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Abstract

High Performance Computing (HPC) systems have been widely used by scientists
and researchers in both industry and university laboratories to solve advanced
computation problems. Most advanced computation problems are either data-intensive
or computation-intensive. They may take hours, days or even weeks to complete
execution. For example, some of the traditional HPC systems computations run
on 100,000 processors for weeks. Consequently traditional HPC systems often
require huge capital investments. As a result, scientists and researchers sometimes
have to wait in long queues to access shared, expensive HPC systems.

Cloud computing, on the other hand, offers new computing paradigms, capacity,
and flexible solutions for both business and HPC applications. Some of the
computation-intensive applications that are usually executed in traditional HPC
systems can now be executed in the cloud. Cloud computing price model eliminates
huge capital investments.

However, even for cloud-based HPC systems, fault tolerance is still an issue of
growing concern. The large number of virtual machines and electronic components,
as well as software complexity and overall system reliability, availability and
serviceability (RAS), are factors with which HPC systems in the cloud must
contend. The reactive fault tolerance approach of checkpoint/restart, which is
commonly used in HPC systems, does not scale well in the cloud due to resource
sharing and distributed systems networks. Hence, the need for reliable fault
tolerant HPC systems is even greater in a cloud environment.

In this thesis we present a proactive fault tolerance approach to HPC systems
in the cloud to reduce the wall-clock execution time, as well as dollar cost, in
the presence of hardware failure. We have developed a generic fault tolerance
algorithm for HPC systems in the cloud. We have further developed a cost model
for executing computation-intensive applications on HPC systems in the cloud.
Our experimental results obtained from a real cloud execution environment show
that the wall-clock execution time and cost of running computation-intensive
applications in the cloud can be considerably reduced compared to checkpoint
and redundancy techniques used in traditional HPC systems.
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Chapter 1

Introduction

In the scientific research domain, High Performance Computing (HPC) refers to

the use of supercomputers, grid environments and/or clusters of computers to

solve advanced computational problems. A computer cluster is a combination

of commodities unit (PCs, processors, networks or symmetric multi-processor

(SMPs)).

HPC systems play important roles in today’s society. Common applications

include weather forecasting, aircraft crash simulation, computational fluid dynamics

for studies in aerodynamics, bioinformatics, protein folding for molecular modelling

in biomedical research, and many others [4, 5]. It has been estimated that

improvements in HPC systems leading to more accurate seismic modelling of oil

reservoirs could increase oil recovery by 50-75% [6].

Today, HPC systems also offer new opportunities in business [7]. For example,

financial institutions currently use HPC systems in real time modelling to make

informed investment decisions.

Analysis of the Top500 [2] HPC systems shows that the number of processors

and nodes in HPC systems has increased over time in the quest for greater

performance levels. Top500 is a detailed statistical ranking of the world’s 500 most

1



powerful supercomputers. The list is compiled twice a year. Figure 1.1 shows

the performance development of Top500 HPC systems between 1993 and 2012,

and the projected performance development for 2020. HPC systems continue to

grow exponentially in scale, from petascale computing floating point operations

per second to exascale computing floating point operations per second). As can

be seen, performance almost doubles each year due in large part to the steady

increase in the density of transistors in integrated circuits.

As noted above, this performance development is associated with growth in

the number of processors in each HPC system. Figure 1.2 shows the growth in

the number of processors between 1993 and 2012, based on an analysis of HPC

systems development data provided in the Top500 [2].

There are, however, a number of technical challenges for HPC systems as

they grow to exascale [8, 9]. Although the Mean Time Between Failure (MTBF)

of individual system components may be high, the overall system Mean Time

Between Failure is reduced to just a few hours due to the increased number of

processors involved [10, 11]. For example, the IBM Blue Gene/L was built with

131,000 processors. To calculate its MTBF, we assume that each processor has a

constant failure rate. If the MTBF of each processor is 876000 hours (100 years),

a cluster of 131,000 processors will have an expected MTBF of 876000/131000 =

6.68 hours.

The importance of fault tolerance for HPC systems has been widely recognised

by various research communities in HPC systems. Many approaches have been

proposed to provide fault tolerance in HPC systems [12, 13, 14, 11, 15, 16, 17].

Approaches such as [15, 16], explore redundancy and rollback-recovery techniques

respectively.

2
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1.1 Background

Rollback-recovery is one of the most widely used fault tolerance mechanisms

for HPC systems. Rollback-recovery consists of checkpoint, failure detection

and recovery/restart. However, rollback-recovery usually increases the wall clock

execution time of HPC applications, thereby increasing the electrical energy used

and the dollar cost of running HPC applications in both traditional HPC system

and in HPC systems in the cloud.

Cloud computing offers new computing paradigms, capacity, and flexibility

to HPC applications through provisioning of a large number of Virtual Machines

(VMs) for computation-intensive applications using cloud services. It is expected

that computation-intensive applications will increasingly be deployed and run in

HPC systems in the cloud [18, 19]. For example, the Amazon Elastic Compute

Cloud (Amazon EC2 [20] cluster recently appeared in the Top500 list.

The aim of this thesis is to provide fault tolerance for HPC systems in the

cloud, particularly when Hardware as a Service (HaaS) is leased. We propose a

framework, develop and implement the associated algorithms and test a solution

using the C programming language. The solution proposed in this thesis covers

hardware failures that occur after warning window.

1.1 Background

The history of HPC systems dates back to the 1960s when parallel and distributed

computing were used to achieve high computational performance. Parallel

computing uses shared memory to exchange information between processors

while distributed computing uses distributed memory, with information shared

between processors by message passing. Recently, it has become difficult to
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distinguish between parallel and distributed systems, since parallel computers

often have some distributed characteristics. This is clearly demonstrated in the

Top500 list

Today, parallel and distributed computing systems with large numbers of

processors are commonly known as HPC systems. HPC systems scale from a few

hundred processors to hundreds of thousands of processors, such as the Clay Titan

[2].

Computation-intensive applications are sometimes referred to as long-running

applications and are most often scientific computations using mathematical models

and quantitative analysis techniques running on HPC systems to analyse and

solve large and complex scientific problems. Some of the scientific computations

would have been too difficult to carry out without HPC systems, due to the

capital cost, complexity or financial risk involved (for example, in nuclear weapons

experiments).

With cloud computing, HPC systems are no longer limited to large organisations

but are also available to individuals. Cloud computing [18] promises numerous

benefits, including the fact that there is no need for up-front investment in the

purchase and installation of equipment and software. An HPC system in the cloud

is a good alternative to a traditional HPC system.

1.2 Motivation

As noted above, fault tolerance is one of the major challenges faced by cloud services

for HPC applications. Evidence shows that a system with 100,000 processors will

experience a processor failure every few hours [21, 9]. A failure occurs when a

6
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hardware component fails and needs replacement, a software component fails or a

node/processor halts or is forced to reboot, or software fails to complete its run.

In such cases, an application utilising the failed component will fail.

In addition, HPC applications deployed in the cloud run on virtual machines,

which are more likely to fail due to resource sharing and contention [19, 22].

Therefore, fault tolerance (FT) technology is particularly important for HPC

applications running in cloud environments, because fault tolerance means there

is no need to restart a long-running application from the beginning in the event

of a failure, thereby reducing operational costs and energy consumption.

1.3 Identification of Key Research Problems

This section describes the three key challenges for HPC systems that are addressed

by this thesis: 1) fault tolerance, 2) rollback-recovery and 3) energy efficiency.

These are significant problems for HPC system communities. The thesis also

aims to contribute to improvements in HPC systems in the cloud by providing a

detailed study of current research in the field.

1.3.1 Fault Tolerance

Recent studies by Schroeder and Gibson [23, 9], Egwutuoha, et al. [11], and

Yigitbasi, et al. [24] and the data sets provided in [3], show that hardware

(processors, hard disk drive, integrated circuit sockets, and memory) causes more

than 50% of the failures on HPC systems. These works also show that:

1. The failure rate is almost proportional to the number of CPUs (failure

increases with the number of nodes and/or processors).
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2. The intensity of the workload affects the failure rate [23, 9].

3. There is a time varying correlation with failure rate [24].

1.3.2 Rollback-Recovery

The rollback-recovery fault tolerance technique is commonly used by HPC systems

communities [16, 25]. It tends to minimise the impact of failure on

computation-intensive applications running in a HPC system when one or more

computational nodes fail. A good example of rollback-recovery fault tolerance

is checkpoint and restart. Checkpoint and restart allows computation-intensive

problems that may take a long time to execute in HPC systems to be restarted

from the checkpoint prior to failure in the event of errors or failures.

However, recent publications [23, 10, 26, 14] show that, with the steadily

increasing number of components in today‘s HPC systems, applications running

on HPC systems may not be able to achieve meaningful progress with the basic

checkpoint and restart approach. This is because the system will spend most of its

computational time in checkpoint, which is not part of the computational activities.

A fault tolerant solution that will reduce the overhead of rollback-recovery is

particularly important.

1.3.3 Energy Efficiency

HPC systems utilize large amounts of electrical power to operate their large

numbers of processors, electronic components and other electrical parts that

support constitute them. For example, it is estimated that IBM BlueGene/L

which is built to use low power components, costs between $200,000 to $1.2 million
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annually [27].

Because of this high energy utilisation, the HPC community created the

Green500 [28] list. The performance of HPC systems is now measured not only in

floating point operations per second (FLOPS) but also in FLOPS per watt. Clearly,

the high energy utilisation of HPC systems presents a challenge that cannot be

ignored in the design of fault tolerance for HPC systems. With energy efficient fault

tolerant solution, electrical energy would be utilised in computational activities

with minimisation of rework activities due to failure. Hence, the development of

energy efficient fault tolerant HPC systems will make a significant improvement in

terms of the energy utilisation and operational cost of HPC systems, particularly

HPC systems in the cloud.

1.4 Contributions

In addressing these key research problems, the thesis makes the following major

contributions to the field of HPC systems in the cloud:

1. We propose a fault tolerance framework for High Performance Computing

(HPC) in the cloud [29] that can be used to build a reliable HPC systems in

the cloud.

2. We propose a proactive fault tolerance approach to High Performance

Computing (HPC) in the cloud. We develop an algorithm and corresponding

software solution for HPC systems in the cloud to support users and

researchers who lease HaaS [30].

3. We present an empirical analysis of the proposed solution that demonstrates

9
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its cost effectiveness and electrical energy efficiency [31, 32]. The empirical

analysis presented on this thesis is general and can be used to analysed

similar cloud-based systems.

4. We analyse two cloud services that are usually used for HPC in the cloud

and identify the most cost effective cloud service for a HPC system in the

cloud [33]. This can assist in choosing HPC systems in the cloud that are

cost effective.

1.5 Thesis Outline

The thesis is divided into six chapters, as shown in Figure 1.3. This chapter has

described the background to, and motivation for, the research and has identified

key research problems and contributions. Chapter 2 surveys fault tolerance

approaches, analysis of failure rates and rollback feature requirements for modern

HPC systems and evaluates over 20 previous works on checkpoint/restart facilities.

Chapter 3 explains the theoretical background of the study, including definitions

of the HPC in the cloud concept, architecture, related services and fault tolerance

deficiencies. Chapter 4 presents a new proactive fault tolerance approach to High

Performance Computing (HPC) in the cloud, including the algorithms, design

approaches, implementations, evaluations and test results. Chapter 5 reports the

cost analysis and energy utilisation of the approach, and Chapter 6 concludes the

discussion and makes recommendations for future work.

10



1.5 Thesis Outline

	
  

Chapter	
  6
Summary,	
  Conclusion	
  and	
  Future	
  work

HPC	
  in	
  the	
  
Cloud,	
  

Concept	
  and	
  
Architecture

	
  Cost	
  Analysis	
  
and	
  Energy	
  
utilization	
  of	
  
our	
  Fault	
  
Tolerance	
  
approach

Related	
  
work

Proactive	
  Fault	
  
Tolerance	
  
Approach	
  to	
  
HPC	
  in	
  the	
  
Cloud

Chapter	
  3 Chapter	
  5Chapter	
  2 Chapter	
  4

Chapter	
  1
Introduction

	
  background,	
  motivation,	
  identification	
  of	
  research	
  question,	
  contributions

Figure 1.3: Thesis outline

11



Chapter 2

Related Work

“Fault tolerance is the property that enables a system (often computer-based)

to continue operating properly in the event of the failure of (or one or more

faults within) some of its components” [34]. Fault tolerance is highly desirable in

HPC systems because it may ensure that computation-intensive applications are

completed in a timely manner. In some fault tolerant systems, a combination of

one or more techniques is used.

This chapter begins with an analysis of the failure rates of HPC systems.

This is followed by a review of fault tolerance approaches that examines the

issues associated with each approach in the context of HPC systems. Research

efforts directed at reducing the time to checkpoint in persistent storage are briefly

discussed. Much of the content of this chapter appears in previously published

work [11, 32].

2.1 Analysis of Failure Rates of HPC Systems

Generally, failures occur as a result of hardware or software faults, human factors,

malicious attacks, network congestion, increased intensity of workload (overload),
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and, possibly, other unknown causes [35, 36, 1, 37]. These failures may cause

computational errors. They may be transient or intermittent, but can still lead to

permanent failures [38]. A transient failure causes a component to malfunction

for a certain period of time, but it then disappears and the functionality of that

component is fully restored. An intermittent failure appears and disappears

sporadically; it never goes away completely, unless it is resolved. A permanent

failure causes the component to malfunction consistently until it is replaced. A

great deal of work has been done on understanding the causes of failure and we

briefly review the major contributors to failure in this section. We also include

our findings from the present study.

2.1.1 Software Failure Rates

Gray [35] analyzed outage/failure reports of Tandem computer systems between

1985 and 1990, and found that software failure caused about 55% of outages.

Tandem systems were designed to be single-fault fault-tolerant systems, that is,

systems capable of overcoming the failure of a single element (but not overlapping

multiple failures). Each Tandem system consisted of 4 to 16 processors, 6 to 100

discs, 100 to 1000 terminals and their communication equipment. Systems with

more than 16 processors were partitioned to form multiple systems and each of

the multiple systems had 10 processors linked together to form an application

system.

Lu [37] studied the failure log of three different architectures at the National

Center for Supercomputing Applications (NCSA). The systems were:

1. A cluster of 12 SGI Origin 2000 NUMA (Non-Uniform Memory Architecture)
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2.1 Analysis of Failure Rates of HPC Systems

distributed shared memory supercomputers with a total of 1,520 Central

Processing Units (CPUs),

2. “Platinum”, a PC cluster with 1,040 CPUs and 520 nodes, and

3. “Titan”, a cluster of 162 two-way SMP 800 MHz Itanium-1 nodes (324

CPUs).

In the study, five types of outages/failures were defined: software halt, hardware

halt, scheduled maintenance, network outages, and air conditioning or power halts.

Lu found that software failure was the main contributor to outage (59-83%),

suggesting that software failure rates are higher than hardware failure rates.

Similarly, El-Sayed and Schroeder [39] studied field failure data of HPC systems

available at [40]. The failure data studies were collected over 9 years period. They

observed that there is significant relationship between network, environmental

and software failures. They also observed that there is a significant increase in

the probability of software failure after power issues had occurred.

Nagappan, et al [41] studied the failure log files of on-demand virtual computing

lab at North Carolina State University [42]. Virtual computing lab at North

Carolina State University is operated as private cloud with more than 2000

computers. In this study, they observed that system software contributes relatively

small role in system failure. According to their finding, most of the recorded

failures were caused by workload, license exhaustion and hardware failures.

2.1.2 Hardware Failure Rates

A large set of failure data, the computer failure data repository (CFDR) was also

released by the USENIX Association [3]. It comprised the failure statistics of 22
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HPC systems, including a total of 4,750 nodes and 24,101 processors collected over

a period of 9 years at Los Alamos National Laboratory (LANL). The workloads

consisted of large-scale long-running 3D scientific simulations that take months

to complete. We have further analysed the data in order to reveal the systems

failure rates in more detail. Figure 2.1 shows systems (2 to 24) with different

configurations and architectures, with the number of nodes varying from 1 to

1024 and the number of processors varying from 4 to 6152. System 2 with 6152

processors recorded the highest number of hardware failures. Figure 2.1 also

shows the number of failures and corresponding causes recorded over the period,

represented by a bar chart. From the bar chart, it can be clearly seen that

the failure rates of HPC systems increase linearly as the number of nodes and

processors increases.

To further examine the failure rates, we selected seven HPC systems from

the failure data repository [3]. The systems selected consist of five clusters

with the highest number of totals CPUs and/or compute nodes, one Symmetric

MultiProcessing (SMP) system with the highest number of CPUs, and the only

Non-Uniform Memory Access (NUMA) system in the data repository. Figure 2.2

shows the analysis of failure rates of HPC systems with their system IDs.

As can be seen from Figures 2.1 and 2.2, more than 60% of the recorded

failures that occurred on HPC systems are hardware failures.

Schroeder and Gibson [9, 23] analysed failure data collected at two large HPC

sites: the data set from LANL RAS [3] and the data set collected over a period of

one year at a large supercomputing system with 20 nodes and more than 10,000

processors. Their analysis suggests that:

1. The mean repair time across all failures (irrespective of failure types) is

15



2.1 Analysis of Failure Rates of HPC Systems

0"

50
0"

10
00
"

15
00
"

20
00
"

25
00
"

30
00
"

35
00
"

40
00
"

45
00
"

61
52
"
51
2"

51
2"

51
2"

12
8"

32
8"

51
2"

51
2"

51
2"

10
24
"
51
2"

25
6"

20
48
"
40
96
"
40
96
"
20
48
"
51
2"

54
4"

25
6"

8"
4"

32
"

49
"

12
8"

12
8"

12
8"

32
"

16
4"

25
6"

25
6"

25
6"

51
2"

25
6"

12
8"

16
"

10
24
"
10
24
"
51
2"

12
8"

5"
1"

1"
1"

1"

2"
3"

4"
5"

6"
8"

9"
10
"

11
"

12
"

13
"

14
"

16
"

18
"

19
"

20
"

21
"

23
"

15
"

7"
22
"

24
"

clu
st
er
"

nu
m
a"

sm
p"

Number"of"failures"

nu
m
be

r"o
f"n

od
es
"

" no
"o
f"p

ro
ce
ss
or
s"i
n"
no

de
"

" sy
st
em

's"
id
"

"

Hu
m
an

"E
rr
or
"

Ha
rd
w
ar
e"

Ne
tw

or
k"

So
Dw

ar
e"

Un
de

te
rm

in
ed

"

Fi
gu

re
2.
1:

A
sim

pl
ifi
ed

an
al
ys
is

of
nu

m
be

r
of

fa
ilu

re
s
fo
r
ea
ch

sy
st
em

ac
co
rd
in
g
to

C
FD

R
da

ta
[3
]

16



2.1 Analysis of Failure Rates of HPC Systems

58
%
	
  

43
%
	
  

75
%
	
  

78
%
	
  

70
%
	
  

69
%
	
  

59
%
	
  

28
%
	
  

35
%
	
  

17
%
	
  

18
%
	
  

26
%
	
  

8%
	
  

14
%
	
  

14
%
	
  

22
%
	
  

8%
	
  

3%
	
  

4%
	
  

24
%
	
  

27
%
	
  

0%
	
  

10
%
	
  

20
%
	
  

30
%
	
  

40
%
	
  

50
%
	
  

60
%
	
  

70
%
	
  

80
%
	
  

90
%
	
  

61
52
	
  

20
48
	
  

40
96
	
  

40
96
	
  

20
48
	
  

25
6	
  

32
	
  

49
	
  

16
	
  

10
24
	
  

10
24
	
  

51
2	
  

1	
  
1	
  

2	
  
16
	
  

18
	
  

19
	
  

20
	
  

15
	
  

24
	
  

Failure	
  rate	
  of	
  HPC	
  systems	
  in	
  %	
  

cp
us
	
  

	
   no
de

s	
  
	
   sy
s	
  i
d	
  

Ha
rd
w
ar
e	
  

So
Cw

ar
e	
  

Hu
m
an
	
  e
rro

r	
  	
  
or
	
  N
et
w
or
k	
  o

r	
  U
nd

et
er
m
in
ed

	
  

Fi
gu

re
2.
2:

Fa
ilu

re
ra
te

of
H
PC

sy
st
em

s
w
ith

di
ffe

re
nt

C
PU

s
an

d
no

de
s

17
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about 6 hours.

2. There is a relationship between the failure rate of a system and the applications

running on it.

3. As many as three failures may occur on some systems within 24 hours.

4. The failure rate is almost proportional to the number of processors in a

system.

Oliner and Stearley [1] studied system logs from five supercomputers installed

at Sandia National Labs (SNL) as well as Blue Gene/L, which is installed at

Lawrence Livermore National Labs (LLNL). The five systems were ranked in the

Top500 supercomputers at the time of their study. The systems were structured

as follows: 1) Blue Gene/L with 131,072 CPUs and a custom interconnect; 2)

Thunderbird with 9,024 CPUs and an InfiniBand interconnect; 3) Red Storm with

10,880 CPUs and a custom interconnect; 4) Spirit (ICC2) with 1,028 CPUs and

a GigEthernet (Gigabit Ethernet) interconnect; and 5) Liberty with 512 CPUs

and a Myrinet interconnect. A summary of the systems is provided in Table

2.1. Although the raw data appeared to show that 98% of the failures were due

to hardware, after the data were filtered, the analysis revealed that 64% of the

failures were due to software.

Table 2.1: Summary of HPC systems studied by Oliner and Stearley [1]

No System name System configuration

1 Blue Gene/L 131,072 CPUs and custom interconnect
2 Thunderbird 9,024 CPUs and an InfiniBand interconnect
3 Red Storm 10,880 CPUs and a custom interconnect
4 Spirit (ICC2) 1,028 CPUs and a GigEthernet (Gigabit Ethernet) interconnect
5 Liberty 512 CPUs and a Myrinet interconnect
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2.1.3 Human Error Failure Rates

Oppenheimer and Patterson [36] report that operator error is one of the largest

single root causes of failure. According to their report, Architecture and Dependability

of Large-Scale Internet Services, the failures occurred when operational staff made

changes to the system, such as replacement of hardware, reconfiguration of the

system, deployment, patching, software upgrade and system maintenance. They

attributed 14-30% of failures to human error.

Thus we can conclude that almost all failures of computation-intensive

applications are due to hardware failures, software failures and human error. It is

difficult, however, to specify the single major cause of failures, since the analyses

reported above were carried out:

1. using different systems on which different applications were running;

2. under different environmental conditions; and

3. using different data correlating periods and methods.

Consequently, effective fault tolerant HPC systems should address hardware and

software failures as well as human error.

2.2 Review of Fault Tolerance Mechanisms for
High Performance Computing Systems

Figure 2.3 shows an abstract view of the fault tolerance techniques used in this

review. We use the feature modelling technique [43] to model this abstract
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view because of its conceptual simplicity and because it makes it easy to map

dependencies in an abstract representation. The most widely used fault tolerance

techniques in HPC systems are migration methods, redundancy (hardware and

software), failure masking, failure semantics and rollback-recovery techniques [44,

13, 26]. Each is briefly summarised below.

2.2.1 Migration Method

With recent advances in virtualisation technologies, migration can be categorised

into two major groups: process-level migration and Virtual Machine (VM)

migration. Process-level migration is the movement of an executing process

from its current node to a different node. The techniques commonly used in

process-level migration are eager, pre-copy, post-copy, flushing and live migration

techniques [45]. VM migration is the movement of a VM from one node/machine

to a new node. Stop-and-copy and live migration of VMs are the most commonly

used techniques [46].

In the migration approach, the key idea is to avoid an application failure

by taking preventive action. When a part of an application running on a node

seems likely to fail (which may lead to failure of the whole application), that

part of the application that is likely to fail is migrated to a safe node and the

application continues. This technique relies primarily on accurate prediction of

the location, time, and type of failure that will occur. Reliability, availability,

and serviceability (RAS) log files are commonly used to develop the prediction

algorithm [47]. RAS log files contain features that will assist in accomplishing

RAS goals - minimal downtime, minimal unplanned downtime, rapid recovery
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after a failure, and manageability of the system (the ease with which diagnosis

and repair of problems can be carried out). Error events and warning messages

are examples of information contained in a RAS log.

Failure types that have not been recorded in RAS log files will not be correctly

predicted. It is still a challenge to build accurate failure predictors for petascale and

exascale systems with thousands of processors and nodes [10]. A failure predictor

may predict failures that will never occur; these are called ”false positives” and

may fail to predict failures that do occur. Therefore, the migration method should

be used with other fault tolerance techniques such as checkpoint/restart facilities

in order to build robust fault tolerance HPC systems.

2.2.2 Redundancy

With physical redundancy techniques, redundant components or processes are

added to make it possible for the HPC system to tolerate failures [13, 48]. The

critical components are replicated (as spare) as, for example, in the Blue Gene/L

and Tandem nonstop systems. In the event of hardware failure of one component,

other components that are in good working order continue to perform until the

failed part is replaced. Hardware redundancy is commonly used to provide fault

tolerance to hardware failures. The process of voting may be employed as proposed

in n (n >2) modular redundancy [12]. Usually, n=3, but some systems use n >3,

along with majority voting.

Software redundancy can be grouped into two major approaches: process pairs

and Triple Modular Redundancy (TMR). In the process pair technique, two types

of processes are created, a primary (active) process and a backup (passive) process.
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The primary and backup processes are identical but execute on different processors

and the backup process takes over when the primary process fails. It uses module

signal failure techniques or ‘I am alive message’ to detect failure [49]

In the TMR approach, three modules are created, they perform a process and

the result is processed by a voting system to produce a single output. If any

one of the three modules fails, the other two modules can correct and mask the

fault. A fault in a module may not be detected if all three modules have identical

faults because they will all produce the same erroneous output. To address that,

N-version programming [50], and N self-checking [51] have been proposed. There

are other methods as well, such as recovery blocks, reversible computation, range

estimation, and post-condition evaluation [38]. N-version programming is also

known as multiple version programming. In this approach, different software

versions are developed by independent development teams, but with the same

specifications. The different software versions are then run concurrently to provide

fault tolerance to software design faults that escaped detection. During runtime,

the results from different versions are voted on and a single output is selected. In

recovery block techniques, N unique versions of the software are developed, but

they are subjected to a common acceptance test. The input data are also check-

pointed, before the execution of the primary version. If the result passes the

acceptance test, the system will use the primary version, or else it will rollback to

the previous checkpoint to try the alternative versions. The system fails if none of

the versions passes the acceptance test. In N self-checking programming, N unique

versions of the software are also developed, but each has its own acceptance test.

The software version that passes its own acceptance test is selected through an

acceptance voting system.
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Software systems usually have a large number of states (upward of 1040) [52]

which implies that only a small part of the software can be verified for correctness.

2.2.3 Failure Masking

Failure masking techniques provide fault tolerance by ensuring that services are

available to clients despite failure of a worker, by means of a group of redundant

and physically independent workers. In the event of failure of one or more

members of the group, the services are still provided to clients by the surviving

members of the group, often without the clients noticing any disruption. There

are two masking techniques used to achieve failure masking: hierarchical group

masking and flat group masking [44]. Figure 2.4 illustrates the flat group and the

hierarchical group masking methods.

Flat group masking is symmetrical and does not have a single point of failure;

the individual workers are hidden from the clients, appearing as a single worker.

A voting process is used to select a worker in event of failure. The voting process

may introduce some delays and overhead because a decision is only reached when

inputs from various workers have been received and compared.

In hierarchical group failure masking, a coordinator of the activities of the

group decides within a group which worker may replace a failed worker in the event

of failure. This approach has a single point of failure; the ability to effectively

mask failures depends on the semantic specifications implemented [53].

Fault masking may create new errors, hazards and critical operational failures

when operational staff fails to replace already failed components [54]. When failure

masking is used, the system should be regularly inspected. However, there are
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costs associated with regular inspections.
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Figure 2.4: Flat group and hierarchical group masking

2.2.4 Failure Semantics

Failure semantics refers to the different ways in which a system designer anticipates

the system can fail, along with failure handling strategies for each failure mode.

This list is then used to decide what kind of fault tolerance mechanisms to provide

in the system. In other words, with failure semantics [44], the anticipated types of

system failure are built within the fault tolerance system and the recovery actions

are invoked upon detection of failures. Some of the different failure semantics are

omission failure semantics, performance semantics, and crash failure semantics.

Fail-stop failure semantics apply if the only failure that the designers anticipate

from a component is for it to stop processing instructions, while behaving correctly

prior to that [55]. Omission failure semantics apply if the designers expect a

communication service to lose messages, with negligible chances that messages are

delayed or corrupted. Omission/performance failure semantics apply when the

designers expect a service to lose or delay messages, but with lesser probability
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that messages can be corrupted.

The fault tolerant system is built based on foreknowledge of the anticipated

failure patterns and it reacts to them when these patterns are detected; hence

the level of fault tolerance depends on the likely failure behaviours of the model

implemented. Broad classes of failure modes with associated failure semantics

may also be defined (rather than specific individual failure types). This technique

relies on the ability of the designer to predict failure modes accurately and to

specify the appropriate action to be taken when a failure scenario is detected. It

is not feasible, however, in any system of any complexity such as HPC systems,

to predict all possible failure modes. For example, a processor can achieve crash

failure semantics with duplicate processors. Failure semantics may also require

hardware modifications [56]. Similarly, some of the nodes and applications failures

which occur in HPC systems may be unknown to the fault tolerance in place.

For example, a new virus may exhibit a new behaviour pattern which would go

undetected even though it could crash the system [57]. An unidentified failure

could also lead to stoppage.

2.2.5 Recovery

Generally, fault tolerance implies recovering from an error which otherwise may

lead to computational error or system failure. The main idea is to replace the

erroneous state with a correct and stable state. There are two forms of error

recovery mechanisms: forward and backward error recovery.

Forward Error Recovery: With Forward Error Recovery (FER) [58]

mechanisms, an effort is made to bring the system to a new correct state from which
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it can continue to execute, without the need to repeat any previous computations.

FER, in other words, implies detailed understanding of the impact of the error on

the system, and a good strategy for later recovery. FER is commonly implemented

where continued service is more important than immediate recovery, and high

levels of accuracy in values may be sacrificed; that is, where it is required to act

urgently (in, e.g., mission-critical environments) to keep the system operational.

FER is commonly used in flight control operation, where future recovery may

be preferable to rollback-recovery. A good example of forward correction is fault

masking, such as the voting process employed in triple modular redundancy and

in N-version programming.

As the number of redundant components increases, the overhead cost of FER

and of the CPU increases because recovery is expected to be completed in the

degraded operating states, and the possibility of reconstruction of data may

be small in such states [59]. Software systems typically have large numbers of

states and multiple concurrent operations [60], which implies that there may

be low probability of recovery to a valid state. It may be possible in certain

scenarios to predict the fault; however, it may be difficult to design an appropriate

solution in the event of unanticipated faults. In complex systems, FER cannot

guarantee that state variables required for the future computation are correctly

re-established following a fault; therefore, the result of the computations following

an error occurrence may be erroneous. FER is also more difficult to implement

compared to rollback-recovery techniques, because of the number of states and

concurrent operations. In some applications, a combination of both forward and

rollback-recovery may be desirable.

Rollback-recovery: Rollback-recovery consists of checkpoint, failure detection
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and recovery/restart. A checkpoint [38] is a snapshot of the state of the entire

process at a particular point such that the process could be restarted from that

point in the event that a subsequent failure is detected. Rollback-recovery is one

of the most widely used fault tolerance mechanism for HPC systems, probably

because:

1. Failures in HPC systems often lead to fail-stop of the application execution.

2. Rollback-recovery technique uses a fail-stop model (discussed in Chapter 3)

whereby a failed process can be restarted from saved checkpoint data.

In addition, rollback-recovery is used to protect against failures in parallel

systems because of the following major advantages [61]:

1. It allows computational problems that take days to execute in HPC systems

to be checkpointed and restarted (from the last saved) in event of failures

instead of restarting the application from the beginning.

2. It allows load balancing and for applications to be migrated to other nodes,

or even another system where computation can be resumed if an executing

node fails.

3. It has lower implementation cost compared to hardware redundancy.

4. It reduces electrical power consumption compared to hardware redundancy.

The major disadvantage is that rollback-recovery does not protect against

design faults (software fault). After rollback the system continues processing as

it did previously. This will recover from a transient fault, but if the fault was

caused by a design fault, then the system will fail and recover endlessly, unless
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an alternate computational path is provided during the recovery phase. Note

that some states cannot be recovered, if all components use checkpointing, an

invalid message can be sent to other applications, causing them to roll back and

then consume fresh, correct results. This is similar to invalidation protocols

in distributed caches as discussed in [62]. Despite these limitations, the need

to ensure that computation-intensive parallel applications complete successfully

necessitates its use. Two major techniques are used to implement rollback-recovery:

checkpoint-based rollback-recovery and log-based rollback-recovery. These

techniques and over 20 checkpoint/restart facilities are discussed in detail in our

earlier work [11].

A great deal of research has been carried out on checkpoint and restart but

some issues [26, 8] are yet to be addressed:

1. The number of transient errors could increase exponentially because of the

exponential increase in the number of transistors in integrated circuits in

HPC systems.

2. Some faults may go undetected (e.g., software errors), which would lead

to further erroneous computations in long-running applications, potentially

resulting in complete failure of an HPC system.

3. Correctable errors may also lead to software instability due to persistent

error recovery activities.

4. How to reduce the time required to save the execution state, which is one of

the major sources of overhead.
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2.3 Rollback-recovery Feature Requirements for
HPC Systems

We define the following rollback-recovery feature requirements which are

important to HPC fault tolerance systems [63, 64, 65]. We do not claim that

these features are necessary or sufficient, since future technological developments

may force additional requirements or, conversely, eliminate some of them from

the list. These feature requirements will be used to evaluate the applicability of

different checkpointing/restart facilities listed in this survey.

1. Transparency: A good fault tolerance approach should be transparent;

ideally, it should not require source code or application modifications, nor

re-compilation and re-linking of user binaries, because new software bugs

could be introduced into the system.

2. Application coverage: The checkpointing solution must have a wide range of

applications coverage, to reduce the likelihood of implementing and using

multiple different of checkpointing/restart solutions which may lead to

software conflicts and greater performance overhead.

3. Platform portability: It must not be tightly coupled to one version of an

operating system or application framework, so that it can be ported to other

platforms with minimal effort.

4. Intelligence/Automatic: It should use failure prediction and failure detection

mechanisms to determine when checkpointing/restart should occur without

the user’s intervention. Whenever this feature is lacking, users are required

to initialise the checkpointing/restart process. Although system users may
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be trained to carry out the checkpoint/restart activities, human error can

still be introduced if system users have to initiate the checkpoint or recovery

processes [66].

5. Low overhead: Low overhead: The time to save checkpoint data should

be significantly shorter compared to the 40 to 60 minutes that has been

recorded on some of the top500 HPC systems [26]. The size of the checkpoint

should be minimised.

2.4 Checkpoint-based Rollback-recovery
Mechanisms

In checkpoint-based rollback-recovery, an application is rolled back to the most

recent consistent state using checkpoint data. Due to the global consistency state

issue in distributed systems [16], checkpointing of applications running in this type

of environment is quite difficult to implement compared to uniprocessor systems.

This is because different processors in the HPC system may be at different stages

in the parallel computation and thus require global coordination, but it is difficult

to obtain a consistent global state for checkpointing. (Due to drift variations

in local clocks it is generally not practical to use clock-based methods for this

purpose.) A consistent global checkpoint is a collection of local checkpoints, one

from every processor, such that each local checkpoint is synchronised to every

other local checkpoint [67]. The process of establishing a consistent state in

distributed systems may force other application processes to roll back to their

checkpoints even if they did not experience failure, which, in turn, may cause

other processes to roll back to even earlier checkpoints. This effect is called
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the domino effect [68]. In the most extreme case this domino effect may lead

to the only consistent state being the initial state, clearly something that is

not very useful. There are three main approaches to dealing with this problem

in HPC systems: uncoordinated checkpointing, coordinated checkpointing, and

communication-induced checkpointing. We briefly discuss each of these below.

Uncoordinated checkpointing allows different processes to do checkpoints when

it is most convenient for each process thereby reducing overhead [69]. Multiple

checkpoints are maintained by the processes, which increase the storage overhead

[70]. With this approach it might be difficult to find a globally consistent state,

rendering the checkpoint ineffective. Therefore uncoordinated checkpointing is

vulnerable to the domino effect and may lead to undesirable loss of computational

work.

Coordinated checkpointing guarantees consistent global states by enforcing each

of the processes to synchronize their checkpoints. Coordinated checkpointing has

the advantages that it makes recovery from failed states simpler and is not prone

to the domino effect. Storage overhead is also reduced compared to uncoordinated

checkpointing, because each process maintains only one checkpoint on stable

permanent storage. However, it adds overhead because a global checkpoint needs

internal synchronization to occur prior to checkpointing. A number of checkpoint

protocols have been proposed to ensure global coordination. A non-blocking

checkpointing coordination protocol was proposed [71] to ensure that applications

which would render coordinated checkpointing inconsistent, are prevented from

running. Checkpointing with synchronised clocks [72] has also been proposed. The

DMTCP [65] checkpointing facility is an example that implements a coordinated

checkpointing mechanism.
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Communication-induced checkpointing (CIC) (also called message induced

checkpointing) protocols do not require that all checkpoints be consistent, and

still avoids the domino effect. With this technique, processes perform two types of

checkpoints: local and forced checkpoints. A local checkpoint is a snapshot of the

local state of a process, saved on persistent storage. Local checkpoints are taken

independently of the global state. Forced checkpoints are taken when the protocol

forces the processes to make an additional checkpoint. The main advantage of CIC

protocols is that they allow independence in detecting when to checkpoint. The

overhead is reduced because a process can take local checkpoints when the process

state is small. CIC, however, has two major disadvantages: (1) it generates large

numbers of forced checkpoints with resulting storage overhead; and (2) the data

piggybacked on the messages generates considerable communications overhead.

2.4.1 Log-based Rollback-recovery Mechanisms

Log-based rollback-recovery mechanismsare similar to checkpoint-based

rollback-recovery except that messages sent and received by each process are

recorded in a log. The recorded information in the message log is called a

determinant. In the event of failure, the process can be recovered using the

checkpoint and reapplying the logged determinants to replay its associated

non-determinants events and to reconstruct its previous state. There are three

main mechanisms: pessimistic, optimistic, and casual message logging mechanisms.

A complete review of these techniques can be found in [16]. Pessimistic message

logging protocols record the determinant of each event to stable storage before it

is allowed to trigger the execution of the application. The main advantages of
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this method are: (1) that the recovery of the failed application is simplified by

allowing each process of the failed application to recover to the known state in

relationship with other applications; and (2) that only the latest checkpoint is

stored, while older ones are discarded. However, the process is blocked while the

event determinant is logged to a stable state, which incurs an overhead.

In optimistic logging protocols, the determinant of each process is logged to

volatile storage; events are allowed to trigger the execution of application before

logging of the determinant is concluded. This method is good as long as the fault

did not occur between the non-determinant event and subsequent logging of the

determinant event. Consequently, overhead is reduced because volatile storage is

used; however, the recovery process may not be possible if the volatile store loses

its content due to power failure.

Casual message logging protocols utilise the advantages of both pessimistic and

optimistic message logging protocols. Here the messages logs are stored in stable

storage when it is most convenient for the process to do so. In casual message

logging protocols, processes piggyback the non determinant messages on the local

storage. Therefore only the most recent message log is required for restarting and

multiple copies are kept, making the logs available in event of multiple machine

failure. Further discussion of the piggyback concept in casual message logging

protocols is found in [46, 16]. The main disadvantage of the casual message logging

protocol is that it requires a more complex recovery protocol.
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2.5 Taxonomy of Checkpoint Implementation

In this section, three major approaches to implementing checkpoint/restart systems

are described: application-level implementation, user-level implementation and

system level implementation. The implementation level refers to how it integrates

with the application and platform. Figure 2.5 shows the taxonomy of checkpoint

implementation.

In application-level implementations, the programmer or some automated

pre-processor injects the checkpointing code directly into the application code.

The checkpointing activities are carried out by the application. Basically it

involves inserting checkpointing code where the amount of state that needs to be

saved is small, saving the checkpoint in persistent storage, and restarting from

the checkpoint if a failure had occurred [73]. Application-level checkpointing

accommodates heterogeneous systems, but lacks transparency, which is usually

available with a kernel-level or a user-level approach. The major challenge in this

approach is that it requires the programmer to have a good understanding of the

applications to be checkpointed. (Note that programmers (users) may not always

have access to the application source code.) The Cornell Checkpoint(pre) Compiler

(C3) [74] is an excellent implementation of application-level checkpointing.

With user-level implementations, a user-level library is used to do the

checkpointing and the application programs are linked to the library. Some typical

library implementations are Esky [75], Condo [76], and libckpt [77]. This approach

is usually not transparent to users because applications are modified, recompiled

and re-linked to the checkpoint library before the checkpoint facility is used. The

major disadvantages of these implementations are that they impose limitations
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on which system calls applications can make. Some shell scripts and parallel

applications may not be checkpointed even though they should be because the

library may not have access to the system files [25].

Checkpoint/restart may also be implemented at the system level, either in

the OS kernel or in hardware. When implemented at the system level, it is can

be transparent to the user and usually no modification of application program

code is required. Applications can be checkpointed at any time under control of a

system parameter that defines the checkpoint interval. Examples of system-level

implementations include CRAK [78], Zap [79], and BLCR [63]. These offer a choice

of periodic and non-periodic mechanisms. It may be challenging to checkpoint at

this level because not all operating system vendors make the kernel source code

available for modification, but if a package for a particular OS exists, then it is

very easy to use, as the user does not have to do anything once the package is

installed. One drawback, however, is that a kernel level implementation is not

portable to other platforms [74].

Hardware-level checkpointing uses digital hardware to customise a cluster

of commodity hardware for checkpointing. It is transparent to users. Different

hardware checkpointing approaches have been proposed, including SWICH [80].

Hardware checkpointing could be implemented with FPGAs [81]. Additional

hardware is required and there is the overhead cost of building specialised hardware

if this approach is selected. Hardware-level checkpointing is also not portable,

which is a significant disadvantage.
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Figure 2.5: Taxonomy of Checkpoint Implementation

2.6 Reducing the Time for Saving the Checkpoint
in Persistent Storage

There are techniques designed to reduce the overhead cost in saving the checkpoint

data when writing the state of a process to persistent storage. This is, of course,

one of the major sources of increased performance overhead. We briefly discuss

here some of these techniques.

In incremental checkpointing, only the portion of the program that has changed

since the last saved process [77] is saved. The unchanged portion can be restored

from previous checkpoints. The overhead of checkpointing is reduced in this
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process. However, the recovery could be complex because the multiple incremental

saved files are kept and grow with each checkpoint. This can be limited to at

most n increments, after which a full checkpoint is saved as is commonly done in

storage backup systems.

Flash-based Solid State Disk (SSD) memory may also be used as a persistent

store for the checkpoint data. SSD is based on semiconductor chips rather than

magnetic media technology such as hard drives, to store persistent data. SSD has

lower access times and latency compared to hard disks, however it has limited

read/write cycles of about 100,000 times and data may be difficult to access after

this threshold has been exceeded [82]. Wear leveling is used to minimise this

problem [83].

Copy-on-write[77] techniques reduce the checkpoint time by allowing the

parent process to fork a child process at each checkpoint. The parent process

continues execution while the child process carries out checkpointing activities.

The technique is useful in reducing checkpoint time when the checkpoint data is

small. However, there is a performance degradation if the size of the checkpoint

data is large because the child and parent processes will compete for computer

resources (e.g., memories and network bandwidth).

Data compression reduces the size of checkpoint data to be saved on the

storage, thereby reducing the time to save the checkpoint data. However it takes

time and computer resources to carry out the compression. Plank [84] showed

that checkpointing can benefit from data compression techniques. However, data

compression depends on the compression ratio and application state. If the

amount of data to compress is large it consumes more memory, which will result in

performance degradation of the executing application. When data are compressed,
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it will require more time to restart the application due to decompression time.

2.7 Survey of Checkpoint/Restart Facilities

A number of surveys of checkpoint/restart facilities have been carried out, such as

checkpoint.org [85], Kalaiselvi and Rajaraman [67], Byoung-Jip [86], Roman [61],

Elnozahy et al [16], and Maloney and Goscinski [64]. None presents summarised

information of currently available facilities that would easily aid research in this

area. Hence, we summarise and tabulate our findings in Appendix A, Table A.2.

This provides an overview of existing checkpoint/restart facilities that have been

proposed by researchers for different computing platforms (the website addresses

of the checkpoint facilities surveyed are included in the table). The criteria used

in this survey were based on the rollback-recovery feature requirements for HPC

systems discussed above. Table A.2 is concise and includes information that

provides the HPC checkpointing research community with a good overview of

the systems that have been proposed. The selected checkpoint/restart facilities

covered include recent work that is currently widely used.

2.8 Summary

In this chapter, we have provided an overview and analysis of failure rates of

HPC systems. Although it is difficult to determine the single most common root

cause of failure, we also conclude that computation-intensive applications are most

frequently interrupted by hardware failures, software failures or human error. We

conclude that a good fault tolerance mechanism should be able to mitigate or, in
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some cases, even eliminate the consequences of failure. We have surveyed fault

tolerance mechanisms (redundancy, migration, failure masking and recovery) for

HPC and identified the pros and cons of each technique.

Recovery techniques are discussed in detail, and over 20 checkpoint/restart

facilities have been surveyed. Research efforts directed at reducing the time for

saving the checkpoint in persistent storage are presented. The rollback feature

requirements that were identified are used to evaluate them and the results are

provided in a tabular format for ease of reference. The web site of each surveyed

checkpoint/restart facility is also provided for further investigation.

While much work has been done on fault tolerance in traditional HPC systems

[77, 44, 13, 45], in particular on checkpoint and restart techniques [16, 61],

recent publications [10, 23, 87, 88] have shown that present fault tolerance (e.g.,

checkpoint and restart techniques) may not be effective in HPC systems with

more than 10,000 nodes.

Fault tolerance in the context of HPC systems in the cloud is essentially

different in nature because computation-intensive applications are executed in

virtual machines. Since cloud computing is relatively new, there was no available

published work on fault tolerance for HPC systems in the cloud, particularly when

HaaS is leased.
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Chapter 3

HPC Systems in the Cloud,
Concepts and Architecture

Cloud computing is a new computing paradigm. In this chapter, we provide the

theoretical background to this thesis by defining the HPC in the cloud. We examine

relevant concepts, architecture, cloud services and fault tolerance issues, with

particular focus on HPC systems in the cloud. This chapter contains extracts from

our previous work [30, 29] but also includes refinements and new contributions.

3.1 Cloud Computing Architectures

The published literature [89, 18, 90, 91] and other sources [92] contain different

definitions of cloud computing. We adopt the definition of Foster et al. [91], which

captures the four-layer architecture of cloud computing:

“Cloud computing is a large-scale distributed computing paradigm that

is driven by economies of scale, in which a pool of abstracted, virtualized,

dynamically-scalable, managed computing power, storage, platforms,

and services are delivered on demand to external customers over the

Internet.”
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Cloud computing promises numerous benefits [18, 93], including no up-front

investment, scalability and greater research collaboration efficiency. It reduces

development and deployment time, staff (e.g., administrators) and hardware

requirements, which can result in significant cost saving. With cloud computing,

the need to plan ahead for provisioning Information Technology (IT) infrastructure

is greatly reduced, because it is difficult to predict IT service demand, which can

depend on unforeseeable events. HPC systems can also be more easily scaled in

cloud computing than in traditional HPC systems.

With the cloud computing pay-as-you-go pricing model, scientists and re-

searchers can lease cloud services such as Infrastructure as a Service (IaaS) and

Hardware as a Service (HaaS) for computation-intensive applications. These ser-

vice models avoid job queuing, which is common in traditional HPC systems. The

price model is also attractive when compared to traditional HPC systems that

involve large capital investment, administrative issues and allocation policies. The

infrastructure costs mean that only large universities and research communities

can justify the expense of acquiring HPC systems.

A number of publications [94, 18, 95 96, 97] has shown that HPC systems

in the cloud are a good alternative to HPC systems. It is expected that more

computation-intensive applications will be deployed and run in HPC systems in

the cloud. As a case in point, the Amazon Elastic Compute Cloud (Amazon

EC2) cluster recently appeared in the Top500 list [2], which suggests likely future

demand for HPC systems in the cloud.

The two major key players in cloud computing:

1. Cloud providers and
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2. Cloud users.

3.1.1 Cloud Providers

Cloud providers (e.g., Baremetalcloud [98] and Amazon EC2 [20]) create and

provide cloud services (hardware, virtual machines, storage, etc.) to which

consumers can subscribe, usually on a pay-as-you-go basis.

3.1.2 Cloud Users

Cloud users are organisations or individuals (e.g., scientists) who subscribe to

a selection of cloud services. This allows them either to operate their IT in the

cloud at a reduced cost or to create products (or perform experiments) that would

have been difficult without the possibilities inherent in the cloud.

3.2 Cloud Service Models

Cloud service models allow cloud providers to offer specialised services that can

represent significant savings for some users. The benefits of running computation-intensive

applications in HPC systems in the cloud include scalability, a pay-as-you-go

price model and easy access. Although there are different views on cloud

computing architectures [18, 90, 91, 99], we favour a four-layer architecture

for cloud computing that is consistent with the definition provided in [91] and

with the four major cloud computing service models [18, 100, 32]. The four-layer

architecture for cloud computing model gives a broad and conceptually simple yet

comprehensive view of major cloud services. This four-layer architecture for cloud

computing, shown in Figure 3.1, consists of:
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1. Software as a Service (SaaS)

2. Platform as a Service (PaaS)

3. Infrastructure as a Service (IaaS)

4. Hardware as a Service (HaaS).
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Figure 3.1: Cloud computing architecture
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3.2.1 Software as a Service (SaaS)

SaaS is the highest abstraction level in the cloud. It offers cloud users ready-to-use

online applications that are already deployed in the cloud. This layer is hidden

from users and is managed by the SaaS providers. Users do not know where or how

these applications are deployed; they simply use them. SaaS cloud applications

can be accessed via the Internet with any Internet-ready device such as a laptop,

smartphone, or tablet. This enables relatively unsophisticated clients to perform

complex tasks by shifting the real work, transparently to the user, into the cloud.

Good examples of SaaS include Microsoft Word online provided by Microsoft and

the commonly used Gmail (email services) provided by Google.

3.2.2 Platform as a Service (PaaS)

PaaS provides cloud users with a fully configured and managed computing plat-

form for ready-to-run custom software developed by users. Each PaaS platform is

targeted to software developed in a specific programming language or software

framework and is ready to execute corresponding builds. Good examples of PaaS

are Microsoft Azure and Google App Engine [101, 102]. PaaS cloud users deploy

and run their software without the need to set up virtual machines and software

stacks or to think about scalability or clustering, and often without even knowing

how many computers or CPUs their application will run on. Fault tolerance is

provided for this level of service.
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3.2.3 Infrastructure as a Service (IaaS)

IaaS is similar to HaaS but virtual machines, rather than real hardware, are

rented out. IaaS cloud users have to install, configure, and maintain the virtual

machines they rent and are free to choose the operating system and software stack

they install in their virtual machines. Often IaaS users make use of pre-installed

and preconfigured virtual machine images supplied by their provider as base

installation. Cloud users of IaaS do not have root access to the hardware but only

to the virtual machines they lease. A good example of a cloud provider who offers

IaaS for HPC applications is Amazon Elastic Compute Cloud (EC2). Amazon

EC2 offers cluster compute instances for HPC applications. IaaS providers usually

provide fault tolerance to users.

3.2.4 Hardware as a Service (HaaS)

In this case, the cloud provider basically rents out ‘bare-metal’ hardware (e.g.,

server/host and storage). Notable HaaS providers include Baremetalcloud [98],

and SoftLayer [103]. Cloud users connect to HaaS via the Internet, install and

configure (e.g., virtual machines) the server or service they have leased. Cloud

users choose HaaS because it gives them full control of the server (host), operating

system, and software/hardware stack, as well as the number of virtual machines

they execute on it. Research communities lease HaaS for computation-intensive

and/or data-intensive applications and configure HPC systems according to their

needs. Consequently, computation-intensive applications that were traditionally

run on HPC systems can now be executed in the cloud. However, fault tolerance

is not provided at this service level.
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3.3 Types of Clouds

One way of classifying cloud computing is: public cloud, private cloud, community

cloud, and hybrid cloud [93, 104]. Each of these cloud types offers different ad-

vantages to cloud users. We briefly explain these types and the advantages that

each offers in relationship to HPC systems in the cloud. Figure 3.2 shows the

types of cloud computing with an illustrative diagram of an HPC system in the

cloud.

3.3.1 Public Cloud

In public cloud computing, computer resources (e.g., virtual machines, CPU,

storage, bandwidth, databases) are made available to the public by a cloud service

provider such as Amazon Web Services and Googles App Engine. These resources

may be provided free (e.g., Cloudo [105]) or based on a pay-as-you-go model,

such as the services from Amazon and Google. Public clouds promise the major

benefits of cloud computing [18]. In this thesis, we deal with HPC systems in the

cloud (public cloud).

3.3.2 Private Cloud

A private cloud is hosted in the data centre of a company and provides its cloud

services only to internal users or its partners. A private cloud may offer higher

security than public clouds and can provide cost savings if it utilises otherwise

unused capacity in an existing data centre [106]. Large organisations, including

large universities, can host HPC systems in their private cloud.
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3.3.3 Community Cloud

In community cloud computing, cloud services are provided to a specific group of

organisations that share common goals or missions (such as security requirements,

policy, or compliance considerations) [89]. The cost of running the cloud services is

shared among the participants. Community clouds can leverage service compliance

to provide highly secure cloud environments among trusted communities [107]).

Community clouds offer higher security and cost savings than public clouds, if

managed properly, but less security than a private cloud.

3.3.4 Hybrid Cloud

This is a combination of private, public, or community clouds, as shown in

Figure 3.2. Hybrid clouds allow organisations to find an optimal balance between

cost of IT operations and inherent security risks by running highly confidential

applications on private clouds and utilising public clouds for peak loads or other

computations. For example, a healthcare organisation may use a private cloud

managed by its internal IT unit to meet security requirements for healthcare

data and public cloud services to fulfill organisational goals with lower security

requirements. Hybrid clouds are still at an early stage of development, and

inter-operability among clouds is a major challenge that has to be overcome so

that users can manage their hybrid cloud environments without added complexity

with the very tools they use to manage their private clouds.

49



3.4 HPC Systems in the Cloud

3.4 HPC Systems in the Cloud

Cloud computing presents a significant opportunity for HPC systems. The price

model means that HPC systems are no longer limited to large organisations but are

also available to smaller enterprises, and even individuals, for computation-intensive

computation. An HPC system in the cloud is deployed on top of virtualisation

technology, as shown in Figure 3.3.

Virtualisation allows installation of multiple operating systems and software

stacks (virtual machines) on one physical computer, allowing them to execute

simultaneously but fully segregated from each other.

HPC in the cloud typically runs jobs (computation-intensive applications) and

other services (e.g., resource management and file system services) on a head node

and compute nodes using a Message Passing Interface (MPI) to communicate

between different nodes.

3.4.1 Head Node

The head node on an HPC system in the cloud is usually a virtual machine that is

configured to act as a point of contact between the HPC system and the outside

network. It is usually seen as the heart of the cluster (HPC system) and performs

the roles of job submission, network management, user login, access point to

compute nodes, and control. In theory, users do not need to access individual

compute nodes of an HPC system; rather, they depend on the head node and

the job submission and other resource management tools to monitor and retrieve

data and results. A head node failure may result in the loss of the application

and failure of the entire HPC system. The possibility of network partition and
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Figure 3.3: Host and Xen virtualization

how it impacts the notion of a head node is out of the scope covered in this thesis.

The interested reader is referred to [15].

3.4.2 Compute Nodes

A compute node in an HPC system in the cloud is essentially an independent

virtual machine configured to accept jobs from the head node and produce

corresponding results. In theory, only the head node has direct access to the

compute node. The head node may use secure protocol such as Secure Shell (SSH)

transport layer protocol [108] to connect to the compute node. Each compute

node running a computation-intensive application on HPC in the cloud is a single

point of failure for the HPC system; that is, failure of a compute node running
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3.4 HPC Systems in the Cloud

a computation-intensive application may lead to loss of system and application

state.

3.4.3 Message Passing Interface

The Message Passing Interface (MPI) [109] is the common parallel programming

industry standard on which most parallel applications are written. With MPI,

distributed and parallel virtual machines with distributed memories on HPC

systems in the cloud communicate and share their data with other virtual machines

by sending and receiving messages. MPI (e.g., OpenMPI, MPICH) provides two

modes of operation: running or failed. That is, it follows the fail-stop model.

An example of MPI application is Portable, Extensible Toolkit for Scientific

Computation (PETSc) [110] that is used for modelling in scientific applications

such as acoustics, aerodynamics, brain surgery, medical imaging, ocean dynamics

and oil recovery. In this thesis we used OpenMPI implementation [111] because

OpenMPI is an open source MPI-2 implementation that is widely used by HPC

community across all platform. OpenMPI is developed and maintained by a

collaboration of academic, research and industry partners.

3.4.4 Fail-stop Model

The fail-stop model assumes that systems components (e.g., compute node, pro-

cessor) have failed completely when they are not producing output, have halted,

restarted or stopped. A heart-beat mechanism is commonly used to detect fail-

ures. Most HPC systems assume a fail-stop model [55]. MPI applications running

in HPC systems in the cloud can fail at any point of execution due to the hard-
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ware, software and virtual machines that make up HPC systems in the cloud.

This thesis focuses on the fail-stop model because HPC systems in the cloud,

particularly when HaaS is leased, do not have fault tolerance in place. Fail-stop

model is the most commonly experienced failure in HPC systems [15]

3.4.5 Virtualisation

Virtualisation is the enabling technology for HPC systems in the cloud. Virtualisation

allows installation of multiple operating systems and software stacks (virtual

machines) on physical computers (hosts) and configured virtual machines to form

HPC systems in the cloud. There are several competing virtualisation technologies,

most notably Xen [112] and the Linux Kernel Virtual Machine (KVM) [113]. In

this study we used Xen virtualisation technology because of its features, which

are briefly described below.

Xen hypervisor[112] is an open-source industrial standard virtualisation

technology that is widely used by researchers [114]. As shown in Figure 3.3,

Xen hypervisor provides a low level interaction between virtual machines usually

called DomainU (guest machine), and the physical hardware. Domain0 or the

control domain is the virtual host environment. Xen hypervisor supports full

virtualisation and para-virtualization modes. The full virtualisation mode allows

virtual machines to run unmodified operating systems (e.g., Windows XP), but

the hardware must support hardware-assisted virtualisation technology. Para-

virtualisation allows the guest operating system to be modified for performance

reasons [114].
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3.5 Challenges for HPC Systems in the Cloud

In addition to the challenges mentioned in Chapter 1, HPC systems in the cloud

face two additional challenges:

1. System Reliability

2. Cost

3.5.1 System Reliability

With an increase in the number of processors, integrated circuit sockets and

compute nodes, the overall system Mean Time Between Failure (MTBF) in

large-scale HPC systems may typically be reduced to just a few hours [115, 11,

23].

MTBF is a primary measure of system reliability and is defined as the

probability that the system performs without deviations from agreed-upon behaviour

for a specific period of time [116]. The reliability of a component is given as

Reliability function = n(t)
N

= failure free elements
number of elements at time=0 (3.1)

The reliability of elements connected in series

Rs =
m∏
n=1

e−λit (3.2)

and, the reliability of elements connected in parallel is given as

Rp = 1−
m∏
n=1

(1− e−λit) (3.3)
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If we assume that in a system of m components, the MTBF of any component i

is independent of all other components, the reliability R of the system is

R = 1
MTBF1

+ 1
MTBF2

+ ...+ 1
MTBFm

(3.4)

If MTBF1 = MTBF2 = ... = MTBFm then,

R = component MTBF
m

(3.5)

Availability is the degree to which a system or component is operational and able

to perform its designed function [87].

Availability

(MTBF +MTTR) (3.6)

where MTTR = Mean Time To Repair

For example, following a certain threshold, in a system with a large number of

components, the system reliability can decrease, as illustrated in Figure 3.4. The

diagram also shows how the value of the MTBF affects reliability (e.g., MTBFs of

100,000 and 1,000,000 hours).
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Figure 3.4: Reliability levels of two systems with MTBF of 105 and 106 as a
function of the number of nodes

HPC applications deployed in cloud environments run on virtual machines,
which are more likely to fail due to resource sharing and contention. Therefore,
HPC systems in the cloud face three major types of failures;

1. Hardware failures

2. Software failures

3. Virtual machine failures

3.5.2 Cost

The price model for HPC systems in the cloud is attractive, particularly when

compared to traditional HPC systems that require huge investments of capital and

56
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involve administrative issues and allocation policies. However, the cost of running

HPC application on HPC systems in the cloud may be high if the cloud services

are not well understood or if non-cost-effective cloud services are chosen. If the

dollar cost of running HPC applications in the cloud (when a non-cost-effective

cloud service is chosen) is high compared to that of a traditional HPC system,

then the benefits of running computation-intensive applications on the cloud may

not be realised. HPC systems research communities are concerned about the cost

and computational performance of different cloud services.

3.6 Summary

This chapter has presented the conceptual background of the types of HPC sys-

tems in the cloud that are the subject of this thesis. We have explained cloud

computing architectures, described their benefits and identified the two main

categories of cloud players (cloud providers and cloud users). We have explained

the various cloud service models, SaaS, PaaS, IaaS and HaaS, discussed their

challenges with respect to HPC systems in the cloud, and presented the four types

of cloud computing available for HPC systems.

HPC systems in the cloud usually consist of a head node and compute nodes.

The head node and compute nodes are virtual machines configured to fit their

roles. The head node usually handles the user login, resource management, jobs

assignment and network file system. Compute nodes are normally accessed through

the head node. Compute nodes perform the computation-intensive job assigned

by the head and produce results. The head node and compute nodes communicate

through the Message Passing Interface. Failures of the head node and/or compute

57



3.6 Summary

node(s) commonly lead to a failure of the HPC system.

We also identified two additional challenges: system reliability (hardware fail-

ures, software failures and virtual machine failures) and cost (what cloud service

is cost effective for HPC systems?). This thesis addresses cost, reliability and the

other HPC challenges identified in Chapter 1.
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Chapter 4

Proactive Fault Tolerance
Approach to HPC Systems in the
Cloud

This chapter describes a proactive fault tolerance approach to HPC systems in the

cloud. It presents an account of our design and implementation approaches, cost

model, mathematical analysis and test results. Some of the content is extracted

from our earlier work [31, 29], with some additions and modifications.

4.1 Introduction

HPC systems are currently used by scientists and researchers in both industry

and university laboratories. Computation-intensive applications requiring large

amounts of computing power are executed in HPC systems. Fields of application

[117, 4, 118] of HPC systems are shown in Table 4.1. The table shows that HPC

system has wide range of applications.
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Table 4.1: HPC systems applications

Field Application

Medicine
Medical imaging (e.g., 3D ultrasound real-time X-ray)
Monitoring brain activities (e.g., Magneto Encephalography
(MEG))
Brain data analysis

Financial
Investment decision
Derivatives trading
Monte Carlo simulations

Pharmaceutical
Molecular modelling
Drug discovery
Drug design

Oil and Gas

Reservoir modelling and simulation
Deep oil recovery
3D imaging processing
Upstream oil and gas exploration

Bioinformatics

Storing, retrieving large data set
Development of genetic algorithms
Statistical analysis of large data set
Image processing, sequence analysis, sequence alignments

Weather

Climate change
Weather forecast
Big data analysis
Meteorology

Research

Nuclear weapons research
Auto crash simulations
Aerodynamics research

In general, most of these are parallel and/or distributed applications that are
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computation-intensive. Drug recovery processes that can take up to 15 years from

compound synthesis in the pharmaceutical laboratory to drug production can

be reduced to a few weeks with HPC systems [4]. Because HPC systems usually

require huge investment capital in hardware [2]. Scientists and researchers must

sometimes wait in long queues to access shared HPC systems.

Amazon EC2 [20] and recent publications [119, 120, 19] have shown that HPC

systems in the cloud are a good alternative for computation-intensive applications

that are usually executed in traditional HPC systems. Cloud service providers,

however, do not manage the virtual machines provided on the HaaS. Due to the

large number of virtual machines and electronic components in HPC systems in the

cloud, any fault during the execution would result in re-running the applications,

which costs time, money and energy. Fault tolerance is one of the major challenges

that HPC systems in the cloud face today, particularly when HaaS is leased.

Moreover, HPC applications deployed in cloud environments run on virtual

machines, which are more likely to fail due to resource sharing and contention.

Therefore, fault tolerance technology is particularly important for HPC applica-

tions running in cloud environments, because it can prevent restarting, thereby

reducing operational costs and energy consumption.

Hardware redundancy is used to provide fault tolerance to hardware failures.

In the event of hardware failure of one component, other components that are in

good working order continue to perform until the failed part is replaced. With

hardware redundancy fault tolerance techniques, redundant compute nodes are

added to make it possible for the HPC systems to tolerate failures [121, 14, 122].

Riesen et al proposed a concept of redundant computing for HPC systems in

[14]. In redundant computing, all compute nodes are replicated. Hsieh [123]
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proposed an optimal task allocation and hardware redundancy policy, while [122]

and [121] proposed a fixed-number of hardware redundancy schemes to achieve

higher reliability in HPC systems. Consequently, the dollar cost of running

computation-intensive application in the cloud with redundant computing fault

tolerance will be high.

A reactive fault tolerance technique is commonly used for computation-intensive

applications in classical grid computing through checkpoints and restart [124, 125].

However, it usually increases the wall clock execution time of HPC applications.

Reactive fault tolerance techniques allow computation-intensive applications

(which may take hours or days to complete) to log their intermediate results and

states at checkpoints during their execution. Once a failure occurs, the application

can be restarted from the checkpoint prior to the point of failure, rather than

from the beginning. The frequency at which a component or application fails is

an important measure in fault tolerance. It has been predicted that in peta-scale

computing the MTBF is short; i.e., an application running on a peta-scale system

will be interrupted by failure more often, with the MTBF decreasing as the

reciprocal of the number of nodes [10, 23, 11].

In this study, we develop a proactive fault tolerance approach to HPC systems

in the cloud to reduce the wall clock execution time in the presence of faults and

dollar cost of running computation-intensive application. In particular, we make

the following contributions:

1. We develop a generic fault tolerance algorithm for HPC systems in the cloud

that does not rely on a leased spare node prior to prediction of a hardware

failure.
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2. We analyse and compare the dollar costs of four different fault tolerance

solutions for running computation-intensive applications: (a) an ideal fully

reliable system (reliability = 1), (b) a fault tolerance checkpoint scheme, (c)

a migration-based scheme, and (d) the scheme we proposed. Our analysis

allows HPC users leasing HaaS from a service provider to select a particular

fault tolerance policy in line with budget and plans.

3. We derive a cost model for executing computation-intensive applications on

HPC systems in the cloud. To the best of our knowledge, this is the first

detailed cost model for executing computation-intensive application on HPC

systems in the cloud particularly when HaaS is leased.

4. We analyse the dollar cost of provisioning spare nodes to assess the value of

our approach.

4.2 Benefit of HaaS

This study focuses on Hardware as a Service (HaaS) because of the benefits

HaaS offers [31]. In HaaS, the cloud provider basically rents out ‘bare-bones’

hardware (e.g., server/host and data). Cloud users connect to this service via

the Internet, install and configure (e.g., VMs) the server they have leased. Cloud

users choose HaaS because it gives them full control of the server, operating

system, and software stack, as well as the number of VMs they execute on it.

Research communities can easily lease HaaS for computation-intensive and/or

data-intensive applications and configure HPC systems according to their needs.

It has been shown that HaaS is a cost effective service for HPC systems in the
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cloud [31].

4.3 Proactive Fault Tolerance for HPC Systems
in the Cloud

The cloud provides pools of computing resources as services via the Internet using

a pay-as-you-go price model that eliminates initial costly capital investments in

hardware and infrastructure procurement. Until recently, HPC systems have

been out of the reach of most research communities. Research and academic

communities can now leverage the benefits of the cloud price model for their

computation-intensive applications that traditionally run in dedicated HPC

environments. HaaS providers lease out the ‘bare bone’ hardware, such as

computers, data servers, and storage, while cloud users are responsible for

configuring and maintaining the services. Performance and other types of trade-off

can be more easily made when there is more complete control of the applications

that execute in the HPC environment (both software and hardware stacks). Cloud

service providers do not commonly provide fault tolerance mechanisms at this

level.

Proactive fault tolerance uses an avoidance mechanism to tolerate faults. It

achieves this by relying on a system log and health monitoring facilities. The

system log and health monitoring provide information about the hardware/software

state [126]. Health monitoring of hardware has recently attracted attention in

fault tolerance communities because sensors are installed on modern hardware to

monitor, for example, the processor temperature and fan speeds. This information

is used to predict future failures.
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Our proactive fault tolerance for HPC systems in the cloud requires four types

of modules:

1. Monitoring module with lm-sensors

2. Failure predictor

3. Proactive fault tolerance policy module

4. Controller module.

These are explained in the following sections:

4.3.1 Monitoring Module with Lm-sensors

Many hardware failures can be predicted/detected in recent processors. Sensors

installed in modern processors can be used to monitor CPU temperature, fan speeds

and other parameters [127, 126]. Variations in the monitored parameters can

adversely affect the performance and reliability of systems. We use the lm-sensors

[128] package that provides tools, libraries, and drivers for monitoring these

parameters. The libsensors library is used to access the values of the monitored

parameters. It provides user-space support for the hardware monitoring drivers

and console tools that report sensor readings. Lm-sensors allows easy setting

of sensor limits. We selected lm-sensors because most HPC systems run Linux,

and lm-sensors use Linux operating system kernel drivers. We used lm-sensors

to develop FTDaemon which can be easily deployed on an HPC system in the

cloud. Our methods, however, may easily be generalised to other operating system

platforms.

Centrally monitoring the health of all the nodes in an HPC system with over

100,000 processors would a impose heavy overhead on the network as well as on the
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HPC system. Therefore, we have designed FTDaemon to reduce the monitoring

overhead, by having each node/host monitor its hardware by periodically reading

its parameters. In our prototype, the FTDaemon running on each computing

node/host collects lm-sensors information (e.g., processor temperature) every 600

milliseconds (the user can also set this interval to a higher value). An alarm is

triggered whenever the monitored parameters exceed the maximum set values. The

alarm prompts the reading of the sensors’ values and a computation to determine

if failure is likely to occur.

4.3.2 Failure Predictor

The FTDaemon runs on each host in user space. It uses rule-based prediction

techniques [129, 130, 131], in which the future failure situation is determined by

periodically reading the sensors’ values. The current values are compared against

the set maximum operating conditions obtained from sensor data repository.

The sensor data repository provides reliability information on all sensors

installed on the system (e.g., temperature, fan speed and voltage). The basic

idea in reliability information provided in the sensor data repository, derived

from probability theory, is that a given component such as a CPU has operating

conditions (normal, maximum and critical values) which, if violated, may result

in the failure of the CPU [116]. Severity weight values are used to determine

the severity level, as shown in Table 4.2. All the monitored sensors events are

assigned a severity weight of -1, 0, 1 or 2 to represent normal, maximum, critical

and error respectively. The info events are generated when the sensor is operating

at normal state. The warning event is associated with maximum state value while
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the critical event is associated with prediction of future failure. The error reading

is associated with sensor data that are not available. For example, when the

predictor wants to read the temperature of CPU4 and this is not available, it

generates an error.

Table 4.2: Lm-senors generated events

Sensor State Severity weight Severity level

Normal -1 Info

Maximum 0 Warning

Critical 1 Critical

Error 2 Error reading

The result obtained by comparing the current sensor’s values with maximum

set thresholds is used to determine if a failure is likely to occur soon. The predictor

has a vector input of the four sensors: temperature T, voltage V and fan speed

F; and CPU utilisation C. We chose to monitor CPU temperature, voltage, fan

speed and CPU utilisation because high values of these parameters adversely

affect performance of the HPC systems which may results to system failure. For

example, overheating of CPU temperature would lead to automatic shutdown

of CPU [39]. The combination of the four parameters increases positive failure

prediction [132, 133]. Figure 4.2 illustrates our failure predictor model.

We use set theory [134] and associate the input valuables. The possible severity

weight values that can be obtained from sensors’ reading can be represented as:

• Ti ∈ {-1, 0, 1, 2}

• Fi ∈ {-1, 0, 1, 2}
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• Vi ∈ {-1, 0, 1, 2}

• Ci ∈ {-1, 0, 1, 2}

	
  

Ti

Vi

Fi

Ci

Computation αc

Figure 4.1: Rule-based predictor model

The sample algorithm 1 monitors the CPU temperature. The CPU fan speed,

CPU voltage and CPU utilisation are monitored with a similar algorithm. In

formulating the prediction rules, we use Boolean function which can be represented

with two values: 0 and 1 to represent warning and critical operating state. Applying

the Boolean function, a potential failure is predicted when three or four of the

four CPU parameters are operating in a critical state. Similarly, a warning

message is issued when two of the monitored parameters are in critical states. The

construction of the prediction rule is shown in Appendix A, Table A.1. The critical

operating condition occurs when three of the measured parameters are operating

at critical states. The equivalent representations for future failure prediction and

warning state are shown below using set theory [134] and a fault tree technique

[135]:
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αc = Future failure state =



Tci∩Vci∩Fci∩Cci
(Tci∩Vci∩Fci)∪Cci
(Tci∩Vci∩Cci)∪Fci
(Tci∩Fci∩Cci)∪Vci
(Vci∩Fci∩Cci)∪Tci

where:

• Tci = CPU critical temperature

• Vci = CPU critical voltage

• Fci = CPU critical fan speed

• Cci = CPU critical utilisation

For warning state:

αw = Warning State =



Twi∩Vwi
Vwi∩Cwi
Cwi∩Fwi
Twi∩Cwi
Twi∩Fwi

where:

• Twi = CPU maximum reliable temperature

• Vwi = CPU maximum reliable voltage

• Twi = CPU maximum reliable fan speed

• Cwi = CPU maximum reliable utilisation
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Algorithm 1

1: set timer TRUE

2: while timer TRUE # for all the FTDaemon running on the computer hosts

3: do

4: read sensor value Ti; # CPU temperature

5: compute for CiTi; # CiTi = measured variables

# eg CPU temperature, voltage, fan speed and utilisation.

# Compute the operating state

6: if CiTi = 0 or 1 then; # If operating at maximum or critical state exit

7: break

4.3.3 Proactive Fault Tolerance Policy

The goal of the proactive fault tolerance policy is to reduce the impact of failure on

the execution of a computation-intensive application. We defined and implemented

three policies:

1. Lease an additional node/host from the service provider

2. Relinquish the unhealthy node

3. Notify the administrator to take action.

When failure is predicted, the FTDaemon can proceed either to lease an

additional host or to inform the administrator. The default policy is to lease an

additional host/server and to log the details of the newly leased host with the

head host. The head host maintains a database of all hosts. The functionality

of the head host is transferred to newly leased host in the event of head host

being predicted to fail. The ‘relinquish the unhealthy host policy’ is executed

after migration of virtual machines from the unhealthy to the newly leased host.
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4.3.4 The Controller Module

The controller module implements the policies listed above. A controller module is

installed on all hosts. This technique provides future failure location information

and allows immediate action by the host that is about to fail. The FTDaemon

invokes this controller module when a failure is predicted. The controller module

contacts the service provider and provides the service provider with the credentials

(e.g., user name and password) that are required in the leasing process. FTDaemon

collects the required credentials from the user during the startup of FTDaemon.

Our implementation requires only the user name and the password,although more

credentials information can be added.

After leasing the additional host, the controller module carries out live

migration of the virtual machines from the unhealthy host to the newly leased

host. It also logs the details of the additional node with the head host. On

completion of migration of the virtual machines, the controller module also installs

the FTDaemon on the newly leased host.

Figure 4.3 shows the architecture of our system. Xen hypervisor is a virtualisation

software which is installed on each of the host. This allows multiple para-virtualised

Operating Systems (OS) to be installed on each host. A para-virtualised OS

is an operating system which its kernel is modified to work in virtual machine

[136]. The Dom00,. . . , Dom0n, usually called domain zeros are the host operating

systems. They run the management console and have special privileges to access

the hardware. FTDaemon runs on the host operating systems. The backend and

FTDaemon, as shown in Figure 4.3, communicate to the hardware through the

drivers. The DomU0,. . . , DomUn (unprivileged domains) are the guest virtual
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machines. The guest VMs (compute nodes) are configured to form a cluster

with head node and compute nodes. The guest virtual machines execute the

computation-intensive applications.
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Figure 4.2: System architecture
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4.4 Proactive Fault Tolerance Algorithm

In this section, we describe our algorithm and provide a quantitative analysis of

its properties. The current information from the sensors is used to determine

the state of monitored parameters. The algorithm predicts future failure, and

takes action to reduce the impact of failure on the application. Finally, it also

relinquishes the unhealthy node and installs an FTDaemon on the newly leased

node. Algorithm 2 is given as follows:
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Algorithm 2

# FTDaemon running on all host Ci(i = 0, 1,. . . , n);

# Monitored parameters: V= temperature, fan speed, voltages and utilization;

# Variables = operating conditions Vw: weight (-1, 0, 1, 2);

# where:

#-1 = operating at normal values of all parameters; V;

# 0 = operating at max values of one or more parameters

# 1 = operating at critical value;

# 2 = error value;

# αw = Warning State;

# αc = Future failure State;

# Compute for host current state and take action;

# if future failure is predicted;

1: FTDaemon:

2: begin

3: record the hostname of all guest VMs active on host Ci;

4: get critical values of CiV;

5: set timer TRUE;

6: while TRUE do;

7: read parameters CiV;

8: compute for severity weight values;

9: compute for αc and αw;

10: if αc = 1 then;

11: break; # exit loop

12: elseif αw = 1;

13: send warning message;

14: delay;

15: else

16: check if alarm trigger is received;

17: end while;

18: controller module:

19: lease additional host;

20: live migration of <VM1, . . . , VMn >;

21: install FTDaemon on newly leased host;

22: send details of newly leased host to head host;

23: relinquish the unhealthy host;

24: end
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4.4.1 Cost Model

We develop a cost model to show that our proposed solution is a cost-oriented

approach. Cost-oriented fault tolerance for HPC systems in the cloud is particularly

important because a high dollar cost would discourage scientists and researchers

from using HPC systems in the cloud. A good understanding of cost implications

and reliability of HPC systems in the cloud enables users to choose a suitable

fault tolerance strategy at a minimum dollar cost in running the application in the

cloud environment. From the cost management viewpoint, it is a tool used to cut

costs and to choose fault tolerance in line with a project’s budget and strategy. It

also helps to choose cloud computing resources to achieve a particular reliability

level, and compare alternative fault tolerance solutions. We derive a cost model

Cca for running computation-intensive applications on HPC systems in the cloud.

The cost can be determined with the following cloud computing parameters [22,

18, 123, 121, 122]:

• Installation/configuration cost Cin

• Execution cost Ce

• Communication cost Cc

• Storage cost Cs

• Redundancy cost Cr

• Failure cost Cf

Hence, we have;
Cca = Cin + Ce + Cc + Cs + Cr + Cf (4.1)

Below, we briefly discuss the above parameters and show how we derive the cost

model.
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4.4.2 Installation/Configuration Cost

To derive the cost-oriented fault tolerance model, we include the installation

and/or configuration cost. The installation and/or configuration cost has been

overlooked in the past [18, 22]. There are few HPC systems in the cloud services

that do not require installation and configuration of the necessary software tools

before running application. The level of installation and configuration depends on

the cloud services leased and the application’s requirements. For instance, when

HaaS is leased from a service provider, it is the sole responsibility of the user to

set up the HPC system environment, install and configure the HPC system tools

in line with the computation-intensive application’s requirements. We model the

installation and configuration cost as;

Cin = C0 +
m∑
g=1

Cig +
n∑
h=1

Cih (4.2)

where:

C0 is the initial/fixed cost to set up a “standard” HPC system environment in a

cloud (defined number of computer nodes in HPC system), Cig (g = 1, 2, 3,. . . ,

m) is the set up unit cost of each computing node when it exceeds the “standard”,

while Cih (h = 1, 2, 3,. . . , n) is the unit cost to setup and configure the storage

resources. In most HPC systems, performance tests are typically carried out with

4 to 32 compute nodes. The “standard” we used here are 32 compute nodes, the

linux operating system and a MPI environment. For scalability analysis we may

require much larger systems consisting of more than 1000 nodes.
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4.4.3 Execution Cost

The execution cost Ce, is defined as the cost incurred during the execution of the

computation-intensive application with computation resources (CPU and RAM)

in the cloud. The execution cost is usually charged by the hour or month. This

can be represented as the product of the cost of leased host and the time to

complete execution of computation-intensive application in HPC systems in the

cloud. We can represent the execution cost as:

Ce =
p∑
i=1

Cei.Eti (4.3)

where:

Cei is cost per host, i = 1, 2, 3,. . . , p is the number of hosts used to set up the

HPC systems in the cloud for the computation-intensive application. Eti is the

execution time of the computation-intensive application in the HPC system with

host i.

4.4.4 Communication Cost

The communication cost is the cost associated with transferring data into its

cloud storage resources and the cost associated with transferring data out of

its cloud storage resources. Some cloud providers, for example, Baremetalcloud

[98] do not charge for communication within the same cloud. Consequently, the

communication cost is directly proportional to the rate at which data are moved

in and out of the cloud storage resources. For data intensive applications, this
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cost maybe high [22]. The model for the communication cost is as follows:

Cc =
q∑
j=1

Cin
cj +

r∑
k=1

Cout
ck (4.4)

where:

Cincj (j = 1, 2, 3,. . . , q) is the cost associated with transferring q bytes into the cloud

storage system. Cout
ck (k = 1, 2, 3,. . . , r) is the cost associated with transferring r

bytes out of the cloud storage system.

4.4.5 Storage Cost

There is a cost associated with cloud storage utilisation. At the time of writing of

this thesis, the cost for cloud storage HaaS is usually around 3.5 cents per GB

per month [98]. We model the storage cost with the following;

Cs =
s∑
l=1

Csl.Ctl (4.5)

where:

Csl (l = 1, 2, 3,. . . , s) is the cost associated with s cloud storage system. Ctl, is

the time associated with usage of the s storage system per GB.

4.4.6 Redundancy Cost

Redundancy is commonly used in HPC systems to improve reliability. For instance,

in the fault tolerance techniques we investigated [127], virtual machines are

migrated from unhealthy hosts to redundant hosts when a future failure of host
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is predicted. In redundant computing (discussed in section 4.1 above), compute

nodes are replicated twice. Redundant compute nodes may increase the reliability

of HPC systems but at the same time increase the cost of running applications

in the cloud. The cost of providing redundant hosts can be expressed with the

following equation. We assume that the redundant hosts are in parallel with

virtual machine hosts Dom00,. . . , Dom0n.

Cr =
v∑

u=1
Cru.Ctu (4.6)

where:

Cru (u= 1, 2, 3,. . . , v) is the cost associated with the v number of redundant

hosts. t is the time associated with the usage of the v compute hosts running

virtual machines.

4.4.7 Failure Cost

It is unlikely that an HPC system in the cloud would achieve a reliability value of

1. This may be attributed to the number of shared resources comprising hardware

components, communication links and virtual machines. Different fault tolerance

approaches tend to reduce this cost. We factor failure cost into the cost-oriented

fault tolerance model. Based on MPI model, we assume that failures of compute

hosts are statistically independent, hence, compute hosts are in either operational

or failed states. The failure cost associated with not using fault tolerance or

using appropriate fault tolerance techniques is high, therefore, failure cannot be
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neglected in the cost model.

Cf = Closs[1−Rx] (4.7)

where:

Rx is the HPC system reliability, while Closs can be obtained from a failure data

repository such as CFDR [3] or can be predicted by an expert as proposed in [121]

Substituting equations (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7) into equation

(4.1), the total cost for running computation-intensive application in HPC systems

in the cloud Cca is expressed by the following:

Cca = C0 +
m∑
g=1

Cig +
n∑
h=1

Cih +
p∑
i=1

Cei.Eti +
q∑
j=1

Cin
cj +

r∑
k=1

Cout
ck

+
s∑
l=1

C(ss)l.Ctl +
v∑

u=1
Cru.Ctu + Closs[1−Rx] (4.8)

From equation (4.8) we can deduce the following:

1. Compute host redundancy fault tolerance techniques that are commonly used

in traditional HPC systems increase the cost of running computation-intensive

applications in HPC systems in the cloud.

2. Using checkpoint and restart fault tolerance techniques in HPC system in

the cloud improves the reliability of the HPC systems; however, the cost of

running the computation-intensive application increases. This is attributed

to the increase in the wall clock execution time of the application caused by

checkpoint and restart fault tolerance techniques. This is in line with existing
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results on the effect of checkpoint and restart fault tolerance techniques [26]

3. Live migration of virtual machines from unhealthy hosts to redundant hosts

can improve the reliability of HPC systems and reduce the cost of running

computation-intensive applications if the spare hosts are not provided in

advance, that is, before a failure prediction is made [31, 87].

4.4.8 Quantitative Analysis

Case 1:

We first analyse the total dollar cost of the proactive fault tolerance algorithm used

in [127] using equation (4.8), when a spare host is provisioned ahead of prediction

of failure and algorithm proposed in redundant computing [14]. With these models

the cost of running computation-intensive applications in HPC systems in the

cloud will be relatively high, due to the cost of the spare nodes/hosts. The cost in

redundant computing would be twice that of the compute hosts used to execute

computation-intensive application. The cost using the algorithm proposed in [127]

has been computed and is shown in Figure 4.4. The cost implication of this model

is shown in case 2.

Case 2:

A configuration is established for which the leased host is operating in normal

state (as described above). In this state, there is no need to keep a spare host.

From observations and records, HPC systems operate in this region most of the

time, except when failure is about to occur (when a host enters its critical state

(i.e., αw = 1)). As already stated eariler, critical state is established when three of
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prediction parameters are operating at critical states, from our observation system

failure mostly occur at this state. Only in this state does the controller model

lease an additional node/host from the service provider as well as relinquish the

unhealthy one. We assume that the time window from prediction of host failure

to actual failure is enough to migrate virtual machines from the unhealthy host

to the newly leased host based on similar experiments [130]. For failures that

occur without prior time window warning, for example, power failure, reactive

fault tolerance technique such as checkpoint/restart is used to recover from such

failure. Using equation (4.8), the operating cost of the spare node/host is close to

zero, because the unhealthy host is relinquished immediately after migration of

the virtual machines. Our experimental results show that provision of a node/host

and live migration of virtual machines varies between 20 seconds and 60 seconds

on our test system.

Cr =
v∑

u=1
Cu.Rtu ≈ 0 (4.9)

Therefore:

Cca = C0 +
m∑
g=1

Cig +
n∑
h=1

Cih +
p∑
i=1

Cei.Eti +
q∑
j=1

Cin
jh +

r∑
k=1

Cout
ck

+
s∑
l=1

Csl.Ctl + Closs[1−Rx] (4.10)

There is a significant dollar saving of about 20% with our model as can be seen by

comparing Equations (4.8) and (4.10). We further show the significant difference
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with the cost model in the next section.

4.5 Evaluation

We evaluate the wall clock execution time in the presence of faults and the dollar

cost of providing spare node in advance as it is applied in traditional HPC systems

using our proposed technique (Algorithm 2). We assume that all corresponding

factors in equations (4.8) and (4.10) are the same.

We have experimented with the characteristics of our fault tolerance design

in a real cloud environment. We leased two to sixteen servers/hosts from a

cloud service provider of HaaS [98]. Each compute host/server had the following

configuration; Intel Dual Xeon core processor (2 x 3.5GHz), 2GB memory, PC3200

3.5 SCSI 10000rpm and 100GB network drive using Internet Small Computer

System Interface (iSCSI) SAN configuration [137]. The hosts/servers use Local

Area Network (LAN) connections. Details of the HaaS provided by the cloud

service provider can be found in [98].

We installed Xen hypervisor [112] on each of the hosts. Therefore Xen

hypervisor runs on all the hosts as shown in Figure 4.3. Xen hypervisor is an open

source, industrial standard virtualisation technology. The Linux operating system

runs on top of the Xen hypervisor. We installed a para-virtualised guest operating

system on the hosts. A para-virtualised operating system uses a modified kernel,

and reduces the size of the image.

Wall clock execution time:

For the experiment to determine the wall clock execution time, each host is

con-figured to host 1 to 4 virtual machines (compute node). Each virtual machine
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is configured to have one processor, 250MB memory and 5GB hard drive. With

the 4 hosts/servers we leased, we formed a cluster of 16 compute nodes to test

our algorithm.

We conducted three sets of experiments with 2, 4, 8, and 16 nodes per cluster.

We ran a HPC application, the High Performance Linpack benchmark (HPL)

[138] in an OpenMPI [111] environment. HPL is widely used in benchmarking

Top500 supercomputing. OpenMPI is an open source implementation of MPI-2.

We executed the HPL application with four different problem sizes of 2000,

4000, 6000 and 8000 on 2, 4, 8, and 16 nodes respectively. The wall clock execution

time of each the problem size was recorded without checkpoint, with checkpoint

(the checkpoint and restart solution that is package in OpenMPI implementation

[139, 17]), and with the FTDaemon (our proposed solution). For the tests with

checkpoints, the number of checkpoints used is shown in Table 4.4, which also

shows the number of live migration associated with each problem size. We observed

that our algorithm significantly improved application resiliency at a reduced cost

compared to more common reactive approaches. This helps to determine the effect

of checkpointing on computation-intensive applications running in a cloud.
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Table 4.3: HPL with different problem sizes and nodes

HPL
Problem
Sizes

Number
of Nodes

Number of
Checkpoints

Number
of
Migrations

2000 2 2 2

4000 4 3 3

6000 8 4 4

8000 16 6 6

The time to lease and provision a node is about 18 seconds. The average

migration down time obtained from our experiment was 0.315 seconds. The

performance results are shown in Figure 4.5.
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Figure 4.3: Performance of HPL benchmarking without checkpointing, with
checkpointing, and with FTDaemon.

Cost Analysis:

To show that our proposed fault tolerance solution is a cost-oriented approach,

we conducted four sets of experiments with 2, 4, 8, 16 and 32 nodes per cluster.

We ran a real HPC application, the High Performance Linpack benchmark (HPL)

[138] in an OpenMPI environment.

We executed the HPL application with five different problem sizes of 2,000,

4,000, 6,000, 8,000 and 10,000 on 2, 4, 8, 16 and 32 nodes respectively. The wall
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clock execution time of each problem size was recorded when run:

1. without checkpoints (assume no fault tolerance provided and no fault
occurred during execution),

2. with checkpoints taken (used checkpoint and restart solution provided in
OpenMPI implementation [139, 17]),

3. with migration (migration solution proposed in traditional HPC systems
[127]) and

4. with the FTDaemon (our proposed solution).

For the tests with checkpoints, the number of checkpoints used is shown in

Table 4.4, which also shows the number of live migrations associated with each

problem size as well as the minimum number of redundant hosts. We selected the

minimum number of redundant nodes based on [123, 121]. This helps to determine

the effect of checkpointing on computation-intensive applications running in a

cloud. Furthermore, the dollar cost implications of redundancy nodes proposed in

[14, 127] can be easily analysed with this setup.

Table 4.4: HPL with different problem sizes, host and compute nodes

PSIZE NH NRH NVMs NC NM

2000 2 0 2 2 2

4000 2 1 4 3 3

6000 4 1 8 4 4

8000 8 2 16 6 6

10000 16 3 32 7 7
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where:

• PSIZE = problem size

• NH = number of host/server

• NRH = number of redundant host/server

• NVMs = number of VMs in a cluster

• NC = number of checkpoints taken

• NM = number of live migrations

At the time of writing, the cost to lease each compute node with the above

configuration is $0.09 per hour while it costs $0.03 per hour to lease a 100GB

network drive. We use these figures to compare the cost of using checkpointing,

migration with provision of redundant hosts ahead of prediction of failure, and

our solution.

In the prototype implementation, we monitored the real-time CPU temperature,

CPU voltage, CPU fan speed, and CPU utilisation as a system reliability metric

with the FTDaemon running on each host. High temperature variations on the

nodes affect system reliability, degrade performance, and cause failure of CPUs

and circuits [126, 140]. We induced high temperatures on the CPU with the

running HPL. From our experiment conducted with different HPL problem sizes,

live migration of VM from one host/server to another host/server within the same

local area network (LAN) varies between 2 to 16 seconds (from start to finish). It

should also be noted that the live migration time and down time depend on the

configuration of the physical machine (host/server) and the configuration of the

virtual machine [46].

Although the service provider charged on a cost per hour basis, in our cost

analysis shown in Table 4.5, we assume cost per second. The cost per second is

89



4.5 Evaluation

equivalent to computation-intensive applications that run for hours, weeks and

months. This enabled us to quantify the costs of checkpointing, providing a spare

node ahead of prediction failure of a compute node as proposed in [127], redundant

computing [14] and with our FT techniques.

Table 4.5: Cost analysis with different FT and nodes

Nn Ncr Psize $ch $r=1 $rn $FTDaemon

2 2 2000 97.81 74.14 81.14 81.14

2 3 4000 88.20 68.45 125.20 83.47

4 5 6000 268.28 214.86 321.07 256.85

8 10 8000 1266.14 879.58 1153.46 1025.29

16 18 10000 4102.82 2669.52 3857.88 3429.23

Nn = number of compute nodes

Ncr = number of compute and redundant nodes

Psize = problem size

$ch = dollar cost of running application with checkpointing (No redundant nodes)

$r=1 = dollar cost of running application (reliability = 1)

$rn = dollar cost of running application with redundant nodes provisoned

$FTDaemon = dolar cost of running with our approach (redundant nodes not
provisioned ahead of prediction)

The performance results of the three different fault tolerance cost models are

shown in Figure 4.5. As already stated above, we assume that all related factors

in equations (4.8) and (4.10) are the same. The result shows that the proposed

proactive fault tolerance approach to HPC in the cloud significantly reduces
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Figure 4.4: HPL with different problem sizes and nodes

the wall clock execution time and therefore the cost of computation-intensive

applications running in the cloud. We observed that our algorithm significantly

improved application resiliency at a reduced cost compared to more common

reactive approaches.

Periodic checkpointing can be used to provide FT for unpredictable failure.

However, the rate of checkpointing of computation-intensive application can be

reduced by as much as 50% to reduce the cost due to prediction.
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4.6 Related Work
Fault tolerance techniques for HPC applications with MPI can be classified into
two major groups:

1. Reactive fault tolerance techniques

2. Proactive fault tolerance techniques.

A reactive fault tolerance technique tends to minimise the impact of failure on

the computation-intensive applications in the presence of failure of one or more

computational nodes. A good example of reactive fault tolerance is checkpoint and

restart. Checkpoint and restart allows computation-intensive problems that may

take a long time to execute in HPC systems to be restarted from the point of failure

in the event of errors or failures. Checkpoint and restart techniques have received

considerable attention in the past [16, 85, 11, 125, 77, 124]. One of the major

issues with checkpoint and restart techniques is the overhead involved in saving the

execution state (reducing this overhead will ensure that a computation-intensive

application does not spend most of its time doing checkpointing).

To reduce the time required for checkpointing, several checkpointing optimisation

techniques have been proposed [125, 77, 141, 141, 77, 84]. The overall aim is to

reduce the actual elapsed time for execution of applications in the presence of

spontaneous failures because computer resources and time are wasted when the

system is executing fault tolerance strategies such as checkpointing

These efforts to reduce the overhead caused by checkpoint and restart fault

tolerance techniques in computation-intensive applications have not been effective.

Recent publications [10, 23, 87 88] show that with steadily increasing numbers of

components in today’s HPC systems, applications running on HPC systems may
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not be able to achieve meaningful progress with the basic checkpoint and restart

approach.

Proactive fault tolerance mitigates the effect of failure during the lifetime of

a computation-intensive application by taking proactive measures using failure

prediction techniques. The commonly used failure prediction techniques include

analysis of the RAS log and monitoring hardware parameters such as processor

temperatures, fan speeds and voltages. In the pioneering work of Nagarajan, et

al. [127] on proactive fault tolerance for HPC with Xen virtualisation, processes

are migrated from unhealthy nodes to spare nodes. However, this requires spare

nodes to be always available. This technique may not be cost efficient in cloud

computing because the spare nodes will be billed, and the cost of running the

application in the cloud will be higher.

Redundant computing has recently been proposed [14] to reduce wall-clock

time of computation-intensive application running in HPC systems in the presence

of failure. In redundant computing, each process is replicated a defined number of

times to counter the effect of component or node failure. The replicated processes

run in parallel. The replicated processes keep running when the primary processes

fail. In redundant computing, compute nodes are also replicated. The replication

of the compute nodes increases the energy utilisation and dollar cost of running

computation-intensive applications in HPC systems in the cloud.

Our work differs from previous work in that our fault tolerance algorithm

provides fault tolerance to HPC in the cloud at the hardware level at reduced

cost, while running in user space (under user’s control). It does not rely on the

existence of pre-configured spare nodes. In addition, our solution does not also

rely on redundant computing techniques. The proposed solution is cost effective
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compared to both redundant computing and the approach in [127, 14]. We derived

the cost model for running computation-intensive application in HPC systems in

the cloud. With our cost model, users may be able to weigh the cost of different

fault tolerance techniques. Our fault tolerance solution is particularly suited to

users who lease HaaS.

4.7 Summary

In this chapter, we have presented the design and implementation of a proactive

fault tolerance framework for High Performance Computing (HPC) in the Cloud.

We derived the cost model for running computation-intensive application in HPC

systems in the clouds. We analysed the dollar cost of providing spare nodes ahead

of prediction of failure. We showed that our solution does not rely on the provision

of spare nodes ahead of the prediction of failure. We presented experimental results

carried out on a real cloud environment. The experimental results clearly show

that the proposed proactive fault tolerance approach to HPC systems in the cloud

can significantly improve the execution time of computation-intensive applications

by upto 30% and thereby reduce the dollar cost for running them by as much

as 30%. The frequency of checkpointing of computation-intensive applications

can also be reduced by 50% with our FTDaemon. Our approach can help reduce

energy consumption by reducing the wall execution time of computation-intensive

HPC applications in the presence of failure of one or more computational nodes.
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Chapter 5

Cost-effective Cloud Services for
HPC in the Cloud: IaaS or
HaaS?

In this chapter, we address the research question posed in Section 3.5.2 (HPC

systems research communities are concerned about the cost and computational

performance of different cloud services). The content of this chapter, with minor

changes, is extracted from our previous work, which has been presented at the

2013 International Conference on Parallel and Distributed Processing Techniques

and Applications (PDPTA’13) [33].

5.1 Introduction

In the scientific research domain, traditional High Performance Computing (e.g.,

Blue Gene/L, clusters of computers) is used to solve computation-intensive and/or

data-intensive problems. Traditional HPC systems are expensive and sometimes

involve huge start-up investment, technical and administrative support, and

job queuing. With the benefit of cloud computing, cloud services, such as
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Infrastructure as a Service (IaaS) and Hardware as a Service (HaaS), enable

scientists and researchers to run their HPC applications in the cloud without the

upfront investment associated with traditional HPC infrastructure.

However, the cost of running HPC applications on the cloud may be high if

the cloud services are not well understood and cost-effective cloud services are not

chosen. If the dollar cost of running HPC applications in the cloud is high compared

to traditional HPC systems, the benefits of running computation-intensive application

on the cloud may be negated. HPC research communities are concerned about

the cost and computational performance of different cloud services.

In this chapter we analyse the computational performance and dollar cost of

running computation-intensive applications in HPC systems in the cloud when

IaaS and HaaS are leased. We find that the cost of executing computation-intensive

application when HaaS is leased is significantly lower than that of the IaaS model.

We show that there is significant improvement in computational performance of

the application on HaaS if the computation-intensive application is not a network

intensive application. Our experimental setup uses the Message Passing Interface

(MPI) implementation [111]. We provide our test results, but do not reveal the

identity of the cloud providers in order to avoid any head-to-head comparisons.

However, we do include the relevant technical details of the cloud instances.

5.2 Experimental Setup

We setup experimental environments to evaluate the computational performance

and dollar cost of running computation-intensive application on IaaS and HaaS.

Our experimental setup includes two services we have leased from two cloud
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service providers, referred to here as Cloud-A and Cloud-B. Cloud-A offers IaaS

in different kinds of cluster instances for HPC applications (for example, cluster

compute instances). Cloud-B offers HaaS that can be configured to run HPC

applications.

5.2.1 Cluster Compute Instances from Cloud-A (IaaS)

Cloud-A is one of the major cloud service providers. They offer IaaS in different

instances for HPC applications. Table 5.1 shows a sample of cluster compute

instances with price details of on-demand instances from cloud providers. The

cluster compute instances are available with commonly used Operating Systems

(OS) (Windows and Linux) in 32-bit and 64-bit platforms. For our experiments,

we chose the Ref-C virtual instance in Table 5.1 because it is widely used for HPC

applications. The instances use Xen full virtualisation (see Section 3.4.5). The

I/O network communication between the cluster instance is 10 Gigabit Ethernet.

In order to compare the computational performance and dollar cost of running

HPC applications when IaaS and HaaS services are leased, we leased a cluster

compute instance with a total of 16 processors. Details of the leased cluster

compute instance are shown in Table 5.2. We installed OpenMPI 1.6 [111] on

the node/virtual machine. OpenMPI is an open source implementation of the

Message Passage Interface (MPI).

5.2.2 HPC System on HaaS in the Cloud

As explained in Section 4.2, HaaS allows users to have full control of the system

and control environment for measuring system performance and other experiments.
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This enables users to determine the number of VMs to be deployed for HPC

applications. We leased a HaaS instance (Ref-G) with 64GB RAM from Cloud-B.

Table 5.1 shows some of the cloud services offered by the HaaS providers that are

similar to cluster compute instances offered by Cloud-A. The table also gives a

summary of HaaS and the price of the leased service. The communication network

between each HaaS is a 1 Gigabit Ethernet.

A summary of the virtual machines we provisioned on the HaaS is shown

in Table 5.2. We installed Xen hypervisor [112] on the host. Xen hypervisor is

an open source, industry standard virtualisation technology. Linux Operating

System (Ubuntu 12.4 64-bit) runs on top of the Xen hypervisor. We imported

our pre-configured para-virtualised guest operating system (Ubuntu 12.4 64-bit)

on the HaaS instance. The pre-configured para-virtualised guest reduces the time

needed to setup the HPC system on the HaaS instance. A para-virtualised OS

uses a modified kernel, reduces the size of the image and improves performance

[136, 114]. The virtual machine is configured to have 16 processors with 60GB

memory and 200GB hard drive. We installed OpenMPI on the node. This setup

is almost equivalent to the cluster compute instances we leased from Cloud-A.

The setup also provides a good comparison environment for IaaS and HaaS in

terms of computational performance and dollar cost. Table 5.2 shows both the

IaaS and HaaS environments we used.
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Table 5.2: The cost analysis virtual machine of IaaS and virtual machine of HaaS

Cloud-A, VM of IaaS Cloud-B, VM of HaaS

Architecture: x86-64 Architecture: x86-64

RAM: 22GB RAM: 60 GB

CPU op-mode(s): 32-bit, 64-bit CPU op-mode(s): 64-bit

CPU(s): 16 CPU(s): 16

NUMA node(s): 1 NUMA node(s): 1

Vendor ID: GenuineIntel Vendor ID: GenuineIntel

CPU family: 6 CPU family: 6

Model: 26 Model: 26

Stepping: 5 Stepping: 5

CPU MHz: 2933.440 CPU MHz: 2933.468

Hypervisor vendor: Xen Hypervisor vendor: Xen

Virtualisation type: full Virtualisation type: para

L1d cache: 32K L1d cache: 32K

L1i cache: 32K L1i cache: 32K

L2 cache: 256K L2 cache: 256K

L3 cache: 8192K L3 cache: 8192K
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5.3 MPI Applications and Benchmark

We used a commonly used HPC benchmark and real HPC application to analyse

and evaluate the MPI applications running on IaaS and HaaS services. The

benchmark was the High Performance Linpack (HPL) benchmark [138] and the

application was ClustalW-MPI [117]. We describe these below.

HPL [138] is a benchmark that is commonly used to evaluate the compuc1tationalc1 -

performance of HPC systems such as top500 [2]. It measures the floating execution

rate of linear equations based on the problem size. We executed the HPL

benchmark with five different problem sizes of 2,000, 4,000, 6,000, 8,000 and

10,000 on both cloud services on virtual machines from IaaS and on HaaS. The

execution of each problem size was carried out twice and the average execution

time was calculated. The five different problem sizes enable us to obtain different

wall clock execution times of HPL. We recorded the wall clock execution time for

each problem size. We used the wall clock execution time to analyse the dollar

cost and computational performance of both platforms. Figure 5.1 shows the

results obtained on computational-performance.

ClustalW-MPI [117] is a parallel implementation of ClustalW [142] which is

based on MPI. ClustalW is a tool that is widely used in bioinformatics for multiple

alignments of nucleic acid and protein sequences. It uses three alignment steps:

pairwise alignment, guide-tree generation and progressive alignment. We ran

a sample of ‘A full multiple sequence alignment’, ‘A guide tree only sequence

alignment’, and ‘A multiple sequence alignment out of an existing’ on nodes from

IaaS and from HaaS. We recorded the execution time of the three alignment steps

to compare time to finish executions with both IaaS and HaaS. The results are
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shown in figure 5.2.

5.4 Results and Discussion

One of the major attractions of the Cloud-A cluster compute instance is that

it is relatively easy to setup the clusters compared to setting up a cluster in

HaaS. However, some level of technical knowledge is required to setup clusters

on Cloud-A that will run HPC applications, due to the varying needs of HPC

applications. In order to reduce the time to setup an HPC system on HaaS

instances in the cloud, we uploaded our pre-configured para-virtualised image

to the cloud. Similar VM images can be downloaded from different sites. We

estimated that this technique reduces the setup time by up to 80%. We did not

compare the setup time for the HPC system between Cloud-A (IaaS) and Cloud-B

(HaaS) because setup time varies with the individual user’s technical experience.

From the computational performance result of the HPL benchmark shown in

Figure 5.3, we can see that the wall clock execution time of the HPL benchmark on

a provisioned instance on HaaS is shorter than that of IaaS provided by Cloud-A.

We achieved this because the memory of the virtual instances deployed on HaaS

is 60GB. We chose to allocate this amount of memory to our virtual instance

because we can predict the memory needed. This option is not available for the

IaaS instance (users cannot change the memory of the virtual instance chosen).

We also had full control of the hardware instance and virtual instances.
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Figure 5.1: Computational performance of High Performance Linpack on 1 node
with 16 processors

As shown in Figure 5.3, executing the HPL on 1 node with 16 processors

eliminates the bandwidth inequality on both providers. The virtual instance on

HaaS outperforms IaaS. This is because we had full control of the applications

running on our HaaS instance and we allocated higher memory to the virtual

machine on HaaS. On IaaS, other virtual instances may have been hosted on the

hardware, which may have affected the performance of the application running

on our leased IaaS instance. As shown in [135], high resource allocations on

infrastructure affect applications running on virtual machines.

The ClustalW-MPI results are shown in Figure 5.2. Cloud-A IaaS uses a 10
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Gigabit Ethernet network, whereas the HaaS we leased uses a 1 gigabit Ethernet

network. We could have used benchmarks with the same bandwidths, however

the two major providers of HaaS do not have a 10 gigabit Ethernet network.

The results in Figure 5.2 show that there is no significant impact on application

running on IaaS and on virtual instances on HaaS.
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Figure 5.2: Performance of ClustalW-MPI application on 16 processors

5.5 Cost Analysis

At the time of writing, Cloud-A offers different price models to their cluster

compute instance customers. The most widely used price model is called ’on-demand
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instances’. The on-demand instances price model allows users to pay hourly without

a contract, whereas other price models may require up-front payments and/or

contracts.

Cloud-B offers their customers a pay-as-you-go price model, which is similar

to on-demand instance prices offered by Cloud-A. Therefore we use on-demand

price instance to compare the cost of running computation-intensive applications

on both cloud services. There are additional charges for some cloud services,

such as network bandwidth and IP addresses, but we do not consider these to

avoid complexity. Both cloud providers, however, charge a similar rate for such

services. We used the results obtained from HPL benchmarking to analyse the

cost. Previous similar cost analyses [143, 22], assumed that 1 second is equal

to the hourly rate, and we use the same assumption here (although both cloud

providers offer an hourly rate). This also allows us to do the analysis without

paying for the hours the experiment would have cost. We used the prices of the

leased services as shown in Table 5.1. The cost analysis computation of IaaS and

HaaS is shown in Figure 5.3.

Based on the computational performance and cost analysis, it appears that it

is more cost effective to lease HaaS and configure the HPC systems. Cloud service

users of HaaS have full control of the hardware as well as the virtual machines they

provisioned. Application performance and other metrics can be easily measured.

From the result, the cost of running HPC applications can be reduced by as much

as 20% when HaaS is leased.
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Figure 5.3: The cost analysis; virtual machine of IaaS and virtual machine of
HaaS

5.6 Related Work

Cloud computing promises numerous benefits, which includes no up front investments

for HPC applications, which is attractive, compared to traditional HPC systems.

Many studies have evaluated the suitability of HPC systems in the cloud and

showed that it is expected that more computation-intensive HPC applications

will be run in the cloud HPC than traditional HPC systems [19, 22, 144, 145].

Furthermore, the Amazon Elastic Compute Cloud (Amazon EC2) cluster recently

appeared in Top500 list [2] in year 2010, which shows that there is a viable future

for HPC systems in the cloud.
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Many past researches evaluating of HPC applications on HPC systems in the

Cloud with emphasis on Amazon EC2 have been carried out. These investigations

focus on the performance of Amazon EC2 and Traditional HPC systems [143, 22,

144, 19].

Carlyle et al. [143] studied the cost effective HPC System. They show that

it is more cost effective for institutions like Purdue University to operate a

community/traditional cluster than to lease HPC resources from Amazon EC2.

This study clearly shows that Amazon on-demand cluster compute instances prices

are not cost effective for HPC applications for some institutions. Their work

focuses on Amazon EC2 service IaaS and traditional HPC systems.

Deelman et al. [22] in their work on ’The Cost of Doing Science on the Cloud:

The Montage examples’; show that the cost of cloud services could be significantly

reduced without significant impact on application performance, if the right storage

and compute resources are provisioned. However, they did not consider different

platforms like HaaS. We extended their work, demonstrating that HaaS can

significantly reduce the cost of running computation-intensive application on HPC

in the cloud.

Ekanayake and Fox [144] compare HPC applications with different needs and

showed the performance of applications with latency. However, they did not

compare the cost of executing computation-intensive application on different

services such as IaaS and HaaS.

Yao et al. [146] showed that optimal cost-performance ratio can be achieved

with the appropriate cloud instance. However, they did not consider cost and

computational performance when IaaS and HaaS are leased.

Although others [143, 147, 144, 19, 148] have compared the computational
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performance and dollar cost of using different cloud service such PaaS, IaaS and

traditional HPC systems. However, our work is different from other work in

that we study and compare the computational performance and dollar cost of

running computation-intensive application in HPC in the cloud when IaaS and

HaaS are leased. We experimentally demonstrated that the dollar cost of running

computation-intensive application can be reduced as much as 20% with HaaS

without significant impact to performance. With this experimental results, HPC

system communities are equipped with cost analysis that would help them to

select cost effective cloud service for HPC systems in the cloud.

5.7 Summary

Due to the huge capital investment required to own a traditional HPC systems

which typically involves job queuing, using an HPC system in the cloud is a good

alternative. Cloud computing offers IaaS and HaaS for deployment of cluster

instances, which can be used to run computation-intensive applications. IaaS

provides almost ready to use clusters with minimal deployment installation tasks.

With HaaS, virtual machines can be provisioned to run computation-intensive

application. We have conducted experimental analysis to determine the performance

and cost when cloud services IaaS and HaaS are leased to run computation-intensive

application. We showed that the dollar cost of running computation-intensive

application in the cloud can be reduced by as much as 20% when HaaS is leased.

We showed that there is no significant impact in performance of the applications

when executed on the leased HaaS.
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Chapter 6

Summary, Conclusions and
Future work

This chapter summarises the thesis, presents our conclusions and makes recommendations

for future work.

6.1 Summary

Key points from each chapter are summarised below.

In Chapter 1, we presented an overview of the research background and

motivation, and identified key research problems and contributions. The role

of HPC systems in today’s society, for instance in weather forecasting, were

discussed. We showed that the number of processors and nodes in HPC systems

has increased over time in a quest to achieve greater performance levels and that,

with this increase, the overall system MTBF has been reduced to just a few

hours. Traditional HPC systems require huge capital investment, and we argued

that HPC systems in the cloud offer a good alternative. We identified the key

research problems and stated our motivation to provide a proactive fault tolerance
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framework for HPC systems in the cloud. The major contributions of this thesis

were identified.

In Chapter 2, we reviewed related work on fault tolerance and analysed

failure rates in HPC systems. Although it is difficult to determine the single most

common root cause of failure, we showed that computation-intensive applications

are most frequently interrupted by hardware failures, software failures, or human

error. We proposed that a good fault tolerance mechanism should be able to

mitigate or, in some cases, even eliminate the consequences of failure. We surveyed

fault tolerance mechanisms (redundancy, migration, failure making and recovery)

for HPC and identified the pros and cons of each technique. Research efforts

directed at reducing the time required for saving the checkpoint in persistent

storage were described.

Recovery techniques, which are commonly used in HPC systems, were discussed

in detail and over 20 checkpoint/restart facilities were surveyed. The rollback

feature requirements identified were used to evaluate them and the results were

provided in tabular format as an aid for research in this area. The web site of each

surveyed checkpoint/restart facility was provided to facilitate further investigation.

Chapter 3 presented the conceptual background of HPC systems in the cloud

that are the subject of this thesis. We explained cloud computing architectures

and their benefits and identified the two main categories of cloud players (cloud

provides and cloud users). The different cloud service models, SaaS, PaaS, IaaS

and HaaS, were explained and their challenges with respect to HPC systems in

the cloud were presented. The four types of cloud computing available for HPC
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systems were discussed.

HPC systems in the cloud usually consist of a head node and compute nodes.

The head node and compute nodes are virtual machines configured to fit their

roles. The head node usually handles the user login, resource management, jobs

assignment and network file system. Compute nodes are normally accessed through

the head node. Compute nodes perform the computation-intensive job assigned

by the head and produce results. The head node and compute nodes communicate

through the Message Passing Interface. Failure of a head node and/or compute

node(s) commonly leads to failure of the HPC system.

We identified two additional challenges: system reliability (hardware failures,

software failures and virtual machine failures) and cost (which cloud service is

cost effective for HPC systems?). This thesis addresses these challenges.

Chapter 4 we described the design and implementation of a proactive fault

tolerance framework for High Performance Computing (HPC) systems in the

cloud. We derived the cost model for running computation-intensive applications

in HPC systems in the cloud. We analysed the dollar cost of providing spare

nodes ahead of prediction of failure. We showed that our solution does not rely

on the provision of spare nodes ahead of the prediction of failure. We presented

experimental results carried out in a real cloud environment.

The experimental results clearly show that the proposed proactive fault

tol-erance approach to HPC systems in the cloud can significantly improve the

execution time of computation-intensive applications and thereby reduce the

dollar cost of running them by as much as 30%. The frequency of checkpointing

of computation-intensive applications can also be reduced by 50% with our

111



6.2 Conclusions

FT-Daemon. Our approach can help reduce energy consumption by reducing the

wall execution time of computation-intensive HPC applications in the presence of

failure of one or more computational nodes.

In Chapter 5, we addressed the research question posed in Chapter 3 (the

cost and computational performance of different cloud services). Due to the huge

capital investment required to own a traditional HPC system, which typically

involves job queuing, using an HPC system in the cloud is a good alternative.

Cloud computing offers IaaS and HaaS for deployment of cluster instances, which

can be used to run computation-intensive applications. IaaS provides almost

ready-to-use clusters with minimal deployment installation tasks. With HaaS,

virtual machines can be provisioned to run computation-intensive applications.

We have conducted experimental analysis to determine the performance and

cost when cloud services IaaS and HaaS are leased to run computation-intensive

applications. We showed that the dollar cost of running computation-intensive

applications in the cloud can be reduced by as much as 20% when HaaS is leased.

We showed that there is no significant impact in performance of the applications

when executed on the leased HaaS.

6.2 Conclusions

The theoretical concepts behind the architecture of HPC systems in the cloud

that are discussed in this thesis provide a significant resource for researchers

investigating the relatively new field of HPC systems in the cloud.

The analysis of failure rates of HPC systems presented in this work shows that
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failure is one of the major concerns of the HPC systems community, particularly

when the number of processors increases to thousands. The analysis provides

results that can be used for further investigation.

The experimental results from the comparison of existing fault tolerance

solutions and the proposed proactive fault tolerance approach to HPC systems in

the cloud show that the proposed solution can significantly improve the execution

time of computation-intensive applications and thereby reduce the dollar cost for

running them by as much as 30%. In this proposed solution, the frequency of

checkpointing of computation-intensive applications can also be reduced by 50%

with our FTDaemon. Based on the experimental results, the proposed approach

can help reduce energy consumption by decreasing the wall execution time of

computation-intensive HPC applications in the presence of failure of one or more

computational nodes.

The experimental analysis to determine the performance and cost when cloud

services IaaS and HaaS are leased to run computation-intensive application shows

that HaaS is more cost effective for HPC applications. These results indicate to

the HPC community that the cost of running HPC applications can be reduced

with HaaS without significant computational performance issues.

The solution proposed in this thesis cannot predict failures that occur without

prior warning window. For example, sudden power failure and operator’s error.

Consequently, reactive fault tolerance may be used to recover from the hardware

failure.

In summary, we have provided an analysis of the failure rate of HPC systems,

an evaluation of checkpoint/restart facilities, and an overview of HPC systems

in the cloud (theoretical concepts and architecture). We proposed a proactive
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fault tolerance solution for HPC systems in the cloud and identified the most cost

effective cloud service for HPC systems in the cloud. In doing so, we have made

a significant contribution to the community of HPC systems users through the

provision of tools that provide solutions to current problems and useful insights to

facilitate further investigation on fault tolerance and other potential applications.

6.3 Future Work

A guide for future research has been provided in each chapter. This section

summarises these recommendations and adds some new suggestions.

One area of future work is to use the rollback feature requirements identified

in subsection 2.2.6 and the results of the evaluation of checkpoint/restart provided

in section 2.6 to investigate how rollback would be applied in HPC systems in

the cloud with reduced overheads. At present, the overheads associated with

checkpoint/restart activities somewhat limit its usability in HPC systems in the

cloud.

Another area that we would suggest for future research involves the creation of

efficient tools to reduce the setup time for HPC systems in the cloud, particularly

when HaaS is leased. This would reduce the challenges faced by users of HPC

systems in the cloud, particularly when they lease HaaS.

We recommend further investigation and experiments to determine the time

window between prediction of failure and the time the predicted failure occurs.

Such research may help to identify the optimal time window for accessing the risk

of failure. A time window is useful for determining if a deferred action policy might

be a desirable option. For example, if an HPC system in the cloud is running a
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computation-intensive application and the application is likely to finish before

the predicted failure occurs, there is no point taking proactive action because

the application would have finished execution and the lease would have been

relinquished before the failure occurs.

HPC systems in the cloud are relatively a new field. We would recommend

that a decade worth of field failure data from HPC systems in the cloud should

be collated and analysed. Currently, such field failure data is not available. HPC

systems in the cloud field failure data analysis would provide comprehensive

insights on the reliability of HPC systems in the cloud. It would also provide

detailed information on the factors that causes HPC systems in the cloud failures

and how to mitigate unavoidable failures.

The behaviour of VMs, when used in large-scale such as HPC systems in the

cloud may be unpredictable. This is particularly notable when IaaS is leased

because the VMs running HPC applications may be sharing computer resources

with other VMs leased by other cloud users. This can significantly have impact on

performance of computation-intensive application running on HPC systems in the

cloud. We recommend that mathematical performance model that would focus

on predicting and comparing computation-intensive application’s performance on

HPC systems in the cloud based on HaaS and IaaS infrastructure is investigated.
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Appendix A

Table A.1: Future failure prediction and warning state table

Ti Fi Vi Ci State

0 0 1 1 warning

0 1 0 1 warning

0 1 1 0 warning

0 1 1 1 future failure predicted

1 0 0 1 warning

1 0 1 0 warning

1 0 1 1 future failure predicted

1 1 0 0 warning

1 1 0 1 future failure predicted

1 1 1 0 future failure predicted

1 1 1 1 future failure predicted
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Table A.2: Checkpoint/restart facilities

Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Zhong

and Niel,

2001)[78]

CRAK

http://systems.

cs.columbia.edu/

archive/pub/2001/

11/

It requires no

modification of OS

or application code.

Target’s processes are

stopped before they

are checkpointed.

Transparent

Kernel

module

utilities

Supports migration of

networked processes,

however; it does not

support virtualization

and multi-threaded

process. It works on

Linux 2.2 and 2.4

kernel platform

User

initiated

It supports

TCP/UDP

sockets

Continued on next page
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Continued on next page

Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Pinheiro,

2001)

[149]

Epckpt

http://www.

research.rutgers.

edu~edpin/epckpt/

Supports symmetric

multiprocessors and

does not require

modification of OS

or application code

in other to use the

facility.

Transparent,

Kernel level

implementation

Supports system V

IPC (Semaphores and

Shared Memory), fork

parallel applications,

dynamic load libraries.

Linux 2.0, 2.2 and 2.4

kernels.

User

initiated and

non-periodic.

Cannot

checkpoint

sockets, timers

(sleeping

processes will

be awakened)

and System V

IPC Messages

Queues

Continued on next page
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Condor

Team,

2010) [76]

Condor

http://www.cs.

wisc.edu/condor/

Enabled by the user

through linking the

program source code

with the condor system

call library.

Not

transparent,

library

implementation

Supports single

processes but

multi-process jobs

and system calls

are not supported.

Multiple kernel-level

threads and memory

mapped programs are

not allowed. Works on

kernel 2.4 and later

Periodic and

user initiated

Interprocess

communication

is not allowed

(e.g., pipes,

semaphores, and

shared memory)

Continued on next page
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Plank et

al, 1995)

[77]

Libckpt

http://web.eecs.

utk.edu/~plank/

plank/www/libckpt.

html

It is implemented

in user space. It

uses copy-on-write

and incremental

checkpointing

mechanism but

requires recompiling of

the source code.

Not

completely

transparent.

Library

implementation

It support files and

multiprocessor. It does

not provide support for

multithread, pipes, Sys

V IPC or distributed

application

Periodic Does not

support sockets

Continued on next page
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Continued on next page

Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Stellner,

1996)

[150]

CoCheck

http://www.lrr.

in.tum.de/Par/

tools/Projects.

Old/CoCheck.html

User level MPI

implementation.

CoCheck uses a special

process to coordinate

checkpoints.

Transparent,

library

implementation

Supports parallel

processes running

on multicomputer;

CoCheck can be ported

to different machine

platforms. CoCheck

cannot process a

checkpoint request

when a send operation

is in progress [70]

Periodic Supports TCP

sockets

Continued on next page
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Ansel et

al, 2009)

[65]

DMTCP

http://dmtcp.

sourceforge.net/

Coordinated

transparent user

level checkpointing

for distributed

applications.

Transparent,

Library

implementation.

Supports distributed

and multithreaded

applications. It

support Linux 2.4.x

and later

Periodic and

manually

initiated

Provides

supports for

sockets but does

not support

multicast and

RDMA (remote

direct memory

access).

Continued on next page
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Duell et

al, 2002)

[63]

BLCR

https://ftg.lbl.

gov/projects/

CheckpointRestart/

CheckpointDownloads

System-level and MPI

implementation for

clusters

Transparent Supports serial and

parallel job. It also

support single machine

or parallel jobs that

run across multiple

machines on cluster

node. It partially

supports multithread

applications. Its kernel

modules are portable

across difference CPU

architectures. BLCR

works on kernel 2.4.x

and later.

User

initiated

Does not

checkpoint or

restore open

sockets or files

like TCP/UDP
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Zandy,

2002)

[151]

Ckpt

http://pages.cs.

wisc.edu/~zandy/

ckpt/

Implemented at

user-level. Supports

asynchronous

checkpoints and

does not require re-link

to programs

Transparent,

library

implementation

Provides checkpointing

functionality to an

ordinary program.

Linux 2.4 and later

Periodic

checkpoint

or manual

initiation

Does not

support

TCP/UDP

sockets

(Overeinder

et al,

1996)

[152]

Dynamite

http://www.

science.uva.nl/

research/scs/

Software/ckpt/

#references

User level

implementation

Not

transparent

â€“ requires

re-linking of

libraries

Supports open files,

dynamically loaded

libraries and parallel

processes (PVM/MPI)

but does not

support multithread

applications. Linux

2.0, 2.2 and later

Periodic Supports

TCP/UDP

sockets

Continued on next page

124

http://pages.cs.wisc.edu/~zandy/ckpt/
http://pages.cs.wisc.edu/~zandy/ckpt/
http://pages.cs.wisc.edu/~zandy/ckpt/
http://www.science.uva.nl/research/scs/Software/ckpt/#references
http://www.science.uva.nl/research/scs/Software/ckpt/#references
http://www.science.uva.nl/research/scs/Software/ckpt/#references
http://www.science.uva.nl/research/scs/Software/ckpt/#references
http://www.science.uva.nl/research/scs/Software/ckpt/#references


Continued on next page

Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Osman,

2002) [79]

Zap

http://www.ncl.

cs.columbia.edu/

research/migrate/

Uses partial OS

virtualization

to allow the

migration of process

domains. It uses

Checkpoint-restart

mechanism of CRAK

using a modified Linux

kernel.

Transparent,

Kernel

module,

library.

Supports single-thread

and multithread

process. It also

supports SYS V IPC.

Linux 2.4 and later

User

initiated

Supports

TCP/UDP

sockets, devices

files.

(Sudakov

et al,

2007)

[153]

CHPOX

http://freshmeat.

net/projects/

chpox/

Systems-level

implementation and

does not require

modification of OS or

user programs

Transparent

and uses

kernel

module

Supports files and pipes

however multithreaded

programs are not

supported. Linux2.4

and later

User

initiated

Network

sockets are

not supported
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Ramkumar

and

Strumpen,

1997)

[154]

Porch

http://supertech.

csail.mit.edu/

porch/

Implemented at user

level space.

Uses source

to source

compilation

to provide

checkpointing

solution in

heterogeneous

environment

Not transparent,

recompiling

Multithread

and distributed

applications are not

supported.

Periodic

checkpoint

File I/O and

socket I/O are

not supported.

(Gibson)

[75]

Esky

http://esky.

sourceforge.net/

User-level

checkpointing and use

job freezing techniques

(checkpoint/resume)

for Unix processes.

Transparent

library

implementation

Has limited application

coverage. Esky can

cope with programs

that open or mmap()

files. Linux 2.2 and

later; and Solaris 2.6.

User

initiated

Currently works

on a limited

opening shared

libraries with

dlopen().
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Sankaran

et al,

2004) [70]

OpenMPI

(LAM/MPI LA-MPI)

http://www.

lam-mpi.org/

A user-level facility

that uses coordinated

protocol and BLCR

library to checkpoint

MPI applications

Not

transparent

Uses BLCR facility

to checkpoint parallel

MPI applications. It

works on recent kernels

Periodic Supports

Ethernet,

InfiniBand,

Myrinet

(Blackham,

2005)

[155]

CryoPID

http://cryopid.

berlios.de/

Uses freeze techniques

in checkpointing. It

copy the state of a

running process and

writes it into a file.

Transparent,

utilizes

dynamically

linked library

Supports single thread

process. However,

it does not support

multithread processes.

Linux 2.4 and later.

User

initiated

Partial

support to

file descriptors,

sockets and X

applications
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(William

and

James,

2001)

[156]

Libtckpt

http://mtckpt.

sourceforge.net/

Implemented at

user-level and requires

recompiling

Not

transparent,

Library

Supports

multithreaded

applications and

Linux and Solaris

Periodic UDP sockets not

supported

(Takahashi

et al,

2000)

[157]

Score No modifications to the

application source is

required

Transparent,

library

Supports parallel

applications

Periodic Supports for

Myrinet and

Ethernet.
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Fagg and

Dongarra,

2000)

[158]

FT-MPI

http://icl.cs.utk.

edu/ftmpi/index.

html

Coordinated

checkpointing

facility and uses

messages logging

protocol to checkpoint

applications.

Not

transparent

Supports parallel

applications

Semi-automatic Ethernet,

Infiniband,

Myrinet
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Ruscio et

al, 2007)

[159]

DejaVu Coordinated

checkpointing facility

and implemented in

user space. Virtualizes

at the OS interface.

Transparent

and library

implementation

DejaVu supports

parallel and distributed

applications. Supports

forked processes.

Permits completely

asynchronous

checkpoints, it

also support

anonymous mmap()

and incremented

checkpointing

Periodic Supports

communication

sockets. It

supports

Infiniband

through custom

MVAPICH.
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Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Schulz et

al, 2004)

[74]

C3 (Cornell

Check-point(pre)

Compiler)

http://www.psc.

edu/science/2005/

pingali/

Application-level

checkpointing and

does require program

modification

Not

transparent

Supports single-thread

and distributed

application. C3 system

is easily ported among

different architectures

and operating systems.

Program

initiated

Does not

support

infiniband

and Myrinet

Continued on next page
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Continued on next page

Author Checkpoint name

and link

Brief description of

the checkpoint

Transparent OS/Application

coverage

Automatic Sockets

(Bosilca

et al,

2002)

[160]

MPICH-V

http://mpich-v.

lri.fr/

Its implementation

is based on

uncoordinated and

distributed message

logging techniques.

MPICH-V relies on the

Channel Memory(CM)

techniques

Partial

Transparent

Supports parallel

applications. It uses

Checkpoint server

scheduler which is

not synchronized with

checkpoint server.

Works in all Unix

flavor. It also works in

Windows x86 and x64

Automatic Supports

Ethernet and

Myrinet
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