

the European honeybee, Apis mellifera

OHironori Sakamoto¹, Norichika Ogata², Tetsuhiko SASAKI¹ (¹Tamagawa Univ. ²Japan Bio-data)

Introduction

Worker honeybees change their task with aging

Young bees...nurses (inside nest, feed larvae)

Old bees...foragers (outside nest, collect honey)

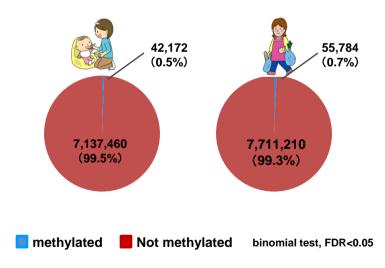
Learning ability increases with aging (nurse << forager)

Does epigenetic mechanism regulate brain function?
We focused on DNA methylation

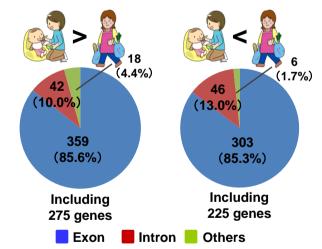
Materials and Methods

Compare genome-wide methylation pattern of brains between nurses and foragers by bisulfite sequencing using a next-generation sequencer

- DNA methylation occurs at C of CG (GpG) dinucleotides
- Bisulfite treatment converts unmethylated C to U
- DNA extraction
 CH₃


 5' GAATCGAC*GA- 3'

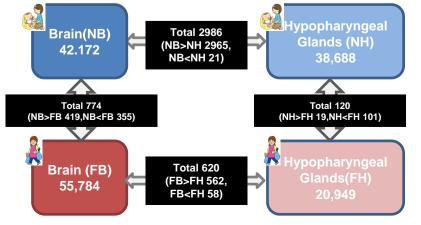
 Bisulfite conversion
 CH₃


 I
 5'-GAATUGAC*GA-3'
- Next generation sequencer can read more than 6 Gb (60, 000, 000, 000 bases) /run

Results and Conclusions

1. < 1% of CpG sites were methylated.

2. Differently methylated CpG sites were exon-located.



3. Differently methylated genes regulated gene expression

Predicted function remarkable genes

histone modification Sir-2, Hdac3
DEAD-box helicase LOC726768
chromatin remodeling Iswi
neural development big brain

4. Methylation-patterns were brain-specific.

