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A B S T R A C T

In the post-genomic era, sequencing technologies have become a vital tool in the global
analysis of biological systems. RNA-Seq, the sequencing of messenger RNA, in partic-
ular has the potential to answer many diverse and interesting questions about the
inner workings of cells. Despite the decreasing cost of sequencing data, the majority
of RNA-Seq experiments are still suffering from low replication numbers. The statist-
ical methodology for dealing with low replicate RNA-Seq experiments is still in its
infancy and has room for further development. Incorporating additional information
from publicly accessible databases may provide a plausible avenue to overcome the
shortcomings of low replication. Not only could this additional information improve
on the ability to find statistically significant signal but this signal should also be more
biologically interpretable.

This thesis is separated into three distinct statistical problems that arise when pro-
cessing and analysing RNA-Seq data. Firstly, the use of experimental data to customise
gene annotations is proposed. When customised annotations are used to summarise
read counts, the corresponding measures of transcript abundance include more inform-
ation than alternate summarisation approaches and offer improved concordance with
qRT-PCR data. A moderation methodology that exploits external estimates of variation
is then developed to address the issue of small sample differential expression analysis.
This approach performs favourably against existing approaches when comparing gene
rankings and sensitivity. With the aim of identifying groups of miRNA-mRNA regu-
latory relationships, a framework for integrating various databases of prior knowledge
with small sample miRNA-Seq and mRNA-Seq data is then outlined. This framework
appears to identify more signal than simpler approaches and also provides highly in-
terpretable models of miRNA-mRNA regulation. To conclude, a small sample miRNA-
Seq and mRNA-Seq experiment is presented that seeks to discover miRNA-mRNA
regulatory relationships associated with loss of Notch2 function and its links to neuro-
degeneration. This experiment is used to illustrate the methodologies developed in this
thesis.
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1.1 background

Since the announcement in May 2007 of the sequencing of James Watson’s entire gen-

ome using 454 Life Sciences, next-generation sequencing technologies made headlines

around the world, demonstrating the advancement in genome sequencing. These tech-

nologies saw the beginning of projects such as the $1000 genome project, the 1000

genome project and the ENCODE project, all of whose completion was expected to

make huge impacts on the understanding of human health. These projects have high-

lighted how complex the biology of a cell and all its regulatory mechanisms are. While

these new technologies have ushered in a torrent of new biological knowledge, they

have also underlined that we have a lot more knowledge to acquire.

Next-generation (or second-generation) high-throughput sequencing produces data-

sets that are incredibly exciting for statisticians. While these technologies can be used

to answer a vast array of biological questions, many of the datasets that are produced

lie squarely in the domain of very small n, extremely large p. That is, it is not unusual

to see datasets with three or fewer biological replicates in each condition making meas-

urements on tens of thousands of genes. This framework flies in the face of classical

statistics and provides an exciting new world for statisticians to explore.

1.1.1 The biology of a cell

Over the past ten years, the scientific community has begun to appreciate how complex

the biological system within a cell really is. Just as the community is on the verge

of cracking a problem that is thought to provide a significant leap in understanding

and treatment of human health, another level of complexity in the cell is discovered.

Epigenetics was one such paradigm shift. Biological mechanisms such as alternate

splicing, methylation, histone modification and non-coding RNA, have all provided

insights into the complexity of the cell and its regulation. It has become apparent that

we are not just a product of our DNA.
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Figure 1.1: The Central Dogma of Molecular Biology – An illustration of the Central
Dogma of Molecular Biology, a simplified conceptualisation of the flow of
genetic information within the cell. Information stored in DNA can be tran-
scribed into messenger RNA which can then move outside of the nucleus
and be translated into a functional protein.

When first learning about cell biology it is often useful to consider a simplified flow

of information (Figure 1.1). The Central Dogma of Molecular Biology (Crick, 1970)

states that in the nucleus of your cells, information contained on your DNA (often

called genes) can be transcribed into messenger RNA which can move outside of the

nucleus and be translated into a functional protein. This flow of information is gener-

ally referred to as gene expression. How it is regulated, inhibited and can be manipu-

lated is of great interest to the scientific community.

Deoxyribonucleic acid (DNA) is located in the nucleus of the cell and consists of two

complementary strands of sequences of nucleotides that are arranged in a double helix.

A strand of DNA consists of a three billion long sequence of the four nucleotides aden-

ine (A), thymine (T), cytosine (C) and guanine (G). The two strands are complementary

in the sense that if you have an adenine in a position on one strand then you know

that there is a thymine in the same position on the other strand. Likewise if there is a

cytosine in a position on one strand then there is a guanine in the same position on the

other strand. While the DNA within a cell has a very complex structure, it is generally

annotated as a single linear sequence of base-pairs (A-T, T-A, C-G, G-C) which is split

up into chromosomes (23 for humans).

Around 1–2% of human DNA contains information, or blueprints, for building

proteins. These regions are generally referred to as genes. Transcription is a process

that copies the information of a gene into a complementary single stranded Ribo-
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nucleic acid (RNA) molecule, messenger RNA (mRNA). RNA again consists of four

nucleotides adenine (A), uracil (U), cytosine (C) and guanine (G) with uracil repla-

cing its DNA counterpart thymine. After being transcribed, mRNA undergoes post-

transcriptional modifications and then moves outside of the nucleus into the cytoplasm

of the cell to be translated into a protein. Some of these post-transcriptional modifica-

tions are referred to as alternative splicing and allow the information of a gene to be

arranged in many different ways (isoforms), such that the information stored in one

gene could be translated to make many different proteins.

1.1.2 Technologies for measuring gene expression

There are many ways to measure gene expression. This thesis contains gene expres-

sion data generated with qRT-PCR, microarrays and next generation high-throughput

sequencing. These approaches are outlined in the following.

1.1.2.1 qRT-PCR

Quantitative real time polymerase chain reaction (qRT-PCR) is often seen as a gold

standard for measuring gene expression and will often be used to validate a small set

of genes. The effectiveness of qRT-PCR relies on the design of a 12 – 500 basepair probe

that is complementary and specific to a portion of the mRNA of interest. A fluorescent

dye can be attached to these probes making it possible to quantify how many of them

bind to sequence of interest in the sample. QRT-PCR is a cyclic process of iteratively

doubling the amount of product in the sample via PCR while measuring the fluores-

cence emitted by the labelled probes. By tracking this fluorescence and comparing the

rate that it doubles to a control gene, the relative quantity of a mRNA of interest can

be measured.

1.1.2.2 Microarrays

Microarrays facilitated the high-throughput measurement of gene expression making it

possible to measure the expression of tens of thousands of genes simultaneously. They

achieved this by arranging thousands of probes spatially on a slide, either printed
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on directly in spots or coded onto beads. After amplification, fluorescent labels are

attached to the mRNA samples which are then washed across the slides and treated

so that the mRNA will hybridise (or bind to) any complementary probes on the array.

Relative quantities of mRNA can then be determined by exciting the fluorescent labels

with a laser and observing the intensity of light from different spots on the array.

One of the key disadvantages of microarrays is their reliance on probes. These probes

have to be known in advance and generally selected in such a way so as to cover as

much of an organisms transcriptome as possible. Some probes may also suffer from

cross-hybridisation, that is, mRNA binding to probes that were not specifically de-

signed to detect them.

1.1.2.3 High-throughput sequencing

Next generation high-throughput sequencing breaks the reliance on having to design

probes for an experiment. While high-throughput sequencing platforms differ in their

chemistry and protocols, their processed outputs are generally similar. The sequencing

platforms take a sample of fragmented RNA as input and then read off 25–400 base

pair regions at the ends of these fragments. The output of these sequenced regions,

sequences of base pairs, are referred to as reads. These reads are used to infer the

presence and quantity of RNA in the sample.

The development of high-throughput sequencing technologies has made it possible

to sequence the transcriptome at a much higher resolution and coverage than was

previously available. Sequencing of mRNA samples (RNA-Seq) has a dynamic range

larger than that of microarrays (Wang et al., 2009). This, combined with its high level of

reproducibility (Mortazavi et al., 2008) and falling cost, makes high-throughput sequen-

cing technologies an increasingly attractive alternative to microarrays for transcriptome

analysis. The three most prominent sequencing platforms are 454 Life Sciences, Illu-

mina and Applied Biosystems SOLiD, all having their own distinct advantages.
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1.1.3 Common biological questions

There are many uses for high-throughput sequencing, with the technology being used

to address various biological problems. These problems can be broken up into two

main categories:

1. reassembling what we measured to find out what was present (de novo assembly,

SNP identification, motif finding) and

2. quantifying and comparing how much of a product was present (differential

expression, tissue profiling).

High-throughput sequencing can also be used to sequence various preselected subsets

of RNA and/or DNA to sequence. These include:

DNA-Seq — genome sequencing,

RNA-Seq — transcriptome sequencing,

miRNA-Seq — microRNA sequencing and

ChIP-Seq — chromatin immunoprecipitation sequencing.

All of these various biological problems and applications have their own technical

intricacies which have themselves generated many interesting and challenging compu-

tational and statistical problems. In this thesis we will consider some of the analytical

problems that arise when detecting differentially expressed genes with RNA-Seq data.

1.1.4 A common RNA-Seq pipeline

Many RNA-Seq experiments are generated with the common biological goal of identi-

fying differentially expressed genes or transcripts – that is, to determine if the tran-

scription of any genes is different between any two phenotypically distinct cellular

populations. A typical RNA-Seq data analysis workflow with this focus consists of

many steps (Oshlack et al., 2010); these steps generally consist of mapping, summarisa-

tion, normalisation, differential expression and systems biology (functional, network &

pathway analysis). This workflow is illustrated in Figure 1.2. We will consider mapping
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and summarisation as data processing steps and differential expression and functional,

network & pathway analysis as data analysis steps.

Data processing

Data analysis

Sequencer

Mapping

Summarisation

Normalisation

Differential expression

Functional, network
& pathway analysis

Figure 1.2: RNA-Seq analysis pipeline – A flow chart describing a typical RNA-Seq
analysis pipeline. This pipeline consists of two broad steps, data processing
and data analysis. Data processing includes aligning reads to a genome
(mapping), summarising how many of these reads lie in particular regions
of the genome (summarisation) and correcting for any systematic technical
variation (normalisation). Data analysis consists of identifying genes that
have changed in expression between two conditions (differential expression)
and some higher level analysis to improve the interpretability of the results
(functional, network & pathway analysis).
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Mapping is the process of aligning reads to a reference genome (or transcriptome)

and inferring from where they may have been transcribed. Most sequencing techno-

logies are limited in the length of the read they can sequence and hence sequence

limited intervals of fragmented transcripts. Mapping millions, billions or trillions of

reads back to reference genomes that have billions of base pairs is both computation-

ally and statistically intensive (Langmead et al., 2009). The process of identifying and

aligning various splice variants only further adds to this bioinformatics burden (Bona

et al., 2008; Trapnell et al., 2009; Bryant et al., 2010; Wang et al., 2010b).

Summarisation is the process of simplifying the mapping information into read

counts (or expression values) for all genes (or isoforms) of interest. While identify-

ing the presence of an isoform is difficult, as many of these transcript fragments are

present in multiple isoforms, it is also a statistically challenging problem to quantify

expression of these isoforms (Jiang and Wong, 2009; Li et al., 2010; Trapnell et al., 2010).

To avoid inferring isoform specific expression, an alternative approach is to count how

many reads lie within either exonic or genomic regions (Bullard et al., 2010). This will

produce a large matrix of read counts generally having dimension in the order of

tens of thousands of rows (genes) by hundreds, tens or even less than ten columns

(samples).

Similar to other complex molecular datasets, before analysing RNA-Seq data, it is

important to normalise or adjust for any systematic technical variation that may have

arisen in the measurement process. The largest abnormality, generally observed in a

RNA-Seq experiment, is that different samples may have been sequenced to different

depths (library sizes) and hence can have very different amounts of total reads mapped

(Bullard et al., 2010; Robinson and Oshlack, 2010). This can occur due to differences in

the total amount of material sequenced, lane effects or biological processing steps such

as ribosome and adaptor read removal. The GC content of a gene (the abundance of

cytosine and guanine in the sequence of the gene) can also affect the amplification

process during sequencing and may often cause biases between lanes or batches (Ben-

jamini and Speed, 2012).

A gene is called differentially expressed (DE) if its expression has changed between

conditions, e.g. treatment vs control. There are many methods that have been optim-



1.2 motivational data 9

ised to identify differentially expressed genes in RNA-Seq data (Robinson et al., 2010;

Anders and Huber, 2010; Hardcastle and Kelly, 2010; Srivastava and Chen, 2010; Li

et al., 2010). As many RNA-Seq experiments have small sample sizes, most methods

share information between genes; this is referred to as moderation. Methods also often

vary in the way that they model the strong mean-variance relationship observed in

RNA-Seq data.

Functional, network or pathway analysis is often performed to improve the inter-

pretability or power of differential expression results. The large number of genes ana-

lysed in most experiments can be both a blessing and a curse. The large number of

genes, often combined with small sample sizes, creates problems with multiple testing

and hence the ability to detect statistical significant differences in expression. Con-

versely, the large number of genes also creates the possibility of finding a large num-

ber of differentially expressed genes which can make interpretation of results quite

difficult. Analysing genes in terms of pathways, networks or function groupings can

alleviate both of these issues.

1.2 motivational data

This thesis was motivated by an ongoing collaboration with Associate Professor David

Lin of Cornell University. The Lin Lab primarily studies the development and degen-

eration of the nervous system using the mouse olfactory system as a model. Once

neurons are born, they are exposed to a variety of environmental insults that must

be properly dealt with to avoid degeneration. Neurodegenerative disorders, such as

Alzheimer’s disease, are thought to arise in part due to a failure to deal with this

increased stress.

Guided by previous research we designed an experiment to measure both mRNA

and miRNA transcription in the brains of mice that are exposed to various stressors

using RNA-Seq. The design of this experiment is outlined in Section 5.1. Due to the

costs associated with both obtaining and sequencing samples, our experimental design

has very few biological replicates. Producing reliable and interpretable results in situ-

ations of low sample size is a significant statistical challenge. This in itself has provided
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ample inspiration for the development of the novel statistical methodology presented

in this thesis.

1.3 outline of the thesis

In this thesis, several statistical issues associated with the processing and analysis of

RNA-Seq data are proposed as well as the techniques for evaluating their effectiveness

in practice. Some of these methods, concepts, analyses and results have already been

published (or are currently under review) by the author.

The scaffold of this thesis has been structured to replicate that of the RNA-Seq ana-

lysis pipeline outlined in Figure 1.2 on page 7. It contains three chapters on the sum-

marisation, differential expression and functional, network & pathway analysis steps

of this pipeline in addition to a case study. The first of these, Chapter 2, proposes a

novel way of approaching summarisation which uses experimental data to customise

gene annotations and includes work published in Patrick et al. (2013a). Chapter 3 out-

lines a novel moderation methodology to improve small sample differential expression

analysis by exploiting external estimates of variation and includes work published in

Patrick et al. (2013b). Chapter 4 develops a novel framework for integrating various

databases of prior knowledge with small sample miRNA-Seq and mRNA-Seq data

to build meaningful and interpretable models of miRNA-mRNA regulation. Finally,

Chapter 5 demonstrates the proposed methods from the previous chapters on our mo-

tivating dataset in a case study.
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RNA-Seq has the potential to answer many diverse and interesting questions about

the inner workings of cells. However, estimating changes in the overall transcription of

a gene is not always straight forward. In this chapter we will describe the difficulties as-

sociated with the summarisation step of the RNA-Seq analysis pipeline. Following this

we will propose the concept of data-specific constitutive exons and a methodology for

estimating these, exClust. When applied on two real datasets, exClust includes more

than three times as many reads as the standard UI method, improves concordance with

qRT-PCR data and is shown to produce robust estimates of overall gene transcription.

2.1 genes , alternative splicing and isoforms

A simplified explanation of the Central Dogma of Molecular Biology was introduced in

Section 1.1.1 and Figure 1.1. Figure 1.1 illustrated how the information stored in DNA

can be transcribed into a messenger RNA (mRNA) and then for many genes translated

into a protein. In the following we will expand on our previous explanation to include

the concept of alternative splicing and discuss the implications this process may have

on a RNA-Seq analysis. However, in short, alternative splicing is a process that allows

different proteins to be coded for from the same genetic region (gene).

A gene is commonly seen as a fundamental unit in mRNA biology. While the term

gene is commonly used, its usage and meaning has changed over time as our know-

ledge of the genome, its transcription and regulation has increased. We see it appropri-

ate to use the definition that a gene is a union of genomic sequences encoding a coherent set

of potentially overlapping functional products (Gerstein et al., 2007). This definition allows

for a gene to be transcribed into many products that may have different or even con-

trary functions (Latchman, 1996). This definition could in itself steer the direction of an

analysis as one must decide whether the activity of a genomic region or its products is

of primary interest. Figure 2.1 illustrates a toy example of Gene 1. This gene generally

consists of many sub-components such as exons and introns. Exons contain informa-

tion that can be translated to form amino acids, the building blocks of proteins. While

introns are regions that lie between the exons and not included in a mature mRNA.

The five prime and three prime untranslated regions ( 5’ and 3’ UTR) are regions on
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Figure 2.1: Transcription and alternative splicing – A toy example demonstrating how
the information stored in one gene can be transcribed, spliced and trans-
lated to form multiple distinct proteins. Gene 1, contains four exons, three
introns and a 5’ and 3’ UTR. This information can be transcribed to form
a pre-mRNA that has had a cap added to its 5’ end. The introns in the
pre-mRNA are spliced out to form a mature mRNA. This pre-mRNA can
be alternatively spliced to form a mature mRNA that contains all four ex-
ons and a mature mRNA that has had its third exon removed. These two
mature mRNA can then move outside of the nucleus of the cell into the
cytoplasm to be translated into Protein A and Protein B.

the 5’ and 3’ ends of a mRNA that do not translate into protein. These regions generally

assist the translational and regulatory machinery of the cell.

Alternative splicing is a biological mechanism to expand protein diversity from a

limited gene pool (Maniatis and Tasic, 2002). The implications of this mechanism are

explored in Figure 2.1. In this figure information stored in Gene 1 can be translated

into two distinct proteins, Proteins A and B. In the nucleus of the cell Gene 1 can

be transcribed to form a pre-mRNA. This pre-mRNA contains exons, introns and the

5’ and 3’ UTR. The pre-mRNA has had a cap added at its 5’ end which will ensure

the mRNA’s stability while it undergoes translation. The pre-mRNA is then spliced

to form a mature mRNA that does not contain the non-coding introns, and multiple

adenine bases are added to its 3’ end (poly A tail). Different exons may also be spliced
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from the pre-mRNA to give different mature mRNA transcripts. This is referred to as

alternative splicing. In Figure 2.1 the mature mRNA that codes for Protein A retains all

its exons while the third exon is spliced out of mRNA which codes for Protein B. These

alternatively spliced mRNA molecules can then generally travel outside the nucleus of

the cell into the cytoplasm where they are translated into unique proteins.

Alternative splicing generally refers to the inclusion of different exons in mature

mRNA. Other alternative splicing events may include intron retention or alternative

usage of 3’ or 5’ splice sites. These changes often lead to modifications in the encoded

proteins and have been shown to play a critical role in development and disease (Lopez,

1998; Blencowe, 2000; Black, 2003). For simplicity, in the following we consider altern-

ative splicing to be all mechanisms by which multiple and distinct mRNAs can be

created from a single gene region including both alternative transcription start and

alternative polyadenylation. The term isoform is used to refer to the blue-print of a dis-

tinct mRNA created from a particular gene region and transcript to refer to an actual

mRNA molecule within a cell – an instance of the corresponding isoform.

Alternative splicing needs to be be taken into consideration when analysing RNA-

Seq data as it occurs ubiquitously within mammalian transcriptomes (Kim et al., 2007).

It is estimated in early studies that 50–80% of the approximately 25,000 human protein-

coding genes are subject to alternative splicing (Modrek et al., 2001; Johnson et al., 2003;

Lander et al., 2001). This is further highlighted in a recent RNA-Seq study, where it is

estimated that 86% of genes were found to be alternately spliced with a minor isoform

frequency greater than 15% (Wang et al., 2008).

Sequencing technologies produce reads of limited length, so each read is of a limited

interval of a fragmented transcript. Sequencing only fragments of transcripts creates a

significant bioinformatics burden in both the mapping and summarisation steps of the

data analysis workflow. The longer an observed read, the higher the likelihood that it

will span a splice junction. Identifying and aligning such reads is both computationally

and statistically difficult as the number of possible splice junctions is large (Bona et al.,

2008; Trapnell et al., 2009; Bryant et al., 2010; Wang et al., 2010a). Identifying the presence

of a splice junction is only the first challenge; many of these transcript fragments are
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present in multiple isoforms and it is a statistically challenging problem to estimate

isoform-specific expression (Jiang and Wong, 2009; Li et al., 2010; Trapnell et al., 2010).

There are many biological questions that may be addressed with RNA-Seq data. A

typical focus of RNA-Seq analysis is to identify differential expressed isoforms (Jiang

and Wong, 2009; Li et al., 2010; Trapnell et al., 2010). However, there is still interest in

studying RNA-Seq data at a gene level. That is, rather than estimating the abundance

of each different isoform of a gene, it may be preferable instead to estimate the overall

or total abundance of all the different isoforms of a gene. This may be of interest in

itself, may be needed in cross-species or cross-platform comparisons and studies (Cox

et al., 2009), when there may be a lack of confidence in the quality of the organism’s

annotation, or where sequencing depth may not be sufficient to make inferences about

the abundance of different isoforms within a gene. Many pathway annotations such

as KEGG (Kanehisa et al., 2012) are still annotated at gene level. Furthermore, such

analyses avoid inferring transcript-specific expression, as the key focus is to count the

number of reads that lie within either the region of exons or of genes.

2.2 summarisation of read counts

Gene expression levels in RNA-Seq experiments reflect the number (or the amount) of

mRNA that is within the samples. In a typical RNA-Seq experiment we can count the

number of reads that map back to any given gene and associate this count with the

amount of mRNA that gene produced. This is known as summarisation. For a given

gene, this read count is a function of the abundance of its transcripts in the cell and the

length of those transcripts. Our main interest is in the abundance of transcripts created

from a gene, not the number of reads produced by the gene. This subtle difference is

driven by the fact that a longer isoform will produce more reads than a shorter iso-

form if both are expressed at the same abundance. Due to alternative splicing, a gene

can produce transcripts of different lengths. Thus, if the overall transcription of a gene

does not change between conditions but the splicing does, this can result in a change

of count. Accounting for this change in length using a method such as FPKM (the

number of fragments per kilobase of exon per million fragments that were mapped)



2.2 summarisation of read counts 16

(Trapnell et al., 2010) would be appropriate if isoforms were mutually exclusive. Un-

fortunately there is often evidence of multiple isoforms for a gene being present. If

the abundance of these isoforms could be accurately estimated (Trapnell et al., 2010)

it may be possible to estimate the rate of transcription by summing the FPKM of all

isoforms of a gene. However, if only regions of the gene that were conserved across

isoforms were considered, the changing lengths of transcripts would have no effect on

the summarised count. These exons that are present in all isoforms within a gene are

referred to as constitutive exons as they are common to all isoforms of a gene.

Figure 2.2 illustrates an example to demonstrate the effect differential alternative spli-

cing can have on gene counts. In this example a gene with two isoforms is considered.

Based on the observed exon counts it may be reasonable to assume that sample 1 and

2 only contain transcripts from isoform 1, while sample 3 only contains transcripts

from isoform 2. It would probably be reasonable to assume that samples 1, 2 and 3

all contain a similar number of transcripts for this gene. If this gene’s expression were

measured only using the counts from the first exon, this gene would not be considered

differentially expressed in any sample. However, if the expression of a gene is meas-

ured as the sum of its exon counts then sample 3 would generally be considered as

differentially expressed from sample 1 and 2. This differential expression is driven

primarily by the change in isoform length as a opposed to a change in the number of

transcripts created by the gene. Hence, if estimating transcript abundance the choice

of summarisation method can influence conclusions.

2.2.1 Estimation of constitutive exons

In order to focus on the overall expression of a gene, rather than isoform-specific ex-

pression, the Union-Intersection (UI) (Bullard et al., 2010) method is commonly used

to define a set of constitutive exons for each annotated gene (Figure 2). The UI method

produces a gene region consisting of all exons which are common to all known iso-

forms of the gene, excluding the regions which overlap with other genes (Bullard et al.,

2010). The UI definition is simple and conceptually relevant, but it is derived entirely

from the collection of known isoforms which are present in an annotation database.



2.2 summarisation of read counts 17

Figure 2.2: Effect of differential alternative splicing on gene counts – A toy example
of a gene with two isoforms is considered. The number of reads that aligned
to each exon of the gene are provided for three biological samples. The sums
of these exon counts are also included for each sample.

In general, there will be differences between this collection of annotated isoforms and

the collection of isoforms actually present in the samples in the current experiment. In

particular, for any given gene,

• the annotation may include isoforms which are not present in the current samples,

and

• the current samples may include isoforms which are not present in the annota-

tion.

In the first case, the UI definition selects exons which are conserved across the iso-

forms present in the data but may exclude some exons which are also conserved across

isoforms present in the data but not across all isoforms in the annotation. This is an

issue as the number of reads summarised for a gene can affect the sensitivity of tests

for differential expression (Oshlack and Wakefield, 2009). Excluding exons unnecessar-

ily would reduce the number of summarised reads for a gene and hence the power we

have to estimate gene expression or detect changes in gene expression. In the second

case, the UI definition may include an exon that is not conserved across all isoforms

of a gene present within the current samples. The UI definition would then not give

an accurate representation of the overall transcription of that gene. These two points
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not only highlight the deficiencies in the UI method but also highlight the need for an

alternate concept of exon conservation. As more transcripts are discovered and annot-

ated, fewer exons can then be considered as constitutive. While constitutive exons may

still have a nice interpretation with respect to the importance of those exons for the

function of the gene, they will become less relevant when attempting to measure the

rate of gene transcription.

To address these issues we propose in Section 2.3 a new method, exClust, inspired

by work on exon arrays (Xing et al., 2006) to estimate data-specific constitutive (DSC)

exons using both annotation and experimental data. We will show that this new pro-

cedure retains two to three times more reads than the very conservative UI method,

and hence extracts much more useful information from the data set. The new proced-

ure also generates estimates of gene transcription which are independent of isoform

composition, and potentially gives insights into gene annotation.

This chapter develops a methodology for identifying the DSC exons within a gene

between two or more conditions. These methods are then evaluated on two publicly

available datasets (M. A. Q. C. Consortium, 2006; Wang et al., 2008). The estimates of

differential gene expression produced by exClust are similar to that of the UI method

when there has been a change in isoform composition. Our method performs consist-

ently well on both datasets including more genes and more reads in the analysis than

the UI method, and also offering improved concordance with qRT-PCR data.

2.2.2 Processing exon annotation

We assume that, for the organism of interest, at least one set of transcript annotation

exists (it may be derived de novo or a combination of multiple annotations) and that

annotation source has been selected for use in the analysis. From this annotation, we

define for each gene what we call exon regions. These approximately correspond to the

exons of the gene, but are in fact something subtly different: a set of disjoint exon

regions that could be rejoined to describe any of the known isoforms of the gene.

Some of the exon regions are whole exons; in other cases, exons may be divided into

two or more pieces. This process is illustrated in Figure 2.3. In the remainder we will
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Figure 2.3: Processing exon annotation – A graphic describing how the annotation of
two overlapping genes is processed into an exon annotation appropriate for
the use of exClust. The isoform annotation can be used to define a set of
disjoint exon regions that could be rejoined to describe any of the known
isoforms of the gene. It is these disjoint exon regions that are used as the
exon annotation in exClust. Exon regions which overlap multiple genes are
ignored. The set of UI exons are also shown for these two genes and are
simply the exons that are present in all the annotated isoforms.

ignore this distinction and use the term exon to refer to exon regions. If we ignore the

distinction between exons and exon regions, or assume that all exon regions are whole

exons, we are effectively using only the exon definitions from the annotation source,

and not the isoform definitions. This is a key distinction between our approach and the

UI method which depends heavily on the known annotated isoforms of each gene. The

UI exons are those exons which are present in all the annotated isoforms. In the same

way as the UI method, we also, as a final step, ignore any exon regions that overlap

with multiple genes.
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2.3 exclust - estimate data-specific constitutive exons through clus-

tering

Let xij be the observed read count for the ith exon of the jth sample in the experiment.

Furthermore, let the ith exon come from gene g(i) and the jth sample be treated by

treatment condition t(j).

Definemij = E(Xij) as the expected count for exon i in sample j, and use a log-linear

model for mij. One appropriate model is

logmij = βGg(i) +β
GE
g(i)i +β

TS
t(j)j +β

GS
g(i)j +β

GT
g(i)t(j) (2.1)

Here G stands for gene, E for exon, T for treatment and S for sample. Exons are nested

with genes, and samples within treatments. The variables βGSg(i)j and βGTg(i)t(j) corres-

pond to differential expression of gene j between samples and treatments respectively.

The parameters βGg(i) and βGEg(i)i correspond to the average expression of each gene

and each exon within each gene whilst βTSt(j)j reflects the library size or sequencing

depth of each sample.

Assuming the count data follows a Poisson distribution then due to the nestedness

of samples within treatments and exons within genes and by conditioning on N =∑
ijmij, the maximum likelihood estimate of mij can be written as

log m̂ij =

∑ns
k=1 xik

∑
h|g(h)=g(i) xhj∑ns

k=1

∑
h|g(h)=g(i) xhk

,

where ns is the number of samples (Bishop, 1971). As we have assumed that the count

data is Poisson distributed then the data could be standardised using the Anscombe

transform (Anscombe, 1948) as follows:

Zij = 2

(√
Xij +

3

8
−

√
m̂ij +

3

8

)
.

The Anscombe transform will stabilise the variances if the data is Poisson and make

Zij approximately standard normal and is a slight extension on the usual square root

variance stabiliser. If there is evidence that the data is not Poisson another variance
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stabiliser should be used. The next step is to estimate the covariance matrix, ΣEg , of the

exon counts within gene g. Let Zg be a subvector of Z which contains only the exons

from gene g then we can estimate ΣEg as

Σ̂
E

g =
ZgZ

T
g

ns
.

We expect the diagonal elements of Σ̂
E

g to be close to one and the off-diagonals to be

close to zero if there is no differential alternative splicing between samples.

Following a similar method described for exon arrays (Xing et al., 2006) we define

our method for identifying data-specific constitutive (DSC) exons as follows for each

gene g separately:

1. Apply Ward’s linkage hierarchical clustering (Ward, 1963) to the exons with gene

g using 1− Σ̂
E

g as a distance metric.

2. Cut the clustering dendrogram, determining the cut-off height as below.

3. Evaluate all the resulting clusters using a scoring metric—again, see below.

4. Identify the cluster with the highest score. The exons in this cluster are the DSC

exons for gene g.

This process is illustrated in Figure 2.4.

Deciding at what height to cut the clustering dendrogram is not trivial. As we are

analysing well-annotated organisms we would like our method to perform similarly

to the UI definition. To this end we choose to cut the dendrogram at a value that

maximises the correlation of the exClust log fold changes with the UI log fold changes.

A value of 2 maximised this correlation for the Bullard dataset following a grid search

and may be a reasonable choice for poorly annotated data where a similar strategy

would not be appropriate.

There are also many potential choices of scoring metric that could be used to select

the subcluster of DSC exons. As DSC exons should be present in all isoforms of a gene,

the DSC exons of a gene should have the highest number of reads mapping to them

per base pair relative to the non DSC exons. Choosing the subcluster of exons with
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Figure 2.4: Identifying constitutive exons – Plot of exons selected by exClust for a
particular gene. A clustering dendrogram of the exons is formed by apply
Ward’s linkage hierarchical clustering to the distance matrix 1−ΣEg . Cutting
the dendrogram at the dashed red line results in the creation of three sub-
groups of exons (each box here contains a subgroup). For each subgroup the
average coverage of the two exons in that subgroup with the highest cov-
erage is calculated. The subgroup with the highest average coverage (the
shaded subgroup) is selected to represent the DSC exons for this gene.
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highest average coverage (the average number of reads mapped per base pair to each

exon) may then be an appealing scoring metric. However, this scoring metric can be

affected detrimentally if a subcluster has a lowly expressed exon that was included by

chance. An alternative scoring procedure may then be to choose the subcluster that has

the single exon with the highest coverage. However, the efficiency of the sequencing

and mapping process can be influenced by artefacts such as exon length, GC content

or whether the exon is an initial, internal or terminal exon (Griebel et al., 2012). As a

compromise between these two metrics we select the subcluster that has the largest

average coverage of the two exons in each subcluster with largest coverage.

2.4 evaluation study

In this study, we evaluate our proposed method for estimating data-specific constitutive

exons, exClust. The performance of exClust will also be compared with three other

summarisation approaches, Union, UI (Bullard et al., 2010) and Cufflinks (Trapnell

et al., 2010). These approaches will be compared by evaluating their behaviour in com-

parison to qRT-PCR data in both a qualitative and quantitative fashion.

2.4.1 Data

We will evaluate our method for identifying constitutive exons on two publicly avail-

able datasets (M. A. Q. C. Consortium, 2006; Wang et al., 2008). These were chosen

as both were well studied and clearly annotated. Both datasets have a relatively high

amount of replication. The MAQC data also has qRT-PCR for a selected set of genes

which aids in our evaluation by providing an accurate alternate estimation of gene

expression.

2.4.1.1 MAQC Data

The data consists of two mRNA-Seq datasets from the MicroArray Quality Control

Project (M. A. Q. C. Consortium, 2006). In this project, Illumina’s Genome Analyser II



2.4 evaluation study 24

high-throughput sequencing system was used to generate 35 bp reads from two cell

line mRNA samples: Ambion’s human brain reference RNA (Brain) and Stratagene’s

human universal reference RNA (UHR). Both Brain and UHR were assayed in seven

lanes which we treat here as technical replicates. Fastq files were downloaded from the

NCBI short read archive, submission number SRA010153. All reads were mapped to

the human genome (GRCh37 assembly) using bowtie (Langmead et al., 2009) ignoring

all splice junction and multi-mapping reads. Using the Ensembl human exon annota-

tion (Hubbard et al., 2009), we can summarise how many reads lie within each exon

of each gene for each sample. We say a read lies within an exon if its left most base

pair lies within that exon. As we have ignored splice junction reads this should not

introduce any bias. Processing of the data results in a matrix of counts where each row

corresponds to an exon for a gene and each column corresponds to one of the 14 (7

replicates × 2 conditions) samples. Accompanying this data set is qRT-PCR data from

MAQC-1 which consists of four observations for both Brain and UHR over 1021 genes.

For each gene these values were logged, averaged over the four replicate observations,

and then differenced to give a single qRT-PCR log-fold-change value for each of the

1021 genes.

2.4.1.2 Wang Data

The Wang data (Wang et al., 2008) consists of ten diverse human tissues and five mam-

mary epithelial or breast cancer cell lines where 32 bp reads were obtained using

Illumina’s Genome Analyser. We analyse seven samples of heart and seven samples

of skeletal muscle tissue. All samples originated from the same donor and are treated

as technical replicates. Fastq files were downloaded from the NCBI short read archive,

submission number SRA008403. The sequenced reads were processed in the same way

as the MAQC data described earlier. Processing of the data results in a matrix of counts

where each row corresponds to an exon for a gene and each column corresponds to

one of the 14 (7 replicates × 2 conditions) samples.
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2.4.2 Evaluation criterion and results

In this section we will primarily use the MAQC data to evaluate the effectiveness of our

method for identifying constitutive exons. To do this, we will assess the concordance

between the qRT-PCR data and the RNA-Seq data when summarising the RNA-Seq

data using four different methods:

• Union the union of the exons,

• UI the UI definition (Bullard et al., 2010),

• Cufflinks sum of the FPKM values of all isoforms estimated by Cufflinks for

each gene (Trapnell et al., 2010) and

• exClust the union of the exons selected by the clustering method.

Cufflinks was implemented following a standard pipeline (Trapnell et al., 2012) and

setting the segment length flag in Tophat to 18 for the MAQC data and 16 for the

Wang data.

2.4.2.1 Number of reads included

For the three count summarisation methods, each method retains the following number

of reads for the MAQC data

• 62 850 300 reads for the Union summarisation,

• 49 191 469 for the exClust summarisation, and

• 15 249 893 for the UI summarisation.

There is a successive loss of reads as each method makes increasingly stricter assump-

tions. The union method includes over four times as many reads as UI and exClust

includes over three times as many as UI. This behaviour is also observed in the Wang

data where each method includes

• 13 949 371 reads for Union summarisation,

• 10 892 133 for exClust summarisation, and
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• 4 138 796 for UI summarisation.

Again, large differences between the number of reads summarised by each method are

observed.

2.4.2.2 Concordance with qRT-PCR log fold change

QRT-PCR is often considered a gold standard for gene expression measurement, even

though it is highly reliant on primer choice. If the primer probes for the qRT-PCR data

were generally chosen in DSC regions of the genes, we expect that a better summarisa-

tion method will show higher concordance with the qRT-PCR results. In particular, as

the quantification of the qRT-PCR is independent of transcript lengths, a summarisa-

tion method that removes the bias of differing transcript lengths should offer improved

concordance with the qRT-PCR data. We will use two criteria to assess this concord-

ance. Both methods rely on the detection of differential alternatively spliced (DAS)

genes. A gene will be called DAS if it has a Bonferroni corrected DASI p-value less

than 0.05 (Richard et al., 2010) (this is described in more detail in Appendix A.1).

Of the 1021 genes in the RNA-Seq data which had matched qRT-PCR data all 1021

genes had a non-empty Union and exClust summarisation and 635 genes had a non-

empty UI summarisation. The word "‘empty"’ is used to refer to the situation when

a summarisation method chooses no exons in a gene to summarise over. Assuming

a gene isn’t completely overlapped by another gene, the Union and exClust methods

always select at least one exon for each gene.

Log fold change values for each summarisation method are calculated as follows.

For each gene and summarisation method, when at least one exon is deemed to be

constitutive, counts are summed over the set of selected exons and over replicates

to produce a total count for each of the two tissue types. The log ratio between the

totals for each tissue type is then used as the log fold change estimate for each gene

and method. Any gene with a log fold change of positive or negative infinity for any

method is ignored. Log fold changes for each gene were estimated for Cufflinks using

the difference of the log mean of the isoform FPKM values of each condition.

The first criterion for comparing the summarisation methods with the qRT-PCR data

is described as follows:
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criterion 1 : Log fold change values from the given method are regressed against

corresponding qRT-PCR values. Residuals for all genes against this fitted line are

then computed. The top 20 DAS genes are ordered by log qRT-PCR fold change,

and their residuals are plotted. An effective summarisation method should be

unaffected by the length bias produced from differential alternative splicing and

hence changes in residuals should be seen with the Union summarisation for

these DAS genes but not the UI and exClust summarisations.

In Figure 2.5 we plot the log fold changes of the RNA-Seq data (y-axis) against the

log fold changes given by qRT-PCR (x-axis). It is through these points that we fit a

regression line. There is clearly a strong relationship between the log fold changes

of the RNA-Seq data and those of the qRT-PCR data; this has been seen in previous

analysis (Bullard et al., 2010).

Figure 2.5 also provides an opportunity to examine the conceptual links between dif-

ferential alternative splicing and differential expression. Highlighted are the 127 genes

that DASI suggests as being differentially alternatively spliced (red) and the genes

whose UI definition is empty (triangle). Of the 127 DAS genes, 42 had a non-empty

UI definition. Of the genes that were identified as being differentially spliced, around

one fifth of these (26 out of 127) had an absolute log fold change greater two (up or

down regulated by a fold change of four). For these genes, if summarising using the

Union method, these fold changes may possibly be driven by a change in the lengths

of the transcripts due to splicing rather than a change in the overall transcription rate

of the gene. Represented by triangles, there are a large number of genes whose UI

definition is empty, with a reasonable proportion of these potentially being differen-

tially expressed as well. Many of the these have not been identified as being DAS and

are potentially being excluded by the UI method unnecessarily. The omission of such

a large number of genes could potentially lead to the omission of relevant biological

signal.

In Figure 2.6 we focus on the residuals of the top 20 DAS genes calculated after

fitting a straight line through the points in Figure 2.5. Assuming all transcripts are

annotated, the UI method should always select a set of constitutive exons for a gene

if that gene has exons that are conserved across all transcripts. With this in mind,
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Figure 2.5: Concordance Plot – Concordance plot with the RNA-Seq log fold changes
on the y-axis and qRT-PCR log fold changes on the x-axis. For the RNA-Seq
data we use the union of all exons within a gene to summarise our counts
where a value of one is added to the count of every gene. The black circles
are those genes for which the UI definition is non-empty. The blue triangles
are the 386 genes for which the UI definition is empty. The red dots are
those genes that our method identified as having a change in isoforms and
had a non-empty UI definition.
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Figure 2.6: Residual Plot – After fitting a straight line through the plot in Figure 2.5,
this figure plots on the y-axis the residuals for the genes identified as having
a change in isoforms for three different annotations, union of all exons
(black dots), UI definition (blue triangles) and exClust (red circles), and
cufflinks (purple cross) ordered by qRT-PCR fold change.
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whenever there is a large change in residuals of the UI summarisation compared to the

Union summarisation, this change is also observed with exClust and Cufflinks. Due to

this similarity in behaviour, both exClust and Cufflinks appear to be selecting a similar

set of exons as those selected by UI for these genes. These 20 genes demonstrate the

impact of summarising using the UI or exClust summarisations as opposed to simply

using the Union.

Figure A.2 and Table A.1 in Appendix A provide examples of genes for which the

UI summarisation appears to not be selecting DSC exons. While neither of these genes

provide conclusive evidence against the UI summarisation, the log fold changes of the

exClust summarisation are closer to both the qRT-PCR and Cufflinks log fold changes

than the log fold changes of UI are.

As quantification by qRT-PCR is independent of transcript lengths, a summarisation

method that removes the bias due to differing transcript lengths should offer improved

correlation with the qRT-PCR data. Correlation will be used as a quantitative criterion

for comparing the summarisation methods with the qRT-PCR data and is calculated as

follows:

criterion 2 : In this second criterion we compute the Pearson correlations between

log fold change values from the Union, UI and exClust summarisations, the sum

of the isoform FPKM of Cufflinks and the qRT-PCR value. This is done separately

for

• the DAS genes, and

• the non-DAS genes,

where only genes with a non-empty UI definition are used. An effective method

will produce a high Pearson correlation score in all cases.

A numerical summary of the correlations from the second criterion are presented

in Table 2.1. As we would expect, correlations with qRT-PCR are higher for non-

differentially alternatively spliced (non-DAS) genes than for differentially alternatively

spliced (DAS) genes for all methods. For the DAS genes the Union summarisation

appears to be affected adversely by the change in transcript lengths in comparison

to the UI, Cufflinks and exClust summarisations. When there are differential alternat-



2.4 evaluation study 31

DAS qRT-PCR Union UI exClust Cufflinks
qRT-PCR 1.0000 0.8292 0.8462 0.8651 0.8578

Union 1.0000 0.9373 0.9208 0.9322

UI 1.0000 0.9868 0.9764

exClust 1.0000 0.9777

Cufflinks 1.0000

non-DAS qRT-PCR Union UI exClust Cufflinks
qRT-PCR 1.0000 0.9435 0.9416 0.9442 0.9360

Union 1.0000 0.9917 0.9995 0.9868

UI 1.0000 0.9917 0.9806

exClust 1.0000 0.9869

Cufflinks 1.0000

Table 2.1: MAQC correlations – A table showing two subsets of genes from the MAQC
data: differential alternatively spliced genes (DAS) and not differentially al-
ternatively spliced genes (non-DAS). For each set of genes the correlations
between Union, UI, exClust and Cufflinks log fold changes are given. The
given correlations are only calculated on the subset of genes for which the
UI definition is non-empty and have finite log fold change.

ive splicing events, exClust performs in a similar way to UI though in the absence of

these events, exClust is similar to the Union summarisation. This makes the perform-

ance of the exClust summarisation more robust, performing well on all tested sets of

genes. Cufflinks performs worst when compared to qRT-PCR for the non-DAS genes.

While this is probably hindered by our unconventional implementation of Cufflinks,

this lack of performance is driven mostly by genes with low counts in one condition.

This puts Cufflinks at a disadvantage on two fronts; (i) estimation of transcripts is dif-

ficult in these situations of low expression; and (ii) due to the low expression the log

fold changes for the isoforms of these genes are unstable and hence the aggregation of

these isoforms is also unstable.

Similar outcomes were observed in the Wang dataset. However, for the Wang data-

set qRT-PCR data is not available. For this data set, correlations were only calculated

between the three summarisation methods and Cufflinks and can be found in Table 2.2.

For the differentially alternatively spliced genes the correlation between exClust and

the Union summarisation decreases to 0.968 from 0.999 for the non-DAS genes. This

suggests that the Union summarisation is affected by differing transcript lengths. The

correlation between the Union and UI summarisations is 0.952 for the non-DAS genes

which suggests that either there are still a large number of DAS gene in this set which
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DAS Union UI exClust Cufflinks
Union 1.0000 0.9488 0.9684 0.9884

UI 1.0000 0.9252 0.9488

exClust 1.0000 0.9675

Cufflinks 1.0000

non-DAS Union UI exClust Cufflinks
Union 1.0000 0.9522 0.9992 0.8990

UI 1.0000 0.9520 0.8753

exClust 1.0000 0.8986

Cufflinks 1.0000

Table 2.2: Wang correlations – A table showing two subsets of genes from the Wang
data: differential alternatively spliced genes (DAS) and not differentially al-
ternatively spliced genes (non-DAS). For each set of genes the correlations
between Union, UI, exClust and Cufflinks log fold changes are given. The
given correlations are only calculated on the subset of genes for which the
UI definition is non-empty and have finite log fold change.

were not detected or that the log fold changes of the UI summarisation have become

less stable due to the large reduction in included reads. Cufflinks is less concordant

with the Union summarisation in the set of non-DAS genes (0.8990) than the DAS

genes (0.9884). Again, while this has probably not been helped by our unconventional

implementation of Cufflinks, this lack of concordance in the non-DAS genes appears

to be driven mostly by genes with low counts in one condition.

2.5 conclusions and further discussion

We have developed a method to improve the preprocessing of RNA-Seq data, spe-

cifically the summarisation of reads into gene counts. When working at a gene level,

between-treatment differential alternative splicing can cause problems with an expres-

sion analysis. The concept of constitutive exons helps to resolve these problems by

finding exons which are common to all isoforms of a gene. Our novel approach, ex-

Clust, estimates the constitutive exons in a gene using both empirical and annotated

data. Importantly, we allow constitutive exons to be data-specific. That is, we defined

data-specific constitutive exons as exons which are common to all the isoforms of a

gene which are present in the current experimental samples. This new approach allows

for more accurate quantification of gene expression.
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In the datasets examined, a more complex modelling of the variances than what

is assumed by the Poisson is not required. This is shown in Figure A.1. While the

technical variability between samples should be Poisson, most experiments have an

element of biological variability as well and hence RNA-Seq data is often modelled

as an over-dispersed Poisson. A more sophisticated methodology would model this

over-dispersion and standardise accordingly (Robinson et al., 2010; Anders and Huber,

2010). However, as our model does fit an interaction term between gene and sample

effects, a large amount of the biological variability typically observed in a differential

expression analysis may be accounted for.

Our approach, exClust, for empirically estimating the data-specific constitutive ex-

ons within a gene can be seen to perform favourably when compared with the current

alternatives. In summary, exClust had higher correlation with qRT-PCR data compared

to other approaches. This favourable performance comes without a dramatic decrease

in total read count, with exClust including three times as many reads as UI.
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The identification of differential expressed (DE) genes and transcripts is still a key

question of interest in many biological studies. However, even with the lowering cost

of sequencing data, the majority of RNA-Seq experiments are still suffering from low

replication numbers which makes confidently calling DE genes difficult. To date, there

are many methods that provide a test of whether a gene is DE or not (Pachter, 2011),

including cufflinks (Trapnell et al., 2010), DESeq (Anders and Huber, 2010) and edgeR

(Robinson et al., 2010). A feature in all of these methods is moderation of gene-wise

variance estimates to improve DE inference. Moderation is important in small samples

size comparisons, increasing both the power and accuracy of a DE test (Smyth, 2004).

The key differences between these methods are the extent of the moderation and their

common variance estimate—the variance estimate that the procedure is moderating to-

wards.

DESeq and edgeR account for the heteroscedasticity observed in the read counts

of genes by modelling the relationship between expected value of the count and its

variability. In this chapter we will propose using additional information, such as gene

length and variance estimates from external datasets, as explanatory variables to fur-

ther model the heterogeneity seen in the observed gene variances. Combining these

improved models of gene variance with a moderation method (Opgen-Rhein and Strim-

mer, 2007) creates a robust tool for estimating gene variances and hence calling differ-

ential gene expression. When evaluated on publicly available data this tool offers both

improved gene ranking and power of detection when compared to DESeq and edgeR.

3.1 modelling rna-seq data

In the following we will describe how RNA-Seq data has generally been characterised

and modelled. This will mainly focus on the models used to describe the strong rela-

tionship observed between the average expression of genes in RNA-Seq data and the

variances of this expression. Figure 3.1 illustrates this mean-variance relationship by

comparing the gene means and variances from a dataset described in Section 3.3 of

this chapter.
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Figure 3.1: The mean-variance relationship in RNA-Seq data on a log-log scale – This
figure demonstrates the stong mean-variance relationship observed in RNA-
Seq data. For each gene from the ten Bottomly B6 samples described in
Section 3.3 the mean and variance are calculated. These means and vari-
ances are then plotted against each other on a log-log scale. The blue line
corresponds the line y=x, when the mean equals the variance.

Following from the previous chapter we will assume that the reads from an RNA-Seq

experiment can be summarised into a matrix of gene counts. Let yij be the observed

read count for the ith gene in the jth sample where sample j belongs to treatment

t(j) = 1, 2. For ease of presentation we will assume that all effects that are generally

normalised for or modelled, such as library sizes and GC content, remain constant
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across samples. Let σ2i and µi be the variance and mean read count for gene i. The

technical variability (the variability introduced by the sampling process of the sequen-

cer) for a gene count in RNA-Seq can be modelled quite reliably as Poisson (Bullard

et al., 2010; Marioni et al., 2008). This is attractive in situations of low replication as one

parameter can be estimated to describe both the mean and variance of a gene. Model-

ling the data as Poisson will give a very reliable estimate of which genes have changed

in expression between any two samples. However many experiments are not simply

focused on the detection of gene expression differences between any two samples fo-

cusing instead on the differences between any two types of cells for example. This

distinction is important as it requires us to not only model the technical variability of

the experiment but to also model the biological variability of a particular cell type (or

experimental condition).

An over-dispersed Poisson, a discrete distribution with dispersion greater than a

Poisson, can be modelled using a Negative Binomial. A negative binomial random

variable, Y, can be parametrised with probability mass function

P(Y = y) =

(
r+ y− 1

y

)
pr(1− p)y. (3.1)

This standard formulation is generally referred to as NB2. Under this formulation, the

biological variability of the expression of a gene is modelled as a quadratic function of

its mean expression µ:

σ2 = µ+ bµ2, (3.2)

where as b = 1
r gets small the negative binomial will approach a Poisson. The para-

meter b has been referred to as the coefficient of biological variation. A negative bino-

mial is generally parametrised as a function of r and p. However, by parametrising a

negative binomial in terms of its mean µ and variance σ2 where

r =
µ2

σ2 − µ
(3.3)

p =
µ

σ2
(3.4)
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and σ2 > µ, a negative binomial can then be used to model counts that have untradi-

tional mean-variance relationships. This relationship is generally expressed as

σ2 = µ+ f(µ) (3.5)

where f(µ) explains the biological variability can be fitted by some form of nonparamet-

ric regression (Anders and Huber, 2010). This formulation highlights that σ2 should

always be greater than or equal to µ.

In current RNA-Seq experiments it is still quite common to see experiments with

very little biological replication. Estimating variances from a small number of observa-

tions is typically unstable (Cui and Churchill, 2003). To improve the stability and ac-

curacy of these variance estimates there have been many methods proposed to shrink

the variances to some common value for microarrays (Cui and Churchill, 2003) and

RNA-Seq (Pachter, 2011). We will refer to this as moderation. By stabilising the vari-

ances and sharing information moderation also increase the power of a statistic as this

increases the degrees of freedom of a variance estimate (Smyth, 2004).

3.1.0.3 Heterogeneous gene variances

It is well accepted that some genes have a higher variance than other genes (Cheung

et al., 2003). That is, some genes vary in expression more from cell to cell, person to

person, or treatment to treatment in comparison to other genes. In RNA-Seq datasets,

genes with larger average expression have on average larger observed variances (see

Figure 3.1). Instead of shrinking the estimate of a genes variance towards some com-

mon value (as is often done in microarrays) to improve stability (Cui and Churchill,

2003), edgeR and DESeq shrink the estimate towards some fitted curve describing the

relationship between mean and variance. We refer to this fitted curve as the common

variance. In doing this they are making the strong assumption (although not an unreas-

onable one) that genes with a similar average count should have a similar variance.
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3.2 tshrink+

We propose using local regression (Loader, 2010) to fit a smoothed surface through

any number of variables (γ(1), γ(2) ...) that may help to explain the observed pooled

sample variances σ̂2gene = s2 . We estimate the common variances σ2common as

σ̂2common = µ+ f(µ,γ(1),γ(2), . . .). (3.6)

When using variance estimates from other RNA-Seq experiments, these variances will

also have a very strong mean-variance relationship. For use as an explanatory variable

we normalise the external variance estimates in such a way that they have mean zero

and variance one for all ranges of expression.

To illustrate how this improved common variance can aid in moderation we propose

using a quasi-empirical Bayes moderation method (Opgen-Rhein and Strimmer, 2007),

where the variance is moderated as

σ̂2shrink = λσ̂2common + (1− λ)σ̂2gene, (3.7)

and σ̂2shrink, σ̂2common and σ̂2gene are the moderated, common and sample variances.

Without making distributional assumptions, the shrinkage parameter λ can be estim-

ated by the equation

λ = min

(
1,

∑
k=1 Var(σ

2
k(gene)/σ

2
k(common))∑

k=1(σ̂
2
k(gene)/σ̂

2
k(common) − 1)

2

)
. (3.8)

The parameter λ is the ratio of the expected and average squared error of the common

variance estimate. Due to the large amount of smoothing that is used in estimating

the common variance, we will make the assumption that the data, standardised us-

ing the common variance estimate, is approximately standard normal. This normality

assumption will only be appropriate for genes with larger average expression. Under
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this assumption the variance of σ2k(gene)/σ
2
k(common) (which has n − 2 degrees of

freedom) is 2/(n− 2). Our estimate of λ then becomes

λ = min

(
1,

2n

(n− 2)
∑
k=1(σ̂

2
k(gene)/σ̂

2
k(common) − 1)

2

)
. (3.9)

A Wald test for each gene is then performed using the statistic

ȳt1 − ȳt2√
σ2shrink

(
1
n1

+ 1
n2

) , (3.10)

where we utilise the Welch-Satterthwaite equation (Satterthwaite, 1946; Welch, 1947) to

estimate its degrees of freedom ν̂. We have assumed earlier that the degrees of freedom

corresponding to common variance is νcommon = ∞ and can thus estimate νk as

ν̂k =
(λσ̂2k(common) + (1− λ)σ̂2k(gene))

2

(1−λ)2

νgene
σ̂4
k(gene)

(3.11)

where νgene = n− 2. For simplicity, rather than using a different ν for each gene we

instead use one degrees of freedom estimate, νshrink, for all genes, taken as the mean

of the ν̂k’s.

3.3 evaluation study

In this study we evaluate Tshrink+, our proposed method for improving variance es-

timation for differential gene expression analysis by using additional external inform-

ation. This evaluation consists of two components, assessing the capacity of a common

variance estimate to explain the observed gene sample variances, and evaluating how

improving this common variance estimate can aid in the detection of differentially

expressed genes. The performance of Tshrink+ will also be compared with two com-

monly used packages, edgeR and DESeq. This evaluation study is built upon one main

dataset, the Bottomly data, and three datasets which are used for additional informa-

tion.
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3.3.1 Data

3.3.1.1 Bottomly Dataset

The Bottomly data (Bottomly et al., 2011) was used as the main analysis dataset for eval-

uation and was chosen because of its relatively large number of biological replicates.

The pre-processed RNA-Seq data comparing ten C57BL/6J (B6) and eleven DBA/2J

(D2) mouse striatum was downloaded from the ReCount project (Frazee et al., 2011)

as a matrix of counts. For simplicity only the first ten DBA/2J samples were used. All

data used in the analysis are normalised counts as DESeq and edgeR do not accept

gene-wise normalisation factors. To model the disparate library sizes and biases of

PCR amplification observed in the data, a cyclic robust linear model was used. Using

the first sample in the dataset as a reference, M values were calculated for each gene

in the remaining samples and a straight line was fitted through the M-values using

GC-content as an explanatory variable. The M-values were then normalised to this

line such that the average M-value was zero over the range of GC-content. After this

normalisation there were still batch and other sample specific effects evident in the

data. These were normalised out using a cyclic loess (Cleveland et al., 1992) strategy as

described in Appendix B. This normalisation appeared to be more suitable than RUV

(Gagnon-Bartsch and Speed, 2012) and SVA (Leek et al., 2012) improving concordance

with microarray results as seen in Figure B.1. The data is filtered to only include genes

with average expression greater than twenty.

3.3.1.2 External datasets

Sample variances from three datasets were used as sources of additional information

to aid in the estimation of the common variance. These are described in Table 3.1. All

RNA-Seq data were mapped to the mm9 mouse genome using bowtie (Langmead et al.,

2009) and normalised for GC content bias and library size differences as the Bottomly

dataset was. The microarray data were read and processed using the R packages Affy

(Gautier et al., 2004) and gcrma (Wu et al., 2013).
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Species Tissue Replicates Platform Source GEO accession

C57BL/6J mouse

Liver 6

RNA-Seq Keane et al. (2011) GSE30617

Spleen 6

Thymus 6

Lung 6

Heart 6

Hippocampus 6

C57BL/6J mouse Striatum 4 RNA-Seq
Polymenidou
et al. (2011) GSE27218

C57BL/6J mouse Striatum 10 microarray
Bottomly et al.
(2011) GSE26024

Table 3.1: Additional information sources – Variance estimates from these three data-
sets are be used to improve the estimation of the common variance function
in the main analysis dataset.

3.3.2 Evaluation strategies and results

3.3.2.1 The estimation of the common variance

We begin by examining the effect of using information from different additional sources

to help explain the variances observed in the Bottomly Data. This is explained in

Strategy 1 below. We aim to assess the effectiveness of using information, in addi-

tion to the average expression of a gene, to estimate a common variance function. In

order to assess the capacity of a common variance estimate to explain the observed

gene sample variances we will use the shrinkage coefficient λ, which is described in

Equation 3.9, as a statistic. The parameter λ is the ratio of the expected and average

squared error of the common variance estimate. As λ is proportional to the reciprocal

of the average squared error of the variance estimates, a larger λ corresponds to a better

estimate of the common variance. A λ value of one implies that the common variance

is representative of the population variance. A λ of zero suggests that the common

variance estimate is failing to describe the observed gene sample variances.

strategy 1 Variance estimates from the external datasets described in Table 3.1 and

also gene length are used to aid in the estimation of the common variance func-

tions of one hundred random comparisons of n samples of B6 mouse striatum

tissue with n samples of D2 mouse striatum tissue. This is performed for one

additional dataset at a time. By only consider one additional dataset at a time we



3.3 evaluation study 43

do not consider how they might interact. The average λ value is calculated for

each n comparison and information source using only the genes that are present

in all data sources.

The results from Strategy 1 can be find in Figure 3.2. When used to help fit the

common variance surface, using information from any of the additional data sources

improve the estimate of the common variance. This is observed through all of the

average λ’s being higher when using additional information when compared to using

only the mean. Where again, a larger λ should correspond to a better estimate of the

common variance.

The more relevant the information contained in the additional data source, the

greater the improvement seen in the common variance estimate. As is perhaps expec-

ted, either of the two striatum tissue datasets (RNA-Seq and microarray) when used

to estimate the common variance produce the largest λ, with microarray striatum and

RNA-Seq striatum only slightly out performing hippocampus. Spleen and lung both

increase λ highlighting that information can still be gained from unrelated tissue types,

however, liver and heart barely increase λ at all. This can mostly be explained by the

use of liver and heart resulting in the variance of one gene, transthyretin, being severely

under-estimated. If this gene is excluded the λ generated by using liver and heart are

much similar to that of spleen and lung. Including information on gene length also

has the potential to improve variance information. Although, this appears to relatively

decrease as the sample size n increases.

Improving the accuracy of the sample variance decreases λ and improving the accur-

acy of the common variance increases λ. As the sample size n increases, λ decreases.

This is because as n increases the accuracy of the gene sample variance estimates in-

crease. As the estimation of the gene sample variances improves, the inability of the

common variance to describe the gene variances becomes more clear.

We can then further demonstrate that improving the information content of an addi-

tional information source improves the estimation of the common variance. This will

be achieved by using variance estimates from the D2 mice to aid in the estimation of a

common variance function of the B6 mice.
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Figure 3.2: Effect of utilising different sources of information on the estimation of λ
– Variance estimates from the external datasets (Table 3.1) and gene length
are used to aid in the estimation of the common variance functions of one
hundred comparisons of n B6 and n D2 mouse striatum samples. The av-
erage λ value is plotted for each n comparison and information source for
n ranging from two to five. The parameter λ is the ratio of the expected
and average squared error of the gene sample variance to the common vari-
ance. The information source “None” corresponds to using no extra inform-
ation, “Striatum” the RNA-Seq samples from Polymenidou et al (2011) and
“Striatum Microaray” the microarray striatum samples from Bottomly et al
(2011). The information sources have been sorted by their λ values for n
equals two.
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n D2 samples 0 2 3 4 5 6 7 8 9 10

λ 0.35 0.45 0.50 0.55 0.58 0.65 0.68 0.72 0.75 0.77

Table 3.2: Using D2 variance estimates to estimate common variance of four B6
samples – The average λ values calculated using a random n D2 mouse stri-
atum samples to estimate the variance of a random four B6 mouse striatum
samples from one hundred simulations.

strategy 2 The variance estimates from a random n D2 mouse samples are used

to estimate the common variance function of a random four B6 mouse, this is

repeated one hundred times and average λ values are calculated.

The results of this can be seen in Table 3.2. As the information content of the addi-

tional data source improves, i.e. the variance estimates from D2 mice calculated with

increasing sample sizes, the ability of the common variance to describe the observed

gene variances, calculated from four replicates of B6 mice, also improves. The estim-

ated value of λ is doubled by using ten replicates of D2 mouse as opposed to nothing,

that is, the average squared error of the common variance is halved.

3.3.2.2 The impact of moderation on inferring differential expression.

The aim of the remainder of the evaluation is to assess the influence of using additional

information and moderation on the detection of differentially expressed (DE) genes. To

do this we compare

1. a t-test (T),

2. a moderated t-test (Tshrink) and

3. a moderated t-test using additional information (Tshrink+).

These will also be compared to

4. DESeq using only the common variance (DESeqCommon),

5. DESeq using the maximum of the common variance and sample variance (DESeqMax)

and

6. edgeR using a trended common variance and empirical Bayes to shrink the gene

sample variances towards the common variance (edgeR).
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For the additional data source used by Tshrink+, the four striatum RNA-Seq samples

(Keane et al., 2011) in Table 3.1 were chosen as they gave the second highest λ value but

were not generated from the same lab as the analysis dataset (as the microarray data

were). The most unusual comparison here is the t-test (T). A standard two-sample t-test

is not usually used in RNA-Seq due to small sample sizes (n), which can benefit from

moderation approaches, and a normality approximation being inappropriate for genes

with small average expression (µ). As we are only considering genes with µ greater

than twenty, this comparison will hopefully demonstrate the benefits of moderation in

the presence of small sample sizes.

To assess the effectiveness of the six DE methods the following strategy was used:

stragety 3 A standard t-test was performed comparing ten B6 and ten D2 mouse

striatum samples. In all of the following, the results of this t-test are taken to be

the "truth". From this t-test a gene is conservatively called "truly" DE if it has a

Bonferroni adjusted p-value of less than 0.05. A gene is called "truly" not DE if it

has an unadjusted p-value greater than 0.05. We will then evaluate the ability of

the DE methods to recover the information in the comparison of ten B6 samples

with ten D2 samples by smaller comparisons of n B6 samples and n D2 samples,

for n ranging from two to five. This is done by comparing a random set of n B6

and n D2 mouse striatum samples one hundred times and then

• generating Receiver Operating Characteristic curves (ROC curve, a curve

describing each methods True Positive Rate as a function of its False Positive

Rate for a complete range of p-value cut-offs),

• calculating partial areas under the ROC for FPR less than 0.01 and

• calculating True Positives (TP) and False Positives (FP) using a Bonferroni

adjusted p-value cut-off of 0.05.

We can assess how the use of moderation affects inference on differential gene ex-

pression. This is done by assessing the impact of moderation on both gene ranking and

sensitivity. Moderation is used to both increase the sensitivity of a test, by increasing

the degrees of freedom of the variance estimate, and to improve the ranking of a test,
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by improving the accuracy of the variance estimate. We will start by simply compar-

ing the t-test (T), moderated t-test (Tshrink) and a moderated t-test using additional

information (Tshrink+).
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Figure 3.3: Comparing six DE methods on a 4 vs 4 comparison – One hundred ran-
dom comparisons of four B6 and four D2 mouse striatum samples for six
DE methods. Average TP and FP are calculated for the full range of p-value
cut-offs. The TPR and FPR are plotted against each other in a) to form ROC
curves and displayed in the region for FPR less than 0.01 as this is most
relevant for calling DE. For any given FPR a method with a larger TPR is
deemed to have ranked the genes better. In b) the number of TP (in bold)
and FP are plotted for a range of p-value cut-offs. The x-axis is in log-scale.
The grey dashed vertical line corresponds to a Bonferroni adjusted cut-off
of 0.05.

By first considering only four vs four comparisons, the ability of moderation to

improve gene ranking is illustrated in Figure 3.3a where a partial average ROC curve

from one hundred four vs four comparisons of B6 and D2 mouse striatum is plotted

for each method. This curve shows each methods TPR for a range of FPR, where a

method is deemed to have ranked genes better than another at a given FPR if its TPR

is higher. Here we see that Tshrink (dark blue) performs better than T (light blue) for

all FPR less than 0.01. Tshrink+ (red) offers a similar improvement again on top of that

of Tshrink nearly doubling the improvement of Tshrink to T.
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Moderation improves gene ranking. Furthermore, improving what a method moder-

ates towards can improve gene ranking further. This is again illustrated in Figure 3.4,

where the partial area under the ROC curve is plotted for a range of n vs n compar-

isons. A value of 1 corresponds to a perfect ranking and a value of zero corresponds

to the most imperfect ranking. For all n considered Tshrink+ appears to double the

improvement of Tshrink when compared to T. The relative improvements decrease as

n increases as the information in the sample variance increases in comparison to the

common variance.
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Figure 3.4: Partial AUCs for a range of n vs n comparisons – One hundred random
comparisons of n B6 and n D2 mouse striatum samples a performed for six
DE methods for n ranging from two to five. For each method and n, partial
areas under the ROC curves (partial AUC) are calculated for the regions of
FPR less than 0.01

Moderation can also improve the sensitivity of a test for differential expression as

seen in Figure 3.3b. Figure 3.3b plots the average number of True Positive genes called

at varying p-value cut-offs for one hundred four vs four tests. At a Bonferroni adjusted

p-value cut-off of 0.05 (the grey dashed line) T calls 8 TP, Tshrink 47 TP and Tshrink+

108 TP. These improvements are seen at very little cost the the number of False Positives

called.

The number of TP and FP called at a Bonferroni adjusted p-value cut-off of 0.05

for n ranging from two to five are plotted in Figures 3.5a and 3.5b respectively. Here
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we see the number of TP called for Tshrink+ increases as n increases and the number

FP decreasing as n increases. While the number of TP called also increase for T, it

decreases for Tshrink over this range of n. The number of TP called by Tshrink will

decrease until Tshrink converges to T when it will continue to increase. Tshrink may

be over-zealous in its calling of TP calling a relatively large amount of FP as well for

small n.
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Figure 3.5: The number of True and False Positives for a range of n vs n comparisons
– One hundred random comparisons of n B6 and n D2 mouse striatum
samples a performed for six DE methods for n ranging from two to five.
For each method and n, the conservative Bonferroni adjusted cut-off of 0.05

is used to calculate the average number of (a) True Positives and (b) False
Positive are counted.

3.3.2.3 Comparison with edgeR and DESeq

Tshrink+ performs favourably when compared to both DESeq and edgeR when con-

sidering gene ranking. When assessing gene ranking using Figure 3.4, Tshrink+ per-

forms marginally better than DESeqMax (green) which is better than edgeR (black)

and DESeqCommon (pink). The relative performance of Tshrink+ over DESeqMax in-

creases as n increases. For n equal to five edgeR performs worse than T. It could be

argued that this is because T is becoming closer to the t-test that was used as “truth”.
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However, this behaviour is also observed when using the results from microarray ar-

ray data (Bottomly et al., 2011) as “truth” as seen in Figure B.3 in Appendix B. This

performance could also be explained by edgeR over moderating to a common variance

that is become decreasingly relevant as n increases.

Tshrink+ compares comparably to edgeR and DESeq when assessing sensitivity. T

selects a similar number of TP at the cut-off when compared edgeR but selects less FP

as seen in Figures 3.5a and 3.5b. While DESeqMax does not select as many TP for the

given cut-off as DESeqCommon it selects dramatically less FP.

3.4 conclusions and further discussion

Using additional information improves the estimation of the common variance and the

detection of differentially expressed genes. Our differential expression test, Tshrink+

which incorporates information from additional datasets, showed marked improve-

ment in both gene ranking and sensitivity over a moderated t-test, Tshrink, and a

standard t-test. Tshrink+ also performed favourably against edgeR and DESeq when

comparing gene ranking and comparably when assessing sensitivity.

Whilst Tshrink+ can offer improvements to a differential expression analysis it also

provides insight into avenues for further research. The moderation used in Tshrink+

(Opgen-Rhein and Strimmer, 2007) can be drastically affected by genes with unusual

variances. A more sophisticated methodology which manages the influence of these

genes on moderation could offer potentially large improvements. While using local

regression to fit the common variance when incorporating one additional dataset is

easy to implement, it does not scale well to the use of multiple information sources. A

parametric based approach may make the integration of multiple data sources feasible.

Using external data to improve the estimation of the common variance for a par-

ticular problem highlights the significance of access to public data repositories like

the gene expression omnibus (GEO) (Barrett et al., 2011). These repositories have the

ability to actualise improved inference lending both confidence and power to results.

Projects like ReCount (Frazee et al., 2011) aid in this process by providing access to pre-
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processed data that avoids the duplication of the computationally intensive procedure

of both downloading and processing large datasets.

This methodology should be considered as a complement, not a replacement, for

meta-analysis when similar studies to the RNA-Seq study of interest exist. Tshrink+

leverages only the variance estimates from external datasets to improve the variance

estimation in the study of interest. If information exists on the changes of expression

between conditions as well, a researcher may be remiss to not utilise this information

through the use of existing meta-analysis methodologies. However, when similar stud-

ies are not available, Tshrink+ provides a unique way of utilising information from any

related studies that are available.
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Functional, network or pathway analysis is the process of leveraging external an-

notation of functional gene groups, networks or pathways with statistical techniques

to highlight biologically significant signal in a dataset. It is often performed after a

differential expression analysis to improve the interpretability of the results. While

simultaneously analysing 20 000 genes does provide opportunities for sharing inform-

ation via moderation, it can also create problems. Performing differential expression

tests on a large number of genes creates problems with multiple testing and hence the

ability to detect statistically significant differences in expression. Conversely, if a large

number of genes are identified as statistically different, interpretation of results can

quickly become difficult. Analysing genes in terms of pathways, networks or other an-

notated measures of function can alleviate both of these issues in addition to creating

opportunities to investigate data in alternative ways.

In this chapter we propose using pathway information to create a supervised frame-

work, pMimCor, for integrating two forms of RNA-Seq data, micro-RNA (miRNA)

sequencing and messenger-RNA (mRNA) sequencing. We demonstrate that the KEGG

pathway annotation is enriched for miRNA-mRNA relationships and that these rela-

tionships appear to be present in our motivational dataset. We also show that even

when ignoring the interpretational benefits of our approach, pMimCor appears to out-

perform approaches that do not utilise pathway information.

4.1 mirna

Micro-RNAs (miRNA) are a class of small non-coding RNA molecules which down

regulate gene expression. Through pairing, miRNAs down-regulate the expression

of genes by inhibiting their translation or promoting the degradation of their target

messenger-RNAs (mRNA). Dysregulation of miRNAs can lead to a variety of human

diseases with miRNAs being shown to play a critical regulatory role in many cellular

pathways and functions such as developmental timing, cell death, cell proliferation,

immunity, and patterning of the nervous system (Mo, 2012).

There exist many computational algorithms for predicting the target genes of miRNAs,

such as TargetScan (Lewis et al., 2005), miRBase (Griffiths-Jones et al., 2008) and PicTar
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(Krek et al., 2005). These algorithms essentially attempt to identify whether a mRNA

contains the binding motif of a miRNA. The output of these methods can generally be

reduced to a large relatively sparse binary matrix, after appropriate thresholding. This

remains an active area of research as there is generally not a large consensus between

algorithms (Jayaswal et al., 2009).

There is also biological interest in identifying changes in miRNA expression and

their relationship with phenotypic outcome. Current state of the art methods attempt

to identify groups of genes that are potentially being regulated by a miRNA or group

of miRNAs. Such methods include canonical correlation analysis (Witten and Tibshir-

ani, 2009), multivariate random forests (Jayaswal et al., 2011) and integrative Baysian

analysis (Wang et al., 2013). Statistically this can be thought of as a having high di-

mensional multivariate response and high dimensional multivariate covariates. Unfor-

tunately, even if constrained by the output of a target binding prediction algorithm,

all such methods rely quite strongly on having reasonable sample sizes, as they are

attempting to estimate large complex networks. In addition to this, due to the high di-

mensional nature of the problem, the outputs from many of these methods can quickly

become intimidating and quite difficult to interpret.

In situations of small sample sizes the biological focus must be slightly different.

One common approach is to identify a differentially expressed (DE) miRNA and then

use predicted binding target information to perform an enrichment analysis on the

DE genes or miRNA-mRNA correlations (Xu and Wong, 2013). While this approach is

statistically more satisfying than simply identifying significant pair-wise correlations

between miRNA and mRNA (Havelange et al., 2011; Li et al., 2011), for which correcting

for multiple testing is often ignored, it also has a couple of disadvantages. Firstly, there

is generally little effort made to combine the significance from the test on the miRNA

with the test on its targets. This means that any results may be overly conservative

as two p-value cut-offs are performed instead of one. This could result in biologically

significant signal being missed. Secondly, as miRNAs can potentially target hundreds

or even thousands of genes, if a miRNA and its targets are identified as changed then

further pathway enrichment analysis is often performed to make any results biologic-
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ally interpretable. This adds another level of statistical complication and yet another

p-value cut-off.

By integrating biological network information (pathways, protein-protein interaction

networks) into a simple analysis framework, we may be able to directly test for and

identify miRNAs that target a group of genes from a specific biological pathway. This

has two clear benefits; we are now free of the statistically demanding task of identifying

clusters of genes and our predefined clusters should be functionally more interpretable.

However, this comes at the cost of being reliant on the accuracy of the target prediction

algorithms and the quality of the biological annotation.

4.2 combining p-values

In order to construct and describe our analysis framework we first must have a solid

understanding of different methods for combining measures of significance. There are

many methodologies for combining information across studies or within pathways

and the key discriminating differences between many of these methods are their as-

sumed alternate hypotheses (Tseng et al., 2012). Let n be the number of tests and τj, for

j = 1, 2, ...,n, the test statistics. Assume the null hypothesis that none of the features

measured by these test statistics have changed. Li and Tseng (2011) propose two broad

classes of alternative hypotheses HA and HB. The first class of alternate hypotheses,

HA, are used to detect a series of tests in which all the test statistics show change. The

corresponding test can be expressed as

 H0 : Eτj = 0, for all j = 1, 2, ...,n.

HA : Eτj > 0, for all j = 1, 2, ...,n.
(4.1)

The second class of alternative hypotheses, HB, are used to detect a series of tests in

which any of the test statistics show change. The corresponding test can be expressed

as  H0 : Eτj = 0, for all j = 1, 2, ...,n.

HB : Eτj > 0, for at least one j in 1, 2, ...,n.
(4.2)
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Here we consider four methods of p-value combination that could be used to per-

form the previously described tests:

Fisher: Fisher’s method is defined as P
(
Uj > −2

∑n
j=1 log(pj)

)
(Fisher, 1925).

Stouffer: Stouffer’s method is defined as Φ
(∑n

j=1Φ
−1(pj)

n

)
(Stouffer et al., 1949).

maxP: The maximum of the pj for j = 1, 2, ...,n (Wilkinson, 1951).

OSP: A one-sided version of Pearson’s method P
(
Uj < −2

∑n
j=1 log(1− pj)

)
(Pearson, 1934).

where Φ is the probability distribution function for the standard normal and Uj is

distributed as a chi-squared distribution with 2n degrees of freedom.

The combined p-values for Fisher’s and Stouffer’s methods approach zero if any

one of the pj also approach zero making them appropriate for testing H0 against the

alternative HB. For maxP or OSP to approach zero all pj must approach zero, thus

making them appropriate for testing H0 against the alternative HA.

The properties of the four methods are further illustrated in Figure 4.1 from a two

dimensional perspective. While the arbitrary cut-offs of maxP and OSP are quite dif-

ferent their overall topologies are quite similar. Fisher is also seen to be quite sensitive

to any change. If one of the z-scores is larger than approximately 2.4, then regardless

of the sign of the other z-score, the combined p-value will be less than 0.05.

4.2.1 Simulation

To illustrate and distinguish the performance of the four p-value combination methods

in relationship to the two classes of alternative hypotheses (HA and HB), we perform

a simulation study to assess how each method combines information from three test

statistics. The distributions of the three test statistics were chosen to describe situations

of no change, mild change and strong change in none, some or all of the statistics.

In our simulation study, we simulate directly from the standard normal distribution,

this is equivalent to simulating test statistics (potentially from a two-sample t-test)

and transforming them into z-scores. In practice, these test statistics have most likely
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Figure 4.1: p-value cut-offs for various combination methods – A plot illustrating a
p-value cut-off of 0.05 for various p-value combination methods in a two
dimensional setting. The p-value cut-off is plotted in the negative z-score
space so that a small p-value corresponds to a large positive z-score. The
combination methods under consideration are Fisher (red), Stouffer (blue),
maxP (pink) and OSP (green).
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come from multiple two-sample t-tests but could be other statistics such as regression

coefficients.

In each simulation we generated 1 000 000 observations of the three test statistics

from the multivariate normal distribution Xi ∼ N(µi, I) where µ1 = (0, 0, 0). We call

this simulation I and it represents the initial test results obtained from three different

sets of experiments. With all three components of µ1 equal zero, this represents the

situation where test statistics were generated from comparisons with no change. We

have also examined different values of µ in different simulations.

• µ2 = (2, 0, 0) in simulation II;

• µ3 = (2, 2, 0) in simulation III;

• µ4 = (4, 0, 0) in simulation IV and

• µ5 = (2, 2, 2) in simulation V.

Notice, that simulation V represents the situation where all three test statistics from

three experiments were generated from comparisons with change. Simulations II, III

and IV represent situations where at least one of the three statistics were generated

from comparisons with change.

We then applied each p-value combination method to each observation in each sim-

ulation. An observation was called significant if its overall significance (combined p-

value) was less than an arbitrary cut-off of 0.05. The percentage of called significance

from all observations was used to characterise each method’s power in performing

hypothesis testing under the two classes of alternative hypotheses HA and HB.

In general a method with a low percentage of significance in simulation I (as this

simulation is consistent with the null hypothesis of no change) and high percentage

in simulations II, III, IV and V (as these are simulations representing some change)

would be a good method for testing H0 against HB; that an observation is changed in

any tests. In contrast, a method with a low percentage of significance in simulations I,

II, III and IV (as these are simulations where not all statistics have changed) but high

percentage in simulation V (a simulation where all the statistics have changed) would

be more suitable for testing H0 against HA that an observation is changed in all tests.
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Table 4.1: Results for five simulations in evaluating the performance of the four p-value
combination methods at testing HA and HB. The percentage of combined p-
values less than 0.05 over 1 000 000 simulations (rounded to two decimal
places) are reported.

Simulation I II III IV V
Method µ1 = (0, 0, 0) µ2 = (2, 0, 0) µ3 = (2, 2, 0) µ4 = (4, 0, 0) µ5 = (2, 2, 2)
Fisher 0.05 0.43 0.80 0.95 0.95

Stouffer 0.05 0.31 0.75 0.75 0.97

maxP 0.00 0.00 0.02 0.00 0.26

OSP 0.05 0.17 0.46 0.20 0.93

Results from the simulation study can be seen in Table 4.1. Focusing on the results

from simulation I, Fisher, Stouffer and OSP all call five percent of the observations

significant. As this simulation represents the situation where test statistics were gener-

ated from comparisons with no change, all the observations called significant are false

positives. As an arbitrary cut-off of 0.05 was used, it is comforting to see that the false

positive rates of Fisher, Stouffer and OSP are consistent with this.

The set of simulations demonstrates that OSP is the most suitable method at testing

H0 against HA. OSP is competitive with Fisher and Stouffer in simulation V but calls

much less significance in simulation II, III and IV compared to the other two methods.

When considering the class of alternative hypothesis HB, Stouffer is most powerful

in detecting observations that have changed in all three tests (simulation V). It also

has higher power in detecting changes from simulations II, III, and IV when compared

to OSP. In comparison, Fisher has the highest percentage in simulations II, III and

IV. These results suggest that both Stouffer and Fisher are most suitable for testing

H0 against HB. However, while Fisher appears to be more sensitive to any changes,

having the highest percentage in simulations II, III and IV, Stouffer is relatively more

conservative.

In our application, we will select Stouffer to combine statistics within a pathway so

that any pathway results are less likely to be driven by a single protein. These simula-

tions demonstrate the importance of having a clearly defined alternate hypothesis in

mind when analysing data.
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4.3 pmim - pathway, microrna and mrna integration

In the following we will propose a general framework for integrating various data

sources to identify regulatory miRNAs and their targets. This framework will be util-

ised to form three specific methods cMimDE, pMimDE and pMimCor. We will propose

cMimDE as a method to identify regulatory miRNAs and their targets in an experi-

ment. We will then introduce the concept of mir-pathways and use these to develop

pMimDE and pMimCor as methods for identifying regulatory miRNAs that may be

targeting a group of genes that share a common biological function.

Before these methods can be described in detail let us first introduce the data sources

and their corresponding notations; a visual representation of the data sources is given

in Figure 4.2 and described in more detail in the following. Let Y be a pg by n matrix

corresponding to gene expression estimates for pg genes in n samples, where the n

samples are divided into two conditions such that γ(k) = 1 or 2. Similarly let Z be

a matrix of expression estimates for pmi miRNAs and the same matched n samples.

Assume there also exists some pmi by pg matrix M, where Mij is equal to one if the

ith miRNA is predicted to bind to the jth gene and is zero otherwise. Furthermore,

assume there exists some functional or pathway annotation of the genes and represent

this as a pf by pg matrix F, where Fij is equal to one if the jth gene is in the ith group

and zero otherwise.

Prior to integration the information from matrices Y and Z are reduced to summary

statistics. We would like to combine information from three statistics; t-statistics from

gene level differential expression, t-statistic from miRNA level differential expression

and the correlations between a miRNA and a gene. We will calculate these as described

in the following paragraphs.

A moderated t-statistic

In the following we will calculate a test statistic for differential expression in the

miRNA or gene level data with a mildly moderated t-test. Assuming some data matrix
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Figure 4.2: Data matrices and summary statistics – A visual representation of the in-
put data matrices which include the matched mRNA- and miRNA-Seq data,
a pathway database and the miRNA target binding predictions. Also repres-
ented are the corresponding summary statistics used which are the statistics
from a moderated two-sample t-test performed on the mRNA-Seq data, the
statistics from a moderated two-sample t-test performed on the miRNA-
Seq data and the cross correlations or probability of observing the cross
correlations between the miRNA- and mRNA-Seq data.

X, this statistic can be calculated as follows: Estimate the mean expression value of

each condition as

µi1 =

∑
j:γ(j)=1 Xij∑
j:γ(j)=1 1

(4.3)

µi2 =

∑
j:γ(j)=2 Xij∑
j:γ(j)=2 1

(4.4)

The moderated variance will be estimated as the maximum of the sample variance and

the average expression

σ2i = max

µi1 + µi2
2

,
1

n− 2

 ∑
j:γ(j)=1

(Xij − µi1)
2 +

∑
j:γ(j)=2

(Xij − µi2)
2

 (4.5)
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The test statistic for this moderated t-test is then

tXi =
√
n

(
µi1 − µi2

σi

)
(4.6)

and will have approximately n− 2 degrees of freedom.

Correlation between genes and miRNA

Define the entries of the pmi by pg cross correlation matrix C between the miRNA and

genes as

Cij =

∑n
k=1(Yjk − µ

Y
j )(Zik − µ

Z
i )√∑n

k=1((Yjk − µ
Y
j )
2
∑n
k=1(Zik − µ

Z
i )
2)

, (4.7)

where µYj is the average expression for gene j and µZi is the average expression for

miRNA i. These correlations could be transformed using the Fisher transformation to

be approximately standard normal. Define these transformed correlations as the matrix

K, where the entries of K can then be calculated as

Kij =
√
n− 3 tanh−1(Cij). (4.8)

If n is small (e.g n < 10) then the Fisher transformation will be inappropriate. As C

is a very large matrix we will use a probit rank transformation to make the correlations

approximately standard normal. We will define the elements of K as

Kij = Φ
−1

(
rij − 0.5
pmipg

)
(4.9)

where rij is the rank of the corresponding element in the pmi by pg cross-correlation

matrix.

4.3.0.1 cMimDE - Classic microRNA and mRNA integration using DE

As mentioned earlier a common approach for highlighting interesting miRNA-mRNA

relationships is to first identify a differentially expressed (DE) miRNA and then use

predicted binding target information to perform an enrichment analysis on the DE
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genes or miRNA-mRNA correlations (Xu and Wong, 2013). This is similar to taking

the maximum of the DE miRNA p-value and the enrichment analysis p-value. As

demonstrated in the earlier simulations (Section 4.2.1) taking the maximum of two

p-values is generally not ideal. In the following we will propose a method, cMimDE,

which is both a formalisation and improvement of this approach.

We would like to test whether a miRNA is DE and its target genes are DE in the

opposite direction. From the datasets Y and Z we can calculate the vectors of test

statistics tY and tZ for whether genes and miRNAs, respectively, are DE between con-

ditions. First consider finding miRNAs with negative log fold change and genes with

positive log fold change. We can then perform a gene set test for whether the target

genes of the ith miRNA are up-regulated using Stouffer’s method

si = Φ

∑
j:Mij=1

Φ−1(P(tYj > 0))√∑
j:Mij=1

1

 . (4.10)

This gene set test could also have been performed using any method that is favoured,

such as by using Fisher Method, a Wilcoxon rank-sum test, over-representation test or

gene set enrichment analysis (GSEA).

To identify those miRNA that are negatively DE and whose target genes are posit-

ively DE we can then combine the vectors tZ and s using OSP, where

PcMimDEi = P
(
χ24 < −2 log

((
1− P

(
tZi < 0

))
(1− si)

))
. (4.11)

This test will rank similarly to taking the maximum of the p-values from the miRNA

DE and its corresponding gene set test.

4.3.0.2 pMimDE - Pathway, microRNA and mRNA integration using DE

In addition to finding miRNA that are regulating their target genes it may be of in-

terest to find miRNA that are regulating a set of genes that also share some common

biological function or outcome. We can test this by performing gene set tests on the

genes that lie in the intersection of the binding target predictions of a miRNA and a

biological pathway. These intersections will be referred to as mir-pathways. We can
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again use Stouffers method to find evidence of whether a set of genes in a particular

mir-pathway (ie. genes that are both targeted by the ith miRNA and also belong to

the kth functional pathway) are up-regulated. We will store these gene-set tests in the

matrix S as

Sik = Φ

∑
j:Mij=1&Fkj=1Φ

−1(P(tYj > 0))√∑
j:Mij=1&Fkj=1 1

 . (4.12)

Sik whose corresponding mir-pathways contain less than two intersecting genes will

be defined as empty.

We could again combine these gene set tests S with the miRNA test statistics tZ

using OSP. However, as using OSP is similar to taking the maximum of two p-values,

then as multiple gene set tests are being performed on the target genes of each miRNA,

we might expect at least one of the p-values of these gene set test to be smaller than

the miRNA p-value due to multiple testing. This would result in the ranking of the

minimum combined p-values for each miRNA being very close to the ranking of the

miRNA p-values. To account for these multiple testing issues we will apply a multiple

testing correction to each row of S before combining using OSP. Many of the mir-

pathways may contain similar genes and hence their expression may be correlated.

We will be conservative and ignore this correlation performing a row-wise Benjamini-

Hochberg (Benjamini and Hochberg, 1995) correction to S and calling this Sfdr.

To identify those miRNAs that are negatively DE and whose target genes are both

positively DE and share some common biological function the elements of the matrix

SFDR can now be combined with the elements of the vector tZ using OSP, where

P
pMimDE
ik = P

(
χ24 < −2 log

((
1− P

(
tZi < 0

)) (
1− Sfdrik

)))
. (4.13)

and PpMimDE is a pmi by pf matrix.

4.3.0.3 pMimCor - Pathway, microRNA and mRNA integration using correlation

By finding sets of genes that are DE in the opposite direction to a miRNA we were

essentially requiring the expression of genes to be negatively correlated with the ex-
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pression of their corresponding miRNA between conditions. In the following we will

extend pMimDE to simply require that the expression of a miRNA and gene be negat-

ively correlated. As we expect the correlation between the expression of a miRNA and

its targets to be negative the test described for pMimDE can be modified by replacing

the definition of Sik with

Sik = Φ

∑
j:Mij=1&Fkj=1 Kij√∑
j:Mij=1&Fkj=1 1

 . (4.14)

4.4 evaluation study

In this study, we evaluate our proposed framework for integrating small sample miRNA-

Seq and mRNA-Seq with pathway information, pMimCor. This evaluation consists of

two components. The first component assesses the validity of the information in both

the KEGG pathway annotation (Kanehisa et al., 2008) and the TargetScan binding tar-

get predictions. The second component evaluates the performance of our proposed

integration approach on our motivational dataset.

4.4.1 Data

We will evaluate pMimCor on a conditional Notch2 knockout experiment described

in more detail in Chapter 5. This experiment compares matched mRNA and miRNA

enriched samples in three wild type (WT) mice and three conditional Notch2 knock-

out (NCN) mice. The samples were sequenced with an Illumina HiSeq 2000 which

provided 51bp reads. Adaptor sequencers were cut from the miRNA enriched samples

using cutAdapt (Martin, 2011).

Bowtie (Langmead et al., 2009) was used to map the samples back to the mm9 gen-

ome (Church et al., 2009). The mRNA read alignments were allowed two mismatches

while the miRNA alignments were allowed one mismatch. Reads that aligned to mul-

tiple regions on the genome were ignored. Reads were then summarised into gene or

miRNA counts using the Union method (Bullard et al., 2010) and the Ensembl gene
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annotation (Hubbard et al., 2009). Exons that overlapped multiple genes were included

for the miRNA enriched samples.

4.4.2 Evaluation strategies and results

The key strength of pMimCor is to rank both miRNAs and pathways concurrently, ie

ranking the top mir-pathways. As such, this is a favourable approach for integration as

it facilitates interpretation and addresses the biological question directly. This ranking

is demonstrated in Tables 5.6 and 5.7 in the next chapter where a qualitative assessment

of them is given. The following approaches assess these rankings in a more quantitative

manner.

4.4.2.1 Assessing the information in KEGG and TargetScan

A resampling scheme will be used to assess the information content within KEGG

and TargetScan. This scheme is driven by the hypothesis that if miRNA regulation

plays a part in phenotypic outcome then a database of genes associated with pheno-

typic outcomes (such as KEGG) should contain phenotypes that have more associated

genes that are predicted miRNA binding targets than expected. Define the resampling

scheme as follows:

resampling scheme 1 Mir-pathways are defined using KEGG and TargetScan. The

number of mir-pathways that contain n genes, for n = 1, ..., 20, are calculated.

This is then repeated, taking the average number of mir-pathways that contain

n genes, after randomly reassigning the genes for each pathway in KEGG one

hundred times, reassigning the target genes for each miRNA in TargetScan one

hundred times, and, reassigning genes in both KEGG and TargetScan one hun-

dred times.

The term mir-pathway corresponds to the intersecting genes of a particular KEGG path-

way and miRNA. A conservative approach to resampling is taken, with the pathway

and target information being resampled only from the genes that are in both KEGG

and TargetScan. The top thirty percent, by score, of the TargetScan predicted miRNA-
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mRNA interactions were used to construct a binary miRNA-mRNA target prediction

matrix.

The results from the resampling scheme can be seen in Figure 4.3. The number

of mir-pathways with n genes decreases if either the KEGG information or TargetS-

can information is randomised. As seen in Figure 4.4, there are about 50% more mir-

pathways defined by KEGG and TargetScan that contain n = 3, 4 and 5 genes than

expected by chance. This would appear to lend weight to the argument that miRNA

regulation may play a role in some of the annotated KEGG pathways. These results are

all exaggerated further if a less conservative approach is taken to the resampling, res-

ampling the pathway and target information from all genes as opposed to only those

present in both KEGG and TargetScan.

4.4.2.2 Evaluating signal in the data

One of the key frustrations of working with small sample sizes is the inability to use

sampling methods, such as cross validation, to improve confidence about results. How-

ever, the experimental data is not the only input into pMimCor. As pMimCor also relies

on large pathway and target matrices, these could be resampled instead.

Resampling the pathway and target matrices may introduce some bias into an eval-

uation of signal. As was demonstrated in scheme 1, resampled pathway or target

matrices produce less mir-pathways and mir-pathways with less genes. However, as

pMimCor performs a Benjamini-Hochberg correction on the mir-pathway p-values

for each miRNA, this should over correct for any differences in the number of mir-

pathways due to resampling. In this situation the Benjamini-Hochberg correction could

be considered as overly conservative as it does not account for any of the mir-pathways

being correlated.

A method for evaluating the output of pMimCor when run on the Lin data is de-

scribed as follows:

resampling scheme 2 pMimCor is run using KEGG and TargetScan as inputs. The

number of significant mir-pathways are calculated at various arbitrary p-value

cut-offs. This is then repeated, finding the average number of significant mir-

pathways, after randomly reassigning the genes for each pathway in KEGG one
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Figure 4.3: Number of mir-pathways that contain n genes before and after random-
isation – For n = 1, ..., 20 the average number of mir-pathways that contain
n genes are plotted on a log-scale. These are plotted for mir-pathways cal-
culated using TargetScan and KEGG, randomised TargetScan and KEGG,
TargetScan and randomised KEGG and both randomised TargetScan and
randomised KEGG.

hundred times, reassigning the target genes for each miRNA in TargetScan one

hundred times, and, reassigning genes in both KEGG and TargetScan one hun-

dred times.

The p-values have not been adjusted for multiple testing across miRNA. If there is sig-

nal related to miRNA regulation in the data, the binding target predictions are accurate

and there exists annotated pheontypes that are associated with miRNA regulation then

resampling the pathway and/or target matrices should reduce the number significant

mir-pathways found.

The results from the second resamnpling scheme can be found in Table 4.2. Random-

ising either the KEGG or TargetScan matrices reduces the number of mir-pathways



4.4 evaluation study 69

3 4 5

no randomisation
miRNA randomised
kegg randomised
both randomised

Number of genes in mir−pathway

N
um

be
r 

of
 m

ir−
pa

th
w

ay
s

0
50

0
10

00
15

00

Figure 4.4: Number of mir-pathways that contain 3, 4 or 5 genes before and after
randomisation – For n = 3, 4 and 5 the average number of mir-pathways
that contain n genes are plotted. These are plotted for mir-pathways cal-
culated using TargetScan and KEGG, randomised TargetScan and KEGG,
TargetScan and randomised KEGG and both randomised TargetScan and
randomised KEGG.

that are called significant. This suggests that both matrices may contain information

pertinent to miRNA regulation. This also suggests that miRNAs may be regulating

gene expression in response to loss of Notch2 function. It would also appear that there

are more up-regulated miRNA, and hence miRNA down-regulated genes, in response

to loss of Notch2.

4.4.2.3 Evaluation via literature search

We will evaluate the performance of our various proposed integration methods on

our data, by assessing their concordance with results from a literature search. The

Lin experiment was designed to study the loss of Notch2 function in the brain in the

context neurodegeneration. With this in mind, we will use PubMed to identify miRNA

that have been association with neurodegeneration. This information will allow us to
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Up-regulated Down-regulated
0.001 0.005 0.01 0.05 0.001 0.005 0.01 0.05

No Randomisation 3.0 13.0 32.0 181.0 0 1.0 14.0 171.0
TargetScan Randomised 2.0 10.3 19.7 95.9 0.6 3.3 9.0 56.9
Kegg Randomised 0.6 6.5 14.1 76.4 0.5 1.4 3.5 22.9
Both Randomised 1.5 5.6 11.7 61.7 0.3 1.6 4.4 29.9

Table 4.2: The number of significant mir-pathways – A table of the average num-
ber of significant mir-pathways calculated at various arbitrary p-value cut-
offs. Significance is calculated for mir-pathways estimated using TargetScan
and KEGG, randomised TargetScan and KEGG, TargetScan and randomised
KEGG and both randomised TargetScan and randomised KEGG. Results are
shown for both up-regulated miRNA and down-regulated miRNA.

concurrently verify the relationships between miRNA regulation, the loss of Notch2

function and neurodegeneration and test the effectiveness of our analysis framework.

Our strategy for performing and evaluating the literature search is outlined as fol-

lows:

literature search strategy A PubMed search was performed for each miRNA

that was observed in our data. Each miRNA was included in the following ana-

lysis if it had at least one publication referring to it in the abstract. A second batch

of searches were performed searching for each miRNA and the word “neurode-

generation". A miRNA was then classified as being associated with neurodegen-

eration if it had at least one hit on this search. This information was then used

to calculate the number of true positives (TP) and false positives (FP) for the

following methods:

• miRNA DE - performing a moderated t-test on just the miRNA data.

• cMimDE - a classic microRNA and mRNA integration using just miRNA

and gene DE.

• pMimDE - Pathway, microRNA and mRNA integration using DE.

• pMimCor - Pathway, microRNA and mRNA integration using correlation.

As pMimDE and pMimCor have many p-values for each miRNA, the minimum

of these for each miRNA was taken to provide a rank for the miRNA.

This approach will be biased towards previous research and/or methodology.
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Figure 4.5 plots the TP against FP for the region of small FP. For this region, pMim-

Cor performs better than all other approaches with quite dramatic improvements to

just using the miRNA data. Five of the top seven miRNA ranked by pMimCor have

been associated with neurodegeneration in the literature. The performance of these top

ranked pMimCor miRNA should warrant some optimism.
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Figure 4.5: TP vs FP from PubMed search – True Positives (TP) are plotted against
False Positives (FP) for the small FPR region of Figure C.1. The plotted
lines are for four methods, miRNA DE (black), cMimDE (blue), pMimDE
(green) and pMimCor (red).

4.5 conclusions and further discussion

We proposed a general framework for integrating miRNA-Seq and mRNA-Seq data.

This framework included three methods cMimDE, pMimDE and pMimCor. In partic-

ular, pMimCor, appears to be a favourable approach for integrating miRNA-Seq and
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mRNA-Seq in the presence of small sample sizes. Not only did this approach identify

more signal than expected by chance, but the identified signal was also associated with

the observed phenotype.

Our integration approach has raised some statistically interesting questions that

should warrant further investigation. To transcend the typical modularised analysis

framework, our approaches make use of p-value combination methods to combine sig-

nificance. By combining significance from a differential expression test of one miRNA

with tests on multiple gene sets, pMimCor runs into an issue related to correction for

multiple comparisons. While there has been some research into correction for multiple

comparisons in the presence of correlated pathways (Holmans et al., 2009), this meth-

odology could be extended further to account for having correlated summary statistics

from multiple miRNA. It would also be interesting to establish whether it is more ap-

propriate to correct for multiple testing before or after utilising a p-value combination

method like Fisher or OSP.

Our framework relies heavily on the hypothesis that databases like KEGG may con-

tain pathways associated with miRNA regulation. This was shown to be highly plaus-

ible. While our framework is constrained to the accuracy of the pathway annotation,

this constraint does add the benefit of making the results from pMimCor highly inter-

pretable.
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In collaboration with the Lin lab of Cornell University we designed an experiment to

measure both mRNA and miRNA transcription in the brains of mice that are exposed

to various stressors using RNA-Seq. This chapter will use the data from this experiment

to illustrate the various methodologies proposed earlier in this thesis.

5.1 design

The Lin lab primarily studies the development and degeneration of the nervous system

using the mouse olfactory system as a model. Once neurons are born, they are exposed

to a variety of environmental insults that must be properly dealt with to avoid degener-

ation. Neurodegenerative disorders, such as Alzheimer’s disease, are thought to arise

in part due to a failure to deal with this increased stress.

Table 5.1 outlines a prototype experiment that was designed to provide insight into

how the mouse brain responds to various stressors. For each sample in this exper-

iment matched mRNA and miRNA enriched samples were sequenced with an Illu-

mina HiSeq 2000. The induced stressors included treatment with pro-oxidant buthion-

ine sulphoximine (BSO) to induce oxidative stress, a mouse strain with a conditonal

Notch2 knockout (NCN) and Borchelt mice, a strain of mouse with a chimeric hu-

man/mouse amyloid precursor protein with the “Swedish" mutation as well as mutant

human presenillin 1 (Jankowsky et al., 2004). Due to some of the difficulties associated

with obtaining mice with a conditional knockout mutation of Notch2, the design of

this experiment is less than favourable.

Notch2 is an essential gene for development and hence Notch2 mutant mice do not

survive beyond embryogenesis. In order to study the function of Notch2 in adult an-

imals, we employed a conditional knockout mutation of Notch2. However, the genetics

of this conditional knockout are complicated. First, a homozygous floxed line must be

crossed to the cre driver. This generates a double heterozygous mouse (cre/+, flox/+).

These mice must then be crossed out to the parental floxed line (flox/flox), this gener-

ation contains controls (cre/+;flox/+ or +/+;flox/+) and the (cre/+;flox/flox) mutants.

However, only one out of eight mice in this second generation will be controls and one

in four will be mutants. So the proportion of the animals needed for the experiment
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Genotype Treatment Age Sex Lane
WT BSO 6 months male 5

WT BSO 6 months male 2

WT(+) BSO 6 months male 3

NCN BSO 6 months male 4

NCN BSO 6 months male 1

NCN BSO 6 months male 6

WT none 7 months female 1

WT none 7 months female 6

WT none 15 months male 4

NCN none 15 months male 2

NCN none 15 months male 3

NCN none 15 months male 5

Borchelt none 15 months male 7

Borchelt none 15 months male 7

Borchelt none 15 months male 8

Borchelt none 15 months male 8

Table 5.1: Design of the experiment – This table describes the design of the experiment
performed by the Lin lab. Listed are the genotype, age and sex of the mice
as well as whether they were treated with BSO. Also included is the lane of
the flowcell that each sample was sequenced on.

is very low, requiring a bit of luck or a lot of mating cages. This was a big problem as

we would often get a mutant but no controls, so it was hard to get age matched and

litter matched mice. In Table 5.1 the wild type (WT) mice are +/+;flox/+ and the WT+

mice are cre/+;flox/+. NCN is used to refer to the mice with the conditional knockout

mutation of Notch2 where NCN stands for nestin-cre/Notch2 flox.

The design of this experiment is quite complex. For simplicity, this case study will

focus on the comparison of untreated WT and NCN mice.

5.2 mapping

Mapping is the process of aligning reads to a reference genome (or transcriptome)

and hence inferring from where they may have been transcribed. This process is not

trivial. Aligning trillions of reads to a reference genome that is over three billion base

pairs long is a computationally demanding task. As reads represent limited intervals

of fragmented transcripts, the process of mapping reads back to a genome is further
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complicated by reads that may span splice junctions. In this case study we ignore such

reads.

Mapping of mRNA samples

Sequencing of the mRNA samples generated 1.3 trillion reads. These reads were 51

base pairs long. The number of reads that were sequenced for each sample can be

seen in Figure 5.1a. While there is a large amount of variability in the number of reads

sequenced per sample, there does not appear to be any samples which are extremely

under-sequenced.
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Figure 5.1: Number of mapped mRNA – (a) A histogram of the number of reads that
were sequenced for each mRNA sample. (b) A bar plot of the percentage of
these reads that mapped uniquely, failed to map and mapped to multiple
regions on the genome.

Bowtie (Langmead et al., 2009) was used to map the samples back to the mm9

genome (Church et al., 2009). Alignments were allowed two mismatches. Reads that

aligned to multiple regions on the genome were ignored. A breakdown for each sample

of the percentage of reads that were mapped, unmapped and had multiple mappings

can be seen in Figure 5.1b. Overall 71% of the reads mapped uniquely back to the

genome.
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Mapping of miRNA samples

The protocol for sequencing miRNA involves a size selection step. This essentially

enriches the samples for RNA fragments that are the expected length of a mature

miRNA (22 nucleotides). However, the reads we received from the sequencer were of

length 51. This means that if we have selected and sequenced a mature miRNA, the

majority of the base pairs of a read should be unnecessary.

A large majority of the unnecessary base pairs on the reads correspond to those from

adaptor reads that have joined to the miRNA. Before the reads can be mapped back

to the genome these adaptor sequences must be cut from the reads. This cutting was

performed using cutAdapt (Martin, 2011). Figure 5.2 visually represents the number

of reads that had a certain number of base pairs cut. The vast majority of reads had 29

base pairs cut. This would imply that our reads were enriched with initial fragments

of length 22, the expected length of a mature miRNA.

Sequencing of the miRNA samples generated 156 million reads. The number of reads

that were sequenced for each sample can be seen in Figure 5.3a. Again we observe a

large amount of variability in the number of reads sequenced per sample.

Bowtie was used to map the samples back to the mm9 genome. Alignments were

allowed only one mismatch. Reads that aligned to multiple regions on the genome

were ignored. A breakdown for each sample of the percentage of reads that were

mapped, unmapped and had multiple mappings can be seen in Figure 5.3b. Overall,

only 36% of the reads mapped uniquely back to the genome and 54% of the reads

mapped to multiple regions on the genome. These numbers could potentially have

been improved by mapping with no mismatches before mapping with one mismatch.

5.3 summarisation

Summarisation is the process of summarising the mapping information into read

counts (or expression values) for all genes of interest. This will produce are large matrix

of read counts.
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Figure 5.2: Number of base pairs cut by cutAdapt – A histogram describing the num-
ber of reads that had a certain number of base pairs cut by cutAdapt.

Summarisation of mRNA samples

We have chosen to analyse the mRNA data at the gene level. The mapped reads were

summarised using the three summarisation approaches described in Chapter 2 in con-

junction with the Ensembl gene annotation. These are Union, UI and exClust (see

Chapter 2).

The number of reads that each method summarised can be seen in Table 5.2. These

numbers appear concordant with those seen in the datasets presented in Chapter 2.

With exClust including more than twice as many reads as the UI definition of a gene.

It is also interesting to see that Union, the least stringent approach, still only included
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Figure 5.3: Number of mapped miRNA – (a) A histogram of the number of reads that
were sequenced for each miRNA sample. (b) A bar plot of the percentage of
these reads that mapped uniquely, failed to map and mapped to multiple
regions on the genome.

Number of genes Number of genes
Method Total count with counts greater with counts greater

than zero than twenty
Union 722 111 653 28 725 16 513

UI 170 042 046 18 068 8 747

exClust 393 618 731 28 722 16 454

Table 5.2: Number of reads summarised – Tabulated are the number of reads sum-
marised by the Union, UI and exClust approaches. For each approach the
number of genes with average counts greater than zero and twenty are also
included.

about half the number of reads that were reported to have mapped back to the genome.

For the remainder of the study we will use the exClust summarised mRNA data.

Summarisation of miRNA samples

The miRNA enriched samples were summarised to the Union definition of a gene using

the Ensembl gene annotation. In this situation the Union definition was quite literal as

we did not ignore exon regions which overlapped multiple genes. We then extracted

the counts for the annotated miRNA and continued with these for the remainder of the
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miRNA analysis. In total there were 23 168 700 reads that aligned to annotated genes

on the mouse genome with 21 593 357 of these aligning to annotated miRNA. There

were 393 miRNA with at least one aligned read and 236 with an average of twenty

reads or greater.

As summarisation was performed using all genes, we are able to capture the back-

ground expression of genes whose mRNA made it through the size selection step

in the miRNA enriched samples. This can be observed in Figure 5.4 where the gene

counts from a mRNA sample are plotted against the gene counts from a miRNA en-

riched sample. The hollow circles are annotated genes and the solid red circles are

annotated miRNA. The background expression of the genes in the miRNA enriched

samples appears to be correlated with the gene expression from the mRNA samples.

The annotated miRNA in general have very low expression in the mRNA samples but

are quite highly expressed in the miRNA enriched samples. This indicates that the

size selection for miRNA appears to have worked as the annotated miRNA are highly

expressed in the miRNA enriched samples.

5.4 normalisation

Before analysing RNA-Seq data it is important to normalise or model for any system-

atic technical variation that may have arisen in the measurement process. The largest

abnormality generally observed in a RNA-Seq experiment is differences in library sizes.

That is, different samples can have very different amounts of total reads mapped.

The trimmed means of M-values (TMM) method (Robinson and Oshlack, 2010) was

used to model differences in library sizes between the mRNA samples. In this case,

for each gene, an M-value is the log ratio of the gene count from one sample with the

average count across all samples. For all genes with average count greater than one

hundred, the thirty percent trimmed mean is taken of the M-values. This can be used

to model differences in library sizes and should be robust to differentially expressed

genes. Instead of carrying through these modelled differences into further analysis, we

choose to use them to normalise the data. This is not ideal as it may influence the
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Figure 5.4: Plot of summarised miRNA counts vs mRNA counts – Gene counts from
the mRNA and miRNA enriched samples are plotted against each other on
a log-log scale. The hollow circles are annotated genes. The solid red circles
are the annotated miRNA.
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variance estimation of genes, particularly those with smaller average count. However,

it does simplify further analysis.

Figure 5.5 demonstrates the modelled difference for the seventh sample. As observed

in Figure 5.1 on page 76, the seventh sample has less total reads than most other

samples. This is consistent with sample seven also having smaller M-values on average.

The miRNA enriched samples were also normalised using TMM. However, only the

annotated miRNA were used to perform the normalisation.

5.5 differential expression

Identifying genes that have changed in expression between conditions is one of the

main aims of many RNA-Seq experiments. As many RNA-Seq experiments have small

sample sizes, most methods for identifying differentially expressed (DE) genes perform

some form of moderation to share information between genes. As our experiment has

small sample sizes, we will use it to demonstrate some of the methods outlined in

Chapter 3. This provides an opportunity to observe how the use of these methods may

affect the results seen by an end user.

Four methods are used to identify differentially expressed genes between wild type

(WT) and conditional Notch2 knockout (NCN) mice. The four methods are T, Tcom-

mon, Tshrink and Tshrink+ (see Chapter 3). T is simply a two sample t-test, Tcommon

is a t-test using the fitted common variance as a gene variance estimate, Tshrink uses

a quasi-empirical Bayes moderation method to shrink the gene variances towards the

common variance and Tshrink+ extends on Tshrink using the variance estimates from

the four Borchelt mice to help fit the common variance before moderation.

The methods Tshrink and Tshrink+ both fit a shrinkage parameter λ. The parameter

λ is inversely proportional to the mean squared error of the fitted common variance

and can thus offer an indication of how well the fitted common variance is modelling

the observed gene variances. When used on our data Tshrink produced a λ of 0.097

and Tshrink+ produced a λ of 0.227. As λ is higher for Tshrink+ this indicates that the

fitted common variance of Tshrink+ is doing a better job of modelling the observed
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Figure 5.5: MA-plot illustrating TMM normalisation – An MA-plot generated for one
of the WT mRNA samples. The y-axis is the log ratio of one of the WT
samples and the average across all samples (M) and the x-axis are the aver-
age gene counts across all samples (A). The solid blue line is M= 0 and the
dashed red line is the line fitted by TMM.
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gene variances than Tshrink. This also indicates that the gene variances observed in

the Borchelt samples are informative for the WT and NCN mice.

The number of DE genes found by each method can be observed in Table 5.3. For

each of the four methods, the number of DE genes are listed for a 0.05 cut-off on the

unadjusted p-values, Benjamini-Hochberg adjusted p-values (Benjamini and Hochberg,

1995) and Bonferroni adjusted p-values (Bonferroni, 1936). The Benjamini-Hochberg

and Bonferroni corrections adjust the p-values to account for the thousands of tests

that have been performed and hence control the false discovery rate and family-wise

error rate respectively. Bonferroni is more stringent than Benjamini-Hochberg.

Unadjusted Benjamini-Hochberg Bonferroni
T 1027 0 0

Tcommon 1169 252 74

Tshrink 1352 7 1

Tshrink+ 1446 64 8

Table 5.3: Table of results from mRNA DE – The number of DE genes are reported
from the comparison of WT and NCN mice by four DE methods for an arbit-
rary 0.05 p-value cut-off; a two sample t-test (T), a two sample t-test using a
fitted common variance (Tcommon), a moderated t-test (Tshrink) and a mod-
erated t-test using variance information from the Borchelt mice (Tshrink+).
The number of DE genes are also reported after adjusting for multiple test-
ing using the Benjamini-Hochberg and Bonferroni methods.

Table 5.3 demonstrates the impact that moderation can have on statistical power.

No genes will be statistically identified as DE if a two sample t-test (T) is used and

Benjamini-Hochberg or the more stringent Bonferroni correction are utilised to account

for multiple comparisons. As Tshrink+ uses more of the fitted common variance than

Tshrink it identifies more DE genes, with Tcommon (the most moderated) identify-

ing the most DE genes. Of course, while moderation improves the power of a test it

could also lead to higher false positives if any of the underlying assumptions in the

moderation approach are compromised.

Figure 5.6b suggests that Tcommon may be failing to model the gene variances ap-

propriately. If there is no signal in the data the corresponding p-value histogram should

be flat. If there is signal, the p-value histogram should exhibit some form of peak on

the left of the plot. This is observed for T, Tshrink and Tshrink+ in Figure 5.6a, 5.6c

and 5.6d. A p-value histogram that has some form of peak, or slant, on the right im-
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Unadjusted FDR Bonferroni
T 20 0 0

Tcommon 24 7 3

Tshrink 17 0 0

Tshrink+ 21 0 0

Table 5.4: Table of results from miRNA DE – The number of DE miRNA are reported
from the comparison of WT and NCN mice by four DE methods for an arbit-
rary 0.05 p-value cut-off; a two sample t-test (T), a two sample t-test using a
fitted common variance (Tcommon), a moderated t-test (Tshrink) and a mod-
erated t-test using variance information from the Borchelt mice (Tshrink+).
The number of DE miRNA are also reported after adjusting for multiple
testing using the Benjamini-Hochberg and Bonferroni methods.

plies an issue with the test. This is seen in the p-value histogram of Tcommon, Figure

5.6b. This is most likely caused by still having heterogeneous gene variances even after

conditioning on the average expression of a gene. Larger than expected gene variances

will disproportionately inflate the common variance estimate. Hence, if the common

variance estimate is solely used to model the gene variances, the majority of the mod-

elled gene variances will be too large creating the peak on the right side of the p-value

histogram. Conversely, the common variance estimate will most likely underestimate

the gene variances for the genes with large variances. This should generate scepticism

over the peak on the left of the histogram.

When testing for DE miRNA Tshrink fits a λ of 0.17 and Tshrink+ fits a λ of 0.58. As

with the mRNA data this indicates that the miRNA variances observed in the Borchelt

samples are informative for the WT and NCN mice. Table 5.4 lists the number of

DE miRNA found by T, Tcommon, Tshrink and Tshrink+. Unfortunately T, Tshrink

and Tshrink+ are unable to identify any statistically DE miRNA after correcting for

multiple comparisons. This may imply that there is no biological signal in the data or

we do not have enough samples to identify statistically significant differences.
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Figure 5.6: P-value histograms for four different methods – P-value histograms were
generated from the comparison of WT and NCN mice using a two sample
t-test (T), a two sample t-test using a fitted common variance (Tcommon), a
moderated t-test (Tshrink) and a moderated t-test using variance informa-
tion from the Borchelt mice (Tshrink+).
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5.6 functional , network & pathway analysis

5.6.1 Pathway analysis

Pathway analysis is often performed to improve the interpretability or power of dif-

ferential expression results. We applied GOseq (Young et al., 2010) to test if the genes

in any KEGG (Kanehisa et al., 2008) pathways were over-represented in our list of DE

genes. Tshrink+ was used to generate a list of DE genes where we called a gene DE if

it had a Benjamini-Hochberg corrected p-value of less than 0.05.

GOseq performs an over-representation test while accounting for the length bias in

the DE results. Longer genes on average have more reads and hence on average more

power for detecting changes in expression. When performing a competitive test, ie an

over-representation test, these tests can artificially favour pathways that contain longer

genes. Testing if a pathway is over-represented in a list of genes is similar to testing

a two-by-two table for independence. This two-by-two table would summarise how

many genes are DE or not DE and in a pathway or not in a pathway.

Pathway p-value
Protein digestion and absorption 0.0018

Other types of O-glycan biosynthesis 0.0054

Caffeine metabolism 0.0139

Gastric acid secretion 0.0297

Sulfur metabolism 0.0300

Phosphatidylinositol signaling system 0.0425

ECM-receptor interaction 0.0481

GnRH signaling pathway 0.0491

Table 5.5: Table of results GOSeq – GOseq was used to perform a pathway over-
representation test on the list DE genes from Tshrink+. Listed are the path-
ways that had a p-value less than 0.05.

The results from the over-representation test can be observed in Table 5.5. The path-

ways listed in the table are consistent with what is known about the Notch signalling

pathway. Notch is known to regulate cellular metabolism and the switch between oxid-

ative phosphorylation and glycolysis in tumor cells (Landor et al., 2011). While nothing

on this list demands further investigation, it does provide confidence that the experi-

ment has signal.
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5.6.2 Integration of miRNA and mRNA data

As a further exploratory analysis, we are interested in identifying sets of genes that

share a similar functional outcome and are potentially being regulated by a miRNA.

Our proposed approach, pMimCor, has been applied to do just this. In the following

we will discuss some of the output from the application of pMimCor.

As discussed in Chapter 4, five of the top seven miRNA ranked by pMimCor for

a WT and NCN comparison have been associated with neurodegeneration in the lit-

erature. While the search performed was not very specific, this does provide some

optimism that there may be some signal in our data. In addition to this, it is hoped

that some of the miRNA we are identifying are playing an active regulatory role in

response to loss of Notch2 function. We identified 10 and 33 mir-pathways whose

miRNA appeared to be over and under expressed respectively in the NCN samples.

These mir-pathways were chosen with an arbitrary p-value cut-off of 0.01. Tables 5.6

and 5.6 list the top ten mir-pathways for each direction.

Table 5.6 lists the top ten mir-pathways whose miRNA appeared to be over expressed

in the NCN samples. In general it would not be surprising to see the genes in these

pathways down-regulated when Notch2 has been knocked out. Notch signalling gen-

erally promotes growth and inhibits differentiation and as such is implicated in many

cancers (Wang et al., 2006; Santagata et al., 2004; Balint et al., 2005). Notch signalling

has also been associated with amyotrophic lateral sclerosis (Praline et al., 2010) and is

known to regulate JAK-STAT (Kamakura et al., 2004) and MAPK (Ghai et al., 2010).

Table 5.7 lists the top ten mir-pathways whose miRNA appeared to be over expressed

in the NCN samples. Notch has been associated with immune response with the Notch

signalling pathway being implicated in the activation and proliferation of T cells and

the generation of MZ B cell precursors and mature MZ B cells (Yuan et al., 2010). The

vascular endothelial growth factor (VEGF) signalling pathway and the ErbB signalling

pathway, whose founding member is the epidermal growth factor receptor, are both

pathways that are associated with growth. As Notch signalling generally promotes

growth, this may provide evidence that these pathways have been activated to promote

growth in the absence of Notch. In addition to this, VEGF is thought to be a possible



5.7 conclusions and further discussion 89

miRNA pMimCor Tshrink+ Number of Pathway
p-value p-value targets

mmu-mir-760 0.0025 0.053 2 Pancreatic cancer
mmu-mir-760 0.0025 0.053 2 Chronic myeloid leukemia
mmu-mir-760 0.0029 0.053 2 Amyotrophic lateral sclerosis (ALS)
mmu-mir-760 0.0045 0.053 2 Jak-STAT signalling pathway
mmu-mir-760 0.0046 0.053 8 Pathways in cancer
mmu-mir-130a 0.0058 0.044 2 MAPK signalling pathway
mmu-mir-3475 0.0064 0.062 2 Oocyte meiosis
mmu-mir-29b 0.0075 0.1 3 Endometrial cancer
mmu-mir-23b 0.0083 0.056 2 Inositol phosphate metabolism
mmu-mir-760 0.0085 0.053 2 Acute myeloid leukemia

Table 5.6: Table of results from pMimCor for over expressed miRNA. – Listed are
the top ten mir-pathways found using pMimCor whose miRNA were over
expressed in the NCN samples. The corresponding miRNA and KEGG path-
way are listed, as well as, the p-value from pMimCor, the miRNA Tshrink+
p-value and the number of genes in the mir-pathway.

treatment for amyotrophic lateral sclerosis (Rothstein, 2009). As such this may also

provide evidence that this pathway has been activated in response to the loss of Notch

function and its down-stream signals.

Our methodology, pMimCor, can only be used as an exploratory tool from a biolo-

gical sense. As it uses correlations it can only test for associations between miRNA and

their target genes. Hence, it becomes difficult to know if the expression of the genes

in these pathways have been altered directly by known Notch signalling mechanisms

or if the identified miRNA are playing an active role in their regulation. Regardless,

pMimCor has potentially highlighted the mir-gene relationships that make functional

sense and warrant further investigation. Many of the gene pathways and associated

miRNAs having been associated with Notch signalling or neurodegeneration.

5.7 conclusions and further discussion

In this chapter we used a matched miRNA-Seq and mRNA-Seq experiment to illus-

trate the three statistical methodologies; exClust, Tshrink+ and pMimCor; that were

proposed in this thesis. As this particular experiment was exploratory in nature, there

does not exist any related gold standard experiments to use for comparison. However,

the behaviour of the three proposed methods when applied to this experiment ap-
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miRNA pMimCor Tshink+ Number of Pathway
p-value p-value targets

mmu-mir-200a 0.0014 0.019 2 Fc epsilon RI signalling pathway
mmu-mir-200a 0.0014 0.019 3 GnRH signalling pathway
mmu-mir-200a 0.0017 0.019 4 ErbB signalling pathway
mmu-mir-200a 0.0017 0.019 3 Gap junction
mmu-mir-96 0.0018 0.029 3 VEGF signalling pathway
mmu-mir-96 0.0018 0.029 4 Natural killer cell mediated cytotoxicity
mmu-mir-96 0.0018 0.029 4 T cell receptor signalling pathway
mmu-mir-96 0.0018 0.029 3 B cell receptor signalling pathway
mmu-mir-96 0.0018 0.029 7 Long-term potentiation

Table 5.7: Table of results from pMimCor for under expressed miRNA. – Listed are
the top ten mir-pathways found using pMimCor whose miRNA were under
expressed in the NCN samples. The corresponding miRNA and Kegg path-
way are listed, as well as, the p-value from pMimCor, the miRNA Tshrink+
p-value and the number of genes in the mir-pathway.

peared generally consistent with the behaviours observed in the evaluations in their

respective chapters. When applied to this experiment exClust included more than

twice as many reads as UI, Tshrink+ found more DE genes than Tshrink and pMim-

Cor produced results that were both interpretable and appear consistent with current

knowledge of Notch signalling. In addition to this, this study indicates that there is

biologically relevant signal in this experiment that warrants further attention.
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Developing methodologies that concurrently identify features that are statistically

and biologically relevant is a challenge faced in the fields associated with high-throughput

biotechnologies. This challenge is exacerbated by the large number of genes measured

by RNA-Seq along with small samples sizes, commonly referred to as a large-p small-

n problem. This thesis contributed to the development of such methodologies with

respect to RNA-Seq experiments, providing practical and biologically interpretable res-

ults in a low replication setting. The methodological solutions proposed further bridge

the gap between the notions of statistical significance and biological significance. This

is achieved by integrating data from several public repositories and annotation data-

bases related to the experimental data of interest.

This thesis was motivated by a collaboration with the Lin lab of Cornell University

and can be separated into three distinct statistical problems that arise when processing

and analysing RNA-Seq data. These include methods for the summarisation and dif-

ferential expression steps of a typical analysis, as well as, a framework for integrating

small sample miRNA-Seq and mRNA-Seq data. While the amount of publicly avail-

able RNA-Seq data has been increasing dramatically, there is a lack of gold standard

datasets making evaluation of methodology quite difficult. As a result many of the

evaluation approaches contained in this thesis are novel in their own right.

The concept of using experimental data to customise gene annotations was the

foundation of developing a novel summarisation method for gene counts in RNA-Seq

data. Estimating changes in the overall transcription of a gene with high through-

put sequencing is not straightforward and was addressed in Chapter 2. For example,

changes in overall gene transcription can easily be confounded with changes in exon

usage, which alter the lengths of transcripts produced by a gene. We proposed meas-

uring the expression of data-specific constitutive exons – exons which are consistently

conserved after splicing in the given dataset – as an unbiased estimation of the overall

transcription of a gene. This is in contrast to only measuring the expression of exons

which are annotated as constitutive in public databases.

We demonstrated that data-specific constitutive exons can be estimated using our

clustering-based method, exClust. When the exons from exClust were used to sum-

marise the reads from two real datasets, they summarised more than three times as
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many reads as the standard UI method (Bullard et al., 2010) and also improved con-

cordance with qRT-PCR data. Our method is shown to produce robust estimates of

overall gene transcription when compared with other methods. The results from this

chapter have been published in (Patrick et al., 2013a).

Basic molecular biology experiments focusing on identifying differentially expressed

genes are still commonly faced with small sample sizes. Estimating robust variances

of gene expression estimates, in order to call differential expression, is challenging

in the presence of low replication. We demonstrated in Chapter 3 that the wealth of

publicly available gene expression data generated over the past ten to fifteen years

can be leveraged to make improvements in the variance estimation of genes when

combined with our novel moderation methodology, Tshrink+. The general concept of

data integration is a popular concept in theory but challenging in its implementation.

Furthermore, the selection of appropriate external information is a challenge in itself.

Our proposed moderation methodology provides both a means of integrating and

assessing the utility of external information.

Using biological data we demonstrated that incorporating additional external in-

formation can improve the modelling of the common variance and hence the calling

of differentially expressed genes. These sources of additional information include gene

length and gene-wise sample variances from other RNA-Seq and microarray datasets,

of both related and seemingly unrelated tissue types. Demonstrating that seemingly

unrelated tissue types still can contribute information exemplifies the value of having

an approach for assessing the appropriateness of external information. It also opens

up the opportunity of utilising wider sources of external information in more situ-

ations. The results were promising, with our differential expression test, Tshrink+, per-

forming favourably when compared to existing methods such as DESeq (Anders and

Huber, 2010) and edgeR (Robinson et al., 2010) when considering both gene ranking

and sensitivity. These results have been published in (Patrick et al., 2013b).

Extracting information from multiple data sources is a statistically challenging prob-

lem. In Chapter 4 a framework for integrating small sample miRNA-Seq and mRNA-

Seq data was presented. The mouse genome has about 24000 mRNA families (genes)

and 1000 annotated microRNA (miRNA) making any analysis and interpretation of the
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interaction between these two classes of RNA molecules a daunting task. We developed

a supervised framework for integrating various databases of prior knowledge with ex-

perimental data to build meaningful and interpretable models of miRNA-mRNA regu-

lation. This framework was used to develop three methodologies; cMimDE, pMimDE

and pMimCor.

The pMimDE and pMimCor methods provide novel approaches for the joint estim-

ation and ranking of interesting miRNAs, their target genes and their associated biolo-

gical functions. It was demonstrated that the KEGG pathway database (Kanehisa et al.,

2012) is enriched for genes that are predicted to be targets of miRNAs by TargetScan

(Lewis et al., 2005). By using these databases to pre-define potential regulatory relation-

ships we showed that they identify more differentially expressed relationships than

expected by chance in a matched miRNA- and mRNA-Seq experiment. These differ-

entially expressed relationships contain many miRNA that have been associated with

the experimental conditions in other literature. We conclude that not only does pMim-

Cor identify more interesting miRNA than other approaches but the miRNA-mRNA

relationships are inherently more interpretable. Various results from this chapter were

published in (Yang et al., 2013) and have been presented at WNAR 2013 and AustMS

2013.

We concluded the thesis by implementing our proposed methodologies on our own

experiment. In collaboration with the Lin lab of Cornell University we designed an

experiment to assess how miRNA and mRNA may interact in a conditional knockout

mouse model. Due to the complications with breeding these mice, our experiment suf-

fers from low replication and is consistent with the primary motivation for this thesis.

When applied to this experiment, the behaviours of our proposed methodologies were

concordant with those observed in their respective chapters. In addition to this, using

these methods we were able to identify interpretable signal in the experiment that is

functionally consistent with domain knowledge. In summary, despite the presence of

low replication, our proposed statistical methodologies are able to identify biologically

relevant signal within a RNA-Seq experiment.
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a.1 detection of differential alternative splicing

For the purpose of evaluating our method it would be useful to know if the relative

abundances of gene isoforms has changed in two conditions. It is in this situation that

comparing the overall expression of a gene in two conditions will be confounded by

the changes in lengths of the isoforms. In comparisons across samples and/or con-

ditions, it is standard to test for changes between the samples or conditions in total

gene expression; that is, to test for “differential expression” of each gene. When we

consider alternative splicing and the multiple isoforms this can produce, it is also of

interest to test a gene for changes between the samples or conditions in the relative

abundances of its isoforms. We will adopt the terminology used in (Xing et al., 2008)

and call such tests, tests for differential alternative splicing. One such test is the Differ-

ential Alternative uSage Index (DASI) described in (Richard et al., 2010) which equates

to a Fisher’s exact test. DASI takes as input the exon counts for a gene and tests for

independence between condition and relative exon expression and is appropriate for

Poisson distributed data.

a.2 additional figures and tables

log fold changes qRT-PCR Union UI exClust Cufflinks
ENSG00000103769 -0.26 0.17 -0.12 -0.26 -0.26

ENSG00000076662 -6.34 -1.77 -1.77 -2.04 -2.78

Table A.1: Log fold changes for different summarisation methods – For two genes,
ENSG00000103769 and ENSG00000076662, log fold changes are reported for
four summarisation methods and qRT-PCR from the MAQC dataset.
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(a) MAQC (b) Wang

Figure A.1: Verification of the Poisson assumption for the MAQC and Wang data –
The squared standardised residuals are plotted against the average for each
gene in the a) MAQC and b) Wang datasets. The blue line is the y = x line.
The red circles correspond to the fitted points found using local smoothing.
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Figure A.2: Gene exon counts – For two genes, a) ENSG00000103769 and b)
ENSG00000076662, the exon counts for each sample are plotted. The first
seven samples are brain and the second seven are UHR. A line is drawn
between the points to make the behaviour of each exon easier to follow.
Highlighted in red are the UI exons and dashed blue are the exClust ex-
ons.
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b.1 normalisation for bottomly dataset

b.1.1 GC content

In order to model the disparate library sizes observed in the data and the biases of

PCR amplification driven by the GC content of the sequences, a cyclic robust linear

model was used. Using the first sample in the dataset as a reference, M values were

calculated for each gene in the remaining samples and a straight line was fitted through

the M-value vs GC-content space. The M-values were then normalised to this line.

b.1.2 Other Technical effects

In order to normalise out any remaining technical effects the following approach is

taken. In principal this approach is similar to that described for normalising out the

GC content bias. The first six steps essentially estimate those sets of genes that may

be influenced by some technical component of the analysis (ie high GC content genes

or low GC content genes). This is done in such a way as to hopefully avoid selecting

genes associated with the biological conditions of interest. The last step corrects for

this technical effect.

• The pooled correlations of the counts for house-keeping genes are calculated.

• Hierarchical clustering is performed using the distance 1 - correlation.

• Tree is cut into k groups (we arbitrarily choose k equal to four).

• For all genes, within condition residuals of the log counts are calculated.

• LDA trained on house-keeping genes using groups from clustering, this is then

used to classify all genes into groups.

• The posterior probability of a gene belonging to a particular group is converted

to a quantile value of the normal distribution (Q-values).
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• Genes are then normalised to the loess curve that is fitted through the pair-wise

MQ plots. (M-values vs Q-values) using the first sample as a reference.

Figure B.1 illustrates the performance of our normalisation method (loess) compare

to using RUV (Gagnon-Bartsch and Speed, 2012), SVA (Leek et al., 2012) and no norm-

alisation. Results from an experiment using Affymetrix arrays and illumina arrays are

used as truth. While not conclusive our method has the highest area under the ROC

for both array types. Figure B.2 plot the log variance of the within sample gene ranks

for the normalisation approaches. All normalisation approaches reduce the variance of

the ranks.
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Figure B.1: ROC of normalised data using arrays as truth – Average TPR and FPR are
calculated from 100 random four B6 vs four D2 mouse striatum compar-
isons for four normalisation methods using results from an a) Affymetrix
and b) Illumina array as truth. These are plotted against each other to form
ROC curves. For any given FPR a method with a larger TPR is deemed to
have ranked the genes better.

b.2 additional figures
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Figure B.2: Boxplots of log variances –Boxplots of the log variance of the within
sample gene ranks for four normalisation methods. All normalisation meth-
ods on average reduce the variance of the ranking of the genes.
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Figure B.3: Residual plots for the MAQC and Wang data – Average TPR and FPR are
calculated from a) 100 random four B6 vs four D2 mouse striatum com-
parisons and b) 100 random five vs five D2 mouse striatum comparisons
for six DE methods. These are calculated using results from an Affymetrix
array experiment as truth. The TPR and FPR are plotted against each other
to form ROC curves and displayed in the region for FPR less than 0.1 as
this is most relevant for calling DE. For any given FPR a method with a
larger TPR is deemed to have ranked the genes better. T and Tshrink both
improve in performance relative to edgeR and DESeq when moving from
the four vs four comparison to the five vs five comparison.
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c.1 additional figures

The ROC curves generated from the literature search can be seen in Figure C.1. While

the full ROC plots may not be assuring, it is important to remember that our measure

of truth is approximate in nature. However, all three integration methods (cMimDE,

pMimDE and pMimCor) perform better for small FPR when compared to just using

the miRNA data. The results from pMimCor are better than random for most of the

curve, the area under the curve being 0.62.
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Figure C.1: ROC plot from PubMed search – ROC curves are plotted for various
methods as decribed in Literature search strategy. The search term used is
neurodegeneration. True Positive Rates (TPR) are plotted against False Pos-
itive Rates (FPR) for four methods, miRNA DE (black), cMimDE (blue),
pMimDE (green) and pMimCor (red).
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