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Abstract   

Maintaining cognitive ability in the elderly is a global priority. In this regard, 

Computerised cognitive training (CCT) is among the few effective interventions but 

several gaps in the evidence base limit clinical implementation. Specifically, we do 

not understand which specific cognitive skills can be effectively targeted, which 

design features moderate efficacy, or the nature of the underlying neuroplastic 

mechanisms. To address this problem, three inter-related studies were conducted.  

Chapter 2 is the first systematic review to utilise meta-analysis and meta-regression 

techniques to evaluate randomised controlled trials (RCTs) of tightly-defined CCT in 

healthy elderly. Three hundred forty-four effect sizes were generated from 37 RCTs, 

encompassing a total of 4,310 participants. Overall, CCT was effective on memory, 

working memory, processing speed, attention, language and visuospatial skills, but 

not on executive function. Type of training program, mode of delivery, session length 

and training frequency were found to moderate CCT efficacy.  

These design features were implemented in the Timecourse Trial (Chapter 3), a 

randomized, double-blind, active controlled longitudinal RCT of CCT in 80 healthy 

elderly. Significant effects were found on global cognition, memory and processing 

speed, as well as distinct dose-response curves across domains. These domain-

specific gains also followed different decay curves after training cessation, yet 

positive residual effects were still noted at 12 months follow-up.  

Gains in global cognition were next (Chapter 4) revealed to be related to discrete 

functional and structural brain changes using multimodal MRI on a subsample from 

the Timecourse Trial. Modification of resting-state functional connectivity was found 

to predict subsequent cognitive gains, gains that were also correlated to structural 

cortical plasticity.  

Overall, these results suggest that CCT is an effective intervention for supporting 

cognition in the elderly. The field may do well to now focus on improving standards, 

large-scale trials and a further understanding of biological mechanisms. 
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Chapter 1: Introduction   

But, it is said, memory dwindles. No doubt, unless you keep it in practice, or if you 
happen to be somewhat dull by nature.  

Marcus Tullius Cicero, 44 BCE 

 

Human ageing has been traditionally associated with an inevitable course of cognitive 

decline, but it is now clear that regeneration and experience-dependent plasticity is 

possible in the ageing brain when appropriate interventions are applied1. With 

advanced age the brain is at greater risk of a range of degenerative processes that can 

result in cognitive impairment and dementia, a severe and terminal loss of cognition 

and independence2. At a global scale, declining fertility rates and enhanced longevity 

have brought about pervasive, enduring, and largely irreversible changes to the age-

structure of national populations3. These sociodemographic transformations underpin 

a growing recognition that age-related cognitive decline is one of the key challenges 

of the century4.  

Whilst the neurobiological mechanisms of age-related cognitive decline and dementia 

are not fully understood2, it is clear that individual exposure and experience across the 

lifespan are instrumental in defining age-related cognitive morbidity5,6. Indeed, a 

growing body of epidemiological studies show a clear link between several lifestyle 

factors and dementia risk, suggesting that some lifestyle modifications may be 

protective against cognitive decline7. However, the overall evidence base for primary 

dementia prevention of interventional lifestyle modifications is currently limited8.    

This chapter will therefore introduce the potential role of computer-assisted 

cognitive training (CCT) as a means to improve cognition and reduce the risk of 
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cognitive decline in healthy ageing. It begins with a brief overview of healthy ageing, 

mild cognitive impairment (MCI) and dementia, three key stages in the cognitive 

spectrum of late life. It then discusses dementia prevention strategies, with a focus on 

the relationship between cognitive activity and dementia risk. Finally, it provides a 

general introduction to CCT, its development and the current state of the literature on 

CCT in older adults.  

1.1 Ageing, Cognition and Age-related Cognitive Decline  

The proportion of people around the world over 65 years of age has grown from 8% 

in 1950 to 11% today but is expected to double by mid-century3. The growth curve is 

expected to decelerate in the second half of the century, reaching about one-third of 

global population in 21009. The one-third mark is expected to occur before 2050 in 

several regions, including Europe, Japan and Oceania, where current fertility and 

mortality rates have already caused significant demographic changes9. Approximately 

3.2 million Australians are aged over 65 (14% of total population), and the age 

brackets 65-74 and >85 are the fastest growing segments in Australia10. China may 

face even greater demographic challenges, as growth in the >65 age bracket is 

coinciding with significant shrinkage in the working-age population11. The clear link 

between advanced age and morbidity implies that the challenges on the healthcare 

system are, immediate, acute and escalating5.     

Increasing longevity is not only a global challenge but also an opportunity for testing 

the impact of cognition-enhancing interventions to prevent or delay age-related 

cognitive decline (ARCD). As evidence of cohort effects in physical and cognitive 

morbidity accumulate5,12,13, and the interest in delaying retirement age and 

redistributing work across the age brackets is growing14,15, there is increased 
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likelihood that cognition-enhancing interventions could produce substantial societal 

impact.  

1.1.1 Normal Cognitive Ageing 

Whilst prescriptive definitions of ‘normal’ or ‘healthy’ cognitive ageing remain 

elusive, most older adults are psychometrically within the normal range of the 

cognitive ageing continuum depicted in Figure 1.116,17. Here, the general premise of 

normal ageing is an absence of a diagnosed cognitive impairment18, i.e., exclusion of 

performance on one or more neuropsychological tests below the 10th percentile. As 

almost all older adults tend to show some degree of deterioration in cognitive 

performance compared to younger adults2,19, it follows that so-called normal cognitive 

ageing allows for a degree of cognitive decline up to a normative level defined by 

respective age-, sex- and education-matched data18. Cognitive performance below 

one-to-two standard deviations (SD) of the norm generally marks the difference 

between normal cognitive ageing and mild cognitive impairment (MCI) (further 

defined below) 20. 

While convenient for both clinical and research purposes, the premise of normal 

ageing raises several important issues. First, it implies acceptance of ARCD as a 

natural part of ageing. In an ageing world, tacit acceptance of this notion and failure 

to take measures to combat this phenomena may turn out to be extremely expensive15. 

This is mainly due to the growing importance of older adults in the labour market, 

while jobs are becoming more cognitively demanding in today’s knowledge 

economy14,21. Hence, initiatives that effectively maintain and enhance cognitive 

performance in late life would not only decrease dependency ratios, but are arguably a 

prerequisite for economic stability.   
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Figure 1.1: The spectrum of cognitive impairment 
Source: reproduced from Bullock22  

Second, normal ageing encompasses an extremely heterogeneous set of cognitive 

profiles (phenotypes) and trajectories23 that often overlap with those of MCI24. Apart 

from neurodegenerative pathology, cognitive deficiencies may arise for several 

reasons including, among others, depression7, low midlife premorbid intelligence18, 

sensory impairment25, sleep disturbance26, cerebrovascular disease27, and 

cardiovascular disease and other physical comorbidities18. Thus, individual risk 

factors and domain-specific impairments, even when still at a preclinical stage, should 

be addressed in order to prevent subsequent decline.  

Finally, up to 30% of older adults with normal cognitive performance may have 

clinically silent Alzheimer’s disease (AD) pathology such as amyloid-β plaques, 

which may or may not develop into clinical dementia in later life28,29. Therefore, 

psychometrically normal cognition at a singe timepoint does not rule out the need for 

periodical evaluation, as every additional year of life increases the risk of dementia. In 

this way, the entire normal ageing population can be considered at general risk for 
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dementia, risk that might be mitigated or exacerbated by the presence of absence 

other risk factors.  For these reasons, there is a strong case for cognitive interventions 

in the ‘normal’ cognitively ageing population for the purpose of primary prevention 

of cognitive decline and dementia.  

1.1.2 Mild Cognitive Impairment 

MCI involves cognitive decline greater than expected for an individual’s age and 

education level but that does not interfere notably with activities of daily life, and is a 

frequent precursor of overt dementia30. The prevalence rate of MCI is estimated at 10-

20% of the elderly (>65) population31, but prevalence and incidence figures vary 

significantly, mostly due competing operational definitions and incorrect 

diagnoses32,33. Pusswald et al24, for example, compared two methods for MCI 

diagnosis in a cohort of memory clinic outpatients. In their study, 84.3% of the cohort 

was diagnosed as MCI using one method, but prevalence in the same cohort using a 

different method was less then half (39.5%).    

MCI is a broad term for a range of cognitive deficits, and several definitions have 

been proposed to differentiate it from normal ageing and to improve its diagnostic and 

prognostic value. The most notable differentiation is between amnestic and 

nonamnestic MCI (aMCI and naMCI, respectively) as well as single- and 

multidomain MCI 31. The difference between aMCI and naMCI is the presence of 

memory impairments, and multidomain MCI denotes that more than one domain (in 

addition to memory in aMCI) is impaired. The neuropsychological differentiation can 

be further categorised by the probable aetiology of the impairment, including, among 

others, AD, vascular dementia (VaD), frontotemporal dementia (FTD), psychiatric 
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disorders and medical conditions such as metabolic deficiencies and head trauma, or a 

combination of several sources34 (see Figure 1.2).   

 

In a recent position statement, Albert et al20 set out four diagnostic characteristics for 

MCI: concern regarding change in the patient’s cognition, impairment (>1 standard 

deviation from the matched age and education norm) in one or more cognitive 

domains, preservation of independence in functional abilities, and no dementia, albeit 

with evidence of cognitive deterioration. The statement recommends incorporating 

AD biomarkers in the diagnostic process to assess whether the observed MCI 

symptoms are likely to be early signs of AD, as MCI patients, particularly aMCI, are 

about 10 times more likely to develop dementia than those with normal cognition at 

the same age strata and thus may benefit from secondary prevention 

interventions31,33,35. Conversely, most MCI will remain stable or revert to normal 

cognition31,32, and since the benefits of pharmacological interventions in MCI are 

limited35, the clinical logic of pharmacological interventions to prevent conversion 

from MCI to dementia is unclear.  

MCI represent some degree of deviation from normal cognition and is an important 

dementia risk factor31,33, but is it a diagnostic entity in its own right or simply 

Once the physician has made the
delineation of the clinical subtype of
MCI, the next step involves the de-
termination of the proposed etiol-
ogy of the syndrome as outlined in
Figure 2. This approach is similar
to that used in delineation of most
neurological diagnoses, including
dementia. If by history, examina-
tion, and laboratory testing, one con-
cludes that the amnestic subtype is
likely caused by a neurodegenera-
tive process, then the probable out-
come will be AD, as has been sup-
ported by progression to more severe
stages of dementia and by neuro-
pathological findings.18,19 The in-
sidious onset of symptoms that typi-
fies AD suggests that virtually all
affected individuals will experi-
ence MCI as the earliest clinical ex-
pression of the underlying AD pro-
cess. Therefore, if a physician were
interested in designing a random-
ized clinical trial for AD, the appro-
priate clinical subtype of MCI, am-
nestic MCI, could be combined with
the suspected degenerative etiol-
ogy and inclusion and exclusion cri-
teria for the trial could be designed
appropriately. This basic approach
has been successful in characteriz-
ing a uniform group of individuals
to participate in randomized clini-
cal trials for MCI, using drugs that
are purported to have a mechanism
relevant to the underlying AD patho-
logic features.

It is likely that the lack of con-
sideration of the etiology of the clini-

cal subtypes of MCI has led to some
of the variability in the literature.
Epidemiology studies characterize
MCI subtypes clinically and evalu-
ate the subjects longitudinally. How-
ever, as Figure 2 demonstrates, some
etiologies of amnestic MCI (eg, ma-
jor depression) would be expected
to improve. Therefore, the general
statement that MCI is “unstable” is
inappropriate since it implies a prob-
lem with the construct of MCI. On
the contrary, some types of MCI of
certain etiologies should improve.
However, if one were to restrict the
discussion to the amnestic subtype
of presumed degenerative etiology,
then the predictive value of the con-
struct as prodromal AD is borne out.
It is only when the subtypes of MCI
are discussed broadly without ref-
erence to the etiology that the con-
fusion arises. The appreciation of this
interpretation of the literature re-
flects increasing sophistication of the
construct over the years.

IMPLEMENTATION
OF CRITERIA

Some variability is introduced by the
manner in which the criteria for MCI
are used. Recently, the construct of
cognitive domains has been intro-
duced to subclassify the various
types of MCI. Inherent in this no-
tion is the definition of a domain and
the instruments used to measure that
domain. While there is some agree-
ment on which domains are rel-

evant, there is no consensus. How-
ever, this is not different from the
application of the criteria for the di-
agnosis of dementia or AD.20 These
definitions also require impair-
ment of memory and other cogni-
tive domains (eg, attention, lan-
guage, visuospatial skills), as well as
a functional impairment. There-
fore, the challenge is similar; the
physician must determine what con-
stitutes a given cognitive domain,
such as memory, and use appropri-
ate instruments for measuring that
domain. There are no specific rec-
ommendations in the criteria for de-
mentia or AD with respect to what
constitutes specific domains or how
the physician should measure them.

In addition to the definition of a
domain, the physician must decide
how to assess the domains. Does the
physician use 1, 2, or more mea-
sures of memory, for example, to de-
termine if memory is impaired?
Clearly the more measures the phy-
sician uses, the more reliable the
measurements will be. Some of the
variability seen in the epidemio-
logic studies concerning MCI may
relate to the tendency to use a single
measure to assess a domain such as
memory. If that domain forms the
cornerstone for the definition of MCI
and the subjects with MCI as a group
are shown to be unstable over time,
then the conclusion may be drawn
that the construct of MCI is not re-
liable when, in reality, it may be the
psychometric measure “instabil-
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Figure 1. Flowchart for diagnosis of mild cognitive impairment (MCI) subtypes.
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unnecessary labelling of the effect of age on cognition36? Differential diagnosis 

between MCI, normal cognition and dementia is imprecise20,34, and prognosis is hard 

to predict. Rather than being described as a medical syndrome requiring specific 

interventions, MCI might be better thought of as a warning sign for possible cognitive 

deterioration and clear reason for frequent evaluation and lifestyle change. That said, 

it is clear that the field in general is gravitating towards the (still controversial) 

medicalization of MCI-like syndromes, as evident by the inclusion of Mild 

Neurocognitive Disorder in DSM-V37. 

1.1.3  Dementia 

Dementia is an umbrella term that refers to various cognitive, functional and 

behavioural syndromes related to neurodegeneration33. The 10th revision of the 

International Statistical Classification of Diseases (ICD-10) defines dementia as 

disturbance in higher cortical functions, which are accompanied with deterioration in 

emotional control, social behaviour, or motivation, but without loss of 

consciousness38. The 5th edition of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-V) replaces dementia with the term Major Neurocognitive Disorder 

to emphasise the existence of such deficits beyond the realm of ageing as in the case 

of Human immunodeficiency virus (HIV) and brain injury.37 For the sake of 

consistency, this thesis will use the term dementia despite the changes in 

nomenclature.  

The diagnostic core of dementia is clinical and symptomatic rather than 

pathological39. A recent position statement40 defines five criteria of symptoms 

required to diagnose dementia: interference with everyday functioning; decline from 

earlier level of functioning; exclusion of delirium or major psychiatric disorder; 
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evidence of impairment from both subjective (informant interview) and objective 

(neuropsychological or ‘bedside’ mental status testing) sources; and impairment in 

two or more of the following domains: memory, reasoning, visuospatial abilities, 

language functions and behaviour.  

Popular cut-off points for operationalising cognitive criteria include the Alzheimer's 

Disease Assessment Scale-Cognitive subscale (ADAS-Cog) score ≥ 1841, a 

neuropsychological test that covers multiple cognitive domains often used in clinical 

trials, or the Mini-mental State Examination42 <23, a brief screening instrument of 

global cognition. The severity of the impairment and its effect on global functioning 

can be assessed using Clinical Dementia Rating (CDR) scale between 1-343 (see also 

Figure 1.1).  

The most common single aetiology of dementia is AD (accounts to 60-80% of 

incidence), followed by cerebrovascular disease, dementia with Lewy bodies, FTD, 

late-stage Parkinson’s disease, mixed dementia, Creutzfeldt-Jakob disease, and 

normal pressure hydrocephalus (for characterisation of the various types see e.g., 

Thies et al33). Importantly, population-based neuropathology studies suggest that 

multiple pathology is in fact more common than any single pathology, with AD and 

cerebrovascular disease being the most common combination44. 

Since dementia mainly occurs in late life, global population ageing is associated with 

a sharp rise of prevalence. A recent systematic review estimated the global prevalence 

of dementia at 35.6 million people in 2010, and expected that continuation of the 

status quo would see this number doubles by 203045. However, recent evidence of 

positive cohort effects in dementia incidence in four Western countries12,13,46,47, 

possibly induced by improvements in health and education in these countries, may 
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suggest that incidence may decelerate in some parts of the developed world. 

However, 58% of all people with dementia live in low- or middle-income countries, 

many of them are lagging behind the Western nations in dementia-relevant aspects of 

public health and education, and the proportion of dementia cases in these countries is 

expected to rise in accordance with increased lifespan to 63% in 2030 and 70%4,45 of 

global prevalence in 2050 (see Figure 1.3A). The global cost of dementia was 

estimated at US$604 billion in 2010, about 1% of the world GDP48, and is expected to 

increase faster than prevalence due to rising costs of patient care49. Therefore, the 

world’s weakest economies are taking most of the burden of the disease, leading to 

profound economic and humanitarian pressures. As current pharmacological 

interventions for dementia provide merely short-term symptomatic relief in a subset 

of patients50, preventative strategies that focus on key risk factors are extremely 

compelling areas for global action4.  

 
Figure 1.3: Dementia prevalence (A) and costs per patient (B) in high low-to middle-income 
countries 
Source: Wortmann51  

1.2 Preventing Dementia   

Given that AD is the most common cause of dementia and that most cases occur after 

65 years33,45, this review focuses on preventing AD dementia in the elderly 

population. Furthermore, the main focus here is on modifiable risk factors that can be 

potentially addressed with interventions, with an emphasis on cognitive inactivity as a To enhance global public policy on dementia, ADI has 
released reports on the global prevalence of dementia 
(World Alzheimer Report 2009), the economic cost of 
dementia (World Alzheimer Report 2010) and the bene-
fi ts of early diagnosis and intervention (World Alzheimer 
Report 2011). ADI worked with the World Health 
Organization on the report Dementia: A Public Health 
Priority that was launched in Geneva in April 2012 [3] . 
Th is report confi rms previous data and provides an 
overview for all aspects of the disease. Th e report 
recommends that every country should develop a 
national Alzheimer and dementia plan, and gives a 
framework for action. Th is framework includes the 
following stages [5].

Th e framework initially involves advocacy and 
awareness raising. Advocacy targets governments at all 
levels to encourage policies that will improve dementia 
care and services. Awareness raising focuses on the 
general public, as well as families and healthcare profes-
sionals, to improve their understanding of dementia and 
to change attitudes and practices.

Developing and implementing dementia policies and 
plans should be carried out across governmental depart-
ments on all medical, social, legal and economic aspects 

of the disease. Plans should be put together and imple-
men ted in collaboration with academia, nongovern men-
tal organisations, professional organisations and govern-
mental departments and agencies.

Th e third stage of the framework concerns health and 
social system strengthening. It is essential that health and 
social systems are equipped to provide the range of care 
and services that people with dementia and family 
caregivers need. Th is includes capacity-building and edu-
ca tion among healthcare professionals and invest ments 
in health information systems.

Finally, research and evaluation should complete the 
framework. Each country should develop a research 
agenda, and there is need for international collaboration 
and public/private partnerships to make progress in basic 
science and fi nding new and more eff ective treatments. 
Th e agenda will be multidisciplinary. Countries also need 
to monitor the course of the dementia epidemic for 
changes in prevalence and incidence that might indicate 
success or failure of measures.

ADI wants to work with its member organisations and 
other international nongovernmental organisations to 
make this framework happen.

A number of countries now have Alzheimer or 
dementia plans – for instance, Australia, South Korea, 
France, the UK, Norway and Denmark. Th e USA is 
working on a plan and has published a draft. Th ere are 
also policy initiatives in Mexico and India. Th ese plans 
are promising and other countries can learn from the 
fi rst experiences. From the data, it is clear that we have 
no time to lose!
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leading modifiable risk factor7. However, given that different types of dementia have 

overlapping risk factors (e.g., cardiovascular disease) and that some interventions may 

be used for both prevention and moderation of AD, the discussion on cognitive 

interventions in the second half of this section may also be relevant to other aspects of 

the dementia epidemic.  

1.2.1 The Rationale Behind Prevention  

Dementia is associated with three types of costs whose composition vary between 

different economies (see Figure 1.3)48,51. Direct medical expenditure (i.e., spending 

within the health care sector) accounts for about 15% of the total global expenditure 

on dementia and is the least common expenditure, although dementia contributes to 

some extent hospitalisation due to other causes52. Direct expenditure on social care 

(institutionalisation) accounts for about a third of total global costs, but vary between 

45% of the cost of care in high-income countries to about 13% in low- to middle-

income countries. Finally, the cost of informal care (i.e., indirect costs incurred by 

caring for people with dementia at home or in the community) accounts for 40% in 

high-income countries and may reach 65% of the economic burden of the disease in 

lower-middle income countries. These costs may be an underestimation, as the costs 

may cover multiple parameters, from loss of income to mental health morbidity on 

behalf of carers.  

While much can be made to improve the quality and efficiency of dementia care and 

medical treatments, there is little argument that reduction of dementia prevalence is a 

key element in reducing the burden of dementia. The progressive nature of the disease 

and its late age of onset allow for four types of prevention strategies along the 
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dementia continuum (Figure 1.1): primary prevention, secondary prevention, tertiary 

prevention and delayed onset.  

Primary prevention aims to reduce the incidence of conversion from normal cognitive 

function to clinical cognitive impairments (i.e., MCI and dementia)53. Secondary 

prevention targets populations with MCI with or without biomarker evidence of AD 

pathology in order to prevent further deterioration towards dementia8. Tertiary 

prevention aims to prevent progression in severity of diagnosed dementia, or reduce 

the degree of functional impairment50,53. Finally, delay onset strategies aim to 

compress the duration of the disease, i.e., to reduce the time between diagnosis and 

death. Since delayed onset strategies aim to extend the age of diagnosis, they could be 

thought of as a form of primary prevention.   

Several theoretical models have suggested that effective interventions can serve 

multiple prevention strategies, i.e., delay both onset and progression, bringing about a 

significant long-term reduction in prevalence54,55. For example, a recent Australian 

model55 associated every year of delayed onset by an intervention introduced in 2020 

with a 7% reduction in prevalence three decades later. The net effect of such 

interventions on future prevalence depend on a number of factors, including the 

period of delayed onset and/or progression, the year in which the intervention will be 

introduced, types of dementia likely to be affected, the timeframe of the model and 

epidemiological predictions in the relevant geographical region54,55.  

An alternative approach models the effectiveness of specific preventative 

interventions according to the relative weight of the risk factors reduced by each 

intervention7. Importantly, all of these models rely on assumptions about age-linked 

increases in prevalence and incidence, which, as mentioned previously, are coming 
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under increasing scrutiny given evidence for protective cohort effects12,13,46,47. 

Clearly, further epidemiological research is required to test the predictive accuracy of 

these models. 

1.2.2 Preventing Dementia by Targeting Risk Factors  

Whilst the theoretical benefit of preventative intervention is clear, establishing 

empirical evidence has proven exceptionally challenging. Several factors may be 

responsible, including the heterogeneity of dementia pathogenesis and failure to 

intervene well ahead of the development of AD pathology8,17. More importantly, since 

incident dementia event rates are low (e.g., 1,8% [95% CI 0.9–3.6] in the age bracket 

65-6913), previous prevention trials have been underpowered, poorly targeted, or both.  

In contrast to the absence of such empirical data, a rapidly growing body of 

epidemiological studies have identified a range of factors that increase the risk of 

ageing-related cognitive decline, MCI and conversion to dementia, that may therefore 

serve as a basis for developing preventative interventions56.  

Two leading risk factors are unmodifiable. First and foremost is increasing age; the 

incidence of dementia doubles every 5.9 years of age, from 3.1 per 1000 person years 

in the age bracket 60-64 to 175 at those aged over 954. The second is hereditary, 

which includes a combination of some genetic variants such as the ε4 form of 

apolipoprotein E (APOE) gene, other genes that increase dementia-related morbidity 

(e.g., cardiovascular disease) and early life environmental risk factors33. The 

hereditary nature of mid- and late-life intelligence17 may play an additional role, as 

intelligence level is assumed to be inversely related to dementia risk7.      
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Conversely, several cardiovascular risk factors have been strongly associated with 

dementia incidence and seem to be more malleable. These mainly include midlife 

hypertension, obesity, high cholesterol and diabetes mellitus, as well as high-

cholesterol diet, smoking and physical inactivity7,33,57. Several interventions inspired 

from cardiovascular disease prevention trials have been found to be beneficial to 

maintain cognitive function in the aged. For example, antihypertensive 

pharmacotherapy in the SYST-EUR Trial (first line calcium channel antagonists) is 

the only intervention found to reduce dementia incidence in a multicentre randomised 

controlled trial (RCT)44, however this has yet to be fully replicated44. Cognitive 

benefits (albeit without evidence of dementia incidence reduction) have also been 

found in several trials involving smoking cessation58 and aerobic exercise59. However, 

with the sole exception of SYST-EUR, the association between cardioprotective 

lifestyle factors (including diet and exercise) and reduced dementia risk are restricted 

to epidemiological studies and are yet to be translated into effective dementia 

prevention interventions 16,60. 

1.2.3 Mental Activity, Cognitive Lifestyle and Dementia Risk  

Epidemiological studies repeatedly link a low level of educational attainment with an 

increased probability of dementia incidence7,49,57,61,62, and some studies have further 

found greater education level associated with compression of cognitive morbidity, 

possibly due to delayed onset63 and shortened lifespan following diagnosis63,64. 

Reduced incidence was also associated with a history of engagement in other 

mentally challenging activities such as occupational complexity65, cognitively-loaded 

leisure activities62 and social engagement66. Engagement in an active cognitive 

lifestyle may stimulate several neurobiological effects, including reduction in cerebral 
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microvascular disease, increased neuronal density and cortical thickness in the 

prefrontal cortex67, as well as increased grey matter volume and lower rate of 

hippocampal atrophy in late life68. While the mechanistic underpinnings of these 

effects remain unclear, several theoretical explanations have been suggested.     

First, there are likely causal relationships between early-life intelligence, educational 

attainment and occupational complexity15,17,19, which tend to increase income, 

engagement in mentally challenging leisure activities and tendency towards healthier 

behaviour69. Similarly, cognitive abilities predict job performance, coping with 

challenges and thus income15,70, which, in turn, is associated with decreased dementia 

risk49,71 (see Figure 1.4). However, some research suggests that different forms of 

cognitive lifestyle may have distinct effects. For example, dose-dependent and 

education-independent effects of cognitive activity in late life have been found on the 

onset of memory decline72, as well as domain-specific effects of particular cognitive 

activities73, which together suggest that activities may differ in the scope and scale of 

their long term benefits to cognitive function.  

Second, complex mental activities across the lifespan (but also premorbid 

intelligence) are often associated with the concept of reserve, which aims to explain 

“differences between individuals in susceptibility to age-related brain changes and 

pathology”74(Stern, p. 1006). Very briefly, one form of the reserve theory proposes 

that the effect of any neural injury (e.g., AD pathology) on brain and cognitive 

function is moderated by some premorbid neurophysiological or cognitive capacities 

(brain and cognitive reserve, respectively). As a result, individuals with higher reserve 

will require more pathology to induce loss of function compared to individuals with 

lower reserve, thereby delaying the onset of clinical symptoms and increasing the rate 
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of decline once the latter has started75. Furthermore, cognitive reserve underpins 

individual differences in strategy and brain function during task performance, which 

can compensate for pathology and cognitive decline and protect everyday functions75. 

Cognitive reserve has been associated with higher IQ, education, occupational 

attainment, some leisure activities and social engagement in both epidemiological61 

and imaging studies75. The clearest evidence for a compensatory effect of education 

on dementia is provided by the ECLIPSE multicentre neuropathology collaboration76, 

which found that dementia risk for a given level of AD pathology was independently 

mediated by education level. 

 

Figure 1.4: Probability of dementia by household income 
Source: based on data from Hurd et al49. Error bars represent 95% CI    
 

The current definitions of cognitive lifestyle are too broad to provide clear causal 

links between specific lifestyle modifications and positive cognitive results. More 

specific evidence, particularly in regard to the type, intensity and implementation of 

effective cognitive activities is needed to facilitate clinical translation. Nevertheless, 

interventions that can effectively increase educational attainment and other forms of 

cognitive stimulation earlier in life may affect cognitive morbidity, especially in the 



16   

developing world77. In parallel, there is a pressing need to develop specific and 

effective forms of cognitive enhancement for populations at risk for dementia. This 

thesis explores the CCT as a possible strategy to meet this challenge.     

 

1.3 CCT in Older Adults: A Primer 

The first evidence of cognitive training (CT) go back to Greek poet Simonides of 

Ceos, who introduced mnemonic strategy training in the 5th century BCE “as a 

technique by which the orator could improve his memory, which would enable him to 

deliver long speeches from memory with unfailing accuracy78” (p. 2). Simonides’ ars 

memorativa (“method of places and images") was practiced in rhetoric and monastic 

contexts through the Middle Ages, along with training aids such as Ramon Lull’s 

combinatory wheels, which helped practitioners to remember Christian concepts 

through the use of enumeration and grouping. From the late Renaissance onwards, 

memory training was conceived as a systematic method involving repeated practice 

on structured tasks, and as an aid for scholastic thinking and logic (rather than merely 

memorising) as part of the emergence of the scientific method 78,79.  

The basic approach of modern-day CT is founded on early trials of cognition-focused 

psychotherapy in patients with psychiatric illness, brain injuries and other cognitive 

disorders during the 1960s80,81. The notion that the malleability of cognitive 

performance extends to non-clinical populations became evidently clear in the 1970s, 

and training programs aimed at improving cognitive performance in the elderly were 

introduced immediately thereafter82-84.  
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Several CT methods have been proposed to target cognition in older adults, based 

mostly on domain-specific strategy training and multi-modal approaches, which 

combine strategy training in several neuropsychological domains accompanied with 

general cognitive stimulation programs (for an overview of the evolution of these 

interventions, see a review by Lustig et al85). Recent years have seen a surge of 

interest in interventions that involve extended practice on cognitive processes86-88, 

including computer-based exercises, which were introduced in the early 1980s and are 

gaining popularity89.   By mid-2013, more than 2,000 peer-reviewed articles have 

been published on the topic (see Chapter 2), and the scientific interest in CT 

applications seems to be growing exponentially (see 1.5).   

 
Figure 1.4: Number of publications per year on CT, 1973-August 2013 
Source: ISI Web of Knowledge (see Chapter 2 for search details) 
 

CT is often framed as a type of cognitive remediation90, defined as “a behavioral 

training based intervention that aims to improve cognitive processes (attention, 

memory, executive function, social cognition or metacognition) with the goal of 

durability and generalization91” (p. 472), along with other cognitive-based 
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interventions such as cognitive stimulation and cognitive rehabilitation (see Figure 

1.6).  

 

Figure 1.5: A typical view of CT in broader context of remediation  
Source: Mowszowski et al90 
 

However, it can be argued that classifying CT in the context of cognitive remediation 

present three problems. First, it incorrectly equates CT with incomparable 

interventions and obscures the specific methods and effects of CT, as evident by 

Cochrane reviews that attempt to synthesise a considerably heterogeneous array of 

non-CT trials (involving e.g., behavioural interventions and general stimulation 

activities) 92,93. Second, defining CT this way may incorrectly narrow down the utility 

of the intervention to clinical populations, whereas training-induced benefits have 

been documented in high-functioning populations as well. Third, CT is not a generic 

538 L. Mowszowski et al.

COGNITIVE
REMEDIATION
Intervention strategies to
mediate deterioration in

memory and other cognitive
domains

Cognitive Stimulation
Participation in activities
which generally enhance

cognitive and social
functioning, using non-specific

techniques such as
discussions or reminiscence

Cognitive Training
Provides theoretically driven

strategies and skills and
involves “guided practice” on

various tasks reflecting
specific cognitive functions

Cognitive Rehabilitation
Relies on identifying and

targeting individual areas of
weakness in daily functioning,
and implementing strategies

to improve or compensate for
these difficulties

Strategy-based:
Teaches and facilitates

practice of techniques to
enhance strengths and/or

adapt to weaknesses;
includes both internal and

external strate iesg

Computerized:
Games and exercises

targeting various cognitive
functions; usually individually-

tailored and incorporates
graded difficulty and
independent learning

Internal:
Incorporate mental

techniques to facilitate
cognitive processes – e.g.

“chunking’ pieces of
information to assist

encoding”

External:
Use practical aides to

compensate for weaker
cognitive processes – e.g.
writing information down to

reduce the burden on memory
processes

Figure 1. Cognitive remediation terminology.
Sources: Medalia and Richardson, 2005; Sitzer et al., 2006; Acevedo and Loewenstein, 2007; Belleville, 2008; Clare and Woods, 2008.

Cognitive remediation and cognitive training
Cognitive remediation refers to behavioral interven-
tions aimed at improving cognition in individuals
who have experienced a decline in cognitive
functioning, or enhancing and extending function-
ing in those who are cognitively intact (Medalia
and Richardson, 2005; Acevedo and Loewenstein,
2007). These interventions may be administered in
individual or group formats over several sessions,
and involve a range of activities including general
mental activity, guided practice on cognitively
demanding tasks, strategy use and computerized
exercises. The literature uses many terms to
describe cognitive remediation techniques, such
as cognitive stimulation, cognitive rehabilitation

and cognitive training, all of which differ in
their approach (Belleville, 2008; see Figure 1).
This review focuses on cognitive training (CT),
referring to programs which enhance cognition by
providing theoretically-driven strategies and skills,
usually involving “guided practice” on various
tasks reflecting different cognitive functions. CT
techniques are categorized as compensatory or
restorative (Sitzer et al., 2006). Compensatory
tactics aim to develop new ways of performing
tasks, bypassing deficient cognitive processes and
teaching alternative approaches to achieving goals.
Both internal (e.g. categorizing, visualizing or
paraphrasing information during learning) and
external (e.g. using calendars or environmental
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intervention, but a rather diverse field with distinct methodologies that are 

substantially independent from other forms of cognition-focused psychotherapy. 

1.3.1 Refining the Nature of Cognitive Training  

CT can be defined as repeated practice on one or more tasks with inherent cognitive 

challenge (‘cognitive exercises’), for the purpose of improving performance in 

specific cognitive domains50,94,95. Such improvements are attributed to the process 

overlap between the exercises and the cognitive domains they target, which can be 

measured using cognitive tests and/or functional outcomes (transfer tasks). CT can be 

based on teaching cognitive strategies or on extended practice over hundreds or 

thousands of trials on tasks that are based on the same theoretical grounds as 

cognitive tests86. Measuring the transferability of the latter kind might be challenging, 

as some exercises may closely resemble the transfer tasks (for a comprehensive 

review of transfer of training in older adults, see Zelinski86).  

Each cognitive exercise usually targets one or two specific cognitive domains, but it is 

possible to target the same domain using different exercises. That is, just like the 

pectoralis major muscle can be trained with various resistance exercises (e.g., push 

ups and bench pressing), response inhibition can be trained using diverse stimuli (e.g., 

shapes or letters), delivery methods (e.g., computerised or paper-based), speed, levels 

of stimuli complexity and so on. This does not mean that all response inhibition 

exercises are born equal – there is indeed a good reason to assume that some would be 

more efficient, acceptable or effective than others – but the principle that different 

exercises can target similar cognitive processes still holds, and optimising the content, 

delivery and dose of CT exercises for specific populations is a growing area of 

research96.      
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In contrast to the nature of CT as a means to deliver practice of cognitive processes, 

other forms of cognitive remediation use different intervention techniques, such as 

skill learning, social interactions, engagement in cognitively stimulating activities, 

coping strategies and individually-tailored CT-like programmes50,90,94,97. CT can be 

combined with remediation techniques, physical exercise and/or pharmacological 

interventions, but the CT component of such combined approaches is still distinct 

from the other. Thus, models such as the one depicted in Figure 1.6 are arguably 

incorrect, and better description of the interventions in trials of non-pharmacological 

interventions98 may help the field to better interpret the evidence.  

Moreover, the field lacks coherent terminology to distinguish CT from non-CT 

interventions, as well as one CT approach from another. Terms such as ‘cognitive 

training99’, ‘brain training100’, ‘brain plasticity-based training101’, ‘mental activity102’, 

‘video game training103’, ‘brain exercise104’, ‘cognitive exercise105’, ‘cognitive 

rehabilitation training106’ are just a few examples of terms used to describe multi-

domain CCT programs in publications. Conversely, using the same term to describe 

inherently different CT programs may be just as problematic, as such practices 

establish the idea that all CT programs are identical.   

This is not a semantic issue but rather a fundamental problem in the current literature, 

which slowed down progress95. Sloppy terminology could lead to poorly designed 

trials and unsupported claims, underestimating or overestimating the efficacy of 

CT107. Consequently, systematic reviewers try to pool fundamentally different 

interventions (both CT and non-CT) into the same meta-analysis, inevitably finding 

heterogeneous results that are necessarily biased against an indication of 

efficacy92,93,108. It seems therefore that a more detailed taxonomy of cognition-focused 
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interventions is needed to allow the field to settle questions of efficacy (‘does it 

work?’) and then move onto investigation of what works, how it works and for 

whom109. Arguably, it is the latter which are critical for the translation of decades of 

research into clinical practice.     

Rigorously defined CT does not of course rule out the added value of combinatorial 

multimodal interventions. In fact, results from two recent trials suggest that 

combining CT with methods from cognitive rehabilitation and stimulation techniques 

might be effective in older adults. Cheng et al110 found significant and durable 

improvements in healthy older adults’ global cognition after 24 1-hour group 

sessions, which combined repeated practice with group discussions, psychoeducation 

and homework assignments. Similarly, Buschert et al111 combined group-delivered 

extended CT practice with cognitive stimulation techniques in patients with MCI, and 

have shown not only an improvement in global cognition, but also a delay in 

conversion from MCI to AD compared to a wait-list control group112. Unsurprisingly, 

a meta-analysis of memory training (mnemonics strategies) found group sessions 

significantly more effective than individual strategy training, citing “social 

comparison and a resulting feeling of self-efficacy, reactivation, mutual support and 

reinforcement among the trainees, or enhanced motivation” (p. 250) as key possible 

explanation for the mediating effect113. While the mechanisms underlying the added 

value of such ‘non-specific’ effects to CT efficacy are unclear, there may be a case for 

complementing CT exercises with other forms of stimulation, similar to cognitive 

rehabilitation methods in schizophrenia97.     
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1.3.2 Computer-based CT (CCT) 

The following section aims to lay the technical groundwork for the meta-analysis of 

CCT discussed in Chapter 2 and the RCT described in Chapter 3.  

CCT has several advantages over traditional paper-and-pencil CT, including the 

possibility to create engaging, game-like exercises, accurate and rapid individual 

feedback and adaptivity, low administration costs and the option to combine auditory 

with visual stimuli95,114,115. CCT-based interventions can be distinguished by three 

design features, namely, platform, content and method of delivery. Defining these 

features is important because as discussed earlier inconsistent terminology hampers 

understanding and implementation of research results.       

1.3.3 Technical Platforms  

Most CCT trials to date have used personal computers (PCs), with the CCT software 

installed on the PC hard drive, using mice and keyboards. Other input devices include 

touchscreens, joysticks, and – especially in early trials – button boxes. The advent of 

the internet brought about a surge in online CCT, whereby the user does not posses a 

copy of the CCT program, and the provider has absolute control over the provision, 

content and data generated by the software. This feature allows greater flexibility and 

frequent updates of the software, interfaces with other platforms (e.g., emails and 

social media), creating performance norms, monitoring compliance and data analysis 

for research purpose, especially in regard to training performance116.  

Mobile devices pose an alternative CCT platform, which, for reasons of cost, 

simplicity and portability, could be an important mode of delivery in the near future. 

‘Brain training’ suites for the Nintendo DS handheld gaming device received some 
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empirical support100,117, and numerous applications for mobile phones and tablets are 

now available, albeit trials using these two platforms have yet to be published. Video 

game consoles, particularly the Nintendo Wii, have been studied rigorously in recent 

years as a possible platform to provide mainly physical, balance and fine motor 

training, but results from several studies suggest that Wii-delivered CCT in older 

adults can be rather effective as well85,114,118.         

1.3.4 Training Content  

After more than three decades of CCT research, it would be reasonable for the field to 

have identified what design features maximise transfer and focus on development and 

implementation of the most effective programs. Unfortunately, the field has not. A 

recent review of 39 CCT studies in healthy older adults114, for example, identified 31 

different programs. Although innovation is generally a positive feature, it is unclear 

whether the considerable investments in design and research of new CCT programs 

over the past decade are genuine improvements of the methods, or, to borrow a term 

from pharmaceutical industry, simply geared towards ‘me too’ software. 

Notwithstanding the specific differences from one program to another, the structure of 

CCT programs can be divided into three broad categories.  

Single-domain CCT typically entails a small number of exercises (usually between 

one and five), which aim at one cognitive process or at closely related cognitive skills. 

Some popular examples include working memory training109,119, visual processing 

speed training120,121 and dual task training103. This kind of paradigms appeal to 

researchers because they offer a succinct insight into the malleability of a discrete 

cognitive ability87,122, the neural mechanisms underlying training-induced 

adaptations103,123-125, and the role such changes may have on other aspects of cognitive 
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performance126. Single-domain training does not tend to generalise beyond the trained 

domain85, although some evidence for far transfer (i.e., effects that extend beyond the 

trained domain) does exist86,110.   

Along with single-domain programs88, Video games were investigated for potential 

cognitive benefits in the elderly from the early days of CCT89. Video games are far 

from being a single construct with a clear scientific meaning107, but the term is used 

interchangeably with others in the CCT literature. For the sake of clarity it is proposed 

to define ‘video games’ as interventions that were developed for general 

entertainment purposes (i.e., without a therapeutic intentions) and studied for their 

suitability as CCT. This design feature can arguably set video games apart from all 

other types of CCT, which typically have been designed in light of psychological or 

neuroscientific principles and intended for cognitive enhancement96,114. However, as 

long as the lack of regulatory environment for CCT continues, definitions may vary 

and the general misinterpretation of trial results in the media107 is not likely to change. 

Nevertheless, video game training are often considered as a particular type of CCT, 

and a number of RCTs involving video games are reviewed with some caution in 

Chapter 2.      

Finally, and probably the most prevalent type of CCT, multi-domain programs will 

entail two or more exercises targeting two or more cognitive domains. Multi-domain 

training is not to be confused with multi-modal training, as the latter term is used to 

describe programs that combine CT with other interventions, such as physical 

exercise and/or cognitive stimulation85. Some multi-domain CCT programs adjust 

training content to individual needs (based on individual performance), preferences 
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(based on pretraining questionnaires and/or manual selection) or following a 

prescribed program.         

1.3.5 Delivery Methods 

The third design feature that differentiates CCT programs describes the settings in 

which practice takes place. Traditionally, CCT studies have been conducted in a 

designated facility, usually the experimenter’s laboratory. The experimenter’s role in 

the training might me limited to mere technical facilitation of the program, or 

expended to provide guidance, strategy, metacognitive consideration and debriefing.  

Studies involving self-administered training at-home begun to emerge in the late 

1990s and are gaining increasing interest, in line with the increasing popularity of 

CCT via the internet. Some of the self-administered CCT studies provide initial 

training and follow-up (to provide technical assistance, ensure adherence, etc.101,127), 

whereas others merely provide access to the program and do not contact participants 

during the intervention period, similar to how home-based CCT usually works in the 

real world128. Finally, some programs for home use (such as Cogmed, CogniFit and 

Scientific Brain Training Pro) offer add-on case management systems that allow 

clinician to follow-up on trainees’ progress and, in some cases, plan and modify their 

sessions.  

1.4 Thesis Overview 

Designing interventions that can effectively maintain cognition in the elderly is a 

priority in today’s ageing world. Providing more opportunities for cognitive 

stimulation and improving cardiovascular health across the lifespan may help to 

extend recent reports of protective cohort effects 12,13,46,47. These should be 
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complemented by interventions designed specifically for older adults at risk for 

ACRD, MCI and dementia. Numerous pharmacological and non-pharmacological 

interventions have been proposed, but most have failed to show efficacy in primary, 

secondary and tertiary prevention trials129,130.  

CT is not a panacea for cognitive ageing, but has accumulated an extensive body of 

evidence for efficacy on elders’ cognitive performance. In addition, CCT is safe, 

highly prescriptive and inexpensive, which makes it a popular intervention in 

prevention-orientated trials. However, in order to advance the field, there is a need to 

address four critical issues, namely ending the ‘brain training debate’ by establishing 

a definitive answer to CCT efficacy (or lack thereof) of CCT, identifying the 

conditions that may facilitate generalisation and durability of any positive effects, 

measuring the dose-responsiveness of these effects and understanding the 

mechanisms of CCT-induced neuroplasticity109. This thesis aims to shed light on 

these four core issues.  

Because systematic reviews of CCT in older adults tend to mix results from studies of 

very heterogeneous methodologies, a definitive review and meta-analysis of RCTs of 

CCT in healthy older adults has yet to be conducted. Chapter 2 provides that first 

systematic review and meta-analysis of strictly defined RCTs of CCT in healthy older 

adults, quantifying not only the efficacy of CCT but also the moderating impact of the 

design features described in Section 1.3 above.   

Identifying the basic anatomy of efficacious CCT programs means the clinical 

applicability of CCT can be further investigated by finding the dose of training 

required to induce cognitive benefits. Chapter 3 reports results from a randomised, 

active-controlled, longitudinal trial of CCT in healthy older adults (the Timecourse 
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Trial), whose main purpose was to measure the dose-responsiveness of key cognitive 

domains to CCT, as well as the timecourse by which such benefits may wane after 

training cessation.  

Finally, Chapter 4 tries to address the challenging problem of understanding the 

neural underpinnings of CCT efficacy. A subset of subjects from the Timecourse Trial 

underwent multi-modality Magnetic Resonance Imaging (MRI) scans before, during 

and after a course of CCT, and results are compared to the cognitive outcomes 

described in Chapter 3.   
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Chapter 2: Dissecting the Anatomy of Computerised 

Cognitive Training: A Systematic Review and Meta-

Analysis  

2.1 Introduction   

2.1.1 Rationale  

Human adult ageing is associated with a gradual process of age-related cognitive 

decline (ARCD). Further deterioration in cognition can lead to mild cognitive decline 

(MCI) and dementia, whose prevalence in adults over 65 years of age is estimated at 

20% and 15%, respectively1 (see Chapter 1 for a detailed discussion of limitations in 

MCI nosology and epidemiology). Given strong links between engagement in 

cognitively stimulating activities and enhanced late-life cognition and reduced risk of 

MCI and dementia2-4 (see Chapter 1), there has been growing interest in cognition-

focused interventions that may attenuate ARCD and help maintain cognitive 

performance in older adults. Arguably, the most studied intervention is cognitive 

training (CT), which involves structured practice on standardised cognitively 

challenging tasks5. Despite a wealth of studies linking CT to various cognitive 

benefits and neuroplastic changes in older adults6-8, the current evidence base is 

methodologically heterogeneous and results inconsistent5.  

Recent years has seen a sharp increase in the popularity of computer-assisted 

cognitive training (CCT) among researchers and the public alike. CCT has several 

advantages over traditional CT methods, including more visually appealing interfaces, 

efficient and scalable delivery and the ability to constantly adapt training content and 
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difficulty to individual performance8-10. However, as in the case of traditional CT, the 

CCT literature suffers from several limitations, including lack of adequate control 

groups, poor study designs, lack of longitudinal follow-ups, unclear relevance of 

study outcomes to everyday performance and inconsistent methodology (in terms of 

e.g., program design, dose and outcome measures). Together, these issues have made 

a synthetic evaluation of the literature challenging and impeded translation of trial 

results to clinical practice5,7,8,11-14.  

To date the efficacy of CCT on cognitive performance in healthy older adults has yet 

to be comprehensively addressed in a systematic review. Three recent reviews5,13,14 

attempted to pool outcomes from different cognition-based interventions (CT, CCT, 

and non-CT methods such as cognitive stimulation) and, unsurprisingly, reached 

inconclusive results. By contrast, a recent systematic review of CCT in healthy older 

adults8 refrained from a quantitative meta-analysis, citing the degree of 

methodological inconsistencies between studies.  

A balance between pooling inherently different studies into the same analysis5 versus 

excess conservatism8 may therefore be required in order to make new insights about 

the efficacy of CCT. One approach is to take advantage of more recent meta-analytic 

technology that allows flexible testing of not only overall efficacy claims, but also 

identification of moderating efficacy factors15. In the context of meta-analysis, 

moderating factors are design features of the included RCTs that can influence their 

effect size estimate.  

2.1.2 Objectives   

In healthy older adults, we aimed to: 



 

     41 

1) Evaluate the efficacy of RCTs of CCT on different cognitive outcomes; 

2) Test the moderating effects of several key design features; 

3) Assess the nature and quality of RCT evidence; and 

4) Suggest recommendations for future CCT research based on these findings.  

2.2 Methods 

The PRISMA guidelines for design, conduct and reporting of meta-analyses were 

implemented16. 

2.2.1 Eligibility Criteria   

Types of studies: Published, peer-reviewed articles reporting results from randomised 

controlled trials (RCTs) studying the effects of CCT on one or more cognitive 

outcomes in healthy older adults.   

Types of participants: Mean participant age ≥60 years and lack of any major 

cognitive, neurological, psychiatric and/or sensory impairments. Studies with MCI as 

inclusion criterion were excluded as cognitive performance in this population may 

vary substantially and conversion from MCI to dementia during the trial period could 

not be ruled out.     

Types of interventions: Trials comparing the effects of ≥4 hours of extended practice 

on standardised computerised tasks with clear cognitive rationale17,18, or immersive 

technologies or video games, administered on personal computers, mobile devices or 

gaming consoles, versus active or passive control condition. Lab-specific 

interventions that do not involve interaction with a computer (e.g., overhead 

projectors and simulators) were excluded from the review. 
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Types of outcome measures: Performance in one or more cognitive tests that were not 

included in the training program (i.e., untrained), administered both before and after 

training. This review is limited to change in performance from baseline to 

immediately post-training on tests of memory, working memory (WM), processing 

speed, attention, language, visuospatial skills and executive functions. Both primary 

and secondary outcomes were included. Long-term outcomes, subjective measures 

(e.g., questionnaires), non-cognitive (e.g., mood, physical) and activities of daily 

living (ADLs) measurements were excluded from the analysis.   

2.2.2 Information Sources and Search  

Studies were identified by searching on all the databases included in ISI Web of 

Knowledge using the search terms "cognitive training" OR "brain training" OR 

"memory training" OR "attention training" OR "reasoning training" OR “extended 

practice”, and by scanning reference lists of articles and reviews. No limits were 

applied for publication dates and non-English papers were translated. This search was 

conducted on 13 August 2013. One additional study published in September 201319 

and results from the Timecourse Trial (Chapter 3) were included as well. The 

candidate developed and conducted the search.  

2.2.3 Study Selection  

Eligibility assessment was performed in three stages. First, the candidate scanned all 

records and excluded ineligible abstracts based on title, abstract and type of record. 

All records that were not peer-reviewed published articles (particularly conference 

abstracts) were excluded at this point as well. Second, the candidate and an additional 

lab member independently scanned the remaining full-text articles for eligibility, and 
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determined inclusion by means of consensus. Finally, the candidate’s supervisor 

assessed eligibility of selected studies.  

2.2.4 Data Collection and Coding  

Coding of outcomes measures into cognitive domains and data extraction was done 

based on accepted neuropsychological categorisation20 or by consensus between the 

candidate and an additional lab member. Data was entered into Comprehensive Meta 

Analysis (CMA21, Biostat Inc., Englewood, NJ) Version 2.2.064.  

Data from most studies were entered as means and standard deviations (SD) of the 

CCT and control groups at baseline and follow-up.  A conservative pre-post 

correlation of 0.6 was selected and preset for all analyses. When studies presented 

data for both active and passive control groups, only the active control group was 

used as a comparison to CCT. In a few instances, data were entered as post-training 

mean change19,22,23, Hedge’s g with 95% confidence interval (CI)24 or raw mean 

difference with 95% CI25.  CMA allows for each of these different study outcomes to 

be flexibly entered into the model. 

When data could not be extracted from study reports, we contacted the authors 

requesting raw data. We contacted 15 authors, of which 12 provided raw data or 

methodological clarifications, after which four papers were excluded due to 

ineligibility26-29. Of the three papers whose authors did not respond or provided the 

requested data, two were excluded30,31, and one was included after reviewing the 

study protocol in the clinical trials registry23.   

Data from two studies received different treatment. First, Wolinsky et al32 presented 

data from four groups, namely: 1) speed of processing (SOP) training on-site, 2) same 
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intervention with long term booster training, 3) SOP training at-home, and 4) an 

active on-site control group. Since groups 1 and 2 received the same intervention 

between baseline and immediate post-training assessment, data (means and SD) from 

these groups were combined using the formulae suggested by Higgins and Green33 

and compared to group 4. Data from group 3 was omitted from the analysis due to 

lack of a matching at-home control group. Second, Colzato et al34 used the same CCT 

in two groups genotyped for the brain-derived neurotrophic factor (BDNF) Val66Met 

polymorphism, compared to genotype-matched (Val/Val or Met-/ carriers) control 

groups. Data from each pair of groups therefore were treated as different studies.  

2.2.5  Data Items   

Information extracted from each included trial included:  

1. Characteristics of trial participants: age, sex (% males), MMSE score (when 

reported). 

2. Intervention details: type of CCT (multidomain, speed of processing (SOP), 

WM training, video games), delivery (centre- or home-based), total dose (in 

hours), number of sessions, session length (in minutes), session frequency (per 

week).   

3. Control condition: active (control intervention) or passive (wait-list or no-

contact) control. 

4. Outcomes: test, subtest/phase (when applicable), targeted domain, form of 

administration (computerised or paper-based), delayed or immediate recall 

(for memory outcome).  

5. Study design: type of control (active or passive control), blinding (unblinded, 

participant-blinded, assessor-blinded, double-blind). 
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2.2.6 Study Quality of Individual Studies 

The Physiotherapy Evidence Database (PEDro) scale was used to assess study 

quality. PEDro is a 11-item scale designed to assess the methodological quality and 

reporting of RCTs, and is reliable for rating trials of non-pharmacological 

interventions35. It should be noted, however, that since one of the PEDro items is 

‘blinding of therapist who administered the therapy’, is yet to be implemented in any 

RCT of CCT, then the maximum score for studies in this review was 10. Two 

independent assessors performed PEDro assessment for each study, and were 

subsequently reviewed by the candidate.   

2.2.7  Summary Measures and Planned Methods of Analysis 

All analyses were conducted using CMA by computing standardised mean difference 

(SMD) between CCT and control groups on each cognitive outcome measure, based 

on a random-effects model with 95% confidence intervals (CI). SMD was calculated 

as the difference in gain from baseline to immediately post-training assessment 

between the CCT and control group. When studies reported several outcome 

measures from the same cognitive domain, all measures of the same domain were 

automatically combined into one outcome measure, a standard feature of CMA. The 

I2 statistic was used to determine the degree of heterogeneity between studies in a 

particular meta-analysis36. I2 values of 25%, 50% and 75% imply small, medium and 

large heterogeneity, respectively36. Forest plots were used to examine the distribution 

of SMDs and to detect outliers.  

Two types of analyses were planned and conducted:   
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Efficacy: To estimate the overall efficacy of CCT, SMDs were calculated separately 

for each study and pooled by domain regardless of heterogeneity. All cognitive 

outcomes were analysed regardless of classifications as primary or secondary. 

Significance was defined at p<0.05.  

Moderators of efficacy: To potentially explain between-study variability and which 

design elements may moderate observed efficacy, we performed subgroup meta-

analyses for each domain using following moderators discussed in Chapter 1: 

1. CCT types: Multidomain, speed of processing (SOP) training, WM training, 

video games.  

2. CCT practice: delivery, dose, session length, session frequency. 

3. Study design: control condition, nature of blinding, test administration 

(computerised or paper-and-pencil).  

4. Study quality: PEDro score.  

A formal moderator test was performed using the Q-statistic, which is based on a 

mixed effects model with 95% CI, and tests for heterogeneity between sub-groups of 

studies. Under this model, within-subgroup heterogeneity is calculated using random 

effect, whereas between-group heterogeneity is based on fixed-effect model. Based on 

prior practice, between sub-group heterogeneity is defined as p<0.137.  

Planned meta-regression analyses were performed to examine SMDs against dose, 

session length, session frequency and PEDro scores. Only one study38 provided a total 

dose of more than 40 hours and was therefore excluded from dose analyses.  
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2.2.8 Risk of Bias Across Studies and Additional Analyses  

As this review was limited to published results, it is important to test whether 

publication bias or selective reporting of results might have affected the findings. 

Following previous recommendations39, we visually inspected funnel plots based on 

SMDs and standard error for every cognitive domain using CMA, and tested possible 

funnel plots asymmetries using Egger’s Test of the Intercepts40. When possible 

publication bias was detected (1-tailed p<0.1), intercepts and 95% CI were calculated 

using CMA.    

2.3 Results  

2.3.1 Study Selection and Characteristics  

Figure 2.1 presents a flowchart for study selection. Of the 37 studies included in this 

review, 22 were obtained from the original search and 15 were added from our own 

manual search. Overall, the 37 studies encompassed 4,310 participants and provided 

344 effect sizes (see Table 2.1). All studies were randomised controlled trials (RCTs) 

with at least one CCT and one control arm. 30 different CCT programs were 

identified, with doses (i.e., total training time) ranging from 441 to 6042 hours.  
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Figure 2.1: Flow diagram for the search and inclusion of studies in this review  
 

1848 records identified 
through database searching  

1850 records after duplicates removed  

15 additional records identified 
through other sources 

1386 abstracts excluded, mainly due to: 
•  Did not have a CCT intervention or not 

reported empirical results 
•  Not healthy older adults  
•  Not RCT 
•  Published abstracts 
•  Post-training cognitive data reported 

elsewhere   

464 full-text articles 
assessed for eligibility 

431 full-text articles excluded 
•  Did not have a CCT intervention or not 

reported empirical results (n = 175)  
•  Published abstracts or data reported 

elsewhere (n = 99) 
•  Not healthy older adults (n = 78) 
•  Not RCT (n = 52)  
•  Not reporting cognitive endpoints (n = 20) 
•  Authors did not provide data (n = 2) 

37 studies (38 independent 
group comparisons) 

included in the analyses 

Note:&Berry&is&included&in&not&CCT&–&change&in&next&version&
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Table 2.1: Study characteristics              
 Study demographicsa  Intervention design  Study design and quality 

Study name N Age Sexb MMSE 
 

CCT type Delivery Program Dose Sess. Length S/wk 
 

Control Design PEDro 

Ackerman 201043 78 60.7 69   Multidomain Home Wii Big Brain 
Academy 

20 20 60 5  Active Unblinded 3 

Anderson 201344 67 63.0 41.8 27.4  Multidomain Home Posit Brain Fitness 40 40 60 5  Active Assessor-
Blind 

6 

Anguera 201319 31 66.8  ≥26  Video Game Home In-house program 
(‘NeuroRacer’) 

12 12 60 3  Active Subject-
Blind 

6 

Ball 200245 139
8 

73.6  24  27.3  Speed of 
Processing 

Centre Speed of 
Processing 

11 10 67 2  Passive Assessor-
Blind 

9 

Barnes 201346 63 73.9 39.7 28.4 c  Multidomain Home Posit Brain Fitness 
+ Insight 

36 36 60 3  Active Double 9 

Basak 200847 34 69.6 25.7 29.3  Video Game Centre Rise of Nations 24 15 120 3  Passive Unblinded 5 
Boot 201338 41 72.5 39.9 29  Multidomain Home Brain Age 2 

(Nintendo DS) 
60 60 60 5  Passive Unblinded 7 

Bottiroli 200948 44 66.2  27.6  Multidomain Centre Neuropsychological 
Training software  

6 3 90 1  Passive Unblinded 6 

Bozoki 201349 60 68.9 41.6 27.3  Multidomain Home In-house program 
(‘My Better Mind’) 

30 30 60 5  Active Subject-
Blind 

6 

Brehmer 201150 24 63.6 50.0   Working 
memory 

Home Cogmed 10 25 25 5  Active Unblinded 8 

Brehmer 201251 45 63.8 55.4   Working 
memory 

Home Cogmed 9 23 26 4  Active Double 8 

Buschkuehl 200852 39 80.0 41.0   Multidomain Centre In-house program  18 24 45 2  Active Unblinded 5 
Colzato 201134 20 53.3 54.3 28.8  Multidomain Home In-house program 25 50 30 7  Active Unblinded 4 
Dahlin 200853 29 68.3 37.9 28.8  Working 

memory 
Centre In-house program  11 15 45 3  Passive Unblinded 6 

Edwards 200254 97 73.7 43.3   Speed of 
Processing 

Centre Speed of 
Processing 

10 10 60 2  Passive Unblinded 5 

Edwards 200555 126 75.6  28.1  Speed of 
Processing 

Centre Speed of 
Processing 

10 10 60 2  Active Unblinded 6 

Goldstein 199756 22 77.7    Video Game Home Tetris 31     Passive Unblinded 5 
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Table 2.1: Study characteristics              
 Study demographicsa  Intervention design  Study design and quality 

Study name N Age Sexb MMSE 
 

CCT type Delivery Program Dose Sess. Length S/wk 
 

Control Design PEDro 

Lampit 201357 77 72.1 32.2 28.0  Multidomain Centre Cogpack 36 36 60 3  Active Double 9 
Lee 201258 30 0.0 46.7 27.0  Speed of 

Processing 
Centre RehaCom 9 18 30 3  Active Unblinded 4 

Legault 201159 36 75.7 58.5 28.5c  Multidomain 
Working 
memory 

Centre In-house program 18 24 44 2  Active Assessor-
Blind 

8 

Mahncke 200624 123 70.9 50.0 ≥24  Multidomain Home Posit Brain Fitness 
(prototype)  

40 40 60 5  Active Assessor-
Blind 

8 

Maillot 201222 30 73.5  28.0  Multidomain Centre Exergames 
(Nintendo Wii) 

24 24 60 2  Passive Unblinded 5 

McAvinue 201360 36 70.4 36.1 28.1  Working 
memory  

Home In-house program 36 36 60 3  Active Unblinded 3 

Miller 201361 69 81.9 32.3 28.0  Multidomain Home Dakim's Brain 
Fitness 

15 40 23 5  Passive Unblinded 6 

Nouchi 201223 28 69.1  28.5  Multidomain Home Nintendo Brain 
Age 

5 20 15 5  Active Double 8 

Peretz 201162 155 67.8 38.0 29.0  Multidomain Home CogniFt 16 39 25 3  Active Double 10 
Rasmusson 199963 24 79.2  27.8  Multidomain Centre Colorado 

Neuropsychology 
Tests  

14 9 90 1  Passive Unblinded 6 

Richmond 201164 40 66.0 20.0 29.0  Working 
memory 

Home In-house program 10 20 30 4  Active Unblinded 6 

Shatil 201365 64 80.5 32.3 ≥24  Multidomain Centre CogniFit 32 48 40 3  Active Unblinded 5 
Simpson 201266 34 62.3 47.1 ≥27  Multidomain Home mybraintrainer.com 7 21 20 7  Active Unblinded 7 
Smith 200925 487 75.3 47.6 29.2  Multidomain Home Posit Brain Fitness 40 40 60 5  Active Double 10 
Stern 201167 40 66.3 46.0   Video Game Centre Space Fortress 36 36 60 3  Passive Unblinded 8 
van Muijden 201268 72 67.6 55.6 28.8  Multidomain Home In-house program  25 49 30 7  Active Subject-

Blind 
7 
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Table 2.1: Study characteristics              
 Study demographicsa  Intervention design  Study design and quality 

Study name N Age Sexb MMSE 
 

CCT type Delivery Program Dose Sess. Length S/wk 
 

Control Design PEDro 

Vance et al 200769 159 75.1 52.2 28.6  Speed of 
Processing 

Centre Speed of 
Processing 

10 10 60 1  Active Unblinded 4 

von Bastian 201370 57 68.5 59.6 ≥25  Working 
memory 

Home In-house program 16 20 27 5  Active Double 8 

Wang 201141 52 64.2 32.7 28.4  Video Game Centre In-house program 4 5 45 1  Active Subject-
Blind 

6 

Wolinsky 201132 456 61.9 39.1   Speed of 
Processing 

Centre Posit On the Road 10 5 120 1  Active Double 8 

a For the whole sample; b % males; c converted from the Modified Mental State Exam (3MSE, 1-100 scale) to MMSE 1-30 scale, 
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2.3.2 Meta-Analysis of Memory Outcomes   

Efficacy on Memory. Figure 2.2 shows effects for the k = 25 studies comparing 

pretest–posttest gains between CCT and control groups on all memory measures, 

excluding WM (N CCT = 1,654, mean sample size = 66; N controls = 1,614, mean 

sample size = 65). 19 studies reported more than one memory outcomes, which were 

combined into one effect size per study. The combined effect size was small but 

significant (SMD = 0.28, 95% CI [0.09, 0.47], p<0.01). The heterogeneity between 

studies was large and significant, I2 = 78.99%, p<0.01. The funnel plot showed 

considerable asymmetry towards the left of the funnel (Egger’s intercept = 1.23, 95% 

CI [-0.18, 2.63], p=0.04, see Figure 2.3), suggesting possible under-reporting of 

positive outcomes. Table 3.2. presents training efficacy by memory sub-domains.  

 

Figure 2.2: Forest plot for effects on memory based on all studies, rank ordered by SMD. 
 

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit p-Value

Barnes et al (2013) Combined -0.236 0.253 0.064 -0.732 0.260 0.350
Boot et al (2013) Combined -0.138 0.321 0.103 -0.767 0.491 0.668
Rasmusson et al (2010)Combined -0.104 0.424 0.180 -0.936 0.728 0.807
Dahlin et al (2008) Combined -0.079 0.375 0.141 -0.814 0.656 0.834
Legault et al (2011) Combined -0.059 0.351 0.123 -0.746 0.628 0.866
Simpson et al (2012) Combined -0.057 0.367 0.135 -0.778 0.663 0.876
Brehmer et al (2012) RAVLT -0.045 0.302 0.091 -0.636 0.547 0.883
Bozoki et al (2013) Combined -0.017 0.259 0.067 -0.525 0.492 0.949
Ball et al (2002) Combined -0.009 0.053 0.003 -0.114 0.096 0.871
Miller et al (2013) Combined 0.034 0.233 0.054 -0.423 0.491 0.885
Vance et al (2007) Combined 0.061 0.159 0.025 -0.251 0.372 0.703
Stern et al (2011) Combined 0.104 0.321 0.103 -0.525 0.734 0.745
Edwards et al (2002) Combined 0.110 0.210 0.044 -0.302 0.522 0.601
Buschkuehl et al (2008)Combined 0.111 0.251 0.063 -0.381 0.602 0.659
Smith et al (2009) Combined 0.142 0.091 0.008 -0.035 0.320 0.117
Mahncke et al (2006) RBANS Gobal Auditory Memory/Attention Score 0.184 0.634 0.402 -1.058 1.426 0.771
Peretz et al (2011) Combined 0.214 0.183 0.034 -0.145 0.574 0.243
Richmond et al (2011) Combined 0.263 0.322 0.104 -0.369 0.895 0.415
Basak et al (2008) Visual STM 0.363 0.323 0.104 -0.270 0.996 0.261
Lampit et al (2013) Combined 0.440 0.233 0.054 -0.017 0.896 0.059
McAvinue et al (2013) Combined 0.527 0.341 0.116 -0.141 1.195 0.122
Brehmer et al (2011) RAVLT 0.561 0.426 0.181 -0.273 1.395 0.187
Shatil (2012) Global Visual Memory 0.726 0.263 0.069 0.211 1.241 0.006
Bottiroli et al (2009) Combined 1.443 0.393 0.154 0.673 2.212 0.000
Anderson et al (2013) Memory for Words (WJ-III Auditory STM) -SS 3.862 0.414 0.171 3.051 4.673 0.000

0.282 0.098 0.010 0.090 0.475 0.004

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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Figure 2.3: Funnel plot of precision by SMD for studies reporting memory outcomes 
 

Memory 
subomain  

 All outcome for 
subdomain  

Immediate recall Delayed recall  

Verbal 
memory  

k  20 14 8 
SMD (95% CI) 0.22 (0–0.45)  0.26 (-0.03–0.55)  0.10 (-0.04–0.24)  
I2  80.12%** 86.29%** 4.45% 

Non-verbal 
memory 

k  11 8 5 
SMD (95% CI) 0.37* (0.7–0.66)  0.38* (0.01–0.75)  0.36 (-0.01–0.73)  
I2  75.82%** 79.1%** 65.58%* 

Table 3.2.: Effect sizes for memory subdomains (all studies) 
* p < 0.05. ** p < 0.01.  
 

Moderators of CCT efficacy on memory outcomes. Figure 2.4 presents subgroup 

analysis of memory outcomes by type of CCT. Only multidomain CCT produced 

significant effects of medium size (k=14, SMD = 0.43, 95% CI [0.07, 0.79], p=0.02, 

I2=86.95%, p=0.02). There were no significant effects on memory for SOP training 

(k=3, SMD = 0.004, 95% CI [-0.09, 0.09], p=0.93, I2=0%, p=0.80), video games (k=2, 

SMD = 0.23, 95% CI [-0.21, 0.68], p=0.31, I2=0%, p=0.57) and WM training (k=6, 

SMD = 0.17, 95% CI [-0.10, 0.45], p=0.22, I2=0%, p=0.64).  
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In addition, a significant formal test for moderator effect was found for training type 

(Q(3)=6.46, p=0.09), strong evidence that this has a key influence on memory 

outcomes. Given that non-multidomain types of CCT were ineffective on memory, 

and funnel plot analysis of multidomain studies did not show any significant 

asymmetry (Egger’s intercept = 1.75, 95% CI [-1.53, 5.04], p=0.13), the subsequent 

subgroup analyses were performed solely on RCTs of multidomain CCT (k=14, N 

CCT = 680, mean sample size = 48.57, N controls = 655, mean sample size = 46.79).  

Figure 2.4: Subgroup analysis of memory outcomes by type of CCT 
 

Practice moderators of multidomain CCT efficacy on memory: delivery, dose, 

session length and frequency. Whilst centre-based training produced medium effect 

size (k=5, SMD = 0.50, 95% CI [0.07, 0.93], p=0.02, I2=63.69%, p=0.02), home-

based training was ineffective (k=9, SMD = 0.39, 95% CI [-0.11, 0.89], p=0.13, 

I2=90.53%, p<0.01). However, formal test for between-subgroup heterogeneity was 

non-significant (Q(1)=0.1, p=0.75).  

CCT Type Study name
SMD Lower limit Upper limit p-Value

Multidomain Anderson et al (2013) 3.86 3.05 4.67 0.00
Barnes et al (2013) -0.24 -0.73 0.26 0.35

Boot et al (2013) -0.14 -0.77 0.49 0.67
Bottiroli et al (2009) 1.44 0.67 2.21 0.00
Bozoki et al (2013) -0.02 -0.52 0.49 0.95

Buschkuehl et al (2008) 0.11 -0.38 0.60 0.66
Lampit et al (2013) 0.44 -0.02 0.90 0.06
Mahncke et al (2006) 0.18 -1.06 1.43 0.77
Miller et al (2013) 0.03 -0.42 0.49 0.89
Peretz et al (2011) 0.21 -0.15 0.57 0.24
Rasmusson et al (2010) -0.10 -0.94 0.73 0.81
Shatil (2012) 0.73 0.21 1.24 0.01
Simpson et al (2012) -0.06 -0.78 0.66 0.88
Smith et al (2009) 0.14 -0.04 0.32 0.12

0.43 0.07 0.79 0.02
Ball et al (2002) -0.01 -0.11 0.10 0.87
Edwards et al (2002) 0.11 -0.30 0.52 0.60

Vance et al (2007) 0.06 -0.25 0.37 0.70
0.00 -0.09 0.10 0.93

Video Game Basak et al (2008) 0.36 -0.27 1.00 0.26
Stern et al (2011) 0.10 -0.53 0.73 0.75

0.23 -0.21 0.68 0.31
Working Memory Brehmer et al (2011) 0.56 -0.27 1.39 0.19

Brehmer et al (2012) -0.04 -0.64 0.55 0.88
Dahlin et al (2008) -0.08 -0.81 0.66 0.83
Legault et al (2011) -0.06 -0.75 0.63 0.87
McAvinue et al (2013) 0.53 -0.14 1.20 0.12
Richmond et al (2011) 0.26 -0.37 0.89 0.42

0.17 -0.10 0.45 0.22
Overall 0.05 -0.03 0.14 0.22

Statistics for each study Std$diff$in$means$and$95%$CI

Speed of 
Processing

All Working Memory studies

All Video Game studies

All Speed of Processing studies

All Multidomain studies

Group by
CCT class

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Multidomain Anderson et al (2013) W-J III Auditory ST memory 3.86 3.05 4.67 0.00
Multidomain Barnes et al (2013) Combined -0.24 -0.73 0.26 0.35
Multidomain Boot et al (2013) Combined -0.14 -0.77 0.49 0.67
Multidomain Bottiroli et al (2009) Combined 1.44 0.67 2.21 0.00
Multidomain Bozoki et al (2013) Combined -0.02 -0.52 0.49 0.95
Multidomain Buschkuehl et al (2008)Combined 0.11 -0.38 0.60 0.66
Multidomain Lampit et al (2013) Combined 0.44 -0.02 0.90 0.06
Multidomain Mahncke et al (2006) RBANS Auditory Memory/Attention 0.18 -1.06 1.43 0.77
Multidomain Miller et al (2013) Combined 0.03 -0.42 0.49 0.89
Multidomain Peretz et al (2011) Combined 0.21 -0.15 0.57 0.24
Multidomain Rasmusson et al (2010)Combined -0.10 -0.94 0.73 0.81
Multidomain Shatil (2012) Global Visual Memory 0.73 0.21 1.24 0.01
Multidomain Simpson et al (2012) Combined -0.06 -0.78 0.66 0.88
Multidomain Smith et al (2009) Combined 0.14 -0.04 0.32 0.12
Multidomain 0.43 0.07 0.79 0.02
Speed of Processing Ball et al (2002) Combined -0.01 -0.11 0.10 0.87
Speed of Processing Edwards et al (2002) Combined 0.11 -0.30 0.52 0.60
Speed of Processing Vance et al (2007) Combined 0.06 -0.25 0.37 0.70
Speed of Processing 0.00 -0.09 0.10 0.93
Video Game Basak et al (2008) Visual STM 0.36 -0.27 1.00 0.26
Video Game Stern et al (2011) Combined 0.10 -0.53 0.73 0.75
Video Game 0.23 -0.21 0.68 0.31
Working Memory Brehmer et al (2011) RAVLT 0.56 -0.27 1.39 0.19
Working Memory Brehmer et al (2012) RAVLT -0.04 -0.64 0.55 0.88
Working Memory Dahlin et al (2008) Combined -0.08 -0.81 0.66 0.83
Working Memory Legault et al (2011) Combined -0.06 -0.75 0.63 0.87
Working Memory McAvinue et al (2013) Combined 0.53 -0.14 1.20 0.12
Working Memory Richmond et al (2011) Combined 0.26 -0.37 0.89 0.42
Working Memory 0.17 -0.10 0.45 0.22
Overall 0.05 -0.03 0.14 0.22

-2.00 -1.00 0.00 1.00 2.00
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A total training dose of 21-40 hours produced large and significant effect sizes (k=7, 

SMD = 0.68, 95% CI [0.01, 1.35], p=0.04, I2=93.03%, p<0.01), whereas smaller 

doses were ineffective (k=6, SMD = 0.23, 95% CI [-0.11, 0.58], p=0.18, I2=57.15%, 

p=0.04), but again between-subgroups heterogeneity test did not reach statistical 

significance (Q(1)=1.375, p=0.24).  

An analysis of session length was not attempted due a disproportional distribution of 

studies with 30-60 minute sessions (k=9) compared to <30 and >60 minute (k=3 and 

2, respectively). A subgroup analysis of session frequency did not find any 

moderating effect (>3 sessions/wk: k=7, SMD = 0.54, 95% CI [-0.17, 1.25], p=0.14, 

I2=92.64%, p<0.01; 2-3 sessions/wk: k=5, SMD = 0.25, 95% CI [-0.04, 0.54], p=0.09, 

I2=49.17%, p=0.09; 1 session/wk: k=2, SMD = 0.68, 95% CI [-0.84, 2.19], p=0.38, 

I2=86.06%, p<0.01; between-subgroup (Q(2)=0.804, p=0.69). Similarly, meta-

regressions examining memory SMDs against dose, session length and frequency did 

not yield any significant results (data not reported here).  

Study design moderators of multidomain CCT efficacy on memory: control 

condition, blinding and type of outcomes. Studies that compared CCT to active 

control yielded significant results (k=10, SMD = 0.49, 95% CI [0.04, 0.93], p=0.03, 

I2=89.7%, p<0.01), whereas comparison to no-contact control groups did not show an 

effect (k=4, SMD = 0.18, 95% CI [-.36, 0.92], p=0.39, I2=75.31%, p<0.01), but the 

difference did not reach statistical significance when tested for between-subgroup 

heterogeneity (Q(1)=0.27, p=0.61).  

The moderating effect of blinding was tested after excluding the only two single-

blinded studies44,49, leaving a total number of 12 studies. Double-blinded studies 

showed statistically significant, albeit small effects (k=5, SMD = 0.15, 95% CI [0.01, 
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0.29], p=0.04, I2=0.39%, p=0.4), whereas unblinded studies yielded statistically 

insignificant effects (k=7, SMD = 0.28, 95% CI [-0.1, 0.66], p=0.15, I2=63.71%, 

p=0.01). There was no evidence of between-subgroup heterogeneity (Q(1)=0.34, 

p=0.56).  

Memory outcomes based on computerised tests were statistically significant (k=7, 

SMD = 0.37, 95% CI [0.06, 0.67], p=0.02, I2=61.28%, p=0.02), whereas non-

computerised tests did not reach significance (k=9, SMD = 0.38, 95% CI [-0.17, 

0.93], p=0.18, I2=90.55%, p<0.01), yet test for between subgroup heterogeneity was 

insignificant (Q(1)=0.002, p=0.97).  

Study quality moderators of multidomain CCT efficacy on memory. A meta-

regression analysis found a small but statistically insignificant inverse relationship 

between study quality and memory SMDs (b=-0.14, Q(1)=1.45, p=0.22.  

2.3.3 Meta-Analysis of Working Memory Outcomes   

Training effects. Figure 2.5 shows the k= 23 studies comparing pretest–posttest gains 

between CCT and control groups on all WM measures (N CCT = 888, mean sample 

size = 38.61, N controls = 831, mean sample size = 36.13). 18 studies reported more 

than one WM outcomes, which were combined into one effect size per study using 

CMD. The combined effect size was small and statistically significant (SMD = 0.26, 

95% CI [0.07, 0.46], p=0.01). The heterogeneity between studies was medium- to-

large and significant, I2 = 70.99%, p<0.01. The funnel plot did not show significant 

asymmetry (Egger’s intercept = -0.22, 95% CI [-2.17, 1.73], p=0.41).  
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Figure 2.5: Forest plot for effects on working memory (all studies), rank ordered by SMD  
 

Moderating effect of CCT type on working memory outcomes. Only multidomain 

CCT produced statistically significant effects of small size (k=10, SMD = 0.26, 95% 

CI [0.09, 0.43], p<0.01, I2=30.05%, p=0.17). Overall, there were no significant effects 

on working memory outcomes for WM training (k=7, SMD = 0.17, 95% CI [-0.20, 

0.54], p=0.37, I2=54.98%, p=0.04), video game training (k=4, SMD = 0.08, 95% CI [-

0.29, 0.44], p=0.68, I2=0%, p=0.37) or SOP training (k=2, SMD = 0.87, 95% CI [-

0.85, 2.60], p=0.32, I2=96%, p=0<0.01). However, there was no formal evidence of 

heterogeneity between the five types of CCT (Q(3)=1.39, p=0.71) or between the two 

most prevalent subtypes (multidomain and WM training): Q(1)=0.19, p=0.66). The 

remaining subgroup analyses were therefore performed for all CCT studies reporting 

WM outcomes.   

Practice moderators of  CCT efficacy on working memory: delivery, dose, 

session length and frequency. Whilst home-based training produced small but 

statistically significant effect size (k=13, SMD = 0.24, 95% CI [0.06, 0.41], p<0.01, 

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Richmond et al (2011) Combined -0.58 -1.21 0.06 0.08
Stern et al (2011) Letter Number Sequence (WAIS-III) -0.37 -1.00 0.25 0.24
Bozoki et al (2013) 1-Back (WM) -0.27 -0.78 0.24 0.30
Dahlin et al (2008) Combined -0.11 -0.85 0.62 0.76
Legault et al (2011) Combined -0.09 -0.78 0.60 0.80
Basak et al (2008) Combined -0.04 -0.70 0.61 0.89
Edwards et al (2002) Digit Span (WAIS-R Scaled Fwd+Back) -0.00 -0.42 0.41 0.98
von Bastian et al (2013)Combined 0.04 -0.49 0.57 0.88
Simpson et al (2012) Combined 0.05 -0.67 0.77 0.89
Shatil (2012) Auditory (non-linguistic) Working Memory 0.05 -0.44 0.55 0.83
Nouchi et al (2012) Combined 0.06 -0.68 0.80 0.88
van Muijden et al (2012)Combined 0.19 -0.33 0.72 0.47
Wang et al (2011) Combined 0.21 -0.33 0.76 0.45
Smith et al (2009) Combined 0.24 0.06 0.42 0.01
Maillot et al (2012) Combined 0.30 -0.40 0.99 0.40
Peretz et al (2011) Visuospatial Working Memory 0.42 0.05 0.78 0.02
Mahncke et al (2006) Digit span forward 0.42 0.01 0.84 0.04
McAvinue et al (2013) Combined 0.55 -0.12 1.22 0.11
Anguera et al (2013) Combined 0.58 -0.14 1.30 0.12
Brehmer et al (2011) Combined 0.62 -0.22 1.47 0.15
Brehmer et al (2012) Combined 0.84 0.21 1.46 0.01
Buschkuehl et al (2008)Combined 0.92 0.39 1.44 0.00
Edwards et al (2005) Combined 1.76 1.29 2.22 0.00

0.26 0.07 0.46 0.01

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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I2=36.28%, p=0.09), centre-based training was ineffective (k=10, SMD = 0.28, 95% 

CI [-0.16, 0.72], p=0.21, I2=83.26%, p<0.01). Formal test for between-subgroup 

heterogeneity was non-significant (Q(1)=0.03, p=0.87).  

A total training dose of 20 hours or less was sufficient to produced small-medium 

effect sizes (k=14, SMD = 0.35, 95% CI [0.02, 0.68], p=0.04, I2=78.09%, p<0.01), 

whereas studies that provided a dose of 21-40 hours showed considerably smaller and 

insignificant effects (k=9, SMD = 0.16, 95% CI [-0.01, 0.33], p=0.06, I2=17.3%, 

p=0.29), but again between-groups heterogeneity did not reach statistical significance 

(Q(1)=1.041, p=0.31).  

Studies with session length of 30-60 minutes showed significant results (k=14, SMD 

= 0.31, 95% CI [0.02, 0.59], p=0.03, I2=78.26%, p<0.01), whereas shorter sessions 

were ineffective (k=8, SMD = 0.21, 95% CI [-0.07, 0.49], p=0.14, I2=44.26%, p=0.08; 

between-subgroup Q(1)=0.244, p=0.62). A subgroup analysis of session frequency 

was performed after removing a single study that used one weekly session41. Studies 

with 2-3 weekly sessions (k=12, SMD = 0.34, 95% CI [-0.01, 0.99], p=0.06, 

I2=79.71%, p<0.01) tended to be more effective than 3 or more sessions per week 

(k=10, SMD = 0.16, 95% CI [-0.05, 0.37], p=0.12, I2=43.44%, p=0.07), albeit 

between-subgroup heterogeneity was not evident (Q(1)=0.71, p=0.40). Meta-

regressions plotting WM SMDs against dose, session length and frequency did not 

yield any significant results (data not shown).  

Study design moderators of CCT efficacy on working memory: control 

condition, blinding and type of outcomes. Studies that compared CCT to active 

control yielded significant results (k=18, SMD = 0.34, 95% CI [0.11, 0.57], p<0.01, 

I2=73.74%, p<0.01), whereas comparison to no-contact control groups did not show 
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an effect (k=5, SMD = -0.05, 95% CI [-.30, 0.21], p=0.73, I2=0%, p=0.73). For this 

moderating factor, significant between- subgroup heterogeneity was found 

(Q(1)=4.82, p=0.03, see Figure 2.6).  

 

Figure 2.6: Forest plot for effects on working memory by control condition  
 

The moderating effect of blinding was tested in only 22 studies, as only one study was 

assessor-blinded59. Only double-blinded studies showed statistically significant results 

(k=6, SMD = 0.30, 95% CI [0.15, 0.45], p<0.01, I2=7.41%, p=0.37), whereas 

insignificant effects were noted for both subject-blind (k=4, SMD = 0.13, 95% CI [-

0.19, 0.45], p=0.43, I2=25.5%, p=0.26) and unblinded studies (k=12, SMD = 0.27, 

95% CI [-0.13, 0.68], p=0.19, I2=82.09%, p<0.01). There was no strong evidence of 

between-subgroup heterogeneity (Q(2)=0.89, p=0.64).  

As opposed to memory outcomes, WM outcomes from computerised tests did not 

reach statistical significance (k=9, SMD = 0.28, 95% CI [-0.06, 0.61], p=0.10, 

Control Study name
SMD Lower limit Upper limit p-Value

Active Richmond et al (2011) -0.58 -1.21 0.06 0.08
Bozoki et al (2013) -0.27 -0.78 0.24 0.30
Legault et al (2011) -0.09 -0.78 0.60 0.80
von Bastian et al (2013) 0.04 -0.49 0.57 0.88
Simpson et al (2012) 0.05 -0.67 0.77 0.89
Shatil (2012) 0.05 -0.44 0.55 0.83
Nouchi et al (2012) 0.06 -0.68 0.80 0.88
van Muijden et al (2012) 0.19 -0.33 0.72 0.47
Wang et al (2011) 0.21 -0.33 0.76 0.45
Smith et al (2009) 0.24 0.06 0.42 0.01
Peretz et al (2011) 0.42 0.05 0.78 0.02
Mahncke et al (2006) 0.42 0.01 0.84 0.04
McAvinue et al (2013) 0.55 -0.12 1.22 0.11
Anguera et al (2013) 0.58 -0.14 1.30 0.12
Brehmer et al (2011) 0.62 -0.22 1.47 0.15
Brehmer et al (2012) 0.84 0.21 1.46 0.01
Buschkuehl et al (2008) 0.92 0.39 1.44 0.00
Edwards et al (2005) 1.76 1.29 2.22 0.00

All active controlled studies 0.34 0.11 0.57 0.00
Passive Stern et al (2011) -0.37 -1.00 0.25 0.24

Dahlin et al (2008) -0.11 -0.85 0.62 0.76
Basak et al (2008) -0.04 -0.70 0.61 0.89
Edwards et al (2002) 0.00 -0.42 0.41 0.98
Maillot et al (2012) 0.30 -0.40 0.99 0.40

All passive controlled studies -0.05 -0.31 0.21 0.73
Overall 0.17 0.00 0.35 0.05

Statistics for each study Std$diff$in$means$and$95%$CI
Group by
Control

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Active Richmond et al (2011) Combined -0.58 -1.21 0.06 0.08
Active Bozoki et al (2013) 1-Back (WM) -0.27 -0.78 0.24 0.30
Active Legault et al (2011) Combined -0.09 -0.78 0.60 0.80
Active von Bastian et al (2013)Combined 0.04 -0.49 0.57 0.88
Active Simpson et al (2012) Combined 0.05 -0.67 0.77 0.89
Active Shatil (2012) Auditory (non-linguistic) Working Memory 0.05 -0.44 0.55 0.83
Active Nouchi et al (2012) Combined 0.06 -0.68 0.80 0.88
Active van Muijden et al (2012)Combined 0.19 -0.33 0.72 0.47
Active Wang et al (2011) Combined 0.21 -0.33 0.76 0.45
Active Smith et al (2009) Combined 0.24 0.06 0.42 0.01
Active Peretz et al (2011) Visuospatial Working Memory 0.42 0.05 0.78 0.02
Active Mahncke et al (2006) Digit span forward 0.42 0.01 0.84 0.04
Active McAvinue et al (2013) Combined 0.55 -0.12 1.22 0.11
Active Anguera et al (2013) Combined 0.58 -0.14 1.30 0.12
Active Brehmer et al (2011) Combined 0.62 -0.22 1.47 0.15
Active Brehmer et al (2012) Combined 0.84 0.21 1.46 0.01
Active Buschkuehl et al (2008)Combined 0.92 0.39 1.44 0.00
Active Edwards et al (2005) Combined 1.76 1.29 2.22 0.00
Active 0.34 0.11 0.57 0.00
Passive Stern et al (2011) Letter Number Sequence (WAIS-III) -0.37 -1.00 0.25 0.24
Passive Dahlin et al (2008) Combined -0.11 -0.85 0.62 0.76
Passive Basak et al (2008) Combined -0.04 -0.70 0.61 0.89
Passive Edwards et al (2002) Digit Span (WAIS-R Scaled Fwd+Back) -0.00 -0.42 0.41 0.98
Passive Maillot et al (2012) Combined 0.30 -0.40 0.99 0.40
Passive -0.05 -0.31 0.21 0.73
Overall 0.17 -0.00 0.35 0.05

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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I2=70.97%, p<0.01), whereas non-computerised tests did reach significance with a 

small effect size (k=16, SMD = 0.29, 95% CI [0.02, 0.54], p=0.03, I2=74.61%, 

p<0.01), but test for heterogeneity was insignificant as well (Q(1)=0.003, p=0.96).  

Study quality moderators of all-type CCT efficacy on working memory. A meta-

regression analysis did not find any relationship between study quality and WM 

outcomes speed SMDs (β =0.04, Q(1)=0.27, p=0.61).  

2.3.4 Meta-Analysis of Processing Speed Outcomes    

Efficacy. Figure 2.7 shows the k =23 studies comparing pretest–posttest gains 

between CCT and control groups on all processing speed measures (N CCT = 1,615, 

mean sample size = 70.22, N controls = 1,456, mean sample size = 63.30). 19 studies 

reported two or more processing speed outcomes, which were combined into one 

effect size per study. Two studies32,45 reported UFOV sub-scores as well as a 

composite score, and only the latter was included in the analyses. The combined 

effect size was medium-sized and significant (SMD = 0.40, 95% CI [0.18, 0.63], 

p<0.01). Heterogeneity between studies was large and significant, I2 = 83.21%, 

p<0.01. The funnel plot did not show any significant asymmetry (Egger’s intercept = 

-0.41, 95% CI [-2.16, 1.34], p=0.31).  

Moderating effect of CCT types on processing speed outcomes. Statistically 

significant medium-size effects were noted for studies involving SOP training (k=5, 

SMD = 0.49, 95% CI [0.31, 0.67], p<0.01, I2=61.56%, p=0.03) and video games (k=4, 

SMD = 0.44, 95% CI [0.07, 0.80], p=0.02, I2=16.49%, p=0.31). Multidomain training 

did not show statistically significant effects (k=13, SMD = 0.35, 95% CI [-0.16, 0.87], 

p=0.18, I2=89.19%, p=0.17), and neither did the single study of WM training  (SMD 
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= 0.37, 95% CI [-0.37, 1.10], p=0.33). No significant between-subgroup 

heterogeneity was observed (Q(3)=0.35, p=0.95), and hence the remaining of analyses 

were performed on all studies reporting processing speed outcomes. 

 

Figure 2.7: Forest plot for effects on processing speed (all studies), rank ordered by SMD  
 

Practice moderators of all-type CCT efficacy on processing speed: delivery, dose, 

session length and frequency. Only centre-based training produced statistically 

significant effect (k=11, SMD = 0.46, 95% CI [0.34, 0.59], p<0.01, I2=29.67%, 

p=0.16). Home-based training was ineffective (k=12, SMD = 0.40, 95% CI [-0.20, 

1.00], p=0.19, I2=90.17%, p<0.01), but a formal test for between-subgroup 

heterogeneity was non-significant (Q(1)=0.04, p=0.85).  

A total training dose of 20 hours or less produced significant effects (k=11, SMD = 

0.41, 95% CI [0.23, 0.58], p<0.01, I2=57.79%, p<0.01), whereas studies that provided 

a dose of 21-40 hours showed insignificant results (k=11, SMD = 0.48, 95% CI [-

0.13, 1.09], p=0.21, I2=90.28%, p<0.01), but between-subgroups heterogeneity did 

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Colzato et al (2011) Met Combined -1.73 -2.76 -0.70 0.00
Ackerman et al (2010) Combined -0.29 -0.74 0.16 0.20
van Muijden et al (2012) Combined -0.25 -0.78 0.28 0.36
Boot et al (2013) Combined -0.19 -0.81 0.44 0.56
Colzato et al (2011) Val/ValCombined -0.11 -1.00 0.78 0.81
Edwards et al (2002) Combined 0.16 -0.26 0.57 0.46
Barnes et al (2013) Combined 0.16 -0.34 0.65 0.54
Wang et al (2011) Combined 0.21 -0.33 0.76 0.44
Lampit et al (2013) Inoformation Processing Speed 0.23 -0.23 0.68 0.32
Maillot et al (2012) Combined 0.32 -0.45 1.09 0.41
Bozoki et al (2013) Combined 0.33 -0.18 0.84 0.20
Stern et al (2011) Digit Symbol (WAIS-III) 0.34 -0.28 0.96 0.28
Dahlin et al (2008) Digit Symbol Substitution 0.37 -0.37 1.10 0.33
Wolinsky et al (2011) UFOV Composite 0.37 0.18 0.56 0.00
Anguera et al (2013) Combined 0.39 -0.32 1.10 0.28
Edwards et al (2005) Combined 0.44 0.08 0.81 0.02
Ball et al (2002) Combined 0.54 0.43 0.64 0.00
Simpson et al (2012) Combined 0.54 -0.21 1.29 0.16
Shatil (2012) Combined 0.75 0.23 1.26 0.00
Nouchi et al (2012) Combined 0.79 0.01 1.56 0.05
Vance et al (2007) Combined 0.90 0.56 1.24 0.00
Goldstein et al (1997) Reaction time 1.22 0.31 2.14 0.01
Anderson et al (2013) WJ-III Visual Matching 4.03 3.20 4.87 0.00

0.45 0.38 0.52 0.00
-2.00 -1.00 0.00 1.00 2.00

Favours Cotrol Favours CCT

Meta Analysis
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not reach statistical significance (Q(1)=1.05, p=0.81). A subgroup analysis of session 

length was not attempted due to a disproportional number of studies with 30-60 

minutes per session (k=15) compared to less than 30 minutes (k=5) and more than 60 

minutes (k=3).  

Studies with 2-3 weekly sessions were effective on processing speed (k=10, SMD = 

0.48, 95% CI [0.39, 0.57], p<0.06, I2=0%, p=0.56), and so were studies with only one 

session per week (k=3, SMD = 0.51, 95% CI [0.12, 0.91], p=0.01, I2=75.56%, 

p=0.02), but more than 3 sessions per week was not effective (k=10, SMD = 0.43, 

95% CI [-0.32, 1.18], p=0.26, I2=91.94%, p<0.01). Between-subgroup heterogeneity 

was insignificant among the three frequency categories (Q(2)=0.04, p=0.98) as well 

as between 2-3 and >3 weekly sessions (Q(1)=0.02, p=0.90). Meta-regressions 

plotting processing speed SMDs against dose, session length and frequency did not 

find any significant results (data not reported here).  

Study design moderators of all-type CCT efficacy on processing speed: control 

condition, blinding and type of outcomes. Significant effects were noted for studies 

comparing CCT to both active control (k=16, SMD = 0.42, 95% CI [0.08, 0.77], 

p=0.01, I2=87.39%, p<0.01) and no-contact control conditions (k=7, SMD = 0.37, 

95% CI [0.12, 0.62], p<0.01, I2=43.83%, p=0.1). A significant between-group 

heterogeneity was not found (Q(1)=0.06, p=0.81). The moderating effect of blinding 

was not tested due to disproportionally large number of unblended studies (k=13) 

compared to studies with subject-blinded (k=4), assessor-blinded (k=4) and double-

blinded (k=2) designs.  

Effect sizes on processing were similar and statistically significant for both 

computerised tests (k=17, SMD = 0.33, 95% CI [0.03, 0.62], p=0.03, I2=89.43%, 



 

     63 

p<0.01), and non-computerised tests (k=14, SMD = 0.40, 95% CI [0.04, 0.75], 

p=0.03, I2=88.66%, p<0.01) with insignificant heterogeneity (Q(1)=0.09, p=0.76).  

Study quality moderators of all-type CCT efficacy on processing speed. A meta-

regression analysis did not find any relationship between study quality and WM 

SMDs (b=0.03, Q(1)=0.18, p=0.67).  

2.3.5 Meta-Analysis of Attention Outcomes    

Efficacy. Figure 2.8 shows the 10 effect sizes comparing pretest–posttest gains 

between CCT and control groups on all attention measures (N CCT = 367, mean 

sample size = 36.7, N controls = 302, mean sample size = 30.2). 6 studies reported 

two or more attention outcomes, which were combined into one effect size per study. 

The combined effect size was small (SMD = 0.26, 95% CI [0.005, 0.517], p=0.046). 

The heterogeneity between studies was medium-sized and significant, I2 = 58.62%, 

p=0.01. The funnel plot showed a possible albeit not significant asymmetry towards 

to the left of the funnel (Egger’s intercept = 2.23, 95% CI [-1.37, 5.83], p=0.1).  

 

Figure 2.8: Forest plot for effects on attention (all studies), rank ordered by SMD  
 

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Richmond et al (2011) TEA - Elevator Counting with Reversal -0.46 -1.09 0.17 0.15
Basak et al (2008) Combined -0.06 -0.69 0.57 0.84
Peretz et al (2011) Combined -0.06 -0.41 0.30 0.76
Vance et al (2007) PASAT (/83) -0.01 -0.33 0.30 0.93
Anguera et al (2013) Combined 0.27 -0.44 0.98 0.46
van Muijden et al (2012)Combined 0.30 -0.22 0.83 0.26
Lampit et al (2013) Attention Mean 0.47 0.02 0.92 0.04
Shatil (2012) Combined 0.73 0.21 1.24 0.01
Brehmer et al (2012) PASAT 0.80 0.19 1.42 0.01
Brehmer et al (2011) PASAT 1.06 0.19 1.93 0.02

0.26 0.00 0.52 0.05

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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Moderating effect of CCT types on attention outcomes. Possibly due to the small 

number of studies reporting attention outcomes, none of the interventions reached the 

significance threshold, but multidomain training showed a small effect with trend 

towards significance (k=4, SMD = 0.33, 95% CI [-0.02, 0.68], p=0.06, I2=57.09%, 

p=0.07). There was no evidence for efficacy for WM training (k=3, SMD = 0.44, 

95% CI [-0.5, 1.39], p=0.36, I2=81.85%, p<0.01) or video games (k=2, SMD = 0.08, 

95% CI [-0.39, 0.55], p=0.73, I2=0%, p=0.49). A single study69 reported a null effect 

of SOP training on attention (SMD = -0.01, 95% CI [-0.33, 0.30], p=0.93). No 

significant between-group heterogeneity was observed (Q(3)=2.57, p=0.46), and thus 

the following analyses were performed on all studies reporting attention outcomes. 

Practice moderators of CCT efficacy on attention: delivery, dose, session length 

and frequency. Neither centre-based training (k=4, SMD = 0.27, 95% CI [-0.1, 0.65], 

p=0.15, I2=61.95%, p=0.05) nor home-based training (k=6, SMD = 0.26, 95% CI [-

0.13, 0.66], p=0.19, I2=63. 57%, p=0.02) produced significant effects. A total training 

dose of 21-40 hours showed medium effect size (k=4, SMD = 0.40, 95% CI [0.10, 

0.69], p<0.01, I2=22.45%, p=0.28), whereas studies that provided a dose of 20 hours 

or less showed insignificant results (k=6, SMD = 0.19, 95% CI [-0.17, 0.55], p=0.31, 

I2=64.76%, p=0.01), but between-subgroups heterogeneity did not reach statistical 

significance (Q(1)=0.76, p=0.38).  

A subgroup analysis of session frequency was performed after removing the single 

study that used session length of more than 60 minutes47. Studies with 30-60 minutes 

per session showed trend towards significance (k=4, SMD = 0.33, 95% CI [-0.03, 

0.69], p=0.07, I2=57.16%, p=0.07) and studies with session length of 30 minutes or 
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less were ineffective (k=5, SMD = 0.27, 95% CI [-0.2, 0.74], p=0.25, I2=70.85%, 

p<0.01). Between-subgroup heterogeneity was not evident (Q(1)=0.04, p=0.84).     

A subgroup analysis of session length was performed after removing the single study 

that used only one weekly session69. Non-significant results were noted for both 2-3 

weekly sessions (k=5, SMD = 0.26, 95% CI [-0.06, 0.6], p=0.11, I2=49.9%, p=0.1) 

and more than 3 sessions per week (k=4, SMD = 0.39, 95% CI [-0.23, 1.01], p=0.214, 

I2=72.86%, p=0.01), and between-subgroup heterogeneity was insignificant 

(Q(1)=0.13, p=0.72) Meta-regressions plotting attention SMDs against dose, session 

length and frequency did not find any significant results (data not shown).  

Study design moderators of all-type CCT efficacy on attention: control 

condition, blinding and type of outcomes. A subgroup analyses of control condition 

was not performed as only one study47 used a no-contact control group. None of the 

blinding conditions showed significant results (unblinded k=5, SMD = 0.21, 95% CI 

[-0.26, 0.67], p=0.38, I2=71.71%, p<0.01; double-blinded k=3, SMD = 0.36, 95% CI 

[-0.14, 0.86], p=0.16, I2=70.72%, p=0.03; subject-blinded k=2, SMD = 0.29, 95% CI 

[-0.13, 0.71], p=0.18, I2=0%, p=0.94) and there was no between-subgroup 

heterogeneity (Q(2)=0.2, p=0.9).  

Effect sizes on attention were significant only for computerised tests, which also 

showed low within-subgroup heterogeneity (k=6, SMD = 0.27, 95% CI [0.003, 0.53], 

p=0.05, I2=37.43%, p=0.15). Effects on non-computerised tests were insignificant 

(k=4, SMD = 0.29, 95% CI [-0.31, 0.89], p=0.34, I2=77.26%, p<0.01), but a formal 

test for between-subgroup heterogeneity was insignificant (Q(1)=0.005, p=0.95).  
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Study quality moderators of all-type CCT efficacy on attention. A meta-

regression analysis did not find any relationship between study quality and attention 

SMDs (b=0.04, Q(1)=0.33, p=0.56).  

2.3.6 Meta-Analysis of Language Outcomes    

Efficacy. Figure 2.9 shows the k=7 studies comparing pretest–posttest gains between 

CCT and control groups on all language measures (N CCT = 218, mean sample size = 

31.14, N controls = 214, mean sample size = 30.57). Four studies reported two or 

more language outcomes, which were combined into one effect size per study. The 

combined effect size was medium (SMD = 0.47, 95% CI [0.02, 0.92], p=0.04). The 

heterogeneity between studies was large and significant, I2 = 81.0%, p<0.01. The 

funnel plot did not show evidence of asymmetry (Egger’s intercept = -0.94, 95% CI [-

17.00, 15.10], p=0.44).  

 

Figure 2.9: Forest plot for effects on language (all studies), rank ordered by SMD  
 

Moderating effect of CCT types on language outcomes. A subgroup analysis of 

CCT types was not possible as four of the seven studies used multidomain programs 

and there were only single reports for SOP training54, video games67 and WM 

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Lampit et al (2013) Combined -0.07 -0.53 0.39 0.77
Stern et al (2011) Category Fluency 0.18 -0.44 0.80 0.57
Barnes et al (2013) Combined 0.18 -0.31 0.68 0.47
Miller et al (2013) Combined 0.18 -0.27 0.64 0.43
Dahlin et al (2008) Combined 0.43 -0.31 1.17 0.26
Shatil (2012) Naming 0.78 0.26 1.30 0.00
Edwards et al (2002) COWAT 1.58 1.11 2.05 0.00

0.47 0.02 0.92 0.04

-1.00 -0.50 0.00 0.50 1.00

Favours Control Favours CCT

Meta Analysis
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training53. The rest of the subgroup analyses were therefore attempted using all studies 

reporting language outcomes. 

Practice moderators of all-type CCT efficacy on language: delivery, dose, session 

length and frequency. A subgroup analysis of delivery was not performed due to a 

disproportionally large of centre-based CCT studies (k=5) compared to studies of 

home-based CCT (k=2). A subgroup analysis of training dose did not find any 

significant effects for either 20 hours or less (k=3, SMD = 0.74, 95% CI [-0.21, 1.69], 

p=0.12, I2=89.16%, p<0.01) or 20-40 hours (k=4, SMD = 0.26, 95% CI [-0.10, 0.63], 

p=0.16, I2=50.0%, p=0.11). A subgroup analysis of session duration was not 

performed as only one study61 used 20-25 minutes per sessions, whereas all the other 

studies had a session length of 30-60 minutes. Similarly, the same study61 was the 

only one to include more than three weekly sessions, and since all the other studies 

used a session frequency of 2-3 sessions per week, a subgroup analysis could not be 

performed. A series meta-regressions examining language SMDs against dose, 

session length and frequency did not find any significant results (data not shown).  

Study design moderators of all-type CCT efficacy on language: control 

condition, blinding and type of outcomes. No significant effects were noted from 

either active-controlled (k=3, SMD = 0.29, 95% CI [-0.20, 0.78], p=0.25, I2=66.29%, 

p=0.05) or no-contact control studies (k=4, SMD = 0.60, 95% CI [-0.14, 1.35], 

p=0.11, I2=86.03%, p<0.01).     

A subgroup analysis of blinding condition found a significant between-subgroup 

heterogeneity (Q(1)=3.13, p=0.08, see Figure 2.10) between unblinded designs (k=5, 

SMD = 0.65, 95% CI [0.08, 1.21], p=0.03, I2=81.48%, p<0.01) and double-blinded 

studies (k=2, SMD = 0.18, 95% CI [-0.31, 0.68], p=0.47, I2=0%, p=0.46). A subgroup 
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analysis of computerised testing was not performed as only one study65 used a 

computerised language test. 

 

Figure 2.10: Forest plot for CCT effects on language by blinding condition  
 

Study quality moderators of all-type CCT efficacy on language. A meta-

regression analysis found a significant inverse relationship between language SMDs 

and PEDro scores (b=-0.24, Q(1)=5.76, p=0.02, see Figure 2.11).  

 

Figure 2.11: Meta-regression of PEDro scores on language SMDs. Note: circle diameters are 
proportional to sample size  
 

Design Study name
SMD Lower limit Upper limit p-Value

Double-blind Lampit et al (2013) -0.07 -0.53 0.39 0.77
Barnes et al (2013) 0.18 -0.31 0.68 0.47
All double-blinded studies 0.18 -0.31 0.68 0.47

Unblinded Stern et al (2011) 0.18 -0.44 0.80 0.57
Miller et al (2013) 0.18 -0.27 0.64 0.43
Dahlin et al (2008) 0.43 -0.31 1.17 0.26
Shatil (2012) 0.78 0.26 1.30 0.00
Edwards et al (2002) 1.58 1.11 2.05 0.00

All unblinded studies 0.65 0.08 1.21 0.03
Overall 0.20 -0.09 0.49 0.17

Statistics for each study Std$diff$in$means$and$95%$CI
Group by
Design

Study name Outcome Statistics for each study Sample size Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value CCT Control

Double Lampit et al (2013) Combined -0.07 -0.53 0.39 0.77 39 34
Double Barnes et al (2013) Combined 0.18 -0.31 0.68 0.47 31 32
Double 0.05 -0.29 0.39 0.78 70 66
Unblinded Stern et al (2011) Category Fluency 0.18 -0.44 0.80 0.57 20 20
Unblinded Miller et al (2013) Combined 0.18 -0.27 0.64 0.43 38 36
Unblinded Dahlin et al (2008) Combined 0.43 -0.31 1.17 0.26 13 16
Unblinded Shatil (2012) Naming 0.78 0.26 1.30 0.00 33 29
Unblinded Edwards et al (2002)COWAT 1.58 1.11 2.05 0.00 44 47
Unblinded 0.65 0.08 1.21 0.03 148 148
Overall 0.20 -0.09 0.49 0.17 218 214

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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2.3.7 Meta-Analysis of Visuospatial Outcomes    

Efficacy. Figure 2.12 shows the k = 8 studies comparing pretest–posttest gains 

between CCT and control groups on all visuospatial measures (N CCT = 267, mean 

sample size = 33.37, N controls = 260, mean sample size = 32.5). Four studies 

reported two or more visuospatial outcomes, which were combined into one effect 

size per study. The combined effect size was small and significant (SMD = 0.31, 95% 

CI [0.07, 0.54], p=0.01). The heterogeneity between studies was statistically 

insignificant, I2 = 40.29%, p=0.11. The funnel plot showed a trend towards asymmetry 

towards the right of the mean (Egger’s intercept = 2.54, 95% CI [-0.82, 5.89], 

p=0.06).  

 

Figure 2.12: Forest plot for effects on visuospatial performance (all studies), rank ordered by 
SMD  
 

Moderating effect of CCT types on visuospatial outcomes. Only results from the 

two video game training studies 47,71 were statistically significant (SMD = 0.48, 95% 

CI [0.03, 0.93], p=0.03, I2=0%, p=0.83). Insignificant results were found from 

multidomain CCT (k=3, SMD = 0.42, 95% CI [-0.15, 0.99], p=0.15, I2=69.04%, 

p=0.04) and SOP training (k=3, SMD = 0.14, 95% CI [-0.15, 0.44], p=0.33, 

I2=26.89%, p=0.25). Between-subgroup heterogeneity was not found (Q(2)=1.80, 

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Edwards et al (2002)Combined -0.08 -0.50 0.33 0.69
Miller et al (2013) Rey Figure (Copy) -0.05 -0.51 0.41 0.83
Vance et al (2007) Combined 0.18 -0.13 0.49 0.26
Stern et al (2011) Block Design (WAIS-III) 0.43 -0.19 1.06 0.18
Basak et al (2008) Combined 0.53 -0.11 1.17 0.10
Maillot et al (2012) Combined 0.54 -0.17 1.25 0.14
Lee et al (2012) Motor-free Visual Perception Test 0.60 -0.13 1.33 0.11
Shatil (2013) Hand-eye Coordination 0.83 0.31 1.35 0.00

0.31 0.07 0.54 0.01

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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p=0.40), and the rest of the moderator analyses were attempted using all studies 

reporting visuospatial outcomes. 

Practice moderators of CCT efficacy on visuospatial measures: delivery, dose, 

session length and frequency. A subgroup analysis of delivery was not performed as 

only one study61 used home-based CCT. A subgroup analysis of training dose found 

significant between-group heterogeneity (Q(1)=7.14, p<0.01, see Figure 2.13), 

whereby a large effect size was found for total dose of 21-40 hours (k=4, SMD = 

0.61, 95% CI [0.31, 0.92], p<0.01, I2=0%, p=0.78) and insignificant effects for 

smaller doses (k=4, SMD = 0.10, 95% CI [-0.12, 0.32], p=0.39, I2=7.53%, p=0.36). 

Furthermore, meta- regression found a significant positive relationship between 

training dose and visuospatial SMDs (b=0.02, Q(1)=5.83, p=0.02, see Figure 2.14)  

 

Figure 2.13: Forest plot for CCT effects on visuospatial measures by training dose   
 

Design Study name
SMD Lower limit Upper limit p-Value

20 or less Edwards et al (2002) -0.08 -0.50 0.33 0.69
Miller et al (2013) -0.05 -0.51 0.41 0.83
Vance et al (2007) 0.18 -0.13 0.49 0.26
Lee et al (2012) 0.60 -0.13 1.33 0.11
All studies with <20 hours 0.10 -0.12 0.32 0.39

21-40 Stern et al (2011) 0.43 -0.19 1.06 0.18
Basak et al (2008) 0.53 -0.11 1.17 0.10
Maillot et al (2012) 0.54 -0.17 1.25 0.14
Shatil (2013) 0.83 0.31 1.35 0.00

All studies with 20-40 hours 0.61 0.31 0.92 0.00
Overall 0.27 0.09 0.45 0.00

Statistics for each study Std$diff$in$means$and$95%$CIGroup by
Total dose (CAT)

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

20 or less Edwards et al (2002)Combined -0.08 -0.50 0.33 0.69
20 or less Miller et al (2013) Rey Figure (Copy) -0.05 -0.51 0.41 0.83
20 or less Vance et al (2007) Combined 0.18 -0.13 0.49 0.26
20 or less Lee et al (2012) Motor-free Visual Perception Test 0.60 -0.13 1.33 0.11
20 or less 0.10 -0.12 0.32 0.39
21-40 Stern et al (2011) Block Design (WAIS-III) 0.43 -0.19 1.06 0.18
21-40 Basak et al (2008) Combined 0.53 -0.11 1.17 0.10
21-40 Maillot et al (2012) Combined 0.54 -0.17 1.25 0.14
21-40 Shatil (2013) Hand-eye Coordination 0.83 0.31 1.35 0.00
21-40 0.61 0.31 0.92 0.00
Overall 0.27 0.09 0.45 0.00

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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Figure 2.14: Meta-regression of CCT dose (total training hours) on visuospatial SMDs. 
 

Only a session duration of 30-60 minutes was effective on visuospatial measures 

(k=5, SMD = 0.33, 95% CI [0.01, 0.64], p=0.04, I2=52.44%, p=0.08). Shorter sessions 

were ineffective (k=2, SMD = 0.21, 95% CI [-0.42, 0.84], p=0.51, I2=55.57%, 

p=0.14), but there was no between-subgroup heterogeneity (Q(1)=0.10, p=0.75).  

Moderator analysis of session frequency was not performed as there was only one 

study with more than 3 weekly sessions61 and only one study with a single session per 

week69. A series of meta-regressions did not find any significant relationship between 

visuospatial SMDs and session duration or frequency (data not reported).  

Study design moderators of CCT efficacy on visuospatial measures: control 

condition, blinding and type of outcomes. Results from active-controlled trials were 

positive (k=3, SMD = 0.48, 95% CI [0.04, 0.93], p=0.03, I2=58.45%, p=0.09), 

whereas no-contact control studies did not show significant effect (k=5, SMD = 0.18, 

95% CI [-0.1, 0.46], p=0.20, I2=24.13%, p=0.26), but no between-subgroup 

heterogeneity was noted (Q(1)=1.25, p=0.26).  
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Figure 2.15 presents a subgroup analysis of computerised testing.  There was a 

significant between-group heterogeneity (Q(1)=4.98, p=0.03) between significant 

outcomes for computerised testing (k=4, SMD = 0.48, 95% CI [0.20, 0.75], p<0.01, 

I2=17.41%, p=0.30) versus null results for paper-based visuospatial measures (k=5, 

SMD = 0.09, 95% CI [-0.10, 0.29], p=0.35, I2=0%, p=0.44). A subgroup analysis of 

blinding condition was not performed as all studies were unblinded. 

 

Figure 2.15: Forest plot for CCT effects on language by test administration  
 

Study quality moderators of all-type CCT efficacy on visuospatial measures. A 

meta-regression analysis did not find any relationship between visuospatial SMDs and 

PEDro scores (b<0.01, Q(1)<0.01, p=0.99).  

2.3.8 Meta-Analysis of Executive Function Outcomes    

Efficacy. Figure 2.16 shows the k = 24 studies comparing pretest–posttest gains 

between CCT and control groups on the broad domain of executive functions (N CCT 

= 1,415, mean sample size = 58.36, N controls = 1,345, mean sample size = 56.04). 19 

studies reported two or more executive functions outcomes, which were combined 

into one effect size per study. The combined effect size was statistically insignificant 

(SMD = -0.01, 95% CI [-0.09, 0.06], p=0.72). Furthermore, heterogeneity between 

Test Study name Statistics for each study
SMD Lower limit Upper limit p-Value

Paper-based Edwards et al (2002) -0.08 -0.50 0.33 0.69
Miller et al (2013) -0.05 -0.51 0.41 0.83
Vance et al (2007) 0.09 -0.22 0.41 0.55
Stern et al (2011) 0.43 -0.19 1.06 0.18
Maillot et al (2012) 0.54 -0.17 1.25 0.14
All paper-based outcomes 0.10 -0.12 0.32 0.39

Computerised Vance et al. (2007) 0.26 -0.05 0.58 0.10
Basak et al (2008) 0.53 -0.11 1.17 0.10
Lee et al (2012) 0.60 -0.13 1.33 0.11
Shatil (2013) 0.83 0.31 1.35 0.00
All computerised outcomes 0.48 0.20 0.75 0.00

Overall 0.23 0.07 0.39 0.01

Std$diff$in$means$and$95%$CIGroup by
Computerised tests

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

No Edwards et al (2002)Combined -0.08 -0.50 0.33 0.69
No Miller et al (2013) Rey Figure (Copy) -0.05 -0.51 0.41 0.83
No Vance et al (2007) Rey Figure (Copy /36) 0.09 -0.22 0.41 0.55
No Stern et al (2011) Block Design (WAIS-III) 0.43 -0.19 1.06 0.18
No Maillot et al (2012) Combined 0.54 -0.17 1.25 0.14
No 0.09 -0.10 0.29 0.35
Yes Vance et al. (2007) Starry Night (d') 0.26 -0.05 0.58 0.10
Yes Basak et al (2008) Combined 0.53 -0.11 1.17 0.10
Yes Lee et al (2012) Motor-free Visual Perception Test 0.60 -0.13 1.33 0.11
Yes Shatil (2013) Hand-eye Coordination 0.83 0.31 1.35 0.00
Yes 0.48 0.20 0.75 0.00
Overall 0.23 0.07 0.39 0.01

-2.00 -1.00 0.00 1.00 2.00

Favours Control Favours CCT

Meta Analysis
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studies was null, I2 = 0%, p=0.66. The funnel plot did not reveal asymmetry (Egger’s 

intercept = 0.17, 95% CI [-0.49, 0.83], p=0.30).  

A post—hoc analyses of executive functions subdomains showed a trend towards 

significance in the unfavourable direction for the Trail Making Test A and B 

outcomes, with small, negative and homogenous effect (k=9, SMD = -0.20, 95% CI [-

0.41, 0.005], p=0.06, I2=32.82%, p=0.16). None of the outcomes for other executive 

subdomains (inhibition, planning, reasoning, shifting and task-switching) neared 

statistical significance, and no further subgroup analyses were conducted.  

 

Figure 2.16: Forest plot for effects on executive functions (all studies), rank ordered by SMD  
  

Study name Outcome Statistics for each study Std diff in means and 95% CI

Std diff Lower Upper 
in means limit limit p-Value

Richmond et al (2011) RSPM -0.43 -1.06 0.19 0.18
Ackerman et al (2010) Combined -0.43 -0.88 0.02 0.06
Simpson et al (2012) Combined -0.25 -0.99 0.48 0.50
von Bastian et al (2013)Combined -0.22 -0.74 0.30 0.41
Brehmer et al (2012) Combined -0.19 -0.79 0.40 0.52
Barnes et al (2013) Combined -0.18 -0.68 0.31 0.47
Brehmer et al (2011) Combined -0.13 -0.95 0.69 0.75
Shatil (2013) Combined -0.11 -0.61 0.39 0.67
Edwards et al (2002) Combined -0.07 -0.49 0.34 0.72
Edwards et al (2005) Combined -0.07 -0.42 0.28 0.69
Bozoki et al (2013) Card Prediction -0.06 -0.56 0.45 0.83
Dahlin et al (2008) RAPM -0.05 -0.79 0.68 0.89
Vance et al (2007) Trail Making Test B (s) -0.04 -0.35 0.27 0.79
Legault et al (2011) Combined -0.03 -0.72 0.67 0.94
Ball et al (2002) Combined -0.02 -0.12 0.09 0.71
Boot et al (2013) Combined 0.00 -0.62 0.63 0.99
Stern et al (2011) Combined 0.13 -0.50 0.75 0.69
Peretz et al (2011) Combined 0.17 -0.19 0.52 0.36
Nouchi et al (2012) Combined 0.20 -0.59 1.00 0.62
Lampit et al (2013) Combined 0.26 -0.19 0.72 0.25
Basak et al (2008) Combined 0.39 -0.27 1.04 0.25
van Muijden et al (2012)Combined 0.42 -0.12 0.95 0.13
Goldstein et al (1997) Stroop 0.43 -0.42 1.28 0.32
Maillot et al (2012) Combined 0.81 0.05 1.58 0.04

-0.01 -0.09 0.06 0.72

-1.00 -0.50 0.00 0.50 1.00

Favours Control Favours CCT

Meta Analysis
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2.4 Discussion  

2.4.1 Summary  

Table 2.3 summarises these results, charting visually the evidence for CCT efficacy 

and moderators of efficacy across the seven cognitive domains.  
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All studies 0.27** 0.28** 0.26** 0.41** 0.26* 0.47* 0.31* -0.01 

CCT type Multidomain 0.28* 0.43* 0.26** 0.35 0.33 0.26 0.42 0.05 

 
SOP 0.27** 0.004 0.87 0.48** -0.01 

 
0.14 -0.03 

 
Video games 0.30* 0.23 0.08 0.44* 0.08 0.18 0.48* 0.29 

 
WM 0.26 0.17 0.17 0.37 0.44 

 
  -0.19 

Delivery Centre-based 0.30** 0.22* 0.28 0.46** 0.27 0.59 0.37** 0 

 
Home-based 0.23 0.36 0.24** 0.4 0.27 0.19 -0.05 -0.06 

Dose <20 hours 0.23** 0.1 0.35* 0.40** 0.19 0.74 0.10 -0.05 

 
21-40 hours 0.34* 0.57* 0.16 0.48 0.40** 0.26 0.61** 0.16 

Session 
Length 

<30 min 0.11 0.14 0.21 -0.11 0.27 0.18 0.21 -0.001 
31-60 min 0.33** 0.34* 0.31 0.50** 0.33 0.52 0.38* -0.04 

Frequency 1/wk 0.39* 0.44 0.21 0.51* -0.01 
 

0.18 -0.04 

 
2-3/wk 0.16** 0.15 0.34 0.47** 0.26 0.52 0.43* 0.0008 

 
>3/wk 0.22 0.44 0.17 0.43 0.39 0.18 -0.05 -0.10 

Control Active 0.28* 0.37* 0.34** 0.42* 0.29* 0.29 0.48* -0.05 

 
No-contact 0.21* 0.13 -0.05 0.37** -0.06 0.6 0.18 0.01 

Design Double-blind 0.24** 0.14 0.29** 0.35** 0.36 0.05   0.03 
Assessor-blind 0.86 0.99 0.25 2.26       -0.02 

 
Subject-blind 0.19 -0.02 0.13 0.15 0.29     0.17 

 
Unblinded 0.22* 0.23* 0.27 0.25 0.21 0.64* 0.31* -0.05 

Tests Computerised 0.32** 0.37** 0.25 0.33* .0.27* 
 

0.48** 0.07 

 
Paper 0.24** 0.21 0.29* 0.40* 0.29 0.42 0.09 -0.06 

Table 2.3: Overview of efficacy and moderators of efficacy for CCT in older adults. Coloured 
cells indicate significant outcomes from a meta-analysis: Yellow = SMD 0-0.4; Orange = SMD 0.4-
0.6; Red = SMD ≥0.6.  White depicts non-significant results with SMDs and grey shows where 
insufficient studies were available for analysis. * p < 0.05. ** p < 0.01. Red borders mark moderators of 
ineffectiveness.  
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To date this is the most comprehensive systematic review of the CCT in the field of 

healthy aging. Maximally, it combines data from 37 trials and 4310 subjects. For the 

first time, the objective of this meta-analysis was not simply a description of 

aggregate efficacy but also an understanding of what moderators may be impacting on 

efficacy variance. 

Taken together, this review suggests CCT is effective: significant low-to-moderate 

effect sizes were observed for memory, WM, processing speed, attention and 

visuospatial outcomes when specifically compared to active control conditions. 

Efficacy on language was weak and mainly present in studies of low quality. Notably, 

no efficacy on executive function was observed in any analysis.  

Some alternative explanations for the observed effect sizes can be ruled out. 

Publication bias was uncommon and thus an unlikely explanation for efficacy. Also, 

70% of the studies were active-controlled and so this is not a major limitation in the 

literature. However, it is possible that at least some of the active-controlled study did 

not adequately control for expectation bias42, given only 8 of the 26 active-controlled 

studies (31%) were double-blinded, introducing possible bias. Overall, study quality 

was moderate (average PEDro score = 6.49), and so further work to improve the 

quality of evidence is required.  

For the first time, this meta-analysis found evidence for efficacy moderators, 

revealing several CCT factors that meet the stringent Q-test criteria for between-

subgroup heterogeneity, along with other “trend” moderating factors that distinguish 

between effective and non-effective training (but did not meet Q-test threshold). 
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Significant moderating effects were found for type of CCT on memory favouring 

multidomain training; control type in WM favouring active-controlled studies; 

blinding and study quality of language outcomes favouring unblinded studies and a 

negative relationship between study quality and results; and total training dose on 

visuospatial skills favouring a total dose of 21-40 hours. Other possible moderators 

that did not meet the Q-test threshold are given in Table 2.2, but should be considered 

as practice factors when designing future studies rather than as definite evidence of 

moderating effect33.  Each of these potential moderating factors are next discussed in 

more detail. 

2.4.2 The Anatomy of CCT  

Along with interventions aimed at reducing cardiovascular risk factors, cognitive 

interventions including CCT have been frequently studied as possible primary and 

secondary ARCD prevention strategies. These studies require large sample sizes and 

take years to complete, but lack of knowledge about how to optimisize the 

interventions or measure outcomes reduce their feasibility. For example, two large 

trials involving CT (along with other interventions) are currently underway72,73, each 

involving a sample size of 1,200 participants for a period of five years. Despite both 

being members of a major European collaboration, these two trials use markedly 

different cognitive interventions. The Multidomain Alzheimer Preventive Trial 

(MAPT73) provides 12 120-minute strategy training sessions, starting with 8 sessions 

of reasoning training and followed by 4 sessions of mnemonic training. Conversely, 

the training protocol of the Finnish Geriatric Intervention Study to Prevent Cognitive 

Impairment and Disability (FINGER72) begins with 10 group 60-90 minute sessions, 

after which participants train on a WM CCT program for 10-15 minutes three times 
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per week for six months at home. As discussed below it is clear that these design 

choices are not supported by the findings of this review.  

Since the effects of CCT tend to be limited to the trained domains45, multidomain 

programs are more likely to tap the cognitive complexity of everyday tasks and global 

measures of cognition. Indeed, as can be seen in Table 2, only multidomain training 

was found effective on memory (SMD=0.43) and WM (SMD=0.26). It should be 

emphasised that of the 20 studies reporting outcomes from multidomain CCT, 19 

trained all targeted domains throughout the whole training period, and only one46 

trained a set of domains for half of the time and a different set for the remaining 

period, reporting negative outcomes. Furthermore, this review found WM training as 

particularly ineffective on transfer tasks, consistent with a recent meta-analysis of 

WM in younger cohorts74. Similarly, neither SOP training nor video games were 

effective beyond the trained domains. A balanced multidomain program is therefore 

key moderator of CCT effectiveness when aiming for positive memory outcomes.  

Supervised administration might also prove another important component in the 

effectiveness of CCT, as centre-based, therapist-guided CCT programs were effective 

on memory (SMD=0.22), processing speed (SMD=0.46) and visuospatial skills 

(SMD=0.37), whereas home-based training was effective only on WM (SMD=0.24). 

Trainers may help ensure adherence, increase motivation, support trainees’ work on 

challenging tasks and provide nonspecific effects such as social interaction and 

activities, involving organising travel to the training centre times, considered 

important elements in cognitive remediation therapy75. Furthermore, as the training 

program progresses, tasks may become more challenging and technical problem may 

arise, bringing about frustration on behalf of trainees that could be largely prevented 
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when guidance and support are available. For example, in their active-controlled trial 

of home-based CCT, Smith et al25 reported 19 dropouts due to frustration, of which 16 

dropped out from the CCT group. Indeed, group administration of non-computerised 

memory training was found as more effective than individual training in several 

trials76-78 and in a meta-analysis of mnemonic training in older adults79, whereas 

several trials of different reasoning strategy training did not find difference between 

the two training conditions80,81.  Conversely, whilst the only trial to date comparing 

centre-based to home-based administration did not find differences between the two 

forms of administration32, it should be noted that the trial included only ten hours of 

training on one exercise, and the outcome measure was very similar to the trained task 

(SOP training). Determining the added value of centre-based training is therefore a 

critical point for further research, as this type of administration is likely to be more 

expensive than training at-home8, and may therefore only be justified from a health 

economic view if supervised administration produces a major difference in CCT 

outcomes.  

Finally, Table 2.3 suggests two important findings concerning the temporal dynamics 

of CCT. First, short sessions (<30 minutes) are probably not challenging enough to 

induce cognitive benefits. Along with home-based administration, this finding may 

partially explain the negative results of Owen et al’s82 large trial of CCT in young and 

middle-aged adults (besides several other design flaws with this study83). It is possible 

that short sessions are insufficient to induce synaptic plasticity, more likely to occur 

after 30-60 minute of stimulation84. Second, here it was found that training programs 

that consist of more than 3 sessions per week are clearly ineffective. This is in line 

with prior work suggesting that 4-7 sessions per week is considerably less effective 

than more dispersed training schedules85,86. It is possible that there is a maximal 
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threshold intensity for cognitive training (possibly three hours per week), after which 

factors such as exhaustion may interfere with training gains.  

2.4.3 Recommendations for Future CCT Trials 

As opposed to all other domains, this review did not find any effect of CCT on 

executive functions. In fact, significant results on executive functions were found for 

only one trial, which provided 24 1-hour sessions of a centre-based multidomain 

program using Nintendo Wii exergames versus wait-list control22. As physical 

exercise has clear effects on executive functions87, it is possible that CCT programs 

could incorporate cognitively challenging exergames to tap this otherwise 

unresponsive cognitive domain. However, because exergames involve costly 

equipment and may not be well suited to the physical capabilities of many older 

adults, new training exercises will need to be developed and trialled. On the other 

hand, it should be also noted that complementing CCT with physical exercise did not 

increase the effect on executive function in two of the trials included in this 

review46,65, and so much further work in this area is required.  

Language skills are another domain for further research and development. This 

review found only six studies that reported language outcomes, and whilst the overall 

result of the meta analysis is positive (SMD=0.47, p=0.04, see Figure 2.9), significant 

results were obtained only when studies were unblinded (see Figure 2.10), and poor 

study quality correlated with language outcomes (see Figure 2.11). More high quality 

studies are required to establish that CCT programs can enhance language skills in the 

elderly.   
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Most trials included in this review, especially those conducted in the past 10 years, 

compared the efficacy of CCT to an active control condition. The results of the meta 

analysis show that CCT effects were greater in active-controlled trials than in trials 

with wait-list or otherwise passive control groups. Active control conditions are vital 

in order to control for a range of nonspecific factors9 and expectancy bias42, and must 

be included in future clinical trials, particularly in light of the fact that that major 

clinical trials such as ACTIVE45, MAPT73 and FINGER72 did not include active 

control arms and hence their outcomes are difficult to interpret.  

2.4.4 Limitations of the Current Meta-analysis  

Despite limiting its scope to studies involving tightly-defined CCT and randomised 

control designs, this review is based on a heterogeneous set of studies with different 

intervention design and hundreds of outcome measures. As a result, many of the 

observed effects were accompanied by significant between-study heterogeneity, 

which in turn makes it more challenging to reveal between-subgroup variability in 

moderator analyses. Also, study outcomes were weighted according to variance 

regardless of the quality of evidence, which may have brought about, in some cases, 

an overestimation of effects (especially for the language domain). Thus, findings from 

this review should be regarded as a guide on the likely conditions for CCT efficacy 

and inefficacy, rather than a final judgement on a particular training strategy or 

program.  

This review was also designed to focus on immediate training gains on 

neuropsychological measures. It therefore provides no indication about the durability 

of the observed gains, nor the transfer from the latter into real-life outcomes such as 

everyday memory, mobility, daily function or risk of long term cognitive morbidity. 
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Similarly, it did not discriminate between possible psychometric differences between 

outcome measures within a specific domain, such as internal and external validity, 

reliability and their neuropsychological rationale. Indeed, the CMA software 

combines test outcomes from a similar domain blindly, irrespective of the relative 

neuropsychological merits of the outcomes. This limitation therefore requires a 

critical interpretation of the findings, as well as to more specific analyses of the data.   

2.4.5 Conclusions  

In healthy older adults, CCT can produce gains in memory, WM, processing speed, 

attention and visuospatial skills. There is no substantive evidence for efficacy on 

language or executive functions. Further research may be required to develop and 

validate CCT exercises that can tap these two domains. Reducing some of the 

methodological heterogeneity between studies by adopting some new standardised 

CCT design features will help mature the field. Use of centre-based multidomain 

programs, standard active control designs, keeping session frequency to less than 

three times per week and more than 30 minutes per session are suggested based on the 

moderator effects found here.  
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Chapter 3: A Dose-Response Relationship between Computerised 

Cognitive Training and Global Cognition in Older Adults  

3.1 Introduction  

Maintaining cognitive performance in late life is an important priority as nations try to meet 

the challenges posed by population aging1.  Advanced age is typically accompanied by a 

decline in global cognition (GC)2-4, however, individual trajectories exhibit great 

variability5,6 and there is rising interest in non-pharmacological cognitive-based interventions 

to arrest and even reverse these trends7-11. GC summarizes performance across multiple 

cognitive domains such as memory, processing speed, language, executive function and 

attention by averaging scores in each domain into a single composite score12,13. Among older 

individuals, GC composites are predictors of key outcomes such as everyday functioning14,15, 

job performance16, mobility17,18, falls19, and incidence of dementia12. Indeed, dementia is 

itself defined, “by progressive acquired global impairments of cognitive skills and ability to 

function independently”20. For these reasons, composite scores of GC have been advanced as 

an endpoint for prevention-orientated randomized controlled trials (RCTs) in elderly at-risk 

for dementia21-24.  

Computer-assisted cognitive training (CCT) is a prescriptive and efficient way of delivering 

cognitively challenging exercises using game-like stimuli for the purpose of cognitive 

enhancement25,26. Whilst not uniformly effective27-29, reviews of CCT trials in the elderly 

report positive domain-specific cognitive outcomes7,9,25 (see Chapter 2), in line with 

literature linking a more active cognitive lifestyle with reduced dementia risk30-33 and 

compression of cognitive morbidity34. But clinical implementation of CCT in this age group 

is limited by three major knowledge gaps8,9. First, there is no high quality evidence 

supporting the efficacy of any CCT regimen on far-transfer outcomes such as GC, general 
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everyday functioning, or dementia incidence in those without cognitive impairment10,11,23,27,35 

(see Chapter 2).  In this respect, design of the CCT program is likely to be influential. 

Unidomain training does not tend to transfer beyond tasks that share similar cognitive 

demands as the training itself36-38. In fact Chapter 2 showed that multidomain training may 

be more appropriate when targeting general cognitive performance. Second, as identified in 

Chapter 2, inadequate double-blinding is another methodological issue for cognitive 

interventions that are particularly susceptible to Hawthorne effects39. Third, and perhaps 

most importantly, dose-response relationships between CCT and GC are yet to be 

established, nor a detailed understanding of the decay rate for any putative therapeutic 

effects, essential information for clinical implementation9 and technological innovation.  

The objective of the Timecourse Trial was to examine the net effect of CCT on GC and its 

four component cognitive domains in older adults with a range of dementia risk factors, as 

well as chart the evolution of clinical benefits during and 12-months after the cessation of 

training. We hypothesised that: 1)CCT will induce improvement in GC over and above 

active control training; 2)Training effects will increase gradually over the training period and 

wane gradually after training cessation; and 3)Training effects will be still significant three 

months after training cessation.  To test these hypotheses, we randomly assigned 80 older 

adults to 36 sessions of either supervised, centre-based, multi-domain CCT or fully matched 

active control memory and attention-based training.  

3.2 Methods   

Inclusion and exclusion criteria.  Inclusion criteria were 65 years of age or older, English 

fluency, ability to attend 3 sessions per week at the training centre and sufficient physical 

ability to use a computer. Exclusion criteria were a history, diagnosis or treatment for 

dementia, diagnosis or treatment for depression in last 6 months, stroke in last 12 months, 
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major neurological and/or psychiatric disorder requiring current treatment, lack of personal 

informant, already undertaking a CCT program or current alcohol abuse. Further exclusion 

criteria included Mini Mental State Examination (MMSE) ≤23, Informant Questionnaire on 

Cognitive Decline in the Elderly (IQCODE) > 3.3, or Geriatric Depression Scale (15-item 

GDS) ≥8. This study was approved by the Human Research Ethics Committee at the 

University of New South Wales, Sydney. All participants provided written informed consent 

prior to randomization. All procedures took place in a training centre in Sydney, Australia. 

Dementia risk factors. For each participant we computed a dementia risk factor sum 

(DRFS) based on a single point for any of the following: age ≥ 85 years, education ≤10years, 

any cardiovascular risk factor (current or past smoker, hypercholesterolemia, hypertension, 

ischemic heart disease, atrial fibrillation or diabetes), physical inactivity by CHAMPS 

estimated caloric all cause activity <184340, family history of dementia, subjective memory 

complaint based on GPCOG questions41, or baseline memory domain score below 1.5SD of 

age-matched norms. The maximum theoretical DRFS is therefore 12. Figure 3.1A shows the 

frequency for each possible DFRS score. Fig 3.1B shows the frequency for individual risk 

factors within the whole sample. The average DFRS in our sample was 3.3 (±SEM 0.19), 

ranging from 1 – 9. All subjects therefore carried at least one recognized dementia risk factor 

and 47% had 3-4 risk factors.    

Randomization and blinding. Participants were randomized using a computer-generated 

randomization in a 1:1 ratio. Assessors were blinded to group allocation and participants 

were not aware of the study hypotheses. Allocation was concealed until the first day of 

training and on-going participant blinding achieved by describing CCT as a “diversified set 

of cognitive exercises”, and AC as “comprehension and memory exercises.” Both 

interventions were administered in a supervised group format of one trainer to ten 
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participants (maximum) during three 30-45 minute sessions per week for a total of 36 

sessions over 12-weeks, in a designated training room. A member of the study team 

supervised all training sessions.    

!

Figure'3.1:'Frequency'of'cumulative'(A)'and'specific'(B)'dementia'risk'factors'across'the'whole'ITT'sample'
(N'='77).''

!

Computerized Cognitive Training (CCT). We designed and administered a CCT program 

based on 24 exercises from the COGPACK package, Version 8.1 (Marker Software) to cover 

the five cognitive domains: memory, attention, response speed, executive functions and 

language. Each exercise contained 4-8 levels of increasing difficulty. The exercises were 

administered according to a predefined order that ensured equal (≈20%) allocation of 

training time on each cognitive domain. The complete COGPACK training regimen is 

described in the Appendix 1. A brief description of each exercise is provided in Appendix 

2.     

Active Control (AC). This intervention was developed for a previous RCT to control for 

general sensory-motor stimulation, computer use, socialization, motivation, simple learning 

A! B!
!!

B!

A!
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and memory demands, and other non-specific effects inherent to supervised CCT42. 

Participants viewed seven National Geographic videos per session on computer and 

answered multiple-choice questions immediately after each presentation. An electronic 

library of the 390 videos and associated multiple choice questions are available from the 

corresponding author. 

Outcome measures. The primary outcome was change across four cognitive domain 

composites (memory, information processing speed, executive functions and global 

cognition) over six timepoints: baseline and after 9 and 36 training sessions (FU1 and 2, 

respectively), as well as 3, 12 and 52 weeks after training cessation (FU3, 4 and 5 

respectively).  

Memory and information processing speed z-score composites were obtained from the 

Mindstreams battery43. Executive function z-score composite was defined as the average of 

Mindstreams Stroop Interference test and CANTAB Stockings of Cambridge problems 

solved in minimum moves score. Global Cognition Score was obtained by averaging these 

three z-domain scores. Mindstreams tests have three alternate forms that provide good test-

retest reliability, are sensitive to differences between healthy elderly and those with mild 

cognitive impairment, and have been used widely in RCTs44. The CANTAB Stockings of 

Cambridge test is a validated measure of planning and spatial problem solving45.  

In addition, at three of the five FU assessments we evaluated the language domain by 

averaging performance in the Controlled Oral Word Association Test (COWAT)46, and short 

forms of the Boston Naming Test47 (baseline and FUs 2, 4 and 5). In-house computerized 

versions of the Recognition Memory Test48 and WAIS-IV Matrix Reasoning were also 

administered at these timepoints (baseline and FUs 2, 4 and 5). These four tests were 

included in the more expansive post hoc Global Cognitive Score. Finally, to assess potential 
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effects of CCT on everyday performance, we administered the Bayer Activities of Daily 

Living Scale49 at baseline and follow-up 5.   

Statistical analysis. In order to assess the efficacy of CCT over the six timepoints, we 

conducted linear mixed-modeling repeated-measures (MMRM) analyses using SPSS version 

21 (IBM Statistics). Our model included main effects for Group and Time and a Group X 

Time interaction term. Each cognitive domain score was tested separately. MMRM 

incorporates a model for missing data values and so avoids discrete imputation or omission 

of cases50. All analyses are therefore intention-to-treat (ITT).  

Within-group effect sizes (Cohen's d) were calculated by subtracting mean baseline scores 

from mean score at each time point divided by standard deviation at baseline. Bias-corrected 

net effect size (NES) were estimated by subtracting Cohen’s d of the AC group from that of 

the CCT group, and then applying a bias correction factor 1-(3÷4[(nCCT – nAC – 2) – 1])51. 

Absolute differences between CCT and AC for outcomes at each follow-up time point were 

also calculated along with the associated 95% confidence interval. 

 

3.3 Results  

Participants, Attrition & Protocol Adherence                   

A total of 80 older participants were enrolled into this prospectively registered RCT 

(ACTRN12611000702910). Of these, 77 participants (39 in the CCT group and 38 in the AC 

group) completed baseline assessment and are included in all intention-to-treat (ITT) 

analyses. Twelve participants (15.6%) withdrew during the intervention period (8 in the CCT 

group, 4 in the AC group, 2-sided χ2 p = .347), and 10 additional participants (13%, five in 

each group) were lost to longitudinal follow-up (see Figure 3.2). No baseline 

sociodemographic or clinical differences were noted between dropouts and those who 
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completed intervention. There were also no systematic differences in protocol adherence in 

the CCT group (35.1 sessions, 97.5%) compared to AC training (34.7 sessions, 96.4%, p-

value = 0.581).  

!
Figure'3.1:'Study'design'and'participant'flow' 

 

At baseline, the age range of participants was 65 to 90 years (mean age 72.1, SD = 6.2), 

68.8% were female, MMSE scores ranged from 24 to 30 (mean MMSE 28, SD = 1.6), 28.5% 
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had 10 or fewer years of education, and the average NART-r IQ was 112.5 (SD = 11). All 

subjects had at least one established dementia risk factor, the most prevalent being subjective 

memory complaints (68.9% in women; 70.1% men – see Figure 3.1 for further details). 

There were no significant demographic or cognitive differences between the groups at 

baseline (see Table 3.1).      

Strength and durability of effects on Global Cognition   

Linear mixed-modelling repeated-measures ITT analysis revealed an overall significant 

Group X Time interaction on GC favouring CCT across the 15-month trial period (F-

value=3.297, p=0.006). As shown in Figure 3.3, GC improved significantly from baseline in 

the CCT group compared to AC after nine sessions (FU1: Net Effect Size, NES=0.33). The 

effect increased after 27 additional sessions (FU2: NES=0.49). This gain diminished by 

about one-third three weeks after cessation (FU3: NES=0.32), but a significant medium-

sized effect was maintained three months post training (FU4: NES=0.30). A small NES was 

noted one year after training finished (FU4: NES=0.21).    
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Table 3.1. Baseline characteristics. 
 
Demographics CCT (n = 39) AC (n=38) P -value 
  Age (years) 72.2 (7.1) 71.9 (5.3) .815 
  Female Sex, No. (%) 29 (74) 24 (63) .289 
  Native English Speakers, No. (%) 30 (78) 29 (76) .950 
  NART-r (SD) pFSIQ* 112.6 (10.1) 112.3 (11.0) .896 
  Prior computer use 35 (89.7) 36 (94.7) .414 

Dementia risk factors 
  

 

  Subjective memory complaints†, No. (%) 27 (69.2) 27 (71.1) .861 
  Hypertension, No. (%) 12 (30.8) 20 (52.6) .052 
  Hypercholesterolemia, No. (%) 14 (35.9) 14 (36.8) .931 
  Diabetes, No. (%) 1 (2.6) 5 (13.2) .083 
  Ischemic Heart Disease, No. (%) 2 (5.1) 6 (15.8) .125 
  Atrial Fibrillation, No. (%) 3 (7.7) 4 (10.5) .665 
  Physical inactivity‡, No. (%) 10 (25.6) 11 (28.9) .802 
  Low education (≤10 years), No. (%) 11 (28.2) 11 (28.9) .501 
  Family history, No. (%) 8 (20.5) 9 (23.7) .789 
  Past smoking, No. (%) 23 (59.0) 21 (55.3) .742 
  Current smoking, No. (%) 2 (5.1) 0 (0) .157 
  DRFS (SD) 3.0 (1.6) 3.44 (1.6) .221 

Clinical 
  

 

  IQCODE score (SD) 3.05 (0.12) 3.1 (0.13) .111 
  GPCOG examination score (SD) 7.92(1.3) 8.05 (1.0) .631 
  MMSE (SD) 28.2 (1.4) 27.8 (1.8) .267 
  B-ADL (SD) 1.58 (0.52) 1.63 (0.65) .702 
  GDS (15-item) (SD)  1.7 (1.4) 1.3 (1.5) .225 

Quality of life 
  

 

  QOLS (SD) 88.8 (9.8) 89.7 (9.2) .690 
  SF36 physical component (SD) 72.0 (18.0) 74.6 (17.4) .522 
  SF36 mental component (SD) 83.0 (9.9) 82.6 (11.1) .868 
Data are n (%) or mean (SD). DRFS=dementia risk factor score. GDS=geriatric depression scale. IQCODE=informant 
questionnaire on cognitive decline in the elderly. GPCOG=general practitioner assessment of cognition. MMSE=mini 
mental state examination. NART=national adult reading test (revised). B-ADL=Bayer activities of daily living. 
QOLS=quality of life scales. SF36=short form health survey. *IQ-equivalent. † defined as 4 points or less in the GPCOG 
questionnaire(52). ‡ defined as CHAMPS (51) estimated caloric all cause activity score <1843.  
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!

Figure'3.2:'Net effect sizes (NES) for domain summary scores across the 15-month trial period as measured after 9 
and 36 training sessions (FU1 and 2, respectively), as well as 3, 12 and 52 weeks after stopping training (FU3-5). NES 
calculated as Cohen’s d [(post mean -pre mean) ÷ pooled baseline standard deviation] for CCT minus AC group, and 
then applying a bias correction factor (1-(3÷4[(nCCT – nAC – 2) – 1]) 51.'

 

To further evaluate whether change in language abilities affect the observed efficacy on GC, 

on a post hoc basis we computed a more expansive Global Cognition Score that included two 

language domain tests, as well as additional memory and executive function tests that were 

administered only at follow-ups 2, 4 and 5 because of lack of alternate forms (see Methods 

section). The overall Group X Time interaction remained significant (F-value=9.004, 

p<0.001), and produced stronger effect size estimates at specified timepoints (FU2 NES = 

0.65; FU4 NES=0.47; FU5 NES=0.36).   

Domain-specific effects 

Linear mixed-modeling repeated-measures ITT analyses revealed significant Group X Time 

interactions favouring CCT on two of four composite scores, namely, the memory domain 

(p=0.011) and the processing speed domain (p=0.037), as well as a trend on the language 

domain (p=0.067). There were no significant findings for the executive function domain (see 

Table 3.2).  
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Dose Response and Decay of CCT Therapeutic Effects                               

As opposed to GC, the effect on memory domain (see Figure 3.3 and Figure 3.4) was 

negligible after nine sessions (FU1: NES=0.09), but reached a similar effect to GC after 36 

sessions (FU2: NES=0.49). These gains more than halved three weeks after stopping training 

(FU3: NES=0.26) and continued to diminish one year later (FU4: NES=0.17; FU5: 

NES=0.16). CCT effects on the processing speed domain showed a unique pattern (Figure 

3.3 and Figure 3.4). The therapeutic effect peaked after nine sessions (FU1: NES=0.40), and 

then declined after 36 sessions (FU2: NES=0.21). However, medium-sized effects favouring 

CCT were maintained throughout the three-month post training period (FU3: NES=0.49; 

FU4: NES=0.32), diminishing by approximately a half one-year after training stopped (FU5: 

NES=0.13).   

Longitudinal effect on activities of daily living               

One year after training cessation there was no significant Group X Time interaction 

improvement on Bayer Activities of Daily Living scale, resulting from a small effect size in 

the CCT group (ES 0.20) and no change in the AC group (ES 0.00; NES=0.20, F = 0.162 p= 

0.689).  
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Table 3.2. Cohen’s d effect size for CCT and AC groups (95% confidence interval).  

  CCT  AC 
Bias 

Corrected 
Net ES 

ITT Mixed Model 
TIME X GROUP 

 

 
d 95% CI  d 95% CI   

 
F-

Value p-value 
Global 
Cognition 

FU1 0.70 (0.24 to 1.16)  0.37 (-0.09 to 0.82) 0.33 

3.297 0.006 

FU2 1.12 (0.61 to 1.62)  0.62 (0.15 to 1.09) 0.49 

FU3 1.19 (0.68 to 1.7)  0.87 (0.39 to 1.36) 0.32 

 FU4 1.34 (0.81 to 1.86)  1.04 (0.54 to 1.53) 0.30 

  FU5 1.27 (0.72 to 1.81)   1.05 (0.54 to 1.57) 0.21 
Memory 
Domain FU1 0.28 (-0.17 to 

0.73)  0.20 (-0.26 to 0.65) 0.09 

3.028 0.011 
FU2 0.87 (0.38 to 1.36)  0.38 (-0.09 to 0.84) 0.49 

 FU3 0.66 (0.18 to 1.14)  0.40 (-0.07 to 0.87) 0.26 

 FU4 0.68 (0.19 to 1.16)  0.51 (0.04 to 0.98) 0.17 

  FU5 0.84 (0.32 to 1.36)   0.68 (0.18 to 1.18) 0.16 
Information 
Processing 
Speed 

FU1 0.62 (0.16 to 1.09)  0.22 (-0.23 to 0.67) 0.40 

2.403 0.037 

FU2 0.73 (0.23 to 1.22)  0.52 (0.05 to 0.99) 0.21 

FU3 1.01 (0.5 to 1.52)  0.69 (0.21 to 1.16) 0.32 

 FU4 1.19 (0.67 to 1.72)  0.87 (0.39 to 1.35) 0.32 

  FU5 1.00 (0.46 to 1.54)   0.86 (0.36 to 1.37) 0.13 
Executive 
Function 
Domain 

FU1 0.71 (0.24 to 1.17)  0.46 (0 to 0.92) 0.24 

1.036 0.397 

FU2 0.94 (0.44 to 1.44)  0.49 (0.02 to 0.96) 0.45 

FU3 1.02 (0.52 to 1.52)  0.87 (0.38 to 1.35) 0.15 

 FU4 1.18 (0.66 to 1.69)  0.90 (0.41 to 1.4) 0.27 

  FU5 1.01 (0.48 to 1.53)   0.80 (0.3 to 1.3) 0.20 
Language 
Domain  FU2 0.76 (0.28 to 1.25)  0.55 (0.08 to 1.02) 0.21 

2.433 0.67 
 FU4 0.71 (0.22 to 1.20)  0.52 (0.08 to 0.99) 0.18 

 FU5 1.01 (0.48 to 1.54)  0.90 (0.38 to 1.41) 0.11 
Extended 
Global 
Cognition  

FU2 1.24 (0.73 to 1.75)  0.59 (0.11 to 1.06) 0.65 
9.004 <0.001 

FU4 1.33 (0.80 to 1.85)  0.86 (0.38 to 1.34) 0.47 

FU5 1.35 (0.80 to 1.89)  0.98 (0.47 to 1.49) 0.36 

Bias-corrected net effect size (NES) is difference between two effects after correction. F-value refers to linear mixed 
model with Time (six repeated measures), Group and Group X Time terms in model. P-value refers to Group X Time 
interaction.    
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!
Figure'3.4:'Mean change on GC, memory and information processing speed across the six time points. 
CCT=computerized cognitive training. AC=active control. FU1=after 9 training sessions. FU2=after 36 training 
sessions. FU3=3 weeks after cessation. FU4=12 weeks after cessation, FU5=52 weeks after cessation. Graphs depict 
change from baseline in SD units based on ITT MMRM estimated marginal means ±SEM.    

!

3.4 Discussion     

To the best of our knowledge this is the first randomized, double-blind, active-controlled 

trial to demonstrate efficacy of computerised cognitive training on GC in non-impaired older 

adults27,52. The magnitude of the net effect size at the end of 36 hours of training is sufficient 

(NES 0.49) to be of clinical interest. Some of these benefits were preserved as far out as 12 

months after completing training, but as expected, decayed relative to combined retest and 

non-specific effects in the active control group. This comparison group was the most 

rigorous implemented thus far, designed to take into account of sensorimotoric, mnemonic, 



 103 

attentional, motivational, social and trainer-related stimulation. In addition, we chose 

outcome measures with multiple available forms that were functionally dissimilar to the CCT 

exercises, and analysed results on cognitive composite scores rather than individual tests, 

further increasing their reliability6. For the first time, we also examined cognitive outcomes 

at multiple time points during and after CCT, providing new insights into dose-response 

relationships. Memory effects for example continue to display a steep upward trajectory even 

after 36 training sessions, but decay rapidly following training offset, in contrast to 

processing speed effects which peak after 9 sessions but then are largely resistant to decay 

for at least 3 months following the end of training.  

Previous trials of non-computerized cognitive interventions have reported improved GC in 

healthy and mildly impaired older adults53-56, however, these employed single-blinded wait-

list control designs and multi-faceted interventions that make interpretation difficult39,57. 

Notably, the NES in these trials were considerably smaller than reported here under more 

rigorous conditions. Interestingly, three recent well-designed RCTs in the elderly have failed 

to detect GC effects following CCT27,58,59. Similar to our study, these used multi-domain 

CCT and a comparable number of training sessions, but unlike our study, CCT was self-

administered at home rather than in a supervised group setting. This raises the possibility that 

expert supervision involving feedback, motivational support and emphasis of applicability of 

training to everyday life may be a key factor moderating CCT outcomes60,61, as clearly 

supported by the moderator analysis in Chapter 2.  

For the first time, we also examined cognitive outcomes at multiple time points during and 

after CCT, providing new insights into dose-response relationships. Memory effects for 

example continue to display a steep upward trajectory even after 36 training sessions, but 

decay rapidly following training offset, in contrast to processing speed effects which peak 
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after 9 sessions but then are largely resistant to decay for at least 3 months following the end 

of training. This information may help develop more effective CCT software in the future. 

Moreover, the fact that CCT has effected memory and processing speed but not language and 

executive function is completely consistent with the results of Chapter 2.    

The issue of which CCT software package is optimal for enhancing GC in this population 

remains open in the absence of head-to-head RCTs. We used COGPACK, which has a 

relatively rich history within the cognitive rehabilitation setting 62 and is convenient for 

research purposes. However, COPGACK relies on now dated technology that lacks useful 

auditory exercises and relies on a trainer rather than an automated algorithm to create the 

training regimen and adapt training content. Accordingly, there is great scope for improving 

beyond these reported outcomes with new software that takes into account underlying dose-

response functions.  

It is also important to note that whilst efficacy on GC may be a necessary condition for 

primary dementia prevention, it is not sufficient. For this purpose, robust and simultaneous 

effects on daily function are required 23. We found only small and non-significant effects 

using the Bayer ADL measure at our 12-month post training assessment (NES=0.2); based 

on these results 80% power would require a total final sample size of 787. This finding is 

therefore in line with the weak IADL effects (NES=0.29) found in the large ACTIVE trial 

following paper-and-pencil reasoning training63. The overarching clinical challenge for CCT 

researchers is therefore to demonstrate far transfer to everyday function, an issue closely 

related to development of validated tools sensitive enough to detect treatment-related 

functional change in asymptomatic and preclinical individuals37. 

For the full anti-brain-aging potential of CCT to be realised evidence needs to move beyond 

simple efficacy to understanding fundamental therapeutic characteristics. We found that 
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supervised, centre-based, multidomain CCT is effective at improving global cognitive 

performance in older individuals over the long term, and moreover, this outcome was based 

on a complex pattern of dose-dependent gains during training and time-dependent decay 

following training offset. This information will be vital to the design of next generation CCT 

technology, as well as for helping clinicians and researchers make the most this intervention. 
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Chapter 4: Timecourse of CCT-induced structural and 

functional brain plasticity: A Pilot Study  

Introduction   

Throughout the past decade neuroimaging studies of CT studies have been influential 

in providing an insight into the human brain’s neuroplasticity, and hence helped 

reform longstanding attitudes about the inevitability of degeneration and decline in 

late life. As the field moves from traditional ‘does brain training work?’ about the 

questions to more detailed investigation about the mechanisms of action1 and 

optimised practice parameters, neuroimaging may have several roles to play2-4:  

First, the main evidence base for the field is centred around neuropsychological 

measures of cognition (see Chapter 2), and so there remains an absence of a solid 

neurobiological theory for clinical effectiveness, something that can only be 

established when several studies are able to show consistent links between cognitive 

change and measures of structural and functional brain adaptation. Second, imaging 

can help determine whether CT reverses or attenuates longitudinal patterns of 

degeneration or age-associated neurobiological dysfunction. Third, neuroimaging 

have help identify ‘brain-training responsive brains’, that is, multivariate 

neuroimaging patterns at baseline that can distinguish between those individuals that 

will have a robust clinical response to training from those who will not. Finally, 

development of new CT exercises could be immensely enhanced by looking at 

neuroplastic processes stimulated by specific exercises, feeding this back into exercise 

development in an iterative cycle. 
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Alas, a number of methodological challenges will need to be solved before 

neuroimaging can fulfil these roles. Magnetic resonance imaging (MRI) and positron 

emission tomography (PET) scans are currently too expensive to become common 

endpoints in clinical trials, and standards of image processing, analysis and reporting 

need to be improved5. Importantly, in vivo imaging is not yet sensitive enough to 

detect changes at the molecular and cellular scale, as well as other likely relevant 

microstructural processes such as neurogenesis and angiogenesis6. The same problem 

exists in regard to quantitate electroencephalography (qEEG), which, despite its 

relative simplicity (notably the ability to record task-dependent cortical activity for a 

long duration without having to lay in a scanner), and low cost, it has yet to be 

established as a reliable and sensitive brain imaging technique6,7.         

Notwithstanding these challenges, at least eight controlled trials have demonstrated 

CT-induced brain plasticity in healthy elderly using MRI8-15 (see also a review by Suo 

and Valenzuela2), and a similar number of studies have done so in subjects with 

MCI3. In addition, at least two well designed studies have used qEEG to study 

specific CCT tasks in healthy elderly16,17, and an array of imaging studies have used 

MRI outcomes to study CT effects in neuropsychiatric populations (reveiwed by 

Vinogradov et al4). 

To date neuroimaging studies of CT have used inconsistent methods and present a 

heterogeneous body of evidence (like the clinical studies reviewed in Chapter 2). To 

the best of our knowledge, no study has yet reported null effects of CT on any 

neuroimaging outcomes, with the literature populated only by positive results, clearly 

ignoring or underreporting statistically insignificant results.  There is therefore strong 

reason to believe that the current literature is biased.  
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As part of the Timecourse Trial (Chapter 3) we therefore designed and conducted a 

pilot investigation to examine the utility of MRI measures of multidomain CCT-

induced neuroplasticity. More specifically, we aimed to 1) pilot test multimodal 

neuroimaging to assess evidence for mediating mechanisms of global cognition gains, 

and 2) compare effect sizes from cognitive measures to those generated from 

neuroimaging in order to assess their potential role as endpoints for CCT trials. All 

procedures and analyses were conducted as predetermined, with an emphasis on using 

the most recent data acquisition, processing and analysis tools and testing for 

relationships with cognitive outcomes.  

Methods  

4.1.1 Study Design and Participants   

This study was conducted using a subsample of participants from the Timecourse 

Trial, using the same recruitment, eligibility criteria, randomisation, interventions and 

assessment methods. After giving their consent to participate in the trial, participants 

in whom MRI was not contraindicated (e.g., no metallic implants) were offered to 

participate in the imaging subsample in addition to the main trial. Neither consent nor 

refusal to participate in the imaging subsample affected inclusion, randomisation, 

intervention or cognitive assessments, and cognitive data from participants in the 

imaging subsample was combined with those of the other participants. Inclusion in 

the subsample was determined after randomisation to the main trial based on a 2:1 

allocation with N = 18, i.e., the first twelve participants from the CCT group and first 

six participants from the AC group who consented to participate in the imaging 

subsample were included in this study.  
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The Timecourse Trial (Chapter 3) was a randomised active-controlled trial of centre-

based multidomain CCT in healthy older adults. After baseline assessment, eligible 

participants received a total dose of 36 one-hour session of either CCT or an active 

control intervention. Additional cognitive assessments were conducted after 9 hours 

(follow-up 1) and 36 hours of training (follow-up 2). Three longitudinal assessments 

were performed 3 weeks, 3 months and 12 months after training cessation. Primary 

outcomes were global cognition, as well as composite scores of memory, information 

processing speed, executive functioning and language.    

4.1.2 Data Acquisition    

Multimodal MRI scans were performed on three occasions, at baseline, after nine 

training sessions (FU1) and after 36 sessions (FU2), using a 3.0-Tesla General 

Electric scanner at the Brain and Mind Research Institute, University Of Sydney. 

Each scan took 45-50 minutes to complete and included:  

1 Structural (sMRI): 3D, T1-weighted whole brain scan (sequence: T1GR; TR/TE 

7.1/2.7ms; slice thickness 1mm without gaps; field of view 256x256; resolution 

1x1mm.   

2 Resting-state fMRI: T2* echo-planar BOLD sequence (T2*EP/RG; TR/TE 

2000/30; slice thickness 4.5mm without gaps; 200 volumes, 6.5 minutes), eyes 

closed. 

3 Proton Magnetic Resonance Spectroscopy (1H-MRS): in left hippocampus 

(20mm M/L, 15mm D/V, 30mm A/P, oriented along the hippocampus) and 

posterior cingulate grey matter (20mm M/L, 20mm D/V, 30mm A/P) using the 

PRESS sequence (TE/TR 20/2000ms, 1024 points, 256 averages). 
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4 Diffusion Tensor Imaging (DTI): 40 directions, TR/TE 10293/55ms, 60 slices, 

2mm3 isotropic.           

 

4.2.3 MRI Preprocessing  

sMRI. Two structural analyses were used. First, we performed VBM longitudinal 

preprocessing pipeline as per our previously published protocol18 using SPM version 

8 (Wellcome Trust Centre for Neuroimaging, London, UK) running on Matlab 2012a 

(MatWorks Inc., Natick, MA). Intra-subject image normalisation was performed for 

the three timepoints (BL, FU1, FU2) combined. Secondly, an analysis of cortical 

structures was performed using the longitudinal pipeline of FreeSurfer19. It creates a 

within-subject template through a variety of steps including image registration, 

normalization, skull-stripping, segmentation of grey and white matter, and delineation 

between the inner grey-white matter and outer pial surface.  The resulting surface 

maps where then used to assess the longitudinal training effect, at both a whole-brain 

(QDEC) and regional level (parcellation), with changes in cortical thickness 

indicative of structural neuroplasticity.    

fMRI. Resting-state fMRI data were preprocessed using the Data Processing 

Assistant for Resting State fMRI toolbox of the SPM8, normalised to standard MNI 

space and smoothed using 8mm kernel. The Resting State fMRI Data Analysis 

Toolkit (REST, www.restfmri.net) was used to generate pre-specified seed-wise 

functional connectivity (FC) maps of the hippocampus and the posterior cingulate. 

Nuisance variables related to white matter, whole-brain and CSF signal and head 

motion were regressed out along with 6 co-registration factors. Individual FC maps 

for each seed and FU were based on voxel-wise correlations between the mean signal 
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of the seed and other regions, and then transformed into z-scores. Baseline FC maps 

for the whole sample are presented in Figures 4.1 and 4.2 below.  

 

Figure 4.1: Baseline whole-brain functional connectivity map for the posterior cingulate seed (t = 
3.93, df = 12, p = 0.001, cluster size threshold =5) on a standardised single T1 template. Hot areas 
represent voxels positively correlated with the seed and cool areas negative correlations. 
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Figure 4.2: Baseline whole-brain functional connectivity map for the right hippocampus seed (t = 
3.93, df = 11, p = 0.001176, cluster size threshold =5) on a standardised single T1 template. Hot 
areas represent voxels positively correlated with the seed and cool areas negative correlations. 
 

1H-MRS. We followed our previously published protocols for MRS processing of the 

five main metabolite signals8,20,21 namely N-acetylaspartate (NAA), Creatine (Cr), 

Cholines (Cho) Myo-inositol (mI) and Glutamate+Glutamine (Glx). Residual water 

signal was first removed by Hankel Lanczos Squares Singular Value Decomposition 

filter. The spectra were then aligned by setting NAA peak to 2.02ppm and baseline 

correction performed (using 150 data points for mean). Finally, we used the 

AMARES jMRUI procedure to quantify the amplitudes of the five metabolite peaks 

and calculated relative amplitudes using Creatine as reference peak. 
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Figure 4.3: Example of ROI placement and baseline spectra – posterior cingulate.  
 

 

Figure 4.4: Example of ROI placement and baseline spectra – left hippocampus. 
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DTI. Fractional anisotropy (FA) data were preprocessed using the Tract-Based 

Spatial Statistics (TBSS) script of the FSL suit, using published methods22. Very 

briefly, TBSS aligns all FA images to a mean FA skeleton, and generates individual 

FA data as a projection onto the mean skeleton.  

4.2.4 Postprocessing and Statistical Analyses  

Voxel-based analyses. A longitudinal general linear model was used to analyse the 

structural VBM-preprocessed and resting state fMRI FC-map data. Both analyses 

were based on a flexible factorial design with three factors (subject, group and time) 

and one interaction (group X time), correcting at the whole-brain cluster-level using a 

false discovery rate (FDR) procedure at the p<0.05 level. Finally, statistically 

significant results were correlated with changes in global cognition (GC) scores in the 

imaging subsample.          

Vertex-based analysis. Vertex-based analysis was conducted on the outputs from the 

FreeSurfer longitudinal pipeline, using the FreeSurfer QDEC toolbox. Three measures 

of cortical thickness change were used to assess for plasticity, namely: 1) annualised 

rate of change (+/-) in mm/year, 2) symmetrised percent change (SPC) with respect to 

the temporal average, and 3) percentage change with respect to baseline (PCL).  A 

longitudinal general linear model was used with group as the main factor. Multiple 

comparisons were corrected using two methods, namely: whole-brain vertex based 

FDR correction, and exploratory small-volume based FDR correction.  

MRS and FA analyses. Preprocessed data was analysed using linear mixed-modeling 

repeated-measures analyses, with Group and Time as main factors and the interaction 

of interest (Group x Time) on SPSS 20. All group x time interactions tested changes 

from baseline to FU1 or change from baseline to FU2.   
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4.3 Results  

Eighteen subjects were initially included in the imaging subsample. Three withdrew 

consent between baseline and FU1 and one passed away between FU1 and FU2. Two 

additional subjects withdraw consent from the imaging subsample but completed the 

main trial, and one subject was excluded from the trial following pathological 

findings in his baseline MRI scan (diagnosed with Parkinson’s disease soon after). A 

total of 12 subjects (CCT: six females, one male; AC: five males, mean age 71.4) 

were therefore analysed on a per-protocol completion basis, using three scans per 

subject.  

VBM whole brain analysis. After FDR correction for multiple comparisons there 

was a significant group x time interaction in the right postcentral gyrus (t=4.6, 

kE=1122, pcorr = 0.003, peak at xyz 39 -25 60) in the CCT group compared to an 

observed shrinkage in that region in the AC group from baseline to both FU1 

(zCCT=0.39; zAC=-0.34) and FU2 (zCCT=0.66; zAC= -0.53). See Figure 4.5 for a 

representation of these results. In addition, there was a significant group x time 

interaction in the right fusiform gyrus (t=4.53, kE=1711, pcorr<0.001, peak at 39 -40 -5, 

see Figure 4.6).  Across the entire sample, there were significant positive correlations 

between changes in the postcentral gyrus and change in global cognition at both FU1 

and FU2 (see Figure 4.5).  
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Figure 4.5: VBM changes in the postcentral gyrus at FU1 (+3weeks) and correlations with 
change in global cognition at the same timepoint (+3weeks) and at a delayed timepoint 
(+3months).  

 

Figure 4.6: Changes in the Fusiform gyrus (VBM) 
(Note: no correlations between VBM changes in the fusiform gyrus and GC changes were found).  
 

 

Postcentral Gyrus

BL +3 weeks +3 months
0.30

0.35

0.40

0.45

0.50

0.55

Time Points

G
M

 v
ol

um
e 

(a
.u

.)

CCT
AC

****   p < 0.01

**



 121 

Vertex-based analysis. Whole-brain correction did not yield any suprathreshold 

results, but two regions were identified for further exploration using small volume 

correction. After small volume correction, there was a significant between-group 

difference in rate of thickness change between baseline and FU2 in the left fusiform 

gyrus (voxel/vertex-wise threshold [vwth] = 3.39, p < 0.001, see Figure 4.7), as well 

as a large cluster in the right parietal lobe covering the supramarginal and postcentral 

gyri (vwth = 2.24, p = 0.006, see Figure 4.8). For both figures below, average 

thickness changes was calculated after exclusion of the single outlier subject in the 

CCT group, as his rate of change was more than 2.5 SDs outside the group average. 

Note that this subject was not excluded in the above Freesurfer vertex analysis.  

Figure 4.7: Vertex-based analysis of the left inferior temporal gyrus.  
 

 

Figure 4.8: Vertex-based analysis of the right supramarginal and postcental gyri. 
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Resting-state fMRI. Compared to baseline, FC between the posterior cingulate and 

the superior frontal gyrus decreased in the CCT group and increased in the AC group 

at FU1 (group x time p<0.01). A statistically significant inverse correlation was found 

between the FC at FU1 and change in GC at FU2 (r=-.602, p=0.038), but only a trend 

towards significance was noted between the two deltas at FU1 (r= -.530, p=0.076, see 

Figure 4.9. No group differences were noted for FC change between the two regions 

at FU2.   

Conversely, FC between the right hippocampus and the superior temporal gyrus 

increased in the CCT group and decreased in the AC group at FU1 (group x time 

p<0.01). A statistically significant correlation was found between FC and GC changes 

at FU1 (r=.603, p=0.038), and a trend towards significance was noted between FC 

change at FU1 and GC change at FU2 (r= .533, p=0.074, see Figure 4.10). No group 

differences were noted for FC between the two regions at FU2. 

  

Figure 4.9: FC changes between the posterior cingulate and superior frontal gyrus at FU1 
(+3weeks) and correlations with GC change at the same timepoint (+3 weeks) and at a delayed 
timepoint (+3months).  
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Figure 4.10: FC changes between the right hippocampus and superior temporal gyrus and 
correlations with GC change at FU1 and 2  
 
 
No significant group x time interactions were found for any of the MRS data (see 

Table 4.1) or DTI analyses (data not shown). 
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Posterior Cingulate 

  
Hippocampus 

 

  
CCT AC p-value 

 
CCT AC p-value 

  
Mean SD Mean SD 

  
Mean SD Mean SD 

 N-acetylaspartate/Cr Baseline 2.23 0.16 2.24 0.28 

0.36 

 
1.74 0.06 1.84 0.06 

0.32  
Follow-up 1 2.14 0.07 2.25 0.29 

 
1.74 0.11 1.72 0.05 

 
Follow-up 2 2.30 0.24 2.26 0.28 

 
1.72 0.15 1.74 0.15 

Cholines/Cr Baseline 0.45 0.07 0.44 0.10 

0.45 

 
1.06 0.05 1.12 0.10 

0.49  
Follow-up 1 0.43 0.03 0.46 0.12 

 
1.09 0.05 1.13 0.17 

 
Follow-up 2 0.42 0.03 0.45 0.11 

 
1.07 0.11 1.17 0.11 

 Myo-inositol/Cr Baseline 1.01 0.14 1.11 0.18 

0.10 

 
1.34 0.11 1.42 0.17 

0.42  
Follow-up 1 1.02 0.13 1.07 0.15 

 
1.34 0.08 1.43 0.23 

 
Follow-up 2 0.98 0.11 1.11 0.20 

 
1.33 0.09 1.48 0.20 

Glutamate+Glutamine/Cr Baseline 0.33 0.07 0.21 0.15 

0.82 

 
0.88 0.19 0.87 0.27 

0.20  
Follow-up 1 0.24 0.08 0.16 0.13 

 
0.88 0.11 0.75 0.17 

 
Follow-up 2 0.23 0.07 0.15 0.12 

 
0.89 0.17 0.90 0.18 

Table 4.1: Metabolite values (normalized to Creatine) at the three time points. No significant time x group interactions were found. P-values refer to time x group 
effect.  
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4.4 Discussion  

CCT effects on cortical thickness in the right postcentral gyrus were observed in a 

whole-brain VBM analysis (net effect size [NES]=1.48) and corroborated by the more 

biologically plausible Freesurfer-based cortical thickness analysis (NES=1.18). The 

postcentral gyrus is among the most age-sensitive cortical regions in terms of both 

volume23-25 and function26, and it is therefore possible that CCT attenuated the  high 

rate of volume loss seen in that region in the control group. Moreover, volume change 

extracted from the VBM analysis correlated with positive change in global cognition, 

further suggesting a possible mechanistic explanation for CCT effects.  

By contrast, between-group structural differences were noted over time in clusters 

around the fusiform and inferior temporal gyri, but the two analytical methods 

localised these to opposite hemispheres (NES=1.43). These findings are in line with 

previous studies in healthy older adults reporting structural10 and functional CT-

induced plasticity12 in these specific segments of the ventral visual cortex, whose 

function also tends to change bilaterally with increasing age27. The effect of CCT 

could be therefore bilateral as well, albeit not robust enough to survive correction.  

Training-induced differences on posterior cingulate–superior frontal gyrus functional 

connectivity (FC) and the hippocampus–superior temporal gyrus FC occurred early in 

the course of training (between baseline and FU1), but were not apparent nine weeks 

later. FC changes were therefore both temporally and spatially different from 

structural changes, suggesting that the two types of imaging can quantify distinct 

neuroplastic mechanisms. Importantly, however, both types of FC changes preceded 

subsequent structural change, and predicted subsequent cognitive change, and may so 
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serve not only as a possible mechanismtic explanation for CCT effect, but also as an 

early biomarker for titration of CCT.  Clearly, given the small scale of this pilot study 

these findings will need replication in a larger study before their significance can be 

properly evaluated. 

Lack of any significant time x group interactions on measures of FA and MRS are 

surprising, as CT-induced effects on these measures have been documented 

previously in healthy elderly. It should be noted, however, that the three studies 

reporting effects on FA11,15,28 and the one study reporting effects on brain metabolites8 

had substantially larger sample sizes than here. Moreover, none of these studies 

included an active control group, and only one (non-randomised) study15 used 

multidomain training. Multidomain training is likely to lead to more spatially 

distributed brain changes than repeated practice on essentially identical tasks over an 

long extended period.       

Overall, the effects sizes generated from the imaging outcomes are higher than the 

GC gains in the overall Timecourse Trial (NES=0.49), but importantly, lower than the 

GC effect size in the imaging subsample (NES=2.18). The utility of neuroimaging as 

a CCT endpoint compared to cognitive endpoints is therefore doubtful5. Replication 

of these effect size estimates is critical, especially in a fully randomised design. 

Subjects in the current study were randomised only at the level of the whole trial, 

their entry into the imaging substudy influenced by a number of convenience factors. 

Arguably, the most useful outcome of this CCT imaging pilot study is therefore the 

ability to design future larger scale studies with some confidence.  

Neuroimaging investigations of CCT may be useful for developing mechanistic 

explanations for training-induced cognitive effects, optimising training programs and 
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predicting response. Since functional outcomes were found to be more sensitive to 

short-term change, they may be more useful than sMRI as predictor of cognitive 

benefits.  

This pilot investigation indeed suggests some intriguing insights into training-induced 

structural and functional plasticity that may explain and complement cognitive 

effects. However, this was a capital- and labour-intensive project, whose costs were 

similar to those spent on two-year Timecourse Trial. Hence, the extent to which the 

potential benefits from neuroimaging investigations of CT outweigh their costs 

remains unclear. 

In conclusion, neuroimaging can provide a unique opportunity for understanding the 

neurobiological underpinnings of CCT2, further development of effective 

interventions for specific neural impairments4, and perhaps as a biomarker for clinical 

response. Further research is required to validate and extend upon these interesting 

preliminary findings. 
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Chapter 5: General Discussion    

I would like to see once, only once in my life, a research report that does not end with 
the words ‘further research is urgently needed’  

Dr. Gerhard Kocher (‘Vorsicht, Medizin!’) 

 

Forty years since CT was suggested as a means to address cognitive ageing1, and 

almost 30 years after the first computerised exercises were trialled2, the field has yet 

to develop a coherent rationale that could serve as a basis for further research, 

development and clinical practice. Tackling this problem will require more than 

simply more studies and more data. As argued in this concluding chapter, meaningful 

progress in the field will require better ways to test, communicate and implement 

CCT programs. Based on the findings described in this thesis, this chapter proposes a 

critical analysis of the current state of the field, and sets forth recommendations to 

strengthen CCT research and ensure its applicability.   

5.1 Summary of Findings 

Chapter 2 is to the best of the candidate’s knowledge the most comprehensive 

systematic review of CCT in healthy older adults so far. It employed strict inclusion 

criteria, most notably randomised controlled designs and computerised interventions, 

and synthesised data from 37 eligible RCTs with 4,310 participants. By means of 

comparison, a recent Cochrane review covering the ill-defined area of ‘cognition-

based interventions’ in healthy elderly and MCI3 found a highly mixed set of 36 

RCTs with 2,229 participants. A similar systematic review incorporating randomised 

along with nonrandomised trials of cognitive interventions in healthy elderly and 



  132 

MCI4 found 35 studies with 2,930 participants, and Kueider et al’s5 systematic review 

of CCT reported data from 38 studies with 3,205 participants, once more combining 

data from RCT with nonrandomised trials and including studies of computer-assisted 

cognitive stimulation along with CCT. 

The findings reported in Chapter 2 are therefore highly specific and up-to-date. They 

can be summarised in five key points. First and foremost, CCT produces small but 

statistically significant effect sizes on measures of memory, working memory, 

attention and visuospatial performance in this age group, as well as medium effect 

sizes on processing speed and language. The latter language effects are discounted 

because of a clear moderating effect of poor study quality. Second, no evidence for 

efficacy on any measure of executive functions was observed. Third, heterogeneity 

across studies was substantial, but is more likely to be explained by specific elements 

of intervention design factors than by a lack of active control groups, publication bias 

or study quality (except for language outcomes). Four, training programs that 

incorporate single-domain training, short sessions (<30 min), and more than three 

sessions per week were generally ineffective. Finally, effects on computerised, 

untrained neuropsychological measures was sometimes larger than on paper-based 

tests, and vice versa, depending on the cognitive domain.  

Further support to these meta-analytical findings were provided in the Timecourse 

Trial in Chapter 3. This is the first RCT to show that centre-based multidomain CCT 

is effective on global cognition (GC), arguably the most relevant deficit in ARCD, 

along with efficacy on composite scores of memory and processing speed, measured 

primarily with computerised neuropsychological assessments. Compared to a rigorous 

active control condition, healthy older adults who received the CCT program showed 
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surprisingly rapid improvements in GC and processing speed, whereas memory gains 

followed a rather linear dose-responsive curve. Follow-up assessments three weeks 

post training revealed a rapid decay in GC and memory gains, whereas processing 

speed remained mainly constant. Two additional follow assessments at 3 and 12 

months post-training showed a continuing moderate decay of gains, but residual 

effects were still noted one year after training cessation. A small effect size 

(NES=0.20) was noted on ADL one year post training, but the trial was not 

sufficiently powered to test statistical significance on this outcome.  

Chapter 4 discusses a pilot study in which a subset of participants from the 

Timcourse Trial (seven from the CCT group and five controls) underwent multimodal 

MRI scans at baseline, then after three weeks and three months of training. We aimed 

to examine the potential of neuroimaging to provide mechanistic explanations for 

CCT-induced cognitive gains, as well as to assess the putative role of neuroimaging 

outcomes as endpoints for CCT trials. Rigorous statistical analyses found CCT-

induced volumetric benefits in two regions implicated in age-related atrophy 

(sensorimotor and ventral visual cortices), as well as positive correlations between 

volumetric changes in the postcentral gyrus and gains in global cognition. Further, we 

found a short-term change in functional connectivity between the posterior cingulate 

and the superior frontal gyrus, as well as between the right hippocampus and superior 

temporal gyrus. Both of these changes preceded structural changes and predicted later 

GC gains. On the other hand, as effect sizes were considerably smaller than those 

obtained from cognitive measures in the same sample, the value of imaging may stem 

mainly from revealing mechanistic changes rather than as biomarkers of intervention 

efficacy, at least as suggested by this modest preliminary investigations of 

multidomain CCT.  
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5.2 Limitations  

The overall aim of this thesis was to address current barriers to wide-scale 

implementation of CCT in the healthy elderly, as well as to guide research priorities 

in the field. Consequently, the work had to be limited to a narrow band of questions 

and analyses, and did not carry out a large number of further analyses that could have 

been of theoretical interest as noted below. Similarly, generalisation of the findings to 

other populations and interventions may be limited.  

In order to increase its relevance to the immediate field, the meta-analysis described 

in Chapter 2 was limited to RCTs of strictly-defined CCT in healthy elderly. This 

decision led to the exclusion of a substantial pool of studies, such as otherwise 

methodologically robust non-randomised trials (e.g., the large COGITO trial6), and 

studies in MCI population, despite the difficulty to distinguish between MCI and 

normal ageing (see Chapter 1). Conversely, neuropsychological outcomes were not 

preselected but rather combined based on general cognitive constructs, and it is 

reasonable to assume that this design decision has decreased the precision of the 

estimated effect. 

As discussed above, the Timecourse Trial (Chapter 3) used a cohort to examine two 

theoretically and methodologically distinct issues, namely the overall long- and short-

term effects of CCT on GC on one hand, and the dose-responsiveness of GC and its 

components on the other. In order to achieve the latter aim, participants in the trial 

underwent essentially the same neuropsychological assessment six times over the 

course of 15 months. This method may have exacerbated test-retest effect in the 

sample, which arguably diminishes the probability of observing transfer from training 

into untrained tasks7. Yet, the fact that significant effects have been observed 
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repeatedly in the data strengthens the argument in favour of CCT efficacy rather than 

weakens it. That said, alternative explanations of theoretical importance such as order 

effect in the battery and the possibility that CCT induces resilience to cognitive 

fatigue rather than increases cognitive capacities7, have not been examined in the 

current study and remain an open field for research.  

Finally, the neuroimaging analyses conducted in a subsample of participants from the 

Timecourse Trial were most certainly limited by the small sample size, a 

disproportional number of CCT vs AC subjects, and gender imbalances between the 

two groups, all of which resulted from practical constraints beyond the control of the 

candidate (see Chapter 4). Thus, although andattempt was made to counterbalance 

these limitations with conservative analytical methods, the results of this pilot version 

must be examined with caution and warrant validation in larger samples.         

      

5.3 Toward the Next Wave of CCT Trials  

The studies conducted in this thesis were designed to address ongoing problems in the 

field of CCT in older adults. Chapter 2 was an effort to shift the evidence base from 

a binary efficacy question (‘does it work?’) to a critical evaluation of specific design 

features (‘what works?’). Chapter 3 provides a novel and concrete example of this 

type of trial, simultaneously addressing the effectiveness of CCT on GC 

(generalisation) and also the temporal dynamics of CCT in terms of dose-

responsiveness and durability across domains. Chapter 4 pushes the field even 

further by posing mechanistic questions (‘how does it work?’), albeit in a preliminary 

form8,9.  
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5.3.1 Increasing Outcome Relevance 

Previous and ongoing CCT trials can be divided into two broad categories. Most have 

focused on simple efficacy questions, a considerably smaller proportion have 

considered moderator and mediator effects, and, in rare cases, conducted head-to-head 

comparisons of different CT programs. This effort has resulted in a plethora of data, 

but given the range of approaches, data synthesis has been a challenge and led to 

wildly divergent conclusions from systematic and non-systematic reviews. Chapter 2 

has to an extent helped address this issue by focusing on potential moderators of 

treatment efficacy in a quantitative manner. 

Yet a more ambitious step towards establishing the ecological validity of CCT may 

require a rethinking of our definition of effectiveness. If the ultimate goal of CCT is 

to maintain elders’ everyday function, reliable measures of the latter will need to be 

developed and implemented as primary outcomes10. At the same time, clear clinical 

outcome measures such as incident diagnosis, mobility and functional independence 

are needed to assess the effectiveness of CCT in primary and secondary prevention of 

dementia. Surrogate outcomes, even global cognition indices, may not provide the 

confidence in the intervention sought by clinicians and decision-makers. On the other 

hand, global and domain-specific cognitive outcomes may continue to be useful for 

more specific purposes such as restoration of specific cognitive impairments at the 

individual level and research about how to best maintain training-induced gains.    

CCT trials are resource-intensive and require a considerable deal of effort on behalf of 

both researchers and participants. Such trials may therefore be difficult to fund, 

recruit and conduct, especially in community settings. Yet, large sample sizes will be 

essential to detection of functional efficacy in healthy elderly. For example, the effect 
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size of NES=0.20 on B-ADL will require a total sample size of N=800 to meet the 

α=0.05 with 0.8 power. The field cannot avoid these any more, as it is this kind of 

clinically- and community- relevant outcomes that changes practice (as witnessed in 

the cardiology field11). What is therefore missing is multicentre networks of like-

minded clinical researchers in order to expedite and efficiently carry out large 

multicentre and even multinational trials. The enhanced definition of likely key 

moderators of CCT efficacy identified in Chapter 2 is a positive contribution to the 

future design of such landmark trials. 

5.3.2 Enhancing Cognitive Efficacy  

Clearly, further work is required to develop evidence-based training protocols that are 

capable of producing durable effects on everyday cognitive health. Three major 

challenges arise:  a tendency for gains to be domain-specific; adherence to demanding 

and time-consuming interventions over the long term; and the limited durability of 

training effects. Possible solutions based on the findings of Chapters 2 and 3 will 

now be discussed in turn.  

Training program. A multidomain training program has the greatest likelihood of 

effectiveness. The program should include both visual and auditory modalities and 

balance training schedules to maintain constant challenge in every targeted domain. In 

principle, training programs should adapt content in difficulty to individual 

performance, based on predefined goals. Regardless of content, 2-3 training sessions 

lasting 30-60 minutes is recommended by the current findings.   

Settings. Similarly to physical training, the effect of CCT relies on a combination of 

factors such as choosing the appropriate exercises, adequate performance, feedback, 

reinforcement, perseverance and emotional satisfaction. Software has limited ability 



  138 

to address all these factors, and is unable to deliver nonspecific factors such as 

socialisation, which are likely to further augment training sessions and are an inherent 

part of centre-based training (and controlled for in active control centre-based 

studies). Although the net contribution of these factors to training efficacy is largely 

unknown in healthy older adults, it may be possible to draft supervision guidelines 

based on methods from the cognitive rehabilitation literature. Moreover, researchers 

and clinicians with an interest in CCT should be taught how to build and supervise 

training sessions, moreover, with some form of certification and quality assurance in 

place. In most countries personal fitness instructors need some form of mandatory 

training and qualification (e.g., in Australia it involves a Certificate IV qualification 

with a minimal course duration of 515 hours); why cognitive fitness instructors do not 

require any minimum training can no longer be defended particularly given the level 

of community and commercial interest.  

Booster. Once a target improvement in cognitive performance has been reached (or 

more likely a ceiling level of improvement as seen in Chapter 3), further training will  

be needed in order to maintain the benefits in the long-term. This may be possible, for 

example, by using distant CCT systems that provide patients with training on their 

personal computers, allow trainers to follow-up on their patients’ performance, and 

enable early detection of decay of cognitive gains that may trigger a face-to-face 

setting. Booster sessions have been found to maintain training benefits one year after 

training cessation, but effects depend on the specific training protocol and outcome 

measures used12-14.   

Targeting executive and everyday functions. As discussed in Chapter 2, further work 

is needed in order to address the current inefficacy of CCT on executive function 
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outcomes. In addition, clinical CCT may adopt methods from the cognitive 

rehabilitation field, targeting specific individual deficits in everyday performance by 

providing training on specific everyday tasks. Such training may be based on 

immersive technologies, which are becoming increasingly affordable and expands the 

quality and variety of computerised rehabilitation techniques. For example, Optale et 

al15 reported gains in several cognitive functions, including GC, in a sample of care 

facility residents following a virtual reality program that trained everyday memory 

tasks using a head-mounted display and joystick. Similarly, Grewe et al16 developed 

3600 virtual supermarket environment, which involve touch screens, sound and 

motion, but has yet to be trialled in older adults.  

5.3.3 Combining Cognitive and Imaging Data to Optimise Training  

A synthesis of the dose-response data discussed in Chapter 3 and 4 may suggest a 

new way for framing multidomain CCT based on the common medical ideas of 

‘loading dose’, ‘titration’ and ‘maintenance dose’ (see Figure 5.1). Initially, we 

observed steep therapeutic response curves, characterized by large gains from 

relatively few training sessions, a period conceptualized as loading dose. These were 

complemented by changes in functional connectivity and a moderate structural 

response in the sensorimotor cortex. Thereafter, global gains continue to rise but 

follow a logarithmic function, where individuals will experience diminishing returns 

as they approach peak therapeutic response. Conversely, the rate of structural change 

has increased compared to the 3-week timepoint, suggesting that structural plasticity 

may follow an exponential function, and that cortical volumes could increase further 

if training would have been continued. Thus, peak-response finding procedure may be 

advantageous at this point (titration). Following the offset of training, therapeutic 
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gains decay quickly, but some residual effects on GC can persist for at least 3-months. 

It is during this time that booster training is indicated and forms the third maintenance 

phase. Currently, there is no biological understanding for how CCT cognitive gains 

decay – and this is a fertile area doe future research. Mechanistic and applied research 

in this field may benefit by clearly distinguishing between these three therapeutic 

phases. 

 

 

Figure 5.1: Therapeutic heuristic for multidomain supervised Computerized Cognitive Training 
in older individuals. Sessions refer to number of consecutive CCT sessions implemented three 
times a week, and time to the equivalent period after stopping training. Three main phases are 
distinguished: loading dose, during which rapid therapeutic effects may be seen; titration, during 
which the trainer identifies peak therapeutic response beyond which further training is 
inefficient; and maintenance, during which rapid decay of gains are lost but residual therapeutic 
effects may be conserved especially with use of booster sessions.  
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5.3.4 Improving Ethical and Reporting Standards  

As scientific and commercial interest in CCT is growing, the impact of the current 

lack of standards or regulation is beginning to surface. Although Chapter 2 did not 

find evidence of publication bias, a close examination reveals some potential issues 

that need to be addressed. More generally, some practices in an already polemical 

field are worrying and warrant a debate about establishing clear guidelines for 

research and communication. 

Inconsistent terminology and reporting standards. As discussed in Chapter 1, the 

terms used to describe cognitive interventions vary to nearly the same extent as the 

interventions themselves. Combined with the typically poorly detailed description of 

the interventions, it may be difficult to replicate previous studies and virtually 

impossible to implement them in clinical practice. This is a substantial and 

preventable waste of research efforts17. It is thus imperative to develop a consensus 

taxonomy for the field, encourage authors to follow them and provide full disclosure 

of critical elements in the CCT intervention, including, among others, public access to 

a training manual that details training protocols, supervision methods and software 

version.  

Conflict of interests. Of the 37 studies reviewed in Chapter 2, 24 (65%) used 

commercially available CCT programs or prototypes of commercial products. There 

is no doubt that CCT should be produced and sold in the marketplace like any other 

medical product or service, and that scientific investigation of these products is 

equally desirable (as done in Chapter 3). Yet, more than half of the studies using 

commercial products were co-authored by employees or financial stakeholders of the 

companies whose products were under investigation. Under these circumstances the 
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degree to which possible conflict of interest has affected reporting remains difficult to 

assess. Like in the wider debate about big-pharma sponsored research, full and open 

access to all primary data may be essential to ensuring confidence in commercial-

CCT sponsored research. 

Clear communication of results to the public. Critics of the multi-million ‘brain 

fitness industry’ sometimes argue that commerce is getting ahead of science and that 

companies’ claims of efficacy largely lack empirical evidence18. Chapter 2 clearly 

shows that this argument is not correct for CCT as a whole, but does not neutralise the 

argument. Insofar as academic integrity is concerned, CCT researchers should not 

limit their role to simple academic conduct and reporting, but also to ensuring that 

research findings are not misused and championing higher standards for the field in 

general.  

5.4 Conclusion 

ARCD is a major concern for Australia’s rapidly ageing population and an existential 

threat to the Australian economy. CCT is among the very few interventions that can 

improve cognitive performance in the elderly19, and is therefore a candidate 

intervention for primary and secondary prevention.  

The ‘brain training debate’ is therefore, hopefully, over. At the very least the 

conversation needs to change. This thesis makes a strong case for the efficacy of CCT 

on elders’ cognitive performance. It also reveals a number of crucial design factors 

that underpin effective CCT, showed that these effects are dose-dependent, charted 

their short- and long-term dose response curves, and provided insights for how 

neuroimaging can be used to reveal potential underlying mechanisms. Beyond this, 



  143 

this thesis is the first to show robust and durable CCT-induced gains on global 

cognition, hence taking the field towards its next challenge – establishing 

effectiveness on everyday function and ultimately as a possible means to better 

prevent dementia.  

This thesis must therefore conclude with only a partial fulfilment of Dr Kocher’s 

wish: that not more research is required but different research. The time has come to 

begin to establish consensus guidelines around CCT, impose training standards for the 

field, design large clinical trials that can deliver results of greater relevance, and 

disseminate these results in a useful and unambiguous manner. Novelty in the field 

will not stem from yet another medium-sized trial of a yet another CCT program, but 

rather by examining its clinical and societal relevance.  
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Appendix 1: COGPACK Training Schedule    

Session Exercises used 
Session 1 Reading UFOs Color&Labels New-or-Not Logic Anagrams 

  Session 2 Route Sequences Scales Comparisions Compass Mathematics  
 Session 3 Sequence Eyewitness Archive Ball Search Position 

  Session 4 Reading Sequences New-or-Not Connect Clock Labyrinths 
  Session 5 Memory Sequences Route Reaction Follow-up Color&Labels Anagrams Position 

Session 6 Eyewitness Scales Comparisions Compass Archive Numbers 
  Session 7 Reading Sequences UFOs Logic Guess Words Search Position 

 Session 8 Memory Sequences Connect Clock Route Numbers 
  Session 9 Eyewitness Sequences Color&Labels Guess Words Logic Archive Position 

 Session 10 Sequence New-or-Not Scales Comparisions Compass Mathematics  
 Session 11 Memory Route Reaction Logic Search Guess Words Position 
 Session 12 Eyewitness Sequences Archive Connect Labyrinths Numbers 

  Session 13 Reading Sequences New-or-Not UFOs Color&Labels Guess Words Position 
 Session 14 Route Sequences Scales Comparisions Compass Mathematics  
 Session 15 Eyewitness Sequences Archive Ball Logic Search Position 
 Session 16 Reading Sequences New-or-Not Connect Mathematics Clock Labirynths 
 Session 17 Memory Sequences Route Reaction Logic Guess Words Position 
 Session 18 Eyewitness Sequences Archive Comparisions Compass Mathematics  
 Session 19 Reading UFOs New-or-Not Logic Sequences Search Guess Words Position 

Session 20 Memory Sequences Connect Clock Labyrinths Numbers 
  Session 21 Sequence Ball Follow-up Color&Labels Archive Concepts Position 

 Session 22 Piece-work Wisdom New-or-Not Scales Comparisions Mathematics  
 Session 23 Memory Route Sequence Who-or-What Clock Position 

  Session 24 Labyrinths Eyewitness Archive Sequence Numbers Clock Reaction 
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Session 25 Wisdom New-or-Not Sequence Logic Color&Labels Who-or-What Position 
 Session 26 Memory Route Scales Comparisons Compass 

   Session 27 Eyewitness Ball Logic Search Sequences Concepts Archive Position 
Session 28 New-or-Not Connect Labyrinths Numbers Sequences Logic 

  Session 29 Wisdom Archive Sequence UFOs Search Position 
  Session 30 Eyewitness Route Sequence Scales Color&Labels Compass 
  Session 31 Memory Sequences Follow-up Clock Guess Words Numbers Position 

 Session 32 Reading New-or-Not Sequence Ball Color&Labels Labyrinths 
  Session 33 Memory Route Sequence Logic Connect Mathematics  

 Session 34 Sequence Who-or-What Comparisions Reaction Archive Search 
  Session 35 Wisdom New-or-Not Compass Scales Mathematics Logic Position 

 Session 36 Sequence Reaction Clock Color&Labels Concepts Route 
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Appendix 2: COGPACK Exercise Descriptions  

Note: The descriptions below are based on exercise descriptions provided in 

COGPACK version8 help files. COGPACK is copyrighted by Marker Sofware, 

Landenburg, Germany.     

Anagrams: A meaningful word must be made out of the letters provided. This 

exercise trains the use of meaningful linguistic material at word-level.  

Archive: The$trainee$is$given$titles$to$pictures,$and$must$then$remember$them$either$
actively$or$passively.$$

Ball: The trainee must keep a ball bouncing using a horizontally movable paddle. 

This exercise trains visuomotor skills.  

Clock: Set and read an analogue clock. 

Color & Labels: Task 1 - Colour labels are written in the colour they mean (e.g. 

word blue is written in blue), with one exception (e.g. word green is written in red). 

The wrong colour label must be clicked on. Task 2 - A block of colours or patterns 

displays all but one of the selections shown in a multiple choice list. The missing one 

has to be found. Task 3 - Short-term memory tasks with colours and labels. 

Comparisons: Compare two simultaneously appearing character strings. 

Compass: Recognize and enter compass points using on-screen compass 

Concepts: Work out the concept/rule linking various terms. This exercise trains 

meaningful linguistic material at concept level. 

Connect: Using mouse clicks, join up points according to given rules 

Eyewitness: Trainees must recall short street scenes with random combinations of 

image, text, sound and movement elements. This exercise trains quick perception and 

passive reproduction of several simultaneous stimuli. 

Follow-up: Continue a series of characters according to deducible rules. 
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Guess Words: Based on word length and definition, trainees must guess a word using 

the fewest number of letter clues. This exercise trains meaningful linguistic material 

at a relatively simple word-level. 

Labyrinths: Using the mouse or cursor keys, trainees must sscape from randomly 

generated labyrinths which only have one solution and one exit.  

Logic: Task 1 –Formal comparison of abstract quantities. This exercise trains 

deductive thinking. Task 2 – Complete a block of regularly ordered characters. Rule 

recognition. Like many intelligence tests. Task 3 –  Logical “AND and OR” 

exercises. LOGIC “And and Or” is designed for learning some basic rules of logical 

combination.  

Mathematics: Trainees must solve arithmetic problems, complex puzzles and 

problems using basic algebra and tasks which use everyday problems (percentages, 

sales tax). 

Memory: Trainees are required to solve memory tasks using selectable material (e.g. 

text, graphics) and selectable recall options (e.g. immediate or delayed).  

New-or-Not: Numerous items will be presented on the screen, and trainees must 

indicate if they have seen the item previously.  

Numbers: Numerals expressed in roman, binary, hexadecimal form or in words from 

various languages must be entered in arabic-decimal numbers or vice versa 

Piece-work: This is a simulation of an assembly line. Trainees must remove defective 

pieces. 

Position: The position of 3-D bodies in space must be remembered or reproduced 

Reaction: This exercise trains reaction rime, and requires trainees to respond to 

certain stimulus as quickly as possible according to given instructions 

Reading: Trainees must memorize presented texts and then answer questions on it.   

Route: Trainees must follow must note the route indicated on a map and then must 

reproduce this.   

Scales: Scales must be brought into balance using as few as possible of the weights 

available. 
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Search: Trainees must search for a particular item hidden in a distracting background.   

Sequence: A set of continuous performance tasks. Trainees must rapidly click on 

items based on their relationship to previous items according to a given rule.   

UFOs: Use the mouse to catch UFOs flying in from random directions. This exercise 

trains hand-eye coordination.  

Who-or-What: Task 1 - The description of a person or a concept is given either letter 

by letter or as running letters. As soon as the item has been guessed, the stop button 

must be pressed and the answer entered. Task 2 - Trainees must match labels to 

pictures. 

Wisdom: Trainees must memorize quotes and the individuals who said them. 

 

 


