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ABSTRACT 

Lawsonia intracellularis is the causative agent of proliferative enteropathy (PE). 

PE is an important disease of weaner and grower pigs causing degrees of diarrhoea 

and negative effects on feed intake and weight gain. In-feed antibiotics are routinely 

used to control PE disease outbreaks. However, increasing restrictions to antibiotic 

use is being implemented in various pig producing countries. Therefore, alternatives 

to improve resistance while promoting growth performance are ideal. To limit the 

establishment of infection and increase profitability of pig production, disease 

prevention needs both nutritional and immunological strategies and well as effective 

sanitary measures. Since 2006, in the Australian market, a live attenuated Lawsonia 

intracellularis vaccine has been used to reduce clinical signs and PE lesions and 

reduce L. intracellularis shedding in faeces. However, the systemic and local 

immunological responses to a standard vaccine dose are poorly characterised. In the 

absence of proof that vaccinated pigs are protected from PE, veterinarians are 

unwilling to remove antibiotic medication for fear of acute haemorrhagic PE in adult 

pigs. Additionally, feeding strategies as alternatives to antibiotics, such as beta-glucan 

have been proposed as a possible option, but no study has investigated the effect of 

phytase on immune responses in growing pigs. The research in this thesis addresses 

studies to immune-based investigation of factors affecting the induction of immune 

responses following vaccination with L. intracellularis. Results revealed that the use 

of an oral standard and ten times dose of L. intracellularis vaccine protects pigs 

against PE disease by reducing lesions, shedding in faeces and clinical signs. 

However, intramuscular delivery also protected pigs against PE. Immunological 

responses to L. intracellularis vaccination, particularly IgG and cytokines response 

were observed after oral, intraperitoneal and intramuscular L. intracellularis 

vaccination. However these were highly variable, highlighting the difficulties in 

finding suitable biomarkers. The effect of adding S. cerevisae yeast beta-glucan and 

microbial phytase to weaner diet affected on mucosal and systemic L. intracellularis 

vaccination local immune response.  
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 Chapter 1 Introduction 

Diarrhoea and enteric diseases that principally affect young weaner and grower 

pigs are significant problems facing the pork industry worldwide. They directly affect 

the profitability of pig production, not only due to the death of some animals, but also 

due to the negative impact on growth, feed conversion efficiency and increasing 

production and medication costs incurred. To limit the establishment of infection and 

safeguard the profitability of pig production as in-feed antibiotics are progressively 

withdrawn, disease prevention needs both nutritional and immunological strategies 

as well as effective sanitary measures. The research in this thesis investigates factors 

affecting the induction of mucosal immune responses following vaccination with 

Lawsonia intracellularis.  

Proliferative enteropathy (PE) or ileitis, is caused by the obligate intracellular 

bacterium Lawsonia intracellularis (Lawson et al., 1993). It is one of the most 

important causes of diarrhoea in weaner and grower pigs (Jacobson, 2003). The 

disease commonly causes a range of clinical signs from acute haemorrhage to chronic 

diarrhoea (Lawson and Gebhart, 2000). Clinical and subclinical cases (with no 

apparent clinical signs) are commonly accompanied by a decrease in feed intake, 

slower rate of weight gain and poorer feed conversion rate (Collins et al., 2010b; 

Paradis et al., 2012). The economic losses to pig producers are not only from poorer 

performance but are also due to the costs of controlling the disease. Previous 

economic models have estimated that PE costs pig producers around US$ 20 million 

dollars annually or around AU$ 7.00 per pig (Holyoake et al., 1996; Bronsvoort et al., 

2001). However, these reports did not take into account the economic impact of 

subclinical PE and the cost of controlling the disease. More recently, subclinical L. 

intracellularis infection was estimated to reduce profitability by AU$ 8.33 per pig if 

80% of the herd were affected, while clinical infection reduced profitability by AU$ 

13.0 per pig when as few as 16% of pigs are clinically affected (Holyoake et al., 

2010a). In contrast, the cost of controlling PE by vaccination (Enterisol® Ileitis, 

Boehringer Ingelheim) was estimated to be AU$ 2.70 per pig.     
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Post-mortem diagnosis of PE relies on the combination of gross lesions and 

histopathological lesions (e.g. stained with haematoxylin and eosin, HE or with a 

monoclonal antibody against L. intracellularis). However, recovery from PE within 

three to four weeks means that pathology is only a useful means of diagnosis in pre-

slaughter pigs or very sick animals. Ante-mortem diagnostic tests, such as serology 

and PCR, are now routinely used for diagnosis, but are also useful for estimating the 

prevalence of L. intracellularis infection in pig herds. The prevalence of L. 

intracellularis in faeces (by PCR) has been reported to range from 20 to 75% in 

positive herds of large pig producing countries such as the United States, Brazil and 

Denmark (Chiriboga et al., 1999; Stege et al., 2004; Armbruster et al., 2007).  

However, 4.5%, 30% and 37.6% of the herds in Spain, Taiwan and Norway were also 

tested as PE positive, respectively (Chang et al., 1997; Pozo et al., 1998; Flo et al., 

2000). Positive faecal PCR results are usually indicative of L. intracellularis presence, 

either currently or in recovery stages while high seroprevalence indicates that pigs 

were previously exposed to L. intracellularis. Serological analysis by indirect 

immunofluorescence (IFAT) or ELISA tests revealed that approximately 60 to 100% 

of the farms in the United States, the European Union and Australia were positive for 

L. intracellularis antibodies (Chouet et al., 2003; Class and Bilkei, 2004; Holyoake et 

al., 2010b). 

In Australia, PE is traditionally controlled in pig herds with in-feed antibiotic 

medication (Holyoake et al., 2010b). Although antibiotics are effective in controlling 

PE outbreaks, care needs to be exercised in the use of antibiotics to avoid the 

emergence of bacterial resistance to antimicrobials. Over the last 2 decades the 

European Union (EU) has increasingly restricted the use of antimicrobial growth 

promoters in animal production. Currently, the United States is also expanding its 

program of restricting the use of antibiotics while in Australia specific 

recommendations for the appropriate use of antibiotic in food producing animals 

have been established (JETACAR, 1999; USDA, 2007; NARMS, 2010). Therefore, in 

order to prevent PE infection an alternative to antibiotics is required.   

Such an alternative to L. intracellularis infection may be through vaccination of 

pig herds with a commercially available oral live vaccine (Enterisol® Ileitis, 

Boehringer Ingelheim). However, while this vaccine has been demonstrated to reduce 

clinical signs and lesions of PE (Kroll et al., 2004; McOrist and Smits, 2007), the 



20 
 

systemic and local immune responses to a standard vaccine dose are poorly 

characterised (Donahoo, 2009). In the absence of proof that vaccinated pigs are 

protected from PE, some producers are unwilling to remove antibiotic medication for 

fear of acute haemorrhagic PE in adult pigs. Therefore, in the first part of this 

doctorate (Chapters 4 and 5) trials were designed with the objective being to 

measure the immune response of vaccinated and challenged pigs in an effort to 

identify immune markers for vaccination and protection. 

 Additionally, nutritional strategies have been suggested as alternatives to 

antibiotic growth promoters (Gallois et al., 2009; Heo et al., 2013; Pluske, 2013). The 

addition of β-glucan in pigs diets has been shown to improve growth performance 

(Dritz et al., 1995; Decuypere et al., 1998), increase functional activity of 

macrophages and neutrophils (Hiss and Sauerwein, 2003; Sonck et al., 2010) and 

increase release of pro-inflammatory cytokines (Young et al., 2001; Xiao et al., 2004). 

Conversely, some components of pig diets such as the phytate-P can reduce growth 

performance. The addition of the enzyme phytase to pig diets can improve phytate-P 

digestibility, nutrient absorption and increase pig growth rates (Selle and Ravindran, 

2008). However, the information on its effects on the immune response to 

vaccination is limited, but increases in serum lymphocyte numbers have been 

observed when phytase was added to nutritionally marginal broiler diets (Liu et al., 

2008). It is possible that the increased bioavailability of nutrients in the gut (with 

phytase) will allow additional nutrients to be redirected for immune cell growth and 

replication. Thus, this trial was designed to observe the effect of phytase and beta-

glucan in weaner pigs diets on the immune response to L. intracellularis vaccination 

and growth performance (Chapter 6). 
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AIMS 

 

The work presented in this thesis is from a series of animal studies intended to 

investigate the dynamics of immunity for L. intracellularis using a commercial vaccine 

and its effects of nutritional additives. The first objective was to determine the 

immunological responses of weaner pigs to a L. intracellularis vaccine at the local 

intestine mucosa and systemically in serum. The second objective was to investigate 

whether different routes and dose concentrations of a L. intracellularis vaccine 

provide equivalent protection to pigs against a virulent L. intracellularis challenge. 

Characterisation of an associated immune response that might predict successful 

induction of protection was also a part of this objective. In a following study the aim 

was to determine whether any immune response detected after different routes of 

vaccination are correlated with successful induction of protection (prior to 

challenge). A third study, investigated the effects of dietary yeast and phytase on the 

local and systemic immune responses of pigs after vaccination with L. intracellularis. 
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Part 1- Proliferative enteropathy in pigs 

2.1 Background and Aetiology to proliferative enteropathy 

disease 

Twenty years after the association of porcine proliferative enteropathies with 

the presence of an intracellular bacterium within the ileal epithelial cells by electron 

microscopy (Rowland and Lawson, 1973), the causative agent was successfully 

cultured in vitro (Lawson et al., 1993). This intracellular bacterium, previously known 

as Campylobacter-like organism, Ileal symbiont intracellularis, and Ileobacter 

intracellularis was then established in a new genus Lawsonia and species 

intracellularis (McOrist et al., 1995a). The final classification was achieved using 

molecular taxonomic methods on the 16S rRNA gene, positioning the causal organism 

(Lawsonia intracellularis) with 81% similarities to Desulfovibrionacea family from the 

delta subdivision of Phylum Proteobacteria (Gebhart et al., 1993). It has unique 

characteristics as a Gram-negative bacterium (around 1.5 µm in length and 0.34 µm 

in width), with curved or sigmoid rod shape (Lawson et al., 1993), single and 

unipolar flagellum, but no fimbriae or spores (McOrist et al., 1995a). 

2.2 Clinical aspects of the proliferative enteropathy disease 

Proliferative enteropathy has been reported in a number of animals, but clinical 

signs differ between them. Most species are affected with diarrhoea and poor growth. 

However, clinical signs such as fever, peripheral oedema and colic are present in 

affected horses (Pusterla and Gebhart, 2009), but not in pigs or other affected 

animals. While the clinical signs may slightly differ between horses and pigs, post-

mortem examinations show similar thickening of sections of the small intestinal wall 

in both species (Vannucci et al., 2012a). 

In pigs, proliferative enteropathy (PE) can affect animals from post weaning 

until adult life. Clinical signs can range from acute to chronic and subclinical, 

presenting as various degrees of diarrhoea and reduced growth rates (Ward and 

Winkelman, 1990; Paradis et al., 2012). The acute presentation of proliferative 

haemorrhagic enteropathy (PHE) affects mainly adult pigs between 4 and 12 months 

of age (Ward and Winkelman, 1990). Pregnant sows may abort following infection 
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and mortality can reach 50% in severe outbreaks (Love et al., 1977; Mauch and 

Bilkei, 2005). This haemorrhagic syndrome can start with pigs becoming pale and 

having severe diarrhoea and malaena and if it is not treated may result in death (Love 

and Love, 1979). However, sudden death may also occur without symptomatic signs 

(Love and Love, 1979). Other pathologies during the finisher to adult phase can 

present similar signs of severe diarrhoea such as swine dysentery (Brachyspira 

hyodysenteriae) and Salmonellosis (Salmonella Typhimutrium) (Straw et al., 2006). In 

addition, non-pathogenic occurrences can lead to haemorrhagic diarrhoea such as in 

chronic intestinal bleedings (McOrist and Gebhart, 2006).  

Porcine intestinal adenomatosis (PIA) commonly affects weaners and growers 

observed as persistent chronic diarrhoea (Ward and Winkelman, 1990), but can 

cause mortality (Rowland, 1975). PIA presents as reduced weight gains and non-

uniformity in weight among 6 to 12 weeks old pigs (Lawson and Gebhart, 2000). 

Gogolewski et al., (1991) described a marked ill-thrift (weight gain less than half of 

the weekly mean weight gain from non-infected pigs) and diarrhoea in grower pigs 

affected with PIA. PIA needs to be differentiated from other diseases that cause 

diarrhoea during the weaning and growing phase such as post-weaning diarrhoea 

(Escherichia coli), Spirochetal colitis (Brachyspira pilosicoli) and Salmonellosis 

(Jacobson, 2003).  

Clinical signs of proliferative enteropathy have been reported to improve 

gradually after a week (Yates et al., 1979), however, pigs can also progress to necrotic 

enteritis and regional ileitis which can lead to death (Ward and Winkelman, 1990). In 

necrotic enteritis the mucosa is destroyed resulting in extensive coagulative necrosis 

of the epithelium (Rowland, 1975), with yellowish-grey lesions on the mucosal 

surface (Rowland and Hutchings, 1978). The animals that survive this episode of 

necrotic enteritis may progress to regional ileitis (Rowland, 1975; Lawson and 

Gebhart, 2000). Regional ileitis is a progressive granulation tissue proliferation in the 

lamina propria and submucosa (Rowland, 1975; 1978). 

The subclinical form of PE is considered to be the most common in pigs, but is 

difficult to recognize due to the absence of clinical signs. However, production 

parameters are negatively affected, such as reduced feed intake, lower rate of daily 
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live weight gain and poor feed conversion efficiency (FCE)(Collins et al., 2010b; 

Paradis et al., 2012). Poor growth in affected pigs results in an increased number of 

days to slaughter (Brandt et al., 2010). The dose of L. intracellularis pigs are exposed 

to will impact on the severity of clinical signs, including weight gain and FCE.  In a 

study by Paradis et al, (2012), six different groups of pigs were challenged with 10 

fold dilutions of mucosal homogenate L. intracellularis between 104 to 108 and their 

performance compared to uninfected controls. Excretion of L. intracellularis was 

detected in all pigs, starting from 14 days post-challenge. Consistently poor 

performance was observed in all challenged groups, even those given the lowest 

dose, 104 L. intracellularis, with a 37% reduction in average daily weight gain and a 

27% increase in FCE during the 21 day trial period relative to non-challenged pigs 

(Paradis et al., 2012). Similarly, Collins et al., (2010b) reported a reduction in feed 

intake and large variation in final body weight of pigs that were subclinically infected 

(without diarrhoea and positive for Lawsonia-PCR and immunofluorescence antibody 

test (IFAT)) after an experimental challenge with 5.9 x 109 L. intracellularis compared 

with an uninfected cohort.   

2.3 Epidemiology 

2.3.1 Pig to pig transmission and risk factors 

The principal mode of transmission of Lawsonia intracellularis is direct contact 

between affected and susceptible pigs (Jordan et al., 2004) and through the faecal-

oral route (Collins et al., 2000). Transmission also occurs through contact with L. 

intracellularis contaminated environments (Collins et al., 2013), but may also be 

transmitted by rodents (Collins et al., 2011). Pigs clinically affected with PE can shed 

at least 3 x 108 L. intracellularis per gram of faeces (Collins et al., 2011), so less than 

one gram of infected faeces is required to infect naive pigs (Collins et al., 2001). The 

infection of a single pig within a group or pen is likely to result in the infection of 

susceptible pigs that are in contact, as sentinel pigs became infected 8 days after they 

were housed in contact with pigs inoculated with 105 of pure culture L. intracellularis 

(Jordan et al., 2004). Similarly, in a natural PHE outbreak, L. intracellularis infection 

was transmitted between breeding stock to young adult pigs, where the movement of 

breeding stock between units was performed (Love et al., 1977). L. intracellularis 
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infection was observed in naive pigs after they were introduced to dirty pens (Collins 

et al., 2013) or dosed orally with 10g of faeces containing 106 to 107 L. intracellularis 

from naturally infected pigs (Collins et al., 2000). In both of these studies it was 

observed that L. intracellularis survived in faeces in contaminated pig pens for at 

least 2 weeks at temperatures between 9°C and 18°C. Therefore, the combination of 

pigs shedding large numbers of bacteria in faeces, the prolonged survival of the 

bacteria in the environment, together with the small doses required to initiate an 

infection strongly favours the transmission of infection within the herd. 

Farm management factors such as animal grouping, feed management, buying 

replacement stock, stocking density, age, and hygiene have been shown to influence 

the risk of L. intracellularis infection (Smith et al., 1998; Bronsvoort et al., 2001; Stege 

et al., 2001; Collins and Love, 2003). For instance, Collins and Love (2003) observed 

the risk of L. intracellularis infection was six times greater in a continuous flow 

management pig production system when compared to an all-in-all-out management 

program. Additionally, an all-in-all-out management system has often been shown to 

provide protective factors against other post-weaning intestinal pathogens infections 

(Madec et al., 1998). Proper hygiene such as cleaning and disinfecting pens between 

pig groups has been shown to eliminate L. intracellularis and prevent transmission of 

infection to a second group of naive pigs introduced to cleaned pens (Collins et al., 

2013).  

Smith et al. (1998) studied risk factors for PE using a postal survey of 319 

British herds. Breeding herd size greater than 500 sows, concurrent enzootic 

pneumonia, replacement boars from selected nucleus herds and use of slatted floors 

above deep sunken pits were important factors associated with owner-reported PE 

on the farm during the three year survey. However, the authors’ point out that 

possibly the farm owners relied only on slatted floors to clean pens. Another study, 

which included a questionnaire survey, production records and faecal PCR analysis, 

demonstrated that the use of new buildings and recent mixing of pigs were 

associated with PE outbreaks by grouping affected and susceptible pigs (Bane et al., 

2001). A cross sectional study in Danish pigs herds showed that the use of 

commercial feed products increased  the risk of L. intracellularis infection when 

compared to batch production systems using home-mixed feed (Stege et al., 2001). 
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Bronsvoort et al., (2001) surveyed 184 herds in the United States by collecting 

serum from breeding sows and grower to finisher pigs and testing them for L. 

intracellularis antibodies (by IFAT) and linked the results with questionnaire data 

from respective farms. Risk factors associated with PE outbreaks in breeding herds 

included seropositivity to L. intracellularis during the grower-finisher phase (48.9% 

positive herds), a continuous flow system for the farrowing unit, and younger sow 

parity. On the other hand, risk factors for a PE outbreak in grower-finisher herds 

included seropositive status of the breeding unit (66.9% positive herds), a high 

number of pigs entering the facilities, the use of concrete slats as flooring, and 

intensive indoor management.   

2.3.2 Mechanical and vector transmission 

Others sources of infection, such as mechanical and biological vectors may also 

be of significant consequence for the re-introduction of L. intracellularis to new herds 

(Jensen et al., 2005). The potential for L. intracellularis transmission via fomites like 

boots, overalls, brooms and shovels has not been reported. However, transmission of 

L. intracellularis infection has been reported despite preventive measures, such as 

separate clothing and disinfecting footbaths being used (Winkelman et al., 1998; 

Jordan et al., 2004).  

Transmission of L. intracellularis infection is also likely via biological vectors 

where wild and domestic animals shedding L. intracellularis in their faeces could 

transmit the infection to naive pigs, if they come into contact with infected faeces. 

Lesions of PE have been reported in the intestines of hamsters (Jonas et al., 1965), 

rabbits (Hotchkiss et al., 1996), ferrets (Fox and Lawson, 1988), lambs (Cross et al., 

1973), horses (Duhamel and Wheeldon, 1982), guinea pigs (Muto et al., 1983), deer 

(Cooper et al., 1997), macaques (Klein et al., 1999), dogs (Leblanc et al., 1993), cows, 

giraffes and porcupines (Herbst et al., 2003). However, it is more likely that animals, 

such as wild pigs, rodents, insects and birds, are possible vectors due to their close 

contact with pig farms. Highlighting the potential for external vectors, Tomanova et 

al., (2002) described the detection of L. intracellularis in 29.6% of ileal tissues from 

wild pigs using nested PCR and 51.6% of these were seropositive for L. intracellularis 

in the Czech Republic. In Australia, L. intracellularis antibodies have been detected in 

feral pigs (91.5% of pigs tested were positive) within 10 km of two large scale 
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commercial piggeries in southern Queensland state (Pearson, 2012). On the other 

hand, Pusterla et al., (2008) was not able to detect L. intracellularis infection in 

Brewer’s blackbird (Euphagus cyanocephalus) found around livestock farms. 

Experimental infections with L. intracellularis in chickens (Gallus gallus) and 

sparrows (Passer domesticus) did not cause detectable histological lesions of PE 

(Collins et al., 1999; Viott et al., 2013). However, proliferative lesions have been 

detected in other avian species such as ostrich (Struthio camelus) and emu (Dromaius 

novaehollandiae) (Cooper et al., 1997; Lemarchand et al., 1997).  

The presence of L. intracellularis in the intestines of rodent captured on PE 

positive farms implicates rodents as potential biological vectors (Friedman et al., 

2008). Collins et al., (2011) also reported L. intracellularis excretion from 70.6% of 

rodents captured on PE positive pig farms, with up to 1010 organisms excreted per 

gram of rat faeces. However, although these studies could not prove if rats were the 

infective source for pigs or vice versa, it is clearly an important avenue for 

contamination, particularly where rodents are in close contact with pigs. Similarly, 

the potential mechanism of disease spread within herds through positive flies has 

been raised since the detection of Lawsonia-DNA from 22% to 75% of all adult flies 

collected from 14 seropositive pig farms in England (McOrist et al., 2011). The Musca 

domestica (house fly) and Eristalis sp. (hoverfly or flower fly) were the most common 

positive species captured among farms (and in closest proximity to pigs). However, 

although the study did not determine the amount of viable DNA or the flight distance 

of these flies, it indicates the potential for spread of L. intracellularis contamination 

within herds.  

2.3.3 Prevalence of PE 

PE is an endemic disease that is widespread across every continent involved in 

pork production and occurs in many different production systems. Prevalence is 

determined either by the use of L. intracellularis-specific serology assays such as 

indirect immunofluorescent antibody test (IFAT), immunoperoxidase monolayer 

assay (IPMA) or by molecular assays such as the polymerase chain reaction (PCR) 

(Guedes et al., 2002b; Jensen et al., 2005).  
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Infection prevalence differs depending on the sample and assay used. For 

instance, the amplification of L. intracellularis DNA from faeces by PCR was 

demonstrated between 14 and 40 days after 107 L. intracellularis challenge (Collins 

and Love, 2007). While after the same challenge the detection of serum IgG 

antibodies against L. intracellularis were observed two weeks after (28 days) and 

persisted until 70 days post-challenge (Collins and Love, 2007). These assays may be 

used as a tool to estimate the timing of infection (Guedes, 2008). Molecular testing 

(PCR) has been reliably used to detect L. intracellularis DNA in actively infected pigs, 

while the L. intracellularis specific antibodies indicate previous exposure to infection 

(Jacobson et al., 2004).  

In Australia, a cross-sectional study of finisher pigs from 63 herds across all 

states determined that 100% of the herds tested were positive for L. intracellularis 

antibodies (Holyoake et al., 2010b). Similarly, a longitudinal study of natural L. 

intracellularis infection in five large Danish grower pig herds also revealed that 

seroconversion had occurred in all herds, and that 75% of pigs examined by faecal 

PCR were actively infected (Stege et al., 2004). Specific L. intracellularis serum 

antibodies were also found in 100% of the grower-finished herds tested in Korea 

(Lee et al., 2001) and 90.9% of 174 pig farms in United States (Armbruster et al., 

2007). In a US study, faecal shedding of L. intracellularis occurred most commonly in 

grower and finisher pigs, with the reported prevalence of L. intracellularis infection 

ranging from 8 to 67% of pigs positive (Armbruster et al., 2007). 

The prevalence of lesions during slaughter from seropositive farms with 

subclinical infection has been reported as 1.5% (Brandt et al., 2010). The low gross 

lesion prevalence at slaughter age (at 26 weeks of age) was likely due to lesion 

resolution, as severe histopathological changes were observed in five euthanized 8 

weeks old pigs (Brandt et al., 2010). In more severe outbreaks of PHE, thickening of 

the mucosa was observed in 72.8% of slaughter age pigs (van der Heijden et al., 

2004). Jensen et al., (1999) recommend monitoring of slaughter pigs (110 kg) by 

visual and palpatory demonstration to identify pigs with increased thickening of the 

ileum. These techniques correlate with the presence of L. intracellularis (by IHC), but 

are not a reliable guide to the prevalence of PE in herds.   
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2.4 Lawsonia intracellularis entry and recovery  

The presence of intracellular L. intracellularis bacteria within the apical 

cytoplasm of enterocytes is highly correlated with proliferation of cells as observed 

by electronic microscopy (Rowland, 1975; McOrist et al., 1995b). The preferential 

localization of L. intracellularis in the ileum has been demonstrated by IHC (Boutrup 

et al., 2010), but L. intracellularis can spread and colonise other sections of the 

intestinal tract such as the jejunum, colon and caecum (Smith and Lawson, 2001; 

Jensen et al., 2006). Possible factors for the preferential colonisation of the ileum 

sections might include the presence of specific receptors, a favourable physiological 

environment for L. intracellularis or simple mechanical reasons such as longer 

exposure to the intestinal epithelium (Boutrup et al., 2010). The ability of some 

Gram-negative intracellular bacteria, like Yersinia enterocolitica (Autenrieth and 

Firsching, 1996) and Salmonella spp. (Clark et al., 1994) to exploit M cells (Microfold 

cells) to penetrate the host epithelium, and the presence of early lesions of PE in the 

mucosa overlying the Payer’s patches (PP) (Lomax et al., 1982) suggests that L. 

intracellularis could also utilise a similar strategy. Alternatively, L. intracellularis 

could enter crypt enterocytes directly by forming single membrane bound vacuoles 

(McOrist et al., 2006a), as well as through loose membrane junctions (McOrist et al., 

1995b). 

The identification of specific receptors or adhesins for Lawsonia intracellularis 

remains speculative, with proposed entry mechanisms inferred by extrapolation 

from other pathogens. McCluskey et al., (2002), identified an outer membrane 

protein (OMP) Lawsonia surface antigen (LsaA) from cultured L. intracellularis and 

from bacteria present in ileal tissues of infected animals. They demonstrated that the 

LsaA gene was expressed in early infection and the protein was synthesized by L. 

intracellularis during infection (McCluskey et al., 2002). In addition, the analysis of 

the genetic sequence of L. intracellularis identified some homologous regions to 

membrane factors of Yersinia sp. (Yop and LvrV) and these may indicate that the type 

III secretion system (T3SS) is present in L. intracellularis and is expressed during 

infection (Hueck, 1998; Alberdi et al., 2009). This secretion system is common in 

enteropathogenic Gram negative bacteria, presenting as a needle-like protein 

structure that has important pathogenic role by forming pores in the host cell 
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membrane, as well as evading host’s innate immunity by down-regulating 

inflammation (Autenrieth and Firsching, 1996).  

Under normal conditions, enterocytes lining the intestine divide by mitosis and 

mature as they migrate from the crypt to the tip of the villus, where they are involved 

in absorption of nutrients as they mature (Friendship, 1989). It is thought that L. 

intracellularis preferentially adheres to the immature epithelial cells. However, the 

mechanism by which L. intracellularis inhibits normal crypt cell differentiation is not 

yet understood. During recovery from infection, the restoration of normal epithelium 

occurs by elimination of the infected enterocytes and multiplication of uninfected 

adjacent cells (McOrist et al., 1996; MacIntyre et al., 2003). Resolution of lesions 

starts approximately three to four weeks after infection (Smith and McOrist, 1997; 

Winkelman et al., 2002) and is dependent on the initial infection dose. Higher average 

PE lesion length (171cm) 20 days after pigs were inoculated with 1010 L. 

intracellularis was observed in comparison with lower length (5cm) lesions from pigs 

inoculated with 108 L. intracellularis (5cm) (Guedes et al., 2003). The presence of L. 

intracellularis antigen has been reported in the intestinal lumen following resolution 

of L. intracellularis induced lesions where infected cells have been lysed and shed 

(van der Heijden et al., 2004).  

2.5 Pathology of the porcine proliferative enteropathies 

The thickening of the intestinal mucosa is the most noticeable macroscopic 

alteration of all forms of PE. Intestines affected with PHE may also have a solid clot of 

blood in the intestinal lumen (Figure 1a), as well as thickening of mucosa and 

oedema. In PIA cases, the macroscopic lesions can present as severe thickening of the 

mucosa (“cerebroid aspect”) and relatively free from inflammation as shown in 

Figure 1b. By comparison, enteric bacteria such as Escherichia coli can affect small 

intestines and present severe areas of inflammation (Fairbrother and Gyles, 2012). In 

more severe cases of coagulative necrotic enteritis, clearly defined fibrin deposits will 

be present in the intestinal lumen (Love et al., 1977). In mild cases, the changes may 

be subtly characterized by oedema associated with focal proliferative lesions. 
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1a) 1b) 

 
 

Figure 1: Porcine small intestine. (1a): Proliferative haemorrhagic enteropathy (PHE). Observe 

mucosa thickened and presence of blood in the lumen (arrow). (1b): Porcine intestinal 

adenomatosis (PIA), with marked thickening of intestinal mucosal with small reddening area 

(circle). (Photographs courtesy of Prof. Dr. Roberto M. C. Guedes, Department of Veterinary Clinic and 

Surgery, Minas Gerais Federal University, Belo Horizonte, Brazil). 

 

Lesions of PE at the ultra-structural level, show the presence of vibrio-shaped 

intracellular bacteria in the apical cytoplasm of enterocytes, which can be visualised 

with Warthin-Starry silver staining, monoclonal antibodies to L. intracellularis or 

electron microscopy (Rowland, 1975; McOrist et al., 2006a). The villus-crypt 

structures are elongated with proliferation of enterocytes (Figure 2), marked 

reduction or loss of goblet cells and/or presence of exudate in the crypt lumen 

(Lawson et al., 1993; Lawson and Gebhart, 2000). Compared with normal crypts, 

which are a single layer of cells, affected crypts are often 5, 10 or more cells deep 

(McOrist et al., 2006a). Electron microscopic studies of experimentally and naturally 

infected pigs (Rowland, 1975; Love et al., 1977) have shown that highly infected 

enterocytes usually have short, irregular microvilli compared with healthy animals.  
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Figure 2: Ileal section of a pig experimentally infected with L. intracellularis: H&E staining, left 

figure (10 x magnifications) showing normal tissue with areas of characteristic PE lesions of 

crypt enterocyte proliferation (arrows).  Right figure the proliferation of enterocytes with loss of 

goblet cells and exudate within crypt lumen (100 x mags.). 

2.6 Diagnostic test for Lawsonia intracellularis infection 

Diagnosis of PE by routine culture from faeces is not feasible because L. 

intracellularis is an obligate intracellular bacterium that is fastidious in its culture 

requirements (Lawson et al., 1993). The non-specific nature of clinical signs of PE 

makes a differential diagnosis difficult. Other enteric infections such as Brachyspira 

hyodysenteriae, Brachyspira pilosicoli, haemolytic E. coli and Salmonella spp. may also 

cause diarrhoea and reduced weight gains in growing pigs (Jacobson, 2003).  

Diagnosis of PE is based on a combination of gross lesions and histopathology 

lesions associated with more specific immunohistochemistry. Although severe 

lesions in the terminal jejunum and ileum are easily seen, the more common 

moderate to mild lesions may be harder to detect (Guedes et al., 2002c). The 

presence of proliferation of enterocytes on routine haematoxylin and eosin (H&E) 

staining is a good indication of PE infection. However, in recovering pigs PE lesions 

may not be present. Immunohistochemistry of intestinal tissues from the ileum using 

an antibody specific for L. intracellularis antigen allows the visualization of the 

bacteria within intestinal crypts early in the infection and in the lamina propria late 

in the course of disease (Guedes and Gebhart, 2003a). However, the monitoring of PE 
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prevalence in herds through post-mortem tests of slaughter age pigs have the 

tendency to be underestimated because most lesions in the infected pigs have 

recovered by slaughter time (van der Heijden et al., 2004; Brandt et al., 2010). 

Therefore, an ante-mortem diagnostic test, such as serology and PCR, specific for L. 

intracellularis is beneficial for diagnosing L. intracellularis infection in pig herds.    

An indirect fluorescent antibody test (IFAT) using L. intracellularis antigen from 

PE affected mucosa or cultured bacteria has been used to detect IgM, IgA and IgG 

responses in serum and mucosa of naturally and experimentally infected pigs  

(Lawson et al., 1988; Guedes and Gebhart, 2003b; Donahoo, 2009). A modified IFAT 

using cultured L. intracellularis and peroxidase labelled antibody (immunoperoxidase 

monolayer assay, IPMA), was used to detect L. intracellularis specific serum IgG in 

field and experimentally challenged pigs (Guedes et al., 2002b; Marsteller et al., 

2003). However, for larger numbers of diagnostic samples a high throughput 

diagnostic technique is practical. Epidemiology studies have employed a commercial 

ELISA (Bioscreen® Enterisol Ileitis ELISA, GmbH, Münster, Germany) to determine 

the prevalence of L. intracellularis antibodies (Holyoake et al., 2010b; Jacobson et al., 

2011b; Collins et al., 2012). This blocking ELISA detects serum IgG antibodies to L. 

intracellularis (Keller et al., 2006). To ensure high specificity, the blocking ELISA is a 

direct sandwich ELISA with L. intracellularis specific monoclonal antibodies used to 

bind L. intracellularis to wells. Specific antibodies in pig serum are captured with a 

peroxidase-conjugated L. intracellularis monoclonal antibody (Keller et al., 2006). 

This commercial ELISA is reported to have a sensitivity of 90.5% and specificity of 

83% relative to an indirect fluorescent antibody test (IFAT) in pigs experimentally 

challenged with L. intracellularis (Collins et al., 2012).    

The polymerase chain reaction (PCR) assay is a diagnostic test to detect the 

presence or absence of L. intracellularis DNA in faeces and tissues. Several studies 

using PCR assays have been used to monitor the dynamics of disease in both 

experimental and naturally infected pigs (Jones et al., 1993; Knittel et al., 1998). The 

lowest quantity of L. intracellularis in faeces that conventional PCR has been reported 

to detect is 103 L. intracellularis per gram of faeces (Jones et al., 1993). The diagnostic 

sensitivity has been reported to be highly variable (between 36 and 100%) (Pedersen 

et al., 2010).  This may be due to sample quality and the presence of inhibitory factors 
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in faeces (Nathues and Beilage, 2008). However, this test is unable to quantify the 

numbers of L. intracellularis in faecal samples. More recently real-time PCR (qPCR) 

methods have been developed that allow quantification of L. intracellularis relative to 

faecal standards seeded with known numbers of L. intracellularis (Lindecrona et al., 

2002; Nathues et al., 2009; Collins et al., 2011). In a previous study, Collins et al 

(2011) used qPCR to detected between 104 and 108 L. intracellularis per gram of pig 

faeces on farms. The correlation between quantification of bacterial load and 

indication of clinical disease and histological findings have been studied by Pedersen 

et al., (2012). They demonstrated a positive correlation between histopathology and 

L. intracellularis numbers in faeces of pigs with diarrhoea.  

2.7 Lawsonia intracellularis dynamics of infection  

2.7.1 Infective doses  

The dynamics and severity of L. intracellularis infection are closely related to 

the initial challenge dose (Guedes et al., 2003; Collins and Love, 2007). The minimal 

infective dose was evident in a study by Collins et al., (2001), where groups of weaner 

pigs were challenged with either 103, 105, 107, 1010 L. intracellularis and compared 

with a negative control group. Doses as low as 103 L. intracellularis induced faecal 

shedding of the bacteria from day 26 until day 54 post-challenge (by PCR), even 

though the serum L. intracellularis IgG response (IFAT) was delayed up to 56 days 

after challenge.  Similarly, pigs inoculated with 105 L. intracellularis by experimental 

challenge (Collins and Love, 2007) or orally vaccinated (Guedes and Gebhart, 2003b) 

also showed delayed bacterial faecal shedding (from 19 to 63 days) and delayed 

serological responses (from 35 until 91 days) when compared with pigs inoculated 

with higher doses of L. intracellularis (1010 and 109, respectively).  

The earliest serological response to L. intracellularis was 14 days post challenge 

and faecal shedding after one week in pigs inoculated with higher doses of 109 and 

1010 L. intracellularis (Collins et al., 2001; Riber et al., 2011b). Higher doses (109) of L. 

intracellularis from intestinal homogenates (Guedes et al., 2003; Collins et al., 2007) 

and pure culture (Vannucci et al., 2012b) also induce clinical signs of PE including 

diarrhoea and reduced weight gains from 14 to 21 days post-challenge. In moderate 
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challenges with 107 L. intracellularis, clinical signs of diarrhoea were still observed, 

but with less severe diarrhoea over a shorter duration (day 19-21) (Collins and Love, 

2007). Faecal shedding of L. intracellularis was observed between day 14 and day 40, 

and antibodies between day 28 and day 70 after challenge (Collins et al., 2001; Collins 

and Love, 2007). Four pigs challenged with a pure culture of L. intracellularis 

containing 106 organisms remained clinically healthy throughout the trial but two 

pigs had gross PE lesions and all four pigs had IHC evidence of L. intracellularis 

antigen 22 days after challenge (McOrist et al., 1993).  

2.7.2 Immunity to re-infection   

A number of studies have demonstrated that once pigs recover from infection, 

they are immune to re-infection with L. intracellularis (Collins and Love, 2007; Riber 

et al., 2011b; Cordes et al., 2012). In one trial, by Collins and Love (2007), groups of 

pigs challenged with 105 to 1010 L. intracellularis were monitored for 70 days to 

determine when faecal shedding ceased. At 70 days post primary challenge, all 

groups were given a second challenge with 1010 L. intracellularis. All previously 

challenged pigs were protected from re-colonization regardless of the initial dose of 

L. intracellularis. On the other hand, naive controls exhibited persistent faecal 

shedding of L. intracellularis (from 7 to 23 days), diarrhoea and a serum IgG response 

(Collins and Love, 2007). The replication of B and T cells, the production of antibodies 

against L. intracellularis after first exposure, and the generation of memory cells have 

been speculated as the mechanism to inactivate the antigen prior to entry and avoid 

colonization after a second challenge (Collins and Love, 2007; Cordes et al., 2012). 

Accumulation of secretory IgA has been demonstrated (by IHC) in the apical 

cytoplasm of proliferating enterocytes, macrophage-granulocytes and in cell debris in 

the crypt lumen of PE-affected pigs (McOrist et al., 1992). An increasing L. 

intracellularis IgG serum immune response were also detected in re-challenged pigs 

(Collins and Love, 2007). In a later re-challenge study, Riber et al., (2011b) initially 

challenged pigs with 109 L. intracellularis from PE–affected mucosae followed by 

antibiotic (tiamulin) treatment.  Seven weeks post-challenge, pigs were re-challenged 

with 1010 Lawsonia intracellularis. Pigs were protected from re-infection as 

demonstrated by the absence of faecal shedding of L. intracellularis and low 

concentrations of antigen in intestinal mucosa of re-inoculated pigs compared with 
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infection infected controls. In addition, no increases in acute phase protein (C-

reactive protein and haptoglobin) concentrations were observed. In a similar study, 

whole blood IFN-γ concentrations increased ten-fold in re-challenged pigs, indicating 

a memory recall immune response to L. intracellularis (Cordes et al., 2012). 

Therefore, the protection against PE disease re-exposure provides the basis for 

vaccine strategies formulation utilized to control PE disease.  

Part 2- Porcine immunological responses to infection  

2.8  Innate and adaptive immunity to enteric pathogens in pigs 

Within the intestinal tract, the mucosal layer consists of secretory and 

absorptive epithelium and is the primary physical barrier against external antigens. 

Innate immunity is constitutive of an array of lectins, C-reactive proteins, β-defensins, 

macroglobulins and complement system (Sauerwein et al., 2007). It is the first 

differentiation between self  from non- self products by recognition of conserved 

microbial structures (pathogen associated molecular patterns, PAMPs)(Kumar et al., 

2009). The main leucocytes involved in this process are granulocytes (e.g. 

neutrophils), phagocytes (monocytes and macrophages) and natural killer cells (NK). 

These cells and also enterocytes possess membrane receptors called Toll-like 

receptors (TLRs) to recognize PAMPs on infectious agents, such as the outer 

membrane lipopolysaccharide (LPS) molecules in Gram-negative bacteria and β-

glucan from fungi and yeast (Abreu and Targan, 1996). Specifically, TLR subsets have 

been reported to recognise extracellular bacterial components (TLR 1, 2, 4, 5, 6 and 

10), bacterial flagellin (TLR 5) and intracellular components (TLR 3, 7, 8) in pigs 

(Uenishi and Shinkai, 2009; Emery and Collins, 2011). The role of TLRs in immunity 

has been elucidated by identifying functional single-nucleotide polymorphisms 

(SNPs), TLRs and immunity against specific pathogens. For instance, Toka et al., 

(2009) demonstrated in vitro that TLR7 was associated with increased IFN-γ 

production and activation of porcine NK cells against foot and mouth disease virus.  
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The consequence of binding TLRs to epithelial cells and phagocytosis of 

antigens results in the secretion of a range of inflammatory cytokines (IFN-γ, IL-6, 

TNF-α, IL-12) by T and B lymphocytes (Bailey, 2009; Abreu, 2010). For instance, 

increasing movements of macrophages (by MIF), neutrophils (by IL-8) and dendritic 

cells (CCL20) were expressed in ileal sections 3 h after pigs were orally challenge 

with pathogenic Salmonella sp (Skjolaas et al., 2006). These pro-inflammatory 

cytokines also stimulate the liver to produce acute-phase proteins, increase the 

release of amino acids from muscle tissue, and may induce fever and loss of appetite 

(Murtaugh et al., 2009). Eventually, migration of macrophages and dendritic cells 

(antigen presenting cells, APC’s) into the lymphoid tissues (e.g. Payers patches and 

lymph nodes) occurs with consequent antigen presentation to T and B lymphocytes 

and activation of adaptive immunity.  

Innate immunity is antigenic nonspecific and produces a short lived response. 

On the other hand, while the adaptive immunity takes longer to be induced (5 to 7 

days) it provides a more effective and antigenic specific response (Rothkötter et al., 

1999). The classical anamnestic response to adaptive immunity is by developing 

antigenic memory and protection (and boost immunity) against re-exposure to the 

same pathogen (Figure 3). The adaptive immune response enables the production of 

antibodies against specific antigens by B lymphocytes (humoral immune response) 

and the generation of cytotoxic and helper T lymphocytes in infected cells (cell-

mediated immune response) (Ogra et al., 2005; Abbas et al., 2010). 
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Figure 3: Primary and secondary antibody responses induced by a first and second vaccine 

exposure. Note that the secondary response is faster and greater that the primary response and it 

is specific for antigen A. 

The presence of large clusters of immune cells (B and T lymphocytes), as well as 

dendritic cells and macrophages, along the intestinal epithelium and lamina propria 

(LP) have been described in pigs (Stokes et al., 1994; Burkey et al., 2009). In naive 

animals, the specific immune response will initiate once antigen presenting cells 

(APC’s) bind and present antigens to naive or sensitised T cells by expressing the 

major histocompatibility complex (MHC) in organised lymphoid tissues (Stokes et al., 

1994; Ogra et al., 2005). APC’s and T cells in the mucosa can migrate to the 

mesenteric lymph nodes (MLN’s) via the afferent lymphatic circulation, where clonal 

expansion will occur and memory antigen-specific cells can be generated. In other 

words, upon encountering with specific antigen, B cells are stimulated (by T cells) to 

divide into plasma and memory cells (Moser and Leo, 2010). Sensitised cells then re-

circulate in the body via blood and fluids reaching the infection site. The pathogen is 

then attacked by phagocytosis or cytotoxicity and apoptosis through local production 

of cytokines (T cells) or antibodies (B cells) (Bailey, 2009; Moser and Leo, 2010).  

2.8.1 Antibody and cellular mediated immunity (CMI) 

Antibodies (immunoglobulin) are basically Y shaped proteins, produced by B 

cells, to recognize and eliminate a given antigen. The antibody class (e.g. IgM, IgG, 

IgD) is important to determining the capacity of a given antibody to reach the site of 

infection and recruit the adequate effector mechanism (Janeway et al., 2001). The 

most direct way in which antibodies can protect from pathogens or toxic products is 
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by binding to them and thereby blocking their attachment to the epithelium and 

avoiding antigen colonization (Stokes et al., 1994). The distribution of different 

antibodies classes within ileal section has been observed in an earlier study where 

IgA (42%) and IgM (7.5%) and occasional IgG (2.5%) staining (IHC) was detected in 

ileal crypt and lamina propria of adult pigs (Butler et al., 1981). After initial exposure 

the antigen-antibodies, such as IgM and IgG are observed locally and systemically. For 

instance, Taenia solium specific IgM response on intestinal mucus was observed by 

Western blotting one week after pigs were infected with 10.000 Taenia eggs (Tsang 

et al., 1991). Following IgM disappearance, IgG increases were observed after 3 

weeks (Tsang et al., 1991). Similarly, anti- E. coli IgM antibody response in serum 

increased and declined rapidly in the first 2 weeks after weaner pigs were challenged, 

following by gradual increase in serum concentrations of IgG antibodies (Porter and 

Hill, 1970). IgM possess high avidity and is effective in activating the complement 

system (C3b)(Wellek et al., 1976). IgG antibody has a more amplified function such as 

binding to antigen via agglutination and also opsonising pathogens, as well as 

activating the complement system (Wellek et al., 1976). In addition, IgA presence 

within fluids and membrane mucosa in adult pigs  have been described (Lamm et al., 

1996) and are attributed to disease protection (Jemmott and McClelland, 1989). For 

instance, the use of a dendrimeric peptide suspension protected pigs against 

challenge with foot-and-mouth disease virus and induced high titres of specific virus 

neutralizing antibodies and IgA response locally and systemically compared with 

non-infected controls pigs (Cubillos et al., 2008).  

The generation of cytotoxic and helper T lymphocytes in infected cells, includes 

a series of mutual complex interaction to control infection as summarized in Figure 4. 

CD4+ T cells subpopulation stimulate CD8+ cytotoxic T cells or macrophage to kill 

cells through intracellular pathogens (Th1 pathway). The Th2 pathway is essential to 

control immune activation, prevent auto-immune destruction and activate allergic 

responses to parasites (Charerntantanakul and Roth, 2006; Moser and Leo, 2010). 

Th1 and Th2 pathways are mostly mediated by the secretion of cytokines. CD4+ Th1 

cells produce mainly IL-2, IFN- γ and TNF-α promoting cell-mediated immune 

responses against intracellular pathogens, while the CD4+ Th2 subset produces IL-4, 

IL-5, IL-6 and IL-10 cytokines activate the antibody specific production (IgE) by B 
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cells to aid in the clearance of extracellular bacteria and parasites (Ogra et al., 2005; 

Emery and Collins, 2011). The IL-2, IFN- γ ,and TNF-α and also IL-1β  mediate the 

initial inflammatory response to the acute phase proteins, increases blood flow and 

vascular permeability (Burke-Gaffeyy and Keenan, 1993). The expression of mRNA 

encoding for IFN-γ and TNF-α in lung tissues have been demonstrated one day after 

pigs were experimentally infected with porcine respiratory reproductive syndrome 

(PRRS) virus (Shi et al., 2010). On the other hand, up-regulation of Th2-type  genes 

(CCR3, ARG1, MUC5AC, IL-4, IL-5, IL-13) in colonic sections was observed in pigs 5 

weeks after Trichuris suis nematode infection (Kringel et al., 2006). However, 

interactions are more complex than this, as for instance, in porcine B cells cultures, 

the secretion of IgG isotypes (IgG1 and IgG2) in presence of Th1 and Th2 type 

cytokines, confirmed that IL-10 promotes IgG1 and IFN-γ promotes IgG2 (Crawley et 

al., 2003). 

Transforming growth factor-β (TGF-β) controls the initiation and resolution of 

inflammatory responses through the regulation of lymphocyte activation, promoting 

T cell survival and inducing IgA class switching in B cells (Schluesener et al., 1990). 

For instance, mice injected with anti-TGF-β1 in spleen and liver became susceptible 

to listeriosis, whereas the administration of human TGF-β1 enhanced their 

resistance, even though level of IFN-γ, TNF-α and IL-6 were reduced in these animals 

(Nakane et al., 1996). Therefore, together with immunoregulatory T cells (T-reg) and 

Th-17 cells, TGF-β is involved in the tolerance and regulation in the gut (Moser and 

Leo, 2010). T-reg are CD4+T cells that secrete predominantly TGF-β and IL-10 

(Fontenot and Rudensky, 2005) and contribute to dampening macrophage function 

and maintaining homeostasis (Bailey, 2009). T-reg also express the transcription 

factor FoxP3 and the surface receptor CD25 (the IL-2 receptor α-chain), through 

involvement with NK, T and B cells, control the immune response against self or 

exogenous antigen (Fontenot and Rudensky, 2005). Meanwhile, Th17 cells are 

related to γδ-T cells and produce IL-17 and IL-22 which influence neutrophilia, tissue 

remodelling and repair (Emery and Collins, 2011). CD4+ effector T cells and Th17 

cells have been found in mucosa surfaces and act against bacterial and fungal 

infections by secreting IL-17 and expressing CCR6 and IL-23R signalling receptors 

(Weaver et al., 2007).  
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Figure 4: The role of T helper (Th) cells in immunity. CD4+ Th cells play a multiple role as: Th1 

cells by secreting IL-2 and IFN-γ cytokine, Th2 by secreting IL-4 and IL-10 cytokines. As well as 

stimulating a regulatory activity by releasing of TGF-β, IL-17 cytokines. 

2.9  Immune responses to Lawsonia intracellularis vaccination 

and virulent challenge 

The L. intracellularis immune response is most probably initiated after the 

pathogen is captured by dendritic cells and macrophages and presented to T-

lymphocytes in lymphoid tissues. Consequently, dendritic cells and monocytes 

recruitment leads to activation of CD4+ Th1 cells and later production of secretory 

IgA (Abreu, 2010). Humoral and cellular immune responses in pigs naturally or 

experimentally infected with L. intracellularis have been measured by immunoassays 

and gene expression studies (Collins et al., 2001; Guedes and Gebhart, 2003b; Collins 

and Love, 2007; Jacobson et al., 2011a; Riber et al., 2011a; Cordes et al., 2012). In an 

initial study using serological immunofluorescence tests with a crude filtered 

Campylobacter–like antigen suspension, it was demonstrated that growing pigs with 

naturally severe PHE lesions had predominantly IgM responses, which persisted for 8 

weeks, with less marked IgG and IgA responses (Lawson et al., 1988). Similarly, 

Holyoake et al., (1994), struggled to detect significant differences in IgG titres 

between uninfected and challenged pigs (mucosal homogenate from PHE-affected 

pigs) using an IgG ELISA test with whole L. intracellularis as the antigen. This work 

was additionally hampered by the difficulty in identifying naive pigs for negative 



43 
 

control sera. A subsequent study was able to improve the sensitivity and specificity of 

IgG detection, employing an immunofluorescent (IFAT) test based on L. intracellularis 

co-cultured in IEC-18 mammalian cells (Knittel et al., 1998). The IFAT was able to 

detect serum specific IgG antibodies in 90% of pigs 3 weeks after virulent challenge 

with cultured L. intracellularis (Knittel et al., 1998). More recently, the reliability of a 

commercial ELISA to detect Lawsonia intracellularis IgG antibodies in pigs serum 

with subclinical PE after experimental challenge (109) has been also described during 

the 35 days trial (Collins et al., 2012). Similarly, L. intracellularis specific IgG 

antibodies have been detected (1:25 titre) in ileal mucosa 21 days after piglets were 

vaccinated with attenuated L. intracellularis suspension (Donahoo, 2009).  

Secretory IgA is promoted as an important defence mechanism against 

enteropathogenic bacteria by blocking antigen adhesion to the mucosal epithelium 

(Lawson et al., 1988; Jemmott and McClelland, 1989; Husband et al., 1996). 

Accumulations of IgA have been demonstrated (by IHC) in the apical cytoplasm of 

proliferating enterocytes in the crypt lumen and Peyer’s patches from pigs with 

clinical cases of PIA and PHE (Lawson et al., 1979; McOrist et al., 1992). However, 

minimal concentrations (1:4 titre) of L. intracellularis specific IgA (by IPMA) were 

detected in intestinal lavage 22 days after 108 cultured L. intracellularis were given 

orally to weaner pigs (Guedes and Gebhart, 2010). Similarly, total faecal IgA was also 

minimal (<200ng/mg of faeces) in 10 week old pigs after primary (109) and re-

challenge (1010 L. intracellularis) inoculation (Cordes et al., 2012). Additionally, the L. 

intracellularis specific IgA in serum increased slowly with peak 4 weeks (100 OD%) 

after primary challenge, being undetectable after 7 weeks (<5 OD%) (Cordes et al., 

2012). However,  significant increase in L. intracellularis specific IgA in serum of pigs 

following 1010 L. intracellularis re-inoculation was not detectable (Cordes et al., 

2012).  

Early lesions of PE contain few infiltrating inflammatory cells, indicating the 

initial epithelial cell nature of the infection and the lack of an inflammatory stimulus 

(McOrist et al., 1992). The lack of inflammation associated with non-haemorrhagic PE 

in pigs is possibly due to the limited numbers of CD8+CD25+ T lymphocytes observed 

within intraepithelial lymphocytes cells (IELs) and the lamina propria (McOrist et al., 

1992; MacIntyre et al., 2003). Descriptive immunocytological studies of intestinal 
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tissues sections of pigs clinically affected with PE reveal a mild infiltration of 

cytotoxic CD8+ T cells, macrophages and B lymphocyte carrying MHC class II 

structure 14 days after 108 L. intracellularis challenge (MacIntyre et al., 2003). 

However, moderate infiltrations of CD8+CD25+T lymphocytes have been observed in 

pigs suffering from severe PHE (McOrist et al., 1987),  suggesting that more severe 

cases can induce infiltration of cytotoxic cells. However, the expansion of CD8+ and 

CD4+ cell populations (reduced ratio of non specific CD4:CD8 T cells) have been 

observed in ileal samples 3 to 4 weeks after experimental L. intracellularis challenge 

(109) (Cordes et al., 2012). In addition, high concentrations of IFN-γ were associated 

with increased numbers of L. intracellularis specific IFN-γ producing CD8+ cells in the 

serum of PE infected pigs (Cordes et al., 2012).  

A significant role for IFN-γ in immunity against PE disease has been implicated 

in mouse and pig challenge models (Smith et al., 2000; Guedes and Gebhart, 2003b). 

Mice without IFN-γ receptor (IFN-γ R-) were substantially more susceptible to PE 

disease outbreaks and more extensive lesions as observed by immunohistochemistry 

compared with wild type mice (IFN-γ R+) after oral infection with 107 cultured L. 

intracellularis (Smith et al., 2000). The generation of antigen-sensitised (CD4+ and 

CD8+) lymphocytes and the production of L. intracellularis specific IFN-γ following 

incubation of L. intracellularis antigen with peripheral blood mononuclear cells 

(PBMC) has been reported in pigs within 14 days of challenge with 109 virulent L. 

intracellularis in 12 weeks old pigs (Guedes and Gebhart, 2010; Cordes et al., 2012). 

Guedes et al., (2003b) also detected L. intracellularis specific IFN-γ producing cells by 

ELISPOT, in porcine PBMC until 13 weeks post-vaccination with 105 L. intracellularis. 

In horses, IFN-γ gene expression in all vaccinated foals was significantly higher after 

60 days following oral vaccine administration compared to IFN-γ gene expression in 

control unvaccinated foals (Pusterla et al., 2012a). L. intracellularis as intracellular 

organism stimulate IFN-γ, leading to the clearance of infection or imputing disease 

severity (Cruz et al., 2006). However, cytokine gene expression was limited and did 

not correlate with clinical signs, lesions or antibody response in naturally infected 

PHE and PIA pigs (Jacobson et al., 2011a). But the gene encoding for insulin-like 

growth factor binding protein 3 (IGFBP-3) was up-regulated in two pigs with 
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prominent mucosal proliferation (PIA and PHE) and also in L. intracellularis infected 

McCoy cells (Oh et al., 2010).  .  

Delayed-type hypersensitivity (DTH) responses can be induced by a number of 

intracellular bacteria, such as Brucella abortus, Listeria monocytogenes and 

Mycobacterium bovis (Abourebyeh et al., 1992; Bercovich, 2000). The mechanism by 

which DTH responses are observed is due to secondary exposure to the pathogen and 

activation of antigen-specific Th1 T cells to secrete especially IL-2 and IFN-γ that will 

mediate the hypersensitivity reaction (Abourebyeh et al., 1992). In a L. intracellularis 

trial by Guedes et al, (2010), DTH were detected 20 days after pigs experimentally 

infected with 108 cultured L. intracellularis. The DTH reactions were observed in a 

dose dependent manner 24 hours after intradermal injections with 107 to 109 L. 

intracellularis treated by formalin fixation, sonication or extracts of outer membrane 

proteins (Guedes and Gebhart, 2010). In other diseases, such as Brucella abortus, 

responses are typically within 48 to 72 hours in sensitized hosts no matter the dose 

used  (Bercovich, 2000).  

Part 3- Principles of mucosal vaccination 

2.10  Introduction to porcine mucosal vaccination 

The activation, replication and differentiation of T and B cells lymphocytes 

leading to the generation of memory cells which respond and provide protection 

against specific pathogens are desirable for successful immunization (Meeusen et al., 

2004). Mucosal immunity refers literally to the immunity induced at the mucus-

covered epithelial surfaces typically present in the gastrointestinal, upper respiratory 

and lower reproductive tracts (McGhee and Kiyono, 1994; Meeusen et al., 2004; 

Sedgmen et al., 2004). Additionally, identifying an immune marker that correlates to 

the protective mechanism to be induced by mucosal vaccines is ideal to facilitate 

vaccine design (Emery and Collins, 2011). Therefore, for the specific formulation of a 

vaccine, it is fundamental the information about the pathogen, such as how it infects 

the cells, and how the immune system responds to it, as well as practical 

considerations (e.g. costs of production and delivery). On the other hand, the 

maternal antibodies may also need to be considered, since their interference has 
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been related to vaccination failure (Hodgins et al., 2004). Additionally, factors to be 

considered in vaccine formulation include the administration route (parenteral vs. 

oral), antigen dosage and formulation (killed vs. live), the presence of adjuvants 

(saline vs. oil) (McGhee and Kiyono, 1994; Sedgmen et al., 2004). To induce 

protective responses against (extracellular) tetanus toxin, high titres of systemic 

antibody are required (Tregoning et al., 2005), while for mycobacterial infections 

such as tuberculosis, macrophage activated cell-mediated immunity and for influenza 

viruses, cytotoxic T cell responses and IFN-γ are important (Brodin et al., 2004).  

The success of live vaccines has been attributed to a mimic of natural infection 

without causing “severe” disease. Live vaccines are normally produced by attenuating 

an agent from field disease outbreaks by continuous sub-cultivation or 

chemical/radiation attenuation (Meeusen et al., 2004; Sedgmen et al., 2004). This 

produces an ability of the antigen to replicate and produce subclinical disease 

(depending dose) generating immune responses similar to the natural infection. 

Examples of available live vaccines for pigs include the porcine reproductive and 

respiratory syndrome (PRRS) vaccine (Porcilis® PRRS, MSD Animal Health) and 

Salmonella Choleraesuis vaccine (Enterisol® SC-54, Boehringer Ingelheim). These 

vaccines have been demonstrated to elicit a strong and rapid antibody and cellular 

immune responses (dominated by CD8+ T cell) resulting in lifelong immunity (at least 

3 months) with only one dose  (Husa et al., 2009; Martelli et al., 2009). However, if an 

attenuated live vaccine contains insufficient live organisms or replication is 

compromised (e.g. temperature of refrigeration), it may not provide sufficient 

stimulus to the immune system to induce a measurable response or immunity 

(Meeusen et al., 2007).  

Inactivated vaccines can contain antigen specific epitopes, fractions of protein, 

toxoids, subunits, DNA or whole viruses or bacteria (Meeusen et al., 2004). The 

immune response to an inactivated vaccines is mostly humoral (Watson, 1987), 

except when they are added with specific adjuvants (e.g. Complete Freund's 

adjuvant/CFA) (Holmgren et al., 2003). One of the benefits of using inactivated 

vaccines is the ability to amplify the responses against specific pathogens strains by 

combining different pathogens or different virulent factors in one unique suspension. 

For instance, the Actinobacillus pleuropneumoniae (App) vaccine (Porcilis® APP, MSD 
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Animal Health) is based on the outer membrane protein (OMP) with an additional 

three toxoids ApxI, ApxII and ApxII, that are produced by different strains found 

around the world (Tumamao et al., 2004). Another commercially available 

Clostridium perfringens Type C and Escherichia coli (K88, K99, 987P) bacterin 

(Scourmune-C® , Merck Animal Health) for use in pregnant gilts and sows have been 

shown to reduce neonatal diarrhoea in piglets when compared with unvaccinated 

sows (Cunningham et al., 2005). However, during inactivated vaccine development 

the addition of adjuvants or multiple immunisations are often required to achieve 

sufficient stimulus to generate suitable and sustained protection (Pavot et al., 2012). 

The use of recombinant DNA (or vector) vaccines is beneficial due to addition of 

specific pathogen genes. For example, an inactivated vaccine containing a killed 

baculovirus vector carrying a protective ORF2 antigen against Porcine Circovirus 2 

(PCV2) is commercially available (Porcilis® PCV, Merck Animal Health). Live vector 

and DNA vaccines have been shown to be effective against intracellular pathogens 

(bacterial and viral) at mucosal surfaces (Fort et al., 2008), possibly because they 

elicit intracellular antigen production and induce cell-mediated immunity which can 

inactivate or destroy infected target cells or prevent pathogen replication.  

2.11 The maternal immunity interference on vaccination 

Non-responsiveness to vaccination in young piglets to active immunisation has 

been previously associated with maternal immunity interference (Mengeling et al., 

1992; Lawhorn et al., 1994; Hodgins et al., 1999). The maternal antibody half-life for 

L. intracellularis in serum has been estimated to be between 3 to 6 weeks in serum of 

piglets (Holyoake et al., 1994; Guedes et al., 2002a).  Investigation on the efficacy of 

the L. intracellularis vaccine (Enterisol®Ileitis) when administered to 2 to 6 days old 

suckling piglets (from sows that were naturally exposed to L. Intracellularis) and 

challenged (108 organism) at 7 weeks of age, demonstrated the reduction on the 

duration of L. intracellularis faecal shedding but did not reduce intestinal lesions 

relative to non-vaccinated pigs (Donahoo, 2009). It is hypothesised that when live 

vaccines are administered orally to suckling pigs the antigen are not readily available 

due to neutralisation by maternal antibodies present in the intestinal tract of suckling 

animals (Siegrist, 2003). Therefore, piglets active immunisation strategies are 

normally delayed until passive immunity is declining but to not create a window of 
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opportunity for infecting diseases (around 4 to 6 weeks) (Emery and Collins, 2011). 

Alternatively, strategies to avoid this interference include using inactivated vaccines 

or alternative routes of vaccination such as passive vaccination (Emery and Collins, 

2011; Chase and Lunney, 2012).  

2.12  Route of vaccination on mucosal immune response 

The ultimate goal of vaccination is to induce a specific immune response at the 

local site of pathogen adherence and proliferation. Therefore, it is only logical that to 

avoid mucosal pathogens colonization, a mucosal vaccine delivery is the most likely 

to be successful in protecting against disease. The oral dosing is often related as the 

main mucosal vaccination route (Curtiss et al., 1996; Mirchamsy et al., 1996; Husa et 

al., 2009). This is based on the premise that the induction of IgA/IgG plasma cells will 

occur following antigen uptake at inductive sites (e.g. Peyer’s patches) in the gut 

mucosa (Mestecky et al., 2005; Roth, 2010). Pigs orally vaccinated with Salmonella 

Typhimurium live attenuated vaccine showed reduced intestinal lesions and 

increasing antigen specific IgG in serum after pigs were inoculated with 109 virulent 

Salmonella sp. compared with the unvaccinated group (Husa et al., 2009). However, 

alternative mucosal routes such as intranasal, intraperitoneal and intrarectal 

vaccinations have been also successful in protecting livestock against mucosal 

diseases (Muir et al., 1998; Pusterla et al., 2010; Riddle et al., 2011). Similar to oral 

vaccination, intrarectal and intranasal routes induce IgA responses at the local site of 

infection following antigen uptake within lymphoid follicles present at these sites 

(Sedgmen et al., 2004). In humans, intranasal delivery with a Shigella flexneri 2a 

lipopolysaccharide 50 subunit vaccine (LPS, IpaB, IpaC and IpaD) induced a fivefold 

increase in the concentrations of antigen-specific intestinal faecal IgA and IgG (Riddle 

et al., 2011). Similarly, intra-rectal vaccination using a live attenuated L. 

intracellularis vaccine has been found to induce increased specific L. intracellularis 

IgG responses in serum of horses (Pusterla et al., 2009).  

 In addition, the intraperitoneal route has also been demonstrated to induce 

mucosal immune responses against specific pathogens. For instance, intraperitoneal 

vaccination of a crude tetanus toxoids with either Freund’s adjuvants or oil-in-water 

adjuvants demonstrated a markedly improved anti-tetanus IgA antibody responses in 
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jejunum of chickens compared with an orally vaccinated group  (Muir et al., 1995). In 

a subsequent study in broilers, the intraperitoneal vaccination against Salmonella sp. 

produced protection and increased IgG and IgA serum responses that were 

comparable to those from orally vaccinated birds (Muir et al., 1998). Antigens 

delivered by intraperitoneal route act by reaching the serosal surface through 

diffusing across the peritoneal membrane and are absorbed via the lymphatic system 

and consequently drain to the mesenteric lymph nodes (Lukas et al., 1971). Pigs 

vaccinated intraperitoneally at 30 days and 60 days old with formalin killed 

Mycoplasma hyopneumoniae plus adjuvant had significantly fewer lung lesions and 

increasing serum M. hyopneumoniae specific IgG response than the non-vaccinated 

controls (Sheldrake et al., 1993).  

By contrast, non-mucosal routes of vaccination have also been related to 

vaccine protection against mucosal pathogens. For instance, Salmonella 

Typhimurium autogenous bacterin reduced the rate of pigs positive to Salmonella sp. 

shedding from 24% prior to intramuscular vaccination (d0) to 8.5% in marketing-age 

pigs (d49) (Farzan and Friendship, 2010). Presumably the mechanism by which 

intramuscular vaccination protects against mucosal pathogen is through the homing 

of activated immune cells from somatic sites and lymph nodes to mucosal tissues 

(Daynes et al., 1996), or more likely, by the diffusion of circulating antibody into 

mucosal tissues. In L. intracellularis trials, Dale et al., (1997) observed a 98.5% 

reduction in faecal L. intracellularis counts in four pigs that were vaccinated twice 

intramuscularly, 3 weeks apart, with killed L. intracellularis in incomplete Freund's 

adjuvant. The additional pigs were then inoculated with recombinant GroEL-Like 

protein and exhibited reduced faecal bacteria compared to infected controls.  

2.13  Lawsonia intracellularis vaccines 

Recently, a patent (WO/2009/127684) have has been registered presenting an 

inactivated Lawsonia intracellularis, Mycoplasma hyopneumoniae and porcine 

circovirus (PCV2) vaccine (Jacobs et al.,  (2011); Intervet/Schering-Plough Animal 

Health). This invention vaccine is constituted with inactivated Lawsonia 

intracellularis whole cells (1.7 x 108 cells/mL), PCV2 antigen with ORF2 expressed in 

baculovirus and inactivated whole M. hyopneumoniae antigen in an oil-in-water 
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adjuvant. The whole cell Lawsonia intracellularis vaccine was derived from a live 

isolate from a pig with PE and was inactivated by high temperature (100°C) and 

0.01% beta-propiolactone (Jacobs et al., 2011). In the first experimental trial using 

this vaccine, 2mL of the L. intracellularis whole antigen plus 19/21kD, 37kD and 

50kD outer membrane proteins (OMP) suspension was given twice intramuscularly 

(4 weeks apart) to 6 weeks old pigs. At 7 weeks post vaccination pigs were then 

orally challenged with a 108 L. intracellularis mucosa homogenate. Results showed 

higher L. intracellularis antibody concentrations (by IFAT) 4 weeks after vaccination 

comparing with the unvaccinated pigs. After the L. intracellularis challenge, pigs 

vaccinated showed significant reductions in L. intracellularis shedding and lesions 

relative to control animals. However, this vaccine is not yet commercially available.  

In the Australian market, a lyophilised Lawsonia intracellularis vaccine for pigs 

(Enterisol® Ileitis, Boehringer Ingelheim Vetmedica) has been available since 2006. 

The Enterisol® Ileitis is a live attenuated vaccine containing a L. intracellularis isolate 

derived from the ileum of a Danish sow with acute PHE (Kroll et al., 2004). The L. 

intracellularis isolate (B3903) was co-cultured in McCoy mouse fibroblast cells with 

repeated subculturing for attenuation (Knittel and Roof, 1999). The culture is 

harvested and the number of viable L. intracellularis is estimated using the dilution 

assay to quantify the number of bacteria required to infect 50% of cell hosts and 

induce pathological changes (TCID50). According to the Enterisol® Ileitis vaccine label 

information, one dose of reconstituted vaccine contains a minimum concentration of 

1x 104.9 TCID50 and a maximum of 1x 106.1 TCID50 L. intracellularis (Kroll and Roof, 

2007). 

  The Enterisol® Ileitis vaccine is recommended for use in weaned pigs 3-4 

weeks of age, and given via drinking water or drench gun (McOrist et al., 2006b). 

Since it is a live vaccine it is recommended that antibiotics should be removed from 

feed 2 days prior and 3 days post vaccination (Walter et al., 2005; McOrist et al., 

2006b). The manufacture’s also recommends, when giving the vaccine in drinking 

water, adding skimmed milk or sodium thiosulphate solution as a stabilizer prior to 

adding the vaccine (McOrist et al., 2006b). There is no withdrawal period prior to 

slaughter. The L. intracellularis vaccine has been shown to protect 3 week old pigs 

and older pigs against clinical signs and intestinal lesions (28 days) (Kroll et al., 2004; 
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McOrist and Smits, 2007). Increased herd uniformity and improved average daily 

weight gains of individual pigs between 20 to 34 g per pig per day have also been 

reported (Almond and Bilkei, 2006; Bak and Rathkjen, 2008). The onset of protection 

occurs as early as 3-4 weeks post-vaccination and lasts for at least 17 weeks (Guedes 

et al., 2003); however, a direct correlation between immune responses and the level 

of protection have not been clearly established and is the focus of this thesis.  

Part 4- Nutrition and mucosal immunology 

2.14  Nutrition of the young pig 

 

The basic physiology of the digestive system comprises the physical and 

chemical break down of complex nutrients in feed into simple molecules and 

absorption of these molecules across the intestinal epithelium (Yen, 2001). The 

absorption of nutrients from the lumen of the gut begins with their transport, active 

or passive, across the membrane of enterocytes lining the mucosal surface, followed 

by passage across the cells or metabolism within cells and entry into the blood or 

lymphatic system (Yen, 2001; Böhme, 2002). Concomitantly the presence of immune 

cells, mucus and microbiota along intestinal epithelium act against attachment and 

colonization of pathogens (Bailey et al., 2005). Therefore, an efficient physiology of 

the gastrointestinal tract, such as motility, chemical digestion and absorption of 

essential nutrients, is critical to ensure optimum health and maintain growth and 

development of immunity. However, during post-partum and at weaning, piglets have 

to cope with many environmental and nutritional changes (Pluske et al., 1997).  

Initially the colostrum and milk intake in neonate piglets plays a crucial role in 

the piglets survival and development by providing energy (Le Dividich et al., 2007) 

and enabling maternal antibody immune transfer (Rooke and Bland, 2002). 

Colostrum and milk have high fat (21.9% and 62%, respectively) and protein 

(68.04% and 56%) contents (Lin et al., 2009). The intake of colostrum is directly 

correlated with piglet survival rate and growth performance (Le Dividich et al., 

2007). Lin et al., (2009) observed that 98.3% of proteins in the colostrum were 

utilised by neonatal piglets in the form of the amino acids; lysine, glutamine, leucine, 
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and threonine. Amino acids are known to be utilize in a range of processes, such as 

the formation of secretory mucins, biosynthesis of amino acid, glutathione peptide 

formation and nucleic acid composition (Halas et al., 2006; Stoll, 2006). 

Weaning piglets around 21 to 35 days of age is part of the routine farm 

management of intensive pig production systems. Weaning is a critical period in the 

young pig’s life as they are abruptly forced to adapt to new nutritional, 

immunological and psychological changes (Pluske et al., 1997). The innate and 

adaptive immune system of weaner pigs develop while passive immunity from sows 

is declining at weaning.  Additionally, piglets have to adapt from sow’s milk that is 

highly digestible to a dry and less digestible starch based diet containing complex 

protein and carbohydrates that also include anti-nutritional factors (Williams, 2003; 

Lalles et al., 2009). Dietary changes induce villus atrophy and crypt hyperplasia 

leading to reduced nutrient absorption and changes in the digestive enzymes profiles 

(Pluske et al., 1997). Therefore it is no surprise that increased pig morbidity and 

mortality occurs post-weaning with increased pathogen attachment and proliferation 

along the intestinal tract. Common endemic pathogens at this stage include E. coli, 

Salmonella spp. and L. intracellularis and rotavirus (Jacobson, 2003). All of these 

pathogens cause diarrhoea and reduced growth performance of piglets. Therefore, 

strategies to overcome these post-weaning challenges are important. Feed antibiotic 

growth promoters and/or mineral compounds such as zinc (ZnO) are known to be 

beneficial in reducing disease outbreaks and mortality (Verstegen and Williams, 

2002). However, due to food safety concerns and issues surrounding antibiotic 

resistance in humans, alternative strategies and feed additives are being investigated 

(de Lange et al., 2010; Kim et al., 2012; Heo et al., 2013; Pluske, 2013). These include 

using diet composition to offset some of the nutritional challenges presented at 

weaning (e.g. protein/amino acid content of diets)(de Lange et al., 2010) as well as 

the supply of immunomodulators (e.g. β-glucans, spray-dried plasma)(Halas et al., 

2006); and addition of feed additives (e.g. ZnO, organic acids, prebiotics and 

probiotics)(Pluske, 2013). For instance, the use of β-glucans to increase and 

modulate immune cells, protect against disease and increase growth performance has 

been discussed as a viable alternative to antibiotic use in mammals (Bohn and 

BeMiller, 1995; Brown and Gordon, 2003; Gallois et al., 2009).  
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2.14.1 Impact of Lawsonia intracellularis infection on digestion and 

absorption of nutrients 

The small intestine is around 4m long in neonatal pigs, 12m in weaner pigs and 

20m long in adult pigs (Yen, 2001). Morphologically, the presence of villi projecting 

into the intestinal lumen are lined with epithelial cells covered with a continuous 

single-layer of absorptive cells termed enterocytes (Böhme, 2002). Under normal 

conditions, enterocyte cells actively divide by mitosis, migrate and mature along the 

crypt-villus to the tip of the villi where they are involved in absorption of nutrients 

across the intestinal wall and into the bloodstream (Friendship, 1989). Eventually, 

mature cells are sloughed off into the lumen and replaced with new cells.  

Histopathology of L. intracellularis infected pigs shows proliferation of 

enterocytes and a marked reduction or loss of goblet cells (Lawson et al., 1993; 

Lawson and Gebhart, 2000). Therefore, it is expected that disturbance can also lead 

to reduction in nutrient absorption. Hamsters experimentally infected with 109 L. 

intracellularis were associated with a reduction in the absorption of protein, amino 

acids and Cl- and K- at 26 days post-challenge (Vannucci et al., 2010). The authors’ 

speculate that the effect of PE may have reduced expression or production of sodium-

dependent glucose transporter 1 (SGLT1) (Vannucci et al., 2010), therefore lowering 

intestinal absorption of nutrients and redirecting water into the intestinal lumen. 

Wong et al., (2009) also demonstrated impaired intestinal absorption of glucose in 

four PE affected foals using an oral glucose absorption test. Although this test is not 

specific, it clearly does suggest that L. intracellularis infection impairs the intestinal 

absorption of nutrients. Supporting this notion, when compared to healthy pigs, PE 

lesions in infected pigs resulted in an approximate 7% reduction in the amino acid 

digestibility in the terminal ileum of pigs (Rowan and Lawrence, 1982). Similarly, PE 

lesions have also been related to changes in enzyme activity of the brush border. For 

instance, pigs infected with PE showed reduced concentrations of Mg-ATPase and 

acid phosphatase activity in crypt cells (Eriksen and Landsverk, 1988). Similarly, PE 

severity has been directly correlated to reduced activity of alkaline phosphatase and 

amino peptidase enzymes in the ileum of pigs severely affected with PE compared 

with control pigs (Collins et al., 2009). Alkaline phosphatase and amino-peptidase 

enzymes have been demonstrated as essential in fat absorption and digestion of 

amino acids, respectively (Danielsen et al., 1995; Hansen et al., 2007). Therefore, L. 
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intracellularis infection possibly leads to alteration in the intestinal morphology and 

function, with possible impairment of nutrient digestion and absorption.  

2.15  Effect of diet on immune stimulation 

The immune system is dependent upon the redirection of dietary nutrients to 

meet the demand of immune cells for growth and replication, and this impacts 

directly on pig health and performance (Klasing, 2007). The deficiency of 

macronutrients or  micronutrients, such as zinc, selenium, iron, and antioxidant 

vitamins can lead to clinical disease, and alter immunocompetence and increase the 

risk of infection (Scrimshaw, 2007). Specifically, nutritional deficiencies can impair 

phagocyte function of innate immunity and cytokine production, as well as adversely 

affecting certain aspects of humoral and cell-mediated immunity (Klasing and Korver, 

1997; Korver and Klasing, 1997; Kidd, 2004). Impairment of these responses can 

compromise the integrity of the immune system, thereby increasing the animal’s 

susceptibility to infection. For instance, Zn deficiency affects many lymphocyte 

functions, antibody and cytokine synthesis (Peterson et al., 2008), recruitment of 

naive T cells and reduces the resistance to infection (McMurray et al., 1990). 

Therefore, nutritionists aim to feed pigs to optimize the supply of nutrients to 

guarantee growth and performance, health as well as improve resistance to disease. 

Antigen or cytokine receptor functions (such as CD79, CD21, CD23) on lymphocytes 

and phagocytic cells can be influenced by nutrients that affect membrane structure or 

transmembrane signalling functions (Scrimshaw and SanGiovanni, 1997; Scrimshaw, 

2007). Kegley et al., (2001) fed 3 weeks old piglets with one of four corn-soybean 

meal based treatment diets containing 0.16, 0.24, 0.32 or 0.40% available P to 

investigate the effect on immune function. Pigs were challenged with 

lipopolysaccharide (LPS) and the researchers demonstrated that increasing 

supplemental dietary available P increased the production of lymphocytes 21 days 

after challenge. In addition, dietary depletion of vitamin A in C57BL/6J mices 

decreased lymphoid dendritic cells, memory CD8+ cells and CD4+ T lymphocytes in 

spleen using a multicolour flow cytometry test (Duriancik and Hoag, 2010). 

Therefore, this result suggests that diet could not only be a cofactor to infection 
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resistance but may also be able to potentially influence immune responses to 

vaccination.  

2.15.1 β-glucan as immunomodulators for pigs 

Beta-glucans (β-glucan) are the most abundant polysaccharides found inside 

cell walls of yeast, bacteria, cereals, seaweed and fungi (Bohn and BeMiller, 1995). 

They contain D-glucose as structural components and, depending on the source, are 

linked by either 1,3 or/and 1,6 β-glycosidic bonds (Sonck et al., 2011). β-glucans 

extracted from the cell wall of Saccharomyces cerevisae yeast is the most common 

source of commercial preparations for use in pigs’ diet (e.g. Macrogard®, Glucagen®, 

EnergyPlus® and AntafermMG®). β-glucan derived from the Saccharomyces cerevisae 

yeast is composed mainly of β-1-3-glucan linkages (around 85%) and about, 3% β-1-

6-glucan linkages (Manners et al., 1974). In contrast, the structure of cereal derived 

glucans consist of β-1-3 and β-1-4 linkage, while bacteria presents only β-1-3 

linkages (Bohn and BeMiller, 1995). Besides the differences in the type of linkage, β-

glucans can vary in solubility, molecular mass and polymer charge (Volman et al., 

2008). The high molecular weight of β-glucans from fungi directly activate 

leukocytes, while low molecular weight β-glucans only modulate the response of cells 

when they are stimulated with cytokines (Brown and Gordon, 2005). The type of 

isolation of β-glucan, even if is derived from the same source, can influence the 

lymphocyte responses (Sonck et al., 2010). Therefore, variation between β-glucans 

will influence their physiological function and immune modulating effects. Sonck et 

al., (2010) incubated pig peripheral mononuclear blood cells (PMBCs) with each of 

seven β-glucans (100μg/mL) from different sources. Interestingly, the two products 

originating from S. cerevisae stimulated proliferation of lymphocytes, neutrophils and 

increased significantly concentrations of TNF-α and IL-1β (Sonck et al., 2010). 

Conversely, β-glucan from the bacterium Agrobacterium biobar did not activate 

monocytes or neutrophils, but stimulated lymphocyte proliferation and IL-10 

cytokine production (Sonck et al., 2010). More recently the same authors, in a similar 

experimental design demonstrated an enhancement of porcine dendritic cell (DCs) 

maturation by S. cerevisae beta-glucan (Sonck et al., 2011). It is possible that the 

extra-branching of the S. cerevisae (1, 3 and 1, 6) may increase the recognition by 

dendritic cells and macrophage receptors and be an important determining factor on 
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their stimulatory capacity (Volman et al., 2008). Variation in β-glucan 

supplementation responses can be also influenced by inclusion rate to diet. For 

example, while pigs fed diets with 0.25% S. cerevisae β-glucan (Macrogard®) 

increased average daily weight gain after 28 days, with no affect in cohort pigs 

supplemented with 1% β-glucan (Dritz et al., 1995). 

The activation of the mononuclear phagocyte system and protective 

inflammatory cytokines by β-glucans in humans and pigs has been directly correlated 

to innate immune responses (Decuypere et al., 1998; Brown and Gordon, 2001). 

Human whole blood incubated with soluble yeast β-glucan showed an increase in the 

production of pro-inflammatory cytokines, TNF-α, IL-6, IL-8 and monocyte tissue 

factor (Adachi et al., 1994; Young et al., 2001). At least four receptors have been 

identified for initial recognition of beta-glucans. With there being complement 

receptor 3 (CR3), lactosylceramide, scavenger receptors and dectin-1 (Brown and 

Gordon, 2001; Brown et al., 2003; Brown and Gordon, 2005). Between them, dectin-1, 

a C type lectin was described as the most important receptor in pigs (Sonck et al., 

2009). Dectin-1 belongs to the large family of pattern recognition receptors (PRRs) 

which identify conserved PAMPs (Brown and Gordon, 2001). These are expressed by 

various antigen-presenting cells, such as dendritic cells, neutrophils, macrophages 

and some T and B cells (Bohn and BeMiller, 1995), and modulate innate immunity by 

increasing cytokine production (Adachi et al., 1994). And possibly could lead to 

infection resistance. Glucan therapy by inoculating 1,3-β-D-glucan (150 mg/kg) 

intraperitoneally in mice prior to a 108 E. coli challenge, showed increased blood 

leukocyte activity and enhanced phagocytosis of E. coli (Williams et al., 1988). 

In pigs, an increase in PRRS specific IFN-γ concentrations (by ELISPOT) was 

detected in PBMCs of infected pigs after incubation with a β-1,3-1,6-glucan 

preparation (50 μg/mL) (Xiao et al., 2004). These authors suggest that β-glucan 

possibly enhanced Th1 specific immune responses, by increasing the maturational or 

activation state of sensitised T cells, as the effect in vitro was delayed until 50 days 

after infection (Xiao et al., 2004). In agreement with this notion, Shen et al (2009) 

also observed an increase in CD4+ T cells and IFN-γ secretion in the gut mucosa 21 

days after piglets were fed diets containing yeast culture (5g/ kg). However, 

concentrations of IgM, IgA or CD4+ and CD8+ T-cells in ileal tissues (by IHC) of 
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finishing pigs were not modified by β-glucan supplementation at 0.03% or 0.3% 

(Sauerwein et al., 2007). However, this may be related because a 2.5% β-glucan daily 

dose, given to newborn piglets for two weeks caused a significantly increased 

expression of TNF-α and IL-1β mRNA in ileal sections (Eicher et al., 2006).  

Additionally, seven day old piglets supplemented with a β-glucan derived from 

seaweed Laminaria digitata and Laminaria hyperborean, and yeast Saccharomyces 

cerevisae (650g β-glucan per kg of diet) did not express any pro- or anti-

inflammatory cytokines markers in the ileal epithelial cells (Sweeney et al., 2012). On 

the other hand, after an ex vivo LPS challenge, incubation of PBMC with Laminaria 

digitata beta-glucan showed enhanced expression of the IL-8 cytokine marker. This 

was also site-related, as the effect was reduced in the colon (Sweeney et al., 2012). All 

of these findings imply that the effects of β-glucan on porcine immunity depends on 

the source and processing (related to structure), dose and age of recipient, as well as 

site of analysis / infection in the gut and the duration of feeding. Therefore it is 

essential to decipher the literature carefully, but also essential to fully trial the effects 

of supplementation in vaccination and disease models to have a relevant and 

functional read-out.    

2.15.2 Microbial phytase potential effect on immunity 

Phytate salts (myo-inositol hexaphosphate; IP-6) occur naturally in plants and 

serves as the storage form of phosphorus P (Sharpe et al., 1950). The primary storage 

compartment of phytate in plants is seeds, which are used extensively in pig diets. 

However, phytate-P has a low bioavailability in monogastric animals (Simons et al., 

1990). Different feed ingredients vary in their concentration of phytate-P as well as 

the proportion of P that is present in phytate. For instance, the proportion of 

phosphorus present as phytate-P ranges from 67 to 86% in barley, maize, oats, 

canola, soybean, sorghum and wheat in Australian sourced pig and poultry feed 

ingredients (Selle et al., 2003). Therefore the composition of the diet influences the 

amount of available-P in the diet (Table 1).  
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Table 1:The mean of total P and proportion of phytate-P in total P and bioavailability of total P for 
pigs in common feed ingredients a. 

Feed ingredient 
Samples 

(n) 
Total P 
(g/Kg) 

Phytate-P, 
proportion of 

total P (%) 

P bioavailability 
for pigs (%) 

Barley 41 3.21 61.0 30.0 

Maize 45 2.62 71.6 13.0 
Sorghum 64 3.42 77.8 20.0 
Wheat 97 3.07 71.6 49.0 
Canola meal 28 9.72 66.4 21.0 

Cottonseed meal 21 10.02 77.1 10.0 

Soybean meal 89 6.49 59.9 27.0 

Rice bran 37 17.82 79.5 25.0 

Wheat bran 25 10.96 76.3 41.0 

a Table adapted from Selle et al., 2011. 

 

The main anti-nutritional effect of phytate occurs by interference with 

digestibility and chelation to nutrients directly affecting the absorption and 

utilization of nutrients (Simons et al., 1990; Selle et al., 2011). The formation of a 

insoluble Ca5-K2-phytate complex occurs at pH 5  (Simons et al., 1990) and  Cu2+, Pb2+, 

Zn2+ phytate complexes have been observed in small intestines of pigs (Cigala et al., 

2010). In addition, phytate has been shown to negatively affect the activity of α-

amylase and trypsinogen (Deshpande and Cheryan, 1984; Caldwell, 1992). 

The use of a phytase enzyme to break down phytate chelation releases nutrients 

bound to phytate and potentially increases their digestion and utilization in the gut. 

Phytase enzyme can be derived from intrinsic plant phytase (e.g. wheat), endogenous 

mucosal phytase (e.g. phytase generated by small intestines of some animals), gut 

microbiota or exogenous microbial phytase (e.g. feed enzyme) (Selle and Ravindran, 

2008). The production of phytases, their characteristics, and manipulation of thermo-

tolerance and gastric resistance are beyond the scope of this thesis but have been 

described in detail elsewhere (Ha et al., 2000; Pandey  et al., 2001). Briefly, microbial 

phytases have been demonstrated to degrade phytate-P in the acidic conditions of the 

stomach and small intestine of pigs (Yi and Komegay, 1996), by a series of 

dephosphorylation reactions and generation of a series of lower myo-inositol 

phosphate esters, resulting in inositol and inorganic P (Schlemmer et al., 2001). The 

addition of phytase to diets of monogastric animals has been shown to increase 

availability of P (Cromwell et al., 1995) and as well as other minerals (Lei et al., 1993; 
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Adeola et al., 1995; Biehl and Baker, 1996). Cromwell et al. (1995) observed an 

improvement in P absorption and an decrease of P excreted in faeces of growing pigs 

fed with soybean meal supplemented with Aspergillus niger derived phytase (5,000 

phytase units (FTU)/g). Similarly, Igbasan et al., (2000) demonstrated that two 

phytases derived from Aspergillus niger and E. coli both improved the total  

digestibility of P (33-34%) and Ca (18-20%) to similar extents in the intestines of 

weaner pigs offered maize-soy diets. Weaner pigs fed with a corn soybean meal diet 

supplemented with microbial phytase at 1350 FTU/g feed had improved 

bioavailability of Zn comparing with control groups without supplemented phytase 

(Lei et al., 1993). However, although the correlation with growth performance 

improvement by phytase  has been confirmed (Brana et al., 2006), the increased 

bioavailability of protein and amino acids by adding phytase to diets is not as 

consistent. Brana et al. (2006), compared the efficacy of phytases derived from A. 

niger or E. coli on P in growing pigs fed inadequate maize-soy diets for 130 days. At 

500 phytase units (FTU)/kg, both phytases improved weight gain (9.9%), feed 

efficiency (8%) and fibular ash (6.5%). Bohlke et al., (2005) reported greater amino 

acid digestibility in growing pigs fed low-phytate corn meal with phytase than 

responses from pigs fed normal corn meal and the enzyme. On the other hand, 

Johnston et al, (2004) and Woyengo et al. (2009)  indicated that phytase had a limited 

affect on the bioavailability of protein and amino acids at the terminal ileum of 

weaner pigs. 

Studies on the effects of phytase on immunological parameters and related to 

nutrition are very limited. Theoretically, the increased bioavailability of chelated 

nutrients should also increase the availability of nutrients for immune cell growth 

and replication. Lower molecular weight inositol phosphatase added to human cell 

lines (insulin secreting cells) increased  Ca2+ channel activity by initiating the uptake 

and phophorylation of glucose and regulation of adenosine triphosphate (ATP) 

activity as well as increasing the bioavailability of calcium (Larsson et al., 1997). 

Additionally, the free inositol IP6 molecule has been speculated to regulate cell 

division and differentiation (Menniti et al., 1993) and to stimulate respiratory burst 

and bacterial killing by releasing IL-8, TNF-α and IL-6 cytokines (Eggleton, 1999). 

Broilers fed a high phytate diet (0.44% phytate P) supplemented with E. coli-derived 
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phytase (1,000 phytase units (FTU)/kg feed) had a 3-fold increase in numbers of 

erythrocyte rosette forming cells at day 21 compared to the control group (high 

phytate diet 0.44% P). The percentage of CD4+ and CD8+ T lymphocytes subsets were 

also increased by phytase on day 28 after supplementation (Liu et al., 2008). These 

effects could also lead to a protective response. As observed previously, broilers fed a 

marginal diet supplemented with 500FTU/kg of phytase (0.35% P) and challenged 

with Eimeria acervulina (1,000 oocysts) showed less lesions when compared with 

infected birds fed control diets (Shaw  et al., 2011). In addition, increased IL-17 

mRNA gene expression in the duodenum in phytase supplemented broilers 

correlated with decreased pathogenicity on day 18 after challenge (Shaw  et al., 

2011). Ghahri et al., (2012) fed 14 to 42 day old broilers either an adequate or low 

calcium and nonphytate P (Ca-nPP) diet supplemented with a microbial phytase 

(600-1000 FTU/g feed, Natuphos®10000). They observed neutralising antibody 

titres against Newcastle disease vaccine in the marginal but not the adequate C-nPP 

diets, 14 and 42 days after vaccination (but not at other weekly intervals) (Ghahri et 

al., 2012). A search of the literature failed to identify and research investigating the 

effect of phytase on immune responses in growing pigs.  
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3.1 Housing conditions and husbandry  

Two experimental trials were conducted at Elizabeth Macarthur Agricultural 

Institute research unit (EMAI, NSW-DPI, Menangle, Figure 5). The experimental 

building has four rooms, with separated external and internal access and controlled 

waste management. Room temperatures were monitored during trials to maintain 

ideal ambient temperature by an automatic air conditioning system. The facility has a 

concrete slatted-floor and pens were constructed using interlocking, portable metal 

partitions and gates. Each pen was fitted with at least one nipple drinker and hopper 

feeder. 
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Figure 5: Pig research unit at Department of Primary Industries (DPI-NSW), Australia. Right 

figure shows internal room structure ready for the start of an experimental trial.   

 

Biosecurity measures were instigated and followed prior to and during trials. 

Each room and equipment were cleaned prior with a pressure hose and disinfected 

with Virkon® (Antec International, Sudbury, UK) to eliminate any possible bacterial 

and viral contamination. The protocols also minimised the risk of external spreading 

of Lawsonia intracellularis into the rooms, between rooms and vice versa. Before 

entry to the facility, personnel were required to change into a pair of protective 

boots, for internal use only and to use clean overalls daily. Other protective 

equipment (such as gloves, masks, glasses and earmuffs) was also used when 

required. In addition, to reduce cross-contamination between pens with different 

treatments, the sampling and treatment routines occurred in the order from the less 

to the most contaminated pens.  

3.2 Vaccine preparation 

The lyophilized Enterisol® Ileitis vaccines (Boehringer Ingelheim Pty Ltd.) were 

reconstituted according to the manufacturer’s instructions to either a standard (1x) 

dose (104.9TCID50) or ten times this (105.9TCID50). Briefly, 100 mL of sterile diluent 

was mixed toughly with lyophilized L. intracellularis antigen containing 

approximately 104.9 TCID50 L. intracellularis organism. For the ten times dose the 

antigen was diluted using 10 mL of sterile diluent and mixed (105.9 TCID50). 

Vaccination occurred within 30 minutes of reconstitution and left over of vaccine was 

discarded. The same batch vaccine was used for each experimental trial. 
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3.3 Preparation of L. intracellularis challenge inoculum 

The inoculum of L. intracellularis was prepared using L. intracellularis infected 

intestinal mucosa and quantified by Dr. Alison Collins at the EMAI-Microbiology 

laboratory (Collins et al., 1996; Collins and Love, 2007). Briefly, the intestinal mucosa 

derived from infected pigs with L. intracellularis (clinical PHE) was scraped and 

homogenized gently in sterile PBS. The extracellular material was separated by 

repeated washing in PBS and 0.5M EDTA and centrifugation until the supernatant 

was clear. The supernatant was retrieved and stored on ice in a sterile container until 

challenge. Prior to inoculation, the presence of the bacteria was confirmed by 

modified Ziehl Neelsen (MZN) staining. The number of L. intracellularis was 

calculated per dose by counting bacteria under the microscope after 

immunofluorescence antibody (IFA) staining. The inoculum suspensions were 

serially diluted with PBS from 1:2 to 1:64 and each dilution was fixed on slides. A L. 

intracellularis monoclonal antibody (IG4) was diluted 1:200 in PBS and incubated 

with the inoculum at 37°C for 30 minutes. Non-specific binding was removed by 

washing slides in PBS, and the slides were then incubated with 1:50 dilution of sheep 

anti-mouse IgG conjugated with FITC (Sigma, US). After incubation, slides were 

washed in water and examined by fluorescent microscopy at 1000X magnification. 

The number of fluorescing comma-shaped bacteria was counted for ten field 

diameters at two different dilutions and in duplicate wells. The number of bacteria 

per mL of inoculum was calculated using specific formula (Equation 1). 

Equation 1- Quantification of inocula 

Bacterial per mL = 
Mean number of bacteria per field diameter * dilution of inoculum 

5.94* 10-6 

 

3.4 Clinical scores 

During experimental trials, animals were assessed daily recording their clinical 

score: faecal consistency, body condition and behaviour (Appendix I). Faecal 

consistency was scored as, 1=normal, 2= soft (semi-solid), 3= watery, 4= presence of 

blood.  Behaviour was scored as 1=normal, 2= moderately depressed, standing, 3= 

severely depressed, lying down. Body condition score as 1=normal, 2= mildly gaunt 

(thin, hips and backbone noticeable), severely gaunt (hips and backbone very 

prominent).  



64 
 

3.5 Sampling procedures 

3.5.1 Blood and faeces 

Individual pigs were restrained in a cradle (pigs less than 15kgs) or by using 

a nasal snare (and standing) depending on their size. Blood was captured by 

venipuncture of the jugular vein using serum clot separator vacuum tubes 

(Vacuette®, Greiner BioOne, Austria). After collecting around 5 mL of blood, samples 

were left in 4°C cold room overnight and then centrifuged at 2000g for 20 minutes to 

separate blood clot. Serum samples were then poured off to sterile individual 

containers and stored frozen at -20°C until analysis. Around two grams of faecal 

matter were individually collected directly from the rectum using clean gloves for 

each animal. Samples were then stored in sterile containers and frozen at -20°C until 

further processing.  

3.5.2 Tissue section 

Intestinal tissues were collected at necropsy from the ileum 10cm proximal 

from the ileal caecal valve (ICV), the jejunum 40cm proximal to the ICV and the 

caecum, 5cm distal to the ICV. Tissues were divided with one part kept in 10% 

neutral-buffered formalin fixative and another in RNA stabilization suspension (RNA 

later, Ambion®, Life Technologies, US) at room temperature until analysis. A third 

tissue segment was snapped frozen using the fresh tissue freezing technique with 

optimum cutting temperature (OCT) compound (Tissue-Tek®, Sakura, US). Tissues 

were placed in a plastic mold containing OCT and quickly placed in a steel bowl on 

the top of dry ice pellets. To the bowl, isopentane (2-methyl butane) was slowly 

added and once frozen; the tissue moulds were stored in a -80°C freezer.    

3.5.3 Mucosa secretions 

Samples were collected 10cm from the ileal-caecal valve (ICV). The ileum 

was slit longitudinally and the intestinal mucosa was gently scraped with a sterile 

scalpel blade to collect the surface secretions. These were placed into 2 mL 

phosphate-buffered saline (PBS, pH 7.2) containing 0.2M EDTA. Each scraping was 

stored at -20°C. Prior to assay, mucosal scrapings were thawed and adjusted to a 

protein concentration of 25mg/mL. In this method, each sample was thawed in ice 

and transferred into sterile 2mL microfuge tubes containing approximately 200µL of 
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0.1 mm silicon beads (Biospec Products, Bartlesville, USA) for tissue disruption. Then, 

samples were vortex for 1 min five times, to solubilise the antibody in the tissue. 

Following extraction, samples were centrifuged at 11000g for 15 minutes at 6°C to 

separate the cellular debris and tissue from the soluble protein. After the supernatant 

was collected, the total protein concentration was estimated by reading the 

absorbance of each sample diluted 1:100 in sterile PBS using spectrophotometer set 

at 280nm (BioRad®, xMark™ Microplate Absorbance, US). All samples were 

standardised to 25mg/mL of total protein using sterile PBS and re-frozen until the 

day of analysis. 

 

 

Figure 6: Collection of ileal mucosa secretion by scraping gently with sterile scalpel blade and 

adding to sterile containers with PBS+ EDTA. 

 

3.6 Laboratory procedures 

3.6.1 Lawsonia intracellularis competitive ELISA test 

Sera and mucosal scrapings were assayed for Lawsonia intracellularis 

specific IgG antibody using a commercial competitive (blocking) ELISA kit 

(Bioscreen® Ileitis, GmbH, Münster, Germany). The principle of the test consists of 

serum and mucosa samples that contain L. intracellularis antibodies (mainly IgG) will 

bind to the L. intracellularis antigen coated to the plates (Kroll et al., 2005). And after 

a washing step in PBS, an anti- L. intracellularis monoclonal antibody (Mab) 

peroxidase conjugate is added. The conjugate will bind only to the free antigen 

epitopes (where Lawsonia-antibodies from the sample did not bind). After excess 

conjugate is eliminated in a second wash step, the addition of a substrate may react 
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with peroxidise linked to Mab forming a colour reaction. In this case, the absence of 

antibody will have an intense coloured reaction while the presence of anti-Lawsonia 

antibodies in the samples diminishes the coloured reaction in proportion to the 

antibody titre. The optical density (OD) of the wells was read bichromatically at 450 

and 630nm using a microplate spectrophotometer (BioRad®, xMark™ Microplate 

Absorbance, US). OD values were then used to validate run (negative controls ≥0.500, 

and the percentage inhibition of positive controls are ≥ 40%) and to calculate the 

percentage inhibition value (PI value) of the samples, determined by using the 

following formula: 

 

Equation 2- The percentage inhibition estimation equation for Bioscreen®. 

Percentage 

 inhibition (PI) = 

OD of negative control – OD of sample well 
*100 

OD of negative control 

 

According to manufacturer’s instructions, PI value greater than 30% were 

interpreted as positive to L. intracellularis antibodies and value less than 20% were 

negative. The sensitivity and specificity has been previously tested as 90.5% and 

83%, respectively Collins et al..(2012). 

3.6.2  “In house” modified direct ELISA test 

Lawsonia intracellularis specific IgM, IgG and IgA titres were assayed using 

an experimental modified direct ELISA developed specific for this project (Donahoo, 

2009) and re-validated for each trial in this thesis. Samples calculated by plotting OD 

values versus the dilution of standard controls the unknown samples were then 

estimated using a regression equation from the standard curve in each plate. The re-

validation of the ELISA efficiency, the R2 (coefficient of determination) parameter was 

calculated (R2≥0.98). Briefly, L. intracellularis coated plates (Bioscreen®Ileitis, GmnH, 

Münster, Germany) were blocked with 1.5% w/v skim milk powder for 2h at room 

temperature before washing three times in phosphate-buffered saline (PBS, pH 7.2) 

plus 0.05% v/v Tween®20 (Sigma-Aldrich, US) washing buffer in plate washer 

(BioTek® ELX405™, US). Serum or mucosal scrapings were serially diluted in 

blocking solution before adding (100μl) to wells in the plate. Samples were gently 

rocked for 1h at 37ºC before washing five times in washing solution. Subsequently, 
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labelled (HRP, Horseradish peroxidase) goat anti-porcine IgM, IgA and IgG 

(AAI39P/AAI40P/AAI41F, AbD Serotec, UK) polyclonal conjugate were added 

separately to relevant plates for 1.5 h at 37ºC before washing. The colour reaction 

was developed by adding substrate (TMB, Sigma-Aldrich, US) for 10 min before the 

reaction was stopped with 10μl of 2M sulphuric acid (Sigma-Aldrich, US). The optical 

density of the wells was read at 450nm using a microplate spectrophotometer 

(BioTek Instruments, Inc., US), with an established cut-off point of 0.250 OD, which 

was 2-fold higher than the negative sample (<0.120 OD). 

3.6.3 Porcine cytokines sandwich ELISA 

The estimation of each cytokine, in mucosal scrapings or in serum, was 

analysed using commercial sandwich ELISA kits (porcine Quantikine® ELISA, R&D 

systems, Minneapolis, USA) according to manufacturer’s directions. Basically, this 

assay is a quantitative sandwich immunoassay with a monoclonal antibody specific 

for the respective cytokine, pre-coated to the plate. After the addition of samples, 

control and standards, a second monoclonal antibody is added. The intensity of 

colour measured is in proportion to the amount of cytokine bound in the initial step. 

Using GraphPad®Prism software (v.4.02, 2004), the cytokine concentrations in 

pictograms (pg)/mL were calculated by plotting the OD readings bichromatically at 

450nm and 540nm against a titration curve produced from dilution of the standard 

control provided with the kit. The significance assessed by manufactures is 

summarized in the table below (Table 2). 

 

Table 2- The minimum detection dose range (MDD) recovery %, of porcine cytokines  in plasma 

according to the manufactures of the Quantikine® Elisa test kits (R&D Systems, US). 

Cytokines MDD (pg/mL) Recovery (%) Code 

IFN-γ 2.7-11.2 98.2 PIF00 

IL-6 0.68-4.3 96.5 P6000B 

TNF-α 1.8-5.5 99.1 PTA00 

TGF-β1 2.8-5.0 99.7 PMB100B 

IL-10 1.7-15.4 94.8 P1000 
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Figure 7: Porcine Quantikine® Elisa kit used for cytokine evaluation.  

 

3.6.4 Real-time PCR detection of L. intracellularis in faeces 

Extraction and purification of bacterial DNA from faecal samples (0.1g) was 

conducted using the MagMax DNA extraction kit (AM1939, A&B Applied Biosystems, 

California, US). A test sample of around 0.05-0.1g of faeces was diluted in 700μL of 

PBS, vortexed and centrifuged (100g for 3 secs). The main characteristic of this kit is 

the use of microspherical paramagnetic beads, which bind to nucleic acid. The beads 

with nucleic acids are captured by magnets, and other contaminants are washed 

away. The procedure delivers very consistent high quality RNA and DNA, as much as 

50μL (AM1939 protocol, A&B Applied Biosystems). 

Extraction products were analysed by quantitative PCR (qPCR) using primers 

(Li-ubi-F 5’GCT CAT ACC GAT TGT GTA ATG CA 3’; Li-ubi-R 5’GAA AAA CAG GCC GTA 

TCC TTG A 3’) and Taq Man probe (Li-ubi-probe 5’FAM-TAG CCA CAT CAA GTG TTC 

CAG CTG CAA G- TAMRA 3’) as described by Nathues et al., (2009). Briefly, PCR 

amplifications were carried out for each sample in 25μL volume. Each reaction 

contained 12.5 pmol of each primer and 5 pmol of the probe using a commercial real-

time PCR reagent (TaqMan® Universal PCR Master Mix). The PCR conditions involved 

a holding step at 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds 

and 60°C for 45 seconds in a 7500 Real-Time PCR thermocycler (Applied Biosystems, 

US). The sensitivity and specificity has been previously reported in this laboratory as 

99% and 97%, respectively (Collins et al., 2011).  



69 
 

Amplification was plotted for each sample to demonstrate the intersection 

between the fluorescence reaction (ΔRn) and the PCR cycle number (Figure 8). Then 

the CT value line was drawn at initial point of the linear phase, for better reliability 

and to accurately estimate bacterial numbers (Nadkarni et al., 2002). The amount of 

amplified product approximately doubles in each cycle. As the reaction proceeds, 

enough amplified product accumulates to yield a detectable fluorescent signal 

(threshold cycle, CT). And to quantify numbers of the unknown sample a range of 

standards with known quantity were added to each run. Quantification standards 

were used by seeding five negative faeces with 106, 105, 104, 103, 102 L. intracellularis 

/ g respectively. And by plotting CT value versus the number of L. intracellularis 

seeded, the unknown samples were then estimated using a regression equation from 

the standard curve. To evaluate the PCR efficiency, the R2 parameter was calculated 

to provide a good confidence value. When R2≤0.98, results were not considered and 

the test repeated. 

 
Figure 8: Graphic representation of real-time PCR standards. ΔRn is the fluorescence signal 

strength plotted against PCR cycle number. The blue line indicates the threshold cycle value 

(CT=0.07032) at the initial point of the linear phase.    

 

3.6.5 Haematoxylin and eosin staining (HE) 

The tissue sections were processed at the veterinary pathology diagnostic 

services laboratory at University of Sydney. Briefly, the formalin fixed tissue was 

embedded in paraffin and sectioned at 4 µm in duplicate. Slides were then dewaxed 

in three steps with 100%, 95% and 75% ethanol and rehydrated with running tap 
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water. Tissue were then stained in Whitlock’s Haematoxylin for 3 minutes, then in 

Scott’s Blueing solution (alkaline solution of Mg2SO4 and NaCO3) for 3 minutes, rinsed 

under running tap water for 2 minutes and rinsed with 70% ethanol. Subsequently, 

the sections were counterstained in alcoholic Eosin Y for 30 seconds, dehydrated 

rapidly through 70%, 95% and 100% ethanol, cleared in xylol and mounted in DPX 

mounting media and cover-slipped (Figure 9). 

 

 
Figure 9: Small intestine HE staining, at 10x magnification with clear overall look at ileum villus 

crypt and goblet cells. 

   

3.6.6 Immunohistochemistry (IHC) 

Formalin-fixed tissues were stained by immunohistochemistry (IHC) with 

VPM53 Lawsonia intracellularis  monoclonal antibody (Boehringer Ingelheim 

Vetmedica, Ames, USA), and using the method described by Jensen et al., (1997). In 

each batch of IHC, a positive and negative control section was included. Initially, 

sections were dewaxed twice in xylene and once in absolute ethanol, following by 

blocking solution containing methanol peroxidase (30% v/v hydrogen peroxidase) 

for 10 minutes to inhibit endogenous peroxidase activity in the cells before being 

washed in reverse osmosis (RO) water. Sections were incubated in pre-warmed 
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trypsin digest (0.2% w/v Trypsin 250, 0.1% w/v calcium chloride dehydrate made up 

to 200mL with milliQ water) for 30 minutes at 37°C. Sections were washed twice in 

RO water, once in PBS, drained and placed in humidity chambers. To inhibit non-

specific binding, 150μL of blocking solution (0.5% w/v bovine serum albumin-BSA, 

1% v/v goat serum made up to volume with PBS) was added to each section and 

incubated at room temperature for 20 minutes. A plastic coverslip was placed over 

the top to ensure contact between the tissue section and the solution. Following 

rinsing of slides in PBS to remove the coverslip and draining, the VPM53 monoclonal 

antibody was diluted in PBS at 1:200. 15μL of antibody was applied to each slide with 

a coverslip and incubated for one hour at 37°C. The coverslip were removed in PBS, 

the slides flooded with PBS, drained and a HRP-labelled secondary antibody (Dako 

Cytomation Envision, Dako, Carpinteria, US) was applied at 150μL per slide with a 

coverslip and re-incubated for one hour at 37°C.  

      Chromagen working solutions were pre-prepared and stored. The 3-amino-

9-ethylcarbazole (AEC) was made into solution by adding 0.04g of AEC powder to 

4mL of N, N-dimethylformamide (DMF) and was stored in a light-proof container at 

room temperature. A 0.05M acetate buffer (5pH) was prepared by adding 0.82 grams 

of anhydrous sodium acetate to 200mL of milliQ water. At the end of the incubation 

period, the chromagen substrate was prepared by adding 150μL of AEC in DMF to 7.5 

mL of acetate buffer. Coverslips were removed in PBS and drained, following by 150 

μL chromagen applied with coverslip. Colour development and stoped after exactly 

12 minutes by washing sections twice in RO water and removing the coverslip. 

Section were stained in Mayer’s Haematoxylin for 3 minutes, washed twice in RO 

water and set to drain. They were mounted with aqueous mounting solution (Dako, 

Carpinteria, US), set to dry and placed in the dark until read (Figure 10).  

The blinded slides were scored by one operator under 10x magnification light 

microscope to estimate the proportion of intestinal crypt hyperplasia (H&E) and 

presence of L. intracellularis -specific antigen (IHC) within crypts. A total of fifteen 

fields was analysed for each section. 
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Figure 10: Immunochemistry staining (40x magnification) with positive areas of L. intracellularis 

antigen presence (brown) in ileal crypts. 

 

3.7  Statistical analysis 

Statistical analysis was performed in GenStat 13th ed. (2010). Raw data were 

initially screened with graphical observations and data summaries to locate overall 

tendencies, outliers and sample distribution using Microsoft Office Excel 2007-2010. 

Treatment differences were analysed by restricted maximum likelihood test (REML) 

and testing residuals for normality distribution. The REML test (linear mixed model) 

was chosen for its ability to analyse a wide range of data that involve more than one 

source of error variation and unbalance designs (Steel, 1997). Variables that did not 

fitted to the residual normality were log transformed to fulfil linearity assumptions. 

Pens, pigs ID and room were included as random effects when required. Unpaired 

variables were tested using Mann-Whitney U (Wilconox rank-sum) test correlations 

within groups at a 95% confident level (p<0.05). Qualitative data were categorised 

into binary data and then analysed using Generalized Mix Models (GLMM) for 

repetitive measures and two-sample binomial test for single measure (GenStat).   
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 Chapter 4 Systemic and mucosal immune responses 

following vaccination and challenge with Lawsonia 

intracellularis  

(Modified from: Nogueira MG, Collins AM, Donahoo M, Emery, D; (2013). Immunological 

responses to vaccination following experimental Lawsonia intracellularis virulent 

challenge. Veterinary Microbiology, 164:131-138.) 
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4.1 Introduction 

The Gram-negative intracellular bacterium Lawsonia intracellularis causes 

proliferative enteropathy (PE), characterized by diarrhoea and poor performance in 

growing pigs and severe haemorrhagic diarrhoea in finisher and breeding animals 

(Lawson and Gebhart, 2000). The most consistent macroscopic pathology of PE is 

thickening of the intestinal mucosa which is associated histologically with 

proliferation of immature enterocytes (Lawson and Gebhart, 2000). The clinical signs 

and lesions can be controlled using a commercial oral live attenuated vaccine 

(Enterisol®Ileitis, Boehringer Ingelheim) (Kroll et al., 2004; McOrist and Smits, 2007). 

This vaccine contains an attenuated L. intracellularis isolate (B3903; 104.9 
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TCID50/dose) originally isolated from the ileum of a Danish pig with acute 

proliferative haemorrhagic enteropathy (PHE) (Kroll et al., 2004). Protective 

immunity against re-infection is also apparent in recovered pigs (Collins and Love, 

2007; Riber et al., 2011b; Cordes et al., 2012).  

A conventional immunological approach to induce mucosal immunity against 

gut pathogens has involved oral vaccination or intraperitoneal inoculation (Muir et 

al., 1998). However, where antibody provides mucosal protection, high 

concentrations of serum IgG engendered by systemic vaccination have been effective 

against some intracellular bacteria. For example, Salmonella enterica serovar 

Typhimurium  bacterin administrated intramuscularly (IM) reduced lesions and 

shedding in naturally-infected pigs (Farzan and Friendship, 2010). Similarly, an 

intramuscular L. intracellularis  killed bacterin induced significant protection to PE 

after virulent challenge (Dale et al., 1997), and in a patent description, protection was 

induced after immunisation IM with killed L. intracellularis   (Jacobs et al., 2011).  

To identify immune responses which might indicate the successful induction of 

protective immunity following vaccination with Enterisol® Ileitis, this study 

measured local mucosal and systemic immune responses in the first 3 weeks after 

immunisation. Since local mucosal responses were marginal following a conventional 

single dose vaccination in a preliminary trial 1 (published in the paper Nogueira et al., 

2013,  but not in this thesis), pigs in trial 2 were vaccinated orally with a ten times 

dose (10x) of Enterisol®Ileitis. Local mucosal and systemic antibody and selected 

cytokine responses were measured and compared with those from piglets given the 

same dose of vaccine IM. To determine whether these responses could foreshadow 

protection, the remaining vaccinated cohorts were challenged and immunity was 

assessed by serological assays, reduction of clinical signs and intestinal lesions and 

the duration and magnitude of bacterial shedding in faeces.  
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4.2 Materials and Methods 

4.2.1 Animal Ethics 

All animal experiments were performed according to the Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes, and approved by the 

University of Sydney and Elizabeth Macarthur Agricultural Institute Animal Ethics 

Committees (M09/10). 

4.2.2 Experimental design 

For trials 1 and 2, a total of 40 and 62 Landrace x Large White pigs, respectively, 

aged 3-4 weeks, were purchased from a commercial herd clinically and serologically 

negative for L. intracellularis. Piglets were transferred to a controlled environment 

research facility, with access to water and fed on weaner/grower diet (DE: 

15.3MJ/kg; CP: 20%; Fibre: 2.5%; Vella Stock Feeds, Australia) with no medication. 

Pigs were weighed (6.0±0.5kg) and randomly allocated into respective treatment 

groups (Table 3; trial 2) housed in separate pens under strict quarantine conditions. 

Pigs were monitored daily for body condition, clinical signs and abnormal behaviour.  

4.2.3 Lawsonia vaccination 

Prior to vaccination (d0) at 5 weeks of age, pigs were bled by jugular 

venipuncture and faeces were collected from individual pigs to confirm the absence 

of L. intracellularis or the presence of maternal antibodies that might interfere with 

vaccination. The lyophilised vaccine (Enterisol®Ileitis, Boehringer Ingelheim Pty Ltd., 

SA-122A-323) was reconstituted according to the manufacturer’s instructions to 

either standard (1x) dose (104.9TCID50) or ten times (105.9TCID50) concentrations. 

Pigs received the appropriate vaccine dose orally in 2.0mL diluent by drenching gun 

or by intramuscular inoculation (IM) in the right deltoid muscle (cervical area). 

Negative and positive control pigs were not vaccinated.  
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Table 3- Experiment design and groups in trial 2*. 

Experiment Group Li dose Route Li challenge 
N° 

pigs 

2a 

10xOral 105.9 TCID50 Oral No 6 

10xIM 105.9 TCID50 IM No 6 

Control - - No 4 

2b 

PC - - Yes 10 

1xOR 104.9 TCID50 Oral Yes 10 

1x IM 104.9 TCID50 IM Yes 10 

10xOR 105.9 TCID50 Oral Yes 10 

NC - - No 6 

   *Li: Lawsonia intracellularis; IM: intramuscular; PC: Positive control; NC: Negative control. 

 

4.2.4 Ten times vaccination trial with challenge infection 

4.2.4.1 Experiment 2a: Analysis of immune responses after vaccination 

Fifteen pigs aged 4 weeks were randomly assigned into three treatment groups: 

six pigs in each of groups 1 and 2 were orally vaccinated and IM vaccinated, 

respectively, with 10x dose of Enterisol®Ileitis vaccine and three pigs in group 3 were 

not vaccinated. Sera were obtained from each pig by venipuncture of the jugular vein 

before vaccination and necropsy. Seven pigs were randomly selected (3 from groups 

1 and 2, and one from group 3) and euthanized on d9 post vaccination, and the 

remainder on d17. At necropsy, the left and right pre-scapular lymph nodes were 

weighed and blood taken from the jugular vein. Ileal and jejunal tissue was sampled 

at 10cm and 1m from the proximal ileo-caecal valve (ICV), respectively, together with 

adjacent mesenteric lymph nodes (MLN). Each tissue and MLN sample (ca 2x2mm) 

was stored in 10% neutral-buffered formalin fixative until analysis.  In the adjacent 

segment, the intestinal mucosal secretions were collected by gently scraping the ileal 

mucosa with a sterile scalpel and placed into 2ml phosphate-buffered saline (PBS, pH 

7.2) containing 0.2M EDTA on ice. The scrapings were each stored at -20°C. Prior to 

assay, mucosal scraping samples were thawed and adjusted to a protein level of 

25mg of protein ml-1.  

4.2.4.2 Experiment 2b: Immune responses after challenge infection 

Forty-six pigs were randomly allocated into 5 treatment groups. Groups 1-3 (10 

pigs each) were vaccinated with 1x oral (1xOR- group1), 1x IM (1xIM- group 2), 10x 

oral (10xOR- group3), respectively, while 10 positive control pigs (PC- group 4) 

remained unvaccinated. The vaccination procedures were the same as described for 
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experiment 2a. Six pigs were kept unvaccinated and unchallenged as negative 

controls (NC- group 5). Four weeks after vaccination, each pig in groups 1-4 was 

dosed orally with L. intracellularis infected intestinal mucosa inoculum prepared and 

quantified as described elsewhere (Collins et al., 1996; Collins and Love, 2007). 

Briefly, pigs were fasted overnight, sedated with 0.2mg/kg of azaperone (Stresnil®, 

Fivet, Australia) and intubated with an oro-gastric tube to enable administration of 

25mL of the bacterial suspension containing around 109 L. intracellularis. Pigs were 

euthanized at a local abattoir 21 days post infection (21pi) where the gut was 

collected for analysis.  

Pig live weights were recorded before vaccination, at challenge and at necropsy 

to determine the average daily live weight gain. Sera were collected from each pig on 

days 0pi, 7pi, 14pi and 21pi while faecal samples from individual animals were 

collected on days 0pi, 7pi, 10pi, 14pi, 17pi and 21pi for a quantitative L. intracellularis 

PCR (qPCR). At necropsy, ileal samples were collected as for experiment 2a and 

preserved in 10% buffered formalin prior to staining with H&E and 

immunohistochemistry (IHC). Following histopathological analysis, 24 pigs were 

selected from all groups according to the percentage affected area and Lawsonia 

intracellularis shedding numbers. There were four negative controls, ten severely 

affected and ten infected but without lesions, and also their sera from days 0pi and 

21pi were tested for cytokines using porcine Quantikine® assay kits (Chapter 3).  

4.2.5 Antibodies and cytokines analysis  

Sera and mucosal scrapings were assayed in duplicate for the detection of L. 

intracellularis -specific IgM, IgG, IgA  and concentrations of the cytokines, interferon-

gamma (IFN-γ), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-

alpha (TNF-α) and transforming growth factor-beta1 (TGF-β1). L. intracellularis-

specific antibody was determined using a commercial competitive (blocking) ELISA 

kit (Bioscreen®Ileitis, GmbH, Münster, Germany) at a positive- negative cut-off of 

30% inhibition as recommended by the manufacturers. In addition, L. intracellularis-

specific IgM, IgG and IgA titres were assayed using an experimental modified direct 

ELISA developed for this project (Donahoo, 2009). The quantity of each of the 

cytokines IFN-γ, IL-6, IL-10, TNF-α and TGF-β1 in mucosal scrapings or serum was 

analysed using commercial sandwich ELISA kits (porcine Quantikine® ELISA, R&D 



78 
 

systems, Minneapolis, USA) according to the manufacturer’s directions (Chapter 3). 

The minimum limits of detection were 2.7 pg/mL for IFN-γ, 10 pg/mL for IL-6, 1.8 

pg/mL for IL-10, 2.8 pg/mL for TNF-α and 19.5pg/mL for TGF-β1. Concentrations 

were estimated by generating a logistic parameter curve using GraphPad®Prism 

software (v.4.02, 2004). 

4.2.6 Correlation of serum cytokines with PE disease severity   

The 20 infected pigs were selected from challenged groups according to the 

percentage affected area on IHC staining and L. intracellularis shedding in faeces 

(from subclinical to severe infection, Table 4). Cytokine concentrations were 

correlated with average weight gain, ileal lesions and quantities of Lawsonia 

intracellularis shed on days 14pi, 17pi and 21pi. 

Table 4- Groups selected for serum cytokine analysis and results correlated to respective 
percentage affected area of PE lesions(IHC and HE) and numbers of L. intracellularis shedding (Li 
g/faeces) on day 21 pi. 

Groups IHC and HE 
Li shedding 
(g/ faeces) 

No. samples 

Severe infection >10% 104-106 10 

Subclinical  infection 0-5% 102-104 10 

Negative controls 0% 0 4 

 *IHC: Immunohistochemistry expressed as percentage affected area; HE: Haematoxylin and eosin;  
 

4.2.7  L. intracellularis real-time PCR 

Extraction and purification of bacterial DNA from individual faecal samples 

(0.1g) were made using the MagMax DNA extraction kit (A&B Applied Biosystems, 

California, USA) (Chapter 3). Extraction products were analysed by real time PCR 

(7500 Real-Time PCR System; Applied Biosystems) using primers and Taq Man probe 

as described by Nathues et al., (2009). The sensitivity and specificity of the test in our 

laboratory have been reported by Collins et al. (2011) as 99% and 97%, respectively .  

4.2.8  Histological lesion scores in intestinal tissue 

Formalin-fixed tissues were stained with haematoxylin and eosin (H&E) (Luna, 

1968) and by immunohistochemistry (IHC) with VPM53 L. intracellularis  monoclonal 

antibody (Boehringer Ingelheim Vetmedica, Ames, USA) using the method described 

by Jensen et al., (1997). The blinded slides were scored by one operator under 10x 

magnification light microscope to estimate the proportion of intestinal crypt 
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hyperplasia (H&E) and presence of L. intracellularis -specific antigen (IHC) within 

crypts. A total of fifteen fields was analysed for each section.  

4.2.9  Skin testing for delayed type-hypersensitivity 

Delayed type hypersensitivity reactions were examined in individual pigs 20 

days after vaccination by intradermal (ID) injections of 0.2mL of sterile phosphate 

buffer saline (PBS, pH 7.2) (control) or around 105 L. intracellularis  in 0.2ml of 10x 

Enterisol® Ileitis in two areas between nipples. The sites were examined at 24h and 

48h and reactions were recorded as the diameter of erythema at the injection sites 

(Figure 11). 
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Figure 11: Delayed type hypersensitivity reaction test with intradermal injections of sterile 

phosphate buffer saline (control) or L. intracellularis vaccine. 

 

4.2.10 Statistical analysis  

Statistical differences were analysed among treatment groups and days post-

vaccination and challenge using Restricted Maximum Likelihood (REML, GenStat 

Release 13th Ed., Oxford, UK) at a 95% confidence level (P<0.05). Individual pigs were 

included as random effects in every analysis. Correlations between two unpaired 

variables were analysed using the Mann Whitney U test. 

4.3 Results 

4.3.1 Experiment 2a: Immune response to a ten times oral or 

intramuscular immunisation 

Prior to vaccination, all pigs were PCR negative and seronegative for L. 

intracellularis and did not exhibit diarrhoea or clinical signs of PE after vaccination. 

Pigs gradually increased weights between days 0 and 17 post-vaccination, however, 

without differences between treatments groups (Figure 12).  There was no evidence 

of gross or histopathological lesions of PE in ileal sections at necropsy (Figure 17). No 

significant differences between weights from left and right pre-scapular lymph nodes 

(P>0.05) and delayed type hypersensitivity reaction were minimal between animals 

at 20 days after vaccination (Table 5). 
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Figure 12: Predicted means for weight at each time point post-vaccination (days). (■) Negative 

Control (NC, blue), (■) ten-times oral (10xOR, red) and (■) ten-times intramuscular (10xIM, 

green). 

 

Table 5- Mean weights from the left and right pre-scapular lymph nodes (PLN, grams) and 
delayed type hypersensitivity (DTH) reactions measurements after L. intracellularis (Li) 
vaccination. 

Treatment 
Left PLN 
(grams) 

Right PLN 
(grams) 

DTH control PBS 
(mm) 

DTH Li vaccine 
(mm) 

10xOR 1.39 1.33 - <0.5 
10xIM 1.70 1.91 - <0.5 

NC 1.51 1.12 - - 

Increased concentrations of serum L. intracellularis IgG (direct) were detected 

in the orally and IM vaccinated pigs compared with the control group 3 between d9 

and d17 (P<0.001, Figure 13b). The serum IgG titres reached 85 (direct) and 24% 

inhibition (Bioscreen®) at day 17, and while similar values were detected in both 

vaccinated groups, they were significantly higher than control animals (33 and 7% 

inhibition, respectively in the two assays) (Figure 13). The orally vaccinated group 

produced serum IgM titres of 148 that was significantly higher (P=0.03) than those 

expressed by pigs in the IM and control groups (62 and 55, respectively, Figure 14). L. 

intracellularis -specific IgA titres in sera and in mucosal secretions from all pigs were 

not different and all data titres less than 4 using the modified ELISA test.  

In mucosal scrapings, higher titres of anti - L. intracellularis IgM on day 9 (270) 

were found in ileal scrapings from pigs vaccinated orally (P<0.001) and IgG on day 17 

(14%) for both oral and IM vaccinated animals (58 and 70, respectively) compared to 

control group (Figure 16a). Serum cytokines exhibited a large variation within 

animals from the same treatment group and no significant differences (P>0.05) 

between treatments were apparent (Figure 15).  In contrast, the concentrations of all 

five cytokines (IFN-γ, IL-6, IL-10, TNF-α, TGF-β1) in mucosal secretions from oral 

vaccinates significantly increased between days 9 and 17 over values in control and 
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IM vaccinates (Figure 16). The quantity of TNF-α and TGF-β1 in mucosal scrapings 

from oral vaccinates was significantly higher (P<0.05) than the concentrations found 

in IM and control pigs on day 17.  

a) Bioscreen®  b) direct 

  

Figure 13: Humoral immune response to L. intracellularis Bioscreen ELISA (a), Direct ELISA for 

IgG (b). Lines correspond to the mean percentage of inhibition (PI) for (a) and mean titre for (b) 

for each treatment: (▲) Negative control (green, n=4); (●) 10xOral (red, n=5); (■) 10xIM (Blue, 

n=6). * Superscript next to lines identifies significant difference between treatment and control 

groups (P<0.05). 

a) IgA b) IgM 

  

Figure 14: Humoral immune response to L. intracellularis IgA (a) and IgM (b). (▲) Negative 

control (green, n=4); (●) 10xOral (red, n=5); (■) 10xIM (Blue, n=6). * Superscript next to lines 

identifies significant difference between treatment and control groups (P<0.05). 
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Figure 15: The concentration of circulating (serum) cytokines (pg/mL) on days 0, 9 and 17 after L. 

intracellularis vaccination within treatments: Negative control (green, n=4); 10xOral (red, n=5); 

10xIM (blue, n=6). 
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a 

  

  

  

b 

  
Figure 16: Mean concentrations  for cytokines (pg/ml) and IgG (PI value) and IgM (Titre), L. 
intracellularis specific antibodies in (a) mucosal scrapings on days 9 (dark) and 17 (clear) and 
(b) in serum on days 0 (dark), 9  (shade) and 17 (clear) after ten-times oral (10xOral), 
intramuscular (10xIM) vaccination and unvaccinated (NC). Columns with a star on the top 
indicate statistical difference (P<0.05). 
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Figure 17: Ileum section of a pig (#B53), in HE staining, after 9 days orally vaccinated (10xOR) 

with L. intracellularis. 

 

4.3.2 Experiment 2b: Protective immunity to Proliferative Enteropathy 

All 40 pigs appeared clinically normal after challenge and there were no 

significant differences in average weight gain between groups over the 3 weeks 

following vaccination or challenge and over the entire 6 weeks of the trial (Table 6). 

Similar kinetics for the significant increases (P<0.001) in serum L. intracellularis IgG 

and IgA titres were observed in challenged animals (groups 1-4) compared to 

negative control animals in group 5 (Figure 18). There were no significant differences 

(P>0.05) in antibody titres between challenged groups. At day 21pi, all infected pigs 

were serologically positive for L. intracellularis -antibodies, with a mean P.I. of 48%.  
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Table 6- Average weight gains (kg) and approximate (±) standard errors (SE) of pigs between 

periods pre-challenge, post-challenge and total period of trial (d0: vaccination; d21: L. 

intracellularis challenge; d42: necropsy). 

Treatment 
Pre-challenge 

(d0-d21) 

Post-challenge 

(d21- d42) 

Total period 

(d0-d42) 

Positive Control 6.67 ± 0.52  9.44 ± 0.72  16.12 ± 0.91  

1xOR 6.09 ± 0.50  9.90 ± 0.68  16.00 ± 0.86  

1xIM 6.28 ± 0.50  8.82 ± 0.68  15.10 ± 0.86  

10xOR 6.76 ± 0.50  10.85 ± 0.68 17.61 ± 0.86  

Negative Control 6.40 ± 0.50  8.64 ± 0.70  15.04 ± 0.86  

P (<0.05) 0.877 0.206 0.272 

 
 
 

  

Figure 18: Predicted means for serum L. intracellularis-IgG (percentage inhibition, PI; left) and 

IgA titres (right) on days 0, 7, 14 and 21 in each group after L. intracellularis virulent challenge 

between groups ten-times oral (10xOR), one-time oral (1xOR) and intramuscular (1xIM), negative 

control (NC) and positive control (PC). 

There was a range of pathology noted at necropsy (Figure 20) and determined 

by subsequent histological (Figures 21 and 22) and immunohistological analyses 

(Figures 23 and 24). Assessments of protection based on estimations of the numbers 

of L. intracellularis shed in faeces and the % affected area in ileal sections revealed 

that the vaccination significantly (P<0.001) reduced L. intracellularis shedding when 

compared to positive control group. Pigs given the 10x oral vaccine were significantly 

(P<0.05) more protected than the other 2 vaccinated groups (Figure 19 and 25). 
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Figure 19: Estimation of Lawsonia intracellularis per gram of faeces at each time point post-

infection for each group (♦, blue) Positive Control (PC); (■, red) 1x Oral; (▲, green) 1xIM, and (X, 

purple) 10xOral. On the same sampling values without common superscripts (a-c) are 

significantly different (P<0.05). 

 
 

 

Figure 20: Small intestine section from a positive control pig (#Y67), unvaccinated, with 

characteristic proliferation 21 days after Lawsonia intracellularis challenge (arrow). 
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Figure 21: Ileal section from a pig (#G99) from group 1xIM presenting extensive crypt enterocytes 

proliferation and loss of goblet cells, 21 days after Lawsonia intracellularis challenge (circle).  

 
 

 
Figure 22: Proliferation of enterocytes in ileal crypt with loss of goblet cells and presence of 

exudate in the lumen (40 x mags) from pig (#O75) orally vaccinated (1xOR) and challenged 

(arrow).   
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Figure 23: Lawsonia intracellularis antigen staining (brown, 20x mag.) in ileal section by 

immunohistochemistry from pig (#Y77), unvaccinated, from positive control group 21 days after 

challenge. 

 

 

Figure 24: Ileal section in 40 times magnification from pig (#Y77), unvaccinated and challenged 

(positive control) with Lawsonia intracellularis antigen staining in the apical area of enterocytes 

(brown). 
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Figure 25: Mean percentage affected area (+ SD) in the ileum for each group as determined by 

haematoxylin and eosin (shaded) and immunohistochemistry (clear) staining. a-c different letters 

differ significantly (P<0.05). 

 

4.3.3 Correlations between disease severity and serum cytokines 

The serum cytokine concentrations for IFN-γ, IL-6, IL-10 and TNF-α were 

variable and while there was a significant (P<0.05) increase in the level of each 

cytokine between days 0 and 21 post challenge in each of the 24 pigs tested, there 

was no correlation between cytokine concentrations and disease severity (P>0.05; 

Table 7). 
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Table 7- Serum cytokines concentrations (pg/mL) in individual pigs from groups (G) PE severe infection (S), 
sub-clinical infection (SB) and negative controls (NC) and the correlations between group*lesions*cytokines, 
group*Li-shedding-in-faeces*cytokines, group*ADG*cytokine. 

G ID 
Lesions ADG 

Li 
 

IFN-γ 
pg/mL 

IL-6 
pg/mL 

IL-10 
pg/mL 

TNF-α 
pg/mL 

  HE
% 

IHC
% 

kg g/f 0pi 21pi 0pi 21pi 0pi 21pi 0pi 21pi 

S G99 35 10 22.2 105-6 49.9 12.5 9.4 7.2 < 44.5 44.6 87.9 

S O81 31 15 16.0 105-6 9.1 70.9 16.6 50.9 < 50.4 < 149.1 

S G64 27 10 14.8 105 18.1 27.5 11.5 58.4 9.5 10.2 68.8 112.4 

S Y63 27 9 15.6 105 < 29.6 < 98.4 57.5 119.5 47.3 326.9 

S Y68 24 2 17.7 104-5 33.3 51.8 8.3 8.8 < 30.0 51.9 92.3 

S Y77 23 9 17.3 104-6 14.3 60.6 36.2 77.0 22.9 77.9 89.3 196.5 

S Y70 20 2 18.4 105 27.5 23.7 12.6 21.4 11.7 15.3 83.6 92.8 

S O54 19 7 18.4 104 126 133.9 12.1 60.1 < 16.9 18.0 60.8 

S B81 14 0 22.8 105 31.2 46.3 9.4 19.1 8.7 21.1 21.9 55.2 

S O100 11 1 14.5 106 29.3 3.2 3.6 58.4 < 79.0 28.4 109.9 

S G100 10 5 17.2 106 87.6 1.4 9.4 14.8 23.1 89.2 52.9 111.4 

Mean 
SEM 

22 6 18.0 105 43 42 13 43 22 50 51 127 

5.8 5 0.8  22.5 38.9 16.7 15.9 8.6 89.6 26.8 42.6 

SB Y83 5 0 17.4 104 < < 43.4 20.8 47.6 54.48 28.4 58.9 

SB Y65 2 0 9.7 105 5.1 29.6 7.2 75.4 < 17.56 48.7 363.2 

SB Y71 3 0 17.1 105 23.7 1.4 11.0 9.9 < < 18.0 62.6 

SB O77 0 0 14.2 105 31.2 46.3 9.9 9.4 23.8 38.5 21.0 206.2 

SB G98 0 0 9.5 104 < < 8.8 9.4 < 79.2 33.3 90.8 

SB Y73 2 0 17.5 104 27.5 12.5 90.8 4.1 45.3 78.4 38.7 96.7 

SB G53 0 0 15.7 103 3.2 31.2 10.4 11.5 < < 30.7 157.7 

SB O43 0 0 15.5 104 1.4 < 14.8 37.1 < 56.4 40.0 69.7 

SB B98 0 0 17.9 102 12.5 20.1 16.4 74.2 < 44.4 84.6 71.6 

SB O73 0 0 17.5 103 35.1 20.1 13.1 21.9 85 97.1 33.3 118.5 

Mean 
SEM 

1 0 15.0 104 17 23 23 27 50 58 38 130 

0.2 0 0.5  11.9 19.7 26.7 20.0 30.5 32.8 29.6 52.9 

NC B60 0 0 14.0 0 < 128.4 12.1 136.4 35.2 36.9 141 139.2 

NC B71 0 0 16.1 0 18.1 89.5 14.2 16.4 < < 46.9 115.0 

NC O88 0 0 11.3 0 23.7 133.4 24.7 45.1 < 47.2 37.3 84.6 

NC W81 0 0 19.6 0 < 27.5 13.1 5.7 < 52.1 60.8 101.1 

Mean 
SEM 

P (<0.05) 

0 0 15.0 0 21 95 16 51 35 45 72 110 

0 0 0.6 0 12.6 92.6 9.8 57.8 28.1 42.5 94.5 16.9 

<0.05 NS <0.05 NS NS NS NS NS NS NS NS 

G* lesions 
G*Li 

G*ADG 

NS NS NS NS NS NS NS NS 

NS NS NS NS NS NS NS NS 

NS NS NS NS NS NS NS NS 

NS: Not significant; Li: L. intracellularis; ADG: average daily weight gain; IHC: immunohistochemistry; 
HE: Haematoxylin and eosin;   
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4.4 Discussion 

This study monitored and detected dose-dependent increases in mucosal and 

serum IgM, IgG, IgA and cytokines following vaccination with Enterisol® Ileitis and 

subsequent challenge. Dose-dependent induction of protection against virulent L. 

intracellularis challenge was demonstrated by significant reduction in PE lesion 

scores and the magnitude and duration of bacterial shedding in faeces in all 

vaccinated pigs. As anticipated, oral vaccination induced local mucosal immunity with 

increased IgG and cytokine responses and tended to generate more comprehensive 

protection than IM vaccination.  

The analysis of protective immune responses to L. intracellularis is an area of 

considerable interest for the control of PE. Initial studies on the development of 

humoral and cell-mediated immunity (involving analysis of IFN-γ responses) have 

described similar kinetics to those found in the current study. Dose-dependency of 

humoral responses is well documented. Following vaccination with 104.9 TCID50 L. 

intracellularis, serum antibody responses were either undetectable (Kroll et al., 2004) 

or restricted to modest concentrations of L. intracellularis -specific IgG in ileal 

scrapings. Higher doses (105.9 TCID50 in this study) of vaccine or primary infection 

with 105-1010 L. intracellularis induced detectable concentrations of L. intracellularis -

specific IgG within 14 days after inoculation (Collins and Love, 2007; Riber et al., 

2011b). Consistent with previous analyses (Guedes and Gebhart, 2010; Jacobs et al., 

2011), mucosal IgA responses were of lesser magnitude and while the highest serum 

titres were generated by challenge control pigs (group 4), IgA titres were not boosted 

substantially by challenge of immunised animals. This could be dose related, as IgA 

accumulations have been demonstrated previously, by IHC, in apical cytoplasm of 

proliferating enterocytes from pigs with clinical cases of PIA and PHE (Lawson et al., 

1979; McOrist et al., 1992). The timing and duration of humoral responses is also well 

studied and relatively consistent. In the current study, a 10x dose oral vaccination 

elicited increased concentrations of IgM, IgG in ileal mucosal scrapings and elevated 

concentrations of IgM and IgG in serum. The systemic and local IgM immune 

response after 9 days post vaccination precedes IgG (Lawson et al., 1988) and has 

similar kinetics to increases in serum haptoglobin and C-reactive protein following 

primary infection with L. intracellularis  (Riber et al., 2011b). The induction of IgA 

was not detected in this study after vaccination with 105.9 TCID50 L. intracellularis, but 
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was apparent in serum from all pigs by 14 days after challenge with 109 L. 

intracellularis. The results agree with the detection of ileal IgA (McOrist et al., 1992) 

and L. intracellularis -specific IgA in intestinal lavage by 21 days after L. intracellularis  

infection (Guedes and Gebhart, 2010).  

In assessing the development and role of cell-mediated immunity in L. 

intracellularis  immunity, immediate and delayed skin reactions to intradermal L. 

intracellularis  antigen  were not detected in immunised pigs in this and previous 

reports (Guedes and Gebhart, 2003b, 2010). However, in contrast to a 1x dose or 

following IM vaccination, the local intestinal response induced by the 10x oral 

vaccine activated the production of each of the five cytokines assayed in ileal 

scrapings (IFN-γ, IL-6, IL-10, TNF-α and TGF-β1) with significant concentrations of 

TNF-α and TGF-β1 detectable by day 17 after vaccination. In mice, IFN- γ receptor 

knock-out animals (IFN- γ R-) had failed to resolve L. intracellularis infection after 35 

days whereas normal 129 mice were clear after 21days (Smith et al., 2000). This 

indicated a role for IFN-γ in immunity but while elevated, individual variations in the 

concentrations of IFN-γ found in immunised pigs in this trial precluded significant 

differences compared to control animals. Given the intracellular pathogenesis of L. 

intracellularis infection, subsequent studies have concentrated on the role of IFN-γ as 

evidence of cellular immunity and protection against re-infection (Guedes and 

Gebhart, 2010; Cordes et al., 2012). In pigs, the generation of antigen-sensitised 

(CD4+ and CD8+) lymphocytes was evident from the production of L. Intracellularis 

specific IFN-γ in peripheral blood mononuclear cells (PBMC) in 12-13 week-old pigs, 

within 14 days after infection. But was delayed in appearance in 5-6 week-old 

animals (Guedes and Gebhart, 2010; Cordes et al., 2012). It was noted that the pigs in 

the current trial were 5 weeks old when vaccinated and produced elevated cytokine 

responses within 17 days.  The differences in age-related responses could be 

explained by a number of factors including breed and nutrition, but may also reflect 

the time after vaccination (14 vs. 17 days). L. intracellularis specific IFN-γ producing 

cells were also detected by ELISPOT, in porcine PBMC, 4 to 13 weeks post vaccination 

(Guedes and Gebhart, 2003b) and after 15 days in horses vaccinated rectally with 106 

attenuated L. intracellularis (Pusterla et al., 2009). Three weeks after infection with 

5x 109 L. intracellularis , Riber et al., (2011a) detected increased amounts of IFN-γ in 
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the supernatant fluid after incubation of whole porcine blood with Lawsonia antigen 

and the inflammatory cytokine, IL-18. In contrast, limited microarray studies of pigs 

with varying concentrations of intestinal pathology did not reveal substantial 

activation of cytokine genes (Jacobson et al., 2011a). While the synthesis of the three 

“inflammatory” cytokines (IFN-γ from NK cells, IL-6, and TNF-α) would result from 

local infection and serve to activate the acquired immune system, including IFN-γ-

producing T-cells and IgG production. The quantities of IL-10 and TGF-β1 protein 

were also increased in the ileal scrapings.  This may indicate induction of local 

immunoregulation through T-reg cells (Chen et al., 2007; Bailey, 2009), and local 

restoration, given the role of TGF-β1 in wound healing in pigs (Quaglino et al., 1991). 

Increased concentrations of IL-10 and TGF-β1 are also consistent with detection of 

insulin-like growth factor binding protein 3 (IGFBP-3) during the immune priming 

following oral infection or vaccination with L. intracellularis (Jacobson et al., 2011a).  

To induce protective immune responses at mucosal surfaces, oral vaccination 

with live attenuated or killed/ subunit vaccines is the preferred protocol to block 

pathogen attachment or to neutralize local virulence factors by specific IgA or IgG 

antibody (Mestecky and McGhee, 1987; Husband et al., 1996). Attenuated live 

vaccines are used to generate protective immunity against intracellular pathogens. 

For L. intracellularis, oral administration has been effective, but rectal administration 

of 106.3 TCID50 L. intracellularis generated L. intracellularis specific IgG detectable 

responses in horses (Pusterla et al., 2009) and intraperitoneal (IP) vaccination 

against Salmonella Typhimurium has effectively immunised livestock (Muir et al., 

1998). When the quantitative and qualitative aspect of L. intracellularis challenge was 

determined by real-time PCR in faeces, the ten times oral vaccination (105.9 TCID50) 

elicited the greatest protection but the 1x intramuscular and 1x oral vaccines were 

also efficacious. Since L. Intracellularis enters and multiplies in immature (crypt) 

enterocytes (Lawson and Gebhart, 2000), the 1x IM protocol suggests that serum 

antibody can significantly reduce the number of L. Intracellularis available in the 

gastrointestinal tract prior to cellular entry. Results with inactivated or subcellular L. 

intracellularis vaccines would support this mechanism. Dale et al (1997) reported 

that faecal L. intracellularis  counts were reduced by 98.5% in four pigs vaccinated 

twice intramuscularly (IM), 3 weeks apart, with killed L. intracellularis in incomplete 
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Freunds adjuvant. Additional pigs inoculated with recombinant GroEL-like protein 

exhibited reduced faecal bacteria counts compared to infected controls (Dale et al., 

1997). In their patent, Jacobs et al., (2011) also reported the induction of significant 

protection against L. intracellularis challenge after two IM inocula were given 4 

weeks apart, of 2.8 x 108 killed L. intracellularis  in oil adjuvant. These researchers 

reported significant reductions in L. intracellularis shedding after initial IM 

vaccination of pigs with 50µg each of recombinant 19/21 and 37kDa outer 

membrane proteins (OMPs) or putative LPS in adjuvant. Dose dependent protection 

was achieved with vaccines containing killed organisms  where 5 x 107  L. 

intracellularis  elicited protection and 1.25 x 107  L. intracellularis  was ineffective 

(Jacobs et al., 2011). These results and the fact that IM administration of Enterisol® 

would be expected to kill the live L. intracellularis rapidly after inoculation, indicate 

that with sufficient antigenic stimulus, antibodies against L. intracellularis cells and 

components can protect against infection. Given the elevated serological titres at 

challenge, this presumably occurs by preventing intracellular entry. That significant 

mucosal protection can be induced by relatively small doses of live oral L. 

intracellularis without substantial serological titres (Kroll et al., 2004) would indicate 

both a dose-dependent and site-specific response.  

In the search for readily accessible biomarkers for immunity to L. Intracellularis, 

antibody responses have not been informative (Kroll et al., 2004; Cordes et al., 2012), 

with IgA responses low and ephemeral (Cordes et al., 2012). Skin tests are also 

unreliable (Guedes and Gebhart, 2010), as was found in this trial. In addition, the 

measurement of cytokine concentrations in body fluids such as serum and mucosal 

secretions is costly and is complicated by the dynamic responses to L. intracellularis 

in individual pigs where the variations between individuals are often greater than the 

responses within the treatment groups (Jacobson et al., 2011a; Cordes et al., 2012). 

Unlike cases where clinical signs have been correlated with serum IFN-γ, IL-6 and 

TNF- α in pigs experimentally infected with B. hyodysenteriae (Kruse et al., 2008), 

pigs with clinical signs of diarrhoea after natural infection with L. intracellularis  

showed high variability of TNF-α and TGF-β1 concentrations in sera and poor 

cytokine expression in intestinal tissues (Jacobson et al., 2011a). In contrast, this 

study documented increased TNF-α and TGF-β1 in mucosal secretions in pigs from 
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the 10x orally vaccinated group while individual variations in IFN-γ, IL-6 and IL-10 

precluded significant results. However, in this trial, an attempt was made to define an 

immune correlate between vaccination and protection. A sequential serological 

analysis of antibody and TNF-α in 24 pigs with varying concentrations of immunity as 

assessed by bacterial excretion and ileal histopathology did not reveal any significant 

associations. The results concurred with previous reports (Jacobson et al., 2011a; 

Cordes et al., 2012).  These contrasting findings highlight the difficulties associated 

with finding suitable systemic biomarkers which illuminate the immune status of 

mucosal tissues.  

In conclusion, this study was able to demonstrate the dose-dependent 

correlation to increased local and systemic IgG and IgM responses after vaccination 

and protection by reducing lesions and L. intracellularis shedding. Although 

protective immunity was also elicited when Enterisol®Ileitis was administrated IM, 

suggesting antibody-mediated neutralisation, the precise mechanisms and immune 

correlates underscoring the more comprehensive protection following oral 

vaccination are still not completely resolved.   
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 Chapter 5 The effect of route of vaccination with 

Lawsonia intracellularis on immune responses in weaner 

pigs 

(Modified from: Nogueira, MG; Emery, D; Collins AM (2013). Impact of route of administration 

on the mucosal immune response to Lawsonia intracellularis vaccine in pigs. Australian 

Veterinary Journal. Submitted.) 
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5.1 Introduction 

Lawsonia intracellularis is an obligate intracellular Gram negative bacterium 

that causes PE in pigs (McOrist et al., 1993). The major effects of PE infection in pigs 

includes poor growth, diarrhoea or sudden death (Lawson and Gebhart, 2000). It is a 

financially significant production problem estimated to reduce profitability from AU$ 

8 to 13.0  per pig (Holyoake et al., 2010a), requires continuous inclusion of antibiotics 

in the feed of grower and finisher pigs on farms to prevent the occurrence of clinical 

disease. The trial in the previous chapter has documented the humoral and cell 

mediated immune responses after experimental exposure with pathogenic L. 

intracellularis, and has been reported in other experimental and field trials (Guedes 

et al., 2002a; Collins and Love, 2007). Oral administration of live L. intracellularis 

vaccine reduces clinical signs and lesions of PE (Kroll et al., 2004), without generating 

consistently detectable systemic immune responses. Without evidence of vaccine 

induced protection, many veterinarians are unwilling to recommend the removal of 

antibiotic medication for fear of outbreaks of the haemorrhagic form of PE. Oral 

delivery of mucosal vaccines reliably induces immunity against enteric pathogens, 
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but protection has also been demonstrated after intraperitoneal (IP) or 

intramuscular (IM) administration (Djordjevic et al., 1997; Muir et al., 1998).   

As part of routine farm management, piglets are often vaccinated while they’re 

still suckling to overcome the need to remove antibiotics for 5 days around 

vaccination. In some herds, this leads to reduced vaccine efficacy because maternal 

antibodies transferred to the piglet in the sow’s milk can inactivate the vaccine 

(Hodgins et al., 1999). Efficacy data on intramuscular or intraperitoneal 

administration of the vaccine may allow producers to vaccinate and protect weaner 

pigs from ileitis without needing to remove antibiotics to treat other infections. In the 

previous experimental challenge trial, protection was successfully induced by IM 

vaccination against challenge with L. intracellularis (Nogueira et al., 2013 ). Potential 

correlates for protection were identified, but their specificity in the field needed to be 

tested. This is because weaner pigs face multiple challenges that would stimulate the 

immune system at the same time as L. intracellularis vaccination, including the 

introduction of solid feed and other infections such as haemolytic E. coli.  Therefore, 

efficient strategies to induce mucosal protection to a range of enteric diseases in 

young pigs is necessary, especially to complement nutritional additives and to 

replace the need for antibiotics in feed. To ensure that vaccines have effectively 

immunised animals prior to exposure to pathogens, knowledge of the protective 

immune response is also highly beneficial. In the search for an immune correlate with 

protection, and to further define the interaction between the routes of inoculation, 

this investigation compared local and systemic immune responses after oral, IM and 

IP inoculation of L. intracellularis vaccine in a trial on farm. 

 

5.2 Methods 

5.2.1 Code of Ethics 

This research was approved by the Animal Ethics Committees of the Elizabeth 

Macarthur Agricultural Institute (Department of Primary Industries-DPI) and the 

Sydney University (M12/03), Australia. 
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5.2.2 Farm health status and pre-screening 

The trial was conducted on a commercial piggery located in the state of Victoria, 

Australia between months of March and April of 2012. According to reports from the 

farm veterinarian (Dr. Hugo Dunlop, Chris Richards & Associates), the commercial 

farm consisted of 650 farrowing to finish batch unit, with an additional 2 grow-out 

sites. Pre and post weaning mortality were below 10% and 3.5%, respectively. Gilts 

and sows were routinely vaccinated against pathogenic neonatal E. coli, Glässers 

Disease and Streptococcus suis at introduction to the herd and 3 weeks prior to 

farrowing. The farm was free of Mycoplasma hyopneumoniae and Actinobacillus 

pleuropneumoniae (sv. 1, 5, 7. 15). Historically, Brachyspira hyodysenteriae and 

Ascaris suum have been present on this farm, but based on regular farm visits and 

slaughter inspections of pigs there has been no clinical evidence of their presence for 

the last 5 years. Clinical outbreaks of Glässer’s disease and Streptococcus suis 

occasionally occur from 11 weeks of age; they are treated using water medication. 

Post-weaning diarrhoea and PE infections has not been a significant problem of this 

farm, however, preventive antibiotics are used at strategic times post-weaning. In the 

routine management of the herds, progeny are normally vaccinated against 

proliferative enteropathy and porcine circovirus type 2 three days prior to weaning.  

Piglets are normally weaned at 22-24 days of age into an all-in-all-out room with 

controlled ventilation until they are 8 weeks of age and then are moved into a 

naturally ventilated grower facility until 16 weeks of age, where they stay until sale.  

Prior to the trial, a pre-screening selection was performed to observe the 

dynamics of Lawsonia intracellularis infection of this farm. Blood was collected from 

12 to 16 weeks old pigs for serological analysis (Bioscreen® Elisa) and pen pooled 

faeces from 24, 37, 53, 70 and 98 day old pigs were collected and screened to 

estimate numbers of L. intracellularis in faeces (qPCR). Results indicated that at 12 

weeks of age, 67% of the pigs tested were seropositive for L. intracellularis but this 

prevalence had declined to 13.3% at 16 weeks of age. The presence of L. 

intracellularis was observed in pooled faeces from 37, 53 and 70 days old pigs (from 

103 to 104 L. intracellularis per gram of faeces).     
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5.2.3 Experimental design 

Forty Landrace/ Large White crossbred piglets were selected at 21 days of age 

(5 days pre-weaning). Grouping of piglets was performed by randomly selecting four 

offspring from one sow and allocating one pig to each of the four treatment groups: 

oral (OR), intramuscular (IM), intraperitoneal (IP) and unvaccinated control groups 

(Figure 26). This was repeated for ten sows until each group had ten piglets. At 26 

days of age (just after weaning), 10 pigs were orally vaccinated with 2.0 mL of a ten 

times dose concentrate (105.9 TCID50) of L. intracellularis vaccine via drench gun 

(Enterisol® Ileitis, Boehringer Ingelheim, US). A second group was given the same 2.0 

mL dose IM via syringe in the right shoulder (21G needle) and the third group was 

vaccinated IP through the inguinal region in the lower half of the abdomen using a 

23G needle (d0) (Figure 27). The remaining 10 pigs were kept unvaccinated as a 

negative control group. Routine herd management was continued with sows and 

piglets given water and feed ad libitum. Antibiotics were removed from feed and 

water 3 days prior and 2 days after vaccination.  

 
 

Piglets Vaccination 
Vaccination 

route 
N° of Li per dose N° pigs 

1 Yes Oral 105.9 TCID50 10 

2 Yes Intramuscular 105.9 TCID50 10 

3 Yes Intraperitoneal 105.9 TCID50 10 

4 No - - 10 

Figure 26: On farm route of Lawsonia intracellularis (Li) vaccination.  
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                 Intraperitoneal Intramuscular 

 

 
 

 
 

Figure 27: Local of intraperitoneal and intramuscular routes of vaccine administration 

(Anonymous, 2010). 

 

5.2.4 Sample collection and analyses 

Blood was collected from individual pigs on day 0, 8 and 17 post-vaccination 

(pi) for further serological analysis. Necropsy of the pigs was performed 17 days after 

vaccination. All pigs were transported to Department of Primary Industries regional 

laboratory necropsy room (Bendigo, Victoria), where pigs were sedated (Xylazil IM 

1.5ml/pig) and euthanized (Lethobarb IV 1 mL/pig) by a DPI veterinarian. All post-

mortem sampling was conducted essentially as described in Chapters 3. Ileal tissue 

sections were placed in 10% formalin for histopathology and mucosal scrapings were 

collected and processed as previous described. Blood and mucosal secretions were 

assessed for L. intracellularis specific IgG antibodies (as percentage inhibition, PI%) 

using the Bioscreen® Ileitis ELISA (GmnH, Münster, Germany) and IgA was assessed 

with an in-house modified direct ELISA. PI values for greater than 30% were 

interpreted as positive for L. intracellularis antibodies and values less than 20% were 

deemed negative. The quantities of IFN-γ, TNF-α, IL-6, IL-10 and TGF-β1 cytokines in 

ileal secretions were analysed (Quantikine®ELISA kit; R&D Systems, US), with 

minimum limits of detection for this trial in pg/mL were; 3.8 (IFN-γ); 2.7 (TNF-α); 

15.3 (IL-6); 3.2 (IL-10); 2.8 (TGF-β1). 
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5.1 Statistical analysis 

The IgA titres and cytokines concentrations (pg/mL) were estimated by 

generating a logistic parameter curve using GraphPad®Prism software (2004). 

Statistical analysis was performed in GenStat 13th ed. (2010) using restricted 

maximum likelihood test (REML), testing each group vs. the controls; and also testing 

differences between vaccinated groups. Sow parity and individual pigs were included 

as random effects.     

5.2 Results 

5.2.1 Antibody responses 

Prior to vaccination, all piglets were seronegative for L. intracellularis 

antibodies. Increased Lawsonia intracellularis specific IgG in serum was detected in 

each vaccinated group (Figure 28; P<0.05) between day 0 and 17 post-vaccination 

(pv). By day 17 pv, pigs in the oral (28.9%), IP (11.7%) and IM (15.8%) vaccinated 

groups had produced a significant increase in L. intracellularis IgG antibody 

compared to the unvaccinated pigs (3.7%). However, only orally vaccinated pigs 

(9/10) were above the seropositive cut-off (30% PI).   

 

 

Figure 28: Predicted mean and standard errors for serum Lawsonia intracellularis IgG 

percentage inhibition (P.I.) value on days 0, 8 and 17 post-vaccination with Enterisol® via 

intramuscular (IM, ♦, red), intraperitoneal (IP, ●, green), oral ( , blue) and unvaccinated (xx, 

purple) groups.  On day 17 means with different superscripts differ significantly (*, P<0.05). 
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In the ileal mucosa, the majority of pigs in all vaccinated groups were above the 

cut-off value (PI: 30%) at day 17 pv, with positive values in oral (8/10), IP (8/10), IM 

(7/10), but also unvaccinated pigs (6/10) for L. intracellularis IgG antibody (Figure 

29). However, vaccinated pigs generated significant increases in L. intracellularis-IgG 

concentrations in the ileal mucosa when compared with unvaccinated pigs at day 17 

post-vaccination (Figure 30). In addition, oral and IP vaccination also generated 

significant (P<0.05) mucosal increases in L. intracellularis IgA, but the humoral 

immune response to IM vaccination was limited to increased IgG (Figure 30). 

   

  

  

Figure 29: Lawsonia intracellularis specific IgG antibody, as percentage inhibition values 

(% PI value) in ileal mucosa of individual pigs, 17 days after vaccination with L. intracellularis. 

The cut-off value of 30% is highlighted (red line).  
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IgG IgA 

  

Figure 30: Predicted means and standard errors for concentrations of Lawsonia intracellularis 

IgG (percentage inhibition, PI, %) and IgA (Titre) in ileal mucosa secretions at day 17 post-

vaccination. * Significant differences between treatment groups vs. controls. 

5.2.1 Mucosal cytokine responses 

The mucosal cytokines responses for individual pigs within groups are 

summarized in the Figure 31. In this on farm study, piglets generated significant 

(P<0.05) increases in mucosal concentrations of TNF-α after oral and IP 

immunisation and TGF-β1 after oral vaccination (P<0.05).  
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IL-10 

 

Figure 31- Mean and individual concentrations of cytokines Interferon-gamma (IFN-γ), 

Interleukin-6 (IL-6), Interleukin-10 (IL-10), Tumour Necrosis factor-alpha (TNF-α) and 

Transforming Growth factor-beta1 in ileal mucosal secretions. Significant differences (P<0.05) 

between means for the unvaccinated and treated pigs is shown by the star superscript. 

5.3 Discussion 

This study demonstrated that systemic and local mucosal immune responses 

after IP inoculation of the L. intracellularis vaccine paralleled those induced by oral 

vaccination. L. intracellularis specific IgG titres in serum significantly increased (P 

<0.05) from days 0 to 17 post vaccination in each vaccinated group. Oral dosing with 

live or attenuated vaccines has been shown to induce protective immune responses 

at mucosal surfaces which block pathogen attachment or neutralise local virulence 

factors by specific IgA or IgG antibody, but IP immunisation has been equally 

efficacious (Mestecky and McGhee, 1987; Husband et al., 1996). In this study, oral 

vaccination consistently elicited the highest mucosal responses. The oral route is 

often prescribed as the principal route to induce effective mucosal vaccination 

(Curtiss et al., 1996; Mirchamsy et al., 1996; Husa et al., 2009) on the premise that the 

induction of IgA/IgG plasma cells will occur following antigen uptake at inductive 

sites (e.g. Peyer’s patches) in the gut mucosa (Mestecky et al., 2005; Roth, 2010). For 

instance, pigs orally vaccinated with Salmonella Typhimurium live attenuated vaccine 

showed reduced intestinal lesions and increasing antigen specific IgG in serum after 

inoculation with 109 virulent Salmonella sp. compared with unvaccinated group 

(Husa et al., 2009). However, it was also anticipated from previous reports (Hall et al., 

1989; Husband et al., 1996; Muir et al., 1998) that the serosal surface of the intestine 

IM

0

Oral

20

Unvac

40

60

80

100

IP

 p
g/

m
L



 

107 
 

and draining mesenteric lymph nodes may be accessed by IP delivery. This happens 

especially if the antigen is accompanied by an inflammatory adjuvant or bacterial 

components, and induces mucosal immunity with secretion of bioactive products into 

the intestinal lumen. Previously, IP vaccination with either Freund’s adjuvant or oil-

in-water emulsion adjuvants had been shown to protect pigs from lung lesions due to 

Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae (Hall et al., 1989; 

Djordjevic et al., 1997). Administration of antigen IP have been reported as being 

effective in stimulating IgA producing lymphocytes at Payer’s patches of pigs 

(Sheldrake et al., 1993). In other species, IP vaccination of crude tetanus toxoids 

preparation with either Freund’s adjuvants or oil-in-water adjuvants demonstrated a 

markedly improve anti-tetanus IgA antibody responses in the jejunum of chickens 

compared with orally vaccinated groups (Muir et al., 1995). Similar the results of our 

study, when Muir et al., (1998) vaccinated chickens against Salmonella sp. IP, the IgG 

and IgA serum responses were increased and comparable to oral vaccination and 

induced protection against disease. In addition, other accessible mucosa, such as 

intranasal and intrarectal approaches have been explored as alternative sites for 

delivering mucosal vaccines. For instance, foals were seropositive for Lawsonia-

specific IgG (by IPMA) 21 days after intra-rectal administration of an attenuated live 

vaccine of L. intracellularis (Enterisol®Ileitis) (Pusterla et al., 2010). In humans, 

intranasal delivery with Shigella flexneri 2a lipopolysaccharide 50 subunit vaccine 

(LPS, IpaB, IpaC and IpaD) increased by  five-fold, the concentrations of antigen-

specific intestinal faecal IgA and IgG (Riddle et al., 2011). However, the requirement 

for mucosal immunization to generate protective immunity against mucosal 

pathogens it is not essential, as this and the previous trials have demonstrated that L. 

intracellularis specific IgG immune responses were detectable at mucosal sites and in 

serum following systemic delivery (IM). This is consistent with other studies where 

pigs vaccinated intradermally with live attenuated porcine reproductive and 

respiratory syndrome (PRRS) virus and then naturally exposed to a heterologous 

European field strain showed reduced clinical signs and the development of cell-

mediated immunity (reactive NK cells, and antigen-specific γ/δ T and cytotoxic T 

lymphocytes) in the blood (Martelli et al., 2009). Protection from mucosal challenges 

with L.intracellularis has been also reported. For instance,  Dale et al., (1997), 

reduced faecal L.intracellularis counts by 98.5% in four pigs vaccinated twice IM, 3 



 

108 
 

weeks apart, with killed L. intracellularis in incomplete Freund's adjuvant (IFA). In 

that study, additional pigs inoculated with recombinant GroEL-like protein also 

exhibited reduced faecal bacteria counts compared to infected controls. Presumably 

the mechanism by which IM vaccination protects against mucosal pathogens is  

through the homing  of activated immune cells from somatic sites and lymph nodes to 

mucosal tissues (Daynes et al., 1996), or more likely, by the diffusion of circulating 

antibody into mucosal tissues. As observed in the earlier study (Chapter 4), pigs 

vaccinated IM elicited increased L. intracellularis IgG in the ileal mucosa providing by 

protection against a challenge with 108 virulent L. intracellularis. In this study, the 

majority of the pigs from all groups (including some in the unvaccinated group) were 

seropositive for L. intracellularis IgG antibodies, however, higher titres were derived 

in the vaccinated, compared to unvaccinated pigs.     

In this on-farm study, ileal antibody and cytokine responses generated 

following IP immunisation resembled those induced by oral, rather than IM routes of 

vaccination. The quantities of the inflammatory cytokines IFN-γ and IL-6 (16 and 60 

pg/mL) in the ileal secretions following oral vaccination were reduced by comparison 

with the previous pen trial in Chapter 4 (750 and 225 pg/mL), whereas 

concentrations of TNF-α and TGF-β1 were comparable. In this trial, significantly 

(P<0.05) increased mucosal concentrations of TNF-α and TGF-β1 were exhibited 

after oral and IP immunisation. Interestingly, cytokine concentrations were 2- to 200- 

fold lower in unvaccinated pigs relative to their vaccinated cohorts. Differences in 

immune responses between pen and farm trials are expected, as on farm, the 

environment is less controlled and concomitant infections are expected. Caged hens 

exhibited a significantly higher level of total antibody production (5.30 ± 0.23) for the 

3 weeks after inoculation with killed Newcastle disease viral vaccine compared to 

free-range hens (2.82 ± 0.26) (Hoffman et al., 2009). The prevalence of a soil fungus 

infection Paracoccidiodes braziliensis was also increased in free-range chickens, as 

measure by ELISA titres to the gp43 antigen (Oliveira et al., 2011). Although protein 

concentrations of mucosal secretions were standardised between studies and pigs 

did not show signs of diarrhoea and were healthy, the range of mucosal responses of 

individual pigs does vary substantially in on-farm trials (Hall et al., 1989). However, 

in this situation, the reduced responses for IFN-γ and IL-6 may reflect the use of 
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antibiotics, the different gastrointestinal microflora in these piglets or the timing of 

sampling, but the aim was to highlight the response to the L. intracellularis vaccine. 

Cytokines such as IFN-γ have been involved in protective immunity against 

intracellular infections and this has been implicated for L. intracellularis. Specific IFN-

γ producing cells were detected by ELISPOT, in porcine peripheral blood 

mononuclear cells (PBMC), 4 to 13 weeks after vaccination with L. intracellularis 

(Guedes and Gebhart, 2003b). This method is more sensitive than analysis of mucosal 

secretions as it measures the response of primed T-lymphocytes after a second 

exposure to L. intracellularis antigen in vitro. Similarly, knockout mice for IFN-γ 

receptor (IFN-γ R-) were substantially more susceptible to disease outbreaks and 

more extensive lesions as observed by immunohistochemistry compared with wild 

type mice (IFN-γ R+) after oral infection with 107 cultured L. intracellularis (Smith et 

al., 2000). This implies a specific and direct protective effect of IFN-γ. In horses, IFN-γ 

gene expression in all Enterisol® vaccinated foals was significantly higher, 60 days 

following oral vaccine administration compared to IFN-γ gene expression in control 

foals (Pusterla et al., 2012a). The specificity of the cytokine response to vaccination in 

this trial was also supported by higher concentrations of TGF- β1, possibly related to 

local mucosal repair and immune regulation resulting from the limited infection 

associated with vaccine “take”. The TGF-β controls the initiation and resolution of 

inflammatory responses through the regulation of lymphocytes activation, promoting 

T cell survival and inducing IgA class switching in B cells (Schluesener et al., 1990). In 

pigs, a transient decrease in TGF- β1 concentrations at the intestinal villi epithelium 

was observed and associated with obvious intestinal villi atrophy and marked 

reduction of mucosal digestive enzyme activities (Mei and Xu, 2005), suggesting that 

changes would be expected with its intestinal infection like that caused by L. 

intracellularis. Consistent with its’ anti-inflammatory and regulatory role, porcine 

TGF- β1 suppressed human T-helper (Th)-cell activation through the inhibition of IL-

12 secretion and the induction of Th-cell apoptosis (Palmer et al., 2002). 
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 The comparable spectrum of immune responses generated after vaccination 

and the subsequent protection after challenge in the previous pen trial (Chapter 4), 

suggests that significant protection against L. intracellularis would be anticipated in 

each of the vaccinated groups in this study. The results from both trials would 

indicate that if specific antibody responses can be detected following vaccination, a 

protective level of immunity may have been induced against a moderate level of 

challenge. However, this would be expected to wane with time as the interval 

between vaccination and challenge increased. 
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6.1 Introduction 

In pig herds, the presence of proliferative enteropathy (PE) disease is 

associated with a range of clinical signs from acute haemorrhage to chronic diarrhoea 

and death (Lawson and Gebhart, 2000). The aetiologic agent is Lawsonia 

intracellularis an obligate intracellular bacterium. Histologically, the lesions in 
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infected animals consist of proliferating immature enterocytes containing 

intracellular L. intracellularis bacterial antigen (Lawson and Gebhart, 2000). Clinical 

outbreaks and subclinical cases (with no apparent clinical signs) are also 

accompanied by decreased feed intake, reduced weight gain and poorer feed 

conversion efficiency (Paradis et al., 2012). PE is also associated with reduced activity 

of digestive enzymes in the small intestine of pigs which may lead to decreased 

digestion and absorption of proteins from the lumen of the intestine (Rowan and 

Lawrence, 1982; Collins et al., 2009). Therefore, controlling PE is important to 

improve productivity, reduce animal losses and increase herd profitability. PE is 

traditionally controlled in pig herds with in-feed antibiotic medication which have 

been effective in controlling PE outbreaks (Tzika et al., 2009). However, with a 

complete ban on in-feed antibiotics in place inside the EU since 2006, pig producers 

are seeking alternatives to in feed antibiotics to control pathogens in pigs. An 

alternative to in-feed antibiotics for the control of PE is the commercially available 

attenuated live L. intracellularis vaccine (Enterisol® Ileitis, Boehringer Ingelheim). 

This vaccine has been shown to reduce the clinical signs and lesions of PE as well as 

the amount of L. intracellularis that is shed in faeces (Kroll et al., 2004). The 

Enterisol® Ileitis vaccine has been shown to increase herd uniformity and provide 

additional weight gains of between 20 to 34 g per pig/day (Almond and Bilkei, 2006). 

In the previous chapters, systemic and local immune responses were monitored and 

detected after vaccination by various routes with a ten times vaccine dose (Chapters 

4 and 5). The result showed an increase in L. intracellularis specific IgG antibody 

response in serum and mucosa, which could not be detected following administration 

of standard doses (Donahoo, 2009). The variability in local and systemic immune 

responses negated the detection of an immune-marker which correlated with herd or 

individual protection in pigs after vaccination. However, it was apparent that 

detection of either specific antibody or significantly increased concentrations of IFN-

γ following oral or IM vaccination would indicate protection from a field challenge. 

Pig producers are hesitant to remove preventive in-feed antibiotics without the 

guarantee of protection against PE. Therefore it was reasoned that feed additives 

which are proposed to boost immune responses could enhance the development of 

mucosal immune responses to detectable and consistent concentrations.  
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Phytase is frequently added to pig diets to improve phytate-P (inositol 

hexaphosphate, IP6) digestibility. However, other benefits to the use of phytase 

include increased  nutrient absorption, growth rates and possible enhanced 

immunity(Selle and Ravindran, 2008). These results are hypothesised to be 

associated with the extra phosphoric effects of phytase where the benefit to animals 

fed phytase extends beyond the role of just liberating phytate-P (Liu et al., 2008; 

Shaw  et al., 2011). While the precise mechanism of action is unclear, phytase could 

possibly increase immunity by releasing the nutrient-bound-phytate, increasing its 

bioavailability and absorption and promote growth or proliferation of immune cells 

(Scrimshaw, 2007).The inositol ring has also been shown to reduce pro-cancerous 

intestinal cell proliferation by increasing pro-inflammatory cytokine production 

(Wawszczyk et al., 2013) and inducing cellular apoptosis (Ferry et al., 2002) which 

may influence the pathogenesis of PE. Increases in blood lymphocyte numbers have 

been observed after 18 days when 500 FTU/kg of a microbial phytase was added to a 

high phytate (0.44% P) broiler diets (Liu et al., 2008). From the available literature, 

the effects of phytase on the mucosal immune responses in pigs have not been 

examined and will be investigated in this chapter.   

Another feed additive that has gained recent attention for its possible 

immunological benefits for animals is beta glucan (β-glucans). They have been 

identified as potential dietary supplements to offset the removal of antibiotic growth 

promoters.  Results in nursery pigs have shown improved growth performance and 

increased production of lymphocytes when diets were supplemented with 5g/kg of 

Saccharomyces cerevisae yeast culture (Shen et al., 2009). Glucans have been reported 

to increase the phagocytic activity of macrophage and neutrophils in human and 

porcine peripheral blood mononuclear cells (PBMCs) (Williams et al., 1986; 

Sherwood et al., 1987; Sonck et al., 2010). However, depending on their source and 

structure, the type of β-glucan used  influences the immune responses of animals  

(Sonck et al., 2011). For instance, reduced clinical signs and increased PRRS specific 

IFN-γ in PBMCs incubated with high molecular β-1,3-1,6-glucan preparation were 

observed 50 days after a challenge infection with PRRS virus (Xiao et al., 2004). Pigs 

fed diets supplemented with 600 ppm β-glucan prior to an ex-vivo E. coli 

lipopolysaccharide challenge showed increased cytokine production when compared 
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to intestinal tissues from non-supplemented pigs (Sweeney et al., 2012). The effect of 

β-glucan on specific mucosal responses to vaccines such as L. intracellularis has not 

been determined. Therefore, this trial assessed the individual and potential 

synergistic effects of adding phytase and β-glucan to diets on immune responses of 

pigs when given an attenuated L. intracellularis oral vaccine.   

6.2 Materials and Methods 

6.2.1 Animal Ethics 

All procedures involving the use of animals were approved by the Elizabeth 

Macarthur Agricultural Institute Animal Ethics Committee (M12-02), Australia. 

6.2.2 Experimental design and diets 

The experiment was conducted as a 2 x 2 x 2 factorial arrangement with 

phytase, β-glucan and vaccination as the main factors. Ninety-nine entire, male, 

Landrace X Large White crossbred weaner pigs were randomly allocated by weight 

(6.9 ± 1.7kg; BW ± SE) to one of eight treatment groups (Table 9). 

Table 8 – Experimental design and treatment groups. 

Groups 
Phytase 

(2000 FTU/kg) 
ß-Glucan 
(100ppm) 

Vaccination 
(105.9TCID50) 

N° of pigs 

G1  Yes Yes Yes 12 

G2 No Yes Yes 12 

G3 Yes No Yes 12 

G4 No No Yes 12 

G5 Yes Yes No 12 
G6 No Yes No 13 

G7 Yes No No 13 

G8 No No No 13 

Total    99 

  
Diets (Table 10) were offered in mash form without antibiotic growth 

promoters and were formulated to meet or exceed the requirements for all nutrients 

(NRC, 2012). Groups G1, G3, G5 and G7 had a third generation E. coli-phytase 

(Quantum® Blue phytase, AB Vista, UK) added (mean analysed activity of 2,007 

phytase units (FTU)/kg). The diets containing β-glucan (groups G1, G2 and G5, G6) 

were supplemented at the rate of 1g/kg of feed (AB Vista Feed Ingredients, 

Marlborough, UK) according to the manufacturer’s instructions. The β-glucan 

preparation (AB Vista, UK) was extracted from baker’s yeast, Saccharomyces 
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cerevisae and isolated by methods described by Haldar et al., (2011).  To calculate the 

apparent ileal digestibility (AID) coefficients for crude nitrogen (N) and minerals, an 

indigestible marker Celite 281 (Filchem Australia Pty Ltd, Australia) was added to 

diets at a concentration of 20 g/kg. 

Table 9- Ingredient and nutrient specification (g/kg) of the basal diet fed to grower pigs (as-fed 
basis). 

 Ingredient g/kg 

Wheat (fine) 557.3 

Soybean meal 153.3 

Canola meal 80.0 

Whey 80.0 

Millrun (Manildra) 66.6 

Spent oil 26.7 

Dicalcium phosphate 13.3 

Limestone (fine) 10.0 

Lysine HCl 5.23 

Vitamin-mineral premix1 2.52 

Betafin (betaine) 2.00 

L-threonine 1.22 

Salt 1.1 

Celite 20.0 

Calculated composition2  

Moisture, % 9.89 

DM, % 89.6 

CP 199.5 

Fibre 36.6 

Fat  49.5 

Ca  9.35 

Total P  7.23 

Phytate-P  3.01 

Ca:P 1.29 

Cal/D:P 2.05 

Total Sulphur  0.12 

Threonine 8.40 

Lysine  0.137 

Methionne,  0.041 

DE, MJ/kg 14.25 

1 Vitamin premix provided per kilogram of diet: Mg, 20mg; Na, 18.2mg; Cl, 23.2mg; Fe, 257mg; Mn, 114mg; Cu, 

198mg; Se, 714μg; Mo, 1.0mg;  Co, 932μg; I, 125mg; Vitamin B6, 103mg; Vitamin B12, 25μg; niacin, 78mg; folic, 

322 μg; biotin, 252mg; choline, 398μg; potassium, 6 mg; tyrosine, 6 mg; tryptophane, 23mg; arginine, 115mg; 

isoleucine, 8.2mg; phenylalanine, 8.7mg. 2Composition was calculated on the requirements for weaner pigs 

(NRC); 
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6.2.3 Pig housing and treatments  

Pigs aged between 3 to 4 weeks were purchased from a commercial herd 

(Young, NSW) clinically and serologically free of PE and housed in an 

environmentally controlled research facility. Pigs were placed in groups of 3 to 4 

animals in 4.0 x 4.5 m pens equipped with slatted-floors, a feeder and nipple drinker 

to provide ad libitum access to feed and water, respectively. The temperature in the 

room was controlled between 24 and 28°C as recommended by the Australian animal 

welfare standard and guidelines (Animal Welfare Working Group, 2007). After one 

week on the respective diets, pigs in G1, G2, G3 and G4 groups were orally vaccinated 

(d 0) via drench gun with 2.0 mL of Lawsonia intracellularis vaccine containing 105.9 

TCID50 organisms (Enterisol®Ileitis, Boehringer Ingelheim, US). The remaining 

groups (G5-G8) were not vaccinated.   

6.2.4 Sampling schedule 

On days 0, 7 and 25 post-vaccination (pv), individual pigs were bled by jugular 

venipuncture (5.0 mL) using serum clot separator vacuum tubes (Vacuette®, Geiner 

Bio-one, Australia) for serological analysis. On these days, faeces (approximately 2 g) 

were collected from individual pigs using clean gloves and stored in sterile containers 

(Techno-Plas®, Australia) and frozen at -20 °C until further analysis (Table 11).  

Table 10- Experimental days and sampling schedule 
 -7 -6  0 1  7 8  15  22  25  28 29 

 Feed starts Vacc.          Necropsy 

Faeces  √ √       √    
Blood  √ √       √    

Feed intake 
√ 

W0 
 √ 

   W1 
 

√ 
W2 

 
√ 

W3 
 

√ 
W4 

   
√ 

W5 
√ 

W5 

Weight √  √  √  √  √    √ √ 
Necropsy 
 Ileal Mucosa 
 Ileal Digesta 
 Ileal section 
 Carcass 

weight 

           √ √ 

 
After 35 days of feed consumption (d 28 pv), pigs from all groups were 

slaughtered at a local abattoir (Wollondilly, NSW) over two consecutive days. Entire 

gastrointestinal tracts were collected, placed in individually-labelled bags and 

transported on ice to Elizabeth Macarthur Agricultural Institute necropsy room for 

tissue collection. Briefly, ileal digesta was obtained by massaging caudally from 2 m 

to 10 cm anterior to the ileo-caecal valve (ICV) and placed in sterile containers and 
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kept at -20 °C until freeze-dried. Subsequently, a section of ileal tissue was cut and 

around 1 cm segment stored in 10 % neutral-buffered formalin fixative for 

histopathology. The adjacent segment was cut longitudinally and the intestinal 

mucosal secretions were collected by gently scraping the ileal mucosa with a sterile 

scalpel as previously described (Chapter 3). 

6.2.5 Production parameters 

Pigs were monitored daily for body condition, clinical signs of PE and abnormal 

behaviour. Pigs were individually weighed in electronic scales (Adam Equipment, 

South Africa) at the time of arrival and weekly during the trial to determine average 

daily live weight gain (ADG). Weekly feed consumption was calculated as the 

difference in the weight of feed supplied minus the feed remaining and was used to 

estimate the average daily feed intake (ADFI) and feed conversion ratio (FCR). At 

necropsy, the percentage dress weight for each pig was calculated as the hot standard 

carcass weight (HSCW) divided by the final live weight prior to slaughter multiplied 

by 100. 

6.2.6 Sample analyses 

Sera and mucosal scrapings were assayed in duplicate for the detection of L. 

intracellularis specific antibodies (IgG) using a commercial blocking ELISA 

(Bioscreen®Ileitis, GmbH, Münster, Germany). L. intracellularis-IgA was assayed using 

an experimentally modified direct ELISA (as described in Chapter 3). The quantities 

of cytokines IFN-γ, IL-6, IL-10, TNF-α and TGF-β1 in ileal mucosal secretions were 

analysed using a commercial sandwich ELISA Kit (porcine Quantikine® ELISA, R&D 

systems, Minneapolis, USA).  The minimum limits of detection for this study were 2.0 

pg/mL for IFN-γ, 1.7 pg/mL for IL-6, 17.2 pg/mL for IL-10, 1.7 pg/mL for TNF-α and 

8.1 pg/mL for TGF-β1. Concentrations were estimated by generating a logistic 

parameter curve using GraphPad®Prism software. To quantify bacterial excretion, 

purification of bacterial DNA from faecal samples (0.1g) was performed with the 

MagMax DNA extraction kit (A&B Applied Biosystems, California, USA). Extraction 

products were analysed by real-time PCR (7500 Real-Time PCR System, Applied 

Biosystems) using primers and Taq Man probe as described by Nathues et al., (2009). 

The sensitivity and specificity of the test has been reported by Collins et al., (2011) as 

99% and 97%, respectively.  
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6.2.7 Histological procedures 

Formalin-fixed tissues were stained with haematoxylin and eosin (H&E) (Luna, 

1968). The blinded slides were scored by one operator under 40x magnification light 

microscope to count the number of goblet cell crypts using a manual cell counter 

(Bantex, USA). A total of ten fields were analysed for each slide, with the first chosen 

randomly and then every second field to the right. The presence of proliferative 

affected area (%) was also noted and when positive an immunohistochemistry (IHC) 

stain, using a  VPM53 L. intracellularis  monoclonal antibody (Boehringer Ingelheim, 

US) was performed to confirm the presence of L. intracellularis -specific antigen 

within crypts (Jensen et al., 1997). 

6.2.8 Chemical analysis of diet and ileal digesta 

The ileal digesta samples were freeze-dried and all samples were ground 

(Retsch ZM 100, Retsch GmbH, Germany) to pass through a 0.5 mm screen prior to 

chemical analyses.  The nitrogen (N) contents of the minerals P, Ca, Cu, K, Mg, Mn, Na, 

Sr, Fe and Zn were determined in feed and dried digesta samples. Nitrogen 

concentration was determined by the Dumas method using a FP-428 nitrogen 

analyser (method 968.06, LECO® Corporation, St. Joseph, MI, USA) as described by 

Sweeney (1989). Samples were wet acid digested using nitric acid and hydrogen 

peroxide prior to the determination of mineral concentration by Inductively Coupled 

Plasma-Optical Emission Spectroscopy using a Perkin Elmer OPTIMA 7300 (Perkin 

Elmer Inc, Waltham, MA, USA) at the Mark Wainwright analytical centre (The 

University of New South Wales, Kensington, 2052). The acid insoluble ash component 

of dried diets and ileal digesta samples were determined according to the method of 

Siriwan et al., (1993). The apparent ileal digestibility (AID) coefficient of crude 

protein (CP) and minerals were calculated as described by Ravindran et al., (2001). 

Phytase activity was tested in the diet using an ELISA test kit (Envirologix, USA) as 

designated by the ESC Standard Analytical Method (#SAM099, ESC laboratories, UK). 

Phytase recovered in the diets was determined (Enzyme Services and Consultancy, 

Ystrad Mynach, UK) according to the method of Engelen et al. (2001), modified to 

determine activity specifically from the exogenous phytase. One phytase unit is 

defined as the amount of enzyme required to liberate 1 mol of inorganic P/min from 

phytic acid at pH 4.5 and 60 °C.  
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6.2.9 Statistical analysis  

The experiment was a 2 x 2 x 2 factorial arrangement, with dietary phytase, β-

glucan and vaccination being the main factors. The data were subjected to 

randomized complete block design using a linear mixed model procedure of 

Restricted Maximum Likelihood (REML, GenStat Release 13th Ed, UK) with a 95% 

confidence level (P<0.05) (Steel, 1997). Pigs were the experimental unit for all 

immune responses and pathology lesions. Pen was the experimental unit for growth 

performance and nutrient digestibility metrics. Clinical observation data were 

categorized into binary data and then analysed using a two sample binomial test 

comparison (Steel, 1997).  

6.3 Results 

6.3.1 Room temperature and clinical health 

Overall, pigs were healthy during the entire trial. Occasional scouring was 

observed and treated orally with 200mL electrolytes (Vytrate, Jurox, Rutherford, 

Australia) for affected pigs. However, scouring was not attributed to any specific diet.  

6.3.2 Production performances 

Performance data is shown in Table 12.  At the start of the trial (d-7) pigs 

weighed an average of 8 kg ± 0.65 (kg ± SE) with no differences between the total 

bodyweights in each randomised group. Overall, vaccinated pigs demonstrated lower 

average weight gain during weeks 4 and 5 (694.6 and 746 g/day, respectively) when 

compared with unvaccinated pigs (724.1 and 803.7 g/day).This might be due to the 

fact that unvaccinated pigs had higher daily feed intake (1383 g/ day) than the 

vaccinated groups (1184 g/ day).  

 Prior to slaughter, live bodyweight averaged 27.8 kg across all groups with pigs 

from the group G2 (glucan and vaccinated) showing the lowest average weights (26.3 

kg). This group (G2) also had the lowest hot standard carcass weights (HSCW) of 19.2 

kg, but there were no significant differences across groups (20.5 kg). Similarly, no 

differences were found for carcass dressing percentage. The respective carcass 

dressing percentage for the 8 groups were 73.2% (G1), 72.9% (G2), 72.9% (G3), 

74.1% (G4), 74.5% (G5), 72.8% (G6), 73.5% (G7), 72.5% (G8). 
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Table 11- Individual average daily weight gain (ADG, g/day), average daily feed intake (FI, g/day) 
and feed weigh: gain ratio (FCR, g feed/g weight) over the 5 week trial (week 1=vaccination) 
within groups.  

 Vaccinated groups                                                 Non vaccinated groups   

 
G1 

(+P+B) 
G2        

(-P+B) 
G3 

(+P-B) 
G4 

(-P-B) 
G5 

(+P+B) 
G6        

(-P+B) 
G7 

(+P-B) 
G8 

(-P-B) 
SEM 

P 
(<0.05) 

Week 1 

ADG 319.6 318.2 344.5 385.8 369.4 323.2 343.5 383.5 31.9 NS 

FI 463.9 433.1 518.7 491.4 487.7 454.6 503.0 464.0 32.2 NS 

FCR 1.46 1.37 1.5 1.29 1.32 1.41 1.47 1.23 0.08 NS 

Week 2 

ADG 465.2b 417.9a 471.2b 526.2c 473.7b 497.4bc 493.0bc 478.0b 38.6 0.034 

FI 660.8a 625.3a 760.1c 715.1bc 677.6ab 663.7a 705.3b 688.3b 44.2 <0.001 

FCR 1.42 1.51 1.61 1.37 1.43 1.34 1.44 1.45 0.08 NS 

Week 3 

ADG 611.9b 535.0a 579.2a 559.5a 609.5b 548.2a 603.3b 560.4a 43.2 0.015 

FI 947.0c 829.7a 967.2c 916.7b 956.3c 922.2b 961.3c 925.7b 51.2 <0.001 

FCR 1.56 1.55 1.67 1.64 1.57 1.7 1.61 1.65 0.07 NS 

Week 4 

ADG 717.9ab 664.3a 666.7a 729.8b 694.0a 745.8c 739.9bc 725.3b 37.2 0.027 

FI 1114.4a 1078.5a 1124.8a 1143.5b 1151.5b 1186.4b 1251.4b 1146.4b 54.8 <0.001 

FCR 1.58 1.63 1.69 1.57 1.66 1.59 1.7 1.58 0.06 NS 

Week 5 

ADG 840.9c 759.1b 752.4b 699.0a 773.2b 814.5c 847.1c 838.4c 23.1 <0.001 

FI 1428.2 1342.3 1382.6 1377.6 1418.3 1486.3 1479.8 1386.1 162.2 NS 

FCR 1.75a 1.77ab 1.83b 1.99b 1.84b 1.85b 1.76ab 1.67a 0.08 0.047 

Overall main effects ADG FI FCR      

Vaccinated         

Vacc + 620.0 1137 1.84      

Vacc - 647.8 1175 1.81      

P (<0.05) NS NS NS      

Phytase         

Phytase + 641.5 1178 1.83      

Phytase - 626.3 1134 1.81      

P (<0.05) NS NS NS      

Glucan         

Glucan + 630.7 1137 1.81      

Glucan - 637.0 1175 1.85      

P(<0.05) NS NS NS      

Interactions (P<0.05)         

P*V NS NS NS      

V*B NS NS NS      

B*P NS NS NS      

P*V*B NS NS NS      
1 Means in the same row without common superscripts are significantly different (P<0.05); 2 NS: Not significant 
(P>0.05); P: Phytase; B: β-glucan; V: vaccination  
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6.3.3 Nutrient digestibility 

The effects of dietary treatment on the apparent ileal digestibility (AID) of 

nitrogen (N) and the minerals Ca, P, Mg, Na, K, Fe, Cu, Mn, Zn and Sr are presented in 

Table 13. No main effects of phytase, β-glucan or vaccination were found. However, 

three way interactions were found for the AID of Mg, K, Fe, and Cu with the highest 

AID of Mg observed for the phytase supplemented and vaccinated groups G1 and G3. 

Similarly, the highest AID of K was detected in phytase supplemented groups (G1, G3, 

G5 and G7) and for AID of Fe the group G5 had the highest coefficient.  

Table 12- The apparent ileal digestibility coefficients of nitrogen (N) and minerals in pigs  
vaccinated (V) and unvaccinated, with or without β-glucan yeast (+/- B) and phytase (+/- P)1,2. 

Groups N Ca P Mg Na K Fe Cu Mn Zn Sr 

G1 (+P+B) 0.48 0.78 0.61 0.48b -0.07 0.63ab 0.33a 0.28b 0.47 0.52 0.69 

G2 (-P+B) 0.46 0.76 0.57 0.42a -0.07 0.55a 0.44b 0.22ab 0.41 0.49 0.60 

G3 (+P-B) 0.54 0.79 0.63 0.50b -0.08 0.67b 0.25a 0.30b 0.38 0.43 0.54 

G4 (-P-B) 0.52 0.76 0.59 0.43a -0.06 0.59a 0.36ab 0.24b 0.32 0.39 0.45 

G5 (+P+B) 0.43 0.76 0.55 0.43a -0.03 0.68b 0.47b 0.19a 0.37 0.40 0.47 

G6 (-P+B) 0.42 0.73 0.51 0.37a -0.09 0.57a 0.35a 0.13a 0.31 0.37 0.39 

G7 (+P-B) 0.49 0.76 0.56 0.42a -0.10 0.72b 0.38ab 0.21ab 0.28 0.31 0.61 

G8 (-P-B) 0.48 0.73 0.52 0.35a -0.06 0.61a 0.27a 0.15a 0.22 0.27 0.52 

SEM 0.08 0.05 0.05 0.08 0.11 0.08 0.09 0.07 0.06 0.07 0.07 

P(<0.05) NS NS NS 0.046 NS 0.045 0.032 0.038 NS NS 0.068 

Vaccinated                       

Vacc + 0.49 0.78 0.65 0.48 0.10 0.71 0.30 0.29 0.31 0.31 0.57 

Vacc - 0.44 0.77 0.62 0.47 0.14 0.69 0.37 0.28 0.27 0.29 0.58 

P (<0.05) NS NS NS NS NS NS NS NS NS NS NS 

Phytase                       

Phytase + 0.47 0.79 0.66 0.48 0.03 0.72 0.38 0.31 0.30 0.37 0.60 

Phytase - 0.46 0.76 0.61 0.47 0.02 0.68 0.25 0.25 0.28 0.24 0.55 

P (<0.05) NS NS NS NS NS NS NS NS NS NS NS 

Glucan                       

Glucan + 0.44 0.79 0.64 0.50 0.03 0.70 0.36 0.28 0.30 0.33 0.60 

Glucan - 0.50 0.77 0.63 0.45 0.02 0.70 0.35 0.29 0.28 0.27 0.55 

P(<0.05) NS NS NS NS NS NS NS NS NS NS NS 

Interactions (P<0.05)         

P*V NS NS NS NS NS NS NS NS NS NS NS 

V*B NS NS NS NS NS NS NS NS NS NS NS 

B*P NS NS NS NS NS NS NS NS NS NS NS 

P*V*B NS NS NS NS NS NS NS NS NS NS NS 
1 Values in the same column without common superscripts are significant different (P<0.05); NS: Not significant 
(P>0.05); P: Phytase; B: β-glucan; V: vaccination 
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6.3.4 Systemic immune responses 

Pigs were seronegative at day 0 and 7 post-vaccination (Table 14). After 25 

days pv, vaccinated pigs had higher L. intracellularis-IgG responses then unvaccinated 

pigs (PI: 35% and 8.8%, respectively). The highest percentage inhibitions (PI) for 

Lawsonia intracellularis specific IgG were observed on day 25 in groups G1, G3 (41 

and 35.5%) when compared to other two vaccinated groups (G2 and G4, 10.8% and 

16.2%). Vaccinating pigs increased specific IgG concentrations when compared to 

non-vaccinated pigs. In addition, a tendency for higher IgG responses were also 

observed in phytase and β-glucan supplemented pigs, leading to a phytase-β-glucan-

vaccination interaction (Table 14). 
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Table 13 – Mean concentrations for the main effects and interactions of Lawsonia intracellularis 

IgG in serum, as percentage inhibition (PI, %), within groups vaccinated and unvaccinated, with 

or without β-glucan yeast (+/- B) and phytase (+/- P). 

  IgG (PI, %)1,2 

 Treatment day 0 day 7 day 25 

V
a

cc
in

a
te

d
 G1 (+P+B) -1.0 1.3 41.0c 

G2 (-P+B) -0.9 -0.1 10.8a 

G3 (+P-B) -6.5 -4.2 35.6c 
G4 (-P -B) -6.3 -5.6 16.2ab 

U
n

va
cc

in
a

te
d

 G5 (+P+B) -9.5 -7.4 18.2b 

G6 (-P+B) -11.2 -2.0 22.8b 

G7 (+P-B) -4.3 6.6 7.4a 

G8 (-P-B) -6.0 5.0 23.4b 

 SEM 2.0 5.3 8.4 

 P (<0.05) NS NS <0.001 

 Main effects   

 Vaccination   

 Vacc + -11.1 1.8 35.0a 

 Vacc - -8.4 0.6 8.3b 

 P (<0.05) NS NS <0.001 

 Phytase    

 Phytase + -10.8 -1.0 22.2 

 Phytase - -8.7 3.2 20.4 

 P (<0.05) NS NS NS 

  Glucan    

 Glucan + -8.7 -1.4 26.6 

 Glucan - -10.7 0.4 16.1 

 P (<0.05) NS NS NS 

 Interactions    

 P*V NS NS NS 

 V*B NS NS NS 

 B*P NS NS NS 

 P*V*B NS NS 0.024 
1 Negative percentage means indicates that the unknown sample has less antibody concentration that the negative 
control available on the kit.2 Values in the same column without common superscripts are significant different 
(P<0.05);  3 NS: Not significant (P>0.05);  
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6.3.5 Local mucosal immune responses         

Local immune responses are summarized in Table 15. In unvaccinated groups, 

β-glucan supplementation substantially increased concentrations of IFN-γ, TNF-α and 

TGF- β1 (group 6) compared to un-supplemented group 8 while phytase had no 

significant effect (group 7), unless animals were vaccinated (group 3, Table 15). 

Vaccinated pigs had higher mucosal IgG immune concentrations than unvaccinated 

pigs at day 28 pv (PI: 21% and 13.4%, respectively). Pigs supplemented with phytase 

generated higher L. intracellularis specific IgG concentrations in the ileal mucosal 

scrapings compared to non-supplemented pigs (PI: 24.7% and 10.3%, respectively). 

In addition, pigs fed β-glucan had higher mucosal IgG antibody responses than non-

supplemented pigs (20.4 and 14.6 pg/ml, respectively). Similarly, mucosal IgA titres 

were increased in pigs supplemented with β-glucan (22.3 pg/mL) when compared 

with the non-supplemented cohort (16.7 pg/mL). Interactions between phytase and 

vaccination were observed, as vaccinating pigs had increased L. intracellularis IgG 

responses when compared to non-vaccination and titres were further increased by 

adding phytase to the pig diets. 

Cytokine immune responses revealed that vaccinated pigs produced 

significantly higher mucosal concentrations of TNF-α, IL-6 and IL-10 (TNF-α, 20.4; IL-

6, 18.9 and IL-10, 85.5) than unvaccinated animals (TNF-α, 9.3: IL-6, 14.3 and IL-10, 

67.0) (Table 15). Vaccinated pigs also tended to have higher concentrations of 

mucosal IFN-γ and TGF- β1 in mucosal secretions than control animals (IFN-γ; 113.2 

vs. 87.4 pg/mL, respectively; TGF- β1; 143.3 vs. 103.1 pg/mL, respectively). Pigs 

supplemented with β-glucan also had higher concentrations of IFN-γ (147.1pg/ml) 

and TNF-α (20.6) cytokines in ileal mucosal scrapings when compared with 

unsupplemented groups (IFN-γ =53.2 and TNF-α TNF=8.9 pg/ml). L. intracellularis 

vaccination increased TNF-α response in ileal mucosa when compared with 

unvaccinated pigs and a further increased response was observed when β-glucan was 

added, leading to a vaccination-β-glucan interaction. In addition, pigs consuming 

diets with added phytase generated higher IFN-γ concentrations (118. 8 pg/mL) in 

mucosal secretions compared to pigs without phytase in the diet (81.4pg/mL). These 

results and also the increasing IFN-γ responses associated with supplementation of 

phytase in pigs feed resulted in a phytase-β-glucan interaction.  
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Table 14- The mean concentrations for the main effects and interactions of Lawsonia 

intracellularis IgG (PI, %) and IgA (Titre) and cytokines (pg/mL) in ileal mucosa within groups 

vaccinated and unvaccinated, with or without β-glucan yeast (+/- B) and phytase (+/- P). 

  Cytokines1,2 Li-Antibody 

 Groups IFN-γ TNF-α TGF-β1 IL-10 IL-6 IgG IgA 

V
a

cc
in

a
te

d
 G1 (+P+B) 199.3c 26.,3 292.8c 80.4 21.2 36.78a 22.52 

G2 (-P+B) 121.7c 26.7 78.1b 84.2 19.7 24.18b 17.23 

G3 (+P-B) 65.7a 14.2 145.1c 60.3 18.2 16.39c 17.75 

G4 (-P -B) 66.1a 14.6 55.4a 63.8 16.7 9.75d 16.88 

U
n

va
cc

in
a

te
d

 G5 (+P+B) 174.6c 15.0 54.7a 87.1 16.8 20.48b 21.22 

G6 (-P+B) 174.5c 15.5 79.2b 90.6 15.3 18.26bc 27.92 

G7 (+P-B) 41.0a 3.0 60.5a 66.9 13.7 8.98d 15.28 

G8 (-P-B) 97.0b 3.4 65.1a 70.5 12.3 6.69d 17.23 

 SEM 20.5 8.9 17.6 14.1 6.3 4.8 7.2 

 P (<0.05) <0.001 NS <0.001 NS NS <0.001 NS 

 Main factor       

 Vaccination       

 Vacc + 113.2 20.4a 144.3 85.5a 18.9a 21.78a 20.4 

 Vacc - 87.4 9.3b 107.1 67.0b 14.3b 13.47b 18.59 

 P (<0.05) NS 0.02 NS 0.04 0.04 <0.001 NS 

 Phytase       

 Phytase + 118.8 14.6 139.9 74.1 17.3 24.79a 19.93 

 Phytase - 81.4 14.8 120.4 77.9 15.8 10.35b 19.11 

 P (<0.05) NS NS NS NS NS 0.002 NS 

 Glucan       

 Glucan + 147.1 20.6 116.6 72.5 18.2 20.42a 22.34a 

 Glucan - 53.2 8.9 143.0 79.4 15.0 14.63b 16.76b 

 P (<0.05) <0.001 0.006 NS NS NS <0.001 0.03 

 Interactions       

 P*V NS NS NS NS NS 0.045 NS 

 V*B NS 0.004 NS NS NS NS NS 

 B*P 0.008 NS NS NS NS NS NS 

 P*V*B NS NS NS NS NS NS NS 
1 Values in the same column without common superscripts are significant different (P<0.05); 2 NS: Not significant 
(P>0.05);  
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6.3.6 L. intracellularis shedding 

At day 0, pigs were not shedding Lawsonia intracellularis. However, by day 25 

two pigs from room 1 (pen G2 and G4) and two pigs from room 4 (pen G6 and G7) 

were shedding between 5.9x103 and 3.1x103 L. intracellularis per gram of faeces. 

However, ileal sections were negative for L. intracellularis antigen staining (IHC) from 

these animals at necropsy after 28 days pv. Although strict quarantine procedures 

were followed it may be possible that several pigs may have been recently infected 

on-farm prior to transport and this resulted in low shedding, no lesions and a relative 

low L intracellularis IgG response in the serum.  

6.3.7 Pathology results  

Pathology results from goblet cells counts (Figure 32) showed small differences 

between groups (Figure 33). Stained ileal sections from groups G1 (112.1), G2 

(116.3) and G5 (111.9) showed the highest per field counts of goblet cells per field, 

and the lowest counts were found in groups G3 (91.5), G4 (100.4) and G5 (105.5). 

 

 

Figure 32: Ileal section (40x mag.), showing visualization of goblets cells (arrows) within 

enterocytes of pig (#B171) from G2 group, supplemented with β-glucan and L. intracellularis 

(vaccinated) after 28 days post-vaccination.  
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Figure 33: Mean goblet cells counts in ileal sections and mean from each group (G1-G8). 

 

6.4 Discussion 

In this study, the supplementation of 100 ppm Saccharomyces cerevisae yeast 

beta-glucan and 2,000 FTU/kg microbial phytase to weaner diets increased the 

mucosal immune response to an attenuated Lawsonia intracellularis vaccine, as 

evidenced by the significant increases in L. intracellularis specific IgG and the 

cytokines, IFN-γ and TNF-α in ileal mucosa. From the available literature, this is the 

first study to evaluate the response to L. intracellularis vaccination in pig’s fed diets 

supplemented with both these additives. Although, the effect of β-glucan on humoral 

and cellular immune cells is well studied, the effect of microbial phytase on immune 

response in pigs is relatively limited. As expected, vaccination enhanced the 

concentrations of L. intracellularis specific IgG in the serum and mucosa and these 

serological results are consistent with previous findings reported in Chapters 4 and 5. 

6.4.1 Potential effect of phytase on vaccination  

In this study, pigs consuming diets with phytase generated higher L. 

intracellularis specific IgG concentrations in mucosal scrapings compared with pigs 

fed the diets without phytase. This increase may possibly be associated with the 

activation of the innate immunity due to increased nutritional availability. Phytate 

can interfere with digestibility and chelate to nutrients, directly affecting its 
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absorption and utilization of nutrients (Simons et al., 1990). Therefore, the use of an 

enzyme phytase to break down phytate is used to release nutrients bound to phytate 

and potentially increase their digestion and utilization in the gut. It is possible that 

the increased bioavailability of nutrients in the gut (with phytase) will allow 

additional nutrients to be redirected for immune cell growth and replication. For 

instance, Zn its known to affect the recruitment of naïve T cells and cytokines 

synthesis (Peterson et al., 2008). As well as, the free inositol molecule has been 

speculated to somehow up-regulate cell division and differentiation (Menniti et al., 

1993) and to stimulate respiratory burst, bacterial killing and recovery by releasing 

IL-8, TNF-α and IL-6 and TGF-β1 cytokines (Eggleton, 1999). In the current study we 

observed higher pro-inflammatory cytokine IFN-γ concentrations in ileal mucosa 

(118. 8 pg/mL) in pigs fed diets that were supplemented with phytase than pigs fed 

the un-supplemented diet (81.4pg/mL). Pro-inflammatory cytokines have been 

shown to orchestrate the mechanisms responsible for supply of nutrients for 

proliferation of lymphocyte and macrophage population during periods of immune 

challenge (Klasing and Korver, 1997; Spurlock, 1997). Liu et al., (2008) evaluated the 

effect of phytase (500 FTU/kg) on the immune responses of broilers that were 

vaccinated with Newcastle disease virus (NDV) and fed a high phytate diet (0.44% 

phytate P). Their results showed that phytase supplementation increase intestinal 

secretory IgA, as well as increased CD3+CD4+ and CD3+CD8+ T lymphocyte numbers 

in serum on day 28 after vaccination (Liu et al., 2008).  

The CD4+ Th1 cells produce pro-inflammatory IL-2, IFN-γ and TNF-α cytokines 

promoting cell mediated immune responses against intracellular pathogens,  whereas 

CD8+ T mediate cytotoxic killing of infected cells (Emery and Collins, 2011). However, 

mucosa scrapings from the duodenum, jejunum and ileum of birds fed diets 

supplemented with 2,000 FTU/ kg did not express cytokines (IL1β and IL-6) nor 

innate immunity receptors TLR 2 and TLR 4 genes (Olukosi et al., 2013). In their 

study, birds were not challenged or vaccinated. Therefore it is plausible that if any 

changes in cytokine or innate immunity receptors did occur these may have been too 

subtle to detect. Shaw et al., (2011) reported that birds fed 500FTU/kg phytase added 

to broilers diets following an Eimeria sp. challenge had no effect on oocyst shedding.  

However, the average lesion scores of infected birds fed phytase were reduced in the 

caecum by 18 days post challenge. In addition, cytokine IL-17 sRNA expression in the 
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duodenum was increased in phytase supplemented broilers. IL-17 and T-reg cells are 

normally involved in the inflammatory regulation in the gut which accompanies 

neutrophil recruitment and activity against pathogens (Basso et al., 2009),  as well as 

promoting secretion of cytokines TGF-β and IL-10 by CD4+ Th2 cells (Emery and 

Collins, 2011). Since IL-17 is produced from T-reg T-cells, and activates production of 

TGF-β, these results may concur with our findings that phytase supplemented pigs 

exhibited a trend to higher TGF-β concentrations (139pg/mL) than non-

supplemented animals (120 pg/mL). Therefore, the results in this trial could be 

related to local gut restoration and wound healing as a consequence of the vaccine 

“stimulation” in the gut lumen.   

 

6.4.2 Diet effect on growth performance and digestibility 

 This study did not observe any increases in growth performance (ADFI, ADG 

and FCR) of pigs supplemented with phytase or β-glucan. Similarly, previous studies 

observed minimal effects on pig performance (FI, ADG and FCR) when pigs were fed 

β-glucan (0.25%) from either Laminaria digitata or Saccharomyces cerevisae β-glucan 

(Boling et al., 2000; Woyengo et al., 2008). The observations of growth performance 

effects of β-glucan could also be related to the source, the length and dose of 

supplementation. The available commercial E. coli phytases increased growth 

performances (ADG) by 33% when given to nursery pigs until 3 weeks (Jones et al., 

2010). Similarly, supplementing E. coli-phytase (2,500 FTU/kg) to P deficient diets 

(0.15%P) had increased ADG and FCR in weaner pigs during the 28 days trial (Veum 

et al., 2006). However, modest changes on ADG and FCR were observed in weaner 

pigs supplemented with 2,000 FTU/kg of E. coli derived phytase added to P deficient 

corn based diets (0.53% P) (Beaulieu et al., 2007). Possibly subtle differences in these 

phytase responses on growth performance could be due to differences in 

experimental designs and the effects are more pronounced when dietary deficiencies 

are corrected.  

In this study, no main effects of phytase, β-glucan or vaccination were found in 

nutrient digestibility in pigs. However, three way interactions were found for the AID 

of Mg, K, Fe, and Cu with the highest AID of Mg observed for the phytase 

supplemented and vaccinated groups G1 and G3. Madrid et al., (2013) investigated 

the effect of microbial phytase (500 FTU/kg) addition to low total phosphorus diet on 
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apparent faecal mineral digestibility. Results demonstrated that pigs supplemented 

with phytase had improved growth performance, however, increases in mineral 

digestibility retention was limited to P and Cu (39% and 33%, respectively). Adeola 

et al. (1995) also observed that supplemental phytase did not affect the retention, as 

percentage of intake, of either Zn or Mg.  

     

6.4.3 Diet effect on general health  

During this study, pigs were overall healthy and with occasional scouring, but 

without lesions and overall without L. intracellularis shedding after vaccination. The 

anti-nutritive compound phytate has been related to increase mucin excretion and it 

is suggested that the enzyme phytase could reverse this effect (Onyango et al., 2009; 

Selle et al., 2012). The quantity and quality of mucin produced by goblet cells, within 

the intestinal lumen has been directly correlated to protection against mechanical 

and chemical damage and pathogen invasions (Belley et al., 1999). Therefore, while 

excessive mucin excretion may compromise intestinal mucosa integrity, the opposite 

is also true, the absence of mucin could lead to increased pathogen attachment (Kim 

and Ho, 2010). Walk et al.,(2011) observed no effect of in feed E. coli 6-phytase (1,000 

FTU/kg) and Eimeria sp. vaccination on the number of goblet cells in the duodenum 

of birds 7 days post-vaccination. Similarly, in this study, no effect of numbers of 

goblet cells within the ileal mucosa was observed by histopathology. A tendency for 

increased number of goblet cells in β-glucan supplemented pigs was observed in ileal 

mucosa (mean 111) compared with the un-supplemented cohort (100). Smith et al., 

(2011) demonstrated that dietary supplementation of 300ppm of seaweed derived 

Laminarin sp. in pigs led to significant increases in MUC2 and MUC4 gene expression 

in ileum. The mechanisms by which glucans influence mucin production are not yet 

understood, but it has been speculated that alterations in the intestinal microbiota 

could influence mucin synthesis and secretion (Enss et al., 1994; Rice et al., 2005). 

 

6.4.4 Effect of β-glucan on L. intracellularis vaccination  

The activation of the mononuclear phagocyte system and protective 

inflammatory cytokines by β-glucans in humans and pigs has been directly correlated 

with innate immune responses (Decuypere et al., 1998; Brown and Gordon, 2001). 

Human whole blood incubated with soluble yeast β-glucan demonstrated an increase 
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in the production of pro-inflammatory cytokines TNF-α, IL-6, IL-8 and monocyte 

tissue factor (Adachi et al., 1994; Young et al., 2001). Similarly, Sonck et al., (2010) 

observed proliferation of lymphocytes, neutrophils and monocytes, with TNF-α and 

IL-1β production after porcine PMBCs were incubated with S. cerevisae β-glucans 

(200 μg/mL). In the current study, pigs fed β-glucan had raised mucosal L. 

intracellularis IgG antibody responses when compared with non-supplemented pigs 

(20.4 and 14.6 pg/ml, respectively). Mucosal IgA (22.3 and 16.7 pg/mL) 

concentrations were similar. The presence of immunoglobulin A and G antibodies in 

the intestinal lumen is often associated with increased protection against enteric 

pathogens (Jemmott and McClelland, 1989; Husband et al., 1996). Purified β-glucan 

from the same source (AB Vista), produced higher haemagglutination inhibition (HI) 

titres against Newcastle disease 14 days post-challenge in yeast supplemented 

broilers, compared with un-supplemented animals (Haldar et al., 2011). However, the 

effects of β-glucans on immunity are not reliably repeatable and so their ability to act 

against specific diseases cannot be predicted with any certainty. The administration 

of 90 mg/kg of purified yeast (1,3/1,6)-D-glucan to neonatal piglets that were 

vaccinated against human influenza, had no effect on intestinal or immune 

development of T cell phenotypes or cytokine gene expression and did not improve 

the antibody response to vaccination during the 21 day trial (Hester et al., 2012). 

Conversely, Stuyven et al., (2009), observed that in-feed β-glucan (Macrogard®, 

500g/ton) protected piglets against ETEC-F4 (E. coli) infection, and induced 

increased concentrations of F4 specific serum antibody. However, further research is 

required to specifically associate the effect S. cerevisae yeast β-glucan to proliferative 

enteropathy protection in pigs.   

 
Dendritic cell- associated C type lectin-1 (dectin-1) has been implicated as the 

pattern recognition receptor mostly expressed in porcine monocytes and other APCs 

that bind β-glucans (Sonck et al., 2009). The subsequent activation of NF-κB in 

monocytes and linkage of TLR2, results in enhanced phagocytosis, oxidative burst 

and cytokine production (Brown and Gordon, 2001; Sonck et al., 2009). These are in 

agreement to our findings of higher concentrations of IFN-γ (147.1pg/ml) and TNF-α 

(20.6) cytokines in ileal mucosa from pigs supplemented with β-glucan compared 

with un-supplemented groups (IFN=53.2 and TNF=8.9 pg/ml). Possibly yeast 
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activation of the innate immune function could lead to greater induction of acquired 

immunity and protection against specific diseases. For instance, reduced clinical signs 

and increased PRRS specific IFN-γ in PBMCs incubated with a high molecular β-1,3-

1,6-glucan preparation in vitro was observed 50 days after a challenge infection with 

PRRS virus (Xiao et al., 2004). However, the β-glucan structure and chemical 

composition can modulate their effects on growth performance, health and immunity 

(Sonck et al., 2011). Additionally, variations in the immune responses studied could 

be also be related to the dose of supplementation. Concentrations of IgM, IgA or CD4+ 

and CD8+ T-cells in ileal tissues (by IHC) of finishing pigs were not modified by the 

addition of S. cerevisae β-glucan (at 0.03% and 0.3%, AntafermMG®) (Sauerwein et 

al., 2007). However when 2.5% S. cerevisae β-glucan (EnergyPlus®) was given to 7 

days old piglets, an increased in TNF-α and IL-β1 mRNA expression in ileal tissues 

was detected (Eicher et al., 2006). 

In conclusion, the supplementation of Saccharomyces cerevisae yeast beta-

glucan and microbial phytase added to weaner diet affected the mucosal and 

systemic Lawsonia intracellularis local immune response after vaccination. This study 

showed that L. intracellularis vaccination with an attenuated infection to growing 

pigs may be influenced by diet.  It is possible that dietary components influence the 

efficacy of concomitantly innate and acquired immune responses against specific 

pathogen and protection. However, further research is required to confirm these 

finding and relate to specific disease protection.  
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 Chapter 7 General discussion 

As the current limitations on the use of in-feed antibiotics become more 

widely accepted and implemented, sanitary methods and vaccination assume a 

greater importance to maintain the productivity and profitability of pig herds. 

Currently, control of proliferative enteropathy relies on antibiotic medication and 

vaccination. As pressures to reduce antimicrobial growth promoters continue, the 

use of vaccination is considered the best alternative to protect herds from disease. 

The results in this thesis provide novel information on the effects of vaccine dose 

response, route of immunisation and in-feed additives on the systemic and local 

mucosal responses to vaccination with an attenuated bacterium. The experimental 

design also addressed whether an immune response could be confidently correlated 

with successful vaccination (i.e. the magnitude of the responses is predictive of 

protective immunity). The investigations in this thesis have expanded the limited 

information available in the immunological responses to the attenuated Lawsonia 

intracellularis vaccine Enterisol® ileitis in pigs. 

If they are to remove in-feed antibiotics and rely on vaccines to prevent disease, 

producers need to be assured that pigs are protected after vaccination. To define the 

protective immune responses and the adequate level of protection induced in 

experimental and on-farm vaccination with ten-times dose of L. intracellularis (105.9 

TCID50) were performed. The dose reliably induces detectable local and systemic 

antibody and cytokine responses (Chapters 4 and 5). From the data in chapter 4, the 

induction of these responses indicates that protective immunity is generated. Since 

sampling of mucosal responses is not practical, the detection of Lawsonia-specific 

serum antibodies is a feasible indicative of protective immunity after infection 

(Collins and Love, 2007). Additionally, using a standard dose of L. intracellularis (104.9 

TCID50) induced low concentrations of L. intracellularis antibody in the ileal mucosa 

and did not stimulate detectable concentrations of mucosal cytokines (Nogueira et al., 

2013 ). So, from the results in this thesis and from other approaches such as gene 

expression (Jacobson et al., 2011a) and flow cytometry (Cordes et al., 2012), a 

reliable immune correlate or biomarker for on-farm use could not be recommended. 

The dose-dependent induction of protection against virulent L. intracellularis 

challenge was demonstrated by a significant reduction of PE lesion scores and the 
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magnitude and duration of bacterial shedding in faeces in all vaccinated pigs. 

Previous studies have related the lower initial oral challenge dose (103 L. 

intracellularis) with minimal clinical expression and delayed bacterial shedding in 

faeces and reduced histological changes when compared with higher doses (1010 L. 

intracellularis) (Collins et al., 2001).  

Additionally, there were significant variations in the concentrations of 

responses depending on the individual pig, experiment or herd (pen or on-farm) and 

the timing of the sample collection. Variation in antibody titres generated after 

natural infection is well-described as being affected by sampling time and original 

infective dose (related to severity of the primary infection) (in chapters 4 and 5; 

Guedes and Gebhart, 2003b; Collins and Love, 2007). Timing of sampling is critical, 

especially when attempts to account for individual pig variation require a quantum of 

animals to be sacrificed to determine mucosal responses. The studies included in this 

thesis was limited to sampling prior to 21 days after vaccination (days 7, 9-10 or 17) 

since previous reports documented detectable serum responses by this time (Kroll et 

al., 2004; Walter et al., 2005). It was gratifying to detect significant differences in 

mucosal cytokine responses at 9 and 17 days after vaccination, even though the 

spectrum of responses appeared to reflect the dynamics of immune activity. Here, 

some pigs appeared by day 17 to be resolving pathology (higher IL-10) while others 

remained activated with increased TNF-α and IFN-γ.  The Lawsonia intracellularis 

specific IgG concentrations in ileal mucosal secretions also ranged from 14% and 

45% in experimental and on farm trials after 17 days post-vaccination; and around 

21% after 28 days post- vaccination.  

L. intracellularis pathogenesis in the intestinal mucosa is not understood, but 

individual differences in the gut microflora of these piglets could explain some 

variability in infection rates and immune reactivity (Molbak et al., 2008). The 

description of the proportion of microbial and L. intracellularis populations in the 

pigs in this study was thwarted by technical difficulties in optimizing a 16S microbial 

population real-time PCR. However, given the effects of L. intracellularis on carcass 

characteristics (Collins et al., 2009; Collins et al., 2010a), it would be a useful adjunct 

to this work in attempting to define the effects of infection on gastrointestinal 

microflora and vice-versa.  
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As part of routine farm management, piglets are often vaccinated while they’re 

still suckling to overcome the need to remove antibiotics for a week around 

vaccination. In some herds, this leads to reduced vaccine efficacy because maternal 

antibodies transferred to the piglet in the sow’s milk can inactivate the vaccine. 

Efficacy data on alternative sites for delivering mucosal vaccines, such as intranasal, 

intraperitoneal and intrarectal vaccination may allow producers to vaccinate and 

protect weaner pigs from ileitis without needing to remove antibiotics used to treat 

other infections. This thesis demonstrated the success of intramuscular (IM) 

vaccination and noted the systemic and local immunological responses after 

intraperitoneal (IP) inoculation of the L. intracellularis vaccine paralleled those 

induced by oral vaccination. These IM and IP routes would presumably act by 

neutralising antibody and blocking L. intracellularis attachment and colonisation. In 

horses, intra-rectal vaccination with Enterisol® Ileitis  induced high  titres (120) of L. 

intracellularis IgG responses by IPMA (Pusterla et al., 2012b). The intraperitoneal 

route of vaccination has been previously used to protect against disease in pig herds 

(Sheldrake et al., 1993; Djordjevic et al., 1997). An intraperitoneal vaccination against 

Salmonella sp. observed protection and increased IgG and IgA serum responses that 

were comparable to those in orally vaccinated birds (Muir et al., 1998). As noted in 

chapter 5, the comparable spectrum of immune responses generated after 

vaccination and the subsequent protection after challenge seen in Chapter 4 data 

strongly suggested that significant protection against L. intracellularis would occur 

after intraperitoneal vaccination. In fact, anecdotal industry personal communication 

would indicate that this may occur. 

It was highly likely that the inoculation of L. intracellularis intramuscular or 

intraperitoneal would probably kill the organism quickly. With inactivated or subunit 

vaccines (or killed attenuated vaccines), the addition of an adjuvant to the L. 

intracellularis vaccine would possibly induce greater mucosal immune responses and 

further protection. As observed previously, killed L. intracellularis in incomplete 

Freunds adjuvant vaccine given intramuscularly to pigs reduced faecal L. 

intracellularis counts by 98.5% (Dale et al., 1997). Additionally, whereas L. 

intracellularis oral live vaccine is very efficient in protecting pigs against proliferative 

enteropathy disease and increasing growth performances, an inactivated killed 
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vaccine could also induce protection. One of the benefits of using inactivated vaccines 

is the ability to amplify the responses against specific pathogens strains by combining 

different pathogens in one unique suspension. However, type of antigen to be used, 

cost of production and practicability of administration needs to be also considered. 

Recently, a patent has been registered presenting an inactivated Lawsonia 

intracellularis, Mycoplasma hyopneumoniae and PCV2 combo vaccine given 

intramuscularly. These initial studies demonstrated to be positive in protecting pigs 

against PE disease (reducing lesions and clinical signs), however, still information 

regarding field efficiency is needed.  

Another approach to the replacement of in-feed antibiotics is to uniformly and 

non-specifically, heighten the immune “competence” to combat pathogens within pig 

herds by in-feed additives. Chapter 6 was the first approach to evaluate the effect of 

Saccharomyces cerevisae derived β-glucan and microbial phytase on the responses to 

vaccination with Lawsonia intracellularis. Any synergic effect of immunomodulators 

in feed to amplify responses after oral vaccination is particularly appealing given the 

significance of gastrointestinal pathogens on pig production. This type of approach 

and its effect on productivity has been an area of increasing research in international 

pig production (Gallois et al., 2009; Heo et al., 2013). In this study, pigs consuming a 

weaner diet with added β-glucan raised mucosal L. intracellularis specific IgG 

antibody responses when compared with non-supplemented pigs, again indicating 

immunity against L. intracellularis challenge (in line with chapter 4). However, 

results from one trial are not sufficient and further investigation would be required 

to make predictive assertions about the interaction of diet and their application 

towards improving mucosal immunity in pigs. The effects of β-glucan are mediated 

through innate immunity by receptors-mediated interactions with macrophages, 

neutrophils and/or monocytes (Brown and Gordon, 2005), and were supported from 

the study in Chapter 6 which also found higher concentrations of IFN-γ and TNF-α in 

ileal secretions.   

 

Phytases have been used in poultry and pigs herds to degrade plant phytate-P 

to release P, which would otherwise be expelled in the faeces. And since phytate is 
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able to chelate many cations, its hydrolysis has been associated with improved 

mineral utilization. Pigs consuming a weaner diet plus phytase generated higher L. 

intracellularis specific IgG concentrations in ileal mucosa secretions compared with 

pigs eating the standard diet. Again, comparing titres with those reported in chapter 

4, it would anticipate protection against L. intracellularis disease in all groups 

vaccinated. The detection of specific IgG as an indicator of vaccine stimulation and the 

generation of protective immunity, possibly the supplementation with β-glucan could 

increase the antibody response generated by a standard dose of Enterisol® Ileitis to a 

detectable level and provide the relevant immune biomarker. The continual 

activation of the innate immune system in a state of readiness by feed additives (such 

as β-glucan in chapter 6) could possibly require greater energy input and the 

enhanced inflammatory sensitivity may detract from weight gains. A better method 

might be to increase the efficiency of digestion with phytase which did not promote 

inflammatory cytokine production (group 7 pigs in chapter 6) and enhance the 

availability of nutrients for immunity without compromising growth.  

The implementation of strategies to induce the development of immunity to L. 

intracellularis by vaccination, as part of a farm health plan, leads to improved animal 

health, welfare and productivity while reducing reliance on antibiotics for preventing 

disease outbreaks. The results in this thesis have provided confirmation that 

alternative routes of vaccination as well as different approaches to nutritional 

strategies could provide alternative means to augment the induction of mucosal 

immune responses after vaccination. 
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Clinical Observation Record  Study Number:                                    
Room #  

Group Pig ID Diarrhoea Score Behaviour Body Condition Score 

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

  1       2       3       4 1      2     3    4 1        2        3  

 
Diarrhoea Score Behaviour  Body Condition 
1 = none  1 = normal          1 = normal                                                                                                                           
2 = semi-solid, no blood 2 = slight to moderately depressed, 

will stand 
2 = mild to moderately 
gaunt (thin) 

3 = watery, no blood/dark 
faeces 

3 = severely depressed or 
recumbent                   

 3 = severely gaunt 

4 = blood tinged faeces, loose 
or formed 

4 = excitable  

Note: If an animal is dead, record “found dead” in comments column and assign total score of 
20 
 
Observed by________________________________ Date _________________  
     

Recorded by _______________________________ Date _____________________ 
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