostatic interactions. The second is based on Gibbs Free Energy 

equation which takes into account the interfacial tension between different elements in the system 

[123]. Hydrophobicity can be correlated with Free Energy and it has been shown experimentally that the 

biomass loading of bacteria on porous glass was higher using more hydrophobic microbes [126].  

 

The physical conformation of the support matrix also plays a vital role in biomass loading. For the most 

efficient immobilization of microorganisms into porous support material the smallest available pore 

diameter must be larger than the largest dimension of the microorganism. The optimum pore diameter 

of the support was determined using different kinds of bacteria immobilized on porous glass and should 

be in the range of the 4-5-fold length of the microorganism [221]. It is important to note that Messing et 

al could not use conventional plating methods to count the cells bonded within pores. Instead, the 

amount of ATP was monitored to derive the number of viable microbes. 

 

2.3.3.1.3.2 Retention of Biomass 

This refers to the assessment of cell leakage under flow conditions. For entrapment, retention of 

biomass is not a particularly big concern as the microorganisms are often completely protected from 

shear forces developed in reactors and thus have very high or sometimes complete retention. The 

exception is when using natural polymers that have significant biodegradability [218]. On the other 

hand, for immobilized cells that are attached to surfaces, this is a very important design parameter. 

 

For immobilized cells attached to a surface, retention of biomass is directly related to the strength of 

adhesion. Some suggest this can be determined by calculating the free energy of both support and cell, 

but this method does not take into account the adhesion strength added by the formation of biofilms, 

only initial physiochemical interactions. Biofilms do however shed bacterial cells either by exposure to 

shear forces or as an active process [131] which is in a sense cell leakage even though there may not be 

a net-change in the biomass. 
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The strength of cell adhesion can easily be monitored macroscopically by determination of the 

maximum flow rate (MFR) which leads to a shear enforced detachment of the cells: The immobilized 

cells are on a fixed bed under defined fluid conditions. Then the flow rate is increased continuously. The 

MFR leads to detachment of the cells from the support material and can be measured by a rapid 

increase of the turbidity of the surrounding liquid phase [126]. This can in turn be quantified by 

recording the liquid phase optical density at 600nm [214].  

 

2.3.3.1.3.3 Enzymatic Activity 

This refers to the specific activity of the bacterial enzymes once the cells have been immobilized. 

Adsorption is a very gentle immobilization technique so it can be assumed that the specific activity of 

the enzymes will not be reduced by this method. On the contrary, there are many studies which show 

that immobilization has imposed some change on the microbe’s physiological state and actually 

increased the catalytic efficiency [126, 222]. A possible mechanism for this is a chromosomal change; 

Doran et al reported a higher ploidy of S. cerevisiae immobilized in gelatin-coated glass beads [223]. 

To determine the true enzymatic activity of immobilized cells, catalytic efficiency must be calculated by 

running transformation experiments and measuring products. However, secondary experiments must 

also be run to rule out changes in catalytic efficiency brought about by cell leakage, diffusional 

limitations and cell growth. This is not often easy and probably accounts for the controversy over the 

physiological behaviour of immobilized cells [126, 222]. 

2.3.3.1.3.4 Effectiveness – Reaction Engineering 

Klein et al [126] makes the statement that no biocatalytic system has failed due to low efficiency of the 

biocatalyst. This is logical as up-scaling the reactor by the addition of more biocatalysts is relatively 

simple. An instance where this statement does not hold is, when there is a profound loss of enzymatic 

activity. An example of this would be running a reaction at low temperatures or in other environments 

that are unfavourable to microbial biocatalysts [197] or deactivating the microorganisms during 

immobilization [224]. 

Klein [126] suggests that efficiency problems are usually a result of mass transfer resistance of which 

there are two types: 

a) External mass transfer resistance based on film diffusion; 
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b) Internal mass transfer resistance caused by the pore diffusion within the catalyst matrix. 

Pore diffusion is much more limiting and plays a major role in mass transfer problems of polymer 

entrapped biocatalysts. Pore diffusion is dependent on the internal architecture of the immobilization 

matrix. In contrast, internal mass transfer does not limit efficiency as much in absorptive immobilized 

biocatalysts. Instead film diffusion is the main limiter of mass transfer and is solely based on the fluid 

dynamics of the reactor [126]. This is of course a generalisation; the type of mass transfer resistance at 

work and the effect on efficiency is very much dependent on the immobilization construct’s 

conformation and the nature of the fluid phase [224]. Another possible effect of mass transfer 

resistance is the inhomogeneity of cell distribution as cells flock to available nutrients and growth 

changes [126]. 

The mechanical stability of the matrix must also be taken into account. Fragility and compressibility are 

both important mechanical properties [126] that will affect the stability and efficiency of the reactor. 

2.3.3.1.3.5 Operational Stability 

Operational Stability refers to the life-time a biocatalyst reactor can operate efficiently. This can only 

really be determined by long-term monitoring of the reaction yields [196, 200]. Whether a single 

enzyme or whole cell multi-enzymatic reactions are taking place, the reactor will have a ‘half-life’ of 

efficiency [126].  

It has been widely documented that operational stability can be vastly increased by feeding the 

immobilized cells with nutrients, vitamins and trace elements [205]. The use of viable growing cells is 

the logical way to greatly extend operational stability. This is likely the future of absorption 

immobilization [126]. 

2.3.3.1.4 Immobilization Supports  

More efficient, easier to handle and low-cost immobilization supports are continuously sought as a 

result of the advantages of immobilized cells previously discussed [128].  

Firstly immobilization supports must be insoluble in reaction substrates or products. Immobilization 

supports must be porous to allow efficient diffusion of fluid substrates [126]. They must provide a strong 

irreversible bond (either by entrapment or adsorption) between the cells and the supporting surface. 

They should be non-toxic to the cells and provide a favourable environment for cell growth [128, 213]. 
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This may be in the form of surface pores which act as perfect niches for bacterial colonies or even 

essential nutrients in the support’s chemical composition. 

Entrapment immobilization supports are generally either natural or synthetic polymer gels [213], where 

as supports used for adhesion immobilization are many and varied. Degiorgi et al [225] immobilized a 

number of different types of bacteria onto acrylic-based hydrogels by the adhesion method. Dias et al 

[224] tested the adhesion of Mycobacterium sp to a number of different support materials by 

quantifying the biofilm by dry weight. The support materials tested were: glass beads, pumice stone, 

alumina, Celite, silica gel, polyurethane and titanium oxide. The supports allowed varying of adhesion 

including no adhesion at all in the case of polyurethane foam. This illustrates the variety of possible 

adhesion supports and the variability and unpredictability of biomass loading obtained. 

In biofiltration, supports are often chosen for their adsorbing abilities. Adsorption is a surface 

phenomenon in which particles (gas or solid in solution) are held on the surface of solid material, 

thereby attracting waste particles toward the biocatalysts. Adsorbing materials such as activated carbon 

[208] and zeolite [203] which is an volcanic aluminosilicate crystalline material have been commonly 

used for as supports in both chemical filter and biofilter systems [198].  

Polymeric tissue engineering scaffolds are interesting and novel candidates for immobilization supports. 

They are highly porous and biocompatible with customisable surface properties. Tissue scaffolds are 

suggested to be suitable immobilization supports using either the adsorption or entrapment method. 

2.3.3.1.5 Immobilization of Mycobacterium sp. 

2.3.3.1.5.1 By Adhesion 

Mycobacterium has a highly hydrophobic cell wall. The Mycobacterium cell wall consists of a 

peptidoglycan layer covalently attached to a thicker layer of mycolic acid–arabinogalactan complex 

[120]. Therefore, initial adhesion to immobilization substrates is largely governed by hydrophobic 

interactions [123]. There is substantial literature providing examples of mycobacterium and other 

microbes with similar cell wall characteristics (e.g. Rhodococcus), binding to hydrophobic surfaces [127, 

222, 226-228]. Mazumder et al [127] clearly showed that M. smegmatis adhered and formed biofilms 

more readily on highly hydrophobic materials. The hydrophobicity was a result of both chemical 

characteristics of the material as well as physical properties namely surface roughness. Further, more 

hydrophobic mutants with rough colony morphology exhibited slightly enhanced adherence and greatly 
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enhanced biofilm formation. This last point of colony phenotype correlation with hydrophobic 

adherence is contentious as previous studies claim that rough mutants have an absence of 

glycopeptidolipids (GPLs) resulting in decreased membrane hydrophobicity and surface attachment 

[145].  

As Mycobacterium grows, they begin to develop a capsule around the cell wall containing outward-

facing hydrophobic moieties. These have been reported to interfere with hydrophobic interactions and 

thus greatly decrease the surface attachment of the bacterium. The capsular material seems to form in 

late exponential phase and thickens in late stationary phase. Alavi et al [120] related the harvest OD600 

of Mycobacterium marinum to its attachment to polypropylene. It was found the most binding occurred 

in early to mid exponential phase (Figure 26). This was correlated to the amount of capsular material 

found in different growth phases; low amounts in exponential phase and high amount in stationary 

phase. 

 

Figure 26. Growth Curve of Mycobacterium marinum and proportional attachment to polypropylene 
at different stages of growth [120]. OD600 is the turbidity of the culture measured at 600nm. 

It is important to note that in documented adhesion assays only a proportion of microbes are seen to 

adhere onto the target immobilization surface. This is most likely due to two factors: 1) The competition 

for binding sites on the surface and; 2) That cell suspensions have mixed morphologies, with only a 

fraction of cells being attracted to surface [120, 227]. 
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The hydrophobicity of the Mycobacterium cell wall can also be influenced by the growth substrate used 

to culture the cells. Lyew et al [228] reported a change in hydrophobicity when Mycobacterium 

austroafricanum was grown up in the presence of different carbon sources. This is due to changes in cell 

wall fatty acid composition [229]. 

2.3.3.1.5.2 By Entrapment 

Dias et al [224] tested entrapment based immobilization of Mycobacterium sp. NRRL B-3805 using 

polyurethane foam and carrageenan beads. Bacteria entrapped in polyurethane showed no activity and 

were believed deactivated from the foaming process. However, Mycobacterium trapped in carrageenan 

beads were active but produced less reaction product than adhesion immobilization systems due to 

diffusion limitations and hydrophobic interactions with organic wastes. 

An early bioreactor for the production of ethylene oxide reported Mycobacterium strain Py1 

immobilized in sodium alginate beads to form the bedding material. This bioreactor had stable activity 

but suffered from mass transfer resistance problems [230].  

Li et al [231] immobilized Mycobacterium goodie X7B by gel entrapment within a number of different 

polymers including: calcium alginate, carrageenan, agar, polyvinyl alcohol, polyacrylamide, and gelatin-

glutaraldehyde. They earlier determined immobilization in calcium alginate yielded the greatest 

dibenzothiophene desulfurization activity. Thus it was used to form gel beads of immobilized bacteria 

for a liquid phase bioreactor to remove sulphur sources from gasoline.  

2.3.3.2 NBB4 ethylene-degrading bacteria 

NBB4 is a strain of Mycobacterium chubuense, a fast growing Mycobacterium species. Like all 

Mycobacteria, NBB4 is aerobic, acid-fast actinomycetes that usually forms short Gram-positive non-

motile rods. NBB4 colonies appear a very bright yellow, characteristic of rapidly growing Mycobacterium 

[232].  
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Figure 27. Morphology of NBB4 a) Slimy bright yellow-orange colonies when plated; b) Phase contrast 
light microscopy image of bacterial cell with short rods (x1000). 

2.3.3.2.1 Ethylene Assimilation Pathway of NBB4 

Mycobacterium strain NBB4 was isolated by ethylene enrichment of estuarine sediments and is able to 

grow on a wide range of hydrocarbons including ethane, ethylene, propane, butane, pentane, hexane, 

octane and hexadecane. Its versatility is likely due to it possessing an unprecedented six different types 

of Soluble Di-Iron Monooxygenase (SDIMO) enzymes [233-234]. NBB4 has also been affirmed for its 

ability to remove harmful pollutants (vinyl chloride, cis-dichloroethylene and 1,2-dichloroethane) from 

wastewater [235].  

NBB4 possess the ethylene SDIMO allowing it to subsist solely on ethylene as a carbon and energy 

source. The first step of ethylene assimilation is the conversion to ethylene oxide by the ethylene SDIMO 

followed by transformation into an open ringed epoxide by coenzyme M transferase. The final product is 

thought to be acetyl- CoA formed by oxidation. Acetyl-CoA is a central metabolic intermediate of the 

energy-generating tricarboxylic acid cycle [233]. Other products are carbon dioxide and water. 

Mycobacterium rhodesiae strain NBB3 was isolated the same way as NBB4. It too contains the SDIMO 

necessary for ethylene degradation. NBB3 is morphologically different to NBB4: It clumps in self 

aggregates during bacterial culture and when plated exhibits a roughened morphology. This is because it 

is missing the slimy cell wall envelope which may increase its adhesion due to hydrophobic interactions 

[120]. 

a) b) 



86 
 

 

Figure 28. Morphology of NBB3 a) Rough dull yellow small colonies when plated; b) Phase contrast 
light microscopy image of bacterial cells with short rods clustered in lines (x1000). 

 

2.3.3.2.2 Safety of NBB4 

The virulence factors for pathogenic Mycobacterium are generally thought to be associated with survival 

in the hostile macrophage environment. This is mediated by the expression of Protein Kinase G (PknG) 

which blocks macrophage lysosomal delivery. Non-pathogenic strains such as Mycobacterium 

smegmatis are known to posses the gene for PknG but the expression remains very low due to elements 

interfering with translation [236].  

NBB4 is thought to be a non-pathogenic strain of Mycobacterium. This is because it is an environmental 

strain, being isolated from soil samples and probably has not evolved the virulence factors required for 

pathogenesis. NBB4 being a fast growing Mycobacterium is further evidence of its non-pathogenic 

classification [232]. Houber et al [236] tested a number of Mycobacterium strains and found that only 

slow growing strains were able to express PknG. 

The literature analysis along with a safe working history of over 10 years in physical containment level 2 

(PC2) conditions ensures that NBB4 is a safe candidate for biofiltration bacteria.  

 

  

a) b) 
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3 Methodology 

3.1 Composite and Material Fabrication 

3.1.1 Agar Composite Scaffolds 

3.1.1.1 Scaffold Manufacture 

Scaffolds were fabricated using methods developed by Elizabeth Boughton [237]. High molecular weight 

PCL (80,000 mw, Sigma) was dissolved in a solvent and the polymer solution was allowed to leach into a 

porogen, the porogen was then removed simultaneous to polymer-solvent solution coagulation to leave 

an interconnected high porosity (>95%) PCL matrix. These scaffolds were washed in purified water and 

dried by centrifugation. The scaffolds produced were rectangular prisms in shape (l=16mm; w=15mm; 

h=11mm). There is a summary of the scaffold’s properties in Table 12. 

Table 12. Properties of the PCL Scaffold. 

Dimensions (l x w x h mm) Porosity (%) Compressive Modulus* 

(MPa)[181] 

Tensile Modulus* 

(MPa)[181] 

16 x 15 x 11 > 95 0.02-0.06 MPa 0.04-0.08 MPa 

* Mechanical testing performed on gamma sterilized scaffolds at 20% strain. 

3.1.1.2 Gel Scaffold Porosity Control 

The appropriate amount of agar was weighed, placed in Schott bottle and added to minimal salt media 

(MSM) [238] to make up to 0.1, 0.2, 0.4 and 0.6% w/v. Agars were sterilised by autoclaving. Before use 

agars were liquefied and homogenised using a microwave then kept in a 65°C water bath. 30 minutes 

before contacting scaffolds, Agars were transferred to a sterile 250ml beaker and placed in a 42°C water 

bath. Using a sterile tea-strainer scaffolds were submerged into MSM-agar mixture one at a time for 1 

minute. The excess was allowed to drip off for 10 seconds before placing on sterile 4-layer-thick 

absorbent paper. Scaffold was flipped once after 3 seconds and then left to sit for 10 minutes. Scaffolds 

were then placed on a sterile tray and left to air-dry for 24 hours. Ten MSM-agar scaffolds were made 

per different agar concentration. Scaffolds were weighed before and after gel coating to determine the 

resulting biofilter porosity. A light microscope was used to observe the resulting scaffold structure.  
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3.1.1.2.1 SEM Imaging of non-biological samples 

Agar composite scaffolds were prepared for SEM imaging: Samples were adhered to aluminium stubs 

using carbon paint. Care was taken to paint the sides of the scaffolds to ensure good conduction. 

Samples were then sputtered with 10nm gold (25mA, 2 minutes, argon atmosphere) and examined 

using SEM (EVO Ultra, Zeiss). SEM parameters were: acceleration voltage 10kV, spot size 300, and 

working distance 10 - 30 mm. 

3.1.2 Antibiotic Loading 

3.1.2.1 Soak-in Method 

3.1.2.1.1 Stock solution 

A stock solution of chloramphenicol (Sigma Aldrich) was created with a concentration of 100mg/ml. 

chloramphenicol powder was dissolved in pure ethanol (Sigma Aldrich), filter sterilised and stored in a 

cold room. New stock solutions of chloramphenicol were made every month.  

3.1.2.1.2 UV Spectrophotometry - Standard Curve 

Serial dilutions of chloramphenicol (100, 50, 20, 10, 5ug/ml) were prepared in chloroform to generate a 

standard curve. 1ml of each solution was pipetted into a quartz cuvette and the absorbance was 

measured using a spectrophotometer (BisPhotometer, Eppendorf) at wavelength 280nm. 

3.1.2.1.3 Disc Manufacture 

PCL pellets (80,000 mw, Sigma) were heated in a microwave for 60 seconds on a piece of Teflon. Then 

molten PCL was rolled into a tube and compressed to a thickness of 1 mm in a Teflon-lined vice. The PCL 

was allowed to rest for 1 minute before being removed from the vice and cooled at 4°C for 5 minutes. 

Discs were then punched from the PCL sheet using a 6 mm Hole Punch. 

3.1.2.1.4 Chloramphenicol Soak-in 

Soaking solutions containing 10mg/ml chloramphenicol were produced by transferring 200µl of 

chloramphenicol stock solution to sterile 1.8ml of pure water in Mini-McCartney bottles.  Discs were 

weighed, UV sterilised, then soaked in separate bottles for 48 hours whilst being agitated on an orbital 

shaker operating at 120rpm at room temperature (20°C). After the soaking period, the discs were 
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removed from solution and dried on a sterilized Kim Wipe (Kim Wipe, Kimberly-Clark) in a Class 2 

biological safety cabinet (BH-EN, Gelaire). To ensure that all the solvent had evaporated, the discs were 

placed in a desiccator overnight. chloramphenicol-discs were stored in separate sterile Eppendorf tubes. 

3.1.2.1.5 Determination of Antibiotic Loading 

Chloramphenicol-soaked discs were dissolved, by leaving in 2ml of chloroform in mini-McCartney bottles 

(very tightly-screwed chloramphenicol) overnight at lab temperature (20°C). Using a 1ml syringe 

(Terumino), a 200µl aliquot was then transferred to 10ml of chloroform. 1ml samples from each diluted 

solution was then transferred to a quartz cuvette and placed in a spectrophotometer (BisPhotometer, 

Eppendorf) and the absorbance at 280nm was recorded. A control set of PCL discs that were not soaked 

in chloramphenicol were used as controls. Triplicates were performed for each sample type. 

3.1.2.2 Hydrogel Method 

3.1.2.2.1 Characterisation of PVA-PCL scaffold morphology 

3.1.2.2.1.1 Scaffold ‘Plunger’ device 

A scaffold plunging device was designed and manufactured for submerging and coating scaffolds in 

hydrophilic gels. The initial idea for the plunger came from the tea strainer used in Method 3.1.1.2.The 

plunger had a number of design input requirements that needed to be accounted for (Table 13). 

Table 13. Plunger design inputs and outputs 

Design input Design Outputs 

Allow flow of gel through scaffolds Porous containment cages positioned over inlet 

holes 

Symmetric flow of gel through scaffolds Symmetrical design and cage positioning  

Allow easy access and manipulation of scaffolds Fit-lock system and sheath 

Allow submerging of plunger Inlet holes 

Tracking of individual scaffold samples Individual mini-cages, colour-fast numbering 
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Two equal discs (diameter = 100 mm, thickness = 3mm) were cut from polycarbonate sheets. Small 

pieces of stainless steel gauze were cut then bent to form mini-cages with dimensions: 13 x 13 x 5 and 

10 x 10 x 5 (l x w x h; mm). 10 mm from the disc circumference and at 60deg intervals, 6 inlet holes 

(diameter = 5 mm) were drilled into each disc. In one disc a larger hole (diameter = 7 mm) was drilled 

through the centre point. A polycarbonate shaft was attached to the centre of the disc without the 

centre-hole. A hollow polycarbonate sheath was attached to the centre of the disc with the centre-hole, 

such that the disc-sheath would stack directly on top of the disc-shaft. The mini-cages were attached to 

the discs over the inlet holes, with the larger cages on the top. All attachment was performed using 

superglue.  

 

Figure 29. Scaffold plunger device. Stainless steel cages for holding scaffolds are mounted on 
polycarbonate. 

3.1.2.2.1.2 Manufacturing PVA-PCL scaffolds 

PVA (99+% hydrolysed, Sigma Aldrich) was added to 200ml of distilled water in a 500ml beaker to make 

solutions of various concentrations: 5, 8, 10, 12 and 15%w/v. These were heated on a hotplate to 80°C 

and stirred until the solution was homogenous. The solution was then left to cool (while stirring) to 40°C 
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(approximately 1 hour). Scaffold slices (7 x 6 x 2 mm) were weighed then loaded into the plunging 

device. The scaffolds were plunged using an up and down motion repeatedly for 2 minutes in the PVA 

solution. The scaffolds were then put on absorbent paper to remove the excess PVA solution, and then 

transferred to a sample holder to dry for one hour. The scaffolds were re-weighed. A calculation was 

made based on weight change to determine the theoretical swollen porosity of the scaffolds. After 24 

hours of drying in air, scaffolds were prepared for SEM as described in Methods 3.1.1.2.1.  

3.1.2.2.2 Spectrophotometry - Standard Curve and Validation 

An Erythromycin (Sigma) stock solution of 200ug/ml was made in RO water. The stock solution was 

vortexed and left overnight to become fully homogenous. Differing volumes of the stock solution were 

added to 1 ml Eppendorf tubes and diluted to 700ul with RO water. 70ul of 4mM eosin Y (Sigma) was 

added and tubes were vortexed. 100ul of 0.4M Acetate buffer (made by combining 0.4M acetic acid and 

0.4M sodium acetate and bring to pH=3) was added then tubes were topped up to 1ml with RO water 

and vortexed again. The final erythromycin concentration in tubes was: 20, 10, 5, 2 and 1ug/ml. The 

absorbance was tested at 543nm with plastic cuvettes and with use of an appropriate blank. Tubes were 

prepared and tested in triplicate. 

To test the stability of the eosin Y-erythromycin complex formed, 3 solutions were prepared as 

described above: 1) Water only; 2) Buffered eosin Y with 700ul water (no erythromycin); 3) Buffered 

eosin Y with 20ug/ml erythromycin. Solutions were transferred to plastic cuvettes and the absorbencies 

were tested at 543nm, blanking with the Water only sample. The absorbencies were tested again after 

an hour. 

3.1.2.2.3 Microbial Assay – Standard Curve and Validation 

A stock of erythromycin in water was prepared (1000ug/ml). Solutions of varying concentration of the 

stock were prepared in PBS. 

An overnight suspension of Staphylococcus aureus (strain: ATCC 29213, see Appendix A.1) was diluted to 

OD600 = 0.1 in PBS. 100ul of this suspension was inoculated onto TSA plates and spread ensuring the 

plates were uniformly covered. Filter paper discs were soaked in 500ul of diluted erythromycin-PBS 

solutions of known concentration. The excess liquid was removed before placing discs on the pre-

inoculated TSA plates. Plates were incubated at 37C for 18 hours at which point the zone of inhibition 
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(ZoI) was measured using Vernier calibres. Triplicates of each concentration were tested. A filter paper 

disc soaked in PBS only and water containing soluble PVA was also tested. 

3.1.2.2.4 PVA Hydrogels in Ethanol-Water mixtures 

10% w/v PVA solutions were prepared in different water-ethanol mixtures: 85:15, 75:25, 50:50 and 

35:65 (water:ethanol). Each solution was formed by addition of 12g of PVA into the appropriate volume 

of water. Continual stirring and heating to 80°C for 1 hour completely dissolved and homogenised the 

gel. The solution was then allowed to cool to 40°C. The appropriate volume of ethanol was added to 

bring the solution up to 120ml. The solution was stirred for 1 hour to completely dissolve and 

homogenise the gel once again.  

Gels were either poured into petri dishes to form films or scaffolds were coated in the gel following the 

Method 3.1.2.2.1.2 described above. Gels and gel-scaffolds were immediately vacuum packaged. 

Packages were placed in a -20°C freezer for 16 hours, then left to thaw at room temperature for 8 hours. 

Samples were removed from their vacuum packages and allowed to dehydrate in a laminar flow hood 

for 24 hours. Samples were then stored at room temperature until ready for use. 

PVA hydrogel film and PVA-PCL scaffold samples were weighed in the dehydrated state then transferred 

to McCartney bottles and submerged in 50ml of distilled water. Samples were soaked for 72 hours 

refreshing the water every 24 hours. Hydrated samples were superficially dried with absorbent paper 

towel for 10 minutes and weighed. Samples were then re-dehydrated in air and weighed once more. 10 

film samples and 12 scaffold samples were tested per water-ethanol mixture. 

3.1.2.2.5 DSC Analysis of PVA Hydrogels in Ethanol Mixtures 

Hydrogel samples of 5-10mg were weighed into aluminium sample pans and crimp sealed.  Differential 

Scanning Calorimetry (DSC) was performed (DSC 2920 Modulated DSC, TA Instruments) with the 

assistance of Trevor Shearing (University of Sydney). Dried samples of PVA and cross linked PVA 

weighing 5-10 mg, were put into aluminium sample pans, crimp sealed then placed in the DSC 

instrument. Samples were first heated from 35°C to 150°C (first heating cycle); then cooled to 35°C 

followed by heating up to 250°C (second heating cycle), all at a heating rate of 10°C min-1 under 

nitrogen. Results were taken from the second heating runs of the experiments in order to avoid 

experimental effects arising from the previous thermal history, structural relaxation and incomplete 

chemical reactions [38]. 



93 
 

3.1.3 Bioglass Manufacturing 

3.1.3.1 Precursor Preparation 

The following materials were weighed into a 300ml glass beaker: 

Table 14. Bioglass raw materials for precursor pellet formation 

Material Chemical Symbol Weigh Percentage 

w/w% 

Weight (g) 

Hydrophobic fumed 

Silica (HDK H17, 

Wacker) 

SiO2 34.67% 14.40 

Soda Ash (>99%, 

Redox) 
Na2CO3 31.30% 13.00 

Lime Stone (T-Grade, 

Omya) 
CaCO3 23.93% 9.94 

Tricalcium Phosphate 

(Food Grade, Redox) 
Ca3(PO4)2 10.10% 4.19 

TOTAL  100% 41.53 

 

30ml of acetone was added to the beaker and then mixed in gently for approximately 3 minutes until 

the powder reduced in volume forming a ‘bread crumb’ consistency. The mixture was then loaded into a 

hardened steel die (Inner Diameter = 42mm) and compressed at 1000psi for 6 minutes. The pellet that 

formed was reverse-pressed out of the die and stored in an air-tight container. 

Precursor pellets were weighed and their height measured using vernier calibres. The pellets were 

transferred to either a Pt-Au crucible or an alumina tray. These were positioned side-by-side in a furnace 

(Tetlow Pty Ltd) and heated up at 300°C/hour to 800°C, 100°C/hour to 1000°C and 50°C/hour above 

1000°C. When the target furnace temperature was reached it was held for 1 hour before turning off and 

cooling naturally. A number of heating cycles were tested as seen in Figure 30. The resulting calcined 
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pellets were removed the next day when fully cooled. They were weighed, height measured and 

examined. 

 

Figure 30. Heating cycles for optimising calcination. Temperature rates for natural cooling were not 
determined. 

3.1.3.2 Melting 

Melting was performed with the assistance of Rahmat Kartono (Univeristy of New South Wales). 

Calcined pellets were loaded into a crucible. Crucible types used were: Slip-cast Alumina (3.1.3.2.1) , 

Platinum-sputter-coated slip-cast Alumina (3.1.3.2.2), Platinum foil (custom folded, American Elements, 

4” x 4”, thickness: 0.001”)  and Platinum-Gold crucible (Pt 95/Au5, APS Labware). Crucibles were then 

loaded into a furnace with a hydraulic drop-down door and heated up at 300°C/hour to 900°C, 

100°C/hour to 1350°C and held at this temperature for 2 hours. The hot crucible was removed from the 

oven and the molten glass was poured into a stainless steel bowl with distilled water or empty to form 

either frit or marbles respectively as depicted in Figure 31. The resulting frit glass was observed along 

with the crucible used. The composition of the Bioglass was analysed using Energy-dispersive X-ray 

spectroscopy (EDS) on frit granules obtained from each melt. 
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3.1.3.2.1 Slip Cast Crucibles 

A mix of pottery plaster and water was formed as per the manufacturer’s instructions. The plaster mix 

was poured into a plastic container which served as the outer mould. An aluminium tube lubricated with 

petroleum jelly was partially submerged in the plaster acting as the inner mould. The plaster was dried 

for 48 hours at 50°C after which the inner mould was removed leaving a plaster mould to form a 

crucible. 

A 0.6 wt% Sodium Carboxylmethyl-cellulose (NaCMC) solution was formed and left to stir overnight. 

Alumina powder and magnesia were added in the proportion: 500 g NaCMC solution to 611 g alumina 

and 0.37 g magnesia; and mixed in a ball mill with 2 kg of 1 cm diameter alumina balls. This alumina 

slurry was poured into plaster moulds and allowed to dry for 40 minutes. Alumina slurry was topped up 

3 times to ensure an even wall thickness. The mould was placed upside down for a couple of minutes to 

pour off excess slurry then the edges of the cast were finished with a sharp tool and paint brush. 

Casts were further dried at 120°C until they were fully dried and separated from the plaster mould. Then 

casts were sintered at 1400°C for 2 hours to form the finished crucibles. 

 

a) b) 

Figure 31. Molten bioglass is poured from platinum crucible: a) Pouring into distilled water to form 
frit; b) Pouring intermittently while rotating empty bowl to form marbles. 
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Figure 32. Slip-casting of alumina crucibles. 

3.1.3.2.2 Platinum Sputter Coated Crucible 

An alumina slip cast crucible was placed in the magnetron sputter coater. Platinum foil (American 

Elements, 4” x 4”, thickness: 0.001”) was used as the target. Sputtering took place in an argon 

atmosphere for 3 x 5 minute periods. A rotating stage was used to move the alumina crucible inside the 

plasma field during sputtering. The clearance between the target and the crucible was 5cm. 

3.1.3.2.3 Bioglass EDS Sample Preparation 

An epoxy cylinder was first cast (ClaroFast, Parameters: 80C 3min, 180C 3min, cooling 6min, “sensitive”) 

then a 5mm diameter longitudinal hole was drilled through the centre. A diamond cutter was used 

(Wheel 330CA, Parameters: 2800 rpm, 0.050mm/s, High-force) to make 3mm thick slices then the edges 

were ground down (SiC[220] paper) so they no longer were flush with the piston. These were used as 

templates to hold bioglass granules and prevent them from being pushed to the sides during hot epoxy 

pressing. 

Granules were mounted in the hole of the template and loaded into the piston. 7ml of Epoxy was added, 

followed by a paper label (pencil, face-up) then topped up with 7ml more. Hot epoxy pressing was 

carried out (Struers, CitoPress10).  

Samples were ground down on the granule-side to remove excess epoxy so the granule could be 

polished (SiC [500] paper, Parameters; 300 rpm, 25 N, 30 seconds). Sample polishing was a 3 step 

process with each step using a different suspension; 9um diamond (DiaPro Largo), 3um diamond 
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(DiaDuo) and 0.4um silica. Before each step the samples were washed in water and dried with an air-

blower. 

Samples were mounted on aluminium stubs using carbon tape and carbon coated to 20nm. 

3.1.3.2.4 SEM EDS of Bioglass Samples 

EDS spectra were generated on the EVO SEM (Settings: EHT = 20kV; WD = 20mm, Zeiss). Note: WD 

(working distance) should be at least double of highest expected X-ray energy. Robostage was used to 

automatically gather spectra from several different positions on the surface of each grain. Magnification 

was set to 800x. Spectra were collected for 150,000 counts at 30% countables.  

X-ray peaks for signature elements were converted to oxides to calculate the chemical composition. A 

minimum of two granules were analysed on from each batch with at least three spectra gathered from 

each granule. 

3.1.3.3 Post-processing 

Two different grinding methods were tried and compared: 

1. Bioglass frit was ground using an agate mortar and pestle followed by sieving. 

2. Bioglass frit was ground using a ball milling apparatus containing bioglass frit to bioglass marble 

volume fraction of 2:1. Milling duration was 150 hours. 

Microscopic analysis (DM Microscope, Leica) was used to determine the particle size distribution of the 

bioglass powders. 

3.1.3.4 Bioglass Coating 

Scaffolds or disc samples were loaded into a Medipack package (3M). A small amount of bioglass 

powder was added into the package: 1g/10 scaffolds or 1g/20 discs. The package was heat sealed then 

vigorously shaken for 5 minutes to evenly disperse the bioglass powder. The package was secured in a 

rotisserie oven at 50°C for 1 hour. The rotating motion allowed the bioglass to contact the PCL surfaces 

while the gentle heat made the PCL sticky so the bioglass became attached. The package was removed 

from the oven and the excess bioglass was removed. Coated samples were stored in the packages until 

ready to use. 
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Coated scaffolds were used to qualitatively test the adhesion strength and homogeneity of the coating 

process. Coated scaffolds were submerged in DMEM media for a 14 day period after which they were 

dried in air. Samples were prepared and examined by SEM (see Methods 3.1.1.2.1) 

3.1.4 Bulk Metallic Glass Sputtering 

The BMG alloy material (Mg60Zn35Ca5) was synthesised by Jake Cao (School of Materials Science 

and Engineering, UNSW). The material was carefully ground into a circular disc so as to be fitted as the 

sputter target. Scaffold slices were placed in a magnetron sputter coater (custom setup, Prof. Nick 

Savvides, UNSW, Australia) and the machine was vacuumed pumped. Once the vacuum has been 

achieved, the chamber pumped with argon gas (2 Pa). The scaffolds were coated at 50W with 500nm of 

BMG on both sides. 

3.2 Biofilm Formation 

3.2.1 Biofilm Inhibition on Disc Composites 

Bacteria (E. coli, S. aureus and P. aeruginosa) were grown up overnight in 5ml broth cultures (Appendix 

A.1). A PCL disc (Method 3.1.2.1.3) with biomaterial surface coating (Table 15) was put in the bottom of 

wide-mouth McCartney 15ml Bottles. 2ml of bacteria specific biofilm media ( 

 

Table 16) was brought to OD600 = 0.1 and transferred to bottles. Stoppers were left loose to ensure 

good aeration. Bottles were incubated shaken at 100rpm for 24 hours at 37°C. Discs were removed with 

sterile tweezers and transferred to a petri dish filled with sterile PBS for to wash of excess media. Discs 

were gently washed two times in sterile PBS, transferred to Eppendorf tubes containing 1ml of PBS and 

sonicated at maximal frequency for 5 minutes. 100 µl of the sonicated PBS was used for serial dilutions 

of which 50ul were drop plated on appropriate plate media (see  

 

Table 16). Drop plates were incubated for 18 hours (to ensure small colonies) and counted to determine 

the viable number of cells in the biofilm recovered. SEM analysis was also performed to characterise 

biofilm formation. Triplicates were used for each sample/pathogen combination.  
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Table 15. Coated disc sample sets 

Sample Coatings: Coating Method 

Section: 

 Un-coated PCL control - 

PVA-hydrogel coated 3.1.2.2.1 

PVA-hydrogel coated, 

gamma sterilized 
3.1.2.2.1 

45S5 bioglass coated, PVA-

hydrogel coated, gamma 

sterilized 

3.1.2.2.1; 3.1.3.4 

 

 

Table 16. Biofilm culture media for different pathogens 

 E. coli (strain: ATCC 

11775) 

P. aeruginosa (strain: 

NCTC 7244) 

S. aureus (strain: ATCC 

29213) 

Overnight Growth 

Media 

LB LB TSB 

Biofilm Media 10% LB 10% LB 10% TSB 

Plate Media LB Agar LB Agar TSA 

 

3.2.1.1 SEM Imaging of biological samples 

Biological samples were prepared for SEM: Primary fixation was achieved by immersion in 2% 

glutaraldehyde (in 0.1M Na-PBS) overnight at 4°C. Glutaraldehyde was removed by washing in 0.1M PBS 

(3 x 5min). Post-fixation was achieved with 1% osmium (OsO4) in 0.1M PBS for 1 hour. OsO4 was then 
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removed by washing in Milli-Q water (3 x 5min). Samples were dehydrated in ethanol solutions at 50%, 

70% and 95% (2 x 5min each), then at 100% (2 x 10min). Chemical drying was used by immersion for 

3min in 100% hexamethyldilazane (HMDS). This was then quickly removed and samples were then 

placed in a dessicator and left overnight for HDMS fumes to evaporate. Specimens were mounted on 

aluminium stubs with carbon paint and sputter coated with 10nm gold (25mA, 2 minutes, argon 

atmosphere) and examined using SEM (EVO Ultra, Zeiss). SEM parameters were: acceleration voltage 

10kV, spot size 300, and working distance 27-30 mm. 

3.2.2 Adhesion of NBB4 

3.2.2.1 Effect of Time on NBB4 Adhesion 

3.2.2.1.1 Ethylene-Active NBB4 Growth Protocol 

A sterile loop-full of plated healthy NBB4 (Appendix A.1) was deposited in a sterile 1.5ml ependorf tube 

and suspended in 1ml of MSM. The turbidity of this suspension was measured and based on this the 

suspension was diluted to give an OD600 of 0.1 in 30ml of MSM.  300ul of Tween 80 (0.02%) and 60ul of 

Trace Element Solution were added to the NBB4 suspension. The container was crimp sealed with a 

butyl gas top and aluminium sheath. Using a sterile syringe with filter 9ml ethylene gas (10% of head 

space) was injected into the culture vessel. NBB4 was incubated in a shaker for 48 hours at 30°C or until 

the desired growth phase was reached. 

The ethylene gas was vented and the bottle’s contents were poured into a 50ml Falcon tube. This was 

centrifuged at 4000rpm for 15min and the supernatant removed. The pellet was resuspended in 3ml 

PBS/Tween (0.02%) and washed twice by further centrifugation. The OD600 of suspension was 

measured (blanking with PBS/Tween).  

3.2.2.1.2 NBB4 Freezer Stocks 

2 x 500ml TSG (Triptic Soya Both (Oxoid) with 10% glucose (Sigma)) were made up Erlenmyer flasks, 

corked with cotton bung and wrapped with Aluminium foil and autoclaved.  

All colonies from a streaked plate of NBB4 were harvested with a sterile loop and deposited into 5ml of 

sterile LB. A volume of this suspension was added to bring each Erlenmyer flask to OD of 0.1 and Flasks 

were incubated at 30°C with shaking for 48 hours. 
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The flasks were harvested at OD600 = 0.8. The contents of flasks were poured into 4 x 500ml centrifuge 

containers. Containers were centrifuged for 10min at 6000rpm (Sorvall Evolution VC, SLC 3000) and the 

supernatant was disposed of. The pellet was washed twice in PBS then combined in 1ml of PBS to form a 

very cell-dense suspension. 

The OD600 of this suspension was measured and specific volumes aliquotted into mini-Eppendorf tubes 

to bring 300ml of liquid to an OD600 of 0.1 (for processing ease in future experiments). These tubes 

were stored in a -80°C freezer. 

NOTE: This protocol is prone to contamination and only filter-tips should be used when pipetting. 

3.2.2.1.3 Adhesion Time Course 

Sterilised ¼ scaffolds were added into a 3ml active NBB4 suspension. Bottles were given a single hard 

shake to fully submerge the scaffold. Table shaking proceeded (100rpm) at room temperature, 

measuring OD600 (100ul into 900ul PBS/Tween) at time intervals: 1, 2, 5, 10, 20, and 30 minutes, 1 and 

2 hours, 1 and 2 days. The change in OD600 in the media was used to quantify adhesion. 

3.2.2.2 Effect of Growth Phase 

Ethylene active NBB4 suspensions were harvested at different growth phases based on optical densities; 

OD600 = 0.1, 0.2, 0.3, 0.4, and 0.8. An adhesion assay was performed similar to described above in 

Methods 3.2.2.1.3, except OD600 measurements were performed only initially and at 24 hours. 

Triplicate samples were performed for each growth phase. 

3.2.2.3 Alteration of Scaffold Surface 

Scaffolds were coated using Method 3.1.3.4 but substituting bioglass for E-glass and Hydrophobic 

Fumed Silica (Wacker). Ethylene active NBB4 suspensions were harvested at OD600 = 0.4. E-glass, Silica 

and Uncoated scaffolds were used in an adhesion assay, performed similar to described above in 

Methods 3.2.2.1.3, with OD600 measurements performed after 0, 1, 2 and 24 hours. Triplicate samples 

were performed for each scaffold type. 

3.2.2.4 Alteration of Cell Surface 

Ethylene active NBB4 suspensions were harvested at OD600 = 0.4. Ethylene active NBB3 cells (Appendix 

A.1) were also prepared using the same method as for NBB4 (Method 3.2.2.1.1). A proportion of NBB4 

cells were treated with solvents to modify their cell wall: NBB4 suspensions were pelletted in Eppendorf 
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tubes and resuspended in acetone or methanol for 5 minutes after which the cells were washed 3 times 

with MSM. An adhesion assay was performed on NBB3 and solvent-treated NBB4 similar to described 

above in Methods 3.2.2.1.3, except OD600 measurements were performed only initially and at 24 hours. 

Duplicate samples were performed for each cell type. 

3.2.3 Gel Entrapment of NBB4 

300ml cultures of NBB4 were grown in presence of 10% ethylene for 40 hours to late exponential phase 

(OD600 = 0.8). Cells were harvested by centrifugation and resuspended in 3ml MSM. To liquid MSM agar 

(42°C) was added: sterile Metal-ion solution (0.2% v/v) and concentrated suspension of NBB4 (maximum 

2% v/v as not to alter gel viscosity; final OD600 = 0.5). Scaffolds were then treated using the above 

Method 3.1.1. Ten NBB4-MSMagar scaffolds were made per different agar concentration. Microscopic 

characterisation of the resulting biofilm was performed using SEM using the preparation protocol 

outlined in Method 3.2.1.1. 

3.3 Antibacterial/Probacterial  Activity 

3.3.1 Activity of Antibiotic Eluting Scaffolds 

3.3.1.1 Effect of Ethanol Content on Erythromycin Release 

3.3.1.1.1 Erythromycin Infused Scaffolds 

PVA hydrogels were prepared in water-ethanol mixtures as described in Methods 3.1.2.2.4, but with the 

following addition to the method: After homogenous water-ethanol PVA gel was formed an amount of 

erythromycin (Sigma) was added to form a super saturated solution. (This was typical around 20mg/ml). 

The solution was stirred at 40°C for 2 hours to allow the erythromycin time to dissolve. The solution was 

then transferred to a falcon tube and centrifuged at 4000rpm for 5 minutes to separate the undissolved 

erythromycin. The supernatant was retained for preparing scaffolds as described above. 

3.3.1.1.2 Erythromycin Slow Release  

The in vitro elution of the drug was examined by placing dehydrated, erythromycin infused PVA-PCL 

scaffolds in a well containing 500µl of PBS. At certain time intervals a filter paper disc was placed in the 

well to soak and scaffolds were removed and placed in a new well containing 500µl of fresh PBS. The 
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filter paper disc was then used to perform a Microbial assay (Method 3.1.2.2.3) to determine the 

concentration of erythromycin in the well. Triplicates of each sample type were tested. 

3.3.1.2 Effect of Gamma Sterilization on Erythromycin Release 

Erythromycin-PVA scaffolds were prepared as detailed above (Methods 3.1.2.2.1.2 and 3.3.1.1.1) using a 

PVA concentration of 10% w/v and an ethanol concentration of 50%v/v. After crosslinking and 

dehydrating the Erythromycin-PVA scaffolds they were packaged and gamma sterilised at 25kGy using a 

Cobalt-60 source (Steritech). The slow release of erythromycin was tested as previously described using 

the bioassay for measuring erythromycin concentration (Method 3.1.2.2.3). Gamma sterilised scaffolds 

were compared to a control-set of unsterilized scaffolds that were from the same production batch. 

Tests were performed in triplicate. 

3.3.1.3 Cytotoxicity of Erythromycin 

Human dermal fibroblasts CRL-2097 (HFb) were grown to confluence, harvested and counted as 

described in detail in Method 3.4.1.1.1. 90μl of cells in DMEM 10% FCS containing ~25,000 cells were 

added into a 96 well plate. Cells were then cultured for 24 hours under normal culture conditions. The 

media was replaced with media that contained varying concentrations of erythromycin (0, 25, 50, 100, 

250, 500, 750, 1000μg/ml) and cells were cultured for a further 24 hours. 20μl of MTS reagent (CellTiter 

96 AQueous One Solution Cell Proliferation Assay, Promega) was added to each well and cultured for 1 

hour after which a colour change could be seen. The absorbance of the solutions was measured at 

490nm. A sample set of media containing erythromycin but no cells was used to account for the drug 

interfering with the MTS reagent and any change in background absorbance. Triplicates were performed 

for all tests. 

3.3.1.4 Erythromycin Soak-off 

Erythromycin-PVA scaffolds were fabricated using 50% ethanol and gamma sterilised in preparation for 

erythromycin release measurements as detailed above (Method 3.3.1.2) but with the following 

difference: Before placing scaffolds in well plates, scaffolds were soaked in bottles containing 1 ml of 

PBS for 15, 30 or 60 minutes to soak off superficial erythromycin and reduce the initial burst release. 

Afterwards erythromycin slow release testing proceeded as normal. Triplicates samples were performed 

for each soak-off time. 
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3.3.2 Antibacterial Biomaterials 

3.3.2.1 Zone of Inhibition 

E. coli, S. aureus ’Oxford’ and P. aeruginosa (Appendix A.1) were grown up overnight (37°C, 200rpm). 

100 µl aliquots of bacterial broths were spread onto LB or TSA agar plates. The following biomaterials 

were sterilised under UV for 1 hour: 

1. PCL disks 

2. Chloramphenicol powder 

3. Hydroxyapatite powder 

4. 45S5 bioglass powder 

5. MgZnCa bulk metallic glass strips 

 

Uniform pellets of biomaterials were then positioned the centre of spread-plates. The surface area of 

contact between biomaterial and plate was kept constant and confined to a 5mm diameter circle. Plates 

were incubated for 24 hours at 37°C after which the zone of inhibition was measured. The antibacterial 

effect biomaterial was tested on each bacterium in triplicate. 

3.3.2.2 MIC/MLC Protocol 

One colony of each bacterium (E. coli, S. aureus ‘Oxford’ and P. aeruginosa) from storage plates was 

used to inoculate a 5ml broth cultures (Appendix A.1) and grown up overnight at 37°C and 200rpm. The 

OD600 of this culture was measured and diluted to OD = 0.1 with sterile LB (approximately 108 cells/ml). 

In mini-McCartney bottles samples of biomaterial (Hydroxyapatite, 45S5 Bioglass and MgZnCa BMG) or 

antibiotic (Chloramphenicol) were made up in 500ul LB and 500ul of diluted culture in concentrations of 

2.5, 5, 7.5, 10, 12.5 µg/ml for antibiotics; 20, 40, 60, 80, 100 mg/ml for HA and 45S5; and 5, 10, 15, 20, 

25 mg/ml for BMG. Negative controls with cells only were included for each bacterium. Chloramphenicol 

has been tested previously on these bacteria and represents the positive control. After culturing at 37C 

and 200rpm for 22 hours, 50ul of 0.2% nitrotetrazolium chloride was added to each aliquot. Incubation 

continued for no more than 2 hours after which aliquots were observed for a blue colour change 

indicating cell metabolism. The lowest concentration which resulted in no colour change was defined as 

the MIC. All conditions were tested in triplicate. 
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3.3.3 Bacterial Ethylene Degradation 

3.3.3.1 Optimisation of Agar Concentration 

NBB4 was immobilized in agar composite scaffolds as described in Methods 3.2.3. Agar concentration of 

0.1, 0.2, 0.4 and 0.6 %w/v were used to make separate batches of 10 NBB4-scaffolds. Control sets were 

fabricated: 0.2%w/v agar scaffolds containing no NBB4 cells and; 0.4%w/v agar cubes containing NBB4 

cells by casting inoculated agar gel into petri dishes. 

 

Figure 33. Agar cubes cut with scalpel to scaffold dimensions 

Scaffolds were cut carefully with sterile scissors along their long axis and entire batches (20 half-

scaffolds) were placed 120ml serum bottles and crimp sealed with butyl septa. Gel cubes were cuts to 

the same dimensions as scaffolds and also added to serum bottles (Figure 33). 500ppmV of ethylene was 

added to bottles and Gas Chromatography (GC) readings were taken after: 0, 4, 8, 12 , 16, 20 and 24 

hours. Triplicate batches of each sample set were tested. 

3.3.3.2 Effect of Altered Cell Surface 

NBB3 and solvent-treated NBB4 scaffolds tested for adhesion efficiency in Method 3.2.2.3, were tested 

for their ethylene degrading abilities as described above (Method 3.3.3.1), but with the following 

10 mm 
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exceptions: Scaffolds were already in quarters and thus added directly to serum bottles and; GC 

readings were taken at: 0, 24 and 120 hours. 

3.4 Device Pilot Studies 

3.4.1 In vitro wound modelling of Synthetic Skin Graft 

3.4.1.1 Validation of PCR and qPCR standards 

3.4.1.1.1 Fibroblast and bacterial culture 

Human dermal fibroblasts CRL-2097 (HFb) was cultured at 37°C and 5% CO2 in a cell media of DMEM 

with 10%v/v Fetal Calf Serum (FCS, Sigma). Media was changed every 3-4 days and fibroblasts were sub-

cultured weekly. Cells of passage 2-6 were used for experiments. Staphylococcus aureus ATCC29213 

(Appendix A.1) was grown up overnight at 37°C and 200rpm in Tryptic soya both (TSB). S. aureus was 

maintained on TSB agar (TSA) plates at 4°C.  

3.4.1.1.2 RNA extraction from cells 

Confluent HFb were washed, trypsinised to detach from cell culture flasks, washed with PBS and 

resuspended in fresh cell media. HFb were counted using a hemocytometer and light microscope. HFb 

were then pelletted in Eppendorf tubes. 1ml of Tri-reagent (Sigma) was added followed by 200 μl of 1-

bromo-3-chloropropane (Sigma) to induce phase separation. Tubes were then centrifuges for 10s. 

S. aureus cells were washed in PBS and collected by centrifugation (10,000rpm, 1 min), resuspended in 

1ml Tri-reagent (Sigma) and then transferred to bead beater tubes: 2ml Screw chloramphenicol tubes 

(Astral Scientific), Standard crew caps (black, Astral Scientific) with 110mg of 150-212um diameter glass 

beads (G1145, Sigma), 110mg of Glass beads (G8772-100g, Sigma) and 1 Solid-glass bead 5mm 

(Z265942-1EA, Sigma). 200ul of 1-bromo-3-chloropropane was added. Bead beating proceeded at 6 m/s 

for 40 seconds and was repeated once to break up the bacterial cell wall.  

All tubes were rested on ice for 10 minutes then centrifuged at 13000rpm for 15 minutes at 4°C. 500μl 

of the clear supernatant containing the RNA was carefully removed and added to separate tubes 

containing 500μl of isopropanol (2-propanol, Sigma). Tubes were stored overnight at -20°C. RNA was 

pelletted by centrifugation (13000rpm for 10minutes) and washed twice with 70% ethanol then air dried 
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before resuspending in 23ul water. RNA amount was quantified spectrophotometrically (NanoDrop), 

and the purity was determined from the A260/A280 ratio (1.80 - 2.00). 

3.4.1.1.3 RNA to cDNA 

1000ng of RNA in 8μl was treated with DNase I (Invitrogen) to remove any contaminants before being 

reverse transcribed to complementary DNA (cDNA) using Random Hexamer Primer (Invitrogen, CA, USA) 

and SuperScript™ III Reverse Transcriptase (Invitrogen) [188]. Briefly, 1μl of DNase and 1μl 10x Reaction 

buffer was added to each tube and incubated at room temperature for 15 minutes. A master mix of 

0.5ul Oligo DT, 0.5ul RH and 1.5ul water was added to each tube then brought to 70°C for 10 minutes in 

a thermocycler (BioRad). A second master mix of 4µl 5x Buffer, 2µl DTT, 1µl dNTPs and 0.5µl Superscript 

was added to each tube. Tubes were subjected to 25°C for 10 minutes, 42°C for 60 minutes and 70°C for 

10 minutes for reverse transcription to take place. cDNA samples were stored at -20°C until ready for 

PCR. 

3.4.1.1.4 Primer Design 

16s rRNA sequence was obtained from the GenBank database for Staphylococcus aureus. Primers were 

generated using Primer Blast. Primer specificity was tested by qPCR and gel electrophoresis was used to 

quantify the product size. 

Target Primer Sequence Product 

size (bp) 

Reference 

Fibroblast 18s RNA 18Sf 

18Sr 

5'-CGGCTACCACATCCAAGGAA-3' 

5'-GCTGGAATTACCGCGGCT-3' 

187 [189] 

Staphylococcus 

aureus 16s RNA 

ASB1 

ASB2 

5’-GCCACACTGGAACTGAGACA-3’ 

5’-GGATAACGCTTGCCACCTAC-3’ 

247 This study 

 

3.4.1.1.5 Conventional PCR amplification 

To create internal qPCR standards, cDNA was amplified using conventional PCR with the following 

reaction mastermix: 1μl dNTPs, 2μl forward primer, 2μl reverse primer, 5μl Buffer, 5μl MgCl2, 27.5μl 
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water and 2.5μl 1U/μl Taq DNA Polymerase (AmpliTaq Gold, Applied Biosystems). 5μl of cDNA template 

was added to bring the reaction to 50μl. The cDNA template was replaced with 5μl of water for the no-

template (NT) controls. Reactions took place using a thermocycler (DNA Engine, BioRad) with the 

following program: 92°C for 10 minutes, then 35 cycles of 92°C for 20s  57°C for 20s  75°C for 50s. 

Afterwards the amplified cDNA was stored at -20°C until ready for use. 

3.4.1.1.6 Gel Electrophoresis 

Gel electrophoresis was performed on cDNA PCR products and NT controls for 18s and 16s samples. 

Samples mixed with DNA loading dye (Gel Pilot, Qiagen) and were run for 1h at 90V and 37°C on 2% 

agarose gels containing 1x Gel Red (Biotium). HyperladderV (Bioline) was also run as the reference. Gels 

were observed under UV light to identify band locations. Products were tested in triplicate.  

3.4.1.1.7 Purifying and aliquoting Standards 

cDNA product was purified using the UltraClean GelSpin kit (MO BIO) and stored in 10mM Tris at -20°C. 

Quantification of cDNA concentration (in ng/μl) was performed using a spectrophotometer (Nanodrop) 

and blanking with 10mM Tris Buffer. Ten-fold serial dilutions were made in water to form standard 

solutions of DNA with known concentration.  

3.4.1.1.8 Quantitative PCR 

cDNA was amplified using quantitative PCR (qPCR). qPCR was carried out in microtubes with following 

mastermix added to each: 0.5ul of forward primer, 0.5ul of reverse primer, 7.5ul of SensiMix (Contains: 

Heat-activated DNA polymerase, Ultra-pure dNTPs, MgCl2 (6mM), SYBR® Green I, Bioline), 1.5ul pure 

water and 5ul of 1/5-diluted sample cDNA (final cDNA concentration 1ul/15ul reaction). Thermocycling 

was performed using a Rotor-Gene™ 3000 (Corbett). The PCR conditions were: 50°C for 2min and 95°C 

for 5min, followed by 40 cycles of 95°C for 10s, 60°C for 20s, and 72°C for 20s [187-188]. Duplicate qPCR 

reactions were run samples for each sample. 

qPCR was carried out on standard solutions as described above along with a melt analysis obtained by 

slow heating from 70 – 95°C at 0.2°C/s. 
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3.4.1.2 Addition of Fibroblasts to the Scaffold 

HFb were cultured as described in 3.4.1.1.1, harvested and counted. Four methods of adding the HFbs to 

scaffolds (Method 3.1.1.1) of dimensions 6x5x2mm were tested: 

1. Normal method. Scaffolds were soaked in sterile media (DMEM + 10% FCS) for 10min and 

transferred to a 24 well-plate. 400μl of media was added to the well. ~60,000 HFbs in 100μl of 

media were carefully pipetted onto the scaffold.  

2. New method 1. Scaffolds were soaked in sterile media (DMEM + 10% FCS) for 10min, dried on 

sterile filter paper and transferred to a 24 well-plate. ~60,000 HFbs in 100μl of media were 

carefully pipetted onto the scaffold. The scaffold was incubated under normal culture conditions 

for 12 hours to allow cell attachment. 400μl of media was added to the well. 

3. New method 2. Dry scaffolds were transferred to a 24 well-plate. ~60,000 HFbs in 100μl of 

media were carefully pipetted onto the scaffold, forming a droplet on top. The scaffold was 

incubated under normal culture conditions for 12 hours to allow cell attachment. 400μl of media 

was added to the well. 

4. New method 3. Dry scaffolds were transferred to a 24 well-plate. ~60,000 HFbs in 50μl of media 

were carefully pipetted onto the scaffold, forming a droplet on top. The scaffold was incubated 

under normal culture conditions for 12 hours to allow cell attachment. 400μl of media was 

added to the well. 

Scaffolds were removed and put in a new well containing fresh media. Triplicates were used for each 

HFb addition method. Incubation was under normal HFb cell culture conditions (3.4.1.1.1) and scaffolds 

were harvested at 14 days. The old wells were then observed using a light microscope to visualise the 

amount of cells that did not adhere to the scaffolds. 

Scaffolds were gently washed with PBS and transferred to Eppendorf tubes. 200 μl of 1-bromo-3-

chloropropane was added first followed by 1ml of Tri-reagent (Sigma). The 1-bromo-3-chloropropane 

dissolved the scaffold fully allowing all the RNA to be reliably recovered (See Appendix A.3). Tubes were 

then centrifuges for 10s. RNA extraction then proceeded as described in 3.4.1.1.2.  

3.4.1.3 Bacterial Growth in DMEM and Toxic Media  

S. aureus cultures were grown up overnight in TSB. The cells were pelletted, washed and resuspended in 

DMEM with 10% FCS to a turbidity of OD600 = 0.1. These cultures were incubated for 24 hours at 37°C 
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with 200rpm shaking. The colour of the cultures was observed and the turbidity was measured. The 

cultures were streaked onto TSA plates, which were incubated overnight at 37°C. The colonies that 

formed were characterised. 

The cultures were filter sterilised and the resulting S. aureus-filtered media was collected. The S. aureus-

filtered media was mixed with fresh DMEM + 10% FCS in a ratio of 1:1 and 500ul was added to confluent 

fibroblasts in 24 well plates. These were then cultured for 24 hours as described above (3.4.1.1.1). The 

phenotype of the fibroblasts was examined using a light microscope. 

3.4.1.4 Cell and Bacterial Growth on bi-Phasic Scaffold 

HFb and S. aureus were grown up as described in 3.4.1.1.1. 100,000 HFb were added to PVA-PCL-γ 

scaffolds by the Normal Method (3.4.1.2). 100,000 S. aureus were added to separate PVA-PCL-γ 

scaffolds by the Normal Method except the cells were delivered in a 10μl droplet of PBS pipetted to the 

bottom edge of the well. Cells were cultured up at 37°C with 5% CO2 on a shaking table at 55rpm (Model 

HJ III, Pacific Rim Bio Tech Inc.) for up to 5 days, refreshing media daily. Different cell-scaffold samples 

were in duplicate. 

Scaffolds were removed and washed in sterile PBS to flush out non-adherent cells. To remove HFb, 

scaffolds were submerged in 500ul of trypsin and incubated for 5 minutes at 37°C. This was followed by 

addition of 500ul FCS, vortexing, removal of the scaffold to a separate tube and centrifugation at 

2000rpm for 5 minutes. The pellet was resuspended in TriReagent. The scaffold with then sonicated for 

5 minutes in PBS to remove any biofilms. This is followed by vortexing, disposal of the scaffold and 

centrifugation at 2000rpm for 5 minutes. The two tubes are combined in 500ul of TriReagent and stored 

at -80C until ready to extract RNA. NOTE: The bi-Phasic scaffold could not be fully dissolved in 1-bromo-

3-chloropropane as described in 3.4.1.2, as the PVA hydrophilic phase was extracted along with aqueous 

nucleic acid phase hence contaminating the RNA (See Appendix A.3.2). 

Tubes were thawed and RNA was extracted as if all tubes contained S. aureus cells (3.4.1.1.2). This was 

to prepare for the co-culture and process both cell types the same way. 8μl of RNA was not standardised 

to 1000ng but otherwise converted to cDNA as above in 3.4.1.1.3. 

Samples were quantified by qPCR as described in 3.4.1.1.8. 18s and 16s primer sets were tested on HFb 

and S. aureus samples respectively. Internal controls containing a standard curve of the purified 18s and 
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16s gene of interest of known gene copy concentration (dilutions: 10-1, 10-4, 10-7) were run in each qPCR. 

This was used to calculate the gene concentration of each sample. All reactions were run in duplicates. 

3.4.1.5 Final Co-culture 

Scaffold samples were soaked in PBS for 15 minutes to bring down erythromycin concentration to less 

than 500ug/ml. Scaffolds were placed on sterile filter paper to remove excess PBS, and then placed in 

tissue culture wells (24 well-plate, Dolphin).  

Table 17. Sample names and description of scaffolds used in final co-culture experiment. 

Sample Name Scaffold Description 

PCL Normal PCL scaffold, UV sterilised 

PCL-PVA PVA coated PCL scaffold, UV sterilised 

PCL-PVA-Gamma PVA coated PCL scaffold, Gamma sterilised 

PCL-PVA-BG-Gamma PVA coated, 45S5 bioglass coated PCL scaffold, 

Gamma sterilised 

PCL-PVA-Ery-Gamma Erythromycin loaded PVA coated PCL scaffold, 

Gamma sterilised 

PCL-PVA-Ery-BG-Gamma Erythromycin loaded PVA coated, 45S5 bioglass 

coated PCL scaffold, Gamma sterilised 

 

S. aureus and HFbs grown and prepared as previously mentioned in Methods 3.4.1.1.1. 100,000 S. 

aureus was pipetted into each well in a volume of 10ul PBS. 100,000 HFb were added to each well in 

500ul of culture media. A set of scaffolds were not inoculated with S. aureus and served as the HFb-only 

control set.  

Scaffolds were cultured, the cells harvested after 1 and 5 days; the RNA extracted and converted to 

cDNA all exactly as described in 3.4.1.4. All cell-scaffold combinations were grown in quadruplicate. 1 

sample would be harvested and prepared for SEM imaging. The remaining triplicate was used for qPCR. 
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Figure 34. RNA extraction process for co-cultured scaffolds. 

The sample reserved for SEM was treated differently. The adhered wells were not removed. Instead the 

Scaffolds were washed in PBS and then stored in 2.5% Glutaraldehyde in PBS. SEM sample preparation 

and SEM imaging was carried out as outlined elsewhere (Method 3.2.1.1). 

qPCR was carried out in the same way as above with 18s and 16s primer sets were tested on each 

sample, including the HFb-only control set. Internal controls containing a standard curve of the purified 

gene of interest of known gene copy concentration (dilutions: 10-1, 10-4, 10-7) were run in each PCR. This 

was used to calculate the gene concentration of each sample. All reactions were run in duplicates. 

3.4.2 Mechanical Properties of Synthetic Skin Graft 

Scaffolds were manufactured as discussed in Method 3.1.2.2.1. Scaffolds were soaked in distilled water 

for at least one hour so gel phases would become fully hydrated. Excess water was removed using 

absorbent paper. Samples were weighed and there dimensions measured with a ruler (accurate to 0.5 

mm). Scaffolds were tested by DMA (DMA Dynamic Mechanical Analyzer, TA Instruments) in 

compression: The compression plate was lowered onto the sample until a force registered in order to 

locate the height of the sample. Compression proceeded at 5N/minute until a maximal force of 15N. The 
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resultant stress-strain curve produced by the computer program was analysed to quantify the 

mechanical properties for the scaffold. 

Samples tested were: PCL, PCL-PVA, PCL-PVA-Gamma, PCL-PVA-BG, PCL-PVA-BG-Gamma, PCL-PVA-Ery-

BG-Gamma and PCL-PVA-Dry.  PCL-PVA-Dry is a non-hydrated PCL-PVA sample used to showcase the 

difference in the mechanical properties of hydrogel scaffold in the dry and hydrated states. 

3.4.3 Long-term degradation of Ethylene 

Batches of NBB4-scaffolds were prepared using the gel entrapment method described in Method 3.2.3. 

Batches were then prepared for ethylene degradation measurements according to Method 3.3.3 with 

the following changes: 200-300ppmv of ethylene was injected into the bottles. Bottles were monitored 

daily with a Gas Chromatographer using an injection volume of 250ul, until the ethylene was depleted. 

The ethylene was replenished each week and monitoring continued for 3 months. Triplicate NBB4-

scaffold batches were used. An empty bottle that was initially injected with 200ppmv served as the 

control. 

3.4.4 Storage Life of Biofilter 

3.4.4.1 Starvation Conditions and Activity 

Six batches of 5 NBB4-scaffolds were prepared (with 0.4%w/v agar, Method 3.2.3)and stored in a 

Parafilm-sealed Schott Bottle for different starvation periods of 0, 2, 5, 12, 20, and 30 days. Three more 

batches of scaffolds were made to investigate the effect of starvation combined with desiccation. These 

were stored in sterile petri dishes.  

On completion of the starvation period, four NBB4-scaffolds from each batch were transferred into a 

120ml serum bottle with aluminium crimp-sealed PTFE-faced butyl rubber stoppers. 100ppm of 

ethylene gas (99% commercial purity), obtained from BOC Gases Australia, was filtered first and injected 

into the headspace of the sterile sealed serum bottle. GC sampling was conducted 3 hours after the 

injection to allow gas to equilibrate and then on a daily basis. 

3.4.4.2 Viable Cell Recovery  

From each batch in Method 3.4.4.1, the one left-over, pre-weighed scaffold was immersed in 5ml of 

MSM (0.02% Tween 80), followed by sonication and vortex mixing which were performed for 5 minutes 

and 1 minute respectively. A ten-fold dilution series with MSM buffer was performed, and 100ul plated 
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on TSG plates. All cultures were grown aerobically at 30oC for two weeks, and viable cell counts within 

the range of 30-300 were recorded.  

3.4.5 Fruit Preservation 

Banana fruits were brought at more green than yellow stage (Indicated from the banana colour chart 

from Soltani, et al., 2011), they were detached from three bunches, mixed and distributed evenly into 

four sealed desiccators with no desiccants presence. Each desiccator contained ten NBB4-scaffolds 

randomly dispersed throughout. Fruits were stored at 25oC, and the deterioration condition was 

monitored by observing the skin colour change weekly. 

3.5 Statistical Analyses 

Microsoft Excel was used to perform T-tests to demonstrate statistical difference within the results. Log- 

transforms to Ct were used to account for logarithmic variability where appropriate. A p-value < 0.05 

was considered significant.  
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4 Results & Discussion 

4.1 Composite and Material Fabrication 

4.1.1 Agar Composite Scaffolds 

The porosity of agar-scaffolds was determined by weighing before and after coating. The porosity of the 

base PCL scaffold has been vigorously tested previously [181] and is 95% with little variation. This was 

validated by weighing scaffolds and calculating volumes (data not included). The volume of the pores, V0 

(ml) for each scaffold before coating was calculated: 

 

 푉 =  
푝  ×  푚

휌  × (1− 푝 ) (4)  

 

Where p0 is the constant porosity of 95%, m0 is the dry weight of the scaffold and ρscaf is the density of 

the scaffold biopolymer, PCL (g/ml). The volume of agar was calculated using the following equation: 

 

 푉 =  
푚 −  푚
휌

 (5)  

 

where m1-m0 is the mass change (g) after coating and drying. The density of agar, ρagar (g/ml), was 

assumed as being the density of the solvent [239], in this case water. Finally, the new porosity of the 

coated scaffold, p1, was calculated, by subtracting the pore saturation from the initial porosity: 

 

 푝 =  푝  × (1−
푉
푉

 ) (6)  
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Agar concentrations of 0.1, 0.2, 0.4 and 0.6% were used because they could be maintained as liquid and 

homogenous at temperatures that would not affect NBB4 cell viability. The emulsion coating technique 

could be used to make biofilters with consistent porosity. Further, varying the agar concentration of the 

emulsion produced varying porosities in a predictable way. The increased agar concentration lead to a 

more viscous emulsion which set faster and faced more resistance when being removed from the 

scaffold pores. This resulted in biofilters of lower porosity. The agar concentrations selected were able 

to produce a range of porosities: 88, 81, 70 and 67% respectively (Figure 35). Only a small difference in 

porosity was seen between 0.4% and 0.6% agar biofilters. This is likely due to the more viscous agar 

having poorer penetration of the scaffold as well as removal during the emulsion coating.  

 

Figure 35. Porosity of scaffolds after treatment with differing agar concentrations. Increased agar 
concentration resulted in a decreased porosity (Error bars = SD). 

It should be noted that even the least porous biofilter manufactured here, is substantially more porous 

than previous natural support materials such as natural zeolite (Porosity = 43.83%) [203] and peat soil 

[196]. Furthermore we have demonstrated that the porosity can be controlled unlike the 

aforementioned systems.  

Light microscopy was used to characterise the agar coated scaffolds after 24 hours of drying in air at 

ambient temperature (Figure 36). The 3D geometry of the scaffold makes it difficult to focus clearly. 

Nevertheless, translucent areas distinct from the darker opaque areas of the scaffold were identified as 

agar hydrogel. These areas had the geometry one would expect for a hydrogel: Cohesive and adhesive 

forces creating meniscus-like shapes inside pores. The full coating of struts was also observed. 
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Figure 36. Light microscope images of gel-coated scaffolds. a) 0.1% agar; b) 0.2% agar; c) 0.4% agar; d) 
0.6% agar. Arrows indicate areas coated with agar. 

A concern with the gel entrapment method was that pores would become occluded by the hydrogel 

resulting in poor diffusion. This was not seen in the above images. In fact, while imaging was being 

conducted some areas of hydrogel were seen to collapse coating the inner surface of pores. This was 

likely due to the accelerated drying imposed by the heat generated from the light microscope. Still, this 

phenomenon may also occur during natural air drying which would lead to the thin surface coating 

required. 

SEM imaging of MSM agar coated scaffolds provided a clearer view of the scaffold surface (Figure 37). 

These images confirmed the formation of a very thin agar coating covering some of the struts of the 

scaffold. The agar coating can be easily distinguished due to their web-like appearance. This dehydrated 

polymeric coating is approximately 1-4 µm in thickness, which is desirable for entrapping bacteria while 

allowing for gas exchange and not inhibiting the diffusional capacity of the scaffold. In practice the agar 
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gel would be maintained as hydrated and thus would swell [21]. However, the coating is thin enough for 

this swelling to have little effect on mass transfer resistance. 

 

Figure 37. Agar Coating. SEM images of MSM-agar coated scaffold. Magnified view of rough textured 
area: Likely semi-crystalline dendritic formations of dried agar are observed; only a few micron 

thickness. 

 

4.1.2 Antibiotic Loading 

4.1.2.1 Soak-in Method 

Chloroform was known to fully digest chloramphenicol as well as the PCL scaffold as demonstrated by 

Chow et al [240]. While the chloramphenicol stocks were best prepared in ethanol the standard curve 

(Figure 38) relating chloramphenicol concentration to absorbance was performed in chloroform to 
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conform to the test solvent. The linear relation had a good correlation and agreed with previous 

standard curves obtained using ethanol as the solvent. 

 

Figure 38. Chloramphenicol Standard Curve: Linear trend of chloramphenicol concentration in 
chloroform and absorbance at 280nm. Equation and correlation co-efficient are shown on chart. 

The soak-in procedure produced discs that appeared to have formed crystals on their surfaces. This was 

the chloramphenicol precipitating out of solution and forming on the more hydrophobic PCL discs. The 

hydrophobic interactions that govern adhesion may be the mechanism for antibiotic loading in the soak-

in method, that is: hydrophobic surfaces attract hydrophobic particles [123]. The crystals of 

chloramphenicol were very brittle and care was taken when handling the chloramphenicol-soaked discs. 

When these discs were stored in tubes, one could see numerous crystals and white particles fall to the 

bottom reflecting chloramphenicol detaching from the disc surface. 

The discs fully dissolved in chloroform overnight along with all chloramphenicol attached to the disc. In 

this way the drug loading could be very accurately determined due to the lack of losses inherent in this 

method. The absorbance was measured at 280nm. The blanking solution was a mixture of chloroform 

and PCL made by dissolving a disc. This was used as the blank because dissolved PCL is known to absorb 

light in the UV range [240]. To account for this the weight of each disc selected for this experiment were 

controlled to be very close in weight. 

The mass of chloramphenicol loaded onto each disc (MassCAP) and the percentage of chloramphenicol 

loaded by weight (CAP %w/w) were calculated using the following equations: 
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 푀푎푠푠 (푚푔) =  
100 × 퐴

퐾
 (7)  

 

 퐶퐴푃 %푤/푤 =  
푀푎푠푠

푀푎푠푠 + 푀푎푠푠
 (8)  

Where A is the absorbance at 280nm and K is the linear constant obtained by the standard curve 

(0.0271). MassDISC was the weight measured of each disc before chloramphenicol soak-in. 

Table 18. Chloramphenicol Loading of PCL Discs. Results are given as mean ± std; n = 3. 

Sample Mass of chloramphenicol (μg) 
Mass chloramphenicol/Mass 

PCL Disc (%w/w) 

Control Disc 1.23 ± 2.13 0.002 ± 0.004 

Chloramphenicol Disc 323.49 ± 39.11 0.580 ± 0.063 

 

The results of the chloramphenicol soak-in method can be seen in Table 18 above. The control discs 

were not soaked in chloramphenicol and were included to check for errors occurring from absorbance of 

varying amounts of PCL. The low antibiotic loading found for the controls verifies that the method was 

closely controlled and that the absorbance readings related to chloramphenicol and not PCL. The 

chloramphenicol-soaked disks carried 323.49 ± 39.11 µg of chloramphenicol antibiotic which correlated 

to 0.580 ± 0.063 %w/w. Given the scaffold has a much higher surface than the disc we would expect 

these values to increase dramatically if scaffolds were used for the same experiment. Our group has 

previously shown a 10.16 %w/w loading into scaffolds using the same soak-in method [240]. This is 

comparable with other drug delivery devices [241] and may allow sustained release. 

The advantage of performing this experiment using discs instead of scaffolds is that the results are 

easier to analyse when the complex architecture and porosity of the scaffold are eliminated. The disc 

showed the formation of the superficial chloramphenicol crystals which were previously hidden inside 

the scaffold pores. The brittleness and superficial nature of these precipitates suggests weak binding of 

chloramphenicol to the PCL surface which precludes slow release. Indeed we showed that scaffolds 

released all their chloramphenicol after approximately 2 hours [240]. The brittleness of the adhered 
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chloramphenicol means losses to antibiotic loading would likely be sustained due to further processing 

steps. 

The results are somewhat deceptive: A method is presented that can load a comparable amount of 

antibiotic onto a PCL structure. However, visual analysis of discs revealed a brittle and superficial 

attachment that it probably not suitable for sustained drug delivery.  

4.1.2.2 Hydrogel Method 

4.1.2.2.1 Characterisation of PVA-PCL scaffold morphology 

PVA solutions of higher concentration had visibly more viscosity (seen by the wake of the magnetic 

stirrer). By plunging the Plunger device up and down, the PVA solution is forced through the scaffolds 

and air bubbles were seen coming to the surface. Placing the soaked scaffolds on absorbent paper 

removes the excess, leaving only a thin coating on the scaffold surface. 

The gel volume, pore saturation and PVA-PCL scaffold porosity was calculated in the same way as in the 

agar gel entrapment experiments (Results & Discussion 4.1.1); using gravimetric analysis while assuming 

the porosity of the scaffold is constant and the density of the PVA solution was close to water. One 

difference was dramatically decreased drying time before the second weight measurement was 

collected. This was to attempt to model the porosity of the of the PVA-PCL scaffold in its swollen state 

(which is its working state). The numerical results can be seen in Table 19 and graphically in Figure 39 

and Figure 40.  

Table 19. Porosity of PVA-PCL scaffolds of varied PVA concentration. 

PVA concentration (%w/v) 

5 8 10 12 15 

Porosity of Scaffold (%) 84.51±7.50 81.64±8.16 81.63±7.21 76.98±5.21 71.85±4.61 

Pore saturation (%) 11.05±7.90 14.07±8.59 14.08±7.59 18.97±5.49 24.37±4.86 

Volume of PVA gel (μl) 21.20±16.13 31.17±18.44 33.67±21.02 40.79±14.96 52.98±17.56 

 

Increased PVA concentration resulted in decreased porosity (r = -0.959, P < 0.05), while volume of PVA 

coating increased (r = 0.989, P < 0.05). This was expected as the mechanism of coating depended on the 

higher concentration PVA solutions becoming more viscous and thus more resistant to being leached-
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out of the scaffold by the absorbent paper. The large error bars seen in Figure 40 are due to the very 

small volumes being measured which are prone to mass distortion due to incomplete drying. 

 

 

Figure 39. Scaffold porosities coated with PVA gels of varied concentration. Errors bars = std; n=12. 

 

Figure 40.Volume of PVA gel coated onto PCL scaffolds depending on PVA solution. Error bars = 
Standard deviation; n=12. 

The gravimetric results have been validated by SEM micrographs of the macro-scaffold architecture 

(Figure 41). The figure clearly shows that as PVA solution concentration is increased the scaffold appears 

denser and porosity decreases. The SEM micrographs also prove that this is due to the thickness of the 

PVA coating. The base PCL scaffold has very large macropores (>500um). The optimum pore size range 

for skin tissue engineering is thought to be around 100-200um for migration and adhesion of fibroblasts 
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[6, 10, 147]. In previous studies, there have been difficulties growing cells on the scaffold largely due to 

its very large pore size. The PVA coating can be seen to decrease the pore size closer to this optimum 

without fully occluding pores. 

The PVA gel-layer can be easily distinguished from the PCL scaffold: The PCL appears as a rougher 

surface while the PVA is smooth (Figure 42). Both PCL and PVA surfaces are visible in all scaffold 

iterations. This is the desired morphology as hydrogel scaffolds alone have been shown to have poor 

tissue adherence [27] which the hydrophobic PCL will dramatically improve. There were signs of brittle 

fracture and delamination of the PVA coating from the PCL scaffold. This is due to the glass-like 

properties of PVA hydrogels when dehydrated. The surface interactions of the polymers PVA being 

hydrophilic and PCL, hydrophobic) may also have worked to cause the delamination. This may be 

prevented by copolymerisation to instil more elastic mechanical properties in the gel coating. Lian et al, 

found that the addition of PEO to PVA hydrogel films dramatically increased the elongation at break[32].  

It is also probable that crosslinking before dehydration may provide more order to the system and 

prevent cracking. 
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Figure 41. SEM images of PVA-PCL scaffolds of various concentrations: a) 0% PVA – control; b) 8% w/v 
PVA; c) 10% w/v PVA; d) 12% w/v PVA and; e) 15% w/v PVA. SEM conditions: Magnification 20x; 

Accelerating Voltage 10kV. 
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Figure 42. SEM images of 10% w/v PVA-PCL scaffolds. a) 800x magnification; b) 600x magnification. 

 

The optimal porosity for tissue engineered skin is thought to be around 90% [10]. All of the PVA-PCL 

theoretical swollen porosities lie below this. High porosity is essential for tissue ingrowth and pore size 

has been shown to be a determinant of cell migration in vivo with absence of pores relating to earlier 

formation of a fibrous capsule [242]. The theoretical porosity calculated in this experiment assumes that 

the PVA coating will swell to 100% of its post manufacturing size after crosslinking, dehydration and re-

swelling. This assumption will be validated and the actually swollen porosity determined later in this 

study. 

Porosity is not the only important parameter in designing the proposed scaffold. Both the volume of gel 

and the level of crosslinking will determine the drug release profile of the device. It is accepted that the 

PVA solution concentration is directly related to cross-linking [26, 30, 35]. Therefore increasing PVA 

concentration is likely to slow down drug delivery, which is the desired outcome for treating chronic 

wounds. Volume of gel will determine the amount of antibiotic entrapped into each scaffold. Obviously 

a higher antibiotic load is preferential for long-term slow releasing DDS.  

To address these related and conflicting design parameters a PVA concentration was chosen in the 

middle of the range; 10% w/v. This will be used for following characterisation of the PVA-PCL device. It is 

interesting to note that this concentration is used in many other studies for PVA DDS [29, 35, 38]. It is 

important to note that we have proved that these key parameters: porosity and volume of gel can be 

controlled simply by altering the PVA concentration. 
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4.1.2.2.2 Spectrophotometry - Standard Curve 

The absorbance at 543nm for solutions containing various concentrations of erythromycin was tested to 

assemble a standard curve which could be used in future experiments to determine and quantify 

erythromycin. This experiment also served to validate the method that would be used in drug elution 

experiments using erythromycin. 

As expected the absorbance increased as the concentration of erythromycin increased in a linear 

fashion. The equation derived from the linear relationship is: 

 A = 0.0394c + 0.0287 (9)  

Where A is the absorbance at 543nm and c is the concentration of erythromycin (μg/ml).  

 

Figure 43. Erythromycin standard curve. Mean absorbance of solutions containing various 
concentrations of erythromycin was plotted. Equation and regression coefficient are shown on figure; 

Error bars = Std; n=3. 

The stability of the eosin Y buffered solution and the eosin Y-erythromycin complex was tested by 

measuring the change in absorbance (∆Abs) over the course of one hour. Solutions were kept in the 

same cuvettes and at laboratory conditions. Pure water was tested to determine the absorbance drift 

due to the spectrophotometer itself. This was found to be a decrease of 0.01 absorbance units. The 

Buffered eosin Y solution containing no erythromycin decreased 0.066 units, almost a 700% decrease 

compared to the pure water sample. This suggests instability of the dye solution itself. The 20ug/ml 

erythromycin sample decreased 0.083 units after 1 hour. This decrease is 25% greater than the solution 
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containing no erythromycin and may suggest instability of the complex, but it is minor compared to the 

instability of the die solution alone. There is also a possibility that absorbance drift due to the 

spectrophotometer may be accentuated at higher absorbencies and that that instability is not causing 

the decrease.  

Either way if the buffered eosin Y was used as the blank the absorbance of the erythromycin at time 0 

and 1 hour would have been: 0.893 and 0.876 respectively. This minor decrease of 1.9% is only a 

fraction of the standard deviation found when performing the standard curve (8.7% for 20ug/ml 

erythromycin). Further, when performing experiments, solutions will sit for less than one hour before 

spectrophotometry is performed, limiting the decreased absorbance. 

The minor absorbance decrease found here validates the use of this very rapid method for assaying 

erythromycin and other macrolides using eosin Y. 

Table 20. Validation of eosin Y-erythromycin complex stability over time. 

Sample Abs t=0 Abs t=1 hour ∆Abs 

Water 0* -0.01 -0.01 

Buffered 

Eosin Y; 

Water 

0.687 0.621 -0.066 

Buffered 

Eosin Y; 

20ug/ml 

Erythromycin 

1.58 1.497 -0.083 

*Used to blank spectrophotometer at time=0 

Unfortunately preliminary testing using Erythromycin infused PVA-PCL scaffolds produced 

unquantifiable results. There was a marked difference in the concentration of erythromycin calculated 

when different sample volumes were tested using the eosin Y assay. Further testing showed that PVA 

had some effect on the eosin Y assay. Table 21 shows that when water was used as the blank PVA had a 

produced an absorbance between 0.5 and 0.7 absorbance unit. Uncrosslinked PVA became soluble in 

water and produced a significant absorbance. When the eosin Y reactants were used as the blank, PVA 
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again produced a significant absorbance. However when erythromycin was added, the absorbencies of 

erythromycin-eosin Y complex and the PVA do not follow the principle of superposition. This suggests 

that the PVA may interfere with the erythromycin-eosin Y complex. Whatever the mechanism of this 

interference the variability in the amount of soluble PVA eluting from different scaffolds makes the 

spectrophotometric method of macrolide detection unviable in this instance. 

Table 21. Detection of spectrophotmetric assay contamination 

Sample 

Concentration of 

Erythromycin 

(µg/ml) 

Contaminated water 

sample volume (µl) 

Absorbance (λ = 543 

nm) 

EosinY Blank* 0 0 0 

EosinY PVAscaf 100* 0 100 0.434 

EosinY PVAscaf 600* 0 600 0.53 

EosinY Ery*  20 0 0.749 

EosinY Ery PVAscaf* 20 600 0.813 

Water Blank† 0 0 0 

Well Water† 0 700 0.098 

PVAscaf Water 200† 0 200 0.504 

PVAscaf Water 400† 0 400 0.589 

Scaf Water† 0 700 0.07 

PVA Water† 0 700 0.685 

* 1ml samples contain 70ul eosinY, 150ul Acetate buffer and water 
†1ml samples contain water 
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4.1.2.2.3 Microbial Assay – Standard Curve 

A microbial disc diffusion assay, similar to that described in the British Pharamacopoeia [243] was used 

to determine concentrations of erythromycin. Staphylococcus aureus was used as the test organism so a 

calibration curve was set-up relating the zone of inhibition (ZoI) of the microbe growing on TSA plates to 

the concentration of antibiotics in a soaked filter paper disc. 

A clear measurable ZoI could be seen after 18 hours culture time in the presence of erythromycin 

soaked discs (Figure 44). The ZoI diameter increased as the concentration of antibiotic in the discs 

increased. Below 10ug/ml no ZoI could be seen. The ZoIs appeared very consistent. A disc soaked in 

water containing soluble PVA was tested to determine whether PVA was antibacterial to S. aureus and 

would interfere with the assay. Fortunately the PVA control did not cause any ZoI to appear. 

 The relationship followed a logarithmic trend seen in Figure 45 below.  The equation of this trend can 

be re-arranged to calculate an unknown concentration of erythromycin c (ug/ml) from a ZoI, Z (mm): 

 푐 =  푒
.

.  (10)  

The observation of consistent ZoIs is reinforced by the small error bars in figure. This suggests that the 

assay is reliable. Because interfering molecules such as PVA do not produce a false positive result the 

method is valid for specific detection of erythromycin eluting from PVA-PCL scaffolds. 
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Figure 44. Disc diffusion assay. Clear ZoIs (indicated examples shown by white arrows) can be seen 
around discs containing >10ug/ml erythromycin. PVA control did not produce a ZoI.  

10 mm 
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Figure 45. Standard curve relating zone of inhibition (ZoI) of S. aureus to concentration of 
erythromycin. Error bars = Std; n = 3. 

4.1.2.2.4 PVA Hydrogels in Ethanol-Water mixtures 

The PVA dissolved readily in water with application of heat and remained dissolved in solution when the 

temperature was lowered to 40°C, despite the high initial PVA concentration (20% w/v). On addition of 

the ethanol, the PVA came out of solutions, forming stringy white threads of solid polymer. However 

these dissolved back into solution after 1 hour. This shows that PVA is insoluble in absolute ethanol. The 

formation of the strings formed in areas of higher ethanol (EtOH) concentration as it was added to the 

water. When the EtOH concentrations equilibrated the PVA slowly re-dissolved. A portion of the 

resulting PVA-ethanol-water solution was poured into Petri dishes to form cast PVA hydrogels. Scaffolds 

were also plunged in solution to coat scaffolds in PVA as previously described. 

An attempt to make a 35:65 solution resulted in a lump of undissolved PVA, showing that the PVA 

concentration of 10% PVA exceeded the solubility limit for this ethanol-water mix (Figure 46). This 

observation speaks to the patent by Hyon et al [165]. The patent presented hydrogels formed in a 

number of organic solvents with water. The highest ethanol concentration that formed a hydrogel as 

presented by Hyon was 50:50 whereas in hydrogels were made in pure DMSO. This suggests that Hyon 

may have been unable to form hydrogels using more than 50% ethanol and corresponds with our 

observation. 



132 
 

 

Figure 46. Failed attempt to dissolve a 65% v/v EtOH solution containing 10% w/v PVA. 

When the hydrogels were vacuum packaged they were viscous gel liquids. After the freeze-thaw cycle 

they were hydrated solids. These were then dehydrated and stored before use. On dehydration, PVA 

gels lost significant volume. The 50% ethanol gels became contorted while hydrogels containing lesser 

ethanol amounts remained flat. No significant change could be seen in PVA-PCL scaffolds due to the 

small volumes of PVA used. 
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Figure 47 Hydrogel properties of PVA cast hydrogels and PVA-PCL scaffolds made using varying 
amounts of ethanol (EtOH) in the polymer solution. a) Swelling ratio (%) and; b) Gel fraction (%). Error 

bars = Standard deviation; n = 10 for PVA casts; n = 12 for scaffolds. 

 

To calculate swelling, gel fraction, porosity and gel volume of cast PVA hydrogels and scaffolds, samples 

were weighed before coating, after coating once dried, after 72 hours soaking time with only excess 

water removed and after re-dehydration. Then Equations 1 and 2 were applied (see Background 2.1.3.6) 

In the case of cast gels, swelling ratio was shown to increase when increasing amounts of ethanol were 

used in the polymer mixture. The swelling ratios of PVA casts manufactured with 15, 25 and 50% v/v 

ethanol were 186.6, 235.35 and 344.89% respectively. The swelling ratio for the PVA phase coated onto 
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scaffolds also showed a trend of increasing with ethanol concentration but this did not appear 

significant. Further the swelling ratios found for scaffold samples were substantially higher than those 

found for cast gels. Scaffolds coated in PVA solutions containing 15, 25 and 50% v/v ethanol were 

404.58, 469.44 and 475.93% respectively. 

When gel fraction was calculated, cast PVA hydrogels showed little to no change with increasing ethanol 

content. The exact gel fractions for 15, 25 and 50% v/v ethanol were 87.22, 80.54 and 87.01% 

respectively. For scaffolds the PVA gel fraction was seen to increase with increasing ethanol content. Gel 

fractions for 15, 25 and 50% v/v ethanol were 28.70, 29.77 and 54.53% respectively. These values are 

also notably much smaller than that of the cast PVA gels. 

As expected the results for hydrogel characteristics on scaffold samples were difficult to determine. 

Compared to PVA cast hydrogels, results were approximately 50% lower for swelling ratio and almost 

300% greater for gel fraction. This is due to the very small sample weight with only 20-50ul of polymer 

solution coating each scaffold which exacerbates any weighing errors due to losses or gains. Losses 

occurred from material sticking to glass sample holders during dehydration which would then become 

detached from the scaffold during removal for weighing. This created results for gel fraction that were 

much lower than expected. Conversely, weight gains occurred due to poor water removal from the 

porous scaffold architecture creating swelling ratio results much higher than for PVA cast hydrogels. 

These types of errors would suggest less consistent results, which can be seen by the large standard 

deviation for scaffold samples (Figure 47). Therefore, for the purpose of further design work the results 

from PVA casts were assumed as the hydrogel properties of scaffold-coated PVA. 

The results for swelling were not expected. Hyon et al showed that increasing EtOH content in the 

polymer solution decreased water content [165], which is directly proportional to swelling percentage. 

The results presented here show a clear increase in swelling ratio with EtOH content. The freezing 

period of cross-linking in Hyon’s work was substantially shorter than the majority of studies on freeze-

thaw PVA hydrogels. The method used in this thesis has a number of differences:  

1. The freezing time to induce crystallisation of PVA was notably longer at 18 hours as opposed to 

3 hours.  

2. Ethanol was not removed by soaking in water but instead air dried leading to a varied shrivelling 

effect due to the rapid evaporation of ethanol.  
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These manufacturing differences may explain the trend in swelling ratio. Particularly the rapid drying in 

hydrogels made with high EtOH content may create polymer chain entanglements. 

The gel fraction results were more predictable. Gel fraction is related to cross-linking such that the gel 

fraction is the proportion of PVA molecules that are cross-linked and remain insoluble after long-term 

soaking [21, 27, 30]. Considering there was no change in crosslinking method or the concentration of 

PVA in the polymer solution no appreciable change in gel fraction was expected.  

 

Figure 48. Porosity and hydrogel volume of scaffolds coated in PVA solution containing varied 
concentration of ethanol (EtOH). EtOH concentration given as % v/v. Error bars = std; n = 12. 

The volume of hydrogel is directly related to the porosity in an inversely proportional manner as can be 

seen in the charts above (Figure 48). There was a stark difference seen between the 15 and 25% samples 

and the 50% sample which had a hydrogel volume of more than double (45.4 µl) forcing down the 

porosity of the scaffold. Scaffold porosities for 15, 25 and 50% ethanol samples are 85.32, 86.73 and 

73.18% respectively. 

4.1.2.2.5 DSC Analysis of PVA Hydrogels in Ethanol Mixtures 

There was very little change in the thermo graphs obtained from un-crosslinked PVA samples to 

crosslinked PVA sample made with varying amounts of ethanol (Figure 49). The exothermic peak 

indicates the melting temperature. There is a very minor shift towards a lower temperature in the 

crosslinked samples. This can be attributed to crosslinking attenuating the hydrogen bonding capacity of 
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the polymer network [38]. What looks like a step-down feature just before the exothermic peak is 

probably a chain relaxation related to the melt and not a separate thermal property. 

Attempts were made to extract the Tg from the data. This is characterised as a ‘step-down’ feature on 

the thermo gram. Unfortunately a significant step-down was not observed. Modulating DSC was used to 

amplify the feature, but it was still not significant enough to calculate a Tg for the samples (Appendix 

B.1). Tg is a crucial characteristic in hydrogel design [21]. Despite this, many studies that perform DSC 

analysis do not mention the Tg [38]. This may be that the step-down feature is difficult to detect for PVA. 

Lian et al reported the Tg of Freeze-Thaw crosslinked PVA as 19.2°C [32]. This result is spurious as the Tg 

of pure PVA is commonly known as 85°C. Further if the Tg of pure, dried, crosslinked PVA was 19.2°C, 

this would mean that sample would have rubbery mechanical properties at room temperature. 

Mechanical testing in later samples will show that this is not the case.  

DSC analysis showed that there was no change in the thermal properties between crosslinked and non-

crosslinked PVA or between samples fabricated with varied levels of ethanol. 

 

Figure 49. DSC heat flow analysis of PVA hydrogels fabricated using varied ethanol (EtOH) 
concentration (%v/v). 
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4.1.3 Bioglass Manufacturing 

4.1.3.1 Precursor Preparation 

The precursor was weighed out precisely based on stoichiometry calculations performed with the help 

of Dr Michael la Robina. Mixing the raw materials together is necessary to ensure homogeneity when 

making pellets and later for melting. This is essential for controlling the composition.  

A homogenous powder suspension was difficult to achieve using conventional mixing techniques. This is 

due to the relative densities of the raw materials: The fumed silica is so light that the other precursor 

powders simply fall through it unable to form a suspension. The heavier grains would fall through the 

smaller, lighter silica particles to rest at the bottom of the mixing vessel. The result was inhomogeneous 

pellets.  

It is known that acetone can produce strong sol-gel networks with fumed silica [244]. Thus acetone was 

added to the mixture as a particle binder. The acetone served to agglomerate the fumed silica into sol 

gel globules that could entrap other larger precursor particles resulting in a homogenous mixer of the 

precursors. This also decreased the volume of the mixture and produced less airborne particles 

improving handling and safety respectively. 

After undergoing compression in the hardened steel die the resulting pellet was a hard white cylinder of 

compressed powder (dimensions: ~ 35mm x 37mm [h x d]). The diameter of the pellet is determined by 

the die dimensions. The diameter of 37mm was chosen to fit tightly in the platinum crucible allowing the 

highest possible yields per melt cycle. There was an odour of acetone coming off the pellet.  

Calcination is a term used in the glass industry for an early stage of the melt phase used to eliminate any 

unwanted reactant volatiles and impurities from the precursor prior to fusing. To ensure bioglass purity, 

the precursor was calcined. Pellets were placed in their calcination vessels and underwent the different 

heating cycles. Afterwards pellets were observed and changes in height and weight were measured. The 

results are summarised in Table 22.  
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Figure 50. Calicination of bioglass precursor pellets. a) Uncalcined pellets loaded in oven in Pt-crucible 
and on alumina tray (left to right). b) Pellets after calcination become porous and have different 

colour depending on vessel (Pt-crucible or alumina tray; left to right). 

In comparison to the un-calcined pellet, calcined pellets were more porous and lighter; patches of 

colour could be seen on areas of the calcined pellets; the odour of acetone was absent (Figure 50). A 

very minor shrinkage was also detected however this may not be significant as the porous structure 

made these height measurements un-reliable. Further the maximum decrease in height detected (3mm) 

would make little difference to production.  Pellet shrinkage or increase in pellet density would have 

been favourable as this would have increased bioglass melt yields. Despite the porous nature of the 

pellets they maintained their stability and could be picked up by hand with minimal crumbling. The blue 

colour change is likely due to the photoluminescence from the thermally oxidised silica [245] and is not 

a contaminant.  The different containers produced only slightly varying effects on calcined pellets. In 

general, the crucible produced whiter pellets that stuck slightly less to the container minimising losses. 

The consistent grey colour of pellets calcined on the alumina tray was attributed to airborne carbon 

particles in the furnace that contaminate the more exposed pellets. Carbon is the best possible 

contaminant in glass making as it is unreactive at fusion temperatures and doesn’t interfere with the 

chemical structure. Carbon particle are also bioinert. It was concluded that the grey colouring was 

caused by the contaminants of the oven and would not happen in a clean oven. During the 1050°C 

calcination the pellet that contacted the alumina tray showed a severe colour change at the interface 

with the container. This may be a sign of alumina contaminating the pellet which is known to occur 

during glass melting in alumina vessels. 

a) b) 
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Table 22. Resulting precursor pellets calcined at different temperatures and on different containers. 

Temp 
(°C) 

Furnace 
Container 

Weight (g) Height (mm) Notes 
initial final ∆ ∆% initial final ∆ Appearance Handling 

1000 Pt-Au 
Crucible 

41.496 29.791 11.705 28.208% 36.0 36.0 0.0 patchy blue 
and white, 
hardened, 
porous 

not too brittle 
to pick up, no 
sticking to 
crucible 

 Alumina 
Tray 

40.215 28.778 11.437 28.440% 32.0 31.5 0.5 patchy aqua 
and grey, 
hardened, 
porous 

not too brittle 
to pick up, 
minimal sticking 
to tray 

1050 Pt-Au 
Crucible 

39.408 28.157 11.251 28.550% 34.0 32.0 2.0 patchy blue 
and white, 
hardened, 
porous 

not too brittle 
to pick up, no 
sticking to 
crucible 

 Alumina 
Tray 

36.448 26.188 10.260 28.150% 30.0 27.0 3.0 patchy aqua 
and grey, 
some 
yellow 
hardened, 
porous, 
blue at 
interface 
with 
container 

not too brittle 
to pick up, 
minor sticking 
to tray 

1100 Pt-Au 
Crucible 

40.222 28.794 11.428 28.412% 32.0 31.0 1.0 patchy blue 
and white, 
hardened, 
porous 

not too brittle 
to pick up, 
minor sticking 
to crucible 

 Alumina 
Tray 

38.311 27.553 10.758 28.081% 31.0 30.0 1.0 patchy aqua 
and grey, 
hardened, 
porous 

not too brittle 
to pick up, 
minimal sticking 
to tray 

1150 Pt-Au 
Crucible 

42.457 29.869 12.588 29.648% 37.0 35.5 1.5 patchy blue 
and white, 
hardened, 
porous, 
some glassy 
formation 

not too brittle 
to pick up, 
some sticking to 
crucible 

 Alumina 
Tray 

42.283 29.442 12.841 30.369% 35.5 34.5 1.0 patchy aqua 
and grey, 
hardened, 
porous, 
some glassy 
formation 

not too brittle 
to pick up, 
some sticking to 
tray 
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Increasing the calcination maximum temperature caused little change to the calcined pellets for the 

temperature range examined. A fairly constant weight loss of around 28% suggests all volatile reactants 

were removed even at 1000°C. When precursor materials are heated the carbonates undergo 

decomposition at around 1000°C and are released from the pellet in the form of carbon dioxide. 

Stoichiometric calculations determine a mass loss of 22.89% from the raw materials. From the results, 

larger losses were measured: between 28-30%. This accounts for the acetone in the pellet that would 

quickly gas-off during the calcination heating. At 1150°C some opaque glassy formation could be seen on 

the pellet (Figure 51). Despite this negligible shrinkage was observed. Further, this glassy formation may 

account for the increased sticking to the containers at this temperature which is undesirable for easy 

handling. 

 

Figure 51. Pellet calcined at 1150°C. Glassy formation is indicated by arrows. 

For the calcination heating cycles tested the max temperature of 1000°C was selected for further 

bioglass manufacturing as all unwanted reactants were expelled while the least amount of energy was 

used. The alumina tray was chosen as the calcination container because colour changes that may 

indicate trace contaminants do not justify the expense of purchasing numerous platinum-gold crucibles 

for this application. For quality manufacturing a new furnace may need to be purchased to decrease 
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contaminants, however the protocols used here were deemed suitable for research-only bioglass 

production. 

4.1.3.2 Melting 

After the sample was soaked at 1350°C for the indicated time and fusion was allowed to take place the 

drop-down furnace was opened. The drop-down design minimised heat loss and heat-shock to the 

furnace. The red-hot crucible was carefully picked up with platinum-tipped steel pincers and the molten 

glass was poured as seen in Figure 52. The resulting glass was clear and colourless. Granules from each 

batch were mounted in epoxy and polished for SEM-EDS analysis. This allowed determination of the 

composition of each batch. 

Alumina crucibles often fractured during the melt (Table 23). Although these crucibles were made in-

house from very cheap ingredients, a lot of time and energy was spent just to have them break after two 

melts. Given that sintering the alumina slip-casts yields only around half that amount of useable 

crucibles, this is not a sustainable practice. Substantial bioglass losses were also experienced due to 

sticking to the alumina crucible. Five batches of bioglass were made using platinum crucibles. The 

chemical composition of these batches was very close to the true composition of 45S5 bioglass (see 

Table 24 and Table 25). However every batch produced with an alumina crucible had substantial 

alumina contamination of between 1.03 – 3.84%wt. Alumina in the bioglass composition has been 

shown to prevent bone bonding [42] and is thus very likely to effect bonding to soft tissue. This 

contamination also affects the validity of the relative composition of the other compounds in the 

bioglass. 
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Table 23. Crucibles used, bioglass appearance and production notes of different experimental batches 

Batch Crucible Used Glass Appearance Notes 

1 Alumina Clear glass Crucible cracked, significant losses in 

stuck glass 

2 Alumina Purple and blue glass with 

some white 

Significant losses in stuck glass 

3 Alumina Clear glass Significant losses in stuck glass 

4 Alumina Clear glass Crucible cracked, significant losses in 

stuck glass 

5 Alumina Clear Glass Significant losses in stuck glass 

7 Pt foil White opaque glass Incomplete melting, significant losses in 

stuck glass, Crucible cracked. 

8 Pt sputtered 

Alumina 

White opaque glass Incomplete melting, significant losses in 

stuck glass, Pt coat sloughed-off 

9 Pt/Au Clear glass Non-stick, no losses 

 



143 
 

 

Figure 52. Pouring molten glass from an alumina crucible. 

A crucible constructed of thin platinum foil (25μm thickness) was used to make a batch of glass. The 

results were poor with white opaque glass being produced containing un-melted precursor powder. The 

crucible itself was warped and damaged from the pouring and the majority of the glass stuck to the 

crucible. EDS showed that the bioglass contained no traces of alumina which was further evidence that 

the source of the alumina contamination was the alumina crucible and not contaminants in the raw 

materials. However, the amount of SiO and Na2O were both far off the true bioactive composition (Table 

24 and Table 25). This may be due to the shape of the crucible which required pellets to be crushed 

before loading. This in turn may have resulted in poor flux between reagents leading to the incomplete 

melting and wrong composition. 

An alumina crucible was sputter-coated in platinum to attempt to stabilise the crucible against cracking 

and prevent alumina contamination of the bioglass. During sputter coating a plasma was seen around 

the platinum target indicating charged argon particles were accelerated toward the target (Figure 53). 

Afterwards the alumina crucible had turned metallic grey on most surfaces. The sputter coating was not 
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particularly successful as only a superficial coating could be seen on the inside of the crucible. Sputter 

coating is a physical deposition technique and atoms released from the platinum target follow a direct 

path to coat the crucible. The high walls of the crucible caused incomplete coating on regions as 

released atoms were blocked and less likely to reach some surfaces, in particular the curved edges at the 

crucible’s base (Figure 54). A cylindrical target would be needed to properly coat the crucible [246] and 

this was not feasible. A batch of bioglass was melted in the Pt-sputtered alumina crucible. Incomplete 

melting was seen with white opaque glass produced and a substantial amounts was stuck to the crucible 

and could not be recovered. Inspecting the crucible revealed that the platinum coating had been 

sloughed off during melting, and the platinum may have contaminated the glass. EDS analysis showed 

that the platinum coating did not prevent alumina contamination of the bioglass produced (Table 25). 

 

Figure 53. Plasma ring around platinum target in magnetron sputter coater 

 

A Pt-Au crucible was used to make a batch of bioglass. The crucible performed very well producing clear 

homogenous glass that did not stick to the crucible – After cooling; shards of glass could easily be 

removed. Predictably no alumina contamination was detected in the resulting bioglass and the 

composition measured by EDS was very close to the 45S5 composition (Table 24 and Table 25). Platinum 
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crucibles are the industry standard for high temperature reactions. Platinum has high strength and low 

chemical reactivity even at very high temperatures. The addition of gold to the platinum crucible creates 

a non-wetting surface making it the perfect material of glass formation [247]. The notable down-side of 

using this crucible is its significant expense. However, the main cost is the rare metals used which do not 

depreciate and can be easily sold.  

 

 

Figure 54. Platinum sputter-coated alumina crucible. Left: An un-coated alumina crucible. Right: A 
platinum coated crucible – incomplete coating can be seen on the edges on the base. 
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Table 24. Composition of 45S5 Bioglass [248] 

Compound wt% 

Silica, SiO2 45 

Sodium Oxide, Na2O 24.5 

Calcium Oxide, CaO 24.5 

Phosphorous pentoxide, P2O5 6 

 

Table 25. Chemical composition of bioglass batches by EDS analysis. Weight percentages (%wt) given 
as mean±std. Batch 6 was not analysed. 

 Batch Composition %wt 

Species 1 2 3 4 5 7 8 9 

Na2O 20.61±0.14 23.19±0.13 19.88±0.2418.02±0.5619.56±0.4213.50±0.7724.02±0.2021.20±0.30 

Al2O3 1.03±0.20 2.86±0.09 3.69±0.32 3.84±0.07 2.29±0.79 0±0 4.66±0.12 0±0 

SiO2 49.80±0.62 45.29±0.53 49.78±0.2951.41±0.3851.18±0.6661.89±2.1343.09±0.2347.92±0.49 

P2O5 5.28±0.09 5.53±0.17 4.20±0.17 4.57±0.05 4.96±0.22 5.44±0.16 4.26±0.17 4.64±0.14 

CaO 23.07±0.64 23.13±0.39 22.44±0.1321.91±0.2422.02±0.3319.17±1.5323.97±0.3625.54±0.36 

 

Calcined bioglass precursor compounds undergo fusion at around 1300°C creating the covalent bonds 

between species and forming the amorphous glass chemical structure. EDS proved an effective method 

of determining the chemical composition of the glass and detecting any contaminants. Under 

estimations of volatile elements such as Na have been seen due to these species migrating away from 

the electron beam [249]. Later it was found that the Soda Ash raw material was prone to absorbing 

humidity compared with the other reactants thus leading to weighing errors and the consistent deficit in 

Na2O in the bioglass composition. 
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It was found that the use of alumina crucibles were unsuitable for Bioglass manufacturing due to the 

alumina contamination which renders the glass bio-inert. The platinum-gold crucible performed the best 

in terms of both manufacturing efficiency and glass composition. This crucible was used to produce 

Bioglass for all further experiments. The composition was not exactly that of 45S5, however according to 

Hench et al, “when the glass composition exceeds 52% by weight of SiO2 the glass will bond to bone but 

not to soft tissues” [248]. Therefore the Bioglass produced by this process should be bioactive for soft 

tissue cells such as fibroblasts. 

4.1.3.3 Post processing 

Bioglass frit was dried in a 60°C oven for 24 hours before milling. Milling was performed using an agate 

mortar and pestle, sieving regularly. Two sieves were used, a coarse sieve and a finer one, with pore 

sizes 300μm and 120μm respectively. A sample of milled and sieved bioglass was suspended in a droplet 

of distilled water on a glass slide to disperse the particles. Then the sample was observed under the 

microscope and analysed with a computer program to calculate the particle distribution of the milled 

glass. 

The results show that >40% of particles were < 10μm with approximately 75% of particles < 20μm in 

length (Figure 55). This shows that the mortar and pestle were able to reduce the bioglass particle size 

to < 20μm making it a reasonable method to produce bioglass particles for coating scaffolds. 

Interestingly the sieve pore sizes were far greater than the largest bioglass particles found – 120 μm 

pore size compared with 60μm particle length. This suggests considerable and rapid agglomeration of 

particles into larger ones that are unable to pass through the sieve. Agglomeration is common in dry-

sieving of ceramics. However, wet sieving may cause the bioglass to react and diminish its bioactivity. 
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Figure 55. Particle size distribution of Bioglass particles milled in an agate mortar and pestle.  

Bioglass frit and bioglass marbles were added to a PCL-lined ball milling container and milled for 150 

hours. A sample of the milled powder and granules was not sieved but directly analysed under the light 

microscope. The particle size distribution chart (Figure 56) shows a graph with two distinct regions: One 

region of very small particles (0 - 30μm) and another representing larger particles (60 - 200μm). In the 

ball mill larger granules of bioglass experience both normal and shear impacts causing the steady 

breakdown of the granules and creation of smaller bioglass wear particles.  

60 
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Figure 56. Particle size distribution of Bioglass particles milled in a Ball mill for 150 hours. 

Samples from the ball mill were removed at different times to determine whether ball milling for 

extended periods would produce more small particles. The results in Figure 57 show that over time the 

proportion of particles < 30μm in size increases from 18% after 50 hours of milling to 60% at 150 hours. 

This was an expected result as more time allows more collisions between particles and hence the 

breakdown of larger granules and the creation of smaller bioglass wear particles. 

Amongst the bioglass powder small stringy fibrous white particles were discovered. These particles are 

most likely from wearing of the PCL lining. The PCL is a polymer and a much softer material than 

bioglass. During mall milling collisions between these two materials causes abrasion of the PCL surfaces 

and creation of small PCL wear particles. These contaminate the bioglass powder and this decreases the 

utility of the ball milling method. However, for the purpose of coating PCL scaffolds the PCL traces in the 

bioglass are not contaminants thus the method is suitable for this application. The stringy PCL 

contamination could easily be discriminated from the jagged bioglass particles under the microscope.  

200 
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Figure 57. Ball milling products sampled over time. 

The milling methods tested both produced bioglass particles < 30μm that could be used for biomedical 

and tissue engineering applications. Mortar and pestle produced bioglass with no signs of 

contamination; however the process was very laborious. In contrast the ball milled bioglass contained 

small amounts of PCL contamination that would be acceptable for coating PCL scaffolds. Further, the 

ball mill could be left running indefinitely and required far less labour than the mortar and pestle. For 

further experiments it was decided that mortar and pestle would be used to generate bioglass that 

would be tested on its own; and ball milled bioglass would be used when in conjunction with PCL. 

There may be ways to remove or prevent the formation of PCL contamination: Organic solvents such as 

acetone could be used to dissolved and remove the PCL contaminants, while not reacting with the 

bioglass [250]. Alternatively a ball milling vessel completely made of bioglass could be fabricated which 

would wear to produce more bioglass, free of contamination. However bioglass is more brittle then 

regular glass and such a vessel would be prone to cracking. 

4.1.3.4 Bioglass Coating 

Differences in bioglass-coated scaffolds could not be seen with the naked eye, however containers for 

these samples would begin to build up small amounts of fine white powder which is the bioglass that 

detached from the scaffolds. 

SEM analysis showed the struts of the scaffold coated with jagged particles typically around 5μm in size 

(Figure 58). The coating was more or less homogenous over the scaffold surface. These particles are 
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adhered bioglass. It is important to note that the presence of the bioglass shows that it is strongly 

adhered and did not wash off in the liquid media. The particle size of the bioglass is smaller than 

indicated by particle size distribution studies conducted above (see Results and Discussion 4.1.3.3). The 

reasons for this are degradation of the bioglass over the 14 day period and the increased mobility of 

smaller particles leading to better penetration of the scaffold. 45S5 bioglass is a bioresorbable 

compound and breaks down in aqueous media [42, 248, 251]. Therefore the smaller particle sizes seen 

here may indicate that the bioglass produce by the manufacturing process we designed is indeed 

bioresorbable. 

 

 

Figure 58. SEM images of bioglass coating PCL scaffold. a) Control uncoated PCL scaffold with smooth 
surface (x875); b) Bioglass specs seen evenly dispersed over scaffold strut (x1280); c) Shard-like 

bioglass micro and nano specs (x3890) 

a) 

b) c) 
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The bioglass coating technique used here has been validated for initial coating efficacy by our group in 

previous studies [252]. Rezwan et al mentions the disadvantages of scaffold coating in composite 

formation are the coating adhesion may be too weak and organic solvents are often used [2]. This study 

tested the coating in vitro and showed strong adhesion of bioglass particles for an extended period in 

liquid media. Further, the coating mechanisms involved heating the PCL to entrap the bioglass particles 

in the PCL surface without ruining the scaffold’s interconnected architecture and without the use of 

solvents. The coating method is simple to perform and effective, ensuring the scaffold surface remains 

bioactive long enough for cellular adhesion to occur. 

4.1.4 Bulk Metallic Glass Sputtering 

Purple plasma was formed around the BMG target suggesting sputtering was occurring. To achieve a 

500nm thickness the process took around 15 minutes, this does not include the 40 minutes combined 

time to pump up and pump down the chamber. Due to the small area inside the chamber the sputter 

coating was a slow process to mass-produce BMG-coated scaffolds. 

 

Figure 59. Left: Un-coated scaffold slice. Right: BMG sputter coated scaffold slice. 
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BMG coated scaffolds appeared a metallic grey, although some small patches of white remained (Figure 

59). This is likely due to incomplete coating and results from the nature of this deposition method and 

the porous structure of the substrate. The BMG particles ejected travel in straight lines making the 

probability of particles penetrating the scaffold’s pores low [77, 246]. The phenomenon is similar to that 

discussed earlier with the platinum target and crucible cup-shaped target (Results and Discussion 

4.1.3.2). Essentially the sputtering set-up is not optimised for the substrate’s geometry. For the scaffold 

a 3D rotation mechanism to constantly rotate the scaffold may allow the multitude of differently 

oriented surfaces to be sputtered. A chemical method, such as electroless plating could be used to apply 

a homogenous BMG coating [103], but this method has thus far been unexplored for MgZnCa alloys. 

4.2 Biofilm Formation 

4.2.1 Biofilm Inhibition on Disc Composites 

The biofilm growth of common wound bacteria on discs was tested to determine whether the scaffold 

surface could inhibit biofilm formation – a favourable property for wound healing. After 24 hours of 

incubation the biofilm culture of all samples increased in turbidity and thick mucus-like biofilm formed 

on discs (Figure 60). This indicates growth of biofilm and no major antibacterial effects from the discs. 
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Figure 60. S. aureus biofilm cultured on PCL disc. Mucus like biofilm can be seen trailing off the disc. 

   

Biofilm discs were removed from cultures and washed in sterile PBS twice to remove any non-adhered 

bacterial cells. The washing and sonication processes were both validated for adequate removal of non 

adherent and biofilm bacteria respectively (Appendix A.1). 

Serial dilutions and drop plating were used to quantify the biofilm cell number. A 50ul drop of each 

dilution was used allowing small cells to be counted accurately in drops below 150 colonies. Anything 

below 15 colonies was rejected. The method was very similar to that performed by Al-Ahmad et al [142]. 
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Figure 61. Biofilm formation on biomaterial discs. Biofilm formation is measured as cells recovered 
per disc sample. The horizontal axis represents the different biomaterial surfaces exposed to the 
biofilm culture. Three bacterial strains were used: Pseudomonas aeruginosa, Escherichia coli and 

Staphylococcus aureus. Error bars indicate ± Standard Deviation; n = 3. 

P. aeruginosa formed the largest biofilms, followed by E. coli and S. aureus. P. aeruginosa is well known 

for forming thick biofilms causing complications in cystic fibrosis, so this result is consistent with 

expectations [138].  

The different biomaterial discs had no significant (p > 0.05) effect on the biofilm formed. There is a 

minor decrease in biofilm formation between the PCL and PVA coated discs, with more biofilm cells 

collected from PCL samples than others. This trend was consistent across all bacterial strains. However, 

the decrease in biofilm with respect to PCL was only significant in the case of S. aureus grown on PVA-

Gamma discs (p <0.05). The hydrophobic surface of the PCL versus the hydrophilic surface of the PVA 

may account for this trend, as surface hydrophobicity is generally related to increased bacterial 

adhesion – a key step in biofilm formation [120, 127]. The trend may instead be due to the experimental 

method. All biofilm samples were removed simultaneously by sonication, but serial dilution drop-plating 

was done in order (PCL, PVA, PVA-Gamma, PVA-Gamma-45S5) and took around 5 minutes per sample. 

This meant that there was considerable time between the biofilm removal and the plating. This may 

have allowed planktonic bacteria to re-adhere with the disc surface; driving down counts in the later-

tested PVA samples. Vortexing before each serial dilution was performed in attempt to mitigate the re-

adhesion effect on results, but it cannot be ruled out. 



156 
 

  

  

Figure 62. Un-cultured control samples of biofilm assay discs with different surface coatings: a) PCL; b) 
PCL-PVA/Gamma; c) PCL-BG; d) PCL-PVA-BG-Gamma. Magnification 200x, accelerating voltage = 10kV.  

Gamma irradiated PVA and 45S5 bioglass looked to also have minimal effect on biofilm formation. The 

biofilm cell count decreased slightly in the in the S. aureus and P. aeruginosa samples but increased in 

the case of E. coli. Again, none of these changes are particularly significant. Further, in the Bioglass 

samples which are also gamma irradiated the biofilm cell count is very similar to the non-Gamma-

irradiated PVA sample. Gamma irradiation was not expected to effect biofilm formation as PVA is 

relatively stable when gamma-irradiated while dehydrated [253]. The Bioglass was also expected to 

a) b) 

c) d) 
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have minimal effect as it is underneath the PVA coating, thus not increasing surface roughness or being 

directly involved in interfacial adhesion with bacteria.  

There is possibly a minor decrease in biofilm adhesion on PVA surfaces compared to PCL surfaces which 

may be attributed to the relative hydrophobicity of these surfaces. This may be an added benefit of 

designing tissue scaffolds with hydrophilic hydrogel surfaces. 

SEM was used to characterise the different scaffold surfaces and observe biofilm formation. To 

characterise the scaffold surface, normal sample preparation was performed to protect manufactured 

features on the scaffold from washing off during bio-specimen preparation. To observe biofilm 

formation bio-specimen preparation was required to fix biological features adhered to the surfaces 

during the biofilm assay. 

Figure 62 shows some of the different tests surfaces used in the biofilm assay. Figure 62a shows a PCL 

disc: The surface is relatively smooth with some sharp lines running across the surface which may be 

scratches or stretch lines from the disc-pressing manufacturing process. In Figure 62b the surface of a 

PVA coated scaffold can be seen. The surfaces of the PCL-PVA and PCL-PVA-Gamma discs appeared 

identical and thus only one image was used here. The surface is smoother than the PCL, however 

zooming in on some of the lighter patches showed the existence of very small pores which can be seen 

in some of the images below. Figure 62c and d show Bioglass coated discs that have been left as is and 

PVA-coated respectively. These images show how rough the surface becomes when the particles of 

Bioglass are added. The PCL-PVA-BG-Gamma sample has immobilised Bioglass penetrating through the 

dehydrated PVA coating. It is possible that cells may still be able to interact directly with the Bioglass 

surface, although the hydrogel will swell when hydrated and probably engulf the Bioglass particles. 

Importantly, this proves that the hydrogel coating process is not too vigorous such that all the Bioglass is 

removed from the surface. 

Pseudomonas aeruginosa showed the most biofilm growth (Figure 61) and this was verified by SEM. The 

white rods seen in Figure 63 are P. aeruginosa cells; they were abundant on all disc samples. Figure 63a 

shows P. aeruginosa forming thick biofilm on the PCL surface. These structures were seen more 

frequently on the PCL surface than the PVA surfaces. As mentioned above some sections of PVA had 

very fine pores (< 1µm) which bacteria cells tended to flock toward; the extra surface roughness may 

assist in adhesion (Figure 63b). However, P. aeruginosa cells still happily attached to smooth PVA 

surfaces (Figure 63c). In Figure 63d P. aeruginosa cells are seen forming colonies on top of a piece of 
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Bioglass coming through the PVA. This validates the quantitative results which showed no decrease in 

biofilm formation on bioglass coated discs. 

  

  

Figure 63. Biofilm assay: P. aeruginosa culture of discs with different surface coatings: a) PCL; b) PCL-
PVA/Gamma; c)PCL-BG; d) PCL-PVA-BG-Gamma. Magnification 2000x, accelerating voltage = 10kV. 

Staphylococcus aureus were much sparser than P. aeruginosa. The cocci were seen under SEM as 1um 

spheres making them easy to identify. S. aureus cells were seen on all surfaces including Bioglass-coated 

(Figure 64). In Figure 64b a colony of S. aureus can be seen forming a biofilm next to some dehydrated 

PVA. These biofilms were much thinner compared with biofilms seen in P. aeruginosa samples. 

a) 
b) 

c) d) 
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Figure 64. Biofilm assay: S. aureus culture of discs with different surface coatings: a) PCL; b) PCL-
PVA/Gamma; c)PCL-BG; d) PCL-PVA-BG-Gamma (1000x). Magnification 2000x unless noted, 

accelerating voltage = 10kV. 

E. coli were seen as short rods in SEM images. Biofilm formation was seen in all disc samples. E. coli cells 

had no trouble growing in close proximity to Bioglass (Figure 65d). In Figure 65b and c, the E. coli 

biofilms looked to almost fuse with the PVA coating – it is not obvious where one starts and the other 

begins. It is possible that the E. coli fall inside the PVA hydrogel pores during culture and are then 

a) b) 

c) d) 
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trapped when the hydrogel is dehydrated. Although this may just be one large biofilm as the 

polysaccharide biofilm will likely closely resemble dehydrated PVA. This issue of distinguishing hydrogel 

from biological features after dehydration is a limitation of SEM analysis [121]. 

From Figure 61 there was approximately ten-fold more biofilm formation measured in P. aeruginosa 

cultures than E. coli and S. aureus across all surfaces. SEM analysis revealed that there were indeed far 

more P. aeruginosa cells but the difference was even starker – at least a hundred fold difference by eye 

(Figure 66). This may be due to biofilm-surface attachment of P. aeruginosa being stronger compared 

with E. coli and S. aureus. P. aeruginosa produces biofilm alginates that ‘cement’ the bacterial cells to 

surfaces [131].This may have the effect of decreasing the removal of biofilm by sonication and thereby 

decreasing the number of viable counts in Figure 61. The thicker biofilm may also resist wash-off from 

the numerous washing steps in bio-specimen preparation, which would also account for this result. 
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Figure 65. Biofilm assay: E. coli culture of discs with different surface coatings: a) PCL; b) PCL-
PVA/Gamma; c)PCL-BG; d) PCL-PVA-BG-Gamma. Magnification 2000x, accelerating voltage = 10kV. 

a) b) 

c) d) 
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Figure 66. . Biofilm assay: Culture of PCL discs. The white specs on the surfaces are bacterial cells of: a) 
P. aeruginosa b) S. aureus c) E. coli; Magnification 200x, accelerating voltage = 10kV. 

4.2.2 Adhesion of NBB4 

4.2.2.1 Effect of Time on NBB4 Adhesion 

PCL scaffold quarters that initially appeared white, were shaken in a suspension of NBB4 cells. After 

around 24 hours the scaffolds appeared yellow and the suspension looked clearer (Figure 67). This was 

a) 

b) c) 
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evidence that NBB4 cells had come out of suspension and were adhering to the scaffold accounting for 

the colour change. 

 

Figure 67. Scaffold turned yellow after 24 hours in the presence of NBB4. This is due to NBB4 adhering 
to the scaffold. 

The extent of NBB4 adhesion was quantitatively determined by measuring the turbidity (absorbance at 

OD600) of the cell suspension around the scaffold. The assumption was a decrease in OD600 relates to 

cells coming out of suspension by adhering to the scaffold. Considering that the suspension started at a 

high OD600 the greater the change in OD600 the more cells were adhering to the scaffold. This method 

for determination of adhesion is the same as the principle used by Kuyukina et al [227]. 

 

 

Figure 68 Adhesion Time course: The change in OD600 is measured over time. 
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The OD600 of the suspension decreased with time. The graph above (Figure 68) shows a rapid drop in 

OD600 in the first hour. The OD600 levels out and is near its lowest after 24 hours. This indicates near 

complete adhesion of the NBB4 cells to the scaffold surface such that there is no free scaffold surface 

area for more cells to attach. Growth of NBB4 is not affectiong the results of this assay. If growth were 

occurring the surrounding PBS would become more turbid and thus the ∆OD600 would decrease again 

with increased time. This does not occur - A logarithmic relation ship describes this phenomenon. From 

this experiment on, 24 hours would be used as the time for adhesion assays as extra cells ceased to 

attach beyond this time point. 

4.2.2.2 Effect of Growth Phase 

NBB4 was cultured in the presence of ethylene and harvested at different OD600 absorbencies: 0.1, 0.2, 

0.3, 0.4, and 0.8. Lower OD600 absorbencies correlate to earlier stages of growth. The adhesion assay 

described earlier was performed, but measuring absorbance of only the initial suspension and after 24 

hours. The change in OD600 over this time was calculated and divided by the initial OD600 reading to 

determine the proportion of adhesion or the adhesion efficiency: 

 %adhesion = (OD1 – OD0)/OD0 x 100 (11)  

 

 

Figure 69. Effect of Growth Stage on Adhesion. The chart indicates the mean percent adhesion of 
NBB4 cells harvested at differing OD600 values to scaffolds. Error bars indicate ± Standard Deviation. 

Tests were carried out in triplicate. 



165 
 

 

Growth phase seemed to have an effect on the proportion of adhesion (Figure 69). There was little 

difference in the adhesion of NBB4 cells harvested at 0.1, 0.2 and 0.3 with adhesion efficiencies of less 

than 15%. NBB4 cells harvested at OD600 = 0.4 adhered to the scaffolds far more effectively with 

28.97% of cells binding to the scaffold. NBB4 cells harvested at OD600 = 0.8 had a lower adhesion 

efficiency of only 12.03%.  

The adhesion assay proved very inconsistent indicated by the large error bars on the chart. During the 

experiment, yellow slime build up was seen on the walls and bottom of glass McCartney bottles (Figure 

70). This indicates preferential adhesion to the glass bottle as oppose to the scaffold and may explain 

the variability in the results. The NBB4 falling out of suspension and aggregating on the glass bottle is a 

symptom of the method and therefore uniform, thus the results still are valid for showing the trend of 

adhesion to the scaffold with varying growth phase in a semi-quantitative manner. 

 

Figure 70.NBB4 cell aggregates on glass bottles during adhesion assay. Arrows point out yellow cell 
aggregates. 

A trend was seen whereby an optimum growth phase for adhesion was found at OD600 of 0.4. This 

agrees well with a study by Alavi et al [120] that found Mycobacterium marinum adhered most 

efficiently to polypropylene supports at a growth phase OD600 = 0.4.  The suggested mechanism for this 

result is Mycobacterium sp. develop a thicker capsule in late stationary growth-phase that envelopes the 

cell wall components and inhibits adhesion to hydrophobic surfaces [120, 123]. Our results suggest a 

similar mechanism exists: NBB4 (which is a Mycobacterium sp.) develops a thicker capsule at later 
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growth stages which inhibits its adhesion to the hydrophobic PCL surface of the scaffold. As such NBB4 

would be grown to OD600 = 0.4 for future adhesion assays. 

4.2.2.3 Alteration of Scaffold Surface 

In attempt to improve the hydrophobicity and surface area of the scaffold to increase the adhesion of 

NBB4, the scaffold was coated with ceramic powders. Particles E-glass and Hydrophobic Silica were 

coated and adhered onto the scaffold, which was validated by macroscopic examination. The adhesion 

assay was performed on these scaffolds to see if NBB4 could be adhered more efficiently and more 

reliably. Adhesion efficiency was calculated using the Equation (9) above. 

 

Figure 71. Effect of Scaffold Coatings on Adhesion of NBB4. The chart indicates the mean percent 
adhesion of NBB4 cells to scaffolds with different coating: Un-coated (control), E-glass, Hydrophobic 

Silica. Error bars indicate ± Standard Deviation. Tests were carried out in triplicate. 

Un-coated scaffold control showed a low adhesion efficiency and low reliability as seen by the large 

standard deviation compared with the mean (Figure 71). Coating with E-glass and Silica increased the 

adhesion efficiency dramatically, to 45% and 68% respectively. The standard deviation was much smaller 

compared to the mean in these samples as seen by the error bars in the chart. This indicates higher 

reliability using these coatings.  

From previous results (Results & Discussion 4.2.1) the attachment of glass particles greatly increases the 

surface area of scaffold allowing more room for initial adhesion onto the scaffold. This may account for 

the increased adhesion efficiency seen in coated scaffolds. The silica has a particularly high surface area 
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at ~120m2/g possibly accounting for the further increase in adhesion. Hydrophobicity is known to be 

important in bacterial adhesion [123]. Changes in the surface hydrophobicity due to the coatings may 

also account for the increased adhesion of NBB4, as Mycobacterium are more likely to adsorb to 

hydrophobic surfaces [226]. The silica coating was extremely hydrophobic to the extent that the silica is 

barely miscible in aqueous solution.  

 

 

Figure 72.Silica coated scaffolds were so hydrophobic they were difficult to submerge and floated 
above the cell suspension. 

However, as seen in previous experiments clumping of NBB4 cells was observed and much of the drop in 

OD600 was due to adhesion to the bottle as oppose to the scaffold. With the coated scaffolds in 

particular this was true, as loosely coated particulates fell into solution and attracted adhesion making 

the results seem somewhat invalid. Further problems resulted from failure to submerge the 

hydrophobic silica-coated scaffolds properly (Figure 72). Excess shaking in attempt to submerge the 

scaffolds in the NBB4-suspension resulted in a large proportion of the coating being dislodged. The 

impractical nature of this coating due to its ultra-hydrophobicity makes it unsuitable for adhering 

bacteria for biofiltration. 

It was concluded that due to experimental problems the adhesion efficiency of coated scaffolds was not 

certain and given the extra manufacturing time required and characterisation difficulties that this was 

not a practical strategy to produce NBB4-adhered biofilters. 
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4.2.2.4 Alteration of Cell Surface 

From the growth phase results obtained above (Results & Discussion 4.2.2.2), it was suspected that 

NBB4’s slimy cell envelope was decreasing the hydrophobic interaction with the scaffold and preventing 

adhesion. NBB4 cells were washed in solvents to strip away this envelope and increase adhesion with 

the scaffold. Another strain, NBB3, also containing the SDMO for degrading ethylene was tested for its 

adhesive abilities. NBB3 does not have the slimy cell envelope like NBB4 and thus may have a stronger 

hydrophobic interaction with the scaffold.  

 

Figure 73. Affect of altered cell surface on bacterial adhesion to scaffold. NBB3 cells were left 
untreated whereas NBB4 cells were treated with the solvents specified. Error bars indicate ± Standard 

Deviation. Tests were carried out in duplicate. 

NBB3 cells had an adhesion efficiency of 51.32%. This is much higher than previous NBB4 adhesion 

efficiencies. NBB4 cells treated with washing in methanol and acetone, recorded adhesion efficiencies of 

81.47% and 89.17% respectively. However, once again and in this assay in particular cell clumping and 

adhesion to the glass bottle will have accounted for the majority of the adhesion. The distinct yellowing 

of NBB4 and NBB3 was seen in these scaffolds [233, 235], but only superficially and in a patchy rather 

than homogenous manner, suggesting cell-to-cell adhesion was being increased rather than cell-to-

scaffold. The results confirm the importance of hydrophobic interactions for Mycobacterium adhesion 

[120, 123, 226]. 

Despite the encouraging adhesion efficiencies after altering the cell surface, there was concern that:  
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a) the adhesion seen was superficial – cells were not immobilised and would be sloughed 

off by physical contact  

b) the washing in solvents left the cells unviable and deactivated the cell’s ability to 

degrade ethylene 

The ethylene degradation of NBB3 and solvent treated NBB4-scaffolds was tested and the results are 

shown below (Results and Discussion 4.3.3.2). 

4.2.3 Gel Entrapment of NBB4 

SEM images were taken of NBB4 biofilter scaffolds of varying agar concentrations. An image at minimal 

magnification was captured to exhibit the porous architecture of the scaffolds. The increased occlusion 

of pores can be seen in scaffolds with higher agar concentrations. This correlates with the data 

presented in Results & Discussion 4.1.1 where a similar coating method was used. The 0.6% agar NBB4 

biofilter looks particularly clogged (Figure 76a). However this may be because that surface of the 

scaffold was toward the bottom during the drying step. During this period molten agar may have 

continued to migrate to the bottom of the scaffold due to gravity.  

The lower SEM image in each figure is a higher magnification micrograph focussing on the NBB4 cells 

adhered to the scaffold. The NBB4 can easily be distinguished: The cells appear brighter due to 

absorption of the osmium stain; they are the right shape – short rods approximately 2μm x 1μm [233, 

235]; and they are behaving like bacteria forming biofilm communities [121]. NBB4 were seen on the 

surface of all agar coated scaffolds which means all iterations may be able to degrade ethylene. 

These images may also provide insight into how these biofilms formed. In Figure 75, some NBB4 cells are 

seen partially covered by the agar coating. This suggests that NBB4 entrapped within the gel as been 

allowed to come to the surface as the gel coating dehydrated. In Figure 78 imprinted of NBB4 rods in the 

agar coating are further evidence for entrapment in the agar hydrogel. The imprints are probably a 

result of cells being washed off during the dehydration with ethanol in biological sample preparation, 

which contains repeated washing steps. In all cases the agar coating appeared very thin which is 

important as to not inhibit diffusion of ethylene to NBB4 cells [126]. 

NBB4 is able to form natural biofilm on the scaffold or agar surface. Evidence of this is seen in the high 

magnification images in Figure 78: NBB4 cells can be seen anchoring themselves to the surface utilising 

pilli-like extensions of their membranes. This biological attachment by the cells reflects the initial stages 
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of biofilm formation [121, 124]. Further evidence can be seen in Figure 74b, where NBB4 is forming 

biofilm on PCL characterised by its uniform bevelled appearance rather than the smooth agar. It is 

probable that the gel entrapment method facilitates immobilization by adhesion by forcing close contact 

between the cells and the scaffold. This phenomenon of enforced adhesion is not documented in gel 

entrapment immobilization literature. Although gel entrapment in agar had been documented to impart 

biofilm qualities to the entrapped bacteria [218]. 
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Figure 74. 0.2% w/v agar NBB4-agar-scaffold: a) porous architecture (x50); b) NBB4 biofilms (x5000). 

a) 

b) 



172 
 

 

\  

Figure 75. 0.4% w/v agar NBB4-agar-scaffold: a) porous architecture (x50); b) NBB4 biofilms (x5000). 

a) 

b) 
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Figure 76. 0.6% w/v agar NBB4-agar-scaffold: a) porous architecture (x50); b) NBB4 biofilms (x5000). 

a) 

b) 
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Figure 77. 0.8% w/v agar NBB4-agar-scaffold: a) porous architecture (x50); b) NBB4 biofilms (x5000). 

a) 

b) 
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Figure 78. High magnification SEM images of NBB4 biofilms on NBB4-agar-scaffold: a) Imprints of 
NBB4 cells in thin agar coating (x12000); b) NBB4 biofilms partially entrapped in agar, with visible pilli 

(x13000). 

a) 

b) 
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4.3 Antibacterial/Pro-bacterial  Activity 

4.3.1 Antibiotic Elution 

4.3.1.1 Effect of Ethanol Content on Erythromycin Release 

Antibiotic eluting scaffolds were placed in wells of PBS and transferred to a fresh well at set time points. 

A microbial assay was performed by submerging sterile filter paper discs into these wells then placing 

them on an inoculated plate of the test organism, S. aureus. As explained earlier, the resulting zone of 

inhibition is proportional to the concentration of antibiotics eluted. A standard curve relating zone of 

inhibition diameter to erythromycin concentration was plotted and the resulting logarithm (Equation 10, 

Results & Discussion 4.1.2.2.3) was used to extrapolate results in the following experiments. 

Scaffolds manufactured with varying concentrations of ethanol (EtOH) in the PVA solution were tested 

in this way. Measurements were taken until they fell below the detectable limit, at which point there 

was no observable zone of inhibition. Erythromycin concentration decreased over time in all samples 

meaning scaffold were releasing erythromycin at a decreasing rate (Figure 79). The elution profiles 

followed a text-book two part pattern, with a burst release of erythromycin followed by a prolonged 

slower release. The burst release is due to erythromycin on the periphery of the hydrogel coating rapidly 

dissolving. The slower release is controlled by hydrogel kinetics with PVA relaxation and hydrogel 

channel diffusion affecting erythromycin release. In particular, this phenomenon can be seen around the 

6-24 hour mark where erythromycin concentration stayed constant or even was seen to increase. This 

highlights the time dependence of the elution is owed to hydrogel kinetics rather than simple diffusion 

which would result in continually decreasing concentrations over time [21-22]. 

A relationship between the ethanol concentration (%w/v) and the elution profile can be seen: The 

higher concentration of ethanol that was used, the higher the concentration at a given time and the 

longer the elution of erythromycin above the detection limit. In Figure 35 the 50% EtOH samples 

produced by far the greatest burst concentrations of erythromycin with 1478ug/ml recorded after 1 

hour of elution compared to 58ug/ml and 47ug/ml for the 25% and 15% EtOH samples respectively. 

Based on the similar gel properties of these scaffolds determined earlier, it is safe to conclude that this is 

not due to lower %EtOH scaffolds having vastly slowed release kinetics. It is much more likely due to a 

much greater erythromycin loading. Erythromycin is 25 times more soluble in ethanol than water [154]. 

Solubility in mixes is said to follow a logarithmic relationship [254] meaning erythromycin was much 
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more soluble in the 50% EtOH PVA mixture enabling much more erythromycin to become entrapped in 

these scaffolds. The increased hydrogel coating thickness (see Results & Discussion 4.1.2.2.1) also played 

a smaller but not insignificant role in the higher erythromycin loading. 

The 50% EtOH scaffold maintained an erythromycin concentration above the detectable limit for 5 days. 

It should be noted that here the ‘detectable limit’ is directly related to the MIC for S. aureus. This was 

significantly longer than for the 25% sample (48 hours).The 50% EtOH scaffold exhibits slow delivery of 

antibiotic that will protect skin wounds from S. aureus bacteria over the 5 day period. Therefore this 

scaffold was chosen for use in future experiments and device pilot studies. 

 

Figure 79. Drug delivery of erythromycin from scaffolds manufactured with varying amounts of 
ethanol (EtOH). Error bars = Std; n = 3. 

4.3.1.2 Effect of Gamma Sterilization on Erythromycin Release 

Gamma irradiation at sterilization doses are known to cause alterations in many polymers which may 

affect the performance of sterilised devices and therapeutics [8, 17, 82, 91]. Further, Gamma irradiation 

has been known to inactivate drugs [163]. The following investigation was performed to identify 

changes in the elution profile of the PVA-erythromycin scaffold following gamma sterilization at 25kGy.  

A batch of erythromycin scaffolds were manufactured with 50% EtOH PVA as described above. A 

proportion of these scaffolds were Gamma sterilised at 25kGy and their elution profiles were compared 
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to the un-sterilised controls. Testing was conducted in the same manner as in 4.3.1.1. Scaffolds tested 

were of the same batch to account for natural time-dependent drug degradation. 

In Figure 80, the two elution profiles are virtually superimposed indicating that there was no difference 

in the elution or activity cause by Gamma sterilization. Both sterilised and unsterilized scaffolds 

maintained erythromycin concentrations above the detectable limit for 96 hours. This elution time is 

slightly less than seen in 4.3.1.1, probably due to variations in the erythromycin loading from batch to 

batch. The burst release does not reach as high concentrations suggesting loading is likely the case. 

The results validate gamma irradiation at 25kGy as a viable sterilization method for this device, as 

neither the activity nor the elution kinetics of the drug seems to be compromised. Toward the end of 

the drug delivery period (between 48 and 96 hours), the Gamma sterilised scaffold registered higher 

erythromycin concentrations. This may reflect slower elution kinetics which may be beneficial if a 

relevant erythromycin concentration can be maintained for a longer period and would offer greater 

protection from wound infection. Increasing Gamma irradiation dosage may cause slower kinetics due 

to PVA crosslinking and should be investigated in the future. Improvements caused by sterilization are 

sought after as they add favourable properties at no added manufacturing cost [17, 181]. 

 

Figure 80. Drug delivery of erythromycin from scaffolds after gamma sterilization at 25kGy. Error bars 
= Std; n = 3. 
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4.3.1.3 Cytotoxicity of Erythromycin 

The burst release of erythromycin seen in the release profiles (Results & Discussion 4.3.1.1) may 

represent cytotoxic concentrations that would impact the bioactive efficacy of the wound healing graft. 

As such, a dose-response experiment was setup to measure the cytotoxicity of erythromycin on human 

fibroblasts (HFb).  

The MTS reagent contains  tetrazolium and phenazine ethosulfate as an electron transfer reagent that 

facilitates cellular reduction into a coloured soluble formazan [255]. In this way essential metabolic 

activity can be measured colorimetrically and related to cell viability: Increased cellular metabolism 

brings about an increased colour change and an increased absorbance at 490nm.  

 

Figure 81. MTS assay: dose-response of Human Fibroblasts (HFb) treated with erythromycin. Error 
bars = std; n = 3. 

The results show that erythromycin in the media had no effect on the assay at the concentrations 

tested. All concentrations (0 - 1000μg/ml) produced an absorbance of ~0.23. The addition of fibroblasts 

elicited a strong absorbance at 490nm, reflecting the active metabolism of the cells. Figure 81 shows a 

trend: Increasing concentrations of erythromycin caused a decrease in absorbance. The dose response 

curve shows a plateau in absorbance from erythromycin concentrations of 0 - 500 μg/ml, then drops 

quite steeply between 500 - 1000 μg/ml. In the graph it appears that the absorbance has already started 

to drop between 250-500 μg/ml but the difference in absorbance between the 0 μg/ml and 500 μg/ml 

samples was not statistically significant (p > 0.05, Student’s T-test).  
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The decreased absorbance seen at erythromycin concentrations of 750 μg/ml and 1000 μg/ml represent 

a loss in HFb viability. This loss of viability is due to cytotoxic effects from the high concentrations of 

erythromycin. The mechanism of cytotoxicity is not well documented but could be due to leakage of 

enzymes [159]. 500 μg/ml was found to be the maximal concentration that caused no significant loss of 

viability to HFbs. This result is little higher than found by Byarugaba et al  - 300 μg/ml, although this 

difference could be due to a number of factors such as differences in erythromycin drug potency and 

cell lines [158]. Some have remarked that macrolides, such as erythromycin have low cytotoxicity [155-

156] and this is true in the sense that the MIC for most pathogens is significantly lower [157]. However, 

compared with other antibiotic candidates, such as gentamycin, it is significantly higher [158]. The 

cytotoxicity of an antibiotic is especially important in drug delivery devices as this has an impact on drug 

loading limits and therefore sustained drug release. This also has a significant negative impact on 

bioactivity. 

For future experiments and design, 500 μg/ml was considered the maximum concentration of 

erythromycin that would not elicit a cytotoxic response from HFb.  

4.3.1.4 Erythromycin Soak-off  

Scaffolds were immersed in sterile PBS to remove burst release of erythromycin. This was designed to 

prevent erythromycin concentrations from reaching the cytotoxic level for fibroblasts found earlier to be 

approximately 500ug/ml (Results & Discussion 4.3.1.3). Scaffolds were immersed in the PBS for varying 

times in order to control the amount of erythromycin soaked off. Then scaffolds were blotted dry on 

sterile filter paper and transferred to the test wells where erythromycin elution was measured using the 

microbial assay described above. 

Even the shortest soak-off time (15 minutes) did not produce an erythromycin concentration higher 

than the 500ug/ml cytotoxic level after a 24 hour elution time (Figure 82). The 15 minute soaked 

scaffolds registered the highest concentrations at each time point. This was followed by the 60 minute 

and 30 minutes soaked samples respectively. One would expect that a shorter soaking time would result 

in less erythromycin being soaked off and consequently an elution profile of higher concentrations, as 

was the case with the 15 minute sample. However this was not the case with the 30 minute-soaked 

samples producing lower concentrations than 60 minute soaked samples. The differences in these 

concentrations were not particularly significant (p > 0.05) as can be seen from the overlapping error 
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bars. Despite the soak-off procedure, all samples maintained detectable concentrations of erythromycin 

for up to 5 days which is similar to other reported DDS using PVA hydrogels [169].  

 

Figure 82.Drug delivery of erythromycin from scaffolds that were soaked in PBS for varied amounts of 
time. Error bars = Std; n = 3. 

When the cumulative release of these scaffolds was plotted for the 24 hour time point, there was no 

difference seen in the cumulative release of erythromycin, with all scaffolds having lost around 70% of 

their erythromycin since the soak-off (Figure 83). If less erythromycin was removed in the 15 minute 

soak compared to the 60 minute soaked scaffold, the cumulative release would be expected to be 

greater as more of the burst release was maintained. This could indicate that the soak off could be even 

shorter and any variation in the elution profiles was due to minor differences in scaffold size (which 

cumulative release measurements account for). 

The results from this experiment show that a quick soak-off in PBS can prevent the scaffold 

erythromycin concentration from reaching cytotoxic levels. Since the 15 minute soak is the most time 

efficient method to achieve sub-cytotoxic levels, it was chosen as the protocol for further in vitro testing.  
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Figure 83. Cumulative release of erythromycin 24 hours post-soak from scaffolds that were soaked in 
PBS for varied amounts of time. . Error bars = Std; n = 3. 

4.3.2 Antibacterial Biomaterials 

4.3.2.1 Zone of Inhibition 

A pellet or disc of biomaterial was placed at the centre of an inoculated spread plate. The contacting 

area of the biomaterials was kept constant to limit diffusional variability. Antibacterial activity was 

quantified by measuring the Zone of Inhibition (ZoI). This was the clear circular region where no 

bacterial colonies formed on a spread plate after a sufficient period of incubation for colony formation. 

The size of the ZoI is proportional to antibacterial effect. The results can be seen in Figure 84. 

PCL and HA did not elicit a ZoI in any of the test pathogens, suggesting they have no antibacterial 

activity. There is no evidence of either of these materials being antibacterial in the literature. They are 

both widely recognised has biocompatible materials [1, 6]. 

Chloramphenicol is a well-known broad spectrum antibiotic and was used as the positive control for this 

experiment. chloramphenicol produced a large ZoI in all pathogens tested. The ZoI in P. aeruginosa was 

significantly less than for E.coli and S. aureus. This shows that P. aeruginosa is comparatively more 

resistant to chloramphenicol.  

Bioglass (BG) produced a ZoI for S. aureus and a small ZoI for E. coli but none for P. aeruginosa. These 

ZoIs were significantly smaller than for chloramphenicol showing it as a weaker antibacterial material. 

The antibacterial mechanism for BG is the elution of positive metal ions causing an increase in pH [47, 
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54]. Based on these results, resistance toward this pH change for these pathogens is: P. aeruginosa > E. 

coli > S. aureus. 

Bulk metallic glass (BMG) caused a ZoI only in S. aureus. This ZoI was smaller than both those cause by 

chloramphenicol and BG for the same organism. The antibacterial mechanism for BMG is likely to be 

related to elution of the toxic metal ions zinc and magnesium [57, 76]. The results show that E. coli and 

P. aeruginosa are more resistant than S. aureus toward these ions.  

 

Figure 84. Antibacterial activity of biomaterials. Quantified by a biological Zone of Inhibition (ZoI) 
assay on three common wound pathogens. Materials tested were: Polycaprolactone (PCL), 

Chloramphenicol (chloramphenicol), 45S5 bioglass (BG), hydroxy apatite (HA) and Bulk metallic glass 
(BMG). Error bars = Std; n=3.  

 

4.3.2.2 MIC/MLC Assay 

A minimum inhibitory concentration/minimum lethal concentration (MIC/MLC) assay was used to 

quantify the antibacterial activity of biomaterials found to have some antibacterial effect in the Zone of 

inhibition (ZoI) study. The MIC is the minimum concentration of the material to inhibit growth in a liquid 

culture. Growth inhibition was identified by a colorimetric indicator. MLC is the minimum concentration 

at which no viable cells were left after the incubation period in liquid culture. Viable cells were detected 

by subsequent culture of growth-inhibited samples on solid media. No colony formation was said to 
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mean no viable cells. The MIC/MLC is inversely proportional to antibacterial effect of a biomaterial to a 

pathogen. 

It is important to note that for the BMG and the 45S5 the results here are understated; that is the 

bacteria are subject to lower concentrations than the numerical results. This is because these materials 

were weighed into a given volume to calculate the concentrations, but the materials did not fully 

dissolve in volume. It is these dissolution/degradation products that have the antibacterial effect. More 

experiments would be needed to properly establish the antibacterial mechanism of these biomaterials 

and quantify them directly if the MIC/MLC are to be accurately determined. This experiment gives 

insights into scaffold design and antibacterial loading rather than precision antibacterial data. 

Unfortunately the differences in particle sizes and therefore diffusion between samples was a source of 

error. 

Table 26. MIC/MLC measurements for biomaterials on common wound pathogen. 

 P. aeruginosa S. aureus E. coli 

 MIC MLC MIC MLC MIC MLC 

BMG (mg/ml) 9±1 > 10* < 2~ < 2~ 5±1 3±1 

45S5 (mg/ml) 47±12 100±0 47±12 47±12 73±12 100±0 

chloramphenicol 
(µg/ml) 

> 10* > 10* 7±1 > 10* 6±0 > 10* 

* = The maximum concentration tested. ~ = The minimum concentration tested. 

 

BMG was found to inhibit growth of P. aeruginosa at 9 mg/ml. The MLC was above the maximum 

concentration tested (10 mg/ml). For S. aureus, both the MIC and MLC were below the minimum 

concentration tested (2 mg/ml). The MIC and MLC for E. coli was 5 and 3 mg/ml respectively. These 

results agreed well with the ZoI results which revealed S. aureus as the most susceptible to BMG. No 

inhibition was seen for E. coli and P. aeruginosa in the ZoI experiment and this illustrates the increased 

sensitivity of the MIC assay. Poor diffusion of BMG degradation products through solid media may be 

the reason why the ZoI assay did not result in growth inhibition. The results show that BMG is an 

effective antibacterial agent for wound scaffold development, as all three pathogens’ growth was 

inhibited at BMG concentrations below 10mg/ml. These concentrations would be possible to achieve 

using a scaffold to deliver the BMG.  
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For 45S5 the MIC for P. aeruginosa was 47 mg/ml and the MLC was 100mg/ml. The MIC and MLC for S. 

aureus was 47 mg/ml and 33 mg/ml respectively. For E.coli the MIC and MLC were 73 mg/ml and 

100mg/ml respectively. The results for 45S5 were inconsistent with those found in the ZoI experiment. 

Bioglass produced no ZoI for P. aeruginosa and a considerable one for S. aureus, but here the MIC for 

these pathogens was identical. It is possible that P. aeruginosa is more susceptible in liquid culture, as it 

is known to be a strong biofilm former [121]. Otherwise the E. coli was found to be less susceptible than 

S. aureus here, as it was through the ZoI assay. Bioglass elicited a bactericidal effect in all pathogens 

tested. S. aureus was found to have the lowest MLC which was equivalent to its MIC. This shows a very 

low tolerance and survival rate past a certain concentration of bioglass degradation particles, which is 

linked to pH [47, 54]. Concentrations required for an inhibitory effect were greater than 45 mg/ml. 

These are likely not achievable for a skin wound healing scaffold where only a coating is required. As 

such the bioglass will probably not assert an antibacterial effect when employed as a scaffold. 

Chloramphenicol is a potent antibiotic drug and thus was tested at a much lower concentration range. 

The MIC and MLC for P. aeruginosa were above the maximum tested (10 µg/ml). The MIC  for S. aureus 

was 7 µg/ml and the MIC was above the maximum. For E.coli the MIC was 6 µg/ml and the MLC was 

above the maximum. S. aureus and E. coli were far more susceptible to chloramphenicol than P. 

aeruginosa which matches the ZoI results. No MLC result was found for any pathogen. This is because 

chloramphenicol is generally a bacteriostatic drug [150], and after re-inoculation on fresh media 

inhibited cells can grow once more. 

From the results BMG may be suitable as an antibacterial scaffold coating as it has a bactericidal effect 

at low enough concentrations that can be achieved by loading onto the scaffold. In contrast, bioglass as 

a scaffold coating will not be present in large enough amounts to reach inhibitory concentrations. 

Antibiotics such as chloramphenicol have an antibacterial effect at much lower concentrations and given 

the limited space on the scaffold, this positions antibiotics best as providing sustained protection from 

bacteria. Alternate antibiotics such as erythromycin may be better for wound healing then 

chloramphenicol due to their greater antibacterial effect against common wound bacteria such as MRSA 

[157]. 

 



186 
 

4.3.3 Bacterial Ethylene Degradation 

4.3.3.1 Optimisation of Agar Concentration 

Batches of NBB4-agar scaffolds were manufactured with varying agar concentrations. Batches of 0.2% 

agar scaffolds with no NBB4 cells and batches of 0.4% agar cubes were tested as controls. The scaffolds 

were placed in gas-tight bottles and injected with ethylene. Whole batched were used to decrease 

variance in the results due to structural variation from scaffold to scaffold. This is also more relevant as 

the final device would likely be a filter system containing many packed scaffolds. Bottles were injected 

with ethylene which was periodically measured by GC.  

 

Figure 85. Degradation of ethylene by NBB4 coated scaffolds of varying agar concentration over 24 
hours. Ethylene is represented by GC Peak area which decreases over time in a linear fashion. The no-

cell control scaffolds show no change in Peak Area. 

Ethylene produced a characteristic peak after approximately 1.1 minutes. GC readings given in peak area 

were plotted against time from which linear relations were found from the Excel software (Figure 85). 

Generally linear relations were calculated from the 4 hour time point as the NBB4 cells seemed to not 

degrade ethylene for the first 4 hours. The gradient of the line was the change in GC peak area over 

time. These were converted to ethylene degradation rate, in parts per million per hour (ppmV/h) by 

applying the formula obtained by running a standard curve of ethylene concentrations through the GC. 

The combined results from the ethylene degradation tests of all scaffold batches is summarised in Figure 

86. The agar-scaffold composites with no NBB4 cells did not degrade ethylene. This proves that the 
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NBB4 is solely responsible for ethylene degradation and no ethylene is removed via physical or chemical 

interactions with the scaffold or agar gel. They NBB4 gel entrapped scaffolds as well as the NBB4-agar 

cubes were able to degrade ethylene at variable rates. Of these the 0.4% scaffold was the most effective 

with a mean ethylene degradation rate of 21ppmV/h. This was significantly greater than the 0.1% and 

0.2% agar scaffolds but not the 0.6% scaffolds. However, it was found that the difference between the 

0.6% scaffold’s degradation rate of 16ppmV/h and the 0.1% and 0.2% scaffolds was not statistically 

significant. The 0.4% scaffolds degraded ethylene at a significantly faster rate than the agar cubes of the 

same agar concentration. 

 

Figure 86. Identification of optimal agar concentration of scaffold coating based on ethylene 
degradation rate. Error bars = Standard deviation; n=3. Significant difference compared with 0.4%w/v 

biofilter using Student's t-test: *(p ≤ 0.05); †(p ≤ 0.001). 

The agar concentration has already been shown to be inversely proportionate to the composite porosity 

(4.1.1). However the agar concentration was also shown to be proportionate to the gel volume and thus 

the number of entrapped NBB4 cells if one assumed the bacteria is evenly suspended in the liquid gel. 

Furthermore, porosity is known to promote diffusion of ethylene through the composite. Therefore, it 

was hypothesised that there would an optimal agar concentration that produced a biofilter which 

balanced porosity and NBB4 numbers for a maximum ethylene degradation rate. From the results the 

0.4% is thought to be the optimal agar concentration.  

The fact that cubes of agar containing NBB4 showed a much decreased degradation rate speaks to the 

importance of porosity in a biofilter design. These agar cubes had a much higher gel volume than the 

* 

† 

* 
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scaffolds and consequently many more NBB4 cells – the active ethylene degraders. The lacking porosity 

meant that the NBB4 mediated ethylene degradation took place on a dramatically decreased surface 

area compared to the composite scaffolds. They also likely suffered from mass transfer resistance which 

is a commonly related issue to gel entrapment systems [126, 217, 224, 230]. The 0.4% agar scaffolds 

retain 70% porosity which allows ethylene gas to perfuse easily through the scaffold and provides a 

larger surface area for NBB4 to access the ethylene and perform gas-exchange. Porosity rather than 

pore size is the key parameter here influencing ethylene degradation rate. This is because the ethylene 

particles (molecular scale) are of negligible size compared to the biofilter pores (micrometer scale).  

NBB4-agar-PCL composites were shown to degrade ethylene in a static system. Composite support 

materials have only been used once previously for biofiltration in an attempt to reduce cell leakage 

[217]. These can be classified as biofilters as the active ethylene-degrading agent is viable NBB4 

bacteria. Biofilters fabricated using 0.4%w/v agar was found as the optimum concentration to maximise 

ethylene removal efficiency. This would be the concentration used for future work and Device Pilot 

studies. 

4.3.3.2 Effect of Altered Cell Surface 

The ethylene degradation ability of each scaffold was determined by injecting serum bottles with 

350ppm of ethylene and monitoring its degradation over time. Ethylene concentration was quantified in 

the same way as described above (Results & Discussion 4.3.3.1). 

 

Figure 87. Effect of altering the cell surface of adhered bacteria on ethylene removal.  
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Ethylene levels in serum bottles containing the control (empty bottle except for ethylene) and biofilters 

with NBB4 cells treated with solvent washes did not decrease from 350ppm (Figure 87). This means 

these biofilters could not degrade ethylene. The solvents were likely too harsh and solubilised the NBB4 

cell membrane lysing the cells. This made the enzymes necessary to facilitate ethylene degradation 

inactive. The benefits of adhesion over gel entrapment are a decreased processing time and higher cell 

survival rate [126]. The treatment of NBB4 cells with solvents does increase their adhesion efficiency as 

presented in Results & Discussion 4.2.2.4, but at the expense of an extra processing step and loss of cell 

viability and activity thus mitigating the advantages of an adhesion immobilization design. 

NBB3 biofilters caused a drop in ethylene below the detectable limit within 24 hours. However, it was 

noticed that NBB3 cells had become detached from the scaffold. This was indicated by the yellow liquid 

that gathered at the bottom of the serum bottle. Although this biofilter confirmation successfully 

removed ethylene, the NBB3 was not properly immobilised to the scaffold. Cell leakage and re-

distribution of bacterial cells has been previously reported in adhesion systems [126, 203]. For 

biofiltration it is important that bacteria are strongly immobilised to both ensure stable activity and to 

prevent contamination of the filtered environment. This is particularly important for the application of 

fruit preservation where poorly immobilized bacteria may come into contact with food and produce 

poor health outcomes. For this reason NBB3-scaffold biofilters are ultimately unsuitable.  

 

4.4 Device Pilot Studies 

4.4.1 In vitro wound modelling of Synthetic Skin Graft 

4.4.1.1 Validation of PCR and qPCR standards 

For the purpose of the co-culture model we were using qPCR not for determining the relative amount of 

a particular gene, but the total amount of a gene that would be linked to cell number and be a marker 

for cell survival. Thus standard aliquots of the genes needed to be prepared. These could be run in each 

qPCR set to determine the actual amount of DNA in each reaction. Standard PCR was used to amplify 

the product. This was then purified and run on a gel to check the purity. Finally serial dilutions of the 

purified product were used in qPCR reactions to form a standard curve. 
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Figure 88. Gel electrophoresis of PCR amplified and purified ribosomal cDNA. PCR products were run 
with no-template controls (NT) and Hyperladder V (HyperV) as a reference. a) 18s cDNA single band at 
~200bp; NT registered very faint band at ~50bp. b) 16s cDNA single band at ~250bp; NT registered no 

visible band. 

Gel electrophoresis divides the DNA strands based on their length in base pairs (bp). When 

simultaneously run with a reference ‘ladder’ of known strand lengths, an unknown sample’s length can 

be determined.  The relative amount of DNA strands in a sample can also be qualitatively seen by the 

brightness of the bands. In this way, the PCR product can be validated by comparing the bands seen to 

the expected product size for a given primer-target pair. Both 18s and 16s PCR products were run on the 

gel to check to PCR specificity and purity.  

Figure 88 shows the gel electrophoresis results. 18s PCR product was a single band at around 200bp in 

length and the 16s PCR product produced a single band at approximately 250bp. This agrees well with 

the known PCR product length (as predicted by the primer design) for 18s and 16s cDNA: 187bp and 

247bp respectively. No other bands were seen in either cDNA lanes, which prove the specificity of the 

PCR primers – only the target strand was amplified in the PCR. 

- 500 
- 500 - 400 
- 400 - 300 
- 300 - 250 
- 250 - 200 
- 200 

- 25 - 25 

Size (bp) Size (bp) 

18s 
cDNA 

16s 
cDNA 
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No-template control (NT) lanes contained samples that underwent the PCR reaction but with no cDNA. 

This is a test that all the PCR reagents are devoid of cDNA contamination which would effect the final 

concentrations of the standard curve. The 18s PCR NT lane exhibited only a very faint band at 

approximately 50bp. This is probably a primer-dimer, which is small amounts of primer have 

preferentially bound together in the absence of cDNA. This is why this band is not seen in the 18s cDNA 

lane. The 16s NT lane shows no distinguishable band. The NT results confirm that the PCR reactants are 

pure and free of contamination. 

 

 

Figure 89. Melt curve analysis for 18s and 16s PCR standard curves. Red lines are 18s reactions; 
yellow/orange lines are 16s reactions. 

Purified cDNA concentration was quantified spectrophotometrically and converted to copies per µl by 

applying the product sequence molecular weight. A ten-fold serial dilution was performed on the 

purified cDNA sample. qPCR was then carried out to form standard curves for 16s and 18s cDNA. A melt 

analysis was performed along with the qPCR. 

The melt curve analysis in Figure 89 shows the melting temperature for the 18s and 16s standards.  The 

single peak in each curve shows that only the target section of DNA was being melted and validates the 

specificity of the PCR reaction [184]. 
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Figure 90. qPCR standard curves relating cycle threshold (Ct) to cDNA concentration (gene copies/µl). 
PCR reactions were performed in duplicate. a) 18s standard curve; b) 16s standard curve. 

The standard curves produced from the qPCR can be seen in Figure 90. Both 18s and 16s curves 

produced logarithmic relations that would allow the concentration of an unknown cDNA sample from 

either fibroblasts or S. aureus to be determined. The standardised logarithmic relation with correlation 

coefficient (R2) approaching 1, shows that the standards are diluting at even log intervals.  

This experiment validated the qPCR measurement technique for HFb 18s rRNA and S. aureus 16s rRNA. 

The purity and specificity of the PCRs was confirmed and standard curves were produced which could be 

run in the future experiments to determine the ribosomal DNA concentration from a fibroblast or S. 

aureus sample. 

a) 

b) 
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4.4.1.2 Addition of Fibroblasts to the Scaffold 

The large interconnected macropores of the PCL scaffold means adding a reliable number of cells for an 

assay becomes problematic due to cells falling through the pores to the bottom of the culture plate. For 

this co-culture model, the aim was to measure differences in ribosomal RNA which reflects the number 

of cells attached to the scaffold. Being able to reliably grow a known number of fibroblasts on the 

scaffold is essential given changes in RNA concentration was expected when demonstrating different 

scaffold design iterations. A method had to be validated to ensure a known number of cell numbers 

were able to attach to the scaffold. 

The normal method of cell culture for the PCL scaffold has been to pre-wet the scaffold in sterile media, 

transfer the scaffold to a 24 well-plate, fill the well with 500ul of media, then add the cells in a small 

volume onto the scaffold [256]. This is suspected to cause the cells to fall through to the bottom causing 

low numbers and variable attachment. Three new methods were developed: 

1. Pre-wet the scaffold as in the normal case, dried with sterile filter paper, then transfer to a cell culture 

well and add the cells in 100ul of DMEM+10%FCS. The thought was to put the cells in a smaller volume 

giving them a better chance of attachment. 

2. Transfer a dry scaffold (not pre-wet) to a well then drop 100ul of cells in DMEM+10%FCS on top. This 

was thought to prevent the cells from falling to the surface and giving them a chance to adhere. 

3. Exactly the same as in 2, but cells were delivered in a 50ul volume. 

In all of the three new methods, the cells were given 12 hours to adhere before transferring to a new 

well, adding 500ul of media and continuing normal cell culture. 

In new method 1, despite the scaffold looking dry after dabbing with filter paper, the droplet was readily 

absorbed by the scaffold and sat snugly inside it with little excess coming out the sides. Residues left on 

the hydrophobic scaffold after drying must have facilitated this. 

In new method 2, the 100ul droplet overbalanced the scaffold causing it to flip and become dispersed 

over the plate. This occurred in both duplicates. 

In new method 3, the 50ul droplet sat perfectly balanced on the top of the scaffold, propped up by 

surface tension and hydrophobic forces. The next day, the droplet looked to have sunk slightly into the 

scaffold but was still intact. 
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After the initial 24 hour culture period and the scaffolds were transferred to the new plate, the wells 

were imaged using a conventional phase microscope to qualitatively examine the number of cells that 

fell through to the bottom of the well. 

 

Figure 91. Unattached Cells. Phase microscope images of the bottom of the well after removing the 
cell-seeded scaffold: a) Normal method; b) New method 1 – pre-wet scaffold, 100ul drop; c) New 

method 2 – dry scaffold, 100ul drop; d) New method 3 – dry scaffold, 50ul drop. 200x magnification. 

Although, the centre of the images is somewhat obscured due to the camera flash reflecting back up the 

aperture, the more peripheral zones exhibit a clear difference is the cell numbers. Figure 91a shows the 

result of the normal loading method, using a pre-wet scaffold and seeding the cells only just before 

filling the well with media. The cells are virtually confluent with the exception of a few bare zones. The 

acellular zones account for areas where the scaffold was touching the bottom of the cell preventing cells 

from attaching. Figure 91b exhibits even more confluent cells, which is consistent with the new method, 

of delivering the cells in a smaller volume. Acellular zones can be seen in this image very clearly due to 

the confluence of the cells. Figure 91c shows confluent cells. As mentioned earlier, the large 100ul drop 
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over balanced the scaffold so that the drop contacted the bottom of the well and dispersed over a 

greater area. This is why the image appears very similar to Figure 91a. Figure 91d) shows a much less 

dense layer of fibroblasts. This is a marked difference compared with the other images - one could 

almost count the number of cells. This may indicate that a far higher proportion of cells are attaching to 

the scaffold using New method 3, as oppose to falling to the bottom of the well in the liquid media.  

After 2 weeks of cell culture, scaffolds and adherent cells were digested and the total RNA was extracted 

purified and measured using spectroscopy. Figure 92 shows the RNA yields from duplicate testing of 

each separate HFb seeding method. The Normal method shows the highest RNA yield followed by the 

Dry Drop 50ul, the Pre-wet Drop100ul and the Dry Drop 100ul. However only the Dry Drop 50ul method 

exhibited repeatability as the standard deviation of all other methods approximately equal to the mean. 

This shows that a larger and more consistent proportion of cells were becoming attached to the scaffold 

and not falling to the bottom of the plate. In contrast, the other methods had less attachment which 

was also less reliable as many variable parameters like pore size, pore saturation and pore topography 

would affect the level of attachment as cells were allowed to fall through the liquid media. 

 

Figure 92. RNA yield from Fibroblast (HFb)-seeded scaffolds using different HFb addition methods. 
Error bars = Standard deviation. Each method was tested in duplicate. 

4.4.1.3 Bacterial Growth in DMEM and Toxic Media  

An experiment was performed to establish whether S. aureus bacteria could grow uninhibited in the cell 

growth media (DMEM + 10% FCS). This was an essential control for the co-culture model. A further 

experiment was then conducted to determine whether presence the S. aureus cells made the growth  
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media toxic for fibroblasts. This second study would help tune important parameters in setting up the 

final co-culture experiment. 

S. aureus was cultured in the growth media overnight and showed strong growth which was determined 

by turbidity (OD600 > 1). The resulting cultures appeared very cloudy and the media colour changed 

from pink to yellow indicating a pH change. The resulting liquid culture was streaked onto TSA plates. 

After 24 hours of culture, single bright yellow colonies appeared confirming the culture purity and the 

viability S. aureus cells. 

The resulting media from the overnight S. aureus cultures was filter sterilised and added to cell culture 

wells containing confluent HFbs. A prominent phenotypic change was observed in HFbs treated in this 

way: Cytoplasm was greatly reduced and the nucleus darkened suggesting cell death (Figure 93). This is 

an unsurprising result considering all strains of S. aureus secrete exotoxins containing a number of 

cytotoxic enzymes and exoproteins [257]. It is also possible the pH change played a part in the demise of 

the treated HFbs. 

These experiments showed: 

1. That S. aureus could grow in the same growth media as HFbs. 

2. The presence of S. aureus in the media made the media cytotoxic for HFbs. 

The first finding proved that DMEM + 10% FCS could be used as the co-culture growth media as both S. 

aureus and HFbs could be grown successfully independently in the media. There was no need to develop 

a modified culture media as was done in previous co-culture models [141]. This is also more biomimetic 

as when infections occur, bacteria are entering the host environment which is tuned for cell growth not 

bacterial growth. 

The second finding showed that the presence of the S. aureus in the media turns the media cytotoxic to 

HFbs. This cytotoxicity would play a role in vivo wound sepsis and thus is a desirable phenomenon to 

have in the co-culture. Despite the change in phenotype there were cells that were still attached to the 

bottom of the well suggesting a level of survival despite the harsh conditions imposed by the S. aureus. 

Previous co-cultures performed employed flowing systems to decrease the cytotoxic effect of the 

bacteria in the media. Subbiahdoss et al [141] said that under static co-culture conditions “cells did not 

have a chance to win the race for the [biomaterial] surface”. Flowing conditions are experienced in vivo 

but these are expected to be slow-flow environments and static cultures may better represent the 
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localised build up of exotoxins from invading bacteria. Further, Subbiahdoss proposed his in vitro model 

for functionalised surfaces and coatings [141]. Our model has been developed with antibacterial-eluting 

systems in mind. It may be that the rapid destruction of bacteria from eluted antibiotics gives cells a 

chance to “win” in our model. Finally the simplicity of a static system makes it preferential to 

widespread adoption. 

 

  

Figure 93. Phenotypic effect of toxic media on Human Fibroblasts. a) Control group: Confluent HFbs in 
normal growth media exhibiting healthy phenotype. b) & c) HFbs exposed to S. aureus toxic media 

exhibit abnormal phenotype with a substantial decrease in cytoplasm. 200x magnification. 

4.4.1.4 Cell and Bacterial Growth on bi-Phasic Scaffold 

Before the septic wound model could be attempted a preliminary experiment was required to validate 

whether the basic bi-phasic PVA-PCL scaffold could support growth of fibroblasts and staphylococcus in 

a) 

b) c) 



198 
 

their own right. It was also important to check that the isolation and quantification of rRNA from 

bacteria and cells would produce quantifiable results.  

Cells and bacteria were added to each scaffold and harvested after 1 and 4 days of culture. Cells were 

stored in TriReagent at -80°C to preserve RNA until ready for extraction. Reverse transcription and qPCR 

were carried out to quantify number of target gene copies.  

18s gene copies indicating fibroblasts were approx 4000/µl for the scaffolds harvested after 1 day of 

culture. After 4 days of culture this dropped to approx 10/µl (Figure 94). The expected result would be 

for 18s levels to remain constant or slightly increase as fibroblasts attach and grow on the scaffold. The 

decrease in fibroblasts could relate to a cytotoxic effect from the scaffold. However, this is unlikely 

because of the track-record in wound biocompatibility of the materials components of the scaffold: PVA 

[101]  and PCL [107].  Only duplicates were performed to try and conserve samples so it is possible that 

this unexpected result stems from natural variation, however the results were consistent within the 

small sample size. Records show the day 4 cultured cells were stored for around 5 weeks in TriReagent. 

It is possible that the RNA may have degraded during this time accounting for the low 18s yields. 

The 16s gene copies indicating S. aureus increased from approx 5000 to 50000 copies/µl. This 

exponential increase was expected as it corresponds with the exponential growth of bacteria. The 

results were consistent within the biological duplicate marked by the small error bars (Figure 94). This 

shows that S. aureus colonies were able to survive in the DMEM media and in the presence of the 

scaffold degradation products such as PVA and trace ethanol. The results also validated the RNA 

isolation and quantification methods as sensitive enough to illustrate this growth event.  
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Figure 94. Individual culture of Fibroblasts and S. aureus on PVA-PCL scaffolds. Results show qPCR 
quantification of rRNA from extracted cells (18s) and bacteria (16s) removed from scaffolds after 1 

and 4 days cell culture. Error bars = Std; n=2. 

The possible cytotoxic effect of the PVA-PCL scaffold on fibroblasts was deemed unlikely.  The bacteria 

were able to grow uninhibited on the scaffold. Both fibroblasts and bacteria could be detected with 

enough sensitivity to illustrate growth or decline. Therefore the protocol was deemed successful and 

approved for use in the final co-culture septic wound model. 

4.4.1.5 Final Co-culture 

Human fibroblasts were co-cultured with Staphylococcus aureus in the presence of different scaffold 

designs. The co-culture was used to simulate a septic wound, whereby both human cells and bacterial 

cells are interacting and competing with one another for the biomaterial surface.  

Fibroblasts-only cultures were necessary controls for normal fibroblasts growth and attachment onto 

the different scaffolds. These sample sets were isolated from the co-culture samples to minimise the 

chance of bacterial contamination from the co-cultures. Bacterial contamination of culture wells can 

easily be seen because DMEM media contains a pH indicator which will turn from pink to yellow in the 

presence of bacterial acidic metabolic products. The media turning cloudy is another common sign of 

contamination. No cloudiness or colour change was seen in fibroblast only controls throughout the 5 

day culture period. In contrast the co-cultures became yellow and cloudy after 24 hours with the 

exception of those containing scaffolds with entrapped erythromycin. This suggests that the 

erythromycin antibiotic was preventing bacterial metabolism, possibly by directly inactivating the 
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bacteria, while the other co-cultures allowed bacterial growth and metabolism. The sample set 

containing Bioglass but not erythromycin exhibited only minor colour change. This could be due to 

bioglass’ antibacterial and/or its alkali nature (Figure 95). 

 

Figure 95. Colour change of DMEM media in the presence of bacterial acidic metabolites. a) PCL 
scaffold; b) PCL-PVA; c) PCL-PVA-γ; d) PCL-PVA-BG- γ; e) PCL-PVA-Ery- γ; f) PCL-PVA-Ery-BG- γ. 

By day 5 there was no stark difference in the media colour of co-culture samples. However, the sample 

sets without erythromycin still appeared more turbid. This may be due to biofilm formation with a 

change in bacteria growth and metabolism and less production of acidic metabolites. 

After 24 hours and 120 hours of culturing the scaffolds were washed and the adhered cellular matter 

harvested by trypsinisation followed by sonication. Trypsinisation was performed first to remove 

adherent fibroblasts, which may have become lysed during the sonication process needed to remove 

bacterial biofilms. RNA extraction followed with utilisation of bead beating to release bacterial RNA from 

within the tough S. aureus cell wall. RNA concentration was quantified using the nanodrop (Figure 96). 
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a) 

 

b) 

 

Figure 96. Nanodrop RNA quantification of cells cultured on different scaffold types. Cells 
were harvested form scaffolds after 1 and 5 days of culture. a) Fibroblast only controls; b) 

Fibroblast, S. aureus co-cultures. Error bars = Std; n=3. 

The nanodrop data showed large variation as seen by the large error bars. This is likely due to the 

‘normal method’ addition of fibroblasts which as previously mentioned has high variability (4.4.1.1). 

However, a trend could still be seen. The fibroblast only cultures RNA concentration increased over 

time. This is expected, as fibroblasts grow and proliferate on the scaffold. The co-culture RNA 

concentration seemed to decrease over time. It is difficult to postulate why, without data on both 

bacterial and fibroblast RNA (which will be discussed below in the qPCR results).It is also worth noting 

that the RNA concentrations were higher for the co-culture samples. This makes sense as there are more 

cells in these cultures due to the bacterial inoculation. Bacteria are also smaller cells and stay suspended 

more easily. This would increase the RNA concentration in two possible ways: 
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1. The more planktonic bacteria remained in the scaffold after washing and 

had their RNA extracted. 

2. The suspended bacteria were more adept at adhering to the scaffold than 

the fibroblasts. 

a) 

 

b) 

 

Figure 97. qPCR 18s and 16s gene quantification of cell cultured on different scaffold types. Cells were 
harvested form scaffolds after 1 and 5 days of culture. 18s gene indicates human fibroblasts while 16s 
gene indicates S. aureus bacteria. a) Fibroblast only controls; b) Fibroblast, S. aureus co-cultures. Error 
bars = Std; n=3. Differences between day 1 and day 5 within the same sample sets were all statistically 
significant (p <0.05). In addition, * and † represent significant differences (p <0.05) across sample sets.  

 

* 

* 

† 

† 
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Reverse transcription was carried out normally followed by qPCR using both 18s and 16s primers on 

each sample set to quantify animal and bacterial rRNA respectively (raw data can be viewed in Appendix 

A.4). Standards of purified 18s and 16s genes were run has internal controls for each PCR and used to 

quantify the gene copies/μl from the cycle threshold value obtained. The threshold of each run was set 

manually in the interest of keeping the internal standard curves consistent. Gene copies were the 

chosen metric as opposed to cell numbers as quantification of cell numbers based on rRNA is invalid in 

this wound model given the fluctuations in rRNA gene copies per cell when under severe stress. 

Meanwhile, rRNA gene copies remain a suitable marker for cell viability for both human cells and 

bacteria [184]. Despite this standard curves relating gene copies to cell number for both HFb and S. 

aureus were developed, which may be able to be used in future studies (Appendix Appendix B). 

A stark difference is seen between the fibroblast only controls and the co-cultures: The yellow and 

orange columns indicating 16s RNA are virtually absent in the fibroblast only controls (Figure 97). This 

was the desired outcome, as no bacteria were added to these cultures and thus no bacterial RNA was 

anticipated. The yellow columns in the PCL and PCL-PVA-Gamma scaffolds were probably due to 

contamination after cells were harvested. 

The fibroblast only cultures exhibited relatively high concentrations of 18s rRNA after both 1 day and 5 

days of culture. Two scaffolds, PCL and PCL-PVA-BG-Gamma, showed an increase in 18s concentration 

over the culture period, whereas the others showed a very slight decrease. In particular the PCL scaffold 

showed the greatest increase in fibroblast growth. However, this is probably because the day 1 18s 

concentration is substantially lower than in the other scaffolds. This is likely due to the PCL scaffolds 

having larger porosity and more hydrophobic surface area making it difficult for initial fibroblast 

adhesion. The other scaffolds are PVA coated which as discussed earlier decreases scaffold porosity and 

may trap more fibroblasts added directly into the scaffold. Only minor growth was actually expected 

over the 5 day culture period. Trinh et al [256] performed a metabolic assay to measure fibroblast 

growth on the PCL scaffold. It was found that only minor growth occurred until 11 days culture (Figure 

98). The increased 18s RNA seen in the PCL-PVA-BG-Gamma scaffold may have to do with its increased 

bioactivity from the 45S5 bioglass particles. But if this were the case one would also expect increased 

18s RNA between the PCL-PVA-Ery-Gamma and PCL-PVA-Ery-BG-Gamma samples; which did not occur. 
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Figure 98. Fibroblast proliferation data. CS=coated scaffold, NS=non coated scaffold, CP=coated plate, 
NP= non coated plate [256]. 

The PCL-PVA-Ery-Gamma and PCL-PVA-Ery-BG-Gamma samples exhibited lower day 5 18s RNA than 

other scaffolds in fibroblast only culture. Erythromycin has been shown to be cytotoxic at high 

concentrations. The soak-off period in PBS was meant to account for this; bringing the erythromycin 

concentration to less than 500ug/ml. It is possible the sustained exposure to erythromycin at lower 

concentrations may still have a cytotoxic effect which accounts for this result. 

The qPCR results clearly show the competition between the bacteria and fibroblasts in co-culture. After 

24 hours of co-culture the 18s RNA concentration is lower than seen in the fibroblast only controls for all 

scaffolds that do not contain erythromycin. In the PCL-PVA-Ery-Gamma and PCL-PVA-Ery-BG-Gamma 

samples the 18s RNA was found to be greater than the fibroblast only control after 24 hours of co-

culture. This is likely due to variations in scaffold size, erythromycin loading and fibroblast loading. 

Conversely, the 16s RNA concentration is very high in all samples except the PCL-PVA-Ery-Gamma and 

PCL-PVA-Ery-BG-Gamma samples in which 16s RNA was a thousand-fold less. Comparing this with the 

fibroblast only data shows the cytotoxic effect of the S. aureus bacteria. S. aureus grows comfortably in 

the DMEM-10% FCS growth media and competes with fibroblasts for nutrients. In addition, S. aureus 

produce exotoxins that negatively affect fibroblast proliferation and morphology. The erythromycin 

eluted into the co-culture environment with bacteriostatic and bactericidal effects on S. aureus, limiting 

the amount of exotoxins produced and allowing the fibroblasts to better compete. 

After 5 days of culture the 16s rRNA decreased in all samples. However, the amount of 16s rRNA in PCL-

PVA-Ery-Gamma and PCL-PVA-Ery-BG-Gamma were far lower, resembling the contamination levels seen 

in some of the fibroblast only controls. This suggests less bacteria are present and fits with the 
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observation that there was less of a colour change in the media after 5 days co-culture. The drop in 18s 

rRNA across the non-antibiotic samples may be a result of the culture reaching a stationary phase of 

growth or increased biofilm formation making the removal of bacterial cells more difficult. In the 

samples containing erythromycin, the drug would have been eluted throughout the 5 day period 

accounting for the extended bactericidal effect and further drop in 16s RNA. 

18s RNA after 5 days of co-culture decreased compared with the day 1 co-culture results and the day 5 

fibroblast only controls. This was the case for all scaffold samples, including the erythromycin-containing 

PCL-PVA-Ery-Gamma and PCL-PVA-Ery-BG-Gamma, which exhibited only slightly higher 18s RNA than 

the other samples. The decrease in 18s RNA between 1 and 5 days co-culture was anticipated in samples 

that were not eluting erythromycin as S. aureus could grow unopposed and exotoxins could continue to 

kill fibroblasts. Taking this into account, the 18s RNA was higher than expected in PCL, PCL-PVA and PCL-

PVA-Gamma samples. It was thought that live fibroblasts and thus 18s RNA would be virtually non-

existent after 5 days culture in the toxic environment. Nevertheless, comparing the co-culture results 

with the fibroblast only controls shows a marked decrease in 18s RNA, indicating fibroblast cell-death. 

The PCL-PVA-Ery-Gamma and PCL-PVA-Ery-BG-Gamma 18s RNA were hypothesized to reach similar 

levels as those seen in the fibroblast only cultures, but were about ten-fold lower. This may be because 

of the combination of S. aureus exotoxins and erythromycin has an increased cytotoxic effect that is 

time-dependent – more cytotoxic over the 5 day period.  

This wound model was designed to closely mimic clinical conditions. The bacterial load of 100,000 cells 

was chosen to reflect a debrided wound. S. aureus was chosen as it is by far the most relevant bacteria 

in chronic wounds [101, 114]. Fibroblast cells are the main constituent cell in the dermis. A static culture 

of small volume (500ul) was used to simulate the poor perfusion seen in chronic wounds. The co-culture 

goes beyond most in vitro wound models that consider bacteria and human cells separately but very 

rarely together where the direct interactions between the cell types can be seen [140, 171, 176]. This 

co-culture did allow such insights giving it a higher level of complexity and relevance. The co-culture as a 

model for septic wound healing responded predictably to the therapeutic scaffolds and that in itself is 

validating. 

One sample from each set of fibroblast only and co-cultured scaffolds were placed in glutaraldehyde as 

the initial fixative and prepared for SEM. Non-cultured samples were also examined by SEM as controls. 

These were not prepared with biological specimen preparation as they had the added purpose of 
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exhibiting what the scaffold surface looked like before culture. For this purpose, it was better that the 

samples were not exposed to the multiple chemical washes used in biological specimen preparation. 

SEM is a common way to image scaffolds as other microscopy techniques do not achieve the same 

depth of field resulting in blurry images. The draw-back of SEM is that specialized stains cannot be used 

to illuminate biological features. The electron beam does not discriminate between different materials 

and will show all surfaces in varying shades of grey as seen below. This makes it difficult to identify 

biological features in particular which appear very similar to specks of dust or other artefacts on the 

surface. 

The PCL scaffold appeared to be covered in biological matter in both the fibroblast-only culture and co-

culture. Struts were almost completely covered in fibroblast-sized globules (20-50um) which appeared 

as a rough texturing on the normally smooth struts. In some places the confluence of fibroblasts makes 

the observer question whether they are just surfaces of the struts that have reacted to the specimen 

preparation. However, there are some breaches in the cellular layer where the PCL surface of the 

scaffold can be seen (Figure 99d). Further, the PVA coated scaffolds do not exhibit this dramatic surface 

change and normal PCL surfaces can be seen.  
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Figure 99. Fibroblast binding to PCL scaffold. a) Not cultured PCL scaffold (x20) and b) scaffold strut 
close-up (x200); c) Fibroblast cultured PCL scaffold (x20) and d) scaffold strut close up. White arrows = 

PCL surface, Red arrows indicate fibroblasts. 

The co-cultured PCL scaffold had similar morphology to the fibroblast only scaffold (Figure 100). This 

was not expected given the qPCR results showing a large decrease in 18s rRNA compared to the control 

a) b) 

c) d) 
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after 5 days culture. Therefore, the cellular matter on the co-cultured scaffold is likely to be non-viable 

cell debris that adhered to the PCL surface due to physical adhesion. 

  

Figure 100 Cell binding to Co-cultured PCL scaffold. a) Co-cultured PCL scaffold (x20) and b) scaffold 
strut close-up (x200). White arrows = PCL surface, Red arrows indicate fibroblasts. 

In the PVA-coated scaffolds, the general architecture appeared more regular as cells were sparser and 

did not form an obvious confluent mat as seen in the PCL scaffolds. This is despite the fact that 18s rRNA 

concentrations in PVA-coated scaffolds were similar to PCL scaffolds. Fibroblasts were difficult to detect 

because their distinguishing features (tendrils and stretched shape) appear similar to the hydrogel 

coating. It is also possible that the mechanical strains from swelling and dehydration during sample 

preparation damaged the cellular features on the surfaces of these scaffolds. Figure 101c shows a cell 

indicated by the particularly fine tendril structure.  

Bacterial cells were much easier to visualise. Surface fouling could be seen as lighter patches of tiny 

small specs even at relatively low magnification (Figure 102a). S. aureus has a very regular spherical 

cocci-appearance and are easily distinguishable from other features on the scaffolds. The other 

characteristic adding to the ease of identification is the small size of S. aureus cells; approximately 1um 

diameter (Figure 102b). These cells were seen in PCL-PVA, PCL-PVA-Gamma and PCL-PVA-BG-Gamma 

samples. S. aureus cells were often seen in colonies that were partially enveloped in biofilm (Figure 

a) b) 
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102c-d). In these scaffold samples the bacteria overwhelmed any fibroblasts initially present as none 

could be found on the surfaces. 

  

 

Figure 101.Cell Binding to PVA-coated scaffolds. a) PCL-PVA-Gamma no-cell control; b) PCL-PVA 
Fibroblast only culture (x20); c) PCL-PVA Fibroblast only culture (x500). White arrows = PCL surface, 

Red arrows = fibroblasts, Blue arrows = PVA surface. 

a) b) 

c) 
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Figure 102. Staphylococcus aureus cells seen on co-cultured scaffolds. a) PCL-PVA scaffold (x20); b) 
PCL-PVA (x1500); c) PCL-PVA-Gamma (x1500); d) PCL-PVA-BG-Gamma (x1350). White arrows = PCL 

surface,Yellow arrows = S. aureus, Blue arrows = PVA surface. 

The scaffolds containing erythromycin were distinctive from other PVA-coated scaffolds after 

manufacture. These scaffolds exhibited a hydrogel structure of thin shard-like strands which was 

homogenous throughout the architecture giving a roughened appearance in contrast to the very smooth 

regular PVA-coated scaffolds (Figure 103a/b). This is likely due to recrystalisation of erythromycin after 

a) b) 

c) d) 
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the scaffold is dehydrated. The shards are crystals of erythromycin entrapped within the PVA hydrogel. 

This morphology was not seen in samples that were cultured for 5 days. This validates the 

interpretation, as erythromycin would have been almost completely eluted from scaffold by this point.  

  

  
Figure 103.Morphology of Antibiotic scaffolds. a) PCL-PVA scaffold not-cultured, here for comparison 

(x200); b) PCL-PVA-Ery-Gamma not-cultured (x200); c) PCL-PVA-Ery-BG-Gamma fibroblast only 
cultured (x200); d) PCL-PVA-Ery-Gamma co-cultured (x500). White arrows = PCL surface, Red arrows = 

fibroblasts, Blue arrows = PVA surface, Green arrows = 45S5 bioglass. 

a) b) 

c) d) 
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Fibroblasts could be seen on the erythromycin scaffolds. Figure 103c shows the PCL-PVA-Ery-BG-Gamma 

scaffold with a number of different features within the field of view. Fibroblasts can be seen with two 

different morphologies. Fibroblasts show a rounded morphology on the hydrogel surface and a 

flattened, spread-out morphology on the PCL surface. Different material surface properties are known 

to influence cell differentiation. Parker et al [252] demonstrated a flat morphology of chondrocytes on a 

PCL surface and a rounded morphology on a alginate hydrogel coating. A similar pattern is seen here. 

The flat morphology is desirable for fibroblasts. This may be a disadvantage of the PVA coating and why 

the only thin hydrogel webbing is preferable: To maintain PCL surface area for fibroblast adhesion and 

differentiation. A Bioglass particle can also be seen coming through the surface of the hydrogel. 

In both co-cultured erythromycin composite scaffolds no S. aureus cells or biofilm were visible. This 

shows that bacteria were not able to adhere and proliferate on the surface of this scaffold. Fibroblasts 

could be found in these co-cultured scaffolds with regular morphology (Figure 103d). This is further 

validation of the designed scaffold’s ability to fight infection while allowing for new dermal growth. 

Therefore this design may be important for chronic wound healing and treating sepsis. 

4.4.2 Mechanical Properties of Synthetic Skin Graft 

Scaffold samples were tested by DMA in compression to quantify relevant mechanical properties for use 

in diabetic foot ulcers. 

The DMA set up was a compressive plate coupled with a load cell. The computer program recorded 

relevant signals such as force and height, which it then used to calculate stress and strain respectively. In 

calculating the stress, the computer needs the user to input the cross-sectional area of the sample. The 

cross-sectional area of scaffold samples is incredibly complex due to their porosity and complex 

architecture. Because of the difficulties of calculating this true surface area, the bulk geometry of the 

samples was used to assume the cross-sectional area as square. 

Stress-strain curves were obtained. Curves had two characteristic sections: an initial high strain section 

and a later low strain section. The initial section relates to elastic and plastic deformation of the pore 

structure. The second section reflects when the material can be thought of as non-porous. (Olah et al). 

Only the initial section was analysed as this would be the working strain range of the device in vivo and 

accounts for the porous structure of the scaffolds. A relation for the linear portion of this initial section 

of the curve was used to determine the compressive modulus. The compressive modulus can be given 

by the following equation: 
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 Ecomp = σ/ε (12)  

 

Where Ecomp is the compressive modulus, σ is the stress developed in the porous scaffold and ε is the 

scaffold strain state (dimensionless). 

The average Ecomp of the basic PCL scaffold was 54.43 kPa (Figure 104). The addition of PVA hydrogel in 

its hydrated form yielded much unchanged compressive properties; 53.066 kPa. Addition of the bioglass 

coating increased the Ecomp; PCL-PVA-BG had an Ecomp of 72.672 kPa. Gamma irradiation had little 

effect on the Ecomp with PCL-PVA-Gamma and PCL-PVA-BG-Gamma samples registering 54.462 kPa and 

74.03 kPa respectively; almost identical to their non-sterilised counterparts. The addition of 

erythromycin seemed to slightly decrease the Ecomp. The modulus for the PCL-PVA-Ery-BG-Gamma 

scaffold was 62.978 kPa, approximately 11 kPa less than the PCL-PVA-BG-Gamma sample. The starkest 

result was the PCL-PVA-Dry scaffold with a Ecomp of 237.11 kPa, which is at least 3 times greater than 

all other samples. 

 

Figure 104. Compression DMA of square scaffold samples. Error bars = Standard deviation; n=5. 
Significant difference compared with: *PCL-PVA, **PCL-PVA-Gamma and ***All other samples; using 

Student's t-test (p ≤ 0.05) 

* ** 

*** 
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The PCL was tested “hydrated” as a matter of consistency but in reality the hydrophobic PCL absorbed 

almost zero water after drying on paper. The average mass for the PCL samples was 10.21 mg which is 

typical for a non-soaked scaffold sample of the same size. The PCL scaffolds tested had been gamma 

sterilised. 

The hydrated PVA coating made no significant difference to the compressive properties of the scaffold 

(p > 0.05). This is an unexpected result given the increased porosity from the coating. The thin web-like 

coating architecture and its poor mechanical properties compared to the PCL may explain the 

phenomenon. It is clear the PCL phase controls the mechanical properties of the scaffold. 

The bioglass coating caused a statistically significant increase in compressive modulus (p ≤ 0.05). This is 

an expected result. Bioglass is a stiff and brittle material similar to typical glasses (albeit not as strong). 

The surface becomes hydrated and forms a gel when in aqueous solution and softens. But the bulk 

particles that coat the surfaces of these scaffolds retain their glassy material properties and stiffen the 

structure against compression. 

Gamma irradiation had no appreciable effect on the scaffold compressive modulus (p > 0.05). This 

agrees well with previous hydrogel data that showed negligible changes to hydrogel properties (swelling 

and gel fraction) after gamma sterilization. 

The addition of erythromycin slightly decreased compressive modulus albeit not significantly (p > 0.05). 

This may be because the erythromycin addition to the PVA solution during manufacturing increases its 

viscosity. This in turn could have caused the delamination of bioglass attached to the PCL surface. 

Unfortunately, no more samples were available to test PCL-PVA-Ery-Gamma. The non-bioglass sample 

would have helped better explain this result. The decrease was not significant and the erythromycin 

may have no effect. This is what was hypothesised; that erythromycin would be almost completely 

eluted during hydration of samples before DMA and would have no effect on scaffold mechanics. 

The unhydrated PCL-PVA-Dry sample had a much higher compressive modulus than the hydrated PVA 

scaffolds (p ≤ 0.05). This is due to the PVA being below its glass transition point and polymer chains have 

little freedom to move. In this state it has mechanical properties like a stiff, brittle, hard plastic.  

The scaffolds were tested for compressive modulus as this was considered the key mechanical property 

for diabetic ulcer healing. Many diabetic ulcers occur due to long term pressure sores that the patient in 

not aware of due to peripheral neuropathy [106]. Thus the scaffold should not be too stiff compared to 
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the surrounding tissue lest it act as a pressure point itself. However, the scaffold must not be too weak 

in compression that it becomes squashed and its porous structure is lost.  

Previous studies on testing pig skin in compression found that at 25% strain the modulus was 35kPa 

[106]. The scaffolds tested here were quite close to this value (with the exception of the non-hydrated 

scaffold). Scaffolds with bioglass were a little stiffer, although it is difficult to conclude whether this is a 

negative without further testing. It may be the scaffold should be stiffer to protect pores from collapse. 

The non-hydrated state greatly increased the stiffness of scaffold and if utilised in this way may create a 

pressure point which may exacerbate the wound. This gives further need to a soak down step that a 

clinician may perform before administering to the patient. However, if the wound bed is kept moist 

enough, the scaffold may swell quickly enough for these poor mechanical properties to have little 

impact. In fact, this swelling effect may be beneficial in fitting the scaffold to the wound bed; the 

swelling filling up any spaces and ensuring good contact with the wound bed. To summarise the 

scaffolds tested had similar mechanical properties to biological skin and are therefore likely to perform 

well mechanical in the skin wound environment. 
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4.4.3 Long-term degradation of Ethylene 

The batches of 10 biofilter scaffolds were able to reduce a 200-600ppm injection to below the 

detectable limit even after 86 days of operation (Figure 105). The control serum bottle containing only 

300ppm of ethylene remained at this level with no further injections.  

 

Figure 105. Long-term degradation of ethylene by NBB4-Biofilter. Ethylene was injected at regular 
time intervals (maximum 7 days) and the ethylene concentration was monitored using GC analysis. 

The continued breakdown of ethylene is seen in NBB4 biofilter samples. The control, 200ppm 
ethylene in bottle, was unable to degrade the ethylene. 

Although shorter time points were not tested, the rate on the 85th day seemed to be similar to the 1st 

day of testing with all ethylene degraded within 24 hours. This suggests the biofilter retains operational 

stability to at least 3 months. Some sample points did not see full depletion of the ethylene in 24 hours. 

This did not seem to be isolated to the diminished activity of one particular batch and is more likely due 

to a sampling error or drift of the standard curve from changes in the flame ionisation detector of the 

GC.  

In this experiment the biofilters undergo numerous starvation periods between degrading the ethylene 

load and the next injection. The biofilters continued to degrade the ethylene despite these starvation 

periods. Therefore the device has a level of reusability following a period of ethylene starvation. Most 

biofilter investigations deliver a constant stream of ethylene influent to the biofilter [196-197, 203, 208, 

210] as opposed to the simplified re-injection method used here.  
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Biofilters processing and ethylene injection were done in a sterile manner to prevent contamination. No 

visual signs of contamination such as fungal growth were seen during the testing period. The white 

scaffolds eventually turned yellow due to NBB4 growth (Figure 106). Growth of viable cells in a biofilter 

has been previously reported [203] and is likely to increase operational stability. 

  

Figure 106. Growing NBB4 in biofilters. Left: NBB4 biofilter 1 day after immobilization. Right: NBB4 
biofilter after 90 days of long-term ethylene degradation. 

4.4.4 Storage Life of Biofilter 

4.4.4.1 Starvation Conditions and Activity 

After starvation scaffold batches were put in seal serum bottles along with 100ppm of ethylene and 

measured by GC until the ethylene peak was below the detectable limit. The ethylene peak occurred 

between 1.2-1.5 minutes into the run at oven temperature 200C.  

All scaffold batches starved in a humidified environment depleted the concentration of ethylene within 

the serum bottles to below the detectable limit (Figure 107). Slower degradation exhibited after only 2 

days starvation is likely due to no sampling point being examined over the first 3 days after ethylene 

injection. At 62 days the ethylene degradation rate was reduced and it took two days for ethylene levels 

to go below the detectable limit. Interestingly the 30 day starved sample took 3 days, longer than the 62 
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day sample. This may be due to differing levels of moisture within these scaffolds. The 30 day sample 

may have been stored dryer (as humidity inside the bottles could not easily be measured) explaining the 

loss of activity. The explanation for a loss in cellular activity correlates well with the apparent loss of 

capacity of these samples with the 30 day sample only able to reduce the ethylene levels to 20ppm. 

No appreciable stall time was seen before commencement of ethylene depletion. This suggests that the 

NBB4 mono-oxygenase enzyme activity is preserved during starvation in a humidified environment up to 

62 days.  

 

Figure 107. Depletion of ethylene by NBB4-scaffolds that were starved of ethylene for different 
periods in a humidified environment. 

Scaffolds starved up to 12 days in a dry environment showed a stall time before commencing to deplete 

the ethylene in the serum bottle (Figure 108). Scaffold batches starved for 25 days and longer could not 

deplete the ethylene load in 14 days of monitoring. The desiccation during storage likely rendered most 

cells unviable and inactive. This is supported by biofilters and trickling systems maintaining a moist 

environment for bacterial cell survival [205]. The very slow decrease in ethylene is probably due to 

losses from the serum bottle during injections.   
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Figure 108. Depletion of ethylene by NBB4-scaffolds that were starved of ethylene for different 
periods in a dry environment. 

The humidified environment had a stark effect on ethylene depletion compared with a dry environment 

during NBB4 starvation. In a humidified environment scaffolds were able to degrade ethylene even after 

2 months ethylene starvation with the ethylene degrading activity dropping 50% compared with no 

storage time. This biofilter system shows favourable storage performance compared with previous 

biofilters: Elsgaard et al stored biofilters for up to 4 weeks with a > 75% drop in activity [196]. The 

excellent storage performance is likely due to the MSM agar maintaining a moist environment and 

providing a reservoir of nutrients for the bacteria.  

These results provide a valuable insight into the storage conditions and packaging design of an ethylene 

biofilter. The successful operation of the biofilter may also rely on retaining a moist environment to 

prevent NBB4 cells from drying out and losing activity and viability.  

4.4.4.2 Viable Cell Recovery 

The viable cell number on the scaffold was determined by removing the adhered cells by sonication and 

vortexing, plating and viable counts. This cell recovery technique was previously tested and showed a 

35%-40% recovery rate (data not shown). The 10-fold dilution series went from undiluted to 1000-fold, 

with the countable plate (30-300 colonies) occurring at 100-fold.  
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The cell recovery rate was calculated by first determining the initial number of cells trapped in each 

scaffold. This was done by weighing scaffolds before (m0) and after (m1) processing, to calculate the 

volume of inoculated agar (which had an assumed density of 1) added to each scaffold. This was then 

multiplied by the known concentration of NBB4 cells in the agar (c0) (Table 27). The ratio of the viable 

count after starvation to the initial cell number gave the recovery rate: 

 

 퐶푒푙푙 푅푒푐표푣푒푟푦 푅푎푡푒% =
푉푖푎푏푙푒 퐶표푢푛푡

(푚 −  푚 ) × 푐
 

 

(13)  

It is important to note that the cell recovery rate as calculated this way encompasses both the loss of 

cells due to decreased cellular viability as well as losses due to the recovery technique. 

Table 27. Viable NBB4 cell recovery from scaffolds starved in a humidified environment. 

Experimental 

Condition 

Cell per millilitre of 

Initial Agar Suspension  

Cells per Scaffold 

at Zero time  

Cells per Scaffold 

at Sample time 

Cell Recovery rate 

(%) 

No Starvation  3.25 x106 2.90 x106 1.11 x106 38.07% 

12 Days Starvation 3.25 x106 1.54 x106 4.00 x105 25.90% 

20 Days Starvation 3.25 x106 1.13 x106 3.30 x105 29.29% 

30 Days Starvation  3.25 x106 5.30 x105 1.00 x105 18.87% 

47 Days Starvation 3.25 x106 2.33 x106 3.85 x105 16.54% 

 

The cell recovery rate showed a continual decrease from 38.07% for non-starved scaffolds to 16.54% 

after 47 days of starvation. Over a period of 47 days starvation in a humidified atmosphere, NBB4-

scaffolds showed a steady loss of the cell recovery rate. Given the recovery method was identical across 

all samples this loss suggests a genuine loss of viability which fits well with data attained above (Results 

& Discussion 4.4.4.1) and with other previous studies [196].The 30 day sample had the lowest number of 

viable cells but also the lowest initial cells per scaffold, explaining the lower than expected ethylene-

degrading activity of this sample (Results & Discussion 4.4.4.1). The initial low cells per scaffold is likely 

due to batch to batch variance in the manufacturing process. A sample at 62 days starvation was not 
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included in the data because the viable counts were too high even after a 1000-fold dilution. This could 

suggest growth on the scaffold during starvation period. 

The low recovery rate at day 0 was expected as the act of removing pathogens from scaffolds is not 

particularly efficient even without gel entrapment [181]. This could tentatively be used to determine the 

daily loss in cell viability, however other mechanisms could affect recovery rate such as increased biofilm 

thickness having a negative effect and loss of gel structure possibly increasing recovery rate with time 

[131].  

Another analytical approach was employed to isolate the loss in NBB4 viability with increasing starvation 

times. The recovery rate when scaffolds were not starved (Table 27) was used to calculate the ‘true 

number’ of cells on the scaffold by taking into account losses during processing. Relating this to the 

initial cell number determined by weighing gives the following equation: 

 

 
푅푒푙푎푡푖푣푒 퐶푒푙푙 푉푖푎푏푖푙푖푡푦% =  

푉푖푎푏푙푒 퐶표푢푛푡 ×  1
38.07%

(푚 −푚 )  ×  푐
 (14)  

 

As predicted the relative cell viability decreases with extended starvation times. However after 47 days 

starvation there is still 43.46% cell viability. This correlates to the ethylene degradation data in Results & 

Discussion 4.4.4.1 which shows approximately half activity after 47 days starvation. A linear trend is 

seen, from which the rate of decreasing cell viability with starvation time was calculated to be 1.16% 

loss in viability per day (Figure 109). Obviously though the possible NBB4 growth seen in the 62 day 

sample puts this relationship into question. 
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Figure 109. Loss of NBB4 viability on scaffolds starved for different periods in a humidified 
environment. 

 

4.4.5 Fruit Preservation 

Batches of three un-ripe bananas were put into air tight jars along with ten NBB4 biofilter scaffolds. This 

was compared to batches of bananas with no biofilters, so the action of the biofilter could be seen 

(Figure 110). After 4 weeks, banana batches that were in the presence of biofilters were a healthy 

yellow colour. In contrast bananas that did not have biofilters in the air tight jars appeared brown and 

black. These bananas exhibited other symptoms of physiological damage such as liquidation. These 

bananas also were colonized by fungal infections, which are also reported to be in part ethylene 

mediated along with the increased susceptibility to other pathogens [198-199]. 
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Figure 110. Preservation of Bananas. a) Control bananas time = 0; b) Control bananas time = 4 weeks, 
browning, fungus and liquidation can be seen; c) NBB4 Biofiltered bananas time = 0; d) NBB4 

Biofiltered bananas time = 4 weeks, still yellow and healthy. 

A NBB4 concentration dependent assay was set up to observe the minimum amount of active NBB4 

immobilized on scaffolds to preserve bananas over a period of 4 weeks. Biofilters were constructed with 

varying OD600 absorbencies in the NBB4-agar suspension. This resulted in biofilters with varying numbers 

of immobilised NBB4 and thus varying ethylene degradation efficiency. Cell densities of OD600 = 0, 0.01, 

0.1 and 0.8 were used. The OD600 = 0 sample was an agar coated scaffold without any NBB4 cells added. 

The biofilter activity can clearly be seen by the results with the higher OD600 biofilters able to better 

preserve the post-harvest bananas (Figure 111). In particular there is a stark comparison between the 

OD600 = 0.8 sample and the no-cell samples. The former was able to maintain a yellow colour on the 

bananas for 30 days whereas in the latter, bananas were black after 15 days. In theory, the cell density 

could be increased further to produce biofilters of even greater ethylene degrading activity. Indeed, gel 

entrapment bioreactor systems can have very high biomass loading, up to 700mg/g [126]. The limit to 



224 
 

this would probably be when the number of cells increased the viscosity of the agar, affecting the 

optimised coating. There may also be a point where addition of more NBB4 is inefficient as cells become 

overcrowded in the thin agar layer and are unable to contact the gas interface and consume ethylene. 

This experiment also shows how small the filter could potentially be. For example, four scaffolds at 

OD600 = 0.8 were effective at preserving three bananas. Four scaffolds accounts for a volume of 

approximately 7.5 cm3 with dimensions: 15 x 17 x 11 mm. As explained above there is no reasons why 

the cell concentration in scaffolds could not be increased exponentially. This could result in either an 

even smaller design to fit into supermarket packaging or a similar sized filter which could potentially 

preserve a large container of produce.  

 

Figure 111. Preservation of bananas dependent on NBB4 concentration. Different cell densities as 
measured by optical density (OD600=0, 0.01, 0.1 and 0.8), tested on bananas ripening activity after 0, 

15 and 30 days. 
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5 Device Design Summary 

5.1 Antibacterial Synthetic Skin Graft 

5.1.1 User Requirements/Design Inputs 

A chronic skin ulcer is a debilitating condition for patients. They are a result of poor blood flow to the 

injured dermis resulting in slow healing. These wounds are regularly subject to chronic bacterial and 

fungal infections which cause inflammation and prolong healing as well as imposing their own 

pathogenic effects. These ulcers are becoming more common due to the increase in diabetes and an 

aging population. 

For many years clinical treatment for chronic skin ulcers was contentious and generally ineffective. The 

wound was kept clean and dry and dressings were applied in an attempt to prevent biofouling. Systemic 

antibiotics were also administered as a prophylactic against infection. More recently dressings have 

become more advanced; containing antibiotics, antibacterial factors, dermal stem cells and growth 

factors. Some tissue engineering solutions exist on the market but these are expensive and have not 

demonstrated a correspondingly large increase in healing rates. Herein I have designed a synthetic skin 

graft device that improves on past treatments in terms of both clinical efficacy and cost efficiency. 

Clinicians and Patients are technically both the ‘users’ of this device. Clinicians must understand, 

possibly alter and implant the device while the Patient is the host of the implanted device. As such the 

different user requirements for each will be addressed separately for simplicity. Consideration of these 

requirements shows the end users are being considered. 

Clinician user requirements: 

1. Simple handling and implantation of device 

2. Limit maintenance or revision of device 

3. Produce good patient outcomes (see Patients) 

Patient user requirements: 

1. Limit maintenance or revision of device 
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2. Minimal pain or discomfort from implant 

3. Prevents infection over an extended period 

4. Reduced time of hospitalisation and wound treatment 

Regulatory requirements are constraints imposed by regulatory bodies and are usually related to the 

safety of the device. For implanted tissue engineering devices this usually relates to the safety, efficacy 

and sterility of the product: 

Regulatory requirements: 

1. Device conforms to international standards regarding sterility and validation of sterility; Prove 

device maintains a sterility assurance level (SAL) of less than 10-6. 

2. Device conforms to international standards regarding sterile packaging and its and validation. 

3. Device is adequately traceable and identifiable through use of labelling and quality systems. 

The User and Regulatory Requirements have been combined to form distinct and specific design inputs 

for the wound healing scaffold. These have been summarised into the table below (Table 28). It has to 

be mentioned, that design inputs in some circumstances be subject to validation and verification in 

unison. This is intentional as different aspects of the device must be tested to understand possible and 

anticipated synergistic effects. 

5.1.2 Design Evolution 

To meet user requirements a synthetic skin graft was envisioned. This graft would be a leave-in solution, 

distinct from a wound dressing that needs to be changed regularly. The graft would be bioactive for skin 

tissue and accelerate healing while simultaneously fighting infection in a sustained manner. To ease the 

costs on health systems the graft would be batch manufactured, use inexpensive synthetic materials and 

terminally sterilized.  

The initial design concept was based around the PCL scaffold developed by Elizabeth Boughton [237] but 

with attenuated antibacterial and bioactive coatings. The PCL scaffold would first be coated with 

Chloramphenicol by a soak-in process then coated with 45S5 bioglass. This increases the bioactivity of 

the scaffold for soft tissue while entrapping Chloramphenicol due to the closing of micropores from the 

heat-based coating method. The release of chloramphenicol would be controlled by a biodegradable 
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metallic envelope (MgZnCa amorphous alloy). This bulk-metallic glass (BMG) layer is itself antibacterial 

in nature and as it degrades it would allow the slow, controlled elution of the chloramphenicol coating 

beneath.  The bioactivity and mechanical properties of this scaffold encourage host skin cells to attach 

and proliferate.  

The chloramphenicol soak-in method initially showed promise as a high antibacterial loading efficiency 

was achieved on porous scaffolds [240]. However testing the chloramphenicol soak-in on PCL discs 

revealed only superficial adhesion which explained the extremely rapid release on chloramphenicol in 

previous antibiotic elution studies [240].The BMG coating was determined to be non-homogenous over 

the scaffold surface and inadequate as a degradable envelope to control the release of chloramphenicol. 

This drug delivery mechanism would not be able to maintain an inhibiting concentration of antibiotics 

for an extended period. However, BMG as an antibacterial agent may have its use in the future. It was 

found to be bactericidal against S. aureus. Further, metals have been shown to be effective against 

biofilms where antibiotics are less so [76, 134]. 

A new drug delivery system was required to address the sustained release design input. A new 

composite scaffold was designed with two distinct phases. The first: the PCL matrix with interconnected 

pores, >95% porosity and mechanical properties mimicking the dermis. The second: phase is a 

poly(vinyl-alcohol) (PVA) webbing that coats the PCL matrix. This webbing is a dehydrated crosslinked 

hydrogel, which when in vivo conditions swells releasing bioactive and antibacterial substances 

entrapped within. PVA has been used and tested extensively for drug delivery applications [25-26, 31, 

35, 38, 165, 168, 258-259]. Creating the PVA web-like coating was inspired by results from the gel 

entrapment of agar. Some parameters had to be tweaked to account for the change in material but the 

base concept is very similar. The porosity could be controlled by varying the PVA concentration but in 

the same way as the NBB4 biofilter, a high porosity was required but was inversely proportional to the 

active ingredient in this case the amount of antibiotic. A PVA concentration of 10% w/v was decided 

upon which corresponded to only 33µl of gel coated onto each scaffold for possible drug loading. 

Because of this the activity of the antibiotic and drug loading methods were reassessed to ensure 

sustained activity. 

MIC/MLC assays shows that chloramphenicol was not bactericidal and is consistent with the literature 

[150]. Although the bacteriostatic nature of the drug does not necessarily affect their clinical 

performance [150], it does affect results of long-term in vitro studies where a full resurgence on bacteria 

may be seen after the concentrations of the bacteriostatic antibiotic fall below the MIC. On the other 
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hand, this may allow very obvious confirmation of sustained release of antibiotics. Erythromycin was 

used to replace chloramphenicol. Erythromycin in mainly reported as bacteriostatic [149-150], but has 

been shown to have a much lower MIC than chloramphenicol when tested against 60 MRSA isolates 

[157] making it more relevant for wounds. This means it is more likely to have sustained antibacterial 

activity in comparison to chloramphenicol. 

Design changes needed to be made to increase the drug loading efficiency given the very thin PVA 

coating (a mere 33 µl of gel per scaffold). To further increase the drug loading efficiency of the PVA 

coating, PVA solutions were formed with ethanol. Erythromycin is much more soluble in ethanol than 

water [154] and PVA solutions could be formed and remained homogenous using up to 50% ethanol 

[165]. PVA hydrogels were cross-linked by freeze thawing – a common technique which introduces 

physical cross-links in the polymer structure [25-26, 30-32, 165] without the use of harmful chemical 

cross-linkers [27, 38, 260] or ionizing agents that would inactivate the antibiotics [163-164, 253]. After 

cross-linking the scaffolds were dried and ethanol volatised out of the system. Erythromycin diffused 

from the PVA hydrogel coating in a sustained manner. Manufacturing scaffolds with a higher ethanol 

concentration in the PVA solution allowed higher loading of erythromycin. PVA scaffolds made with 

50%v/v ethanol were able to prevent the growth of S. aureus for up to 5 days.  

The erythromycin release profile from the scaffold was standard for drug delivery devices – a burst 

release followed by sustained release [31, 35, 169].This phenomenon caused the scaffold to initially 

release very high concentrations  of erythromycin that were determined to have some cytotoxicity. To 

overcome this a soak-off method was designed to bring the initial concentration down to biocompatible 

levels. A 15 minute soak in sterile PBS proved enough to accomplish this. This simple procedure could be 

conducted by the clinician just prior to implantation of the device. This also softens the PVA in the 

scaffold allowing it to be cut to size if needed and applied to the wound. 
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5.1.3 Final Design 

Table 28. Design Outputs of Synthetic Skin Graft final design iteration. 

Design Input Design Output References Validation 

Biocompatible/Bioactive PCL, PVA are 

biocompatible and FDA 

approved in medical 

devices. 45S5 Bioglass is 

bioactive  

[107, 261] 4.4.1.5 

Bioabsorbable PCL, PVA and 45S5 bioglass 

are all bioabsorbable 

[15], [262] - 

Sustained Bactericidal Erythromycin is broad 

spectrum antibiotic. 

Especially susceptible to 

MRSA. Entrapped in thin 

film of PVA for slow 

release 

[157], [263] 4.3.1, 4.3.2, 4.4.1.5  

Skin-like mechanical 

properties 

Thin film PVA will have 

very little effect on 

mechanics. PCL scaffold 

already has properties that 

mimic skin. 

[264], [237] 4.4.2 

Sterile and packaged Dehydrated, Gamma 

sterilized, for simple 

packaging 

[163], [181] 4.3.1.2 

Inexpensive All synthetic materials that 

are readily available, 

simple scalable 

manufacturing procedure 

[28, 116] 3.1.2.2 

Good Shelf Life Dehydrated, encapsulated 

bioactive components to 

extend shelf life 

[28, 116] 4.3.1.2 
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The final design is a composite scaffold designed for accelerating the healing of chronic wounds. This 

scaffold should be thought of as a synthetic skin graft. It is a leave-in solution unlike wound dressings 

which need to be continually reapplied which increases the risk of infection. Each of the design inputs 

has been addressed through the final design (Table 28), encompassing a complete solution. 

The composite scaffold contains two distinct phases (Figure 112):  

1. Polycaprolactone (PCL) matrix with interconnected pores, >95% porosity and mechanical properties 

mimicking the dermis. It is coated with 45S5 bioglass - a known bioactive compound which increases 

fibroblast attachment and angiogenesis [71, 237]. 

2.  Poly(vinyl-alcohol) (PVA) webbing that coats the PCL matrix. This webbing is a dehydrated crosslinked 

hydrogel, which when in vivo conditions swells releasing bioactive and antibacterial substances 

entrapped within. Erythromycin diffuses from the hydrogel in a sustained manner preventing 

opportunistic pathogens such as methicillin resistant staphylococcus aureus. The PVA webbing also 

serves to preserve a moist wound environment, shown to be vital for healing.  

The scaffold is removed from its sterile packaging and soaked in a sterile solution of PBS for 15 minutes 

to optimise the antibacterial load and to soften the scaffold. Meanwhile the wound is debrided and 

cleaned of necrotic tissue. The clinician can then cut the scaffold to a size to match the dimensions of 

the wound cavity with sterile scissors. The scaffold is then implanted directly into the wound and 

secured by application of a secondary wound dressing. Once in vivo the PVA hydrogel phase swells to 

deliver antibiotics in a sustained manner. Meanwhile, fibroblasts are attracted to the bioactive glass and 

adhere to the PCL matrix. As time goes on, fibroblasts proliferate and begin to make extracellular matrix 

resulting in wound closure. After the wound has healed the scaffold breaks down naturally leaving only 

healthy tissue behind . 
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Figure 112.The structure and in vivo function of the novel synthetic skin graft. The schematic focuses 
on a single strut of the overall porous network. 

All the materials used in the composite scaffold are biocompatible and non-toxic. Further all the 

material are bioabsorbable [15, 262] meaning that implant will eventually be naturally broken down in 

the patient which is necessary for a leave-in solution and allows the natural tissue to takeover. The 

materials are also all synthetic and readily available – A downfall of many wound healing scaffolds in the 

past has been due to prohibitive costs due to use of expensive natural polymers and growth factors [28]. 

The composite uses both hydrophobic adherent PCL to house cells and hydrophilic anti-fouling PVA to 

prevent biofilm formation – a beneficial tissue engineering design that has been previously described 

[142-143] but never carried out in this way. 

The manufacturing method is simple, elegant and scalable. Gamma irradiation is employed for terminal 

sterilization which omits the need for expensive aseptic processing methods that are so common in 

tissue engineered products [163, 181, 265]. The scaffold is packaged dehydrated which ensures a long 

shelf life and further drives down costs. 

The efficacy of the final design was tested in the most sophisticated in vitro co-culture wound model to 

date. The scaffold was validated to attract dermal cells to attach and proliferate while inhibiting the 

growth and biofilm formation of S. aureus, the most common pathogen in chronic wounds [101]. The 

antibiotic protection against bacteria was sustained and local which is preferred over the use of systemic 

antibiotics which require high doses and have harmful side effects [101]. The scaffold has mechanical 

properties that very closely match skin and provides support against further trauma. 
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This scaffold overcomes limitations of current wound healing treatments. The scaffold is a leave-in 

solution which does not require frequent changes like wound dressings. This reduces health care costs 

and improves patient life style [12]. Tissue engineered skin substitutes have shown great potential for 

wound healing, but in the past they have suffered due to high cost [28], antigenicity and infection carry 

over [101]. Many studies have reported tissue engineering scaffolds that allow dermal cell growth and 

may be candidates for wound healing. However, many of these use expensive naturally-derived 

polymers, cellular components or growth factors [55, 110, 119, 182] and of the more cost-effective 

scaffold designs very few can deal with infection [107].  Antibacterial wound healing scaffolds commonly 

contain cytotoxic agents like silver [41, 55], or employ enzymes [266] and peptides [116] which cannot 

be terminally sterilized or dehydrated which consequently elevates production costs. My design 

promotes healing through dermis cell adhesion and angiogenesis while simultaneously fighting bacteria. 

It is inexpensive compared to other tissue engineered grafts due to smart synthetic material selection, a 

scalable manufacturing route, terminal sterilization and long shelf life. In summary I have designed a 

synthetic skin graft that overcomes shortcomings of previous traditional treatments and tissue 

engineered scaffolds making it a realistic candidate for chronic wound care. 

 

5.2 Probacterial NBB4 Ethylene Biofilter  

5.2.1 User Requirements/Design Inputs 

The price of fresh fruit is increasing due to a number of factors such as a growing population and climate 

change. Despite this a large proportion of fruit goes to waste. A key reason for this is ethylene mediated 

spoilage [201-202]. Ethylene is a gaseous pollutant and plant hormone that is emitted by fruits and in 

turn accelerates their ripening and degradation. This is particularly a problem in closed environments 

where elevated ethylene concentrations can greatly increase spoilage.  

Many methods already exist to remove ethylene. Of these, biofiltration presents a method with 

potential: Active bacteria are immobilized and metabolically breakdown ethylene to harmless products 

while sustaining themselves. This allows biofilters to remain active theoretically indefinitely offering a 

distinct advantage over chemical scrubbers. Herein I design a biofilter using an existing scaffold as a 

support to immobilize bacteria. 
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For this device the end user is not as obvious as for the wound healing scaffold. Ethylene mediated food 

spoilage occurs at all parts of the fresh fruit supply chain meaning users will require different designs 

based on the scale of the problem. For example, a biofilter for fruit distributors have different 

requirements and properties to a biofilter for supermarkets. Because of this I focussed on the base 

technology – the active biofilter component. 

User Requirements: 

1. Non-toxic and non-pathogenic 

2. Active agents are totally immobilized 

3. Sustained efficient degradation of ethylene 

4. Cost-competitive compared with other ethylene removers 

The User Requirements have been further distilled to form specific design inputs for biofiltration of 

ethylene. These have been summarised into the table below (Table 29). As mentioned above design 

inputs in some circumstances be subject to validation and verification in unison via device pilot studies. 

5.2.2 Design Evolution 

To meet user requirements a biofilter was envisioned that used environmental Mycobacterium as the 

active ethylene degrading agents. Environmental Mycobacteria are non-pathogenic and can survive on 

minimal nutrients for long periods. Mycobacterium chubuense strain NBB4 is an environmental bacteria 

isolated by ethylene enrichment from estuarine sediments. NBB4 has the ability to survive solely on 

ethylene as an energy source [233-235] making it an ideal candidate for biofiltration. Ethylene-active live 

NBB4 cells were to be immobilized on the PCL  scaffold, taking advantage of the support structures large 

surface area and 95% porosity allowing high activity and diffusion efficiency respectively [181, 237].  

The method of immobilization initially decided upon was adhesion. The thinking was the hydrophobic 

PCL scaffold would allow NBB4 cells to be adsorbed [123, 128]to its surface and the cells would later 

form biofilms, immobilizing themselves to the scaffold [122, 131]. Adhesion immobilization requires only 

very simple processing (a cell suspension is agitated in the presence of the immobilization support) 

making it a cost effective method. Adhesion has the additional advantage that the processing procedure 

is not harmful to bacteria and hence maximises activity of the cells [126]. 
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The adhesion method proved to be unreliable with levels of bacterial adhesion efficiency varying wildly 

between batches. Additional studies proceeded to test designs that would improve the efficiency and 

reliability of the NBB4 adhesion. In an attempt to improve the adhesion of NBB4, modifications to the 

scaffold surface and the NBB4 cell wall were attempted.  

Modifications to the scaffold surface were attempted first because altering materials is generally more 

predictable than altering biology. Given the development of a bioglass coating method for the scaffold a 

similar method was employed to apply coatings of glass and silica coatings. Inorganic ceramic 

immobilization supports have been used extensively [126, 215, 224], and as a particulate coating the 

surface area would be greatly increased. Whether it was due to the increased surface area or a 

favourable change of surface interactions, adhesion efficiency was increased by these coatings. 

However, the coatings involved an extra step of manufacturing and made the scaffolds more difficult to 

handle, which somewhat negated the advantages of adhesion immobilization.  

Modifications to the NBB4 cell surface were carried out by varying the growth phase, which had been 

reported to influence the capsular material that forms around the bacterial cell wall. It was found that 

harvesting NBB4 at an earlier phase of growth did increase the adhesion efficiency, a result that 

corresponded to prior work on the adhesion of Mycobacterium marinum [120]. However preferential 

binding to the glass vessels in which the adhesion assays were conducted did suggest the adhesion of 

NBB4 was not necessarily preferential toward the scaffold.  

Given the reasonable success of varying growth phase, solvent treatment processes were designed to 

solubilise and remove capsular material from the NBB4 cell wall. Washes of acetone and methanol were 

trialled which greatly increased the adhesion efficiency but unfortunately inactivated the cells such that 

they could not degrade ethylene. Mycobacterium rhodesiae strain NBB3 was substituted for NBB4 

because its roughened macroscopic morphology and clumping nature suggested little capsular material 

and a more hydrophobic surface. NBB3 also contains monooxygenase enzymes allowing it to subsist 

solely on ethylene. The NBB3 had much higher adhesion efficiency than NBB4 and was able to degrade 

ethylene. However, the adhesion was not homogenous and very clumpy suggesting cell-cell adhesion 

was preferential over cell-scaffold. Adhesion was also found to be distinct from immobilization as 

adhered cells were sloughed off the scaffold as they were handled during testing. This cell leakage has 

been reported in adhesion immobilization systems [126, 131, 208] and is an intolerable characteristic for 

biofilter applications with food. 
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Exhaustive design iterations and experiments were unsuccessful in improving the efficiency and 

reliability of adhesion immobilization. A new design was conceived using the gel entrapment 

immobilization method. The concept was to entrap active NBB4 cells in a thin coating of agar on the 

scaffold surface. It was hypothesised that there would be a balance between the porosity and the gel 

volume to load NBB4 cells that would give an optimum efficiency. It was found that these parameters 

could be controlled by varying the agar concentration and thus the viscosity of the gel solution. Ethylene 

degradation studies then confirmed the hypothesis and 0.4% w/v agar was found to give optimum 

ethylene-degrading efficiency. Later pilot studies revealed that increasing the concentration of the NBB4 

cells in the agar solution increased the activity of the biofilter. 

Shelf-life studies showed the importance of a humidified packaging system for storing the biofilter. 

Packaging that was exposed to the air allowed the biofilter to dry out such that the cells were not active 

and could not degrade ethylene. Biofilters that were stored still containing some moisture and packaged 

in air tight containers could degrade ethylene even after 60 days of storage in the presence of no 

gaseous energy source. A simple packaging solution could be designed to maintain a long shelf life for 

the biofilter. 
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5.2.3 Final Design 

Table 29. Design Outputs of Ethylene biofilter final design iteration. 

Design Input Design Output References Validation 

Non-pathogenic NBB4 fast growing, 

environmental 

Mycobacterium. 

[232, 236] - 

Immobilization of active 

bacteria 

NBB4 are entrapped in 

physically crosslinked 

agar gel 

[102, 205, 213, 216] 4.1.1, 4.2.3 

Efficient removal of 

ethylene 

Ethylene is degraded by 

active NBB4; high 

porosity for excellent 

diffusion characteristics 

[128, 196, 233, 235] 4.3.3.1, 4.4.3, 4.4.5 

Long term removal of 

ethylene 

Living NBB4 grow and 

survive on ethylene as 

sole carbon source; 

Agar used to deliver key 

nutrients and moist 

environment 

[233, 235, 239] 4.4.3, 4.4.5 

Inexpensive Readily available 

materials; simple 

scalable manufacturing 

procedure 

[128, 201] 4.1.1 

Good shelf life Hardy environmental 

microbes requiring 

minimal energy; 

humidified packaging. 

[232-233, 235] 4.4.4 
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The final design is a composite scaffold for the biofiltration of ethylene. The composite consists of a PCL 

matrix which serves as the immobilization support material. It has > 95% porosity allowing rapid 

diffusion of ethylene through the filter and providing a very high surface area for gas exchange and 

bacterial metabolic activity. The PCL matrix has excellent mechanical properties which prevents 

collapsing of pores to minimize mass transfer resistance. This is coated in a 0.4% MSM-agar gel which 

carries ethylene-active NBB4 cells. When the agar sets the NBB4 are entrapped in a thin layer of agar 

allowing unimpeded diffusion of ethylene to the cells. The MSM-agar can be kept liquid at low 

temperatures and sets without the need for chemical crosslinkers which preserves the viability and 

activity of the bacteria. The additional benefit of the MSM agar is it can be used to deliver trace 

elements to the bacteria to extend their survival. It also attracts and stores water to maintain a hydrated 

environment crucial for cell viability. NBB4 cells efficiently break down ethylene to produce carbon 

dioxide and water. NBB4 is a non-pathogenic strain of Mycobacterium and is firmly immobilized onto 

the scaffold surface by the gel coating.

 

Figure 113. The structure and function of the novel ethylene biofilter. The schematic focuses on a 

single strut of the overall porous network. 

The biofilter is manufactured using a simple, scalable process so as to stay cost-competitive with other 

ethylene removal systems. A humidified airtight packaging system can be achieved by enclosing semi-

dry biofilters in airtight packaging. In this state, the biofilter can remain active up to 60 days. 
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The operational stability of the biofilter was tested in a long-term ethylene degradation assay. The 

biofilter continued to break down ethylene for up to 85 days (latest tested time point) with no 

perceivable difference in the rate of degradation over the time period. This biofilter design showed an 

operational stability similar to that of other ethylene biofilters [196, 203, 208, 210]. The efficacy of the 

final design was tested in a fruit preservation study. To my knowledge there have been no studies that 

test the effects of ethylene biofiltration directly on fruit [198]. At ambient temperature, the biofilter was 

able to keep bananas yellow and fresh for up to 30 days compared to the control in which the bananas 

rotted in 15 days. It can be concluded that the mechanism of this preservation is through the removal of 

ethylene by immobilized NBB4 of ethylene. As ethylene is a fruit hormone that is produced by many 

different fruits [196, 198], it follows that the biofilter designed here could be used for preserving a large 

variety of fruits. 

This biofilter design represents an effective alternative to chemical and physical ethylene scrubbers. The 

active NBB4 bacteria continue to survive and proliferate on the PCL support material, meaning the 

biofilter will continue operating while other filter systems would require their active ingredients to be 

replaced [196-197, 203, 205, 208]. To my knowledge this is only the second ethylene biofiltration system 

that uses the gel entrapment method to immobilize bacteria with the majority of biofilter designs using 

natural adhesion [196-197, 203]. The gel entrapment method in my design may be advantageous as the 

agar coating can be used to deliver essential trace nutrients to the cells and create a moist environment 

which may increase the working life-time of the biofilter compared to those using adhesion. Further, I 

have demonstrated control over the agar coating properties which allows close control of biofilter 

characteristics. This concept has not previously been reported and would be difficult to adapt using 

natural adhesion immobilization [126, 205]. The NBB4 cells used are non-pathogenic fast growing 

Mycobacterium [232, 236] and are tightly immobilized within the agar coating. The biofilter 

demonstrated fruit preserving properties even when small amounts of active biofilter was used. The 

majority of previous studies on ethylene biofilters had been concerned with larger filter system designs 

[196-197, 203, 208], but this study suggests biofilters may also be used for smaller scale designs like 

active packaging [202]. Fruit preservation may not be the only use of this design as NBB4 has been used 

for bioremediation of industrial waste [235]and epoxidation for the chemical industry [233]. In both 

cases the immobilization of NBB4 on a porous structure would be ideal for improving reaction efficiency, 

which suggests multiple applications for the biofilter design. In summary, I have designed a novel and 

effective ethylene biofilter for the preservation of fruit and other possible applications. 
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6 Conclusions & Recommendations 

6.1 General 

 A highly porous PCL scaffold was used as the base for the dichotomous design of composite 

scaffold systems. 

 A procedure for applying thin web-like hydrogel adjunct coatings to scaffolds was developed and 

the porosity of the resulting composites could be controlled. 

 The formation of composites using specialised bioactive coatings allowed the modulation of 

biotic activity and biofilm formation enabling formation of both antibacterial and pro-bacterial 

systems. 

6.2 Wound Healing Device 

 The PVA coating was optimised for drug carrying capacity and composite porosity.  

 The drug carrying capacity was further increased by ethanol into the PVA hydrogel solution. The 

PVA hydrogel coating was cross-linked by freeze-thaw cycling with a density of approximately 

90% and swelling ratio of around 300%.  

 A microbial assay using Staphylococcus aureus revealed that increasing the ethanol content to 

50% allowed maintenance of an inhibitory concentration of erythromycin for up to 5 days. This 

was not affected by gamma sterilizing the scaffolds in their dehydrated and packaged form.  

 The burst release of erythromycin proved to be cytotoxic to fibroblasts (> 500µg/ml), thus a 

soak-down procedure was designed and validated. A 15 minute soak-down of scaffolds in sterile 

PBS ensured erythromycin concentration was below the cytotoxic limit, but continued to inhibit 

bacterial growth for 5 days. 

 An in vitro septic wound model was designed in which S. aureus and human dermal fibroblasts 

were cultured on 3D porous scaffolds simultaneously. RT-qPCR was used to quantify the 

bacterial and cellular colonisation of the scaffold surface. This septic wound model is the most 

advanced to date. 

 A bioglass manufacturing route was designed to synthysise and adhere bioglass microparticels 

to the scaffold. The bioglass had no positive or negative affect on fibroblast or S. aureus growth.  
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 The septic wound model was used to validate that the composite scaffold containing 

erythromycin was able to simultaneously fight bacteria, prevent biofilms and allow fibroblasts to 

attach and grow. This makes the wound healing scaffold a suitable candidate for septic wound 

care. 

6.2.1 Recommendations 

 Given the success of the synthetic skin graft design an animal model is recommended as future 

work to assess the efficacy of the scaffold in the presence of a working immune system. 

 Erythromycin was a convenient model drug for this study, but testing the drug carrying capacity 

and drug delivery kinetics with a more clinically relevant drug would further the potential of the 

scaffold system. Further, testing the delivery of growth factors from the PVA coating may have 

potential. 

6.3 Biofilter Device 

 Natural adhesion was ineffective in immobilizing ethylene-degrading Mycobacterium despite 

attempts to improve adhesion interactions by modifying the cell wall and the scaffold surface. 

 Mycobacterium chubuense strain NBB4 was successfully immobilized in an ultra thin coating of 

agar on the surface of a porous PCL matrix. This method of immobilization encompasses the 

benefits of gel entrapment such as high biomass loading and mitigates the key disadvantage of 

diffusion limitations. 

 The agar coating thickness was controlled and optimised for ethylene degradation rate, 

balancing diffusional limitations and biomass loading capacity. 

  Batches of biofilters were able to continually remove ethylene for > 85 days. This operational 

stability was similar to other ethylene biofilter systems. 

 The biofilters shelf life depended very much on a humidity: In packaging that was open to the air 

and allowed to dry the shelf life was a maximum of 12 days. In a closed, humidified package the 

biofilter shelf life was > 47 days.  

 The biofilters could preserve bananas for up to one month compared to unprotected fruits that 

degraded within two weeks. The maintenance of freshness was due to removal of ethylene by 

NBB4 bacteria and the preservation could be improved by increasing the biomass loading of the 

biofilters. 
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6.3.1 Recommendations 

 Biofilter should best tested on many different types of fruit to prove its efficacy. In addressing 

commercial requirements the fruits tested should be high cost items such as tropical fruits and 

temperate-growing stone fruits. Tests should also be side-by-side with common chemical 

scrubbers such as potassium permanganate. 

 The biofilter has potential for removal of other hazardous hydrocarbon and chlorinated 

pollutants. Thus it should be tested for its removal efficiency of pollutants from gaseous and 

liquid streams. 
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Appendix A Method Development & Validation 

A.1 Bacterial Strains 

The following table shows the bacterial strains, some relevant characteristics and their corresponding 

growth conditions used in this thesis. 

Table 30. Bacterial strains, characteristics and growth conditions. 

Bacteria species Strain Gram’s 

stain 

(+/-) 

Biofilm 

Former 

(y/n) 

Growth 

Media 

Plate 

Media 

Escherichia coli ATCC 11775 - y LB LB-agar 

Mycobacterium 

chubuense 

NBB4 + y MSM TSG-

agar 

Mycobacterium 

rhodesiae  

NBB3 + y MSM TSG-

agar 

Pseudomonas 

aeruginosa 

NCTC 7244 - y LB LB-agar 

Staphylococcus aureus ‘Oxford' NCTC 

7244 

+ n TSB TSA 

Staphylococcus aureus ATCC 29213 + y TSB TSA 

 

NOTE: Staphylococcus aureus ‘Oxford’ strain was only used for the Zone of Inhibition (Method 3.3.2.1) 

and the MIC/MLC assays (Method 3.3.2.2) as it was unable to form appropriate biofilms. All other 

experiments used S. aureus ATCC 29213 as this is a known biofilm former [76]. 
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A.2 Biofilm measurement validation 

A.2.1. Method 

Both the sonication time and the number of washes needed to be validated for accurate biofilm 

quantification. 

Overnight cultures of E.coli, S. aureus and P. aeruginosa were grown up in there specified culture 

conditions. A PCL disc (Method 3.1.2.1.3) was put in the bottom of wide-mouth McCartney 15ml Bottles. 

2ml of bacteria specific biofilm media (Method 3.2.1, Table 16) was brought to OD600 = 0.1 and 

transferred to bottles. Stoppers were left loose to ensure good aeration. Bottles were incubated shaken 

at 100rpm for 24 hours at 37°C. Disc were removed with sterile tweezers and transferred to a petri dish 

filled with 20ml sterile PBS for to wash off excess media and un-attached cells.  

Discs were gently washed three times in sterile PBS, transferred to Eppendorf tubes containing 1ml of 

PBS and sonicated at maximal frequency for varying amounts of time: 30 seconds, 1, 2 and 5 minutes. A 

control for each bacterial strain was left un-sonicated. The OD600 of the removed biofilm suspension 

was measured.  

S. aureus biofilms grown up on PCL discs were washed in 20ml sterile PBS up to 3 times to determine the 

appropriate number of washes. The discs were then transferred to fresh PBS and sonicated. 100 µl of 

the sonicated PBS was used for serial dilutions of which 50ul were drop plated on appropriate media 

(see Methods 3.2.1, Table 16). Drop plates were incubated for 18 hours (to ensure small colonies) and 

counted to determine the viable number of cells in the biofilm recovered. Triplicates were used to test 

samples treated by varying number of wash steps. 

A.2.2. Results 

The OD600 for all strains increased dramatically after sonication (Figure 114). The increase in turbidity 

(OD600) is due to more microbes being removed from the surface of the PCL disc and dispersed in the 

PBS solution. Varying the time of sonication had little effect on the amount of biofilm removed. The 

highest turbidity for E. coli, P. aeruginosa and S. aureus were after 30 seconds, 5 minutes and 5 minutes 

respectively. The increased E. coli biofilm removal at 30 seconds and 2 minutes compared with at 5 

minutes is probably due to increased biofilm growth on these discs, as the sonication removal is 

believed to be time-dependent. 5 minutes was chosen as the sonication time for all microbes used to 
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simplify processing and because this time achieved efficient biofilm removal in all microbes compared to 

the non-sonicated controls. 

 

Figure 114. Turbidity (OD600) of removed biofilm after varying sonication treatment times. 

After the varied washing steps, biofilms were sonicated for 5 minutes and serial dilutions and drop 

plating were used to enumerate the biofilms collected. No washing resulted in the recovery of at least 

10 times more cells than the washed samples (Figure 115). This is because these samples would include 

a large number of non-adhered bacteria that were inadvertently transported from the biofilm culture 

media. Therefore the cells recovered do not selectively represent the biofilm.  

One wash decreased the cells recovered by a factor of ten, but further washes did not dramatically 

decrease the cells recovered. This is because the majority of the biomass loading after washing is 

strongly adhered to the disc in biofilms and requires sonication removal. Three washes did decrease the 

number of bacterial cells recovered but considering there was no difference between one and two 

washes; this is likely due to accidental mechanical removal of biofilm from tweezer manipulations of the 

discs. As such, two washes was selected as the optimal number to best represent the biofilm grown on 

discs. 
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Figure 115. S. aureus bacterial cells recovered after varying numbers of wash steps in petri dishes of 
PBS.  Error bars = Std; n = 3. 

A.3 Scaffold Interference 

A.3.1. Method 

HFb were grown up according to the method in 3.4.1.1.1. Cells were harvested and counted as 

described in 3.4.1.1.2. 100,000 HFb cells were aliquotted into Eppendorf tubes. Sterile PCL scaffolds 

(dimensions: 7x6x2mm; Method 3.1.1.1) were added to the bottom of the tubes. A set of tubes was left 

without scaffolds as the cell-only control.  

From the cell-only controls and a set of cells + scaffold RNA was extracted and quantified as in 3.4.1.1.2. 

For the other set of cells + scaffold a slight modification to the method was used: The 1-bromo-3-

chloropropane was added first. Tubes were gently swirled until the scaffold appeared completely 

dissolved. Then the Tri-reagent was added and the extraction and quantification proceeded normally. 

Different samples and controls were tested in triplicate. 
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A.3.2. Results 

Ideally the in vitro wound model that was being designed should quantify the number of HFb and 

bacterial cells on the scaffold by qPCR of rRNA. This meant that all of the rRNA had to be extracted from 

cells adhered to the scaffold. The thinking was that if the scaffold could be completely digested in the 

RNA extraction reagents, then all the rRNA could be collected and would reflect the true cell numbers 

attached to the scaffold. The full digestion of the scaffold also had the advantage of not having to 

remove the cells from the scaffold, especially bacterial cells enveloped in biofilm which may be difficult 

to remove. Because of this, removal of cells from the scaffold would likely add extra variability to the 

results. Therefore, the full digestion of the scaffolds was reasoned to be the most efficient and reliable 

way to extract RNA is this system. 

The RNA extraction method that was used on the cell-only controls, when the TriReagent was added 

first, caused the scaffold in the cell + scaffold samples to go translucent but not dissolve. When the 1-

bromo-3-chloropropane was added the scaffold only partly contacted this reagent and hence only 

partially dissolved. After vortexing, globs of partially dissolved scaffold were seen stuck to the walls of 

the tubes. Conversely when 1-bromo-3-chloropropane was added to the scaffold first, the scaffold 

completely dissolved with gentle agitation. With addition of TriReagent and after vortexing, no 

undissolved globs could be seen. 
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Figure 116. Dissolution of scaffold in RNA extraction reagents. a) TriReagent added first resulting in 
glob formation. b) 1-bromo-3-chloropropane added first resulting in complete dissolution of the 

scaffold. 

Spectrophotometric quantification results of the different RNA extraction methods are seen in Figure 

117. The addition of the scaffold decreased the RNA yield compared to the cell-only control for both 

methods, however this difference was not significant when the new extraction method was employed.  

It is thought that the globs formed from the incomplete dissolution of the scaffold seen in Figure 116 

trap nucleic acids preventing them from being extracted and decreasing the yields. The addition of 1-

bromo-3-chloropropane first, completely dissolves the scaffold and allowed RNA yields that were not 

significantly different than the extractions from cells alone.   



261 
 

The very hydrophobic PCL scaffolds dissolved readily in the 1-bromo-3-chloropropane. No globs of PCL 

remained to entrap RNA. After the addition of TriReagent and phase separation the PCL subsided into 

the organic phase leaving the nucleic acids uncontaminated in the aqueous phase.  

 

Figure 117. RNA yield from different extraction methods. The ‘new method’ is the addition of the 1-
bromo-3-chloropropane first as oppose to TriReagent. Samples were extracted in triplicate and every 
sample was quantified in duplicate. * p < 0.05, significantly different to cell-only control (T-test, two 

tails). 

Unfortunately, despite the aforementioned benefits of the new method, it was found that it was 

ultimately unsuitable for RNA extracting from bi-Phasic scaffolds. When the 1-bromo-chloropropane 

was added the scaffold seemed to dissolve well and no globules were seen after vortexing the mixture. 

However, when the aqueous phase was added to isopropanol a white cotton-like precipitate formed 

(Figure 118). The precipitate is hydrophilic PVA that was extracted along with the aqueous phase and 

contaminated the RNA. This could not easily be filtered out using standard syringe and hepafilters. 

Further, the extra manipulations of the RNA would lead to degradation and contamination of the nucleic 

acids along with lower yields. 

The full digestion of the scaffold with 1-bromo-3-chloropropane before addition of TriReagent to extract 

RNA yielded concentrations that were not significantly different to extractions from cells alone. This is 

an efficient and reliable method for RNA extraction and was employed when un-altered PCL scaffolds 

were used for cell-culture. This method may also be possible using other hydrophobic scaffold systems. 

Due to hydrophilic components in the bi-Phasic scaffolds which contaminated the RNA, the method was 

* 
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not used in experiments using PVA scaffolds. Instead a method of removing cells and biofilm was 

developed to use in these studies. 

 

Figure 118. RNA extraction from PVA scaffolds. Cloudy PVA precipitate in the isopropanol, 
contaminating the RNA. 

A.4 Co-culture raw qPCR data 

Herein is the collection of qPCR raw data from the Final Co-culture (Results and Discussion 4.4.1.5). The 

raw data is presented in the original graphs from the qPCR program. The x-axis is the number of PCR 

cycles and the y-axis is the relative fluorescence reflecting the amount of 16s or 18s PCR product. The 

fluorescence threshold was determined by pre-generated standard curves for known amounts of the 

target gene. The relative concentration of 16s and 18s cDNA (relating to the presence of fibroblasts and 

S. aureus respectively) can be seen on the graphs below by the position of the coloured curves. Curves 

on the left have higher concentration and curves on the right have lower concentration. This is because 

less starting concentration of the gene requires more PCR cycles to achieve a given fluorescence signal. 
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The absence of curves entirely suggests no starting gene to amplify. The different coloured curves 

represent the different scaffold types, while the ever-present red curves are the internal standard curve 

controls. This raw data is provided here to validate the results aforementioned.  

 

Figure 119. Co-culture qPCR curves: Fibroblast Only control 16s Day 1 

 

Figure 120 Co-culture qPCR curves: Fibroblast only control 18s Day 1 
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Figure 121. Co-culture qPCR curves: Co-culture 16s Day 1 

 

Figure 122. Co-culture qPCR curves: Co-culture 18s Day 1 
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Figure 123. Co-culture qPCR curves: Fibroblast Only control 16s Day 5. 

 

Figure 124. Co-culture qPCR curves: Fibroblast only control 18s Day 5. 
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Figure 125. Co-culture qPCR curves: Co-culture 16s Day 5. 

 

Figure 126. Co-culture qPCR curves: Co-culture 18s Day 5. 
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Appendix B Inconclusive Results 

B.1 Modulating DSC 

B.1.1. Method 

Hydrogel samples of 5-10mg were weighed into aluminium sample pans and crimp sealed.  Modulated 

Differential Scanning Calorimetry (DSC) experiment was performed (DSC 2920 Modulated DSC, TA 

Instruments). Dried samples of PVA and cross linked PVA weighing 5-10 mg, were put into aluminium 

sample pans, crimp sealed then placed in the DSC instrument. Samples were first heated from 35°C to 

150°C (first heating cycle); then cooled to 35°C followed by heating up to 120°C (second heating cycle), 

all at a heating rate of 2.5°C min-1 under nitrogen and with oscillations of +/- 2°C every 60 seconds. 

Results were taken from the second heating runs of the experiments in order to avoid experimental 

effects arising from the previous thermal history, structural relaxation and incomplete chemical 

reactions [38]. The reversible heat flow signal was analysed to attempt to extract a glass transition 

temperature. 
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B.1.2. Results 

 

Modulated DSC uses small oscillations to simultaneously measure reversible and non-reversible heat 

flow signals. This is sometimes effective when the total heat flow as measured by regular DSC over 

shadows due to superposition. Reversible heat flow signals show the glass transition temperature. 

In the figure above the reversible heat flow signal shows what looks like a step-down feature between 

60-100°C. This could reflect the glass transition of PVA which is around 80°C. However, the feature is 

over a large temperature range and pin-pointing the Tg, from this data is dubious.  

Due to the lack of confidence in determining the Tg in the control sample, it was decided that it would 

be invalid to try and compare changes in Tg between samples treated with ethanol. Thus this line of 

experimentation was discontinued. However, more work in this area is suggested as Tg is a key thermal 

property of hydrogel functionality and is not determined for most new hydrogel devices and materials. 
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B.2 Enumeration of Cells by qPCR 

B.2.1. Method 

HFb and S. aureus cells were grown up and enumerated as described in methods section 3.4.1.1.1. Cells 

were combined into tubes in specific numbers (Table 31). Each tube was prepared in triplicate. 

Table 31. HFb/S. aureus combination tubes for enumeration. 

Tube # Fibroblast (cell #) S. aureus (cell #) 

1 100,000 2.5x108 

2 50,000 5x108 

3 10,000 2.5x109 

4 5,000 5x109 

RNA was extracted from cells using the method for S. aureus in 3.4.1.1.2. Then 8μl of RNA from tubes 

was converted to cDNA (Method 3.4.1.1.3). qPCR was carried out on cDNA samples from combined 

tubes (Method 3.4.1.1.8). Neat samples were tested as well as 100-fold dilutions of each sample. 

Internal controls containing a standard curve of the purified 18s and 16s gene of interest of known gene 

copy concentration (dilutions: 10-1, 10-4, 10-7) were run in each qPCR. This was used to calculate the gene 

concentration of each sample and form a relationship between cell number and gene concentration. All 

reactions were run in duplicates. 

B.2.2. Results 

The Ct results from qPCR were converted to DNA concentration (copies/μl) by comparing with internal 

standards from the same run. Values from either the neat or 100-fold dilution were chosen based on Ct 

value. A Ct value of 10-20 was considered in the optimal range. Chosen values were then plotted against 

the number of cells in the starting sample to produce curves correlating DNA concentration to cell 

number (Figure 127).  

Linear correlations were expected as each cell type will have a given set of rRNA genes that are 

independent of cell number. rRNA should be converted to cDNA in a 1:1 manner during reverse 

transcription. It was assumed that no cells would have no rRNA and hence the DNA concentration would 

be zero. As such the y-intercept of these standard curves was set at zero. 
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The standard curve for quantifying fibroblasts was seen in Figure 127a. A weak linear correlation can be 

seen (R2 < 0.95). This may be due to overestimation of cell numbers. HFb do not stay well suspended in 

solution which may account for less cells being added to tubes, hence the overestimation.  The equation 

from the curve suggests there are ~60 copies of the 18s gene per fibroblast (after accounting for a 15μl 

qPCR reaction volume). Although there may actually be more as this data does not account for losses 

that inevitably take place during processing. 

Figure 127b shows the standard curve for S. aureus. Only three points can be seen on the curve as the 

results for Tube 4 counter-intuitively produced the lowest DNA concentration values. This is attributed 

to human error. A strong linear correlation was seen (R2 > 0.95). Each cell would have multiple copies of 

this essential gene – thus a linear relationship was expected. It is known that E. coli has around 1000 

copies of its 16s rRNA gene [184]. This suggests that there are substantial losses throughout the process, 

likely as a result of incomplete RNA extraction from the tough S. aureus cells. S. aureus are notorious for 

producing low RNA yields [191]. The difference in the linear correlations between the bacteria and cells 

is due to the difference in cell size and therefore volume. 

 

a) 
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Figure 127. Standard curves relating DNA concentration to cell number for a) HFb and; b) S. aureus. 
Error bars = Std; n=3. 

The results suggest a level of unreliability as such the curves can be used for determination of absolute 

cell number in future experiments, only tentatively. It may be an over complication to calculate cell 

number from DNA concentration. Matsuda et al, produced a linear correlation between a cell number of 

different bacteria (including S. aureus) and Ct that was very reliable (R2 > 0.99). The benefit of our 

method is in cases where the copies of rRNA per cell will likely fluctuate, e.g. under severe stress or 

different growth phases, it may not be valid to determine cell number based on rRNA quantification, but 

the rRNA quantification itself will still be a marker for viability. Hence, the method for quantifying 

ribosomal DNA using this 2-step RT-qPCR method can be used for modelling diseased states like chronic 

skin ulcers. 
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