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Abstract 

Evidence based medicine (EBM) has become the dominant model for inform
ing and justifying therapeutic decisions. There is increasing philosophical 
interest in whether the central claims of EBM can be justified. EBM puts 
forward a methodological hierarchy as a criterion for justifying therapeutic 
decisions. This hierarchy privileges evidence from randomised interventional 
studies as a basis for inference over alternative forms of evidence such as 
observational studies and basic medical science. Proponents of EBM have 
provided surprisingly little justification for their methodological claims. The 
early chapters of the thesis examine the justification and interpretation of 
the hierarchy provided by proponents of EBM. The only sustainable justi
fication of the hierarchy is as a hierarchy of comparative internal validity. 
Study dBsigns higher up the hierarchy have the capacity to rule out more 
sources of systematic error than study designs lower down. While there are 
good reasons for preferring randomised interventional studies for testing the 
efficacy of drugs, high internal validity is not sufficient for informing thera
peutic decisions. In the later sections of the thesis, I turn to the question of 
external validity. The crucial role that observational studies and basic sci
ence play in the application of clinical research is demonstrated. In the final 
chapters, I argue that some of the frequentist methods currently employed to 
analyse clinical data are ill suited to the task of informing therapeutic deci
sions. EBM is promoted as a rationalist turn in medicine. If EBM is to fulfil 
this promise, more attention is needed on the foundations of the approach. 
This thesis examines the foundational arguments of EBM, and observes the 
limits of these arguments in informing therapeutic decisions. 
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Prologue 

Rofecoxib was a heavily marketed, and widely used, anti-inflammatory agent 
that was withdrawn from the worldwide market in September 2004. Now, 
rofecoxib is a well recognised, and widely used, example of the challenges of 
regulatory and clinical decision making. 

The rofecoxib story is striking. Rofecoxib was withdrawn following post
marketing evidence that it increased the risk of heart attacks and strokes. 
Prior to this, rofecoxib had progressed through the phases of drug develop
ment without significant hitch. That is, its risks were not uncovered until 
after it had passed what we accept to be the 'best tests' of a drug's effi
cacy and safety. But this is not what is especially striking about rofecoxib. 
Despite the rigours of drug development, some rare, though catastrophic, ad
verse effects can only be detected once a drug is used by a very large number 
of people. What is especially striking in this case is that the risks of rofe
coxib are relatively common, both in terms of presentation and frequency. 
The cardiovascular effects of rofecoxib are not entirely idiosyncratic. Indeed, 
the possibility of an increased risk of blood clots (leading to heart attacks or 
strokes) is foreseeable on pharmacological grounds. And, based on current 
data, the frequency of heart attacks and strokes caused by rofecoxib is in 
the range of 30 to 80 additional events per 10,000 patients per year; by con
trast, a 'rare' adverse effect, say, for example penicillin anaphylaxis, occurs 
in about one patient in every 10,000. 

Even more disturbing is that rofecoxib was developed in anticipation of 
its safety benefits. In many ways rofecoxib, and the class of drugs it belongs 
to, had all the hallmarks of being a success story for biomedical science. Tra
ditional anti-inflammatory agents, despite their effectiveness in relieving pain 
and inflammation, pose significant public health risks due to their propen
sity to cause gastrointestinal damage. The COX-2 inhibitor class, of which 
rofecoxib is a member, were developed out of an increased pharmacological 
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and physiological understanding of how anti-inflammatories work. COX-2 
inhibitors are pharmacologically targeted to work just as well as traditional 
anti-inflammatories while minimising gastrointestinal risks. On this basis, 
these drugs were eagerly awaited, and once available, heavily prescribed. 
The anticipated improvements in gastrointestinal safety were eventually es
tablished. Unfortunately, the cardiovascular risks identified a couple of years 
later are of a similar magnitude to the gastrointestinal benefits. 

Rofecoxib was approved, and spent four and a half years on the market, 
before its propensity for grave side effects was established. Clearly, this is 
an undesirable state of affairs. A number of questions arise immediately, 
perhaps the most urgent among these is: what went wrong? The answer 
is unsettling; in a strong sense, nothing went wrong. Rofecoxib was tested 
according to the methods we accept to be our 'gold standard'. Specifically, 
a significant number of reasonably sized randomised controlled trails con
ducted prior to and soon after market approval failed to demonstrate the 
cardiovascular risks. The VIGOR study (Bombardier et al. 2000) provided 
some (disputed) evidence that rofecoxib may increase the risk of heart at
tacks and strokes, but it was not until Bresalier et al. (2005) reported the 
results of the APPROVe trial, that rofecoxib was withdrawn from the mar
ket. Prior to APPROVe, a meta-analysis that combined the results of the 
pre- and post-marketing randomised controlled trials supported the cardio
vascular safety of rofecoxib (Weir et al. 2003). Perhaps it should be noted 
that this meta-analysis was conducted by the sponsor, and that questions 
have been raised as to whether the reporting and publication of rofecoxib's 
key trials were of the highest clinical and ethical standards (see Krumholz 
et al. 2007, and Ross et al. 2008). But issues such as these are considerably 
easier to pick up once we are sifting through the wreckage under the glare 
of flood lights. And, despite their significance, these transgressions are not 
sufficient to explain the amount of time it took to establish rofecoxib's safety 
profile--especially when the magnitude of rofecoxib's risks are approximately 
equal to its benefits. It is important to reflect on what should have been done 
better, but we should also acknowledge an important underlying point: our 
best methods-or, more accurately, what we currently consider to be our best 
methods-led us astray. 

Regulatory and clinical decisions rely heavily on evidence from randomised 
controlled trials. This study design is seen to provide the most reliable ev
idence about medicines (the only evidence thought to be more reliable is 
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the results of a number of randomised controlled trials combined in a meta
analysis). From a regulatory perspective, drugs will only be put on the 
market once their efficacy is established in a randomised controlled trial. For 
medical decision making, Evidence Based Medicine is the main game in town. 
And Evidence Based Medicine advises clinicians to base their decisions, as 
much as possible, on evidence from randomised controlled trials. 

Rofecoxib raises methodological questions. Do we place too much con
fidence in the results of randomised controlled trials? On what basis are 
randomised controlled trials our best source of evidence? Which questions 
are especially well suited to being tested in randomised controlled trials? 
And, which questions are poorly tested by this study design? Clearly these 
are questions for medicine and for public health policy. But just as clearly, 
these are questions of, and for, philosophy. 

This thesis approaches the questions raised by Evidence Based Medicine 
more generally, as opposed to spedfic issues surrounding rofecoxib. The ques
tions will be approached from the perspective of contemporary philosophy of 
science. According to this approach, the questions and methods of philoso
phy of science are seen to be continuous with the questions and methods of 
science. Rather than develop prior and abstract truths by which the meth
ods of clinical research can be judged, the inherent complexities of medical 
research and clinical decision making take centre stage. The epistemological 
strengths and weakness of the methods we employ to understand and assess 
treatments are considered in light of these uncertainties. 
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Chapter Synopses 

Chapter 1 Evidence based medicine (EBM) and the approach it suggests 
for therapeutic decisions is introduced. An overview of the thesis is 
provided. Primers on study designs used in clinical epidemiology, and 
the frequentist statistical analysis of clinical trials are supplied. 

Chapter 2 EBM puts forward a hierarchy of evidence for informing ther
apeutic decisions. An unambiguous interpretation of how to apply 
EBM's hierarchy has not been provided in the clinical literature. How
ever, as much as an interpretation is provided, proponents suggest a 
categorical interpretation. Most of the critical replies to EBM react 
to this interpretation. While proponents of EBM can avoid some of 
the problems raised by critics by suitably limiting the claims made on 
behalf of the hierarchy, further problems arise. If EBM is to inform 
therapeutic decisions then a considerably more restricted, and context 
dependent interpretation of EBM's hierarchy is needed. 

Chapter 3 EBM's hierarchy of evidence places randomised interventional 
studies (and systematic reviews of such studies) higher in the hierarchy 
than observational studies, unsystematic clinical experience, and ba
sic science. Recent philosophical work has questioned whether EBM's 
special weighting of evidence from randomised interventional studies 
can be justified. Following the critical literature, and in particular the 
work of John Worrall, I agree that many of the arguments put for
ward by advocates of EBM do not justify the ambitious claims that are 
often made on its behalf. However, in contrast to the recent philosoph
ical work, I argue that a justification for EBM's hierarchy of evidence 
can be provided. The hierarchy should be viewed as a hierarchy of 
comparative internal validity. While this justification is defensible, the 
claims that EBM's hierarchy substantiates when viewed in this way are 

XVll 
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considerably more circumscribed than some claims found in the EBM 
literature. 

Chapter 4 A number of arguments have shown that randomisation is not 
essential in experimental design. Scientific conclusions can be drawn 
on data from experimental designs that do not involve randomisation. 
John Worrall, among others, has argued that randomising provides 
no guarantee that experimental groups are evenly distribution for all 
possible confounding factors on any particular allocation. In doing so, 
however, Worrall makes an additional claim: randomised interventional 
studies are epistemologically equivalent to observational studies provid
ing the experimental groups are comparable according to background 
knowledge. I argue against this claim. In the context of testing the 
efficacy of drug therapies, well-designed interventional studies are epis
temologically superior to well-designed observational studies because 
they have the capacity avoid an additional source of bias. Randomisa
tion in interventional studies is defended on Bayesian grounds. 

Chapter 5 The challenge of judging the external validity of clinical re
search is outlined. Contradicting EBM's claim that therapeutic de
cisions should be informed by evidence from randomised interventional 
studies rather than observational studies, I show that evidence from 
observational studies can play a vital role in making judgements of 
the external validity of clinical research. Therapeutic decision-makers 
need evidence from both observational and randomised interventional 
studies. 

Chapter 6 Therapeutic decisions, according to proponents of EBM, should 
be informed by evidence from randomised interventional studies (and 
systematic reviews of randomised interventional studies) rather than 
basic science. Patrick Suppes' hierarchy of data models provides a 
framework that explicates the link between the theory of basic science, 
experimental inquiry, and observed data. Relying on the hierarchy of 
data models I show that basic science is vital not only for specifying ex
periments, but for analysing and interpreting the data that is provided. 
Further, and contradicting what is implied in EBM's hierarchy of evi
dence, basic science is integral to the application of clinical research to 
therapeutic questions. 



Chapter Synopses xix 

Chapter 7 Therapeutic decision makers require data on which patients are 
especially likely to benefit from the treatment, and which patients are 
especially prone to adverse effects. But gaining reliable data of this 
kind is difficult. This is the problem of subgroup data. I outline two 
responses that are found in the literature. Neither provides a com
pletely adequate reply. What is needed is a more explicit framework 
for incorporating the theory of basic science into the interpretation 
and application of clinical research. Patrick Suppes' hierarchy of data 
models provides such a framework. 

Chapter 8 The standard view within clinical trial analysis is that power is 
irrelevant to the interpretation of the results of a statistical test once 
they have been observed. I argue against this view. In particular, I 
show the warrant associated with frequentist statistical inferences de
pends on the epistemic context of the statistical test. The withdrawal 
of rofecoxib from the market following the Adenomatous Polyp Preven
tion Trial (APPROVe) is used as a case study to illustrate this point. 
Understanding how the warrant for statistical tests differs according to 
the epistemic context of the test is important for drawing appropriate 
inferences from clinical trials. 

Chapter 9 The main arguments of the thesis are summarised. 
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Chapter 1 

Evidence Based Medicine: A 
'paradigm' for therapeutic 
decisions? 

Most of us with rationalist pretensions presumably aspire to live 
in a society in which decisions about matters of substance with 
significant potential social or personal implications are taken on 
the basis of the best available evidence, rather than on the basis 
of irrelevant evidence or no evidence at all. Of course, the nature 
of what constitutes evidence in any particular instance could be 
a matter for significant debate. But, modulo such debate, most 
of us have the aspiration to live in a society which is more, rather 
than less, 'evidence based'. 

The Address of the President, Adrian F. M. Smith, to The Royal 
Statistical Society on Wednesday, June 12th, 19961 

Medical decisions should be based on evidence, indeed, the best available 
evidence. This is the motto of a movement in medicine that has become 
known as 'Evidence Based Medicine', or 'EBM' for short. As mottos go, it is 
hardly contentious. EBM has become medical orthodoxy in a relatively short 
space of time. And yet, despite EBM's status and its indisputable slogan, 
EBM has engendered considerable debate. This is because the details matter; 
or, as Adrian Smith understates, 'the nature of what constitutes evidence in 
any particular instance could be a matter for significant debate'. It is easy 

1Smith 1996, p. 369 

1 
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to assert that decisions should be based on the best available evidence. It 
is considerably harder to be precise about what the 'best available evidence' 
is, why it is better than the alternatives, and how it should be collected 
and applied. That medical evidence comes from a range of sources makes 
these questions especially challenging. How should we compare or integrate 
the evidence supplied by basic sciences such as physiology and pharmacology 
with the evidence supplied by applied clinical research? This thesis examines 
EBM's reply to these questions. 

EBM developed out of clinical epidemiology, which is itself a relatively 
young discipline. Clinical epidemiology amalgamates 'clinical medicine' and 
'epidemiology'. It approaches the questions that arise in the care of individ
ual patients with methods that detect and quantify the influence of particular 
treatments, or risks, in populations. Clinical epidemiology has developed a 
wide range of methods to reduce the influence of systematic error and the 
play of chance in clinical studies. The development of these methods has had 
a large effect on the kind of research that is conducted in medicine. Prior to 
clinical epidemiology, 'laboratory research' conducted in the 'basic' medical 
sciences of physiology, pharmacology and pathophysiology dominated medi
cal science. Now, clinical trials-trials which directly assess the effects of a 
treatment in a sample of patients-play a prominent role. Indeed, some con
sider clinical epidemiology as an additional basic science in medicine (Fletcher 
et al. 1996, p. 3). 

Where clinical epidemiology has influenced the type of research consid
ered important to medical science, EBM's influence has been in convincing 
clinicians of the importance of clinical epidemiology to the decisions they 
make in the care of their patients. EBM, in essence, is the application of the 
principles of clinical epidemiology to medical decisions. EBM developed as a 
distinct approach during the 1980's and 1990's in the Department of Medicine 
and Clinical Epidemiology and the Department of Biostatistics at McMaster 
University, Canada. Gordon Guyatt, who first used the term in a one-page 
editorial of the American College of Physcian's Journal Club (1991), suggests 
that 'evidence-based medicine' is an extension of David Sackett's notion of 
'bringing critical appraisal to the bedside' (Guyatt and Rennie 2002). 'Crit
ical appraisal' is the process of appraising clinical research according to the 
methods of clinical epidemiology. 

Advocates of EBM, such as Guyatt and Sackett, provide 'tools' for bring
ing the skills of clinical epidemiology to the bedside. The most important 
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of these tools is EBM's 'hierarchy of evidence'. The hierarchy of evidence 
provides a hierarchy of study designs, and other sources of evidence. Advo
cates of EBM suggest that medical decisions should be based on evidence 
from as high up the hierarchy as possible. A number of different hierarchies 
have been developed for different aspects of medical decision making. For 
instance, The Oxford Centre for Evidence-based Medicine Levels of Evidence 
(see Phillips et al. 2001) provides evidence hierarchies for therapeutic deci

sions, prognosis, diagnosis, differential diagnosis, and economic and decision 
analyses. By far the most influential of these hierarchies is the hierarchy 

provided for therapeutic decisions. The Oxford Centre for Evidence-based 
Medicine hierarchy for therapeutic decisions is provided in Table 1.1. The 
two well-known and influential EBM guidebooks, Guyatt and Rennie (2002) 
and Straus et al. (2005), which teach busy clinician's the skills of EBM (and 
hence provide the account of EBM 'as it is to be practised'), utilise a hierar

chy of evidence for therapeutic decisions that is similar to that provided by 
The Oxford Centre for Evidence-based Medicine. (The guidebook by Straus 
and colleagues does not explicitly provide a 'hierarchy', nevertheless they 
rely on a similar ranking of evidence for therapeutic decisions.) 

In providing advice on how the hierarchy of evidence should be interpreted 
and applied, EBM becomes more than mere motto. The main components 
of the hierarchy of evidence for therapeutic decisions follow. The top of the 
hierarchy is typically reserved for meta-analyses and systematic reviews of a 

number of randomised controlled trials. 2
•
3 Next in the hierarchy is a single 

randomised controlled trial; then, systematic reviews of observational studies, 
which are placed above a single observational study; and, finally, the lower 
tiers of the hierarchy are filled by studies in basic science, and unsystematic 
clinical observation. 

Of key importance is the distinction made between randomised controlled 
studies (or RCTs), and observational studies. I prefer the term 'randomised 
interventional study' to randomised controlled trials because it is more de
scriptive. It is the interventional nature of these trials that is of primary 

2Some hierarchies place N-of-1 studies above systematic reviews, but N-of-1 studies, 
which allocate a patient to successive periods of treatment and control to decide whether 
the treatment is effective in that patient, raise a different set of questions and problems. I 
will leave these studies to one side for now. 

3Systematic reviews and meta-analyses combine the results of individual studies, for 
more discussion see page 19. 
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I Level I Therapy /Prevention, Aetiology /Harm 

1a Systematic review (with homogeneity*) of 
RCTs 

1b Individual RCT (with narrow confidence in-
terval) 

1c All or none** 

2a Systematic review (with homogeniety) of co-
hort studies 

2b Individual cohort study (including low qual-
ity RCT; for example< 80% follow-up) 

2c 'Outcomes' research; Ecological studies 

3a Systematic review (with homogeniety) of 
case-control studies 

3b Individual case-control study 

4 Case series (and poor quality cohort and 
case-control studies) 

5 Expert opinion without explicit critical ap-
praisal, or based on physiology, bench re-
search or 'first principles' 

Table 1.1: Oxford Centre for Evidence-based Medicine Levels of Evidence 
for Therapeutic Decisions (Phillips et al. 2001 ). 
Notes: *The authors of this hierarchy note that homogeneity of systematic 
reviews is important. On their view, substantial variation in the results of 
the individual studies may undermine the results of the systematic review. 
** 'All or none' is 'met when all patients died before the treatment became 
available, but some now survive on it; or when some patients died before the 
treatment was available, but none now die on it.' 
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importance (Chapter 3, EBM must be ... , provides a detailed argument for 
this claim, and illustrates some of the ambiguity that has arisen from the 
term 'randomised controlled trial'). Randomised interventional studies re
cruit a sample of participants, and then randomly allocate this sample into 
a group that receives the experimental treatment, and a group that receives 
either placebo, or some other form of 'control', such as the treatment that is 
currently recommended for the condition. The treatment and control groups 
are then monitored to ascertain the affects of the treatment. Observational 
studies, by contrast, do not allocate patients into treatment or control, rather, 
in observational studies, it is the participants going about their day-to-day 
life who choose whether or not to take the treatment under investigation, 
or expose themselves to the risk being assessed. EBM's central claim is 
that therapeutic decisions should be informed by evidence from randomised 
interventional studies (or systematic reviews of evidence from a number of 
randomised interventional studies), rather than evidence from observational 
studies (or other sources of evidence from lower down EBM's hierarchy). 

Proponents see EBM as revolutionary. Proponents of EBM explicitly in
voke the work of Thomas Kuhn, and label EBM a 'paradigm shift' in medical 
practice (see Evidence-Based Medicine Working Group 1992, p. 2420, and 
Guyatt and Rennie 2002, p. 8). That EBM is a new paradigm (in Kuhn's 
sense) is hardly defensible. For a start, there is no incommensurability be
tween the 'new' and 'old' approaches. EBM is more accurately seen as a shift 
in the type of evidence seen as optimal for therapeutic decisions. Along with 
evidence from basic science and the observations of experienced clinicians, 
clinical studies have long played a part in informing and justifying therapeu
tic decisions. What is new with EBM, is that it recommends evidence from 
clinical studies-especially randomised interventional studies-be explicitly 
privileged over other facets of therapeutic decision making. Presumably, 
what proponents of EBM are trying to emphasize in their talk of revolution 
is that explicitly privileging evidence from randomised interventional studies 
represents a significant shift in focus. 4 

And significant this shift is, in more ways than one. While the shift 
in what is considered good evidence for therapeutic decisions is certainly 

4Some may argue that the different weighing of evidence put forward by proponents of 
EBM is enough to classify EBM as a paradigm shift in the Kuhn's sense. Perhaps a case 
could be made. The point I emphasise is that evidence from clinical studies was seen as 
important to medical decision making prior to EBM. 
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significant, of even greater significance is the epistemological promise that 
accompanies this shift. Proponents of EBM promise that basing therapeutic 
decisions on evidence from randomised interventional studies will improve 
the care of patients. Evidence from randomised interventional studies pro
vides better evidence for therapeutic decisions, and hence, better care. This 
promise is made because it is thought that in practising EBM, medicine be
comes more 'scientific', more 'rational'. As Brendan Reilly (2004) puts it, 
'clinical medicine, long more art than science, is becoming the opposite'. 

Whether or not these claims of EBM can be sustained-the details of 
which are the primary focus of this thesis-EBM has had a significant in
fluence not only within medicine, but also more broadly. One prominent 
example is 'evidence based policy'. Adrian Smith (1996), in his Presidential 
Address to the Royal Statistical Society quoted above, uses medicine as an 
example to argue for a similar 'revolution' in public policy. While continuing 
to avoid debate about what 'constitutes evidence in any particular instance', 
Smith calls for an 'evidence-based society'. 5 

However, enthusiasm for EBM is not universal. Some argue that EBM is 
more illusion than revolution. The attack comes from a range of directions, 
I'll discuss three of the more prominent reactions. While more criticisms 
have been aired than are countenanced here, many (if not most) can be put 
into one of these three general categories. 

First, some argue that EBM provides nothing new (Sehon and Stanley 
2003; Shahar 1997). Medicine, after all, has always been based on evidence; 
non-evidence based medicine, whatever that may be, is not what was being 
practised prior to EBM. This criticism is strongest when it is directed against 
EBM's motto, or the most commonly cited 'definition' of EBM provided by 
Sackett (1996): 

Evidence based medicine is the conscientious, explicit, and ju
dicious use of current best evidence in making decisions about 
the care of individual patients. The practice of evidence based 
medicine means integrating individual clinical expertise with the 
best available external clinical evidence from systematic research. 

Both EBM's motto, and this 'definition' are far too broad; they sacrifice 

5If anything can be judged by how frequently 'evidence-based' is used to prefix some
thing the speaker wishes to represent as the 'right' approach, then many have headed 
Adrian Smith's call-if not his intention. 
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descriptive detail for aspirational tones. A much clearer idea of what EBM 
is can be gained by paying attention to proponents advice on how EBM 
should be put into practice. But, even here proponents of EBM are rather 
ambiguous about some important details (as will be discussed in Chapter 2, 
EBM can't be ... ). 

Another avenue of criticism comes from those who view medical deci
sions as more 'art' than science (Henry 2006; Tanenbaum 1993). Medical 
decisions, according to these critics, rely heavily on the tacit knowledge that 
is accumulated by clinicians observing patients. EBM is seen to call for a 
reduction of medicine to statistics. On this criticism, medicine is the care 
of individual patients by their physician, and this relationship is too unique 
and complex to be reducible to the results of clinical studies. This criticism 
is provided in a range of ways, often these critics view EBM as a dangerous 
threat to medical autonomy, and this criticism is part of broader attempt to 
re-assert that autonomy. 

The third, and by far most common criticism of EBM, is that it promises 
far more on behalf of its methodological distinctions than it manages to 
deliver (see Anonymous 1995 for an early example). Proponents of EBM 
promise that EBM makes medical decisions more scientific. The advantages 
of randomised interventional studies over observational studies is taken as the 
primary basis for this claim. But, somewhat surprisingly, proponents of EBM 
spend very little time justifying this view. Instead, the idea that randomised 
interventional studies provide superior evidence for therapeutic decisions is 
seen to be beyond reproach; it is the starting assumption of EBM, rather than 
a conclusion that is explicitly argued for. The guidebook from Straus et al. 
(2005, p. xii) refers those interested in the 'theoretical and methodological 
bases' of EBM to textbooks in clinical epidemiology. However, despite their 
shared methods, the aims of EBM are distinct from clinical epidemiology. 

Many of the methods of clinical epidemiology are put to the task of im
proving the reliability of clinical research, especially with regard to internal 
validity. Forming correct inferences on the basis of good clinical data is 
clearly important for EBM, but EBM requires an additional step (or a series 
of additional steps). EBM is about medical decisions, especially therapeu
tic decisions. Properly interpreting data from the relevant clinical studies is 
only the first step in informing a therapeutic decision. The practice of EBM 
requires applying the results of clinical studies to individual patients (who 
may, or may not, resemble the patients included in the clinical studies). This 
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process requires consideration of not only clinical data, but also the pref
erences of the patient, the theories of basic science, and the experience of 
the clinician. Clinical epidemiology provides little advice on how evidence 
from well conducted studies should be applied to patients that present to the 
clinic. And, because EBM relies on clinical epidemiology for its theoretical 
basis, it too provides precious little on precisely how 'evidence' should be 
applied. In this regard EBM, as elucidated by proponents, does not dig too 
much deeper than the bald stipulation given in Sackett's description of EBM: 
other facets of therapeutic decision making, such as patient preferences, basic 
science and clinical experience, should be 'integrated' with the best available 
external clinical evidence. Much more detail is required. 

Can EBM overcome these criticisms? Yes, in principle at least (or, so 
I will argue). Any reply will contain a considerable number of caveats. 
Whether or not proponents or critics will want to call the resulting view 
'EBM' will depend on how closely participants in the debate tie the label 
'EBM' to EBM's central claim as it is most commonly stated by proponents. 
If EBM is the claim that therapeutic decisions informed by evidence higher 
up EBM's hierarchy provides improved care compared to (or rather than) 
evidence from lower down the hierarchy, then EBM is in trouble. If, how
ever, EBM's central claim can be modified, and the restricted scope of its 
methodological claims made explicit without rejecting the label, then there 
is some room to move. 

I have some sympathy for the latter view. Clarifying the foundations 
of EBM allows the possibility of keeping what is what is good about EBM 
while at the same time exposing any over-extended claims. The resulting 
view provides a stronger foundation for therapeutic decision making, and it 
seems reasonable to continue to label this view EBM. This thesis focusses on 
the foundations of EBM: What claims can, and cannot, be substantiated on 
the basis of the hierarchy of evidence? What types of evidence are needed 
for therapeutic decisions? And, how should these different types of evidence 
be appealed to? Labelling is a concern only for the purposes of clarity. I 
will be clear whether I am discussing EBM's central claim-that therapeutic 
decisions are best informed by evidence higher up the hierarchy of evidence
or EBM more generally, which places this central claim within a broader 
framework for judging the evidence for therapeutic decisions (and permits 
clarifying EBM's central claim without losing the 'EBM' label). 

To reply to the first criticism of EBM, the justification, interpretation 
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and application of EBM's hierarchy must be clearly articulated. This will 
clarify what it is to practice EBM, and distinguish it from alternative models 
of medical decision making. Also, in more clearly articulating how EBM's 
hierarchy of evidence is to be applied, and by explicitly delineating the limita
tions of research data in forming medical decisions, a reply can be formulated 
to the second general criticism of EBM. Putting clinical research into a richer 
framework for therapeutic decision-making, a framework that can incorpo
rate the theories of basic science, clinical experience and patient preferences, 
helps EBM to avoid the charge of reducing decision-making to merely acting 
on the results of clinical studies. (Of course, there may be some who wish 
to defend the view that the complexity of each clinician-patient encounter 
is so specific to that encounter that no rational account of medical decision 
making can be provided. But this seems far too strong a view; in any case, 
I'll leave it for the defender of such a view to make their case.) Finally, as
suming modification of EBM's central claim is permissible (without dropping 
the label), then conducting much-needed work on the foundations of EBM 
permits a reply to the third type of criticism. Once a justification for EBM's 
hierarchy of evidence is provided, the limits of EBM's methodological claims 
can be made clear. 

If the sketched reply is adequate, then, rather than revolutionary or il
lusory, EBM may be seen as part of an evolution in therapeutic decision 
making. A step toward a rational framework for making and justifying ther
apeutic decisions. A modest step. A step with considerable qualification and 
further work to be done, but a step forward nonetheless. 

The reluctance of proponents of EBM to clearly elucidate the foundations 
of the approach makes it difficult to pin down the view they currently hold 
with any precision. It is also likely that the view has shifted in response 
to early criticism. For instance, recent attempts to improve the grading 
of evidence for guidelines seem to incorporate replies to some of the early 
criticisms of EBM (see The GRADE Working Group 2004). However, even 
in their replies to critics, there is little focus on the theoretical matters at 
issue. Therefore it is difficult to judge whether proponents of EBM have 
changed their view, say, with regard to what is considered to constitute 
'best evidence', or whether they have simply clarified their original view 
in response to concerns; whichever it is, the foundations of EBM remain 
somewhat murky. The central claim that has been consistently made, and 
continues to be made, is that evidence from higher up EBM's hierarchy better 
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informs therapeutic decisions. 

This thesis examines the foundations of EBM, with special focus on this 
central claim. The primary aim is to better articulate what benefits (if 
any) arise by informing therapeutic decisions on evidence higher up EBM's 
hierarchy of evidence. To adequately fulfil this aim, I restrict my focus to 
therapeutic decisions, rather than medical decisions more generally, and to 
the evidential inputs into therapeutic decisions, rather than issues of patient 
preference, or other social or ethical factors that play important roles in 
making decisions regarding individual patients. Allow me to briefly elaborate. 

EBM is focused on informing therapeutic decisions. Not only has EBM 
had its largest influence on how therapeutic decisions are made and justi
fied, it is clear that therapeutic decisions were of primary importance in the 
development of EBM. When pushed, it is therapeutic decisions, as opposed 
to decisions about diagnosis or prognosis, that proponents suggest are best 
informed by consulting the hierarchy of evidence. Sackett and colleagues 
(1996) are especially clear on this in their early defence of EBM, 'Evidence 
based medicine: what it is and what it isn't'. 

Under the banner of 'therapeutic decisions', I will refer to two specific 
types of decision, population therapeutic decisions and individual therapeu
tic decisions. Both decisions require balancing the expected benefits of a 
treatment against the expected harms, and hence can be considered within a 
decision theoretic framework. In decision theory, both the probability of the 
outcome (benefit or harm) and the utility of the outcome are important to de
cisions. The two therapeutic decisions differ in their application. Population 
therapeutic decisions involve making a judgement regarding the benefits and 
harms of a therapy in a defined population of patients. Such populations 
are typically defined according to their shared characteristics, for instance 
the population may suffer a shared disease, be a similar age, or have similar 
co-morbidities. The population may also be defined according to the inclu
sion and exclusion criteria of a clinical trial. Individual therapeutic decisions 
require the same weighing of the likely benefit and harm of the treatment, 
but this time the decision needs to be made for an individual patient, tak
ing into consideration the unique characteristics of this individual. Making 
therapeutic decisions for individuals raises complicated questions concerning 
how evidence should be applied. Clinical trials, which assess the effects of a 
therapy on a sample population, can often provide reasonably clear evidence 
for population therapeutic decisions-providing the 'population' in question 
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is suitably defined. Applying the results of clinical trials to individual pa
tients can be considerably more difficult. As individual therapeutic decisions 
are a particular focus for EBM, the challenges these decisions raise will be 
discussed throughout the thesis. 

In discussing clinical studies, I focus especially on large drug trials. This 
is a consequence of focussing on therapeutic decisions. Large drug trials 
are the key trials that influence the clinical and regulatory decisions that 
I am interested in. Although this is where EBM started, its influence is 
now much broader. Currently, randomised interventional studies are rec
ommended when testing a wide range of non-drug interventions, including 
behavioural interventions, social interventions and public health initiatives. 
The push for testing such interventions in randomised interventional studies 
is provided through funding processes and editorial policies, as much as by 
the recommendations of any given institution. However, different experimen
tal contexts raise different methodological questions; the specific importance 
of differing contexts is too often under-recognised. Some epidemiological 
methods that are thought to apply to testing any intervention are actually 
much more specific for particular errors that occur in large drug trials. And 
application of these methods outside of this context is either unnecessary, or 
detrimental. Indeed, randomisation is a case in point (see Chapter 3, EBM 
must be ... for discussion). For these reasons I wish to emphasis that large 
drug trials will be the primary example of interventional studies in this the
sis. Of course, by clarifying how different methods affect the reliability of 
large drug trials it will be possible to better identify those methods that are 
highly specific to this context. 

The preferences of the patient play a crucial role in any therapeutic de
cision. In any particular instance, patient preferences often determine the 
specific evidential question. The benefits and harms of a treatment are only 
of interest if the patient agrees that the treatment is worth taking. And 
perhaps more importantly, patients will vary widely on what they consider 
a significant harm or a worthwhile benefit, and (in the clinical medicine at 
least) it is the patient's judgement on such issues that determines the value 
of the therapy to the individual. EBM's central claims, however, are epis
temological. Accepting the importance of patient preference to therapeutic 
decisions, a philosophical question remains: how should various sources of ev
idence be judged in assessing whether a treatment is likely to benefit or harm 
an individual or group? This question arises whichever way an individual or 
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group defines the 'benefit' or 'harm' they are interested in. 

The thesis approaches the foundational issues of EBM in the following 
manner. The next two chapters focus on the interpretation and justification 
of EBM's hierarchy of evidence. Chapter 2: Evidence based medicine can't 
be . . . begins by outlining how proponents of EBM have suggested that the 
hierarchy should be interpreted. While an unambiguous interpretation of 
the hierarchy has not been provided, the clearest and most frequently pro
vided account suggests a categorical interpretation. That is, in informing 
therapeutic decisions, evidence from higher up EBM's hierarchy of evidence 
trumps evidence from lower down the hierarchy. The results of a randomised 
interventional study, indeed, all of the results of a randomised interventional 
study, trump the results of an observational study. Often seen in conjunc
tion with this categorical interpretation of the hierarchy is the notion that 
the hierarchy can be broadly applied. On this view, the methodological dis
tinctions provided in the hierarchy give some general epistemological rules. 
This view fuels the idea that other areas of decision-making, such as public 
policy, can adopt 'evidence based practice'. In this chapter, I show that nei
ther the categorical interpretation of EBM's hierarchy, nor the view that the 
hierarchy can be broadly applied, bear critical scrutiny. EBM's hierarchy of 
evidence is specific to therapeutic decisions. And, indeed, (I argue) a fairly 
narrow set of therapeutic questions at that. Only the overall result of the 
primary hypothesis tested in a randomised interventional study will have the 
warrant associated with the frequentist statistical methods used to analyse 
trials. Since therapeutic decisions rely on a much broader range of results 
from clinical studies, this undermines the view that all results of randomised 
interventional studies trump the results of observational studies. Clearly, a 
more nuanced view of how EBM's hierarchy should be interpreted is required. 

In Chapter 3: Evidence based medicine must be ... , I shift focus to the 
justification that proponents have provided for EBM's hierarchy of evidence. 
Following the critical literature, and in particular the work of John Worrall, 
the arguments put forward to justify the ambitious claims made by propo
nents of EBM are shown to be inadequate. However, I argue that a justifica
tion for EBM's hierarchy of evidence can be provided. The hierarchy should 
be viewed as a hierarchy of comparative internal validity. Internal validity is 
the degree to which the results of a study are accurate for the participants 
of the study. Compamtive interval validity refers to the capacity of different 
study designs to rule out, or minimise, specific sources of error. (Just how 
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EBM's hierarchy can be seen as a hierarchy of comparative internal validity 
is made clear in Chapter 3.) This justification for the methodological distinc
tions found in the hierarchy can be found in the epidemiological literature. 
While this justification is defensible, the claims that EBM's hierarchy un
derwrites when viewed in this way are considerably more circumscribed than 
the claims found in the EBM literature. Internally valid clinical research is 
not sufficient for informing therapeutic decisions about individual patients. 
The research must also be applicable to individuals who will be treated with 
the therapy, but were not involved in the clinical trial; that is, the research 
must have high external validity (or, at a minimum, there must be a frame
work for applying clinical research to individuals). Understanding that the 
methodological distinctions made by EBM relate only to the internal validity 
of clinical research underscores the challenge that external validity presents 
for therapeutic decisions. 

A number of philosophers have shown that randomisation is not essen
tial for experiments to provide 'scientific' data. Recent philosophical work, 
especially the work of John Worrall, goes one step further. Worrall (for in
stance, in Worrall 2007b) suggests that there is no epistemological benefit in 
randomisation, providing the experimental groups are similar according to 
background knowledge. Clearly, this view is in stark contrast with the posi
tion held by proponents of EBM. Chapter 4: Why randomised interventional 
studies provides an argument for preferring randomised interventional stud
ies to observational studies in testing the efficacy of treatments. 'Efficacy' 
refers to whether the treatment works as hypothesised in an experimental 
situation. It can be contrasted with 'effectiveness', which refers to whether 
the treatment works in patients undergoing routine care. Interventional stud
ies (whether or not they are randomised) provide better tests of the efficacy 
of treatments because this study design has the capacity to rule out more 
sources of systematic error than observational study designs. Randomised 
interventional studies, as opposed to non-randomised interventional studies, 
are defended on Bayesian grounds. 

In chapters 5-7 attention turns to the challenge of external validity. Chap
ter 5: The challenge of external validity outlines why judgements of external 
validity are so difficult, as well as why they are vital for therapeutic decisions. 
External validity raises two types of question. First, the question of whether 
the overall results of the trial can be considered to accurately predict the 
average response in the population who will receive the treatment in routine 
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care. And second, the question of whether the results of the trial accurately 
predict the likely response in an individual; an individual who may or may 
not resemble some subgroup of patients within the trial, and who may or may 
not have been considered eligible to be enrolled in the study. Clinical studies 
with high internal validity do not straightforwardly provide data to answer 
these questions. Yet, these questions are crucial for EBM, because these are 
the questions that clinicians must answer to form a judgement regarding the 
likely benefits and possible harms of a therapy. EBM claims that therapeutic 
decisions should be based on evidence from randomised interventional studies 
rather than evidence from observational studies. In Chapter 5, I show that 
evidence from observational studies can play an important role in assisting 
judgements of external validity. 

In a somewhat similar vein, Chapter 6: The role of basic science in evi
dence based medicine describes the role that basic science plays in informing 
therapeutic decisions. Basic science plays a considerably more important 
role in therapeutic decision making than is recognised in the EBM literature. 
Indeed, proponents of EBM are rather unclear about whether they see any 
role for basic science in therapeutic decisions. Patrick Suppes' hierarchy of 
data models is introduced as one way of spelling out the relationship between 
basic science and the observed results of clinical trials. Suppes explicates a 
hierarchy of models that links the theories of basic science with the observed 
data. Relying on this framework I show that basic science is vital, not only 
for specifying the experiments that are conducted, but also, interpreting the 
data that is provided. More importantly, I show that basic science is integral 
to the application of clinical research to therapeutic decisions. 

In Chapter 7: External validity, subgroup analysis and basic science, I use 
the framework discussed in Chapter 6 to broach the 'problem of subgroup 
analysis'. The problem can be described as follows. Large randomised inter
ventional studies provide data on the average effects of a treatment in the 
population of patients included in the trial. Ideally, however, what therapeu
tic decision makers require, is data regarding which patients are likely to ben
efit from the treatment, and which patients are prone to adverse effects. But 
gaining reliable data of this second kind is difficult. This problem has vexed 
the leading proponents of clinical epidemiology, including Austin Bradford 
Hill (1966), Archibald Cochrane (1971), and Alvan Feinstein (1998). Two 
approaches to the problem that are found in the literature are outlined, but 
neither is completely adequate. One group, the 'trialists', argue that reliable 



Evidence Based Medicine: A 'paradigm' for therapeutic decisions? 15 

subgroup data is not typically available. Trialists advise that therapeutic de
cisions are best informed by the overall results of clinical trials, rather than 
by any data observed in subgroups. Importantly, on the trialists view, basic 
science plays no, or very little, role in the interpretation and application of 
clinical research. By contrast, a second group, the 'pathophysiologists', argue 
that basic science should play a role in interpreting subgroup data (though, 
members of this group differ in their view of how reliable the data from such 
subgroups can be). What is needed is a more explicit framework for incor
porating the theory of basic science into the interpretation and application 
of clinical research. I argue that the hierarchy of data models can provide 
such a framework. 

One of the problems with the trialist's reply to the challenge of subgroup 
data is that they apply the frequentist statistical norms used when testing 
the efficacy of a treatment to questions of effectiveness. Such frequentist 
statistical norms, however, are both general and conservative. While good 
reasons can be provided for adhering to these norms in tests of efficacy, I 
argue they are too restrictive when it comes to assessing a therapy's effec
tiveness. I extend this discussion in the penultimate chapter, Chapter 8: 
Power and Inference: The rofecoxib case. Using the recent withdrawal of ro
fecoxib as a case study, I show that the needs of therapeutic decision makers 
often outstrip what the frequentist statistical tools provide. While frequen
tist methods provide an optimal frequentist statistical test of the primary 
hypothesis tested in a clinical trial, clinicians often need to make a decision 
on another aspect of the data; in the example of rofecoxib, decisions need to 
be made regarding the observed safety data. In such situations following the 
standard rules of frequentist analysis can be unhelpful. 

The thesis concludes by summarising some of the key findings. Ran
domised interventional studies possess some methodological benefits over 
observational study designs. These benefits, however, are quite specific, and 
most important when it comes to rigourously testing the efficacy of new 
drugs. This is an important result and gives partial support to current reg
ulatory processes, and EBM. But the support is only partial. There is much 
we need to know about therapies in addition to their efficacy in a defined 
population of patients, both from a regulatory perspective, and clinically. 
Two points are emphasised. The randomised interventional studies that are 
conducted are often less then ideal for establishing the safety of treatments. 
And, contrary to the advice of EBM's hierarchy of evidence, therapeutic deci-
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sions rely on a range of evidential sources. These points are not entirely new, 
however, the lack of clarity about the foundations of EBM have hamstrung 
efforts to provide an adequate reply. The hegemony of proponents of EBM, 
and their preference for randomised interventional studies, have overshad
owed alternative study designs and epistemological arguments. By clarifying 
the foundations of EBM, the thesis identifies the questions that randomised 
interventional studies answer well, and illuminates those questions that are 
poorly answered. The work on the foundations of EBM articulates the need 
for alternative approaches to questions other than efficacy, and provides a 
basis for approaching the questions that EBM leaves unanswered. 

Before getting into the details, I provide two short primers that will prove 
useful for the discussion that follows. The first describes the study designs 
commonly employed within clinical epidemiology, and the second outlines 
the frequentist statistical methods used to analyse clinical data. 

1.1 Study designs in clinical epidemiology 

I have already briefly introduced randomised interventional studies (also 
known as randomised controlled trials) and observational studies, let me 
now provide a bit more detail. 

Interventional studies start with a sample of patients. This sample is 
selected from some larger population. Once selected, members of the sample 
are allocated to treatment or control. Importantly, this sample is not taken 
randomly from any precisely defined population. Rather the sample is drawn 
from the population that the investigators have access to. From this pop
ulation, investigators recruit patients in accordance with the study's entry 
criteria. Some assessment of the trial population can be made by considering 
the population the investigators have access to, the study's entry criteria, 
and the characteristics of the eventual sample. 

In a mndomised interventional study patients are allocated according to 
some random procedure (such as a table of random numbers, or similar). 
How patients progress on their allocated treatment is then monitored. A 
range of clinical endpoints are typically monitored, such as blood pressure, 
length of hospitalisation and the like. Of special interest is the 'primary 
endpoint', which is the focus of the trial. Typically, the active treatment 
is expected to have a beneficial effect on the primary clinical endpoint; the 
reason the trial is conducted is to observe whether the treatment under inves-
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tigation realises this expectation. Statistically this expectation is stated as 
the 'primary hypothesis' under test in the trial (also known as the 'alternative 
hypothesis'); the 'null hypothesis' is the hypothesis that the treatment under 
test performs no better than control. The primary endpoint may be a single 
clinical outcome, or a combination of a number of outcomes. Contemporary 
clinical trials will usually also report the findings of the trial on additional 
clinical outcomes, some of which may be defined as 'secondary endpoints'. 

Randomised interventional studies are conducted so as to ensure that 
the experimental groups are as similar as possible apart from their allocated 
treatment. One of the reasons that allocation is randomised is that it ensures 
that the groups are roughly equally matched according to factors that may 
influence how patients respond to the treatments-providing the sample is 
large relative to the number of patient characteristics that influence response 
to the treatment. (The claims that proponents of EBM make on behalf of 
randomisation often go much further, see Chapter 4 for discussion). After 
the groups have been allocated, well conducted trials will utilise a range of 
methods to ensure the two experimental groups are treated in the same way. 
Blinding the patients to their allocation, concealing the allocation from inves
tigators, and standardising monitoring are all methods aimed at minimising 
differences between the experimental groups. These, as well as a number of 
other methods, will be discussed in more detail in subsequent chapters. 

As discussed previously, the chief difference between observational stud
ies and randomised interventional studies is that, in observational studies, 
no experimental intervention is imposed on the participants. Observational 
studies follow subjects who are going about their lives, choosing (as much 
as is possible) which medicines they take and to what risk factors they ex
pose themselves. The two main forms of observational studies are cohort, 
and case-control. The difference between these study designs is whether or 
not the participants have suffered the event under investigation at the time 
the experimental groups are assembled. Cohort studies assemble a cohort of 
patients (either in 'real-time' or retrospectively) who have the potential to 
suffer the event under investigation but, at the time they are assembled into 
a group, have not suffered the event. Case-control studies, by contrast, as
semble two groups, one group that has suffered the event under investigation, 
'cases', and one group that has not, 'controls'. 

Cohort studies partition the assembled group into those exposed to the 
treatment (or risk) under investigation, and those not exposed. These 'co-
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horts' are compared to see if the rates of the event under investigation differ 
between the groups. Strictly, randomised interventional studies are a spe
cialised form of cohort study (one in which the cohorts are formed by ran
domly allocating the sample into treatment and control). Throughout the 
thesis, however, when I refer to a cohort study I will always mean an obser
vational cohort study. Cohort studies can be historical or prospective. In 
historical cohort studies a cohort of participants who have not suffered the 
event under investigation is assembled from medical records-some members 
of the cohort will have been taking the treatment, or been exposed to the 
risk, and others will not have. At the time of the study this cohort is assessed 
to determine whether the event has occurred. Prospective cohort studies as
semble the cohort at the start of the study, and then follow that cohort for 
a period of time, monitoring participants as the study continues. 

Case-control studies begin at the opposite end of the timeline to cohort 
studies, that is, once an event (or 'outcome') has occurred (for example, a 
heart attack or a diagnosis of cancer). The group for which the outcome 
has occurred, the 'case' group, is compared to a control group-a group for 
whom the outcome under investigation has not occurred. The two groups 
are compared according to their exposure to the risk factors (or treatments) 
under investigation in an attempt to isolate the cause of the event. 

Historically controlled studies are something of a hybrid of the designs 
discussed so far. In historically controlled studies, one cohort is assembled 
from patients that previously received conventional treatment, and a second 
'prospective' cohort is assembled from patients that will receive a different 
treatment, and will be monitored as the study progresses. The details of the 
treatment and the outcome experienced by members of the historical control 
group are ascertained using medical records. The outcomes of the prospective 
cohort are collected over the time of the study. Prior to the dominance of 
randomised interventional studies, historically controlled studies were used 
to assess the efficacy of treatments. They are less commonly seen in this role 
now, though some philosophers, such as Peter Urbach (1993) and Worrall 
(2002), argue that they could play a more prominent role. 

The historically controlled studies that are conducted today are obser
vational studies, in that neither the historical cohort (obviously) nor the 
prospective cohort are allocated an experimental intervention. Participants 
in the prospective cohort receive the therapy under investigation as part of 
their routine care. However, a historically controlled study could also be a 
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quasi-interventional study. Here the prospective cohort would be allocated 
a new 'unproven' experimental treatment; the historical control by neces
sity would continue to be a cohort of patients who had chosen conventional 
treatment. The distinction may seem slight, but there are important ethical 
considerations. Because much of the medical community now believe that 
randomised interventional studies provide the best methods to test whether 
a treatment is efficacious, it is considered unethical to test a new treatment 
in a historically controlled trial (unless there is some reason a randomised in
terventional study could not be conducted). As Worrall (2008, p. 422) notes, 
in clinical medicine, epistemology and ethics are 'closely intertwined'. It is 
only because randomised interventional studies are considered epistemolog
ically superior that it is considered unethical to test 'unproven' treatments 
in a historically controlled trial. On the current view, which accepts the 
claims of EBM, patients in the 'active treatment' cohort are put at risk from 
an 'unproven' treatment without the compensatory 'benefit' that the study 
being conducted will provide what is considered to be conclusive evidence of 
the treatment's efficacy. If historically controlled trials are considered episte
mologically adequate for tests of new treatments, then such trials would be 
ethically permissible. 

Systematic reviews combine multiple studies according to explicit criteria 
(by contrast, narrative reviews provide a summation of the literature without 
employing a systematic criteria for choosing studies). Meta-analysis is a 
type of systematic review in which the quantitative analysis of the combined 
results is also conducted according to explicit criteria. Meta-analysis can be 
conducted on groups of randomised interventional studies or observational 
studies. Meta-analyses of randomised interventional studies are the highest 
form of evidence in EBM's hierarchy. A range of statistical methods have 
been developed to combine and contrast the results of the included studies
the sophistication of these methods has improved over the past decade.6 

Some meta-analyses use only the published data from the included studies, 
while others use patient-level data provided by the original investigators. 
Because meta-analyses pool data across studies of varying entry criteria, 
aims and analytical techniques, the 'homogeneity' of the included studies 
is important to the validity of the results of the meta-analysis. Validity of 
meta-analyses are improved when the included trials observe similar patients 
studied in similar ways. 

6 See Greenland and O'Rourke (2008) for an overview. 
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Each of these study designs possess advantages and disadvantages for 
assessing the benefits and harms of therapies. Each are prone to specific 
systematic errors and carry with them particular practical benefits or disad
vantages. The forthcoming chapters provide an opportunity to discuss the 
pros and cons of the these study designs in informing therapeutic decisions. 

1.2 Frequentist analysis of clinical trials 

Contemporary clinical trials are analysed according to the methods of fre
quentist statistics. Particularly influential are the methods of Jerzy Neyman 
and Egon S. Pearson (see Neyman and Pearson 1933, and Neyman 1937). 
The terms and concepts of frequentist statistics plays a role in each of the 
subsequent chapters. Here I outline the frequentist approach to hypothesis 
testing and estimation---ilach of which play a central role in the inferences 
drawn from clinical studies. 

Both hypothesis testing and estimation aim to provide information on 
an unknown parameter in a clinical study. In clinical research most of the 
focus is on a single unknown parameter, which is usually a function of the 
primary clinical endpoint. The primary clinical endpoint is the variable (or 
variables) that the trial is set up to observe. For instance, the unknown 
parameter might be the difference in the rate of the primary endpoint in the 
experimental groups, BDif = Xr-Xc, where Bvif is the unknown parameter, 
Xr is the rate of the primary endpoint in the treatment group and Xc is the 
rate of the primary endpoint in the control group. Alternatively, the unknown 
parameter might be expressed as a quotient, BQuot = Xr/Xc, or some other 
function of the primary endpoint. In hypothesis testing, two hypotheses are 
considered regarding the unknown parameter, the null hypothesis and the 
alternative hypothesis. The null hypothesis typically holds that no difference 
exists between the treatment and control groups for the unknown parameter 
(BDif = 0, BQuot = 1). And the alternative hypothesis holds that some defined 
difference exists in the rate of the primary endpoint between the experimental 
groups (for example, BDif > 0). 

Hypothesis testing uses the observed data to infer which hypothesis will 
be 'accepted' according to the dictates of frequentist statistics. Some statis
ticians and philosophers bristle at the thought of accepting a hypothesis and 
prefer 'not reject'-hence the scare quotes. 'Accepting' or 'not rejecting' a 
hypothesis has a specific meaning in the context of frequentist methods; it 
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is this meaning I aim to clarify here. Once the meaning is clear, little hangs 
on the terminology selected. 

Rather than specify hypotheses about the unknown parameter, the fre
quentist approach to estimation uses the observed data to directly infer a 
range of values for the unknown parameter. This range is called a confidence 
interval. Confidence intervals and p values-p values are reported as part 
of hypothesis tests in epidemiology-are widely recognised and entrenched 
parts clinical analysis. (A formal definition of these concepts is provided 
shortly). 

Estimation has some benefits over hypothesis testing in the clinical set
ting. Therapeutic decision makers are typically more interested in the value 

of the unknown parameter, than whether or not they should accept a specific 
statistical hypothesis (see Ware et al. 1992 for discussion). However, both 
estimation and hypothesis testing are utilised in the contemporary analysis 
of clinical trials. Clinical trials report both p values and confidence inter
vals; often, focus turns to estimation once the null hypothesis is rejected. 
More significantly, both of these approaches rely on the same conceptual 
framework-that of frequentist statistics. Whatever the relative advantages 
of estimation over hypothesis testing, a range of criticisms have been made 
against the entire framework. Howson and Urbach (2006), for instance, find 
the warrant provided for frequentist inferences less than compelling. 

Despite the philosophical criticisms, data from clinical trials are analysed 
with frequentist methods, for now at least. Hence, I will focus on the interpre
tation of data provided by these methods. Clearly elucidating the warrants 
provided by frequentist methods will help to achieve the aims of this the
sis. Once these warrants are clear, how well these methods meet the needs 
of therapeutic decision makers can be assessed. I argue, especially Chapter 
7 and 8, that frequentist methods are not ideal for informing therapeutic 
decisions. While it is hard to conceive EBM without frequentist analysis, 
there is no necessary connection between the two. EBM could avoid some 
of the criticisms made in Chapter 7 and 8 by using an alternative approach 
to statistical inference in clinical trials. Tackling the broader debate about 
the benefits or otherwise of competing approaches to statistical inference in 
medicine will be left for another time. 

Hypothesis testing. The outline that follows should be uncontroversial; it is 
the standard story of Neyman-Pearson statistics. I provide a four-step outline 
of the formal features of the Neyman-Pearson approach to hypothesis testing. 
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I have made a number of simplifying assumptions, the most important of 
which are noted. 

First, the raw data that the experiment provides about the unknown 
parameter needs to be summarised. This summary of the raw data is called 

a test statistic. The test statistic is a random variable, let me represent it by 
X. X is an estimator of the unknown parameter (). To choose an appropriate 

test statistic, assumptions are made about the process under investigation. 
Perhaps most important in the context of parametric frequentist statistics is 
the choice of which probability model is thought to best describe the process, 

and thus the data. The choice of test statistic and the conclusions warranted 
by the hypothesis test rely on the probability model being adequate. 

'Good' estimators ideally fulfil a number of frequentist desiderata: un

biasedness, consistency, efficiency and sufficiency. These desiderata consider 
the features of the estimator over the entire sample space; often, this is in
formally referred to as the performance of the estimator in the long run. 
'Unbiasedness' means that the mean of the test statistic is equal to(). 'Con
sistency' means that as the sample size tends to infinity X converges on (). 
'Efficiency' means X has a smaller variance compared to alternative estima
tors. And, 'sufficiency' means that all information about () is contained in X. 
Choosing between estimators requires weighing up how they perform against 

these criteria. 

Second, the distribution of the test statistic is considered on the assump
tion that the null hypothesis is true. Take the null hypothesis to hold that 
() = 1. To completely specify the sampling distribution of X on the assump
tion that the null hypothesis is true, a number of further assumptions are 
required. For instance, X may be assumed to be normally distributed, and 
unbiased. In frequentist statistics the sampling distribution has a physical 
interpretation: assuming () = 1, if the experiment were to be repeated in

definitely, we would expect the observed values of X, x, to form a normal 
distribution with a high frequency of results clustering around one. (Here, 
and throughout, dropped case is used to refer to the observed value of a ran
dom variable). Note, once the experiment is conducted, observing a value 
of x at the extremities of this sampling distribution would be considered 
unlikely on the assumption that the null hypothesis is true. The sampling 
distribution of X under the assumption of the null hypothesis provides the 

primary conceptual tool for testing the null hypothesis. 

The third step is to divide the sampling distribution for X under the 
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assumption that the null hypothesis is true, into two regions: accept and 
reject. At this stage an alternative hypothesis is specified. In clinical epi
demiology the alternative hypothesis is typically based on available data, or 
the 'smallest clinically important effect'. The 'reject', or 'critical', region of 
the sampling distribution for X under the null hypothesis is defined by the 
pre-set a level. The a level provides the pre-experimental probability that 
the statistical test will 'reject' the null hypothesis on the assumption that 
the null hypothesis is true. In clinical research, as in much of science, the a 
level is arbitrarily set to 5% of the sampling distribution. The critical region 
is located at the extremes of the sampling distribution; if the alternative 
hypothesis is that e f 1' then a is distributed in each 'tail' region of the 
distribution (half in each tail), and if the alternative hypothesis holds that 
e > 1, then a will reside in the right-hand tail region. Let us assume the 
alternative hypothesis of interest is some specific value for e such that e > 1' 
that is, assume we are dealing with a 'simple' alternative hypothesis. Simple 
hypotheses specify a single value for the unknown parameter e. 'Composite' 
hypotheses, by contrast, specify a set of values for e. Composite alternative 
hypotheses are common in clinical epidemiology, once I have outlined the 
Neyman-Pearson method for testing two simple hypotheses, I will extend 
the discussion to a one-sided composite alternative hypothesis. 

Figure 1.1 provides a diagrammatic representation of a Neyman-Pearson 
hypothesis test of two simple hypotheses. The sampling distribution to the 
left represents the distribution of X under the assumption that the null 
hypothesis is true, (Lnd the sampling distribution to the right represents the 
distribution of X under the assumption that the alternative hypothesis is 
true. 

Neyman and Pearson (1933, p. 291) do not hope to know whether any 
given hypothesis is true or false; they advise what inference can be drawn 
on the basis of the observed data in light of the sampling distribution for X 
on the assumption that the null hypothesis, or the alternative hypothesis, is 
the true hypothesis. The experiment is set up so as to minimise two types of 
error, type I and type II. A type I error is committed if the null hypothesis 
is rejected when the null hypothesis is assumed to be true. As seen above, a 
provides the pre-experimental risk of a type I error; minimising a minimises 
the risk of rejecting the null hypothesis on the assumption that it is the 
true hypothesis. A type II error is committed when the null hypothesis is 
accepted when the null hypothesis is assumed to be false (or, equivalently, 
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Figure 1.1: A Neyman-Pearson test of two simple hypotheses. x0 is the value 
of the test statistic assuming the null hypothesis is true, Xa is the value of 
the test statistic assuming the alternative hypothesis is true, Xc is the critical 
value of the test statistic, defined by the a region. a represents the risk of 
rejecting the null hypothesis under the assumption that the null hypothesis 
is true, and (3 represents the risk of accepting the null hypothesis under the 
assumption that the alternative hypothesis is true. 
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when the alternative hypothesis is assumed to be true). (3 provides the 
pre-experimental risk of a type II error. Whereas a is a proportion of the 
sampling distribution for X under the null hypothesis, (3 is a proportion of 
the sampling distribution for X under the assumption that the alternative 
hypothesis is true. (3 is defined by the proportion of the sampling distribution 
of X under the alternative hypothesis that is superimposed on the 'accept' 
region of the sampling distribution of X under the null hypothesis (see Figure 
1.1). Minimising (3 minimises the risk of accepting the null hypothesis on the 
assumption that it is false. 

The alternative hypothesis is specified prospectively and (3 is minimised 
by selecting the appropriate sample size; a is arbitrarily set at 0.05. Power, 
(1 - (3), is the pre-experimental probability the test yields an a significant 
result, that is, the observed test statistic falls in the rejection (or, critical) 
region, assuming that the alternative hypothesis is true. 

This set up has some benefits. For a test of two simple hypotheses, sta
tistical tests set up in this way (i) ensure a trial designed to test a particular 
hypothesis has a reasonable chance of being decisive (within the terms of 
frequentist statistics); and (ii) provide a test that, for all values of x that 

fall in the critical region, the likelihood ratio, P(x I (}A)/ P(x I Oo) 2: c"' 
where (}A is the value for (} specified by the alternative hypothesis, (}0 is the 
value for (} specified by the null hypothesis, and c" is a constant. Informally, 
a test set up in this way ensures that for all of the values of the observed 
test statistic that fall in the critical region, the observed data favour the al
ternative hypothesis (providing the assumptions made in specifying the test 
hold). Slightly less informally, if the observed value of the test statistic falls 
into the critical region, the probability of the observed value assuming the 
alternative hypothesis is greater than the probability of the observed value 
assuming the null hypothesis. The likelihood ratio provides an intuitively 
appealing measure of what the observed data tell us about the hypotheses 
under examination, and plays an important role in many approaches to sta
tistical inference. In the most common form of Bayesianism, for instance, the 
likelihood ratio plays an central role in 'updating' the pre-experimental in
formation to form a post-experiment assessment of the hypotheses (see page 
30 for more discussion). 

For a test of two simple hypotheses, and assuming that the likelihood 
ratio is a continuous random variable under the null hypothesis, a best critical 
region can be selected such that P(x I (}A)/ P(x I 00) is maximised for any 
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value of the test statistic falling in t he critical region. This is Neyman and 
Pearson's Fundamental Lemma. 

Significantly, a version of Neyman and Pearson's FUndamental Lemma 
holds in a number of more general situations. For instance, providing the 
test statistic is singly sufficient for 0- t hat is all the information about 0 pro
vided by the data is contained in X , and X is one dimensional- a uniformly 

most powerful test can be found for tests of a simple null hypothesis against 
a one-sided composite alternative hypothesis. Uniformly most powerful tests 
ensure that for all values of x withln the critical region, the ratio of the max

im um likelihood for x under the range of values that the unknown parameter 
0 can take on the assumption of the alternative hypothesis to the maximum 
likelihood for x under values for 0 assuming the null hypothesis is true is 
maximised: max P (x I OA )/max P (x I Oo) 2: C0 , where max P (x I OA ) repre
sents the maximum likelihood for x under the range of values for 0 specified 
by the composite alternative hypothesis; since the null hypothesis is simple 
max P(x I 00 ) = P (x I 00).7 The shift from likelihood functions in tests of 
two simple hypotheses, to maximal likelihood functions in tests of composite 
hypotheses is of importance when comparing different accounts of statistical 
inference (but not crucially important to the comments I wish to make about 
freq uentist statistics later in t he thesis). 

Finally, the experiment is conducted. If x falls in the rejection region 
defined by a, the null hypothesis is 'rejected '. A p value is usually calculated 
for the observed test statistic. A p value is the proportion of the sampling 
distribution (assuming the null hypothesis is true) that corresponds to the 
value of the test statistic observed, or more extreme values; it tells you what 
proportion of the sampling distribution for X under the null hypothesis is 
represented by values of the test statistic equal to, or greater than, x. 

While p values are a relic from R. A. Fisher 's approach to frequent ist 
statistics- an approach which focusses solely on the null hypothesis-they 
continue to play a role in the analysis of clinical trials. There is considerable 
debate regarding the differences between Fisher's and Neyman and Pear
son's approach to frequentist statistics. Specifically, Fisher 's interpretation 
of a low p value contrasts sharply with Neyman and Pearson's interpretation 
of a value for a test statistic which falls into the rejection region. Whereas 
Fisher saw p values as a somewhat informal measure of evidence, which de
pended on background information for appropriate interpretation, Neyman 

7See Barnett (1999, pp. 171- 174) 
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and Pearson provided a more explicit decision theoretic interpretation, which 
takes expected outcomes over a 'long run' of hypothetical trials into consid
eration. Goodman (1993) provides the historical context for this debate 
focussing on issues for epidemiology. While these interpretative differences 
are important and interesting they are not of direct relevance to the top
ics under discussion here. Recognising the basic formal similarities of the 
Fisherian and Neyman-Pearson methods is sufficient for the purposes of the 

thesis. 8 

Understanding Neyman and Pearson's Fundamental Lemma is important. 
It provides a dual warrant for any Neyman-Pearson test that is a uniformly 
most powerful test. First, there is the warrant provided for the test statistic 
falling into the rejection region of the sampling distribution of X under the 
null hypothesis. That is, if the observed test statistic falls into the rejection 
region, then we can infer that the observation of such a value for the test 
statistic is unlikely on the assumption that the null hypothesis is true, pro
viding the assumptions made in the specification of the test hold. Second, 
for a test of two simple hypotheses and when the test is adequately pow
ered, we can also infer that the likelihood ratio, P(x I fh)/ P(x I 00 ), for the 
critical region defined by the test is maximised. In this best case, for any 
value of the test statistic that falls in the critical region, the observed test 
statistic is unlikely on the assumption that the null hypothesis is true, and 

considerably more likely on the assumption that the alternative hypothesis 
is true than it is if the null hypothesis is assumed to be true. It is on these 
two warrants that Neyman-Pearson methods suggest 'rejecting' the null hy
pothesis, and 'accepting' the alternative hypothesis. In a test set up in this 
way, this is what it means to reject, or accept, a hypothesis according to 
frequentist methods-and, in this context, it is best not to interpret these 
words as meaning anything more. 

Despite the same terminology being used, things are a little more com
plicated for a test of a simple null hypothesis against a one-sided compos
ite alternative hypothesis. A uniformly most powerful test selects from the 
possible critical regions, the best critical region: that region for which the 

80. R. Cox (2006, p. 36) notes the formal similarities between the approaches 

There is a conceptual difference, but essentially no mathematical difference, 
between [Fisherian significance tests] and the treatment of testing as a two
decision problem, with control over the formal error probabilities. 
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maximum likelihood for x under the range of values for () specified by the 
alternative hypothesis is greater than the (maximum) likelihood for x under 
the null hypothesis (again, since the null hypothesis is a simple hypothesis, 
the maximum likelihood of x under the null hypothesis is equivalent to the 
likelihood) . 

Importantly, not all Neyman-Pearson tests are uniformly most powerful 
tests. And even when they are, uniformly most powerful tests can arrive at 
counter-intuitive conclusions. Hence, some cautionary notes are required. 

First, a uniformly most powerful test of the null hypothesis is not always 
available. A uniformly most powerful test is not possible when the alternative 
hypothesis is two-sided. In such situations there is no single pre-experimental 
likelihood ratio (nor, can a likelihood ratio be defined on the smallest clini
cally important value for the alternative hypothesis, which is possible when 
the alternative hypothesis is a one-sided composite hypothesis). Here, fre
quentist statisticians employ other methods (some of which can be rather 
arbitrary) to select from the range of admissible tests. See Barnett (1999, 
pp. 166-177), and Cox and Hinkley (1974, pp. 91-92) for further discussion. 

Second, the likelihood ratio is of secondary importance to the set-up of 
Neyman-Pearson tests, and only ever considered from the pre-experimental 
perspective. The primary focus of Neyman-Pearson tests is a and (3, which 
are defined in terms of the entire sample space. And because a and (3 are 
functions of the entire sample space, the acceptance and rejection properties 
of the test can alter independent of the observed data. Consider an exper
iment for which the data for a particular test statistic has been observed. 
Assume there is confusion about the rule used to decide when the experi
ment was over, such rules are called 'stopping rules'. Since the stopping rule 
influences a and (3, the decision of which stopping rule on which to base 
the analysis can influence whether the null hypothesis is rejected or accepted 
(despite the observed data going unchanged).9 

The inferential procedure for frequentist methods is focussed on the entire 
sample space, rather than just the observed data. This touches upon an 
important point of divergence between competing approaches to statistical 
inference. The point of divergence is whether or not the likelihood principle 
is violated. Donald Berry (1987) provides the following definition of the 
likelihood principle 

9Berger and Berry (1988) provide examples. 
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The likelihood function Lx(O) [P(x I H) in my notation] contains 
all the information in an experiment relevant for inferences about 
0, where X stands for the observed data. 10 

Frequentist approaches violate the likelihood principle. Bayesian, likelihood
ist, and a range of other approaches to statistical inference do not. 

Many debates within philosophy of statistics hinge on whether (and in 
what circumstances) the likelihood principle should be observed. While it 
is important to acknowledge the philosophical criticisms of frequentist ap
proaches to statistical inference they are not the focus of this thesis. Rather, 
the focus is how frequentist methods are applied in interpreting clinical re
search. I am especially interested in the limitations of frequentist methods for 
informing therapeutic decisions. 11 I show that these limitations are apparent 
even within the basic framework of frequentist statistics. 

Estimation. Since estimation can be outlined within a conceptual framework 
similar to that used for hypothesis testing, I focus here on the interpretation 
of confidence intervals. Rather than accept or reject a pre-specified hypoth
esis, estimation uses the observed data to infer which values of the unknown 
parameter e are supported. 

Estimation is based on the properties of test statistics. The method 
relies on the following argument. X is an estimator of e. An observation of 
the test statistic provides information about the sampling distribution of the 
random variable X. Assuming X is a 'good' estimator of e (that is, unbiased, 
sufficient, efficient and consistent), then it is possible to infer which values 
of e are supported by the observation. In the specification of the problem, 
estimation assumes a particular probability model best represents the process 
under investigation. As in hypothesis testing, the sampling distribution for 
X has a physical interpretation. Indefinite repetitions of the trial supply 
values of x normally distributed with a mean value equal to O~given the 
test statistic is unbiased and sufficient, and the specification is correct. 

Estimation employs critical regions to calculate the lower and upper 
bounds of the confidence interval. Consider the true value of e within the 
parameter space n. The lower and upper bounds of a confidence interval are 

10Jason Grossman(-, pp. 209-302), in a currently unpublished manuscript, provides 
a more precise version of the likelihood principle, but Berry's version is sufficient for our 
purposes. 

11 In other work, (La Caze 2008b ), I discuss the limitations of frequentist methods for 
informing therapeutic choice from an ethical perspective. 
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functions of X calculated on the basis of the observed data, x. The inter
val created by the lower and upper bounds includes all the values for B not 
rejected by a two-sided a-critical region on X. 

Given the properties of X as an estimator of B it is possible to calcu
late the lower and upper bounds of a confidence interval such that the pre
experimental probability of e being within the interval can be specified, that 
is P(Ta < e < T" I B) = 1 - a for all e E n, where Ta and T" are the lower 
and upper bounds respectively. 

Neyman (1937, pp. 347-350) is explicit in his interpretation of confidence 
intervals. B is an unknown constant. The probability of B falling into any 
interval is zero or one. However, because Ta and T" are random variables, 
prior to observing any value for x, it is possible to discuss the probability 
of any given interval containing B. Indeed, as mentioned in the previous 
paragraph, it is possible to select T" and T" such that the probability of 
B falling into the created interval is fixed in advance. In a 95% confidence 
interval the probability of the interval created by these two random variables 
is 0.95. 

The observed data and the assumed properties of the sampling distribu
tion are used to calculate the confidence interval reported in clinical trials, 
ta - t". Crucially, the 95% probability statement refers to T" and T", and 
not ta and t" directly. As Vic Barnett (1999, pp. 181-182) notes, whether 
the particular interval, calculated on the basis of observed data, ta < e < t", 
captures the true B is uncertain. The confidence interval says that if the trial 
was repeated many times, and X is indeed a good estimator of B, then the 
means of the respective distributions of values for the observed ta and t" 
would approach an interval that captures e 95% of the time. 

Confidence intervals tell us what the trial data says about B. If assump
tions made about X as an estimator of B and the underlying probability 
model for hold, then it seems reasonable to take confidence intervals as pro
viding some information about B. Of course, if either of these conditions fail, 
the calculated confidence interval may be misleading. 

This completes my introduction of frequentist methods. By way of 
counter-point I briefly outline the key components of a Bayesian approach 
to statistical inference. Whereas frequentist statisticians do not assign prob
abilities directly to scientific hypotheses, Bayesians do. Bayesians differ in 
their views regarding the kind of probabilities needed for Bayesian infer
ence. (For instance, Subjective Bayesians hold that reliance on subjective 
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probabilities is ineliminable. Objective Bayesians, by contrast, hold that the 
probabilities need not be subjective). Bayesians start with a prior probabil
ity of the hypothesis in question-either a single probability or a probability 
distribution over the hypothesis space. Then, Bayes Theorem is applied to 
update their prior probability into a posterior probability. Bayes Theorem is 
a straightforward corollary of the product rule for probabilities. 

P(H I x) = P(x I H) x P(H) 
P(x) 

where H is the hypothesis under consideration, and x represents the observed 
data. For two hypothesis, HI and H 2 , Bayes Theorem can be given in an 
odds form. 

P(H2 I x) P(x I H2) P(H2) 
-::C'-=--;---;- = X -::C--:-:CC. 
P(HI I x) P(x I HI) P(HI) 

Here, the conditional odds for the posterior probability for H 2 over HI based 
on data, x, is the product of the likelihood ratio and the prior odds for 
H2 over HI. Note, Bayesian inferences rely on the observed x and not the 
sampling distribution for X under assumptions about which hypothesis is the 
true hypothesis. Since all the information from the experiment is contained 
in the likelihood ratio, Bayesian methods are consistent with the likelihood 
principle. 

Bayes Theorem is not contentious, but the applicability of Bayes Theo
rem to scientific inference is. Much debate in theoretical statistics concerns 
whether the required probabilities are available, and, if available, whether 
they are appropriate for forming scientific inferences. Frequentist statisti
cians argue in the negative. I 2 Bayesians reply in the positive, but Bayesians 

12Neyman (1937, pp. 343-344) makes the following remarks about Bayesian probabilli
ties. 

It is known that, as far as we work with the conception of probability as 
adopted in this paper, the above theoretically perfect solution [provided by 
Bayes Theorem] may be applied in practice only in quite exceptional cases, 
and this is for two reasons: 

(a) It is only very rarely that the parameters 81, 82, ... 8, are random vari
ables. They are generally unknown constants and therefore their prob
ability law a priori has no meaning. 

(b) Even if the parameters to be estimated 8I, 82, ... 8, could be consid
ered as random variables, the elementary probability law a priori, 
p(81 , 82 , •.. 8,), is usually unknown, and hence [Bayes Theorem] cannot 
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of different persuasions consider different probabilities admissible. Subjective 
Bayesians are the most permissive. Providing the agent's prior probabilities 
are consistent, Bayes Theorem can usually be applied to deduce the agent's 
posterior probability. Objective Bayesians narrow the appropriate applica
tion of Bayes Theorem to those situations in which objective prior proba
bilities are available (as defined according to the specific view of Objective 
Bayesianism in question). Much more could be said of Bayesian statistics 
specifically, and non-frequentist approaches to statistical inference more gen
erally, but these brief points are sufficient for our purposes. For the most 
part, I will focus on frequentist methods. 

I now shift focus to a couple of issues concerning how frequentist methods 
are applied in the analysis of clinical trials. First, a fairly general point. One 
of the main arguments provided for utilising frequentist methods to analyse 
clinical trials, as opposed to alternative approaches to statistical inference, is 
the objectivity promised by frequentist statistics. It is worth considering the 
basis for this claim. 

Frequentist methods focus on the observed data and expectations about 
the sample space. Prior beliefs and cost considerations (by way of utility 
assessments) do not play a formal role in drawing inferences from data-or, 
more accurately, prior beliefs and utility assessments play no role in drawing 
inferences once the experiment has been specified. The personal beliefs of 
investigators, the conventional line of argument goes, should play no role in 
how clinical data are analysed. Frequentist statisticians ground their claims 
to objectivity on the inadmissibility of prior beliefs and cost considerations. 
As hinted above, it is important to realise that frequentist methods achieve 
their focus on the data (and expectations about the data over the sample 
space)-their objectivity-by incorporating the judgements that need to be 
made into the specification of the the trial. The form of objectivity pro
vided by frequentist methods may have advantages, but not if the subjective 
judgements made in specifying the trial are overlooked. 

And many subjective judgements are needed to specify a clinical trial. 
Some examples include: the selection of the test statistic, and the assumed 
probability model for that test statistic; how the alternative hypothesis is 
specified; which outcome, or outcomes, will be considered the primary clin
ical endpoint; how the data available prior to the study is interpreted in 

be used because of the lack of the necessary data. 
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calculating the power of the study, and so on. None of these judgements nec
essarily cause problems for the frequentist analysis of a given clinical trial, 
but the objectivity of frequentist methods are so often touted that, at times, 
the importance of these judgements is under-recognised. Howson and Urbach 
(2006, especially Part 3) demonstrate the importance of such judgements to 
frequentist statistics. 

The second issue is that, many statistical tests are conducted in clinical 
studies, but only the test of the primary hypothesis is set up to approxi
mate the ideal according to the dictates of Neyman-Pearson theory. Most 
strikingly, since all therapeutic decisions require a weighing of the benefits 
and possible harms of a therapy, safety endpoints are typically specified as 
secondary endpoints. While p values and confidence intervals are provided 
for these endpoints, these tests are not set up in the same way as tests of pri
mary endpoints. The appropriate interpretation of the results of secondary 
endpoints and subgroup analyses-analyses conducted on groups within a 
clinical trial-are considerably less clear cut. And yet, interpreting such re
sults is vital for therapeutic decision making. I return to this point in the 
chapters that follow. 

The large drug trials of primary importance to EBM are put to two 
different tasks. One is to provide a rigourous test of the efficacy of the 
drug. Often this is needed for regulatory purposes, if the drug is not seen 
to be efficacious, it will not be approved for marketing. The second task of 
these trials is to provide evidence for therapeutic decisions. Clearly there is 
significant overlap in these tasks. But, while a drug's efficacy is important 
in informing therapeutic decisions, these decisions rely on more aspects of 
a drug's effect than simply its efficacy. I explicitly consider aspects of this 
problem in Chapters 7 and 8, but the consequences of the two different tasks 
expected of clinical research, and the different focus of frequentist methods 
provided to these two tasks, are noted throughout the thesis. 
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Chapter 2 

Evidence based medicine can't 
be ... 

2.1 Introduction 

EBM proposes that medical decisions be based on the best available evi
dence. While there is little to disagree with the claims of EBM at this general 
level-of course medical decisions should be based on the best evidence--the 
proposal is vacuous without also elucidating precisely what you mean by this 
evidence and how you propose that it be used. To the extent that EBM fills 
in these details, it does so by proposing the 'hierarchy of evidence'. EBM 
suggests that medical decisions be informed by evidence from as high up the 
methodological hierarchy as possible. These methodological claims have re
cently gained the attention of philosophers of science (Worrall 2002, 2007b,a; 
Bluhm 2005; Grossman and Mackenzie 2005; Upshur 2005). And both prac
titioners of EBM and philosophers, have recognised that there is much philo
sophical work to do within EBM (Haynes 2002; Worrall 2007a). Given the 
extensive practical and political influence of EBM in a wide range of medical 
decisions, perhaps the most surprising (and worrying) area of philosophical 
work that is yet to be done is the provision of a clear interpretation and 
defence of EBM's hierarchy of evidence. 

This is not to suggest that aspects of EBM have not been debated. Many 
aspects of trial methodology have been extensively discussed within clini
cal epidemiology, statistics and philosophy. The role of randomisation pro-

35 
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vides one prominent example. 1 There is also an abundance of literature in 
which EBM is advocated or taught-as opposed to philosophically justified
including, for example, the well known EBM 'guidebooks' (Straus et a!. 2005; 
Guyatt and Rennie 2002). What is missing is a systematic justification of 
EBM's methodological hierarchy that survives critical analysis. 2 

EBM puts forward the methodological hierarchy as a tool for making 
good medical decisions. Ideally, any justification of EBM needs to, first, 
describe how the hierarchy should be applied, and, second, justify how this 
application of the hierarchy improves medical decision making. This chapter 
focuses of the first part of this task. Proponents have made bold claims 
about what can be achieved by making decisions in accordance with the 
EBM hierarchy. Specifically, randomised interventional studies are seen to 
provide an especially secure form of evidence. 

Because the randomised trial, and especially the systematic re
view of several randomised trials, is so much more likely to inform 
us and so much less likely to mislead us, it has become the 'gold 
standard' for judging whether a treatment does more good than 
harm. (Sackett et a!. 1996) 

A number philosophical critiques of EBM have shown that not all the claims 
made by proponents of EBM on behalf of randomised interventional studies 
can be justified (Grossman and Mackenzie 2005; Worrall2007a, 2002). I wish 
to extend these critiques in a particular way. Advocates of EBM propose 
that medical decisions-and even more specifically therapeutic decisions
are better informed by reference to the evidence hierarchy. I show that 
the interpretation of EBM's hierarchy that is most often put forward by 
proponents cannot be justified. 

An unambiguous interpretation of the hierarchy has not been provided. 
Early papers, and the EBM 'guidebooks', provide the clearest account. On 
this account, the hierarchy is interpreted categorically. The categorical inter
pretation of the hierarchy holds that evidence from higher up the hierarchy 
trumps evidence from lower down. I describe this interpretation in Section 
2.2. The philosophical treatments of EBM are examined in Section 2.3. 

1See, for instance, Armitage (1982); Lindley (1982); Suppes (1982); Urbach (1985); and 

Worrall (2007a,b) 
2 A good recent attempt to collate some of the key arguments at the heart of EBM's 

claims is provided by Rothwell (2007c). 
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These accounts respond to the view of EBM that has been provided, and 
expose its problems. Ambiguity about how the hierarchy should be inter
preted, however, gives proponents of EBM some 'wriggle room'. Restricting 
the claims of EBM, by explicitly narrowing the domain of application, and 
accepting that randomised trials are fallible, avoids some of the criticisms 
that have been raised. In the final section, I show that even if these moves 
are made, the categorical interpretation cannot be justified. And moreover, 
that imposing any further limits impedes the application of the hierarchy 
to therapeutic decisions. Hence, the chapter is predominately negative. If 
EBM is to inform therapeutic decisions, the hierarchy cannot be interpreted 
as proposed by advocates. 

2.2 EBM according to the advocates 

EBM's history is recent, and localised. As discussed, it developed as a dis
tinct approach to medical practice and education at McMaster University, 
Canada, during the 1980s and 1990s. The McMaster faculty involved in 
disseminating the central ideas of EBM, including David Sackett, Gordon 
Guyatt, Brian Haynes, and Deborah Cook, continue to be prominent among 
EBM's leading proponents. The driving idea of EBM is that the skills of 
clinical epidemiology should play a more prominent role in clinical decisions 
made at a patient's bedside. 

The first paper to outline EBM in detail best illustrates how proponents 
conceive EBM. 

A new paradigm for medical practice is emerging. Evidence
based medicine de-emphasizes intuition, unsystematic clinical ex
perience, and pathophysiologic rationale as sufficient grounds for 
clinical decision making and stresses the examination of evidence 
from clinical research. Evidence-based medicine requires new 
skills of the physician, including efficient literature searching and 
the application of formal rules of evidence evaluating the clinical 
literature. (Evidence-Based Medicine Working Group 1992) 

EBM is seen as a move from basing medical decisions on the 'unsystematic' 
judgement of an individual clinician, based on experience or the findings of 
the bench or basic sciences, to the more 'systematic' and 'relevant' outcomes 
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of patient-related clinical research. The 'basic' or 'bench sciences' are physi
ology, pharmacology, and related disciplines such as pathophysiology. These 
sciences are primarily focussed on developing a theoretical basis for how the 
body works (physiology), how drugs interact with physiological processes 
in the body (pharmacology) and the physiological abnormalities involved in 
disease (pathophysiology). Theory-based sciences such as these provide a 
contrast to the empiricism of EBM. 

Proponents continue to label EBM a Kuhnian paradigm shift in 
medicinea While they are using idea of 'paradigm' more informally than 
Kuhn, 4 the continued insistence that EBM is a paradigm shift simply illus
trates the conviction of proponents that there is a marked distinction between 
EBM and the pre-EBM process of medical decision making. Medical author
ity, personal clinical experience, instinct, pathophysiologic rationale and ex
ternal evidence gained from the systematic observations of experiments are 
some of the facets involved in clinical decision making. Any particular deci
sion is likely to rely on a number of these facets. This is as true within the 
model for medical decisions proposed by EBM as it was in pre-EBM decision
making. The position put forward by EBM proponents is that focus should 
be given to experimental evidence. More especially, according to EBM's hi
erarchy, the focus should be given to evidence derived from experiments of a 
particular design, namely, randomised interventional studies. 

EBM claims that good medical decisions involve the appropriate inter
pretation of evidence: 

Understanding certain rules of evidence is necessary to correctly 
interpret literature on causation, prognosis, diagnostic tests, and 
treatment strategy. (Evidence-Based Medicine Working Group 
1992) 

These 'rules of evidence' are provided by EBM's methodological hierarchy. 

3 The original evocation of Kuhn is provided in Evidence-Based Medicine Working 
Group (1992, p. 2420); the continued insistence is provided in Guyatt and Rennie (2002, 
p. 8). 

4 As noted previously, EBM is most certainly not a paradigm shift in the Kuhnian 
sense; there is no incommensurability between the new and old theories of medical decision 
making. Further, the shift to the EBM model of medical decision making has been (and 
continues to be) piecemeal-this would not be possible if EBM really was a Kuhnian 
paradigm shift. 
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EBM puts forward different hierarchies for different types of medical de
cisions. Hierarchies have been provided for decisions relating to therapeutic 
decisions, prognosis, diagnosis, symptom prevalence and economic and de
cision analyses; each relying on similar methodological distinctions ( Guyatt 
and Rennie 2002; Phillips et a!. 2001 ). As promised, I focus on the hierar
chy provided for treatment and harm. EBM's largest influence has been on 
therapeutic decision making. 

Being specific about what therapeutic decisions entail is important to 
this analysis. Recall, by 'therapeutic decisions' I mean both population and 
individual therapeutic decisions. Population therapeutic decisions rely on 
answering the question of whether the benefits of a particular medical therapy 
outweigh its harms in a defined population of patients. Such a population 
typically being defined in terms of average age, condition being treated, and 
presence of co-morbidities. Individual therapeutic decisions, by contrast, 
focus on the question of whether the proposed benefits of a particular medical 
therapy outweigh the possible harms in an individual patient, given his or 
her unique characteristics. 

A number of hierarchies have been proposed for therapeutic decisions, but 
the differences between them are primarily in the level of detail. Table 2.1 
is the hierarchy provided by Guyatt and Rennie, a more detailed version is 
given by Phillips et al. (2001) (and provided in Table 1.1). 

Guyatt and Rennie (2002) place N of 1 randomised trials at the top of 
their hierarchy of evidence. N of 1 trials are conducted with a single patient. 
In these studies, the patient is randomly allocated to a period of treatment 
with the intervention under investigation (the 'active' treatment) or control. 
After a period of time the patient receives the alternative treatment (either 
active, or control). The patient's outcomes are monitored in each period. 
Ideally, both the patient and clinician are blinded to whether the patient is 
receiving active treatment or control. The set up mimics the very common 
'unsystematic' clinical practice of giving a patient treatment and monitoring 
their outcome. N of 1 trials are particularly useful in some specific contexts;5 

but the effects of the treatment need to be rapid, and concurrent with treat
ment. N of 1 trials have the benefit that the patient involved in the trial 

5 For instance, this design has been used to assist osteoarthritic patients decide whether 
they need an anti-inflammatory agent rather than regular paracetamol to control their pain 
(March et al. 1994). Straus et al. (2005, pp. 172-175) provides some general principles for 
when N of 1 trials may be useful. 
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A Hierarchy of Strength of Evidence 
for Treatment Decisions 
N of 1 randomised controlled trial 

Systematic reviews of randomised trials 
Single randomised trial 

Systematic review of observational studies 
addressing patient-important outcomes 
Single observational study addressing 
patients-important outcomes 

Physiologic studies (studies of blood pres-
sure, cardiac output, exercise capacity, bone 
density, and so forth) 

Unsystematic clinical observations 

Table 2.1: Guyatt and Rennie's (2002, p. 12) hierarchy of evidence for ther
apeutic decisions. 

is the patient to whom the results of the trial will be applied. In this way, 
N of 1 trials avoid the challenges of external validity, and presumably this 
is why Guyatt and Rennie place this design at the top of their hierarchy of 
evidence for therapeutic decisions. However, N of 1 trials have a number of 
draw-backs. Most significantly, N of 1 trials are not feasible for determining 
long-term effects of treatments. N of 1 trials play a limited role in medical 
research, policy decisions, and therapeutic decisions regarding individual pa
tients; considerably more focus is given to randomised interventional studies. 
I will not consider N of 1 studies further. 

The hierarchy provided by Guyatt and Rennie (2002) and Phillips et al. 
(2001) highlight the distinctions important to EBM. Systematic evidence
that is evidence from studies, whether interventional, observational or labora
tory studies-is valued higher than unsystematic experience. Of the system
atic evidence, patient-related clinical evidence-that is, direct experimental 
evidence of the effects of treatments on patients-is valued higher than exper
imental evidence from the basic sciences. And finally, experimental evidence 
from clinical studies is distinguished according to methodology: randomised 
interventional studies, and systematic reviews of randomised interventional 
studies, are seen to provide better evidence for therapeutic decisions than 
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observational studies. 
According to proponents of EBM, systematic evidence is superior to 

non-systematic evidence, systematic clinical evidence is superior to system
atic non-clinical evidence, and systematic clinical evidence from randomised 
interventional studies is superior to evidence from non-randomised non
interventional studies. But how is this superiority achieved? To answer this 
question it is first necessary to examine how EBM applies the methodolog
ical hierarchy. In the account provided by the EBM guidebooks the notion 
that randomised interventional studies trump evidence from lower down the 
hierarchy is central. 

If the study wasn't randomised, we suggest that you stop reading 
it and go on to the next article in your search. (Note: We can 
begin to rapidly critically appraise articles by scanning the ab
stract to determine if the study is randomised; if it isn't we can 
bin it.) Only if you can't find any randomised trials should you 
go back to it. (Straus et al. 2005, p. 118) 

The hierarchy implies a clear course of action for physicians ad
dressing patient problems: they should look for the highest avail
able evidence from the hierarchy. The hierarchy makes clear that 
any statement to the effect that there is no evdience address
ing the effect of a particular treatment is a non sequitur. The 
evidence may be extremely weak-it may be the unsystematic 
observation of a single clinician or a generalisation from physio
logic studies that are related only indirectly-but there is always 
evidence. (Guyatt and Rennie 2002, pp. 14-15) 

These quotes show that EBM has a broad concept of 'evidence'; results 
of randomised interventional studies do not constitute the only source of 
evidence. But, equally, EBM has a narrow conception of what provides the 
'best evidence'. According to EBM, when it comes to therapeutic decisions 
the 'best evidence' is provided by the results of randomised interventional 
studies. And this 'best evidence' is superior to evidence from lower down 
EBM's hierarchy, seemingly, without qualification. The EBM guidebooks 
suggest a categorical interpretation of the hierarchy. 

On the categorical interpretation, the randomised interventional study 
design is seen to provide an incontrovertible epistemic good. The results of 
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randomised interventional studies are epistemologically superior to the re
sults of non-randomised (observational) studies, and the superiority is abso
lute. All the results of a randomised interventional study are always superior 
to the results of studies from lower down the hierarchy-at least, for all those 
studies that are conducted that meet the standards of publication. How else 
could it be appropriate to 'bin' all 'non-randomised' studies relating to the 
therapeutic question we are investigating? 

2.3 The Critic's View of EBM 

Attention now turns to the critiques of EBM that have been provided in 
the philosophical literature. These criticisms can be seen as a subset to 
the general concerns noted in the previous chapter. While the philosophi
cal criticism's of EBM have focussed on different aspects of the approach, 
each respond to a similar view of the hierarchy (Bluhm 2005; Grossman and 
Mackenzie 2005; Worrall 2007a, 2002, 2007b). Not surprisingly, the shared 
view is the one most clearly articulated in the EBM guidebooks. That is, 
that EBM's hierarchy should be interpreted categorically. It is possible to 
summarise the critical response into a number of broad themes: the claims 
that are made on behalf of randomisation; EBM's focus on a single aspect of 
methodology; problems of interpreting EBM's claims broadly; and the chal
lenges of external validity. How some, but not all, of these criticisms may be 
avoided by proponents of EBM is discussed in the sections that follow. 

Worrall (2007b, p. 452), examines the notion that randomised interven
tional studies provide especially secure knowledge in medicine. In particular, 
Worrall shows that the benefits of randomisation fall short of making ran
domisation 'essential' in the sense EBM often takes them to be. Contrary to 
what is often claimed by proponents of EBM, Worrall shows that randomi
sation does not ensure that all confounding factors, known and unknown, 
are equally balanced in the experimental groups. While randomisation has 
some benefits, such as preventing some types of selection bias, it certainly 
does not ensure infallibility. Nor, Worrall argues, does randomisation justify 
the very special scientific weight proponents of EBM place in randomised 
interventional studies6 

6Worrall is especially interested in the benefits or otherwise of randomisation. Ar
guments for and against randomisation per se need to be distinguished from arguments 
in favour of randomised interventional studies over observational studies. You can have 
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Jason Grossman and Fiona Mackenzie (2005) also highlight the fallibil
ity of randomisation in experimental studies. In addition they illustrate the 
problems of measuring the quality of evidence according to a single method
ological criteria. 

[ ... ] [W]hen one attempts to follow the guidelines, one discovers 
that whether or not the intervention in question is amenable to 
RCTs, if no RCTs have been performed the evidence obtained 
can never be better than level III. That is, even the most well
designed, carefully implemented, appropriate observational trial 
will fall short of even the most badly designed, badly imple
mented, ill-suited RCT. 

Clearly, when evaluating evidence, much more needs to be considered in 
addition to whether a trial was randomised. (Notably, this is one criticism 
that is increasingly recognised in the medical literature, see Glasziou et al. 
2004; Guyatt et al. 2008a; The GRADE Working Group 2004.) 

Robyn Bluhm (2005) also reacts to a categorical interpretation of EBM's 
hierarchy. But her focus is directed towards the question of how broadly the 
hierarchy should be applied. In particular, Bluhm is concerned that epidemi
ology relies on the basic sciences. If EBM's hierarchy is applied broadly (say 
to all of science), then the basic or bench sciences, are seen to be 'lower' forms 
of evidence. And yet the basic sciences are essential for discovering 'effective 
causal interventions in the course of a disease in individual patients'-most 
certainly a key aim of epidemiology (Bluhm 2005, p. 543). Grossman and 
Mackenzie are also concerned about how broadly EBM's hierarchy is thought 
to apply. In particular, Grossman and Mackenzie are concerned about the 
application of EBM's hierarchy to public health policy. 

In recent years this preference for RCTs has extended beyond 
medicine, with researchers swept up with the ideals and meth
ods of EBM in the promise of scientific recognition and increased 

non-randomised interventional studies but not randomised observation studies. Ambiguity 
surrounding these terms is one of the reasons I prefer 'randomised interventional studies' 
to 'randomised controlled trials'; the later puts more emphasis on randomisation and fails 
to indicate that the study design is interventional. This said, clearly there is overlap 
in the discussion of randomised versus non-randomised, and interventional versus obser
vational. Worrall's remarks about randomisation are relevant to both (just in different 
ways). These arguments are examined in considerable detail in Chapter 3, EBM must be 
... , and Chapter 4, Why mndomised interventional studies. 
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funding. One important area in which this has happened is the 
evaluation of public health interventions, where (to take one ex
ample) a food policy program, evaluated observationally, has lit
tle chance of being accepted as effective, no matter how effec
tive it actually is, and consequently has no chance of securing 
the sort of government funding available to phase III drug trials, 
even though food policy is probably more important to popula
tion health than all of these drug trials put together. (Grossman 
and Mackenzie 2005, p. 517) 

The categorical interpretation of EBM's hierarchy also creates problems 
for external validity. 7 Recall, 'external validity' refers to the extent that 
results of a clinical trial can be generalised to patients other than those 
involved in the study. The problem arises because of the importance of the 
basic sciences in interpreting (and thus generalising) the results of randomised 
interventional studies. 

Because RCTs tend to report only average results in the treat
ment and control groups, the extent and sources of within group 
variability are not known. Both extrapolation of the results of 
an RCT to other patient groups and an understanding of the 
reasons for differences in outcomes within the study group re
quire a knowledge of biological factors that may influence the 
effectiveness of a drug. This type of information, however, can
not come from epidemiological studies alone. Rather, it is often 
first discovered in the context of physiological studies on humans 
or animals (the second lowest level of evidence in the hierarchy) 
and of unstructured clinical observation (the lowest level).(Bluhm 
2005, p. 537) 

Randomised interventional studies examine the effects of a therapy in a very 
small sample of the patients who will eventually receive the drug. Often, 
though not always, the sample of patients that are included in trials are 
highly selected; they are considerably younger and suffering less comorbid 
illness. Applying the results of these studies to individual patients raises 
questions of extrapolation and interpolation. If the trial was highly selective 

7Both Bluhm (2005) and Upshur (2005) recognise the problem of external validity in 
some form. 
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in its sample population it can be difficult to know whether the results of 
the trial extends to patients in routine care. And, for less selective trials, it 
can be difficult to know whether an individual patient, who resembles the 
individuals in the trial, would have been among the proportion of patients 
who benefited from the therapy under investigation. 

To the extent these questions can be answered, they rely on basic sci
ence. Extrapolating the findings of a randomised trial to a patient under 
routine care often relies on a judgement of whether the patient's physiologi
cal characteristics are similar in relevant respects to patients included in the 
trial sample. If the patient under routine care is judged to be similar to the 
sample population, then there is an argument that the results of the trial 
can be extended to this patient. A judgement that the results of the trial do 
not extend to an individual in the clinic is also often due to the physiolog
ical characteristics of the individual-for instance, the patient may suffer a 
comorbid illness that will reduce the effectiveness of the therapy (or increase 
the risk of adverse effects).8 The challenge that external validity provides 
for EBM is discussed in the later sections of this thesis. I will expand on 
this discussion then, but from what has been said already the problem of 
external validity for a categorical interpretation of EBM's hierarchy can be 
made clear. Extrapolating the findings of a randomised interventional trial 
requires a comprehensive understanding of the basic sciences. Interpreting 
the hierarchy categorically-that is, if evidence from basic science is trumped 
by evidence higher up the hierarchy-then making judgements regarding ex
ternal validity becomes intractable. If the evidence provided by the basic 
sciences is as poor as their place in EBM's hierarchy suggests, then there is 
no principled way to apply to the results of these trials to patients.9 

Proponents of EBM have elected not to engage with criticism directly 
(Buetow et a!. 2006). Instead the account of EBM provided by proponents 

8 Another factor important to external validity, but not related to the basic sciences, 
are the circumstances under which the trial was performed. If patients included in the 
trial are treated in ways that are importantly different to how they are treated in routine 
care, the then external validity of the trial will be low. Assuming the trial treated patients 
under realistic conditions, then the reliance on the basic sciences to inform judgements 
about external validity is increased. 

90f course, different parts of pathophysiology and pharmacology will have different 
levels of plausibility. EBM, by placing all of the basic sciences low on the hierarchy, 
fails to differentiate those parts of the basic sciences in which we have a high degree of 
confidence with those parts that are currently more speculative in nature. 
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has subtly shifted over time. 10 Because of the lack of direct debate, and 
the absence of a rigourous defence of EBM's epistemological claims, pinning 
down EBM's 'current' view is difficult. There is certainly enough 'wriggle 
room' within EBM to avoid some of the criticisms discussed in this section. 
The view of EBM that would result, however, is considerably more complex, 
and yet to be adequately explicated by proponents. 

I now examine how proponents of EBM can legitimately avoid some crit
icisms by suitably restricting their claims (while maintaining the primary 
aim of EBM as informing therapeutic decisions). This can be done by re
fining how the hierarchy is interpreted. Importantly, while some criticisms 
can be avoided by suitably restricting EBM's claims, the resolution of other 
problems comes at a cost to EBM's central aim of informing therapeutic 
decisions. 

2.4 EBM can't be: How the hierarchy can't 
be interpreted 

Two criticisms of EBM can be addressed, at least in part, by recognising that 
the hierarchy does not provide general epistemological rules. The domain of 
application for the hierarchy should be limited to the context for which it was 
developed: therapeutic decisions. This addresses Bluhm's concerns, and, less 
directly, provides an avenue for proponents to respond to Worrall's concerns 
regarding the very special weight EBM places in randomised interventional 
studies. Restricting EBM's claims to therapeutic decisions, however, is not 
enough. As much as EBM proposes an interpretation of the hierarchy, it is a 
categorical interpretation. According to this view, when looking for evidence 
to inform a therapeutic decision if it doesn't come from a randomised study 
'bin it'. This view fails to acknowledge the complexity of the results provided 
by randomised interventional studies. 

2.4.1 The EBM hierarchy does not provide general 
epistemological rules 

Much rhetoric about EBM gives the impression that the hierarchy provides 
some general rules for all of science. It is the implicit assumption that the 

10Worrall (2007a, p. 983) recognises, and provides some discussion on this point. 
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hierarchy provides such rules that fuels claims that the highest levels of the 
hierarchy provide especially secure evidence, and gives the impression that 
the hierarchy can be broadly applied. If EBM's hierarchy provides general 
epistemological rules, it would be expected to hold independent of context (or 
at least hold in a range of contexts defined by some general principles). On 
this view, randomised interventional studies would provide superior evidence 
to that of the 'basic sciences' in all (or at least many) scientific disciplines, 
not just clinical science. 

It only takes a moment's reflection to see that this is simply false. Many 
sciences progress, in whole or in part, without randomised studies. Much 
of physics, for instance, does just fine without randomised interventional 
studies. Rather, if it makes any sense, EBM's hierarchy makes sense in the 
context of therapeutic decisions. While I do think a philosophical account of 
the hierarchy can be provided, it is far from general. Any account of evidence 
in medicine will be highly dependent on the specific context of the clinical 
sciences. Importantly, EBM proponents, when pushed, accept this limitation 
on the range of application of the evidence hierarchy. 

'Evidence Based Medicine: What it is and what it isn't', is a reply by 
proponents of EBM to criticisms of the approach (it is one of the few pa
pers in which proponents engage with criticism, even if they do so rather 
indirectly) (Sackett et al. 1996). This paper responds to claims that EBM 
focuses exclusively on randomised interventional studies and meta-analyses. 
The reply is telling. It makes clear that many types of medical decisions do 
not require randomised interventional studies. Questions of prognosis and 
the accuracy of a diagnostic test, for instance, are answered by observational 
studies. It is therapeutic questions that require randomised interventional 
studies. 

It is when asking questions about therapy that we should try 
to avoid the non-experimental approaches, since these routinely 
lead to false positive conclusions about efficacy. Because the ran
domised trial, and especially the systematic review of several ran
domised trials, is so much more likely to inform us and so much 
less likely to mislead us, it has become the 'gold standard' for 
judging whether a treatment does more good than harm. How
ever, some questions about therapy do not require randomised 
trials (successful interventions for otherwise fatal conditions) or 
cannot wait for the trials to be conducted. And if no randomised 
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trial has been carried out for our patient's predicament, we must 
follow the trail to the next best external evidence and work from 
there. (Sackett et a!. 1996) 

This passage reinforces the categorical interpretation of the hierarchy, but 
makes clear that the focus of the hierarchy is therapeutic decisions. Some 
therapeutic decisions may occasionally have to be made on the basis of alter
native evidence; however, if the results of a randomised interventional study 
are available, then the decision should be based on these results. 

Given the rhetoric that is sometimes employed, it is not surprising that 
some have interpreted proponents of EBM to view the hierarchy as providing 
general epistemological rules, but it is an over-reach. EBM's central claim 
is that evidence from study designs featured higher up the hierarchy more 
reliably inform thempeutic decisions. If experimental results from the basic 
sciences or observational studies are inferior to evidence from randomised 
interventional studies, it is only in terms of therapeutic decision making. 

This limits EBM's claims considerably. And, it provides a response to 
Bluhm's concern regarding EBM undermining the importance of the basic 
sciences to epidemiology. The hierarchy simply does not extend that far. It 

should be applied only when considering the question of whether a particular 
therapy benefits a patient, or group of patients, more than it is likely to harm. 
The task of documenting the incidence, and discovering the cause, of a disease 
need not refer to EBM's hierarchy of evidence. This, of course, is implied 
by the differing hierarchies provided by proponents of EBM (Phillips et a!. 
2001). But is not made explicit enough in many discussions of EBM. 

Recognising that EBM's hierarchy does not provide general epistemolog
ical rules also opens some avenues for proponents of EBM to respond to 
Worrall's concerns. Worrall (2002, 2007b,a) shows that randomisation does 
not provide any guamntee of the results of a randomised interventional study. 
Randomisation does not ensure experimental groups are equally balanced for 
all confounding factors. Randomisation is not a general requirement for de
riving scientific conclusions from data. Recognising that randomisation is 
not a general requirement for gaining evidence in clinical science, opens the 
way for a much more limited-and thus more plausible--defence of randomi
sation in the context of therapeutic trials. Indeed, limiting EBM's claims in 
this way underlines the need for a positive account of why randomised trials 
are needed for therapeutic questions. Worrall (2007a) has shown this is yet 
to be provided by advocates of EBM-at least for the more ambitious claims 
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that are made by proponents of EBM. In Chapter 4, I provide an argument 
for randomised interventional studies in testing the efficacy of treatments. 
In providing this argument, I also show that it does not substantiate many 
of the grand claims made on behalf of randomised interventional studies by 
proponents of EBM. 

Limiting EBM's claims to the context of therapeutic decisions also pro
vides a response to the emerging epidemic of 'evidence based' disciplines. If 
a clear, and justifiable, interpretation of EBM is yet to be provided in the 
very context it was designed for, then the plight of these second generation 
'evidence based' disciplines is not promising. 

The 'evidence based' label has been extended to other areas of practice, 
such as nursing and pharmacy, other areas of health decision making, such 
as public health interventions, as well as a quickly increasing number of dis
ciplines outside healthcare, including evidence based policy making. Though 
some do, not all of these second generation 'evidence based' disciplines ex
plicitly import EBM's hierarchy along with its label. Whether or not they 
import EBM's heirarchy, the 'evidence based' claims of these disciplines are 
either problematic, or at best, unclear. 

When these new 'evidence based' disciplines import the EBM hierarchy, 
such as in evidence based nursing, pharmacy and public health, it is usually 
a case of 'if it is good for medical decision making, then it is good for us'. 
In these situations, the EBM hierarchy is being extended to the decisions of 
interest to the discipline. Chapter 3 and 4 provide an argument for preferring 
large randomised interventional studies for testing the efficacy of drugs. This 
argument in turn provides justification for (partially) informing therapeutic 
decisions on the basis of randomised interventional studies. The argument, 
however, is specific to therapeutic decisions. Any use of EBM's hierarchy of 
evidence outside of therapeutic decision making is going to need an indepen
dent justification for the scientific context to which it is to be applied. This is 
not to say it can't be done. Some areas of these other disciplines may be sim
ilar enough to therapeutic questions so as to justify use of the hierarchy. But, 
a justification is needed. Furthermore, for some questions within these new 
'evidence based' disciplines the hierarchy is simply inappropriate. As already 
discussed, one example is the application of EBM's hierarchy to some public 
health interventions. Grossman and Mackenzie (2005) show that randomised 
trials are ill-suited to address some research questions within public health. 
But, due to the hegemony of EBM's hierarchy, methodologies that are well 
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suited to address the research question are being ignored, or automatically 
and inappropriately downgraded. 

Conversely, when disciplines take on the evidence based label without 
importing EBM's hierarchy, such as the way 'evidence based policy' is often 
used, then it is difficult to see what work the label is doing (other than 
sounding vaguely reassuring) _11 EBM without its hierarchy is meaningless. 
So too are other uses of the label without some explicit expression of what 
'evidence' is being referred to, and how it is being used. 

2.4.2 The EBM hierarchy can't be interpreted cate
gorically 

Recognising the hierarchy does not provide general epistemological rules, and 
limiting application of the hierarchy to therapeutic decisions, provides an av
enue of response to some criticisms of EBM. But not all. EBM's account of 
how the hierarchy should be put into action relies on a categorical interpre
tation. When searching for evidence to inform a therapeutic decision: 

If the study wasn't randomised, we'd suggest that you stop read
ing it and go on to the next article in your search. (Straus et al. 
2005, p. 118) 

This does not suggest an interpretation of the hierarchy where only certain 
well defined questions are best answered by randomised studies. The categor
ical interpretation suggests that when it comes to therapeutic decisions all of 
the results of a randomised interventional study always trump evidence from 
lower down the hierarchy. Evidence from observational studies may some
times be needed to help inform therapeutic decisions, but only in the absence 

of a randomised interventional study, and only then, when the considerably 
'weaker' strength of this evidence is emphasised. 

Without clear confirmatory evidence from large-scale randomised 
trials or their meta-analyses, reports of moderate treatment ef
fects from observational studies should not be interpreted as pro
viding good evidence of either adverse or protective effects of 

11 lt might be argued that 'evidence-based' is doing some work in 'evidence based policy'. 
Specifically, demarcating policy decisions based on emotion, or tabloid press, from policy 
decisions based on some form of 'evidence'. But, this use of 'evidence' is much too vague. 
To do something more than sound vaguely reassuring 'evidence based policy' needs to be 
clearer about what this 'evidence' is, and how it is being used. 
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these agents (and, contrary to other suggestions, the absence of 
evidence from randomised trials does not in itself provide suffi
cient justification for relying on observational data). (Collins and 
MacMahon 2007, p. 24) 
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While the categorical interpretation is relatively straightforward, it is unsus
tainable. 

First, as has already been discussed, the categorical interpretation equates 
quality of evidence with a single aspect of methodology. Many aspects of 
clinical trials affect the quality of the evidence they produce, not simply 
whether or not they are randomised (Grossman and Mackenzie 2005). Again, 
this is a criticism that the medical literature is responding to. The recently 
developed GRADE system for evaluating the quality of evidence explicitly 
recognises that randomisation is only one measure of quality ( Guyatt et al. 
2008b,a). 

The second problem for the categorical interpretation holds even for the 
best designed (and implemented) randomised interventional studies. The 
categorical interpretation fails to distinguish between the different types of 
results furnished by randomised interventional studies. Randomised inter
ventional studies supply many results, however, the warrant for each of these 
results is far from equal-even by EBM's reckoning. Randomised interven
tional studies are designed (statistically and methodologically) with a par
ticular question in mind. Most often (in the studies of interest in EBM) the 
question is whether a given therapy will have a beneficial effect on a partic
ular outcome in a defined group of patients. Most trials are set up to test a 
benefit hypothesis. Recall, the question for which the trial has been designed 
is called the primary hypothesis, and the outcome of interest to this hypoth
esis, the primary outcome or endpoint. For example, a randomised study 
might examine whether aspirin reduces the rate of death in a patient who is 
admitted to hospital suffering from acute coronary syndrome. The statistical 
test on this primary hypothesis will be adequately powered. But, in addition 
to the primary hypothesis there is usually two to three secondary hypothe
ses and related endpoints. These secondary hypotheses often relate to other 
benefits the therapy may have, as well as harms the therapy may cause. For 
example, with regard to the aspirin trial, secondary hypotheses may relate 
to whether aspirin reduces angina pain, and whether it increases the risk of 
bleeding. Therapeutic decisions rely on (or at least need to incorporate) the 
results of secondary endpoints, and the statistical results provided on such 
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analyses can be misleading because they are underpowered. 
The results of an intervention on subgroups within the trial are also im

portant to therapeutic decisions. For instance, regarding the aspirin trial 
above, a clinician with an elderly female diabetic patient will be particularly 
interested in the results of the intervention in the relevant subgroups; the fe
male patients, the elderly patients and the diabetics. Subgroup analyses raise 
a number of thorny issues for the appropriate analysis and interpretation of 
randomised trials, and there are a range of views on the matter (many of 
which I discuss in Chapter 7). However, whichever view is taken with regard 
to the appropriate analysis of subgroups, it is undeniable that they provide 
evidence of importance to therapeutic decisions. This results in an 

... unavoidable conflict between the reliable subgroup-specific 
conclusions that doctors and their patients want, and the un
reliable findings that subgroup analyses of clinical trials might 
offer. (Collins and MacMahon 2007, p. 13) 

Subgroup analyses and analyses of secondary endpoints, together with the 
results from the primary hypothesis test make up what is called the 'results' 
of randomised interventional studies. Any interpretation of the hierarchy 
needs to acknowledge the different warrant frequentist statistical methods 
provide to these results. 

Randomised interventional studies are analysed according to the frequen
tist methods introduced earlier. Within these methods, power plays a vital 
role in establishing the warrant of the statistical test. Recall, 'power' is the 
pre-test probability that the statistical test will 'reject' the null hypothesis, 
on the assumption that the null hypothesis is false. From a pre-trial per
spective the role of power is not contentious. Much effort is taken to ensure 
that the primary hypothesis test is sufficiently powered. Trials that are not 
sufficiently powered to test the primary hypothesis are often refused funding, 
or not given ethical approval. This is because underpowered trials are less 
likely to provide 'definitive' results according to the dictates of frequentist 
statistics. Statistical tests on secondary hypotheses and subgroup analyses, 
however, are often underpowered12 

12It should be noted that 'power' as defined within hypothesis testing does not play 
a direct role in estimation theory. However, the conceptual framework for hypothesis 
testing and estimation are similar, and the influence of a concept similar to power could 
be outlined within estimation theory. 
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Once the results of a trial have been observed the role of power is con
siderably more contentious. However, it is well recognised that the observed 
results of a trial are less reliable when the size of the trial is small relative 
to the true size of effect under investigation. Underpowered tests can result 
in false negative results-that is, fail to reject a false null hypothesis. After 
all, low power predicts-from a pre-trial perspective on the assumption the 
null hypothesis is false and a given size of trial-that observing a statisti
cally significant result is unlikely. Somewhat less well recognised, but just as 
important, a low powered test can also result in false positive results. If the 
true effect size is small, and the power of the test for this small effect is low, 
then any result that is statistically significant will over-estimate the effect 
size. Land (1980) provides a description of this phenomenon, and uses it to 
explain 100 fold discrepancies in estimation of cancer risks due to low-dose 
radiation (I provide a thorough discussion of this phenomenon in Chapter 
8). In this sense--that is, the possibility of false negative, or false positive, 
results-the results of subgroup analyses and analyses of secondary endpoints 
are unreliable (when they are underpowered). The unreliability of the results 
of subgroups and secondary endpoints, coupled with the importance of these 
results to therapeutic decisions, undermines a categorical interpretation of 
the EBM hierarchy. 

To be clear, I am not suggesting that proponents of EBM do not recognise 
that the results of primary hypothesis tests have a different warrant to the 
results of secondary hypotheses and subgroups analyses. On the contrary, 
they will be the first to point out the differences. It is not contentious that 
these different types of results have a different epistemic standing. 13 More
over, EBM has a fairly standard reply to the problems of subgroups analyses 
and analyses of secondary endpoints: await the results of meta-analyses. 
In the ideal case when you have a number of high quality randomised in
terventional studies that include similar enough patients and test the same 
treatment, meta-analysis will improve the reliability of subgroup analyses 
and secondary endpoints. The results of meta-analyses, however, are not 
always available, and when they are the realities of clinical research can un
dermine the improved reliability achieved in ideal circumstances (Egger et al. 
1997; Egger and Smith 1995). More importantly, for our purposes, none of 
this is recognised by proponents of EBM when they describe how the hierar-

13 Although, precisely what should be done about this different epistemic standing is 
highly contentious. I consider this debate in Chapter 7. 
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chy should be applied. The categorical interpretation is the interpretation of 
EBM's hierarchy that is provided by proponents. But it fails to acknowledge 
that some results of randomised intervnetional studies are unreliable--and 
because subgroup analyses and secondary endpoints are of particular interest 
to therapeutic decision makers, the unreliability of these results presents a 
particular problem for EBM. 

I am also not suggesting that the results of outcomes within trials that 
have low pre-trial power are unimportant, or irrelevant (on the contrary these 
results are very important). My point is simply that the warrant provided 
for these results according to frequentist statistics is different to the warrant 
provided for the results of a well-powered primary hypothesis test. And, 
that the categorical interpretation of EBM's hierarchy fails to adequately 
recognise this difference. 

This suggests a second limitation is needed to further restrict application 
of EBM's hierarchy of evidence. Not only does the hierarchy need to be 
restricted to therapeutic questions, but within therapeutic questions, appli
cation of the hierarchy should (at best be) limited to the results of primary 
hypothesis tests and well-conducted meta-analyses, as it is only for these tests 
that the optimal warrant of frequentist statistics is provided. While this is 
a positive move for EBM, as it provides a more justifiable interpretation of 
the hierarchy, there is a cost. 

If my analysis is correct, applying EBM's hierarchy is not sufficient for in
forming therapeutic decisions, which after all is EBM's primary aim. Recall, 
therapeutic decisions rely on assessing the benefits and harms of therapies 
for groups of patients and individuals. Limiting the hierarchy to the re
sults of primary hypothesis tests impedes this interpretation of the hierarchy 
informing therapeutic decisions in two ways. 

First, the primary hypothesis under test in the vast majority of clinical 
trials is a 'benefit' hypothesis-trials are set-up, and powered to test whether 
a therapy produces a proposed benefit in a defined group of patients. Out
comes regarding the safety of the therapy are almost always relegated to 
a secondary hypothesis. Whereas the possibility of benefits and harms are 
symmetrically important to therapeutic decisions, the quality of evidence 
provided within EBM for benefits and harms is asymmetrical; according fre
quentist methods the benefits of therapies are tested more rigorously than 
the harms. The categorical interpretation of EBM's hierarchy obscures this 
asymmetry by proposing that therapeutic decisions be informed by reference 
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to a hierarchy that fails to recognise the differing warrant provided by the 
results of primary and secondary analyses. Again, while in other sections 
of the literature proponents of EBM acknowledge that randomised trials are 
not the best method for establishing unsuspected adverse effects, and recog
nise that the results of secondary endpoints and subgroup analyses can be 
unreliable, there is no recognition of any of this in what proponents of EBM 
say about applying the hierarchy of evidence. 

Second, the results of secondary endpoints and subgroup analyses play a 
role in informing therapeutic decisions in an individual (Horwitz et a!. 1998; 
Rothwell 2005b). The results of the primary hypothesis test gives informa
tion on whether the therapy benefits a defined population of patients. As 
discussed earlier, while the appropriate analysis of secondary endpoints and 
subgroups is highly contentious, these results play a role in decisions re
garding individual patients. By comparing the unique characteristics of the 
patient in the clinic with the appropriate subgroups within the trial, ther
apeutic decisions (in some circumstances) can be refined so as to be more 
relevant to the individual. The categorical interpretation of the hierarchy 
fails to acknowledge the reduced warrant for findings from subgroup analy
ses. Indeed, in some circumstances, subgroup analyses can misleading (see 
Section 7.2 for discussion and examples). Further limiting the hierarchy to 
the results of primary hypothesis tests and the results of meta-analyses rec
tifies this failure, but rules out using analyses of subgroups and secondary 
endpoints to refine therapeutic decisions. Much more needs to be said on 
these matters (and later in the thesis, much more is said). The needs of 
therapeutic decision makers, especially their reliance on secondary endpoints 
and subgroup analyses, rules out the categorical interpretation of EBM's 
hierarchy. 

The categorical interpretation of the hierarchy provides a simple message 
for decision makers: Base your decisions on the results of randomised trials 
and meta-analyses. The message however is too simple; the results furnished 
by randomised interventional studies are considerably more complicated. The 
interpretation of EBM's hierarchy can be further restricted to avoid this 
problem, but this more restricted interpretation severs the direct link between 
EBM's hierarchy and therapeutic decisions. 
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2.5 Conclusion 

Proponents of EBM do not provide an unambiguous interpretation of the 
hierarchy of evidence. But as much as an interpretation is provided, the cat
egorical interpretation of EBM's hierarchy is the interpretation most often 
put forward by advocates (either explicitly, or implicitly). The categorical in
terpretation holds that the results of randomised interventional studies more 
reliably inform therapeutic decisions than the results of observational stud
ies. This interpretation, however, can not be justified without considerable 
qualification. Any successful interpretation of EBM's hierarchy of evidence 
will have to limit the claims of EBM. Two such limits are proposed. First, 
the application of the hierarchy should be limited to therapeutic decisions. 
EBM proponents, in their more careful moments, admit that the evidence 
hierarchy under consideration does not apply to other medical decisions, for 
example, decisions relating to prognosis, or unsuspected side effects of drugs. 
But, the reasons for this have not been documented, and as a result are for
gotten, or under-emphasised in much of the EBM literature. Further, even 
once the application of the hierarchy has been limited to therapeutic decisions 
the categorical interpretation still does not hold. The second limit further 
restricts application of EBM's hierarchy to the results of primary hypothe
sis tests and meta-analyses. The second limit is proposed because findings 
regarding secondary hypotheses, and subgroup analyses, are less reliable ac
cording to frequentist statistics. And yet, adhering to this limit impedes 
EBM's capacity to inform therapeutic decisions. 

As promised, this chapter has been mostly negative. It has shown that 
the dominant (and most clear) interpretation of EBM's hierarchy that has 
been provided by proponents cannot be justified. And while amendments can 
be made to how the hierarchy is interpreted to avoid some of the criticisms, 
this cannot be done without also restricting EBM's claims to be able to 
inform therapeutic decisions. In as much as there is a positive payoff to 
the conclusions of this chapter, it will be found in clearing the way for a 
considerably more restricted, and context dependent interpretation of EBM's 
hierarchy of evidence. I begin this task in the next chapter. 



Chapter 3 

Evidence based medicine must 
be ... 

3.1 Introduction 

This chapter focuses on how proponents of EBM have justified their claim 
that therapeutic decisions are better informed by evidence from randomised 
interventional studies. As John Worrall (2007a, p. 982) has suggested, the 
needed justification is inherently philosophical. 

[T]here surely is, at the underlying general level, nothing spe
cial about the role of evidence in medicine. Real evidence-based 
medicine results from applying the universal general principles of 
the logic of evidence to the particular case of medicine, and es
pecially (though not of course exclusively) to claims about which 
treatment are and which are not genuinely therapeutic. 

Proponents of EBM make strong claims on behalf of the evidence 
hiearchy. As previously discussed, randomised interventional studies are 
seen to provide especially secure evidence for therapeutic decisions. See, 
for instance, the quotes from Straus et al. (2005, p. 118) and Collins and 
MacMahon (2007, p. 24) provided in the previous chapter, on page 41 and 
51 respectively. A systematic justification of EBM requires (i) an interpre
tation of the hierarchy, which describes clearly how it is to be applied in 
therapeutic decision making, and (ii) a justification for that interpretation, 
which explains why applying the hierarchy as proposed more reliably informs 
therapeutic decisions. 
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While there are few arguments provided explicitly for EBM's hierarchy, 
there are a number of arguments that have been provided for informing ther
apeutic decisions on the basis of evidence from randomised interventional 
studies. I follow the critical literature, and in particular the work of John 
Worrall (2007a; 2002; 2007b ), in finding that these arguments do not sub
stantiate the very special scientific weight placed in randomised interven
tional studies by proponents of EBM. But in contrast to Worrall I argue that 
a defensible interpretation of EBM's hierarchy can be provided-albeit an 
interpretation that substantiates much less than what is often claimed by 
proponents of EBM. 

I propose that EBM's hierarchy should be interpreted as a hierarchy of 
comparative internal validity. 'Internal validity' is the degree to which the 
results of a study are accurate for the sample of patients included in the study 
(Fletcher et al. 1996, p. 12). By 'comparative internal validity' I mean, all 
other things being equal, that studies utilising methods higher in EBM's 
hierarchy, have higher internal validity than studies designed according to 
the methods lower down the hierarchy. Comparative internal validity is an 
under-appreciated argument for the hierarchy of evidence. While the ar
gument is present in the clinical literature, the claims that it substantiates 
are considerably more circumscribed than those made by advocates of EBM. 
This and the other arguments that have been provided for EBM's hierarchy 
are examined in Section 3.2. In section 3.3, I sketch how EBM's hierarchy, 
viewed as a hierarchy of comparative internal validity can be applied, and 
illustrate the considerably more limited claims that can be justified on this 
basis. 

3.2 Arguments for EBM's hierarchy 

A justification for how EBM's hierarchy better informs therapeutic decisions 
is not found in the popular guidebooks. Straus et al. (2005, p. xii) suggest 

Those who wish, and have time for, more detailed discussions of 
the theoretical and methodological bases for the tactics described 
here should consult one of the longer textbooks on clinical epi
demiology. 

One of the textbooks they refer to is their own, Haynes et al. ( 2006) (then 
forthcoming). The argument for randomised interventional studies is sum-
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marised in the chapter written by David Sackett (2006), I quote in full. 

[M]ightn't a high-quality cohort study be as good as, or even 
better than, an RCT for determining treatment benefit? Some 
methodologists have vigourously adopted this view. I disagree 
with them, for two reasons. First, there are abundant examples 
of the harm done when clinicians treat patients on the basis of 
cohort studies. Two recent examples of cohort-based treatment 
recommendations that failed in RCTs are postmenopausal estro
gen plus progestin for healthy women and vitamin E for coronary 
heart disease. (Note my argument here does not apply to deter
mining treatment harm, where observational studies are often the 
only way to detect a treatment's rare but awful adverse effects.) 

My second justification is an unprovable act of faith. It pro
fesses that the gold standard for determining the effectiveness of 
any health intervention is a high-quality systematic review of all 
relevant, high-quality RCTs. When the other study architectures 
are measured against this gold standard, they have generated less 
reliable estimates of effectiveness. For example, Regina Kunz and 
her colleagues performed a Cochrane Review of randomisation as 
a protection against selection bias in health care trials. They fre
quently found a worse prognosis at entry among control patients 
in nonrandomised studies. Moreover, they documented the over
estimation of treatment effects when the randomisation schedule 
was not concealed from the clinicians who were inviting patients 
to join RCTs, converting these 'RCTs' into cohort studies. 
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The candour is refreshing, but the argument is far from compelling. Sackett's 
first argument is empirical-experience, he suggests, has shown randomised 
trials to be more reliable. Sackett's 'second justification' is difficult to differ
entiate from the first. Indeed, it appears to be a repetition of the first argu
ment with some acknowledgement that, as this is an empirical argument, it 
is not-by Sackett's reckoning-compelling, rather, it is an 'unprovable act 
of faith'. 

I review this and additional arguments that have been provided for the 
hierarchy by proponents of EBM. Particular focus is given to the distinction 
made between randomised interventional studies and observational studies. 
In doing so I closely follow the arguments provided by Worrall (2007a; 2002; 
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2007b ). Worrall discusses the empirical justification as well as a number of 
additional arguments for the necessity of randomisation in clinical trials, and 
then comprehensively critiques these arguments. He comes to the view that 
randomisation, while often benign, is not essential. By 'essential' Worrall 
means that randomised interventional studies are not 'essential for any truly 
scientific conclusion to be drawn from trial data' (Worrall 2007b, p. 452). I 
review three of the arguments provided for randomised interventional studies 
that Worrall critiques: (i) the empirical justification of EBM's hierarchy, (ii) 
the view that randomising controls for all confounding factors, known and 
unknown,1 and (iii) that randomising uniquely prevents selection bias. 

It is important to be clear regarding the distinction between arguments 
for randomised interventional studies, and arguments for randomisation in 
interventional studies. At times Worrall appears to be more focussed on 
arguments regarding randomisation per se, but most of what he has to say 
is also relevant to the distinction between randomised interventional studies 
and observational studies. For instance, any argument which established that 
random allocation ensured experimental groups were equally matched for all 
possible confounding factors would provide an argument for the superiority of 
randomised interventional studies over observational studies. In other areas, 
however, such as when we come to the argument regarding selection bias, 
more care is needed in distinguishing whether we are discussing randomisa
tion in and of itself, or randomised interventional studies. This chapter and 
the following chapter provide an opportunity to outline the epistemological 
issues that hang on these distinctions. 

There is much to agree with in Worrall's analysis, in particular, he shows 
that many of the ambitious claims made by proponents of EBM on behalf of 
randomisation cannot be justified. But, in finding no argument for randomi
sation to be 'essential' for science, Worrall concludes that no epistemological 
distinction can be drawn between randomised interventional studies and ob
servational studies. 

The best we can do (as ever) is test our theories against rivals 
that seem plausible in the light of background knowledge. Once 

1 In statistics, a 'confounding factor' is a third variable, which correlates with two vari
ables that are being investigated for a potential causal relationship. The confounder may 
either mask a 'true' causal relationship between the two variables under investigation, or 
make it appear as though a causal relation exists between the variables under investigation 
when in fact both variables are under the influence of the confounder. 
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we have eliminated other explanations that we know are possible 
(by suitable, or post hoc, control) we have done as much as we 
can epistemologically. (Worrall 2007b, p. 486) 
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This misses the argument that EBM's hierarchy can be justified as a hier
archy of comparative internal validity. Despite falling short of showing ran
domised interventional studies are essential for drawing scientific conclusions 
from data, the argument of comparative internal validity substantiates an 
epistemological distinction being drawn between randomised interventional 
studies and observational studies in clinical science. In this chapter I focus on 
the interpretation of EBM's hierarchy as a hierarchy of comparative internal 
validity, in the next chapter, I argue that there is an important epistemolog
ical distinction between randomised interventional studies and observational 
studies in more detail. 

Comparative internal validity as an argument for the distinctions made 
in EBM's hierarchy can be found in the epidemiological literature, but it has 
been under-emphasised in the philosophical discussions to date. 2 One reason 
for this is that proponents of EBM have focused on disseminating, advocating 
and teaching EBM, rather than providing a philosophical justification of the 
view. In the literature focussing on EBM, the justification of the hierarchy is 
left implicit. The argument for EBM's hierarchy is found elsewhere-notably, 
in the clinical epidemiological literature. Another reason internal validity has 
been under-emphasised in the philosophical literature is that the philosoph
ical analyses take the ambitious claims that proponents of EBM have made 
as a starting point, and search for arguments that could substantiate these 
claims (Bluhm 2005; Grossman and Mackenzie 2005; Upshur 2005; Worrall 
2007a). While this is appropriate, the arguments regarding comparative in
ternal validity are given little attention because they do not substantiate 
EBM's more ambitious claims. By changing tack, and focussing on argu
ments that are available in the epidemiological literature, the importance of 
comparative internal validity to the justification of EBM's hierarchy is high
lighted. This approach permits examining what claims can be substantiated 
on the basis of this justification of EBM's hierarchy. 

Randomised interventional studies play an important role in testing cer
tain well-defined therapeutic questions. Clarifying why randomised interven-

2For instance, though they employ different terminology, and they attempt to draw 
a stronger conclusion, the main argument provided for EBM's hierarchy by Collins and 
MacMahon {2007) is that of comparative internal validity. 
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tiona! studies play this role may help explain why clinicians are so enamoured 
by this study design, while at the same time avoid the mistake (so often made 
within the EBM literature) of claiming too much on behalf of this method
ological distinction. 

3.2.1 The empirical justification of EBM's hierarchy 

The empirical justification for EBM's hierarchy, as provided by Sackett in the 
previous section, cites studies finding randomised interventional studies pro
vide more conservative estimates of treatment effects than non-randomised 
(observational) studies.3 Proponents of this argument contend that obser
vational studies provide less conservative estimates of treatment effects be
cause of biases inherent in comparing groups that have not been randomly 
allocated. 4 The point at issue, however, is whether-and, importantly, how
randomised interventional studies provide more reliable evidence for thera
peutic decisions. Let's accept the data Sackett is citing. How does this 
support the conclusion that the estimates provided by the randomised in
terventional studies are more reliable? What stops the opposite conclusion: 
that observational studies are correct, or more likely to be correct, and ran
domised interventional studies under-estimate treatment effects? The data 
alone provides no justification for asserting that randomised interventional 
studies provide the correct estimates. The empirical justification of EBM's hi
erarchy requires the premiss that randomised interventional studies are more 
reliable in order to make the claim that observational studies over-estimate 
treatment effects. 

Empirical arguments do not provide a justification for EBM's hierarchy. 
They are circular. If you already accept that randomised interventional stud
ies are the 'gold-standard', then the data cited by EBM proponents are grist 
for your mill. But the data won't compel a sceptic. Both Worrall (2002, 
p. S326) and Grossman and Mackenzie (2005, p. 520) make this point. 

While this objection alone is strong enough to sink the empirical argu
ment as a justification for EBM 's hierarchy, there are further problems. As 
Worrall (2007a, pp. 1009-13) notes, recent reports comparing the findings of 

3See for example Chalmers eta!. (1977) and Sacks eta!. (1982) 
4 Presumably, one of these biases is also publication bias. If observational studies are 

more biased, and publication bias was not present, then both over-estimation and under
estimation of treatment effects would be expected; not just over-estimation. 
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randomised interventional studies and observational studies contradict the 
earlier reports. Benson and Hartz (2000) and Concato et al. (2000) found 
estimates of effect size from observational studies were consistent with those 
found in randomised interventional studies in a range of therapeutic areas. 
Concato et al. (2000) suggest that earlier comparisons of the study method
ologies focused on less rigourous observational studies. Therefore, even on its 
own terms, the empirical data underpinning the argument for the evidence 
hierarchy is poor. 

At the heart of EBM is an epistemological claim: evidence from higher 
up the hierarchy provides more reliable evidence for therapeutic decisions. 
As such, EBM's hierarchy requires a philosophical justification. 

3.2.2 Randomisation controls for all confounding fac
tors 

Clinical studies are conducted in order to test the effects of a therapy on 
a defined group of patients; typically studies are set up in order to test 
whether the therapy causes the beneficial effects suggested by research in 
basic science, or previous experience. Studies are set up in such a way as 
to ensure, as much as is possible, that any observed differences between the 
treatment and control group are due to the effects of the intervention. To 
achieve this the groups must be as similar as possible. One way to ensure the 
comparability of the groups is to match the treatment and control groups for 
all known confounding factors. Prospective observational cohort studies, for 
instance, match the experimental groups in this way. Obviously, however, 
cohort studies are unable to guarantee that the experimental groups are also 
matched for unknown confounders. A common claim in the clinical literature 
is that randomisation provides this guarantee. 

Collins and MacMahon (2007, p. 23), complain that 

[ ... ] non-randomised methods do not provide assurance that all 
sources of known and unknown bias are adequately controlled, 
and so cannot exclude the possibility that moderate biases have 
obscured or inflated any moderate effects, or have falsely indi
cated a treatment effect when none existed. 
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According to Collins and MacMahon, randomised allocation provides the as
surance that all known and unknown confounders are adequately controlled.5 

While there is a sense in which randomisation provides this assurance, it rests 
on an important ambiguity in the use of the term 'bias' (an ambiguity which 
will be clarified shortly). Importantly, it is because randomisation is thought 
to eliminate bias due to confounding factors that it is seen as essential in 
clinical trials. Being clear on what sense of bias is 'eliminated', shows this 
claim to be false. 6 

'Bias' is a term that is variously applied in the clinical literature. Often it 
is used informally to refer to any factor that could obscure the 'true' results 
of a trial. (Worrall also uses the term in this way). However, 'bias' is used in 
statistics in a number of more formal ways. In parametric statistics, statistical 
bias refers to the expectation of an estimator of a parameter. An estimator 
is unbiased if its expectation is equal to the true value of the parameter. 
This is often informally referred to as an estimator's long run average. 7 It 
is only in the statistical sense that randomisation eliminates bias due to 
confounding factors, known and unknown. This is because statistical bias 
entails consideration of the entire sample space. (Note. In the quote above, 
Collins and MacMahon can only be referring to statistical bias; otherwise the 
claim is false) . 

Consider a population of a trial being randomly allocated to treatment 
or control. On any given allocation it is possible that the treatment and 
control group are not equally balanced for a particular confounder. Indeed, 
as Worrall (2002, p. 8324) has pointed out, given that there could be indefi
nitely many possible confounding factors, the probability that a confounder 
is not equally balanced between the groups on any particular allocation is 
high. However, this is not so in the indefinite sequence of trials. If the trial is 
repeated indefinitely, with a new allocation of the population performed each 

5Collins and MacMahon are not the only ones to make this claim. For instance, Kendall 
et al. (1983) state the following: '[ ... ] by the very nature of the randomisation process, 
the effects of factors outside the experiment can show no favour to the factors inside it, 
and our inferences are free from bias.' Worrall provides a number of additional examples 
(see Worrall 2002, pp. S321-S324). 

61 am indebted to conversations with Jason Grossman on this point. The comments I 
make about 'bias' pick up on points made in Grossman and Mackenzie (2005, p. 518). 

7But this is not strictly correct. Rather it is the estimator's average over the sample 
space; any actual long run (even an infinite long run) won't necessarily equal its average 
over the sample space 
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time, then, in this indefinite sequence of trials, the effect of any unbalanced 
confounder in a particular allocation will be counteracted by the distribution 
of that confounder in other allocations. The net effect of all possible con
founders on an unknown parameter in the indefinite sequence of trials will 
be zero. Hence, randomisation eliminates statistical bias due to confounding 
factors. 

Now that the term 'bias' has been disambiguated, the problem for EBM 
can be made clear. That randomisation eliminates bias due to all known and 
unknown confounding factors is one of the key arguments EBM employs to 
justify randomised interventional studies having a special epistemic place in 
the hierarchy of evidence. Once it is clear what this 'elimination of bias' actu
ally amounts to, it is reasonable to question whether it is sufficient to justify 
the emphasis placed in randomised interventional studies by EBM. Recall 
the advice of one of the EBM guidebooks: if a study is not randomised, 'bin 
it'. Statistical bias due to confounders is only eliminated in the indefinite 
sequence of trials, but (of course) the trials that inform therapeutic decisions 
are not repeated (at all, let alone indefinitely). In any particular trial allo
cation a confounder may be distributed unevenly between the experimental 
groups. While the groups can be examined for the imbalance of any known 
confounders, this is obviously not possible for unknown factors. Lack of sta
tistical bias provides no assurance with regard to the actual allocation of the 
trial. In order to substantiate its ambitious claims, EBM needs randomisa
tion to eliminate the informal sense of bias. But, of course, randomisation 
does not provide this kind of assurance. 

While Worrall does not disambiguate 'bias' in this way, he makes a similar 
point in relation to randomisation. 

The fact is that the subjects have been randomised between con
trol and experimental group only once, and that division either 
is or is not balanced for the unknown factor at issue. Suppose 
it is unbalanced, and that this throws the conclusion about the 
efficacy of the treatment off, then it seems to me scant consola
tion to be told that-although you don't and can't know it,-you 
were 'unlucky', and if the randomisation had been repeated in
definitely you would, in the indefinite long run, have inevitably 
realised your mistake. (Worrall 2007b, p. 484) 
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This, Worrall argues, undermines the view that randomisation is 'essential', 
or sine qua non, for clinical trials. And on this point, we agree. Importantly, 
rejecting these more ambitious claims is consistent with accepting that ran
domisation plays an important role in study designs in the clinical sciences. 
This role shall be outlined after considering a third argument for randomised 
interventional studies-that randomisation prevents selection bias. 

3.2.3 Randomisation prevents 'selection bias' 

The prevention of 'selection bias' is the one 'cast-iron' argument for randomi
sation that Worrall (2007a, p. 1009) concedes. But while he accepts that the 
prevention of selection bias provides a reason to randomise, Worrall argues 
that selection bias (as he defines it) can be avoided through other measures. 
Worrall's definition of 'selection bias', however, is considerably narrower than 
the conception of 'selection bias' in the epidemiological literature. Under the 
broader conception, 'selection bias' provides a rationale for randomisation 
that can not be provided by alternative measures8 

'Selection bias', according to Worrall, is the bias that can occur when 
trial investigators allocate patients to treatment or control. I will call this 
'investigator-selection bias'. Having the investigators allocate patients to the 
experimental groups can obscure the analysis in a number of ways.9 Per
haps the investigators (subconsciously or otherwise) preferentially allocate 
patients who they judge more likely to respond favourably to the treatment 
arm. Or, perhaps those patients with recalcitrant illness, or a propensity 
for side effects, are allocated to the control arm. Allocations such as these 
have the potential to significantly confound the analysis. Further, if the same 
investigators that allocated patients to experimental groups are responsible 
for the subject's treatment and collection of results-that is, the study is 
at best single blind-then there is a substantial risk of further bias to enter 
the analysis. For instance, the investigator's knowledge of a participant's 

8While Worrall (2007a, p. 1008) acknowledges his notion of selection bias is narrower 
than that used in the medical literature, he does not appear to see the consequences of 
this difference for his argument. 

9 Here the informal notion of 'bias' is sufficient. That is, bias is any factor that will ob
scure the results of the trial from reflecting the real effect of treatment. When statisticians 
refer to bias, as in selection bias, it can be difficult to discern whether they are referring 
to bias informally, or 'statistical' parameter bias. Here, at least, the ambiguity does not 
cause any problem. 
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treatment allocation may influence how they treat the patient (even a higher 
level of implicit encouragement may make important differences for some 
conditions). And, perhaps even more importantly, knowledge of treatment 
allocation may influence how investigators interpret the patient's response. 
Clearly, these possible sources of bias undermine our ability to draw the right 
inference regarding the treatment's efficacy. 

Worrall accepts that randomisation prevents investigator-selection bias. 
But he notes that it does this via two mechanisms: by taking allocation out 
of the control of the investigators, and by permitting double-blinding. 

Notice however that randomisation as a way of controlling for 
selection bias is very much a means to an end, rather than an 
end in itself. The important methodological point is that control 
of which arm of trial a particular patient ends up in is taken away 
from the experimenters-randomisation (as normally performed) 
is simply one method of achieving this. (Worrall 2007a, p. 1009) 

Worrall takes this as further support for his conclusion that randomisation 
is not essential for evidence in medicine, but there are problems with this 
analysis. 

Alternative methods for removing investigator-selection bias are only pos
sible for certain study designs. In particular, the design needs to be one in 
which the allocation of patients into experimental groups can be taken out 
of the hands of investigators-that is, the study needs to be interventional. 
While alternative methods can be used to avoid investigator-selection bias in 
interventional studies, such methods are not available in the non-randomised 
studies that EBM is referring to. In observational studies the choices, and the 
myriad of other factors, that have caused patients to fall into the 'treatment' 
(or 'case') and 'control' groups have already played their part. 

As it is used in the clinical literature 'selection bias' occurs when 'com
parisons are made between groups of patients that differ in ways, other than 
the main factors under study, that affect the outcome of the study' (Fletcher 
et al. 1996, pp. 7-8). This definition incorporates Worrall's investigator
selection bias, but also includes other forms of selection bias. This broader 
notion of selection bias includes 'patient-selection bias'. This is the bias that 
can occur when patients 'select' which experimental group they will be a 
member of. In observational studies this 'selection' is typically anything but 
explicit. Observational cohort and case-control studies observe patients as 
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they go about their lives, exposing themselves as they do to certain treat
ments and risk factors, sometimes for identifiable reasons, but often as much 
due to circumstance. It is this form of selection bias that can be much more 
difficult to identify and remove from observational studies. For observational 
studies, taking the allocation of experimental groups out of the hands of the 
investigators is not possible. 

Hence, the avoidance of certain types of selection bias (investigator-, and 
patient-selection bias) is an important argument for randomised trials in the 
clinical sciences. Or, more correctly, an important argument for prospec
tive interventional studies. It is not randomisation per se that permits the 
avoidance of selection bias, but that these studies are prospective and inter
ventional. Clearly, there are corollaries to Worrall's argument: mndomisa
tion is not essential---other methods could be used to take the allocation of 
subjects out of the control of investigators. But the advantage of interven
tional studies-that allocation of participants can be taken out of the hands 
of investigators-is important, and it is missed on Worrall's analysis due to 
his narrow conception of selection bias. 

A second complicating factor is the ambiguity which surrounds precisely 
which methodological characteristic is emphasised in discussions on 'RCTs'; 
randomisation itself, or randomised interventional studies as a study de
sign. Indeed, the important distinction in EBM's methodological hierarchy is 
not randomised versus non-randomised, but randomised interventional ver
sus non-interventional. Whether randomisation, or an alternative method 
for reducing selection bias, be used in prospective interventional studies is 
certainly worthy of debate. But this debate is not central to the questions 
raised by EBM and its methodological hierarchy once the interventionaljnon
interventional distinction is made clear. 

Prospective interventional randomised studies have a benefit over obser
vational studies in that, when properly done, they rule out a certain type 
of selection bias (patient-selection bias, as I have labelled it here). Obser
vational studies cannot rule out this bias. Of course, this benefit does not 
make randomised interventional studies infallible, nor does it mean that these 
studies are 'essential for any truly scientific conclusion to be drawn from trial 
data'. Both randomised interventional studies and observational studies em
ploy a vast range of methods to provide results that are as reliable as possible. 
There are many potential biases, including other forms of selection bias, that 
can occur in randomised interventional studies. And there is also a host of 
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methods to assist isolating, and reducing the influence of selection bias in ob
servational studies-including assuring that the control and treatment group 
are well matched according to background knowledge. 

Worrall is right to call proponents of EBM on their over-ambitious claims 
with regard to randomisation. But it is entirely consistent, while rejecting 
the over-ambitious claims of EBM, to support arguments for randomised 
interventional studies that appeal to somewhat more modest benefits. This 
opens the way for a justification of randomised interventional studies, and 
EBM's hierarchy, that is both present in the clinical literature, and defensible. 

3.2.4 All other things being equal, randomised inter
ventional studies have higher internal validity 
compared to alternative methods 

The reduction of selection bias that is achieved through randomised interven
tional studies is the key argument found in the clinical literature for marking 
an epistemological distinction between randomised interventional studies and 
observational studies. Any difference between the groups under comparison, 
other than treatment, that can influence the outcome of the study is a po
tential source of selection bias. Compared with randomised interventional 
studies, observational studies are more prone to selection bias-even when 
the experimental groups of a cohort study are well matched according to 
background knowledge, and post hoc adjustment has been conducted. Collins 
and MacMahon (2007, p. 16) provide a summary of the argument. 

As discussed, randomisation minimises systematic errors (i.e. bi
ases) in the estimates of treatment effects, allowing any moderate 
effects that exist to be detected unbiasedly in studies of appro
priately large size. By contrast, observational studies-such as 
cohort studies and case-control studies-involve comparisons of 
outcome among patients who have been exposed to the treatment 
of interest, typically as part of their medical care, with outcome 
among others who were not exposed (or comparisons between 
those with different amounts of exposure). The reasons why cer
tain patients received a particular treatment while others did not 
are often difficult to account for fully, and, largely as a conse
quence, observational studies are more prone to bias than are 
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randomised trials. 

This justification for EBM's distinction between randomised interventional 
studies and observational studies is seen repeatedly in the clinical literature 
and epidemiological textbooks. It is important to be clear as to what this 
is an argument for. The argument is one of comparative internal validity: 
all other things being equal, compared to alternative methods, randomised 
interventional studies have higher internal validity. What kinds of claims 
does this argument substantiate for EBM? 

Internal validity asks the question: How likely are the results of the study 
to be true for the participants involved? By contrast , external validity refers 
to how well the findings of a study can be generalised to hold in patients 
not directly involved in the study. In clinical medicine, there is a focus on 
informing therapeutic decisions, and therefore an important balance needs to 
be achieved between internal and external validity. Clearly, it is important 
for the results of any study to be an accurate reflection of what has occurred 
in the sample population, but internal validity is not sufficient for reliably 
informing therapeutic decisions. Therapeutic decisions need not only the 
results of clinical studies to be accurate for the sample population, but also 
for the patients who will be treated with the intervention. (At the very least, 
a principled way of justifying how the results of a trial apply to patients 
presenting at the clinic is required.) 

The useful distinction of efficacy versus effectiveness is also relevant here. 
Recall, 'efficacy' refers to the effects of the drug under experimental condi
tions. 'Effectiveness', on the other hand, refers to the effects of the drug in 
typical patients under routine care. Prior to the drug reaching the market 
you want to ensure the drug is efficacious. Once on the market it is the effec
tiveness of the drug in the patients who will be treated that is paramount. 

Improvements in internal validity are achieved through two mechanisms; 
(i) by placing the participants of the study under 'experimental ' conditions, 
to reduce, as much as possible, some of the many things that could influence 
the participants' progress other than the treatment under investigation, and 
(ii) by excluding participants who will complicate the analysis, that is, by 
ensuring the experiment is conducted on a relatively homogenous group of 
patients. Both of these mechanisms for improving internal validity, however, 
reduce external validity. Every imposed experimental condition removes the 
participant from their normal environment, making it difficult to infer the 
effect of the treatment in 'routine practice'. And, because once the drug is 
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on the market, clinicians will want to treat the full range of patients who 
suffer the condition, the narrow inclusion criteria of many trials raises the 
difficult question of whether patients excluded from participating in the trial 
will respond in the same manner as those included. How to best ensure the 
external validity of clinical research is recognised, by proponents and critics 
alike, as one of the most important issues for EBM to address (Black 1996; 
Rothwell 2005a; Upshur 2005). 

Concerns about internal validity are concerns about trial methodology. 
To say a trial has high internal validity is to say that the trial employed 
methods to prevent the kind of errors known to occur when observing data 
on the effect of a therapy in a population. Randomising experimental groups 
in a prospective interventional study is one such method. So too is conducting 
an interventional study rather than an observational study when wanting to 
establish the efficacy of a treatment. EBM's hierarchy organises the study 
designs commonly used in clinical research according to internal validity. 

Many methodological techniques are important to the internal validity 
of a clinical trial. While many of these methods are not explicitly included 
in the presentation of the hierarchy, it is clear they are very important to 
proponents of EBM. Examples include: adequate concealment of patient 
allocation to experimental groups (that is, maintenance of double blinding); 
proper treatment and analysis of 'drop outs' (trial participants who leave the 
study); the proper use and interpretation of statistical tests; and many many 
more. A cursory glance at any clinical epidemiological textbook, including 
the one written by the leading proponents of EBM, Haynes et a!. (2006), is 
enough to confirm this; they are full of such methodological concerns. 

Comparative internal validity provides a justification for EBM's entire 
hierarchy, not just the distinction between randomised interventional studies 
and observational studies. For instance, observational cohort studies are 
placed higher than case-control studies on the hierarchy provided by Phillips 
et a!. (2001), because cohort studies have higher internal validity. Case
control studies rely on investigators to define a control group that has not 
suffered the outcome under investigation. In order to ensure the control group 
is appropriately comparable to the 'cases' a number of assumptions about 
exposure to the risk factor under investigation are required. Prospective 
cohort studies, by contrast, can follow a more natural group of patients, 
some exposed to the risk factor under investigation, others not exposed. 
Investigators do not have to construct a control group as they do in case-
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control studies. 10 This means there is more opportunity for error in case
control studies, and hence, these studies possess lower internal validity. 

There are a number of important points to make regarding comparative 
internal validity as an argument for EBM's hierarchy of evidence. First, 
the judgements of internal validity incorporated into EBM's hierarchy are 
specific to the clinical sciences. The methods to improve internal validity 
are canonical. Mostly, they have been collected through the experience of 
observing and testing the effects of drugs. Each method attempts to rule out, 
or minimise, a particular kind of error. Randomisation, blinding, prospective 
trials, intention-to-treat analyses, and so on, are all methods for preventing 
specific erroneous inferences in therapeutic trials. While these methods have 
been built up through experience, this does not mean that a philosophical 
account referring to a logic of evidence can not be provided. But any such 
account will be specific to the clinical sciences. 

While there is no one factor that makes the clinical sciences unique, the 
particular confluence of factors that make up the clinical sciences is unique. 
For starters any account needs to recognise the high degree of unexplained 
inter-patient variability in response to therapy; theory does not adequately 
predict response in real-life patients. (Arguably, this is what makes statisti
cal approaches so important-and controversial-in the clinical sciences.) In 
addition, a range of practical considerations of particular importance to the 
clinical sciences need to be recognised. For instance, the ability to conduct 
randomised trials (something impossible in many contexts), and the impor
tance of health, and an appropriate conservatism toward risk when dealing 
with matters of health. Each of these factors (and many more besides) im
pinge not only on the kinds of error that can occur, but also the kinds of error 
that matter, and thus on the kind of methods that have been developed to 
avoid these errors. Identifying EBM's hierarchy with the internal validity of 
therapeutic trials not only provides a justification for the hierarchy, but also 
emphasises the problems of extending the hierarchy beyond this context. 

Once outside of the context of a large drug trial other sources of error may 
become more important. Or, the method developed to reduce the error in the 
drug trial may no longer work. Randomisation, as Grossman and Mackenzie 
(2005, pp. 527-528) show, is a case in point. Simply changing the context 

10There are variants of the case-control design that overcome this problem, for instance: 
nested case-control studies. Nested case-control studies use cohort studies to define the 

control group. 
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of an interventional study from testing a drug to testing, say, a social inter
vention in schools, can be enough to change randomisation from increasing 
internal validity to decreasing it. Large drug trials have many participants, 
and hence many 'units of analysis' that can be randomised. In such a situ
ation, randomisation is a convenient way to both take treatment allocation 
out of the hands of investigators, and ensure the experimental groups are 
roughly equally balanced for a small number of known confounding factors. 
A trial of a social intervention in ten schools, with five schools receiving the 
intervention and five receiving control, might have as many pupils involved 
as the drug trial has participants, but because the intervention is school-wide 
it has far fewer units of analysis. With such a small effective sample size ran
domisation is much less likely to ensure the experimental groups are roughly 
equally balanced compared to if the investigators deliberately balanced the 
groups according to which factors are considered important. Providing in
vestigators can justify their allocation, and ensure selection bias has been 
minimised, deliberate matching will result in higher internal validity in the 
test of a social intervention in schools than randomisation. Similar accounts 
can be given for the other methods of improving internal validity in EBM's 
hierarchy of evidence; care needs to be taken to ensure the methods that are 
being employed are pertinent to the case at hand. 

It is also essential to be clear what the 'all other things being equal' 
part of this argument means for EBM's hierarchy. The guidebooks propose 
a categorical interpretation of the hierarchy. Viewing the hierarchy as a 
hierarchy of internal validity, however, requires considerably more nuanced 
judgements. The hierarchy only provides increasing internal validity when 
all other things are equal. Study designs higher up the hierarchy rule out 
more possible sources of error. But at each level of the hierarchy there are 
many sources of error, and many methods that can, and should, be applied to 
ensure the results of the study are as reliable as possible. It is only when all 
the additional measures that improve internal validity have been taken that 
there is an assurance that a randomised interventional study possesses higher 
internal validity than a prospective cohort study. As should be obvious, 
there is no assurance that a randomised interventional study that has ruled 
out patient-selection bias, but left another source of error unchecked, will 
be any more reliable than a carefully conducted cohort study, which has 
employed every method possible to ensure its results are valid. The quality 
of evidence that a study provides always requires a judgement of whether 
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all reasonable sources of error have either been ruled out or accounted for. 
Study designs higher up EBM's hierarchy are able to employ more methods 
to reduce potential sources of error, but this by no means ensures the quality 
of evidence that is provided by any particular study using a design listed 
high in the hierarchy is better than a study employing a design listed lower 
in the hierarchy. 

Further, the increased potential for high internal validity in randomised 
interventional studies does not ensure all the results of a well-conducted 
randomised trial are reliable. Indeed, as discussed in the previous chapter, 
the statistical techniques employed in analysing randomised interventional 
studies provide optimal warrant only to the primary hypothesis under test. 
Subgroup analyses and findings on secondary endpoints are less reliable---at 
least to the extent that these outcomes are underpowered. This is important 
to keep in mind when considering the primary hypotheses that most clini
cal trials are set up to test. As noted previously, primary hypothesis tests 
in clinical trials almost invariably relate to the benefits of a therapy; ques
tions related to a drugs safety are typically relegated to secondary endpoints. 
While there is no theoretical reason why randomised trials can't be set up to 
test the safety of a drug as a primary hypothesis, the practical constraints are 
considerable. First, there is the ethical question of whether it is appropriate 
to conduct a trial when the primary purpose of the trial is to detect adverse 
effects. Second, even if such trials are considered ethical, the problem of 
whether patients would consent to be included in such a trial remains. And 
third, even if these issues can be overcome, there is a certain degree of inertia 
in the system. The medical fraternity (as much as it acts as a single unit), 
the regulatory authorities who are responsible for outlining what research 
needs to be completed before a therapy will be permitted onto the market, 
and the pharmaceutical industry which funds the vast majority of large drug 
trials, currently hold that trials that test primary 'benefit' hypotheses are 
sufficient to 'prove' the drug is ready for the market. The proportion of tri
als that incorporate safety endpoints into the primary hypothesis under test 
is unlikely to increase while this view is pervasive. 

Of course, concern about the reliability of analyses of secondary endpoints 
and subgroups is not new. Meta-analysis is the standard reply to the problem 
of providing reliable estimates for secondary endpoints and subgroup analy
ses. When a number of relevantly similar randomised interventional studies 
have been conducted they can be combined in order to conduct a meta-
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analysis. Such meta-analyses will provide more reliable results for these sec
ondary outcomes. EBM recognises this by placing meta-analyses and other 
systematic reviews of a number of randomised interventional trials at the 
pinnacle of the hierarchy. But this option is only available when multiple 
trials have been conducted, and will only improve the reliability of the esti
mates if the trials are similar enough in the relevant respects; needless to say 
this is not always the caseY 

These considerations substantially restrict the claims that can be made 
by EBM's hierarchy on the basis of considerations of internal validity. The 
importance of restricting the claims of EBM to therapeutic questions and the 
results of primary hypothesis tests and meta-analyses is emphasised. This 
avoids much of the rhetoric sometimes employed by proponents of EBM. 
On this view EBM's hierarchy of evidence does not provide general episte
mological rules, nor are randomised interventional studies infallible, nor do 
randomised studies carry very special scientific weight when compared to ob
servational studies. The comparative benefits of randomised interventional 
studies can be put simply: randomised studies have the capacity to employ 
more methods that improve internal validity than observational studies. The 
quality of evidence that any particular study provides is a separate judgement 
taking much more into consideration. 

3.3 Evidence based medicine must be 

I have argued that EBM's hierarchy of evidence is best interpreted as a 
hierarchy of comparative internal validity. Furthermore, I have shown that 
identifying EBM's hierarchy with comparative increases in internal validity 
emphasises that EBM's claims should be limited to the results of primary 
hypothesis tests and meta-analyses. In the introduction, I suggested that 
any justification of EBM's hierarchy of evidence needs to provide (i) a clear 
interpretation of the hierarchy (that is, how it should be applied), and (ii) a 
justification for why applying the hierarchy in this way more reliably informs 
therapeutic decisions. I now examine how well identifying EBM's hierarchy 
with comparative increases in internal validity fulfils these requirements. 

Significantly, the need to limit EBM's claims to the results of primary 

11 For some discussion on when meta-analyses are not ideal, see Egger and Smith (1995); 
Egger et al. (1997) and Smith and Egger (1998). 
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hypothesis tests and meta-analyses is just as important to the interpretation 
of EBM's hierarchy as a hierarchy of comparative internal validity as it was 
in the categorical interpretation of the hierarchy. Indeed, since this problem 
results from a combination of the kind of clinical trials that are typically 
conducted, and the use of frequentist statistical analyses, this problem will 
arise on any interpretation of EBM's hierarchy- providing the aim of EBM 
remains informing therapeutic decisions. Much medical research regarding 
drug therapies is focussed on establishing the efficacy of the treatment, and 
it is on questions of efficacy that statistical methods are also focussed. Ques
tions of effectiveness requires an extension of these methods; the later chap
ters of the thesis focus on the challenge of extending the frequentist statistical 
methods in this way. 

Applying the hierarchy viewed as a hierarchy of internal validity is con
siderably more complicated than the simple advice provided by the EBM 
guidebooks. When interpreting EBM's hierarchy as a hierarchy of internal 
validity the type of question under consideration is vital. Say, Drug X has 
passed the early stages of clinical testing. The drug appears safe, and has 
a promising pharmacological profile. If the question is whether Drug X is 

efficacious in a defined population of patients, then EBM's hierarchy prcr 
vides clear advice. The most accurate method to measure the efficacy of 
Drug X, all other things being equal, is via a well conducted randomised in
terventional study. While these methods are fallible , they have the capacity 
to rule out more potential sources of error than methods lower down EBM's 
hierarchy. 

Things become more complicated when the question changes to whether 
Drug X possesses a particular side effect. Note, this question just asks 
whether Drug X possesses the side effect, not whether any particular indi
vidual will suffer that side effect; that is, what is being considered is the side 
effect equivalent of 'efficacy'. It is still possible to suggest the 'best' method
ology to address this question is a well conducted randomised interventional 
study, but for this to be so, some hefty assumptions are required. First , the 
side effect has to be suspected in order to set up a t rial to test the hypothesis 
that the side effect exists. (Clearly, this is not always so in practice). And 
second, you have to be able to conduct the randomised interventional study. 
While there is no theoretical impediment to this, the practical constraints 
discussed in the previous section mean that such a trial is less likely to be 
conducted. 
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Relying on a randomised interventional study set up to test a primary 
'benefit' hypothesis to detect adverse effects creates a number of problems. 
Not only because safety outcomes are relegated to secondary endpoints, but 
also because a trial set up to test a benefit hypothesis will select patients who 
have less complex medical histories than the population of patients with will 
eventually receive the drug. While selecting patients with only the condition 
under investigation makes sense when testing a drug's efficacy, this distorts 
both the detection and estimation of side effects more likely to occur in 
patients with multiple pathology. Randomised interventional studies are the 
'best' way of confirming the possible side effect of Drug X in only the most 
theoretical sense. The randomised interventional studies typically conducted 
in practice will not provide the most reliable evidence relating to the drug's 
side effects. 12 Judging whether the side effect of Drug X exists will instead 
rely on: the serendipitous findings of randomised interventional studies set 
up to test benefit hypotheses; the accumulation of evidence from randomised 
interventional studies in meta-analyses; or, evidence from lower down EBM's 
hierarchy-or, if available, on a combination of these sources of evidence. 

When the standpoint of the question is changed to that of a clinician re
garding a marketed drug, the same questions can be addressed. But here the 
limitations on the claims substantiated by EBM's hierarchy are even more 
important. The clinician's most pressing question is whether the drug's ben
efits will outweigh its potential for harm in the patient presenting to the 
clinic. Interpreting EBM's hierarchy as one of comparative internal validity 
makes it explicit that reference to the hierarchy provides only partial assis
tance in answering this question. All things being equal, estimations of the 
drug's efficacy are more likely to be accurate in well conducted randomised 
interventional studies. Questions regarding the drug's potential for harm are 
more difficult. Because safety endpoints are likely to be secondary endpoints 
(and under-powered), the information that typical randomised interventional 
studies provide can be less reliable. Evidence from observational studies may 
be more helpful in this case, but here a judgement on the potential for any 
selection bias needs to be made. Crucially, EBM's hierarchy (interpreted as 
a hierarchy of increasing internal validity) provides some assistance, but it 

12This assumes the incidence of the side effect is lower than the degree of benefit afforded 
by the drug-as one would hope. If this is not so, and the ill effects of the treatment are 
as large as the benefits, then the randomised interventional studies conducted to confirm 
the benefits will be large enough to reliably detect the harms. 



78 Evidence based medicine: Evolution, Revolution, or illusion? 

does not answer the effectiveness question asked by the cl.inkian. The clinical 
question raises questions of external validity and they are additional to the 
questions addressed by EBM 's hierarchy. 

3.4 Conclusion 

EBM's hierarchy is best understood as a. hierarchy of comparative internal 
validity. The constraints this justification places on the EBM's hierarchy are 
too often under-appreciated (or at least under-emphasised) in the clinical 
literature discussing EBM. 

First, the increased validity is only substantiated in a small subset of 
highly specific questions; its strongest claims are made for questions relating 
to a drug's efficacy. Even extending the question to the same drug s side 
effect profile raises considerable challenges. 

Second, the justification is comparative, not absolute. In the situations 
in which it is obtained the greater opportunity for internal validity does not 
ensure infallibility. And the incremental benefits of being able to employ 
additional methods for ruling out certain types of error will only be realised 
if other appropriate methods to rule out or reduce sources of error are utilised. 
Far from placing very special weight in randomised trials, this justification 
emphasises the need for careful judgement on all sources of error as well as 
on the methods utilised to reduce them. 

Third, this justification makes clear that high internal validity is not 
sufficient for reliably informing therapeutic decisions. Interpreted as a hier
archy of comparative internal validity, EBM's hierarchy of evidence provides 
a framework for developing arguments about evidence and the application of 
evidence to therapeutic decisions. The details of the question and the case 
at hand always matter. Interpreting EBM's hierarchy as one of comparative 
internal validity makes the challenge of external validity explicit. Being clear 
as to what questions are well answered by EBM's hierarchy assist framing 
the additional questions that need to be addressed to inform the therapeutic 
decision. 



Chapter 4 

Why Randomised 
Interventional Studies 

4.1 Introduction 

The previous two chapters focussed on the interpretation and justification of 
EBM's hierarchy of evidence. Specifically, I argued for an interpretation of 
EBM's hierarchy as a hierarchy of comparative interval validity. In addition 
to being a defensible interpretation of EBM's hierarchy, this interpretation 
has the benefit of highlighting the indefensibility of some of the claims that 
have been made by proponents of EBM on behalf of the methodological 
distinctions made in the hierarchy. Rather than reject EBM on the basis 
of some of the more ambitious claims that have been made, interpreting 
the hierarchy as a hierarchy of comparative internal validity will help rein 
EBM in. Randomised interventional studies have the capacity to rule out 
a potential source of selection bias that can not be avoided in observational 
studies. This chapter examines the argument for randomised interventional 
studies in more detail. Specifically, I'll argue for randomised interventional 
studies over observational studies in testing the efficacy of drug treatments. 

Worrall (2002, 2007a,b) argues that there is no unique justification for 
randomisation in experiments. In this argument he follows the work of Peter 
Urbach (1985; 1993) and Colin Howson and Urbach (2006) in suggesting 
that randomisation is not essential, or sine qua non, in science. On this 
point, Worrall and I are in complete agreement. Worrall, however, goes one 
step further. He suggests that experimental designs that randomly allocate 
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subjects to treatment and control provide no epistemological good in addition 
to that which can be achieved through alternative means. On Worrall's view, 
if experimental groups are comparable according to background knowledge, 
then whether the groups were formed by random allocation, or deliberate 
matching, is of no epistemological import. Randomised trials can be done 
away with. Clearly, this view directly opposes current medical orthodoxy, 
especially EBM. 

If Worrall is correct, how medical research is conducted can be revolu
tionised. Currently, prior to permitting a new drug on the market, large 
scale randomised interventional studies are required to show the therapy is 
efficacious. Considerable time and expense could be saved if equally reli
able evidence regarding the efficacy of therapies could be gained from obser
vational or historically controlled studies. 1 Some study designs, especially 
case-control and historically controlled studies, can be conducted much more 
quickly than randomised interventional studies. And, while prospective ob
servational cohort studies are conducted on similar timeline, recruitment is 
much easier in cohort studies compared to interventional studies. 

But Worrall is not correct; the evidence provided by an observational 
study (or a historically controlled trial) regarding a treatment's efficacy is not 
equivalent to the evidence provided by a well-conducted randomised inter
ventional study, even when each of the studies involve experimental groups 
that are comparable according to background knowledge. There are good 
reasons for wanting to establish claims of a treatment's efficacy in a ran
domised interventional study rather than an observational study. In Section 
4.2, I outline two claims that Worrall makes. The first is that randomised 
interventional studies are not essential for science (a claim we agree on), and 
the second is that there is no epistemological distinction between randomised 
interventional studies and observational studies providing the experimental 
groups are comparable based on background knowledge (a claim I wish to 
contend). Then, in Section 4.3, I provide a positive argument for testing 
claims of efficacy in randomised interventional studies rather than observa-

1 In this context historically controlled trials might be considered quasi-interventional. 
As discussed in section 1.1, page 18, the main reason historically controlled trials are 
infrequently conducted in contemporary medicine is because they are seen to be episte
mologically inferior to randomised interventional studies. And due to this epistemological 
inferiority historically controlled trials are considered unethical for testing new, or 'exper
imental' treatments. If Worrall's epistemological are arguments successful, then the ethics 
of these trials needs to be reconsidered. 
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tional studies. 

4.2 Randomised interventional studies are 
not essential for drawing scientific con
clusions in medicine 

The claim that only randomised studies can provide the right kind of evidence 
for medicine is easy to find in the literature. In contrast to randomised trials, 
observational studies are seen as inherently inferior. (For an example of 
such claims, recall the quote from Collins and MacMahon 2007, provided in 
section 2.4.2, page 51). In line with these claims, medical orthodoxy appears 
to believe randomised studies are 'essential', or sine qua non, for gaining 
evidence about therapies. As Worrall notes, 

It is widely believed that RCTs [randomised controlled trials] 
carry special scientific weight-often indeed that they are essen
tial for any truly scientific conclusion to be drawn from trial data 
about the effectiveness or otherwise of proposed new therapies or 
treatments. This is especially true in the case of clinical trials: 
the medical profession is overwhelmingly convinced that RCTs 
represent the 'gold standard' by providing the only 'valid', unal
loyed, genuinely scientific evidence about the effectiveness of any 
therapy. Clinical science may occasionally have to rest content 
(perhaps for ethical or practical reasons) with evidence from other 
types of trial ... but this is always very much (at best) a case of 
epistemic second best. (Worrall 2007b, p. 452, emphasis in the 
original) 

This claim-that randomised interventional studies are essential for draw
ing scientific conclusions in medicine-is Worrall's primary target. Worrall 
(2002, 2007a,b) considers the prominent arguments that have been provided 
for this claim and finds them wanting. 

What does it mean for randomised interventional studies to be 'essential' 
for science or medicine? Worrall's argument follows, and extends upon, ar
guments provided by Peter Urbach (see Urbach 1985, 1993 and Howson and 
Urbach 2006). Urbach is clear as to what kind of justification is needed for 
randomisation to count as an essential. 
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The leading justifications [for randomisation and control] have 
been epistemic in character; that is, they argue that control and 
randomisation are required by a particular logic of inference. So 
these justifications, if successful, and if based on a correct logic 
of inference, would show that the two conditions are formally 
required by any clinical trial, not just as a matter of convenience, 
or under certain circumstances, but as sine qua non. (Urbach 
1993, p. 1421) 

If randomisation is to be essential, it is to be formally required, for all clinical 
trials, in every context. Urbach sets the epistemological bar pretty high for 
randomisation to be considered essential. 

Worrall (2007a, p. 983) acknowledges that even the staunchest proponents 
of EBM, when pushed, back away from endorsing the claim that randomised 
interventional studies are essential for science. For instance, Sackett et a!. 
(1996) claim that EBM embraces a broad notion of evidence in medicine. 

By best available evidence we mean clinically relevant research, 
often from the basic sciences of medicine, but especially from 
patient centred clinical research into the accuracy and precision 
of diagnostic tests (including the clinical examination), the power 
of prognostic markers, and the efficacy and safety of therapeutic, 
rehabilitative, and preventative regimens. (Sackett et al. 1996) 

Yet, despite comments such as these, there is no question that proponents of 
EBM, particularly when it comes to claims regarding therapies, give evidence 
from randomised interventional studies 'very special weight' (to use Worrall's 
2007a, p. 983 phrase). For instance, in the same paper cited above, Sackett 
et a!. (1996) clarify 

It is when asking questions about therapy that we should try 
to avoid the non-experimental approaches, since these routinely 
lead to false positive conclusions about efficacy. Because the ran
domised trial, and especially the systematic review of several ran
domised trials, is so much more likely to inform us and so much 
less likely to mislead us, it has become the 'gold standard' for 
judging whether a treatment does more good than harm. 

Neither Worrall, nor (more pertinently) proponents of EBM, are clear as 
to what giving 'very special weight' to evidence from randomised interven
tional studies amounts to. Worrall, for his part, analyses a number arguments 
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for conducting randomised interventional studies and finds that none of these 
arguments support the stronger assertion-that randomised interventional 
studies are essential for drawing scientific conclusions from data. Presum
ably, Worrall takes this to establish that the 'very special weight' placed in 
randomised interventional studies by EBM can't amount to much. The most 
pertinent of Worrall's arguments against randomised interventional studies 
were discussed in Chapter 3, and as far as showing that randomised interven
tional studies are not essential for drawing scientific conclusions from data, 
Worrall's arguments are correct. Here, focus is given to a claim he makes 
while establishing this argument. 

On Worrall's view, not only are randomised interventional studies not 
essential for drawing scientific conclusions from data, but they provide no 
epistemological benefit over observational studies, providing experimental 
groups are well-matched according to background knowledge. 

The best we can do (as ever) is test our theories against rivals 
that seem plausible in the light of background knowledge. Once 
we have eliminated other explanations that we know are possible 
(by suitable deliberate, or post hoc, control) we have done as much 
as we can epistemologically. (Worrall 2007b, p. 486) 

According to Worrall, providing the groups under comparison are suit
ably controlled according to background knowledge, non-randomised non
interventional (that is, observational) studies are epistemologically equiva
lent to randomised studies. While the claim that randomised interventional 
studies are essential for science (or medicine) is so strong that it is no surprise 
that it is false, Worrall's counter-claim that there is no epistemological dis
tinction between randomised interventional studies and observational studies 
(when groups appear matched according to background knowledge) is also 
quite strong, just in the opposing direction. I provide a positive argument 
for marking an epistemological distinction between randomised interventional 
studies and observational studies in medicine. Components of the argument 
can be found in different parts of the clinical, epidemiological and philosoph
ical literature. To my knowledge it has not been provided in the one place 
with a focus on the claims of EBM. 

It is important to be clear on the study designs under comparison. EBM, 
and medicine more generally, is focussed on the distinction between ran
domised interventional studies and observational studies, as opposed to the 
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distinction between randomised and non-randomised interventional studies. 
Recall, studies are 'observational' when it is the participant, in consultation 
with their regular health carers, who select which treatments they take--no 
intervention by study investigators is made on the participant's treatment. 
Observational study designs rely on deliberate matching, or post hoc adjust
ment, to compare the groups under investigation. Historically controlled 
studies, which compare patients taking a 'new' treatment with a historical 
cohort of patients who were treated with the conventional treatment, rely on 
similar matching and post hoc adjustment to analyse clinical data. 2 Interven
tional studies, by contrast, allocate patients to active treatment or control. 
In randomised interventional studies, allocation is achieved using a random 
process. Providing the study is large relative to the number of potential con
founders, randomised allocation ensures that the experimental groups are 
roughly equally matched for characteristics that may influence a patient's 
response to treatment. To the extent this rough matching for confounders is 
achieved, deliberate matching and post hoc adjustment is not required. 

In non-randomised interventional studies some other method is used to 
allocate patients to treatment or control. Perhaps experimental groups are 
deliberately matched by individuals blinded to which group will eventually 
receive the treatment-this may allay concerns about allocation bias in the 
groups at baseline. Allocation bias is another term for 'investigator-selection 
bias', and refers to investigators influencing the make-up of the experimental 
groups by preferentially selecting patients for one group over another due to 
patient characteristics (a process which may be subconscious). Observational 
studies do not suffer from allocation bias (because they do not 'allocate' 
patients), but they do suffer from selection biases more generally. As seen 
in the previous chapter, selection bias, which is any bias that comes about 
due to differences between the experimental groups other than the treatment 
under investigation, is a bigger problem for observational studies because it 
can be extremely difficult to identify, isolate and adjust for the multitude 
of factors that may have influenced participants to take, or not take, the 

21 will focus on the distinction between randomised interventional studies versus ob
servational studies, rather than historically controlled trials. Observational studies, such 
as cohort and case-control studies are the studies more frequently used in contemporary 
medical research. However1 the argument I provide for an epistemological distinction be
tween randomised interventional studies and prospective cohort studies is just as relevant 
if historically controlled cohort studies are used for comparison. 
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treatment under investigation. 

In some discussions of the role of randomisation in the literature it can be 
unclear whether the distinction of interest is randomised interventional stud
ies versus observational studies, or randomised interventional studies versus 
non-randomised interventional studies. The distinction is important for a 
number of reasons. First, proponents of EBM are predominately concerned 
with the first distinction (though, as I have noted a number of times, this 
is sometimes muddled by the terminology employed; proponents of EBM 
typically refer to randomised interventional studies as randomised controlled 
trials (RCTs) and to observational studies as 'non-randomised studies'). Sec
ond, the distinction between interventional study designs and observational 
study designs raises more questions of practical and ethical importance than 
the distinction between randomised and non-randomised interventional stud
ies. Interventional studies are considerably harder to run, and cost more than 
observational studies. Further, the ethical questions raised by interventional 
studies are more troubling than the questions raised by observational studies. 
In interventional studies participants must consent to be allocated treatment 
or control, whereas in observational studies it is the participants (usually 
in conjunction with their health carer) who decide whether or not to take 
a treatment. Thus, unless there is an epistemological benefit in conducting 
randomised interventional studies, we might as well conduct observational 
studies. 

By contrast, there is no practical imperative in favour of non-randomised 
interventional studies over randomised interventional studies. Indeed, as the 
Bayesian argument for randomisation provided in the next section makes 
clear, in the large drug trials of interest, non-randomised interventional stud
ies are typically slightly harder than randomised interventional studies to 
conduct. In such trials, deliberately matching patients will require more 
work than random allocation. In addition to being easier, randomised in
terventional studies have a number of epistemological advantages over non
randomised interventional studies in testing drug treatments. 
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4.3 Randomised interventional study designs 
are epistemologically superior to obser
vational study designs 

Worrall is right to criticise the proponents of EBM for claiming too much on 
behalf of randomisation. Proponents are wrong to claim (or imply) that ran
domisation guamntees the results of a clinical trial. When judging evidence 
for therapeutic decisions, the design of the study providing the evidence is 
but one of many important considerations. EBM's claims, in as much as they 
overshadow these considerations, are far too broad. Rather than all of sci
ence, or all of medicine, well-conducted randomised interventional studies are 
epistemologically superior to well-conducted observational studies in a much 
narrower domain. My aim is to show that, ceterus paribus, randomised inter
ventional studies provide superior evidence in testing the efficacy of drugs. 

Recall, efficacy refers to whether the drug works as expected under ex
perimental conditions. Most clinical trials are set up to test the question of 
whether the drug is efficacious. Questions of efficacy can be made precise. 
Does the drug benefit the selected patients in the primary clinical outcome? 
The quality of the evidence that the trial provides depends on whether the 
trial employed appropriate methods to rule out, or minimise, as many sources 
of systematic error (bias) as possible. 

The argument for preferring randomised interventional studies in tests of 
a treatment's efficacy proceeds in two parts. Chapter 3 showed that interven
tional studies have the capacity to rule out a form of bias that observational 
studies are particularly prone to. Here, I'll focus on what it is about test
ing the efficacy of drugs that makes study designs that have the capacity 
to rule out this bias important. Knowledge of causal processes in clinical 
science is highly uncertain. It is because of this uncertainty that the delib
erate matching and post hoc adjustment employed in observational studies 
can be problematic. In addition, the argument for randomised interventional 
studies as it is presented in the epidemiological literature will be illustrated. 
In the epidemiological literature the argument for randomised interventional 
studies equivocates on the sense of 'bias' that is eliminated or reduced by 
this study design. I'll attempt to disambiguate this argument. What results 
is an argument for interventional studies over observational studies in tests 
of efficacy. In the subsequent section, I'll provide a Bayesian rationale for 
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mndomisation in interventional studies. 

4.3.1 Why interventional studies 

Causal knowledge in clinical medicine is provided by the basic medical sci
ences, such as physiology and pharmacology. Despite the expanding knowl
edge in physiology and pharmacology, and the empirical knowledge provided 
by the extraordinary number of randomised interventional studies conducted 
each year, when it comes to the clinical sciences-inferences regarding how 
a patient or group of patients will respond to a therapy-there is often more 
unknown, or uncertain, than known. 

Basic and clinical sciences have a very different focus. Pharmacology and 
pathophysiology are extensions of biology; focus is given to the biological 
effects of drugs and diseases respectively. To gain an understanding of these 
biological effects, systems and mechanisms within the body are isolated. The 
individual, as a single complex whole, is the first thing that is abstracted 
away. This abstraction is necessary in order to develop, test, and improve 
the causal explanations provided by these basic sciences. Such causal ex
planations are vital for the clinical sciences, but focus is given to a entirely 
different question. 

Clinical sciences work at the level of individuals (or groups of individuals 
with similar characteristics), and try to predict, or understand, what effect 
treatment will elicit. Two difficulties present themselves at this level. Some
times there is a lack of sufficient biological knowledge to be able to predict the 
outcome in an individual. Other times there is a wealth of biological knowl
edge, but insufficient detail to differentiate how the systems and mechanisms 
at play will interrelate in a given individual; that is, despite a comprehensive 
understanding of the underlying causal processes, it is impossible to predict 
what the overall effect of treatment will be. It is at this level that the empir
ical information provided by randomised interventional studies is invaluable, 
and superior to that provided by observational studies. 

The set-up and analysis of observational studies requires investigators to 
estimate the effects of causal processes that influence the effects of a treat
ment in a patient-more so than is necessary in randomised interventional 
studies. Observational studies follow patients undergoing routine care. It 
is the patients, and their regular health carers, who have made the choice 
whether or not to take the treatment under investigation, often sometime 
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pnor to the study. There are many possible factors that may influence 
whether or not patients choose to take a particular treatment, and any one 
(or a combination) of these may also influence the patient's outcomes. Due 
to the uncertainty in causal knowledge in clinical science, it is usually im
possible to isolate which of the many possible causal factors differentially 
distributed in the experimental groups may influence the observed effects of 
treatment. The investigators of observational studies, by deliberate match
ing or post hoc adjustment, attempt to minimise the effects of such possible 
confounding factors. This requires estimation of the effects of different pa
tient characteristics on their response to treatment, which in turn requires an 
extensive understanding of the causal processes at play. The correct analysis 
of observational studies is dependent on the veracity of these assumptions. 

Interventional studies that employ methods to avoid allocation bias don't 
have this problem. There is no need to identify causal factors that may 
influence the outcomes under investigation from the myriad of causes that 
may have led a patient to be on, or not on, the treatment under investigation. 
In interventional studies, participants are allocated treatment or control. The 
analysis of interventional studies does not rely on assumptions made about 
the possible influences of factors that have led participants to choose whether 
or not to take the therapy. 

Of course, in interventional studies many other assumptions and meth
ods are needed to ensure the observed results are reliable. Bias, including 
other forms of selection bias, can occur in interventional studies. There can 
be important differences in experimental groups at baseline in randomised 
interventional studies. While the random allocation can be checked to ensure 
that known confounders are equally distributed, no checks are possible for 
unknown confounders. More on this in a moment. And even if the allocation 
appears appropriate at baseline, the possibility of differences arising after 
the allocation still needs to be minimised. This is achieved by maintaining 
allocation concealment (from participants and investigators), and by ensur
ing that the analysis does not rely on any post-allocation characteristics. 
Considerations such as these emphasise the care needed in conducting and 
interpreting any type of clinical reasearch. But, importantly, none of this 
undermines the benefit that interventional studies possess over observational 
studies. One specific source of bias is ruled out; bias due to patients, and their 
regular health carer, choosing whether or not to take the treatment under 
investigation. And because this source of bias is eliminated, well-conducted 
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randomised interventional studies, when compared to well-conducted obser
vational studies, do not rely to the same extent on assumptions about the 
causal processes at play. 

The importance of the decisions made on the basis of tests of efficacy also 
plays a role in the argument for interventional studies. Tests of efficacy are 
used by regulatory agencies to decide whether a new drug should be put on 
the market. In this situation there is typically not a rich understanding of 
the causal processes at play-at least not enough of an understanding to be 
able to isolate and adjust for all of the causal factors that could influence the 
effects of a therapy (and be differentially distributed in groups of patients 
who would select to take the therapy versus those patients who would elect 
not to). Given that results of tests of efficacy are used to decide an issue of 
such importance to public health, it is important that the test is rigourous. 
There is good reason to want to rule out or minimise as many potential 
sources of error as possible, and conducting interventional studies rather 
than observational studies as tests of efficacy help to achieve this rigour. 

This is the argument for interventional studies in tests of a treatment's 
efficacy. While a form of this argument is provided in the epidemiological 
literature, the argument is often less than clear due to ambiguity in use 
of the term 'bias' (the ambiguity noted in the previous chapter, see 64). 
A good J!lustration is provided by Collins and MacMahon (2007, p. 16).3 

This particular quote was provided in the previous chapter; by returning 
to it I hope to illustrate the ambiguity often present in the epidemiological 
argument for randomised interventional studies. 

As discussed, randomisation minimises systematic errors (i.e. bi
ases) in the estimates of treatment effects, allowing any moderate 
effects that exist to be detected unbiasedly in studies of appro
priately large size. By contrast, observational studies-such as 
cohort studies and case-control studies-involve comparisons of 
outcome among patients who have been exposed to the treatment 
of interest, typically as part of their medical care, with outcome 
among others who were not exposed (or comparisons between 
those with different amounts of exposure). The reasons why cer
tain patients received a particular treatment while others did not 
are often difficult to account for fully, and, largely as a conse-

3 A similar argument is also provided in (Yusuf et al. 1984) 



90 Evidence based medicine: Evolution, Revolution, or Illusion? 

quence, observational studies are more prone to bias than are 
randomised trials. 

Two arguments are muddled together here. The first, relying on the informal 
notion of bias, is the argument for interventional studies that we have been 
discussing. The second argument, which relies on statistical bias, is perhaps 
best seen as an argument for randomisation in interventional studies. While 
the first argument is persuasive, the second is not. 

Fletcher et al. (1996, p. 7) adopt the definition of bias as 'a process at 
any stage of inference tending to produce results that depart systematically 
from the true values'. This is the sense of bias referred to by Collins and 
MacMahon in the statement that '[randomised interventional studies] min
imise systematic error (i.e. biases) in the estimates of treatment effects'. More 
specifically, the bias that is minimised in randomised interventional studies, 
in contrast to observational studies, is the systematic error that can occur 
when experimental groups differ systematically in some factor, other than 
treatment, that influences patient outcomes and is differentially distributed 
in patients who choose to take the treatment and those who choose not to. 
Observational studies are prone to this particular source of bias because 'the 
reasons why certain patients received a particular treatment while others did 
not are often difficult to account for fully'. Note, it is the possibility of this 
form of selection bias that differentiates observational studies from interven
tional studies-a possibility that cannot be ruled out because of the fallibility 
of causal knowledge in clinical science. 

The second sense of bias is the more technical sense used in parametric 
statistics. Recall, statistical bias refers to the expectation of a estimator of 
an unknown parameter. An estimator is unbiased if the mean of the esti
mator over the entire sample space equals the true value of the unknown 
parameter. 4 A test-statistic is an estimator of the unknown parameter under 
investigation in a clinical trial. If the test-statistic provides an unbiased esti
mator of the unknown parameter, then, were the trial repeated indefinitely, 
the mean value of the test-statistic would equal the true value of the unknown 
parameter. Of course, trials are never repeated indefinitely.5 Nevertheless 

4 Stuart and Ord (1991, p. 609) provide this definition of bias. Stuart and Ord emphasise 
that this sense of bias 'should not be allowed to convey overtones of a non-technical nature'. 

5Even if a trial (which was perfectly internally valid) was to be repeated an incredible 
number of times, the mean of the observed values of the test-statistic would not necessarily 
equal the true value of the unknown parameter. The assurance of unbiasedness refers to 
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statistical bias is put to use in the epidemiological literature to argue for ran
domisation in interventional studies. This argument is hinted at in Collins 
and MacMahon's statement that randomisation allows 'any moderate effects 
that exist to be detected unbiasedly in studies of appropriate size'. Note the 
shift from randomised interventional studies minimising bias in comparison 
to observational studies, to randomisation allowing the moderate effects of 
treatment to be detected unbiasedly. 

This argument for randomisation in interventional studies (as opposed to 
randomised interventional studies) is often made in the clinical literature. It 
is one of the arguments Worrall (2007a; 2002; 2007b) shows to be flawed-at 
least as an argument for randomisation to be sine qua non. Devereaux and 
Yusuf (2003, p. 107) provide a further example of how the argument is stated 
in the epidemiological literature 

The placement of RCTs at the top of the therapeutic research 
hierarchy has occurred due to the realisation that RCTs are su
perior to observational studies in evaluating treatment because 
RCTs eliminate bias in the choice of treatment assignments and 
provide the only means to control for unknown prognostic factors. 
[emphasis added] 

The argument is sound, but as I discussed in the previous chapter, the sound
ness of the argument relies on understanding 'bias' in the statistical sense. 
And once this made clear the assurances that the argument provides the 
clinician ring hollow. 6 

the estimation of the test-statistic over the entire sample space. In any long run of trials, 
even an infinite long run, the estimator will not necessarily equal the true value of the 
unknown parameter. 

6 Recall1 randomisation in interventional studies eliminates statistical bias arising from 
the differential distribution of confounding factors in experimental groups at baseline. And 
randomisation achieves this whether or not the confounding factor is suspected. Randomi
sation in interventional studies achieves this seemingly magical outcome because statistical 
bias refers to the influence of confounding factors in expectation-that is, the expected in
fluence of confounding factors over the entire sample space. On any particular randomised 
allocation of experimental groups there is a possibility that confounding factors will be 
unevenly distributed between the groups. While the distribution of known confounders 
can be checked after any single random allocation, this is clearly not possible for unknown 
confounders. Indeed, as noted by both Worrall (2002, p. 8324) and Howson and Urbach 
(2006, pp. 195-6), the probability that any single confounder is unevenly distributed on 
any particular random allocation ranges from zero to one. However, were the trial to 
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Proponents of the argument that randomisation is essential in medicine
because it eliminates statistical bias from uneven distribution in confounding 
factors at baseline-all too often neglect to explicate what eliminating 'sta
tistical bias' actually amounts to. Often any reference to expectation, or 
the indefinite repetition of trials, is obscured or absent (as is this case in 
the quote provided from Devereaux and Yusuf). The argument is made as 
if randomisation ensures the even distribution of known and unknown con
founders in a particular random allocation. Were randomisation to achieve 
this, then it may be considered sine qua non. But randomisation achieves 
nothing of the sort. 

Randomisation in interventional studies does not ensure the even distri
bution of all possible confounders at baseline. But, interventional studies do 
rule out bias (of the first, more informal sense) originating from the differen
tial distribution of confounders linked to whether or not a patient chooses to 
take a particular therapy. Interventional studies have the capacity to avoid 
a source of bias that cannot be avoided in observational studies. And this 
establishes an important epistemological distinction between interventional 
and observational studies in the context of tests of efficacy. Observational 
studies can certainly provide important scientific information. And, when 
we have a rich understanding of the causal processes at play, the episte
mological benefits of interventional studies will be minor. But none of this 
undermines the importance of the distinction between interventional studies 
and observational studies in the context of testing the efficacy of drugs. 

Worrall (2007a, pp. 1017-1018) acknowledges that observational studies 
are more prone to certain types of bias than randomised interventional stud
ies, but gives this very little emphasis. Instead, Worrall makes the point that 
providing the treatment effects are sufficiently large, the effects of selection 
bias in observational studies are likely to be too small to entirely swamp the 
beneficial effects of the treatment. This is true, but does not resolve the 
problem for decision makers. Estimating the magnitude of any treatment 
effect is vital for decisions (a point that Worrall 2007a, p. 1017 accepts). 
Selection bias may lead to either an over- or under-estimation of the effect 

be repeated indefinitely, with a new random allocation of trial participants performed on 
each occasion, then, in the indefinite sequence of trials, the imbalance of any confounder 
on a particular random allocation will be counteracted by the distribution of that con
founder on another allocation. The overall effect of known and unknown confounders in 
the indefinite sequence of trials will be zero. 
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of treatment witnessed in an observational study. Even if the potential bias 
is smaller than the size of the treatment effect, it will often be impossible to 
estimate the magnitude of the bias-or for that matter its direction-with 
any degree of confidence. The difficulty this poses for therapeutic decision 
makers emphasises the importance of the superiority of interventional studies 
when testing the efficacy of therapies. 

4.3.2 Why randomised interventional studies 

The final part of the argument for randomised interventional studies relies 
on Bayesian considerations to provide a rationale for randomisation as the 
preferred method of ruling out allocation bias in interventional studies. The 
Bayesian argument for randomisation in interventional studies has been pro
vided by Lindley (1982) and Suppes (1982). An outline of the argument is 
provided below. Lindley's position is of particular interest because Worrall 
attributes to him a different view. Worrall suggests there is no straightfor
ward Bayesian argument for randomisation, and enlists Lindley's support. 

As always with Bayesianism, there are a variety of positions on 
offer (the phrase 'the Bayesian account' always makes me smile), 
but the most straightforward one articulated, for example, by 
Savage (who later however, for reasons it seems difficult to fully 
understand, decided it was 'naive') and Lindley, as we in effect 
noted earlier, 7 sees no role for randomisation here at all. (Worrall 
2007b, p. 482) 

Perhaps Worrall is best interpreted as suggesting there is no Bayesian argu
ment for randomisation to be sine qua non (and on this we would agree), 
because Lindley certainly acknowledges a role for randomisation in certain 
contexts. 

Lindley recognises the importance of the experimental groups being 
evenly matched for known confounding factors. And also that whether the 
experimental groups are considered well-matched is ultimately a subjective 
judgment. He refers to an allocation in which the investigator judges the ex
perimental groups evenly matched as 'haphazard'. The need for the allocated 

7This appears to be referring an earlier recognition of Lindley's suggestion that as the 
number of confounders increases, the probability is high that any one of these confounders 
ends up being unevenly distributed in the randomly allocated groups. 
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groups to be haphazard is more important than randomisation (Lindley 1982, 
p. 439). But, while it is possible for the Bayesian to deliberately allocate the 
experimental groups, and hence ensure a haphazard design, the complexity 
accrues quickly. The expected utility of each possible allocation needs to be 
calculated. And, in order to calculate this utility, the effect of each possible 
confounder needs to be estimated. This is no easy task when many of the 
confounding factors are merely plausible rather than well-known or under
stood, which is precisely the situation in the clinical sciences. In response to 
this problem, Lindley suggests a 'reasonable approximation to the optimum 
design' is to randomise and then check to ensure the groups are haphazard 
(Lindley 1982, p. 439). 

Consequently the two, apparently conflicting, views of the ran
domiser and the Bayesian have been brought into agreement. It 
is the haphazard nature of the allocations, not the random ele
ment, that is important; and the use of a haphazard design saves 
the Bayesian a lot of trouble, with small chance of any apprecia
ble gain, by producing a situation relatively easy to analyse. A 
further point is that a detailed, Bayesian consideration of possi
ble covariates would almost certainly not be robust in that the 
analysis might be sensitive to small changes in the judgements 
about covariates. 

The final sentence of this quote recogmses the importance of context. If 
the number, and overall effect, of possible confounders is uncertain, then the 
Bayesian calculation needed for deliberate matching becomes difficult. This is 
certainly the case for the large medical trials conducted to test the efficacy of 
a new drug treatment. In much smaller trials, with few possible confounders, 
deliberate matching of the experimental groups may be more convenient 
than randomising and checking whether the groups are well-matched (and 
re-randomising if necessary). 

Suppes (1982) also provides Bayesian reasons to randomise. In situa
tions such as in the clinical sciences, where knowledge of causal processes is 
available, but unable to accurately predict the response to treatment, ran
domisation both simplifies computation, and aids communication to (and 
acceptance by) a sceptical scientific audience. These two reasons for the 
Bayesian to randomise are linked. Randomising simplifies the Bayesian's 
computation for the reasons noticed by Lindley. There is no shortage of 
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plausible causal processes in the clinical sciences, rather, what the clinical 
sciences lack is knowledge of how these plausible causal processes will inter
relate in any particular therapeutic situation. Thus, in addition to a small 
number of well known, and reasonably well understood confounders-which 
can be checked to ensure they are evenly distributed in the experimental 
groups-there is a potentially limitless combination of additional causal pro
cesses that may affect the outcome of the treatment. The Bayesian can take 
(a least some of) these additional plausible causal processes into consider
ation in forming a prior based on a particular allocation of experimental 
groups, but the resulting prior will have a high variance, and be dependent 
on personal judgements. Randomising (with a check to ensure the alloca
tion is haphazard) and assuming that randomisation has either resulted in 
the even distribution of additional plausible (but uncertain, or yet to be fully 
elucidated) causal factors, or that such factors are likely have a minimal effect 
on the intervention, provides a rationale for adopting a much simpler prior 
distribution, as well as helping narrow the many ways that the experimental 
results could be incorporated into the likelihood function (see Suppes 1982, 
pp. 464-6).8 

This simplification of the Bayesian computation also aids communicating 
the experimental results. Simplification directly assists communication, a 
point that should not be ignored. But perhaps more persuasively, randomis
ing can provide some common ground for agreement on both the Bayesian 
prior and the analysis of the experimental results (that is, randomisation 
may aid agreement on the experimental distribution-whether a Bayesian or 
frequentist analysis is to be conducted). Of course, this requires the audience 
to grant the assumption that merely plausible confounding factors are either 
evenly distributed or unlikely to affect the results. (Remember, any well un
derstood confounders will be checked to ensure they are evenly distributed). 
But if this assumption is granted, there is a much improved possibility of 
reaching agreement on how the experiment should be analysed. 

The possibility of reaching agreement on the personal judgements needed 
by the Bayesian to justify a particular deliberate allocation is much less likely. 

8Clearly, simplifying the prior distribution and the likelihood function are benefits 
if a Bayesian analysis of the clinical trial is to be conducted. It should be noted that 
randomising also simplifies the experimental distribution for frequentist statistical analysis. 
I discuss some of the ramifications of adopting a Bayesian justification for randomisation 
for the continued frequentist analysis of clinical trials below. 
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The possibility of consensus is an important advantage of randomisation. It 
blocks a certain type of sceptical reply-a scepticism towards the personal 
judgements of the investigator. The more assumptions needed for the anal
ysis, the more difficult it is to persuade a sceptical scientific audience. This 
is directly analogous to the problem encountered in observational studies
interpretation of observational studies is more difficult because the analysis 
relies on the assumptions made by the investigators when they deliberately 
match the experimental groups or make post hoc adjustments. 

A sceptical reply can, of course, also be made against a randomised in
terventional study, but it is of a different character. A sceptical audience 
may question the analysis of a randomised trial on the basis of an unevenly 
distributed plausible confounding factor. Indeed, a reply of this sort is al
ways possible given that randomisation does not ensure the even distribution 
of confounders on any particular allocation. In contrast to non-randomised 
interventional studies, however, the burden of proof is on the sceptic rather 
than the investigator. The sceptic needs to argue that the differential distri
bution of the causal factor is sufficient to explain the experimental results. 
In the clinical sciences the debate often follows such a path. The alterna
tive hypothesis proffered by the sceptic, if plausible, can then be tested in a 
new trial. Such toing-and-froing plays an important role in how knowledge 
accumulates in the clinical sciences. 

Where does the Bayesian justification for randomising in interventional 
studies leave a dyed-in-the-wool frequentist? After all, contemporary clini
cal trials are almost exclusively analysed by frequentist methods. Can this 
continue if the justification of randomised interventional studies relies on 
Bayesian considerations? While I am sympathetic to a completely Bayesian 
approach to the design, analysis and interpretation of clinical research, I 
won't argue for that view here. Rather, I'll limit myself to a couple of brief 
comments that may convince a frequentist that the Bayesian rationale for 
randomising should not be seen as too much of a problem for continued fre
quentist analysis of clinical trials (if that is your view on how clinical trials 
should be analysed). 

First, randomisation--done for whatever reason-provides the expen
mental distribution that underpins the frequentist hypothesis test. Surely, 
the important issue for the frequentist statistician is that the experimental 



Why Randomised Interventional Studies 97 

groups were randomised, not why they where randomised. 9 Second, a stick
ing point in the argument for randomisation for the frequentist is presumably 
its reliance on personal judgements. The frequentist position is often con
strued as rejecting any reliance on subjective judgement in inference. Such a 
position, however, is not tenable (and I doubt it is held by too many frequen
tist statisticians when explicitly discussed). As Howson and Urbach (2006) 
show (time and time again) the judgement of the investigator (or analyst) 
plays a central role in frequentist inferences. Instead, the frequentist might 
restrict their view to a rejection of subjective judgement playing a role in 
drawing inferences from observed data once the experimental analysis has 
been specified. 10 If this restriction is accepted, then perhaps the frequentist 
can accept the Bayesian justification for randomisation, or develop a justifi
cation along similar lines to the argument that has been provided, without 
being explicitly Bayesian. 

4.4 Conclusion 

Randomisation does not provide the guarantee that all possible confounders 
are evenly distributed in experimental groups, and therefore does not provide 
some irrefutable epistemic good. However, given fallible access to knowledge 
of causal processes in the clinical sciences, some epistemic good is provided 
by conducting randomised interventional studies rather than observational 
studies. Randomised interventional studies rule out a source of bias that 
can occur in observational studies. Worrall is right to argue for a more 
positive view of observational studies than that provided by EBM (Worrall 
2002, p. S329). But randomised interventional studies are not epistemolog
ically equivalent to observational studies when known confounders appear 
adequately balanced. There is good reason to conduct randomised interven-

9What has been shown, by both Worrall (2007a, pp. 996~1001) and Howson and Ur
bach (2006, pp. 188~ 194) is that randomisation underpinning the frequentist tests provides 
no justification for randomisation to be essential for science. This argument in isolation is 
not an argument against the frequentist hypothesis test. (Of course, Howson and Urbach 
(2006) provide a range of arguments against frequentist statistical tests, but, presum
ably, given the frequentist is still a frequentist, he or she does not find these arguments 
compelling). 

101 think this is a more accurate representation of the view, but in any case, it is certainly 
more tenable. It is difficult to see how subjective judgement can be excluded from the 
specification of an experiment. 
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tional studies rather than observational studies when testing the efficacy of 
drugs. 

Of course, efficacy is only part of the story when it comes to informing 
therapeutic decisions. Clinicians need to make judgements about the effec

tiveness of a therapy in individuals and groups. These judgements rely on 
the external validity of clinical research, and raise a number of considerable 
challenges. 



Chapter 5 

The Challenge of External 
Validity 

5.1 Introduction 

Clinical research aims to achieve two primary goals. The first is to estab
lish the efficacy of a therapy; that is, establish that the therapy works (in 
some population). The second, more difficult goal, is to inform therapeutic 
decisions. This second goal attempts to define who the therapy works for (as 
well as when it works, and even perhaps, in the ideal situation, how it works 
when used under routine circumstances). These are questions of effectiveness. 

EBM focusses squarely on the second goal: informing therapeutic decisions, 
and assessing the effectiveness of therapies. To do this EBM proposes that 
decisions be made in accordance with its 'hierarchy of evidence'. Evidence 
gained from randomised trials and systematic reviews of randomised trials 
reside at the pinnacle of EBM's hierarchy. 

While EBM aims to inform therapeutic decisions, the hierarchy it ad
vances only substantiates claims regarding efficacy. As seen in Chapter 3, 
EBM 's hierarchy is best viewed as a hierarchy of comparative internal va
lidity. There is an important gap between having evidence of high internal 
validity, and having the kind of evidence that clinicians require to inform a 
decision regarding the patient facing them in the clinic. This is the difference 
between having good reason to expect the accuracy of the observed results of 
an experiment, and having good reason to expect these results appropriately 
generalise to an individual. The challenge of external validity is the challenge 
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of traversing this gap. 
Recall, 'internal validity' refers to the degree to which the results of a 

study accurately reflect the effects of the intervention on the participants in 
the study. 'Bias' occurs when any process produces results that systemati
cally depart from the true effects of the treatment. Hence, studies which are 
subject to more possible sources of bias-or biases of greater magnitude
have lower internal validity than studies with fewer sources of bias (or biases 
of smaller magnitude) 1 'External validity' is the degree to which the results 
of a study can be extended to individuals not involved in the study. 

EBM proponents recognise that the practice of EBM requires more than 
simply consulting the hierarchy; incorporating patient values, and ensuring 
the 'evidence' is provided in the right form to statistically savvy clinicians 
are also important (Straus 2004). But as for judging the evidence for a 
therapeutic decision, EBM's hierarchy is put forward as both necessary and 
sufficient. This is seen in each of EBM's guidebooks (see the quote from 
Straus et a!. 2005 provided above, and the quote from Guyatt and Rennie 
2002 provided on page 41). I argue that consulting EBM's hierarchy is not 
sufficient for informing therapeutic decisions from an evidential perspective. 
The hierarchy, by organising study designs by their capacity to minimise the 
magnitude of bias in large therapeutic trials, provides an important input 
into therapeutic decisions. Ensuring the input from clinical studies is as 
accurate as possible is necessary for appropriate therapeutic decisions. But, 
because applying the results of clinical studies to individual patients raises 
a set of additional questions, consulting EBM's hierarchy is not sufficient for 
judging the evidence for a therapeutic decision. Indeed, slavish attention 
to EBM's hierarchy will lead to poor decisions; evidence from observational 
studies (where available), and the theoretical resources of the basic medical 
sciences are vital tools for appropriate therapeutic decision making. 

I outline the challenge of external validity for therapeutic decisions in Sec
tion 5.2. The difficulty of applying the results of well conducted randomised 
trails to individual patients is examined. In Section 5.3 I show how evidence 
from observational studies, considered in conjunction with randomised trial 
evidence, can improve external validity. In Section 5.4, I consider the question 
of why proponents of EBM might deny the important role of observational 
studies in therapeutic decision making. 

1This is the more general notion of 'bias', as opposed to 'statistical bias' discussed in 
previous chapters. 
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5.2 The Challenge of External Validity 

Clinical epidemiology has developed many methods to reduce the possibil
ity of systematic error, or bias, in large drug trials. For instance, assessing 
the efficacy of a drug in a randomised interventional study, rather than an 
observational cohort study, reduces the risk of systematic differences in the 
experimental groups at baseline. There are many methods in addition to 
conducting randomised interventional studies that are used to increase in
ternal validity, and thus improve the accuracy of assessing the efficacy of a 
therapy. Examples include selecting a relatively homogenous population in 
which to test the treatment and focussing on the overall average effect on a 
major endpoint in the trial rather than the effect observed in smaller sub
groups. When used appropriately these methods increase internal validity. 
However, these same methods, may reduce external validity. 

For instance, if the sample in a trial is relatively homogenous it can be 
difficult to infer whether an individual who would have been excluded from 
the trial would reap the benefit observed in the study. The difficulty arises 
whether the members of the trial sample are of similarly 'low risk' or similarly 
'high risk'. Often studies early in drug development select patients that are 
younger and only have the condition being treated; this raises the question 
of whether the therapy will be effective in older, sicker patients. Conversely, 
later in drug development, trials will often enrol older 'high risk' patients who 
present to specialist units and suffer the treated condition more severely. This 
is done to ensure a sufficient number of 'events' will occur to adequately test 
the effects of the therapy on a major outcome such as mortality. In trials 
such as these, it can be difficult to infer the effectiveness of the therapy in 
patients that present in general practice. 

Most of the methods that can be employed to improve internal validity 
have the potential to reduce external validity. Even randomisation may re
duce the external validity of a trial. Systematic differences may arise between 
the patients who are willing to be randomly allocated treatment, and the en
tire population with the condition. Peter Rothwell (2007a, p. 64) provides 
an example of a trial of treatments for breast cancer. If women at differ
ent stages of the disease have a strong preference for particular treatment 
modalities, this preference may lead to a difference between the women who 
are willing to receive a particular treatment via random allocation, and those 
women who will decline entry into the study. If the effects of the therapy are 
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also linked to the stage of the disease, then the results of any randomised 
trial will not be applicable to those women who would refuse to participate 
in the trial. 2 

Another difficulty for the external validity of clinical trials is that many of 
the methods that improve internal validity are conservative. The primary aim 
of most randomised trials is to assess whether the drug is efficacious. Many 
large drug trials are conducted in order to pass regulatory requirements. The 
sponsor is seeking marketing approval for a new drug, or a new indication for 
an existing drug. Hence regulatory bodies require that these trials employ 
methods that reduce the risk of finding a drug efficacious when, in truth, it is 
not. This leads to a tendency to minimise the risk of false positive findings, 
even if they increase the risk of false negatives. 

Intention-to-treat analysis provides a good example of this conservatism. 
Intention-to-treat analysis is often recommended in preference to 'per proto
col' analysis (Altman eta!. 2001, p. 681). 'Per protocol' analyses include only 
those participants of the study that take the treatment under investigation 
and have their outcomes assessed. The concern is that attrition from the 
trial may not be random-that is, there is a risk of a systematic difference 
between those patients who continue to take the therapy and remain avail
able for follow-up, and those patients who choose not to take treatment, are 
removed from the study, or are otherwise lost to follow-up. For example, if 
an unsuspected adverse effect of the treatment causes a number of patients 
to leave the study prior to the planned assessment, the per protocol analysis 
may falsely suggest the drug is more beneficial than it is (only participants 
who did not suffer the adverse effect will be left). But, the decision to con
duct an intention-to-treat analysis is made prior to the trial, and typically it 
will be reported without the per protocol analysis, even when there has not 
been any differential drop-out between the groups. If compliance with the 
trial therapy is low (and this low compliance is unrelated to any effects of the 

2See Rothwell (2007a) for a dizzying list of factors that can reduce the external validity 
of randomised trials, and systematic reviews of randomised. trials. Examples include: 
differences in the healthcare system between where the trial was conducted and where 
results will be applied; how centres and clinicians participating in the trial were selected 
(were they more enthusiastic about the treatment, or are the clinicians involved early 
'adopters', or in some other way different); and how were 'recruit-able' patients selected, 
even prior to applying the selection criteria of the trial the process of considering which 
patients to invite into the trial may introduce differences between the trial population and 
those who will eventually be treated. 
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therapy), then the intention-to-treat analysis will under-estimate the effect 
of the drug in those willing to take the therapy. While it can be argued the 
intention-to-treat analysis provides the clinician with information on what 
to expect from the therapy in those patients she offers treatment, many may 
well prefer to know what to expect in those patients who actually take the 
drug. 

Questions of external validity arise from two different directions. Call the 
'target population' of a clinical trial the population of patients that will be 
considered for treatment in routine care. The first set of questions regard 
whether the sample of patients in the trial reflect the target population. 
Ideally, the sample population of the trial would be a random sample from 
the target population; then (assuming the study is free from bias) the average 
effect of the treatment observed in the trial would be the same as the expected 
average effect of treatment in the target population. However, samples in 
clinical trials are not random samples from the target population. Rather, the 
trial population is made up of patients the investigator has access to, and that 
meet the trial's inclusion and exclusion criteria.3 Therefore extrapolating the 
results of clinical trials always requires judgement. If the sample population 
is considered representative of the target population in the relevant respects, 
then the observed results of the trial would be expected to reflect the effects 
that, on average, would occur in the target population. Typically the sample 
of the trial will differ from the target population in some respect. Perhaps 
a trial selects a 'high risk' sample of patients. In this situation, if the trial 
sample is considered to be representative of high risk patients within the 
target population, the findings of the study might, in the first instance, be 
restricted to this set of the target population. Further judgement is necessary 
as to whether the findings of the study could be extrapolated to patients at 
lower risk. This set of questions regarding external validity can be summed 
up in the following way: Can we expect the average result observed in the 
trial to accurately predict the average response in the target population? 

A second set of questions regarding external validity arises by considering 
whether the observed results of a tria! are accurate for an individual. The 
results of clinical trials reflect the average response to the therapy; while 

3While it is possible to mentally construct a target population from knowing the type of 
patients the investigators had access to, and the inclusion and exclusion criteria, there is no 
straightforward way that the sample population is a random sample from this constructed 
target population. 
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the response of some patients reflect this average, some respond better and 
others worse. Often, patients with different characteristics seem to respond 
differently to the treatment. For instance, treatment effects might vary ac
cording to gender, severity of disease, or membership to particular centres 
in a multi-centre trial. It is difficult, however, to determine the extent to 
which the differential response is explained by the differing patient charac
teristics. Any observed variety in response can be explained by random error, 
or the patient characteristic. Even when no variability in response is appar
ent among the reported patient characteristics, there is the possibility that 
patient response differs according to some unsuspected, and undocumented, 
characteristic. This creates a dilemma. Clinicians can rely on the overall re
sults of clinical trials when making decisions about their patients. In which 
case, assuming the trial has been set up appropriately, these results will have 
the warrant associated with them that is provided by frequentist methods; 
for instance, the primary endpoint of the trial will have been adequately 
powered to provide a reliable test of the primary hypothesis. Or, clinicians 
can endeavour to match their patient to subgroups of participants within the 
trial, who share what the clinician judges to be the relevant characteristics of 
their patient. In which case, the findings from the trial for the subgroup of 
participants of interest may provide data more relevant to the patient in the 
clinic, but, according to frequentist methods, will not carry the same war
rant associated with the findings (due to the smaller sample of participants 
involved). This dilemma, in some form, has exercised the leading propo
nents of modern clinical trials, 4 and the appropriate response continues to be 
vigourously debated (details are discussed in Chapter 7). All participants to 
this debate agree that the question is central to the appropriate application 
of clinical research to individual patients. 

The two sets of questions that arise regarding the external validity of clin
ical research are specific examples of the much more general reference class 
problem The reference class problem arises when the probability of an event 
differs depending on how the event is classified. For instance, we may wonder 
what the probability is that an 86 year old woman with atrial fibrillation liv
ing in rural Queensland will benefit from taking the anticoagulant warfarin. 
Each of the following could be used to calculate this probability: the overall 
findings from a systematic review of the large clinical trials; the findings from 

4Both Archibald Cochrane (1971) and Austin Bradford Hill (1966) have lamented the 
difficulty of this question. 
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the subgroup of elderly female patients included in the systematic review; or, 
data from a much smaller study looking at the effects of warfarin in patients 
in rural communities with limited access to monitoring facilities. Arguments 
can be made for each of these 'reference classes'-that is the problem. 

As Alan Hajek (2007) shows, the reference class problem is not restricted 
to the frequentist interpretation of probability, but rather any interpretation 
that can serve as a 'guide to life'. The epistemological difficulty posed by the 
reference class problem may not be 'solvable'-in the sense that one partic
ular reference class will become the indisputably right one-but, good and 
bad arguments can be given for adopting a particular probability based the 
available reference classes (at least in the medical context5 ). In this chapter 
I argue that observational studies play an important (and under-recognised) 
role in deciding the appropriate probabilities for therapeutic decisions. 

Observational studies can help answer the question of whether the ob
served response in randomised interventional studies will accurately predict 
the response in patients receiving the therapy in routine care. That is, ev
idence from observational studies assists the assessment of the effectiveness 
of therapies in the target population. Proponents of EBM, by arguing that 
therapeutic decisions should be informed by evidence from randomised trials 
rather than evidence from observational studies, deny-or at the very least, 
devalue-this role for observational studies. 

5.3 The importance of observational studies 
to therapeutic decisions 

Proponents of EBM claim that applying EBM's hierarchy of evidence better 
informs therapeutic decisions. Patient care, they suggest, is better informed, 
and more likely to result in positive outcomes, when therapeutic decisions are 
based on the results of randomised trials rather than observational studies, or 
the findings of the basic sciences. This claim, however, fails to acknowledge 
the gap between high internal validity, and achieving therapeutic outcomes 

5In the medical context selecting the 'appropriate' reference class will depend on which 
causal factors are thought to be most important in the situation at hand. Ignorance about 
the causal details allows a debate to take place. In formal instances of the reference class 
problem, such as Bertram's paradox, no such debate is possible; there are two or more 
equally legitimate solutions. 
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in patients under routine care. EBM's hierarchy is justified on the basis 
of increasing internal validity. While high internal validity is important, 
therapeutic decisions need more than just well established claims of efficacy. 
Evidence from observational studies can be as, or more important to thera
peutic decisions as evidence from randomised interventional studies. Indeed, 
evidence from the two methodologies is often complementary. Observational 
studies should be recognised for their methodological strengths as well as 
their weaknesses. 

The weakness of observational studies in assessing claims of efficacy can 
be a strength when it comes to assessing a therapy's effectiveness. As Nick 
Black (1996) notes, observational studies often preserve the context of care 
better than randomised interventional studies. Preserving context of care is a 
weakness for observational studies in tests of efficacy. Because observational 
studies follow patients going about their lives it can be hard, if not impossible, 
to remove or account for all the factors that may confound an apparent 
association between treatment and effect. Randomised interventional studies 
eliminate this specific source of bias. But this gain in internal validity is 
achieved by taking patients out of routine care. 

Observational studies often utilise data collected during routine care. 
Wbile ensuring the accuracy and completeness of this data is a challenge, the 
possibility of using population-level data provides a degree of inclusiveness 
that randomised interventional studies are unable to match. Observational 
studies can also be considerably quicker and cheaper. This is particularly so 
for case-control studies, which can examine existing data registries retrospec
tively, and thus provide timely information on a variety of topics important 
to therapeutic decisions. While prospective observational cohort studies take 
as long as randomised trials, the reduced effort needed to recruit and monitor 
patients in observational cohort studies can substantially reduce costs. The 
reduced cost and relative convenience of observational studies, permit these 
methods to focus on topics that receive inadequate attention in randomised 
interventional studies. Because randomised interventional studies take time, 
and the evidence from observational studies would be useful while we await 
the results, observational studies would be important even if all therapeutic 
questions were equally well researched by randomised interventional meth
ods. Observational studies become considerably more important in a system 
in which only some therapeutic questions are optimally addressed by ran
domised interventional studies. 
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Drug safety is an excellent example of why observational studies are im
portant for therapeutic decisions. Observational studies are often superior 
to randomised interventional studies for detecting, understanding, and esti
mating the adverse effects of therapies. This is partly due to methodology. 
External validity is vital for assessing drug safety; clinicians need informa
tion on the possible harms of a therapy as it is used in routine practice. 
Safety data needs to be relevant to both who uses the treatment, and how 

they use it. Often many patients who would be treated with the therapy un
der routine conditions are excluded from randomised trials. And, for those 
that are included, treatment is often administered under considerably differ
ent conditions. Other reasons why observational studies are important for 
safety information are more political, and due to the way clinical research is 
conducted. 

The possibility of financial gain is a key incentive for conducting ran
domised trials. Recall that most randomised interventional studies of interest 
in therapeutic decision making are conducted by industry sponsors for the 
purpose of regulatory approval. For this reason, randomised interventional 
studies are much more likely to be set up to address whether a drug works 
rather than assess a drug's side effect profile. Of course, safety information 
is gained from large scale randomised trials that are primarily set up to test 
a benefit hypothesis, but such trials are not optimal for gaining information 
regarding the safety of the drug. Trials set up to test a benefit hypothesis will 
select particular patients, and provide the drug under restricted conditions. 

I provide two brief examples to illustrate the problems of the external va
lidity of randomised interventional studies in gaining evidence r"egarding the 
safety of therapies. First is the use of warfarin to prevent stroke in patients 
with atrial fibrillation. This case highlights the problems that some large 
randomised trials can have with external validity. The second case concerns 
the use of aspirin and clopidogrel in combination in patients with acute coro
nary syndrome. This example illustrates the contribution of observational 
studies to therapeutic decision-making. 

Randomised clinical trials have consistently shown that warfarin is supe
rior to both placebo and aspirin in preventing stroke in patients with atrial 
fibrillation (Lip and Lowe 1996). While warfarin presents a higher risk of 
adverse effects compared to aspirin, especially the risk of bleeding, the bene
fits of stroke prevention in the clinical trials outweighed the risks. However, 
generalising these results to patients under routine care is difficult. The tri-
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als were conducted in a highly select population; over 90% of the patients 
screened for entry into the trials were excluded (Lip and Lowe 1996).6 Fur
ther, the risk of bleeding while taking warfarin was potentially reduced by 
the close monitoring undertaken in the randomised interventional studies. 
Aspirin was found to be less efficacious, but is less likely to cause bleeding, 
and does not require the same level of monitoring. The important therapeutic 
question is whether, on balance of benefit and harm, warfarin is superior to 
aspirin in the target population. This question is only partially answered by 
the randomised studies that have been conducted. While some argue that 
a large randomised interventional study recruiting a sample population that 
reflects patients in general practice will fill the inferential gap (see Morgan 
2004, p. 546), others recognise that observational studies can provide im
portant evidence to assist making this therapeutic decision (Reynolds et al. 
2004, p. 1944). 

There are many therapeutic questions, like the use of warfarin in atrial 
fibrillation, that can not be addressed adequately by the available evidence 
from randomised trials. Contrary to the claims of EBM, observational studies 
can provide important evidence for therapeutic decisions in such situations. 
This is because observational studies are more inclusive, and examine the 
effects of therapies on patients undergoing routine care. It might be ar
gued that in some (or perhaps many) of these instances there is-in theory 
at least-a randomised interventional study that could be conducted that 
would provide the required evidence. But this misses the point. EBM makes 
claims about how clinicians should make therapeutic decisions. (EBM makes 
other claims as well, but let's focus on this one for the moment). Specifically, 
proponents advise that therapeutic decisions should be based on the results 
of randomised interventional studies rather than observational studies. This 

6Sophie Morgan (2004, pp. 544-5) gives further information on the highly selected 
population involved in the clinical trials examining warfarin in atrial fibrillation: 

Around 50% of patients with [atrial fibrillation] are over 75 years of age 
whereas only 20% of the trial patients were in this age bracket, 32% of 
patients are over 80 years and were not included in the trials. Exclusion 
criteria included old age ( > 75 years), serious illness (liver, kidney, brain, or 
malignancy), alcoholism, risk of falls, forgetfulness, use of non-steriodal anti
inflammatories and uncontrolled hypertension. Overall, the studies tended 
to select younger patients at a lower risk of harm from treatment than the 
population with [atrial fibrillation] encountered in clinical practice. 
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is bad advice. Randomised trials have high internal validity, but often suffer 
from poor external validity. 7 Observational studies by contrast have lower 
internal validity but can provide information on the effects of therapies under 
routine conditions. This information can assist judgements about the exter
nal validity of randomised trials. Therapeutic decisions need both accuracy 
and clinical context, and hence should rely on both randomised interventional 
studies and observational studies. 

It is important to disambiguate two claims that EBM makes. One claim 
suggests randomised interventional studies are the ideal design to conduct to 
answer therapeutic questions. And, the second claim suggests that, when we 
are considering the totality of available evidence, randomised interventional 
studies provide the best evidence for informing a therapeutic decision. These 
two claims are distinct. It is possible to accept, for the sake of argument, the 
claim that randomised interventional studies could be conceived that would 
adequately address the 'inferential gaps' in clinical practice, while at the 
same time to reject the claim that therapeutic decisions should be based on 
randomised trials rather than observational studies (or alternative evidence). 
It is EBM's approach to informing therapeutic decisions that I am arguing 
against (that is, the second claim). Evidence from observational studies, 
where available, provides an important input into therapeutic decisions. In 
many ways it is an easy argument to make--an example where observational 
studies provide important information for therapeutic decisions is provided 
below. 

Proponents of EBM clearly make the second claim-that therapeutic de
cisions should be made on the basis of randomised interventional studies 
rather than obervational studies. See the quotes from EBM's guidebooks: 
Straus et a!. (2005, p. 118), provided above, and Guyatt and Rennie (2002, 
p. 14), provided on page 41.8 It is, however, unclear whether they would, 
when pushed, retreat to the first (easier to defend) claim. 

In any case, proponents of EBM rarely put the first claim forward in 
an unproblematic way. This claim suggests that randomised interventional 
studies are the ideal experimental design for answering existing therapeu-

7This is not to suggest that randomised interventional studies can't have relatively good 
external validity. In a similar way, recognising that randomised interventional studies are 
able to employ many methods that can improve internal validity, does not suggest that 
no randomised interventional studies have poor internal validity. 

8 See also the quote from Paul Glasziou et al. (2004, p. 40) provided below. 
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tic questions. There are two problems for this claim. First, this claim is 
almost never suitably qualified. Randomised interventional studies are not 
always the ideal design for therapeutic questions. Randomised studies are 
optimal for particular questions for particular reasons. For instance, ran
demised interventional studies are often the optimal method for testing the 
efficacy of a drug (some of the reasons for this have been outlined in the pre
vious chapters). But even small changes in context can render randomised 
interventional studies unsuitable for some therapeutic questions. Rothwell 
(2007a, p. 64) (as discussed previously) provides an example of women suf
fering from breast cancer who, according to the severity of their condition, 
differ in their willingness to accept randomised allocation to treatment. In 
this case, a randomised interventional study of the available treatments is not 
the optimal design to answer the question of which breast cancer treatment 
is more effective in the population of women with breast cancer. Proponents 
of EBM often mak~r, are easily interpreted as making-much more abso
lute, and context independent claims about the benefits of randomised trials. 
When considering the optimal design for a therapeutic question, the nature 
of the question being asked, and the context of the research, need careful 
consideration. 

The second problem is practical. Being able to conceive of a randomised 
trial that would fill an inferential gap doesn't get that trial conducted. Ran
demised interventional studies take much time, and cost a lot of money. The 
existence of a particular gap in clinical knowledge is rarely sufficient incentive 
to motivate the expenditure of time and money that randomised trials re
quire.9 Again, most large drug trials are conducted by commercial sponsors 
and are designed to meet regulatory requirements for marketing approval. 
Thus, most drug trials are set up to test benefit hypotheses. Hypothesis 
regarding the drug's safety are secondary, and assuming any adverse effects 
are less likely than the benefits of the drug, the trial will not provide an op
timal test of these safety hypotheses. Identifying a therapeutic question that 
would be assisted were a large randomised interventional study conducted on 
a particular population of patients provides scant assistance to clinicians if 
this trial is never conducted. This first claim of EBM, which regards what 

9 There are, of course, counter-examples. One is the Women's Health Initiative. This 
research program was funded by a number of governmental departments responsible for 
health and research in the United States to address the insufficient clinical evidence avail
able for prevention of a number of diseases prevalent in post-menopausal women. 
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trials should ideally be conducted, becomes even more problematic if, as a 
result of EBM's influence, observational studies are not conducted. 

Back to EBM's claim that clinicians should base therapeutic decisions on 
randomised interventional studies rather than observational studies (EBM's 
second claim). The following example illustrates how observational studies 
provide important evidence for therapeutic decisions. Randomised interven
tional studies and observational studies have different strengths and weak
nesses for providing evidence for therapeutic decisions; both are important. 
Aspirin and clopidogrel are antiplatelet agents. They are used to prevent 
platelet aggregation and clot formation in conditions in which clots cause 
damage to the body. Most notably they are used in acute coronary syn
drome where the formation of a clot causes chest pain, and possibly leads 
to the permanent damage of heart tissue, as in myocardial infarction. Be
cause aspirin and clopidogrel prevent platelet aggregation by two different 
mechanisms, combining the agents should provide additive effects. This will, 
however, also increase the risk of the main side effect of these agents, bleed
ing. The CURE study, a randomised, double-blind, placebo-controlled trial, 
showed that the combination of aspirin and clopidogrel (compared to aspirin 
alone) reduced the risk of the combined primary endpoint-death caused by 
cardiovascular disease, non-fatal myocardial infarction or stroke (The CURE 
Investigators 2001). In CURE, treating approximately 50 patients with high 
risk acute coronary syndrome with aspirin and clopidogrel for 9 months pre
vented one additional instance of the combined endpoint compared to treat
ing with aspirin alone (this expresses the results of CURE as a 'number 
needed to treat (NNT)'). In the same time period, for patients taking the 
combined antiplatelets, there was an absolute increase of 1% in the risk of 
major bleeding. This is equivalent to a number needed to harm (NNH) of 
100.10 On the basis of this evidence guidelines recommend the use of aspirin 
and clopidogrel in patients with high risk acute coronary syndromes ( Aroney 
et a!. 2006, 821-822). 

The results of CURE have been implemented in practice; many patients 
who suffer acute coronary syndromes receive concurrent treatment with as
pirin and clopidogrel. And this, in large measure, is appropriate. However, 
there is some evidence that the combination is prescribed to a broader group 

10 'Major bleed' was defined as: 'substantially disabling bleeding, intraocular bleeding 
leading to the loss of vision, or bleeding necessitating the transfusion of at least 2 units of 
blood' (The CURE Investigators 2001, p. 495). 
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of patients than the population that has been shown to benefit in the ran
domised studies (Hallas et al. 2006; Simpson et al. 2008). And, like most 
randomised interventional studies, questions can be raised regarding the ex
ternal validity of CURE. Is the slim margin of benefit over risk retained 
when combination therapy is given to patients under routine care? Will the 
combination of aspirin and clopidogrel benefit patients with low risk acute 
coronary syndrome, or patients with high risk acute coronary syndrome, but 
who would have been excluded from CURE? 

Under the ideal conditions of a randomised trial, CURE suggests that if 
you treat 100 patients with the combination of aspirin and clopidogrel for 9 
months (rather than aspirin alone) you will prevent two patients from suffer
ing a non-fatal myocardial infarction, a stroke, or death due to cardiovascular 
disease; and you will cause one patient to have a major bleed. Even if it is 
accepted that the benefits of combination therapy outweigh the risks for the 
trial population (when treated under the conditions of the trial), clinicians 
need to judge for which of their patients these results are likely to hold in 
routine care. Any shift in the risk to benefit ratio will influence therapeutic 
decisions. In these situations observational studies play a vital role. 

The number of patients assessed for eligibility for the CURE trial, but 
not randomised, is not reported (nor, is any descriptive information provided 
about excluded patients). This makes judging how well the trial sample 
reflects the target population more difficult. 11 However, the exclusion criteria 
for the trial are given. Patients considered at 'high risk of bleeding' were 
excluded from the study. Further, it is plausible to assume that under trial 
conditions patients were monitored closely for any signs of bleeding-this 
level of monitoring may not be available in some institutions for patients 
under routine care. 

Hallas et al. (2006) report a case-control study, which used population
based data registries from a county in Finland to assess the use and risks of 
combined antiplatelet therapy. Evidence provided by observational studies 
such as this provide information for therapeutic decisions that randomised in
terventional studies like CURE can't provide. First, this study illustrates the 
dramatic increase in use of combined aspirin and clopidogrel following publi
cation of CURE and similar studies-a more than four-fold increase in use of 

11In a positive move, the CONSORT guidelines published about the same time as CURE, 
but, at the time of publication, yet to be implemented widely, recommend providing this 
information. If CURE was to be published now, this information would be reported. 
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the combination was observed between 2000 and 2004. Second, the adjusted 
odds ratio for association between use of the aspirin-clopidogrel combination 
and serious upper gastrointestinal bleeding was 7.4 (95% CI; 3.5-15). Thus, 
once adjusted for known confounding factors, use of combined aspirin and 
clopidogrel was 7.4 times more common in the 'cases' (patients who had suf
fered serious upper gastrointestinal bleeding) than in the 'controls' (patients 
similar to the cases in other respects, but who did not suffer serious up
per gastrointestinal bleeding). This, in conjunction with other results from 
an observational study, Simpson et a!. (2008), supports the concerns raised 
above; the combination appears to be used in a broader population of pa
tients than that examined in the randomised trials, and the risk of bleeding 
in patients who receive the combination therapy under routine circumstance 
may be higher than that observed in CURE. Many questions remain. But, 
arguably, this observational data suggests combination therapy should be re
stricted to those patients very similar to those recruited to CURE, and all 
patients should be monitored closely for any signs of bleeding. Data from 
observational studies helps inform decisions about who should get therapy, 
and how it should be administered. 

Before leaving this case, it is worth pausing to note the important role 
that theory is playing in the background. The benefits and the harms of com
bination antiplatelet therapy in patients with acute coronary syndrome are 
predicted by pharmacological and pathophysiological theory. It is because 
the two agents work by different mechanisms that it was hypothesised the 
combination may be beneficial in patients at high risk of clots (such as those 
suffering acute coronary syndrome). And similarly, theory also predicts an 
increase in the risk of bleeding. Hence, the 'evidence' of importance here 
is not just the empirical results of the clinical trials, theory provides inde
pendent support for the observed results. Results from clinical trials, and 
physiological-pharmacological theory are fallible. That these two different 
types of evidence are consistent in the case lends a measure of credence to 
the conclusion. (More on this in the next chapter). 
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5.4 Clarifying the role of observational stud
ies in EBM 

I am not suggesting observational studies can, or should, replace randomised 
interventional studies in assessing the efficacy of therapies (at least not when 
randomised interventional studies can be conducted). When randomised in
terventional studies are possible for tests of efficacy, the role observational 
studies can play is largely supplemental. But this does not negate the impor
tance of observational studies to therapeutic decisions. Because observational 
studies provide information on the effectiveness of therapies, they are typi
cally more important once the efficacy of the therapy has been shown. It is 
once the drug is on the market and being used that the evidence provided 
by observational studies becomes pertinent. While it runs counter to their 
official doctrine, I doubt many proponents of EBM would disagree that ob
servational studies can aid therapeutic decisions in this way. So why do they 
claim otherwise? Considering this question will assist clarifying the position 
presented in this paper, as well as forestall possible objections. 

Recall, the ambiguity that exists between two of EBM's key claims. Un
derstanding why this ambiguity exists may partly explain why proponents of 
EBM appear to reject a role for observational studies in informing therapeu
tic decisions. Recall the two claims that EBM makes. First, that randomised 
interventional studies are the ideal design to conduct to answer therapeutic 
questions, and second, that when faced with a therapeutic decision clinicians 
should rely on evidence from randomised rather than observational studies. 
This distinction between these claims is more relevant (and more obvious) 
in the context of contemporary clinical research. No new drug currently 
reaches the market without evidence from randomised interventional stud
ies. The prominence of randomised interventional studies in clinical research, 
however, is relatively recent. Salim Yusuf, Rory Collins and Richard Peto 
argued that large simple randomised trials were necessary for many thera
peutic questions as recently as 1984 (Yusuf et al. 1984). At this time large 
clinical studies such as CURE and the trials involving warfarin were a rarity. 
While substantially smaller randomised trials have been conducted since the 
1960s, none were of the size commonly seen in trials testing new treatments 
now. 

Hence, twenty years ago it made much more sense to claim both that 
large randomised interventional studies are better designed to test claims of 
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efficacy, and that clinicians should use such trials, where available, to inform 
therapeutic decisions. If efficacy is yet to be established, and the therapy is 
one in which large randomised interventional studies will provide the best as
sessment of the therapy's efficacy, then a focus on randomised interventional 
studies is appropriate. Now that efficacy has been demonstrated prior to the 
drug reaching the market, emphasis appropriately shifts to effectiveness; it 
is here observational studies play an important role. 

I suspect that some EBM literature conflates EBM's two key claims be
cause it is arguing for a conclusion that has now largely been accepted: com
pared to alternatives, and provided the research question is amenable, ran
domised interventional studies provide better tests of the efficacy of a therapy. 
This construes EBM's claims somewhat charitably, but in doing so it exposes 
a problem that runs through much of what proponents of EBM claim. In 
much of the EBM literature there is inadequate recognition that the 'hier
archy of evidence' can best be justified as a hierarchy of internal validity. 
The hierarchy gives guidance on claims of efficacy, not effectiveness. 'Which 
research design provides the best test of the efficacy of a therapy?' is all too 
often conflated with 'Which research design provides the best evidence for a 
therapeutic decision?'. Therapeutic decisions require information of the ben
efits and harms of a therapy. While proponents recognise that observational 
research is often the only possibility for the 'rare' adverse effects of therapies 
(see, for instance, Sackett 2006, p. 177 and Guyatt and Rennie 2002, pp. 77-
78), there is little recognition that even relatively common adverse effects 
are not optimally tested in the trials that are typically conducted, and even 
less recognition that the claims made by EBM need to be scaled back from 
'informing therapeutic decisions', to claims of efficacy. Some have bucked 
this trend. For instance, Paul Glasziou et al. (2004, p. 40) explicitly state 

For interventions, the best available evidence for each outcome of 
potential importance to patients is needed. Often this will require 
systematic reviews of several different types of study. 

But even these authors are less than clear. On the same page, in the same 
paper, they give the typical EBM advice. 

For example, to answer a therapeutic question, the hierarchy 
would suggest first looking for a systematic review of randomised 
controlled trials. However, only a fraction of the hundreds of 
thousands of reports of randomised trials have been considered 
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for possible inclusion in systematic reviews. So when there is no 
existing review, a busy clinician might next try to identify the 
best of several randomised trials. If the search fails to identify 
any randomised trials, non-randomised cohort studies might be 
informative. (Glasziou et a!. 2004, p. 40) 

Once again, 'therapeutic questions' are conflated with questions of 'efficacy'. 
Of course, my suspicions about why proponents of EBM claim that ther

apeutic decisions should be based on evidence from randomised trials rather 
than observational studies, may be off the mark. Perhaps the claim should 
be taken at face value. An avenue for defending devaluing, or ignoring, evi
dence from observational studies in forming therapeutic decisions is the risk 
of selection bias-more particularly, that it may be impossible to isolate all 
possible confounding factors on the outcome of interest from the baseline 
characteristics of the compared groups of observational studies. Indeed, this 
is how proponents of EBM argue for randomised interventional studies over 
observational studies for tests of efficacy. Their concern would be that, due to 
the risk of selection bias, the findings of observational studies should not be 
relied upon for investigating claims of effectiveness, just as they should not be 
relied upon for investigating claims of efficacy. Clearly, observational studies 
will not assist establishing the effectiveness of a therapy if the apparent ef
fects of the therapy are actually due to an unsuspected, or 'under-adjusted', 
confounder. 

But there are problems with this argument. First, it overstates the prob
lems that selection bias poses. The avoidance of selection biases do not 
provide an absolute need for randomised interventional studies in all situ
ations. Some advocates of randomised interventional studies concede that 
observational studies will provide reliable evidence in some situations. 12 The 
argument for randomised interventional studies is clearest when claims of ef
ficacy need to be established, particularly in the regulatory context. It makes 
sense to be conservative when you want to eliminate, or minimise as much as 
possible, any potential sources of bias from experiments that are conducted 
in order to inform the decision of whether the drug should be marketed. 

Second, this argument fails to recognise the limitations of randomised 

12See for example, Collins and MacMahon (2007, p. 17) who accept the reliability of 
observational studies when the outcome of interest is rare among individuals not exposed 
to treatment; the effects of the treatment in individuals exposed is large; and when there 
are no obvious sources of bias likely to account for most, or all, of the observed effect. 
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interventional studies. As has been discussed, and the examples show, a well 
established claim of efficacy is not the only factor important to therapeutic 
decisions. Indeed, the methods utilised to gain reliable information on ef
ficacy often limit the utility of this evidence for clinicians needing to judge 
the effect of a therapy in routine care. Once the efficacy of a therapy has 
been established, the results of observational studies can complement the 
knowledge gained from randomised interventional studies. Again, therapeu
tic decision-making will benefit if a move is made from 'either randomised 
interventional studies, or observational studies' to better recognition of the 
relative strengths and weaknesses of each approach. 

And finally, all of this follows from first principles, and concurs with 
common sense. Randomised interventional studies, and observational studies 
provide two different methods for gaining information on the clinical use of 
therapies. Each method has strengths and limitations. It should not be a 
surprise that the challenge of making appropriate therapeutic decisions can 
benefit from the information provided by both of these methods. 

5.5 Conclusion 

Previous chapters focussed on which claims the methodological distinctions 
in EBM's hierarchy of evidence could substantiate. I argued that EBM's hier
archy is a hierarchy of comparative internal validity. Study designs higher up 
the hierarchy have the capacity to rule our more opportunity for systematic 
error. These benefits in internal validity, however, do not necessarily corre
spond to improvements in the external validity of medical research. And since 
EBM focusses on applying clinical research to patients or groups, external 
validity is paramount. The challenge of external validity has been outlined, 
and the importance of additional sources of evidence (other than randomised 
interventional studies) to informing judgement about external validity has 
been established with particular emphasis on evidence from observational 
studies. 

EBM puts very low value on the evidence provided by observational stud
ies. I have argued that when it comes to therapeutic decisions, this is inap
propriate. Evidence from randomised interventional studies can suffer from 
low external validity. Because observational studies are more inclusive, and 
follow patients undergoing routine care, they can play an important role in 
bridging the inferential gap between efficacy and effectiveness. In many, if not 
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most, instances randomised interventional studies are the best design for test
ing a drug's efficacy. But well established claims of efficacy provide only part 
of the input required for therapeutic questions. Observational studies can 
provide important additional input. Proponents of EBM, by advising ther
apeutic decisions be informed by randomised interventional studies rather 
than observational studies, deny this claim. 



Chapter 6 

The Role of Basic Science in 
Evidence Based Medicine 

6.1 Introduction 

The previous chapter illustrated the importance of evidence from observa
tional studies to therapeutic decisions. The task of this chapter is to do the 
same for basic science. A central aim of biological science is to discover, 
understand and refine mechanisms. When proponents of EBM refer to basic 
medical science they principally refer to the mechanistic explanation provided 
by these sciences. 1 

Evidence based medicine (EBM) is put forward as a 'paradigm shift' in 
medical decision making (Guyatt and Rennie 2002, p. 8). Proponents argue 
that decisions should be informed by applied clinical research-especially 
randomised interventional studies-rather than pathophysiologic principles 
and clinical experience (Evidence-Based Medicine Working Group 1992).2 

Proponents of EBM provide a 'hierarchy of evidence', and suggest that ther
apeutic decisions should be informed by evidence from as high up the hier
archy as possible (Guyatt and Rennie 2002, p. 13). As has been discussed, 

1 While the step from basic science to the mechanisms of basic science is rarely stated ex
plicitly in the EBM literature, the move is continuously implied. For instance, mechanism 
is suggested in the use of the term 'pathophysiologic rationale' in the original statement 
of EBM (Evidence-Based Medicine Working Group 1992) . 

2Despite the terminology, I suggest that this should not be seen as a paradigm shift 
in the Kuhnian sense. Rather, proponents of EBM are referring to a shift in emphasis in 
what is considered ideal as a basis for therapeutic decisions. 
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randomised interventional studies are placed at the top of the hierarchy, and 
basic science at the bottom (see Table 1.1, and Table 2.1). This implies that 
basic medical science, despite providing the theoretical basis of disease and 
the effects of treatments, plays a minor role in therapeutic decision making. 
This is a remarkable claim. 

The shift in focus from theoretical science to applied clinical research is 
reasonable when understood in a certain way. A randomised interventional 
study showing a therapy is beneficial provides more compelling evidence that 
the therapy will be effective in patients under routine care, than pharmaco
logical evidence that a drug works by a mechanism understood to treat the 
disease. This is because much is unknown in clinical science; many drugs have 
promising pharmacological properties that, for one reason or another, do not 
bring about the expected beneficial outcome in patients.3 Sometimes an 
unsuspected adverse effect outweighs the expected benefit, sometimes other 
pathophysiological mechanisms dampen the effects of the drug, and some
times, for reasons that can not be discerned, the plausible pharmacological 
effects of a drug are simply not realised. It also sometimes occurs that a 
drug works exceedingly well in patients, but the pharmacological mechanism 
by which it has this effect can not be elucidated. In clinical science, the
ory sometimes predicts patient outcomes, and sometimes it doesn't; in any 
particular instance, it is often unknown which will be the case until applied 
clinical studies have been conducted. 4 

But this is too one dimensional. True, theory is not always predictive 
in the clinical sciences. And, the intuition that applied clinical research 
provides more compelling evidence for therapeutic decisions than basic theo
retical science may be justified when these sources of evidence are considered 
in isolation. But this fails to recognise how entwined basic science and ap
plied clinical research are. Basic science plays a role at all stages of applied 

3 A widely-cited example is the use of the anti-arrhythmic flecainide in patients after 
they had suffered an acute myocardial infarction (see, for instance Guyatt et al. 2008b). 
There is an increased risk of arrhythmia once a lack of blood supply has damaged the 
heart. It was thought that use of flecainide would prevent such arrhythmia. However, 
patients who received fleca.inide in a randomised interventional study had higher risks of 
sudden death compared to patients who did not received flecainide. 

4 Proponents of EBM provide a number of cases in which treatment strategies based 
on the best available basic science were later shown to be harmful in large randomised 
interventional studies. Hormone replacement therapy is one prominent example (see, for 
instance, Sackett 2006, p. 177.) 
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clinical research. Medical theory appropriately plays an important role in: 
selecting which therapies undergo clinical testing (treatments are chosen on 
the basis of their pharmacological profile); the design of experiments ( theo
retical considerations are important for choosing who the treatment should 
be tested in); and, perhaps most importantly, the analysis and interpretation 
of applied clinical research. 

Basic science plays a role in therapeutic decision making, but how should 
we understand this role? EBM has surprisingly little to say on the posi
tive role basic science does, and should, play in therapeutic decisions. The 
problem of theory in EBM is an example of the more general problem of 
describing the relationship between theory and observation in science. 

The relationship between theory and observation in EBM can be under
stood by recognising the series of intermediary theories (and models of these 
theories) which exists between raw observation and high level theory. Patrick 
Suppes' (1962) has called this a 'hierarchy of data models'. I follow aspects 
of Suppes' work to provide a framework for the role of theory in EBM.5 The 
hierarchy of data models illustrates that basic science is central to the design, 
analysis and interpretation of applied clinical research. And that therefore 
basic science, in conjunction with the results of applied clinical research, has 
a prominent role to play in therapeutic decision making. Therapeutic de
cisions cannot, and should not, be based on the results of applied clinical 
research rather than pathophysiologic principles. 

Suppes' account of the relation between theory and observation is one of 
a number of plausible accounts that could be used to clarify the role of basic 
science in therapeutic decision making. Suppes' hierarchy of data models has 
been taken up by a number of philosophers-for instance, Suppes' account is 
central to Deborah Mayo's philosophy of experiment. However, the central 
idea that I take from Suppes' account has been discussed by others, and it 
pre-dates Suppes. Indeed, the importance of intermediary theories between 
direct observation and general theory, can be seen in Francis Bacon's 'Novum 
Organon' (Klein 2008). 

5Patrick Suppes' account of what models and theories are has been influential (see 
Suppes 1960, 1962, and Frigg and Hartmann 2008 for discussion). Suppes has a semantic 
account of theories. Theories are a family of models, and models are set-theoretic struc
tures. There is, however, a range of views on these matters. Holding a different view on 
what models are is not necessarily incompatible with the aspects of Suppes' hierarchy of 
data models put to use here. 
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The hierarchy of data models, and the account of the relation between 
theory and data provided, captures the arguments that are made in analysing 
data from clinical research. Indeed, the hierarchy of data models explicates 
aspects of the analysis that are too often left implicit or neglected. (Pro
ponents of EBM, for instance, neglect the role of basic science in applying 
applied clinical research to therapeutic decisions). Explicitly detailing the 
hierarchy of data models also provides a sound basis for experimental obser
vations in testing theories. This approach to the relation between theory and 
observation in science is part of what has since become known as a philoso
phy of experiment. Philosophers of experiment include Ian Hacking, Nancy 
Cartwright, Alan Franklin and Deborah Mayo. While there is a wide range 
of views within this group, each share the belief that some of the traditional 
problems of the relation between theory and observation in philosophy of 
science can be avoided by paying close attention to the kind of arguments 
scientists make in experiments (Mayo 1996, pp. 57-69). An additional ben
efit of the hierarchy of data models is that this approach is open to a range 
of views within the philosophy of statistics.6 

The 'hierarchy of data models' is outlined in Section 6.2. The frame
work links the abstract theory of basic science with the statistical findings 
of clinical research. In Section 6.3, I outline the connection between this 
framework and the standard frequentist analyses conducted in clinical trials. 
I show that basic science plays a vital, and largely uncontroversial, role in 
the specification of the applied clinical research, and, further, that the (more 
contested) role basic science plays in the subsequent analysis and interpre
tation of clinical trials is equally important. In the final section, I discuss 
the challenges of applying the results of randomised interventional studies 
to therapeutic decisions involving individual patients. Contrary to EBM's 
hierarchy of evidence, basic science is vital for applying clinical research to 
therapeutic decisions. 

6Suppes' approach has been incorporated into both frequentist and Bayesian accounts. 
For instance, Mayo (1996, pp. 128-132) utilises Suppes' framework to develop her frequen
tist approach to a philosophy of experiment, and Stephan Hartmann (2008) incorporates 
Suppes' approach into his account of Bayesian Networks. The hierarchy of data models 
provides an account of the role of basic science in therapeutic decisions independent of 
which account of statistical inference is adopted. 
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6.2 The hierarchy of data models 

The hierarchy of data models makes the role that basic science plays in the 
design, analysis and interpretation of clinical trials, and thus therapeutic de
cision making, explicit. Suppes' account explicates the relationship between 
scientific theories and raw data. The concept of a model is central. Sup
pes, following Tarksi, defines a model of a theory as a 'possible realisation 
in which all the valid sentences of the theory are satisfied' (Suppes 1962, 
p. 252). As there are also theories of experiment and theories of data, 'mod
els of experiment' and 'models of data' are defined in a similar way. The 
primary insight is that there is a hierarchy of intermediatory models between 
theory and raw data. Basic medical science, the primary scientific theory in 
our context, makes claims about how the pharmacological characteristics of 
drugs will interact with the physiological features of patients. The theory is 
described at a level of abstraction, and deals with just the predicted interac
tions between theoretical entities. In order to test the theory, models of the 
theory, models of experiment, and models of data are required. 

This is best illustrated with an example. Consider the case of rofecoxib, 
the anti-inflammatory agent withdrawn following evidence that it increased 
the risk of heart attacks and strokes (Bresalier et al. 2005). (This case was 
discussed in the prologue, and a more detailed analysis is provided in Chapter 
8. 7 ) Recall, rofecoxib is used to treat inflammation and pain in patients with 
arthritis. It is part of a relatively new class of drugs, the cyclo-oxygenase-2 
(COX-2) inhibitors. The development of COX-2 inhibitors was driven by 
theoretical considerations; by selectively inhibiting COX-2 it was hoped that 
COX-2 inhibitors would cause less gastrointestinal damage when compared to 
older anti-inflammatories, such as aspirin, indomethacin and the like. (Note. 
This use of basic science is not seen as contentious by proponents of EBM; it 
is the use of basic science in therapeutic decision making that is questioned.) 
Unfortunately, while rofecoxib did reduce the risk of gastrointestinal bleed
ing, the Adenomatous Polyp Prevention Trial (APPROVe) provided evidence 
that it also increased the risk of blood clots, specifically the risk of heart at
tacks and strokes. This is likely to be a consequence of selective inhibition 
of COX-2, that is, that same mechanism by which rofecoxib reduces the 
risk of serious gastrointestinal bleeds. This example illustrates the links be
tween the primary scientific question of whether rofecoxib increases the risk 

7For another example, see Deborah Mayo (1996, pp. 141-4). 
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of thrombosis, and the data observed in APPROVe. 

The primary theoretical question is based on basic science. Is the mech
anism by which rofecoxib works likely to increase the risk of blood clots? In 
order for a theoretical question such as this to be tested, a model of the the
ory is required. One possible realisation of this theory is a comparison of the 
incidence of thrombotic events in patients taking rofecoxib, call this JlR, with 
the incidence of thrombotic events in patients not taking rofecoxib, call this 
f.lC· JlR and f.lc can be compared in a number of ways. One, fairly standard 
way, is to consider the relative risk of thrombotic events in patients taking 

rofecoxib, RRI' = JlR/ f.lC· If the theory is correct, RRI' > 1. Linking this 
model of the theory with the experimental and data models permits testing 
the theory. 

A range of methods are employed at the level of the experiment to test 
the theory with observable data. Indeed, too many methods are employed to 
list here. The experiment has its own theory (and a model of that theory) by 
which it provides a test of the basic science. Some of the choices that need 
to be made in setting up experiments include: which patients to include in 
the experiment, whether or not the groups to be compared are randomised, 
how this randomisation is achieved, and whether the control group receives 
placebo or active control. For instance, in order to appropriately compare 
JlR and Jlc it is important that the patients that have taken rofecoxib are 
similar to those patients that have received control. One way of achieving 
this is to conduct an interventional study and randomise recruited patients 
to treatment with rofecoxib or control. This does not ensure the two exper
imental groups are exactly alike, but does ensure that a number of patient 
characteristics are roughly equally balanced providing the sample is large 
relative to the number of patient characteristics. Whether the two experi
mental groups are roughly equally balanced can be independently tested. If 
the experimental groups differ in important ways, then the observed results 
are undermined. If the data suggests that rofecoxib increases the risk of 
blood clots, but the experimental groups were not comparable, then this is 
an example of the failure of the experimental model, and doesn't necessarily 
provide any information about the primary scientific theory under test. 

At the next level down are models of the data. One aspect of the data 
model has already been assumed in the specification of the theory. RRI' has 
been suggested to be a measure of whether rofecoxib increases the risk of 
blood clots. But there are a range of other measures that could be used in 
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specifying the theory. The absolute risk of thrombotic events, ARI' = J.lR -
J.lc, could be taken as the appropriate comparison rather than RRw While 
the model of the theory refers to unknown infinite sequences (such as J.ln) the 
data observed in the experiment is finite. APPROVe has a given sample size. 
If RRI' is taken to be the unknown parameter of interest, the test statistic 
observed in APPROVe may be specified as RRx, where RRx = Xn/Xc, 
and Xn is the observed rate of thrombotic events in the patients treated with 
rofecoxib in APPROVe, and Xc is the observed rate of thrombotic events 
in the patients that received placebo. RRx, XR and Xc are each random 
variables. It is this test statistic, RRx, in conjunction with the model of the 
experiment and the observed data, which tests the theory. 

With the test statistic specified, the distribution of the test statistic un
der different assumptions can be considered. As outlined in Section 1.2, in 
frequentist statistics the value of the test statistic observed in the experi
ment is considered in light of the distribution of the test statistic under the 
assumption that the null hypothesis is true. In the case of APPROVe, the 
null hypothesis of interest is that RRI' = 1, that is, rofecoxib does not in
crease the risk of blood clots. Let RRx represent the observed relative risk of 
thrombotic events for patients in the APPROVe trial. Some values for RRx 
are unlikely if the null hypothesis is true. For instance, you would rarely ex
pect to observe a value for RRx that is considerably greater than one if the 
null hypothesis, that RRI' = 1, is true. This is the basis on which frequentist 
statistical methods inform inferences based on data. If RRx is greater than 
one to an extent that observing such a value for the test statistic (or a value 
greater) is sufficiently unlikely on the assumption that the null hypothesis 
is true, then, according to frequentist statistics, the null hypothesis can be 
rejected. In this situation the alternative hypothesis, that rofecoxib increases 
the risk of thrombotic events, is provisionally accepted. 

The details of hypothesis testing within frequentist statistics was dis
cussed earlier, and the finer details of the rofecoxib case are provided in 
Chapter 8. What I wish to emphasise here is the continuity between basic 
science and the statistical findings of applied clinical research. The two are 
inextricably linked, and this is represented by the way the model of the the
ory and the model of the raw data are specified. What is known or supposed 
at the level of basic science plays a vital role in specifying both the model of 
the experiment and the model of the data. And once specified, the statisti
cal findings based on the observed data provide information on the primary 
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scientific theory only if the assumptions made in the experimental and data 
model hold. Informally, which experiments are conducted and what data are 
analysed as tests of the primary scientific theory, depend on the details of the 
theory. And the ability of the data and the experiment to provide important 
information about the theory, depends on the adequacy of the assumptions 
made in specifying the experiment and the data. Theory, experiment and 
data are all linked; the results of applied clinical research are not separable 
from the basic science that specified the research. 

Suppes' ( 1962) reason for discussing the hierarchy of data models was to 
illustrate the problems of an overly simplified account of the relation between 
theory and observation. 

One of the besetting sins of philosophers of science is to overly 
simplify the structure of science. [ ... ] What I have attempted 
to argue is that a whole hierarchy of models stands between the 
model of the basic theory and the complete experimental experi
ence. Moreover, for each level of the hierarchy there is a theory in 
its own right. Theory at one level is given empirical meaning by 
making formal connections with theory at a lower level. (Suppes 
1962, p. 260) 

The hierarchy of data models describes how experimental inquiry progresses. 
Data that appears inconsistent with the primary scientific theory will only 
undermine the theory if the assumptions of the data and experimental mod
els can be shown to hold. In this way Duhem-type under-determination 
problems can be circumvented. 

Within any given inquiry, the heirarchy of data models clearly demar
cates questions of the primary scientific theory, from questions of the data 
or experimental model. Mayo (1996, pp. 147-8) provides discussion on this 
point. The 'theory-ladeness' of observation causes problems for any view of 
science that relies on too simple a notion of 'observed data'-for instance, 
the view of theory change put forward by the logical empiricists. Suppes' ac
count, and philosophies of experiment more generally, avoid the problem of 
'theory-laden observation' while maintaining a rational basis for the assess
ment of theories. Experimentalists accept an observation may 'theory-laden', 
but argue that it is not 'theory-laden' in a sense that rules out the use of the 
observation in experimental arguments. The 'theory-ladeness' of observation 
is not problematic in testing a theory when the 'theory' involved in establish-
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ing the observation is 'independent' (in some sense8 ) from the theory that is 
under test in the experiment. Hacking ( 1983) illustrates this argument with 
the example of having to decide whether the observation of 'dense bodies' 
in platelets should considered 'real' or an artefact of how the platelets are 
observed. Utilising different physical techniques to view the platelets, for 
example, flourescence micrographs and electron micrographs (which rely on 
different physical theories), provides strong evidence that the observed dense 
bodies are real. 

Mayo (1996) develops the argument regarding a hierarchy of models into 
an epistemology of experiment-an epistemology that incorporates the fre
quentist statistical methods used to analyse clinical trials (such as the meth
ods proposed by Neyman and Pearson). Central to Mayo's account is the 
idea that scientists use experiments to develop an argument from error. On 
Mayo's account, the models of data, experiment and theory are successful to 
the extent that they are able to rule out, or minimise, sources of error. The 
more the different levels of models cohere and minimise canonical sources of 
error, the more confidence we can have in the results of research. 

Increased confidence in the results of research when the different models 
cohere is a version of the 'variety-of-evidence thesis'. On this widely-held 
view, 'varied' sources of evidence--such as that provided by the different 
levels of models-better confirms a hypothesis than an equivalent amount of 
'similar' sources of evidence. Bovens and Hartmann (2002) have refined this 
somewhat intuitive notion within a Bayesian framework, and shown that the 
variety-of-evidence thesis does not hold with any generality; positive evidence 
from multiple less-than-fully-reliable sources does not necessarily confirm a 
hypothesis more than multiple positive evidence from one less-than-fully
reliable source. Perhaps unsurprisingly, when it comes to the variety-of
evidence thesis, the details matter-when the reliability of our sources of 
evidence is low, we may gain more confidence in the hypothesis under inves
tigation from coherent results from a single source (see Bovens and Hartmann 
2002 for details). Nevertheless, when the data, experimental and theoretical 
models are accurate (or likely to be accurate), Bayesian networks, such as 
those provided by Bovens and Hartmann, support the notion that the variety 

8Howson and Urbach (2006, pp. 125-126) interpret 'independence' in terms of whether 
the items of evidence are 'similar' or 'dissimilar'. Two items of evidence, e1 and e2, 

are 'similar' if P( e2 I e1) "' 1. Two items of evidence are 'dissimilar' if P( e2 I e1) is 
considerably less than 1. 
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of evidence provides confirmation of the theory in question. 
My reason for discussing the hierarchy of data models is to illustrate 

the importance of basic science to therapeutic decisions-something that is 
downplayed by EBM's hierarchy of evidence. First, there is the uncontrover
sial role that basic science plays in specifying applied clinical research. This 
is already clear in what has been said so far, but I will extend this discussion 
in the next section. The second, and more important reason for discussing 
the hierarchy of data models, is that it helps illustrate the vital role basic sci
ence plays in applying clinical research to the problems of individual patients. 
EBM's hierarchy of evidence is provided as a guide for forming therapeutic 
decisions about individual patients. In Section 6.4, I show that the results of 
clinical research cannot be applied to the care of individual patients without 
the theories of basic medical science. 

6.3 The hierarchy of data models and fre
quentist analysis of clinical trials 

The relationship between theory and data outlined by Suppes is consistent 
with contemporary frequentist statistical analysis of clinical trials. Basic sci
ence assists specifying the theoretical, experimental and data models used in 
applied clinical research, and also plays an important role in the interpreta
tion of results. Frequentist statistical approaches typically use experimental 
data in one of two ways. In the first, the underlying theoretical and data 
models are assumed, and the data are used to to provide information on an 
unknown parameter within the theoretical model. In the second approach, 
experimental data assesses the adequacy of the theoretical, experimental and 
data models in a process sometimes called model criticism. 9 The former is 
more common in the large drug trials and other clinical studies that have 
the most influence on evidence based medical practice, but even in these 
studies there is often some degree of model criticism that is conducted in 
supplementary analyses. 

As suggested, theoretical considerations of basic sciences, such as patho
physiology and pharmacology, play a prominent role in the set-up and sub
sequent analysis of clinical trials. Basic science helps define the question 
being asked as well as the type of analysis that will appropriately answer the 

9See Chapter 1 of D. R. Cox (2006) for some discussion 



The Role of Basic Science in Evidence Based Medicine 129 

question. For instance, understanding the pathophysiological processes that 
occur in acute coronary syndrome suggests a number of treatment strategies. 
Early in acute coronary syndrome a dynamic process of platelet aggregation 
and clot formation takes place in the coronary arteries; if the clot forms it will 
occlude the artery and damage will occur to the area of the heart serviced 
by the artery. Because there are a number of pathways by which platelet 
aggregation occurs, it would be expected that combining antiplatelet agents 
that work on different pathways may improve the outcomes of patients suf
fering from acute coronary syndrome. This, in abbreviated form, is the basic 
science that underpins the Clopidogrel in Unstable Angina to Prevent Recur
rent Events Trial (CURE) (The CURE Investigators 2001). CURE compares 
the outcomes of patients suffering high risk acute coronary syndrome when 
treated with the combination of aspirin and clopidogrel with patients treated 
with aspirin alone. Basic science predicts that combination treatment will be 
beneficial in these patients; earlier treatment will be better than later treat
ment; those suffering 'high risk' acute coronary syndrome may receive more 
benefit than those at a lower risk;10 and the combination of two anti platelet 
agents will also likely increase the patient's risk of suffering a serious bleed. 
This information is incorporated into the theoretical, experimental and data 
models in numerous ways. In CURE, patients are randomised and treatment 
initiated as soon as possible on recruitment to the trial, and patients with 
low risk acute coronary syndrome, or a high risk of suffering a serious bleed, 
are excluded from the trial. 

Basic science's influence on the specification of the analyses conducted in 
clinical trials flows through to how the results of the trial can be interpreted. 
In CURE patients who received the combination of aspirin and clopidogrel 
suffered the combined endpoint of death from cardiovascular causes, nonfatal 
myocardial infarcts, or strokes less often than patients who received aspirin. 
Assuming the theoretical, data and experimental models are adequate, these 
results support a number of inferences. First, treating patients with high risk 
acute coronary syndrome with the combination of aspirin and clopidogrel ap
pears beneficial overall. Second, when possible, the combination should be 
started early. And third, caution is needed if treating patients at high risk 
of suffering a serious bleed. Without further argument, the results of CURE 
can't be interpreted as providing evidence that the combination of aspirin 

10 'High risk' acute coronary syndrome is defined on a number of criteria; one of which 
is the level of damage done to the heart as observed on an electrocardiogram. 
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and clopidogrel will assist different patients, or patients in different circum
stances. In the next section, I show that extending the results of CURE to 
situations outside of the trial-that is, to questions of external validity
depends crucially on basic science. Here, I wish to emphasise that due to the 
role basic science plays in specifying applied clinical research, it has a direct 
influence on how the results of the research can be appropriately interpreted 
for the participants of the study. Positive results of clinical research support 
the claims of basic science within the constraints of the trial's specification. 
In one sense this not contentious; basic science has always played this role in 
the interpretation and application of research. EBM, however, in supplying 
its hierarchy of evidence, and in advising that therapeutic decisions should 
be made in accordance with the hierarchy, denies, or at the very least, greatly 
diminishes the importance of this role for basic science. 

Basic science can also play an important role in the interpreting clinical 
research when the science is not explicitly incorporated into the set-up of the 
study. A somewhat controversial example of this occurred with rofecoxib. 
APPROVe was seen by most as confirmation that rofecoxib can increase the 
risk of thrombotic events; APPROVe provides an estimate of the unknown 
parameter, RRw However, prior to APPROVe another large clinical trial 
had also provided evidence that rofecoxib may increase the risk of throm
botic events. VIGOR (the Vioxx Gastrointestinal Outcomes Research Trial) 
was set up to compare the risk of adverse gastrointestinal events-especially 
the risk of ulcers and bleeding-by randomising patients with rheumatoid 
arthritis to either rofecoxib or naproxen. While the risk of thrombotic events 
was not specified among the main clinical endpoints assessed in VIGOR, 
a statistically significant difference was observed between the groups in the 
rate of myocardial infarcts. 0.4% of the rofecoxib group suffered a myocardial 
infarction, compared to only 0.1% of the group given comparator naproxen. 
The relative risk of having a myocardial infarction in the naproxen group 
compared to the rofecoxib group was reported as 0.2 (95% confidence in
terval, 0.1 to 0.7) (Bombardier et a!. 2000, p. 1523)_11 Importantly, basic 
science-in particular the pharmacology of naproxen-was used to explain 

11 The different assumptions required for the data and experimental model in this exam
ple should be noted. In contrast to APPROVe, gathering data on thrombotic events was 
not pre-specified in VIGOR. The only data available is the overall incidence of myocar
dial infarcts in each group. It is possible that thrombotic events, other than myocardial 
infarction, were missed in VIGOR. 
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the observed difference in the incidence of myocardial infarctions between 
the groups. 

The authors of VIGOR suggested that the superior platelet inhibition 
of naproxen caused the observed difference in myocardial infarctions. The 
contention was that VIGOR included a number of patients at high risk of 
coronary artery disease, and that naproxen prevented more myocardial in
farctions in this group than did rofecoxib. That is, the observed difference in 
risk of myocardial infarction was attributed to a benefit of naproxen, rather 
than a harm of rofecoxib. While the pharmacological claim that naproxen 
inhibits platelet aggregation can be substantiated, the argument put forward 
in VIGOR is undermined both by the data later observed in APPROVe, 
and VIGOR data that was subsequently submitted to the Food and Drug 
Administration. 12 Even though the argument was later overturned, it was 
largely accepted at the time of publication, and played a role in how the 
data observed in VIGOR was interpreted. While the benefits of the argu
ment provided by the VIGOR authors can be debated in this particular case, 
I emphasise the more general point. Basic science is a necessary component 
in the interpretation of all clinical research. Once set up, results of ran
domised interventional studies require interpretation and application, they 
do not issue as if from some 'black box'. This is so when interpreting the 
results of a clinical trial in terms of internal validity, and, as I argue below, 
becomes even more important when it comes to applying these results to 
therapeutic decisions. 

12 A retrospective subgroup analysis on updated safety data from VIGOR shows a statis
tically significant increase in adjudicated thrombotic serious adverse experiences in patients 
taking rofecoxib who were judged not to be at sufficient cardiovascular risk to warrant as
pirin prophylaxis, relative risk 1.87 (95% confidence interval 0.29-0.97) (Food and Drug 
Administration Advisory Committee 2001). This group included 96% of the patients in
volved in the trial. Thus, the bulk of patients in VIGOR were not at high risk of coronary 
artery disease, not in need of an antiplatelet agent, and the increased risk of suffering a 
myocardial infarct in patients taking rofecoxib was still observed among these patients. If 
the claims made by the VIGOR authors were true, it would be expected that the bulk of 
myocardial infarcts would have occurred in patients at high risk of coronary artery disease. 
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6.4 Basic science and the application of clin
ical research to therapeutic decisions 

EBM is about therapeutic decisions, especially therapeutic decisions involv
ing individual patients. EBM's hierarchy of evidence is put forward with the 
aim of improving therapeutic decisions by ensuring they are based on the 
most reliable evidence possible. As discussed in Chapter 3, EBM's hierar
chy is best viewed as a hierarchy of comparative internal validity. Studies 
higher up EBM's hierarchy are able to employ more methods to reduce or 
eliminate possible sources of systematic error. In this way the results of ran
domised interventional studies are more likely to be accurate for the patients 
involved in the study. This is all for the good, but none of it ensures that 
studies higher up EBM's hierarchy provide evidence that is applicable to 
patients not included in the clinical studies. Therapeutic decisions require 
judgements about external validity. Despite the lowly place of basic science 
in EBM's hierarchy, it plays an irreplaceable role in judging the extent to 
which the results of clinical research are applicable to an individual patient. 
Indeed, it is basic science--or at least the combination of basic science and 
clinical research-that is applied to therapeutic decisions, rather than the 
results of clinical research in isolation. 

The challenge external validity poses EBM, and therapeutic decision mak
ing more generally, was outlined in the previous chapter. Two separate ques
tions arise in judgements of external validity. The first is the degree to which 
the overall findings observed in the trial can be expected to reflect the average 
response to treatment in the target population (where the target population 
is the population of patients who will be treated with the drug in routine 
care). And the second is whether clinicians should rely on the overall result 
observed in the trial, or base their inferences on a subgroup of patients within 
the trial that most closely match the relevant characteristics of their patient. 
We have seen that observational studies play an important role in informing 
judgements regarding external validity. Here I argue that basic sciences' role 
is even more fundamental. 

There are many possible differences between a patient in a clinical trial 
and a patient presenting to the clinic. The condition that is being treated 
may well be one of the few similarities that patients in the trial and patients 
in the clinic share (and even with regard to the condition being treated there 
can be important differences). Clinical studies are not conducted on random 
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samples from the target population. 13 If samples in randomised interven
tional studies were random samples from the target population, judging the 
expected average response in the target population would be much easier. 
Rather, as previously discussed, the sample of patients involved in clinical 
research, particularly randomised interventional studies, are typically conve
nience samples. The sample is created from the patients that present to the 
clinical unit in the geographical areas that the study is conducted in ( typi
cally, it is the catchment area for tertiary referral hospitals in a small number 
of western countries). But, even if we managed to overcome this problem, and 
the sample of patients involved in a trial were, or could be considered to be, 
a random sample of the target population, the second question of external 
validity would still arise. Does the overall result of the trial obscure sub
groups within the trial that respond particularly well or particularly poorly 
to treatment? Judging whether the patient in the clinic is similar enough to 
the patients enrolled in a clinical trial, or subgroups within a trial, represents 
a tough challenge for therapeutic decision making. 

But we shouldn't set the epistemic bar too high. It is not the possible 
differences between patients in a clinical trial and patients presenting to the 
clinic that matter, but the much smaller set of relevant differences. Certainty 
that the patient in the clinic will experience the precise effect witnessed in 
clinical research is too much to expect. An indefatiguable sceptic will always 
be able to conjure up a possible reason for the results of a clinical trial not 
to be applicable to a particular patient. What is needed is a principled 
way of separating the factors that are likely to influence a patient's response 
to treatment, from the many possible differences that may occur between 
patients in clinical studies and patients presenting to the clinic. It is basic 
science, backed up by Suppes' hierarchy of data models, that provides this 
principled method of applying clinical research to individual patients. 

Basic science does not always predict patient outcomes. Knowing that 
selective inhibition of COX-2 should have beneficial effects in reducing pain 
and inflammation without increasing the risk of gastrointestinal bleeding is 
not enough to ensure that rofecoxib will relieve pain in patients with rheuma
toid arthritis and reduce the risk of these patients suffering a gastric ulcer 
compared to when they take an alternative anti-inflammatory. The clinical 
relevance of the pharmacology of COX-2 inhibitors is confirmed by applied 

130£ course, recruiting a true random sample from the target population in any rigourous 
way would be impossible in most situations. 
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clinical research. The hierarchy of data models helps explicate the link. It 
is important to emphasise that each tier of the hierarchy is supported by 
independent, and independently testable, information. 

The pharmacology of COX-2 inhibitors is confirmed using animal mod
els. The benefits of COX-2 inhibitors in relation to gastrointestinal safety 
are thought to be due to the selective inhibition of COX-2 over COX-1 (tra
ditional anti-inflammatory agents inhibit both COX-1 and COX-2 more or 
less equally). Measures, such as the selective in vivo inhibition of COX-2 
relative to COX-1 can be quantified within the animal models. An exper
iment testing whether rofecoxib treats pain and inflammation with a lower 
risk of adverse gastrointestinal effects in patients with rheumatoid arthritis 
sets out to test the clinical relevance of this pharmacological knowledge. It 
does this by employing an experimental model. Within this model, decisions 
are made about how many, and what type of patients are included in the 
trial. And assumptions are made about what the methods employed in the 
trial achieve. As discussed earlier, if the trial is randomised, it is assumed 
that, providing the trial is sufficiently large, the two groups will be roughly 
matched for characteristics that could influence the effects of treatment. Sta
tistical tests can be employed to assess whether the groups are indeed roughly 
matched for characteristics suspected to influence the effects of treatment. 14 

The same is true for the data model employed in the trial; the data model 
can be independently assessed. A test statistic, or multiple test statistics, 15 

are selected, and the distribution of each test statistic is used to test the 
hypotheses under investigation. Even while using the assumed distribution 
of the test statistic to inform inferences about the data, whether the correct 
probability model for the test statistic has been selected can be assessed. 
For instance, proportional hazards is a common assumption underpinning 
statistical tests involving relative risk. The proportional hazards assumption 
holds that the relative risk remains constant over time; if this assumption is 
violated the statistical analysis may be invalid. For this reason, when statis
tical tests are used that rely on this assumption, the data will be tested to 
assess whether the assumption of proportional hazards is supported. 16 

140f course, these statistical tests fall short of certainty; and some may be better for 
the job than others. But the point remains. The assumptions of the experimental model 
can be independently tested. 

15Clearly more than one will be required for an experiment to test both that rofecoxib 
works to reduce pain and inflammation, and to lower the risk of gastric ulcers. 

16See Lagakos (2006) for a discussion of the proportional hazards assumption within the 
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The findings of clinical research gain credibility because of the inter
related links of the theoretical, experimental and data models. Each tier 
is based on independent sources of information, and as such each can be 
independently tested. When each tier is considered reliable, and provides a 
consistent representation of the process under investigation, some degree of 
confidence in the findings is warranted. As discussed, this is a version of the 
variety-of-evidence thesis. Bovens and Hartmann (2002) have shown that 
the variety of evidence thesis is not completely general, but providing the 
models are reliable this process of inquiry provides important information 
for therapeutic decisions. 

The integrated whole--the conjunction of basic science with the statisti
cal findings of applied clinical research-needs to be considered when mak
ing therapeutic decisions. The integrated whole assists identifying, from the 
many possible differences between patients in the trial and patients in the 
clinic, the relevant differences-those characteristics that are likely to in
fluence a patient's response to treatment. APPROVe provides an estimate 
of RR~", and this estimate is considered broadly reflective of the relative 
risk of thrombotic events in patients taking rofecoxib. But there are many 
differences between the sample of patients involved in APPROVe and the 
population of patients who would typically be considered for treatment with 
rofecoxib. One obvious difference is that APPROVe was conducted in pa
tients who had suffered a colorectal adenoma, whereas the vast majority 
of patients treated with rofecoxib have rheumatoid arthritis, or some other 
chronic inflammatory condition. Indeed, patients with chronic inflammatory 
conditions in need of anti-inflammatory treatment were excluded from AP
PROVe. So why are the findings of APPROVe considered relevant to this 
part of the target population, when they were excluded from the study? 

The reason comes from the conjunction of basic science with applied clin
ical research. While there may be differences in the baseline risk of cardiovas
cular disease between patients with rheumatoid arthritis and those without, 
there is no plausible, or demonstrated, reason that patients with rhuema
toid arthritis (or another inflammatory condition) would respond differently 
to thrombotic events caused by rofecoxib than the patients recruited to AP
PROVe. And further, there is a plausible account for why these two groups of 
patients would respond in a similar way. The results of APPROVe in isolation 
do not permit generalising the inference to patients outside of APPROVe, but 

context of APPROVe. 
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the results, when placed in the broader context of what is understood about 
the process under consideration, does permit the generalisation. It is always 
possible that subsequent information could prove the generalisation wrong; 
but based on our current understanding, the generalisation is warranted. 

Applied clinical research plays an important part in gaining knowledge 
in the clinical sciences. Sometimes clinical research replaces or refutes basic 
science, but more often it refines and improves understanding how the the
ories described in basic science are realised in terms of patient care. Just 
as basic science alone fails to predict patient outcomes, the statistical find
ings of clinical research alone fail to give direction on how the results can 
be applied appropriately. Rather than view basic science and the statistical 
findings of applied clinical research separately, more progress can be made 
by recognising the connections between these sources of information. 

6.5 Conclusion 

Proponents of EBM provide little justification for placing basic science so 
low in EBM's hierarchy. Given the importance of basic science to therapeu
tic decisions-and indeed the necessity of basic science in applying clinical 
research-the only reasonable interpretation that can be given is that, as 
Haynes suggests, 'basic science alone does not provide valid and practical 
guidance' (my emphasis). On this interpretation, however, the distinction 
made within EBM's hierarchy between applied clinical research and basic 
science is facile. The hierarchy of data models illustrates that the statisti
cal results of applied clinical research sit within a much richer framework 
of models, including theoretical models based on basic science. And it is 
this richer framework that must be considered when applying the results of 
clinical research to therapeutic decisions. It should not surprise that the 
strong rhetoric sometimes employed by proponents of EBM in arguing that 
therapeutic decisions should be informed by applied clinical research mther 
than basic science, has lead to some confusion on the appropriate role for 
basic science in therapeutic decision making. One example of this confusion 
is witnessed in the ongoing debate regarding the appropriate interpretation 
of subgroup data in clinical trials. This debate is a direct consequence of the 
challenge of external validity-in particular, the question of whether clini
cians should base their decisions on the overall results of a clinical trial, or 
on the basis of a subgroup of patients within the trial that closely matches 
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the patient facing them in the clinic. I consider this debate in the following 
chapter. 
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Chapter 7 

External Validity, Subgroup 
Analysis and Basic Science 

7.1 Introduction 

The last two chapters have focussed on external validity and judging the 
effectiveness of therapies. I have been interested in the extent to which the 
results of studies generalise to individuals in routine care (external validity), 
and whether and how therapies work in such patients (effectiveness). Chapter 
5 and 6 illustrated the importance of evidence from observational studies 
and basic science to therapeutic decision making. This chapter extends this 
discussion to the 'problem of subgroup data'. 

Medicine is applied to individuals. This is one of the things that makes 
medical science challenging, and unique. While basic medical sciences, such 
as pharmacology and pathophysiology, may adequately describe the funda
mental process, they are not able to predict the outcome of giving a therapy to 
a particular patient. And unlike some other sciences like, say, parts of physics 
where the background conditions can be controlled, in medicine, the 'back
ground conditions' are whatever the individual patient brings with them. 
This is one of the reasons proponents of EBM emphasise the need for ap
plied clinical research, especially randomised interventional studies. Applied 
clinical research is so important because theory doesn't necessarily predict 
patient outcomes. However, the results of applied clinical research provide 
information on the average effect of a therapy on the sample of patients in
cluded in the trial. This creates a dilemma when it comes to applying the 

139 
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results of clinical research to individual patients. Should clinicians base ther
apeutic decisions on the overall results of randomised interventional studies, 
or should they base decisions on the results of a subgroup of patients within 
the trial who are considered relevantly similar to the individual facing them 
in the clinic? 

The question of how best to interpret subgroup findings is at the heart 
of an ongoing debate within evidence based medicine. One group, I'll call 
them the 'trialists', argue that only the overall results of a trial are reliable 
enough to provide a basis for decisions. Subgroup data, the trialists suggest, 
is too unreliable--even when the subgroup is formed on the basis of plausible 
basic science (that is, scientific theory supports delineating the 'group'). The 
trialist's view is consistent with EBM's hierarchy of evidence. Basic science 
on this view plays no, or very little, role in the analysis and interpretation of 
applied clinical research. A second group, I'll call the 'pathophysiologists', 
are a somewhat looser coalition, but share the view that theory should play a 
role in interpreting clinical trials. Whereas the overall results of randomised 
studies provide the average effect of a therapy in a population, the effects of a 
therapy in subgroups within the trial may provide more relevant information 
for the treatment of individual patients. Views within the pathophysiologists, 
however, differ as to the extent to which clinicians can base decisions for an 
individual patient on the observed effects of a therapy on subgroups within 
a trial. 

The 'subgroup debate' highlights the importance of theory to therapeutic 
decision making. I discussed the contribution of Patrick Suppes' hierarchy 
of data models to this issue in Chapter 6. Here, I apply the hierarchy of 
data models to the subgroup debate. I do this in Section 7.5. Before this, 
however, I need to outline the problem posed by subgroup data (Section 7.2), 
and to examine the response to the problem made by the trialist and patho
physiologist respectively (Section 7.3 and 7.4). Much of the debate between 
trialists and pathophysiologists, I suggest, is the result of the absence of 
an appropriate framework for incorporating basic science into the inferences 
drawn from clinical trials. The hierarchy of data models provides a useful 
framework for approaching the challenge of interpreting subgroup data, and 
hence, a framework for approaching the challenge of external validity. 
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7.2 The problem of subgroup data 

Questions regarding external validity arise from two directions (as noted, 
in Section 5.2 on page 103). The first type of question concerns how well 
the trial sample reflects the target population (where the target population 
is the population of patients that will receive the treatment under routine 
care). Can we expect the results observed in the clinical trial to predict the 
response in the target population? That many randomised interventional 
studies recruit a highly selected trial population, creates a problem for as
sessing the external validity of much applied clinical research. The second 
type of question concerns whether the overall results of a clinical study is 
relevant for an individual. The results of randomised trials are rarely quan
titatively equivalent in all subgroups involved in the trial. Thus, in the hope 
of 'individualising' therapy, matching the characteristics of the individual to 
a relevant group of patients within the trial is tempting. But such individu
alisation is risky; differences in subgroups are to be expected simply on the 
basis of random error1 

The desire for reliable subgroup data comes about due to the understand
able and practical concerns of clinicians. Many well-established therapeutic 
decisions rely on understanding how the pharmacological effects of treatments 
interact with the physiological features of patients. An asthmatic should not 
be given a betablocker because the action of beta-agonists at beta-receptors 
are important for keeping the asthmatic's lungs dilated. When it comes to 
new therapies, how the treatment will effect certain physiological systems is 
usually at least partly unknown, but it is reasonable to suspect that some 
physiological features will promote the beneficial effects of the therapy, and 
other physiological features make the patient prone to adverse effects. 

It is usually possible to hypothesise about the effects of the therapy in pa
tients with particular conditions prior to clinical testing, but it is impossible 
to predict these effects with any degree of certainty. Enter applied clinical 
studies. These studies provide an opportunity to test a range of hypotheses 
about the effects of any given therapy. Early trials usually test the therapy in 

1The emerging field of phaxmacogenomics provides an interesting context for the chal
lenges of interpreting subgroup data. Pharmacogenomic studies need to interpret data 
from subgroups defined according to genetic characteristics; typically these subgroups will 
be too small to provide reliable data. La Caze (2005) considers some of the ethical chal
lenges of pharmacogenomic information. 
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patients younger and healthier than those in primary care. It can be difficult 
to infer from such trials what effect the therapy will have in the patients who 
present to general practice. Later trials include a broader range of patients 
but the primary findings of these trials are typically the average overall re
sult of the entire sample on a major outcome. Such trials permit the claim 
that a drug is efficacious in patients similar to those included in the trial 
(providing the circumstances of treatment are also relevantly similar). But, 
whatever the average result for the major outcome of the trial, there will of
ten be subgroups within the trial that appear to have responded differently. 
Again, there is a strong motivation for clinicians to attempt to identify any 
subgroups that respond differently due to some identifiable characteristic. 
The correct identification of such subgroups improves care. The difficulty is 
knowing when the inference is justified. 

ISIS-2 (The Second International Study of Infarct Survival) provides an 
often used illustration of why caution is needed when forming inferences 
about the differential effects of treatment in subgroups (ISIS-2 Collaborative 
Group 1988). ISIS-2 is a landmark 'mega-trial' that established the bene
fit of streptokinase and aspirin in patients suffering from acute myocardial 
infarction. It randomised 17,187 patients, from 16 countries, to treatment 
with either streptokinase, aspirin, streptokinase and aspirin, or placebo. As
pirin, streptokinase, and the combination of aspirin and streptokinase, when 
compared to placebo, reduced the absolute risk of vascular death within the 
first 5 weeks by 2.4%, 2.8%, and 5.3% respectively. To make such a large 
trial possible the investigators kept recruiting and follow-up procedures as 
simple as possible. With the broad range of patients recruited, the question 
arises as to whether any subgroup of patients can be identified who respond 
particularly well or particularly poorly to treatment. 

The investigators reported the effects of aspirin in patients with the astro
logical sign of Gemini or Libra, compared to those born under the other birth 
signs to make a point about undue focus on subgroup analyses. In contrast 
to other patients, those born under Gemini or Libra appeared to do worse 
when given aspirin rather than placebo (there was a non-statistically signif
icant increase in deaths in patients treated with aspirin). The investigators 
warn 

Even in a trial as large as ISIS-2, reliable identification of sub
groups of patients among whom treatment is particularly advan
tageous (or among whom it is ineffective) is unlikely to be pos-
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sible. When in a trial with a clearly positive overall result many 
subgroup analyses are considered, false negative results in some 
particular subgroups must be expected. (ISIS-2 Collaborative 
Group 1988, p. 356) 
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Clinical trials are set up to to provide a statistically adequate test of 
one hypothesis, the 'primary hypothesis'. According to frequentist statistics 
a central criteria for conducting an adequate test is that the rate of false 
positive test results is minimised. A 'positive' result is when the p value for 
the observed test statistic is less than 0.05, when this occurs the test suggests 
the rejection of the null hypothesis. Such a test will suggest rejecting the 
null hypothesis, when the null hypothesis is assumed to be true, on less 
than 5 out of every 100 repetitions of the experiment. A good test will 
also minimise the possibility of false negatives-that is, minimise when the 
test recommends accepting the null hypothesis when the null hypothesis is 
assumed to be false. 2 But the assurances provided by these methods only hold 
for the primary hypothesis (and even then only when a host of additional 
assumptions hold). Conducting more analyses on groups within the trial 
sample, or analyses on endpoints other than the primary endpoint, increases 
the chance of observing a false positive or a false negative result on tests 
within the trial.3 

Brookes et a!. (2001) conducted a simulation study to quantify the risks 
of false-positive and false-negative results in subgroup analyses. Simula
tion studies are useful for estimating error rates such as these because they 
allow setting the distributions for (what would normally be) 'unknown' pa
rameters. With the distributions of the parameters set, the performance of 
statistical tests can be assessed by monitoring the results of the test on re
peated simulations of the trial. Brookes et a!. (2001, pp. 35-39) found that 
despite setting the effects of treatment to be equivalent in two subgroups, 
when there was no overall effect from treatment, 7-26% of trials showed one 
subgroup analysis gave a statistically significant result; and when there was 

an overall effect from treatment, only one of the two subgroup analyses gave 

2The primer on frequentist hypothesis testing in Section 1.2 provides further discussion 
on these methods. 

3Consider a trial conducted comparing two placebo arms (no difference should arise on 
any measure). If there are 20 independent statistical tests conducted on treatment effects 
in different patient subgroups, and each test has the standard cut-off of p < 0.05, the 
probability of at least one false positive is over half. 
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statistically significant results in 41-66% of trials. Thus, when there is no 
effect from treatment, subgroup specific tests often falsely suggest there is 
(false-positive), and when there is an effect from treatment, subgroup specific 
tests often falsely suggest there isn't (false-negative). These results are con
servative. Whereas only two subgroups were considered in the simulations, 
the typical clinical trial often reports analyses on more. 

Due to the problems of subgroup-specific analyses, separate formal tests 
of subgroup interaction are recommended (Rothwell 2007b, p. 173). Rather 
than assess whether the difference in treatment effects are statistically sig
nificant (as happens in subgroup-specific analyses), formal tests of subgroup 
interactions assess a separate hypothesis; typically, that the true difference 
in treatment efficacy in patient subgroups is equal-Byar (1985) and Gail 
and Simon (1985) provide discussion. In their simulation study, Brookes 
et a!. (2001, pp. 35-39) showed-as would be expected-that the frequency 
of tests of subgroup interactions falsely finding an interaction, whether there 
was an overall treatment effect or not, was 5%. This is much better than the 
subgroup-specific analyses (as seen in the figures given in the previous para
graph). The problem for formal tests of interaction, however, is that they 
are often under-powered. The power of a formal test of subgroup interaction 
is a function of the size of the interaction relative to the overall treatment ef
fect, and the power of the statistical test conducted on the overall treatment 
effect. Brookes et a!. (2001, p. 37) consider a situation in which the size of 
the interaction is the same as the overall treatment effect. In a trial with 
80% power to detect the overall treatment effect, a formal test of subgroup 
interaction will detect the interaction in only 29% of cases. A four-fold in
crease in sample size would be required to detect the interaction with the 
same power as the overall treatment effect. Clinical trials are typically pow
ered for overall effects (not subgroup interactions), and interactions between 
subgroups may be smaller in size than the overall treatment effect. Thus, in 
practice, formal tests of subgroup interaction are a blunt tool. 

Alvan Feinstein (1998, p. 299) aptly refers to the problem of subgroup 
data as a 'clinicostatistical tragedy'. Clinicians have impeccable reasons for 
wanting reliable subgroup data; when available, it helps tailor the right treat
ments to the right patients. However, the statistical problems of subgroup 
analyses are compelling. Because the problem of subgroup data is a problem 
for clinicians attempting to apply clinical research to therapeutic decisions 
regarding individual patients, it is a preeminent problem for EBM. 
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Some have suggested a role for basic science in assessing the plausibility 
of subgroup data. 

How can we determine whether the observed effect in a special 
subgroup is real rather than due to chance? This is a difficult task, 
but we can place more confidence in an observation if certain con
ditions are met. Specifically, an effect is more likely to be real if a 
biologic explanation for it can be found, if there is a 'dose-effect' 
relationship between the baseline characteristic (upon which the 
subgrouping is based) and outcome, if the observation is sup
ported by independent findings within the trial, and most impor
tantly, if it is replicated in another independent study. (Furberg 
and Byington 1983, p. I-99) 

Such criteria appear promising, but more detail is needed. I focus on the 
role of basic science in judging whether the data observed in subgroups are 
likely to be genuine. Within the participants of the debate there is far from 
consensus as to whether basic science should play a role at all. Whereas the 
trialists argue against a role for basic science in the interpretation of subgroup 
data, the pathophysiologists view basic science as playing an important role 
(but views differ within this group as to what kind of role basic science can 
play). Neither response is completely adequate. What is needed, I suggest, 
is a more explicit framework for theory in therapeutic decision making. 

7.3 The trialist's response 

The trialist 's response to the problem of subgroup analysis is best illustrated 
by the views of members of the Clinical Trial Service Unit at The University 
of Oxford, such as Richard Peto, Rory Collins, and Salim Yusuf (who is no 
longer at the unit), and a number of eminent statisticians, such as Douglas 
Altman (see, for example, Altman 1998; Collins and MacMahon 2007; Peto 
eta!. 1995; Yusuf eta!. 1984). While the trialists acknowledge the importance 
of 'reliable' subgroup data for therapeutic decisions, they argue such data is 
not typically available from clinical trials. 

The treatment that is appropriate for one patient may be inappro
priate for another. Ideally, therefore, what is wanted is not only 
an answer to the question 'Is this treatment helpful on average 
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for a wide range of patients?', but also an answer to the question 
'For which recognisable categories of patient is this treatment 
helpful?' This ideal is, however, difficult to attain, for the direct 
use of clinical trial results in particular subgroups of patients is 
surprisingly unreliable. (Peto et al. 1995, p. 35) 

As a result, trialists advise clinicians to base their inferences on the overall 
findings of clinical studies, or on other endpoints for the subgroup (should 
such an endpoint be available that is more statistically stable). 

There are two main remedies for this unavoidable conflict be
tween the reliable subgroup-specific conclusions that doctors want 
and the unreliable findings that direct subgroup analyses can usu
ally offer. But, the extent to which these remedies are helpful in 
particular instances is one on which informed judgements differ. 
The first is to emphasise chiefly the overall results for particular 
outcomes as a guide (or at least a context for speculation) as to 
the qualitative results in various specific subgroups of patients, 
and to give proportionally less weight to the actual results in that 
subgroup than to extrapolation of the overall results. 

The second is to be influenced, in discussing the likely effects 
on mortality in specific subgroups, not only on the mortality in 
these subgroups, but also by the analyses of recurrence-free sur
vival or some other 'surrogate' outcome. (Peto et al. 1995, p. 35) 

In addition to the statistical problems discussed earlier, trialists are led to this 
position for a number of reasons. Prominent among these is the view trialists 
take on the role of basic science in assessing subgroup analyses. Consistent 
with EBM's hierarchy, the theories of basic science play no, or very little, role 
in forming inferences regarding subgroup analyses. Another important factor 
that leads trialists to adopt their view on subgroup data, is their position 
on the broader question of what kind of trials should be conducted. Before 
the phrase 'evidence based medicine' was coined, the trialists argued that 
the efficacy of treatments should be tested in large and simple randomised 
interventional studies. The trialists provide a strong argument for the need 
of large and simple trials to test most contemporary treatments. However, 
in addition to arguing that large and simple trials are needed for tests of 
efficacy, the trialists argue that such trials provide compelling evidence for 
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questions of effectiveness-an argument less convincingly made. For trials to 
be relevant to clinicians the trialists have to make a number of assumptions. 
Notably, trialist's assume that genuine unanticipated differences in the effects 
of treatments in subgroups is unlikely. This assumption restricts the range 
of replies open to the trialist to the problem of subgroup data. 

7.3.1 The trialist's scepticism towards basic science 
playing a role in interpreting subgroups 

The trialists view all subgroups with suspicion, especially post hoc analyses, 
whether or not they are undergirded by basic science. Senn and Harrell 
(1997, p. 749) encapsulate the trialists view of post hoc analyses with wit 

Hindsight is so much more precise than foresight and but for its 
unfortunate habit of arriving too late, it would surely be used for 
prediction all the time. 

Some post hoc analyses of subgroups are suspicious. Data dredging is ap
propriately repudiated. The trial sample can be divided in many ways. If 
you wait for the data to come in, and then continue to conduct analyses on 
different ways the group can be divided, you are sure to find a subgroup that 
appears to have responded differently to the main group. Post hoc analyses 
that are 'data dependent' are especially problematic. Creating subgroups on 
the basis of whether or not a patient (or group) responded to therapy, with
out any independent rationale for creating the subgroup, will lead to spurious 
results.4 The ISIS-2 analysis of the effects of birth sign on response to as
pirin is a particularly striking example of post hoc data-dependent subgroup 
analysis; a second example is provided in the following section. 

A range of errors are possible in post hoc analyses. However, an important 
purpose of applied clinical research is to gain new information on the effects 
of therapies in patients. Ruling out all post hoc analyses, as the trialists do, 
makes interpretation of unexpected results difficult. Not all subgroup-specific 

4 More generally, any subgroups defined by post-randomisation characteristics require 
caution. Collins and MacMahon (2007, pp. 9-10) provide the example of a trial for a 
cholesterol lowering agent. Forming appropriate inferences based on subgroups created 

by separating patients into groups that achieved large cholesterol reduction versus small 
cholesterol reductions is problematic because such groups are likely to differ in more ways 
than simply what reduction in cholesterol was achieved. 
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effects are suspected, and not all post hoc subgroup analyses are examples of 
data dredging, or rely on data-derived subgroups. Ideally, what is needed is 
an independent method for assessing the plausibility of particular subgroup 
findings, taking into account statistical considerations such as whether or not 
the subgroup analysis was pre-specified. Marshalling the theoretical resources 
of basic science to aid this assessment is perhaps the most obvious avenue to 
explore. Trialists, however, reject this possibility. 

Trialists are sceptical of basic science being able to assess of the plau
sibility of subgroup analyses. Douglas Altman expresses this scepticism in 
his response to the conditions suggested by Fur berg and Byington (quoted 
above). 

My view is that biological plausibility is the weakest reason [for 
thinking a difference observed in a subgroup is genuine], as doc
tors seem able to find a biologically plausible explanation for any 
finding. (Altman 1998, p. 301) 

This scepticism regarding biological plausibility denies theory a role in assess
ing subgroup data. As a result trialists are left to focus on purely statistically 
considerations. 

It is no doubt that a plausible explanation can help to under
stand the subgroup finding. In reality, however, finding such an 
explanation can be a difficult task, if not impossible. This task 
involves subjective judgement and the process is not clear. For 
these reasons, the assessment of the quality of a subgroup anal
ysis primarily relies on the assessment of the intrinsic statistical 
properties of the analysis. (Cui et al. 2002, p. 356) 

Trialists are left in the position of acknowledging the importance of 'reli
able' subgroup information for therapeutic decisions, but having no way to 
assess the reliability of a subgroup analysis, apart from their intrinsic sta
tistical properties. And, on the basis of the trials typically conducted, the 
statistical properties of most subgroup analyses are poor. Subgroup-specific 
analyses are neither sensitive nor specific. And, while formal tests of sub
group interaction have improved positive predictive value, the rate of false 
negatives is high because of the low power of most of these tests. This is why 
trialists argue therapeutic decisions should be based, as much as possible, on 
the overall results of randomised studies. 
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Due, in part, to their view that basic science is unhelpful in interpreting 
the results of clinical studies, trialists are left to raise a white flag to the 
challenge of interpreting subgroup findings. The important question of course 
is whether this attitude to subgroup analyses is appropriate. Wanting reliable 
subgroup analyses does not make subgroup analyses reliable.5 It is here that 
a formal framework, such as that provided by Suppes' hierarchy of data 
models, is invaluable. This will be discussed later in the paper, the point I 
emphasise here is the generality of the trialist 's rejection of a role for basic 
science in assessing the findings of clinical trials. Trialist's have no role for 
basic science in drawing inferences from subgroups. Excluding theoretical 
science from interpreting clinical studies risks leaving the statistical problems 
intractable. 

7.3.2 The argument for large and simple trials 

In their highly influential paper, trialists Yusuf et al. (1984), argue that, 
given the kinds of therapies investigated in contemporary clinical medicine, 
randomised interventional trials should be large and simple. Understanding 
the trialist 's argument for large and simple trials provides further insight 
into their views on subgroup analysis. Indeed, for their argument regarding 
large and simple trials to go through, trialists are committed to the view 
that results in subgroups within the trial are reflective of the overall result 
(regardless of how findings appear in subgroups). The possibility that sub
groups of patients may respond differently to therapy in large simple trials 
undermines the trialists argument that the results of such trials are relevant 
to clinical practice. By 'relevant to clinical practice', the trialists mean that 
the large and simple trials they advocate--on the basis of their improved 
internal validity-also have high external validity. It is, after all, the exter
nal validity of well-conducted clinical research that is the primary concern of 
therapeutic decision makers. 

Yusuf et al. (1984) argue for large and simple trials in the following man
ner. First, they recognise that the effects of most contemporary treatments 

5 Rothwell (2007b, p. 169) makes this point by quoting John W. Tukey. 

The combination of some data and an aching desire for an answer does not 
ensure that a reasonable answer can be extracted from a given body of data. 
(Tukey 1986) 



150 Evidence based medicine: Evolution, Revolution, or Illusion? 

under investigation will at best be modest. If the treatment possessed larger 
effects, the efficacy of the therapy could be established via alternative meth
ods.6 Given the treatment effects under investigation are more likely modest 
(rather than large) the trial needs to be designed to ensure any possible errors 
are smaller than the modest effects of treatment. 

Methodology that may introduce moderately large biases or mod
erately large standard errors is not appropriate for the assessment 
of the type of moderate treatment effects that are all that is usu
ally plausible to hope for. It is chiefly because one needs be able 
to distinguish reliably between moderate and null effects that 
trials need to be strictly randomised, analysed and interpreted 
completely unbiasedly, and much, much larger than is currently 
usual. (Yusuf et al. 1984, p. 410) 

Systematic errors (biases) are minimised by selecting the appropriate meth
ods for the trial. For instance, conducting a randomised interventional study 
rather than an observational study, ensuring allocation concealment is main
tained, and conducting intention-to-treat analyses each minimise or rule out 
the possibility of a specific bias. 'Random errors' are the effect of chance 
on the observed outcomes. These errors are minimised by ensuring enough 
patients are recruited such that a sufficient number of outcomes occur in the 
treatment and control group. Large numbers of outcomes increases the pre
cision of results, and this in turn increases the reliability of the frequentist 
statistical methods utilised to interpret the results. 7 

6 For instance, randomised interventional studies are not needed to establish the efficacy 
of administering subcutaneous insulin to patients with type I diabetes. The disastrous ef
fects of withholding treatment quickly manifest. (By contrast, randomised interventional 
studies may well be useful for comparing the efficacy of different regimens of insulin treat
ment.) Randomised interventional studies are not required when there is an 'all-or-none' 
effect from treatment. A sky-diver does not require evidence from a randomised interven
tional study to convince her of the need of a parachute (Smith and Pell 2003). Glasziou 
et a!. (2007) provides discussion on when randomised interventional studies may be un

necessary. 
7 'Reliably' here is defined by frequentist statistics. For instance, a large number of 

outcomes in each of the experimental groups narrows the confidence intervals around the 
findings for each group. This increase in precision allows frequentist methods to 'reliably' 
reject the null hypothesis if the groups appear different (if the 95% confidence interval for 
the test statistic in the treatment group excludes the value of the test statistic observed 
for the control group), and accept (or not reject) the null hypothesis if the groups appear 
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Hence, when a treatment's effect is likely to be modest, large and simple 
randomised interventional trials are the best way to establish the efficacy of 
the treatment. According to the trialist, large and simple trials with broad 
inclusion criteria are the best way to establish whether the treatment is 
helpful on average to a wide range of patients. This is the conclusion that the 
argument in (Yusuf eta!. 1984) substantiates,8 however, they go on to make a 
further claim. Not only do large and simple randomised intervention studies 
establish the efficacy of treatment, the findings they provide are also relevant 
to clinical practice. Here the trialists shift focus from whether the treatment 
is helpful on average to a wide range of patients, to whether the treatment 
is helpful to an individual or group of patients with shared characteristics, 
from internal to external validity, and from efficacy to effectiveness. 

To make this move, trialists assume that subgroups within the trial are 
unlikely to respond differently to the therapy in question. Yusuf et a!. (1984, 
pp. 413-416) differentiate between 'quantitative' and 'qualitative' interac
tions within subgroups. A 'quantitative' interaction is one in which the 
direction of treatment effect is the same among subgroups, but the magni
tude of benefit, or harm, is different. In 'qualitative' interactions the effect 
of treatment in the two subgroups is in opposing directions; one group ben
efits from therapy and the other is harmed. The trialist's argument for the 
clinical relevance of large and simple randomised interventional studies relies 
on the assumption that differential effects in subgroups are unlikely. Yusuf 
et a!. (1984) explicitly assume that unanticipated qualitative interactions are 
unlikely . 

. . . [U}nanticipated qualitative interactions (whereby treatment is 

similar (because the 95% confidence interval for the test statistic observed in the treatment 
group includes the value of the test statistic observed in the control group). 

8It is noteworthy that Yusuf et al. accept that they have not provided an argument 
for randomised interventional studies to be 'essential for any truly scientific conclusion to 
be drawn from trial data' (which is a conclusion that Worrall (2007b) spends much time 
showing cannot be substantiated). 

The argument for randomisation is not that no truths can emerge with
out it-indeed, the history of medicine contains many examples where un
controlled clinical observation has reliably established the value of certain 
treatments-but that without it moderate biases can easily emerge. (Yusuf 
et al. 1984, p. 416) 

This point, however, is too infrequently recognised in the EBM literature. 
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of substantial benefit among one recognisable category of patients 
in a trial and not among another) are probably extremely rare, 
even though in retrospective subgroup analyses they may seem 
extremely common. Of course, one can recognise a priori certain 
categories of patients for whom certain drugs are contra-indicated 
(e.g. for patients with severe heart failure or advanced heart block, 
a beta-blocker is so clearly contra-indicated that such patients 
would probably have been formally ineligible for a beta-blocker 
trial). Our expectation is not that all qualitative interactions are 
unlikely, but merely that unanticipated qualitative interactions 
are unlikely, especially if attention is restricted to one mode of 
death. (Yusuf et al. 1984, p. 413) 

The trialists claim that if this assumption is granted, the overall results 
of a trial are generaliseable, first to subgroups of patients within the trial 
(whatever treatment effect was observed within the subgroup), and second to 
patients who share the characteristics of the subgroup who were not involved 
in the trial. On the trialist's view, if the assumption is granted, the findings 
of large and simple randomised interventional studies are relevant to clinical 
practice. 

But there are problems, both with the assumption that unanticipated 
qualitative interactions are unlikely, and with the claim that if this assump
tion is granted then large and simple trials are relevant to practice. First, 
it is hard to see why the assumption that qualitative interactions are un
likely should be granted. Qualitative interactions are common in clinical 
science. For pretty much any therapy, groups can be identified who bene
fit, and groups can be identified who either don't derive the benefit of the 
therapy, or who are harmed. The trialists seem to accept this by focussing 
not on qualitative interactions but on unanticipated qualitative interactions. 
But many of the qualitative interactions that are now considered confirmed 
were once unanticipated. As clinical science progresses groups of patients 
who are particularly benefited, or harmed by a therapy are identified. (Iron
ically, this process is illustrated by the very example the trialists choose 
to discuss. At the time Yusuf and colleagues were writing, beta-blockers 
were contra-indicated in patients with heart failure. Since then, the benefits 
of beta-blockers in patients with severe heart failure have been established 
(Whorlow and Krum 2000).) Given many large and simple trials exam
ine relatively new therapies, unanticipated qualitative interactions would be 
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expected-and, it would be hoped that applied clinical research would be 
able to uncover them.9 

Second, knowledge of both qualitative and quantitative interactions are 
important to therapeutic decisions. Trialists accept that quantitative inter
actions are common, but do not appear concerned that their method leaves 
such interactions undetected. Indeed, the trialists fail to recognise the im
portance of quantitative interactions to therapeutic decision makers. Thera
peutic decisions are a matter of weighing the benefits of a therapy with any 
potential for harm. If the risks of a therapy are constant, but an identifiable 
subgroup of patients derives less benefit than the average, then this reduction 
in benefit might be enough to tip the balance against using the therapy in 
that subgroup. This is not merely a theoretical concern. Rothwell ( 2007 d) 
provides a number of examples in which the absolute treatment effects in 
different subgroups of patients are markedly different based on the patients' 
risk without treatment. While the relative risk reduction is similar in dif
ferent subgroups, those patients with lower risk without treatment achieve a 
smaller absolute reduction of risk on treatment. This smaller absolute risk 
reduction may be outweighed by either the risks or the costs of the therapy. 

Third, Yusuf eta!. (1984) appear to equate the anticipation of a difference 
in the effect of the treatment between two subgroups, and the incorporation of 
that anticipation into the specification of the trial. This is seen in the example 
they provide. Because beta-blockers were thought to be harmful to patients 
with heart failure, they assume that any trials designed to test the effects of 
beta-blockers would exclude these patients. In this way the anticipated effects 
of beta-blockers are included in the specification of the trial. This is the only 
combination of an anticipated difference in effect and incorporation of that 
anticipation into the trial specification that Yusuf and colleagues consider; 
but there are a range of alternatives. In addition to excluding patients based 
on the anticipation of differential effects in a subgroup, subgroup analyses 
may be pre-specified for groups in which variation is anticipated, or despite 
there being an anticipated (or at least foreseeable) variation in a particular 
subgroup, it is possible that this anticipated variation is not included in the 

9It seems appropriate that unanticipated findings from a large randomised trials are 
treated with caution. Perhaps replication of the findings should be required before they 
are considered confirmed-that is, treat the findings as 'hypothesis generating' rather than 
'hypothesis confirming'. More needs to be said about such an approach, but it is far better 
than interpreting studies on the assumption that no unanticipated interactions will occur. 
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specification of the trial. 

If a quantitative interaction is anticipated, then it can be pre-specified. 
In this situation, it is expected that the effects of treatment might not be as 
large in one subgroup as in another. Again, any evidence of such a quanti
tative interaction is important for therapeutic decisions, and thus important 
that applied clinical research have a method for identifying these subgroup 
interactions.10 

Finally, subgroup interactions (both qualitative and quantitative) can be 
tentatively anticipated on the basis of basic science, but not included in 
the specification of the trial. There is often many open questions about 
the effects of therapies in certain subgroups of patients. Any one clinical 
trial can only hope to answer a small subset of these questions. Rothwell 
(2007d) provides a list of situations in which clinically important differences 
should be anticipated in subgroup analyses. Each of these rely on theoret
ical considerations to some extent (Rothwell 2007d, p. 141). To return to 
one example, treatment effects are often relative to a patient's underlying 
risk without treatment. Thus, the absolute benefits of a therapy may differ 
between groups of patients that have a different risk of an event without 
therapy. 11 Most clinical trials are not set up to answer all questions that 
can be anticipated on the basis of basic science, thus, it is often the case 
that some observed effect of a therapy could have been predicted based on 
existing knowledge (and thus anticipated), but not included in specification 
of the trial. Despite these results being important to therapeutic decisions, 

10Including anticipated subgroup interactions into the specification of the trial through 
pre-specifying subgroup analyses is less of an option for qualitative interactions. If it is 
anticipated that the drug may harm an identifiable subgroup, then you would expect this 
subgroup to be excluded from the trial. 

11 Rothwell (2007d, p. 141) uses the example of trials in patients with hypertension. 
Younger and older patients with hypertension receive similar relative risk reductions in 
cardiovascular disease when they are treated with anti-hypertensives. But younger pa
tients have a substantially lower absolute risk of cardiovascular disease without treatment 
compared to older patients. This results in a lower absolute benefit from anti-hypertensives 
in younger patients. Due to this lower absolute benefit from treatment, the blood pressure 
thresholds for treating younger (or otherwise low risk) hypertensive patients are consider
ably higher than older (or otherwise high risk patients). Rothwell (2007d) provides further 
examples where quantitative interactions should be anticipated. For instance, when there 
are different pathologies underlying the disease under treatment, and when treatment 
benefit differs with differing severity of disease. 
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the trialists provide no avenue for their interpretation. 12 

The difference between questions of efficacy and questions of effectiveness 
is important in this context. The efficacy of a treatment under investigation 
can be expressed as a focussed question: Does the treatment produce the 
expected benefits in a defined population of patients? Clinical trials can 
be set up to answer such questions. Indeed, many of the methods developed 
within clinical epidemiology have been developed to improve the reliability of 
answering questions of efficacy. These methods are largely conservative, and 
are well-placed to assess the efficacy of a treatment. In a trial set up to test 
a treatment's efficacy, if the outcomes of patients given the treatment are on 
average superior to patients given control, then the treatment is judged to be 
efficacious. Assessing the effectiveness of a therapy opens up a different set 
of questions. Does the drug work in patients under routine care? Are there 
any groups of patients that clinicians should expect to respond particularly 
well, or particularly poorly to treatment? These are questions of external 
validity and treatment effectiveness. While the conservative approach of 
clinical epidemiology is appropriate for questions of efficacy-you want to 
ensure beyond any reasonable doubt that a treatment is efficacious before you 
put it on the market-some methodological latitude is needed for questions of 
effectiveness. At minimum, the conservatism of some clinical epidemiological 
methods need greater recognition. (I return to this discussion in Section 7.5, 
and take it up again in the following chapter). 

The trialist's reply to the problem of subgroup data in large clinical trials 
is essentially a re-statement of their assumption that qualitative interactions 
are unlikely. Yusuf, Collins, and Peto (1984) argue that treatments should 
be tested in large and simple randomised interventional studies. For these 
studies to provide clinically relevant results, they assume that qualitative 
subgroup interactions are unlikely. Based on this assumption, the trialists 
recommend that overall study findings are generalised in favour of findings in 
specific subgroups. A decade later, and large-scale randomised interventional 
studies are the norm rather than the exception-at least when it comes to new 
drug therapies. Now Peto, Collins, and Gray (1995) argue that due to the 
intrinsic statistical properties of subgroup analyses, clinicians should base 
inferences on overall study findings rather than observations in particular 

12The rofecoxib case, which will be discussed in the next chapter, provides a good 
example of some of the problems that arise when ancillary results of a trial are the most 
important results for therapeutic decisions. 
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subgroups. 

Yusuf et al. (1984) addresses two methodological questions-how best to 
establish a therapy is efficacious in a wide range of patients, and how best to 
identify which patients respond well to therapy (that is, the effectiveness of 
a therapy). The argument provided by the trialists for questions of efficacy 
is considerably stronger than the argument provided for questions of effec
tiveness. The identification of which categories of patients are most likely to 
benefit from therapy is treated as a subsidiary to the question of how best to 
establish efficacy. In addition to their views on the role of basic science, the 
trialist's reply to the problem of subgroup data is forced by the assumptions 
they make to establish the need for large and simple randomised studies. 

7.4 The pathophysiologist 's response 

Many are unsatisfied with the trialist 's response to the problem of subgroup 
data. Alvan Feinstein (1984, p. 421) made the following comment in discus
sion of (Yusuf et al. 1984) 

The main problem, it seems to me, is again the question of 
whether we are evaluating two treatments or are we evaluating 
treatments for the care of patients? The different kinds of patient 
that are being lumped together into these heterogenous pastiches 
under the name of the same disease or under the name of the 
same therapeutic agents may produce results with excellent sta
tistical ability to compare two treatments, but will be relatively 
worthless when people try to use the consequences in practice. 

Applied clinical research continues to have these two somewhat mismatched 
aims. First, to establish, with as much rigour as possible, the efficacy of a 
given treatment. And second, to use that same data to inform therapeutic 
decisions involving individual patients. I'll group together, as the 'patho
physiologists', those with views that attempt to answer this second question 
with an appeal to the theoretical considerations of basic science. There is a 
range of positions within this group about the extent to which subgroup data 
can be interpreted in light of pathophysiological, or other theories of basic 
science. Importantly, not all of the pathophysiologists appropriately address 
the statistical problems that arise in subgroup analysis. 
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Ralph Horwitz and colleagues (1996) caused considerable controversy 
with their re-analysis of the ,8-Blocker Heart Attack Trial (BHAT) (,8-Blocker 
Heart Attack Trial Reseach Group 1982). BHAT was a multicentre ran
domised trial that tested the effects of the beta-blocker propranolol in pa
tients who had suffered an acute myocardial infarction. Overall, treatment 
with propranolol rather than placebo reduced mortality in the randomised 
patients. To the surprise of Horwitz et al. the beneficial effects of propranolol 
were not observed in one third of the centres involved in BHAT. With the 
aim of providing improved data for 'the clinician focusing on a single patient', 
Horwitz and colleagues compared data from the centres in which propranolol 
benefited patients, with data from the centres in which propranolol did not 
benefit patients. Horwitz et al. (1996) labelled those centres in which patients 
responded to propranolol, 'dominant', and those centres in which patients 
did not respond, 'divergent'. Using a formal test for qualitative interactions, 
they compared patients from dominant and divergent centres and found that 
the test was statistically significant, indicating-according to Horwitz et al. 
(1996, p. 397)-that 'this qualitative treatment interaction was unlikely to 
have occurred by chance alone'. On the basis of this result they then went 
on to find a number of baseline features that varied between patients in the 
dominant and divergent centres. Horwitz et al. (1996, p. 399) conclude 

Our recommendations for managing the analysis of multicentre 
trials are simple. When divergent centres are noted in mulitcen
tre trials, tests for qualitative interaction should be conducted. 
When these tests exclude chance as a cause for the divergence, 
and when clinical or biological features identify groups whose re
sponse to treatment differs from the overall result, treatment rec
ommendations should be modified to reflect these findings. 

The move to incorporate basic science into the analysis of subgroup data 
provides an avenue of response to the question of which categories of patients 
might respond particularly well to treatment. However, the methods adopted 
by Horwitz et al. are statistically problematic. 

A range of commentary followed (Horwitz et al. 1996), much of it critical 
of the methods employed (Altman 1998; Senn and Harrell 1997; Smith and 
Egger 1998). Senn and Harrell (1997, p. 749) highlight that Horwitz and 
colleagues' use the formal test for interaction inappropriately. 

[The formal test for subgroup interaction] requires that, 'the sub-
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sets should be disjoint and specified in advance'. Choosing subsets 
based on observed rate differences is an extremely serious viola
tion of the standard assumptions for sampling-based statistical 
inference. 

The problem is not only that the analysis was post hoc, but that the two 
subgroups compared were derived from the data. It is no surprise that there 
is a statistically significant difference between two groups that were created 
on the basis of whether or not a response was observed. A more appropri
ate, though still post hoc, use of the formal test of interaction, would be a 
comparison of all 31 centres of the multicentre trial-especially if there were 
independent reasons for suspecting important differences in treatment effect 
between the centres. A formal test of interaction on the null hypothesis that 
no difference existed among the 31 centres was not conducted, but is unlikely 
to return a statistically significant result. Smith and Egger (1998, p. 292) 
use simulation to show that up to one third of centres showing no response, 
despite an overall and constant risk reduction in favour of propranolol, is 
entirely consistent with chance variation. 

In two responses to this criticism, Horwitz et al. (1998, 1997) have failed 
to appropriately acknowledge this statistical fiawY Instead, Horwitz and 
colleagues, have focussed on clinician's need for appropriate subgroup analy
ses. 

It is also clear from their commentary that while making their 
criticisms, they have completely missed the central point-stated 
in the first sentence of our paper-concerning the character of the 
information that is needed by clinicians to guide the management 
of individual patients. 

But, rather than legitimise the statistical methods of Horwitz et al. (1996), 
the clinical need for reliable subgroup data emphasises the need for care
ful and appropriate statistical analysis. Part of the problem is the view 
that basic science and the statistical results of applied clinical research are 
separable-a view that is implied in EBM's hierarchy of evidence. The mo
tivation of Horwitz and colleagues is correct, clinical and biological features 

13Horwitz et a!. (1997, p. 754) accepts the charge of using the formal test for subgroup 
interactions post hoc, but fails to recognise that the bigger problem is that their subgroups 
were derived from the data. 
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should be considered when interpreting subgroup analyses, but their methods 
are inappropriate. 

Feinstein (1998) and Smith and Egger (1998), are just as clear on the 
clinical importance of data based on appropriate pathophysiologic subgroups, 
but refrain from endorsing the statistical methods employed by Horwitz et a!. 
(1996). Neither, however, are clear as to what alternative methods would be 
appropriate. Feinstein (1998, p. 299) focusses on ensuring some subgroup 
analyses are permitted. 

My main concern in these comments is not to take sides in the 
controversy about the appropriateness of the subgroups formed 
in the 'inquiry' conducted by Horwitz et a!. Instead, I want to 
rescue the scientific importance of valid pathophysiologic sub
groups from being forgotten or destroyed by excessive vehemence 
in suggestions that all subgroups are evil. 

And, the only 'solution' provided by Smith and Egger (1998) is that of ac
ceptance. 

What is required in a degree of humility in the face of an issue 
for which there is no statistical or clinical solution. [ ... ] The 
development of randomised clinical trials since Mackenzie's time 
has provided a much sounder basis for making decisions about 
abstract patients and-if representative samples of patients are 
included in the trials-for deciding if the overall effect on popu
lation health of a treatment is beneficial or harmful. Randomised 
trials have not, however, answered the question of which indi
viduals actually benefit from medical interventions. This, surely, 
is the key issue in clinical research in for the next millennium. 
(Smith and Egger 1998) 

Rothwell (2007b ), by contrast, proposes a set of guidelines for the analy
sis of subgroup data. These guidelines represent an important step forward. 
Rather than assume subgroup interactions are unlikely, Rothwell's (2007b) 
general approach is to incorporate the theoretical concerns of basic science 
into the specification of the trial. Rothwell (2007d) illustrates the kind of 
subgroup interactions we should anticipate based on basic science, and rec
ommends these subgroup analyses should be incorporated into the design, 
analysis and interpretation of the trial. A small number of subgroup analyses 
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should be specified prior to starting the trial, and assessed using the formal 
test for subgroup interactions-for which the trial should be appropriately 
powered to test. In addition, Rothwell suggests that statistical results of 
treatment effects in specific subgroups should not be reported, and that, if 
they are, the high error rate for such tests kept in mind. Further, Roth
well suggests that genuine unanticipated subgroup interactions discovered 
post hoc should be treated with caution, and that reproduction, in further 
clinical research, is necessary before any subgroup-specific findings should be 
considered confirmed. 

Rothwell's wish-list for subgroup analysis provides a marked improve
ment on the advise provided by trialists. Qualitative and quantitative sub
group interactions are recognised as possible and important, and where such 
interactions are anticipated, Rothwell recommends including them in the 
specification of the trial. This is done while continuing to acknowledge the 
statistical challenge of correctly interpreting such subgroups. 

Despite the advances made by Rothwell's guidelines for subgroup analysis, 
a number of problems remain. The first is practical. Rothwell's advice is 
optimistic. Many trials will have to be considerably larger than they already 
are if they are to reliably test for important subgroup interactions. Recall, 
Brookes et a!. (2001, p. 37) showed that a four-fold increase in sample size 
was required to perform a test for interaction with the same power as the 
statistical test of the overall treatment effect. Such a large commitment from 
regulatory agencies and the funders of trials would be required to improve 
the reliability of subgroup analyses. 14 In cases where such large trials are not 
possible, some flexibility in interpreting these studies will be required. 

Also, Rothwell's recommendations are limited to anticipated subgroup 
interactions that are included in the specification of the trial. As discussed 
in the previous section, and Rothwell appears to accept, there will often 
be more anticipated subgroup interactions than can realistically be specified 
in most contemporary trials. There is a limited number of hypotheses any 
clinical trial can reliably aim to test. 

The benefits of pre-specification need acknowledgement. Pre-specifying 
subgroup analyses guards against undisclosed data-dredging. (The problem 
of multiple testing still arises if many subgroup analyses are pre-specified, 
but at least it is explicit.) Pre-specification also provides the opportunity for 

14This assumes the continued use of frequentist statistics. Other statistical methods will 
define 'reliable' in different ways. 
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incorporating the pre-specified subgroup analyses into the trial design. For 
instance, stratified randomisation may be considered. In stratified randomi
sation patients are randomised within the specified subgroup. This ensures 
roughly equal numbers are randomised into treatment and control within 
each stratified subgroup. Pre-specification also allows investigators to ensure 
data collection is appropriate for the subgroup under consideration. Post hoc 
creation of subgroups may rely on unsuitable data if the data utilised was 
not collected with this purpose in mind. 

But none of this rules out potentially useful post hoc analysis of subgroups 
being conducted. And such analyses, even if they are informal, can play a 
vital role in judging whether the results of a given study are applicable to 
an individual patient. Rothwell's guidelines for subgroup analyses contin
ues to be silent on the problem of how to interpret anticipated (or at least 
foreseeable) subgroup effects that were not specified within the trial protocol. 

In the final section, I consider Patrick Suppes' hierarchy of data models. 
My aim in doing so is to provide an explicit framework for incorporating 
basic science into the interpretation of subgroup analyses. Such a framework 
is implicit in Rothwell's guidelines (though, as I have shown, the role for 
basic science is limited to the specification of the analysis undertaken in the 
trial). The hierarchy of data models doesn't solve the problem of subgroup 
data, but it does illustrate the links between basic science and the statistical 
findings of applied clinical research. By shedding light on the links between 
basic science and the statistical analysis of clinical trials, this framework also 
opens the way for a more flexible approach to the interpretation of clinical 
research. This is especially important for informing therapeutic decisions (as 
opposed to testing the efficacy of a treatment). 

7. 5 The hierarchy of data models and the 
analysis of subgroup data 

All participants in the subgroup debate agree that clinicians need reliable 
subgroup analyses. There is, however, considerable scepticism regarding the 
possibility of conducting such analyses reliably. This scepticism is not lim
ited to the trialists, most of the pathophysiologists also share this concern. 
Indeed, given the standard statistical approach to analysing clinical trials, 
and the intrinsic statistical properties of subgroup analyses in these trials, 
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scepticism is perhaps the appropriate attitude-at least if we adhere to the 
methods employed in testing the efficacy of treatments. However, the meth
ods employed to test a treatment's efficacy are general and conservative. Any 
method that may lead to error when applied as a general rule is repudiated
even, if there are particular circumstances in which the method may not lead 
to error. Limiting consideration of basic science to the specification a trial, 
and ruling out post hoc analyses are good examples of this conservative atti
tude. 

Applying clinical research to individual patients raises a different set of 
questions. While conservative methods may be appropriate when we want 
to ensure that a treatment is efficacious--once again, tests of efficacy play 
an important role in regulatory decisions about whether a drug should be 
marketed-adhering to these methods when wanting to inform therapeutic 
decisions involving individual patients leaves clinicians hamstrung. However, 
if we are to relax some of these normative methodological rules, it is im
portant that it is not done in a way that disproportionately increases the 
risk of error; it is, of course, reliable subgroup analyses that clinicians need. 
Suppes' formal framework is one way of providing a principled account for 
determining the circumstances under which particular subgroup analysis may 
be reliable. 

Suppes' hierarchy of data models provides a plausible account of the links 
between the theory of basic science with the statistical findings of applied 
clinical research (Suppes 1962). Recall, at least three models are at work in 
any clinical trial, a model of the theory, a model of the experiment, and a 
model of the data. The hierarchy of data models can be put work on two 
important tasks within therapeutic decision making. First, the hierarchy 
of data models rejects the separation of basic science from the statistical 
results of applied clinical research; a separation that is implied by EBM's 
hierarchy of evidence. Basic science is integral to the specification, analysis 
and interpretation of applied clinical research (as seen in the previous chap
ter). Second, this account of the relation between theory and data provides 
a method for distinguishing between subgroup specific results that are the 
result of random error, and those results that may be due to an underlying 
process. Subgroup specific results for which the necessary assumptions of 
the theoretic, experimental, and data models hold, have more warrant than 
subgroup specific results for which the assumptions of the models do not 
hold. 
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Trialists deny basic science a role in analysing and interpreting applied 
clinical research. The only time basic science is appealed to is in the specifi
cation of the trial. Trialists view basic science as unable to discern between 
true subgroup-specific variation in treatment effects, and random variation. 
(Or, as Altman expresses the view, 'doctors seem to be able to find a biolog
ically plausible explanation for any finding'.) In a number of circumstances 
the trialist 's scepticism towards basic science playing a role in interpreting 
clinical studies is appropriate---especially when testing whether a treatment 
is efficacious. 

The basic science theories that are incorporated into the specification of 
the clinical trial are tested by the data. If the assumptions of the theoretical, 
experimental and data models hold, and the data support the basic science, 
then the basic science can be considered to have received a degree of sup
port. This is considered appropriate by the trialist, but any appeal to basic 
science that was not included in the specification of the trial is rejected. This 
rejection of the use of basic science in interpreting the results of clinical tri
als is appropriate when there is no strong independent support for the basic 
science being appealed to. As already discussed, subgroup specific variation 
in the effects of treatment are to be expected on the basis of random error. 
Basic science without strong independent plausibility neither explains, nor is 
confirmed by an observed variation in a particular subgroup. 

Ruling out a role for basic science that has not been incorporated into 
the specification of the trial may be justifiable in tests of efficacy. Tests of 
efficacy more neatly fit into the standard statistical analysis of clinical trials. 
Efficacy can be formulated as a single question, and a trial can be powered 
to adequately test this question. Also, the basic science that underpins tests 
of efficacy is likely to be fairly well established. The basic pharmacological 
properties will have been confirmed in extensive animal testing, and the basic 
safety profile will have been tested in pre-clinical studies. And because the 
test of efficacy is focussed on a single question, all the basic science that is 
anticipated to be relevant to this question can be included in the specifica
tion of the trial. In this situation, basic science that was not involved in the 
specification of the trial, appropriately plays a limited role in the interpre
tation of whether the therapy is considered efficacious. Notably, subgroup 
data plays a limited role in tests of efficacy-again, the question is simply 
whether the treatment is beneficial overall for a defined sample of patients. 
Subgroup data is more relevant for questions of effectiveness; more on this 
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in a moment. 

Post hoc analyses should also be approached with caution in tests of 
efficacy. First, as discussed, there are a number of ways post hoc analyses 
can be done poorly. Data dredging and data-dependent analyses increase 
the risk of erroneous inference. Second, with a focussed question like that of 
testing the efficacy of a treatment, post hoc analyses should not be required. 
The proposed efficacy of the treatment can be defined prior to the trial by 
an outcome on a single endpoint (or perhaps, a small number of endpoints 
combined). If the data from the trial are inconclusive, or do not find the 
therapy efficacious according to this measure, focus on alternative endpoints, 
or other post hoc analyses are rightly eyed with suspicion. 

If the treatment's claims to efficacy from data in a clinical trial rely on 
anything other than the pre-specified analyses, then alarm bells should ring. 
Questions of effectiveness, relying on the external validity of clinical trials, 
are different. They are not the central focus of most clinical trials, and the 
question will vary considerably depending on the patient for whom the results 
of the trial are to be applied. In this context, a more flexible approach to 
the interpretation of data from clinical trials is required. 

A different criteria should be applied to questions of effectiveness as op
posed to questions of efficacy. The contemporary methods in clinical epi
demiology emphasised by proponents of EBM are particularly focussed on 
rigourously testing whether treatments are efficacious. Randomised alloca
tion, prospective interventional studies, intention-to-treat analysis and the 
like are employed to improve the internal validity of applied clinical research. 
And, providing what these methods achieve is suitably understood, they are 
successful in this task. Therapeutic questions however are questions of how 
well, and in whom, the treatment works in routine care; therapeutic ques
tions are questions of effectiveness. And as such, these questions require 
judgement of the external validity of clinical research. Employing the same 
normative methodological rules to these questions~for instance, rejecting 
post hoc analyses, and a role for basic science in the interpretation of data~ 
risks rendering such questions unanswerable. Trialists find themselves in this 
position, they are caged in by the poor intrinsic statistical properties of sub
group analyses and their denial of basic science playing a role in interpreting 
clinical research. 

Not all post hoc appeals to basic science are necessarily fallacious. The 
hierarchy of data models provides a framework for considering subgroup anal-
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yses. Basic science can play an important role in interpreting clinical trial 
data-provided that the basic science appealed to is independently plausible. 
Basic science may explain observed variation in subgroups only if good inde
pendent reason for that basic science can be provided. The extent to which 
such appeals to basic science are credible relies heavily on the strength of 
this independent evidence. The same goes for post hoc analyses more gener
ally. Data-dredging, and data-dependent analysis should always be avoided, 
and the risk of false positives for multiple pre-specified tests explicitly taken 
into consideration. But post hoc analyses that have independent justifica
tion, whether that be via independently plausible basic science or reliable 
data from other clinical trials, can be appropriate. The strength of the in
terpretation they provide depends directly on the strength of the evidence 
independent of the trial under discussion. 

The hierarchy of data models illustrates the argument that has to be 
sustained to support interpreting an observed variation in a subgroup as 
genuine. A consistent representation of the underlying process is required 
from the three tiers of models, the model of the theory, the model of the 
experiment and the model of the data. ISIS-2 provides an example. Recall, 
ISIS-2, among other things, assessed whether streptokinase reduced death 
due to vascular disease in patients presenting with acute myocardial infarc
tion. Overall, streptokinase was found to be beneficial in a wide range of such 
patients. One subgroup in which benefit from streptokinase was not observed 
were patients with ST segment depression on their pre-randomisation elec
trocardiogram. The question that arises is whether this observed variation 
is genuine, or best attributed to chance. 

There are independent pathophysiological reasons for expecting patients 
with ST depression on their electrocardiogram to derive less benefit from 
fibrin-lysing drugs such as streptokinase. Patients suffering from acute coro
nary syndrome typically present with either ST depression or ST elevation on 
their electrocardiogram. In patients suffering an acute myocardial infarction, 
their electrocardiogram often evolves from ST depression, which signifies that 
the heart is receiving less oxygen, to ST elevation, which signifies that dam
age to heart tissue from lack of oxygen is beginning. ST depression suggests 
an early platelet-rich clot, which is only partly occluding the coronary artery. 
ST elevation suggests the clot has progressed, that it is rich in fibrin, and 

that it has completely occluded the artery. Thus, pathophysiology predicts 
that streptokinase-which dissolves the fibrin in the clot that is occluding the 
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coronary artery-will particularly benefit patients with ST elevation on their 
electrocardiogram. In addition to this plausible pathophysiologic rationale, 
many of the assumptions of the experimental and data models that hold for 
the overall analysis will hold for this subgroup. Because patients were ran
domised after their electrocardiogram, whether or not they present with ST 
elevation is not due to some aspect of treatment. And, because patients are 
randomised, it can be assumed that patients in the subgroup who received 
streptokinase are roughly similar to patients who received placebo. This can, 
and ideally should, be checked using standard statistical analyses (though, 
the demographic data of this subgroup was not reported in the original pub
lication). Because the endpoint under discussion is the primary endpoint of 
the trial, the data model, test statistic, and related assumptions are the same 
for this subgroup as in the overall analysis. In addition, further support for 
the variation observed in this subgroup being genuine, is provided by data 
available prior to ISIS-2 (Gruppo Italiano per lo Studio della Streptochinasi 
nell'Infarto Miocardico (GISSI) 1986). 

The strength of the argument supplied above reduces the possibility that 
the reduced benefit observed from streptokinase in patients with ST depres
sion is due to chance. Compare this with other subgroup specific results 
observed in ISIS-2. The observed variation of effect from aspirin seen in pa
tients born under different star signs provides a particularly stark contrast. 
Overall, patients in ISIS-2 that received aspirin had better outcomes than 
those who did not receive aspirin. Patients born under Libra or Gemini, 
however, did not receive the benefit. 

The argument provided for interpreting the variation in results witnessed 
in patients with ST depression as genuine can not be provided in the star sign 
subgroups. No basic science rationale for the variation observed in outcomes 
in patients born to different star signs can be supplied. And the method by 
which these results were found can be questioned. What justification can 
be given for combining results from patients born under Libra and Gemini 
and comparing them to patients born under other star signs? The only 
apparent rationale for combining patients in this way is that patients born 
under Libra and Gemini were observed to respond less to aspirin-a clear 
case of data-dependent analysis. Further, it is unknown how many other 
analyses were conducted before this variation was observed. What other 
patient characteristics were checked? Not only was the analysis provided by 
the star sign subgroups data dependent, but it likely arose after a process 
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of data dredging. By contrast, while assessing the effects of streptokinase in 
patients with ST depression versus ST elevation was not part of the primary 
statistical analysis in ISIS-2, at least the subgroup was pre-specified, and an 
independent rationale for creating the group can be provided. 

The trialists do not have the framework to differentiate between the post 

hoc subgroups created by ST-elevation or ST-depression on the electrocardio
gram, and the post hoc, data-dependent and data-dredged subgroups created 
according to birth sign. Rather, the trialists use the later to argue against 
the former on general grounds (recall the quote provided on page 143). By 
contrast the framework provided by the hierarchy of data models clearly 
distinguishes the two examples. 

It is important not to overstate what can be achieved by explicitly in
corporating Suppes' framework into the interpretation of subgroup data. In
terpreting subgroup analyses is difficult, and there is a substantial risk of 
error when the emphasis of the analysis shifts once the data are available. 
Subgroups should be formed on the basis of independent biologic or patho
physiologic information, rather than an observed variation in the effect of 
a treatment. Whether the independent information from basic science is a 
plausible explanation of the observed variation is a matter of judgement. 
And while judgement is also required when the analyses are pre-specified, 
additional caution is needed because the focus on the subgroup has come 
about after the data has been observed. It is important to acknowledge the 
different warrant provided by pre-specified and post hoc analyses. 15 

In most cases, interpretation of subgroups will be more difficult than the 
example provided by ISIS-2. But this does not diminish the valuable contri
bution the hierarchy of data models makes to the interpretation of subgroup 
analyses. To make therapeutic decisions, clinicians need to make judgements 
about how data observed in clinical research applies to their patients. Ad
hering, without reflection, to the methodological rules put in place to reliably 
test whether a treatment is efficacious hinders making such judgements. The 
hierarchy of data models provides a framework for judging whether an ob-

15It is also important to acknowledge that while basic science plays an important role 
in understanding and explaining the results of clinical research, it is neither sufficient nor 
necessary. There is good evidence for the effectiveness of many con tern porary treatments 
that nevertheless lack a clear pharmacological explanation of how they work. In these 
situations reproducibility, and an absence of alternative explanations for the results, is 
sufficient. 
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served variation in a subgroup may be genuine-as well as a framework for 
assessing the judgements of others. Using Suppes' framework in this way 
provides an improvement on the methodological conservatism of the trial
ists, and explicates a process by which the pathophsiologists can incorporate 
basic science into the appropriate interpretation of applied clinical research. 

7.6 Conclusion 

Analysing subgroup results in light of the hierarchy of data models redresses 
an imbalance present in the clinical literature. EBM proposes that therapeu
tic decisions be based on the evidence supplied by applied clinical research, 
especially randomised interventional studies. To achieve this, clinicians need 
to be able to apply the results of clinical research to the patients under their 
care. This requires the clinician to make judgements about the external va
lidity of clinical research, and the effectiveness of the treatments that have 
been assessed. Proponents of EBM provide little helpful advice in how these 
judgements should be made. 

Statistical results can not be interpreted in isolation-even if the basic 
science is uncertain, this in itself is relevant to the appropriate interpretation 
of the statistical results of clinical trials. On the basis of the conservative 
methods utilised to test the efficacy of treatments, trialists warn against 
the use of any subgroup analyses from randomised trials. This presents 
a difficulty for decision makers. Not all types of patient within the trial 
will respond equally to treatment, but EBM, as described by proponents, 
provides no method for ascertaining which groups of patients are more likely 
to benefit or be harmed from treatment. A clearer separation of questions 
of effectiveness from questions of efficacy, a recognition of the importance of 
subgroup analyses and external validity to clinicians, and a framework for 
considering the question of when an observed variation of treatment effect in 
a subgroup is likely to be genuine, provide an important, if partial, response 
to the challenge of interpreting subgroup analyses. 



Chapter 8 

Power and Inference: The 
Rofecoxib Case 

8.1 Introduction 

Conservative methodological and statistical rules are employed to test the 
efficacy of therapies. And, for the most part, there are good reasons for 
employing these rules-providing, of course, the strengths and weaknesses 
of these rules are recognised. Assessing the effectiveness of therapies, how
ever, raises substantially different questions. And to answer these different 
questions we need different resources. This chapter has two aims. First, 
highlight, through an important contemporary case, that therapeutic deci
sions are often made on statistical tests that are not optimal according to 
Neyman-Pearson methods. And second, following from the reliance of ther
apeutic decision makers on less than optimal Neyman-Pearson tests, I use 
the rofecoxib case to examine whether there are situations in which we can 
appropriately relax the statistical strictures in place for tests of efficacy. 

Since randomised interventional studies are analysed according to fre
quentist statistics, EBM explicitly ties frequentist methods to therapeutic 
decision-making. While a number of general philosophical criticisms have 
been levelled at frequentist statistics (for instance, Howson and Urbach 2006), 
the dominance of these methods in the analysis of clinical trials goes undimin
ished. Granting the frequentist methods on their own terms, I argue there 
are problems in how these methods are applied in the analysis of clinical tri
als. Specifically, while the normative rules supplied by frequentist methods 
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can be understood for Neyman-Pearson tests set up optimally, clinical trials 
typically conduct a number of additional tests that are not set up in this way. 
These additional tests are important to therapeutic decisions, and should not 
be interpreted in the same way as optimal Neyman-Pearson tests 

The controversy surrounding rofecoxib well illustrates the use of frequen
tist methods to inform therapeutic decisions. Recall, rofecoxib reduces pain 
and inflammation in conditions such as rheumatoid arthritis. A lower risk 
of gastrointestinal adverse effects has been observed with rofecoxib (and 
similar agents) compared to traditional antiinflammatories (such as aspirin, 
ibuprofen and the like) (Bombardier et al. 2000). Introduced with a heav
ily marketed promise of superior safety, rofecoxib was widely prescribed in 
many countries. 1 However, after only five years on the market, rofecoxib was 
withdrawn following the Adenomatous Polyp Prevention Trial (APPROVe). 
APPROVe found patients taking rofecoxib suffered a statistically significant 
increase in heart attacks and strokes compared to patients taking placebo 
(Bresalier et al. 2005). 

APPROVe was not explicitly set up to test whether rofecoxib increases the 
risk of thrombotic events (such as heart attacks and strokes). Indeed, as will 
be shown, evidence external to the trial suggests APPROVe had low power 
to test this outcome. The power of a statistical test is the pre-experimental 
probability that the statistical test will yield a statistically significant result 
for the measure of a particular outcome on the assumption the null hypothesis 
is false (see Section 1. 2 for discussion). Power is calculated either on the basis 
of prior evidence, or practical considerations of what is considered a clinically 
important effect. Well designed clinical trials will have a power of 80-90% to 
test the the primary clinical endpoint. Rather than to provide a powered test 
of whether rofecoxib increases thrombotic risk, APPROVe was set up (and 
powered) to test whether rofecoxib would prevent the relapse of adenomatous 
polyps. Since the most important inferences made on the basis of APPROVe 
relate to the risk of thrombotic events (rather than adenomatous polyps), 
APPROVe raises the question of what role statistical power should play in 
the inferences we draw? 

Power is of interest to this analysis because it is the way in which Neyman
Pearson methods take into account evidence regarding the unknown parame
ter under investigation. APPROVe's statistical test of rofecoxib's thrombotic 

1Cutts et al. (2002) show that rofecoxib was prescribed to a broad range of patients, 
many of whom were older and suffering multiple pathologies. 
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risk was set up without consideration of the available evidence regarding this 
risk-this is my primary concern. The question is whether this lack of ex
plicit consideration of the available evidence regarding the thrombotic risk 
of rofecoxib is relevant to the interpretation of the statistical test provided 
by APPROVe. The focus on power will seem somewhat convoluted to a 
Bayesian. On the Bayesian account the available evidence regarding the 
unknown parameter will be included in the prior probability distribution. 
As seen in Section 1.2, for the frequentist conducting a Neyman-Pearson 
test, the available evidence is incorporated into the statistical test via the 
pre-experimental a and j3 error rates. j3 and power, (1 - (3), is especially 
important because j3 is a function of the test statistic under the assumption 
of the alternative hypothesis. This, however, is only done for the primary 
endpoint in a clinical trial. Rofecoxib raises the question of how best to in
terpret secondary endpoints when evidence external to the trial suggests the 
statistical test is under-powered. 

Within medical statistics, power is considered important prior to conduct
ing the experiment. It is widely accepted that trials should only be conducted 
if they have a reasonable chance of providing a result that is conclusive within 
the terms of frequentist statistics-that is, provide a statistically significant 
result that rejects the null hypothesis. Ensuring the statistical test is well 
powered for the primary clinical endpoint provides this assurance. Power 
is also seen as relevant to the interpretation of a statistical result when the 
result of the test is 'non-significant' and the power of the test is low. In such 
a scenario the statistical test is considered inconclusive because the test is 
underpowered. 

Once a statistically significant result has been observed, however, the 
standard view holds power irrelevant to the interpretation of the result. If 
the result of the test is statistically significant, then the null hypothesis is 
rejected (according to the terms of frequentist statistics), and the alternative 
hypothesis accepted. I will label the view that the power of a test is irrelevant 
once a statistically significant result has been observed the 'standard view'. 
There are many examples of this view in the clinical literature. Here is one 
from a well known textbook on clinical epidemiology: 

Calculation of statistical power based on the hypothesis testing 
approach is done by the researchers before a study is undertaken 
to ensure that enough patients will be entered to have a good 
chance of detecting a clinically meaningful effect if it is present. 
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However, after the study is completed this approach is no longer 
as relevant. There is no need to estimate effect size, outcome 
event rates, and variability among patients; they are now known. 
(Fletcher et a!. 1996, p. 200) 

Part of the aim of this paper is to illustrate when this view is appropriate 
and when it is not. Specifically, I will show that this view can be justified for 
adequately powered endpoints (such as is the case for many tests of efficacy). 
By contrast, however, this view cannot be justified when evidence external 
to the trial suggests the statistical test is underpowered (which often occurs 
for secondary endpoints). 

In recent years more emphasis has been given to the frequentist approach 
to estimation. This is because estimation theory provides more information 
for therapeutic decisions. The frequentist approach to estimation uses the 
observed data to estimate the true value of the unknown parameter. As noted 
previously, despite the different focus, both hypothesis testing and estimation 
can be outlined within the same framework. And, both hypothesis testing 
and estimation are employed (often simultaneously) in drawing inferences 
from clinical trials. 2 It is difficult to speculate what would have happened 
if an increased, though not statistically significant, risk was observed in AP
PROVe. But the immediate withdrawal of the drug, and the international 
controversy that ensued, seems much less likely. It is generally the case in 
medical research that estimation becomes important once a hypothesis has 
passed a statistical test, and this is specifically so for APPROVe. For this 
reason, and because power is most naturally discussed in terms of hypoth
esis testing, I will focus on the frequentist approach to hypothesis tests. I 
stress, however, that the comments I make in relation to power are easily 
transferable to the theory of estimation. 

EBM places a greater focus on the results of randomised interventional 
studies, and this focus extends beyond the results of the primary hypothesis 
test. In practice, in each trial many statistical tests are conducted, and in
ferences drawn, on endpoints in addition to the primary endpoint. Whereas 
frequentist statistical methods ensure the optimal warrant for the tests set up 
according to ideal Neyman-Pearson methods, this warrant does not extend to 

2 See Gardner and Altman (1989) and Ware et al. (1992) for discussion regarding the use 
of estimation rather than hypothesis testing. Both p values and confidence intervals are 
reported in clinical trials (as seen in APPROVe). Most who argue for confidence intervals 
argue for them as a valuable addition to the reporting of p values. 
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the additional statistical tests. I suggest the application of the standard view 
to these additional statistical tests in clinical trials is problematic. While 
the standard view provides a clear interpretation of statistical tests set up 
according frequentist methods, such as is typically the case for primary hy
pothesis tests, this interpretation can break down in the case of secondary 
endpoints and subgroup analyses. 

Drawing appropriate inferences in relation to secondary endpoints and 
subgroup analyses is all the more important due to the significance of these 
analyses to therapeutic decisions. As the 'subgroup debate' discussed in 
the previous chapter makes clear, analyses of secondary endpoints and sub
groups play a role in informing decisions regarding individual patients. Judg
ing whether results of a trial are relevant to a particular patient takes into 
consideration the results of the trial in the subgroups most relevant to the 
patient. Further, most primary hypotheses test whether a therapy benefits 
a group of patients, this means safety endpoints are relegated to secondary 
hypotheses. As therapeutic decisions require clinicians to weigh up both the 
benefits and harms of a therapy, analyses of secondary endpoints are crucial. 
This creates a well recognised problem for therapeutic decision makers. As 
Collins and MacMahon note, there is an 

[ ... ] unavoidable conflict between the reliable subgroup-specific 
conclusions that doctors and their patients want, and the unreli
able findings that subgroup analyses of clinical trials might offer. 
(Collins and MacMahon 2007, p. 13) 

Alvan Feinstein's (1998) description of the tension between what frequen
tist methods provide, and clinicians need, is apt (if somewhat dramatic): the 
clinician's need for a reliability the statisticians can't provide is a 'clinico
statistical tragedy'. The standard approach to this problem is to rely on 
systematic reviews and meta-analyses. Collating the subgroup analyses or 
secondary endpoints from a number of similar clinical studies will improve the 
reliability of these analyses if a number of sufficiently similar clinical studies 
are conducted. But this, of course, relies on similar studies being conducted. 
And even if they are, the time it takes these studies to be conducted cre
ates a substantial problem when therapeutic decisions need to be made in 
the interim. I grant that subsequent meta-analyses and systematic reviews 
may eventually provide the necessary evidence for therapeutic decisions, but 
to see this as a reply to the problems of subgroup analyses and secondary 
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endpoints is wrong-headed. Surely, better understanding precisely why, and 
when, subgroup analyses and secondary endpoints are unreliable is vital for 
any adequate reply to the problem. 

It is only appropriate to consider power after a statistical result has been 
observed in certain, well defined, circumstances. Some of the attempts that 
have been made to interpret statistical findings in relation to the power of the 
test are patently incorrect. For instance, 'post-hoc power', where the power 
of the test is calculated based on the estimate provided by the trial, is a clear 
case of contorted reasoning. By definition, any result that is non-significant 
will have a low 'post-hoc power', and any result that is significant will have 
high 'post-hoc power' (Goodman and Berlin 1994 provide discussion). The 
power of a test can be appropriately calculated in one of two ways: on the 
basis of available evidence regarding the parameter under investigation, or 
in the absence of any such evidence, on the basis of the smallest clinically 
important effect. 

In clinical trials statistical tests take place within one of the following 
three contexts ( i) the test can be adequately powered based on the available 
evidence, (ii) the test can be adequately powered, in the absence of evidence, 
on the 'smallest clinically important effect', or (iii) the test can take place 
when evidence external to the trial suggests the test is underpowered. I will 
call this the 'epistemic context of the statistical test'. In general, the stan
dard view ignores the epistemic context of the statistical test. For instance, 
while evidence external to the trial suggests APPROVe was underpowered to 
test whether rofecoxib increases the risk of thrombotic events, this evidence is 
considered irrelevant (or inadmissible) when interpreting the observed statis
tically significant result. I argue that in such situations evidence external to 
the trial undermines the warrant of the statistically significant result. The 
insensitivity of the standard view to evidence external to the trial means 
that the reduced warrant of the statistical test goes unrecognised. Clearly, 
this is a serious problem when frequentist methods are being used to inform 
therapeutic decisions. 

8.2 The Rofecoxib Case 

The main features of the rofecoxib case are outlined. Two related aspects 
of the frequentist statistical approach are important: hypothesis testing and 
estimation. To aid exposition I shall simply report the standard statisti-
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cal findings relevant to the case. The statistical concepts employed were 
discussed in Section 1.2, and will be reviewed in the following section. 

APPROVe was set up to test whether rofecoxib would reduce recurrent 
gastrointestinal adenomas. APPROVe recruited male and female patients 
who were over 40 and had at least one large-bowel adenoma removed within 
12 weeks of entry to the study. Participants were randomised to treatment 
with rofecoxib or placebo. It was planned that the study would continue 
for three years. Due to the plausible pharmacological rationale for rofecoxib 
increasing the risk of thrombotic events, and some suggestive (though incon
clusive) clinical trial evidence, an independent committee was installed to 
monitor cardiovascular events. The rate of thrombic events was a secondary 
clinical endpoint in the APPROVe trial. This endpoint was used to test the 
hypothesis that rofecoxib increases the risk of thrombotic events. Call the 
hypothesis that rofecoxib increases the risk of thrombotic events, HA. Re
member, despite HA being the hypothesis everyone is interested in, it was 
not the primary hypothesis APPROVe was designed to test. 

HA can be specified in a number of ways. To be consistent with the 
analyses conducted in APPROVe, specify HA as the following: let JlR be 
the unknown incidence of thrombotic events in patients taking rofecoxib, 
and Jlc be the incidence of thrombotic events in patients taking control. 
H A holds that the relative risk of thrombotic events is greater than one: 
RRI' = JlR/ Jlc > 1. The null hypothesis, H0, holds that the relative risk of 
thrombotic events equals one: RRI' = JlR/ Jlc = 1. There is also an estima
tion problem at hand. If HA is supported the magnitude of this increased 
risk becomes important. Therapeutic decisions are an act of weighing bene
fits with possible harms. Estimating effect size is vital for this deliberation. 
If the thrombotic risk posed by rofecoxib is real, but sufficiently rare, the 
marginal gastrointestinal safety may justify its use in some patients. The 
magnitude of the increase in risk of thrombotic events due to rofecoxib is 
estimated by the absolute risk increase, ARII' = JlR - Jlc· 

Although no formal stopping rule was in place, the study was halted 2 
months early due to a statistically significant increase in the rate of confirmed 
thrombotic events (this combined endpoint included cardiac, cerebrovascu
lar and peripheral vascular events). The relative risk for having a confirmed 
thrombotic event in the rofecoxib group was 1.92 (p value = 0.008; 95% con
fidence interval, 1.19-3.11) (Bresalier et al. 2005). This increase in risk was 
predominately made up of patients suffering heart attacks and strokes. AP-



176 Evidence based medicine: Evolution, Revolution, or Illusion? 

PROVe estimates an ARI" of 0.72 thrombotic events per 100 patient years.3 

The VIGOR study estimated treatment with rofecoxib rather than naproxen 
resulted in a absolute reduction of 0.8 gastrointestinal events per 100 patient 
years (Bombardier et al. 2000). Hence, APPROVe suggests taking rofecoxib 
increases the risk of suffering a heart attack or stroke roughly as much as it 
reduces the risk of suffering a gastrointestinal event. If this estimate is accu
rate then it would be difficult to argue for a widespread role for rofecoxib. 

The decision of Merck, the manufacturer of rofecoxib, to withdraw the 
drug would have been due to a range of factors (including evidential, ethical, 
legal and financial). There is little doubt, however, the findings of APPROVe 
were crucial. (Rofecoxib was marketed under the name Vioxx). 

Merck has always believed that prospective, randomized, con
trolled clinical trials are the best way to evaluate the safety of 
medicines. APPROVe is precisely this type of study-and it 
has provided us with new data on the cardiovascular profile of 
VIOXX. While the cause of these results is uncertain at this time, 
they suggest an increased risk of confirmed [cardiovascular] events 
beginning after eighteen months of continuous therapy. While we 
recognize that VIOXX benefited many patients, we believe this 
action [withdrawal] is appropriate. 4 (Merck 2004) 

The statistically significant increase in thrombotic events observed in AP
PROVe played a vital role in the withdrawal of rofecoxib. 

But evidence regarding the thrombotic risk of rofecoxib was not incorpo
rated into the specification of the test conducted in APPROVe. This raises 
the question of whether the power of APPROVe to test HA is relevant to 

3In addition to point estimates, the approach to estimation used in clinical trials pro
vides an interval. The 95% confidence interval for the absolute risk of thrombotic events 
observed in APPROVe was 0.15-1.62 per 100 patient years. Interpretation of this interval 
(in relation to RR") is discussed in the following section. 

4It is questionable whether randomised interventional studies actually are the best way 
to evaluate medicines. Indeed, the rofecoxib case provides a good counter-example to 
this claim---specifically, the delay in identifying the adverse effects of rofecoxib despite the 
many randomised interventional studies conducted prior to APPROVe. As I have argued 
throughout the thesis, randomised interventional studies and the statistical methods we 
employ to analyse these studies are often not the best source of evidence regarding safety 
outcomes (see Section 5.3 for discussion). Further, it should be noted the suggestion that 
confirmed cardiovascular events begin after eighteen months of therapy is based on an 
error. For discussion, see Lagakos (2006). 
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the interpretation of the observed statistically significant result. There are 
two senses in which APPROVe was not powered to test HA. First, a pow
ered test of HA was not explicitly part of the set-up of APPROVe. This is 
equivalent to pointing out that HA is not the primary hypothesis under test. 
The second sense is more important to this analysis. The second sense refers 
to evidence on rofecoxib's thrombotic risk, and on the basis of this evidence 
suggests APPROVe was under-powered to test HA. 

A recent meta-analysis by Kearney et a!. (2006) provides an estimate of 
the thrombotic risk of rofecoxib. This estimate can be used to calculate the 
power APPROVe had to test HA. Thirty-seven trials comparing rofecoxib 
and placebo are included in the meta-analysis. The relative risk for throm
botic events in these trials appears similar to the overall estimated relative 
risk for thrombotic events for the class of COX-2 inhibitors (the actual figure 
for rofecoxib is not reported). Taking OA to be 1.42 (the reported relative 
risk) it is possible to calculate the power APPROVe had to test HA: approx
imately 14%.5 Recall that a large clinical trial is expected to have a power of 
SQ-90% to test the primary hypothesis. Clearly APPROVe's power to test 
HA is considerably lower than recommended. 

Specifying 0 A in this way is contentious for a number of reasons. First, 
there are substantial problems on relying on the Kearney meta-analysis to 
estimate 0 A· Perhaps most notable, the meta-anlysis was published after, 
and thus includes, APPROVe. While the influence of APPROVe on the esti
mate for the combined placebo controlled trials is not reported, it plausibly 
contributes markedly.6 Hence, if APPROVe is brought into question so too 
is the estimate provided by Kearney's meta-analysis. There is, however, no 
easy way to overcome this problem. Because Kearney includes all impor
tant placebo controlled trials involving rofecoxib, the meta-analysis arguably 

5Power calculators using the binomial distribution are available online (for example, 
http: I /TNWW. svogstat. erg/stat/public/Binomial/binomial. htm). A power of 
22% for APPROVe's test of HA is based on the following: total sample size of APPROVe, 
N = 2586; the proportion of events in the placebo group as per APPROVe, P1 = 0.020; 
the proportion of events in the rofecoxib group (calculated on the basis of 8A = 1.42), 
P2 = 0.026; and a one-sided a = 0.05. 

6 Most of the 37 placebo controlled trials included in the meta-analysis were of short du
ration (4-12 weeks). The only long term studies (longer than 12 months), other than AP
PROVe, which compared rofecoxib and placebo, were three trials in Alzheimers disease
none of which showed a significant trend for rofecoxib to increase thrombotic events (Aisen 
et al. 2003; Reines et al. 2004; Thal et al. 2005). 
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provides our current best guess for (lA· It is not ideal, but it is the best we 
have. Also, the Kearney meta-analysis provides a conservative estimate for 
the claim that APPROVe was underpowered to test HA. It is, of course, 
reasonable to ask what inferences should have been made based on evidence 
available at the time APPROVe was conducted. At this time the results of 
systematic reviews, and other data, gave conflicting accounts of rofecoxib's 
thrombotic risk. An estimate drawn on the basis of this data would would 
be lower than that provided by Kearney; and, thus, suggest that APPROVe 
had even lower power to test HA. 

Second, and perhaps more importantly, specifying (lA on the basis of any 

evidence is highly contentious. Recall, the standard view holds that once 
a statistically significant result has been observed, the power of the test is 
irrelevant. On this view, APPROVe confirms HA, and the magnitude of 
the observed risk is used to inform therapeutic decisions. This however is 
precisely the view I wish to question. 

The healthcare community's response to APPROVe was consistent with 
the standard view. The manufacturer withdrew rofecoxib from the inter
national market. And, the overwhelming response of the medical fraternity 
was to question how it took so long to confirm such an important adverse 
effect in a drug that had passed through all the regulatory processes of drug 
development, and been so widely prescribed.7 

It is important to acknowledge that APPROVe does not provide the only 
evidence supporting HA. Prior to APPROVe, there was both a plausible 
pharmacological rationale for how COX-2 inhibitors may increase the risk 
of thrombotic events, and evidence from, VIGOR, a randomised interven
tional study (Bombardier et a!. 2000). VIGOR examined whether patients 
taking rofecoxib had less 'adverse gastrointestinal events' than those taking 
naproxen-such 'events' include gastric or duodenal ulcers, and related com
plications. Patients taking rofecoxib in this study did have less adverse gas
trointestinal events but they also had statistically significantly more throm
botic events (observed as an increase in heart attacks). Since the withdrawal 
of rofecoxib, the findings of some randomised interventional studies, meta
analyses and observational studies also provide support for HA (Kearney 
et a!. 2006; Graham 2006; Juni et a!. 2004; Kerr et a!. 2007). 

A couple of points are important. While there existed a range of evidence 

7See, for example, the following editorials from leading medical journals: Abbasi (2004); 
0 kie ( 2005); Topol ( 2004). 
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that supported HA prior to APPROVe, this evidence was not considered suffi
cient for severe prescribing or regulatory restrictions. H A was not considered 
sufficiently tested, perhaps, because alternative hypotheses were available. 
The pharmacological rationale for HA, for instance, was not considered con
firmed as it had not been demonstrated in a randomised interventional study. 
And while VIGOR provides some evidence from a randomised interventional 
study, the study investigators put forward an alternative to HA as an ex
planation of the observed risk, namely, that naproxen prevented thrombotic 
events (Bombardier et al. 2000). 

In contrast to some commentary, 8 I think a level of uncertainty regard
ing whether rofecoxib increased the risk of thrombotic events was appro
priate. While some evidence supported a small increase in thrombotic risk 
associated with rofecoxib (and some of the more dismissive claims made in 
VIGOR are dubious9

), the available data were far from conclusive. An in
dustry sponsored meta-analysis, which combines much of the evidence prior 
to APPROVe, failed to show an increased incidence of thrombotic events in 
patients taking rofecoxib (Weir et al. 2003). In addition, a very large study 
involving lumiracoxib, a member of the same class of drugs as rofecoxib and 
a considerably more selective inhibitor of COX-2, failed to detect a statisti
cally significant increase in risk of thrombotic events despite enrolling nearly 
18,000 patients (Farkouh et al. 2004). 

The results of APPROVe played an important (though not singular) role 

8 Some argue there was sufficient support for HA for a several years prior to APPROVe 
(Juni et al. 2004). To be clear, I think, what most of the commentary suggests is very 
reasonable: we should not have waited so long to test HA· Even if there was not enough 
evidence to support H A there was enough to show it needed investigation. Recall that 
APPROVe did not explicitly test HA; what has been taken as confirmation of HA was 
accidental. 

9VIGOR excluded patients who were taking aspirin. Part of the VIGOR authors' 
explanation for the increased thrombotic risk observed in VIGOR relies on the following 
claims: (i) the study enrolled patients at high risk of thrombotic events, patients who 
should have been taking aspirin to prevent blood clots and (ii) that it is likely that naproxen 
was better at preventing thrombotic events in these patients. While pharmacologically 
plausible, these claims do not entirely account for the observed increase in thrombotic 
risk. An FDA report, with updated data from VIGOR, provides results contrary to what 
this explanation would predict. Statistically significantly more adjudicated thrombotic 
events were observed in the subgroup of patients who did not have an indication for 
aspirin thromboprophylaxis. See Food and Drug Administration Advisory Committee 
(2001), and Section 6.3 on page 131. 
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in supporting HA· Those faced with the decision of whether rofecoxib should 
be used in a patient, or population, need to draw an inference based on avail
able evidence. How should decision makers respond to the data observed in 
APPROVe? More particularly, how should the statistically significant result 
be interpreted when evidence external to the trial suggests the statistical test 
was underpowered?10 I wish to question the standard view. To do so it is 
necessary to review aspects of the frequentist statistical set-up. 

8.3 Frequentist analysis of APPROVe 

Clinical trials are primarily analysed according to the methods proposed by 
Neyman and Pearson introduced in Section 1.2. Here I outline the analysis 
of APPROVe focusing on the two warrants provided by frequentist methods 
for rejecting a null hypothesis. Importantly, the second warrant, which relies 
on Neyman and Pearson's Fundamental Lemma, does not hold in this case. 

The test statistic of interest is RRx, which is equal to XR/ Xc, where 
XR is the rate of thrombotic events in rofecoxib treated patients, and Xc 
is the rate of thrombotic events in patients receiving placebo. RRx is an 
estimator of (}, the unknown 'true' relative risk for thrombotic events in 
patients taking rofecoxib. RRx, XR and Xc are random variables. H0 holds 
that (}0 , the value of(} assuming the null hypothesis is true, equals one. Since 
there is considerable evidence regarding the use of rofecoxib, I propose using 
this evidence to select (}A, the value of (} proposed by HA (specifically, the 
estimate provided by the Kearney meta-analysis discussed in the previous 
section). 

Because HA is not the primary hypothesis under test, APPROVe was 
not powered to test this hypothesis. The point of contention is whether the 
H A should be specified, and power--or more directly, the available evidence 
regarding the thrombotic risk of rofecoxib-considered retrospectively in in
terpreting the test. More on this in a moment. 

10The focus in this paper is what inferences are warranted on the basis of APPROVe. 
This should be distinguished from what decisions should follow. For instance, it is perfectly 
reasonable within a decision theoretic framework to deny that APPROVe establishes that 
rofecoxib increases the risk of thrombotic events, but hold that nevertheless (due to con
siderations of the utilities involved) rofecoxib should be withdrawn from the market. By 
focussing on the first component (the warrant provided by the data in APPROVe) I hope 
to aid the second component (decisions involving whether rofecoxib should be prescribed). 
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A test statistic falling into the rejection region ensures that P(RR, I H0 ) 

is low. For adequately powered tests, Neyman and Pearson's Fundamental 
Lemma provides the additional assurance that P(RRx I ()A)/P(RRx I eo) is 
maximised. The likelihood ratio is important to Neyman-Pearson methods. 
But it is of secondary importance. Frequentist considerations regarding the 
entire sample space predominate (see page 28 for further discussion). Typical 
clinical trials report many tests in which the power of the test is never con
sidered. The standard view, which holds power irrelevant once a statistically 
significant result has been observed, sees no problem in this. 

Estimation theory considers which values of() are supported by the data. 
Given RRx is an estimator of(), the lower and upper bounds of a confidence 
interval can be calculated such that the pre-experimental probability of () 
being within the interval can be specified, that is P(T, < () < T" I ()) = 1-a 
for all () E 0, where T, and T" are the lower and upper bounds respectively, 
and 0 is the parameter space. In APPROVe, the reported 95% confidence 
interval for the relative risk of thrombotic events is 1.19-3.11. The observed 
data is used to calculate t, and t" (1.19 for the lower bound and 3.11 for 
the upper bound). Recall, () is an unknown constant, so the probability of 
() falling into any interval is zero or one. The probability statement refers 
to T, and T" and not t, and t". Put into physical terms, if the trial was 
repeated indefinitely, and if the assumptions of the specification are correct, 
then the means of the respective distributions of values for the observed t, 
and t", would capture () 95% of the time. 

If RRx is not a good representation of RRx, or the assumptions made 
in the specification fail, then the calculated confidence interval may be mis
leading. An example, relevant to APPROVe, is when evidence from outside 
the trial suggests RR, is not a good representation of RRx; that is, when 
external evidence suggests RRx is extreme. 'Good representation' here refers 
to the observed RRx falling in the central range of the random variable RRx. 

8.4 Why the Epistemic Context of the Test 
Matters 

On the standard view, once a significant result has been observed, H 0 is 
rejected, and HA, along with the calculated confidence interval provisionally 
accepted. Importantly, the null and alternative hypotheses have a different 
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logical standing. Inferences are based solely on the sampling distribution of 
RRx under the null hypothesis. Here the only time the alternative hypothesis 
is considered is in the set up of the test; and this is done only for the primary 
hypothesis under test in the trial. This ensures the test has a good chance 
of rejecting the null hypothesis when false. Cox and Hinkley make this point 
repeatedly. 

So far as the significance test is concerned, however, the null 
and alternative hypotheses are not on equal footing; H 0 is clearly 
specified and of intrinsic interest, whereas the alternatives serve 
only to indicate the direction of interesting departures. (Cox and 
Hinkley 1974, pp. 88-89.) 

The standard view's interpretation of power is consistent with this asymmet
rical attitude to the influence of 80 and BA. Power is seen to be completely 
separate from the analysis of data. 

A final general comment on the idea of power is that it is never 
used directly in the analysis of data. When we are interested in 
the relation between data y and values of the parameter other 
than the null value, an interval or other form of estimate will be 
needed; the power function is a general property of a test and 
does not give us information specific to particular sets of data. 
(Cox and Hinkley 1974, p. 105) 

What these quotes assume, however, is that statistical tests are always 
strictly set up according Neyman-Pearson methods-that is, if evidence re
garding the unknown parameter is available, it is part of the specification 
(context (i)), or, in the absence of such evidence, the test is powered based on 
the smallest clinically important effect (context (ii)). Of course, in many ar
eas outside of clinical trials this assumption may well be reasonable. General 
accounts of frequentist statistical inference do not discuss how statistically 
significant results should be interpreted following a test that is underpow
ered according to the available evidence--Neyman-Pearson methods direct 
investigators to set up powered tests. If statistical tests are set up according 
to the method, the question of how to interpret an underpowered test does 
not arise. As discussed, in the clinical sciences the primary hypothesis test 
is set up according to Neyman-Pearson methods, but many additional tests 
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are conducted outside of these contexts. This results in a great deal of con
tention, and indeed confusion, about how such tests should be interpreted in 
the clinical sciences where subgroup analyses and secondary endpoints are 
important to decision makers. This is why situations arise in clinical trials in 
which there is evidence external to the trial that suggests the test is under
powered (that is, context (iii)). What I wish to highlight, and the standard 
view appears to ignore, is that this changes the warrant of a statistically sig
nificant result from such a test. Whereas the standard view can be justified 
in context (i) and (ii), it can not be justified in (iii). I now consider the 
justification that can be provided by frequentist statistics for the standard 
view. I start by considering context ( ii): when there is no evidence available 
on which to power the statistical test. 

8.4.1 Statistical tests in the absence of evidence relat
ing to the alternative hypothesis 

The standard view's distinction between the relevance of pre- and post-trial 
power is justified when there is no empirical basis to specify {I A· Say H 0 : 

{I = 0, and the null hypothesis is fully specified. The trial is designed to test 
this hypothesis against the alternative hypothesis, HA: {I > 0, but no evi
dence supports picking any particular value for {I A· Here the trial is typically 
powered to test the null hypothesis against the smallest clinically important 
effect, using the power curve for values of {I under HA. 

Suppose a statistically significant test statistic has been observed. Let's 
also accept that the investigators designed the study to provide an adequately 
powered test of the null hypothesis based on what they propose to be the 
smallest clinically important effect. While the value of the smallest clinically 
important effect may be contested, there is no legitimate basis on which to 
argue the test underpowered. Any such argument requires evidence support
ing a particular value for {I A· In the absence of this evidence it is appropriate 
to accept what the trial data tell us about H0 . That is, the trial data, as
suming the specification of the trial, suggests a discrepancy from the null 
hypothesis. 

This is reported in shortened form: reject the null hypothesis. Of course 
reject has a particular interpretation within frequentist statistics. It means 
that the observed test statistic, call it t, falls into the rejection region of the 
sampling distribution for the random variable T assuming the null hypoth-
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es1s. If a is set at 0.05 this means the observed value of the test statistic, 
or a value more extreme, would be expected less than 5 out of every 100 
repetitions of the experiment. 11 Hence, assuming the specification of the test 
is correct, the first warrant of a statistically significant result is provided. 
And this is the best warrant Neyman-Pearson methods can provide in this 
situation. Given there is no evidence on which to specify B A, the second 
warrant does not apply. 

8.4.2 Statistical tests when evidence relating to the 
alternative hypothesis is included in the specifi
cation 

The standard view can also be defended when empirical evidence exists about 
HA. But this defence hangs on setting up the trial according to Neyman
Pearson methods. Thus, the evidence supporting a particular value of the 
alternative hypothesis is included in the specification of the trial, and there
fore the statistical test is powered on the basis of this evidence. 

In this situation Neyman and Pearson's Fundamental Lemma ensures, 
for a test statistic that falls in the rejection region, the likelihood ratio, 
P(RRx I BA)/ P(RRx I 00 ), is maximised. Hence, the nature of the test tells 
us something about how the statistically significant data relates to the null 
and alternative hypotheses. Where evidence exists about the alternative hy
pothesis, and it is included in the specification, the Fundamental Lemma 
provides some assurance about the 'fit' of the data. If a statistically signifi
cant result is observed, the data support the alternative hypothesis (and the 
evidence used to specify the alternative hypothesis). Both of the warrants 
for a statistically significant result within the Neyman-Pearson approach are 
provided. 

11The proposed magnitude of the smallest clinically important effect may well be con
tested. The statistically significant result, it may be argued, is not clinically significant. 
But this does not argue the discrepancy from the null hypothesis does not exist. Only 
that the discrepancy is of insufficient size to affect therapeutic decision making. 
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8.4.3 Statistical tests when evidence relating to the al
ternative hypothesis is not included in the spec
ification 

APPROVe raises difficult questions because the evidence relating to throm
botic risk was not considered in the set up of the trial. Based on available 
evidence a considerably larger sample of patients would have been necessary 
for APPROVe to provide a sufficiently powered test of H 0 . If this larger trial 
was conducted, and a significant test statistic observed, then the Neyman
Pearson test would provide information on how the data relates to both H 0 

and HA. This result, and its associated confidence interval, would possess 
both of the warrants associated with being set up according to Neyman
Pearson methods. However, the hypothesis of interest in APPROVe was 

not set up according to Neyman-Pearson methods; based on the available 
evidence the test was underpowered. As a result the observation of a statis
tically significant test statistic for this hypothesis creates a tension between 

the two warrants supplied by Neyman-Pearson methods. 

The first warrant of Neyman-Pearson methods goes through: the observed 
thrombotic risk data from APPROVe support a discrepancy from H 0 . This 
is implied by the observed test statistic falling into the critical region of 
the sampling distribution under H0 . But evidence external to the trial also 
suggests that the observed data are unlikely under the assumption that HA 
is the true hypothesis; that is, P(RR, I HA) is also low. This undermines 
the second warrant. The low power of the test means the likelihood ratio, 
P(RRx I (}A)/ P(RRx I 00), is not maximised for all values of the test statistic 
that fall in the critical region. This opens an interpretative dilemma. Either 
RRx is an extreme sample point within the distribution of RRx based on 
available evidence (that is, the evidence used to specify (}A), or the evidence 

used to estimate (}A underestimates the true RRx (and hence, the HA)· 
The standard view obscures this interpretative dilemma by ruling external 

evidence inadmissible. 

What does this mean for the hypothesis test and estimation problem in 
APPROVe? First, let's accept the external evidence suggesting the test of H 0 

in APPROVe is underpowered. The result of the hypothesis test and estima
tion problem is as for the standard view: reject H0 ; and the 95% confidence 

interval for RRx (calculated on the basis of RRx) is 1.19-3.11. This is what 
information the observed data provide, assuming the specification of the trial. 
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But these results need to be interpreted in light of the evidence external to 
the trial. The observed RRx fell in the rejection region of RRx under H0 . 

The question becomes how much of a discrepancy the observed RRx should 
be taken to support. Accepting the external evidence raises doubts that the 
true value of (} departs from H0 as much as that suggested by the observed 
data. 

This is illustrated by considering the confidence interval provided by AP
PROVe. The lower bound, tc, is 1.19 and the higher bound, t", is 3.11. The 
probability this interval captures (} refers not to t" and t", but to the random 
variables T" and T". Evidence external to the trial suggests the observed 
data may be extreme, and should this be true, this would mean the calculated 
confidence interval does not represent the means of Ta and T". The only way 
to test this is to either conduct a study significantly larger than APPROVe, 
or combine a number of studies of similar size and set up to APPROVe, and 
use meta-analysis techniques to calculate a new confidence interval based on 
this data. In the absence of a larger study, or meta-analysis-or while await
ing such results-care needs to be taken while interpreting the confidence 
interval observed in APPROVe. 

8.5 Conclusion 

Epistemic context plays an important role in providing warrant for the infer
ences of Neyman-Pearson statistics. More specifically, the power of a statis
tical test-when calculated on the basis of available evidence-is important 
to the test's interpretation. And it remains important after a statistically 
significant result has been observed. The rofecoxib case, and APPROVe in 
particular, illustrate the importance of power to frequentist inferences, and 
hence to therapeutic decisions within EBM. The inference warranted by a 
statistically significant observation differs in the three contexts considered: 
an adequately powered test on the basis of available evidence; a test powered, 
in the absence of evidence, on the smallest clinically important effect; and a 
test, that evidence external to the trial suggests is underpowered. While the 
standard view recommends ignoring the power of a test when interpreting 
the observed results of a trial, this view can not be justified when evidence 
external to the trial suggest the test is underpowered. 

Frequentist statistical methods put forward a particular approach to data. 
These methods are justified by how they are expected to perform in the long 
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run. The limitations of this approach, in interpreting an observed result, are 
very well recognised. 12 Indeed, even in proposing their approach to hypoth
esis testing, Neyman and Pearson accept limitations in interpreting a single 
observed result. 

Without hoping to know whether each separate hypothesis is true 
or false, we may search for rules to govern our behaviour with 
regard to them, in following which we insure that, in the long 
run of experience, we shall not be too often wrong. (Neyman and 
Pearson 1933, p. 291) 

Yet, judging by the response to APPROVe, the implications of this approach 
for those needing to base decisions on a particular result, appears to go 
unnoticed. This can be understood if Neyman-Pearson results are mistakenly 
taken to hold the same warrant independent of the epistemic context of the 
test. 

Bayesians and other critics of frequentist statistics may find the argument 
provided in this chapter somewhat laboured. Context (iii), when evidence 
regarding the unknown parameter is available but not included in the spec
ification of the trial, is a problem particular to the frequentist analysis of 
clinical trials. Bayesian statistics can accommodate available evidence into 
the Bayesian prior. Sellke et al. (2001) have shown that Bayesian statisticians 
will reach conclusions that are different to their frequentist counterparts, even 
when they are both looking at the same data-these differences will only be 
exacerbated when the two approaches rule different data admissible as they 
do in cases such as APPROVe. Estimating the cardiovascular risks of rofe
coxib is indeed just another case in which those with Bayesian intuitions and 
those with frequentist intuitions will lock horns. Despite such cases being 
well documented in the literature, the point bears repeating. I have argued 
that even on the frequentist view the influence of the epistemic context of 
statistical tests needs to be recognised if frequentist methods are to be used 
to help inform therapeutic decisions. 

I accept for the sake of argument, that taking a long run approach to 
data diminishes the relevance of epistemic context to the warrant of Neyman
Pearson tests. For instance, should a number of trials similar to APPROVe 

12Pretty much every text on theoretical statistics, and most papers in philosophy of 
statistics, recognise this point. This includes the two texts cited in this paper (Barnett 
1999; Cox and Hinkley 1974). 



188 Evidence based medicine: Evolution, Revolution, or Illusion? 

be conducted then a meta-analysis of these trials will provide an appropriate 
estimate for rofecoxib's risk of thrombotic events. Similarly, if a considerably 
larger trial is conducted. It is the practical difficulties of gaining this data 
that raises the problem. First, it takes considerable time to conduct and anal
yse further trials. Even if what is considered needed is more trials; decisions 
often need to be made in the interim. Second, randomised interventional 
studies are not repeated. Subsequent trials may cover similar areas with the 
same drug, but will invariably be designed to test different hypotheses, in
volve patients in different situations and examine different outcomes. These 
differences raise considerable challenges for interpretation of meta-analyses. 
Some of the challenges presented by meta-analysis are new, for example, 
questions of homogeneity across the included trials. But some are familiar; 
the challenge presented by APPROVe is re-iterated. How should we interpret 
this meta-analysis as opposed to what is assured if we follow the method in 
the long run? Kearney's meta-analysis provides an example. Assuming AP
PROVe contributes considerably to the estimate provided by the combined 
placebo controlled trials, should we rely on this estimate, or await further 
results? Therapeutic decision makers need to interpret the observations at 
hand. All the evidence needs to be considered, not just the results of the 
Neyman-Pearson test. (A trivially true statement, but in need of emphasis 
given the focus given to the statistical results of randomised interventional 
studies in EBM.) 

The problem of underpowered tests overestimating effect size, though 
less often recognised, has also been documented. In particular, Charles Land 
(1980) argued for precisely this phenomenon as an explanation of the wide 
discrepancies observed in data estimating cancer risk from ionising radiation. 

A negative estimate is not unlikely if power is low, and such a 
result can be interpreted, however improperly, as evidence that 
there is no excess risk associated with exposure to low-dose ra
diation, or even that such exposure may be beneficial. A more 
serious problem, because it is less well understood, follows from 
the fact that even when power is low, the chances of rejecting the 
null hypothesis are not negligible (Land 1980, p. 1198). 

There are also conceptual similarities in the discussion of 'asymmetrical fun
nel plots' (Berlin et al. 1989; Egger and Smith 1995; Egger et al. 1997). Fun
nel plots graph observed effect size against sample size. It is not uncommon 
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for such plots to be asymmetrical; the smaller studies at the base of the plot 
provide estimates which are considerably more extreme than larger studies. 
Low power, in conjunction with publication and reporting bias, provide an 
explanation for the asymmetry. 

While the underlying tension in the application of frequentist statistical 
methods, and the influence of power, have been recognised in sections of 
the literature--sometimes very well recognised-they are often not explicitly 
considered when using frequentist statistical methods to inform therapeutic 
decisions. APPROVe illustrates that the most important therapeutic deci
sions don't always come from the result a well powered primary hypothesis 
test. EBM applies frequentist statistical methods to a particular practical 
context. The demands of therapeutic decision making need to be kept in 
mind when applying the frequentist statistical approach. 

The rofecoxib case recommends many lessons. One lesson is the need to 
recognise the gap between the resources of frequentist statistical methods 
and the needs of therapeutic decision makers. 
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Chapter 9 

Conclusion 

This thesis has examined the foundations of EBM. My principle argument 
can be summarised quite simply. Therapeutic decisions are complex. Clini
cians need to incorporate evidence from a range of sources with patient pref
erences, the clinician's previous experience, and the political set-up of the 
health system. I have focussed solely on the evidential question, and specifi
cally the claims made by proponents of EBM. EBM provides a hierarchy of 
evidence and a set of fairly simple instructions on how to apply this hierarchy 
to therapeutic decisions. EBM's central claim is that informing therapeutic 
decisions on the basis of evidence from higher up EBM 's hierarchy, results 
in better patient outcomes compared to informing therapeutic decisions on 
the basis of evidence from lower down. Little explicit justification for this 
claim can be found in the EBM literature-and what is given is not sufficient 
to defend it. However, justification can be given for a more limited claim; 
study designs higher up EBM's hierarchy possess the capacity to rule out 
more sources of error, and thus, have higher internal validity. But, the dis
tinction between internal and external validity-and the related distinction 
between efficacy and effectiveness-is consistently under-appreciated in the 
claims that proponents of EBM make on behalf of the hierarchy. Of course, 
proponents of EBM recognise these terminological distinctions, the problem 
is that they don't consistently observe these distinctions in the claims they 
make. 

EBM's hierarchy, and the statistical methods employed in study designs in 
the top tiers of the hierarchy, can be justified in assessing claims of efficacy. 
Therapeutic decisions, however, rely on more than efficacy. Therapeutic 
decisions require a much richer framework for evidence. 

191 
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The claim that evidence from higher up EBM's hierarchy better informs 
therapeutic decisions is false, at least without qualifications and clarifying 
caveats. Despite the claim being ubiquitously made in the clinical literature, 
it is rarely accompanied with the necessary clarifying remarks. One set of 
problems for the claim is that the appropriate interpretation of the hierarchy 
is less than clear. Chapter 2 canvassed the ways EBM's hierarchy can not 
be interpreted. EBM's hierarchy does not provide general epistemological 
rules; if a defence of EBM's hierarchy is to be provided, it needs to be pro
vided within the context of therapeutic decisions (as opposed to science more 
broadly). And further, EBM's hierarchy can't be interpreted categorically; 
if EBM's focus is to remain on therapeutic decisions, then evidence from 
sources higher up EBM's hierarchy can't trump (in any straightforward way) 
evidence from lower down. A more complicated story needs to be told. 

The more pressing problem for EBM's central claim is the narrow appli
cability of the hierarchy on the interpretation that can be justified. The foun
dations of EBM (to the extent that they are articulated) are found in clinical 
epidemiology, especially in clinical epidemiology's development of methods 
that have high internal validity. It is here the justification for EBM's hierar
chy of evidence can be found. As outlined in Chapter 3, EBM's hierarchy is 
justified when viewed as a hierarchy of comparative internal validity. Study 
designs higher up EBM's hierarchy have the capacity for higher internal va
lidity than study designs lower down. Providing all the additional methods 
that minimise error are utilised, studies utilising the methods listed high on 
EBM's hierarchy will possess high internal validity. This justification de
marcates the kinds of questions the hierarchy can be applied to. Chapter 4 
showed that good reasons can be given for testing the efficacy of drugs in well 
conducted randomised interventional studies~the study design favoured by 
proponents of EBM. But, again, efficacy, and the evidence provided by ran
demised interventional studies, are not the full story. Therapeutic decisions 
require judgements about the effectiveness of therapies, and these judgements 
require consideration of all the available evidence. 

Chapter 5 outlined the challenge that external validity presents to thera
peutic decision makers. Randomised interventional studies employ excellent 
methods for comparing the outcomes of two therapeutic interventions (usu
ally an experimental treatment against standard care) but these methods 
are less able to identify which patients are likely to respond well to therapy, 
and which are likely to respond poorly. The challenge of external validity, 
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by its very nature, can't be met by the restrictive and conservative meth
ods employed to test the efficacy of therapies. Judging the external validity 
of clinical research, and by extension the effectiveness of therapies, requires 
consideration of a broad range of evidence. EBM's central claim, as it is 
so often made, is false because, contrary to the simple advice provided by 
EBM's hierarchy of evidence, both observational studies and basic science 
play critical roles in therapeutic decisions. The role these sources of evidence 
play is insufficiently acknowledged in most presentations of EBM's position, 
including the definitive presentation provided in EBM's guidebooks. 1 

The distinction between efficacy and effectiveness is paramount. In many 
instances, limiting EBM's claims to tests of efficacy, makes the claims reason
able. EBM's hierarchy can be justified once it is understood as a hierarchy 
of comparative internal validity. And the statistical approaches employed 
in randomised interventional studies, which are both conservative and fo
cussed on a single primary endpoint, derive more support when the context 
is limited in such a way (as discussed in Section 7.5). 

It is once we move from assessing whether a therapy produces the ex
pected benefits in a defined sample of patients, to assessing whether, and 
in whom, the therapy produces the expected benefits in routine care, that 
the hierarchy becomes problematic. Chapters 5 and 6 illustrated the impor
tance of evidence from observational studies and basic science for therapeutic 
questions. These sources of evidence supplement the knowledge gained from 
randomised interventional studies, and highlight the need for a richer frame
work for evidence for approaching therapeutic questions. As I have shown, 
the necessity of this richer framework undermines any simple application of 
the hierarchy to therapeutic questions. 

At times, proponents of EBM appear to accept these limitations on 
EBM's claims. Sackett et al. (1996) recommends 'integrating individual clin
ical expertise with the best available external clinical evidence' while recog
nising that basic medical science is among the sources of the 'best available 
external clinical evidence'. But such statements are left unclarified, and 
how these different sources of evidence should be integmted is left unclear. 
Further, when it comes to providing something more concrete about how 
EBM should be practised, Sackett and other proponents of EBM, contradict 
these statements (again, observe the advice given in EBM's guidebooks). 
The Grading of Recommendations Assessment, Development and Evalua-

1See, for instance, the quotes taken from the guidebooks on pages 41 and 41. 



194 Evidence based medicine: Evolution, Revolution, or Illusion? 

tion (GRADE) system, which has been around for a number of years but 
seems to be gaining momentum, is somewhat clearer on the limitations of 
EBM's hierarchy for informing therapeutic decisions (Montori and Guyatt 
2008; Guyatt et al. 2008b). I'll return to GRADE in a moment. 

An important practical consequence of EBM's failure to limit its claims 
regarding the benefits of randomised interventional studies also deserved em
phasis. Randomised interventional studies, in conjunction with frequentist 
statistical approaches, are ill-suited to identify and confirm treatment harms. 
This is especially so for the trials that are actually conducted, as opposed 
to hypothetical trials that could be conducted to answer specific questions. 
This was most explicitly discussed in Section 5.3, but the threads of the ar
gument have been provided throughout the thesis. EBM promotes the idea 
that randomised interventional studies provide superior evidence regarding 
therapies, including the assessment of a therapy's safety (Sackett et al. 1996, 
see quote provided on page 82). This idea has received broad acceptance;2 

but it is both wrong and dangerous. 

As discussed, most randomised interventional studies of direct relevance 
to therapeutic decisions are set up to test a 'benefit' hypothesis. The se
lection of participants, the time-scale of the intervention, and the statistical 
methods are all geared towards establishing an expected benefit of the ther
apy. Of course, important safety information comes from these randomised 
interventional studies, and this information supplements knowledge gained 
from pre-clinical testing and other sources. But the randomised interven
tional studies that are conducted throughout a product's development and 
subsequent marketing are not ideal for identifying the harms of treatments. 
Notice, we would employ remarkably different methods if obtaining reliable 
safety information was our primary goal. 

While proponents have, at times, remarked that randomised interven
tional studies can be ill-suited to elicit the 'rare and awful' adverse effects 
of therapies, for example Sackett (2006, p. 177) and Guyatt and Rennie 
(2002, pp. 78-79), the extent of the problem for even relatively frequent 

2Witness Merck's statement that 'prospective randomised, controlled clinical trials are 
the best way to evaluate the safety of medicines' (Merck 2004, full quote on page 176), and 
Collins and MacMahon's claim that nothing other than 'large-scale randomised trials or 
their meta-analyses' are able to provide 'clear confirmatory' evidence of either the adverse 
or protective effects of therapies (Collins and MacMahon 2007, p. 24, and provided on 
page 51). 
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adverse effects is under-appreciated. The entire system leans towards detect
ing benefits. And EBM's hierarchy of evidence explicitly and automatically 
downgrades the evidence provided by methods that are often better suited 
to detecting treatment harms: cohort studies, case-control studies and basic 
science. Often, finding important side effects in randomised interventional 
studies is due to serendipity rather than good planning. Rofecoxib, as dis
cussed in Chapter 8, is a case in point. The randomised trials providing 
evidence of the thrombotic risks of rofecoxib, VIGOR and APPROVe like 
the many randomised trials before them that did not detect the risk, were 
set-up to test a benefit hypothesis-the safety related findings were a fortu
nate by-product. 

Perhaps cases like rofecoxib provide the best impetus for a renewed in
terest in methodological diversity. Even if it is possible to imagine a ran
domised interventional study designed to test a specific safety hypothesis, 
such perfectly designed 'safety trials' are not conducted. And yet, everyone
including, of course, the pharmaceutical industry-wants to identify the ad
verse effects of therapies as reliably and as swiftly as possible. This soci
etal imperative, combined with the clear argument that the trials that are 
typically conducted on marketed therapies are not ideal for eliciting safety 
information (not to mention the existence of cases such as rofecoxib), should 
be enough to awaken clinicians, the pharmaceutical industry and policy mak
ers from the dogmatic slumber induced by EBM's emphasis on randomised 
interventional studies. 

This is not to suggest observational studies don't have their flaws for 
obtaining safety information on treatments; they do. But until the hegemony 
of randomised interventional studies is replaced by a more inclusive view of 
evidence in medicine, especially with regard to assessing safety, we won't be 
doing our best to prevent cases like rofecoxib recurring. 

The role of statistical approaches within EBM has also been considered. 
While there is no necessary link between EBM and the frequentist statistical 
methods used to analyse clinical studies, the two are so deeply entwined it is 
hard to imagine EBM relying on alternative statistical methods. My aim in 
discussing frequentist methods throughout the thesis has been to clarify, and 
understand, the warrant provided by these methods. Making a case for a rival 
statistical methodology, such as a Bayesian approach to statistical inference, 
would require considerable further argument. It is, however, possible to draw 
a couple of important conclusions regarding the applicability of frequentist 
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statistics to therapeutic decisions. 

There is a case for frequentist methods in tests of efficacy. Discussion 
on these points was provided in Section 7.5. Assessments of efficacy focus 
on the primary clinical endpoint in the randomised interventional study, and 
thus, providing the trial is adequately powered for the primary endpoint, 
the findings related to this endpoint receive the full warrant provided by 
Neyman-Pearson methods. Further, the conservative methods employed in 
the analysis of clinical studies can be justified. There is an appropriate fo
cus on ensuring treatments are not judged efficacious when in fact they are 
not. This is especially important because tests of efficacy play a key role 
in regulatory decisions. In this context, intention-to-treat analysis and the 
inadmissibility of post hoc analyses make sense. Of course, there is still the 
more general arguments against frequentist methods, provided by Howson 
and Urbach (2006) and others. I am sympathetic to these arguments. How
ever, providing frequentist methods, and the inferences they warrant, are 
clearly understood, these methods are well placed to provide rigid and con
servative tests of efficacy. (Of course, it is often not the case that frequentist 
methods are clearly understood. But this is a different problem, and one 
which, at least on the face of it, can be rectified through education.) At 
minimum, we can make some sense of why frequentist methods are employed 
in tests of efficacy. 

But, we can not be so sanguine about the applicability of frequentist 
methods to questions of effectiveness. Frequentist statistical methods are 
considerably less useful for identifying who is likely to benefit from therapy 
and who may be harmed. Adhering to the conservative analyses employed 
in tests of efficacy leaves practitioners in a quandary. As seen in Chapter 
7, the inadmissibility of post hoc analyses, and a scepticism towards the 
role of basic science in interpreting data, limits the resources frequentist 
methods provide therapeutic decision makers. Patients presenting to clinics 
differ, in small or large measure, from patients enrolled in applied clinical 
studies. To adequately treat patients, clinicians must judge whether and 
which results observed in clinical studies are relevant to the situation at 
hand. Targeting treatments to individuals based on the data from relevant 
subgroups in clinical trials would would greatly assist therapeutic decisions. 
But, the reliability of subgroup analyses in clinical studies is very much in 
question. 

This is partly unavoidable, the complexity of clinical practice will raise 
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more questions than the available data are able to answer. But the situa
tion is made worse by the theoretical commitments of trialists (and other 
proponents of EBM). Scepticism about the role of basic science in interpret
ing subgroups, and the application of the same conservative methods used 
for questions of efficacy to questions of effectiveness, leave trialists focussed 
solely on the overall results of clinical trials. The extent of this problem for 
EBM--or, for that matter, any account of therapeutic decision making-is 
under-appreciated (mainly, I suspect, because the lack of easy answers pro
motes a begrudged acceptance of the problem). In Chapter 7, I argued that 
some methodological flexibility was needed to assist judgements of external 
validity. Specifically, a more permissive attitude to post hoc subgroup data 
can be supported, providing there is independent support for the inference 
from the three tiers of models involved in the experimental inquiry, the model 
of the theory, the model of the experiment and the model of the data. The 
hierarchy of data models re-emphasises the links between basic science, ex
periment, and data. (Re-emphasises because the link has always been there. 
The commitments of proponents of EBM, however, suppress this link.) The 
framework provided by the hierarchy of data models can assist clinicians to 
judge whether an observed difference in a subgroup is due to an underly
ing process or likely due to chance. It does not resolve all the difficulties of 
interpreting subgroup data, but being explicit about the hierarchy of data 
models highlights one type of argument that can be made for subgroup data 
to be considered genuine-a useful (if somewhat modest) addition to the 
armamentarium of therapeutic decision makers. 

While some of the positive attributes of the frequentist approach to tests 
of efficacy have been noted, the deficiencies of our current methods for 
analysing clinical trials in a way that meets the needs of therapeutic de
cision makers have been clearly articulated. This leaves the door open for 
a more forceful argument regarding statistical methodology. Participants in 
the debate over statistical methodology-whether frequentist or Bayesian
agree on at least two points. First, clinicians need reliable information on 
subgroups of patients involved in randomised interventional studies. And 
second, in the trials that are typically conducted, frequentist analyses are 
unable to provide reliable analyses of subgroup data. While their reliability 
will be hotly contested, Bayesian approaches (due to their flexibility) are 
able to provide direct analysis of subgroup data. In this context the call for 
Bayesian approaches to the analysis of clinical studies has increased from an 
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occasional plea to a rising chorus (see, for example, Spiegelhalter et al. 1994, 
Berry 2006, and most recently, Rawlins 2008). Clinicians and statisticians 
of a frequentist persuasion will argue that the problems of Bayesian analyses 

outweigh these benefits. In addition to more clearly articulating the pros 
and the cons of frequentist statistical methods for therapeutic decisions, the 
contribution of this thesis has been to further underscore the practical im
portance of this debate. (It is noteworthy that the issues in this debate are 
essentially philosophical. For instance, one of the central questions regards 
what sort of probabilities should be involved in scientific inquiry.) 

Bayesian approaches may be better equipped to analyse subgroup data 
in clinical trials. To the extent that Bayesian analyses have this benefit, 
EBM could avoid some of the problems raised in Chapter 7 and 8 by chang

ing statistical methods. Presumably, even if such a change was to be made, 
proponents of EBM would retain their methodological commitment to the 
hierarchy of evidence and the superiority of randomised trials. 3 The argu
ments provided in Chapters 2-6 focus on the hierarchy of evidence, and the 
distinction between randomised and non-randomised studies, and therefore 

they hold irrespective of the choice of statistical analysis of clinical trails 
(providing EBM retains its focus on the hierarchy of evidence). 

I expressed a view in the introduction that EBM may be viewed as an 

evolution in therapeutic decision making. It is now possible to be more 
precise. The main tool that EBM provides is its hierarchy of evidence. And, 
on the basis of this hierarchy, proponents of EBM make some strong, and 
indeed some indefensible, claims. It is entirely consistent with the arguments 
provided to reject 'EBM' on the basis that its central claim-as typically 
stated-is false. But this risks missing an opportunity. 

EBM's rationalist pretensions are admirable. In this sense I agree with 

Adrian Smith (1996), who was quoted in the opening of Chapter 1. Prior to 
EBM it was not the case that medical decisions were not based on evidence, 
nor that only the loudest, or most eminent clinical voices were heard. But 
it is true that there was little focus on the project of providing a rational 
framework for therapeutic decisions; perhaps this project was thought either 
impossible or undesirable. I think EBM, providing it is properly conceived, 
legitimises and makes some headway towards providing a rational account of 

3 As noted in §4.3.2, a Bayesian justification for randomisation can be provided. Thanks 
to Jeremy Hawick for pushing me to emphasize the lack of necessary connection between 
EBM and frequentist statistics. 
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therapeutic decision making. 

Evidence from randomised interventional studies has substantially im
proved care in many cases. Paradigm cases include hormone replacement 
therapy and the use of thrombolytic agents in patients who have suffered a 
myocardial infarction (see Sackett 2006, p. 177 and Peto et al. 1995 respec
tively). Better evidence regarding the efficacy of therapies improves ther
apeutic decisions. The problem with EBM's central claim is not so much 
what is said, but what too often goes unsaid. EBM, and its claims, need 
clarification-not reduction to an overly simple hierarchy of evidence. This 
thesis provides clarification on the foundations of EBM. On my account, 
EBM's hierarchy is a hierarchy of internal validity. If appropriate methods 
are applied we can be more confident of our tests of efficacy. Tests of effi
cacy provide some information on the effects of a therapy in a sample of the 
population. This provides a good starting point for therapeutic decisions. 
But, since many therapeutic decisions involve extrapolation from and inter
polation into this sample, a more sophisticated view of evidence is required. 
I don't pretend to have provided a full account of this more sophisticated 
view of evidence, rather the bulk of my arguments have been aimed at high
lighting the deficiency of the account provided in the EBM literature. I do 
think that the hierarchy of data models provides one avenue for a more posi
tive account. Either way, better understanding what clinical epidemiological 
methods achieve, and what they do not, is a first important step in improving 
therapeutic decisions. 

All of this implies a clear course for improving EBM. More attention is 
needed on the foundations of decisions. We need to be more explicit about 
what the current methods fail to achieve, or achieve poorly. The method
ological dogmatism needs to be put to bed, and a greater focus is required on 
developing methods for assessing external validity, and the effectiveness and 
safety of therapies. The GRADE system seems to put forward a different 
view for improving EBM. 

GRADE is primarily focussed on guideline development rather than the 
direct judgements of clinicians. It recognises that external validity is an 
additional marker of research quality, and explicitly separates 'quality of ev
idence' (judged primarily according to study design) and 'strength of recom
mendation' (which takes issues such as patient preferences, and the balance 
of positive and negative outcomes into account). This separation of quality 
of evidence from strength of recommendation permits guidelines developed 
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according to the GRADE system to take more into account than simply the 
strength of evidence based on EBM's hierarchy. If patient preferences re
garding the outcomes of a therapy differ greatly, high quality evidence may 
lead to a 'weak' recommendation for treatment (reflecting the fact that de
spite good evidence from randomised interventional studies demonstrating a 
benefit from treatment, some patients may put little value in that benefit). 
Alternatively, 'low quality' evidence from, say an observational study, may 
support a 'strong' recommendation due to the overwhelming (and uncontro
versial) benefits of a therapy that lacks significant risk for harm. 

Hence, the GRADE system makes some improvements; it adequately re
sponds to some of the failings of an overly simplistic view of EBM's hierarchy. 
However, GRADE also risks perpetuating some of EBM's more fundamental 
flaws. It is good that GRADE recognises the importance of external validity, 
and the distinction between 'high quality evidence' and 'good evidence for 
use'. But after recognising these additional factors for therapeutic decision 
making (of which there are many forms) it reduces consideration of these 
factors to a dichotomous 'strength of recommendation'. Far more important 
than the eventual rating, are the considerations that go into it. And even 
more fundamental is how we go about the complex process of weighing evi
dence from a range of sources, while taking patient preferences and a range of 
additional factors into consideration. As I have argued throughout, it is the 
foundational issues which need greater focus. Adding a scale for the 'strength 
of a recommendation' risks obscuring important foundational issues in the 
same way the hierarchy of evidence obscures evidence 'quality'.4 

EBM started as a simple (and good) idea in need of some clarification. 
Unfortunately as EBM gained momentum, as it was disseminated and oper
ationalised, it became simpler. There is a cost to holding a more complex 
view of evidence in therapeutic decision making. On a more complicated 
view of evidence, there is no universally accepted source of evidence that 
is optimal to answer therapeutic questions. But the benefits of this view 
outweigh this cost. A more complex view of medical evidence, a view that 
legitimises methodological diversity, is much better placed to reply to the full 
spectrum of therapeutic questions that arise. 

4Michael Rawlins (2008, p. 35) has argued along these lines recently. 
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