

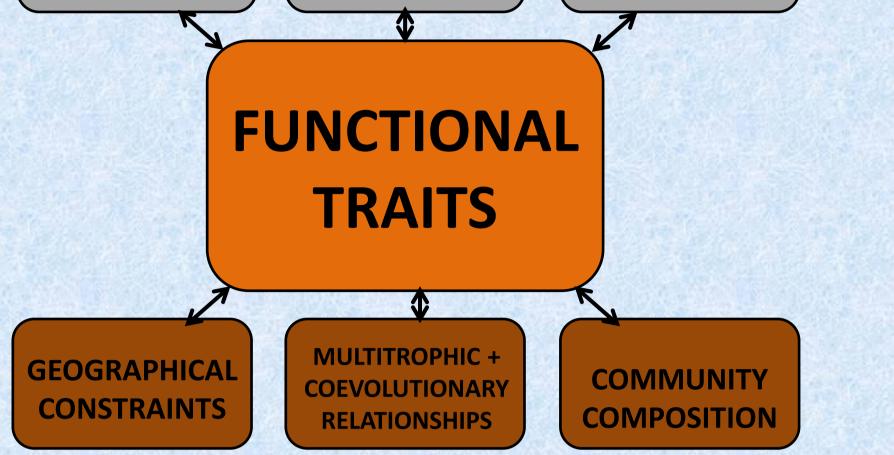
PHYSICAL

LOCAL DETERMINANTS OF ANT FUNCTIONAL DIVERSITY IN A FOREST FRAGMENT

R.S. PROBST^{1,2}, R.R. SILVA³ & C.R.F. BRANDÃO²

¹Graduate Program in Systematics, Animal Taxonomy and Biodiversity, Museu de Zoologia da Universidade de São Paulo/MZSP, probstrodolfo@gmail.com;

²Hymenoptera Laboratory - MZSP, São Paulo, SP, Brazil


³Coordenação de Ciências da Terra e Ecologia - Museu Paraense Emílio Goeldi, Belém, PA, Brazil

SSI

Cairns Australia

ENVIRONMENT BIOLOGICAL ANIMAL **ENVIRONMENT ENVIRONMENT RELATIONSHIPS**


The functional trait approach is powerful tool for the development of quantitative and predictive models of community assembly rules. Patterns of morphological variation among species allow us to infer the relationship between morphology and ecology, while revealing a system combining ant resource related traits to environmental scales and/or conditions.

Material & Methods

FUNDAÇÃO FLORESTAL

We evaluated local determinants of ant morphological diversity in three vegetation types inside State Park of Xixová-Japuí (PEXJ), a 900ha Atlantic Forest fragment in Southeastern Brazil (Figure). We employed 60 pitfall traps set for seven days (summer and winter) along two transects of 100 meters per area, sampling points at each 10 meters, and recording thirteen ecological variables (see table on Variables) at each collection point.

We quantified the influence of the measured variables on richness and composition of communities and the relationship among resources and environment variables. We used GLMMs, LMEs and GAMMs to test the species richness, morphological diversity and relationship between environmental variables (accounting for spatial and temporal correlation). We selected as predictors of ant diversity the following variables in the analyses:

Figure. Left: Political map of Brazil, showing states boundaries. São Paulo State highlighted in red. Right: Zoom of São Paulo Southeast, showing in green the area covered by the present study (PEXJ).

Richness (taxonomic or morphological) ~ litter + temperature + number of herbs + tree distance + soil slope + soil pH

We analyzed summer /winter datasets together to a general model to our study.

11 morphological neasures of species workers	CHARACTER MEASURE			VARIABLES		
	Mandible size	Mandible width (MW)		Litter depht (mean of 5 measurements)	Twigs: number, lenght and diameter	
Ip to 06 individuals of all species → morphological diversity in each sample.	Head appendages	Scape length (SL)		Soil: pH, saturation, and slope	Herbs: number and distance of closer herl to trap	
	Clypeus	Clypeus length (CL)		Relative humidity	Temperature	
	Eye size	Eye length (EL)				
Morphological diversity:	Eye position	Distance of eye to mandible insertion (DEM) Interocular distance (ID)		Tree: diameter at breast size and distance of closer tree to trap Docult		

1.	PD: functional
	diversity (Petchey
	& Gaston);
2.	MPD: mean
	pairwise distance;
3.	MNTD: mean
	nearest taxon
	distance

me

Up

Hind femur length (FL) Leg length Petiole height (PeH) **Petiole size Petiole length (PeL)** Weber's length (WL) Mesossoma First gastric segment width Gaster (FGSW)

Results

Eighty two ant species belonging to seven subfamilies (29 genera) were collected (65 in the summer and 55 in winter). We found no significant relationships between Richness and the predictors. PD was better explained by Number of Herbs (p=0.06), MPD and MNTD by temperature (p<0.05).

Conclusion

Interestingly, we found that different variables at microscale affect differently the ant functional diversity, depending on the adopted functional metric (PD, MPD or MNTD).