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Abstract

Mode conversion processes in plasmas allow wave energy to be transferred

between two or more different wave modes, and are often invoked in theories of

space and astrophysical phenomena. For instance, electrostatic Langmuir waves

which are trapped in the solar wind plasma can be converted to electromagnetic

radiation and produce radio bursts, which can propagate through the plasma

and thus be observed remotely.

In environments where mode conversion has been invoked there is often a

significant ambient magnetic field. This modifies the dispersion relations of the

wave modes and can result in additional wave modes. However, magnetization

effects have been neglected in the analyses of certain mode conversion processes.

This thesis presents a number of investigations into mode conversion pro-

cesses as they occur in magnetized plasmas, focusing on the magnetization of

the Langmuir mode. The structure of the thesis is as follows. Chapter 1 in-

troduces the relevant plasma theory and presents an overview of space physics

phenomena for which mode conversion has been proposed. It summarizes the

relevant observations and the associated theoretical interpretations. Chapter 2

investigates a certain mode conversion process that was stated to occur in the

magnetized plasma of the Earth’s auroral ionosphere. It is shown that mode

conversion, in this case, is not necessary to account for observations. Instead,

magnetization causes a change in mode characteristics that allows the waves

to evolve in character as they propagate, without any mode conversion. Chap-

ter 3 presents the first calculations of the kinematics for electrostatic decay of

Langmuir waves in a weakly magnetized plasma, which are then implemented in

quasilinear simulations of wave growth in the source regions of type III solar ra-

dio bursts. Magnetization is found to significantly affect the decay process. Ap-

plications to a variety of space and astrophysical phenomena are then proposed.

Chapter 4 contains a detailed investigation into the kinematics of three-wave

processes, where decay in two dimensions and in strongly magnetized plasmas

are considered. Chapter 5 presents further quasi-linear simulations of magne-

tized electrostatic decay, where the dependences of the wave fields and energy

densities on various plasma parameters are investigated. Chapter 6 summa-

rizes the work presented in this thesis and discusses avenues for possible future

research.

vii





Contents

1 Literature review 1

1.1 Plasma waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Thermal unmagnetized modes . . . . . . . . . . . . . . . 2

1.1.2 Magnetoionic and cold plasma modes . . . . . . . . . . . 3

1.1.3 Warm magnetized modes . . . . . . . . . . . . . . . . . . 4

1.2 Wave growth and damping . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Collisionless damping . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Collisional damping . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Quasilinear theory . . . . . . . . . . . . . . . . . . . . . 7

1.3 Mode Conversion in Plasmas . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Linear mode conversion . . . . . . . . . . . . . . . . . . 9

1.3.2 Three-wave processes . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Four-wave processes . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Langmuir eigenmodes . . . . . . . . . . . . . . . . . . . . 12

1.4 Observational context . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Auroral waves . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Solar type III bursts . . . . . . . . . . . . . . . . . . . . 15

2 Changes in mode properties versus mode conversion for waves

in Earth’s auroral ionosphere 19

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Plasma theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Auroral waves of Beghin et al. . . . . . . . . . . . . . . . . . . . 24

2.4.1 Mode conversion . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Wideband and narrowband polarization . . . . . . . . . 31

2.5 Auroral waves of McAdams et al., and McAdams and LaBelle . 35

2.5.1 Mode conversion . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Dispersion relations . . . . . . . . . . . . . . . . . . . . . 37

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



3 Electrostatic decay in a magnetized plasma 41

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Derivation of kinematics . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Kinematics of decay in magnetized plasmas 53

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Wave modes in warm magnetized plasmas . . . . . . . . . . . . 54

4.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Kinematics in unmagnetized plasmas . . . . . . . . . . . . . . . 55

4.5.1 Decay in 1D . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.2 Decay in 2D . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Kinematics in weakly magnetized plasmas . . . . . . . . . . . . 58

4.6.1 Decay in 1D, wave vectors perpendicular to B0 . . . . . 58

4.6.2 Decay in 2D, primary wave vector parallel to B0 . . . . . 63

4.6.3 Decay in 2D, primary wave vector perpendicular to B0 . 68

4.6.4 Decay in 2D, primary wave vector oblique to B0 . . . . . 68

4.7 Kinematics in strongly magnetized plasmas . . . . . . . . . . . . 72

4.7.1 Low-frequency modes . . . . . . . . . . . . . . . . . . . . 72

4.7.2 Decay in 1D, wave vectors parallel to B0 . . . . . . . . . 73

4.7.3 Decay in 1D, wave vectors perpendicular to B0 . . . . . 75

4.7.4 Decay in 2D, primary wave vector parallel to B0 . . . . . 75

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Quasilinear simulations of type III radio bursts with magne-

tized electrostatic decay 81

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Quasilinear equations . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Nonlinear rates . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Source and implementation . . . . . . . . . . . . . . . . 85

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Dependence on density well parameters . . . . . . . . . . 92

x



5.4.2 Dependence on kc . . . . . . . . . . . . . . . . . . . . . . 97

5.4.3 Dependence on ∆kc/kc . . . . . . . . . . . . . . . . . . . 98

5.4.4 Dependence on Ti/Te . . . . . . . . . . . . . . . . . . . . 98

5.4.5 Dependence on Emax . . . . . . . . . . . . . . . . . . . . 98

5.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . 100

6 Concluding remarks and future directions 101

Bibliography 103

xi





Chapter 1

Literature review

In this chapter we introduce the plasma theory that underlies the following

chapters and present an overview of the literature on these topics. The structure

of this chapter is as follows. Section 1.1 introduces waves in plasmas and their

properties. Section 1.2 discusses plasma wave energetics; i.e., their growth and

damping by particles. Section 1.3 discusses mode conversion processes, in which

wave energy in one mode is converted to energy in other modes. Section 1.4

presents the observational contexts where these plasma waves and conversion

processes occur, as well as open questions about their mechanisms that are the

subject of the following chapters.

1.1 Plasma waves

Plasmas support a variety of wave modes, which are the natural modes of oscil-

lation of wave fields and particles. These are described by Maxwell’s equations,

which in Fourier form are

k× E(ω,k) =ωB(ω,k), (1.1)

k×B(ω,k) =− ωE(ω,k)/c2 − iµ0J(ω,k), (1.2)

k · E(ω,k) =− iρ(ω,k)/ǫ0, (1.3)

k ·B(ω,k) =0. (1.4)

Here E and B are the electric and magnetic fields, ρ and J are the charge and

current densities, ǫ0 and µ0 are the permittivity and permeability of free space,

and ω and k are the (angular) frequency and wave vector of the fluctuating

quantities. Equations (1.1)–(1.4) can be reduced to a single equation (the

“wave equation”),
ω2

c2
E+ k× (k× E) = −iωµ0J, (1.5)

1



Ch. 1 Literature review

regarding the magnetic field and charge density as subidiary quantities deter-

mined by B = k × E/ω and ρ = k · J/ω, respectively. A wave mode M is a

solution to (1.5) characterized by its dispersion relation ωM(k) and its polar-

ization vector eM(k) := E/E. Longitudinally polarized waves have k×eM = 0

and so from (1.1) are electrostatic (i.e., B = 0), whereas purely transverse

waves have k · eM = 0 and are electromagnetic. Solutions of the wave equation

are determined by the plasma’s dielectric response tensor, which relates E lin-

early to the induced current J and depends on such properties as temperature,

particle species and density, and the presence or absence of significant ambient

magnetic fields.

In the Vlasov approach [Vlasov , 1968; Melrose, 1986a], the dielectric tensor

is derived in terms of the particle velocity distribution f(v), which is assumed

to satisfy the collisionless Boltzmann equation with the electromagnetic fields

calculated self-consistently. For an unmagnetized and fully ionized electron-ion

Maxwellian plasma this gives three weakly damped modes: Langmuir, trans-

verse, and ion sound modes.

A less general approach involves the fluid description of the plasma, in which

the response is described in terms of the moments of f(v) such as the mean

density and flow velocity. Neglecting thermal motions yields the magnetoionic

modes for an electron fluid, or the cold plasma modes if multiple particle species

are present.

We discuss the properties of these modes below, as well as the case where

both magnetization and thermal effects are retained.

1.1.1 Thermal unmagnetized modes

The Langmuir mode is an electrostatic mode in which ions are essentially static

but the electrons and electric field oscillate with frequency ωL and wavenumber

k related via the dispersion relation (e.g. Chen [1974])

ωL(k) = (ω2
p + 3k2V 2

e )
1/2. (1.6)

Here ωp =
√

e2ne/meǫ0 is the (electron) plasma frequency, e is the charge of

the electron, ne is the electron number density, me is the mass of the electron,

Ve =
√

kBTe/me is the electron thermal speed, kB is Boltzmann’s constant,

and Te is the electron temperature. Dispersion relations for this mode and the

following modes are shown in Fig. 1.1.

The transverse mode in a plasma is the counterpart of the free-space elec-

2
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Figure 1.1: Dispersion relations for Langmuir (L), transverse (T), and ion

sound (S) modes in an unmagnetized thermal plasma. Langmuir and transverse

frequencies are normalized by ωp whereas the ion sound frequency is normalized

by ωpi = (me/mi)
1/2ωp ≈ ωp/43.

tromagnetic mode, with dispersion relation (e.g. Chen [1974])

ωT (k) = (ω2
p + k2c2)1/2, (1.7)

where c is the speed of light. Radio waves and other “light waves” exist in the

transverse mode (and its magnetized counterparts).

The ion sound mode is a low-frequency electrostatic mode with dispersion

relation

ωS(k) =
kvS

√

1 + k2λ2D
, (1.8)

where vS = Ve
√

γme/mi is the ion sound speed, mi is the ion mass, γ =

1 + 3Ti/Te, Ti is the ion temperature, and λD = Ve/ωp is the Debye length. In

the long-wavelength limit kλD ≪ 1, (1.8) becomes

ωS = kvS. (1.9)

1.1.2 Magnetoionic and cold plasma modes

Magnetoionic theory [Appleton, 1932] models the plasma as a cold, magnetized

electron fluid, thereby ignoring ion effects. In this case there are four wave

modes: o, x, z, and whistler. The o and x modes are magnetized counterparts

3



Ch. 1 Literature review

of the transverse mode and are left- and right-hand circularly polarized, re-

spectively. The o mode is the lower-frequency mode and has a cutoff frequency

of ωp, whereas the x mode has a cutoff frequency of 1
2
Ωe +

1
2

√

Ω2
e + 4ω2

p, where

Ωe = eB/me is the electron cyclotron frequency and B is the magnetic field

strength.

The z mode has a cutoff frequency of −1
2
Ωe +

1
2

√

Ω2
e + 4ω2

p and resonance

frequencies of ωp for parallel propagation and ωuh =
√

ω2
p + Ω2

e for perpen-

dicular propagation. Here ωuh is termed the upper hybrid frequency. The

polarization of the z mode is left-handed below ωp and right-handed above ωp.

When Ωe = 0 the z mode dispersion relation reduces to ω(k) = ωp; i.e., the

unmagnetized Langmuir mode (1.6) described above but with Ve = 0.

The whistler mode has no counterpart in unmagnetized plasma theory. It

has right-hand polarization and is restricted to frequencies below the minimum

of ωp and Ωe.

The generalization of magnetoionic theory to multiple particle species is

known as cold plasma theory [Åström, 1950]. Specifically, the magnetoionic

modes become modified at frequencies on the order of the ion plasma frequency

ωpi = ωp

√

me/mi and the ion cyclotron frequency Ωi = qiB/mi, while new

modes appear. These include a magnetized ion sound mode, the Alfvén mode,

and cyclotron modes for each of the ion species present.

1.1.3 Warm magnetized modes

The mode structure for the case of a warm magnetized plasma is more compli-

cated than for the unmagnetized or cold plasma approximations. Specifically,

it is not immediately clear whether the modes derived in these two approxima-

tions remain separate or combine when both magnetization and thermal effects

are important. Recently, numerical solutions of the Vlasov dispersion equation

obtained by Willes and Cairns [2000] have confirmed analytic arguments (e.g.

Melrose [1980a]) for the existence of a generalized Langmuir mode. At large k

this mode has Langmuir-like dispersion and for small k combines with either

the z mode or the whistler mode for weakly magnetized (Ωe < ωp) or strongly

magnetized (Ωe > ωp) plasmas, respectively. These generalized modes are of-

ten termed the Langmuir-z and Langmuir-whistler modes. Typical dispersion

relations for these modes are presented in Fig. 1.2, for both strongly and weakly

magnetized plasmas.

The polarization characteristics of the Langmuir-z and Langmuir-whistler

modes also have important differences from the Langmuir mode. As demon-

4



Figure 1.2: Exact solutions of the linear Vlasov dispersion equation, for Ωe =

0.5ωp and Ωe = 2ωp, with θ = 10◦, Ve/c = 4.5 × 10−2, and a weak beam

(nb/ne = 10−3) of speed vb = 5Ve [Willes and Cairns , 2000]. (a) Dispersion

relations ω/ωp and growth rates γ/ωp, where the solid (dotted) line represents

the mode that is z-mode-like (whistler-like) at low k. A beam mode represented

by a dashed line also exists but is unimportant for this literature review. (b)

The normalized magnitude of the perpendicular electric field, E⊥/E. (c) The

handedness parameter h which is positive (negative) for right-hand (left-hand)

polarized waves. (d) Dimensionless ratio of wave magnetic to electric field

strengths, cB/E.
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Ch. 1 Literature review

strated in Fig 1.2, at large k these modes are electrostatic like the Langmuir

mode, but at small k are electromagnetic like the magnetoionic z and whistler

modes [Willes and Cairns , 2000]. Thus, a mechanism that shifts Langmuir

waves from high to low k can result in development of electromagnetic polar-

ization. In Chapters 3–5 this is discussed with respect to recent STEREO obser-

vations of Langmuir wave polarization in type III solar radio bursts [Malaspina

et al., 2010].

1.2 Wave growth and damping

1.2.1 Collisionless damping

Interaction between plasma particles and waves can result in energy transfer

between them. Consider a charged particle of velocity v moving in the electric

field of a wave with frequency ω, wave vector k, and phase velocity vφ = ω/k. If

the component of v parallel to k (which we denote as v‖) approximately equals

vφ, then the particle experiences a nearly static electric field that will accelerate

or decelerate the particle depending on the phase of the wave; this transfers

energy from wave to the particle, or the particle to the wave, respectively. This

situation results in the so-called Cherenkov resonance, which can be stated as

ω − k · v = 0.

Analysis of first and second order perturbations of the equation of motion

[Melrose, 1986a] shows that particles with v‖ slightly smaller than vφ tend

to be accelerated, whereas those with v‖ slightly larger than vφ tend to be

decelerated. If ∂f/∂v|v=vφ < 0 then there are more particles that gain energy

from the waves than lose energy, resulting in a net transfer of energy from

the waves to the particles. This collisionless damping process is known as

Landau damping [Landau, 1946]. In a Maxwellian plasma, Landau damping of

Langmuir waves takes the form

γL(k) =

(

π

2

)1/2
ω4
L(k)

k3V 3
e

exp

[

− ω2
L(k)

2k2V 2
e

]

. (1.10)

The inverse process occurs when ∂f/∂v|v=vφ > 0 and results in energy trans-

fer to the waves. It is referred to as a bump-on-tail (or beam or streaming)

instability if the nonthermal particles are from an electron beam.

In a magnetized plasma the appropriate resonance condition for particles

of species α is no longer the Cherenkov resonance condition but the gyroreso-

nance condition ω − k||v|| − sΩe(1− v2/c2)1/2 = 0, where s is an integer and ||

6



denotes components parallel to the magnetic field B. Growth or damping as-

sociated with this resonance is referred to as cyclotron emission or absorption,

respectively.

1.2.2 Collisional damping

Charged plasma particles in close proximity scatter each other through electro-

static interactions termed collisions. The frequency of electron-ion collisions is

(e.g., Chen [1974])

ν =
ω2
pqie

4πǫ0meV 3
e

log Λ, (1.11)

where qi is the ion charge and log Λ ≈ 10 is the Coulomb logarithm. Such

collisions can attenuate waves by damping the oscillations of the associated

particle species. Collisional processes dominate in cold and dense plasmas,

where ν ≫ ωp,Ωe; they are negligible for hot and diffuse plasmas. Plasma

parameters for ionospheric and space plasmas are predominantly of the latter

kind and thus collisional processes will be neglected in this thesis.

1.2.3 Quasilinear theory

Quasilinear theory [Drummond and Pines , 1962; Vedenov et al., 1962] mod-

els the coupled evolution of an ensemble of waves and particles, including the

effects of emission and absorption of waves by the particles. An essential as-

sumption in this theory is “weak turbulence”: namely, the wave energies are

sufficiently small that phase information is unimportant. This allows phase to

be averaged over so that wave interactions can be described solely in terms

of their intensities [Robinson, 1997]. A semiclassical formalism can then be

employed, in which waves in a mode M are regarded as a collection of wave

quanta, each with momentum ~k and energy ~ωM(k). An occupation number

NM(k) is then defined as the number density of quanta in the range d3k of

k. The one-dimensional quasilinear equations for N(k) and f(v) are [Melrose,

1986a]

dN(k)

dt
= α(k)− γ(k)N(k), (1.12)

df(v)

dt
=

∂

∂v

[

A(v)f(v) +D(v)
∂f(v)

∂v

]

, (1.13)

7
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where

α(k) =
e2

4ǫ0~

v3

V 2
e

(1− k2λ2D)f(v)

∣

∣

∣

∣

v=ω/k

, (1.14)

γ(k) = − πe2

meǫ0

v3

V 2
e

kλ2D
∂f(v)

∂v

∣

∣

∣

∣

v=ω/k

, (1.15)

A(v) =
e2

8πmeǫ0

v2

V 2
e

k2(1− k2λ2D)

∣

∣

∣

∣

k=ω/v

, (1.16)

D(v) =
e2~

2m2
eǫ0

v2

V 2
e

k3λ2DN(k)

∣

∣

∣

∣

k=ω/v

. (1.17)

Here D is a diffusion coefficient, γ is the damping rate associated with stimu-

lated absorption and emission (which is proportional to the wave levels), where

γ > 0 (γ < 0) corresponds to Landau damping (growth), and α and A are co-

efficients related to spontaneous emission (which are independent of the wave

levels). Collisional damping processes can also be included by introducing ap-

propriate terms into (1.12).

Equations (1.12)–(1.17) contain a mechanism known as quasilinear relax-

ation by which waves can react back on the particles. Consider an unstable

particle distribution, i.e., one with ∂f/∂v|v=u > 0 for some u. From (1.15)

this gives γ(k)|k=ω/u < 0, causing exponential growth of N(k)|k=ω/u via (1.12)

(neglecting spontaneous emission). Since D(u) is proportional to N(k)|k=ω/u

from (1.17) there is greater particle-velocity diffusion in (1.13), which flattens

f(v) about v = u and thus saturates the instability.

Another approach is to find asymptotic solutions for f(v) by solving (1.13)

with ∂f/∂t = 0. Provided spontaneous emission terms are neglected (i.e.,

A(v) = α(k) = 0) one obtains a steady-state solution ∂f(v)/∂v = 0, corre-

sponding to a “plateau” distribution with f(v) constant over some region of

velocity space and zero elsewhere. If spontaneous emission terms are included

then no such stable state exists, but numerical simulations of the quasilinear

equations [Grognard , 1975] qualitatively resemble the asymptotic solutions at

times much greater than the growth time and before spontaneous emission has

become important.

Quasilinear relaxation is expected to saturate instabilities unless some pro-

cess removes waves from resonance before they reach significant levels. Such

suppression mechanisms can include linear and nonlinear processes, which are

discussed in the following section.
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1.3 Mode Conversion in Plasmas

Mode conversion is the transfer of energy between different wave modes. There

are many mode conversion mechanisms in plasmas and their efficiencies depend

either linearly or nonlinearly on the amplitudes of the participating wave fields.

Here we discuss some examples of linear and nonlinear conversion processes.

1.3.1 Linear mode conversion

Plasmas with uniform density have wave modes that are distinct and uncoupled.

However, the presence of density fluctuations can introduce complex-valued

modes that connect previously uncoupled modes in frequency-wavevector space

[Kim et al., 2007]. Wave energy entering the inhomogeneous region in one mode

can tunnel via these complex modes and be reflected in a different mode, in

a process known as linear mode conversion [Field , 1956; Budden and Jones ,

1986; Hinkel-Lipsker et al., 1992; Yin et al., 1998].

Linear mode conversion is relevant to a variety of modes, including mag-

netohydrodynamic modes such as the Alfvén mode [Stix , 1992], but here we

focus on the magnetoionic and warm plasma modes. The coupling between

Langmuir-z and o modes in particular has been invoked in a number of con-

texts: producing the “z trace” in ionospheric modification experiments [Ellis ,

1956; Budden, 1985]; converting beam-driven Langmuir waves to radiation in

type III solar radio bursts [Field , 1956; Willes and Cairns , 2001; Kim et al.,

2007]; and as a mechanism for generating nonthermal continuum radiation

in planetary magnetospheres [Jones , 1976a; Budden and Jones , 1986; Leblanc

et al., 1986] and for the ionospheric “auroral roar” emissions [LaBelle et al.,

1995; Weatherwax et al., 1995; Yoon et al., 1998; Willes and Cairns , 2003].

1.3.2 Three-wave processes

Three-wave processes are nonlinear instabilities involving the decay of a wave

into two product waves, or the coalescence of two waves to produce a third

[Tsytovich, 1970; Davidson, 1972;Melrose, 1986a]. These can be represented by

M → P+Q andM+P → Q respectively, whereM , P , andQ correspond to the

participating waves, each in a particular mode. If the bandwidth of the waves

is small relative to the nonlinear growth rate, then the waves remain phase-

coherent over timescales comparable with the instability. A so-called strong

turbulence description must then be used, with the appropriate equations being

9
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the Zakharov equations [Zakharov , 1972]. Conversely, if the waves have a

relatively large bandwidth, then the waves’ fast decoherence renders phase

information unimportant and one can use the random-phase approximation to

obtain a weak-turbulence (or random-phase) description of the instability with

a semiclassical formalism (cf. Sec. 1.2.3). This approach allows conservation

of energy and momentum to be imposed on a microscopic level to obtain the

kinematics of the process. Different space physics contexts will favor either

weak or strong turbulence processes depending on the intensity and bandwidth

of the waves, though weak turbulence processes are thought to be dominant

in Earth’s foreshock [Cairns et al., 1998], planetary foreshocks [Cairns and

Robinson, 1992], and type II and III radio bursts [Cairns and Robinson, 1998;

Knock et al., 2001].

Electrostatic decay is a weak-turbulence process in which a Langmuir wave

L decays to another Langmuir wave L′ and an ion sound wave S (i.e., L →
L′ + S). Conservation of energy and momentum gives

ωL = ωL′ + ωS, (1.18)

kL = kL′ + kS, (1.19)

respectively. For an unmagnetized plasma, dispersion relations (1.6) and (1.9)

are substituted into (1.18) and (1.19) to obtain the kinematics. When kL

and kL′ are anti-parallel the rate of the process is maximized [Melrose, 1980a;

Cairns , 1987a; Robinson et al., 1993a], and the kinematics are given by

kL′ = −kL + k0, (1.20)

kS = 2kL − k0, (1.21)

where k0 = 2ωpvS/3V
2
e .

The nonlinear rate of electrostatic decay in the weak-turbulence regime can

be obtained by appealing to detailed balance, which relates the rate of emission

of waves to the rate of absorption. One can then derive the kinetic equations

for the process M → P +Q (e.g. Tsytovich [1966]; Melrose [1980a, 1986a]):

∂NM(k)

∂t
=

∫

d3k′

(2π)3
d3k′′

(2π)3
uMPQ(k,k

′,k′′)

× [NP (k
′)NQ(k

′′)−NM(k){NP (k
′)NQ(k

′′)}], (1.22)

∂NP (k
′)

∂t
= −

∫

d3k

(2π)3
d3k′′

(2π)3
uMPQ(k,k

′,k′′)

× [NP (k
′)NQ(k

′′)−NM(k){NP (k
′)NQ(k

′′)}], (1.23)
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∂NQ(k
′′)

∂t
= −

∫

d3k

(2π)3
d3k′

(2π)3
uMPQ(k,k

′,k′′)

× [NP (k
′)NQ(k

′′)−NM(k){NP (k
′)NQ(k

′′)}], (1.24)

where uMPQ is proportional to the probability of the transition M → P + Q

(which is equal to the probability of the transition P +Q→M).

A closely related process to electrostatic decay is electromagnetic decay,

represented by L ± S → T (which collectively denotes L + S → T and L →
S+T ), where T is a transverse wave. Proceeding in the same manner as before,

the kinematics are given by [Cairns , 1987b]

kT ≈
√
3
Ve
c
kL, kS ≈ kL. (1.25)

Equivalent phase-coherent (parametric) versions of the above processes also

exist [Melrose, 1986b] with identical kinematics but different growth rates.

In addition, for the above electrostatic and electromagnetic decay processes,

the collective ion sound wave response can be replaced by the single particle

response of a thermal ion. These processes are termed scattering off thermal

ions [Tsytovich, 1970; Melrose, 1980a; Muschietti and Dum, 1991]. Here, a

Langmuir wave scatters off the polarization cloud of an ion into either the

Langmuir mode or the transverse mode.

The kinematics and dynamics of electrostatic decay has thus far in the lit-

erature been considered only in the unmagnetized limit. However, solutions of

the wave equation in magnetized plasmas [Willes and Cairns , 2000], as well as

in situ observations in the terrestrial foreshock [Bale et al., 1998], show that

plasma magnetization can significantly modifiy dispersion and polarization of

the Langmuir mode (cf. 1.1.3). Furthermore, the range of validity for the un-

magnetized approximation has not yet been addressed. In Chapters 3–5 we

investigate the effect of magnetization on electrostatic decay through calcula-

tions of kinematics and quasilinear simulations.

1.3.3 Four-wave processes

While three-wave processes dominate in weak-turbulence theory, four-wave pro-

cesses are important in strong turbulence when the waves have small k [Za-

kharov , 1972; Robinson, 1997]. One class of four-wave interactions is mod-

ulational instabilities, in which a spatially uniform Langmuir wave envelope

breaks up into shorter wavelengths [Vedenov and Rudakov , 1964; Vladimirov

et al., 1995], corresponding to wave energy being pumped to larger k.

11
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In the semiclassical framework, modulational instabilities correspond to two

Langmuir quanta exchanging an ion sound quantum [Melrose, 1986a; Robinson,

1997]. Classically, localized enhancements in the electric field energy density

of Langmuir waves expel plasma: firstly the more mobile electrons electrons

via the ponderomotive force, then the ions through the resulting ambipolar

electric field. This lower plasma frequency increases the refractive index of

the Langmuir waves in that region, so they will refract into these cavities,

resulting in self-focusing. This further intensifies and confines the Langmuir

waves, fuelling the instability. This process can cause runaway wave collapse,

where the waves are trapped in density wells of increasingly smaller length

scales, increasing k until the waves are dissipated by Landau damping and

transit time damping (both of which increase with k).

1.3.4 Langmuir eigenmodes

In the presence of density cavities or enhancements, localization of Langmuir

waves can occur. This behavior can be described through the high-frequency

Zakharov equation [Ergun et al., 2008], assuming a preexisting density struc-

ture, e.g., a parabolic density cavity. The resulting equation for the wave elec-

tric field is analogous to the Schrodinger equation, the solutions of which are a

set of discrete frequencies and associated eigenmode solutions. Localized Lang-

muir waves with fine frequency structure in the auroral ionosphere [McAdams

et al., 2000; Yoon and LaBelle, 2005] and the solar wind [Ergun et al., 2008;

Malaspina and Ergun, 2008; Hess et al., 2010; Graham and Cairns , 2013a] have

been interpreted in terms of these eigenmodes. Langmuir waves in eigenmodes

can either be driven directly [Hess et al., 2010] or form as the result of decay

processes producing a low wavenumber condensate [Henri et al., 2011] or result

from refraction into density wells as in wave collapse. Stable eigenmodes are

of necessity below the threshold energy density for wave collase.

Radio emission can be generated from Langmuir eigenmodes by a so-called

antenna mechanism [Malaspina et al., 2010, 2012]. Here, the electric field of the

Langmuir wave E at a frequency near ωp induces electron oscillations at ωp and

2ωp that constitute a nonlinear current J. The work done by the field on the

current, −J ·E, is a source term for the electromagnetic fields, which radiate as

transverse waves at ωp and 2ωp. The efficiency of this process depends on the

local plasma parameters and wavepacket properties such as spatial scale [Hess

et al., 2010; Malaspina et al., 2010, 2012].
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1.4 Observational context

1.4.1 Auroral waves

Earth’s auroral ionosphere is located approximately 60–600 km above Earth’s

surface and at magnetic dipole latitudes of approximately 60◦–80◦. It is a region

of intense radio emission and plasma wave generation by high energy auroral

electrons. Both in situ and ground-based observations have identified numerous

types of emissions, including the predominantly x-mode auroral kilometric radi-

ation [Gurnett , 1974; Melrose, 1976; Wu and Lee, 1979], whistler-mode auroral

hiss [Gurnett , 1966; James , 1976; Gurnett et al., 1983; Santoĺık et al., 2001],

and auroral roar [LaBelle et al., 1995; Tsurutani et al., 1998; Yoon et al., 1998;

LaBelle and Weatherwax , 2002] emissions. These are driven by nonthermal

features in the electron distribution function either parallel or perpendicular to

Earth’s magnetic field. Variation of the plasma density with altitude and the

development of parallel electric fields via Alfvén wave reflection and other pro-

cesses (e.g. Chaston et al. [1999]) leads to regions of both overdense (ωp > Ωe)

and underdense (ωp < Ωe) plasma.

Both satellite [Beghin et al., 1989] and sounding rocket [McAdams and La-

Belle, 1999; McAdams et al., 1999] experiments have observed certain types of

emissions, termed HF (high-frequency) spikes, HF bands, and HF chirps, which

were observed at, above, and below the local plasma frequency, respectively.

These emissions were correlated with local energetic electron precipitation (i.e.,

earthward propagation). By comparing the observed wave frequencies with

the dispersion relations of possible wave modes, it was proposed that electron

beams drive Langmuir waves (HF spikes), which then undergo mode conver-

sion to generate either whistler-mode waves (HF bands) or z-mode waves (HF

chirps) [Beghin et al., 1989;McAdams and LaBelle, 1999]. It was also suggested

from theoretical arguments that such HF bands and chirps should become elec-

trostatic as they propagate [Beghin et al., 1989].

In Chapter 2 we investigate both the generation mechanism and expected

polarization of these emissions. In particular, we analyze the wave modes of

warm magnetized plasmas in order to determine whether a mode conversion

process is necessary. We also use ray-tracing techniques to examine whether

these emissions should become electromagnetic or whether they remain elec-

trostatic as they propagate from their generation region into the observation

site.
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Figure 1.3: (a) HF spectrogram of Langmuir wave bursts, variation in the

upper cutoff frequency (fp), and many HF band emissions. (b) Identification

and locations of HF band emissions. Read 1e−8.8 as 1× 10−8.8. Adapted from

McAdams and LaBelle [1999].
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1.4.2 Solar type III bursts

Type III solar radio bursts are intense radio emissions generated in the so-

lar corona and interplanetary medium. They are distinguished from the other

four main types of solar radio bursts by their fast negative frequency drift

(df/dt < 0), short durations of a few seconds from ∼ 200 MHz to 30 MHz,

frequencies from several hundred MHz down to 20 kHz, and the common pres-

ence of harmonic structure (i.e., bands of emission at integer multiples of the

lowest frequency) [Wild , 1950]. Such features can be seen in Fig. 1.4.

The standard interpretation of these frequency components is in terms of the

plasma hypothesis, where fundamental and harmonic frequencies are identified

as the local plasma frequency and twice that frequency, respectively. It is

also widely accepted that the energy source for type III radio bursts is flare-

accelerated electrons [Scarf et al., 1971; Gurnett and Anderson, 1976; Lin et al.,

1986] of energies 1–100 keV which stream along interplanetary magnetic field

lines. In this hypothesis the negative frequency drift is due to the local plasma

frequency (density) decreasing as the beam propagates outwards from the Sun

into the interplanetary medium. The process for generating type III bursts is

presented schematically in Fig. 1.5.

Ginzburg and Zhelezniakov [1958] proposed the first quantitative theory for

type III radio bursts, as follows. Energetic electrons streaming out from the Sun

along magnetic field lines form a beam in velocity space due to advection. This

nonthermal feature of the electron particle distribution drives Langmuir waves

via a bump-on-tail instability (cf. Sec. 1.2.1). These Langmuir waves scatter

off the electron polarization cloud around thermal ions into transverse waves,

constituting fundamental radio emission near ωp, or coalesce with oppositely-

propagating thermal Langmuir waves to give harmonic radiation near 2ωp.

It has since been recognized that this model cannot account for the observed

brightness temperatures of the radiation [Melrose, 1980b]. This led Melrose

[1982] and others to propose more efficient nonlinear wave-wave processes such

as electrostatic and electromagnetic decay instead of induced scattering for

fundamental emission, and coalescence of beam-driven Langmuir waves with

nonthermal product (backscattered) Langmuir waves from the electrostatic de-

cay process for second harmonic emission. The presence of Langmuir waves in

type III bursts has been confirmed by in situ observations [Gurnett and Ander-

son, 1976; Lin et al., 1986], and ion sound waves have also been detected that

have wavelengths consistent with parametric or electrostatic decay [Lin et al.,

1986; Cairns , 1995; Cairns and Robinson, 1995a; Henri et al., 2009].
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Figure 1.4: Interplanetary type III radio bursts measured by WIND [Ergun

et al., 1998]. (a, b) Electron fluxes. (c, d) Relative change in electron fluxes

(F/F0), from a reference flux (F0). (e, f, and g) Dynamic spectrum of radio

emissions with power relative to cosmic background. (h) Electric-field wave

power in the frequency band (19–41.5 kHz) encompassing the local Langmuir

frequency.
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Figure 1.5: Schematic illustration of the source regions and phenomena involved

in type II and III solar radio bursts in the corona and solar wind and those

observed in Earth’s foreshock. From Cairns et al. [2000a].

Various other theories of type III radio emission have been proposed in the

literature: electron cyclotron maser emission [Wu et al., 2002], linear mode

conversion [Field , 1956; Hinkel-Lipsker et al., 1992; Kim et al., 2007, 2008],

radiation at fp and 2fp from localized Langmuir waves [Malaspina et al., 2010,

2012], nonlinear beam instabilities [Yoon, 1995], and modulational instabilities

and wave collapse [Papadopoulos et al., 1974; Thejappa et al., 2012a,b]. The

latter are disputed based on nonlinear thresholds derived from observed wave-

forms, and spectra and detailed fits of theoretical wavepacket structure to these

observed waveforms [Cairns and Robinson, 1995b; Nulsen et al., 2007; Graham

et al., 2012a,b].

Theories for type III bursts must also account for Sturrock’s dilemma [Stur-

rock , 1964; Melrose, 1980a], namely that in the absence of a mechanism for

removing resonant Langmuir waves, quasilinear relaxation should flatten non-

thermal features of the electron distribution long before the electrons reach

the observed distances of 1 AU and greater. In addition to the nonlinear

mechanisms above, other mechanisms such as stochastic growth theory (SGT)

[Robinson, 1992; Robinson et al., 1993b] have been proposed. In SGT it is

argued that density fluctuations in the solar wind often suppress the growth of

Langmuir waves through refraction away from resonance, such that high lev-

els of Langmuir waves occur only in localized clumps and the electron beam

fluctuates around marginal stability.

Strong evidence exists for SGT in type III radio sources [Robinson et al.,

1993b], principally involving the observed field statistics satisfying the lognor-

mal prediction for the probability distribution of electric field strength P (E).
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Similar results are found in planetary foreshocks [Cairns and Robinson, 1997,

1999; Cairns et al., 2000b] and for Langmuir waves in Earth’s auroral iono-

sphere [Samara et al., 2008; LaBelle et al., 2010]. SGT can also co-exist with

nonlinear processes, with SGT dominant at low to moderate wave fields below

the nonlinear threshold and nonlinear processes at high wave fields above the

nonlinear threshold [Robinson et al., 1993b; Cairns and Robinson, 1997, 1998,

1999].

Simulations of type III bursts employing the aforementioned processes have

been reported in the literature. For example, Li et al. [2002, 2008] have per-

formed large-scale quasilinear simulations of coronal and interplanetary type III

bursts, including nonlinear electrostatic and electromagnetic decay processes.

Semiquantitative agreement was found between observed and predicted features

of dynamic spectra such as frequency drift rate, radio flux, brightness temper-

ature, and temporal profile of the radiation. Smaller-scale (∼ 103–104λD) sim-

ulations focusing on particular aspects of type III generation mechanisms have

also been performed. Henri et al. [2010] investigated the electrostatic decay

of localized Langmuir wavepackets through Vlasov-Poisson simulations using

typical solar wind parameters. They found nonlinear thresholds of electro-

static decay consistent with inferred thresholds from STEREO data, providing

evidence for the electrostatic decay process being relevant to type III bursts.

Recently, the STEREO spacecraft have provided in situ measurement of

all three components of wave electric fields in type III sources, allowing mea-

surement of Langmuir-wave polarization [Bougeret et al., 2008]. About 40%

of events display beating Langmuir waveforms and have split spectral peaks

[Malaspina et al., 2010; Graham and Cairns , 2013b], which has recently been

interpreted as evidence for electrostatic decay [Graham and Cairns , 2013b].

Events associated with slower electron beams (vb . 0.1c) have electric fields

E predominantly aligned with the background magnetic field B0. However,

events associated with faster beam speeds (vb & 0.1c) often have one spectral

peak with E nearly perpendicular to B0, inconsistent with the properties of

unmagnetized Langmuir waves but consistent with Langmuir-z waves at low

k [Malaspina et al., 2010; Graham and Cairns , 2013b]. In Chapter 3 we pro-

pose a mechanism for generating such waves, based on electrostatic decay of

Langmuir-z waves in a magnetized plasma, and develop this mechanism in

detail in Chapters 4 and 5.
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Chapter 2

Changes in mode properties ver-

sus mode conversion for waves in

Earth’s auroral ionosphere

[Published as A. Layden et al., J. Geophys. Res. 116, A12, 2011]

2.1 Abstract

The generation mechanism and properties of auroral waves near, above, and

below the electron plasma frequency ωpe are investigated. Calculations of wave

dispersion in a warm, magnetized plasma show that these waves propagate

in a single mode, the generalized Langmuir-z mode or generalized Langmuir-

whistler mode of magnetized kinetic plasma theory, depending on whether ωpe

exceeds or is less than the electron gyrofrequency Ωe, respectively. The charac-

teristics of the modes change as the waves propagate through density gradients

and move to lower or higher wave numbers. This corrects previous assertions

that these waves undergo a conversion between distinct Langmuir and whistler

or Langmuir and z modes. Using ray-tracing techniques, it is predicted that

both the waves below ωpe and above ωpe should remain predominantly electro-

static, in contrast to previous interpretations of these waves becoming electro-

magnetic.

2.2 Introduction

Plasmas support a variety of wave modes, the number and characteristics of

which are determined by plasma properties such as temperature, magnetiza-

19



Ch. 2 Mode conversion in ionosphere

tion, and particle distribution functions. Properties of these modes can be de-

rived using fluid or kinetic theory and Maxwell’s equations. For instance, cold

magnetized electron plasmas are described by magnetoionic theory at high fre-

quencies, and its wave modes are the o, x, whistler, and z modes. If instead the

plasma is unmagnetized and has a Maxwellian particle distribution, then the

corresponding wave modes include the Langmuir mode and transverse mode

[Stix , 1962; Melrose, 1980a].

While the wave modes described above are distinct for a homogeneous

plasma, there are numerous mechanisms by which wave energy can be trans-

ferred between modes. One such mechanism is linear mode conversion [Budden,

1961; Oya, 1971; Jones , 1976a; Bell and Ngo, 1988, 1990; Hinkel-Lipsker et al.,

1992; Willes and Cairns , 2001; Kim et al., 2007], which involves the conversion

of waves propagating in a density gradient. Complex-valued modes arise in the

inhomogeneous region, connecting previously uncoupled modes at a single point

in frequency-wave number space. Wave energy can couple to these evanescent

modes and then be reflected from the density gradient in a different mode

which also couples to them. Linear mode conversion can be relevant to waves

described by unmagnetized and magnetized kinetic wave theory, magnetoionic

theory, and fluid theory [Stix , 1962].

Nonlinear mechanisms [Sagdeev and Galeev , 1969; Tsytovich, 1970;Melrose,

1980a; Sitenko, 1982] also permit mode conversion. Some nonlinear wave-wave

interactions involve coalescence of two waves (possibly in different modes) into

a third wave (again, possibly in a separate mode). Similarly, there can also be

decay of one wave into two, which can result in conversion of wave energy into

distinct modes.

The focus of this chapter is a specific mode-conversion process invoked by

Beghin et al. [1989], McAdams and LaBelle [1999], and McAdams et al. [1999]

to explain their observations of waves in the auroral ionosphere. These work-

ers observed waves near the angular electron plasma frequency ωpe in both

overdense and underdense (defined as Ωe < ωpe and Ωe > ωpe, respectively) re-

gions of the auroral ionosphere. Their observations were interpreted in terms of

the following “mode conversion” involving Langmuir waves and either whistler

waves or z-mode waves:

(i) electron beams generate electrostatic Langmuir waves near ωpe;

(ii) the Langmuir waves propagate into regions of different plasma density;

and
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(iii) the waves convert to either whistler waves or z-mode waves depending on

the degree of magnetization of the plasma.

Further details of these observations and generation mechanisms are provided

in Sec. 2.3 and Sec. 2.4.

More recently Willes and Cairns [2000] re-examined the dispersion char-

acteristics of waves in a warm, magnetized plasma, and their relation to the

magnetoionic whistler and z modes and the kinetic Langmuir mode. These

results are not well known, but have direct relevance to the observations of

Beghin et al. [1989], McAdams and LaBelle [1999] and McAdams et al. [1999],

and form the crux of this chapter. We detail the results of Willes and Cairns

[2000] in Sec. 2.2.

Below we address several issues that arise with the mode-conversion mecha-

nism of Beghin et al. [1989], McAdams and LaBelle [1999], and McAdams et al.

[1999]. For both sets of observations, we reinterpret the mode identification

using the results from Willes and Cairns [2000] and our own solutions of the

general kinetic dispersion equation. This allows us to discuss the proposed

generation mechanisms and to show that no mode-conversion process is neces-

sary. We also analyze the polarization properties of the modes and compare

the results with previous predictions.

The organization of the chapter is as follows. In Sec. 2.2, wave modes and

their dispersion properties are summarized for different plasma approxima-

tions, with emphasis on the wave modes of magnetized kinetic plasmas and the

results of Willes and Cairns [2000]. In Sec. 2.3 we outline the observations pre-

sented by Beghin et al. [1989] and their corresponding generation mechanism

and “mode conversion”. Using the results of Sec. 2.2, we demonstrate that no

mode-conversion process is necessary to explain the observations of Beghin et

al. Instead, these waves propagate in a single mode — either the generalized

Langmuir-z mode or the generalized Langmuir-whistler mode — whose proper-

ties change with altitude and the plasma parameters. In other words, the waves

stay in the same mode as they propagate, while their polarization properties

and wave vector change with position. Numerical ray-tracing calculations are

also performed to investigate the evolution of the electromagnetic properties

of whistler-mode and z-mode wave packets in the auroral ionosphere. Section

2.4 contains our analysis of the results of McAdams and LaBelle [1999] and

McAdams et al. [1999], where we similarly show that mode conversion is not

needed to account for their observations of waves near ωpe. Section 2.5 contains

a discussion and the conclusions.
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2.3 Plasma theory

Wave modes and their properties are determined by the plasma in which they

propagate [Stix , 1962; Tsytovich, 1970; Melrose, 1980a]. Simplified models

of the plasma are often employed to facilitate analytic calculations of wave

properties. An unmagnetized, cold electron fluid supports the Langmuir mode

and the transverse electromagnetic mode. The Langmuir mode oscillates at

the angular electron plasma frequency ωpe = (ne2/meǫ0)
1/2, where n is the

electron number density, e is the charge of the electron, and me is the mass of

the electron [Tonks and Langmuir , 1929]. The electromagnetic mode has the

dispersion relation ω2
T = ω2

pe+ k2c2 (e.g. [Stix , 1962; Chen, 1974]), where ωT is

the wave angular frequency, k is the wave number, and c is the speed of light

in free space.

If the temperature of the plasma is sufficiently high that the cold plasma

model is not valid, then thermal corrections to the analysis must be included.

These thermal effects do not affect the electromagnetic mode, but the Langmuir

mode’s dispersion is modified to ω2
L ≈ ω2

pe + 3k2V 2
e [Bohm and Gross , 1949],

where Ve is the electron thermal speed. As can be seen from their dispersion

relations, both the electromagnetic mode and the Langmuir mode are restricted

to frequencies above ωpe.

In contrast, magnetoionic theory [Hartree, 1931; Appleton, 1932] ignores

ion and thermal effects, assuming a cold electron fluid that is permeated by a

static magnetic field. This yields the o and x modes, which are the magnetized

counterparts of the free-space transverse mode, and the whistler and z modes.

The whistler mode is the lowest-frequency magnetoionic mode, and exists at

frequencies from its cutoff frequency

ωwc(θ) = 0 (2.1)

up to its resonance frequency

ωwr(θ) =

[

1

2
(ω2

pe + Ω2
e) +

1

2

√

(ω2
pe + Ω2

e)
2 − 4ω2

peΩ
2
e cos

2 θ

]1/2

, (2.2)

where θ is the angle between the wave vector k and the background magnetic

field B0, and Ωe is the angular electron cyclotron frequency. Thus the whistler

mode is confined to frequencies below the minimum of ωpe and Ωe. The z

mode is a higher-frequency mode, with left-hand polarization below ωpe and

right-hand polarization above ωpe. The (low-frequency) cutoff frequency of the
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z mode is

ωzc =
1

2

√

Ω2
e + 4ω2

pe −
1

2
Ωe, (2.3)

and its resonance frequency is

ωzr(θ) =

[

1

2
(ω2

pe + Ω2
e)−

1

2

√

(ω2
pe + Ω2

e)
2 − 4ω2

peΩ
2
e cos

2 θ

]1/2

. (2.4)

For propagation very near parallel (θ ≈ 0) in magnetoionic theory, the z-

mode and o-mode dispersion relations approach the same frequency and wave

number at ω = ωpe and kc/ωpe = (1+ωpe/Ωe)
−1/2, allowing conversion of wave

energy between the modes. This coupling point is the well-known first Ellis

window [Ellis , 1956; Yoon et al., 1998]. For exactly parallel propagation (θ =

0), the z mode and omode dispersion relations merge at this coupling point and

form a combined z/o mode. If Ωe > ωpe for nearly parallel propagation, then

there is analagous coupling between the z mode and the whistler mode at a

higher wave number kc/ωpe = (1−ωpe/Ωe)
−1/2 (called the second Ellis window)

[Jones , 1976b; Yoon et al., 1998], and formation of a combined whistler/z mode

when θ = 0. In both cases, for θ = 0 the dispersion relation ω = ωpe is a solution

of the magnetoionic dispersion equation for all k; that is, the unmagnetized cold

Langmuir mode reappears (Ve = 0). However, for θ > 0 a single continuous

Langmuir mode is not a solution in magnetoionic theory.

A more general analysis of plasma waves includes both magnetic and ther-

mal effects, and can be achieved with the kinetic Vlasov description of a plasma.

The wave modes and their properties in this case have been investigated by

previous workers, e.g. Stix [1962], Melrose [1980a], and André [1985], who

calculate dispersion relations for all angles of propagation and for a range of

plasma parameters. Here, our focus is on the relationship between the thermal

modes and magnetoionic modes described above and the modes in a kinetic

magnetized plasma. This has been studied both analytically [Melrose, 1976,

1980a] and, more recently, numerically [Willes and Cairns , 2000]. The lat-

ter showed that distinct Langmuir and magnetoionic modes no longer exist

in a kinetic magnetized plasma. Instead, in the overdense regime the mag-

netoionic whistler mode remains, but a generalized Langmuir-z mode appears

and replaces the previously distinct Langmuir and z modes. This mode has

Langmuir-like dispersion for high k and magnetoionic z mode dispersion for

low k. Conversely, in the underdense regime there is a distinct z mode and

a generalized Langmuir-whistler mode, which replaces the previously distinct

Langmuir and whistler modes and has whistler-like dispersion for low k and

Langmuir-like dispersion for high k.
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Ch. 2 Mode conversion in ionosphere

We now confirm the results of Willes and Cairns [2000] on the existence

of combined Langmuir-z and combined Langmuir-whistler modes for oblique

propagation angles. For the Langmuir-z mode, we numerically solve the gen-

eral kinetic dispersion equation using nominal parameters for the auroral iono-

sphere: ωpe/Ωe = 1.2, Ve/c = 7 × 10−4, and θ = 1◦, 20◦. These solutions are

compared with numerical calculations of the dispersion of the magnetoionic

z mode and the thermal Langmuir mode in Figs 2.1(a) and 2.1(b). Mag-

netoionic theory (circles) provides a good approximation to the dispersion of

the Langmuir-z mode (solid line) for low k and both θ. As k increases, the

thermal Langmuir mode (filled squares) better approximates the Langmuir-z

dispersion. The Langmuir-z mode is thus unlike the combined magnetoionic

z/o and whistler/z modes that occur for the radio windows described above;

the Langmuir-z mode is a single mode that exists for all oblique propagation

angles, whereas the combined z/o mode is present only for a very narrow range

of θ.

Our calculations for the Langmuir-whistler mode are performed using the

same parameters, except that ωpe/Ωe = 0.8. The results are shown in Figs

2.1(c) and 2.1(d). For low k the whistler-mode dispersion relations obtained

from magnetoionic theory (circles) are a good approximation to the Langmuir-

whistler mode (short-dashed line); at high k the dispersion of the Langmuir-

whistler mode resembles the thermal Langmuir mode (filled squares). In a simi-

lar manner to the overdense regime in Figs 2.1(a) and 2.1(b), distinct Langmuir

and whistler modes do not exist in a thermal magnetized plasma.

These results are crucial for understanding the properties and evolution of

waves in kinetic magnetized plasmas, both in the underdense and overdense

regimes.

2.4 Auroral waves of Beghin et al.

Beghin et al. [1989] presented observations of high-frequency waves in the au-

roral ionosphere from the AUREOL/ARCAD 3 satellite, for both overdense

and underdense plasma conditions at altitudes of 400–2000 km. Three types

of emissions were observed:

(A) narrowband emissions near the local value of ωpe, termed “HF spike” emis-

sions, identified as electrostatic Langmuir waves;

(B) wideband emissions below the local value of ωpe, identified as electromag-

netic whistler waves; and
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Figure 2.1: Dispersion relations ω(k) for (a) ωpe/Ωe = 1.2, θ = 1◦, (b)

ωpe/Ωe = 1.2, θ = 20◦, (c) ωpe/Ωe = 0.8, θ = 1◦, and (d) ωpe/Ωe = 0.8,

θ = 20◦. Numerical calculations of dispersion using magnetized kinetic the-

ory are represented by long-dashed lines (o mode), dash-dotted lines (x mode),

solid lines (mode with z-type dispersion at low k), and short-dashed lines (mode

with whistler-type dispersion at low k). Also shown are the thermal Langmuir

mode’s approximate dispersion relation (filled squares) and calculations of dis-

persion using magnetoionic theory (circles) for the z-mode in (a) and (b) and

whistler mode in (c) and (d). Modes cease to be plotted if damping becomes

strong, defined here as Im(ω) < −Re(ω).
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Ch. 2 Mode conversion in ionosphere

(C) wideband emissions between the local value of ωpe and the upper hybrid

frequency ωuh, identified as electromagnetic z-mode waves.

The wave modes were inferred from the values of the ratios ω/ωpe and Ωe/ωpe

and the cutoff and resonance frequencies predicted by magnetoionic theory.

Since Beghin et al. [1989] had only electric field data (not magnetic field data)

for these emissions, the polarizations were not measured directly, but were

inferred from ω/ωpe, Ωe/ωpe, and the known properties of magnetoionic modes.

2.4.1 Mode conversion

Beghin et al. [1989] postulated the generation mechanism for the above emis-

sions to be:

(i) electron beams drifting parallel to B0 drive electrostatic Langmuir waves

near the local value of ωpe at a range of altitudes in the source region,

observed as the emissions in (A) above;

(ii) the waves propagate into regions of the ionosphere with different ωpe;

(iii) the waves are observed by the satellite as wideband emissions and inter-

preted as either whistler-mode waves for (B) above or z-mode waves for

(C) above in underdense or overdense regions of the ionosphere, respec-

tively.

Point (i) was supported by instability calculations for waves in a warm, mag-

netized plasma with an isotropic Maxwellian background component and a

weaker isotropic Maxwellian beam drifting parallel to B0 [Beghin et al., 1989].

To facilitate their calculations they employed the electrostatic approximation

[Stix , 1962], which is valid for high k. Calculations were performed for two sets

of parameters: one for an underdense plasma (ωpe/Ωe = 1.2), and the other

for an overdense plasma (ωpe/Ωe = 0.8). The dispersion relations and growth

rates calculated by Beghin et al. [1989] are displayed in Figs 2.2 and 2.3 for the

underdense and overdense cases, respectively. These calculations predict that

the “whistler” mode has a positive growth rate for underdense parameters, and

similarly for the “z mode” in overdense conditions.

Several features of the above warm plasma dispersion relations differ from

magnetoionic predictions. Firstly, Beghin et al.’s cutoff frequencies Ω(K‖ = 0)

in Figs 2.2 and 2.3 are θ-dependent. However, cutoff frequencies predicted by

magnetoionic theory for the whistler and z modes, given by (2.1) and (2.3),
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Figure 2.2: Beghin et al.’s dispersion relations (top) and corresponding growth

rates (bottom) for ωpe/Ωe = 1.2. Here K‖ = kVe cos θ/Ωe is the normalized

parallel wave number, Ω = Re(ω)/Ωe is the normalized frequency, and γ =

Im(ω)/Ωe is the normalized growth rate. Reproduced from Fig. 2.11 in Beghin

et al. [1989].
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Ch. 2 Mode conversion in ionosphere

Figure 2.3: Same as Fig. 2.2, except ωpe/Ωe = 0.8. Reproduced from Fig. 2.12

in Beghin et al. [1989].
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respectively, are independent of θ. This is required for all modes, since θ is not

uniquely defined at k = 0 [Robinson, 1986]. Our solutions of the electrostatic

and fully electromagnetic dispersion equation (not provided) indicate that the

incorrect cutoff frequencies in Figs 2.2 and 2.3 are the result of applying the

electrostatic approximation, which is inaccurate for low values of k.

Secondly, whistler-mode and z-mode frequencies in magnetoionic theory are

bounded above by the resonance frequencies given by (2.2) and (2.4), respec-

tively. Conversely, to a good approximation the dispersion curves in Figs 2.2

and 2.3 are bounded below by the magnetoionic resonance frequencies, and

have no upper frequency bound, although they are strongly damped as Ω in-

creases. Unlike the cutoff frequencies, this behavior cannot be the result of the

electrostatic approximation, which is valid for large k.

These inconsistencies with magnetoionic theory were not commented on by

Beghin et al. [1989]. Here, we present our interpretation of the modes based

on the work of Willes and Cairns [2000] and solutions of the electromagnetic

warm magnetized dispersion equation.

As stated in Sec. 2.2, distinct (magnetoionic) whistler and z modes do not

typically exist when one considers a warm, magnetized plasma, which is the

general case considered here. Instead, for an overdense plasma (see Fig. 2.2),

the wave modes include the whistler mode and the generalized Langmuir mode

(here, the combined Langmuir-z mode). Interpreting Beghin et al.’s “z mode”

as the generalized Langmuir-z mode, the characteristics for large k are easily

understood as being Langmuir-like, while the “z-mode” waves can also be on

the Langmuir-z mode but now at lower k with ω above the local ωpe. Thus,

Langmuir-z waves generated by the electron beam appear Langmuir-like in the

source region but then propagate into a higher-density region, preserving ω but

moving to higher ω/ωpe and lower k while still on the same mode and yet now

having z-mode-like character. That is, the waves stay in the same mode but

move to lower k where the mode character is different.

We propose a similar interpretation for the “whistler mode” in Fig. 2.3. In

this interpretation, the “whistler mode” waves of Beghin et al. are in fact in the

combined Langmuir-whistler mode at low k, as predicted in Fig. 2.1, while the

HF spikes they observed are driven on the same mode at high k where the mode

is Langmuir-like. Again propagation effects in a density gradient lead to waves

on the same mode having very different characteristics and being incorrectly

identified as being in different magnetoionic or unmagnetized thermal kinetic

wave modes.
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Ch. 2 Mode conversion in ionosphere

These interpretations allow us to explain why “spike-like emissions near fpe
are most likely electrostatic, like the similar phenomena called plasma reso-

nances or longitudinal Langmuir oscillations” [Beghin et al., 1989], and are still

on the same mode as the whistler-like or z-mode-like waves at low k: the waves

are driven at high k, where the generalized Langmuir wave has Langmuir-like

characteristics, but move to low k due to propagation into regions with higher

plasma density. We note that in both the underdense and overdense cases,

wave growth resulting from the interaction of a relatively weak electron beam

is always on the generalized Langmuir mode (whether Langmuir-z or Langmuir-

whistler) and never on the magnetoionic mode that remains distinct (whistler

or z mode, respectively), as found by Willes and Cairns [2000] and confirmed

by our calculations (not shown here). Furthermore our calculations confirm

the growth rates and real frequencies found by Beghin et al. [1989] in their

Figs 11 and 12, with the correction that the unstable mode is the generalized

Langmuir mode. Accordingly, there is no need to provide additional figures

for the wave growth here. For a suitably strong beam the growth can be on a

“beam mode” with ω ∼ kvb [Melrose, 1980a; Gary , 1985; Willes and Cairns ,

2000] instead but the standard expectation is that wave energy moves into the

generalized Langmuir mode (conserving frequency) at times when or in spa-

tial regions where the beam weakens and disappears, since the beam mode is

then not a solution of the dispersion equation and the energy will otherwise be

reabsorbed by the plasma.

There is a question of whether one would expect auroral electron beams

to drive waves near the lower hybrid frequency (ωLH) rather than near ωpe,

since waves near ωLH , such as auroral hiss and “spikelet” emissions, are often

observed in the presence of energetic electron beams (e.g. [Kintner et al.,

1992; Vago et al., 1992; McAdams et al., 1998]). However, these emissions are

generally considered to be driven in the whistler mode near ωpe and thereafter

propagate downwards into higher plasma density where they are observed near

the local ωLH [Swift and Kan, 1975], rather than being driven directly at ωLH .

The identification of the observed waves as generalized Langmuir waves has

major implications for other statements made by Beghin et al. For instance,

they stated that there is a mode-coupling mechanism which allows the nar-

rowband emissions to convert to wideband emissions. However, we have shown

above that the observed waves are expected to be generated and propagate only

in the generalized Langmuir mode, which has Langmuir-like character at high

k and the appropriate whistler or z-mode character at low k. It is therefore

unnecessary to invoke a mode-conversion process to explain the observation of
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both narrowband and wideband emissions, as these waves simply propagate in

a single mode whose characteristics change as the waves propagate through the

inhomogeneous plasma.

2.4.2 Wideband and narrowband polarization

Here, we examine the polarization of the waves described by Beghin et al. [1989].

This involves modeling the dispersion properties and propagation of “z mode”

and “whistler mode” waves by solving the dispersion equation and performing

ray-tracing calculations. The focus is on whether Beghin et al.’s spike and

wideband emissions are indeed electrostatic and electromagnetic, respectively.

We assume an Earth-centered magnetic dipole, a vertically stratified slab

model for the auroral ionospheric plasma, and wave propagation in a magnetic

meridian plane. The plasma density is assumed to depend only on altitude h,

decreasing monotonically with increasing h. The magnetic field B0 is inclined

at an angle ψ to the slab normal, and we assume that ψ remains constant for the

waves during propagation. These assumptions allow us to employ Poeverlein’s

construction [Poeverlein, 1950; Budden, 1961] for ray tracing in a stratified

medium.

The parameters we use in our investigation are the nominal parameters of

Beghin et al. [1989], as follows. We consider plasma temperatures Te = Ti =

1000K. We take invariant latitudes of 65◦ to 85◦ and altitudes of 400 to 2000

km. Then ψ (which depends on h and Λ0) lies in the range 3◦ to 15◦, as shown

in Fig. 2.4. An electron beam is assumed to drive waves at k nearly parallel to

B0, i.e., θ ≈ 0. However, since θ = 0 is a special case for mode structure (as

described above in Sec. 2.2), we take a small but nonzero angle of θ = 1◦ for

our calculations. The electron beam speed is taken to be vb = 6 × 106 m s−1,

which gives the refractive index of the waves being initially n = 50.

We now calculate the evolution of the wave’s refractive index during prop-

agation. Defining a refractive-index vector n = ck/ω and a unit vector ŝ that

is parallel to the slab, Snell’s law states that n · ŝ is constant. We choose a

2-D coordinate system whose axes are aligned parallel and perpendicular to

B0, such that n = (n‖, n⊥) = (n cos θ, n sin θ) and ŝ = (sinψ, cosψ). Snell’s

law then becomes

n‖ + n⊥ tanψ = constant, (2.5)

which gives straight lines in (n‖, n⊥)-space as illustrated in Fig. 2.5 for a range

of ψ values.
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Figure 2.4: Contour plot of ψ (degrees) as a function of Λ0 and h.
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Figure 2.5: Poeverlein’s construction for waves generated with n = 50 and

θ = 1◦. Lines represent the paths of wave packets in refractive-index space

for the labeled values of ψ (degrees) from the initial point at (n‖, n⊥) =

(50 cos 1◦, 50 sin 1◦).
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Figure 2.6: Numerically calculated dispersion relations ω(k) for the Langmuir-z

mode, for a range of propagation angles θ. Dashed lines demonstrate evolution

of wave number and frequency for ψ between 3◦ and 15◦ in increments of 4◦.

As the waves propagate with constant ω and ψ but varying ω/ωpe(h) and

k(h), θ increases from its initial value of 1◦. To relate the as yet unknown

evolution of ω/ωpe and k to the known evolution of n(θ), we numerically calcu-

late the dispersion relation ω(k) for waves in a warm magnetized plasma for a

range of θ. For each θ we find the corresponding k and ω/ωpe(k) that gives the

required n, and determine the polarization characteristics from the dispersion

relation.

Fig. 2.6 displays the evolution of ω/ωpe and kc/ωpe for the Langmuir-z

waves, calculated for a range of ψ. Waves are generated on the θ = 1◦ dis-

persion curve. As the waves propagate, θ increases and the waves remain on

the Langmuir-z mode while kc/ωpe and ω/ωpe increase as indicated by the

dashed lines. For a given θ, waves that propagate where ψ is greater have

larger kc/ωpe.

The polarization of the waves is quantified by E2
⊥/E

2, the fraction of electric-

field energy in the direction perpendicular to k. The initial waves with ω ≈ ωpe

and θ = 1◦, corresponding to Beghin et al.’s spike-like emissions, have a negli-

gible transverse electric field (E2
⊥/E

2 = 6.2× 10−10), which we interpret as the

waves being on the Langmuir-like Section 2.of the Langmuir-z mode. Fig. 2.7
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Figure 2.7: Plot of E2
⊥/E

2 versus θ for the Langmuir-z mode for ψ between 3◦

and 15◦ in increments of 4◦.

shows how E2
⊥/E

2 changes with θ for given ψ. We consider values of θ between

1◦ and 60◦, which is sufficient to demonstrate the general behavior. As θ in-

creases E2
⊥/E

2 increases and becomes at most ∼ 8.2× 10−8, which is achieved

for ψ = 15◦ and θ ≈ 25◦. These waves then become more electrostatic for

θ & 25◦. We thus conclude that Beghin et al.’s wideband “z-mode” (actu-

ally Langmuir-z) waves remain predominantly electrostatic, in contrast to the

assertion of Beghin et al. [1989].

We also perform the corresponding calculations for the Langmuir-whistler

mode. These waves are also initially electrostatic (E2
⊥/E

2 = 6.2×10−10), being

generated on the part of the Langmuir-whistler mode that is closely Langmuir-

like. The evolution of n and θ for the Langmuir-whistler waves is identical to

that of the Langmuir-z waves, but here ω/ωpe decreases as they move to lower

kc/ωpe so that the Langmuir-whistler dispersion relation is satisfied. Fig. 2.8

shows the polarization of the Langmuir-whistler waves as a function of θ. The

maximum E2
⊥/E

2 for these waves is ∼ 1.0 × 10−6, which is attained when

ψ = 15◦ and θ = 85◦, the largest value of θ that we consider. Since E2
⊥/E

2

remains very small during propagation, we predict that the wideband waves

below ωpe also remain electrostatic.
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Figure 2.8: Same as Fig. 2.7, but for the Langmuir-whistler mode.

2.5 Auroral waves of McAdams et al., and McAdams

and LaBelle

McAdams et al. [1999] presented observations from the PHAZE II rocket of

high-frequency waves in the auroral ionosphere at altitudes of 390–945 km in

underdense conditions. Termed “HF bands”, these waves were monochromatic,

long-lived, narrowband emissions with frequencies at and below the electron

plasma frequency. They were postulated to be identical to the HF spike emis-

sions reported by Beghin et al. [1989] in the underdense regions of the iono-

sphere but now observed using higher time resolution. Emissions just above

the electron plasma frequency were also observed by the PHAZE II rocket, at

altitudes below 420 km where the ionospheric plasma was overdense [McAdams

and LaBelle, 1999].

2.5.1 Mode conversion

McAdams et al. [1999] proposed the following generation mechanism for HF

bands:

(i) A positive slope in the electron distribution function (i.e., an electron
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beam) drives Langmuir waves at ωpe;

(ii) Langmuir waves propagate into a region of higher plasma density (and

thus higher local ωpe), while their frequency remains constant;

(iii) as ω/ωpe decreases, the wave moves from the Langmuir branch onto the

whistler-mode branch and converts to a whistler-mode wave;

(iv) whistler-mode waves have a higher group speed and range of ω/ωpe than

Langmuir waves, and are detected as HF bands.

This mechanism was stated by McAdams et al. [1999] to be the same as that

proposed by Beghin et al. [1989] for their spike emissions.

HF chirps were proposed byMcAdams and LaBelle [1999] to be generated in

a similar manner to HF bands. In this case the waves are generated as Langmuir

waves, which then linearly convert into electromagnetic z-mode waves.

In the above mechanism for HF bands, it was stated that there is a con-

nection between Langmuir and whistler modes for an underdense plasma. This

is the basis for the conversion of Langmuir waves to whistler waves as they

propagate into regions of higher plasma density. However, distinct Langmuir

and whistler modes do not exist in an underdense kinetic magnetized plasma,

but instead there exists a single Langmuir-whistler mode with the properties

described in Sec. 2.2 [Willes and Cairns , 2000]. Our interpretation of the gen-

eration mechanism is thus that HF bands are generated by an electron beam

instability near ωpe on the Langmuir-whistler mode, where its properties are

similar to those of the Langmuir mode. The wave then propagates on the

Langmuir-whistler mode into regions where it has a lower value of ω/ωpe, and

the dispersion and polarization properties of the mode change smoothly to

being more similar to the whistler mode in magnetoionic theory, without a

conversion between distinct modes.

Similarly, distinct Langmuir and z modes do not exist in a magnetized

kinetic plasma, and hence there cannot be a conversion between these modes

to account for HF chirps. Instead the waves are generated on the Langmuir-

like part of the generalized Langmuir-z mode, whose properties become more

similar to the magnetoionic z mode as the wave propagates into regions with

decreasing plasma density.
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Figure 2.9: Comparison of (a) McAdams et al.’s calculations of wave dispersion

using WHAMP for fpe = 0.5 MHz and fce = 1.0 MHz (i.e., Ωe/ωpe = 2.0) and

k⊥ ≪ k‖ (reproduced from Fig. 2.8 in McAdams et al. [1999]), and (b) our full

numerical calculations of wave dispersion (EM magnetized kinetic theory) for

Ωe/ωpe = 2.0 and θ = 5◦.

2.5.2 Dispersion relations

Dispersion relations were calculated byMcAdams et al. [1999] using theWHAMP

dispersion-solving code [Rönnmark , 1982] to show the connection between the

Langmuir and whistler modes, and are reproduced in Fig. 2.9(a). Using our

own dispersion-solving code, we here calculate dispersion relations for the same

plasma parameters and model the plasma by Maxwellian distributions of back-

ground electrons and protons and a Maxwellian electron beam. These codes

solve the same dispersion equation, but differ in the numerical methods used

(for instance, in the calculation of the plasma dispersion function and Bessel

functions).

The results of our calculations are shown in Fig. 2.9(b), from which we

presently identify corrections to the dispersion curves of McAdams et al. [1999].

(Figure 2.9(b) with ωpe/Ωe = 0.5 has identical mode structure to that calculated

by André [1985] for the case of ωpe/Ωe = 0.64 — see the k‖ = 0 face of his

Fig. 2.2.)

(i) The “whistler mode” in Fig. 2.9(a) has a nonzero cutoff frequency, simi-

lar to Beghin et al. [1989]’s dispersion relations in Figs 2.2 and 2.3. Our

numerical kinetic calculations show that the Langmuir-whistler mode ac-

tually has a lower frequency bound below 10−3ωpe, which agrees with

semi-quantitatively with the magnetoionic prediction of zero for a single

37



Ch. 2 Mode conversion in ionosphere

ion population or no ions. A possible reason for this difference is that the

WHAMP code jumps from the correct Langmuir-whistler mode to the z

mode when these modes are nearby in (ω, k); i.e., near the second Ellis

window. Comparisons between Figs 2.9(a) and 2.9(b) show this reason

to be plausible, because the z-mode cutoff given by (2.3) in magnetoionic

theory equals 207 kHz for these parameters, in excellent agreement with

the observed cutoff. It is noted that WHAMP can properly calculate this

situation if an adequate resolution is used, as seen in Fig. 2.2 of André

[1985].

(ii) The “L-O mode” (synonymous with the o mode) in Fig. 2.9(a) extends

below the cutoff frequency fpe predicted from magnetoionic theory, at

which it (wrongly) appears to have a dispersion relation very similar to the

z mode. In contrast, the omode in our numerical calculations (Fig. 2.9(b))

shows the expected cutoff at fpe. Again, it is likely that as frequency

decreases the WHAMP code has jumped from the o mode to the z mode,

this time near the first Ellis window coupling point.

(iii) The “electron Bernstein” mode shown by the dash-dot line in Fig. 2.9(a) is

actually the z mode, since Bernstein modes only exist with weak damping

for nearly perpendicular propagation [Bernstein, 1958; Robinson et al.,

1988].

Despite these differences, there are a number of features which Figs 9(a)

and 9(b) share:

(i) McAdams et al.’s dispersion relation for the electron Bernstein mode in

Fig. 2.9(a) and our dispersion relation for the z mode in Fig. 2.9(b) are

almost precisely the same at kc/ωp & 1.5.

(ii) For frequencies above fpe, their L-O mode and our o mode have very

similar dispersion; this is also true for their Langmuir mode and our

Langmuir-whistler mode.

Fig. 2.9(b) shows that for parallel propagation and ωpe/Ωe = 0.5, as ap-

propriate for “band” emissions observed on PHAZE II [McAdams et al., 1999],

there is a limiting parallel electron beam speed of 0.7c, corresponding to 43 keV,

for which the beam can resonate with the Langmuir-whistler mode. Higher en-

ergies can only resonate with the z mode. From Fig. 2.1 of Arnoldy et al.

[1999], the beam energies observed during the times of the “band” emissions
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range from about 4–14 keV, well below this limiting energy. This supports

the interpretation that the waves are excited by the beam on the Langmuir-

whistler surface (the “Langmuir mode” in the parlance of McAdams et al.

[1999]). As Fig. 2.9b) shows, the waves remain on this surface as they prop-

agate into increasing electron density; there is no requirement for the mode

conversion asserted by McAdams et al. [1999].

2.6 Conclusions

We investigated “mode conversion” phenomena proposed for auroral waves near

ωpe by Beghin et al. [1989], McAdams and LaBelle [1999], and McAdams et al.

[1999], with the results summarized as follows.

(i) Beghin et al. [1989] observed waves above and below ωpe, which they

interpreted as electromagnetic z-mode and whistler-mode waves, respectively.

However, their instability calculations showed that wave growth was confined

to frequencies greater than the magnetoionic resonance frequencies for these

wave modes. We argue that these waves must be understood in terms of the

wave modes of magnetized kinetic plasmas, specifically the generalized Lang-

muir modes called the Langmuir-z and Langmuir-whistler modes [Willes and

Cairns , 2000]. These generalized Langmuir modes possess the standard (ther-

mal) Langmuir mode’s characteristics at high k and either whistler-mode or

z-mode characteristics at low k. Wave growth at frequencies greater than mag-

netoionic resonance frequencies is then easily explained as the waves being

generated on the Langmuir-like part of the Langmuir-z or Langmuir-whistler

mode. As these waves propagate in the inhomogeneous ionosphere, they remain

on the Langmuir-z or Langmuir-whistler mode but move to lower k where the

mode properties are different. No mode conversion process is necessary.

(ii) Beghin et al. [1989] also proposed that these waves undergo a change in

wave character from electrostatic to electromagnetic during propagation. For

a simplified model of the ionosphere we have shown that both their “whistler-

mode” and “z-mode” (actually Langmuir-whistler and Langmuir-z) waves re-

main predominantly electrostatic.

(iii) McAdams et al. [1999] described HF bands at and below the plasma

frequency, which were proposed to be generated through mode conversion from

Langmuir waves into whistler waves. We instead propose that there is no

conversion between distinct Langmuir and whistler modes, which do not exist

as separate modes in a warm magnetized underdense plasma, but that the
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HF bands are in a single mode, the generalized Langmuir-whistler mode, the

properties of which change from being Langmuir-like to whistler-like as the wave

propagates in the inhomogeneous plasma and moves to lower wave numbers.

We put forward a similar interpretation for HF chirps [McAdams and LaBelle,

1999] propagating in the Langmuir-z mode.

We have shown that mode conversion is not required to account for ob-

served waves near the electron plasma frequency, and can be replaced simply

by propagation on the generalized Langmuir modes. However, mode conver-

sion is undoubtedly necessary for processes that involve distinct modes, such

as conversion between the Langmuir-z and o and x modes that can occur in

radio windows [Budden, 1961; Jones , 1976a; Kim et al., 2007].
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Chapter 3

Electrostatic decay in a magne-

tized plasma

[Published as A. Layden et al., Phys. Rev. Lett. 110, 18, 2013]

3.1 Abstract

The kinematics of the electrostatic (ES) decay of a Langmuir wave into a Lang-

muir wave and an ion sound wave are generalized to a weakly magnetized

plasma. Unlike the unmagnetized case, ES decay in a magnetized plasma is al-

ways kinematically permitted and can produce daughter Langmuir waves with

very small wave numbers, which we demonstrate by quasilinear simulations.

The simulations further show that ES decay in magnetized plasmas is consis-

tent with STEREO spacecraft observations of transversely polarized Langmuir

waves in the solar wind.

3.2 Introduction

Electrostatic (ES) decay is a nonlinear three-wave process in which a primary

Langmuir wave L decays into a product Langmuir wave L′ of smaller wave

number and an ion sound wave S [Tsytovich, 1970]. For Langmuir waves driven

by electron beams [Benford et al., 1980; Melrose, 1980b; Cheung et al., 1982],

one of the most fundamental systems in plasma physics, it is expected to be the

dominant nonlinear process [Cairns , 2000]. The reduction in wave number of

Langmuir waves via ES decay takes them out of resonance with the beam, and

at sufficiently low wave numbers they can become localized in density wells,

possibly triggering wave collapse [Robinson et al., 1988] and dissipating energy
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Ch. 3 Electrostatic decay

into the background plasma. ES decay is also crucial to generating radiation at

multiples of the (angular) plasma frequency ωp (plasma emission), one of four

known coherent emission processes in space and astrophysical plasmas, vital for

type II and III solar radio bursts [Ginzburg and Zhelezniakov , 1958; Melrose,

1980b] and the intense 2–3 kHz outer heliospheric emissions [Kurth et al., 1984].

It provides S waves that stimulate production of electromagnetic waves near

ωp [Ginzburg and Zhelezniakov , 1958; Melrose, 1980b; Cairns , 1987b; Robinson

et al., 1993a], and counterpropagating L and L′ waves that coalesce to give

harmonic radiation near 2ωp [Ginzburg and Zhelezniakov , 1958;Melrose, 1980b;

Cairns , 1987a; Robinson et al., 1993a].

Previous analyses of ES decay assumed an unmagnetized plasma and cal-

culated the kinematics in detail [Melrose, 1982; Cairns , 1987b,a]. However,

magnetic fields are always present in space and astrophysical plasmas, and can

significantly modify Langmuir dispersion [Bale et al., 1998; Willes and Cairns ,

2000], so ES decay in a magnetized plasma may have fundamentally different

characteristics. Furthermore, it is not yet known under what conditions the

unmagnetized approximation is valid. In this chapter, the first detailed kine-

matic calculations of ES decay in magnetized plasmas are presented and are

compared with the unmagnetized results. First, quasilinear simulations of de-

cay are performed using these new kinematics. We then show that these results

can explain semi-quantitatively some recent STEREO spacecraft observations

of transversely polarized Langmuir waves in the solar wind [Malaspina et al.,

2011].

3.3 Derivation of kinematics

The kinematics of ES decay can be derived using a semiclassical formalism

[Tsytovich, 1970], where Langmuir and ion sound wave fields are quantized.

Imposing conservation of energy (~ω) and momentum (~k) for the decay gives

the wave-matching conditions ωL = ωL′ + ωS and kL = kL′ + kS, which imply

ωL′(kL′) = ωL(kL)− ωS(kL − kL′). (3.1)

In an unmagnetized plasma, the Langmuir (l = L or L′) and ion-sound

dispersion relations are

ωl(kl) = ωp + 3k2l V
2
e /2ωp, (3.2)

ωS(kS) = kSvS, (3.3)
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respectively, where k = |k|, Ve is the electron thermal speed, vS = Ve
√

γme/mi

is the ion sound speed, and γ = 1+3Ti/Te with Ti/Te the ratio of ion to electron

temperatures. Unmagnetized kinematics are derived by substituting (3.2) and

(3.3) into (3.1) and solving for kL′ in terms of kL.

Here, we consider a fully ionized electron-proton plasma, which givesmi/me =

1836, and set γ = 2. Also, we restrict our analysis to the case where θLL′ , the

angle between kL and kL′ , is 0 (forward-scatter) or π (backscatter), since this

is where the ES decay rate is maximal [Robinson et al., 1993a]. Forward- and

backscatter will be represented by positive and negative kL′ , respectively. So-

lutions to (3.1) are amenable to graphical interpretation; setting kL constant,

solutions for kL′ occur where the left-hand side (LHS) and right-hand side

(RHS) of (3.1) intersect. Figure 3.1(a) shows this graphical construction for

the unmagnetized case, where points on the solid curve (RHS) that are inter-

sected by a dashed curve (LHS) are solutions for kL and kL′ . As kL decreases

past k0 = 2ωpvS/3V
2
e (point A) the decay swaps from backscatter to forward-

scatter, and stops altogether at kL = k0/2 (point B) where the LHS and RHS

are tangential and the only solution is kL = kL′ . These results can also be rep-

resented by plotting kL′ versus kL [Fig. 3.1(b)]. Backscatter has kL′ = kL − k0
for kL > k0 and forward-scatter has kL′ = k0 − kL′ for k0/2 < kL < k0. The

minimum kL′ is 0 (at kL = k0), which corrects the assertion by previous authors

[Tsytovich, 1970; Cairns , 1987a] that it is k0/2.

For the first time we now include magnetization of the plasma in ES decay

kinematics by using the dispersion relations of magnetized wave modes when

solving (3.1). The magnetized counterpart of the Langmuir mode in a weakly

magnetized plasma (i.e., ωp > Ωe, where Ωe is the electron gyrofrequency) is

the Langmuir-z mode [Willes and Cairns , 2000; Layden et al., 2011], which

has Langmuir-like dispersion at high k but z-mode-like dispersion at low k.

Dispersion for this mode is a function of the angle θB between k and the

ambient magnetic field B, and plasma’s magnetization, which we quantify by

ωp/Ωe ∝ |B|−1. As there is no simple, accurate, analytic approximation for

the Langmuir-z mode, we calculate the dispersion relation numerically from

the 3D homogeneous, magnetized, kinetic dispersion equation (e.g. [Melrose,

1980a]), with typical examples shown in Fig. 3.2. The unmagnetized Langmuir

dispersion relation ω(k) is a convex function, with smaller ∂ω/∂k for smaller k.

In contrast, the Langmuir-z mode has much larger ∂ω/∂k where the magnetized

and unmagnetized dispersion relations diverge from each other; for θB ≈ 0 this

occurs at

k∗λD = (Ve/c)(1 + ωp/Ωe)
−1/2, (3.4)
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Figure 3.1: (a) LHS (solid line) and RHS (dashed line) of (3.1) as functions of

kL′ for an unmagnetized plasma, for (A) kL = k0, and (B) kL = k0/2. (b) kL′

versus kL for the same situation, where the solid line represents solutions for

the decay.

which proves to be an important parameter. This is also the characteristic wave

number of the radio window for linear mode conversion between the Langmuir-

z and o modes at density gradients [Ellis , 1956; Budden, 1961; Yoon et al.,

1998]. Numerical solution of the dispersion equation shows that magnetization

has a negligible effect on ion sound dispersion, so we keep the unmagnetized

relation (3.3). Henceforth we will assume θB = 0 in our calculations; this is a

good approximation, since electron beams streaming along magnetic field lines

drive Langmuir waves centered about θB = 0.

We first present a representative magnetized case: ωp/Ωe = 2. Figure

3.3(a), analogous to Fig. 3.1(a), shows solutions for various kL. At point α,
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where kL > k0 + k∗, thermal effects dominate over magnetic effects and the

magnetized and unmagnetized results coincide. However, fundamental changes

in decay properties are seen for kL < k0 + k∗. At A, kL = k0, and the decay

is a backscatter to kL′ ≈ −k∗ rather than kL′ = 0, due to the lower frequency

of the Langmuir-z mode compared to the unmagnetized Langmuir mode. ES

decay remains purely a backscatter process until kL = k0−k∗ at β, where there
is an extra forward-scatter solution that does not appear in the unmagnetized

approximation. As k decreases further between β and B (where kL = k0/2),

there are two forward-scatter solutions (one near kL = k∗) and one backscatter

solution (near kL = −k∗). Between B and δ where kL = k∗, there are no solu-

tions for an unmagnetized plasma, but the magnetized case has one backscatter

and one forward-scatter solution. At lower k than δ there is one backscatter

solution.

We now focus on the wave numbers of these decays, shown in Fig. 3.3(b).

Compared to the unmagnetized results in Fig. 3.1(b), magnetization splits so-

lutions into two branches with opposite signs of kL′ . For k∗ . kL . k0 − k∗,

the lower portion of the positive-kL′ (forward-scatter) branch has kL′ ≈ k∗, so

all forward-scatters in this kL range give kL′ ≈ k∗. Similarly, the negative-kL′

(backscatter) branch has kL′ ≈ −k∗ for k∗ . kL . k0 + k∗. For kL . k∗,

backscatter changes only the sign of the wave number (kL′ ≈ −kL ≈ −k∗),
corresponding to a reversal of its propagation.

Taking the limit ωp/Ωe → ∞ (so that k∗ → 0), the backscatter and forward-

scatter solutions merge at kL = k0 and the unmagnetized results are recovered.
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However, surprisingly, the extra solutions that appear in our magnetized cal-

culations exist even for very large ωp/Ωe. These solutions, which have not

been recognized previously, have wide-reaching applications, some of which are

discussed below.

3.4 Applications

The STEREO spacecraft recently observed Langmuir-like waves with large

transverse polarization in association with type III solar radio bursts [Malaspina

et al., 2011], where the transverse component of electric field is E⊥ = |E ×
B|/|B|. Values of F = E2

⊥/E
2 of 0 to 0.8 were found, with larger values corre-

lated with higher vb, the speed of the electron beam that drives the Langmuir
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waves. Large F was also often accompanied by a double-peak feature in the fre-

quency spectrum. These waves were interpreted as a beam-driven Langmuir-z

component with wave number kb ≈ ωp/vb and small to moderate E⊥, and a

separate Langmuir-z component at low k (actually near k∗) where E⊥ becomes

large [Willes and Cairns , 2000]. The origin of these low-k Langmuir-z waves is

an open question, and we here propose a generation mechanism based on ES

decay.

To simulate ES decay in the magnetized solar wind, we use a 1D simu-

lation code [Li et al., 2008] with quasilinear electron-Langmuir wave physics

and nonlinear electrostatic decay, but with the decay kinematics modified as

above. Waves are treated semiclassically, i.e., as a collection of wave quanta

with occupation number NM(x, k) = WM(x, k)/~ωM(x, k), where WM is the

energy density in the wave mode M . Parameters chosen are [Malaspina et al.,

2011]: ωp = 2π×20000 s−1, ωp/Ωe = 50, Ve/c = 5×10−3, and Ti/Te = 1/3 (i.e.

γ = 2), giving k∗ = 3.2× 10−2k0. We assume a source term of initial Langmuir

waves
∂NL

∂t
= S0 exp

[

−
(t− tc

∆t

)2

−
(x− xc

∆x

)16

−
(k − kc

∆k

)2]

, (3.5)

where S0 = 2E2
max/ǫ0~ωp∆t∆k. As t→ ∞ the source has E = Emax at x = xc,

in the absence of any other sources of growth or damping. Here we choose

tc = 20 s, ∆t = 5 s, xc = 3600 km, ∆x = 4000 km, kc = 0.68k0, ∆k = 0.1kc,

and Emax = 100 mV/m. This kc corresponds to a point between B and β in

Fig. 3.3(a). We also simulate with and without a background plasma density

well, with boundaries at x = 3600±500 km, that reflects Langmuir waves with

|kL| < k∗.

Figure 3.4 displays NL(x, k)/NLθ and NS(x, k)/NLθ at t = 15 s without

reflecting boundaries, where NLθ = kBTe/4π~ωpλ
2
D is the thermal level of L

waves at kL = 0 [Li et al., 2002]. The features of the spectra are produced by the

following processes. (i) Decay from L0 (kL = kc) to L1 (kL′ = k0−kc = 0.32k0),

producing S1 (kS = 2kc − k0 = 0.36k0). We note that L0 is “hollowed out”

because the Langmuir waves decay exponentially with a rate proportional to

the initial NL, which is larger at the center of L0. (ii) Decay from L1 to L2

(kL′ = k∗) and L2
′ (kL′ = −k∗), stimulated by S1 waves. (iii) Decay from L0

to L2 and L2′, producing S2 and S2′, respectively. (iv) Decay from L0 to L3

and L3′, stimulated by S2 and S2′, respectively.

Figure 3.5 shows the corresponding results for the reflecting case, with the

reflecting boundaries represented by white dashed lines. The processes are the

same as described above. However, L2 and L2′ have larger NL because these
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Figure 3.6: Time series of E|| (dashed line) and E⊥ (solid line) at x = 3600

km, with reflection of low-k Langmuir-z waves (black) and without reflection

(red).

low-k waves, which have large group velocities, now cannot propagate away

from the source region. Also, larger L2 and L2′ give increased S2 and S2′.

Increasing ∆x produces similar effects, since L and S waves remain longer in

the source region.

Integrating NL(x, k) over k we obtain the time-varying total electric fields

of Langmuir waves with k ≤ k∗ (E⊥) and k > k∗ (E||), shown in Fig. 3.6.

When there is no region of Langmuir-z wave trapping due to a density well,

E⊥ does not grow to very large levels at x = 3600 km, and then falls off as the

Langmuir-z waves near k∗ propagate away. However, when the density well is

present we see an approximately exponential increase in E⊥, and near t = 30

s E⊥ ≈ 40 mV/m at k∗, giving F ≈ 0.5. This is sufficient to account for some

STEREO spacecraft polarization observations [Malaspina et al., 2011].

Another application is to localized Langmuir wave packets in the solar wind,

termed intense localized structures (ILS), that are trapped in density cavities of

length 103λD [Nulsen et al., 2007; Ergun et al., 2008]. These density perturba-

tions can be caused by ion sound waves with wavelength λS similar to the length

scale of the cavity. From our results, after Langmuir waves undergo an ES decay

cascade to kL = k∗ they will backscatter to kL′ = −k∗ and generate ion sound

waves with kS = ±2k∗. Since the rate of ES decay increases as kL decreases

[Robinson et al., 1993a], we predict multiple backscatters and so a strong pop-

ulation of such ion sound waves. These waves have λS = 2π/2k∗ ≈ 5× 103λD,

which is comparable to the sizes of the density cavities observed. We suggest
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that some, perhaps most, ILS develop in density depressions produced by the

evolution of S waves with |kS| ≈ 2k∗ formed by ES decay. This is an unex-

pected coupling between ES decay and ILS events which is present only with

B 6= 0.

3.5 Conclusion

We have generalized the kinematics of ES decay to magnetized plasmas and

found fundamental differences for kL . k0 + k∗, the most significant of which

is the existence of solutions with very low kL′ ≈ k∗ and large E⊥/E. These so-

lutions should be essential for modeling phenomena involving low-k Langmuir

waves from ES decay, such as wave collapse and transverse Langmuir polar-

ization. Future work may involve implementing these kinematics in numerical

simulations of solar radio bursts [Li et al., 2008], or in simulations of strong

Langmuir turbulence in a magnetized plasma [Graham et al., 2011].

51



Ch. 3 Electrostatic decay

52



Chapter 4

Kinematics of decay in magnetized

plasmas

4.1 Abstract

The kinematics for electrostatic decay of Langmuir-like waves in weakly and

strongly magnetized plasmas in two dimensions are derived. Low-wave number

solutions for the decay that were found to exist in 1D for a weakly magnetized

plasma are also obtained in 2D, where the primary Langmuir wave can have an

arbitrary direction with respect to the background magnetic field. Kinematics

are also calculated for a strongly magnetized plasma where the appropriate

wave modes are the Langmuir-whistler mode and an ion-sound/ion-cyclotron

mode.

4.2 Introduction

Electrostatic (ES) decay is a nonlinear three-wave process in which a primary

Langmuir wave L decays into a product Langmuir wave L′ of smaller wave num-

ber and an ion sound wave S [Tsytovich, 1970]. ES decay is crucial to generating

radiation via plasma emission at multiples of the (angular) plasma frequency

ωp vital for type II and III solar radio bursts [Ginzburg and Zhelezniakov , 1958;

Melrose, 1980b] and the intense 2–3 kHz outer heliospheric emissions [Kurth

et al., 1984]. It provides S waves that stimulate production of electromag-

netic waves near ωp [Ginzburg and Zhelezniakov , 1958; Melrose, 1980b; Cairns ,

1987b; Robinson et al., 1993a], and counterpropagating L and L′ waves that

coalesce to give harmonic radiation near 2ωp [Ginzburg and Zhelezniakov , 1958;

Melrose, 1980b; Cairns , 1987a; Robinson et al., 1993a].
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Previous analyses of ES decay assumed an unmagnetized plasma, but recent

results (Chapter 3 and Layden et al. [2013]) have shown magnetization effects to

modify the decay significantly when considering a weakly magnetized (ωp > Ωe)

plasma with waves parallel to the ambient magnetic field; i.e., kL||B0 and

kL′ ||B0. In this chapter, we investigate more thoroughly the decay kinematics

that result when these assumptions are relaxed.

The structure of the chapter is as follows: Section 4.3 outlines the back-

ground theory of wave modes in unmagnetized, weakly magnetized, and strongly

magnetized plasmas. Section 4.4 describes the process for calculating kinemat-

ics of three-wave decay. Section 4.5 reviews the kinematics for an unmagne-

tized plasma in both 1D and 2D. Section 4.6 outlines the 1D results derived in

Chapter 3 and Layden et al. [2013] for a weakly magnetized plasma and then

provides the first 2D results where primary and product wave vectors have ar-

bitrary directions with respect to each other and B0. Section 4.7 presents the

corresponding results for a strongly magnetized plasma, where magnetization

effects become important for the low frequency mode. We then discuss the

applications of the previous sections in Sec. 4.8 and conclusions in Sec. 4.9.

4.3 Wave modes in warm magnetized plasmas

In a warm, unmagnetized plasma, the dispersion relations for the Langmuir

and ion sound waves (in the limit kλD ≪ 1) are

ωL(kL) = ωp + 3k2LV
2
e /2ωp, (4.1)

ωS(kS) = kSvS, (4.2)

respectively, where k = |k|, Ve is the electron thermal speed, vS = Ve
√

γme/mi

is the ion sound speed, γ = 1+3Ti/Te, and Ti/Te is the ratio of ion to electron

temperatures.

It is known that magnetic fields affect the dispersion of Langmuir waves

as k becomes small; in a weakly magnetized plasma (ωp > Ωe), the Langmuir

mode becomes z-mode-like at low k, whereas for a strongly magnetized plasma

(ωp < Ωe) the dispersion approaches that of the whistler mode [Willes and

Cairns , 2000]. For both weakly and strongly magnetized plasmas, when k is

perpendicular or highly oblique to B0 there is an “upper-hybrid” plateau with

ω ≈ ωuh + 3k2V 2
e /2ωp for large k, where ωuh ≈

√

ω2
p + Ω2

e.

For a weakly magnetized plasma, the unmagnetized approximation (4.2) to

the ion sound mode is valid. For a more strongly magnetized plasma, both
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the ion sound mode and the ion cyclotron mode are relevant to decay, as well

as the whistler/lower-hybrid mode. The unmagnetized approximation to the

ion acoustic mode is valid in this case only for ωS(k) ≫ Ωi, or when θB = 0

[Melrose, 1986a; Hellberg and Mace, 2002]; this will be discussed in detail in

later sections.

4.4 Method

In the following, we use a semiclassical formalism in which the wave fields in

a mode M are considered to be composed of a collection of wave quanta, each

with energy ~ωM and momentum ~kM . Conservation of energy and momentum

for the process L→ L′ + S requires that

kL′ = kL − kS, (4.3)

ωL′ = ωL − ωS, (4.4)

which can be combined to give

ωL′(kL′) = ωL(kL)− ωS(kL − kL′), (4.5)

Dispersion relations ωM(k) are calculated numerically using a code that

solves the dispersion equation for waves in a thermal magnetized plasma, as

described in Willes and Cairns [2000] and Chapters 3 and 4. For each kL,

we impose the wave-matching condition (4.5) to find the kinematically allowed

values of kL′ .

4.5 Kinematics in unmagnetized plasmas

The kinematics of ES decay, which are well known [Melrose, 1982; Cairns ,

1987b,a], are summarized here. Ion sound parameters may be eliminated by

substituting (4.1) into (4.4) to give

ωS(kS) = |kL − kL′ |vS. (4.6)

Defining the quantity θLL′ = cos−1(kL · kL′), (4.6) can be rewritten as

ωS(kS) = (k2L + k2L′ − 2kLkL′ cos θLL′)vS. (4.7)

Substituting (4.7) and (4.1) into (4.4) and defining k0 = 2ωpvs/3V
2
e and KM =

kM/k0 yields

cos θLL′ =
K2

L +K2
L′ − (K2

L −K2
L′)2

2KLKL′

. (4.8)
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Ch. 4 Decay kinematics

4.5.1 Decay in 1D

From here we first address the special case where primary and product Lang-

muir wave vectors are parallel or antiparallel. To obtain the kinematics for

1D we substitute θLL′ = 0, π into (4.8). After simplification this reduces to

kL′ = k0 − kL for kL ≥ k0/2 and has no solution for kL < k0/2, as discussed in

Sec. 3.3.

4.5.2 Decay in 2D

We now address the general case where primary and product Langmuir wave

vectors have arbitrary relative positions. Returning to the quartic equation

(4.8), it is convenient to introduce the variables ∆ = KL − KL′ and Θ =

sin2(θLL′/2). The allowed ranges of these variables are 0 ≤ ∆ ≤ KL and

0 ≤ Θ ≤ 1, where Θ = 0 and Θ = 1 correspond to forward-scatter and

backscatter, respectively. Substitution of ∆ and Θ into (4.8) yields

Θ(∆) =
∆2(∆− 2KL + 1)(∆− 2KL − 1)

2KL(KL −∆)
. (4.9)

Stationary points of (4.9), which will be useful in the following analysis, are

found by differentiating (4.9) with respect to ∆, giving

Θ′(∆) = −∆(∆− 2KL)(∆ +
√

(1−K2
L)/3−KL)(∆−

√

(1−K2
L)/3−KL)

4KL(KL −∆)2

(4.10)

and calculating its roots, which are ∆ = 0, 2KL, and KL ±
√

(1−K2
L)/3. Of

these, only ∆ = KL −
√

(1−K2
L)/3 satisfies 0 < ∆ < KL, and then only for

1/2 ≤ KL ≤ 1.

A trivial solution Θ(0) = 0 exists for all KL, corresponding to kL = kL′ and

kS = 0. For the remaining solutions, there exist four regimes which must be

considered separately: (i) KL > 1, (ii) KL = 1, (iii) 1/2 ≤ KL < 1, and (iv)

KL < 1/2. Figure 4.1 displays Θ(∆) for KL that lies in each of these regions.

In region (i), the only root is the trivial root Θ(0) = 0, so there is exactly

one forward-scatter solution. There is also exactly one backscatter solution,

Θ(1) = 1. Since Θ has no turning points in the allowed domain of ∆ and has

an asymptote at ∆ = KL, we see that Θ > 1 for ∆ > 1, so that there are no

solutions for ∆ > 1. We also note that in there is a one-to-one correspondence

between ∆ and Θ in their allowed regions.

Region (ii) also has solutions for all 0 ≤ ∆ ≤ 1, but with some important

differences. Firstly, Θ has a maximum of 1/2 rather than 1; i.e., |θLL′ | < π/2.
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Figure 4.1: Plots of Θ(∆) as defined in (4.9) for the labeled values of kL/k0.

Dashed lines represent the denominator of (4.9) and ∆ = kL/k0, and the gray

shaded area represents the permissible range of solutions for ∆. At the circle
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Figure 4.2: Graphical construction for 2D unmagnetized decay kinematics, with

primary wave vector kL/k0 = 1.2 indicated by a cross. Contours centered at
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ωL − ωS, respectively. These frequencies are scaled as (ω/ωp − 1) × 104. The
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Ch. 4 Decay kinematics

Secondly, Θ is undefined at ∆ = 1 as can be seen from the denominator of

(4.9), corresponding to θLL′ being undefined at KL′ = 0.

In region (iii), there now exists both a second root (forward-scatter solution)

at ∆ = 2KL − 1 and a turning point at ∆ = KL −
√

(1−K2
L)/3. For each Θ

there exist two solutions for ∆, except at the turning point where the maximum

Θ is obtained.

Region (iv) has Θ < 0 for all ∆ in the allowed range, so there are no

solutions and decay cannot proceed.

In addition to the analytic approach above, the 2D case is also amenable

to graphical interpretation. Figure 4.2 shows the graphical construction for

kL = 1.2k0, where the LHS and RHS of (4.5) are shown as contour plots in

(k||, k⊥) space. The intersection of these contours, indicated by a red line, gives

the solutions for kL′ . This figure comports with the ranges of ∆ and Θ in

Fig. 4.1, namely θLL′ from 0 to 2π and ∆ from 0 to 1.

4.6 Kinematics in weakly magnetized plasmas

In a weakly magnetized plasma and for propagation nearly (but not exactly)

parallel to the ambient magnetic field, the counterpart of the unmagnetized

Langmuir mode is the Langmuir-z mode, with Langmuir-like dispersion at high

k and z-mode-like dispersion at low-k [Willes and Cairns , 2000]. For propaga-

tion perpendicular to the magnetic field, the relevant mode is an upper-hybrid-

like mode.

4.6.1 Decay in 1D, wave vectors perpendicular to B0

Here, we describe the kinematics for decay of an upper hybrid wave to another

upper hybrid wave and an ion sound wave. Upper hybrid waves have wave

vectors perpendicular to the background magnetic field; i.e., θB = π/2. For

large k, upper hybrid waves have the approximate dispersion relation ω2
UH(k) =

ω2
uh + 3k2V 2

e [Melrose, 1986a], where ωuh = (ω2
p + Ω2

e)
1/2. Since ωUH(k) differs

from ωL(k) only by an additive constant (ωuh − ωp ≈ Ω2
e/2ωp), the kinematics

for large k are essentially the same as those for an unmagnetized plasma.

Like the decay of the Langmuir-z mode, numerically calculated dispersion

relations of the upper-hybrid mode are needed for the calculation of kinematics.

Typical upper-hybrid dispersion relations are shown in Figure 4.3, for Ve/c =

5× 10−3 and a range of ωp/Ωe. At ω = ωp these waves have kλD = Ve/c; this
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wave number is greater than that of the Langmuir-z mode, viz.,

k∗λD = (Ve/c)(1 + ωp/Ωe)
−1/2. (4.11)

As k increases the frequency increases steadily until it plateaus at ωuh.

A notable feature of upper-hybrid decay is that there do not always exist

solutions kL′ that are parallel to kL (as opposed to antiparallel), in contrast

to the kL′ = k∗ solution branch for the Langmuir-z mode. The condition for

parallel solutions is that vS > vg at some k, which can be understood as follows.

Figure 4.4 shows vg for the Langmuir/upper-hybrid mode and the S mode for

ωp/Ωe = 50 and Ve/c = 5 × 10−3. For γ = 1 + 3Ti/Te = 2, vS < vg for all

k, whereas γ = 4 has vS > vg for a range of k. Looking at the graphical

construction for wave-matching shown in Fig. 4.5, we see that γ = 2 has no

intersection with the solid line (L dispersion relation) whereas γ = 4 does due

to its larger vS. The transition between these two cases is when vS = vg at

only one k.

Figure 4.6 plots Ti/Te for which vS = vg at a single k, given ωp/Ωe and Ve/c;

e.g., for ωp/Ωe = 50 and Ve/c = 5× 10−3, this minimum is Ti/Te ≈ 0.8. If the

minimum does not appear on the graph (since it is negative), parallel decay is

permitted for all Ti/Te. With this condition stated, we now calculate the decay

kinematics for ωp/Ωe = 50 and Ve/c = 5× 10−3 in the same manner as for the

1D parallel case in Sec. 3.3. Figure 4.7 shows kL′ as a function of kL for a range

of γ = (1 + 3Ti/Te)
1/2. For γ = 2 there are no parallel kL′ (forward scatter)

solutions since Ti/Te is below the minimum required in Fig. 4.6. Comparing

Fig. 3.3 and Fig. 4.7 shows that the antiparallel kL′ solutions closely resemble

those for the Langmuir-z mode, with kL′ ≈ k0 − kL for large k and kL′ ≈ −k∗
when k∗ . kL . k0 + k∗. For γ ≥ 3 there are now up to two parallel-kL′

solutions, and the range of kL for which these occur increases with γ.

As well as the difference regarding parallel decay, another difference from

Fig. 3.3(b) is that the solutions now do not occur on straight lines with abrupt

transitions at intersection points but instead make gradual transitions. This is

due to the smoothness of the Langmuir/upper-hybrid dispersion relations which

are unlike the abrupt change in frequency at k∗ for the parallel Langmuir-z

mode.
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line), ωp/Ωe = 8 (solid line), ωp/Ωe = 16 (dashed line), for Ve/c = 5× 10−3.
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Figure ωp/Ωe θB γ Low-f mode kL/k0 Low kL′ Orientation

4.9 50 0◦ 2 Ion sound 1.25 None || to B0

4.10 50 0◦ 2 Ion sound 1.0 −k∗ || to B0

4.11 50 0◦ 2 Ion sound ∼ 0.81 ±k∗ ⊥ to B0

4.12 50 0◦ 2 Ion sound 0.2k∗–1.0k∗ < | ± k∗| ⊥ to B0

4.14 50 90◦ 2 Ion sound 2.0 None ⊥ to B0

4.15 50 90◦ 2 Ion sound 1.25 None ⊥ to B0

4.16 50 90◦ 2 Ion sound 0.1–1.0 ±k∗ ⊥ to B0

4.17 50 90◦ 2 Ion sound 0.466 ±k∗ ⊥ to B0

4.18 50 90◦ 3 Ion sound 0.466 ±k∗ ⊥ to B0

4.19 50 45◦ 2 Ion sound 1.0 None Oblique

4.20 50 45◦ 2 Ion sound 0.6 ±k∗ ⊥ to B0

4.27 0.5 0◦ 2
Generalized

ω+(k)
0.25–1.5 ±k∗ || to B0

4.28 0.5 0◦ 2
Generalized

ω−(k)
0.25–1.5 −k∗ || to B0

Table 4.1: Summary of kinematics calculations presented in Chapter 4.

4.6.2 Decay in 2D, primary wave vector parallel to B0

In this and later sections, the kinematics of electrostatic decay are calculated

for a wide range of parameters. A summary of the various cases that are

considered is presented in Table 4.1. The first of these cases is the 2D decay

solutions obtained when the primary Langmuir wave-vectors are parallel to the

magnetic field (i.e., θB,L = 0). The dispersion surface for the Langmuir-z mode

is shown in Fig. 4.8. We note that ω(k)/ωp increases faster along the parallel

axis than the perpendicular axis.

For kL & 2k0 magnetization effects become negligible and the magnetized

decay solutions are approximated well by the unmagnetized kinematics. Figure

4.9 displays the decay solutions for kL/k0 = 1.25 for an unmagnetized (red) and

magnetized (black) plasma. Decay solutions for the magnetized and unmag-

netized plasma coincide along the k|| axis, as expected from the 1D analysis.

However, for θB,L′ > 0 (where θB,L′ is the angle between kL′ and B0) magne-

tized solutions have smaller |kL′ |. This is because ωL(k||, k⊥) increases faster

along the k⊥ axis than the k|| axis, as seen in Fig. 4.8 from the non-circular

shape of the constant-frequency contours.
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Figure 4.9: Solutions kL′ for kL/k0 = 1.25 for magnetized Langmuir-z waves

with ωp/Ωe = 50 and θB = 0 (black line) and unmagnetized Langmuir waves

(red line). Innermost ticks to the origin are ±k∗.

64



−0.25 0.25 0.5 0.75 1.0

−0.25

0.25

k
||
/k

0

k
⊥
/k

0

Figure 4.10: Solutions kL′ for kL/k0 = 1.0 and otherwise identical conditions

to Fig. 4.9.

Figure 4.10 displays the solutions for kL′ given kL/k0 = 1.0. Solutions for

the 1D case can be seen along the k|| axis, with unmagnetized decay giving

kL′ = 0 and magnetized decay giving kL′ = −k∗. In contrast to kL/k0 = 1.25,

the magnetized solutions have greater |kL′ | for θB,L′ & 75◦. Also, solutions

with θLL′ > π/2 are kinematically allowed only for a magnetized plasma.

Figure 4.11(a) shows kL′ solutions for kL = 0.813k0. The solutions now form

an inner and outer curve, with the inner curve containing the k∗ solution on the

parallel axis and the outer curve containing the −k∗ solution. As kL decreases

to 0.810k0 shown in Fig. 4.11(b), the topology of these solutions changes. There

is now one closed curve which contains the ±k∗ solutions, which are intrinsically

associated with magnetization effects, and another closed curve which is well

approximated by the unmagnetized forward-scatter results. For kL/k0 = 0.6

(Fig. 4.12), the forward-scatter solution curve centered at 0.5k0 has a smaller

range of k⊥ and k|| than for kL/k0 = 0.81, but the curve centered at k = 0

containing the magnetized solutions remains approximately the same.

Figure 4.13 shows the decay solutions for kL/k∗ = 0.2, ..., 1.0. It can be seen

that the range of k⊥ for the solution curves becomes significantly smaller as kL
decreases, until at kL/k∗ = 0.2 all solutions have approximately the same |kL′ |.

We note that Figs 4.10–4.12 demonstrate that low-k solutions for a magne-

tized plasma exist not only for θLL′ = 0, but occur for a range of θLL′ albeit with

|kL′ | somewhat larger than k∗, reaching∼ 5k∗ at θLL′ = π/2. This demonstrates

the important result that the 1D results persist into the general 2D domain.
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Figure 4.11: Solutions kL′ for (a) kL/k0 = 0.813 and (b) kL/k0 = 0.810 and

otherwise identical conditions to Fig. 4.9.
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Figure 4.12: Solutions kL′ for kL/k0 = 0.6 and otherwise identical conditions

to Fig. 4.9.
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4.6.3 Decay in 2D, primary wave vector perpendicular

to B0

We now describe the 2D solutions for the decay when the primary wave is a

perpendicular upper hybrid wave.

For kL & 2k0, the unmagnetized and magnetized solutions coincide well.

For instance, Fig. 4.14 shows the magnetized solutions for kL = 2k0, which are

almost indistinguishable from the unmagnetized solutions at this wave number.

For kL = 1.25k0 (Fig. 4.15) we see that the unmagnetized approximation still

gives good agreement with the magnetized results. As opposed to the 2D

Langmuir-z decay for k||B0, the magnetized results have larger kL′ , not smaller,

for the same θB,L′ , as shown by comparing Figs 4.9 and 4.15.

Figure 4.16 displays the solution curves for a range of kL/k0 for γ = 2. For

kL ≤ 0.6k0, the solution curves intersect the k|| axis near ±k∗. This demon-

strates that the ±k∗ solutions found for the decay of Langmuir-z waves are

valid not only for parallel propagation of the primary L wave but also for

perpendicular propagation.

We now confirm the 1D result that the possibility of decay to positive

(forward-scatter) kL′,⊥ is dependent on γ. Figure 4.17 shows the decay for

kL/k0 = 0.466 and γ = 2. It can be seen that the only solution on the k⊥
axis with kL′ > 0 is the trivial solution kL = kL′ . Figure 4.18 shows the

corresponding case for γ = 3, where in addition to the trivial solution kL = kL′

we now see a forward-scatter solution at kL′ ≈ 0.35k0.

4.6.4 Decay in 2D, primary wave vector oblique to B0

The kinematics for primary Langmuir waves propagating obliquely to the mag-

netic field are presented here for the particular case of θB = 45◦. The kine-

matics for kL/k0 = 1.0, which is the oblique analog of Fig. 4.10 (parallel) and

4.16 (perpendicular), are shown in Fig. 4.19. Magnetized solutions are well ap-

proximated by the unmagnetized solutions, with the main difference being that

magnetized solutions are shifted towards more negative k⊥.

Kinematics for kL/k0 = 0.6 are shown in Fig. 4.20, for which the equivalent

parallel and perpendicular results are shown in Fig. 4.12 and Fig. 4.16. In this

case unmagnetized kinematics can be seen to be a poor approximation to the

magnetized kinematics. Like the perpendicular case, solutions for kL′ comprise

one curve and not two as for the parallel case. Solutions at ±k∗ can be seen on

the k|| axis, again confirming that these low-kL′ exist in the general 2D case.
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Figure 4.14: Solutions kL′ for kL/k0 = 2.0 and γ = 2 for upper hybrid waves

with θB = 90◦ and ωp/Ωe = 50.
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Figure 4.15: Solutions kL′ for kL/k0 = 1.25 and otherwise identical conditions

to Fig. 4.14.
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Figure 4.16: Solutions kL′ for kL/k0 = 0.1, 0.2, ..., 1.0, as labeled, with otherwise

identical conditions to Fig. 4.14.
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Figure 4.17: Solutions kL′ for kL/k0 = 0.466 (represented by a cross) and

otherwise identical conditions to Fig. 4.14.
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γ = 3. There are no solutions between the cross and the curve.
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Figure 4.20: Analog of Fig. 4.19 for kL/k0 = 0.6.

4.7 Kinematics in strongly magnetized plas-

mas

We now investigate the case where Ωe > ωp. In this case, the mode which has

Langmuir-like dispersion at high k has whistler-like dispersion for low k. This is

termed the Langmuir-whistler mode. There are two low-frequency modes that

are relevant for a strongly magnetized plasma, which in the limit of parallel

propagation are the unmagnetized ion sound mode and the magnetized ion

cyclotron mode. We discuss the kinematics of decay involving both of these

modes. Only the case where kL is parallel to B0 is considered here, since the

Langmuir-whistler mode frequency is too small to satisfy the wave-matching

conditions when kL is perpendicular to B0.

4.7.1 Low-frequency modes

As stated above, there are two low-frequency modes that exist in a magne-

tized plasma. Using cold plasma theory, their dispersion relations are [Melrose,

1986a]

ω2
± =

1

2
[ω2

S(k) + Ω2
i ]±

1

2
{[ω2

S(k) + Ω2
i ]

2 − 4ω2
S(k)Ω

2
i cos

2 θ}1/2. (4.12)
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Figure 4.21: Dispersion relations for ω+ (solid) and ω− (dashed) from (4.12)

for Ωe/ωp = 2, γ = 2, and θ = 0◦, 30◦, 60◦, 90◦, as labeled. For θ = 90◦ the ω−

mode has a zero frequency for all k.

Figure 4.21 displays ω±(k) for various θ. For parallel propagation (cos2 θ =

1), the dispersion relations reduce to the unmagnetized ion sound mode [Eq.

(4.2)] and the ion cyclotron mode (ω = Ωi). We will calculate the kinematics

for both ion sound waves and ion cyclotron waves in 1D. As θ increases, these

dispersion relations split apart in (ω, k); ω+ has ion-cyclotron-like dispersion

at low k and ion-sound-like dispersion at high k, and vice-versa for the ω−

mode. At θ = 90◦, ω+(k) =
√

ωS(k)2 + Ω2
e and ω−(k) = 0. Decay kinematics

involving both the ω+ and ω− modes will be calculated for the 2D case.

4.7.2 Decay in 1D, wave vectors parallel to B0

The Langmuir-whistler mode has very similar dispersion to the Langmuir-z

mode near ωp, in that there is a rapid change in ∂ω/∂k near an equivalent

k∗, defined by k∗ = (Ve/c)(1 − ωp/Ωe)
−1/2. This is demonstrated in Fig. 4.22

for Ωe/ωp = 2 and Ve/c = 5 × 10−3, giving k∗λD = 7.1 × 10−3. However,

the Langmuir-whistler mode differs from the Langmuir-z mode in its cutoff

frequency, which is on the order of Ωi rather than ωp − Ωe/2.

Figure 4.23 shows the graphical construction for wave matching for both

the ion sound mode and the ion cyclotron mode. Unlike the ion sound mode,

decay solutions for the ion cyclotron mode are symmetric in ±kL′ because its

dispersion relation is independent of k.

We first calculate the kinematics for the decay of a Langmuir-whistler wave

into another Langmuir-whistler wave and an ion sound wave. The results are
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Figure 4.22: Langmuir-whistler dispersion relation for Ωe/ωp = 2, Ve/c =

5× 10−3, and θB = 0.
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θB = 0, for the ion sound mode (black dashed line) and the ion cyclotron mode
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shown as the red curve in Fig. 4.24, for the case Ωe/ωp = 2, Ve/c = 5 × 10−3,

and γ = 2, giving k∗/k0 = 0.32. The kinematics are qualitatively the same as

for decay of the Langmuir-z mode for θB = 0, including the solutions at ±k∗,
as can be seen from comparisons with Fig. 3.3.

We also calculate the kinematics for the decay when the low-frequency mode

is the ion cyclotron mode, shown as the black curve in Fig. 4.23. In this case,

solutions with negative kL′ are approximately equal to those for the ion sound

mode when kL . k0+k∗. When kL′ & k0+k∗, decay involving the ion cyclotron

mode has a larger magnitude of kL′ . Another difference from decay into ion

sound waves is that positive kL′ solutions exist for all kL. This is due to the ion

cyclotron mode having a comparatively large frequency of Ωi for all k, allowing

the wave-matching conditions to be satisfied.

4.7.3 Decay in 1D, wave vectors perpendicular to B0

As discussed above, of the ω±(k) modes only the ω+(k) mode has nonzero

frequency for θB = 90◦. The Langmuir-whistler mode for θB = 90◦ has a

frequency near ωpi. Figure 4.25 shows the kinematics for this process. For all

kL there is both a positive kL′ solution as well as a negative kL′ solution with

smaller magnitude. We also note that decay can reduce the Langmuir-whistler

wave number significantly, e.g., from kL = 4k0 to kL′ ≈ 0.2k0 in a single decay.

4.7.4 Decay in 2D, primary wave vector parallel to B0

The Langmuir-whistler dispersion surface is shown in Fig. 4.26. We note that

the contours of ωL for the Langmuir-whistler mode are dissimilar to those of

the Langmuir-z mode in Fig. 4.8. Whereas the Langmuir-z mode had contours

that resembled ellipses and had frequency increasing with k⊥, the Langmuir-

whistler mode’s contours resemble hyperbolas and its frequency decreases with

increasing k⊥. This leads to very different kinematics in 2D.

Figure 4.27 shows the kinematics for kL/k0 = 0.25, 0.5, ..., 1.5, with the ω+

mode as the low-frequency wave. The solutions obtained resemble pairs of

hyperbolas, and unlike the weakly magnetized case there are no closed families

of solutions near k∗. For kL > k∗, these hyperbolas have a much smaller range

of allowed θLL′ . A surprising result is that kL′ > kL for all kL, as opposed to

the Langmuir-z mode where kL′ < kL for all kL. The reason for this is that ωL

decreases as k⊥ increases for a given k||L, as described above.

The corresponding calculations for the ω− mode are shown in Fig. 4.28.
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Figure 4.28: Analog of Fig. 4.27 for the ω− mode.

Solutions for kL′ when kL < k∗ are qualitatively similar to those for the ω+

mode. However, for kL > k∗, there are only solutions at kL′ = −k∗ and not

kL′ = k∗.

One consequence of the above results is that the Langmuir-whistler waves

resulting from decay should be confined to a relatively narrow range of θLL′ .

We also predict that decay increases, rather than decreases, the wave numbers

of Langmuir-whistler waves subject to three-wave decay when ωp/Ωe < 1.

4.8 Discussion

In this chapter we have presented the analysis of decay kinematics for the 2D

case; i.e., where the wave vectors participating in the decay and the magnetic

field direction are coplanar. Three-dimensional calculations of decay are also

possible, in which the three wavevectors can have different azimuthal angles

with respect to the magnetic field. However, such calculations are more difficult

to perform numerically. Preliminary calculations of decay in 3D not shown here

suggest that 2D calculations capture most of the qualitative features of decay

in 3D.

Decay of Langmuir-whistler waves parallel to the magnetic field was found

to allow solutions where kL′ > kL, corresponding to an inverse cascade. By

shifting these waves to larger k, we expect them to undergo Landau damping

at a faster rate. Also, since this corresponds to a smaller wavelength, we

would expect such waves to be more strongly modulated by small-scale density

fluctuations.
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4.9 Conclusion

We have for the first time calculated in detail the kinematics for the three-wave

processes of Langmuir-like and ion-sound-like waves when magnetization is in-

cluded. We have done this for both weakly and strongly magnetized plasmas

and for parallel, perpendicular, and oblique propagation of the primary waves

in both 1D and 2D.

For a weakly magnetized plasma, the solutions are well approximated by

unmagnetized kinematics when kL & 2k0 but there are important differences for

kL . 2k0. One such difference is the existence of low-k solutions near k∗, which

were previously shown to exist for the 1D parallel case and have now been

confirmed to persist for arbitrary propagation angles of primary Langmuir-z

waves. Another difference is that decay kinematics at oblique angles are not

well approximated by unmagnetized kinematics for kL . k0.

For a strongly magnetized plasma, where the relevant wave mode is the

Langmuir-whistler mode, the kinematics in 1D are very similar to those of a

weakly magnetized plasma. However, in 2D the solutions are seen to be very

different, with decay products confined to a narrow range of θLL′ , and kL′ in-

creasing as ion sound waves are generated. This is due to the different topology

of the Langmuir-whistler mode surface compared with the Langmuir-z mode.

Decays involving ion sound waves and ion cyclotron waves are qualitatively

very similar for θLL′ > π/2, but for θLL′ < π/2 are qualitatively different, an

example being the absence of k∗ solutions for the ω− mode.
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Chapter 5

Quasilinear simulations of type III

radio bursts with magnetized elec-

trostatic decay

5.1 Abstract

Quasilinear simulations of electrostatic decay with magnetized kinematics are

performed for a range of parameters consistent with type III solar radio burst

sources. The dynamics of the decaying Langmuir waves are analyzed as a

function of parameters such as beam wave number, beam width, electric field

strength, and plasma temperatures. The growth rate of Langmuir waves at

low wave numbers, where their polarization is transverse, is appreciable when

trapping of Langmuir waves at low wave numbers by higher density regions

(e.g., turbulence) is implemented.

5.2 Introduction

Type III radio bursts are caused by flare-accelerated electrons that drive Lang-

muir waves which are then converted into radio emission at the electron plasma

frequency (ωp) and its harmonic (2ωp) [Wild , 1950; Ginzburg and Zhelezniakov ,

1958; Melrose, 1986a]. Nonlinear wave-wave interactions, such as electrostatic

decay, are thought to be the dominant mechanism for converting these beam-

driven Langmuir waves into the observed radio emission [Lin et al., 1986; Cairns

and Robinson, 1995a]. Previous studies have simulated type III bursts using

quasilinear equations for the evolution and propagation of the electron beam

and for the generation and propagation of Langmuir waves, combined with

equations describing the nonlinear electrostatic decay process and nonlinear
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wave-wave coupling processes that produce ωp and 2ωp radiation [Li et al.,

2002, 2003]. These were able to reproduce a number of features of type III

bursts, such as the presence of both fundamental and harmonic emission and

the evolution of frequency with time.

Recent in situ observations of type III radio bursts [Malaspina et al., 2010;

Graham et al., 2012a] have demonstrated a previously unseen feature of Lang-

muir waves in these source regions; namely, under certain conditions there is

substantial energy density in the electric field component perpendicular to the

magnetic field (and presumably the wave vector). This was interpreted as ev-

idence for some energy being in the transversely-polarized z mode, which is

the magnetized counterpart of the Langmuir mode at low wave numbers. This

suggests magnetization effects are important in the modeling of type III bursts.

Recently the effects of magnetization on the kinematics of electrostatic de-

cay were derived, shown to be important, and included some preliminary quasi-

linear simulations of a type III radio burst source region (Chapter 4 and Layden

et al. [2013]). However, the importance of magnetization effects over a wide

range of plasma parameters was not investigated.

In this chapter, we investigate in detail the effects of varying the plasma

parameters on electrostatic decay when magnetization is included in the wave

kinematics. Although the primary observational interest is the state of the

system at large times (such as discussed in Sec. 3.4), due to time constraints

our focus in this chapter is on the initial stages of growth of the perpendicular

electric field. The outline of the chapter is as follows. Section 5.3 summarizes

the one-dimensional quasilinear equations used in our simulations. This is

followed by a derivation of the nonlinear rates for the electrostatic decay process

which are implemented in the simulations. Section 5.4 presents the results of

the simulations, focusing on the levels of waves in the perpendicular wave field

component and the timescales of the decay. This is followed by a discussion

and the conclusions.

5.3 Theory

In this section we first present the one-dimensional quasilinear equations for

wave and particle evolution including nonlinear electrostatic decay that we use

in our simulations. Since we are predominantly interested in magnetization

effects for the decay process, we use the unmagnetized form of the quasilinear

equations; this corresponds to neglecting the cyclotron motion of the particles
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and associated resonances. We next derive the nonlinear rate for electrostatic

decay of magnetized Langmuir-z waves. Finally we describe the Langmuir wave

source that we implement and the method of implementing a density well that

traps Langmuir waves.

5.3.1 Quasilinear equations

The quasilinear equations for the occupation number NM(k) and particle dis-

tribution function f(v) are [Melrose, 1986a; Li et al., 2003]

∂NM(k)

∂t
+vM(k)

∂NM(k)

∂x
= α(k)−γ(k)NM(k)+

∂NM(k)

∂t

∣

∣

∣

∣

NL

+S(t, x, k), (5.1)

∂f(v)

∂t
+ v

∂f(v)

∂x
=

∂

∂v

[

A(v)f(v) +D(v)
∂f(v)

∂v

]

, (5.2)

where

vM(k) =
∂ωM(k)

∂k
, (5.3)

α(k) =
e2

4ǫ0~

v3

V 2
e

(1− k2λ2D)f(v)

∣

∣

∣

∣

v=ω/k

, (5.4)

γ(k) = − πe2

meǫ0

v3

V 2
e

kλ2D
∂f(v)

∂v

∣

∣

∣

∣

v=ω/k

, (5.5)

A(v) =
e2

8πmeǫ0

v2

V 2
e

k2(1− k2λ2D)

∣

∣

∣

∣

k=ω/v

, (5.6)

D(v) =
e2~

2m2
eǫ0

v2

V 2
e

k3λ2DN(k)

∣

∣

∣

∣

k=ω/v

. (5.7)

In (5.1) and (5.2) the t and x arguments of NM and f are omitted for brevity.

Here ∂NM(k)/∂t|NL is the nonlinear electrostatic decay rate for the modeM (=

L, L′, or S), S(t, x, k) is a source term for Langmuir waves, γ is an absorption

coefficient, D is a diffusion coefficient, and α and A are coefficients related to

spontaneous emission.
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5.3.2 Nonlinear rates

The nonlinear rate equations for the electrostatic decay process L(kL) →
L′(kL′) + S(kS) are [Melrose, 1986a; Li et al., 2003]

∂NL(kL)

∂t

∣

∣

∣

∣

NL

= −
∫

dkS

∫

dkL′N̂(kL, kL′ , kS)

× δ(kL − kL′ − kS)δ[ωL(kL)− ωL′(kL′)− ωS(kS)], (5.8)

∂NL′(kL′)

∂t

∣

∣

∣

∣

NL

=

∫

dkS

∫

dkLN̂(kL, kL′ , kS)

× δ(kL − kL′ − kS)δ[ωL(kL)− ωL′(kL′)− ωS(kS)], (5.9)

∂NS(kS)

∂t

∣

∣

∣

∣

NL

=

∫

dkL

∫

dkL′N̂(kL, kL′ , kS)

× δ(kL − kL′ − kS)δ[ωL(kL)− ωL′(kL′)− ωS(kS)], (5.10)

where

N̂(kL, kL′ , kS) = GωS(kS)[NL(kL)NL′(kL′)−NL′(kL′)NS(kS) +NS(kS)NL(kL)],

(5.11)

and

G =
~e2(1 + 3Ti/Te)

8ǫ0m2
eV

2
e

. (5.12)

The variable N̂ includes the nonlinear absorption and emission processes dis-

cussed in Sec. 1.3.2.

Equation (5.8) can be simplified by firstly integrating over kL′ to give

∂NL(kL)

∂t

∣

∣

∣

∣

NL

= −
∫

dkSN̂(kL, kL − kS, kS)δ[ωL(kL)− ωL′(kL − kS)− ωS(kS)],

(5.13)

and then integrating over kS to give

∂NL(kL)

∂t

∣

∣

∣

∣

NL

= −
∑

kL−kL′−kS=0

N̂(kL, kL′ , kS)
∣

∣

∂
∂kS

[ωL(kL)− ωL′(kL − kS)− ωS(kS)]
∣

∣

, (5.14)

where the sum is performed over the kinematically allowed triples of kL, kL′ ,

and kS. To derive (5.14) we have used the formula

∫

dx g(x) δ[f(x)] =
∑

i

g(xi)

|f ′(xi)|
, (5.15)
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where the sum is over the roots xi of f(x). The term ∂ωL/∂kS in the denom-

inator of (5.14) equals zero, and we evaluate other terms using the chain rule

so that

∂NL(kL)

∂t

∣

∣

∣

∣

NL

= −
∑

kL−kL′−kS=0

N̂(kL, kL′ , kS)
∣

∣− ∂ωL′ (kL−kS)

∂(kL−kS)
∂(kL−kS)

kS
− ∂ωS(kS)

kS

∣

∣

. (5.16)

Substituting (5.3) into (5.16) then yields

∂NL(kL)

∂t

∣

∣

∣

∣

NL

= −
∑

kL−kL′−kS=0

N̂(kL, kL′ , kS)

|vL(kL′)− vS|
. (5.17)

Analogous calculations for (5.9) and (5.10) yield

∂NL′(kL′)

∂t

∣

∣

∣

∣

NL

=
∑

kL−kL′−kS=0

N̂(kL, kL′ , kS)

|vL(kL′)− vS|
(5.18)

and
∂NS(kS)

∂t

∣

∣

∣

∣

NL

=
∑

kL−kL′−kS=0

N̂(kL, kL′ , kS)

|vL(kL)− vL(kL′)| . (5.19)

5.3.3 Source and implementation

The source of Langmuir waves (either beam-driven or the products of previous

decay) is described by the function S(t, x, k). We choose a Gaussian function

in t and k and a steeper variation in x so that the source is contained within

the simulation grid, namely,

S(t, x, k) = S0 exp
[

−
(t− tc

∆t

)2

−
(x− xc

∆x

)16

−
(k − kc

∆k

)2]

, (5.20)

where S0 = 2E2
max/ǫ0~ωp∆t∆k. As t→ ∞ the source has E = Emax at x = xc,

in the absence of any other sources of growth or damping. We choose the

parameters tc = 0.1 s, ∆t = 10−2 s, xc = 3600 km, ∆x = 4000 km.

We also include the effect of a plasma density well that causes reflection

of low-k (i.e., |k| < k∗) Langmuir waves, such as may be present in the solar

wind. The importance of such density wells on the dynamics of electrostatic

decay was demonstrated in Chapter 3 but is analyzed in detail here. For

propagation in 1D, reflection of Langmuir-z waves occurs when their frequency

equals the z mode cutoff frequency ωz ≈ ωp′ − Ωe/2 = (e2n′
e/meǫ0)

1/2 − Ωe/2

, where primed quantities represent their value at the reflective boundaries.
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Figure 5.1: (a), (b) Dispersion relation ω(k) of Langmuir-z waves for Te =

1.7× 105K and ωp/Ωe = 50. (c), (d) Group velocity vg normalized by electron

thermal velocity Ve for the same parameters.

Langmuir-z waves near k∗ have frequencies ∼ ωp, thus reflection occurs when

ωp = ωp′ − Ωe/2. Substituting a typical parameter for the electron cyclotron

frequency Ωe = ωp/50 yields ωp′/ωp = 1.01, or In terms of plasma density,

ne′/ne = (ωp′/ωp)
2 ≈ 1.02; i.e., an increase in density of 2%.

Reflection of Langmuir waves is implemented in the simulations by defining

the left and right boundaries at given spatial positions in the simulation grid,

then at each time step the quantaNL propagating past the right (left) boundary

at positive (negative) k are removed and added to NL at negative (positive) k.

5.4 Results

In this section, we present the results of quasilinear simulations using a range

of Langmuir wave and plasma parameters that are consistent with type III

source regions at 1 AU. The electron temperature and magnetization strength

are kept constant at Te = 1.7× 105K (or Ve/c = 5.35× 10−3) and ωp/Ωe = 50,

respectively. These parameters fully determine the dispersion relation ωL(k)

and group velocity vg of the Langmuir waves, which are plotted in Fig. 5.1.

The remaining parameters are varied one at a time in order to determine the

dependence of Langmuir wave dynamics on the parameters.

We first present the simulation results for the following parameters: kc/k0 =

0.67, ∆kc/kc = 0.1, Ti/Te = 0.5, and Emax = 100mV/m. We also include a
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Figure 5.2: (a)-(c) NL(x, k)/NLθ and (d) NS(x, k)/NLθ, at t = 0.1 s for the

default set of parameters, where NLθ is the thermal level of Langmuir waves.

density well with left and right boundaries at x = 3600± 500 km such that the

width of the well is 1000 km.

The Langmuir and ion sound wave spectra at t = t0 = 0.1 s are shown

in Fig. 5.2. The Langmuir wave source centered at kc = 0.67k0 has begun

to decay to kL′ = k0 − kL = 0.33k0, generating ion sound waves centered at

kS = kL−kL′ = 0.34k0. There is also the initial stage of decay from kL = 0.33k0
to kL′ ≈ ±0.995k∗.

Spectra at t = 0.2 s are shown in Fig. 5.3. The Langmuir wave source is

almost entirely decayed from kc to kL′ = 0.33k0 and kL′ ≈ ±0.995k∗. Ion sound

waves from the first decay have kS = 0.34k0; their presence stimulates decay

from 0.33k0 to ±k∗ via the terms proportional to NS in (5.9) and (5.11), since
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Figure 5.3: (a)-(c) NL(x, k)/NLθ and (d) NS(x, k)/NLθ, at t = 0.2 s for the

default set of parameters.

kS is approximately equal to the difference in these wave numbers. Decay from

kc to ±k∗ generates ion sound waves centered at kS = 0.67k0∓0.995k∗ ∼ 0.67k0,

which can be seen in as a peak in NS in Fig. 5.3(d). Low-k Langmuir waves

generated outside the density well (and so are not trapped) have propagated

to the edges of the simulation box. The lacunas in wave quanta near the

boundaries of the reflecting boundaries are not physical but a result of the

numerical implementation of reflection.

Figure 5.4 shows the spectra at the later time t = 0.3 s. The initial Langmuir

wave source is now at approximately the thermal level, except at ∼ 0.67k0; this

is due to coalescence of some ±k∗ Langmuir waves with ion sound waves back

to kL ≈ 0.67k0. Outside the density well the level of Langmuir quanta at low

k has decreased further as they propagate away from the source region.

88



0

0.5

1

 

 

0

5

10

15

0.99

1

 

 

0 2000 4000 6000
−1

−0.99

x (km)

 

 

(a)

(b)

(c)  l
o

g
1

0
(N

L/N
L

θ
)

k
/k

0
k
/k

*
k
/k

*

0 2000 4000 6000
0

0.5

1

x (km)

k
/k

0

 

 

0

5

10

15
(d)

 l
o

g
1

0
(N

S
/N

L
θ
)

Figure 5.4: (a)-(c) NL(x, k)/NLθ and (d) NS(x, k)/NLθ, at t = 0.3 s for the

default set of parameters.
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Figure 5.5: Langmuir wave power spectrum for the default set of parameters,

at x = 3600 km and times t = 0.05 s, 0.1 s, 0.2 s, and 0.3 s as labeled. Points

labeled A, B, C, and D correspond to kL = −k∗, k∗, 0.33k0, and 0.67k0 respec-

tively.

A power spectrum for the Langmuir wave fields at x = 3600 km is shown in

Fig. 5.5 at times t = 0.05 s, 0.1 s, 0.2 s and 0.3 s. The frequencies plotted here

are for a spacecraft frame, which introduces a Doppler shift when transforming

from the solar wind frame in which the simulations are performed. This Doppler

shift is given by ∆ω = k · vsw, where vsw is the relative velocity between the

spacecraft frame and the solar wind frame. We take a nominal value of the solar

wind at 1 AU of vsw = 400 km s−1 and assume that Langmuir and ion sound

waves have k||B0 and thus k||vsw. At t = 0.05 s the Langmuir waves are at

approximately their thermal level, except at a small region around f = 20.1 kHz

due to the Langmuir wave source. From t = 0.1 s through to t = 0.3 s we observe

the further growth of Langmuir waves at kc and the subsequent decay to 0.33k0
and ±k∗ described above. Doppler shifting of the ±k∗ waves (between A and

B) is particularly noticeable; their frequencies are equal in the solar wind frame

and differ only by virtue of the Doppler effect. The sharp peak at t = 0.3 s

between C and D corresponds to k = 0.5k0 and is not physical; it is due to

the transition in the number of decay solutions from three for k > 0.5k0 to two

solutions k < 0.5k0.
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Figure 5.6: Time series of E⊥ (solid line) and E|| (dashed line) at x = 3600 km

for the default set of parameters.

The Langmuir wave electric fields can be calculated by integrating their

occupation number over wave number, viz.

1

2
ǫ0E

2 =

∫ ∞

−∞

dk

2π
~ωL(k)NL(k). (5.21)

We separate this integral into |k| ≤ k∗ and |k| > k∗ to obtain E⊥ and E||

respectively. The resulting time series of E⊥ and E|| are shown in Fig. 5.6.

As t approaches t0, E|| reaches Emax and thereafter remains approximately

constant. For E⊥ there is a sharp increase at t = t0 which is approximately

exponential (since log10E⊥ versus t is approximately linear). Recall that this

phase of exponential growth is due to the decay of Langmuir waves at 0.33k0
to ±k∗ stimulated by ion sound waves. This is followed by a second phase of

exponential growth with a smaller growth rate. The growth rate is smaller

because the Langmuir wave source is almost completely decayed; its further

decay does not produce the significant levels of ion sound waves that stimulated

decay to ±k∗ in the first phase.
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Figure 5.7: Time series of E⊥ at x = 3600 km with a density well of width

1000 km (solid line) and without a density well (dashed line).

5.4.1 Dependence on density well parameters

In this section we present the simulation results with and without trapping

of Langmuir-z waves, as well as varying the width of the density well. Until

t = 0.12 s E⊥ increases in the same manner with and without a density well,

as shown in Fig. 5.7. Likewise, the spectra at t = 0.2 s shown in Fig. 5.8 are

qualitatively similar. However, after t = 0.12 s the behavior is different in E⊥;

this is due to the low-k Langmuir waves propagating away from the source

region, reducing NL′ and diminishing the decay rate via the term NLNL′ in

(5.9) and (5.11). The propagation of the k∗ waves away from the center of the

source region is clearly visible in Fig. 5.9.

We can also calculate a power spectrum for the situation in Figs 5.7–5.9.

Figure 5.10 shows that Langmuir wave power near 20.02 kHz decreases, due to

the reduction in waves near ±k∗ due to propagation away from the center of

the source region.

We now look at effect of increasing the width of the reflecting region. The

time series of E⊥ for density well widths of 1000 km (default), 4000 km, and

6000 km, as well as for no density well, are shown in Fig. 5.11. We observe an

approximately exponential growth of E⊥ fields again for t & t0 when the width

of the well is 4000 or 6000 km but now with oscillatory behavior. This can be
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Figure 5.8: (a)-(c) NL(x, k)/NLθ and (d) NS(x, k)/NLθ, at t = 0.2 s, without a

density well.
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Figure 5.9: (a)-(c) NL(x, k)/NLθ and (d) NS(x, k)/NLθ, at t = 0.3 s, without a

density well.
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Figure 5.10: Langmuir wave power spectrum for the case of no density well,

at x = 3600 km and times t = 0.05 s, 0.1 s, 0.2 s, and 0.3 s as labeled. Points

labeled A, B, C, and D correspond to kL = −k∗, k∗, 0.33k0, and 0.67k0 respec-

tively.

understood as follows. In addition to the approximately exponential increase

in low-k Langmuir waves, there is also a propagation of these generated waves

towards the boundaries. When they reach the boundary they are reflected,

changing the sign of k and so propagating in the opposite direction. When the

peak of these waves reach x = 3600 km this causes an increase in E⊥ (such as

at t ≈ 0.25 s). As the peak passes through the center of the density well and

reaches the boundaries, there is a local minimum in E⊥(t).

This oscillatory behavior has a period which is given by

tbounce = L/vg(k∗). (5.22)

We calculate this for L = 6000 km, using vg(k∗) = 28Ve (from Fig. 5.1), to give

tbounce = 0.133 s. This agrees with the difference between times of consecutive

local minima, which equals 0.13 s.

The rapid increase in E⊥ near t0, with a timescale much shorter than that

of Langmuir wave propagation, is important in producing this oscillatory be-

havior; there would be no discernible oscillation if tbounce and the growth rate

were comparable.
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Figure 5.11: Time series of E⊥ at x = 3600 km with and without a density well

of varying width, as labeled in the legend in km.
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Figure 5.12: E⊥ at t = 1.1 s and x = 3600 km versus kc.

5.4.2 Dependence on kc

To examine the growth rates of E⊥ versus kc, we examine the E⊥ levels at

a time shortly after the source term S reaches its maximum, which we take

to be t = 0.11 s. Figure 5.12 shows that there are two peaks, the first at

kc/k0 = 0.67 and the second where kc is increasing towards k0. The first peak

can be explained as follows. Decay of Langmuir waves from kc to k0 − kc
produces ion sound waves at 2kc − k0. These ion sound waves can stimulate

decay of Langmuir waves from k0 − kc to ±k∗ if the difference in wave number

between k0−kc and ±k∗ equals 2kc−k0, i.e., when kL ≈ 2k0/3. If kc is smaller

or larger than 2k0/3 then ion sound waves still stimulate the decay due to the

nonzero width of the initial distribution, but will not be as efficient. The second

peak is due to the initial distribution becoming closer to k0. Langmuir waves

can then decay from k0 − k∗ to k∗, rather than reaching k∗ via two decays as

for when kc ≈ 0.67k0.
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5.4.3 Dependence on ∆kc/kc

The dependence of E⊥ as a function of ∆kc/kc is now explored. Fig. 5.13 shows

the time series of E⊥ for ∆kc/kc = 0.05, 0.10, 0.15, 0.20. The growth rate

of E⊥ is larger for smaller ∆kc/kc, with the largest rate found for ∆kc/kc =

0.05. There are two effects that can be important. Firstly, the decay rate

is proportional to NL, so larger ∆kc/kc for given Emax gives smaller NL and

thus a smaller rate. Secondly, if the waves have kc further from where the

growth of E⊥ is maximum, a greater ∆kc/kc can give an initial distribution

with more waves near 0.670k0, increasing the rate. However, since we have

chosen kc = 0.67k0 for our default set of parameters, the latter effect is not

important here.

5.4.4 Dependence on Ti/Te

We also look at the dependence of the growth rate on Ti/Te. First, we define

the quantity

Γ =
d

dt
log10[E⊥(V/m)], (5.23)

which reduces to the exponential growth rate of E⊥ when log10[E⊥(V/m)] is

a linear function of time. Figure 5.14 displays Γ as a function of Ti/Te at

t = 0.8 s. It can be seen that Γ increases linearly with Ti/Te. This is due to

the factor G in the nonlinear decay rate, which is proportional to 1 + 3Ti/Te
[cf. Eq. (5.12)].

5.4.5 Dependence on Emax

Finally, we plot the dependence of the nonlinear rate Γ on Emax at t = 0.8 s in

Fig. 5.15. We perform a linear fit on log10 Γ versus log10Emax and find a slope

of 1.998 ± 0.057, consistent with Γ ∼ E2
max. This can be explained as follows.

After the initial increase in E⊥ stimulated by ion sound waves, the growth of

waves near k∗ is due to terms of the form NLNL′ . Thus,

dNL′

dt
∝ NLNL′ ∝ E2

maxNL′ , (5.24)

where we have used (5.21) in the second proportionality. Equation (5.24) can

be solved to give

NL′(t) = NL′(0)eΓt, (5.25)

and thus the rate of increase of E⊥ also has the form of an exponential increase

with growth rate Γ ∝ E2
max.
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Figure 5.15: log10 Γ versus log10Emax at x = 3600 km and t = 0.8 s.

5.5 Discussion and Conclusion

In this chapter we have performed quasilinear simulations of Langmuir wave

growth in magnetized plasmas for typical solar wind parameters. Perpendicular

electric fields from low-k Langmuir-z waves undergo two phases of exponential

growth. The first phase has a very large growth rate, with E⊥ increasing from

10−8V/m to 10−4V/m in ∼ 0.01 s. Decay of the initial Langmuir source at kc
to k0 − kc produces ion sound waves that stimulate further decays from k0− kc
to ∼ ±k∗. The second phase has a slower growth rate and is not significantly

stimulated by ion sound waves. In both phases the growth rates are dependent

on the various plasma parameters. Larger Ti/Te and Emax and smaller ∆kc/kc
are found to increase the growth rate of E⊥. However, the optimal beam wave

number for the growth of E⊥ is peaked at 0.67k0 or else near k0. We predict

that the parameters which yield a larger growth rate also give rise to a greater

observed E⊥ at longer timescales.
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Chapter 6

Concluding remarks and future

directions

In this thesis the effect of magnetization on various mode conversion processes

has been investigated. In Chapter 2 we investigated mode conversion phe-

nomena proposed by previous authors for auroral waves above and below the

local plasma frequency, which were interpreted as electromagnetic z-mode and

whistler-mode waves, respectively. We argued that these observations must

be understood in terms of the wave modes of magnetized kinetic plasmas,

namely the combined Langmuir-z and Langmuir-whistler modes, which have

the characteristics of the thermal Langmuir mode at high k and either z-mode

or whistler-mode characteristics at low k. As these waves propagate in the in-

homogeneous ionosphere, they remain on the Langmuir-z or Langmuir-whistler

mode but move to lower k where the mode properties are different, so that no

mode conversion process is necessary.

In Chapter 3 we investigated the effect of magnetization on the electro-

static decay of Langmuir waves parallel to the background magnetic field in

a weakly magnetized plasma. For primary Langmuir wave numbers less than

approximately k0, the kinematics of the decay process are fundamentally differ-

ent. Namely, there exist solutions with very low kL′ which are on the z-mode

portion of the Langmuir-z mode and thus are polarized predominantly perpen-

dicular to the background magnetic field. Quasilinear simulations including

these magnetization effects showed significant energy transfer to these wave

numbers under certain plasma conditions, thus demonstrating the importance

of magnetization effects. These results have applications to recent observations

by STEREO spacecraft of large transverse electric fields of Langmuir waves in

the solar wind at 1 AU, which we suggest are the result of electrostatic decay

to low wave numbers.
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Ch. 6 Conclusion

In Chapter 4 we extended the calculation of kinematics to two dimensions

and to weakly and strongly magnetized plasmas. We confirmed that the low

wave number solutions for decay discussed in Chapter 3 persist for arbitrary

propagation angles of primary Langmuir-z waves with respect to the back-

ground magnetic field. This includes perpendicular propagation, where the

primary wave is in the upper hybrid mode. We find that decay kinematics

at oblique angles in a magnetized plasma are not well approximated by un-

magnetized kinematics for kL . k0, demonstrating the importance of including

magnetization effects in the analysis of decay.

For a strongly magnetized plasma, where the relevant wave mode is the

Langmuir-whistler mode, the kinematics in 1D are very similar to those of a

weakly magnetized plasma. However, in 2D the solutions are seen to be very

different, with decay products confined to a narrow range of angles about the

primary wave vector. Also, the wave numbers of the daughter Langmuir waves

are found to be larger than those of the primary Langmuir waves, due to the

different topology of the Langmuir-whistler mode surface compared with the

Langmuir-z mode.

In Chapter 5 we performed further quasilinear simulations of electrostatic

decay in a weakly magnetized plasma, focusing on the growth rates of the

perpendicular fields of Langmuir waves as a function of the various plasma

parameters. It was found that the beam wave number at which the growth

of perpendicular wave fields is fastest is kb = 0.67k0; ion sound waves that

are generated by the first decay for this value of kb possess the optimal wave

numbers for stimulation of the decay to ±k∗.
Some possibilities for future work are now discussed. A natural extension

to our analysis of the electrostatic decay process L → L′ + S in magnetized

plasmas would be to other three-wave processes that are important in type

II and III solar radio bursts, such as electromagnetic decay L → T ± S and

the coalescence process L + L′ → T (where the transverse wave modes T are

either the o or x mode). Including these in our quasilinear simulations would

allow prediction of the various properties of radio bursts, such their frequency

variation with time and the power radiated in the fundamental and harmonic

bands, as well as their o/x polarization.
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