View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Sydney eScholarship

Lab Report 2: Multi Band Flanger Tony Basa
430574977

DESC9115 Lab Report 2:

Multiband Flanger

By Tony Basa: 430574977

https://core.ac.uk/display/41238188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lab Report 2: Multi Band Flanger Tony Basa
430574977

Abstract:

Presented in this report is a digital multiband effect processor. The
prototype analyzed in this report is written as a matlab script. The script splits
the input signal into 3 bands highs, mids, and lows and allows each band to be
processed individually to achieve a unique sound that is intended for use in
music production and mixdown. The effects that are currently apart of the script
are flanging effect. The matlab script has an easy to use interface for
inexperienced users of matlab to process their input signals.

Introduction:

In audio production it can be very useful to process audio signals in
different frequency bands instead of a broadband signal. An example of this
scenario is when you want to add a flanger effect to drum mix, however you only
want to apply this flanger to the cymbals. How will you do this? By splitting the
signal into individual frequency band and then affecting each band separately
with the desired effect. This report looks at a proposed multiband flanger that
aims to solve the previously stated problem. The effect is in the form of a matlab
code and this report will walk the reader though it explaining how it works.

Processor design:

The processor consists of two main components groups: a three band
filter section that splits the input signal into a high frequency, mid frequency and
low frequency components at preset crossovers frequencies, and a modulation
effect section that processes the separated bands with a flanger effect.

Filter section:

Before the signal can be processed by the desired effect it must first be split into
the low, mid and high frequency bands. Using the fdesign function in matlab
three filters were created a lowpass filter, and bandpass filter and a highpass
filter.

Low pass filter

The lowpass filter was designed using the matlab function
fdesign.lowpass. This function creates a lowpass filter with user defined filter
parameters that define the filter. The default string entries are pass band
frequency, stop band frequency, pass band ripple & stop band attenuation. The
filter designed in this script is as follows:

PASSHZ LOW = 250; %sets the passband frequency for the
LPF in Hz

STOPHZ LOW = 300; %sets the stopband frequency for the
LPF in Hz

RIP LOW = 1; $sets the passband ripple for the LPF

STOPDB LOW = 50; %sets the stopband attenuation for

the LPF in dB

Lab Report 2: Multi Band Flanger Tony Basa
430574977

The stop band and pass band were chosen based on popular multiband effect
crossover frequencies (White, Robjohns 2002). White (2002) suggests a low
frequency band of around 175Hz for stereo buss inserts. In this processor the
frequency has been raised for 2 reasons; the first being that subtle flanging (slow
rates and small width) at low frequencies are not perceived very well on
consumers playback systems. The second reason was to create a smaller Q at the
crossover band (fig.1). A .1dB of ripple in the pass band was set so the filter will
not impart any colour to the input signal. 60db of stop band attenuation was set
so the ripples after the stop band would be inaudible.

High pass filter:

The high pass filter was designed using the fdesign.highpass function built
into matlab. Using the same string set as the .lowpass function a high pass filter
was designed with a stop band frequency of 3500Hz and a pass band of 4000Hz.
Again the pass band frequency was based of the popular multiband crossover
frequency (White & Ronjohns 2002). It is recommended that 6Khz be the
crossover frequency between mid and high frequency bands if the users want to
achieve a sense of air in the mix. For the purpose of this processor the high
frequency band has been lowered so the differences in the flanging effect can be
more distinct. The function is as follows:

HIdesign = fdesign.highpass('Fst,Fp,Ast,Ap’,
STOPHZ HI, PASSHZ HI, STOPDB HI,...
RIP HI, fs);
%Creates highpass filter using default highpass string
elements
HPF = design(HIdesign, 'IIR');
$Implements filter design to HPF

The filter is implemented with an IIR design using the design function. This
design method was chosen over the FIR method because it achieved more
desirable slope with less ripple. (fig2.)

Band Pass filter:

The band pass filter was designed using the fdesign.bandpass function.
This function is similar to the previously used fdesign. as it gives the user the
ability to input filter parameters to design a specific filter. In this case the filter
type is band pass and has a default string input of frequency stop low, frequency
pass low, frequency pass high, frequency stop high, stop band attenuation for the
low frequency, stop band attenuation for the high frequency and a pass band
ripple limit. The frequency limits were set based on the low and high pass filters.
(fig.3). For consistency all filters used an IIR method. This method provided
steep pass band attenuation and very little pass band ripple.

Modulation section:

The next step of the script implements a flanger function on each
frequency band of the input. The flanger function used in this script is based of a
guitar flanger effect pedal. Written by Luster (2013), the function uses a
sawtooth wave shaped low frequency oscillator (LFO)instead of a sine wave

Lab Report 2: Multi Band Flanger Tony Basa
430574977

shape. This produces an audible effect closer to that of a classic guitar flanger
sound.

The function processes the input at four times the sampling rate for a higher
quality audible output. Below is a section of code from the flanger function.

minDelaySamp=ceil (delay*£fsn/1000); %convert to msec, then
samples

maxDelaySamp=ceil ((delay+width)*£fsn/1000); %convert to
msec, then samples

n=(l:length(in)+maxDelaySamp)'; %how long to extend in by
for LFO

LFO=sawtooth(2*pi*rate/(fsn)*n,.5); %sawtooth more
commonly used in flangers
delayTimeSamples=(delay+width/2+width/2*LFO)*£fsn/1000;

The first line derives the minimum delay length, based of the user set delay
variable, is samples. The second line derives the maximum delay length using the
user-defined variable of width. The function then defines the total length needed
for the LFO. The sawtooth function in the fourth line creates the LFO using the
user defined rate variable. The .5 values at the end of the equation specifies the
offset of symmetry of the triangle wave (matlab).

The final steps of script gives the user the option to change the individual
frequency band levels before they are recombined back into mono. This feature
adds flexibility to the processor as it can be used to shape the over all mix.

User interface:

The matlab user interface can be daunting and at times confusing if the
user is unfamiliar with the software. For this reason the script contains user-
friendly interactions. The user is prompted to enter parameter values for the
flanger effect in each of the frequency bands. The display also gives limits to
what values may be entered:

display= '\n mid Band Flange Width (ms) 0.1-10\n\n >';
mwidth= input(display);

display= '\n mid Band Flange Rate (HZ) 0.05-5\n\n >';
mrate= input(display);

display= '\n mid Band Flange Mix 0-1\n\n >';
mmix= input (display);

This makes it easy for first time users to get workable results with their input
signals. However the drawback is that this interfaces makes it cumbersome to
change parameters quickly and experienced matlab users might find this feature
frustrating.

Conclusion:

Lab Report 2: Multi Band Flanger Tony Basa
430574977

If this product is picked up for development many more features can be
implemented. An example of this could be to implement a compressor over each
frequency band, or a phaser. More filters could be added and the signal could be
split into more frequency bands allowing for more effect processing to be done
to the signal.

Lab Report 2: Multi Band Flanger Tony Basa

430574977
Fig.1
Magnitude Response (dB)
i
T
8
=i
<3
2.
0.6 0.7
Frequency (kHz)
Fig.2
Magnitude Response (dB)
0F | E— R | PEOTR e | BT | BT | PSR I T T T
T :] . ¢ : ;
fin)
k=2
3 s
2
£ -
2
35
Frequency (kHz)
Fig.3

Magnitude Response (dB)

Magnitude {dB)

25
Frequency (kHz)

Lab Report 2: Multi Band Flanger Tony Basa
430574977

Reference List:

White, P Ronjohns, H 2002, Multi-Band workshop, Sound on Sound mag, August
2002.

Luster 2013, Flanger Matlab function, https://github.com/luster/guitar-
effects/blob/master/matlab/flanger.m

