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Far better an approximate answer to the right question,
which is often vague, than the exact answer to the wrong question,

which can always be made precise.

— John Wilder Tukey (1962)



A B S T R A C T

The sample quantile has a long history in statistics. The aim of this thesis
is to explore some further applications of quantiles as simple, convenient
and robust alternatives to classical procedures. The first application we con-
sider is estimating confidence intervals for quantile regression coefficients,
however, the core of this thesis is the development of a new, quantile based,
robust scale estimator and its extension to autocovariance estimation in the
time series setting and precision matrix estimation in the multivariate set-
ting.

Chapter 1 addresses the need for reliable confidence intervals for quantile
regression coefficients particularly in small samples. The existing methods
for constructing confidence intervals tend to be based on complex asymp-
totic arguments and little is known about their finite sample performance.
We consider taking xy-pair bootstrap samples and calculating the corres-
ponding quantile regression coefficient estimates for each sample. Instead
of estimating a covariance matrix based on these bootstrap samples, our ap-
proach is to take the appropriate upper and lower quantiles of the bootstrap
sample estimates as the bounds of the confidence interval. The resulting
confidence interval estimate is not necessarily symmetric; only covers ad-
missible parameter values; and is shown to have good coverage properties.
This work demonstrates the competitive performance of our quantile based
approach in a broad range of model designs with a focus on small and
moderate sample sizes. These results were published in Tarr (2012).

A reliable estimate of the scale of the residuals from a regression model
is often of interest, whether it be parametrically estimating confidence in-
tervals, determining a goodness of fit measure, performing model selection,
or identifying unusual observations. The robustness of quantile regression
parameter estimates to y-outliers does not extend to the error distribution
– extreme observations in the y space yield outlying residuals which can
interfere with subsequent analyses. This led us to consider the more funda-
mental issue of robust estimation of scale.

Chapter 2 forms the core of this thesis with its investigation into robust es-
timation of scale. Common robust estimators of scale such as the interquart-
ile range (IQR) and the median absolute deviation from the median (MAD)
are inefficient when the observations come from a Gaussian distribution.
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Rousseeuw and Croux (1993) propose a more efficient robust scale estimator,
Qn, which is now widely used. We present an even more efficient robust
scale estimator, Pn, which is proportional to the IQR of the pairwise means.
The estimator Pn is the scale analogue of the Hodges-Lehmann estimator
of location, the median of the pairwise means. When the underlying dis-
tribution is Gaussian, the Hodges-Lehmann estimator is considerably more
efficient than the median however it is not as robust – similarly, Pn trades
some robustness for significantly higher Gaussian efficiency.

In the theoretical treatment, Pn is considered as a special case of a more
general class of estimators – based on the difference of two quantiles of the
pairwise means. For this class of estimators, assuming the observations are
independent and identically distributed, we show that the influence func-
tion is bounded and establish asymptotic normality.

Further extensions to Pn incorporate adaptive trimming to achieve the
maximal breakdown value of 50%. The resulting adaptively trimmed scale
estimator has enhanced performance at extremely heavy tailed distributions
and is shown to be triefficient across Tukey’s three corner distributions
amongst the set of estimators considered. The adaptively trimmed Pn also
yields good results in the multivariate setting discussed in Chapter 4

The primary advantage of Pn over competing estimators is its high effi-
ciency at the Gaussian distribution whilst maintaining desirable robustness
and efficiency properties at moderately heavy tailed and contaminated dis-
tributions. The desirable efficiency properties of Pn are shown to be even
more marked over competing scale estimators in finite samples. The results
of this chapter have been published in Tarr, Müller and Weber (2012) and
presented at ICORS 2011.

Chapter 3 extends our robust scale estimator to the bivariate setting in
a natural way as proposed by Gnanadesikan and Kettenring (1972). In do-
ing so we move from estimating scale to estimating dependence. We show
that the resulting covariance estimator inherits the robustness and efficiency
properties of the underlying scale estimator.

Motivated by the potential to extend the efficiency and robustness proper-
ties of Pn to the time series setting, Chapter 3 also considers the problem of
estimating scale and autocovariance in dependent processes. We establish
the asymptotic normality of Pn under short and mildly long range depend-
ent Gaussian processes. In the case of extreme long range dependence, we
prove a non-Gaussian limit result for the IQR, consistent with results found
previously for the sample standard deviation and Qn. In contrast with the
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results of Lévy-Leduc et al. (2011c) for a single U-quantile, namely Qn, the
proof for the IQR, a difference of two quantiles, relies on the higher order
terms in the Bahadur representation of Wu (2005). Simulation suggests that
an equivalent result holds for Pn; we state the conjectured result which will
require the analogous Bahadur representation for U-quantiles under long
range dependence. It is reasonably straightforward to extend the asymptotic
results for the robust scale estimator to the corresponding robust autocov-
ariance estimators. Various results from this chapter have been presented at
ASC 2012 and EMS 2013.

Classical robust estimators assume that contamination occurs within a
subset of the observations, however in recent years there has been interest
in developing robust estimators that perform well under scattered contam-
ination. Chapter 4 looks at the problem of estimating covariance and preci-
sion matrices under cellwise contamination. A pairwise approach is shown
to perform well under much higher levels of contamination than stand-
ard robust techniques would allow. Rather than using the Orthogonalised
Gnanadesikan and Kettenring procedure (Maronna and Zamar, 2002), we
consider a method that transforms a symmetric matrix of pairwise cov-
ariances to the “nearest” covariance matrix (in a Frobenius norm sense).
We combine this method with various regularisation routines purpose built
for precision matrix estimation. This approach works well with high levels
of scattered contamination and has the advantage of being able to impose
sparsity on the resulting precision matrix. Some preliminary results from
this chapter have been presented at ICORS 2013.
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1
Q U A N T I L E R E G R E S S I O N C O N F I D E N C E I N T E RVA L S

1.1 introduction

Quantile regression, first introduced by Koenker and Bassett (1978), provides
an alternative to least squares with numerous advantages, not the least be-
ing the ability to estimate the full conditional quantile function. However, a
major drawback to the use of quantile regression is the lack of agreement
on a single unified method for conducting inference on the parameters. The
purpose of this chapter is to highlight the xy-pair bootstrap as a widely
applicable method that has comparable performance to other more complic-
ated confidence interval construction techniques.

Numerous methods have been proposed, beginning with the direct es-
timation for standard errors of the parameters in the original Koenker and
Bassett (1978) paper which was subsequently extended to the independent
but not identically distributed case by Hendricks and Koenker (1992). In
1992, Gutenbrunner and Jurečková related the quantile regression paramet-
ers with the linear program used to calculate them, showing that the dual to
the linear program allowed the application of rank inversion methodology
to calculate confidence intervals directly. This was generalised by Koenker
and Machado (1999) to allow for non-identically distributed errors.

Naturally, resampling methods have also been applied to the quantile
regression inference problem. One approach would be the residual boot-
strap, however Efron and Tibshirani (1993) showed it to be severely lacking
when the model does not satisfy the independent and identically distrib-
uted assumption. Using the nonparametric xy-pair bootstrap to estimate
an asymptotic covariance matrix for the estimated parameters is an option.
Another possibility is to use the percentile bootstrap which was shown to
have asymptotically correct empirical coverage probabilities by Hahn (1995).
However, the percentile bootstrap method has received little attention since
then.

Other, more abstract, resampling methods have been proposed. Parzen,
Wei and Ying (1994) suggested exploiting the asymptotically pivotal sub-
gradient condition. Another example is the Markov chain marginal boot-
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1.1 introduction 2

strap by He and Hu (2002), applied to quantile regression estimates in
Kocherginsky, He and Mu (2005) and extended to the non-identically dis-
tributed case in Kocherginsky and He (2007). Further, a version of the gen-
eralised or weighted bootstrap with unit exponential weights has been ex-
plored by Chamberlain and Imbens (2003) and implemented in the R pack-
age quantreg (Koenker, 2013).

More recently, Feng, He and Hu (2011) provide a class of weight distribu-
tions for the wild bootstrap that is asymptotically valid for quantile regres-
sion. For nonparametric quantile estimates of regression functions, Song,
Ritov and Härdle (2012) bootstrap the empirical distribution function of the
residuals to obtain confidence bands.

This chapter presents the results from a simulation study based on Kocher-
ginsky, He and Mu (2005) but with important extensions. We utilise sim-
plified models so as to highlight the relative strengths and weaknesses of
each of the various approaches. All the methods considered currently have
routines available in the R package quantreg (Koenker, 2013) or, as in the
case of the percentile bootstrap, are straightforward to code. Kocherginsky,
He and Mu (2005) provide an overview of most of these models, how-
ever, they do not consider the percentile bootstrap and the exponentially
weighted bootstrap was not available at the time.

In this chapter we include an additional performance index, the sample
standard deviation (SD) of the estimated confidence interval lengths, to gain
a better understanding of the variability in the estimated lengths. Further-
more we restrict attention to small sample sizes and utilise innovative graph-
ics to provide an overview of how the techniques perform across a range of
quantiles. This is particularly important, as one of the main attractions of
quantile regression is investigating what the conditional quantile function
is at the lower and upper quantiles, rather than just using the median and
estimating a L1 regression model, also known as least absolute deviations
regression.

We will show that the percentile bootstrap performs at least as well as,
and often better than, the other more complex resampling methods across a
wide variety of model designs and quantiles. Other methods that generally
perform quite well include the rank inversion techniques and the exponen-
tially weighted bootstrap. Some of the more complex resampling techniques
were not designed for use in models with small sample sizes. In this chapter
of the thesis we confirm that their performance can be compromised if the
sample size is too small. In particular, the primary use of the Markov Chain



1.2 overview of confidence interval construction techniques 3

marginal bootstrap is in high dimensional models which are beyond the
scope of this chapter.

This chapter is based around the material presented in Tarr (2012). Sec-
tion 1.2 presents a brief overview of each of the methods, paying particular
attention to the percentile bootstrap method. Section 1.3 presents some res-
ults from our simulation study. In Section 1.4 we present the evaluation of
the simulation study and conclude with a positive comment on the perform-
ance of the percentile bootstrap method.

1.2 overview of confidence interval construction techniques

This section gives an overview of the confidence interval construction tech-
niques currently available, with more detail provided for the percentile boot-
strap which has received limited exposure in the quantile regression literat-
ure. Kocherginsky, He and Mu (2005) and Koenker (2005) provide further
detail about most of the methods considered in this chapter.

Consider the paired observations (xi, Yi) where xi = (xi1, xi2, . . . , xik)
ᵀ

is the k × 1 covariate vector and Yi is the response for i = 1, . . . , n. The
relationship between Yi and xi is modelled by a linear regression,

Yi = xᵀi β + ui.

The error terms, ui, are assumed to be independent from an unknown error
distribution, F. We aim to estimate the τth conditional quantile function,

F−1
Yi|xi

(τ) = xᵀi βτ.

Koenker and Bassett (1978) introduced the check function, shown in Figure
1.1,

ρτ(u) = u
(
τ − I(u < 0)

)
, τ ∈ (0, 1),

and showed that it can be used to find β̂τ by solving,

min
β∈Rk

n

∑
i=1

ρτ(Yi − xᵀi β). (1.1)

The following subsections give an overview of the various methods used
to construct confidence intervals for β j,τ, the jth component of the regression
quantile vector βτ.
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u

ρτ(u)

τ − 1

1

1
τ

Figure 1.1: The check function, ρτ(u).

1.2.1 Direct estimation

Direct estimation of the parameter standard errors under independent and
identically distributed errors (henceforth referred to as the iid method) was
proposed in the original paper by Koenker and Bassett (1978). Under the iid
assumption, the errors, ui, are taken to be independent and identically dis-
tributed with cumulative distribution function (CDF) F, probability density
function f = F′ and with f (F−1(x)) > 0 for x in a neighbourhood of τ.

This method is inherently based on estimating the sparsity function,

s(τ) =
1

f
(

F−1(τ)
) , (1.2)

which gives a measure of the density of the observations near the quantile
of interest. The sparsity function is estimated using a difference quotient
which in turn utilises a bandwidth parameter to select the range over which
the difference quotient is, in a sense, averaged.

Hendricks and Koenker (1992) consider the case where the errors are
independent but no longer identically distributed (nid), that is Yi = xᵀi βτ +

ui where ui ∼ Fi. This method also relies on an estimate of the sparsity as
does the nid rank score method discussed in the following section.

1.2.2 Rank inversion

The rank score method avoids direct estimation of the asymptotic covari-
ance matrix of the estimated coefficients and arises naturally from the lin-
ear programming techniques used to find estimates for quantile regression
coefficients. Koenker (1994) details the iid approach to rank inversion tests,
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extending the work on rank based inference for linear regression models
by Gutenbrunner, Jurečková et al. (1993), which builds on Gutenbrunner
and Jurečková (1992). More recently, Portnoy (2012) provides “nearly root-
n” results that can be used to strengthen the theoretical results for these
rank based procedures.

Koenker and Machado (1999) relax the identically distributed error as-
sumption and consider the location-scale shift model used by Gutenbrunner
and Jurečková (1992),

Yi = xᵀi β + σiui, (1.3)

where σi = xᵀi α and the {ui} are assumed to be independent and identically
distributed with distribution function F.

Under the rank inversion method, confidence interval estimates for a
single parameter are found by the process of inverting the appropriate test
statistic; moving from one simplex pivot to the next to obtain an interval in
which the test statistic is such that the null hypothesis, H0 : β j,τ = b, is not
rejected. The resulting interval is not necessarily symmetric.

1.2.3 Resampling methods

As with rank inversion techniques, the resampling methods also avoid dir-
ect estimation of the covariance matrix. The xy-pair bootstrap begins with
a bootstrap data set, (x∗1 , Y∗1 ), (x∗2 , Y∗2 ), . . . , (x∗n, Y∗n ), generated by random
sampling with replacement from the observed sample and then calculating
a bootstrap regression coefficient,

β̂∗τ = argmin
βτ∈Rk

n

∑
i=1

ρτ(Y∗i − x∗ᵀi βτ).

Repeating this process B times yields the coefficient vectors β̂∗τ,1, . . . , β̂∗τ,B,
which is then used to construct an estimate of the variance of β̂τ,

1
B

B

∑
b=1

(
β̂∗τ,b − β̂τ

)(
β̂∗τ,b − β̂τ

)ᵀ
.

One alternative proposed by Parzen, Wei and Ying (1994) is to bootstrap the
estimating equations. Another is to use the Markov chain marginal boot-
strap (mcmb) approach of He and Hu (2002) which was extended to the
quantile regression setting by Kocherginsky, He and Mu (2005). Addition-
ally, the generalised bootstrap with weights, sampled independently from a
standard exponential distribution, applied to the objective function, (1.1), is
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also considered (see Chamberlain and Imbens (2003); Chen et al. (2008) for
details).

Efron and Tibshirani (1993) outline how the percentile interval bootstrap
is constructed in the univariate case. In the quantile regression setting, the
procedure begins in the same way as for the xy-pair bootstrap to obtain the
B bootstrap estimated coefficient vectors, β̂∗τ,1, . . . , β̂∗τ,B. However, instead of
estimating a covariance matrix, let Ĝj be the empirical distribution function
of β̂∗j,τ, the jth element of β̂∗τ, j = 1, . . . , k. The 1− 2α percentile interval for
β j is defined by the α and 1− α percentiles of Ĝj,[

Ĝ−1
j (α), Ĝ−1

j (1− α)
]
=
[

β̂
∗(α)
j,τ , β̂

∗(1−α)
j,τ

]
.

The attractions of this approach over many of the others considered above
are its simplicity and the fact that the confidence interval covers only feas-
ible parameter values. Furthermore, as we are resampling the (xi, Yi) pairs,
no assumptions about variance homogeneity need to be made which allows
some robustness to heteroskedasticity.

Importantly, the percentile method provides correct asymptotic coverage
probabilities under quite general conditions. Hahn (1995) links a general M-
estimator convergence result from Arcones and Giné (1992) to the quantile
regression case to show that the asymptotic empirical coverage probability
of the confidence interval constructed by the bootstrap percentile method
is equal to the nominal coverage probability. Hahn (1995) goes on to point
out that this result does not require that the error term is independent of
the regressor: the bootstrap distribution is a valid approximation even when
the conditional density of ui given xi depends on xi.

Hahn (1995) notes that this weak convergence result does not imply that
the second moment converges to the asymptotic second moment. Interest-
ingly, the bootstrap second moment of the simple sample median may di-
verge to ∞ even though the bootstrap distribution itself converges (Ghosh
et al., 1984). This may explain why the percentile bootstrap outperforms the
xy-pair bootstrap in some models.

The simulation study presented in the next section demonstrates that the
percentile bootstrap gives quite reasonable empirical coverage probabilities
for a broad range of model designs, even when the error distribution has
a limited number of finite moments. It is especially interesting to note that
these results hold for small sample sizes – indicating that the asymptotic
approximations hold quite generally in practice.
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1.3 simulation study

This section provides some guidance as to how well each of the previously
mentioned methods of quantile regression confidence interval construction
perform in practice. Our study differs from Kocherginsky, He and Mu (2005)
in four ways: (i) here we consider sample sizes in the range 50 ≤ n ≤ 200,
whereas the smallest sample size in their study was n = 200, which may
be more realistic for a broader range of problems; (ii) the models selected
here are chosen to emphasise how particular model traits, such as heavy
tailed errors or skewed covariates, affect confidence interval construction;
(iii) the variability of the estimated confidence interval lengths that each
technique produces is used to help identify differences in the techniques;
and (iv) we add the approach taken by Parzen, Wei and Ying (1994), the
exponentially weighted bootstrap and the percentile bootstrap but exclude
the kernel smoothed density approach as Kocherginsky, He and Mu (2005)
concluded that it was inadequate which we confirmed in preliminary simu-
lations not reported here.

We firstly consider simple linear regressions with heavy tailed errors that
commonly arise in economic and financial data as well as statistical physics,
automatic signal detection and telecommunications (Adler, Feldman and
Taqqu, 1998). The analysis is extended by considering models that incorpor-
ate highly skewed covariates as well as slightly more complex multivariate
models where the error term is a function of one of the covariates and we
also consider correlated covariates.

For each model a basic Monte Carlo experiment is performed, where a
data set with n observations is generated defining the covariates, then the
dependent variable is constructed before confidence interval estimates are
found using each of the various techniques. We perform N = 1000 simula-
tion runs and store the confidence interval estimates having nominal cover-
age level arbitrarily set at 0.9. For the resampling techniques, the number of
resamples is set to B = 1000. The mean and SD of the estimated confidence
interval lengths under each technique is calculated along with the empirical
coverage probability which is defined to be the proportion of confidence
intervals that contain the true parameter value.

For each model the process outlined above has been run for conditional
quantiles, τ = 0.1, 0.2, . . . , 0.9, over sample sizes, n = 50, 100, 150 and 200. A
complete set of results is available for the interested reader, however only a
representative subset of these is presented below.
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1.3.1 Heavy tailed errors

The first set of models exhibit heavy tailed errors. The models take the form,

Yi = β0 + β1xi + ui, i = 1, . . . , n, (1.4)

where β0 = β1 = 10, xi are either fixed or random covariates and ui ∼ tν,
ν ∈ {1, 2, 3, 4, 5, ∞}, i.e. including the limiting case of Gaussian errors. Fig-
ure 1.2 gives a plot of the empirical coverage probabilities for a model with
n = 50 fixed covariates drawn from U (0, 5), a uniform distribution with
support (0, 5), and the ui are t1 distributed, i.e. Cauchy errors.

The percentile bootstrap (pbs) provides remarkably more consistent es-
timated coverage probabilities than the other methods. Indeed the Markov
chain marginal bootstrap (mcmb), Parzen Wei and Ying bootstrap (pwy),
direct estimation assuming iid errors (iid), rank inversion assuming iid er-
rors (riid) and rank inversion not assuming identically distributed errors
(rnid) methods exhibit ‘V’ shaped empirical coverage probabilities of vary-
ing degrees over the range of τ considered. The direct estimation not assum-
ing identically distributed errors (nid), unit exponential weighted bootstrap
(wxy) and paired bootstrap (xy) methods also provide consistent estimated
coverages, however they are not as close to the nominal coverage as the
simple percentile bootstrap. These observations are replicated in models
with random covariates.

As the tail of the error distribution becomes slightly less heavy ν ∈
{2, 3, 4, 5}, a number of models become acceptable. The percentile bootstrap
still performs admirably in terms of estimated coverage probabilities, as
does the wxy and xy. The rank inversion methods underestimate the cover-
age probabilities somewhat for the intercept and less markedly for the slope
coefficient. The mcmb, pwy and iid methods still exhibit strong ‘V’ shaped
empirical coverage probabilities. Tables A.1 through A.4 in Appendix A give
details for τ = 0.3. Overall the trend is for the lengths and their SDs to shrink
as the error distribution becomes less heavy tailed. The coverage probabilit-
ies do not seem to keep improving, once finite mean and variance becomes
a feature of the error distribution, there is little improvement in coverage by
adding on additional finite moments.

When the error distribution is extremely heavy tailed, for example Cauchy
distributed, a curious phenomenon occurs as the sample size increases. Cov-
erage probability results for this scenario when n = 50 are found in Figure
1.2 and those for n = 100, 150 and 200 are included in Figures A.1, A.2
and A.3 in Appendix A. When n = 50 most methods tend to overestimate
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Figure 1.2: Empirical coverage probabilities for the model Yi = β0 + β1xi + ui,
where xi ∼ U (0, 5), ui ∼ t1 and β0 = β1 = 10. The sample size is
n = 50, the number of resamples in each of the bootstrap methods is
B = 1000, the number of Monte Carlo simulations is N = 1000. The
nominal coverage is 0.9.
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Figure 1.3: Average confidence interval lengths for the model Yi = β0 + β1xi + ui,
where xi ∼ U (0, 5), β0 = β1 = 10 and ui ∼ t1. The sample size is
n = 150, the number of resamples in each of the bootstrap methods is
B = 1000, the number of Monte Carlo simulations is N = 1000. The
circles represent the mean length, the horizontal lines are a guide to
the variability of the mean length estimate and represent a naive 95%
confidence interval constructed as the mean length ± two times the SD

of the lengths.
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the true coverage probabilities for the intercept and slope parameters. As
the sample size increases, most methods perform well for central τ values
but, for the intercept, their coverage probabilities fall below the nominal
level at moderate and extreme τ while, for the slope, they remain relatively
unaffected. Across all sample sizes considered, the pbs and rank inversion
methods give good coverage probabilities for the slope parameter.

We conjecture that this behaviour is related to the inherent difficulty as-
sociated with estimating quantiles of heavy tailed distributions. Indeed the
intercept in a quantile regression model actually estimates β0 + F−1

u (τ). The
average lengths are typically twice as long for the intercept than the slope
coefficient over all τ for ν ∈ {1, 2, 3, 4, 5}. However, the variability of the
lengths decreases as n grows. This would suggest that the confidence inter-
vals are tightening as n increases but the point estimates are not converging
to the true parameter values as quickly, leading to poor coverage. While not
shown in the figures, as the degrees of freedom increase this phenomenon
becomes somewhat more moderate and as ν → ∞, i.e. for Gaussian errors,
the ‘V’ behaviour is no longer present and all methods perform well, with
the exception of the iid method.

More generally with regard to the average lengths, all methods considered
experience difficulty constructing concise confidence interval lengths at τ ∈
{0.1, 0.9}. Figure 1.3 demonstrates this point for a set of fixed uniform co-
variates with t1 distributed errors and n = 150. At more moderate τ, the
variability of the average lengths decreases for all models. As would be ex-
pected, the average lengths and their associated variability decrease as the
sample size increases and as τ becomes more moderate. Interestingly in Fig-
ure 1.3 most models are performing very similarly in terms of estimated
lengths and their variability. The iid method appears to be doing quite well
in terms of length, however the empirical coverage probabilities are well
below the nominal level.

1.3.2 Skewed covariates

The next class of models considered take the same form as equation (1.4)
with ui ∼ N (0, 1) and the covariates are sampled from a highly skewed
distribution. We considered xi ∼ χ2

1, χ2
2 and log normal with mean 0 and

variance 1 on the log scale. Skewed covariates may cause issues for quantile
regression estimates particularly with low sample sizes at extreme τ. The
smattering of outlying observations in the tail are likely to wreak havoc on
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the stability of the extreme quantile estimates. Therefore, a priori, we would
assume that confidence intervals for both β0 and β1 will be affected quite
significantly in the case of small n.

Figure 1.4 is indicative of the coverage patterns exhibited by the various
techniques in the presence of skewed covariates for n = 50. In this par-
ticular example, we have covariates sampled from the χ2

1 distribution. The
resampling methods, with the exception of the mcmb and pwy approach,
all perform quite well in terms of estimated coverages for both the slope and
the intercept, they continue to work well as n increases. The mcmb and pwy
approaches exhibit a strong ‘V’ shape which is only tempered at n = 200
and for the extremely heavy tailed log normal distribution. Even at n = 200,
the mcmb and pwy methods continue to result in empirical coverage prob-
abilities higher than the nominal level for all τ ∈ {0.1, 0.2 . . . , 0.9}.

As expected, when it comes to estimating the slope coefficient, the iid
and nid methods that rely heavily on standard asymptotic normality theory
perform sub-optimally across the whole range of τ considered even at n =

200. Indeed, the iid method yields empirical coverage probabilities lower
than the nominal level even for the intercept parameter.

The rank inversion methods perform well over all sample sizes and τ,
however they tend to yield empirical coverage probabilities below the nom-
inal level. Figure 1.5 plots the lengths of the estimated confidence intervals
for n = 100. The key feature here is the variability inherent in the mcmb
and to a lesser extent, pwy, riid and rnid methods. It is generally preferable
for confidence intervals to err on the side of conservatism which is why, in
the case of skewed covariates, the pbs, xy and wxy methods appear to be
the best performers in terms of estimated coverage and are all equally well
behaved in terms of confidence interval length.

1.3.3 Multiple regression and heteroskedasticity

Here we consider a more general functional form with two covariates and
allow for the possibility of heteroskedasticity,

Yi = β0 + β1xi1 + β2xi2 + (1 + αxi1)ui. (1.5)

Models where x1 and x2 are independent are considered as well as models
where x1 and x2 are bivariate Gaussian with variance 1 and various values
for the correlation between x1 and x2.

Firstly, considering models with no heteroskedasticity, i.e. α = 0 but let-
ting x1 and x2 come from a bivariate Gaussian distribution, we find that all
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Figure 1.4: Empirical coverage probabilities for the model Yi = β0 + β1xi + ui,
where xi ∼ χ2

1, ui ∼ N (0, 1) and β0 = β1 = 10. The sample size is
n = 50, the number of resamples in each of the bootstrap methods is
B = 1000, the number of Monte Carlo simulations is N = 1000. The
nominal coverage is 0.9.
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Figure 1.5: Average confidence interval lengths for the model Yi = β0 + β1xi + ui,
where xi ∼ χ2

1, ui ∼ N (0, 1) and β0 = β1 = 10. The sample size is
n = 100, the number of resamples in each of the bootstrap methods is
B = 1000, the number of Monte Carlo simulations is N = 1000. The
circles represent the mean length, the horizontal lines are a guide to
the variability of the mean length estimate and represent a naive 95%
confidence interval constructed as the mean length ± two times the SD

of the lengths.
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of the techniques, with the exception of the iid method, perform well even
when x1 and x2 have correlation as high as 0.9.

However, when we introduce heteroskedasticity, even in a simple linear
regression type scenario, i.e. β2 = 0, the results are quite different. As ex-
pected, the methods that rely on the independently distributed error as-
sumption, iid, riid and mcmb, do very poorly in terms of coverage for both
the intercept and the slope coefficient. It is interesting that also at α = 0.5,
the methods designed to be robust to the independent error assumption
begin to falter at high and low quantiles. The resampling techniques, pbs,
wxy and xy, perform reasonably well for τ ∈ {0.3, 0.4, 0.5, 0.6, 0.7} over all
n. When the error is highly correlated with the covariate, e.g. α > 0.5, ex-
treme caution needs to be exercised when conducting inference on the slope
parameter away from τ = 0.5.

In the multivariate case, these results still hold. Figure 1.6 demonstrates
both of the above points with a sample size of n = 200. Here we have
α = 0.5, and the failure of the methods relying on the iid assumption is
evident – further, even the models designed to be robust to this assumption
perform poorly for τ ∈ {0.1, 0.9}. The resampling techniques (with the ex-
ception of the mcmb method which requires the errors to be independent)
deserve special mention. Looking at the slope coefficient of the variable that
is not directly related to the error term, the resampling methods (with the
exception of the mcmb method which requires the errors to be independ-
ent) are quite consistent in their slight over estimation of the true coverage
whilst the nid and rank inversion methods all perform quite well. Looking
at all three coefficients jointly over the range of τ, it is difficult to ignore the
performance of the percentile bootstrap. In terms of lengths, all methods
perform quite similarly, however, the rank inversion methods exhibit more
variability in their estimates than the resampling techniques.

Introducing higher correlation between the covariates, does not notice-
ably affect the empirical coverage probabilities, though the lengths of the
confidence intervals tend to increase. The major insight is that in the pres-
ence of high correlation between the covariates, the coverage will be largely
unaffected, though it is likely that the length of the confidence interval will
be greater than in the uncorrelated case.
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Figure 1.6: Empirical coverage probabilities for the model defined by equation (1.5),
where x1 and x2 are multivariate Gaussian, both with variance 1 and
correlation coefficient 0.5; ui ∼ N (0, 1); α = 0.5 and β0 = β1 = β2 = 10.
The sample size is n = 200, the number of resamples in each of the
bootstrap methods is B = 1000, the number of Monte Carlo simulations
is N = 1000. The nominal coverage is 0.9.
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1.4 conclusion

The aim of this chapter was to revisit and extend the analysis performed by
Kocherginsky, He and Mu (2005), incorporating additional techniques and
evaluating their effectiveness for sample sizes n ≤ 200 and over a broad
range of conditional quantiles. We considered simple models with only a
few parameters so as to isolate the effect of the various pathologies. This is
an important distinction to make as some of the methods considered were
designed primarily for use in large samples. For example the mcmb method
is most valuable when estimating high dimensional models.

The percentile bootstrap was found to be a sound performer exhibiting
significant robustness to heteroskedasticity, heavy tailed error distributions
and skewed covariates. In most cases it was found to be better than, or
at least on par with, more complex resampling techniques as well as the
nid and rank inversion methods in terms of coverage probabilities, average
lengths and the variability of those lengths. The performance of the per-
centile bootstrap was somewhat surprising given its simplicity relative to
the other resampling techniques. However, Hahn (1995) foreshadowed this
result, showing the asymptotic empirical coverage probability of the boot-
strap percentile method to be equal to the nominal coverage probability
even when the error term is not independent of the regressor. It is noted
in the R documentation for the quantreg (Koenker, 2013) package that the
percentile method is a “refinement that is still unimplemented”, though it
is not difficult to code directly.

All methods did not perform well when estimating the intercept for high
and low quantiles in the presence of heavy tailed errors. Also, when there
is strong heteroskedasticity caused by one variable, the estimated coverage
probabilities for the corresponding coefficient can be severely underestim-
ated at high and low quantiles. When the error term is dependent on one or
more covariates and extreme τ is of interest, caution should be used when
constructing confidence intervals, even for large n.

The nid method generally performed quite well, except in the presence
of heavy tailed covariates. This was also noted in Kocherginsky, He and Mu
(2005) where they similarly found the nid method tended to underestimate
the coverage. The reason being that when a covariate is too heavy tailed,
the asymptotic normality of β̂τ would fail. In this case, the percentile boot-
strap or rnid would be suggested, noting that the percentile bootstrap gives
consistently tighter lengths than the rnid approach.
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The mcmb approach uses the MCMB-A algorithm which is not robust in
the presence of heteroskedasticity. At high and low τ even in iid models, the
mcmb approach did quite poorly and as such would not be recommended
in all but the most well behaved of models when n ≤ 200.

As expected the iid and riid methods did not perform well when the iid
assumption was violated and did not outperform the more robust methods
in the standard iid error models. The xy-pair bootstrap and pwy techniques
performed well, except when there were correlated covariates.

The rank test inversion methods, riid and rnid, occasionally generated
confidence intervals of infinite length, particularly with small sample sizes,
heavy tailed covariates and extreme τ. If this is observed in practice, the
percentile or paired bootstrap or nid method would be an appropriate al-
ternative.

The confidence interval lengths for the rank inversion methods were often
observed to be far more variable than the other methods. This has much to
do with the relatively small sample sizes and the way the confidence inter-
vals are generated by inverting a test statistic. With less data points, particu-
larly at extreme τ, the inversion process has to search further afield to find
appropriate upper and lower bounds. In the other methods, a standard er-
ror is estimated and a standard symmetric confidence interval is calculated.
The xy-pair bootstrap and the nid method on average gave the smallest
confidence intervals whilst maintaining acceptable coverage performance.

To summarise, the percentile bootstrap approach is a simple, intuitive
and viable alternative for constructing confidence interval estimates in the
quantile regression setting. Hahn (1995) showed that the percentile boot-
strap provides asymptotically correct coverage probabilities and we found
its small sample performance to be impressive.



2
S C A L E E S T I M AT I O N

2.1 introduction

A reliable estimate of the scale of a data set is a fundamental issue in stat-
istics. For example the scale of the residuals from a regression model is
often of interest, whether it be parametrically estimating confidence inter-
vals, determining a goodness of fit measure, performing model selection,
or identifying unusual observations. The robustness of quantile regression
parameter estimates, described in Chapter 1, to y-outliers does not extend
to the error distribution – extreme observations in the y space yield outly-
ing residuals which can interfere with subsequent analyses. This led us to
consider the problem of finding reliable robust estimates of scale.

While scale parameters are sometimes treated as nuisance parameters, a
talk given by Raymond Carroll at the University of Technology, Sydney, in
June 2013 shared the same title as his 2003 paper, “Variances are not always
nuisance parameters” indicating that finding reliable estimates of scale is
just as important a problem in 2013 as it was in 2003.

Robust estimates of scale are important for a range of applications, from
true scale problems, to outlier identification, and as auxiliary parameters
for more involved analyses. Recent work concerning robust scale estimation
includes Boente, Ruiz and Zamar (2010), Wu and Zuo (2008) and Van Aelst,
Willems and Zamar (2013).

There are two aims in formulating a robust estimator: the first is to reduce
the potential bias caused by outliers and the second is to maintain efficiency
when there are no outliers present. These two aims are generally in conflict
with one another. In the scale setting, the median absolute deviation from
the median (MAD) is commonly used in practice, despite its poor Gaussian
efficiency. The estimator Qn (Rousseeuw and Croux, 1993) is a significant
improvement on the MAD in terms of efficiency whilst maintaining a high
level of robustness. This chapter presents an alternative robust scale estim-
ator which trades some robustness for desirable efficiency properties.

We propose a new robust scale estimator, the pairwise mean scale es-
timator Pn, which combines familiar features from a number of commonly
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used robust estimators and possesses surprising efficiency properties (Tarr,
Müller and Weber, 2012). In contrast to Qn, which utilises pairwise differ-
ences, Pn is based on pairwise means. The most basic form of Pn is calcu-
lated as the IQR of the pairwise means, yielding a scale estimator that can
be viewed as a natural complement to the Hodges-Lehmann location estim-
ator (Hodges and Lehmann, 1963). A generalisation, Pn(τ), considers the
distance between the (1± τ)/2 quantiles of the empirical distribution of the
pairwise means. Unless otherwise specified, the notation Pn is equivalent to
Pn(0.5). Extensions are investigated that are based around Winsorising and
trimming. We also implement a form of adaptive trimming which is shown
to achieve the maximal breakdown value of 50%.

Our investigation into the efficiency properties of the pairwise mean scale
estimator is based on Randal (2008) who calculates efficiencies of estimators
relative to the corresponding maximum likelihood estimators at a particu-
lar distribution. This method facilitates easier comparison than the method
used in the seminal study by Lax (1985).

The pairwise mean scale estimator fits into the family of generalised L-
statistics (GL-statistics) which encompasses broad classes of statistics of in-
terest in nonparametric estimation; in particular, L-statistics, U-statistics and
U-quantile statistics (Serfling, 1984). Thus, a wide range of statistics related
to scale estimation are embedded into a single unified class. For example,
the IQR; variance; trimmed and Winsorised variance; and Qn all fit within
the class of GL-statistics.

M-estimators are an important exception to the class of GL-statistics. The
MAD is the most prominent robust scale estimator that sits under the M-
estimator umbrella. An advantage of Pn over M-estimators of scale is that it
does not require a location estimate.

The next section outlines an important family of statistics and introduces
some common decomposition techniques used throughout the thesis to de-
rive limiting distributions. A review of some existing scale estimators and
their properties are given in Section 2.3. Section 2.4 formally defines the
estimator Pn along with possible generalisations and its breakdown value
is found. The influence function and asymptotic normality of Pn are also
derived in Section 2.4. In addition to being an intuitive estimate of scale,
one of the primary advantages of Pn is its high efficiency over a broad range
of distributions. The results of a simulation study are given in Section 2.5
which show how Pn compares favourably with other robust estimates of
scale.
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2.2 background theory

This section outlines some theory that will be used throughout the thesis.
We begin by introducing U-statistics and U-quantile statistics. The Hoeffd-
ing decomposition, a classical approach to working with U-statistics, and
Hermite polynomials, a classical approach to decomposing Gaussian pro-
cesses, are both briefly discussed. These techniques will be most relevant
in Chapter 3. Finally, a broader class of statistics that encompasses both U-
and U-quantile statistics is introduced.

2.2.1 U- and U-quantile statistics

Let X1, . . . , Xn be a set of iid observations and g be a symmetric bivariate
kernel, g : R2 7→ R. Hoeffding (1948) defines a U-statistic (of order 2) as,

2
n(n− 1) ∑

i<j
g(Xi, Xj).

An example of a U-statistic is the sample variance which is a U-statistic with
g(x, y) = (x− y)2/2.

A U-quantile statistic is a quantile of the distribution function of the ker-
nels of the U-statistic. Let G(t) = P (g(X1, X2) ≤ t) be the CDF of the kernels
with corresponding empirical distribution function,

Gn(t) =
2

n(n− 1) ∑
i<j

I{g(Xi, Xj) ≤ t}, for t ∈ I, (2.1)

for some interval I ⊆ R. Note that (2.1) is a U-statistic with kernel,

h(x, y; t) = I{g(x, y) ≤ t}, ∀ x, y ∈ R and t ∈ I. (2.2)

For p ∈ (0, 1), the corresponding sample U-quantile is,

G−1
n (p) = inf{t : Gn(t) ≥ p}.

2.2.1.1 Hoeffding decomposition

The Hoeffding decomposition is the classical mode of attack for analysing
the asymptotics of non-degenerate U-statistics. Let h1(x; t) = E[h(x, X1; t)]−
G(t). For all t ∈ I, write the difference,

Gn(t)− G(t) =
1

n(n− 1) ∑
i 6=j

[
h(Xi, Xj; t)− G(t)

]
, (2.3)
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as,
Gn(t)− G(t) = Wn(t) + Rn(t),

where,

Wn(t) =
2
n

n

∑
i=1

h1(Xi; t),

and,

Rn(t) =
1

n(n− 1) ∑
i 6=j

[
h(Xi, Xj; t)− h1(Xi; t)− h1(Xj; t)− G(t)

]
. (2.4)

The function h1(x; t) is defined for all x ∈ R and t ∈ I and if X1, . . . , Xn are
independent standard Gaussian,

h1(x; t) =
∫

h(x, y; t)φ(y)dy− G(t),

and hence, E[h1(X2; t)] = 0.

2.2.1.2 Hermite decomposition

As Beran (1994) notes, the classical approach based on the Hoeffding decom-
position is not always appropriate for establishing the asymptotic behaviour
of U-statistics when working with long range dependent (LRD) sequences,
as considered in Chapter 3. An alternative approach is to use a decomposi-
tion based on Hermite polynomials. The kth Hermite polynomial, Hk(x), is
defined as,

Hk(x) = (−1)kex2/2

[
dk

dxk e−x2/2

]
.

Using this definition, the first four Hermite polynomials are: H0(x) = 1,
H1(x) = x, H2(x) = x2 − 1 and H3(x) = x3 − 3x.

Hermite polynomials build an orthogonal basis. To see this let Z be a
standard Gaussian random variable then,

E[Hk(Z)Hk(Z)] = k!,

and for all k 6= j,
E[Hk(Z)Hj(Z)] = 0.

Furthermore, let J be the set of functions J such that E[J(Z)] = 0 and
E[J2(Z)] < ∞ then every function J ∈ J can be written as

J(Z) =
∞

∑
k=0

αk
k!

Hk(Z),
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with Hermite coefficients αk = E[J(Z)Hk(Z)]. The Hermite rank of a function
J is defined as m = inf{k ≥ 1 : αk 6= 0}. We therefore have,

J(Z) =
∞

∑
k=m

αk
k!

Hk(Z).

Let X and Y be independent standard Gaussian random variables. The
kernel function defined in (2.2) can be expanded in a bivariate Hermite
polynomial basis as follows,

h(X, Y; t) = I{g(X, Y) ≤ t} = ∑
p,q≥0

αp,q(t)
p!q!

Hp(X)Hq(Y), (2.5)

for t ∈ I, where, αp,q(t) = E
[
h(X, Y; t)Hp(X)Hq(Y)

]
. The constant term in

the bivariate Hermite decomposition (2.5) is given by α0,0(t),

α0,0(t) = G(t) =
∫ ∫

h(x, y; t)φ(x)φ(y)dx dy for all t ∈ I.

As we will see in Chapter 3, the Hermite rank of the class of functions
{h(·, ·; t)− G(t), t ∈ I} plays a crucial role in understanding the asymptotic
behaviour of empirical quantiles of the U-process Gn. Analogously to the
univariate case, the Hermite rank of the bivariate function h(·, ·; t) is defined
as the smallest positive integer m(t) such that there exist p and q satisfying
p + q = m(t) and αp,q(t) 6= 0. Thus we can write (2.5) as,

h(X, Y; t)− G(t) = ∑
p,q≥0

p+q≥m(t)

αp,q(t)
p!q!

Hp(X)Hq(Y).

Further details on Hermite polynomials and their properties can be found,
among others, in Beran (1994), Giraitis, Koul and Surgailis (2012) and Beran
et al. (2013).

2.2.2 Generalised L-statistics

Serfling (1984) introduces an extension of U-quantile statistics known as
generalised L-statistics (GL-statistics). Many robust scale estimators are nes-
ted within the class of GL-statistics, including our new scale estimator Pn.

Again restricting attention to symmetric bivariate kernels, g(x1, x2), the
GL-functional is defined as,

T(G) =
∫ 1

0
w(p)G−1(p)dp +

d

∑
j=1

ajG−1(pj), (2.6)
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where w is a function for the smooth weighting of G−1(p) and aj are discrete
coefficients for G−1(pj) (Serfling, 1984). Evaluation of the GL-functional at
the corresponding sample distribution of g(X1, X2), yields the following
representation of GL-statistic,

Tn = T(Gn) =
∫ 1

0
w(p)G−1

n (p)dp +
d

∑
j=1

ajG−1
n (pj). (2.7)

The class of generalised L-statistics (GL-statistics) encompasses L-statistics,
U-statistics and U-quantile statistics and as such covers a range of scale es-
timates. Janssen, Serfling and Veraverbeke (1984) and Serfling (1984) study
the asymptotic properties of GL-statistics in some detail.

2.3 review of robust scale estimation theory

We define any estimator, Sn, that is shift invariant and scale equivariant to
be a scale estimator. That is, for a set of n observations, x, and any constant
c ∈ R, Sn(x + c) = Sn(x) and Sn(cx) = |c|Sn(x).

A traditional way to measure the spread of a data set x is the (non-robust)
sample standard deviation,

SD(x) =

√
1

n− 1

n

∑
i=1

(xi − x̄)2,

where x̄ = n−1 ∑n
i=1 xi is the sample mean. However, it is well known that

the SD is not robust to outlying observations. This section outlines some key
features of robust estimators and defines some common robust alternatives
to the SD, many of which fit within the class of GL-statistics.

2.3.1 Measures of robustness

The core of this thesis focusses on robust estimation techniques. An intro-
duction to the philosophy underlying robust procedures is found in Mor-
genthaler (2007). In general, an estimator is said to be robust if it is relatively
unaffected by arbitrary corruption to some small proportion of observations.
The proportion of corrupted observations in the data set will be referred to
as ε. The most robust estimators return bounded estimates as ε ↑ 0.5, i.e. up to
half of the data set may experience arbitrary corruption. In practice, it is not
likely that univariate samples will have such a high level of contamination
so we do not restrict attention solely to the most robust methods.
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Two popular ways of describing the robustness properties of estimators
are the breakdown value and the influence function.

2.3.1.1 Breakdown value

The breakdown value of an estimator, ε∗, is the smallest value of ε for which
the estimator, Tn, when applied to the ε-corrupted sample x̃, can be forced
to the boundary of the parameter space.

Hodges (1967) and Hampel (1971) were the first to propose and define
the concept of a breakdown value. Hubert and Debruyne (2009) provide
a recent overview of its history. The classical definition of the asymptotic
contamination breakdown value of a location estimator Tn at x is

ε∗(x, Tn) = inf{ε|b(ε; x, Tn) = ∞},

where b is the maximum bias that can be caused by ε-corruption:

b(ε; x, Tn) = sup |Tn(x̃)− Tn(x)| ,

and the supremum is taken over the set of all ε-corrupted samples x̃.
For a scale estimator, Sn, we need to adjust the classical definition slightly,

to include the possibility of implosion, i.e. returning a value of zero. In finite
samples this is defined by,

ε∗(x, Sn) = max

{
m
n

: sup
x̃

Sn(x̃) < ∞ and inf
x̃

Sn(x̃) > 0

}
,

where m is the number of observations in x replaced with arbitrary values
(Huber, 1981, p. 110).

2.3.1.2 Influence function

Hampel (1974) defines the influence function for a functional T at the distri-
bution F as,

IF(x; T, F) = lim
ε↓0

T((1− ε)F + εδx)− T(F)
ε

, (2.8)

where the distribution δx has all its mass at x. The influence function is es-
sentially the first order Gâteaux derivative of a functional T at a distribution
F in the direction of δx. It represents the effect of a point mass contamina-
tion at x on the estimate, in a sense, capturing the asymptotic bias caused
by the contamination.
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An estimator is said to be B-robust (bias-robust) if it has a bounded influ-
ence function, i.e. the influence function does not go to infinity as x → ±∞.
The absolute maximum limit of the influence function is known as the gross-
error sensitivity, γ∗(T, F) = supx | IF(x; T, F)|, which measures the worst ap-
proximate influence a fixed amount of contamination can have on the value
of the estimator, i.e. it represents an approximate bound for the asymptotic
bias of the estimator. Hence, if γ∗(T, F) is finite, then T is said to be B-robust.

Another way to characterise the robustness of an estimator is through its
maximum bias curve. This is a generalisation of gross error sensitivity over
various levels of contamination, ε, within a specified ε-contaminated family
of distributions. Early work on maximum bias curves in the context of scale
estimation can be found in Martin and Zamar (1989, 1993).

The influence function is also useful in finding the asymptotic variance of
an estimator, which equals the expected square of the influence function,

var(T, F) =
∫

R
IF2(x; T, F)dF(x).

Huber (1964) notes that the asymptotic relative efficiency is an important
criteria that can be used to choose between competing estimators. Once the
asymptotic variance has been calculated, the asymptotic relative efficiency
between two estimators T and S at a distribution F is defined as,

ARE(T, S, F) =
var(S, F)
var(T, F)

.

2.3.2 Existing scale estimators

There is an extensive literature on scale estimation. By way of review, Huber
and Ronchetti (2009, Chapter 5) outline a number of scale estimates fall-
ing into the M-, L- and R-statistic classes. This section continues by out-
lining some important scale estimators that will be referred to throughout
the thesis.

2.3.2.1 Interquartile range

The interquartile range (IQR) was an early attempt to robustify scale estim-
ation, see Hojo (1931), and is still widely taught and referred to in prac-
tice. The IQR can be defined simply as IQR(x) = x(n−m+1) − x(m), where
m = bn/4c. However, there are as many ways to calculate the IQR as there
are ways to calculate quantiles, see Hyndman and Fan (1996) for a summary.
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Importantly, the IQR does not require an estimate of location, i.e. the data
need not be centred. The IQR, as a linear combination of quantiles, can be
viewed as a L-estimate, which sits within the class of GL-statistics.

Adapting the general result for the τ-quartile range in Hampel et al. (1986,
p. 110), the influence function for the IQR at F = Φ is,

IF(x; IQR, Φ) =
sign(|x| −Φ−1(3

4))

4Φ−1(3
4)φ(Φ

−1(3
4))

.

The gross error sensitivity of the IQR is γ∗ = 1.167, and hence the IQR is
B-robust. Furthermore, its asymptotic breakdown value is ε∗ = 1

4 and its
asymptotic efficiency relative to the SD is 0.367 (Hampel et al., 1986).

2.3.2.2 Sn

Croux and Rousseeuw (1992) propose the scale estimator Sn, defined as,

Sn(x) = cn1.1926 Med
i

{
Med

j
|Xi − Xj|

}
. (2.9)

This should be read as follows: for each i we compute the median of {|Xi −
Xj|; j = 1, . . . , n}. This yields n numbers, of which the median is then found.
The factor 1.1926 is for consistency at Gaussian distributions and cn is a
finite sample correction factor. This estimator also achieves a breakdown
value of ε∗ = bn/2c/n, which is the best possible value for location invariant
and scale equivariant estimators.

In order to check whether the factor 1.1926, obtained by means of an
asymptotic argument, succeeds in making Sn approximately unbiased for
finite samples, Croux and Rousseeuw (1992) perform a simulation study.
For each n they generate 10,000 samples of size n Gaussian observations
and then compute the average value of (2.9) and the standard error on that
value. For n even, there is practically no bias. However, for n odd a small
bias appears. Hence, the correction factor cn is explicitly given for 2 ≤ n ≤ 9
and for n > 9 is defined as,

cn =


n

n− 0.9
for n odd

1 for n even.

In order to be able to give cn with three decimal places, they repeat the
simulation for small n with 200,000 replications.
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2.3.2.3 Qn

Croux and Rousseeuw (1992) and Rousseeuw and Croux (1993) also con-
sider another estimator, Qn, which is more commonly used in practice than
Sn. Like the IQR, Qn does not require centring, however it has a higher break-
down value and is more efficient than the IQR at the Gaussian distribution.
The estimator Qn is based only on the differences between the data values,

Qn = dn2.2191{|xi − xj|; i < j}(k), (2.10)

i.e. the kth largest of the |xi − xj| for i < j multiplied by an asymptotic
correction factor, 2.2191, and a finite correction factor dn.

Croux and Rousseeuw (1992) show that Qn achieves the maximal asymp-
totic breakdown value, ε∗ → 0.5 as n → ∞, for a range of k however, the
most efficient choice is to use k = (h

2) where h = bn/2c+ 1 which gives,

k =
(bn/2c+ 1)bn/2c

2
≈
(

n
2

)
1
4

.

Thus, Qn is approximately the first quartile of the |xi − xj|’s (for i < j there
are (n

2) absolute differences) and as such can be asymptotically represented
by a GL-statistic with kernel, g(x, y) = |x − y|. If the kth order statistic is
replaced with the median, this would be equivalent to the median interpoint
distance mentioned by Bickel and Lehmann (1979), the breakdown point of
which is lower (about 29%).

The influence function for Qn at a distribution F is given by,

IF (x; Q, F) = d
1
4 − F(x + d−1) + F(x− d−1)∫

f (x + d−1) f (x)dx
, (2.11)

where d is a correction factor specific to each F. At the Gaussian distribution,
d = 2.2191 and the gross error sensitivity is γ∗ = 2.07.

Croux and Rousseeuw (1992) show that the factor 2.2191 in (2.10) is neces-
sary for asymptotic consistency for the standard deviation when the under-
lying observations follow a standard Gaussian distribution. A simulation
study over 10,000 samples was conducted to find the additional correction
factor dn. It is specified explicitly for n ≤ 9, and for n > 9 is taken to be
defined as,

dn =


n

n + 1.4
for n odd

n
n + 3.8

for n even.
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2.3.2.4 Trimmed standard deviations

Trimming classical non-robust estimators is an alternative way to achieve
robustness while and maintain a reasonably high level of efficiency, see
Welsh and Morrison (1990) for examples of trimmed scale estimators. More
recently, Wu and Zuo (2008) consider the properties of scaled-deviation
trimmed and Winsorised standard deviations.

For a given point x, the scaled deviation of x to the centre of a distribution
F is given by,

D(x, F) =
x− T(F)

S(F)
,

where T(F) and S(F) are some robust location and scale functionals.
The points are trimmed based on the absolute value of this scaled de-

viation. Let A be the event {|D(x, F)| ≤ β}, where β is some arbitrary
parameter. The β scaled-deviations trimmed variance functional is defined
as,

S2(F) = c

∫
A w(D(x, F))(x− T(F))2 dF(x)∫

A w(D(x, F))dF(x)
, (2.12)

where c is the consistency coefficient and T(F) is a similarly trimmed mean
functional. Further, 0 < β ≤ ∞ and w(D(x, F)) is an even-bounded weight
function on [−∞, ∞] so that the denominator is positive. Here points that are
a robust distance (βS(F)) away from the robust centre T(F) are trimmed and
the remaining observations are reweighted. When w is a non-zero constant,
S2 is the usual variance after trimming. Furthermore, as β → ∞, T and S2

approaches the usual mean and variance and c→ 1.
A straightforward extension is to use Winsorisation instead of trimming

– the difference being that outlying observations are replaced with cutting-
point values instead of simply being eliminated. Wu and Zuo (2008) also
find the influence functions for the randomly trimmed and Winsorised vari-
ance.

Note that when using scaled-deviation trimming or Winsorisation the
proportion of the trimmed points for a fixed β, P(|D(X, F)| > β), is not
fixed but F-dependent. In finite samples, the proportion of sample points
trimmed is not fixed but random, so T(Fn) and S(Fn) are data adaptive.

We implement a similar form of adaptive trimming to improve the robust-
ness of Pn in Section 2.4 which is later shown to be a good basis for precision
matrix estimation in Chapter 4.
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2.3.2.5 M-estimators

Another important class of statistics are M-estimators, which are a natural
extension of maximum likelihood estimate (MLE) type estimators. In general,
an M-estimate of scale is any estimate, σ̂, satisfying an equation of the form,

1
n

n

∑
i=1

ρ
(xi

σ̂

)
= δ, (2.13)

where ρ is a nondecreasing function of |x| with ρ(0) = 0, and δ is a positive
constant. Note that in order for (2.13) to have a solution, we must have
0 < δ < ρ(∞). If ρ is bounded it will be assumed without loss of generality
that ρ(∞) = 1 and hence δ ∈ (0, 1).

When ρ is the step function,

ρ(t) = I{|t| > c}, (2.14)

where c is a positive constant and δ = 0.5, we have σ̂ = Med{|x|}/c.

2.3.2.6 Median absolute deviation

A very robust choice for ρ is (2.14) with c = Φ−1(3
4) ≈ 0.675 to make it

consistent for the standard deviation at the Gaussian distribution. In the
general case with unknown location parameter, we can use the median as
a robust estimate of location, which yields the median absolute deviation
from the median (MAD),

MAD(x) =
1

0.675
Med{|x−Med{x}|}. (2.15)

The MAD is used extensively in practice, indeed we will use it when adding
a random trimming component to Pn in Section 2.4.

Hampel (1974) gives detail about the influence function for the MAD. The
influence function for the MAD at the Gaussian distribution is the same as
for the IQR,

IF(x; MAD, Φ) =
sign

(
|x| −Φ−1(3

4)
)

4Φ−1(3
4)φ

(
Φ−1(3

4)
) , (2.16)

and is plotted in Figure 2.4 (p. 39). It follows that the IQR and MAD share
some of the same asymptotic properties at the Gaussian. In particular, the
gross error sensitivity of the MAD at the Gaussian distribution is γ∗ ≈
1.167, therefore the MAD is B-robust. Using the fact that the asymptotic
variance of an estimator is the expected square of the influence function,
var(MAD, Φ) ≈ 1.361 and hence the asymptotic efficiency of the MAD rel-
ative to the SD at the Gaussian distribution is ARE(MAD, SD, Φ) ≈ 0.367.
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Figure 2.1: Average MAD estimates over one million replications of different sample
sizes from a standard Gaussian distribution. The black line represents
the finite sample correction factor and the grey line is the true parameter
value.

The key difference between the MAD and the IQR is that the MAD possesses
maximal asymptotic breakdown value, ε∗ = 0.5.

For symmetric distributions, the MAD is asymptotically equivalent to one-
half of the interquartile distance. Hall and Welsh (1985), Welsh (1986) and
more recently, Mazumder and Serfling (2009) study the asymptotic proper-
ties of the MAD and its link with the semi-IQR.

With correction factors to ensure consistency for the standard deviation
at the Gaussian distribution, the MAD can be redefined as,

MAD(x) = bn1.4826×Med{|x−Med{x}|}, (2.17)

where the bn factors are chosen to make MADn approximately unbiased
in finite samples. Croux and Rousseeuw (1992) use simulation to find fi-
nite sample correction factors for the MAD. In particular, they specify them
explicitly for 2 ≤ n ≤ 9 and if n > 9 then use the approximation,

bn =
n

n− 0.8
.

In R, the only correction implemented is an asymptotic one, i.e. bn = 1 for
all n. The need for a finite correction factor is demonstrated in Figure 2.1.
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2.3.2.7 τ-scale

Yohai and Zamar (1988) introduce the class of τ-estimates which have a high
breakdown value and controllable efficiency at the Gaussian distribution. If
σ̂(x) is a robust M-estimator of scale, i.e. a solution of equation (2.13), then
the τ-scale is defined as,

τ(x)2 = σ̂2(x)
1
n

n

∑
i=1

ρ

(
xi

σ̂(x)

)
.

Maronna and Zamar (2002) propose a version of the τ-scale that will be
considered in Chapter 4. Namely, the initial M-estimator of scale is the MAD,
σ̂(x) = MAD(x). The τ-scale estimate is,

τ2(x) = d MAD(x)
1
n

n

∑
i=1

ρc1

(
xi − µ̂(x)
MAD(x)

)
, where µ̂(x) = ∑n

i=1 wixi

∑n
i=1 wi

.

Note that d is a asymptotic correction factor to ensure consistency at the
Gaussian distribution, ρc1(v) = min(c2

1, v2) with default c1 = 3 and the
weights are calculated as,

wi = wc2

(
xi −Med(x)

MAD(x)

)
,

where wc2(u) = max(0, (1− (u/c2)
2)2) and the default is c2 = 4.5.

2.4 a scale estimator based on pairwise means

2.4.1 The estimator Pn

Given a set of n observations, x = (x1, . . . , xn), the set of (n
2) pairwise means

is {g(xi, xj), 1 ≤ i < j ≤ n}, where g(x1, x2) = (x1 + x2)/2. Let Gn be the
empirical distribution function of the pairwise means,

Gn(t) =
2

n(n− 1) ∑
i<j

I{g(xi, xj) ≤ t}, for t ∈ R.

The estimator Pn(τ) is defined as

Pn(x, τ) = Pn(τ) = cτ

[
G−1

n

(
1 + τ

2

)
− G−1

n

(
1− τ

2

)]
, (2.18)

where cτ is a correction factor to make Pn(τ) consistent for the standard
deviation when the underlying observations are Gaussian and 0 < τ ≤ 1.
By this definition, Pn(τ) is the range of the middle τ × 100% of Gn.
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Figure 2.2: Breakdown value and Gaussian efficiency of Pn(τ).

The notion of working with quantiles of pairwise means is not new. The
Hodges-Lehmann estimate, the median of the pairwise means, is a well
known robust estimator of location (Hodges and Lehmann, 1963). The pair-
wise mean scale estimator, Pn, can be thought of as the scale analogue of this
location estimate. Following the algorithm set out in Johnson and Mizogu-
chi (1978), in a similar manner to the Hodges-Lehmann estimate, it is pos-
sible to compute Pn in linearithmic time, i.e. the worst case complexity of
the algorithm is O(n log n).

One attraction of Pn is its simplicity, and we will show that it has desirable
efficiency and robustness properties. Robustness, in the form of a non-zero
breakdown value, is guaranteed by taking the difference of quantiles of the
resulting pairwise mean distribution.

The estimator Pn(τ) will break down if at least (1− τ)/2× 100% of the
pairwise means are contaminated. Arbitrarily changing m of the original
observations leaves n−m fixed and (n−m

2 ) = (n−m)(n−m− 1)/2 pairwise
means remain uncontaminated. Hence, Pn(τ) will remain bounded so long
as more than (1 + τ)/2× 100% of the pairwise means are unaffected, i.e.,

1
2
(n−m)(n−m− 1) >

1 + τ

2

(
n
2

)
=

1
4
(1 + τ)n(n− 1).

Setting m ≈ nε∗, for large n we have,

(n− nε∗)(n− nε∗ − 1) >
1
2
(1 + τ)(n2 − n).

Thus,

ε∗ < 1−
√

1 + τ

2
+ O(n−1).
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The asymptotic breakdown value of Pn(τ) is ε∗ ≈ 1−
√
(1 + τ)/2 and it is

clear that when τ decreases the breakdown value increases. At one extreme,
as τ → 1, Pn(τ) converges to the range1 and the breakdown value goes to
0. At the other extreme, as τ → 0, the breakdown point of Pn is the same as
that of the Hodges-Lehmann estimate of location, which has a well known
breakdown value of ε∗ ≈ 0.29.

Figure 2.2 shows the trade off between Gaussian asymptotic efficiency
and breakdown value for Pn(τ) over a range of τ. In general, as τ increases
the efficiency also increases but the breakdown point decreases. However,
as τ → 1, i.e. as Pn(τ) approaches the range, there is a marked decrease in
efficiency.

It is also important to consider the performance of Pn(τ) at heavier tailed
distributions. A common heavy tailed distribution used in the robustness
literature, dating back to the seminal study of Andrews et al. (1972), is the
slash distribution. Let Z ∼ N (0, 1) and U be an independently distributed
uniform random variable on the interval [0, 1] then,

X = µ + σ
Z
U

,

is known as a slash random variable with location parameter µ and scale
parameter σ. Like the Cauchy, the slash distribution is symmetric about its
median with tails decaying slowly enough such that it does not have finite
mean or variance. For further details see Rogers and Tukey (1972).

Figure 2.3 shows the finite sample relative efficiency of Pn(τ) at both the
standard Gaussian distribution and the standard slash distribution, where
µ = 0 and σ = 1. While increasing τ in finite samples leads to increasing
Gaussian efficiency, it also leads to much worse performance at the slash.
From this, and the results given in Section 2.5 we conclude that τ = 0.5
performs well over a large range of distributions and is readily interpretable
as the IQR of the pairwise means. Hence, we define the pairwise mean scale
estimator Pn as,

Pn = Pn(0.5) = c
[

G−1
n (3

4)− G−1
n (1

4)
]

, (2.19)

Under this definition, Pn has an asymptotic breakdown value of ε∗ ≈ 0.134.
Trimming is a common technique used to increase the robustness of non-

robust estimators, see for example Stigler (1977). Wu and Zuo (2008, 2009)
show that adaptive trimming of location and scale estimates, as outlined
briefly in Section 2.3.2.4, increases efficiency over fixed trimming and can

1 The range of the pairwise means is the same as the range of the original data.
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Figure 2.3: Finite sample relative efficiency of Pn(τ).
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improve robustness by achieving the best possible breakdown point for a
sensible choice of the tuning parameter.

The Pn(τ) estimator is inherently robust to a moderate number of outliers.
When this may not be seen as robust enough, adaptive trimming may be im-
plemented to achieve a 50% breakdown value. Furthermore, fixed trimming
and Winsorising may be used to increase efficiency at extremely heavy tailed
distributions such as the slash or Cauchy. Symmetrically trimming a fixed
proportion of the data will only increase the breakdown value if the total
proportion of the original observations trimmed is greater than two times
the original breakdown value.

In the context of Pn we can trim the original data points or the pairwise
means. Trimming γ× 100% of the original data is equivalent to discarding
bγnc data points. When we calculate the pairwise means from the remain-
ing n − bγnc observations we have (n − bγnc)(n − bγnc − 1)/2 pairwise
means. If instead trimming occurs after the pairwise means are calculated,
i.e. α × 100% of the pairwise means are trimmed, n(n − 1)/2 − bαn(n −
1)/2c pairwise means are left. Therefore, if we wish to make the proportion
of pairwise means remaining comparable we need to set,

α ≈ 1− (1− γ)((1− γ)n− 1)
n− 1

,

which is approximately 1− (1− γ)2 for large n.
Winsorisation may also be used on the original data points, the result-

ing number of pairwise means is still equal to (n
2). Winsorisation yields

efficiency gains similar to trimming and as such it is not considered in Sec-
tion 2.5. Of course, Winsorising the pairwise means will give identical res-
ults to Pn(τ) whenever the proportion of pairwise means Winsorised is less
than (1− τ)/2.

Whilst trimming may aid in increasing efficiency at heavy tailed distribu-
tions, adaptive trimming of Pn, denoted by P̃n, is required to simultaneously
achieve the maximal breakdown value while preserving high efficiency. Spe-
cifically, for preliminary high breakdown location and scale estimates, m(x)
and s(x) respectively, an observation, xi, is trimmed if,

|xi −m(x)|
s(x)

> d, (2.20)

where d is an arbitrary constant. Note that d needs to be sufficiently large
such that not all the observations are trimmed. The metric on the left hand
side of (2.20) is the absolute value of the generalised scaled deviation, as
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defined in Wu and Zuo (2009). Simulations suggest a value of d = 5 rep-
resents a good trade off between achieving high efficiency at heavy tailed
distributions whilst maintaining high efficiency at light tailed distributions.
This is in agreement with Wu and Zuo (2009) who recommend a value for
the tuning parameter of between 4 and 7.

The estimator P̃n will inherit its breakdown value from the minimum
breakdown value of the preliminary estimates,

ε∗(x, P̃n) = min{ε∗(x, m), ε∗(x, s)}.

Choosing estimators with 50% breakdown values, for example setting m(x)
to be the median or Huber’s M-estimate of location and s(x) to be the MAD

or Qn, translates to a 50% breakdown value for P̃n.
Adaptive trimming of the pairwise means is another alternative to the

standard Pn statistic. Using auxiliary estimates of location and scale, each
with a breakdown value of 50% to adaptively trim the kernels yields a pair-
wise mean scale statistic with a breakdown value of 0.29, the same as that
for the Hodges-Lehmann estimate of location.

2.4.2 Properties of Pn

This section considers some of the properties of Pn. We begin by finding the
limiting value of Pn(τ) defined in (2.18) as n → ∞ and provide correction
factors to ensure consistency for the standard deviation in large samples
when the distribution of the underlying observations is Gaussian. We also
show evidence of finite sample bias and suggest finite sample correction
factors for Pn.

By exploiting the generalised L-statistic structure of Pn(τ), we find the
influence function and infer related properties such as the asymptotic effi-
ciency and gross error sensitivity for Pn(τ). We also establish the asymptotic
normality of Pn(τ).

2.4.2.1 Correction factors

As noted in (2.18), a correction factor, cτ is required to ensure Pn(τ) is con-
sistent for the standard deviation in the Gaussian case. Without loss of gen-
erality, let F, the distribution of the underlying observations, be centred at
zero. The CDF of the pairwise means, (X1 + X2)/2, is given by,

G(t) =
∫ ∞

−∞

∫ 2t−u

−∞
f (x) f (u)dx du =

∫ ∞

−∞
F(2t− u) f (u)du. (2.21)
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When the underlying data follow a Gaussian distribution with CDF, Φ,
and density, Φ′ = φ, (2.21) can be written as,

GΦ(t) =
∫ ∞

−∞
Φ(2t− x)φ(x)dx.

The correction factor for a given τ ∈ (0, 1) is,

1/cτ = G−1
Φ ((1 + τ)/2)− G−1

Φ ((1− τ)/2). (2.22)

The expression in (2.22) can easily be obtained using numerical integra-
tion. In particular for Pn, the corresponding asymptotic correction factor is,
c0.5 = c ≈ 1/0.9539 ≈ 1.0483.

The finite sample correction factors are applied after the large sample
correction has been made. Finite sample correction factors for Pn, cn,0.5, have
been found analytically for n = 3 and 4: c3,0.5 = 1.13 and c4,0.5 = 1.30
(see Section B.1 in Appendix B for details). The finite sample correction
factors exhibit jumps and are not monotonically increasing in n, instead
they exhibit a periodic pattern attributable to the order statistic method
used to find the quantiles. For 5 ≤ n < 40, finite sample correction factors
have been found using simulation, a sample of these is given in Table B.1
in Appendix B. For n ≥ 40 the small sample correction factor for Pn is well
approximated by cn,0.5 = n/(n− 0.7).

2.4.2.2 Influence function

Noting that Pn(τ) is a GL-statistic and using equation (2.15) from Serfling
(1984) we have the following result.

Result 2.1. If F has derivative f > 0 on [F−1(ε), F−1(1− ε)] for all ε > 0, the
influence function for Pn(τ) is,

IF(x; Pn(τ), F) = cτ

[
(1 + τ)/2− F(2G−1((1 + τ)/2)− x)∫

f (2G−1((1 + τ)/2)− x) f (x)dx

− (1− τ)/2− F(2G−1((1− τ)/2)− x)∫
f (2G−1((1− τ)/2)− x) f (x)dx

]
.

Figure 2.4 plots the influence functions for Pn, Qn, the MAD and the SD

when the underlying data are Gaussian. Figure 2.4 shows that Pn has a
gross error sensitivity of γ∗ = 2.33, slightly higher than that of Qn, γ∗ = 2.07
at the Gaussian distribution. As Hampel (1974) notes, the asymptotic vari-
ance of an estimator approaches its minimum as the influence function ap-
proaches a multiple of the log likelihood derivative. Hence, when the under-
lying observations are Gaussian, the closer an estimator’s influence function
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Figure 2.4: Influence functions of the SD, Qn, Pn and the MAD when the model
distribution is Gaussian.

is to that of the SD, the more efficient it will be. In Figure 2.4 the influence
function of Pn is almost always closer to that of the SD than Qn. This is re-
flected in our calculation of the asymptotic variance, which is found as the
expected square of the influence function. Numerical integration yields,

V =
∫

R
IF2(x; Pn, Φ)dΦ(x) = 0.579. (2.23)

This equates to an asymptotic efficiency of 0.86 as compared with 0.82 for
Qn and 0.37 for the MAD at the Gaussian distribution. Thus, despite having
a higher gross error sensitivity, Pn is a more efficient estimator than Qn at
the Gaussian distribution.

It is also important to consider efficiencies at distributions other than the
Gaussian. If Y follows a Student’s t distribution, it can be generalised as a
location-scale model, X = µ + σY, with density,

f (x) =
Γ( ν+1

2 )

Γ( ν
2 )
√

πνσ

(
1 +

1
ν

(
x− µ

σ

)2
)−(ν+1)/2

,

where Γ(z) =
∫ ∞

0 xz−1e−x dx is the gamma function. It is important to note
that in this setting σ is a scale parameter, not the standard deviation, so it
still exists and can be consistently estimated even when 1 ≤ ν < 2. Setting
µ = 0, Bachmaier (2000) adapts the work of Fisher (1922) to show that the
Fisher information for the scale parameter of a scaled t distribution is,

I(σ) = 2ν

(ν + 3)σ2 .
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Figure 2.5: Asymptotic relative efficiency of Qn, Pn and the MAD for t distributions
with degrees of freedom ranging between 1 and 10.

Figure 2.5 shows the relative efficiency of Pn, Qn and the MAD at t distribu-
tions with degrees of freedom ranging between 1 (the Cauchy distribution)
and 10 with scale parameter σ = 1, i.e. standardised t distributions. The
asymptotic relative efficiencies are calculated as the product of the inverse
of the Fisher information and the asymptotic variance, calculated by repla-
cing Φ in (2.23) with the CDF of the corresponding t distribution. It is clear
from Figure 2.5 that t distributions with degrees of freedom more than ap-
proximately 2.5, Pn is more efficient than Qn. At extremely heavy tailed t
distributions, including the Cauchy distribution, Qn is asymptotically more
efficient than Pn. The MAD also performs better than Pn at the Cauchy, how-
ever its efficiency decays substantially as the degrees of freedom increase.

At the exponential distribution the asymptotic relative efficiency of Pn

to Qn is 0.77. Furthermore, the gross error sensitivity for Pn is γ∗ = 3.968
which compares with γ∗ = 2.317 for Qn at the exponential. However, it is
not the case that Pn is necessarily worse than Qn for skewed distributions.
When the underlying distribution of the data is χ2

1, the asymptotic relative
efficiency of Pn to Qn is 1.43.

The performance of Pn is more attractive than Qn for discrete distributions.
In the limit, Qn will equal zero, and therefore fail to provide a valid estimate
of scale, whenever more than 25% of the pairwise differences equal zero. For
a discrete distribution with k distinct possible outcomes, x1, x2, . . . , xk, and
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probability mass function P(X = xj) = pj, for j = 1, 2, . . . , k, the expected
proportion of pairwise differences equal to zero is ∑j p2

j . In particular,

∑
j

p2
j >

1
4 ⇐⇒ lim

n→∞
P(Qn = 0) = 1.

For example for the Poisson distribution with expected value 1, ∑j p2
j = 0.31

and hence Qn
p→ 0. In contrast, for Pn to return a scale estimate of zero, the

IQR of the pairwise means must be equal to zero, that is, more than 50% of
the pairwise means must be equal. Except for trivial two point distributions,
we have shown that Pn = 0 implies Qn = 0 (see Section B.2 in Appendix
B for details). The pairwise averaging process helps smooth the underlying
discrete distribution which results in Pn being a better robust estimator than
Qn in these situations.

2.4.2.3 Asymptotic normality

As defined in Section 2.2, let G(t) = P(g(X1, X2) ≤ t) and Gn(t) be the
CDF and empirical distribution function of a symmetric, bivariate U-statistic.
This section proves the following result on the asymptotic normality of
Pn(τ).

Result 2.2. Let a = (1− τ)/2, b = (1 + τ)/2 for 0 < τ < 1. If G has derivative
G′ > 0 on [G−1(b)− ε, G−1(a) + ε] for some ε > 0, then as n→ ∞,

√
n(Pn(τ)− θ)

D−→ N (0, c2
τV),

where θ = cτ

(
G−1(b)− G−1(a)

)
, V = v(a, a) + v(b, b)− 2v(a, b), and

v(a, b) = 4

∫
F(2G−1(a)− x)F(2G−1(b)− x)dF(x)− ab

G′(G−1(a))G′(G−1(b))
.

To establish the limiting distribution, we note that Pn is a linear combin-
ation of two U-quantile statistics. Hence, we first consider the empirical
U-process defined as, (√

n (Gn(t)− G(t))
)

t∈R
.

Silverman (1976, Theorem B) proves that in this context,
√

n(Gn(·)−G(·))
converges weakly in the Skorohod topology to an almost surely continuous,
zero-mean Gaussian process, W, with covariance function,

EW(s)W(t) = 4 P(g(X1, X2) ≤ s, g(X1, X3) ≤ t)− 4G(s)G(t), (2.24)
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for all s, t ∈ R.
Hence, for 0 < p < q < 1, if G′, the derivative of G, is strictly positive on

the interval [G−1(p)− ε, G−1(q) + ε] for some ε > 0, then we can use the
inverse map to show,

√
n
(

G−1
n (·)− G−1(·)

) D−→ W(G−1(·))
G′(G−1(·)) ,

where W is a mean zero Gaussian process with covariance function defined
in (2.24). See for example, van der Vaart and Wellner (1996, Section 3.9.4.2).
Serfling (2002) summarises stronger results concerning empirical processes
of U-statistic structure.

For Pn(τ) we use the pairwise mean kernel, g(x, y) = (x + y)/2. Condi-
tioning on X1 = x the covariance function (2.24) can be rewritten as,

cov(W(t), W(s)) = 4
∫

F(2s− x)F(2t− x)dF(x)− 4G(s)G(t),

where F is the distribution function of the underlying observations.
The limiting covariance function for the quantiles used in the construction

of Pn(τ), n cov(G−1
n (a), G−1

n (b)), is,

v(a, b) = 4

∫
F(2G−1(a)− x)F(2G−1(b)− x)dF(x)− ab

G′(G−1(a))G′(G−1(b))
,

for a = (1− τ)/2, b = (1 + τ)/2 and 0 < τ < 1. Hence,
√

n(Pn(τ)− θ)
D−→ N (0, c2

τV),

where θ = cτ

(
G−1(b)− G−1(a)

)
and V = v(a, a) + v(b, b) − 2v(a, b) both

depend on F.
Noting that the derivative of G(t) is,

G′(t) =
∫

2 f (2t− u) f (u)du, (2.25)

it can be shown that the asymptotic variance found here is equivalent to the
expected square of the influence function discussed previously.

Furthermore, from the general results in Serfling (2002, Section 12.3.4),
the almost sure behaviour of Pn(τ) can be deduced from the Bahadur rep-
resentation for the U-quantiles.

2.5 relative efficiencies in finite samples

The asymptotic variance of Pn has been found and corresponding asymp-
totic efficiencies have been deduced in the previous section. In particular, it
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has been shown that, asymptotically, Pn is more efficient than Qn for t distri-
butions with more than approximately 2.5 degrees of freedom. However, it
is often of practical interest to determine small sample relative efficiencies.
This section considers the finite sample relative efficiency of Pn, and variants
thereof, using configural polysampling. It also examines the finite relative
efficiencies over the same range of t distributions considered asymptotically
in Figure 2.5.

2.5.1 Design

Under configural polysampling, estimators are evaluated at particular dis-
tributions chosen to exhibit more extreme characteristics than what might
be observed in practice. For example, the Gaussian distribution has tails
that die off rapidly, and the Cauchy has tails that die off extremely slowly.
Such extreme distributions will be referred to as corners. If it can be shown
that an estimator performs well over all the corners considered, it is a fair
assumption that the estimator will perform at least as well at intermediate
distributions.

A key performance measure for estimators is the polyefficiency, the min-
imum efficiency that an estimator achieves over a selection of corners. Yat-
racos (1991) shows that high polyefficiency over a finite selection of corners
implies at least as high an efficiency at any convex combination of these
corners.

Scale estimates are computed for samples of size n from each of Tukey’s
three corners: the Gaussian corner where observations are sampled inde-
pendently from a standard Gaussian distribution; the one wild corner, where
n− 1 observations are independent Gaussian and the remaining observation
is scaled by a factor of 10; and the slash corner where observations are con-
structed as the ratio of an independent Gaussian random variable and an
independent standard uniform random variable. The slash distribution has
Cauchy-like tails, but is considered to be more generally representative of
real data as it is less peaked at the median than the Cauchy.

Improving on the methodology set out in Lax (1985), Randal (2008) pro-
poses using MLEs as the benchmark against which all estimators are com-
pared. Previously, efficiencies were typically measured relative to the most
efficient estimator considered for each distribution. MLEs are asymptotically
efficient and may be used as a common reference case in future simulation
studies.
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Kafadar (1982) gives the MLE for the slash distribution and Randal and
Thomson (2004) describe how to find the MLE for the one wild distribution
by nesting it within the class of Gaussian compound scale models and ap-
plying an EM algorithm. Randal (2008) demonstrates how to use a similar
EM algorithm approach to find the MLE of scale for t distributions. These al-
gorithms are not part of an R package, however, they are reasonably straight-
forward to implement and we include our R code in Appendix B.4.

Efficiencies are estimated over m independent samples as,

êff(T) =
v̂ar (ln σ̂1, . . . , ln σ̂m)

v̂ar (ln S(x1), . . . , ln S(xm))
, (2.26)

where for each j = 1, . . . , m, the xj are independent samples of size n, σ̂j is
the scale MLE and S(xj) is the proposed scale estimate.

Rousseeuw and Croux (1993) propose an alternative efficiency measure,
based on the standardised variances. This measure was also considered and
gave results largely in agreement with the Lax relative efficiencies and are
therefore not reported here. The key difference between these two measures
of efficiency is the presence of a log transformation in (2.26) which acts to
stabilise the variance estimates. This is not present in the alternative meas-
ure which therefore heavily penalises inefficient scale estimates in heavy
tailed data. Correction factors do not play a role in determining efficiency
in either measure. Therefore, so far as efficiency is concerned, it is not an is-
sue that the estimators are defined with consistency factors for the standard
Gaussian only.

2.5.2 Results

Figure 2.6 presents the estimated relative efficiencies over t distributions
with degrees of freedom ranging from 1 to 10 in increments of 0.5. The
curves for Pn and Qn are similar to the asymptotic efficiencies in Figure 2.5.
Of particular interest is the speed with which Pn overtakes the adaptively
trimmed Pn. For t distributions with 2 or more degrees of freedom, Pn is
more efficient than P̃n, the adaptively trimmed form of Pn with tuning para-
meter d = 5. Furthermore, for t distributions with 3 or more degrees of
freedom, Pn is more efficient than Qn.

For skewed distributions, we obtain similar results in finite samples to
what was observed asymptotically. In particular, the results are highly de-
pendent on the type of skewed distribution. At the exponential, in samples
of size n = 20, Pn is 0.87 times as efficient as Qn. Which is an improvement
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Figure 2.6: Finite sample relative efficiency, estimated from one million t distrib-
uted samples of size n = 20, for Qn, Pn and adaptively trimmed Pn with
tuning parameter d = 5, P̃n.

over the asymptotic result. Whereas at the χ2
1 distribution, in samples of size

n = 20, Pn is 1.21 times more efficient than Qn.
Figure 2.7 presents the relative efficiencies of a variety of scale estimat-

ors at Tukey’s three corner distributions in samples of size n = 20. The
estimators considered are: Pn; P̃n, the adaptively trimmed Pn with tuning
parameter d = 5; P̆n is symmetric fixed trimming where 5% of the observa-
tions have been trimmed off both tails of the original data, for n = 20 this
means that the maximum and minimum values have been deleted; Qn and
Sn (Rousseeuw and Croux, 1993); the MAD; and the IQR. The estimator Pn

is observed to be the most efficient at the Gaussian and one wild corners,
however, it performs poorly at the slash corner. Among the estimators con-
sidered, P̃n with tuning parameter d = 5 has highest minimum efficiency
across all three corners, therefore the estimator is known to be triefficient.
Its lowest efficiency occurs at the one wild with 72%. However as noted in
Figure 2.6, the efficiency gain from using P̃n over Pn disappears as the tails
become slightly less heavy.

The triefficiencies over various sample sizes are reported in Table 2.2.
The adaptively trimmed Pn with d = 5 is in fact triefficient over the range
of sample sizes considered. While the triefficiencies of most estimators in-
creases with sample size, those of the MAD and IQR do not, reflecting their
exceptionally poor finite sample and asymptotic Gaussian efficiency.
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Figure 2.7: Estimated efficiencies relative to maximum likelihood scale estimates
for samples of size n = 20, calculated over one million independent
samples. The various pairwise mean scale estimators are: Pn; P̃n, the ad-
aptively trimmed Pn with tuning parameter d = 5; and P̆n is symmetric
fixed trimming where 5% of the observations have been trimmed off
both tails of the original data.
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Gaussian
n

20 50 100 500 1000

Pn 0.853 0.854 0.862 0.860 0.858

P̃n with d = 5 0.819 0.850 0.861 0.860 0.858

P̃n with d = 3 0.566 0.678 0.725 0.753 0.757

P̆n 0.718 0.747 0.730 0.726 0.724

Qn 0.677 0.737 0.778 0.809 0.812

MAD 0.376 0.368 0.374 0.365 0.363

IQR 0.396 0.375 0.376 0.366 0.362

One wild
n

20 50 100 500 1000

Pn 0.834 0.864 0.860 0.870 0.867

P̃n with d = 5 0.723 0.817 0.839 0.865 0.865

P̃n with d = 3 0.574 0.692 0.725 0.763 0.765

P̆n 0.756 0.777 0.738 0.737 0.733

Qn 0.680 0.751 0.781 0.817 0.820

MAD 0.400 0.380 0.380 0.373 0.372

IQR 0.420 0.386 0.380 0.373 0.372

Slash
n

20 50 100 500 1000

Pn 0.480 0.626 0.703 0.773 0.786

P̃n with d = 5 0.748 0.785 0.809 0.833 0.829

P̃n with d = 3 0.766 0.799 0.809 0.822 0.826

P̆n 0.665 0.738 0.820 0.876 0.886

Qn 0.945 0.950 0.959 0.961 0.963

MAD 0.876 0.851 0.847 0.837 0.844

IQR 0.839 0.830 0.839 0.839 0.843

Table 2.1: Estimated relative efficiencies relative to maximum likelihood scale es-
timates for the various scale estimators at each of Tukey’s three corners
calculated over one million independent samples. Note that P̆n is sym-
metric fixed trimming where 5% of the observations have been trimmed
off both tails of the original data.
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n 20 50 100 500 1000

Pn 0.480 0.626 0.703 0.773 0.786

P̃n with d = 5 0.723 0.785 0.809 0.833 0.829

P̃n with d = 3 0.566 0.678 0.725 0.753 0.757

P̆n 0.665 0.738 0.730 0.726 0.724

Qn 0.677 0.737 0.778 0.809 0.812

MAD 0.376 0.368 0.374 0.365 0.363

IQR 0.396 0.375 0.376 0.366 0.362

Table 2.2: Triefficiencies of various scale estimators over a range of sample sizes.

Moderate amounts of fixed trimming, for example 5% at each tail as
shown in Figure 2.7 does markedly improve the efficiency of Pn at the slash
corner. However, it also compromises the efficiency of Pn at the Gaussian
distribution. In other simulations we have conducted, this result is not no-
ticeably improved as the sample size increases. Therefore, adaptive trim-
ming with a sensible choice of the tuning parameter is recommended over
fixed trimming.

We have considered the impact that the tuning parameter d has on the
efficiency of P̃n. Intuitively, as d increases, more observations remain in the
sample which, for distributions that are not extremely heavy tailed, tends
to increase efficiency. However, if the data are sampled from an extremely
heavy tailed distribution, in small samples the opposite tends be true – re-
moving more of the observations in the tails actually increases the efficiency
of the scale estimate. Table 2.1 shows that in samples of size n = 20 using
an adaptive trimming parameter of d = 5 results in a Gaussian relative
efficiency of 0.82, however using d = 3 results in a much lower Gaussian re-
lative efficiency of 0.57. In contrast at the slash corner, d = 5 gives a slightly
lower relative efficiency of 0.75 compared with the d = 3 of 0.77. As the
sample size grows, the distinction between d = 5 and d = 3 is negligible at
the slash corner, though at the Gaussian distribution using d = 5 results in
a much more efficient estimator.

From additional results not summarised in Figure 2.7 or Table 2.1, we
find that random trimming of the kernels, i.e. the pairwise means, achieves
similar results as randomly trimming the original data at the Gaussian and
one wild corners, however, randomly trimming the original data leads to
higher efficiency at the slash.
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The small sample performance of Pn is also better than the performance of
Qn for discrete distributions. Consider, for example, the case of a binomial
distribution, X ∼ B(6, 0.4). In the limit neither Qn nor Pn will converge to
zero. However, if samples of size n = 20 are drawn from this distribution,
Qn will return a scale estimate of zero, on average 12% of the time due to
the discrete nature of the data. In contrast, Pn returns zero less than 0.1%
of the time. Apart from some trivial cases, if Pn = 0 in finite samples this
implies that Qn = 0 (see Section B.2 in Appendix B for details).

Importantly, Pn possesses comparable small sample efficiency to that ob-
tained asymptotically. It performs particularly well at the Gaussian and one
wild as well as heavy tailed distributions such as the t distribution with
degrees of freedom greater than approximately 2.5. Even though P̃n with
a trimming parameter of d = 5 is triefficient amongst the scale estimators
considered here, Pn would still be preferred as a scale estimator in small
samples.

As the sample size increases the efficiency of P̃n with trimming para-
meter d = 5 approaches that of Pn at the Gaussian distribution and P̃n

remains quite efficient at the slash, indicating that a mild amount of adapt-
ive trimming could be a worthwhile thing to do. The utility of an adaptively
trimmed version of Pn is revisited in Chapter 4.

2.6 conclusion

This chapter details the scale estimator, based on the difference of two or-
der statistics of the empirical distribution function of the pairwise means.
Hence Pn(τ) fits into the GL-statistic framework, alongside many other well
known scale estimators. Choosing τ = 0.5 results in the estimator Pn which
possesses reasonable robustness properties, whilst maintaining high efficien-
cies at Gaussian distributions and has an intuitive interpretation: the IQR of
the pairwise means.

We have found that Pn, in its standard form, has a breakdown value of
13%. Its influence function more closely approximates that of the SD at the
Gaussian distribution, leading to a relatively high asymptotic efficiency of
86%. We have also found the gross error sensitivity and demonstrated the
asymptotic normality of Pn. Furthermore, when the underlying distribution
is discrete, Pn is more robust to repeated observations than Qn.

In finite samples, Pn also performs admirably. In samples of size n = 20,
at the Gaussian distribution, Pn is 27% more efficient than Qn and 22% more
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efficient at the one wild corner. Pn maintains its efficiency advantage over
Qn even when the underlying distribution of the data has quite heavy tails.

To summarise, Pn is a simple and intuitive robust scale estimator, that
is not tailored to be most efficient at any particular distribution, rather it
maintains high efficiency over a wide range of distributions.



3
C O VA R I A N C E A N D A U T O C O VA R I A N C E E S T I M AT I O N

3.1 introduction

Motivated by the potential to extend the efficiency and robustness proper-
ties of Pn to the time series setting, this chapter considers the problem of
estimating scale and autocovariance in dependent processes. We begin by
considering a general device commonly used to extend scale estimators to
the covariance setting, before outlining the properties of the resulting cov-
ariance estimator when Pn is used as the underlying scale estimator. Stand-
ard results are used to show that the asymptotic efficiency and robustness
properties carry through and simulation results are provided for the robust
correlation coefficient. We also discuss some of the implications for robust-
ness when the covariance estimator is used in a time series setting as an
autocovariance estimator.

The properties of the scale estimator Pn and the resulting autocovariance
estimator under both short and long range dependent Gaussian processes
are discussed. Standard asymptotic results are found to hold in the short
range dependent (SRD) setting. In the long range dependent (LRD) setting we
establish the asymptotic normality of Pn under short and mildly long range
dependent Gaussian processes. Under extreme long range dependence, we
motivate a complication in establishing the limiting distribution for Pn by
first proving a non-Gaussian limit result for the IQR, consistent with results
for other common scale estimators, such as the SD and Qn. In contrast with
the results of Lévy-Leduc et al. (2011c) for a single U-quantile, namely Qn,
the proof for the IQR, a difference of two quantiles, relies on the higher
order terms in the Bahadur representation of Wu (2005). Furthermore, we
posit that Pn, the IQR of the pairwise means, has a similar behaviour, though
the proof relies on an analogous conjectured Bahadur representation for
U-quantiles under long range dependence. The asymptotic results for the
robust scale estimator extend to the corresponding robust autocovariance
estimators. Our theoretical results are illustrated with simulations.

51
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Most of the literature concerning robust covariance estimation is focussed
on the multivariate setting, i.e. estimating covariance or dispersion matrices.
This topic will be addressed in Chapter 4.

3.2 robust covariance estimation

A simple method for turning scale estimators into covariance estimators was
introduced by Gnanadesikan and Kettenring (1972) and brought to promin-
ence in the context of robust estimation by Ma and Genton (2000, 2001). The
idea is based on the identity,

cov(X, Y) =
1

4αβ
[var(αX + βY)− var(αX− βY)] , (3.1)

where X and Y are random variables. In general, X and Y may have different
scales, hence it is standard to let α = 1/

√
var(X) and β = 1/

√
var(Y). A

robust covariance estimator is found by replacing the variance in (3.1) with
(squared) robust scale estimators. A nice feature of (3.1) is that it is location
free, in the sense that no location parameter needs to be estimated when the
robust scale estimator is also location free, such as Qn, IQR or Pn.

The covariance estimator based on Pn is obtained by replacing the vari-
ance terms in (3.1) with the square of Pn,

γP(X, Y) =
1

4αβ

[
P2

n(αX + βY)− P2
n(αX− βY)

]
, (3.2)

where α = 1/Pn(X) and β = 1/Pn(Y). The correlation could also be estim-
ated as,

P2
n(αX + βY)− P2

n(αX− βY)
4αβPn(X)Pn(Y)

,

however this estimator does not necessarily satisfy the Cauchy-Schwarz in-
equality and so the estimated correlation coefficient would not necessarily
lie in the range [−1, 1]. To ensure that the estimated correlation coefficient
lies in the appropriate range, Gnanadesikan and Kettenring (1972) propose
using an estimator of the form,

ρP(X, Y) =
P2

n(αX + βY)− P2
n(αX− βY)

P2
n(αX + βY) + P2

n(αX− βY)
.

While the covariance given by (3.2) depends on the correction factor built
into the Pn estimator to ensure consistency at the Gaussian distribution, see
equation (2.19), the correlation is independent of the choice of correction
factor.
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An advantage of covariance estimates based on the Gnanadesikan and
Kettenring device, applying equation (3.1), is that the statistical properties
of the resulting estimator are relatively straightforward to derive.

3.2.1 Properties

Genton and Ma (1999) explore the robustness properties of dispersion es-
timators constructed using the identity (3.1). In the general case, let Sn(Fn)

be a scale estimator with corresponding statistical functional S(F). Let γS be
a statistical functional of covariance corresponding to a covariance estimate
γ̂S based on (3.1),

γS(F) =
1

4αβ

[
S2(F+)− S2(F−)

]
,

where F is a bivariate distribution with marginal distributions FX and FY,
and F± denotes the distribution of αX± βY with scale σ± respectively.

3.2.1.1 Influence function

Genton and Ma (1999) show that the influence function of γS can be defined
in terms of the influence function of S as follows,

IF(x, y; γS, F) =
1

2αβ

[
S(F+) IF(αx + βy; S, F+)

− S(F−) IF(αx− βy; S, F−)
]
. (3.3)

Note that this formulation of a bivariate influence function in terms of two
univariate influence functions requires the unidimensional Dirac function δx

be generalised to a bidimensional Dirac function where the perturbations
depend on the choice of the covariance estimator, i.e. along the αx + βy
and αx− βy directions. Since α and β are arbitrary non-zero constants, we
can simply set α = 1/σX and β = 1/σY, where σX =

√
var(X) and σY =√

var(Y), in which case (3.3) can be rewritten as,

IF(x, y; γS, F) =
σXσY

2

[
σ+ IF

(
x

σX
+

y
σY

; S, F+

)
− σ− IF

(
x

σX
− y

σY
; S, F−

)]
. (3.4)

Ma and Genton (2001) use the general form, (3.4), to state the influence
function for covariance estimators based on Qn,

IF(x, y; γQ, F) =
σXσY

2

[
σ+ IF

(
x

σX
+

y
σY

; Q, F+

)
− σ− IF

(
x

σX
− y

σY
; Q, F−

)]
,
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where F± is the distribution function of X
σX
± Y

σY
respectively, and the influ-

ence function for Qn is given in (2.11).
We can similarly use the general form, (3.4), to find the influence functions

for the covariance estimator based on Pn,

IF(x, y; γP, F) =
σXσY

2

[
σ+ IF

(
x

σX
+

y
σY

; P, F+

)
− σ− IF

(
x

σX
− y

σY
; P, F−

)]
.

The influence function for Pn(τ) has been found previously in Result 2.1.
For Pn = Pn(0.5) this simplifies to,

IF(x; P, F) = c

[
3
4 − F(2G−1(3

4)− x)∫
f (2G−1(3

4)− x) f (x)dx
−

1
4 − F(2G−1(1

4)− x)∫
f (2G−1(1

4)− x) f (x)dx

]
.

We will focus specifically on Gaussian processes, in which case,∫
φ(2G−1

Φ (3
4)− x)φ(x)dx =

∫
φ(2G−1

Φ (1
4)− x)φ(x)dx

= φ(
√

2G−1
Φ (3

4))/
√

2.

Hence we have,

IF(x; P, Φ) = c

[
1
2 −Φ(2G−1

Φ (3
4)− x) + Φ(2G−1

Φ (1
4)− x)

φ(
√

2G−1
Φ (3

4))/
√

2

]
. (3.5)

Importantly, the influence function of the covariance estimator is bounded
and hence, the covariance estimator based on Pn is B-robust, i.e. has finite
gross error sensitivity.

3.2.1.2 Asymptotic variance

As with scale estimators, the asymptotic variance of covariance and correl-
ation estimators can be found as the expected square of the influence func-
tion (Hampel et al., 1986). Furthermore, if the scale estimator S is consistent
and asymptotically normally distributed, then the covariance estimator, γS

will also be consistent and asymptotically normal with asymptotic variance
given by:

n−1V(γS, F) =
∫

IF2(x, y; γS, F)dF(x, y).

Genton and Ma (1999) show that the asymptotic variance of dispersion
estimators is directly proportional to that of the underlying scale estimator.
This reinforces the importance of using a highly efficient scale estimator,
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Figure 3.1: Asymptotic variance of covariance estimators, γS, based on various scale
estimators at the bivariate Gaussian distribution over a range of correla-
tions −1 ≤ ρ ≤ 1.

the efficiency benefits carry through to covariance estimation. In particular,
restricting attention to bivariate Gaussian distributions, Φρ,

V(γS, Φρ) = 2(1 + ρ2)V(S, Φ), (3.6)

where V(S, Φ) is the asymptotic variance of
√

nS at Φ.
The asymptotic variance for

√
nPn at the Gaussian distribution has pre-

viously been shown, in (2.23), to be V(P, Φ) = 0.579 which compares with
V(SD, Φ) = 0.5, V(Q, Φ) = 0.61 and V(MAD, Φ) = 1.35. This results in a
modest increase in asymptotic variance for γP over γSD as shown Figure 3.1.
Indeed, given that the asymptotic variance of covariance (and correlation)
estimators is directly proportional to that of the underlying scale estimator,
the asymptotic efficiency of γP and ρP compared to the classical covari-
ance estimator at the Gaussian distribution is 86%, the same as that of Pn

regardless of the level of correlation in the underlying bivariate Gaussian
distribution.

3.2.1.3 Breakdown value

The notion of a breakdown value needs to be reinterpreted slightly in the
context of (3.1). Ma and Genton (2000) define the breakdown value for a
covariance estimator as follows. Let x = (x1, . . . , xn)

ᵀ and y = (y1, . . . , yn)
ᵀ

be two samples of size n. Let Z = [x, y] and let Z̃ be obtained by replacing
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any m pairs of Z by arbitrary values. The columns of Z̃ are then referred to
as x̃ and ỹ. The sample breakdown point of a covariance estimator,

γ̂S(Z) =
1

αβ

[
S2

n(αx + βy)− S2
n(αx− βy)

]
,

based on a scale estimator Sn is,

ε∗(γ̂S(Z)) =max

{
m
n

: sup
Z̃

γ̂S(Z̃) < ∞ and inf
Z̃

γ̂S(Z̃) > −∞ and

inf
Z̃

Sn(αx̃ + βỹ) > 0 and inf
Z̃

Sn(αx̃− βỹ) > 0
}

.

Hence, the breakdown value of γP is 13.4%, inherited directly from Pn (see
Section 2.4 for details). To see that this is indeed the case, let xi (or yi) be
contaminated, then so too is αxi± βyi. Hence if we consider the observations
as pairs (x1, y1), . . . , (xn, yn), then at most 13.4% of the observed pairs can
contain contaminated data before the Pn estimator breaks down, and hence
γP breaks down.

3.2.2 Simulations

Having established some asymptotic efficiency results for the covariance es-
timator at the Gaussian distribution and shown that the robustness and
efficiency properties do indeed flow through from the univariate to the
bivariate case, we now present some finite sample results for the correla-
tion estimates when the underlying data follows a bivariate t distribution.

There are a number of ways to define a multivariate t distribution, see
Kotz (2004) for a recent summary. The form considered in this section is the
most common and natural generalisation of the univariate t distribution.
A p-dimensional random vector is said to follow a p-variate t distribution
with mean vector µ, correlation matrix R and ν degrees of freedom if its
joint probability density function is given by,

f (x) =
Γ((ν + p)/2)

(πν)p/2Γ(ν/2)|R|1/2

[
1 +

1
ν
(x− µ)

ᵀR−1(x− µ)

]−(ν+p)/2

.

As scale and covariance is the primary feature of interest, without loss of
generality, we will restrict attention to the central multivariate t distribution
where µ = 0. Note that in this setting, if p = 1 and R = 1 then we recover the
univariate t distribution. Furthermore, as ν→ ∞ we recover the multivariate
Gaussian distribution.
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In the simulations that follow, the robust estimates are compared to the
(non-robust) MLE calculated assuming that the degrees of freedom para-
meter is known. This is consistent with how the simulations were performed
in Section 2.5, to give a reproducible base line for future comparisons. The
MLE of the multivariate t was calculated in R using the cov.trob function
from the MASS package (Kent, Tyler and Vard, 1994; Venables and Ripley,
2002). Comparisons are only made for ν > 3 as the MLE covariance estim-
ates are unstable for 1 ≤ ν < 3. Indeed for ν ≤ 2 we would be estimating
a scatter matrix, which is defined more generally than a covariance mat-
rix, as second order moments no longer exist, even though the density of a
multivariate t distribution is still well defined for all ν > 0.

Figure 3.2 shows the efficiency of various scale estimates relative to the
MLE for bivariate t distributions with correlation equal to 0.5 over a range of
degrees of freedom. Over the observed range of degrees of freedom, ρP is
consistently more efficient than the other robust methods. As the degrees of
freedom increase, the efficiency of the non-robust SD based method, ρSD, in-
creases and will approach parity with the MLE as ν→ ∞. Most of the robust
estimators exhibit a slight downward trend in their relative efficiency as the
degrees of freedom parameter increases, however ρP is reasonably invariant
to changes in the degrees of freedom over the range considered here. As
expected, ρMAD performs substantially worse than similar estimates based
on Pn and Qn and the minimum covariance determinant (MCD) methods are
even less efficient.

Figure 3.3 shows the relative mean square errors (MSEs). There is no dis-
cernible difference between the pattern of efficiencies in Figure 3.2 and the
pattern of MSEs in Figure 3.3 indicating that any potential bias introduced
by using robust estimators is negligible. This is to be expected, given the
correction factors used in the underlying scale estimators cancel when the
correlations are calculated.

Figure 3.4 considers what happens to the relative efficiencies of the robust
estimators as the level of dependence increases. For all estimators, efficiency
appears to decrease as the level of dependence increases while keeping the
degrees of freedom parameter fixed at ν = 5. As the dependence level in-
creases, it appears that the MLE does a better job than the robust measures
of utilising what information is available information than the robust meas-
ures, potentially as a result of the decrease in effective iid sample size. Re-
gardless of the level of dependence ρP remains substantially more efficient
than ρQ. In Figure 3.2, ρP is more efficient than ρSD when ν = 5 with correl-
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Figure 3.2: Estimated relative efficiencies for the correlation estimates over N =

100, 000 samples of size n = 20 from bivariate t distributions with cor-
relation equal to 0.5. The efficiencies are measured relative to the MLE

with known degrees of freedom.
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Figure 3.3: Estimated relative MSEs for the correlation estimates over N = 100, 000
samples of size n = 20 from bivariate t distributions with correlation
equal to 0.5. The efficiencies are measured relative to the MLE with
known degrees of freedom.
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ation equal to 0.5. Figure 3.4 shows that the same is true regardless of the
level of dependence.

Furthermore, it appears again that there is negligible bias present in the
robust covariance estimators, as indicated by the agreement between the
relative MSEs in Figure 3.5 with the relative efficiencies in Figure 3.4.
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Figure 3.4: Estimated relative efficiencies for correlation estimates over N =

100, 000 samples of size n = 20 from bivariate t distributions with ν = 5
degrees of freedom and correlations ranging from 0 to 0.9. The efficien-
cies are measured relative to the MLE with known degrees of freedom.
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Figure 3.5: Estimated relative MSEs for correlation estimates over N = 100, 000
samples of size n = 20 from bivariate t distributions with ν = 5 de-
grees of freedom and correlations ranging from 0 to 0.9. The efficiencies
are measured relative to the MLE with known degrees of freedom.
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3.3 robust autocovariance estimation

In this section we will consider the problem of estimating scale and auto-
covariance in a time series setting. This is an important problem that has
many applications including financial data, hydrology, quality control, and
signal processing.

To ensure that the quantities we are aiming to estimate do not change
over time, we will restrict attention to time series observations, {Xi}i≥1, that
satisfy the hypothesis of second-order stationarity:

a. E(Xi) = µ for all i = 1, 2, . . .;

b. var(X2
i ) = σ2 < ∞ for all i = 1, 2, . . .; and

c. cov(Xi+h, Xi) = γ(h) for all i, h ∈ Z.

Applying the identity from Gnanadesikan and Kettenring (1972) in a time
series setting we can construct robust autocovariance estimators based on
equation (3.1). That is, autocovariance estimators based on the identity,

γ(h) =
1
4
[var(X1 + Xh+1)− var(X1 − Xh+1)] . (3.7)

The autocovariance at a particular lag, h, measures the degree of second
order variation between observations that are a fixed distance, h, apart.

Let xa:b = (xa, . . . , xb) denote a sequence of b − a + 1 observations. In
the simplest case we can substitute a standard (non-robust) estimate of the
sample variance,

γ̂σ̂(h) =
1
4

[
σ̂2

n−h(x1:n−h + xh+1:n)− σ̂2
n−h(x1:n−h − xh+1:n)

]
=

1
n− h

n−h

∑
i=1

(xi − x̄1:n−h)(xi+h − x̄h+1:n), 0 ≤ h ≤ n− 1, (3.8)

where

σ̂2
n(xn) =

1
n

n

∑
i=1

(xi − x̄1:n)
2

and x̄a:b = (b − a + 1)−1 ∑b
i=a xi. The resulting estimator (3.8) is asymptot-

ically equivalent to the classical autocovariance estimator. Ma and Genton
(2000) suggest a robust alternative by plugging in Qn,

γ̂Q(h) =
1
4

[
Q2

n−h(x1:n−h + xh+1:n)−Q2
n−h(x1:n−h − xh+1:n)

]
.
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In an attempt to improve the efficiency whilst maintaining a level of ro-
bustness, we propose a similar autocovariance estimator based on Pn,

γ̂P(h) =
1
4

[
P2

n−h(x1:n−h + xh+1:n)− P2
n−h(x1:n−h − xh+1:n)

]
. (3.9)

In contrast to scale estimators, autocovariance estimators are not invari-
ant to permutations of the underlying observations – which complicates the
characterisation of their breakdown values. Ma and Genton (2000) reinter-
pret the breakdown point of a covariance estimator, as defined in Section
3.2.1.3, to incorporate the importance of temporal disturbances on autocov-
ariance estimators. Let x = (x1, . . . , xn)

ᵀ be a time series of length n. Let x̃ be
obtained by replacing any m observations of x by arbitrary values. Denote
Im a subset of size m of {1, . . . , n}. The temporal sample breakdown point
of an autocovariance estimator γ̂(h) is:

ε∗(γ̂(h)) =max

{
m
n

: sup
Im

sup
x̃

Sn−h(ũ) < ∞ and inf
Im

inf
x̃

Sn−h(ũ) > 0 and

sup
Im

sup
x̃

Sn−h(ṽ) < ∞ and inf
Im

inf
x̃

Sn−h(ṽ) > 0

}
where ũ = x̃1:n−h + x̃h+1:n, ṽ = x̃1:n−h − x̃h+1:n.

This definition highlights the importance of the positioning of the corrup-
tion taken into account through the supremum and infimum on the set of
arrangements, Im. The breakdown value represents the worst case scenario.
A particular example of this is given in Figure 3.6 which considers the auto-
covariance at lag h = 2 from a sample of size n = 13. The autocovariance
estimator works with the data sets, x1:11± x3:13. If four observations are con-
taminated in an appropriate way so as to cause maximum damage, this will

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

h = 2

X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13X1 X2

h = 2

X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Figure 3.6: Illustration of the effect of contamination on autocovariance estimat-
ors. The black observations have been contaminated. If appropriately
arranged, the contamination of four observations leads to eight pairs of
observations being contaminated.
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result in 8 contaminated pairs. Ma and Genton (2000, Proposition 1) show
that asymptotically the breakdown value for autocovariance estimators is
half that of the corresponding covariance estimator. Hence, the asymptotic
breakdown value for γ̂P is 6.7%.

The influence function for the autocovariance estimator has the same gen-
eral form as in the covariance case, (3.4). Importantly, the influence function
of γ̂P remains bounded and as such the estimator has finite gross error sens-
itivity. In the remainder of this chapter, attention will focus on Gaussian
processes hence an important special case of (3.4) is given by,

IF(x, y; γP, Φρ) = (γ(0) + γ(h)) IF

(
x + y√

2(γ(0) + γ(h))
; P, Φ

)

− (γ(0)− γ(h)) IF

(
x− y√

2(γ(0)− γ(h))
; P, Φ

)
, (3.10)

where the influence function of Pn at Φ is defined in (3.5).
The asymptotic distribution and efficiency properties of Pn and γ̂P de-

pend on the level of dependence in the underlying time series. The influence
functions are a key ingredient when it comes to proving limit results for γ̂P

under short and long range dependent Gaussian processes in Sections 3.4
and 3.5.

The results under SRD follow closely what has been done by Lévy-Leduc
et al. (2011c) for γ̂Q. However, in the LRD setting, some novel results are
found and conjectures drawn that contrast with the limiting distribution
of the Hodges-Lehmann estimator established by Lévy-Leduc et al. (2011a).
These somewhat surprising results follow as Pn, the difference of two U-
quantile statistics, has a distinct asymptotic behaviour to that of the indi-
vidual U-quantiles.

Furthermore, we observe the same limiting behaviour for a number of
robust scale and autocovariance estimators under a certain type of LRD pro-
cess. We show that the limiting result for the IQR is the same as that for Qn

and the SD and we conjecture that the same is true for Pn and the MAD. We
also show how the results for the autocovariance estimators follow from the
results for the underlying scale estimators.
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3.4 short range dependent gaussian processes

A sequence of observations whose autocovariance function is summable is
known as a short range dependent (SRD) time series and is said to have
short memory. Formally, let {Xi}i≥1 be a stationary time series and let γh

be its autocovariance function at lag h. The sequence {Xi}i≥1 is said to be
of short memory if ∑h≥1 |γh| < ∞.

Assumption 3.1. {Xi}i≥1 is a stationary mean-zero Gaussian process with auto-
covariance sequence γ(h) = E(X1Xh+1) satisfying ∑h≥1 |γ(h)| < ∞.

The asymptotic normality for Pn and γ̂P under the conditions outlined in
Assumption 3.1 is established in this section. We follow the same general
approach that Lévy-Leduc et al. (2011c) use to establish similar results for
Qn. The derivation is a little more involved, owing to the nature of Pn as a
difference of two U-quantiles, rather than a single U-quantile as is the case
for Qn.

3.4.1 Results for Pn

Before considering the asymptotic distribution of the autocovariance estim-
ator γ̂P, we first need results regarding the underlying scale estimator, Pn.
This section is dedicated to the proof of the following result regarding the
asymptotic distribution of the scale estimator Pn under SRD Gaussian pro-
cesses.

Result 3.1. Under Assumption 3.1, Pn satisfies the following central limit theorem
(CLT): √

n(Pn − σ)
D−→ N (0, σ̃2),

where σ =
√

γ(0) and the limiting variance σ̃2 is given by

σ̃2 = σ2E

[
IF2
(

X1

σ
; P, Φ

)]
+ 2σ2 ∑

k≥1
E

[
IF
(

X1

σ
; P, Φ

)
IF
(

Xk+1

σ
; P, Φ

)]
.

The proof of Result 3.1 requires the following structure. Let I be a com-
pact interval of R and let D(I) be the space of all functions that are right
continuous and whose limits from the left exist everywhere on I, i.e. the set
of càdlàg functions. Let M([−∞, ∞]) be the set of CDFs on [−∞, ∞]. Equip
both D and M with the topology of uniform convergence and denote the
uniform norm by || · ||∞.
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We need to define functionals in terms of the underlying distribution.
First the pairwise mean mapping,

T1 : M([−∞, ∞])→ D([−∞, ∞])

F 7→
{

r 7→ G(r) =
∫ ∫

I{x + y ≤ 2r}dF(x)dF(y)
}

.

Secondly the quantile mappings,

T2 : D([−∞, ∞])→ R

G 7→ G−1(1
4),

and,

T3 : D([−∞, ∞])→ R

G 7→ G−1(3
4).

Finally we need the lower and upper quartiles of the pairwise means,

TL = T2 ◦ T1 : M([−∞, ∞])→ R

F 7→ G−1(1
4),

and,

TU = T3 ◦ T1 : M([−∞, ∞])→ R

F 7→ G−1(3
4).

The scale estimator Pn can now be expressed as,

Pn = c [TU(Fn)− TL(Fn)] = c (TU − TL) (Fn),

which is a consistent estimator of,

P(Φσ) = c(TU − TL)(Φσ) = σ,

where Φσ is a Gaussian distribution with mean zero and variance σ2. Recall
that the correction factor c = 1.0483, defined in Section 2.4.2.1, ensures Pn

is consistent for the standard deviation at the Gaussian distribution. For
the remainder of this chapter, without loss of generality, let σ = 1 and
P(Φ) = P(Φ1).

The proof begins by showing that T1, T2 and T3 and consequently TU and
TL are Hadamard differentiable2 defined continuously on D(I). We then

2 Refer to Section C.1 in Appendix C (p. 151) for a definition of Hadamard differentiability.
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express the estimator Pn as a sum of influence functions with an asymptot-
ically negligible remainder term. A CLT for the sum of influence functions
gives the required result.

To show that T1 is Hadamard differentiable, let {gt} ∈ D(I) be a sequence
of càdlàg functions with bounded variations such that ||gt − g||∞ → 0 as
t→ 0, where g is also a càdlàg function. Now for any r ∈ R, consider

T1(F + tgt)[r]− T1(F)[r]
t

= t−1[ ∫ ∫ I{x + y ≤ 2r}d[F + tgt](x)d[F + tgt](y)

−
∫ ∫

I{x + y ≤ 2r}dF(x)dF(y)
]

= 2
∫ ∫

I{x + y ≤ 2r}dF(x)dgt(y)

+ t
∫ ∫

I{x + y ≤ 2r}dgt(x)dgt(y).

Furthermore,∣∣ ∫ ∫ I{x + y ≤ 2r}dF(x)dgt(y)−
∫ ∫

I{x + y ≤ 2r}dF(x)dg(y)
∣∣

=

∣∣∣∣∫
R

∫ 2r−x

−∞
dgt(y)dF(x)−

∫
R

∫ 2r−x

−∞
dg(y)dF(x)

∣∣∣∣
≤ 2||gt − g||∞ → 0 as t→ 0.

Hence, the Hadamard derivative of T1 at g is given by,

(Dg T1(F))[r] = lim
t→0

T1(F + tgt)[r]− T1(F)[r]
t

= 2
∫

R

∫ 2r−x

−∞
dg(y)dF(x),

where Dg is the Hadamard derivative operator.
The inverse mappings T2 and T3 are shown to be Hadamard differentiable

in van der Vaart (1998, Lemma 21.3) and also van der Vaart and Wellner
(1996, Lemma 3.9.20). Applying the chain rule for the inverse map, van der
Vaart (1998, Theorem 20.9), we have,

Dg TL(F) = Dg(T2 ◦ T1)(F) = −
(Dg T1(F))[TL(F)]
(T1(F))′[TL(F)]

= −
2
∫

R

∫ 2TL(F)−x
−∞ dg(y)dF(x)
(T1(F))′[TL(F)]

. (3.11)

Similarly,

Dg TU(F) = Dg(T3 ◦ T1)(F) = −
2
∫

R

∫ 2TU(F)−x
−∞ dg(y)dF(x)
(T1(F))′[TU(F)]

. (3.12)
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Hence, Dg(TU − TL)(F) is a continuous function of g and is defined on
D(I), and as such (TU − TL)(F) is Hadamard differentiable.

If for some sequence of numbers an → ∞ we have an(Fn − F) converging
in distribution, then we can apply the functional delta method of van der
Vaart (1998, Theorem 20.8), to write,

an(Pn − P) = anc(TU − TL)(Fn − F)

= c D{an(Fn−F)}(TU − TL)(F) + op(1). (3.13)

When F = Φ, under the conditions of Assumption 3.1, we can apply Csörgó
and Mielniczuk (1996) to show that

√
n(Fn − Φ) converges in distribution

to a Gaussian process in D(I). Hence, (3.13) is valid with an =
√

n.
Using the results in (3.11) and (3.12) we have,

D{√n(Fn−Φ)}(TU − TL)(Φ) =
√

n
[
D{Fn−Φ}(TU)(Φ)−D{Fn−Φ}(TL)(Φ)

]
= 2
√

n
[
−
∫
(Fn −Φ)(2TU(Φ)− x)dΦ(x)

(T1(Φ))′[TU(Φ)]

+

∫
(Fn −Φ)(2TL(Φ)− x)dΦ(x)

(T1(Φ))′[TL(Φ)]

]
= 2
√

n [A− An] ,

where,

A =

∫
R

Φ(2TU(Φ)− x)dΦ(x)
(T1(Φ))′[TU(Φ)]

−
∫

R
Φ(2TL(Φ)− x)dΦ(x)
(T1(Φ))′[TL(Φ)]

,

and,

An =

∫
R

Fn(2TU(Φ)− x)dΦ(x)
(T1(Φ))′[TU(Φ)]

−
∫

R
Fn(2TL(Φ)− x)dΦ(x)
(T1(Φ))′[TL(Φ)]

.

Note that the numerators in A can be simplified,

A =
3/4

(T1(Φ))′[TU(Φ)]
− 1/4

(T1(Φ))′[TL(Φ)]
.

The numerators in An can be rewritten as,

1
n

n

∑
i=1

Φ(2TU(Φ)− Xi) and
1
n

n

∑
i=1

Φ(2TL(Φ)− Xi).

Noting the symmetry in TU and TL we have,

(T1(Φ))′[TU(Φ)] = (T1(Φ))′[TL(Φ)] = G′Φ(TU(Φ))

= 2
∫

φ(2TU(Φ)− x)φ(x)dx

=
√

2φ(
√

2TU(Φ)).
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Hence, from (3.13) we have that,
√

n(Pn − P) = c D√n(Fn−Φ)(TU − TL)(Φ) + op(1)

=
c√
n

n

∑
i=1

[
1
2 −Φ(2TU(Φ)− Xi) + Φ(2TL(Φ)− Xi)

φ(
√

2TU(Φ))/
√

2

]
+ op(1)

=
c√
n

n

∑
i=1

IF(Xi; P, Φ) + op(1), (3.14)

where the influence function for Pn at the Gaussian distribution was given in
(3.5). A CLT for n−1/2 ∑n

i=1 IF(Xi; P, Φ) follows from Arcones (1994, Theorem
4).3 Hence, under Assumption 3.1,

1√
n

n

∑
i=1

IF(Xi; P, Φ)
D−→ N (0, σ̃2),

where

σ̃2 = E
[
IF2(X1; P, Φ)2

]
+ 2 ∑

k≥1
E [IF(X1; P, Φ) IF(X1+k; P, Φ)] .

Result 3.1, where observations have standard deviation, σ =
√

γ(0), fol-
lows by noting that IF(x; S, Φσ) = σ IF(x/σ; S, Φ) from Proposition C.1 in
Appendix 3 (p. 151).

3.4.2 Results for γ̂P(h)

Having established the limiting distribution of the scale estimator, Pn, it is
relatively straightforward to find the limiting distribution of the autocov-
ariance function γ̂P. This section proves the following result regarding the
asymptotic distribution of the autocovariance estimator γ̂P under SRD Gaus-
sian processes.

Result 3.2. Under Assumption 3.1, γ̂P(h) satisfies the following CLT,

√
n(γ̂P(h)− γ(h)) D−→ N (0, σ̆2(h)),

where

σ̆2(h) = E
[
IF2(X1, X1+h; γP, Φρ)

]
+ 2 ∑

k≥1
E
[
IF(X1, X1+h; γP, Φρ) IF(Xk+1, Xk+1+h; γP, Φρ)

]
and IF(x, y; γP, Φρ) is defined in equation (3.10).

3 See Section C.3 in Appendix C (page 158) for details. In particular, we show that the
Hermite rank of the influence function equals 2.
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Let Φ+ and Φ− denote the CDFs of {Xi + Xi+h}i≥1 and {Xi −Xi+h}i≥1, re-
spectively. Similarly let F+,n−h and F−,n−h denote the empirical distribution
functions of {Xi + Xi+h}1≤i≤n−h and {Xi − Xi+h}1≤i≤n−h. Also let P±,n−h =

P2
n−h(x1:n−h ± xh+1:n). Since the underlying Gaussian process, {Xi}i≥1, sat-

isfies the SRD assumptions, the same holds for {Xi + Xi+h}i≥1 and {Xi −
Xi+h}i≥1. Furthermore, with the appropriate correction factor we have that
P(Φ±) =

√
2(γ(0)± γ(h)) and hence,

γ(h) =
P2(Φ+)− P2(Φ−)

4
.

We apply Csörgó and Mielniczuk (1996) to show that
√

n− h(F±,n−h −
Φ±) converges in distribution to Gaussian processes in D(I). Thus, using a
similar argument to above,

√
n− h (P±,n−h − P(Φ±)) =

1√
n− h

n−h

∑
i=1

IF(Xi ± Xi+h; P, Φ±) + op(1).

Using the functional delta method, van der Vaart (1998, Theorem 3.1), with
b(x) = x2 and b′(x) = 2x, we obtain

√
n− h

(
P2
±,n−h − P2(Φ±)

)
=

2P(Φ±)√
n− h

n−h

∑
i=1

IF(Xi ± Xi+h; P, Φ±) + op(1).

Applying the basic properties of influence functions, outlined in Proposi-
tion C.1 (p. 151), we have that,

P(Φ±) IF(X1 ± X1+h; P, Φ±) = 2(γ(0)± γ(h)) IF

(
X1 ± X1+h√

2(γ(0)± γ(h))
; P, Φ

)
.

Hence, recalling from (3.10) that,

γ̂P(h) =
1
4

[
P2

n−h(x1:n−h + xh+1:n)− P2
n−h(x1:n−h − xh+1:n)

]
has influence function,

IF(X1, X1+h; γP, Φρ) = (γ(0) + γ(h)) IF

(
X1 + X1+h√

2(γ(0) + γ(h))
; P, Φ

)

− (γ(0)− γ(h)) IF

(
X1 − X1+h√

2(γ(0)− γ(h))
; P, Φ

)
,

we have the following asymptotic expansion,

√
n− h (γ̂P(h)− γ(h)) =

1√
n− h

n−h

∑
i=1

IF(Xi, Xi+h; γP, Φρ) + op(1).
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The asymptotic normality follows from a CLT for,

1√
n− h

n−h

∑
i=1

IF(Xi, Xi+h; γP, Φρ),

established by noting that the Hermite rank of IF(x, y; γP, Φ) is m = 2 and
applying Arcones (1994, Theorem 4), which is reproduced in a simplified
form as Theorem C.2 in Appendix C. Hence,

√
n(γ̂P(h)− γ(h)) D−→ N (0, σ̆2(h)),

where

σ̆2(h) = E
[
IF2(X1, X1+h; γP, Φρ)

]
+ 2 ∑

k≥1
E
[
IF(X1, X1+h; γP, Φρ) IF(Xk+1, Xk+1+h; γP, Φρ)

]
.

3.5 long range dependent gaussian processes

LRD time series form an important class of dependent observations. The dis-
tinction between short and long range dependence is due to the behaviour
of the autocovariance decay rate. In particular, let {Xi}i≥1 be a stationary
time series and let γk be its autocovariance function at lag k. The sequence
{Xi}i≥1 is said to be of long memory if ∑h≥1 |γh| = ∞, i.e. its autocovariances
are not summable. LRD processes are characterised by spurious trends, self-
similarity and an autocorrelation function that exhibits a slow hyperbolic
decay, ρ(h) ∼ h−D for 0 < D < 1.4

Applications involving LRD processes are found in a diverse range of set-
tings, such as the analysis of network traffic, heartbeat fluctuations, wind
turbine output, climate and financial data, to name just a few. For some
recent examples we refer to Park et al. (2011), Ercan, Kavvas and Abbasov
(2013) and Beran et al. (2013).

The presence of extreme events in LRD processes is also of philosophical
interest. Bunde et al. (2005) discuss how long term correlations represent a
natural mechanism for the clustering of extreme events. This may make it
difficult to ascertain whether unusual observations or clusters are outliers
or genuine observations that are part of the LRD data generating process.

4 The notation an ∼ bn as n → ∞ for two real-valued sequences an and bn means that
an/bn → 1. Similarly for functions, g(x) ∼ h(x) as x → x0 means that g(x)/h(x) → 1 as
x → x0.



3.5 long range dependent gaussian processes 71

Year

N
ile

R
iv

er
m

in
im

a
(m

)

600 700 800 900 1000 1100 1200 1300

10
11

12
13

14

Figure 3.7: Annual Nile river minima (in meters) for the period 622–1284.

Hence, robust procedures that sidestep the issue of identifying outliers are
inherently valuable. More recently, Franzke et al. (2012) discuss how self-
similar processes can arise as a result of both long range dependence and
non-Gaussianity.

A classic example of a LRD process is the data set consisting of yearly
minimum water levels of the Nile river at the Roda Gauge. Most of the ob-
servations were taken in a structure known as the Nilometer on the south-
ern tip of Roda island in central Cairo. Toussoun (1925) reports an uninter-
rupted series of observations that were recorded over the years 622–1284;
these are plotted in Figure 3.7. Post 1284, the observations become sparse,
for example there were only 17 measurements during the sixteenth cen-
tury. Furthermore, the construction of dams in the 20th century ended the
dominance of nature in determining the level of the Nile. The level of the
Nile river was, and remains, of vital interest to the inhabitants of the region.
More globally, Eltahir and Wang (1999) found a strong relationship between
the Nile water levels and the El Niño phenomenon.

Statistically, this data set is historically very important as it is the focus of
Hurst (1951), a seminal paper in the field of LRD processes. It is also import-
ant from a robustness perspective. Whitcher et al. (2002) suggest that there
exists heterogeneity in the variance of the series, with a change point at 720
AD. This date coincides with historical records that indicate construction
of the Nilometer on Roda island and a change in the way the series was
measured. More recently, Chareka, Matarise and Turner (2006) investigate
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Figure 3.8: ACF of the annual Nile river minima for the period 622–1284.

whether or not there are outliers present in this data set. They find that the
observations in years 646 and 809 are most likely outliers, and potentially
878 AD.

The autocorrelation functions (ACFs) plotted in Figure 3.8 show no ap-
preciable difference between ρ̂P and ρ̂Q, though both robust methods find
marginally higher levels of dependence than the classical autocorrelation
method. Regardless, the slow decay rate of the autocorrelation function is
apparent.

The distribution of estimators under LRD processes is important for prac-
tical reasons and is interesting theoretically as it is common for non-normal
limit distributions to arise. Lévy-Leduc et al. (2011c) investigate the limiting
distribution of Qn and associated robust autocovariance estimators under
dependent processes. They find the SD and Qn have the same limiting distri-
bution, with no loss of asymptotic efficiency under extreme long range de-
pendence. Similar results about the relative performance of robust estimat-
ors to classical estimators also hold for location estimators. See Lévy-Leduc
et al. (2011a) for details about the Hodges-Lehmann estimator and Beran
(1991) for M-estimates of location.

This section continues with a discussion of the various ways a LRD process
can be parameterised. A new limit result for the IQR is presented, compar-
able with those for Qn and the SD. We also partially show similar results
hold for the scale estimator Pn and the autocovariance estimator γ̂P. The
validity of these results is demonstrated through simulation.
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3.5.1 Parameterisation

There are a number of ways to parameterise LRD processes. A brief overview
is provided below, for further details see Giraitis, Koul and Surgailis (2012)
or Beran et al. (2013).

As in Section 3.4, we restrict attention to Gaussian processes. In particular,
let {Xi}i≥0 be the stationary mean-zero linear Gaussian process,

Xi =
∞

∑
j=0

ajεi−j, for i ∈N,

where a0 = 1, ∑∞
j=0 a2

j < ∞ and the innovations, {εi}i∈Z, are iid mean-zero
Gaussian random variables with variance var(ε1) = σ2

ε < ∞.
When ∑∞

j=0 |aj| < ∞ and ∑∞
j=0 aj 6= 0 then we are in the SRD setting of

Section 3.4. If instead,

aj ∼ jd−1La(j) and 0 < d <
1
2

, (3.15)

where La is a slowly varying function at infinity5 then we have a long memory
process. In particular, an implication of (3.15) is that ∑∞

j=0 aj = ∞ and by
Karamata’s theorem (see for example Resnick (1987, Theorem 0.6)),

γ(h) = E(X1X1+h) ∼ h−DLγ(h),

where D = 1− 2d is the autocovariance decay rate, 0 < D < 1, and

Lγ(h) = σ2
ε L2

a(h)k(D),

where, k(D) = Beta(D, d) = Γ(D)Γ(d)/Γ(D + d).
An important family of LRD processes are the fractionally integrated autore-

gressive moving average (ARFIMA) processes (Granger and Joyeux, 1980;
Hosking, 1981). The ARFIMA(0, d, 0) model is defined as,

Xi =
∞

∑
j=0

ajεi−j = (1− B)−dεi,

where B is the backshift operator, B εi = εi−1. Consider the series expansion,

(1− z)−d =
∞

∑
j=0

(−1)j
(
−d

j

)
zj =

∞

∑
j=0

ajzj.

5 A function L is called slowly varying (at infinity in Karamata’s sense) if it is positive and
measurable for large enough x, and for any u > 0, L(ux) ∼ L(x) as x → ∞.
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Noting the relation Γ(z− n) = (−1)nΓ(z)Γ(1− z)/Γ(n− z + 1), for n ∈ Z,
we have,

aj = (−1)j
(
−d

j

)
=

(−1)jΓ(1− d)
Γ(j + 1)Γ(1− d− j)

=
Γ(j + d)

Γ(j + 1)Γ(d)
.

Applying Stirling’s approximation, Γ(s + 1) ≈ (2πs)1/2e−sss for large s
gives,

aj ∼
1

Γ(d)
jd−1, as j→ ∞.

Hence, La ∼ 1/Γ(d), and γ(h) ∼ cγh−D, with

cγ =
σ2

ε

Γ2(d)
k(D) = σ2

ε
Γ(D)

Γ(d)Γ(1− d)
.

Beran (1994, p. 63) provides exact results for the autocovariance function
of an ARFIMA(0, d, 0),

γ(h) = σ2
ε

(−1)hΓ(D)

Γ(1 + h− d)Γ(1− h− d)
= σ2

ε
Γ(h + d)Γ(D)

Γ(d)Γ(1− d)Γ(1 + h− d)
,

with an important special case being,

γ(0) = σ2
ε

Γ(D)

Γ2(1− d)
.

Another popular parameterisation of LRD sequences is the Hurst para-
meter or self-similarity parameter H = d + 1

2 , however, for the remainder of
this section, we will employ the autocovariance decay rate parameterisation
and base results on the following assumption.

Assumption 3.2. {Xi}i≥1 is a stationary mean-zero Gaussian process with auto-
covariance sequence γ(h) = E(X1Xh+1) satisfying γ(h) = h−DLγ(h) for
0 < D < 1, where Lγ is slowly varying at infinity and is positive for large h.

3.5.2 Hoeffding versus Hermite decomposition

Throughout this section, we rely heavily on the Hoeffding and Hermite
decompositions of the empirical distribution function of the pairwise means
outlined in Section 2.2. Recall, h(x, y; t) = I{g(x, y) ≤ t} and,

Gn(t)− G(t) =
1

n(n− 1) ∑
i 6=j

[
h(Xi, Xj; t)− G(t)

]
. (3.16)
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In the applications that follow it is sufficient to consider the cases where
the Hermite rank is m = 1 or 2 as this covers the specific estimators of
interest. For LRD processes, when D < 1

m , and m = 1 or 2, the remainder
term in the Hoeffding decomposition of (3.16), stated explicitly in equation
(2.4), is no longer of lower order with respect to the leading term, Wn, which
means that the limiting distribution is not solely determined by Wn. Hence
to study the case where D < 1

m we decompose Gn in terms of the Hermite
polynomials,

[Gn(t)− G(t)] =
2

n(n− 1)
W̃n(t) + R̃n(t), (3.17)

where

W̃n(t) = ∑
i<j

∑
p,q≥0

p+q≤m

αp,q(t)
p!q!

Hp(Xi)Hq(Xj), (3.18)

and

R̃n(t) = ∑
i<j

∑
p,q≥0

p+q>m

αp,q(t)
p!q!

Hp(Xi)Hq(Xj). (3.19)

In general, the limiting behaviour of the quantile G−1
n (p) will depend

on the Hermite rank m and the range of the index D associated with the
underlying dependence structure (Beran, 1994).

Some existing results from Lévy-Leduc et al. (2011a,b,c) employing these
decompositions are briefly stated in Appendix C. These include some tech-
nical limit results for U-processes under long range dependence with applic-
ations to the scale estimator Qn. The remainder of this section is dedicated
to establishing similar results for Pn. Note that the key difference is that
Qn is a single U-quantile statistic whereas Pn is a linear combination of
U-quantiles which appears to complicate the derivation of limit results.

In obtaining the limiting distribution for Pn we need to link the empirical
distribution function of the adjusted pairwise means to its inverse using the
functional delta method (van der Vaart, 1998, Theorem 20.8), which Höss-
jer and Mielniczuk (1995) show is applicable under long range dependence.
However, when 0 < D < 1

2 it turns out that when we take linear combina-
tions of these quantities, a first order approximation is no longer sufficient
as the first order terms cancel, necessitating a higher order approximation.
Thus the higher order terms now play a role in the limiting distribution. The
need for higher order terms is highlighted in the following section where
we find the limiting distribution of the IQR under LRD with 0 < D < 1

2 . To
do this we apply the Bahadur representation of Wu (2005) for quantiles of
LRD processes.
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3.5.3 Interquartile range

Given a set of data, x = {Xi}1≤i≤n, the IQR is defined as,

Tn(x) = F−1
n (3

4)− F−1
n (1

4), (3.20)

where Fn(t) = n−1 ∑n
i=1 I{Xi ≤ t}. Furthermore, define the scale parameter

θ = F−1(3
4)− F−1(1

4).
The aim of this section is to prove the following result.

Result 3.3. Under Assumption 3.2 with 0 < D < 1
2 , as n→ ∞,

k(D)nD

Lγ(n)
(Tn − θ)

D−→ θ

2

(
Z2,D(1)− Z2

1,D(1)
)

.

The limit processes in Result 3.3 are the standard fractional Brownian mo-
tion {Z1,D(t)}0≤t≤1 and the Rosenblatt process {Z2,D(t)}0≤t≤1.

The Hermite expansion for h(X; t) = I{X ≤ t}, for t ∈ R is,

I{X ≤ t} =
∞

∑
k=0

αk(t)
k!

Hk(X),

where the first three Hermite coefficients, α0(t) = Φ(t), α1(t) = −φ(t) and
α2(t) = −tφ(t) are found explicitly in Section C.2.2 in Appendix C.

Now the empirical distribution function can be written in terms of this
Hermite expansion,

Fn(t) =
1
n

n

∑
i=1

∞

∑
k=0

αk(t)
k!

Hk(Xi)

= α0(t) +
1
n

n

∑
i=1

α1(t)Xi +
1
n

n

∑
i=1

α2(t)
2

(X2
i − 1) + Rn(t),

where

Rn(t) =
1
n

n

∑
i=1

∑
k≥3

αk(t)
k!

Hk(Xi).

Hence, we have,

Φ(t)− Fn(t) = φ(t)X̄n +
tφ(t)

2
1
n

n

∑
i=1

(X2
i − 1)− Rn(t). (3.21)

The convergence of partial sums under long range dependence is given
in Taqqu (1975) using the reduction principle, where for 0 < D < 1

m only



3.5 long range dependent gaussian processes 77

the first non-zero term in the Hermite expansion determines the asymptotic
distribution. That is, for any fixed t, the limiting distribution of,

nmD/2

n
√

Lm(n)

n

∑
i=1

[h(Xi; t)−Φ(t)],

is the same as the limiting distribution of,

nmD/2

n
√

Lm(n)

n

∑
i=1

αm(t)
m!

Hm(Xi),

where

Lm(n) =
2m!Lm

γ (n)
(Dm + 1)(Dm + 2)

.

The Hermite rank of the class of functions {h(·; t)−Φ(t); t ∈ R} is equal
to one as α1(t) 6= 0 for all t ∈ R. So it is only the first term in the expansion
that determines the limiting distribution of the quantiles.

From (3.21), we can apply the reduction principle result with m = 2 to
get,

nD

Lγ(n)

(
[Fn(t)−Φ(t)] + φ(t)X̄n +

tφ(t)
2

1
n

n

∑
i=1

(X2
i − 1)

)
→ 0,

in probability, or equivalently, nD

Lγ(n)
Rn(t) = op(1).

When investigating the difference of two quantiles, we will see that the
first two Hermite polynomials in the expansion (3.21) are required. To es-
tablish this, we use the Bahadur representation of sample quantiles of LRD

processes established by Wu (2005).
Before stating the Bahadur result we need to introduce some additional

notation. Under Assumption 3.2, let Ψn =
√

n ∑n
k=1 k−D−1/2L2

a(k) and

σ2
n,1 = E(|nX̄n|2) = var

(
n

∑
i=1

Xi

)
∼ Lγ(n)n2−D

(1− D)(2− D)
. (3.22)

For the derivation of the above result, see, for example Beran et al. (2013,
Lemma 4.9). By Karamata’s theorem,

Ψn ∼


n1−DL2

a(n)
1/2− D

if 0 < D < 1
2 ,

√
nL∗(n) if D = 1

2 , or
√

n ∑∞
k=1 k−D−1/2L2

a(k) if 1
2 < D < 1,



3.5 long range dependent gaussian processes 78

where L∗(n) = ∑n
k=1 L2

a(k)/k is also a slowly varying function. Furthermore,
let,

An(D) =

 Ψ2
n(log n)(log log n)2 if 0 < D < 1

2 , or

Ψ2
n(log n)3(log log n)2 if 1

2 ≤ D < 1.

We can now write down Theorem 3 from Wu (2005) adapted under the
assumption of a Gaussian LRD process.

Theorem 3.1. Assume infp0≤p≤p1 f (F−1(p)) > 0 for some 0 < p0 < p1 < 1,
and let bn = σn,1(log n)1/2(log log n)/n, then,

sup
p0≤p≤p1

∣∣∣∣F−1
n (p)− F−1(p)− p− Fn(F−1(p))

f (F−1(p))
− X̄2

n
2

f ′(F−1(p))
f (F−1(p))

∣∣∣∣
= Oa.s.

[
b3

n +

√
bn log n√

n
+

bn
√

An(D)

n

]
.

As Wu (2005) notes, the three terms in the Oa.s. bound have different or-
ders of magnitude and correspondingly the term that dominates the bound
changes depending on the range of D. The error bound of Theorem 3.1 is
summarised as,

O[nmax(−D/4−1/2,−3D/2)L1(n)] = O[nh(D)L1(n)],

for some slowly varying function L1(n).
We can now prove Result 3.3. By Theorem 3.1 we can say,

F−1
n (p)− r =

p− Fn(r)
φ(r)

+
X̄2

n
2

φ′(r)
φ(r)

+ O(nh(D)L1(n)).

Noting that φ′(r)/φ(r) = −r, we have

F−1
n (p)− r =

p− Fn(r)
φ(r)

− r
X̄2

n
2

+ O(nh(D)L1(n)).

Furthermore, using equation (3.21), we have

p− Fn(r) = φ(r)X̄n +
rφ(r)

2
1
n

n

∑
i=1

(X2
i − 1)− Rn(r).
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Turning attention to the IQR, let s = F−1(1
4) and t = F−1(3

4),

[F−1
n (3

4)− F−1
n (1

4)]− [t− s] (3.23)

=

(
3
4 − Fn(t)

φ(t)
− t

X̄2
n

2

)
−
(

1
4 − Fn(s)

φ(s)
− s

X̄2
n

2

)
+ O(nh(D)L1(n))

=

(
φ(t)X̄n +

tφ(t)
2

1
n ∑n

i=1(X2
i − 1)− Rn(t)

φ(t)
− t

X̄2
n

2

)

−
(

φ(s)X̄n +
sφ(s)

2
1
n ∑n

i=1(X2
i − 1)− Rn(s)

φ(s)
− s

X̄2
n

2

)
+ O(nh(D)L1(n))

=

(
t

2n

n

∑
i=1

(X2
i − 1)− t

2
X̄2

n

)
− Rn(t)

φ(t)

−
(

s
2n

n

∑
i=1

(X2
i − 1)− s

2
X̄2

n

)
+

Rn(s)
φ(s)

+ O(nh(D)L1(n))

=
t− s
2n2

(
n

n

∑
i=1

(X2
i − 1)− ∑

1≤i,j≤n
XiXj

)
− Rn(t)

φ(t)
+

Rn(s)
φ(s)

+ O(nh(D)L1(n)).

(3.24)

Now, multiply both sides of (3.24) by nD/Lγ(n), so that the left hand side
becomes,

nD

Lγ(n)

(
[F−1

n (3
4)− F−1

n (1
4)]− [t− s]

)
.

Then, on the RHS we know that nD

Lγ(n)
Rn(t) = op(1) and nD

Lγ(n)
Rn(s) = op(1).

Furthermore,

nD

Lγ(n)
nh(D)L1(n) = O

(
nmax{−D/2,3D/4−1/2} L1(n)

Lγ(n)

)
→ 0, as n→ ∞,

for 0 < D < 1
2 . Hence,

k(D)nD

Lγ(n)
([F−1

n (3
4)− F−1

n (1
4)]− [t− s])

can be written as

k(D)nD

n2Lγ(n)
t− s

2

[
n

n

∑
i=1

(X2
i − 1)− ∑

1≤i,j≤n
XiXj

]
+ op(1),

which, by Lemma C.4 in Appendix C, gives the required proof.
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3.5.4 Results for Pn

This section establishes the following result, which is not a trivial applica-
tion of Lévy-Leduc et al. (2011c), owing to the complex nature of Pn as the
difference of two U-quantiles.

Result 3.4. Under Assumption 3.2, if D > 1
2 , as n→ ∞,

√
n(Pn − σ)

D−→ N (0, c2V),

where σ =
√

γ(0) and

c2V = E
(

IF2(X1; P, Φ)
)
+ 2 ∑

`≥1
E (IF(X1; P, Φ) IF(X`+1; P, Φ)) .

Note that this is exactly the same as for the SRD setting, however the proof
is different.

We also posit the following conjecture, the proof of which requires a U-
quantile analogue of Wu (2005).

Conjecture 3.1. Under Assumption 3.2, if D < 1
2 , as n→ ∞,

k(D)nD

Lγ(n)
(Pn − σ)

D−→ σ

2

(
Z2,D(1)− Z2

1,D(1)
)

.

The conjectured limiting distribution is a linear combination of the stand-
ard fractional Brownian motion {Z1,D(t)}0≤t≤1 and the Rosenblatt process
{Z2,D(t)}0≤t≤1.

When written as a GL-statistic, the scale estimator Pn shares the same ker-
nel function as the Hodges-Lehmann estimator of location. The asymptotic
properties of the Hodges-Lehmann estimator when applied to a LRD process
are discussed in Section C.4.2.1 in Appendix C. In particular, we show that
estimated central quantiles6 of a LRD process follow a Gaussian distribution.
Hence, one may naïvely believe that the autocovariance estimator based on
Pn for LRD data will similarly follow a Gaussian distribution as it is propor-
tional to the difference of two quantiles of the pairwise mean distribution,
each of which are Gaussian for all D ∈ (0, 1). However, it turns out that this
is not the case – instead, as with the SD and Qn we need to consider two
cases, D < 1

2 and D > 1
2 , and we need to employ some subtle arguments

6 It is important to note that the quantiles referred to do not include extremes, such as
the minima and maxima, as these will have their own limiting behaviour. Specifically the
technical results in Section C.4.1 in Appendix C rely on the quantiles lying in a compact
interval of R.
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in the derivation of the limiting distribution in each case. The first trick will
be to adjust the pairwise mean kernel function so that we can more easily
apply existing results.

3.5.4.1 Augmenting the kernel

Section C.4.2.1 in Appendix C discusses the Hodges-Lehmann estimator
with pairwise mean kernel, h(x, y; r) = I{x + y ≤ 2r}, and notes that the
Hermite rank for the class of functions {h(·, ·; r)− G(r); r ∈ R} equals one.
The aim of this section is to manipulate the kernel so that we can apply
existing results and rely on the symmetry in the difference of the quantiles
to erase the spurious artefacts created by the augmented kernel.

Consider the augmented kernel,

h∗(x, y; r) = I{x + y ≤ 2r}+ (x + y)
φ(r
√

2)√
2

. (3.25)

Let X and Y be independent standard Gaussian random variables. Hence,
α∗0,0(r) = G∗(r) = Eh∗(X, Y; r) = G(r) = α0,0(r). However, the Hermite rank
for the class of functions {h∗(·, ·; r)− G∗(r); r ∈ I} is m = 2 as

α∗1,0(r) = E[Xh∗(X, Y; r)]

= E[Xh(X, Y; r)] + E[X2 + XY]
φ(r
√

2)√
2

= α1,0(r) +
φ(r
√

2)√
2

= 0,

using Result C.2 in Appendix C.2.3. Similarly, α∗0,1(r) = 0, however,

α∗1,1(r) = E[XYh∗(X, Y; r)]

= E[XYh(X, Y; r)] + E[X2Y + XY2]
φ(r
√

2)√
2

= α1,1(r) 6= 0,

using Result C.3 in Appendix C.2.3. Furthermore,

α∗2,0(r) = E[(X2 − 1)h∗(X, Y; r)]

= E[(X2 − 1)h(X, Y; r)] + E[(X2 − 1)(X + Y)]
φ(r
√

2)√
2

= α2,0(r) = α0,2(r) 6= 0.
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Consider the Hoeffding decomposition of the augmented kernel, (3.25),
as follows,

G∗n(r)− G(r) =
1

n(n− 1) ∑
i 6=j

[
h∗(Xi, Xj; r)− G(r)

]
= W∗n (r) + R∗n(r),

where

W∗n (r) =
2
n

n

∑
i=1

h∗1(Xi; r), (3.26)

and

h∗1(x; r) =
∫

h(x, y; r)∗φ(y)dy− G(r)

=
∫ [

I{x + y ≤ 2r}+ x√
2

φ(r
√

2) +
y√
2

φ(r
√

2)
]

φ(y)dy− G(r)

= h1(x; r) + x
φ(r
√

2)√
2

,

with h1(x; r) as defined in Section 2.2. Furthermore,

R∗n(r) =
1

n(n− 1) ∑
i 6=j

[
h∗(Xi, Xj; r)− h∗1(Xi; r)− h∗1(Xj; r)− G(r)

]
= Rn(r),

as defined in Section 2.2. Now consider,

G∗n(r)− G(r)
G′(r)

=
W∗n (r) + R∗n(r)

G′(r)

=
2
n ∑n

i=1 h∗1(Xi; r) + Rn(r)
G′(r)

=

2
n ∑n

i=1

[
h1(Xi; r) + φ(r

√
2)Xi/

√
2
]
+ Rn(r)

G′(r)

=
2
n ∑n

i=1 h1(Xi; r) + Rn(r)
G′(r)

+
2φ(r
√

2)
nG′(r)

√
2

n

∑
i=1

Xi

=
Gn(r)− G(r)

G′(r)
+

1
n

n

∑
i=1

Xi.

The equality holds as R∗n(r) = Rn(r) and using Result C.1 from Appendix
C, G′(r) =

√
2φ(t
√

2).
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We can thus deduce that [G∗−1
n (p)−G∗−1

n (q)] and [G−1
n (p)−G−1

n (q)] have
the same asymptotic distribution. Letting t = G−1(p), s = G−1(q),

G∗n(t)− G(t)
G′(t)

− G∗n(s)− G(s)
G′(s)

=
Gn(t)− G(t)

G′(t)
+ X̄n −

Gn(s)− G(s)
G′(s)

− X̄n

=
Gn(t)− G(t)

G′(t)
− Gn(s)− G(s)

G′(s)
. (3.27)

Now, consider the functional delta method (van der Vaart, 1998, Theorem
20.8), for an appropriate sequence, an, we have,

an

(
G∗−1

n (p)− G−1(p)
)
= −an

[
G∗n(G−1(p))− G(G−1(p))

G′(G−1(p))

]
+ op(1).

(3.28)
Hence, using (3.27) with the delta method applied to,

an

(
[G∗−1

n (p)− G−1(p)]− [G∗−1
n (q)− G−1(q)]

)
,

we can conclude that [G∗−1
n (p)− G∗−1

n (q)] and [G−1
n (p)− G−1

n (q)] have the
same asymptotic distribution.

3.5.4.2 Pn when D > 1
2

As the Hermite rank of the augmented kernel is m = 2, we can employ
Lemma 9 from Lévy-Leduc et al. (2011a) which states that, (

√
nW∗n (r))r∈I

converges weakly in D(I) to a zero mean Gaussian process, W, with covari-
ance structure E[W(s)W(t)] given by,

4 cov(h∗1(X1; s), h∗1(X1; t))

+ 4 ∑
`≥1

[cov(h∗1(X1; s), h∗1(X`+1; t)) + cov(h∗1(X1; t), h∗1(X`+1; s))] .

Furthermore, Lévy-Leduc et al. (2011a, Theorem 1) have that the U-process(√
n(G∗n(r)− G(r))

)
r∈I also converges in D(I) to W. Hence,

√
n
(

G∗−1
n (·)− G−1(·)

) D−→ W(G−1(·))
G′(G−1(·))

.

Therefore,
√

n
(
[G∗−1

n (p)− G∗−1
n (q)]− [G−1(p)− G−1(q)]

) D−→ N (0, V),

where V = v(p, p) + v(q, q)− 2v(p, q) and v(p, q) = n cov(G−1
n (p), G−1

n (q))
is defined as

4
G′(s)G′(t)

[
cov(h∗1(X1; s), h∗1(X1; t))

+ ∑
`≥1

[cov(h∗1(X1; s), h∗1(X`+1; t)) + cov(h∗1(X1; t), h∗1(X`+1; s))]
]

,
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with t = G−1(p) and s = G−1(q). Hence, as [G∗−1
n (p) − G∗−1

n (q)] and
[G−1

n (p)− G−1
n (q)] have the same asymptotic distribution, we can also con-

clude that,
√

n([G−1
n (p)− G−1

n (q)]− [G−1(p)− G−1(q)]) D−→ N (0, V).

To complete the proof, note that

cov(h∗1(X1; s), h∗1(X1; t))

= E

[(
Φ(2s− X1) + X1

φ(s
√

2)√
2
−EΦ(2s− X1)

)
×(

Φ(2t− X1) + X1
φ(t
√

2)√
2
−EΦ(2t− X1)

)]

= E[Φ(2s− X1)Φ(2t− X1)] +
φ(s
√

2)√
2

E[X1Φ(2t− X1)]

−EΦ(2t− X1)EΦ(2s− X1) +
φ(t
√

2)√
2

E[X1Φ(2s− X1)]

+
φ(s
√

2)φ(t
√

2)
2

.

From Lemma C.1, E(Φ(2G−1(a)−X)) = a and restricting attention to p = 3
4

and q = 1
4 with t = G−1(3

4) and s = G−1(1
4), we have from Lemma C.2 that

E(XΦ(2t− X)) = E(XΦ(2s− X)). Furthermore, from the symmetry of the
Gaussian density we have s = −t and φ(s) = φ(t), hence we can simplify
further,

cov(h∗1(X1; s), h∗1(X1; t)) = E[Φ(2s− X1)Φ(2t− X1)] +
3

16

+
√

2φ(s
√

2)E[X1Φ(2s− X1)] +
φ2(s
√

2)
2

.

Thus,

var(h∗1(X1; s)) + var(h∗1(X1; t))− 2 cov(h∗1(X1; s), h∗1(X1; t))

= E [Φ(2s− X)]2 + E [Φ(2t− X)]2 − 2E [Φ(2s− X)Φ(2t− X)]− 1
4

= E
[

1
2 −Φ(2t− X) + Φ(2s− X)

]2
.

For a particular lag, `, using similar results to those implemented above,
elementary, though tedious, algebra shows that

2 cov(h∗1(X1; t), h∗1(X`+1; t)) + 2 cov(h∗1(X1; s), h∗1(X`+1; s))

− 2 [cov(h∗1(X1; s), h∗1(X`+1; t)) + cov(h∗1(X1; t), h∗1(X`+1; s))]

= E

(
1
2
−Φ(2t− X1) + Φ(2s− X1)

)(
1
2
−Φ(2t− X`+1) + Φ(2s− X`+1)

)
.
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Hence,

c2V = E
(

IF2(X1; P, Φ)
)
+ 2 ∑

`≥1
E (IF(X1; P, Φ) IF(X`+1; P, Φ)) ,

where IF(x; P, Φ) was defined in (3.5). The D > 1
2 case in Result 3.4 follows.

3.5.4.3 Pn when D < 1
2

This section considers the limiting distribution of Pn under LRD when D <
1
2 assuming that an unproven conjecture holds true. The basic idea is the
same as for the IQR, which required a Bahadur representation for quantiles
under long range dependence. To our knowledge, an equivalent result for
U-quantiles is still to be established.

Consider the augmented kernel defined in (3.25) and write the Hermite
expansion of G∗n(r)− G(r) as,

G∗n(r)− G(r) =
1

n(n− 1)

[
W̃∗n (r) + R̃∗n(r)

]
, (3.29)

where
W̃∗n (r) = α∗1,1(r)∑

i 6=j
XiXj + α∗2,0(r)∑

i 6=j
(X2

i − 1),

and

R̃∗n(r) = ∑
i 6=j

∑
p,q≥0

p+q>2

α∗p,q(r)
p!q!

Hp(Xi)Hq(Xj).

There has been some progress towards a Bahadur representation for U-
quantiles under strongly dependent sequences. In particular, Wendler (2011,
2012) has a Bahadur representation for U-quantiles and GL-statistics of
strongly mixing random variables and functionals of absolutely regular se-
quences. Whilst these are not long range dependent sequences, the Hodges-
Lehmann estimator is considered and the pairwise mean kernel function
is shown to satisfy the required assumptions. Given the regularity of the
pairwise mean kernel, it is not unreasonable to assume that it would also
satisfy the assumptions for a Bahadur representation of the corresponding
U-quantile under LRD. The following conjecture, has a similar flavour to
the Bahadur representation for quantiles under LRD given by Wu (2005) in
Theorem 3.1.
Conjecture 3.2. Under Assumption 3.2, with h(x, y; r) = I{x + y ≤ 2r},

G−1
n (p)− r =

p− Gn(r)
G′(r)

+
X̄2

n
2

G′′(r)
G′(r)

+ O(nh(D)L1(n))

where h(D) + D < 0 for 0 < D < 1
2 and L1(n) is some slowly varying function.
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Noting that G′′(r)/G′(r) = −2r, letting t = G−1(3
4) and s = G−1(1

4),
assuming Conjecture 3.2 to be true and using the Hermite expansion from
(3.29) we have,(

G∗−1
n (3

4)− G−1(3
4)
)
−
(

G−1(1
4)− G∗−1

n (1
4)
)

=

(
G(t)− G∗n(t)

G′(t)
− tX̄2

n

)
−
(

G∗n(s)− G(s)
G′(s)

− sX̄2
n

)
+ O(nh(D)Lγ(n))

=
W̃∗n (s) + R̃∗n(s)
n(n− 1)G′(s)

− W̃∗n (t) + R̃∗n(t)
n(n− 1)G′(t)

+ (s− t)X̄2
n + O(nh(D)Lγ(n))

=
α∗1,1(s)∑i 6=j XiXj + α∗2,0(s)∑i 6=j(X2

i − 1)
n(n− 1)G′(s)

−
α∗1,1(t)∑i 6=j XiXj + α∗2,0(t)∑i 6=j(X2

i − 1)
n(n− 1)G′(t)

+
R̃∗n(s)− R̃∗n(t)
n(n− 1)G′(t)

− (t− s)X̄2
n + O(nh(D)Lγ(n)). (3.30)

Recalling that α∗1,1(r) = α1,1(r) and α∗2,0(r) = α2,0(r), noting from Result

C.4, α2,0(r) = α1,1(r) and from Result C.3, α1,1(r)
G′(r) = − r

2 , we have,

α∗1,1(s)∑i 6=j XiXj + α∗2,0(s)∑i 6=j(X2
i − 1)

G′(s)

−
α∗1,1(t)∑i 6=j XiXj + α∗2,0(t)∑i 6=j(X2

i − 1)
G′(t)

=
α1,1(s)

(
∑i 6=j XiXj + ∑i 6=j(X2

i − 1)
)

G′(s)

−
α1,1(t)

(
∑i 6=j XiXj + ∑i 6=j(X2

i − 1)
)

G′(t)

=
t− s

2

(
∑
i 6=j

XiXj + ∑
i 6=j

(X2
i − 1)

)
.

We know from Lévy-Leduc et al. (2011a, Lemma 18) that,

nD

n(n− 1)Lγ(n)
R̃∗n(r) = op(1).
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Furthermore, for 0 < D < 1
2 , Conjecture 3.2 assumes that, nh(D)+D → 0 as

n→ ∞. Hence, multiplying both sides of (3.30) by nD/Lγ(n), gives,

nD

Lγ(n)

(
G∗−1

n (3
4)− G∗−1

n (1
4)− [G−1(3

4))− G−1(1
4)]
)

=
nD(t− s)

2n(n− 1)Lγ(n)

[
∑
i 6=j

XiXj + (n− 1)
n

∑
i=1

(X2
i − 1)− 2n(n− 1)X̄2

n

]
+ op(1)

=
nD(t− s)

2n(n− 1)Lγ(n)

[
∑
i 6=j

XiXj + (n− 1)
n

∑
i=1

(X2
i − 1)− 2(n− 1)

n ∑
i,j

XiXj

]
+ op(1)

=
nD(t− s)

2n(n− 1)Lγ(n)

[
n

n

∑
i=1

(X2
i − 1)−∑

i,j
XiXj −

n

∑
i=1

(2X2
i − 1)

]
+ op(1)

=
nD(t− s)

2n(n− 1)Lγ(n)

[
n

n

∑
i=1

(X2
i − 1)−∑

i,j
XiXj

]
+ op(1)

Thus, noting (3.27),

k(D)nD

Lγ(n)
([G−1

n (p)− G−1(p)]− [G−1
n (q)− G−1(q)])

can be written as,

k(D)nD

Lγ(n)
t− s

2n(n− 1)

[
n

n

∑
i=1

(X2
i − 1)−∑

i,j
XiXj

]
+ op(1),

which, similarly to the IQR case, by Lemma C.4, converges in distribution to

t− s
2

[
Z2,D(1)− Z2

1,D(1)
]

.

Hence, with an appropriate correction factor, Conjecture 3.1 follows.
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3.5.5 Results for γ̂P(h)

This section proves the following result for the autocovariance estimator,
γ̂P(h), defined by (3.9).

Result 3.5. Under Assumption 3.2, as n→ ∞,

a. If D > 1
2 ,

√
n(γ̂P(h)− γ(h)) D−→ N (0, σ̆2(h)),

where

σ̆2(h) = E
[
IF2(X1, X1+h; γP, Φ)

]
+ 2 ∑

k≥1
E [IF(X1, X1+h; γP, Φ) IF(Xk+1, Xk+1+h; γP, Φ)] .

b. If D < 1
2 and Conjecture 3.1 holds then,

k(D)nD

L̃(n)
(γ̂P(h)− γ(h)) D−→ γ(0) + γ(h)

2
(Z2,D(1)− Z2

1,D(1)),

where, L̃(n) = 2Lγ(n) + (1 + h
n )
−DLγ(n + h) + (1− h

n )
−DLγ(n− h).

We begin by analysing the properties of the sequences {Xi + Xi+h}i≥1 and
{Xi − Xi+h}i≥1, before applying results found earlier in this section to the
resulting sequences.

The sequence {Xi + Xi+h}i≥1 has a slowly decaying autocovariance func-
tion similar to {Xi}i≥1 with Lγ = L replaced by some slowly varying func-
tion L̃. To see this, let γ+(k) be the autocovariance function for the sequence
{Xi + Xi+h}i≥1, then

γ+(k) = E [(X1 + X1+h)(Xk+1 + X1+h+k)]

= 2γ(k) + γ(k + h) + γ(k− h)

= 2k−DL(k) + (k + h)−DL(k + h) + (k− h)−DL(k− h)

= k−D
[
2L(k) + (1 + h/k)−DL(k + h) + (1− h/k)−DL(k− h)

]
= k−D L̃(k).

Hence results for Pn applied to {Xi + Xi+h}i≥1 have the same form as those
for Pn applied to {Xi}i≥1.
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On the other hand, the sequence {Xi−Xi+h}i≥1 has a fast autocovariance
decay rate. Consider,

γ−(k) = E [(X1 − X1+h)(Xk+1 − X1+h+k)]

= 2γ(k)− γ(k + h)− γ(k− h)

= 2k−DL(k)−
[
(k + h)−DL(k + h) + (k− h)−DL(k− h)

]
= 2k−DL(k)− k−D

[
(1 + h/k)−DL(k + h) + (1− h/k)−DL(k− h)

]
.

Hence, using a binomial series (Abramowitz and Stegun, 1973, p. 822), for
|x| < 1,

(1− x)−m−1 =
∞

∑
n=m

(
n
m

)
xn−m,

we have,

(1 + h/k)−D =
∞

∑
j=0

(
D + j− 1

j

)(
h
k

)j
(−1)j

= 1− h
k

(
D
1

)
+

h2

k2

(
D + 1

2

)
− h3

k3

(
D + 2

3

)
+ . . . ,

and similarly,

(1− h/k)−D =
∞

∑
j=0

(
D + j− 1

j

)(
h
k

)j

= 1 +
h
k

(
D
1

)
+

h2

k2

(
D + 1

2

)
+

h3

k3

(
D + 2

3

)
+ . . . .

Following Lévy-Leduc et al. (2011c) let us impose some quite reasonable
restrictions on the slowly varying function L. Assume Li(x) = xiL(i)(x)
satisfies Li(x)/xε = O(1), for some ε ∈ (0, D), as x → ∞ for all i = 0, 1, 2, 3
where L(i) is the ith derivative of L.

Using a series expansion, we have,

L(k + h) = L(k) +
L(1)(k)

1!
h +

L(2)(k)
2!

h2 +
L(3)(k)

3!
h3 + . . . ,

and similarly,

L(k− h) = L(k)− L(1)(k)
1!

h +
L(2)(k)

2!
h2 − L(3)(k)

3!
h3 + . . . .
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Thus,

(1 + h/k)−DL(k + h) + (1− h/k)−DL(k− h)

= 2
[

L(k) + L(k)
h2

k2

(
D + 1

2

)
− L(1)(k)h

h
k

(
D
1

)
− L(1)(k)h

h3

k3

(
D + 2

3

)
+

L(2)(k)h2

2
+

L(2)h2

2
h2

k2

(
D + 1

2

)
− L(3)(k)h3

3!
h
k

(
D
1

)
− L(3)(k)h3

3!
h3

k3

(
D + 2

3

)
+ . . .

]
.

Hence,

γ−(k) = 2k−DL(k)− k−D
[
(1 + h/k)−DL(k + h) + (1− h/k)−DL(k− h)

]
= −2k−2−DL(k)h2

(
D + 1

2

)
+ 2k−1−DL(1)(k)h2

(
D
1

)
+ 2k−3−DL(1)(k)h4

(
D + 2

3

)
− 2k−D L(2)(k)h2

2

− 2k−2−D L(2)(k)h4

2

(
D + 1

2

)
+ 2k−1−D L(3)(k)h4

3!

(
D
1

)
+ . . .

∼ O(k−2−D+ε).

Having established the autocovariance decay rate for the sequences {Xi ±
Xi+h}i≥1, we can now look to the asymptotic behaviour of Pn when applied
to these sequences.

3.5.5.1 γ̂P(h) when D > 1
2

Let p = 3
4 and q = 1

4 with t = G−1(p) and s = G−1(q). As the series
{Xi + Xi+h}i≥1 behaves similarly to {Xi}i≥1 for all 0 < D < 1 we can apply
results from Section 3.5.4.2,

√
n(Pn − P) = c

√
n
[
(G−1

n (p)− G−1
n (q))− (G−1(p)− G−1(q))

]
= c
√

n
[

G(t)− Gn(t)
G′(t)

− G(s)− Gn(s)
G′(s)

]
+ op(1)

= c
√

n
[

2 ∑i h1(Xi; s)
nG′(s)

− 2 ∑i h1(Xi; t)
nG′(t)

− Rn(t)
G′(t)

+
Rn(s)
G′(s)

]
+ op(1)

=
2c√

n

[
n

∑
i=1

Φ(2s− Xi)− 1
4 −Φ(2t− Xi) + 0.75

G′(t)

]
+ op(1)

=
c√
n

n

∑
i=1

IF(Xi; P, Φ) + op(1),
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noting that G′(s) = G′(t) =
√

2φ(t
√

2) and
√

nRn(t) = op(1). Hence, for
D > 1

2 ,

√
n− h(P+,n−h − P(Φ+)) =

c√
n− h

n−h

∑
i=1

IF(Xi + Xi+h; P, Φ+) + op(1).

As {Xi − Xi+h}i≥1 behaves like a SRD process, that is, it satisfies Assump-
tion 3.1, we can use results directly from Section 3.4. In particular, we have
that

√
n(F−,n−h − Φ−) converges in distribution to a Gaussian process in

D(I) (Csörgó and Mielniczuk, 1996). Hence, we can use the expansion
(3.14),

√
n− h(P−,n−h − P(Φ+)) =

c√
n− h

n−h

∑
i=1

IF(Xi − Xi+h; P, Φ−) + op(1).

Using the delta method, γ̂P(h) satisfies the following asymptotic expansion,
just as we had in the SRD case in Section 3.4.2,

√
n− h (γ̂P(h)− γ(h)) =

1√
n− h

n−h

∑
i=1

IF(Xi, Xi+h; γP, Φ) + op(1)

where IF(Xi, Xi+h; γP, Φ) is defined in (3.10). As in the SRD case, the asymp-
totic normality follows from a CLT for 1√

n−h ∑n−h
i=1 IF(Xi, Xi+h; γP, Φ), estab-

lished by noting that the Hermite rank is m = 2 and applying Theorem C.2
(page 159).

3.5.5.2 γ̂P(h) when D < 1
2

We can write, γ̂P(h)− γ(h) = A+
n − A−n , where,

A±n =
1
4

[
P2
±,n−h − P2(Φ±)

]
.

As {Xi − Xi−h}i≥1 satisfies Assumption 3.1,
√

n(F−,n−h −Φ−) converges
in distribution to a Gaussian process in D(I) (Csörgó and Mielniczuk, 1996)
with a standard convergence rate of

√
n. Hence,

√
n− h(P−,n−h − P(Φ−)) = Op(1),

and similarly, via the delta method,
√

n− h(P2
−,n−h − P2(Φ−)) = Op(1).

Therefore, for D < 1
2 ,

k(D)(n− h)D−1/2

L̃(n− h)

√
n− hA−n = op(1).
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Now if we consider A+
n , we know that {Xi + Xi+h}i≥1 exhibits LRD be-

haviour in a similar way to {Xi}i≥1, and hence using the approach from
Section 3.5.4.3,

k(D)(n− h)D

L̃(n− h)
(P+,n−h − P(Φ+))

D−→ P(Φ+)

2

[
Z2,D(1)− Z2

1,D(1)
]

.

Using the delta method we have,

k(D)(n− h)D

L̃(n− h)

(
P2
+,n−h − P2(Φ+)

) D−→ P2(Φ+)
[

Z2,D(1)− Z2
1,D(1)

]
.

Hence,
k(D)(n− h)D

L̃(n− h)
A+

n
D−→ P2(Φ+)

4
(Z2,D(1)− Z2

1,D(1)).

Combining these results, the A+
n term determines the asymptotic distribu-

tion of γ̂P as A−n is dominated by the convergence rate of A+
n . Hence, noting

that P2(Φ+) = var(X1 + Xh) = 2(γ(0) + γ(h)),

k(D)(n− h)D

L̃(n− h)
(γ̂P(h)− γ(h)) D−→ γ(0) + γ(h)

2
(Z2,D(1)− Z2

1,D(1)).

3.6 simulations

This section presents a selection of simulation results to highlight the re-
lative efficiencies for both short and long range dependent processes. We
also illustrate the difference in limiting distributions for LRD processes and
explore the impact contamination has on the classical estimators relative to
robust techniques.

Table 3.1 gives the relative MSEs for robust autocovariance estimators
based on Pn and Qn when the underlying data follow a SRD AR(1) pro-
cess, Xi = αXi−1 + εi, where {εi}i≥1 are iid Gaussian random variables and
α = 0.5. In this setting, there is negligible bias, so the relative efficiencies and
relative MSEs are the same. In small samples, the method based on Pn has
an advantage over Qn, similar to that found in Section 2.5. The efficiencies
were reasonably constant for the variance and first and second order auto-
covariances. For both the methods based on Pn and Qn, the relative MSEs

increased as the sample size increases, as is the case in the iid setting.
In the LRD setting, Figure 3.9 shows an example of the types of time series

considered. The top left plot shows an example of an ARFIMA(0, 0.1, 0)
process which corresponds to D = 0.8, hence scale and autocovariance es-
timators have a normal limiting distribution. The top right plot shows an
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Figure 3.9: Example data series for an ARFIMA(0, 0.1, 0) model (left) and
ARFIMA(0, 0.4, 0) model (right). The same series with 1% of observa-
tions have contamination fixed at 5 (middle) and 10 (bottom).
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ARFIMA(0, 0.4, 0), hence D = 0.2, it appears less stationary than the top
left plot and the distributions of the scale and autocovariance estimators are
expected to have a non-normal limit. In the middle panel, the same data set
has been subject to 1% random contamination where all contaminated ob-
servations have been set to the value 5. If the outliers were jittered, it would
be far more difficult to identify them in the D < 1

2 plot, where the variability
is much higher, than in the D > 1

2 plot. Indeed, on the right, where D < 1
2 ,

one true observation is less than -5. In the bottom panel, 1% of observations
have been fixed with the value 10. In this case, the outliers are extreme and
clearly different to the rest of the series. The length of the series is n = 2000.

The empirical densities of normalised scale estimates corresponding to
the scenarios found in Figure 3.9 are given in Figure 3.10. The top left panel,
with no contamination, demonstrates the normal limiting distribution for
the SD, Pn, Qn and IQR. In terms of efficiency, Pn is 87% efficient relative to
the SD, Qn is 82% efficient and the IQR has only 38% efficiency. The heavier
tails are a clear indicator of the relative inefficiency of the IQR.

All densities are centred at zero indicating that the scale estimators are
consistently estimating the true value. This can also be seen in Table 3.2
where the variance and first and second order autocovariance estimates are
unbiased for the true parameter values for all estimators over all sample
sizes, in fact the three methods are virtually indistinguishable to 2 decimal
places. As such, the relative MSEs are very similar to the relative efficiencies,
see Table C.1 in Appendix C (page 167) for more detailed results.

When 1% contamination is added to the model, there is a limited amount
of bias introduced in the robust methods, however, the SD experiences a

Pn Qn

n γ(0) γ(1) γ(2) γ(0) γ(1) γ(2)

20 0.80 0.74 0.67 0.72 0.71 0.61

50 0.86 0.82 0.78 0.80 0.80 0.76

100 0.88 0.86 0.84 0.83 0.83 0.81

500 0.90 0.89 0.89 0.87 0.86 0.86

1000 0.90 0.89 0.89 0.87 0.86 0.86

Table 3.1: MSEs of robust estimators relative to the classical methods over 100, 000
replications from an AR(1) process with α = 0.5.
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significant amount of bias. For the robust methods, there is negligible dif-
ference between the middle and bottom plots where the outliers have been
moved from moderate (at 5) to extreme (at 10), indicating that they have
reached their maximum bias for the 1% one-sided contamination and are
resilient to the magnitude of the outliers. For a fixed proportion of contam-
ination, the SD will continue to increase as the size of the outliers increases.

On the right hand side of Figure 3.10 where D < 1
2 , we clearly have a non-

normal limit distribution as the empirical distributions of the normalised
estimates are right skewed. This is not surprising given that it is a combina-
tion of a Rosenblatt process and a χ2 distribution. In the top panel, we see
again that the IQR appears to be slightly less efficient than the SD, but the
difference is less marked than in the D > 1

2 case. In fact, Pn and Qn both
have a similar relative efficiency of 93% and the IQR is 76% efficient relative
to the SD.

It is important to note that there is significant bias in all the estimators
when D < 1

2 . This is to be expected given that the limiting distribution not
having mean zero. In particular Lévy-Leduc et al. (2011a) show that,

E(Z2,D(1)− Z2
1,D(1)) = −

2k(D)

(1− D)(2− D)
.

This is highlighted even more dramatically in Table 3.3, where the estim-
ated variances are, on average, well below the true values and similarly for
the estimated autocovariances. There is also evidence of finite sample bias
with slow convergence towards the limiting value. As a result, the MSEs are
primarily driven by the bias, see Table C.2 in Appendix C for further detail.

When 1% contamination fixed at 5 is introduced, the SD begins to shift
to the right, though the difference is not as marked as in the D > 1

2 case.

Pn Qn SD

n γ(0) γ(1) γ(2) γ(0) γ(1) γ(2) γ(0) γ(1) γ(2)

100 1.01 0.09 0.04 1.01 0.09 0.04 0.99 0.09 0.04

500 1.02 0.11 0.06 1.02 0.11 0.06 1.01 0.11 0.06

1000 1.02 0.11 0.06 1.02 0.11 0.06 1.02 0.11 0.06

Table 3.2: Average estimates over 100,000 replications from an ARFIMA(0, 0.1, 0)
process with no contamination. The true values are γ(0) = 1.02, γ(1) =
0.11 and γ(2) = 0.07.
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Figure 3.10: Empirical densities of normalised scale estimates for ARFIMA(0, 0.1, 0)
models,

√
n(S − σ), (left) and ARFIMA(0, 0.4, 0) models, nD(S − σ),

(right) over 100,000 replications. The top row is based on estimates
from samples with no contamination, the samples for the middle row
have 1% contamination fixed at 5 and the samples for the bottom row
have 1% contamination fixed at 10.
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Pn Qn SD

n γ(0) γ(1) γ(2) γ(0) γ(1) γ(2) γ(0) γ(1) γ(2)

100 1.34 0.64 0.47 1.33 0.62 0.45 1.30 0.60 0.43

500 1.53 0.84 0.67 1.52 0.83 0.66 1.51 0.82 0.65

1000 1.59 0.90 0.73 1.59 0.90 0.73 1.58 0.89 0.72

Table 3.3: Average estimates over 100,000 replications from an ARFIMA(0, 0.4, 0)
process with no contamination. The true values are γ(0) = 2.07, γ(1) =
1.38 and γ(2) = 1.21.

The shift is more evident when the contamination is fixed at 10. The robust
methods remain relatively unaffected by the contamination.

Figure 3.11 presents similar results for the first order autocovariances. In
the D > 1

2 case, the contamination leads to reduced efficiency in the SD with
a slight negative bias. This behaviour is due to the corruption interfering
with the ability of the classical method to discern the dependence structure
between observations one lag apart, hence it is tending towards zero when
the true value is γ(1) = 2

3 . Furthermore, the classical method is increas-
ingly likely to return extreme estimates as the magnitude of the corruption
increases. In the D < 1

2 , the behaviour is less marked, with all estimators
returning broadly similar results with the various levels of contamination.
An issue in practice, would be that the calculation of autocorrelations relies
on an estimate of the scale (specifically the variance), which is failing for the
standard deviation in contaminated samples.

3.7 conclusion

In this chapter we confirmed that the good robustness and efficiency prop-
erties of Pn carried through to the covariance and autocovariance setting.
Straightforward application of existing theory enabled us to write down
the breakdown value, influence function and asymptotic efficiency for γ̂P.
We also established that correlation estimates based on Pn had good finite
sample efficiency relative to the SD and other robust estimates for bivari-
ate t distributions. The relative efficiencies in the bivariate setting closely
mirrored what was previously found in Chapter 2.
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Figure 3.11: Empirical densities of normalised autocovariance estimates for
ARFIMA(0, 0.1, 0) models (left) and ARFIMA(0, 0.4, 0) models (right)
over 100,000 replications. The top row has no contamination, the
middle has 1% contamination fixed at 5 and the bottom row has 1%
contamination a fixed at 10.
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We found the asymptotic distribution for Pn under short and long range
dependence when the level of dependence was not too high (D > 1

2 ). While
the resulting limit was the same in both situations, the derivation is quite dif-
ferent. The SRD approach mirrored closely that of Lévy-Leduc et al. (2011c)
for a single U-quantile, which was applied to obtain results for Qn. However,
the derivation of results for Pn was somewhat more involved as we needed
to deal with the difference of two U-quantiles. Our LRD approach required a
subtle augmentation of the kernel function in order to apply existing results.

In the long range dependence setting with extreme levels of dependence,
D < 1

2 , we conjectured that the limiting distribution of Pn is the same as
that previously established for other common scale estimators such as the
SD and Qn. This conjecture is supported by simulations.

Furthermore, we established that the IQR similarly follows the same non-
normal distribution (a combination of the Rosenblatt and χ2 distributions),
which, to the best of our knowledge has not previously been established. In
proving the non-normal limit for the IQR we relied upon a Bahadur repres-
entation for the sample quantiles.

In the simulations we demonstrated that the robust methods perform
comparably to the classical approach when there is no contamination and
the robust estimates remain bounded when contamination is introduced
into the model. There is significant bias for all estimators when D < 1

2
owing to the asymmetric limiting distribution which does not have mean
zero.
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C O VA R I A N C E A N D P R E C I S I O N M AT R I X E S T I M AT I O N

4.1 introduction

Robust estimation of covariance matrices is one of the most challenging
and fundamental issues in modern applied statistics. Through a natural ex-
tension to the covariance estimators considered in Chapter 3, this chapter
investigates the contribution robust scale estimators can have in the estima-
tion of the dependence structure in multivariate data sets.

Robust estimation of covariance matrices has received much attention in
the past, notably the minimum volume ellipsoid and MCD estimators, pro-
jection type estimators and M-estimators, see Hubert, Rousseeuw and Van
Aelst (2008) for a survey. Furthermore, research into covariance matrix es-
timation and its applications is ongoing, see for example Filzmoser, Ruiz-
Gazen and Thomas-Agnan (2014) who use the MCD estimator to construct
robust Mahalanobis distances to identify local multivariate outliers; Hubert,
Rousseeuw and Vakili (2014) who study the shape bias of a range of exist-
ing robust covariance matrix estimators; or Cator and Lopuhaä (2010, 2012)
who consider asymptotic expansions and establish asymptotic normality for
general MCD estimators.

An alternative is to estimate the covariance matrix in a component-wise
manner based on a robust estimator of scale as outlined by Ma and Genton
(2001). It is well known that the resulting symmetric matrix is not guaran-
teed to be positive definite (PD). Methods to ensure the resulting estimator
is PD have previously been explored by Rousseeuw and Molenberghs (1993)
with notable updates in the robustness literature by Maronna and Zamar
(2002) and quite separately in the finance literature by Higham (2002).

Often it is the precision matrix, the inverse of the covariance matrix, that
is the statistic of interest, for example in linear discriminant analysis or
Gaussian graphical model selection. Rather than focussing on the covari-
ance matrix, this chapter is primarily concerned with robustly estimating
the precision matrix. Whilst there is an obvious link between covariance
matrices and precision matrices, it is not obvious that a good (robust) es-
timator for one results in a good estimator for the other. We will employ

100
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robust pairwise covariance matrices as a starting point for various regular-
isation techniques to facilitate the estimation of robust, potentially sparse,
precision matrices. We also discuss why it is often inappropriate to directly
invert existing pairwise covariance matrix estimators to find robust non-
sparse precision matrices.

A detailed simulation study has been undertaken to assess the perform-
ance of a variety of estimators over a number of scenarios and levels of p
while keeping the sample size fixed. Our results are distilled from a com-
prehensive range of performance indices which will be introduced and their
applicability to the various scenarios discussed.

We analyse the impact of cellwise contamination on the estimators. While
cellwise contamination is common in the missingness literature, it is an
emerging area of research in robust statistics, defined formally in the ro-
bustness context by Alqallaf et al. (2009). This alternative form of contam-
ination represents a philosophical divergence from the traditional approach
to robustness, which is primarily concerned with contaminated observation
vectors.

It will be shown that the pairwise nature of the covariance estimates en-
ables the resulting precision matrix to have a higher level of robustness than
when using standard robust covariance matrix estimation procedures in the
presence of scattered contamination. This is a novel result and a significant
first step towards dealing with cellwise contamination in this context.

The remainder of this chapter is structured as follows. Section 4.2 out-
lines the scattered contamination model and highlights why standard ro-
bust techniques fail in this setting. Section 4.3 considers the suitability of
various performance indices that are later used to assess the performance
of various covariance and precision matrix estimators. Sections 4.4 and 4.5
provide basic theory for existing pairwise covariance matrix estimation tech-
niques and regularisation routines and outlines our new procedure which
combines robust pairwise covariance matrix estimation with regularisation.
Section 4.6 presents the results of an extensive simulation study and Section
4.7 summarises the important findings.
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4.2 scattered contamination

Classically, even the most robust procedures are designed such that they only
work when at most 50% of the rows in the n× p data matrix have contam-
ination present. In the discussion section of a survey paper on robust stat-
istics, Maronna and Yohai specifically highlight elementwise contamination
as an important focus for future developments in robustness (Morgenthaler,
2007).

Alqallaf et al. (2009) formally outline the cellwise contamination model as
an extension of the standard Tukey-Huber contamination model which was
first introduced in the univariate location-scale setup. In the multivariate
setup, we observe the random vector,

x = (I − B)y + Bz,

where y ∼ F, the distribution of well-behaved data, z ∼ G, some outlier gen-
erating distribution and B = diag(B1, . . . , Bp) is a diagonal matrix, where
B1, . . . , Bp are Bernoulli random variables, P(Bi = 1) = εi. For simplicity, we
will assume that y, B and z are independent. This is similar to the missing
completely at random model, where the missingness does not depend on
the values of y, see, for example, Little and Rubin (2002).

Clearly, it is the structure of B that determines the contamination model.
If B1, . . . , Bp are fully dependent, then B = BIp, where B ∼ B(1, ε), and
we recover the fully dependent contamination model, the standard model
on which classical robust procedures are based. In this setting, the prob-
ability that an observation is uncontaminated, 1− ε, is independent of the
dimensionality. Furthermore, the proportion of contaminated observations
is preserved under affine equivariant transformations.

In contrast, if B1, . . . , Bp are mutually independent we have the fully in-
dependent contamination model, where each element of x comes from F or
G independently of the other p− 1 elements in x. In this setting, it may be
be unreasonable to assume that less than half the rows have contamination.
Furthermore, if p is large and there is only one outlier in an observation
vector, then down-weighting the entire observation may be wasteful.

If the data matrix is randomly contaminated in this elementwise manner,
as the number of variables increases, the chance that more than half the
rows are contaminated increases exponentially. Formally, let ε be the prob-
ability that any particular element in a data matrix is contaminated. Assum-
ing the contamination is randomly scattered throughout the data matrix,
the probability that any particular row has no contamination is (1 − ε)p,
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Figure 4.1: On the left, heat map of a data matrix with 30 variables and 100 obser-
vations. 10% of the observations have been contaminated (represented
in white) scattered throughout the data set. On the right, the probabil-
ity that any particular row (observations) in the data matrix that will
be contaminated, 1− (1− ε)p, over a range of ε, the proportion of cells
effected by scattered contamination.



4.2 scattered contamination 104

which quickly decays towards zero even for small values of ε. For example,
if p = 30 and ε = 0.1, then the probability that any particular row remains
uncontaminated is only 4%. This is demonstrated graphically in Figure 4.1.
The plot on the left shows a 100× 30 data matrix where 10% of the cells
have been contaminated, the white cells. While virtually all the rows of the
data matrix have at least one contaminated element, the majority of cells
remain uncontaminated in the sense that they are still real measurements
from the underlying data generating process. Even if ε = 0.03, the prob-
ability that any particular row is uncontaminated is 40%, however with a
sample size of 100, this translates to a 98% chance that at least half the rows
are contaminated, in which case standard robust methods fail.

It is important to note that the fully independent contamination model
lacks affine equivariance, in the sense that linear combinations of columns
of a contaminated data set result in “outlier propagation” (Alqallaf et al.,
2009). As such, affine equivariance is not an achievable outcome for any
estimator in this setting.

Existing research into the problem of scattered contamination has fo-
cussed on coordinatewise procedures, that only operate on one column at a
time. Croux, Filzmoser et al. (2003) consider an approach based on “altern-
ating regressions” using weighted L1 regression, Maronna and Yohai (2008)
use a coordinatewise procedure for principal component analysis. Liu et al.
(2003) have an application involving the singular value decomposition of
microarray data and De la Torre and Black (2001) consider cellwise contam-
ination in the context of computer vision.

We show that a pairwise approach is able to cope with much higher
levels of scattered contamination than existing classical robust estimators. In
our simulations we do not use the fully independent contamination model,
rather, we impose restrictions on the amount of contamination in each vari-
able. As such the contamination is no longer strictly independent, however,
the advantage is that we are able to assess the impact over various known
levels of contamination in each variable.
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4.3 performance indices

The following sections require a way to assess the performance of various
covariance and precision matrix estimators under cellwise contamination.
There are a range of possible ways to measure how close an estimated mat-
rix is to the true value. In order to assess the performance of our proposed
estimators, we first need to identify which performance indices are appro-
priate. One class of performance indices considered are matrix norms which
measure the size of a matrix. The second class looks at how closely the
estimated precision (or covariance) matrix reflects the nature of the theoret-
ical precision (covariance) matrix, through either the determinant, condition
number or an overall entropy loss index. Let Σ denote the true covariance
matrix and Θ = Σ−1 denote the true precision matrix. In this section we
define the performance measures and consider their appropriateness in the
context of scattered contamination.

4.3.1 Matrix norms

We need only consider square matrices. Let A and B be p × p matrices.
Matrix norms are mappings which satisfy the following criteria (Gentle,
2007):

i. ||A|| ≥ 0 and ||A|| = 0 ⇐⇒ A = 0;

ii. ||cA|| = |c| ||A|| for c ∈ R;

iii. ||A + B|| ≤ ||A||+ ||B||; and

iv. ||AB|| ≤ ||A|| ||B||.

The Frobenius norm is perhaps the most common matrix norm, it is an
element-wise norm, the Euclidean norm of A treated as if it were a vector
of length p2,

||A||F =
√

∑
i,j
|aij|2 =

√
tr(AᵀA).

Note that ||Aᵀ||F = ||A||F.
An alternative way of constructing a matrix norm is to take a vector norm

and use it to generate a matrix norm of the form:

||A|| = sup
||x||=1

||Ax||,
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where || · || on the left is the induced (or operator) norm and || · || on the
right is a vector norm. Examples of induced norms are the Lp norms:

• The one norm or the column sum norm, is the maximum column-wise
sum after taking the absolute values of all the elements in the matrix,

||A||1 = max
j

n

∑
i=1
|aij|.

• The infinity norm or the row sum norm, is the maximum row-wise
sum after taking the absolute values of all the elements in the matrix,

||A||∞ = max
i

n

∑
j=1
|aij|.

Note that ||Aᵀ||∞ = ||A||1 so if A is symmetric then the one norm and
the infinity norm coincide.

• The spectral norm, ||A||2 = σmax(A), where σmax(A) is the largest
singular value of A. When A is nonsingular ||A−1||2 = 1/σmin(A)

where σmin(A) is the smallest singular value of A.

Note that σmax(A) =
√

λmax(AᵀA) where λmax(AᵀA) is the largest
eigenvalue of AᵀA. Hence, as the positive eigenvalues of AᵀA are the
same as those of AAᵀ, singular values are invariant to matrix trans-
position and we have ||Aᵀ||2 = ||A||2.

In our experiments, we apply the matrix norms to A = Σ0 − I where
Σ0 = Σ−1Σ̂ or A = Θ0 − I where Θ0 = Θ−1Θ̂. While Σ and Θ and their
corresponding estimates are symmetric, it is not the case that the product of
two symmetric matrices yields a symmetric matrix, hence in general Σ0 6=
Σ
ᵀ
0 and similarly Θ0 6= Θ

ᵀ
0 , so in practice the one norm and the infinity norm

may yield different results. Furthermore, while Σ, Θ, Σ̂ and Θ̂ are typically7

PSD, it is also not the case that the product of two of these will also be PSD.
Meenakshi and Rajian (1999) make the point that if A and B are PSD then
AB will also be PSD if and only if AB is normal, i.e. (AB)ᵀAB = AB(AB)ᵀ

which is typically not the case here.
For each norm, one may naïvely assume that the closer to zero the better

(as they are all positive), however, Section 4.3.3 demonstrates that this is
not always the case, particularly when estimating precision matrices in the
presence of outliers.

7 The estimated covariance matrices will only be non-positive semidefinite (PSD) in the case
where Σ̂ has been obtained in a component-wise manner and has not had the OGK or NPD

method applied to it.
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4.3.2 Other indices

Aside from matrix norms, there are a few other commonly employed per-
formance indices. Let Γ be a p× p matrix representing either the precision or
the covariance matrix with corresponding estimate, Γ̂. We apply the indices
in this section to standardised covariance or precision matrices, Γ0 = Γ−1Γ̂.
If Γ̂ is close to Γ then Γ0 should be close to an identity matrix.

4.3.2.1 Entropy loss

The entropy loss, as suggested by Stein (1956) and featured in James and
Stein (1961) and also Dey and Srinivasan (1985), is defined as,

L1(Γ, Γ̂) = tr(Γ−1Γ̂)− log det(Γ−1Γ̂)− p

=
p

∑
i=1

(λi − log λi)− p,

where λi, i = 1, . . . , p, are the eigenvalues of Γ0. Stein (1956) notes that this
function is “somewhat arbitrary” but it is convex in Γ̂ and assuming that Γ

and Γ̂ are PSD, L1(Γ, Γ̂) ≥ 0 with equality if and only if Γ = Γ̂. If Γ̂ = S,
the sample covariance matrix and p > n, then S is singular and therefore
L1(Σ, S) = ∞.

The entropy loss is not as “arbitrary” as it may seem at first. Note that the
Kullback-Leibler divergence from N1(µ, Σ1) to N2(µ, Σ2) is,

DKL(N1,N2) =
1
2

L1(Σ1, Σ2).

The close link between the entropy loss and the Kullback-Leibler or Breg-
man divergence loss is shown in a Bayesian context by Gupta and Srivastava
(2010).

There is also a clear link between the entropy loss and the likelihood ratio
test for H0 : Σ = Σ? with unknown mean assuming the data come from a
Gaussian distribution,

−2(l1 − l0) = nL1(Σ
?, S),

where l0 and l1 are the log likelihoods under the null and alternative hypo-
theses, see, for example Mardia, Kent and Bibby (1979, p. 126).

The entropy loss is used extensively as a basis for developing and assess-
ing improved precision and covariance matrix estimators, for example in
Lin and Perlman (1985), Yang and Berger (1994) and more recently, Won
et al. (2013).
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4.3.2.2 Log determinant

In the multivariate Gaussian setting, Wilks (1932) names the determinant of
the covariance matrix, LD(Σ), the generalised variance. The generalised pre-
cision is similarly defined as, LD(Θ). This idea can be used as the basis for a
performance index. Consider the log of the determinant of the standardised
covariance or precision matrix,

LD(Γ0) = log det(Γ0) =
p

∑
i=1

log λi,

where λi, i = 1, . . . , p, are the eigenvalues of Γ0. The determinant of an
identity matrix is 1, so the optimal value of LD(Γ0) is 0. Positive (negative)
log determinant results indicate that the generalised variance or precision
is being over (under) estimated. Noting that, Σ−1

0 = Σ̂−1Σ = Θ
ᵀ
0 , we have,

det(Θᵀ
0 ) = det(Θ0) and det(Σ−1

0 ) = [det(Σ0)]
−1 and hence,

LD(Θ0) = −LD(Σ0).

Thus, methods that underestimate the generalised variance will overestim-
ate the generalised precision.

The log determinant is a very crude performance index which can be
dominated by one eigenvalue that is very close to zero. Furthermore, it is
incorporated as part of the entropy loss, L1(Γ, Γ̂), so there is little need to
focus on it in the results of the simulation studies presented later.

4.3.2.3 Log condition number

Formally, the condition number of a square matrix is the product of the
norm of the matrix and the norm of its inverse,

κ(Γ0) = ||Γ−1
0 || · ||Γ0||,

and hence depends on the choice of matrix-norm. It is common to use the
spectral norm, in which case the condition number is the ratio of the largest
to the smallest non-zero singular value of the matrix.

The condition number associated with the systems of equations, Ax = b,
gives a bound on how inaccurate the solution may be. A system is said to be
ill-conditioned if small changes in the inputs, A and b, result in large changes
in the solution, x. Consider the performance index defined as the log of the
condition number of Γ0,

Lκ(Γ0) = log κ(Γ0) = log(σmax(Γ0))− log(σmin(Γ0)).
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Figure 4.2: A series of boxplots showing the eigenvalues of the sample covariance
matrix, S over N = 100 samples from N (0, I) with n = 100 and p = 30,
60 and 90.

The condition number for an identity matrix is 1 and the condition num-
ber for a singular matrix is infinity, so the log condition number index
ranges from zero (best) to infinity (worst).

Gentle (2007) notes that while the condition number of a matrix provides
a useful indication of its ability to solve linear equations accurately, it can
be misleading at times when the rows (or columns) of the matrix have very
different scales. That is, the condition number can be changed by simply
scaling the rows or columns which does not actually make a linear system
of equations any better or worse conditioned. This is known as artificial
ill-conditioning.

In the context of the sample covariance matrix, S, Ledoit and Wolf (2004)
note that “when the ratio p/n is less than one but not negligible, the sample
covariance matrix is invertible but numerically ill-conditioned, which means
that inverting it amplifies estimation error dramatically.” Won et al. (2013)
go further stating that “the eigenstructure [of S] tends to be systematic-
ally distorted unless p/n is extremely small, resulting in numerically ill-
conditioned estimators for Σ.” Figure 4.2 demonstrates the systematic de-
terioration in the eigenstructure as p/n → 1. The eigenvalues of the true
covariance matrix are all identically 1, however this is not reflected in the
eigenvalues of the estimated sample covariance matrices.

As with the log determinant, it is not expected that the log condition
number will be a particularly discerning performance index. In assessing
whether a robust estimator provides reasonable estimates, it will be enough
to note that the log condition number remains bounded.
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4.3.2.4 Quadratic loss

Another index that is frequently used in the literature to assess the perform-
ance of covariance matrix estimators is the quadratic loss. The exact specific-
ation varies from paper to paper, for example Ledoit and Wolf (2004) define
it as,

L2(Γ̂) = ||Γ̂ − Γ||2F,

However, their use of this performance index is confounded with their pro-
posed estimator, in the sense that they were constructing an estimator that
minimised the expected quadratic loss, and then used the expected quad-
ratic loss to evaluate the performance of their estimator.

A specification of the quadratic loss, more in line with the entropy loss, is
used in Won et al. (2013),

LQ(Γ̂, Γ) = ||Γ̂Γ−1 − I||2F.

It is obvious that the quadratic loss is intrinsically linked to the Frobenius
norm, so there is no need to include it as a separate performance index in
our simulations.

4.3.3 Behaviour of performance indices

The performance indices outlined in this section are typically used to com-
pare competing estimators in uncontaminated data sets. Contaminated data
will have potentially severe implications for structure and size of the estim-
ated precision and covariance matrices, and it is not clear how these indices
will behave in such settings. As such, we begin our investigation by explor-
ing how these indices react to the presence of gross outliers in a data set.

The model used to assess the behaviour of the various performance in-
dices is typical of that which will be used in the simulation study, n = 100
observations drawn from the standard multivariate Gaussian distribution,
N (0, I), with p = 30.

4.3.3.1 Inflated variances

This section explores how the various performance indices react if we artifi-
cially inflate the variance of the first variable, i.e. increase the value of s11 in
the sample covariance matrix, S = (sij), based on a single sample of uncon-
taminated data. In this simple case, where Σ = Θ = I, the matrix norms are
applied to S− I or S−1 − I and the entropy loss, log determinant and log
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Figure 4.3: The impact of artificially inflating the size of the top left element of the

sample covariance matrix, s11, on each of the performance indices when
applied to the resulting covariance matrix.
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Figure 4.4: The impact of artificially inflating the size of the top left element of the
sample covariance matrix, s11, on each of the performance indices when
applied to the resulting precision matrix.
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Figure 4.5: The change in few elements of Θ̂ = S−1 as s11 is artificially inflated.

Main diagonal elements are in the top row and the off diagonal elements
are in the bottom row. Note that S = (sij) and Θ̂ = (θ̂ij).

condition number are simply applied to S or S−1. Note that in this setting
the one norm and the infinity norm will give identical results and so only
the results for the one norm are shown.

Figure 4.3 shows the behaviour of the various indices when applied to
these adjusted covariance matrices and Figure 4.4 presents the same for the
resulting precision matrices, Θ̂ = S−1. The horizontal axis shows the size
of s11, the artificially inflated variance of the first variable in the sample
covariance matrix.

In Figure 4.3, the majority of the performance indices behave similarly in
the covariance case – there is an overall positive trend as the variance of the
first variable increases. The spectral norm and Frobenius norm both increase
uniformly with s11. The one norm, and correspondingly the infinity norm
(not shown), remains flat as the sum of the absolute value of the elements
in another column (or row) remains larger than the first column (row) up
until the point where s11 ≈ 2, at which point the one norm (and infinity
norm) increase linearly with s11. For large s11, it is clear that all considered
performance indices register that the adjusted S matrix is no longer close to
the true value, I.
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In stark contrast, Figure 4.4 shows the indices when applied to the res-
ulting precision matrix (after the first entry in the covariance matrix has
been artificially inflated). As expected, the condition number of the res-
ulting inverse is identical to that of the original covariance matrix and
LD(S−1) = −LD(S), however the other indices exhibit somewhat different
behaviour. In particular the matrix norms tend to decrease, rather than in-
crease. This is explained by noting that as the first element in the covariance
matrix is artificially inflated, the first row and column of the precision mat-
rix decay towards zero while the other elements are more or less constant.
This is demonstrated in Figure 4.5 where θ̂11 and θ̂21 both tend towards
zero whereas the other main diagonal and off diagonal elements remain
quite stable as the level of contamination increases. However, the Frobenius
norm, an elementwise norm, exhibits a minimum turning point before level-
ling off. This is due to the first row and column converging rapidly to zero,
often from relatively large starting points, whereas the convergence of the
other elements is not as drastic and not necessarily shrinking towards zero,
hence the upward trend.

The entropy loss also broadly exhibits similar behaviour in both Figure
4.3 and 4.4. The minimum turning point in Figure 4.4 is somewhat similar
to that of the Frobenius norm and is explained by noting that this is due
to the competition between the sum of eigenvalues and the sum of the logs
of the eigenvalues – the sum of the eigenvalues decays quite quickly before
levelling off as s11 increases, whereas the sum of the logs of the eigenvalues
decays much more slowly, as shown in Figure 4.6. Regardless, it is clear that
the entropy loss tends to reflects the impact of the inflated variance in both
the covariance matrix and the resulting precision matrix.

4.3.3.2 Contamination in the data

Instead of directly manipulating the estimated covariance matrix, consider
introducing contamination into the original data set and observing what
effect that has on the performance metrics applied to the covariance and
resulting precision matrix. For each level of contamination we take N =

1000 samples fromN (0, I). For each sample we estimate the classical sample
covariance matrix, S, and take the inverse to obtain Θ̂ = S−1.

Figures 4.7 and 4.8 show the behaviour of the various loss indices over
N = 1000 replications. The horizontal axis represents the number of con-
taminated observations within each of the p = 30 variables. Starting with
an uncontaminated multivariate Gaussian distribution, we then progress-
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Figure 4.6: The relative speed of decay for the sum of the eigenvalues and the sum
of the log of the eigenvalues, which results in the non-monotonic beha-
viour of the entropy loss, ∑(λi − log λi)− p, where λi are the eigenval-
ues of Θ̂ = S−1.

ively add one contaminated observation to each variable until there are 24
contaminated observations within each variable. The contamination is per-
formed by assigning each randomly selected cell the value of 10.

In general, scattered outlying contamination will destroy any existing de-
pendence structure and inflate the main diagonal of the covariance matrix,
resulting in increases for the entropy loss and matrix norms applied to the
covariance as seen in Figure 4.7. The log determinant of the estimated covari-
ance matrix trends upwards, demonstrating the over estimated generalised
variance with increasing levels of contamination. Apart from a relatively
minor spike when there is only one contaminated observation in each vari-
able, the condition number is not adversely affected by increasing levels of
contamination, reflecting the stabilised eigenvalues of the resulting covari-
ance matrix. This demonstrates that in this setting, the condition number
is not an appropriate index against which to compare the performance of
competing robust estimators.

The interpretation of the performance indices when they are applied to
the resulting precision matrix is more complicated. We see in Figure 4.8
that there is still structure present in the precision matrix, in the sense that
there is a main diagonal behaving distinctly from the off diagonal elements.
However, all the elements tend to shrink towards zero. Hence, for large
amounts of contamination, Θ̂ − I ≈ −I and so the matrix norms tend to
converge to || − I||.

As in the previous scenario, the Frobenius norm exhibits a minimal turn-
ing point before plateauing. This is explained by noting that while the in-
troduction of contamination has an immediate shrinkage effect on the main
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Figure 4.7: The impact of randomly contaminating a certain number of cells in each
variable of a 100× 30 data matrix on the various performance indices
when applied to the resulting covariance matrix.
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Figure 4.8: The impact of randomly contaminating a certain number of cells in each
variable of a 100× 30 data matrix on the various performance indices
when applied to the resulting precision matrix.
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diagonal of the precision matrix, including one or two influential observa-
tions in each variable induces an artificially high level of correlation between
some variables. Hence, it can take some time for the off diagonal elements to
stabilise. When more than a few outlying cells are present in each variable,
the artificial correlation structure wanes and hence the Frobenius norm ap-
plied to the resulting precision matrix trends towards ||I||F =

√
p. Hence, in

this contamination setting the matrix norms appear to be useful only when
applied to the covariance matrix, not the precision matrix.

As in the previous scenario, the entropy loss behaves consistently for both
the covariance and precision matrix. Similarly to Figure 4.4, it exhibits a
slight drop when only one cell in each variable is contaminated after which
it increases as the proportion of contaminated cells grows. As such, the
entropy loss is the preferred performance index when looking across both
covariance and precision matrix estimators.

4.4 pairwise covariance matrix estimation

The premise behind pairwise covariance matrix estimation is to take the (p
2)

pairs of variables and robustly estimate the covariance between each pair, as
discussed in Chapter 3. As we will show, the primary advantage is robust-
ness to scattered contamination in the data set. The main disadvantage of
this approach is that the resulting symmetric matrix is not guaranteed to be
PSD or affine equivariant.

Given a stochastic n× p matrix X and a fixed nonsingular p× p matrix A,
an estimator Σ̂(·) is equivariant if Σ̂(X A) = AΣ̂(X)Aᵀ. As noted earlier, in
the scattered contamination model, affine equivariance is unachievable as
there is the potential for all rows to have a contaminated cell, hence linear
combinations of the rows propagate the contamination.

4.4.1 OGK procedure

To overcome the lack of positive semidefiniteness, Maronna and Zamar
(2002) propose a modification based on the observation that the eigenval-
ues of the covariance matrix are the variances along the directions given by
the respective eigenvectors. The procedure is known as the Orthogonalised
Gnanadesikan Kettenring (OGK) estimator and is as follows.

a. Let D = diag(s(x1), . . . , s(xp)), where s is a robust scale estimator and
x1, . . . , xp are the columns of X. Standardise X such that Y = XD−1.
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b. Compute the “correlation matrix” applying s(·) to the columns of Y
to obtain U =

(
ujk
)
, where ujj = 1 and

ujk =
1
4
(s(yj + yk)

2 − s(yj − yk)
2), for j 6= k.

c. Find the eigenvalues λj and orthonormal eigenvectors ej of U. Let
E =

[
e1, . . . , ep

]
, so U ≡ EΛEᵀ with Λ = diag(λ1, . . . , λp).

d. Let Z = YE be the matrix of “principal components” vectors with
corresponding robust variance estimates, Λ̂ = diag(s(z1)

2, . . . , s(zp)2).

e. The estimated covariance matrix is then, Σ̂ = D2EΛ̂Eᵀ.

Note that even if the original covariance matrix was already PD (all eigen-
values are positive) applying the OGK procedure will not necessarily return
the same matrix due to the use of Λ̂ as an approximation to Λ. In essence,
the eigenvalues of Λ are replaced by robust variance estimates which are
guaranteed to be positive ensuring that the resulting matrix is PD.

Maronna and Zamar (2002) and Maronna, Martin and Yohai (2006, p. 207)
suggest that the OGK estimator can be improved by iterating the procedure
and then using this estimate to find robust Mahalanobis distances for each
observation vector. These are then used to screen for outliers before apply-
ing the classical covariance estimator to the cleaned data. This is done in an
effort to increase efficiency and to make the result “more equivariant”. The
robust Mahalanobis distances are,

di = d(xi) = (xi − µ̂)
ᵀ
Σ̂−1(xi − µ̂),

for some robust location estimate µ̂. Let w be a weight function, and define
µ̂w and Σ̂w as the weighted mean and covariance matrix, where each xi has
weight w(di), that is,

µ̂w =
∑i w(di)xi

∑i w(di)
and Σ̂w =

∑i w(di)(xi − µ̂w)(xi − µ̂w)
ᵀ

∑i w(di)
.

The standard weight function is “hard rejection,” with w(d) = I{d ≤ d0}
where

d0 =
χ2

p(β)Med{d1, . . . , dn}
χ2

p(0.5)
,

and χ2
p(β) is the β quantile of the χ2 distribution with p degrees of freedom.

In their simulations, Maronna and Zamar (2002) find that β = 0.9 generally
yields good results. This is used as the default in the robustbase R package
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although Martin Maechler “strongly believes that the hard threshold cur-
rently in use is too arbitrary, and further that soft thresholding should be
used instead” (Rousseeuw, Croux et al., 2013).

In terms of the impact of not being affine equivariant, Maronna and
Zamar (2002) note that “although the worst case may differ from the ori-
ginal data, for most transformations the results are very similar” and “the
lack of equivariance is not a serious concern in our estimates”.

Regardless, neither the OGK method nor the reweighted OGK method is
able to cope with scattered contamination. The issue of outlier propaga-
tion means that the number of contaminated “principal components”, i.e.
columns of Z = YE, could easily be greater than 50% even for small levels of
cellwise contamination. Hence, the robust variance estimates that are used
in place of the eigenvalues will no longer be valid estimates – they will be
in breakdown. Furthermore, the reweighting step will often needlessly ex-
clude many observation vectors where there is only one contaminated cell.

4.4.2 NPD procedure

Higham (2002) considers the problem of computing the nearest positive
definite (NPD) matrix to a given symmetric matrix. The motivation stems
from finance, where sample covariance matrices are constructed from vec-
tors of stock returns, however, the problem arises when not all stocks are
observed every day. In this setting, classical covariances may be computed
on a pairwise basis using data drawn only from days where both stocks
have data available. The resulting covariance matrix is not guaranteed to be
PD because it has been built from inconsistent data sets. Motivated by the
same problem, Løland et al. (2013) propose both a pseudo-likelihood and
a Bayesian approach to find PD estimates of pairwise correlation matrices.
However, their approach relies on expert knowledge to formulate priors for
the pairwise covariances.

In contrast to the OGK procedure, if the initial symmetric matrix is PD, then
the NPD method simply returns the original pairwise covariance matrix. A
potential advantage of the NPD method over the OGK procedure is its ability
to cope with scattered contamination.

Formally, for an arbitrary symmetric p × p matrix A, the aim is to find
the distance

γ(A) = min{||A−W ||F : W is a symmetric PD matrix}, (4.1)
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and the resulting matrix that achieves this minimum distance. Higham
(2002) uses the Frobenius norm as it is “the easiest norm to work with for
this problem and also being the natural choice from the statistical point of
view”.

Framing the problem in terms of projecting from the set of symmet-
ric matrices onto the set of symmetric PD matrices, with respect to the
Frobenius norm, facilitates the use of standard results in approximation
theory (Luenberger, 1969, p. 69). In particular, it follows that the minimum
in (4.1) is achieved and that the minimiser is achieved at a unique matrix,
Ŵ .

While Higham (2002) considers a variety of weighting mechanisms, in
the simplest case without specifying any weights, the procedure is quite
straightforward. Let, Ŵ = EΛ̂Eᵀ, where EΛEᵀ is the spectral decomposi-
tion of A, with Λ = diag(λ1, . . . , λp) and Λ̂ = diag(max{λi, δ}), where δ

is a small positive constant. The NPD procedure is similar to the OGK pro-
cedure in that it performs a spectral decomposition and then updates the
eigenvalues to ensure that the result is PD. However, it does not rely on lin-
ear transformations of the original dataset and hence is not affected by the
“outlier propagation” issue associated with cellwise contamination.

4.4.3 Comparing OGK and NPD

To compare the OGK and NPD methods in the presence of scattered contam-
ination we performed a simulation study. The underlying data generating
process was multivariate Gaussian, N (0, Θ−1), with n = 100 and p = 60
where the true precision matrix Θ had a randomly generated sparsity pat-
tern. Outliers, generated from a t10 distribution scaled by a factor of

√
10

for moderate outliers or 10 for extreme outliers, were introduced increment-
ally to each variable. This is a similar contaminating design to that used
in the full simulation study in Section 4.6. For each level of contamination,
N = 100 replications of the experiment were performed, with new data
generated at each replication and outliers randomly allocated.

Figure 4.9 shows the percentage relative improvement in the average
Frobenius norm relative to Σ̂0, the classical covariance estimator with no
contamination. Of the OGK methods, only that which uses Pn as the underly-
ing scale estimator is shown, however the OGK methods based on Qn, τ-scale
also behaved similarly poorly. Special mention should be made of the OGK

method paired with the MAD, which performed substantially worse than
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Figure 4.9: Percent relative improvement in average Frobenius norm over N = 100
replications for various covariance estimation techniques relative to the
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the other robust scale estimators considered. The reweighted Orthogonal-
ised Gnanadesikan Kettenring (OGKw) methods performed only marginally
better, again only the OGKw method with Pn is shown, but it is extremely
close to the performance of the other OGKw methods, including that based
on the MAD, as the reweighting step identifies and deletes the same outly-
ing observation vectors. Comparing the top and bottom panels of Figure
4.9 it is clear that the performance of both the standard and reweighted
OGK methods deteriorate significantly when the extremity of the outliers
increases, reflecting the inability of these methods to deal with scattered
contamination.

For moderate outliers the NPD methods based on Pn, Qn and the τ-scale
estimator perform similarly, however for more extreme outliers the more
robust estimators Qn and τ-scale perform better than Pn after a certain level
of contamination is reached. In contrast, the NPD method based on the ad-
aptively trimmed Pn with trimming parameter d = 3, henceforth denoted
P̃n, performs remarkably well, largely due to the ease with which it identi-
fies and trims any pairs of observations with an outlier. This performance
is representative of the behaviour under the other matrix norms.

Despite the good performance with respect to the norms, the NPD method
often results in estimated matrices with a number of extremely small eigen-
values which give poorly conditioned estimates, i.e. the condition number
of these estimators is very high as is the entropy loss, which involves the log
of the eigenvalues. In general, it is not recommended to use either the OGK

nor the NPD in isolation when there is scattered contamination present. Even
in the presence of standard row-wise contamination, the NPD method is not
recommended due to its propensity to return poorly conditioned estimates.

4.5 precision matrix estimation

Many statistical procedures are primarily concerned with the precision mat-
rix, the inverse of a covariance matrix, rather than the covariance matrix
itself. For example, finding Mahalanobis distances and performing linear
discriminant analysis both require an estimate of Θ = Σ−1. Finding good
precision matrix estimates has been a focus of many investigators over a
long period of time, the first major contribution being Dempster (1972).

There is extensive interest in estimating sparse precision matrices in mod-
erate and high dimensions. We will restrict attention to cases where the
uncontaminated data come from a Gaussian distribution, that is we have
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a Gaussian graphical model (Lauritzen, 1996). Under this model pairwise
conditional independence between variables Xj and Xk holds if and only if
θjk = 0, hence inferring linkages between variables corresponds to identify-
ing the nonzero elements of Θ = (θjk).

The following routines take as an input an estimated covariance matrix
and output a regularised precision matrix. In Section 4.6 we demonstrate
the advantages of using a robust pairwise covariance matrix estimate as the
input to these regularisation routines.

4.5.1 GLASSO

A natural way to estimate Θ is by maximising the log-likelihood of the data.
With Gaussian observations, the log-likelihood takes the form,

log |Θ| − tr(SΘ), (4.2)

where S is an estimate of the covariance matrix of the data. Maximising (4.2)
with respect to Θ leads to the MLE, S−1. In general, S−1 will not be sparse, in
the sense that it will contain no elements exactly equal to zero. Furthermore
in p > n situations S will be singular so the MLE cannot be computed. Yuan
and Lin (2007) consider minimising the penalised negative log-likelihood,

tr(SΘ)− log |Θ|+ λ ∑i,j |θij|, (4.3)

over the set of PD matrices where λ is a tuning parameter to control the
amount of shrinkage. This is the graphical lasso (GLASSO) (Friedman, Hastie
and Tibshirani, 2008), which has two major advantages over (4.2): the solu-
tion is PD for all λ > 0 even if S is singular, and for large values of λ the
resulting estimate, Θ̂, will be sparse.

4.5.2 QUIC

The quadratic inverse covariance (QUIC) method solves the same minimisa-
tion problem as the GLASSO. The improvement in speed comes from noti-
cing that the Gaussian log-likelihood component of (4.3) is twice differen-
tiable and strictly convex which lends itself to a quadratic approximation
and hence faster convergence (Hsieh et al., 2011). On the other hand, the
penalty term is convex but not differentiable and so is treated separately.
Algorithm 1 briefly outlines the procedure.
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Algorithm 1 QUIC

Input: Symmetric matrix Σ̂0, scalar λ, stopping tolerance ε

1: for i = 0, 1, . . . do
2: Compute Σt = Θ−1

t
3: Find second order approximation
4: Partition variables into free and fixed sets
5: Find Newton direction Dt using coordinate descent over the set of

free variables (lasso problem)
6: Determine the step-size α such that Θt+1 = Θt + αDt is PD and the

objective function sufficiently decreases
7: end for

Output: Sequence of Θt

The QUIC routine explicitly includes a step that ensures positive definite-
ness of the precision matrix for each iteration. Furthermore, as implemented
in the R package QUIC, it accepts a symmetric matrix as its input, which was
the main reason we initially considered this method (other than its speed
advantages) as we entertained the idea that we could input robust pairwise
covariance matrices directly into the QUIC routine.

Preliminary results were promising, particularly for low levels of scattered
contamination.8 However, further investigation found that this approach
does not perform as well as might be expected for moderate and high levels
of scattered contamination. This is understandable given that step 6 in the
QUIC routine, the step that ensures the result is PD, is quite crude and was
never designed to make such a significant correction as required when con-
verting a symmetric matrix full of pairwise covariances to be PD. The QUIC

routine essentially moves the estimated inverse as far as necessary in a pre-
determined direction to ensure that the result is PD. This correction works
well when the symmetric matrix is not too far from being PD, i.e. when the
negative eigenvalues are very small. However when there is a high level
of contamination in the data, the symmetric matrix of pairwise covariances
may be far from PD which leads to extremely poor performance.

We subsequently found that applying the NPD method to the pairwise
covariance matrix before using the QUIC routine resulted in substantially
better results. Hence, we show in Section 4.6, that it is preferable to use
a method designed specifically for the purpose of converting a symmetric
matrix to a PD matrix, such as the NPD method, before applying the QUIC

8 These preliminary results were presented at ICORS 2013.
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routine. Furthermore, as expected given that they are solving the same min-
imisation problem, the QUIC estimates are virtually indistinguishable from
the standard GLASSO approach in all scenarios considered here.

4.5.3 CLIME

We established that the best way forward is to preprocess the symmetric
matrix of pairwise covariances. This opens up the possibility of using regu-
larisation routines other than QUIC. One such alternative is constrained L1

minimisation for inverse covariance matrix estimation (CLIME), implemen-
ted in the R package clime (Cai, Liu and Luo, 2011, 2012).

The CLIME routine uses linear programming to solve the following (con-
vex) optimisation problem,

Θ? = min |Θ|1 subject to: |SΘ− I|∞ ≤ λ,

where S is the sample covariance matrix and |A|1 = ∑i,j |aij| is the element-
wise L1 norm of a matrix, A, and |A|∞ = max1≤i≤p,1≤j≤q |aij| is the element-
wise infinity norm. No symmetry requirements are placed on Θ? so a sym-
metrising step is applied to obtain the final solution, Θ̂,

θ̂ij = θ̂ji = θ?ij I{|θ?ij| ≤ |θ?ji|}+ θ?ji I{|θ?ij| > |θ?ji|}.

Theorem 1 of Cai, Liu and Luo (2011) shows that the resulting Θ̂ is PD with
high probability.

The simulation study in the next section shows that there is little differ-
ence between using CLIME and QUIC – the key point is that both appear
to perform well in the presence of scattered contamination when the input
matrix is based on pairwise robust covariance estimates that has been made
PD using the NPD routine.
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4.6 simulation study

This section presents the results of an extensive simulation study to assess
how well various robust covariance estimation techniques perform when
used as an input to the regularisation routines outlined previously.

The proposed estimator begins by finding the covariances between all (p
2)

pairs of variables. For the scale estimator underlying the robust covariance
estimator, we have considered Qn, the τ-scale, the MAD and the IQR. We also
consider the Pn estimator, defined in Chapter 2, and two adaptively trimmed
variants P̃n, with trimming parameters d = 5 and d = 3, see Section 2.4 for
further details about these estimators. The pairwise covariances are then
arranged in a symmetric, though not necessarily PD, matrix. The symmetric
matrix is transformed to a PD matrix using either the OGK method or the NPD

method before being input into the GLASSO, QUIC or CLIME regularisation
routines. For comparison purposes we also included the classical covariance
estimator and the MCD as initial covariance matrix estimates.

4.6.1 Design

Throughout the investigation, a number of different simulations under nu-
merous designs have been performed. Three types of precision matrices
have been selected as the basis for the data generating process. They repres-
ent a broad range of scenarios that occur in practice and are similar to those
used in Cai, Liu and Luo (2011) and Hsieh et al. (2011). The simulated data
comes from a multivariate Gaussian distribution with n = 100 observations,
N (0, Θ−1). The scenarios outlined below are shown in Figure 4.10 and the
code for generating each is given in Appendix D.

a. Banded precision matrices, with elements θij = 0.6|i−j|, such that the
values of the entries decay the further they are from the main diagonal.

b. Sparse precision matrices with randomly allocated non-zero entries,
where Θ = B + δI with each off diagonal entry in B generated in-
dependently, where P(bij = 0.5) = 0.1 and P(bij = 0) = 0.9 and δ

is chosen such that the condition number of the matrix equals p. The
matrix is then standardised to have diagonal components equal to one.
This scenario will be referred to as scattered sparsity.

c. Dense precision matrices, where Θ has all off diagonal elements equal
to 0.5 and diagonal elements equal to 1.
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Figure 4.10: Heat maps of the three kinds of precision matrices used to generate
the data.

The outliers were generated independently for each variable. In our sim-
ulations we allow the number of contaminated observations within each
variable to increase up to a maximum of 25 observations (out of n = 100).
In this way we have complete control over the total number of contaminated
cells. The distribution of the outliers is a t10 distribution scaled by either a
factor of 10 for extreme outliers or

√
10 for moderate outliers. The moder-

ate outliers are perhaps closer to what one might expect in a real data set.
However, the focus here is primarily on the extreme outliers where the over-
whelming majority of the unusual observations lie well outside the cloud of
standard observations. The extreme nature of the outliers serves to clearly
demark estimators that have effectively broken down from those that are
still capable of giving ballpark correct results. In both cases, the outliers are
symmetrically distributed. An example of what this contaminating model
looks like in the p = 2 case is shown in Figure 4.11 where there is 10%
scattered contamination in both variables. Usually only one component in
each observation vector is contaminated, but of course, on average 1% of
observation vectors will have both components contaminated.

Each of the regularisation routines require a tuning parameter. At each
replication, the tuning parameter was obtained by training on a separate
(uncontaminated) randomly generated data set drawn from the true data
generating process. For the training data, a sequence of precision matrices
were obtained and the value of the tuning parameter corresponding to
the smallest entropy loss was then used for that replication. In practice,
there was a small amount of variability in the choice of tuning parameter
within each scenario and dimensionality. Furthermore, the QUIC and GLASSO

routines almost always picked the same tuning parameter and the CLIME

routine chose tuning parameters in a similar region.
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Figure 4.11: An example data set with 10% scattered contamination in each variable.
Observations with at least one contaminated component are represen-
ted by N. The contaminating distribution is t10 scaled by a factor of 10
(left) or

√
10 (right).

As in Lin and Perlman (1985), for the entropy loss we report the results
in terms of the percentage relative improvement in average loss (PRIAL),

PRIAL(Θ̂) =
L1(Θ, Θ̂0)− L1(Θ, Θ̂)

L1(Θ, Θ̂0)
× 100,

where Θ̂0 is the estimated precision matrix after a regularisation technique
has been applied to the classical sample covariance matrix for uncontamin-
ated data. It is important to note that this is an extremely harsh benchmark
to set.

4.6.2 Results

4.6.2.1 No contamination

Any good robust method should give comparable results to the classical
non-robust method it is replacing when presented with a clean dataset. Table
4.1 presents the PRIAL results. As the PRIAL results are relative to the base
case for each routine, Table 4.1 cannot be used to compare the performance
of the CLIME routine to the QUIC routine.

In the uncontaminated case, the OGK method substantially outperforms
the NPD method. Overall, the methods appear to improve as the dimen-
sionality increases, however, this is more a reflection of the deteriorating
absolute performance of the baseline classical covariance matrix estimate.
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For p = 30, the pairwise methods outperform the MCD, however the MCD

method uses bn+ p+ 1c/2 observations so when p = 90 the resulting estim-
ator is the classical covariance estimate applied to 95 out of a total n = 100
observations. Hence, it is not surprising that the PRIAL for the MCD method
is so close to zero. In fact, the MCD is not recommended for use when n < 2p
(Rousseeuw, Croux et al., 2013).

The reweighted OGK (OGKw) methods essentially perform outlier detec-
tion and deletion before returning a classical covariance estimate of the
cleaned data set. The performance of these methods is broadly similar over
all the various initial scale estimates. Though not shown in Table 4.1, the
MAD performs particularly poorly under both the OGK and the NPD correc-
tions and would not be recommended for use.

As would be expected, given the solid Gaussian performance of Pn (see
Section 2.4), the methods based on Pn outperform those based on the τ-scale
and Qn. The relative deterioration in performance for the robust methods
compared to the classical method is comparable to that in the simple uni-
variate scale case. Recall, the univariate scale estimator Pn has a Gaussian
relative efficiency of 86%.

p = 30 p = 60 p = 90

CLIME QUIC CLIME QUIC CLIME QUIC

OGK -17.1 -13.0 -15.1 -9.5 -12.7 -8.1

τ-scale OGKw -34.8 -26.9 -29.3 -15.9 -20.3 -15.6

NPD -31.5 -25.3 -31.3 -16.7 -27.6 -15.4

OGK -16.5 -13.6 -13.3 -10.5 -11.7 -9.3

Qn OGKw -34.7 -27.0 -28.5 -15.6 -12.3 -14.6

NPD -40.6 -32.5 -36.9 -21.9 -31.4 -20.3

OGK -13.6 -11.8 -12.7 -9.6 -10.9 -8.8

Pn OGKw -33.7 -26.2 -27.1 -14.9 -17.5 -14.5

NPD -19.9 -15.7 -18.4 -11.4 -18.2 -11.2

MCD -53.1 -56.2 -19.5 -19.5 -3.7 -3.7

Table 4.1: PRIAL results for the various estimators when there is no contamination
present.
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4.6.2.2 Cellwise contamination

There are a number of ways to compare and contrast the various estimators.
We consider data with n = 100 observations from three different data gen-
erating processes, contaminated with either moderate or extreme outliers
across four dimensions, p = 15, 30, 60 or 90. We implement an array of ini-
tial covariance estimation techniques and process these through the GLASSO,
QUIC and CLIME regularisation routines. Finally, as outlined in Section 4.3.3,
there are a number of performance indices that are considered. This section
extracts and synthesises the key results.

We first consider the effect of dimensionality on the performance of the
various estimators. A typical example is shown in Figure 4.12 where we
plot the PRIAL results for the precision matrix resulting from the CLIME

procedure for various input covariance matrices across different amounts
of extreme contamination in each variable. The original data was gener-
ated assuming a banded precision matrix, however the trend holds true for
scattered sparsity and dense precision matrices as well as for the QUIC and
GLASSO procedures.

For relatively low dimensions, such as in the top panel of Figure 4.12
where p = 15, there is clearly an advantage to using the NPD method over
the OGK method once there is more than a few percent of observations in
each variable being contaminated. To avoid clutter, only the OGK method
with Pn has been included in the plots, however, it is representative of the
performance of the other scale estimators when used in conjunction with
the OGK method.

As the dimensionality increases, the OGK and the MCD methods deteri-
orate faster. When p = 90, as outlined in the previous section, the MCD

method behaves like the classical method. The OGK method performs simil-
arly poorly as outlier propagation can lead to more than half of the elements
in each principle component vector being contaminated. Hence, the eigen-
values in the spectral decomposition are replaced with robust estimates of
scale that may no longer be valid.

Remarkably, the NPD methods perform consistently well. Their perform-
ance, relative to the classical method with no contamination improves as the
number of variables increases. The raw entropy loss plots are found in Fig-
ure D.1 in Appendix D. The Pn based method performs well for low levels of
contamination, however once the proportion of contaminated cells is greater
than 10% it does not perform as well as the other pairwise methods due to
its lower breakdown value.
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Figure 4.12: PRIAL results for a selection of estimators applied to data generated
with a banded precision matrix with extreme outliers for p = 15 (top),
p = 30 (middle) and p = 90 (bottom) using the CLIME regularisation
procedure.
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It is interesting to note that the adaptively trimmed Pn with adaptive trim-
ming parameter d = 3, P̃n, follows a trajectory that is somewhat different
to the rest of the NPD type estimators. It maintains a relatively high level
of performance even for quite high levels of contamination. This is due to
the extreme nature of the contamination making the adaptive trimming ex-
tremely effective in identifying and excluding the errant observations. The
advantage of P̃n is lost when the contaminating distribution has only mod-
erately sized outliers, in which case all the NPD pairwise methods perform
comparably because P̃n does almost no trimming.

To summarise, for p = 30, p = 60 (shown in the top panel of Figure
4.13) and p = 90, using a pairwise method in conjunction with the NPD

procedure as an input into the CLIME regularisation routine, the increase
in entropy loss can be contained to less than double that of the classical
method without contamination if the proportion of cellwise contamination
is less than 10%.

The same pattern holds true when using the QUIC or the GLASSO regular-
isation routines. To demonstrate this consider Figure 4.13 where the PRIAL

results are shown for CLIME, QUIC and the GLASSO under the banded preci-
sion matrix scenario with extreme outliers and p = 60. As would be expec-
ted the QUIC and GLASSO results are essentially identical, and largely con-
sistent with the CLIME results in the top panel. Looking at the raw entropy
loss numbers shown in Figure D.2 in Appendix D, the CLIME method gives
slightly lower average entropy loss measurements, particularly for very high
levels of contamination. In practice it does not matter what regularisation
routine is used, the benefits of taking a pairwise approach to covariance
estimation in the presence of scattered contamination will still hold.

The NPD pairwise approach is a major improvement over standard robust
estimators. An example of this is given in Figure 4.14 where we present the
average PRIAL results for the QUIC estimator with p = 30 across all three
scenarios. The raw entropy loss numbers are found in Figure D.3 in Ap-
pendix D. Across all scenarios the same general pattern holds, the classical
method and the OGK and MCD methods fail quite rapidly whereas the NPD

approach offers much greater resilience to the scattered contamination.
For the banded precision matrix scenario, top panel of Figure 4.14, the

NPD based methods under the various robust scale estimators give similar
results with Pn having a slight advantage over the others for low levels
of contamination whereas Qn has an advantage for higher contamination
proportions.
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Figure 4.13: PRIAL results for a selection of estimators applied to data generated
with a banded precision matrix with extreme outliers for p = 60 using
CLIME (top), QUIC (middle) and GLASSO (bottom).



4.6 simulation study 133

0 5 10 15 20 25

-3
00

-2
00

-1
00

0

Percent contamination in each variable

En
tr

op
y

lo
ss

PR
IA

L

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

0 5 10 15 20 25

-3
00

-2
00

-1
00

0

Percent contamination in each variable

En
tr

op
y

lo
ss

PR
IA

L

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

0 5 10 15 20 25

-3
00

-2
00

-1
00

0

Percent contamination in each variable

En
tr

op
y

lo
ss

PR
IA

L

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

Figure 4.14: PRIAL results for a selection of estimators applied to data gener-
ated with a banded precision matrix (top), scattered precision matrix
(middle) and dense precision matrix (bottom) with extreme outliers for
p = 30 using the QUIC routine.
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For the scattered precision matrix and the dense precision matrix scen-
arios, P̃n gives the best results, however this is primarily due to the extreme
nature of the outliers. The advantage of the adaptive trimming procedure is
lost when the outliers are not so extreme, as demonstrated in Figure D.4 in
Appendix D. However, it should be noted that when the outliers are not so
extreme, the adaptive trimming approach still performs no worse than the
other NPD methods.

We previously established that matrix norms are not a good perform-
ance measure for precision matrices. In terms of the other performance in-
dicators, for all scenarios considered the log condition number remained
bounded, suggesting that all three regularisation routines return well con-
ditioned precision matrix estimates regardless of the level of contamination
or the data generating process.

The NPD also performed well in terms of the log determinant index. Fig-
ure 4.15 shows the average log determinant of the precision matrices res-
ulting from the GLASSO being applied to the various covariance matrix es-
timates under the three different scenarios. As with the entropy loss, there
appears to be an advantage to using P̃n over the other scale estimators in
each of the scenarios. Unlike with the entropy loss, the advantage of the
adaptive trimming procedure is still evident even when the contamination
is less extreme, as seen in Figure D.5.

If we take the inverse of the resulting estimated precision matrix, we ob-
tain a regularised estimate of the covariance matrix and can compare that
to the true covariance matrix. Figure 4.16 presents the average Frobenius
norm results for the resulting estimated covariance matrices after regular-
isation using the CLIME procedure. We see similar trends to those outlined
earlier. While using Pn alone does not perform well when the amount of
contamination in each variable is large, the adaptive trimming procedure
gives excellent results. The other pairwise methods also perform quite well.
However, as we would expect, the classical method and standard robust
techniques, MCD and OGK fail quite rapidly. In general, the results for the
matrix norms applied to the estimated covariance matrices are very similar
to those of the entropy loss for the estimated precision matrix.



4.6 simulation study 135

0 5 10 15 20 25

0
10

20
30

40
50

Percent contamination in each variable

Lo
g

de
te

rm
in

an
t

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

0 5 10 15 20 25

0
10

20
30

40
50

Percent contamination in each variable

Lo
g

de
te

rm
in

an
t

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

0 5 10 15 20 25

0
10

20
30

40
50

Percent contamination in each variable

Lo
g

de
te

rm
in

an
t

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

Figure 4.15: Log determinant results for the GLASSO with extreme outliers, p = 30
for the banded (top), scattered sparsity (middle) and dense (bottom)
precision matrix scenarios.



4.6 simulation study 136

0 5 10 15 20 25

0
10

20
30

40
50

Percent contamination in each variable

Fr
ob

en
iu

s
no

rm

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

0 5 10 15 20 25

0
10

20
30

40
50

Percent contamination in each variable

En
tr

op
y

lo
ss

P̃n with NPD

Qn with NPD

τ with NPD

Pn with NPD

MCD

Pn with OGK

Classical

Figure 4.16: Average entropy loss results for the precision matrices resulting from
the CLIME procedure (top) and average Frobenius norm results for
the resulting covariance matrix estimates (bottom) for p = 60 with
scattered sparsity and extreme outliers.
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4.7 conclusion

A pairwise approach to covariance estimation has a natural resilience to the
type of scattered contamination seen in high dimensional scenarios where
classical robust procedures, such as the MCD, tend to fail.

We have shown that combining robust pairwise covariance estimation
with the NPD method and regularisation techniques such as the CLIME, QUIC

or GLASSO yield precision matrices robust to cellwise contamination. The
additional advantages of the regularisation techniques, such as the promo-
tion of sparsity also carry through. Furthermore, it did not appear to mat-
ter which of the three considered regularisation routines was applied, as
all gave broadly similar results in the various scenarios considered. This is
comforting given the current pace of research in the field of regularised pre-
cision matrix estimation, with new procedures being suggested frequently.

We considered a broad range of scenarios: from dense precision matrices,
as is typically found in standard analyses with n � p; to banded precision
matrices that often occur in time series settings and may also be representat-
ive of scenarios with block diagonal precision matrices; as well as scattered
sparsity, where the linkages between variables are not known beforehand
and can show up anywhere within the precision matrix.

After careful consideration of the various performance indices available
in the multivariate setting, our primary choice was the entropy loss. When
appropriate, we showed that the entropy loss returned similar conclusions
to other performance indices, such as the Frobenius norm and log determ-
inant. An interesting further investigation would be to see how well the
robust methods perform in terms of Gaussian graphical discovery rates.

The scenarios considered allowed for quite high levels of arbitrary con-
tamination in multivariate data sets. As such, the pairwise techniques based
on the standard Pn estimator unsurprisingly did not perform as well as Qn

and τ-scale estimators, however, the adaptively trimmed Pn, P̃n with trim-
ming parameter d = 3 typically performed extremely well, due to its ability
to detect and trim extreme outliers in bivariate space.
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This appendix includes summary figures and tables to provide additional
evidence for some of the claims made in Chapter 1.

Figures A.1, A.2 and A.3 show the deteriorating coverage performance
for the intercept parameter estimates of a bivariate regression model with
Cauchy distributed errors as the sample size increases. The pbs and rank
inversion methods seem to be most affected, however when n = 200, not all
methods are affected. Interestingly, the slope parameter estimates are less
affected by changes in the sample size, but for n = 200 the pbs and rank in-
version methods give the best empirical coverage probabilities for the slope
parameter – the trade off being that the empirical coverage probabilities for
the intercept are considerably lower than the nominal level.

Tables A.1 to A.4 correspond to the set of models defined by the regres-
sion function yi = β0 + β1xi + ui, where xi ∼ Uniform(0, 5) and β0 = β1 =

10. The sample size is n = 100, the number of resamples in each of the
bootstrap methods is B = 1000, the number of Monte Carlo simulations is
N = 1000. The conditional quantile function is estimated at τ = 0.3. The
only difference between the four tables is the specification of the error dis-
tribution. Define li to be the confidence interval length corresponding to βi

for i = 0, 1.

139



quantile regression confidence intervals 140

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

pb
s

w
xy

xy
m

cm
b

pw
y

iid
ni

d
ri

id
rn

id

0.7 0.8 0.9 1.0

β0

Empirical coverage probabilities

τ

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

pb
s

w
xy

xy
m

cm
b

pw
y

iid
ni

d
ri

id
rn

id

0.7 0.8 0.9 1.0

β1

Empirical coverage probabilities

τ

Figure A.1: Empirical coverage probabilities for the model Yi = β0 + β1xi + ui,
where xi ∼ U (0, 5), ui ∼ t1 and β0 = β1 = 10. The sample size is
n = 100, the number of resamples in each of the bootstrap methods is
B = 1000, the number of Monte Carlo simulations is N = 1000. The
nominal coverage is 0.9.
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Figure A.2: Empirical coverage probabilities for the model Yi = β0 + β1xi + ui,
where xi ∼ U (0, 5), ui ∼ t1 and β0 = β1 = 10. The sample size is
n = 150, the number of resamples in each of the bootstrap methods is
B = 1000, the number of Monte Carlo simulations is N = 1000. The
nominal coverage is 0.9.
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Figure A.3: Empirical coverage probabilities for the model Yi = β0 + β1xi + ui,
where xi ∼ U (0, 5), ui ∼ t1 and β0 = β1 = 10. The sample size is
n = 200, the number of resamples in each of the bootstrap methods is
B = 1000, the number of Monte Carlo simulations is N = 1000. The
nominal coverage is 0.9.
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Average SD Coverage

l0 l1 l0 l1 β0 β1

iid 0.713 0.719 0.221 0.230 0.744 0.868

nid 1.086 0.970 0.368 0.339 0.930 0.939

riid 0.779 0.768 0.259 0.270 0.694 0.892

rnid 0.802 0.834 0.266 0.366 0.710 0.905

xy 0.899 0.907 0.277 0.289 0.848 0.944

pwy 0.945 0.938 0.293 0.290 0.870 0.949

mcmb 0.871 0.873 0.259 0.268 0.831 0.934

wxy 0.919 0.913 0.287 0.296 0.865 0.943

pbs 0.858 0.870 0.265 0.282 0.752 0.933

Table A.1: Summary output for Cauchy distributed errors with n = 100 and τ = 0.3.

Average SD Coverage

l0 l1 l0 l1 β0 β1

iid 0.498 0.504 0.133 0.139 0.869 0.859

nid 0.592 0.563 0.114 0.124 0.926 0.908

riid 0.497 0.516 0.126 0.169 0.866 0.884

rnid 0.504 0.532 0.126 0.177 0.871 0.893

xy 0.554 0.581 0.121 0.155 0.903 0.919

pwy 0.569 0.598 0.122 0.160 0.901 0.934

mcmb 0.546 0.574 0.117 0.152 0.899 0.918

wxy 0.557 0.575 0.120 0.154 0.904 0.916

pbs 0.537 0.564 0.118 0.153 0.915 0.929

Table A.2: Summary output for t3 distributed errors when n = 100 and τ = 0.3.
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Average SD Coverage

l0 l1 l0 l1 β0 β1

iid 0.476 0.477 0.124 0.128 0.881 0.869

nid 0.538 0.511 0.091 0.101 0.923 0.902

riid 0.462 0.473 0.116 0.150 0.877 0.892

rnid 0.468 0.484 0.116 0.153 0.885 0.901

xy 0.515 0.530 0.106 0.136 0.918 0.916

pwy 0.528 0.546 0.109 0.141 0.923 0.924

mcmb 0.510 0.526 0.106 0.135 0.914 0.907

wxy 0.517 0.524 0.107 0.136 0.920 0.913

pbs 0.501 0.513 0.107 0.134 0.924 0.938

Table A.3: Summary output for t5 distributed errors when n = 100 and τ = 0.3.

Average SD Coverage

l0 l1 l0 l1 β0 β1

iid 0.427 0.432 0.107 0.112 0.851 0.873

nid 0.470 0.451 0.071 0.084 0.913 0.886

riid 0.414 0.425 0.100 0.124 0.867 0.875

rnid 0.419 0.437 0.100 0.153 0.869 0.883

xy 0.460 0.474 0.093 0.110 0.901 0.900

pwy 0.469 0.488 0.092 0.114 0.911 0.908

mcmb 0.453 0.469 0.090 0.109 0.896 0.899

wxy 0.460 0.467 0.092 0.110 0.904 0.896

pbs 0.447 0.459 0.091 0.109 0.909 0.910

Table A.4: Summary output for N (0, 1) errors when n = 100 and τ = 0.3.
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b.1 finite sample correction factors

To ensure that Pn is consistent for the standard deviation at the Gaussian
distribution, correction factors are introduced. As such the pairwise mean
scale estimator will be redefined as:

Pn(τ, x) = cn,τcτ

[
G−1

n ((1 + τ)/2)− G−1
n ((1− τ)/2)

]
, (B.1)

where cτ is the large sample correction factor and cn,τ is a small sample
correction factor. We shall restrict attention to τ = 0.5, the standard Pn

estimator and assume that the observations come from a Gaussian distribu-
tion. For n ≥ 5 the small sample correction factors have been found through
simulation with one million replications and are provided in Table B.1. We
have also explicitly found the correction factors for Pn at the Gaussian dis-
tribution for samples of size n = 3 and 4.

n cn,0.5 n cn,0.5 n cn,0.5 n cn,0.5

3 1.128 13 1.057 23 1.036 33 1.021

4 1.303 14 1.040 24 1.030 34 1.023

5 1.109 15 1.061 25 1.029 35 1.018

6 1.064 16 1.047 26 1.032 36 1.020

7 1.166 17 1.043 27 1.023 37 1.019

8 1.103 18 1.048 28 1.025 38 1.017

9 1.087 19 1.031 29 1.024 39 1.020

10 1.105 20 1.037 30 1.021 40 1.018

11 1.047 21 1.035 31 1.026 41 1.017

12 1.063 22 1.028 32 1.022 42 1.018

Table B.1: Finite sample correction factors applied to Pn at the Gaussian distribution
to ensure approximate unbiasedness.
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Assume that observations, X1, . . . , Xn, are drawn from F = Φ, the stand-
ard Gaussian population. For n = 3 there are (3

2) = 3 pairwise means in the
empirical distribution function, therefore

E
[

G−1
3 (3

4)− G−1
3 (1

4)
]
= E

[(
Xi + Xj

2

)
(3)
−
(

Xi + Xj

2

)
(1)

]

= E

[X(2) + X(3) − X(1) − X(2)

2

]
=

1
2

E(X(3) − X(1))

= E(X(3)) (by symmetry)

= 0.846

In samples of size n = 3 from a standard Gaussian distribution the ex-
pected value of the maximum is E(X(3)) ≈ 0.846. After applying the large
sample correction factor,

E
(

c0.5

[
G−1

3 (3
4)− G−1

3 (1
4)
])
≈ 0.887.

Therefore c3,0.5 ≈ 1/0.887 ≈ 1.127.
When n = 4 we have (4

2) = 6 pairwise means. The IQR of the pairwise
means is therefore,

(
(Xi + Xj)/2

)
(5) −

(
(Xi + Xj)/2

)
(2). Assuming no ties,(

(Xi + Xj)/2
)
(5) = (X(4) + X(2))/2. Similarly we have

(
(Xi + Xj)/2

)
(2) =

(X(1) + X(3))/2. So the expected value of the IQR of the pairwise means is

E

[(
Xi + Xj

2

)
(5)
−
(

Xi + Xj

2

)
(2)

]
= E

[X(4) + X(2) − X(1) − X(3)

2

]
= E(X(4)) + E(X(2)) (by symmetry)

= 0.732.

After applying the large sample correction factor,

E
(

c0.5

[
G−1

4 (3
4)− G−1

4 (1
4)
])
≈ 0.767,

so c4,0.5 ≈ 1/0.767 ≈ 1.303.
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b.2 implosion breakdown

This section shows that Pn = 0 implies Qn = 0. The design is constructed
as follows. Let x1, x2, . . ., be the distinct ordered outcomes from a discrete
random variable, each occurring with probabilities p1, p2, . . ., respectively.
Table B.2 outlines the probabilities associated with pairs of observations
obtained from this distribution. The set of outcomes is replicated once across
the columns, A, and once down the rows, B. To construct each pair, one
observation is obtained from A and the other from B.

In large samples, for Qn to return a value of zero, ∑i p2
i ≥

1
4 , where the

sum is over all possible outcomes. For Pn to fail, we require at least half
of the pairs to have a common sum, S, say. Let D = {(iA, iB); iA ≤ iB :
xiA + xiB = S}. For Pn to fail we require 2 ∑(i,j)∈D pi pj

(
1− 1

2I{i = j}
)
≥ 0.5.

Note that because we have distinct observations, for each xiA selected from
the column set, there is at most one corresponding xiB selected from the row
set. That is, for each row or column, there is at most one pair entry that can
sum to S.

Now, consider the probabilities associated with any xi and xj, pi ∈ (0, 1)
and pj ∈ (0, 1− pi) respectively. We know pi pj ≤ max{p2

i , p2
j }, hence, if we

take the sum over all the pairs of outcomes that sum to a constant, we have

∑
(i,j)∈D

pi pj ≤ ∑
(i,j)∈D

max{p2
i , p2

j } ≤∑
i

p2
i . (B.2)

The last inequality follows by noting that ∑(i,j)∈D max{p2
i , p2

j } is a sum of
distinct elements from p2

1, p2
2 . . .. No subscript is repeated as for any given B

sample value there is at most one A sample value giving the required sum
for xiA + xiB . Hence if Pn fails, ∑i p2

i ≥
1
4 and so Qn will also fail.

A x1 x2 x3 x4 . . .

B p1 p2 p3 p4 . . .

x1 p1 p2
1

x2 p2 p2p1 p2
2

x3 p3 p3p1 p3p2 p2
3

x4 p4 p4p1 p4p2 p4p3 p2
4

...
...

...
...

... . . .

Table B.2: Lower triangular elements for the sampling distribution of pairs. The
(i, j)th element in the table is P(XA = xi, XB = xj) = pi pj.
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b.3 pairwise mean scale estimator code for r

The R code below outlines a basic implentation for the standard Pn = Pn(0.5)
estimator. Speed improvements can be made by using the pair.sum() func-
tion from the ICSNP package which performs the required computation in
C. Alternatively, it is technically feasible to compute Pn in O(n log n) time
following the algorithm set out in Johnson and Mizoguchi (1978).

Pn = function(y){

n = length(y)

if(n <= 2){

warning("Your sample size is too small")

return()

}

y.pairs = outer(y,y,"+")

y.pairs = y.pairs[lower.tri(y.pairs)]/2

# require(ICSNP) # loads the pair.sum C function

# y.pairs = pair.sum(matrix(y))/2

const = 1/0.9539 # asymptotic correction factor

scale.est=const*as.numeric(diff(quantile(y.pairs,c(1/4,3/4),type=1)))

# Correction factors obtained through simulation over 1 million

replications

correction.factors =

c(1.128,1.303,1.109,1.064,1.166,1.103,1.087,1.105,1.047,1.063,1.057,

1.040,1.061,1.047,1.043,1.048,1.031,1.037,1.035,1.028,1.036,1.030,

1.029,1.032,1.023,1.025,1.024,1.021,1.026,1.022,1.021,1.023,1.018,

1.020,1.019,1.017,1.020,1.018,1.017,1.018,1.015,1.016,1.016,1.014,

1.016,1.015,1.014,1.015)

if(n <= 40){

scale.est = scale.est*correction.factors[n-2]

# n-2 as the first element of the correction.factors vector is for n=3

} else if(n > 40) scale.est = scale.est*n/(n-0.7)

return(scale.est)

}

#### Example ####

x = rnorm(100)

Pn(x)
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b.4 em algorithm implementation

The following R code implements the EM algorithm for some Gaussian
compound scale models as proposed by Randal and Thomson (2004) and
Randal (2008).

## EM Algorithm to find scale estimates ##

Estep = function(x,mu,sigma2,type,p,k,df){

E = NULL

if(type=="slash"){

diff.x = abs(x-mu)

U2 = (x-mu)^2/sigma2

E = 2*(U2^(-1)) - (exp(U2/2)-1)^(-1)

check = diff.x<0.0001

E[check] = 0.5

return(E)

} else if(type=="wild"){

A = (exp(99/200*(x-mu)^2/sigma2))

E = 1 - 99/100*A/(sum(A))

if(!is.finite(sum(E))){

n = length(x)

E = c(rep(1,n-1),1-99/100)

}

return(E)

} else if(type=="cn"){

A = exp(1/2*(1-k^-2)*(x-mu)^2/sigma2)

E = 1 - (1-k^-2)*A/(k*(1/p - 1)+A)

E[E=="NaN"] = 1

return(E)

} else if(type=="t"){

E = (df+1)/df/(1+(x-mu)^2/(df*sigma2))

return(E)

}

}

EM.alg = function(x,mu=median(x),sigma2=mad(x),type,p,k,df){

iter = 1

if(type == "normal"){

mu = mean(x)

sigma2 = var(x)

sigma = sd(x)

mu.store = mu

sigma2.store = sigma2

} else if(type == "exponential"){

mu = mean(x)

sigma2 = mu^2

sigma = mu

mu.store = mu
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sigma2.store = sigma2

} else if(type == "chisq"){

mu = mean(x)

s = log(mu) - sum(log(x))/length(x)

k = (3-s+sqrt((s-3)^2+24*s))/(12*s)

sigma2 = k*2^2

sigma = sqrt(sigma2)

mu.store = mu

sigma2.store = sigma2

} else {

mu.store = mu

sigma2.store = sigma2

diff = 1

n = length(x)

i=1:n

while(diff>0.0001){

E = Estep(x,mu,sigma2,type,p,k,df)

new.mu = sum(E*x)/sum(E)

new.sigma2 = sum(E*(x-mu)^2)/n

diff = max(abs(mu-new.mu),abs(sigma2-new.sigma2))

mu = new.mu

sigma2 = new.sigma2

mu.store = c(mu.store,mu)

sigma2.store = c(sigma2.store,sigma2)

iter = iter+1

if(iter==500){

break

}

}

sigma = sqrt(new.sigma2)

}

return(list(mu=mu, sigma=sigma, sigma2=sigma2, mu.store=mu.store,

sigma2.store=sigma2.store, iter = iter))

}

#### Examples ####

## Slash ##

n=100

EM.alg(rnorm(n)/runif(n),type="slash")

## One Wild ##

y = c(rnorm(n-1),rnorm(1,0,10))

EM.alg(y,type="wild")

## Gaussian ##

EM.alg(rnorm(n),type="normal")

## Contaminated Normal (0.1,10) ##

indicator = rbinom(n,1,0.1)

cndata = indicator*rnorm(n,0,10) + (1-indicator)*rnorm(n,0,1)

EM.alg(cndata,type = "cn",p=0.1,k=10)

## t distribution ##

EM.alg(rt(n,df=5),type="t",df = df)
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c.1 technical results

c.1.1 Hadamard differentiability

In Section 3.4.1 we required the Hadamard differentiability of a number of
maps. Hadamard differentiability is defined in van der Vaart (1998, p. 296)
as follows.

Let D and E be normed spaces. A map T : DT ⊂ D 7→ E is Hadamard
differentiable at θ ∈ DT if there exists a continuous linear map T′θ : D 7→ E:∣∣∣∣∣∣∣∣T(θ + tgt)− T(θ)

t
− T′θ(g)

∣∣∣∣∣∣∣∣
E

→ 0,

as t ↓ 0 for all converging sequences gt → g such that θ + tgt ∈ DT for all
small t > 0.

c.1.2 Influence functions

Ma and Genton (2000) prove the following proposition, used in Section 3.4.2.
The proof follows from the definition of the influence function as a direc-
tional derivative.

Proposition C.1. Suppose Φσ = N (0, σ2) and Φ = N (0, 1). Let S be a statist-
ical functional of scale, and hence S2 is a statistical functional of variance. More
generally, consider a functional of S denoted by h(S). Then,

IF(x; S, Φσ) = σ IF (x/σ; S, Φ)

IF(x; S2, Φσ) = σ2 IF
(

x/σ; S2, Φ
)

IF(x; h(S), Φσ) = h′(S(F)) IF (x/σ; S, Φ) .
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c.2 hermite ranks

Most of the limit theorems considered in Chapter 3 require knowledge of
the Hermite rank of a function. Recall from Section 2.2.1.2 that the Hermite
rank of a function J is defined as m = inf{k ≥ 1 : αk 6= 0} where αk =

E[J(Z)Hk(Z)], Z ∼ N (0, 1), E[J(Z)] = 0 and Hk(·) is the kth Hermite poly-
nomial:

J(Z) = ∑
k≥m

αk
k!

Hk(Z).

c.2.1 Influence function of Pn

This section sets out to prove that the Hermite rank of the influence function
of Pn when the observations come from a standard Gaussian distribution is
m = 2. Recall from equation (3.5),

IF(x; P, Φ) = c

[
1
2 −Φ(2G−1

Φ (3
4)− x) + Φ(2G−1

Φ (1
4)− x)

φ(
√

2G−1
Φ (3

4))/
√

2

]
.

Let Z ∼ N (0, 1) and Z1, Z2, . . . , Zn be an independent sample of size n
from a standard Gaussian distribution. To establish that the Hermite rank
is m = 2 we show that,

a. E(IF(Z; P, Φ)) = 0;

b. E(Z IF(Z; P, Φ)) = 0; and

c. E(Z2 IF(Z; P, Φ)) 6= 0.

Lemma C.1. E(IF(Z; P, Φ)) = 0.

Proof. It is sufficient to show that

E
(

Φ(2G−1
Φ (3

4)− Z)−Φ(2G−1
Φ (1

4)− Z)
)
= 1

2 .

The CDF of pairwise means is,

GΦ(t) = P((Z1 + Z2)/2 ≤ t) =
∫

R
Φ(2t− u)φ(u)du. (C.1)

Hence,

E[Φ(2G−1
Φ (3

4)− Z)] =
∫

R
Φ(2G−1

Φ (3
4)− x)φ(x)dx

= GΦ(G−1
Φ (3

4))

= 3
4 .

Similarly, E[Φ(2G−1
Φ (1

4)− Z)] = 1
4 and hence, E(IF(Z; P, Φ)) = 0.
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Lemma C.2. E(Z IF(Z; P, Φ)) = 0.

Proof. Noting that E(Z) = 0, it is sufficient to show that

E
[

ZΦ(2G−1
Φ (3

4)− Z)− ZΦ(2G−1
Φ (1

4)− Z)
]
= 0.

Consider,

E[ZΦ(2t− Z)] =
∫

xφ(x)Φ(2t− x)dx

using the relation xφ(x) = −φ′(x) and integrating by parts,

= [−φ(x)Φ(2t− x)]∞−∞ −
∫

φ(2t− x)φ(x)dx

= − 1
2π

∫
exp

{
− (2t− x)2 + x2

2

}
dx

= −φ(t
√

2)√
2

.

In particular, we have

E
[

ZΦ(2G−1
Φ (3

4)− Z)− ZΦ(2G−1
Φ (1

4)− Z)
]

= −
φ(G−1

Φ (3
4)
√

2)√
2

+
φ(G−1

Φ (1
4)
√

2)√
2

= 0,

by symmetry, G−1
Φ (3

4) = −G−1
Φ (1

4) and φ(a) = φ(−a).

Lemma C.3. E(Z2 IF(Z; P, Φ)) 6= 0.

Proof. First note that,

E[(Z2 − 1)Φ(2t− Z)] =
∫
(x2 − 1)φ(x)Φ(2t− x)dx

consider d
dx xφ(x) = −(x2 − 1)φ(x) and using integration by parts,

= [−xφ(x)Φ(2t− x)]∞−∞ −
∫

xφ(x)φ(2t− x)dx

= − 1
2π

∫
x exp

{
−1

2

[
2(t− x)2 + 2t2

]}
dx

= − tφ(t
√

2)√
2

.

Furthermore, using equation (C.1) we obtain,

E[Z2Φ(2t− Z)] = E[(Z2 − 1)Φ(2t− Z)] + E[Φ(2t− Z)]

= − tφ(t
√

2)√
2

+ GΦ(t).
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Hence,

E[Z2Φ(2G−1
Φ (3

4)− Z)] = −
G−1

Φ (3
4)φ(G

−1
Φ (3

4)/
√

2)√
2

+ 3
4 ,

and

E[Z2Φ(2G−1
Φ (1

4)− Z)] = −
G−1

Φ (1
4)φ(G

−1
Φ (1

4)/
√

2)√
2

+ 1
4 .

Also, by symmetry, G−1
Φ (3

4) = −G−1
Φ (1

4) and φ(a) = φ(−a). Hence, as
E(Z2) = 1,

E[Z2 IF(Z; P, Φ)] = E

[
cZ2

(
1
2 −Φ(2G−1

Φ (3
4)− Z) + Φ(2G−1

Φ (1
4)− Z)

φ(
√

2G−1
Φ (3

4))/
√

2

)]

=
c
√

2G−1
Φ (3

4)φ(G
−1
Φ (3

4)/
√

2)

φ(
√

2G−1
Φ (3

4))/
√

2
> 0.

c.2.2 Empirical distribution function

Let Z ∼ N (0, 1). The Hermite expansion for h(Z; t) = I{Z ≤ t} for t ∈ R

is,

I{Z ≤ t} =
∞

∑
k=0

αk(t)
k!

Hk(Z).

The first three Hermite coefficients are given by,

α0(t) = E[h(Z; t)H0(Z)] = E[I{Z ≤ t}] = Φ(t),

α1(t) = E[h(Z; t)H1(Z)] =
∫

I{z ≤ t}zφ(z)dz

=
∫ t

−∞
z

e−z2/2
√

2π
dz

=
1√
2π

∫ t2/2

∞
e−udu

= −φ(t),

and

α2(t) = E[h(Z; t)H2(Z)] = E[I{Z ≤ t}(Z2 − 1)]

=
∫ t

−∞
(z2 − 1)φ(z)dz

note that d
dz zφ(x) = −(z2 − 1)φ(z) and integrate both sides,

= −tφ(t).
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c.2.3 Pairwise mean distribution function

Let g(x, y) = (x + y)/2 be the pairwise mean kernel and let h(x, y; t) =

I{g(x, y) ≤ t} for t ∈ R. As shown in Section 2.2, if X and Y are inde-
pendent standard Gaussian random variables, h(·, ·; t) can be expanded in
a bivariate Hermite polynomial basis as follows,

h(X, Y; t) = I{g(X, Y) ≤ t} = ∑
p,q≥0

αp,q(t)
p!q!

Hp(X)Hq(Y),

with Hermite coefficients,

αp,q(t) = E
[
h(X, Y; t)Hp(X)Hq(Y)

]
.

First note that α0,0(t) = GΦ(t).

Result C.1. Consider, X, Y independent standard Gaussian random variables,

GΦ(t) = P (X + Y ≤ 2t) = Φ(t
√

2),

with derivative,
G′Φ(t) =

√
2φ(t
√

2).

Result C.2. When g(x, y) = (x + y)/2 and X, Y are independent standard Gaus-
sian variables, the α1,0(t) and α0,1(t) Hermite coefficients are given by,

α1,0(t) = α0,1(t) = E [X I{X + Y ≤ 2t}] = −φ(t
√

2)√
2

.

Furthermore, noting Result C.1, for all t ∈ R,

α1,0(t)
G′Φ(t)

= −1
2

Proof. Consider,

α1,0(t) = α0,1(t) = E [X I{X + Y ≤ 2t}]

=
∫ ∫

xI{x + y ≤ 2t}φ(x)φ(y)dx dy

=
∫

xφ(x)Φ(2t− x)dx
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using the relation xφ(x) = −φ′(x) and integrating by parts we have

= [−φ(x)Φ(2t− x)]∞−∞ −
∫

φ(2t− x)φ(x)dx

= − 1
2π

∫
exp

{
− (2t− x)2 + x2

2

}
dx

= −φ(t
√

2)√
2

.

Result C.3. When g(x, y) = (x + y)/2 and X, Y are independent standard Gaus-
sian variables, the α1,1(t) Hermite coefficient is given by,

α1,1(t) = E(XYI{X + Y ≤ 2t}) = − tφ(t
√

2)√
2

.

Furthermore, noting Result C.1, for all t ∈ R,

α1,1(t)
G′Φ(t)

= − t
2

.

Proof. Consider,

α1,1(t) = E(XYI{X + Y ≤ 2t})

=
∫ ∫

xyI{x + y ≤ 2t}φ(x)φ(y)dx dy

=
∫

xφ(x)
(∫ 2t−x

−∞
y

1√
2π

e−y2/2 dy
)

dx

= − 1√
2π

∫
xφ(x)e−(2t−x)2/2 dx

= − σ√
2π

exp
{
−1

2
t2

σ2

} ∫
x

1√
2πσ

exp
{
−1

2
(x− t)2

σ2

}
dx

where σ2 = 1
2 . Now let W ∼ N (t, σ2),

= − σ√
2π

exp
{
−1

2
t2

σ2

}
E(W)

= − tφ(t
√

2)√
2

.

Result C.4. When g(x, y) = (x + y)/2 and X, Y are independent standard Gaus-
sian variables, the α2,0(t) and α0,2(t) Hermite coefficients satisfy,

α2,0(t) = α0,2(t) = α1,1(t).
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Proof. Consider,

α2,0(t) = E
[
(X2 − 1)I{X + Y ≤ 2t}

]
=
∫
(x2 − 1)φ(x)Φ(2t− x)dx

noting that d
dx xφ(x) = −(x2 − 1)φ(x) and using integration by parts we

have,

= − 1
2π

∫
x exp

{
−1

2

[
2(t− x)2 + 2t2

]}
dx

= − tφ(t
√

2)√
2

= α1,1(t).

The final equality draws on Result C.3.
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c.3 results for srd processes

c.3.1 Convergence of empirical distribution functions

In the context of short range dependent Gaussian sequences, Csörgó and
Mielniczuk (1996) show that the empirical process

√
n(Fn −Φσ) converges

in distribution to a Gaussian process in the space D([−∞, ∞]), the space of
càdlàg functions. Note that Φσ is the CDF of a Gaussian random variable
with mean zero and standard deviation σ.

Let {Xi}i≥1 be a stationary zero-mean Gaussian sequence with covari-
ance function γ(h) = E(X1Xh+1). Define the empirical distribution function,
Fn(r) = n−1 ∑n

i=1 I{Xi ≤ r}. Also let,

Fn(r)− F(r) =
1
n

n

∑
i=1

(
I{Xi ≤ r} − F(r)

)
=

1
n

n

∑
i=1

∞

∑
k=m

αk(r)
k!

Hk(Xi)

where αk(r) = E[(I{X ≤ r} − F(r))Hk(X)] and m is the Hermite rank of
the class of functions {I{Xi ≤ r} − F(r)]; r ∈ R}.

Theorem C.1 (Csörgó and Mielniczuk (1996)). If ∑∞
h=1 |γ(h)|m < ∞, then√

n(Fn −Φσ) converges in distribution in D([−∞, ∞]) to a mean-zero Gaussian
process, W, with covariance function,

E[W(s)W(t)] =
∞

∑
q=m

αq(s)αq(t)
q!

[
γ(0) + 2

∞

∑
h=1

γq(h)

]
,

where αq(r) =
∫
[I{σx ≤ r} −Φσ(r)] Hq(x)dΦ(x) for all r ∈ R.



C.3 results for srd processes 159

c.3.2 Central limit theorem

Arcones (1994, Theorem 4) provides a CLT result for more general functions
operating on vectors of short range dependent processes. It is adapted to
our needs in the following theorem.

Theorem C.2 (Arcones (1994, adapted from Theorem 4)). Let {Xi}i≥1 be a sta-
tionary mean-zero Gaussian sequence in R. Let f be a function on R with Hermite
rank m, 1 ≤ m < ∞. Suppose that ∑∞

h=−∞ |γ(h)|m < ∞, then,

1√
n

n

∑
i=1

( f (Xi)−E f (Xi))
D−→ N (0, σ2( f )),

where

σ2( f ) =E
[
( f (X1)−E f (X1))

2
]

+ 2
∞

∑
k=1

E [( f (X1)−E f (X1))( f (X1+k)−E f (X1+k))] .

c.3.3 Existing results for estimators

The asymptotics of classical scale and autocovariance estimators under Gaus-
sian SRD processes are well established.

Result C.5 (Lévy-Leduc et al., 2011c, Proposition 1). Under Assumption 3.1,

√
n(σ̂n − σ)

D−→ N (0, σ̃2
cl),

where

σ̃2
cl =

1
2γ(0)

(
γ2(0) + 2 ∑

h≥1
γ2(h)

)
.

Lévy-Leduc et al. (2011c) also establish an analogous limit result for Qn.

Result C.6 (Lévy-Leduc et al., 2011c, Theorem 1). Under Assumption 3.1, Qn

satisfies the following CLT,

√
n(Qn − σ)

D−→ N (0, σ̃2
Q),

where σ =
√

γ(0) and the limiting variance σ̃2 is given by

σ̃2
Q = σ2E

[
IF2(X1/σ; Q, Φ)

]
+ 2σ2 ∑

k≥1
E [IF(X1/σ; Q, Φ) IF(Xk+1/σ; Q, Φ)] ,

where IF(x; Q, Φ) is defined in equation (2.11).
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Standard techniques can be applied to transfer the limiting results of scale
estimators to the corresponding autocovariance estimators.

Result C.7 (Lévy-Leduc et al., 2011c, Proposition 2). Under Assumption 3.1,
for a given non-negative integer h, as n→ ∞,

√
n(γ̂(h)− γ(h)) D−→ N (0, σ̆2

cl(h)),

where

σ̆2
cl(h) = γ2(0) + γ2(h) + 2 ∑

k≥1
γ2(k) + 2 ∑

k≥1
γ(k + h)γ(k− h).

The application of Arcones (1994, Theorem 4) to this setting follows by not-
ing, as in Bartlett (1981, p. 302),

E(XuXu+sXu+vXu+v+t) = E(XuXu+s)E(Xu+vXu+v+t)

+ E(XuXu+v+t)E(Xu+sXu+v)

+ E(XuXu+v)E(Xu+sXu+v+t) + κv,s,t

where κv,s,t is the fourth order cumulant between Xu, Xu+s, Xu+v and Xu+v+t,
which is necessarily zero for Gaussian processes.

Result C.8 (Lévy-Leduc et al., 2011c, Theorem 4). Under Assumption 3.1,
γ̂Q(h) satisfies the following CLT,

√
n(γ̂Q(h)− γ(h)) D−→ N (0, σ̆2

Q(h)),

where

σ̆2
Q(h) = E

[
IF2(X1, X1+h; γQ, Φ)

]
+ 2 ∑

k≥1
E
[
IF(X1, X1+h; γQ, Φ) IF(Xk+1, Xk+1+h; γQ, Φ)

]
,

and

IF(x, y; γQ, Φ) = (γ(0) + γ(h)) IF
(

x + y√
2(γ(0) + γ(h))

; Q, Φ
)

− (γ(0)− γ(h)) IF
(

x− y√
2(γ(0)− γ(h))

; Q, Φ
)

.
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c.4 results for lrd processes

c.4.1 Limit results for U-processes

Lévy-Leduc et al. (2011a,b,c) explore the limiting behaviour of U-processes
of LRD sequences. Of particular interest in scale and autocovariance estima-
tion are processes that have Hermite rank m = 1 or m = 2. The following
theorem considers the case where m = 2 and D > 1

2 . Recall that D is the
autocovariance decay rate in the parameterisation of the LRD process. The
notation h(·, ·; t) and h1(x; t) follows from Section 2.2.

Theorem C.3 (Lévy-Leduc et al., 2011a, Theorem 1). Let I be a compact interval
of R. Suppose that the Hermite rank of the class of function {h(·, ·; t)−G(t); t ∈ I}
is m = 2 and that {Xi}i≥1 is a Gaussian LRD process with D > 1

2 . Assume that h
and h1 satisfy the three following conditions:

a. There exists a positive constant C such that for all s, t in I, u, v in R,

E[|h(X + u, Y + v; s)− h(X + u, Y + v; t)|] ≤ C|t− s|,

where (X, Y) is a standard Gaussian vector.

b. There exists a positive constant C such that for all k ≥ 1,

E[|h(X1 + u, X1+k + v; t)− h(X1, X1+k; t)|] ≤ C(|u|+ |v|),

and E[|h(X1, X1+k; s)− h(X1, X1+k; t)|] ≤ C|t− s|.

c. There exists a positive constant C such that for all t, s in I, and x, u, v in R,

|h1(x + u; t)− h1(x + v; t)| ≤ C(|u|+ |v|),

and |h1(x; s)− h1(x; t)| ≤ C|t− s|.

Then the U-process, (√
n(Gn(t)− G(t))

)
t∈I

converges weakly in D(I) equipped with the topology of uniform convergence to
the zero mean Gaussian process (W(t))t∈I with covariance, E(W(s)W(t)), given
by,

4 cov(h1(X1; s), h1(X1; t))

+ 4 ∑
`≥1

[cov(h1(X1; s), h1(X`+1; t)) + cov(h1(X1; t), h1(X`+1; s))] . (C.2)
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The conditions in Theorem C.3 are satisfied for any linear function g
where, h(·, ·; t) = I{g(·, ·) ≤ t}, and in particular for g(x, y) = (x + y)/2.

Corollary C.1 (Lévy-Leduc et al., 2011a, Corollary 3). Let p be a fixed real
number in (0, 1). Assume that the conditions of Theorem (C.3) are satisfied. Sup-
pose also that there exists some t in I such that G(t) = p, that G is differentiable
at t and that G′(t) is non null. Then in the limit as n→ ∞,

√
n
(

G−1
n (p)− G−1(p)

) D−→ −W(G−1(p))
G′(G−1(p))

,

where W is a Gaussian process having covariance structure given by (C.2).

The following theorem outlines the limit result for U-processes when m =

1 or 2 and D < 1
m .

Theorem C.4 (Lévy-Leduc et al., 2011a, Theorem 2). Let I be a compact interval
of R. Suppose that {Xi}i≥1 is a LRD process with D < 1

m , where m = 1 or 2 is
the Hermite rank of the class of functions {h(·, ·; t) − G(t), t ∈ I}. Assume the
following:

a. There exists a positive constant C such that, for all k ≥ 1 and for all s, t in I,

E[|h(X1, X1+k; s)− h(X1, X1+k; t)|] ≤ C|t− s|. (C.3)

b. G is a Lipschitz function.

c. The function Λ̃ is also a Lipschitz function, where for all s ∈ I,

Λ̃(s) = E[h(X, Y; s)(|X|+ |XY|+ |X2 − 1|)], (C.4)

where X and Y are independent standard Gaussian random variables.

Then (
nmD/2L(n)−m/2(Gn(t)− G(t))

)
t∈I

converges weakly in D(I), equipped with the topology of uniform convergence, to(
2α1,0(t)k(D)−1/2Z1,D(1)

)
t∈I

if m = 1,

and to (
k(D)−1

[
α1,1(t)Z1,D(1)2 + α2,0(t)Z2,D(1)

])
t∈I

if m = 2,

where k(D) = Beta((1− D)/2, D).
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The limit processes appearing in Theorem C.4 are the standard fractional
Brownian motion {Z1,D(t)}0≤t≤1 and the Rosenblatt process {Z2,D(t)}0≤t≤1.
They are defined through multiple Wiener-Itô integrals and given by

Z1,D(t) =
∫

R

[∫ t

0
(u− x)−(D+1)/2

+ du
]

dB(x), 0 < D < 1, (C.5)

and

Z2,D(t) =
∫ ′

R

[∫ t

0
(u− x)−(D+1)/2

+ (u− y)−(D+1)/2
+ du

]
dB(x)dB(y), (C.6)

for 0 < D < 1
2 , where x+ = max{x, 0} and B is the standard Brownian

motion. The symbol
∫ ′

means that the domain of integration excludes the
diagonal. Note that Z1,D and Z2,D are dependent but uncorrelated. A recent
exposition on these types of processes in this context can be found in Pipiras
and Taqqu (2010), Taqqu (2011) and Taqqu and Veillette (2013).

The inverse map (see for example van der Vaart and Wellner, 1996) can
be used to transfer these convergence results to U-quantiles.

Corollary C.2 (Lévy-Leduc et al., 2011a, Corollary 4). Let p be a fixed real
number in (0, 1). Assume that the conditions of Theorem (C.4) are satisfied. Sup-
pose also that there exists some t in I such that G(t) = p, that G is differentiable
at t and that G′(t) is non null. Then, as n→ ∞,

nmD/2

L−m/2(n)
(G−1

n (p)− G−1(p))

converges in distribution to

−2k(D)−1/2 α1,0(G−1(p))
G′(G−1(p))

Z1,D(1), if m = 1,

and to

−k(D)−1 α1,1(G−1(p))Z1,D(1)2 + α2,0(G−1(p))Z2,D(1)
G′(G−1(p))

, if m = 2.

The following lemma is also useful for finding the limit distribution of
statistics that have been decomposed using a Hermite expansion with m = 2
as in Sections 3.5.3 and 3.5.4.3.

Lemma C.4 (Lemma 15 from Lévy-Leduc et al. (2011a)). Under Assumption
3.2, with D < 1

2 , let a and b be two real constants, then as n tends to infinity,

k(D)
nD−2

Lγ(n)

[
an

n

∑
i=1

(X2
i − 1) + b ∑

1≤i,j≤n
XiXj

]
D−→
[

aZ2,D(1) + bZ2
1,D(1)

]
.
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c.4.2 Existing results for estimators

c.4.2.1 Hodges-Lehmann estimator

Lévy-Leduc et al. (2011a) consider the problem of estimating the location
parameter of a LRD Gaussian process. Assume that the process {Yi}i≥1 satis-
fies Yi = θ + Xi where {Xi}i≥1 satisfies Assumption 3.2. Using the notation
of Section 2.2, let g(x, y) = (x + y)/2 and thus h(x, y; t) = I{x + y ≤ 2t}.
The Hodges-Lehmann estimator can then be expressed as θ̂HL = θ +G−1

n (1
2),

where
Gn(r) =

2
n(n− 1) ∑

i<j
I{Xi + Xj ≤ 2r}.

Result C.9. Under Assumption 3.2, Lévy-Leduc et al. (2011a) demonstrate that,
for all 0 < D < 1, √

nD

L(n)
(θ̂HL − θ)

D−→ Z1,D(1)√
k(D)

,

a zero-mean Gaussian random variable with variance 2(1− D)−1(2− D)−1.

To show this result, Lévy-Leduc et al. (2011a) show that Hermite rank of
the class of functions {h(·, ·; t)− G(t); t ∈ R} is m = 1. This can be seen as
a special case of Result C.2 where for all t ∈ R, α1,0(t) and α0,1(t) are not
equal to zero. After the appropriate assumptions have been checked, they
apply Theorem C.4, and because m = 1 and D < 1

m obtain a single Gaussian
limit result for all D ∈ (0, 1),(

nD/2L(n)−1/2(Gn(t)− G(t)
)

t∈R

converges weakly in D([−∞,+∞]), equipped with the uniform norm, to(
−
√

2k(D)−1/2φ(t
√

2)Z1,D(1)
)

t∈R
.

Corollary C.2, noting Result C.1, therefore implies that

nD/2L(n)−1/2(θ̂HL − θ)
D−→ k(D)−1/2Z1,D(1),

As Lévy-Leduc et al. (2011a) note, this is the same limiting distribution
as the sample mean and hence in the long-memory framework with 0 <

D < 1, the Hodges-Lehmann estimator converges to θ at the same rate as
the sample mean, X̄n and there is no loss of efficiency. A similar result was
also proved in Beran (1991) for location M-estimators.

More generally, we need not consider simply the median, rather a similar
limit results holds for central quantiles of the pairwise mean distribution.
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c.4.2.2 Scale and autocovariance estimators

Using the results in Section C.4.1, Lévy-Leduc et al. (2011c) derive the limit-
ing distribution for Qn and autocovariance estimator, γ̂Q.

Result C.10 (Lévy-Leduc et al., 2011c, Theorem 3). Under Assumption 3.2, Qn

satisfies the following limit theorems as n→ ∞,

a. If D > 1
2 ,

√
n(Qn − σ)

D−→ N (0, σ̃2),

where σ =
√

γ(0) and the limiting variance σ̃2 is given by

σ2E
[
IF2(X1/σ; Q, Φ)

]
+ 2σ2 ∑

k≥1
E [IF(X1/σ; Q, Φ) IF(Xk+1/σ; Q, Φ)] .

b. If D < 1
2 ,

k(D)nD

L(n)
(Qn − σ)

D−→ σ

2

(
Z2,D(1)− Z2

1,D(1)
)

.

Note that the limiting distribution for Qn when D > 1
2 the same as that

found in the SRD setting, Result C.6.
It is instructive to compare the robust estimators with the classical estim-

ators. Lévy-Leduc et al. (2011c) show the following convergence result for
the SD.

Result C.11 (Lévy-Leduc et al., 2011c, Proposition 3). Under Assumption 3.2,
as n→ ∞,

a. If D > 1
2 ,
√

n(σ̂n − σ)
D−→ N (0, σ̃2

cl), where σ̃2
cl is the same as in the SRD

case, Result C.5.

b. If D < 1
2 ,

k(D)nD

L(n)
(σ̂n − σ)

D−→ σ

2

(
Z2,D(1)− Z2

1,D(1)
)

.

Note that the limiting distribution of σ̂n and Qn are identical and there
is no loss of (asymptotic) efficiency when D < 1

2 . Furthermore, the limiting
distribution for D < 1

2 is not centred and is asymmetric.
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Result C.12 (Lévy-Leduc et al., 2011c, Theorem 4). Under Assumption 3.2
with the additional requirement that L has three continuous derivatives and
Li(x) = xiL(i)(x) satisfies Li(x)/xε = O(1), for some ε ∈ (0, D), as x → ∞, for
all i = 0, 1, 2, 3, where L(i) denotes the ith derivative of L. Let h be a non-negative
integer. Then γ̂Q(h) satisfies the following limit theorems as n→ ∞.

a. If D > 1
2 ,
√

n(γ̂Q(h)− γ(h)) D−→ N (0, σ̆2(h)), where

σ̆2(h) = E
[
IF2(X1, X1+h; γQ, Φ)

]
+ 2 ∑

k≥1
E
[
IF(X1, X1+h; γQ, Φ) IF(Xk+1, Xk+1+h; γQ, Φ)

]
.

b. If D < 1
2 ,

k(D)nD

L̃(n)
(γ̂Q(h)− γ(h)) D−→ γ(0) + γ(h)

2
(Z2,D(1)− Z2

1,D(1))

where k(D) = Beta((1− D)/2, D) and

L̃(n) = 2L(n) + L(n + h)(1 + h/n)−D + L(n− h)(1− h/n)−D.

As for Qn, when D > 1
2 the limit result for γ̂Q is the same as in the

SRD case. The assumptions made on Li are satisfied if L is the logarithmic
function or a power thereof. Following Taqqu (2003), if we restrict attention
to an ARFIMA(0, d, 0) process, then

L(n) =
Γ(D)

Γ(d)Γ(1− d)
= a,

which, for fixed d is a constant and therefore slowly varying. Furthermore,
as n→ ∞, L̃(n)→ 4a.

Result C.13 (Lévy-Leduc et al., 2011c, Proposition 4). Under Assumption 3.2,
as n→ ∞,

a. If D > 1
2 ,
√

n(γ̂(h)− γ(h)) D−→ N (0, σ̆2
cl(h)), where σ̆2

cl(h) is the same as
in the SRD case, Result C.7.

b. If D < 1
2 ,

k(D)nD

L̃(n)
(γ̂(h)− γ(h)) D−→ γ(0) + γ(h)

2
(Z2,D(1)− Z2

1,D(1))

where,

L̃(n) = 2L(n) + L(n + h)(1 + h/n)−D + L(n− h)(1− h/n)−D.
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c.5 relative efficiencies

Pn Qn

n γ(0) γ(1) γ(2) γ(0) γ(1) γ(2)

Relative efficiencies

100 0.84 0.81 0.80 0.76 0.75 0.73

500 0.86 0.86 0.86 0.81 0.82 0.81

1000 0.86 0.87 0.87 0.82 0.83 0.82

Mean square errors

100 0.86 0.83 0.82 0.78 0.76 0.74

500 0.86 0.87 0.86 0.81 0.82 0.82

1000 0.87 0.87 0.87 0.82 0.83 0.83

Table C.1: Efficiencies and MSEs of the robust estimators relative to the classical
methods over 100,000 replications from an ARFIMA(0, 0.1, 0) process.

Pn Qn

n γ(0) γ(1) γ(2) γ(0) γ(1) γ(2)

Relative efficiencies

100 0.84 0.79 0.77 0.83 0.85 0.83

500 0.90 0.87 0.86 0.90 0.90 0.90

1000 0.91 0.89 0.89 0.91 0.91 0.91

Mean square errors

100 1.05 1.06 1.05 1.04 1.02 1.02

500 1.03 1.03 1.03 1.02 1.01 1.01

1000 1.02 1.02 1.03 1.01 1.01 1.01

Table C.2: Efficiencies and MSEs of the robust estimators relative to the classical
methods over 100,000 replications from an ARFIMA(0, 0.4, 0) process.
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C O VA R I A N C E A N D P R E C I S I O N M AT R I X E S T I M AT I O N

d.1 generating precision matrices

The R code below generates the covariance matrices used in the simulation
study in Section 4.6.

# Model 1 # Banded precision matrix structure

Theta1 = function(p,a=0.6){

Theta = matrix(NA,p,p)

for(i in 1:p){

for(j in 1:p){

Theta[i,j] = a^abs(i-j)

}

}

return(Theta)

}

# Model 2 # Randomly scattered sparse precision matrix

Theta2 = function(p,seed){

if(!missing(seed)) set.seed(seed)

B = matrix(NA,p,p)

for(i in 1:p){

for(j in 1:i){

B[i,j] = B[j,i] = sample(x=c(0.5,0),size=1,prob=c(0.1,0.9))

}

}

diag(B) = 0

Ident = diag(p)

cond.Theta = function(d) {(kappa(B + d*Ident)-p)^2}

delta = optim(par=1,fn=cond.Theta,lower=0,upper=1000,method="Brent")$

par

Theta = B+delta*Ident

#kappa(Theta) check that the condition number equals p

return(cov2cor(Theta))

}

# Model 3 # dense precision matrix

Theta3 = function(p){

Theta = matrix(0.5,p,p)

diag(Theta)=1

return(Theta)

}
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d.2 entropy loss results
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Figure D.1: Raw entropy loss results for the CLIME routine applied to data gener-
ated with a banded precision matrix for p = 15 (top), p = 30 (middle)
and p = 90 (bottom) with extreme outliers.
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Figure D.2: Raw entropy loss results for data generated with a banded precision
matrix with extreme outliers for p = 60 using CLIME (top), QUIC

(middle) and GLASSO (bottom).
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Figure D.3: Raw entropy loss results for data generated with a banded precision
matrix (top), scattered precision matrix (middle) and dense precision
matrix (bottom) with extreme outliers for p = 30 using the QUIC

routine.
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d.3 prial results
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Figure D.4: PRIAL results for data generated with a banded precision matrix (top),
scattered precision matrix (middle) and dense precision matrix (bottom)
for p = 30 using the QUIC routine with moderate outliers.
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d.4 log determinant results
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Figure D.5: Log determinant results for the GLASSO with moderate outliers, p = 30
for the banded (top), scattered sparsity (middle) and dense (bottom)
precision matrix scenarios.
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