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Thesis Summary 

This project constitutes the first comprehensive investigation of endogenous retroviruses 

(ERVs) in crocodilians. The studies presented in this thesis comprise two major themes. The 

first of these is the characterisation of ERVs from crocodilians, with a focus on those families 

that show potential for replication. Interwoven through the experimental chapters is an 

evaluation and discussion of the various methods used to identify and investigate ERVs, and 

their relative merits for the study of ERVs in a non-model organism. 

This project was initiated prior to the availability of the crocodilian genome sequences, 

necessitating the use of PCR based and hybridisation based screening methods for early 

investigations. Prior to the studies outlined here, knowledge of ERVs in these species was 

mostly limited to cross species investigations of diversity based on conserved regions and a 

single study of the genomic organisation of a particularly divergent ERV lineage from 

C. niloticus. Thus it was important to establish baseline knowledge of the ERV diversity that 

may be present within a species, both from a population perspective using C. porosus as the 

model species (Chapter 2), and within individuals using samples from various tissues from C. 

johnstoni (Chapter 3). These studies provided initial insights into the range of ERV 

integrations that may be present in crocodilians, and revealed evidence of species specific 

ERV activity and evolution.  

These PCR surveys also suggested that at least one lineage of ERVs had recently been active 

in Crocodylidae, prompting the targeted screening of the C. porosus genomic BAC library to 

generate additional data from other ERV domains (Chapter 4). This also allowed the 

reconstruction of the likely proviral genomes, and characterisation of the genomic structure 

of these ERVs. This study provided the first insights in to crocodilian ERVs from a genomic 

perspective, with a preliminary estimation of the ERV content of the C. porosus genome 

suggesting a relatively sparse, but not unusually low ERV population when compared other 

vertebrates. Analysis of the ERV proviral genomes suggested that many crocodilian ERVs 

represent intermediates between the recognised exogenous retroviral genera.  

The availability of genomic sequence data facilitated further characterisation of crocodilian 

ERVs, providing a new perspective on the evolution of crocodilian ERVs and insights into 

the diversity of ERVs that may be present in non-mammalian vertebrates. Chapters 5 and 6 
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present a discussion of the relative merits of bioinformatics tools developed for genomic 

studies of ERVs, and a quantification of the ERV complement of the crocodilian genomes. 

From a technical perspective, these chapters highlight the difficulties of studying ERVs in 

taxa where these elements have not been well characterised, and offer some suggestions for 

the adaptation of current methodologies for such studies. 

Finally, the comparative study presented in Chapter 7 represents the first comprehensive 

study of ERVs across non-mammalian taxa and reveals the remarkable levels of ERV 

diversity that may be found in the genomes of three crocodilians (A. mississippiensis, 

C. porosus, and G. gangeticus). The identification of a new class of ERVs, and a large 

number of intermediary ERV families is of particular significance as it lends support to 

theories of a gradual evolution of retroviral genera. Furthermore, these lineages are primarily 

basal to the other ERV classes, falling between these and the Gypsy transposons, suggesting 

that these lineages may represent preserved copies of the early predecessors of modern 

exogenous retroviruses. Lastly, the identification of a potentially exapted ERV in C. porosus 

is an interesting development that warrants further investigation, and further highlights the 

significance that ERVs and other related genomic elements play in shaping the genomes of 

their hosts. 

Overall, this project has demonstrated that crocodilians, and likely other non-mammalian 

vertebrates, are a rich source of novel ERV diversity, and may provide unique insights into 

the evolution of modern exogenous retroviruses and their hosts. It has also highlighted the 

relative merits of a wide variety of ERV detection techniques, both molecular and 

bioinformatic, and how these may be adapted for studies of previously uncharacterised taxa. 

This project will provide a useful resource to facilitate further investigations into the 

significance of ERVs in crocodilian biology, and offers insights into how these approaches 

may be translated to studies of other vertebrate taxa. 
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Chapter 1: Introduction 

1.1:  Crocodylus porosus 

1.1.1:  Introduction to Order Crocodylia 

Crocodylia and its sister taxa Aves represent the two surviving orders of Archosauria, and 

form the basal taxa of Class Reptilia. There are currently 23 recognised species within the 

Order Crocodylia, belonging to three families: Alligatoridae, Crocodylidae, and Gavialidae. 

Alligatoridae consists of the genera Alligator, Caiman, Paleosuchus and Melanosuchus, 

Crocodylidae consists of Crocodylus, Osteolaemus, and Mecistops, and Gavialidae consists 

of Tomistoma and Gavialis (Li et al., 2007, Roos et al., 2007). The species that make up each 

of the genera are shown below, in Table 1.1. 

Crocodilians have a wide global range with populations across much of the tropical and 

subtropical regions, although this distribution is more restricted at the family level. 

Alligatoridae is largely confined to the Americas, with the exception of the critically 

endangered A. sinensis which is restricted to a small region along the lower Yangtze River 

and surrounding provinces in China. Crocodylidae has a much wider geographic distribution, 

ranging from Australia, Melanesia, and South East Asia, to Africa, and Central America. 

Gavialidae is restricted to areas of South East Asia, India, and Nepal (Figure 1.1) (Molnar, 

1993). 

There is an ongoing debate as to the correct terms and groupings for species within this order 

(Brochu, 2003). To remove confusion for the purpose of this thesis, the term �crocodilian� 

will be used to refer to the order Crocodylia and all species within it. 
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Table 1.1: Classification of crocodilian species. 

Family Alligatoridae 

Alligator 

 A. mississippiensis American alligator  

 A. sinensis Chinese alligator  

Caiman 

 C. crocodylus Spectacled caiman  

 C. latirostris Broad-snouted caiman  

 C. yacare Yacare caiman  

Melanosuchus 

 M. niger Black caiman  

Paleosuchus 

 P. palpebrosus Cuvier�s dwarf caiman  

 P. trigonatus Schneider�s dwarf caiman  

    

Family Crocodylidae 

Crocodylus 

 C. acutus American crocodile  

 C. intermedius Orinoco crocodile  

 C. johnstoni Australian freshwater crocodile  

 C. mindorensis Philippine crocodile  

 C. moreletii Morelet�s crocodile  

 C. niloticus Nile crocodile  

 C. novaeguineae New Guinea crocodile  

 C. palustris Mugger crocodile  

 C. porosus Saltwater crocodile  

 C. rhombifer Cuban crocodile  

 C. siamensis Siamese crocodile  

Mecistops 

 M. cataphractus Slender-snouted crocodile  

Osteolaemus 

 O. tetraspis African dwarf crocodile  

    

Family Gavialidae 

Gavialis 

 G. gangeticus  Indian gharial  

Tomistoma 

 T. schlegelii False gharial  

 



3 
 

 

Figure 1.1: Global distribution of the extant crocodilians. Broad-scale distributions are 

shaded as indicated. The arrow indicates the region in China where A. sinensis is found. 

Adapted from Molnar (1993) and the IUCN Red List data for A. sinensis (Crocodile 

Specialist Group, 1996a). 

 

1.1.2:  Distinguishing between species 

Crocodilians share a very similar gross morphology, and aside from the general sizes of the 

different species, most variation and taxonomically informative characteristics are found 

either in the scaling patterns of the skin, or in the cranial regions (Grigg and Gans, 1993, 

Molnar, 1993). Of the three crocodilian families, Alligatoridae tend to have broader, rounder 

snouts, while Crocodylidae tend to be more pointed. This varies from species to species 

within Crocodylidae, with some species (e.g. C. porosus) having broader snouts, while others 

(e.g. C. johnstoni) have much narrower snouts (Grigg and Gans, 1993). The gavialids 

(G. gangeticus and T. schlegelii) are unusual among Crocodylidae with exaggerated long, 

narrow snouts and it is thought that morphologically these species demonstrate a reversion to 

an ancestral form (Figure 1.2). This atavism is likely the cause for the traditional 

morphological placement of gavialids as the basal taxa of Crocodylia (Gatesy et al., 2003).  

The other major distinguishing characteristics of crocodilian species are their scaling patterns. 

This is a particularly important feature for determining the species of origin for crocodilian 

skins (Brazaitis, 1987, Brazaitis, 1989). Notable features are the presence and location of 

osteoderms (particularly the nuchal crests), or bony plates within the scales, integumentary 
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sense organs, and scaling patterns (Grigg and Gans, 1993). Integumentary sense organs are 

present on the ventral scales of species in Crocodylidae and Gavlialidae, but are absent in 

Alligatoridae. Osteoderms are present on the ventral scales of many crocodilian species, and 

their pattern, shape and size are used for identification. Notably, osteoderms are absent on 

ventral scales of C. porosus. Similarly, the number, shape and arrangement of scales on the 

belly and head can be used to differentiate between crocodilian species (Brazaitis, 1987, 

Brazaitis, 1989). 

 

1.1.3:  Taxonomy of Crocodylidae 

The evolutionary history of the Order Crocodylia remains a hotly contested subject, despite 

being one of the oldest groups of terrestrial vertebrates. While it is widely accepted that 

crocodilians and avians comprise the basal clade of modern day Reptilia, the relative 

positions of the crocodilian genera are still under debate. Depending on whether 

morphological or genetic data are used, and the types of markers employed for this purpose, 

Gavialidae is either placed basal to the two other families, or as a basal lineage within 

Crocodylidae (Densmore and Owen, 1989, Hass et al., 1992, Norell, 1989). This later 

classification is consistent with the genetic data to date, and there is growing evidence to 

support the position of Gavialidae as a separate family (Densmore and Owen, 1989, 

Densmore and White, 1991, Harshman et al., 2003, Hass et al., 1992, Janke et al., 2005, Man 

et al., 2011, Oaks, 2011). 

Protosuchia is the earliest known crocodilian, and based on fossil records, existed during the 

Late Triassic period. Alligators and crocodiles are thought to have diverged during the late 

Cretaceous period, while the crocodile/gharial split occurred during the Early Tertiary period 

(Hass et al., 1992). Subsequent DNA analyses have placed the Crocodylia/Aves divergence at 

254 MYA (Janke and Arnason, 1997), the divergence of alligators and crocodiles at 97�103 

MYA, and the crocodile/gharial divergence at approximately 47�49 MYA (Hugall et al., 

2007, Roos et al., 2007).  

Within Crocodylidae, the order of species divergence is also contentious although a growing 

amount of genetic sequence data support the current taxonomy as shown in Figure 1.2. Under 

this taxonomic scheme, O. tetraspis and M. cataphractus are distinct from Crocodylus, and 
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are likely sister taxa to each other (Gatesy et al., 2004, McAliley et al., 2006, Oaks, 2011, 

Poe, 1996). Crocodylus is regarded as a monophyletic clade within Crocodylidae, although 

until recently, the grouping of taxa within this clade has remained unclear (Densmore and 

White, 1991, Man et al., 2011, Oaks, 2011). 

The species within Crocodylus can largely be divided into three groups based on geographic 

locations (Meredith et al., 2011, Oaks, 2011). The Australasian group consists of C. 

johnstoni, C. novaeguineae, C. mindorensis, C. porosus, C. palustris and C. siamensis. The 

African species include two proposed species of C. niloticus (depicted as east and west in 

Figure 1.2) (Hekkala et al., 2011, Schmitz et al., 2003), and the New World species from the 

Americas consist of C. rhombifer, C. moreletii, C. acutus, and C. intermedius.  

Genetic sequencing of mitochondrial and nucleic DNA, and the development of species or 

sub-group specific microsatellite markers has facilitated the identification of subspecies and 

cryptic species within currently defined species units, such as within C. niloticus (Schmitz et 

al., 2003) and O. tetraspis (Eaton et al., 2009). Genetic studies have also shown that 

hybridisation can occur between many of the species within Crocodylus, both in the wild, and 

in captivity (Fitzsimmons et al., 2002, Milián-García et al., 2011, Ray et al., 2004), raising 

concerns for the preservation of wild populations, and identification of suitable captive 

individuals for re-introduction into wild populations. 
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Figure 1.2: Currently accepted crocodilian taxonomy and gross cranial morphology of key 

crocodilian species. Adapted from Oaks et al. (2011) and Hekkala et al. (2011). Crocodilian 

images courtesy of Debbie McBride (Mississippi State University, Institute for Genomics, 

Biocomputing and Biotechnology). 

 

1.1.4:  Crocodylus porosus 

There are two species of crocodilians found in Australia, C. porosus, and C. johnstoni. 

C. porosus has the broadest geographical distribution of all crocodilian species with 

populations in Australia, the Indo-Pacific region, South-East Asia, and up to India (Figure 

1.1) (Crocodile Specialist Group, 1996c, Russello et al., 2007). In Australia, its range extends 

from Rockhampton in South-East Queensland, through to Broome in Western Australia. 

C. johnstoni is endemic to Australia, and shares a similar distribution to C. porosus, although 

its range extends further inland (Figure 1.3) (Cogger, 1992, DEC, 2009, Leach et al., 2009, 

QEPA, 2007).  
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Figure 1.3: Distribution of C. porosus and C. johnstoni within Australia. Adapted from 

Cogger (1992). 

 

C. porosus is one of the most adaptable crocodilian species, and can be found in a diverse 

range of habitats, from tidal rivers and channels on coastal floodplains, to billabongs, 

swamps, and some freshwater river channels (Webb et al., 1987). This species is particularly 

unique among crocodilians as it is able to live and breed successfully in a wide range of 

habitats from freshwater to highly saline conditions (Grigg et al., 1980, Taplin and Grigg, 

1989). Of particular note is the capacity for these animals to travel long distances by sea, 

although this is noted to be atypical behaviour for the species as a whole (Allen, 1974).  

The abundance and density of C. porosus populations vary depending on the quality of the 

habitats, with vegetation, rainfall, and the presence of suitable nesting areas having the 
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greatest effects (Fukuda et al., 2007, Webb et al., 1987). Habitat degradation has also been 

cited as a problem affecting crocodile abundance in some countries, although hunting has 

been the largest cause of population decline (Webb et al., 1987). 

Commercial hunting in Australia in the mid-20th century decimated crocodile populations, 

leading to the implementation of a protection program for the species (Webb et al., 1987). 

This has included the implementation of strict licensing conditions for the regulation of 

ranching (egg collection and subsequent raising in captivity), removal of crocodiles from 

highly populated areas, and commercial hunting. Subsequently, this has ensured economic 

incentives for landowners to conserve important crocodile habitats on their properties and 

provided some compensation for resultant stock losses (DEC, 2009, Leach et al., 2009, 

QEPA, 2007). These programs have had a significant contribution to the recovery of the 

species in Australia, with many habitats now thought to be reaching carrying capacity (Leach 

et al., 2009).  

Pre-protection estimates of populations in the Northern Territory suggested that there were 

between 3000 and 5000 individuals remaining, including hatchlings (Webb et al., 2000). 

Since then, numbers have recovered to approximately pre-hunting levels, with the population 

in 1998 estimated at between 70,000 and 75,000 non-hatchling individuals (Webb et al., 

2000). While C. porosus is still considered a protected species, it is no longer listed as 

threatened (Crocodile Specialist Group, 1996c). Internationally, the species is listed as CITES 

Appendix I, with the exception of populations in Australia, Indonesia and Papua New Guinea 

which are listed as Appendix II (Crocodile Specialist Group, 1996c). 

 

1.1.5:  Farming of C. porosus 

The farming of C. porosus is worth over AU$8 million annually in skin and meat sales. There 

are currently 14 commercial farms operating across northern Australia, including five in the 

Northern Territory, six in Queensland, and three in Western Australia (Foster, 2009). 

Currently, crocodile farming consists mainly of a combination of captive breeding and 

ranching, where eggs are harvested from wild nests (Leach et al., 2009, Webb et al., 1987). 

Some animals also enter the commercial system through the management programs for 

�problem� crocodiles. These are animals captured and removed from areas where they are 
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perceived to cause a danger to public safety or loss of livestock (DEC, 2009, Leach et al., 

2009, QEPA, 2007, Webb et al., 1987).  

The main product of the crocodile industry are the skins which account for approximately 80-

-90% of the market value of the animal (Shim-Prydon and Camancho, 2007). Skin production 

in Australia totalled about 26,990 skins in 2009, and originated from a combination of captive 

bred and ranched animals (Caldwell, 2011). The target market for the crocodile skins are the 

exclusive fashion houses of Europe, such as Hermes. These well-reputed brands produce high 

quality handbags and shoes. The remaining market value consists of meat sales and novelty 

items such as heads, skulls, teeth, feet and tail tips (Shim-Prydon and Camancho, 2007). 

 

1.1.6:  Diseases of farmed crocodiles 

Crocodilians are susceptible to a number of viral, bacterial and fungal diseases. While these 

do not appear to pose any particular threat to wild populations, the captive production of 

animals may initiate or exacerbate these disease threats. From, the total number of mortalities 

(13.87%) on Darwin Crocodile Farm between 2005�2007, 12% were attributable to disease 

(Isberg et al., 2009). By far the largest cause of on-farm mortality is runtism (49%), followed 

by deaths from unknown aetiologies (23%). Stress-related deaths were also a considerable 

problem accounting for 7% of the total. 

Management-related stress is presumed to be the main contributing factor for many disease 

outbreaks in farmed crocodilians. Animals exposed to high stress or less than optimal 

conditions have decreased immune responses (Morici et al., 1997) making them more 

susceptible to pathogens. This can lead to infection and the generation of disease by 

organisms that are not normally pathogenic. Disease as a result of acute stress from short 

term procedures such as handling and moving of animals can easily be identified and 

treatment obtained (Isberg et al., 2009). Chronic stress, on the other hand, is the result of 

prolonged or persistent exposure to external or internal stressors, and can be caused by 

suboptimal environmental conditions, competition for resources, or prolonged exposure to 

disease agents (Elsey et al., 1990, Huchzermeyer, 2003). This makes it more difficult to 

identify the resulting disease incidences or remedy the cause.  
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A number of viral diseases have been identified in crocodilians, including pox viruses, 

adenoviruses, herpesviruses, flaviviruses and influenza (Huchzermeyer, 2003, Melville et al., 

2012). Various strains of pox viruses have been isolated from crocodilians, and are frequently 

associated with the development of lesions, both internally and externally (Buenviaje et al., 

1998, Wellehan and Johnson, 2005). Adenoviruses have been associated with hepatitis in 

infected animals, and have been implicated in the incidence of runting in farmed C. niloticus 

(Buenviaje et al., 1994, Revol, 1995, Wellehan and Johnson, 2005). Herpesviruses have been 

identified in C. porosus, C. johnstoni, and A. mississippiensis, and are associated with a 

variety of clinical symptoms including lesions and ulceration of mucosal tissues (Govett et 

al., 2005, Melville et al., 2012). West Nile virus has been associated with disease in captive 

A. mississippiensis, and has been isolated from C. niloticus with no apparent clinical 

symptoms. Influenza viruses have also been isolated from captive individuals 

(Huchzermeyer, 2003, Miller et al., 2003, Wellehan and Johnson, 2005).  

Bacterial pathogens are also a significant cause of disease in farmed crocodiles. These 

diseases include bacterial septicaemia, which has been attributed to a variety of bacterial 

pathogens, and chlamydiosis (Ladds and Sims, 1990, Revol, 1995). Septicaemia, in 

particular, is caused by a range of bacteria commonly found in the environment, such as 

Providencia rettgeri, Morganella morganii and Edwarsiella tarda (Foggin, 1992, Ladds et 

al., 1996). These potentially pathogenic bacteria have been isolated from apparently healthy 

individuals, suggesting that other external stressors may predispose animals to opportunistic 

infections (Foggin, 1992). Given that outbreaks of bacterial disease occur after management-

related stress (Foggin, 1992), or exposure to suboptimal environmental conditions (Ladds et 

al., 1996), it is probable that a depressed immune response as a result of these stressors is a 

major contributing factor. Clostridial bacteria also have been associated with diseases in 

captive animals (Buenviaje et al., 1997, Buenviaje et al., 1998).  

Likewise, a number of parasites such as Coccidia and Metaprotozoa have been identified in 

crocodilians (Ladds and Sims, 1990). Coccidial infections have been observed in a number of 

diseased animals in New Guinea, and were determined to be the primary cause in a large 

proportion of cases reported (Ladds and Sims, 1990). Metaprotozoan parasites such as 

Helminths and Pentastomids have also been observed though these have usually occurred in 

conjunction with other pathogens, and as such, the primary causative factor for disease is 

unclear (Ladds and Sims, 1990). 
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Opportunistic fungal infections have also been noted, and are likely to be a result of poor 

management and high stress leading to immunosuppression in the host animal (Buenviaje et 

al., 1994). In particular, Mycobacteria and Dermatophilus sp. have been associated with 

lesions in a number of species. Systemic fungal infections appear to be associated with high 

stress conditions such as low environmental temperatures (Buenviaje et al., 1994).  

Non-transmissible diseases in captive crocodilians include congenital deformities, 

miscellaneous management-related disorders and those with no known aetiology. Common 

congenital deformities include tail deformities, absence of tails, cleft palate, weak yolk scar 

sutures, jaw deformities and syndactyly or polydactyly (Huchzermeyer, 2003, Isberg et al., 

2009). Management-related disorders can include the effects of inappropriate temperatures 

(Turton et al., 1997), stocking densities (Elsey et al., 1990, Morpurgo et al., 1992), and 

nutritional deficiencies (Buenviaje et al., 1994, Huchzermeyer, 2003). These disorders, whilst 

not necessarily causing disease themselves, can predispose the animals to stress allowing the 

above-mentioned diseases to occur. Of particular concern are the deaths with no known 

aetiology (23%). Generally, these animals return negative bacterial pathology findings 

lending to the theories that either the animal has succumbed to prolonged stress or an 

underlying viral infection may be the cause (Isberg et al., 2009). 

Runting is a condition characterised by continued retardation of growth and development, 

where affected individuals fail to thrive. This condition has only been noted in captive 

hatchlings (Buenviaje et al., 1994, Huchzermeyer, 2003, Isberg et al., 2009, Ladds and Sims, 

1990), and it is unclear whether it occurs in wild populations to the same degree. As such, 

further investigation is needed to determine if the additional environmental control of 

artificial incubation allows these animals to fully develop and hatch, which would not occur 

in wild populations, or whether affected hatchings just do not survive. Runting in farmed 

C. porosus hatchlings is the major cause of juvenile mortality, making up approximately 50% 

of total mortalities (Isberg et al., 2009). This is similar to reported rates in C. niloticus, where 

runting is estimated to cause deaths in 5�15% of hatchlings, decreasing to 0�2% in animals 

0.7 m and above (Revol, 1995).  

Recent studies to elucidate the cause of this disease in C. porosus hatchlings have indicated 

that affected animals show increased levels of corticosterone, a reduction in the size and 

prevalence of lymphoid tissue, and increased vacuolation of adrenocortical cells, indicative of 
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chronic stress (Isberg et al., 2009). Stress is also suggested to play a role in this condition in 

C. niloticus (Huchzermeyer, 2003). However, it is unlikely that stress is the sole causative 

factor, as animals do not recover after removal of stressors or mediation of the environment. 

Bacteriological and parasitological factors are also unlikely to be responsible, although it has 

been suggested that immune suppression from chronic stress may make runts more 

susceptible to disease (Huchzermeyer, 2003, Isberg et al., 2009, Morici et al., 1997).  

While early studies have attributed runting as a failure to adapt to captive conditions, it has 

more recently been acknowledged that there may be a genetic component to this disease 

(Huchzermeyer, 2003, Isberg et al., 2009, Peucker and Mayer, 1995). In particular, Isberg et 

al. (2009) noted that area and clutch related factors may have contributed to the incidence of 

runting among hatchlings. Analysis of clutches of known parentage also found the effect of 

parental pairs to be a significant factor, increasing the interest in identifying the underlying 

genetic causes. 

 

1.1.7:  Genetic studies of C. porosus 

Due to its broad geographic range and economic significance, C. porosus is one of the better 

studied crocodilian species, both in terms of genetic diversity as well as phylogeographically. 

Analysis of C. porosus mitochondrial DNA (mtDNA) haplotypes across the range of this 

species has demonstrated low levels of diversity and a lack of deep phylogeographic 

structures, although it has been noted that mtDNA haplotypes do appear to show some 

geographic localisation (Gratten, 2003, Luck et al., 2012, Russello et al., 2007). This lack of 

population structure of C. porosus in the Northern Territory, Australia is further corroborated 

by studies of the major histocompatibility complex (MHC). Additionally, these data suggest 

that at these loci, levels of genetic diversity are comparable with that of other reptilian species 

(Jaratlerdsiri et al., 2012).  

The development of the crocodile farming industry in Australia has also resulted in increased 

research into desirable traits for implementation of breeding programs. This research has 

included the development of microsatellite markers for use in parentage testing for farm bred 

crocodiles (Isberg et al., 2004a) and the development of a genetic improvement program 

(Isberg et al., 2004b). This program includes the development of heritability measures and 
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quantitative analyses of economically important traits, such as reproductive success, growth 

rates, juvenile survival, and skin traits (Isberg et al., 2009, Isberg et al., 2005a, Isberg et al., 

2005b, Isberg et al., 2006a, Isberg et al., 2006b, Miles et al., 2009, Miles et al., 2010). 

Despite this, our understanding of the underlying mechanics of the crocodile genome is still 

rudimentary, with limited knowledge of the genes responsible for these traits. 
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1.2:  The Retroviridae 

1.2.1:  Retroviruses 

Retroviruses (family Retroviridae) comprise a large and diverse family of single-stranded, 

enveloped RNA viruses (Bishop, 1978, Coffin, 1992). They require reverse transcription and 

a DNA intermediate for viral replication, making them unique among vertebrate viruses 

(Bishop, 1978). Other similar viruses include the Ty-Copia (Pseudoviridae) and Gypsy 

transposons (Metaviridae) (Fauquet et al., 2005). Retroviral insertions are ubiquitous in the 

genomes of all vertebrate species studied to date, and may be from exogenous retroviral 

infections, or be inherited as endogenous retroviruses (ERVs). 

Retroviral virions are spherical particles, and the virion core contains an RNA dimer as well 

as a collection of retroviral enzymes required for integration into the host cell. The virion 

envelope is made up of a combination of the host cell membrane and retroviral proteins 

(Burmeister, 2001, Coffin, 1992). The RNA dimer is made up of two identical copies of 

plus-strand RNA that comprise the retroviral genome (D'Souza and Summers, 2005, Fauquet 

et al., 2005). This genome ranges in size from 7 to 13 kb (thousand base pairs) in size and 

encodes the three major coding domains, and depending on the retroviral genus, a number of 

accessory domains (Fauquet et al., 2005). 

 

1.2.2:  Retroviral classification 

There are currently seven recognised genera within Retroviridae named Alpharetovirus, 

Betaretrovirus, Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus, Lentivirus and 

Spumavirus (Fauquet et al., 2005). Historically, retroviruses were classified into Type A, B, 

C and D particles by gross virion morphology such as the location and shape of the virion 

core and the characteristics of the surface glycoproteins, and the mode of virion assembly 

(Coffin, 1992). While these Type classes correspond to the Alpha-, Beta- and 

Gammaretroviruses, this system of nomenclature is incomplete, and sequence similarities and 

genome structure are now generally used instead (Table 1.2) (Fauquet et al., 2005).  
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Table 1.2: Summary of virion morphology and genomic arrangement. Adapted from Coffin 

(1992), Vogt (1997), Burmeister (2001), Fauquet et al. (2005), and Jern et al. (2005). 

Retroviral 

genera 

Type 

species 

Virion morphology
a
 ERV 

Class
b
 

Genome 

arrangement 

Alpharetrovirus ALV Avian Type C 

Spherical, centred core 

Core is assembled in the 

plasma membrane 

 Simple 

Betaretrovirus MMTVc 

 

 

MPMV 

Type B 

Spherical, eccentric core 

 

Type D 

Rod shaped core 

Immature Type A particles 

are assembled in the 

cytoplasm before budding as 

mature Type B or Type D 

particles 

Class II Simple 

Gammaretrovirus MLV Mammalian Type C 

Spherical, centred core 

Core is assembled in the 

plasma membrane 

Class I Simple 

Deltaretrovirus HTLV Spherical, centred core  Complex 

Epsilonretrovirus WDSV Unknown  Complex 

Lentivirus HIV-1 Rod shaped or Conical core  Complex 

Spumavirus SFV Spherical, centred core Class III Complex 
a Morphology types are based on early electron microscopy studies. 
b ERV classification will be discussed in Section 1.3.2. 
c MMTV encodes an additional accessory gene, sag, which allows the virus to vary 

interactions with T-cells (Coffin et al., 1997). 

 

1.2.3:  The retroviral genome 

The basic retroviral genome consists of three coding gene regions flanked by 5` and 3` long 

terminal repeats (LTRs). Immediately outside this, within the host genomic DNA, are short 4-

6 nucleotide repeats, or target site duplications (TSDs) that are generated during retroviral 

integration (Vogt, 1997). The major gene regions are the group specific antigens (gag), the 

protease-reverse transcriptase region (pro-pol), and the envelope genes (env) (Figure 1.4). 

These regions generally encode five structural proteins as well as the retroviral enzymes, 
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although the size and number of these vary between retroviral genera and occasionally 

between viral strains (Bishop, 1978).  

Proteins encoded by the gag domain encapsulate the core of the retrovirus. Within this shell 

is the retroviral genome, reverse transcriptase, and virus encoded RNA binding proteins 

(Bishop, 1978). These proteins are translated as large polyproteins and are cleaved into the 

smaller �mature� proteins by the retroviral protease, which is also encoded within these 

structures (Katz and Skalka, 1994, Temin, 1992).  

 

 

Figure 1.4: Schematic representation of the basic retroviral proviral genome. Boxes indicate 

retroviral domains, shaded triangles represent the retroviral proteins and promoter regions, 

and ovals indicate the location of the TSDs within the host genomic DNA. 

 

The retroviral LTRs are made up of unique U3 and U5 regions separated by an R segment 

that is repeated at each end of the genomic RNA (Coffin, 1992). The R region is made up of a 

series of short, direct repeats at either end of the proviral genome, and ensures the correct 

ordering of the viral DNA during reverse transcription (Coffin, 1992). The 5` LTR contains 

an untranslated leader region that encodes the signal for packaging of the RNA genome 

(Coffin, 1992).  

The binding sites for different cellular transcription factors are encoded by short sequences 

immediately between the LTRs and the retroviral coding domains. These regions enhance 

and promote proviral transcription, and include the primer binding site (PBS) and the 

polypurine tract (PPT). The PBS is a sequence of 18 bases at the 5` end of the retroviral 

genome that is complementary to the 3` end of the tRNA primer used to initiate synthesis of 

the viral DNA. At the 3` end of the genome, the PPT is an AG rich sequence that acts as a 

primer for the synthesis of plus strand viral DNA during reverse transcription (Coffin, 1992).  

The gag region is the first of the retroviral gene coding domains, and encodes the retroviral 

structural proteins. These are the membrane associated proteins (MA), nucleocapsid proteins 
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(NC), and the capsid proteins (CA) (Burmeister, 2001, Coffin, 1992). The MA proteins create 

the inner shell of the mature virion envelope, and interact with the host cell membrane during 

retroviral budding. CA proteins form the shell of the virion core, and the NC proteins interact 

with the RNA duplex that makes up the retroviral genome  (Coffin, 1992). 

The retroviral enzymes are encoded by the pro-pol gene region. These include the retroviral 

protease (PR), reverse transcriptase (RT), and integrase (IN). The protease enzyme is 

responsible for cleaving the retroviral polyproteins to form the smaller mature proteins 

(Coffin, 1992). Reverse transcriptase has three functions. It first copies the plus strand RNA 

to create a minus strand DNA, then removes the RNA template before synthesising the plus 

strand DNA (Katz and Skalka, 1994). Finally, the retroviral integrase is responsible for 

integration of retroviral DNA into the host genome by trimming the 3` end of the retroviral 

provirus and the target DNA followed by ligation of the two genomes (Coffin, 1992). 

The env domain encodes two proteins that are responsible for interaction with, and entry into, 

the host cell. The surface unit proteins (SU) interact with host cell receptors, while the trans-

membrane proteins (TM) interact with the cell membrane, initiating viral entry into the cell 

(Benit et al., 2001, Coffin, 1992). Unlike the proteins encoded by the gag and pro-pol 

domains, these proteins are processed by cellular enzymes, and are usually translated as a 

separate polyprotein (Coffin, 1992).  

Many retroviruses also contain additional accessory genes (Figure 1.5). These genes may 

alter transcription, regulate splicing of the retroviral transcripts, or otherwise affect the 

infectivity or behaviour of the retrovirus (Burmeister, 2001). In the case of Spumaviruses and 

Epsilonretroviruses, the functions of many of these accessory genes and additional open 

reading frames (ORFs) are still unknown (Vogt, 1997). An addition to this, some retroviruses 

have been found to contain oncogenes (onc) in place of viral domains. These ORFs generally 

contain DNA copies of the exons of cellular genes, or mRNA incorporated by recombination 

during retroviral integration. The subsequent deletion of coding domains leaves the resulting 

chimeric virus dependent on the presence and activity of helper viruses within the cell 

(Coffin, 1992). 
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Figure 1.5: Schematic representation of the general retroviral genomes for each genus. White 

labelled boxes indicate the ORFs for each of the retroviral domains. Light grey boxes 

represent accessory genes. Boxes connected by lines indicate that alternate splicing may be 

required for transcription of these genes. Arrows indicate instances where ribosomal 

frameshifting is utilised for translation. Adapted from Coffin (1992) and Vogt (1997). 
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1.2.4:  Retroviral integration and replication 

The RNA to DNA transformation of cells by retroviruses was first proposed by Howard 

Temin (Temin, 1976). The process of retroviral integration begins when the virion attaches to 

host cell receptors and the retroviral RNA genome is released into the cell. This is then 

reverse transcribed to form the viral DNA. Viral DNA is then integrated into the cell genome 

in a stable manner, forming the provirus which can then be transcribed (Bishop, 1978, 

Varmus and Brown, 1989). The resulting viral RNA can reinfect the host cell or be processed 

to form infections viral particles that can then infect new host cells and host organisms 

(Bishop, 1978, Varmus and Brown, 1989). 

Viral entry into the host cell is enabled by the attachment of the virion to the transmembrane 

receptors of a host cell. This initiates the release of the virion core into the cell followed by 

creation of linear double stranded viral DNA by reverse transcriptase prior to integration into 

the host genome (Bishop, 1978, Craigie, 2002, Varmus and Brown, 1989). The mechanisms 

which release the retroviral particles into the cell are still unknown (Craigie, 2002). 

Integration of the viral DNA into the host cell DNA is mediated by the retroviral integrase 

(Figure 1.6) (Katz and Skalka, 1990).  

Once integrated into the genome, the retroviral provirus will be replicated along with host 

cell DNA during gene expression and cell division, effectively ensuring inheritance by all 

daughter cells of the infected host cell (Varmus and Brown, 1989). There is evidence to 

suggest that unintegrated viral DNA can also be used for transcription of viral RNA, but at a 

much lower efficiency than integrated DNA (Iyer et al., 2009, Wu, 2004, Wu, 2008). If this 

integration event occurs in a germline cell, the provirus may be passed on to the offspring of 

the infected host organism in a typical Mendelian pattern of inheritance. Proviruses inherited 

in this manner are termed endogenous retroviruses (ERVs) and are discussed in Section 1.3. 

Transcription of viral RNA is regulated by host transcription factors and utilises the host 

RNA polymerase enzyme, RNA polymerase II (Bishop, 1978, Katz and Skalka, 1990). From 

here, some of the RNA will be processed into mRNA and translated to form the retroviral 

protein structures while other full length transcripts are assembled to form the RNA duplex 

that is packaged into the new virion (Bishop, 1978, Craigie, 2002, Varmus and Brown, 1989).  
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Figure 1.6: Generalised replication cycle of a retrovirus from infection of the host cell to 

production of the mature virion. Adapted from Vogt (1997). 

 

Retroviral gag, pro and pol polyproteins are generally translated by by-passing encoded stop 

codons through ribosomal frameshifts, or by read-through mechanisms at the boundaries of 

these gene regions (Figure 1.5) (Katz and Skalka, 1994). Retroviral particle formation 

appears to depend on the correct ratio of spliced and un-spliced RNA, as well as cleaved and 

uncleaved polyprotien structures. Cleavage of these polyproteins is done by the retroviral 

protease that is encoded by these same polyproteins (Katz and Skalka, 1994). 
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1.2.5:  Generation of retroviral sequence diversity 

Selection pressures and host-pathogen interactions are the primary driving factors for 

retroviral evolution and mutation. Retroviruses must evolve to evade the host immune system 

while retaining the ability to interact with host cellular receptors and replicate to produce 

infectious virions (Coffin et al., 1997, Katz and Skalka, 1990). This in turn leads to the 

evolution of a wide range of retroviral strains that are adapted to infect a specific host range, 

and often, a specific tissue type (Coffin et al., 1997). This diversity may be generated through 

a variety of different methods, such as recombination and nucleotide misincorporation by the 

various polymerases involved in retroviral replication (Katz and Skalka, 1990).  

Retroviruses generally have a much higher mutation rate than DNA viruses or their host 

organisms. This is due to a the lack of proofreading capabilities in both the retroviral and host 

derived reverse transcriptase enzymes (Katz and Skalka, 1994). While proviral mutation rates 

are dependent on the mutation rate of the surrounding DNA in the host genome (Temin, 

1992), nucleotide misincorporation during synthesis of viral RNA effectively increases the 

mutation rate of retroviral strains.  

Mutation rates also differ between the different retroviral coding regions. The pro-pol region 

is the most conserved of the three major regions due to the essential nature of the enzymes it 

encodes (McClure et al., 1988). On the other hand, the env region is the most variable of the 

three, due to the role of these proteins in viral-cell interactions (Benit et al., 2001, McClure et 

al., 1988). Env proteins are located on the outside of the virion particle, and thus must evolve 

to evade the host immune responses while maintaining the ability to interact with the host cell 

receptors (Benit et al., 2001, Coffin, 1992).  

Classification of retroviruses at the sequence level can make use of these differences in 

mutation rate. For example, the conserved nature of the pro-pol region make it ideal for 

broad-scale classification or grouping of retroviruses from different species, but can limit the 

usefulness of this region to determine lineage differentiation within a host species. On the 

other hand, faster evolving regions may contain too many mutations for comparisons between 

species, and may be more useful for differentiation of lineages within a host. 

Recombination with ERVs or other exogenous strains within a co-infected cell is another 

major source of retroviral diversity (Boeke and Stoye, 1997, Gifford and Tristem, 2003). This 
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can lead to the development of novel retroviral strains, and occasionally the reactivation of 

silenced or non-functional ERVs. For example, a comparison of env and pol phylogenies 

from HERV sequences has revealed evidence of recombination events in both endogenous 

and infectious retroviruses (Benit et al., 2001).   
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1.3:  Endogenous Retroviruses 

1.3.1:  Establishment of ERVs in the host genome 

Endogenous retroviruses (ERVs) are inherited copies or remnants of exogenous retroviruses 

that have been integrated into a host genome and passed on to subsequent generations. Once 

integrated into the germline cell in a stable manner, ERVs may be inherited by offspring in a 

normal Mendelian pattern as mentioned previously (Figure 1.7) (Temin, 1985). ERVs in 

infectious or proviral forms have been found in all vertebrates studied to date, and have been 

identified from all retroviral genera except the Deltaretroviruses (Herniou et al., 1998, 

Katzourakis et al., 2007, Martin et al., 1999).  

The endogenisation of a retrovirus is dependent on a number of factors, including low 

virulency in the host organism, the ability to infect germ-line cells, survival of the infected 

cells, and the ability of offspring to survive without loss of fitness (Blikstad et al., 2008). 

Despite this, newly endogenised ERVs may retain a considerable level pathogenicity 

(Blikstad et al., 2008), which can affect the length of time that the insertion is maintained in 

the genome.  

ERVs may be found in the genome both as recently �endogenised� exogenous viruses or 

remnants of ancestral retroelements (Lower et al., 1996). Variations in pathogenicity and 

impacts on host survival mean that species will generally have a few groups of retroviruses 

that have undergone independent replication. Furthermore, recombination between the LTR 

regions of ERV insertions is a common occurrence. Thus, full length proviruses may be 

present in small numbers while solo LTRs may be present in much larger numbers (often ten 

to a hundred times more) (Stoye, 2001). 
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Figure 1.7: Diagrammatic representation of the endogenisation process, showing how ERVs 

may increase in prevalence within a population or species. Detrimental infections and 

integration events are selected against and removed from the gene pool. 
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1.3.2:  ERV classification and distribution 

The commonly found ERV lineages have historically been classed into three major groups, 

Class I, II and III, although this classification has been shown to be incomplete with the 

discovery of endogenous sequences related to Lentiviruses and Spumaviruses (Blomberg et 

al., 2009). Thus, classification is more commonly based on similarity to exogenous sequences 

from the seven major retroviral genera. Using this nomenclature, Class I ERVs (ERV1) are 

generally similar to Gammaretroviruses and Epsilonretroviruses, Class II ERVs (ERV2) are 

similar to the Betaretroviruses, and Class III ERVs (ERV3) are similar to Spumaviruses 

(Table 1.2 in Section 1.2.2) (Jern et al., 2005). Despite this, classification of ERVs is still 

complicated, due to the degradation of proviral sequences by selection against functional 

proviruses, mutation, and recombination (Barrio et al., 2011). 

While individual retroviral strains may be confined to specific taxa, there is a large amount of 

variation in host specificity within the retroviral genera. This is echoed in the distribution of 

ERVs across vertebrate species. For example, the ERVs similar to Alpharetroviruses are 

confined to avian species, while Gammaretrovirus and Spumavirus related ERVs have a 

much wider host range, including mammals, avians, non-avian reptiles, and amphibians 

(Gifford and Tristem, 2003, Herniou et al., 1998, Martin et al., 1997). Betaretrovirus related 

ERVs are predominantly found in mammals and avians, with the exception of two, more 

divergent sequences identified from boid snakes, possibly indicating a limited host range 

within non-mammalian vertebrates (Gifford et al., 2005, Gifford and Tristem, 2003, Huder et 

al., 2002).  

A number of retroviral genera have been identified only in exogenous or endogenous forms 

within the host species, suggesting that there are numerous factors affecting the 

endogenisation process. Deltraretroviruses, for example, have only been identified in 

exogenous form, whilst Lentiviruses have only recently been recovered in their endogenous 

forms and from a limited number of taxa (Gifford et al., 2008, Gilbert et al., 2009, 

Katzourakis et al., 2007). Exogenous Epsilonretroviruses have only been identified in 

salmonid fish (Holzschu et al., 1995), although endogenous sequences showing similarity to 

these exogenous viruses have been identified in other basal vertebrates, including 

amphibians, crocodilians, and other non-avian reptiles (Gifford and Tristem, 2003, Herniou et 

al., 1998, Kambol et al., 2003).  
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Due to this host specificity, ERVs generally co-diverge with their host species, and indeed 

there is a high correlation between ERV phylogenies and those of their hosts (Andersen et al., 

1979, Martin et al., 1999). Despite this, instances of cross-species transmission have been 

documented. Studies using ERV phylogenies have detected a number of instances within the 

Class I ERVs. Two retroviral strains appear to have crossed from mammals into avian, the 

first being the progenitor of the avian Spleen necrosis virus (SNV) (Martin et al., 1999). The 

second of these, the Murine leukaemia virus (MLV)-related ChiRV1, appears to be the source 

of two instances of trans-species transmission (Borysenko et al., 2008). The Koala retrovirus 

(KoRV), is the result of transmission between placental mammals and marsupials, and has 

resulted in the development of a pathogenic ERV in Phascolarctos cinereus (koala) (Hanger 

et al., 2000, Martin et al., 1999). 

 

1.3.3:  ERV evolution in host genomes 

Although most ERV insertions are inactive or unable to replicate autonomously, they still 

have the potential for reactivation through interactions with exogenous retroviruses (Bishop, 

1978). This can occur through recombination with the infecting exogenous virus, or through 

the utilisation of the exogenous retroviral proteins and enzymes to compensate for inactivated 

or missing genes. In addition to this, recently acquired ERVs may retain the ability for 

reinfection, either within the host cell or to infect other cells of host organisms (Jern and 

Coffin, 2008).  

Most species will also carry a small number of proviruses that are capable of replication 

(Stoye, 2001). Some ERVs may be capable of some level of expression and replication even 

after tens of millions of years after integration (Gifford and Tristem, 2003). Positive 

selection, reinfection, and complementation by other retroviruses and ERVs can all serve to 

extend the length of time that an ERV may remain active in the genome (Gifford and 

Tristem, 2003).  

Once in the host genome, ERVs are able to replicate using three mechanisms: reinfection, 

retrotransposition, and complementation (Figure 1.8). Replication by reinfection requires that 

the ERV retains functionality of all promoter regions and coding domains (Bannert and 

Kurth, 2006, Belshaw et al., 2004, Katzourakis et al., 2005). A functional env domain allows 
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the movement of retroviral particles out of the host cell, and consequently, infection of other 

cells within the host organism, or transmission between organisms. ERV lineages with this 

capacity for replication would likely be under strong negative selection due to detrimental 

effects on the host genome (Belshaw et al., 2004), and are therefore more likely to represent 

recently endogenised lineages. 

 

 

Figure 1.8: Mechanisms of ERV replication. Solid arrows show the progress of retroviral 

infection and reinfection (a). Dashed arrows represent retrotransposition (b), and dotted 

arrows represent complementation (c). 

 

ERVs with defects in one of more coding regions may still be able to replicate within hosts 

through retrotransposition or complementation. Replication through retrotransposition 

requires functional promoters, gag, and pro-pol domains (Bannert and Kurth, 2006, 
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Katzourakis et al., 2005). Using this mechanism, ERVs are able replicate intracellularly, but 

are unable to infect other cells (Belshaw et al., 2005b). Complementation requires that only 

the promoter regions, such as the LTRs, PBS, and PPT, are functional (Bannert and Kurth, 

2006, Gifford and Tristem, 2003). However, replication using this mechanism would appear 

to be rare, since it is dependent on the retroviral proteins and enzymes being supplied by 

other functional or partially functional viruses within the cell (Gifford and Tristem, 2003, 

Katzourakis et al., 2005). 

ERV integration has a number of effects on the host genome, regardless of whether it is the 

result of recent infection or replication, or an ancestral insertion. These effects include 

interactions with exogenous retroviruses, disruption of gene expression and regulation, 

interaction with the host immune system, and provision of sites for recombination. Most of 

these will have detrimental effects on the host and are therefore subject to selection against 

these insertions (Barr et al., 2005, Gifford and Tristem, 2003). Deleterious effects of ERVs 

include modification of transcription or RNA processing, chromosomal rearrangements 

through homologous recombination, the provision of novel control sequences for cellular 

genes and insertional mutagenesis or activation of oncogenes (Gifford and Tristem, 2003, 

Katzourakis et al., 2005, Stoye, 2001, Temin, 1985).  

ERVs with little or no selective effects on the host may be maintained or removed by genetic 

drift. However, the presence of these ERVs may still have impacts on the genome through the 

provision of sites for recombination between similar ERV sequences. This can lead to small 

scale recombination or rearrangement, such as in the case of the MHC which is known to 

contain a large number of ERV insertions which are closely associated with duplication 

breakpoints (Doxiadis et al., 2008); or large scale chromosomal rearrangements such as those 

that have been observed in studies comparing human and primate genomes (Hughes and 

Coffin, 2001). 

In addition to this, a small number of insertions may have beneficial effects. These insertions 

are likely to be subject to positive selection, leading to an increase in prevalence. Such 

insertions may eventually become fixed in the genome of the host species, whereby they are 

found in all members of that species (Figure 1.7) (Gifford and Tristem, 2003, Jern and 

Coffin, 2008).  
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Over time, a number of ERV insertions have also been co-opted to regulate gene expression, 

or for additional physiological functions (Maksakova et al., 2008). Examples of this are the 

primate syncytin genes, which are a co-opted ERV env protein. Similar genes are present in 

Carnivora, higher ruminants, rabbits, and mice, although these insertions are present in a 

different genomic location and are likely to have been acquired independently (Cornelis et 

al., 2012, Cornelis et al., 2013, Heidmann et al., 2009, Jern and Coffin, 2008, Nakaya et al., 

2013).  

 

1.3.4:  ERV transcription 

Transcription of proviral ERV DNA primarily occurs in undifferentiated tissues, such as 

germline cells and early stage embryos (Maksakova et al., 2008). These insertions are then 

likely silenced in differentiated tissue types due to epigenetic mechanisms, regulator genes 

and control of the various gene expression pathways (Crittenden et al., 1974, Maksakova et 

al., 2008). Thus, re-integration into somatic cells is rare, although it may occur if 

transcription is activated (Maksakova et al., 2008). 

Activation of ERV transcription may be induced by changing environmental signals and 

activation of the immune system, such as by hypomethylation as a result of stress signals 

(Cho et al., 2008, Perl, 2003). While this may have an impact on the host response to injury 

and infection, it is still unclear as to whether this reactivation is harmful or beneficial (Cho et 

al., 2008). 

Expression of ERVs has been associated with a number of diseases in humans, such as 

cancer, neurodegenerative disorders, and schizophrenia (Jern and Coffin, 2008). KoRV has 

been linked with neoplastic disease and chlamydiosis in infected P. cinereus (Tarlinton et al., 

2005). In these cases, ERVs have been proposed as a significant factor for the genesis of 

disease. However, while a correlation between ERV transcripts and presence of disease has 

been observed, the causative factors for these diseases are still unproven. ERVs have also 

been associated with autoimmune diseases, through alteration of antigen presentation and cell 

apoptosis pathways (Perl, 2003). However, this is also controversial as the effects of ERVs 

involved have not been sufficiently quantified (Gifford and Tristem, 2003).  
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On the other hand, ERVs may provide protection against disease caused by infection from 

related exogenous retroviruses (Arnaud et al., 2007a). For example, ERV derived env 

proteins can block the entry of exogenous retroviruses by competition for receptor binding 

sites. The presence of ERV transcripts within a cell can also interfere with the replication of 

exogenous retroviruses (Arnaud et al., 2008). Beneficial effects such as these have been 

observed in sheep, where endogenous forms of the Jaagsiekte sheep retrovirus (JSRV) have 

been observed to either block viral entry to the cell, or prevent the release of viral particles 

(Arnaud et al., 2007b, Arnaud et al., 2008). Such ERV insertions will likely come under some 

degree of positive selection, thus increasing the chances of becoming fixed in the host 

genome. 

 

1.3.5:  ERVs in non-mammalian vertebrates 

It has been suggested that characterisation of the distribution and diversity of retroviruses in 

non-mammalian vertebrates may help increase understanding of retroviral evolution and lead 

to discovery of novel genes involved in pathogenesis (Hart et al., 1996, Tristem et al., 1996). 

Despite this, there are currently very few studies on the diversity and distribution of ERVs 

within these taxa, with the exception of the Gallus gallus (chicken) (Tristem et al., 1996).  

Studies that have investigated ERVs in these taxa have uncovered many retroviral sequences 

that show similarity with the major exogenous retroviral genera, as well as a number of 

unusual elements. For example PyT2RV and PyERV, which have been sequenced from two 

pythonid species (Python molurus and Python curtus) with inclusion body disease, appear to 

be intermediates between Betaretroviruses and Gammaretroviruses. Analyses of the pol 

region have placed it with the Betaretroviruses but env analyses place it closer to 

Gammaretroviruses. As a result, these are still currently unclassed, although it is speculated 

that the retrovirus involved could be a recombinant virus (Huder et al., 2002). Xen1, a very 

large endogenous retrovirus (>10kb) that has been characterised in Xenopus laevis (the 

African clawed frog), shows similarity to the exogenous Epsilonretroviruses WDSV and 

WEHV, but contains an additional two ORFs of unknown function (Kambol et al., 2003). 

Other divergent ERV sequences have been identified from reptilian species. SpeV is a 

divergent ERV from a tuatara (Genus Sphenodon, species unknown), that shows very little 
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similarity to known retroviruses (Tristem et al., 1995). Similarly, divergent ERVs have been 

identified in species of Crocodylia (Jaratlerdsiri et al., 2009, Martin et al., 2002). In both 

instances, the closest retroviral genus was the Spumaviruses, although the low sequence 

similarity between these and characterised Spumaviruses suggest that they may form separate 

lineages.  

The reasons for this apparent divergence and diversity among non-mammalian ERVs are not 

well documented. The prevalence of reptilian and amphibian ERVs that are not easily 

classified into one of the currently recognised ERV families suggests that these ERVs may 

reflect the ancestral forms of current retroviral families. It has also been hypothesised that 

some of these instances may represent hitherto uncharacterised retroviral lineages, suggesting 

that reptilian, amphibian and piscine species may harbour additional retroviral diversity, and 

potentially, novel pathogens (Tristem et al., 1996, Tristem et al., 1995). 

It is also possible that the divergence observed in reptilian and amphibian ERVs is due to co-

evolution between these ERVs and the immune systems of these taxa. Although the basic 

immune responses are similar across vertebrate taxa, the specifics of reptile immunology are 

not well understood (Origgi, 2007, Warr et al., 2003). In particular, our knowledge of the 

adaptive immune system in reptiles, their cellular receptors, and the subsequent co-evolution 

of these factors and viral pathogens is limited.  

 

1.3.6:  ERVs as Transposable Elements 

Transposable elements (TEs) are repetitive DNA sequences that are able to move or copy 

themselves within a genome. Once integrated in to a host genome, ERVs may also be 

considered transposable elements due to their ability to replicate within the host without the 

need for an exogenous phase. TEs make up a large portion of the genomes of all eukaryotes, 

accounting for nearly half of mammalian genomes and up to 90% of some plant genomes 

(Kazazian, 2004). These elements constitute a major source of variation within genomes, 

either through the insertions themselves or by facilitating recombination and chromosomal 

rearrangements (Buzdin et al., 2003, Doxiadis et al., 2008, Hughes and Coffin, 2001, Moran 

et al., 1999).  
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TEs can broadly be classed into two groups: DNA transposons, and retrotransposons (Craig, 

2002, Kazazian, 2004). DNA transposons move around the genome through a cut-paste 

mechanism whereby the transposon sequence is excised from the genome and re-integrated 

into another location. Retrotransposons, on the other hand, use a copy-paste mechanism 

involving transcription into the RNA element, followed by reverse transcription and 

integration into a new site within the genome (Figure 1.9) (Craig, 2002).  

 

 

Figure 1.9: A comparison of methods of transposition for DNA transposons and RNA 

transposons. 

 

1.3.7:  ERVs and retrotransposons 

Retrotransposons can be further divided into LTR transposons and non-LTR transposons 

(Kazazian, 2004). LTR transposons include ERVs as well as the Gypsy and Ty elements, and 

contain, at minimum, gag, pro, and pol domains flanked by LTRs. Most ERVs also contain 

an env domain, although not all lineages do (Craig, 2002, Magiorkinis et al., 2012). LTR 

transposons tend to be present in the vertebrate genome in relatively low copy numbers 

compared with non-LTR elements, although they can by much more prevalent in other 

eukaryote genomes (Lower et al., 1996, Wicker et al., 2007). Retrotransposons also contain 
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various promoter regions that can affect the regulation of gene expression if integration 

occurs near coding regions (Boeke and Stoye, 1997). 

Non-LTR elements are made up of long interspersed elements (LINEs) and short interspersed 

elements (SINEs). As their name suggests, these do not contain LTR regions although they 

still utilise an RNA intermediate for transposition. LINEs are relatively long elements of 

several kb in length, and encode reverse transcriptase and a nuclease. Their 3` region is made 

up of either a poly-A tail, tandem repeats, or an A rich region. SINEs on the other hand are 

much shorter elements, of about 80 to 500 bp in length (Wicker et al., 2007). Unlike other 

retrotransposons, SINEs are not coding elements, and are instead believed to be the result of 

accidental retrotransposition of Polymerase-III transcripts. The 3` end of a SINE element may 

either be an A or AT rich region, or a poly-T tail (Wicker et al., 2007). Both LINEs and 

SINEs have a very high copy number in genomes, with many thousands of copies present 

(Lower et al., 1996). 
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1.4:  Transitioning from genetics to genomics 

1.4.1:  Next generation sequencing technologies 

Next generation sequencing, also called 2nd and 3rd generation sequencing, offers the capacity 

to sequence large regions of DNA, such as bacterial artificial chromosome (BAC) inserts up 

to whole genomes, for a much lesser cost than traditional Sanger sequencing. The so-called 

2nd generation sequencing methods still currently require amplification of the target template, 

while 3rd generation sequencing methods are being developed that allow sequencing from 

single strands of DNA (Glenn, 2011). A number of technologies and platforms are available 

for this, including 454 pyrosequencing (Roche), Illumina/Solexa (Illumina), SOLiD (Applied 

Biosystems), and PacBio (Pacific Biosciences), all of which are commercially available. Of 

these, the 454 and Illumina technologies are the most readily accessible and cost effective. 

Most of these technologies produce much shorter read lengths than traditional Sanger 

sequencing (approx 700 bp) but are capable of producing a far greater number of reads at a 

time. 

The Illimina HiSeq systems are most commonly implemented by commercial sequencing 

services, and are capable of producing upwards of 60 billion bases (Gb) from a single run 

(Illumina). While read lengths for this system are relatively short (100�150 bp), the large 

number of raw reads produced makes it the most cost effective method for generation of raw 

data (Glenn, 2011). However, this large amount of data can pose problems, with 

high-performance computing (HPC) facilities required for assembly (Glenn, 2011).  

In contrast, 454 sequencing produces a much smaller amount of data overall, with 450�700 

million bases (Mb) produced from a single run. This is offset by much longer read lengths of 

600�1000 bp for current technologies (Roche). Unlike the Illumina technology, this allows 

for most assemblies to be completed on upper-end desktop computing resources, eliminating 

the need for access to HPC facilities  (Glenn, 2011). Furthermore, the additional length of 

these reads allows for the use of additional DNA barcoding tags or primers and subsequently 

an additional degree of parallelisation of samples within a single cell of sequencing (Binladen 

et al., 2007, ten Bosch and Grody, 2008). This allows for multiplexing of samples within a 

sequencing run, thereby increasing the number of samples that can be sequenced while 

minimising costs. 
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1.4.2:  Crocodilian genomics 

With the exception of research into commercially farmed crocodilian species, such as 

C. porosus, much of the research into crocodilian genetics relates to untangling the 

phylogenetic relationships between species, or estimating diversity within a species. As 

evident from Section 1.1.3, much of the research carried out between crocodilian species 

focuses on elucidating the phylogenetic relationships between and within the various 

crocodilian genera. This research has largely focussed on mtDNA and highly conserved 

nuclear genes. While these resources are adequate for small-scale analyses of divergence and 

diversity, such resources can offer limited insights into the broad-scale evolution of 

crocodilian genomes.  

As with all uncharacterised genomes, much of the gene discovery and characterisation is 

carried out through comparisons between the species of interest and closely related taxa. Such 

research has provided insights into the functionality of specific genes and gene families of 

interest, such as the keratin genes (Alibardi and Toni, 2007, Ye et al., 2010), and the MHC 

(Jaratlerdsiri et al., 2012), but has limited potential for the identification of the regulatory 

pathways responsible for the expression of these genes, or the development of complex traits. 

The advent of next generation sequencing technologies and subsequent advances in these 

technologies has led to a proliferation of new genomes being sequenced. While previous 

projects have focussed on model species and livestock, the decrease in the cost of whole 

genome sequencing means that more genomes can now be sequenced. Consequently, the 

sequencing of three crocodilian genomes has been carried out, with the intention of 

elucidating the evolutionary biology of these taxa (St John et al., 2012). The specifics of this 

project will be outlined in Chapter 6. This latest advancement will allow for much more 

detailed comparisons to be made between the major crocodilian lineages, as well as providing 

a reference for future studies of crocodilians. 

 

1.4.3:  Genetic and genomic characterisation of ERVs 

There are various methods available for the detection and characterisation of ERVs. Early 

genetic studies have relied on hybridisation using radioactive probes derived from known 

retroviral sequences or synthetic probes directed at the PBS. These methods have been 
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targeted at DNA fragments, such as from restriction enzyme digests, or against genomic 

libraries. Positive fragments identified in this manner may be further characterised by 

restriction enzyme fragment length analyses or more recently, through sequencing (Andersen 

et al., 1979, Boyce-Jacino et al., 1992, Gifford and Tristem, 2003). These methods are time 

consuming, but have the benefit of being able to obtain complete ERV sequences if 

appropriate probes are used (Gifford and Tristem, 2003). 

For faster methods of detection, polymerase chain reaction (PCR)-based typing using primers 

directed against conserved retroviral motifs is frequently used. PCR-based methods usually 

do not obtain the full length ERV sequence, but will provide sufficient data for most 

phylogenetic analyses (Gifford and Tristem, 2003). PCR-based screening is also not suitable 

for detailed searches for novel integrations or disease association as these studies frequently 

require knowledge of flanking sequence (Stoye, 2001). It is possible to build out from known 

sequences using a primer walking method to obtain full length proviruses (Kambol et al., 

2003), or to amplify full length sequences using long range PCR of the LTR sequences are 

known (Gifford and Tristem, 2003). However, these methods can be complicated by the 

presence of multiple copies of related proviral sequences, and may fail to detect insertions 

that are more ancient, or where the primer binding sites are degraded. 

Next generation sequencing technologies have provided a wealth of additional resources that 

may be used for ERV detection. The large volumes of sequence data that can be produced 

using these technologies have made it possible to sequence large regions of DNA with 

minimal knowledge of the target sites or ERV sequence. Furthermore, the increasing number 

of whole genome sequences now becoming available provides a wealth of new data for the 

study of the evolution of ERVs and their interactions with their hosts.  

In silico (computer-based) detection of ERVs allows the extraction of both ancient and 

modern retroviral sequences as well as their flanking regions (Gifford and Tristem, 2003). 

However, this technology also comes with its challenges as screening and detection methods 

can be computationally expensive, and the quantity of data produced may be many times 

greater than that produced by PCR screening and sequencing. 

Methods of detection using in silico screening usually involve comparing genomic sequences 

against databases of known retroviral or TE sequences (Blomberg et al., 2009). This method 
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works well for known classes and relatively modern insertions, but may not be able to detect 

novel sequences and lineages. As a consequence, a number of other approaches have been 

designed around the detection and interactions of unique retroviral signatures (Blomberg et 

al., 2009, Gifford and Tristem, 2003). These programs and the methods involved will be 

discussed further in Chapter 5. 
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1.5:  Rationale for this project 

Despite the growing literature surrounding ERV evolution, there have been very few studies 

examining ERVs of non-mammalian vertebrates in any detail. In addition to this, the apparent 

genetic predisposition to runting observed in C. porosus suggests a link between rearing 

environment and inherited factors. Given the potential for ERVs to modify gene regulation in 

the genome, or to cause disease themselves, it is possible that these elements are involved. 

Although the methods implemented herein have the potential to detect exogenous retroviral 

insertions as well as endogenous insertions, a lack of evidence for exogenous retroviral 

infections (see Section 1.1.6) would suggest that most, if not all, detected proviruses are of 

endogenous origin. This project seeks to provide a significant contribution to the literature in 

this area and provide the basis from which future investigations into the possible links 

between ERVs and crocodilian disease can be carried out. 

The overall aim of this project is to characterise crocodilian ERVs, with a specific focus on 

ERVs in C. porosus, to examine their evolution and potential impacts on the genomes of 

these species. This project encompasses the characterisation of crocodilian ERVs, 

evolutionary studies of these ERVs across key crocodilian species, and explores the 

replicative potential of these ERVs in their host genomes. Initial studies presented in 

Chapters 2 and 3 establish the diversity of ERVs across a population of C. porosus, and 

within a C. johnstoni individual using a highly conserved region of the ERV genome. Chapter 

4 describes the screening and sequencing of C. porosus DNA likely to contain full length 

ERV sequences in order to characterise potentially functional ERVs and provide an estimate 

of the ERV content of a crocodilian genome. Finally, the sequenced genomes of three key 

crocodilian species (A. mississppiensis, C. porosus, and G. gangeticus) are interrogated using 

bioinformatics tools (Chapters 5, 6, and 7) to gain insights into the evolution of ERVs in 

these species.   

It should be noted that the nomenclature for crocodilian ERVs is refined throughout the 

thesis, resulting in changes to naming conventions between chapters. Chapter 2 uses 

previously published nomenclature (CERV1 and CERV2) to define ERV clades. This was 

subsequently found to conflict with ERV lineages previously described in other species, 

prompting a more specific nomenclature system as outlined in later chapters. 
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Chapter 2: Strong purifying selection in endogenous retroviruses 

in the saltwater crocodile (Crocodylus porosus) in the Northern 

Territory of Australia  
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manuscript. 
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2.1:  Background  

Endogenous retroviruses (ERVs) are a group of retrotransposons derived from germ-line 

integrations of exogenous retroviruses and are found in the genomes of most vertebrate taxa 

(Lower et al., 1996). The ERV complement of mammalian taxa has been studied in detail, 

particularly in humans, primates, model organisms, and to a lesser extent, domestic species 

(Barrio et al., 2011, Belshaw et al., 2004, Garcia-Etxebarria and Jugo, 2010). However, there 

is very little information regarding diversity and distribution of retroviruses in non-

mammalian vertebrates, with the exception of those of the chicken (Tristem et al., 1996). 

Research into the diversity of ERVs within these taxa has focussed more on specific elements 

or the distribution of the various ERV classes across species, rather than detailed studies into 

the ERV complement of a specific species (Chandra et al., 2001, Clark et al., 1979, Gifford et 

al., 2005, Herniou et al., 1998, Jacobson et al., 2001, Jaratlerdsiri et al., 2009, Martin et al., 

1999, Martin et al., 1997, Martin et al., 2002). Thus, there is little data on evolution and 

diversity of ERVs within individual non-mammalian vertebrate species including 

crocodilians. To address this, we have investigated the distribution and evolution of these 

retroelements in Crocodylus porosus (saltwater crocodile). 

Once integrated into a host genome, ERVs quickly become defective due to selection against 

the functional retroviruses (Gifford and Tristem, 2003, Stoye, 2001). While these ERVs are 

mostly non-functional, degenerate ERVs may also retain the capacity to replicate if the 

necessary regulatory sequences are present and the proteins required for replication are 

provided by other functional ERVs or exogenous retroviruses (Gifford and Tristem, 2003). 

Movement and proliferation of ERVs throughout the genome is one of the processes by 

which multiple related ERV lineages may occur. These lineages may evolve independently 

within the host genome, to the point that a single genome may contain many thousands of 

copies of a provirus from a single infection (Stoye, 2001, Tristem, 2000).  

ERV replication within the genome can occur through a number of mechanisms, such as 

reinfection, retrotransposition, and complementation. The likelihood of each of these 

occurring is dependent on the functionality of the various retroviral domains. For example, 

reinfection requires that all retroviral genes are functional, and is the method by which 

retroviruses may infect other host cells (Bannert and Kurth, 2006). Replication within host 

cells may occur through retrotransposition or complementation. Retrotransposition occurs 
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when the ERV utilises its own encoded domains to integrate proviral copies into new 

locations in the cellular genome. Complementation is where the proteins required for 

replication are supplied by other ERVs or exogenous retroviruses (Bannert and Kurth, 2006, 

Belshaw et al., 2004). 

Exogenous retroviruses and their endogenous counterparts comprise a large and diverse 

family that can be divided into seven genera: Alpharetrovirus, Betaretrovirus, 

Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus, Lentivirus and Spumavirus. ERV 

classification into these genera is generally based on similarity to classified exogenous 

retroviruses (Jern et al., 2005). The discovery of a divergent clade of endogenous retroviruses 

in the Order Crocodylia (families Alligatoridae, Crocodylidae, and Gavialidae) (Martin et al., 

2002) suggests that these taxa may harbour hitherto unseen retroviral diversity, and 

potentially functional novel elements. Subsequent research has identified two clades of 

crocodilian ERVs (CERVs) (Jaratlerdsiri et al., 2009). One of these groups, termed CERV1, 

falls within the Gammaretrovirus related ERVs and has only been isolated from species 

within Crocodylidae, while the other, CERV2, forms a separate cluster distinct from other 

ERVs. This second clade of ERVs has been identified in a number of species within both 

Crocodylidae and Alligatoridae. This evidence for recent and ancient ERV insertions in these 

taxa makes it an ideal candidate for the exploration of ERV evolution and the diversification 

and differentiation of ERVs at species level. 

There are 23 recognised species within the Order Crocodylia, belonging to nine genera. 

Alligatoridae consists of the genera Alligator, Caiman, Paleosuchus and Melanosuchus, 

while Crocodylidae consists of Crocodylus, Osteolaemus, and Mecistops, and Gavialidae 

consists of Tomistoma and Gavialis (Li et al., 2007, Roos et al., 2007). C. porosus has the 

broadest geographical distribution of all crocodilian species with populations in Australia, the 

Indo-Pacific region, South-East Asia, and up to India (Crocodile Specialist Group, 1996c, 

Russello et al., 2007). It is one of two crocodilian species found in Australia, and the only 

farmed crocodilian species in this country.  

Given the current knowledge of the distribution of ERVs in crocodilians, it would be 

expected that the majority of ERV sequences will be the result of ancient reinfections and 

retrotransposition. However, sufficient sequence data are not available to assess the 

evolutionary processes associated with retroviral proliferation within these species. 
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Crocodilian genomes display a significantly lower mutation rate than other vertebrate species 

(Eo and DeWoody, 2010, Hugall et al., 2007, Lynch, 1997, Ray et al., 2004), providing a 

good opportunity to study the dynamics of rapidly evolving DNA such as ERVs in a slow 

mutation rate genome. C. porosus is an ideal candidate species for these studies given the 

interest in sequencing its genome (St John et al., 2012) and ready access to samples from 

specimens hatched in commercial farms.  

Here we present the results of a survey into the ERV complement of C. porosus based on 

analysis of the pro-pol gene region. The study focuses on the genetic diversity and potential 

functionality of these ERV fragments from animals across the Northern Territory of Australia 

(Figure 2.1). This is one of the first in-depth studies into the diversity of ERVs within a single 

reptilian species; and will encompass a large number of individuals across a large portion of 

the range of C. porosus. 

 

2.2:  Materials and Methods 

2.2.1:  Sampling 

Blood samples were collected from C. porosus hatchlings from nests across 17 locations, 

representing nine river basins in the Northern Territory, Australia (Figure 2.1). The animals 

sampled were from eggs collected under the Northern Territory Government�s ranching 

program. One to two individuals per clutch were sampled, from a total of 45 clutches. Blood 

samples were collected from the cervical sinus as described by Lloyd and Morris (1999). 

DNA was extracted using the QIAamp DNA Mini kit (Qiagen). 
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Figure 2.1: Sampling locations in the Northern Territory, Australia. Map of the northern end 

of the Northern Territory, Australia, showing the river basins and locations of sampling sites. 

Shaded regions indicate the river basins included in this study. Numbers within shaded 

regions correspond to the basin names in the first column of Table 1.1, while numbers in 

circles correspond to the locations listed in the second column. The star indicates the location 

of Darwin, the largest city in this area. Image adapted from the Australian Bureau of 

Meteorology (http://www.bom.gov.au).  

 

2.2.2:  PCR amplification and sequencing 

PCR was used to amplify a 700�1000 bp region of the retroviral pro-pol gene region using 

universal primers (Tristem, 1996). Amplicons were gel purified and cloned using the pGEM-

T Easy Vector and JM 109 Escherichia coli cells (Promega, Madison, WI, USA) according to 

manufacturer�s instructions. To ensure that the correct inserts were present, clones were 

verified by PCR as described above, and by EcoRI enzyme digests after purification. Positive 

clones were purified and sequenced using Sanger sequencing at the Australian Genome 

Research Facility (AGRF, Brisbane, QLD, Australia).  
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2.2.3:  Sequence alignment and analysis 

Nucleotide sequences were aligned using CLUSTALW (Thompson et al., 1994) as 

implemented in the program package MEGA5 (Tamura et al., 2011). Representatives of the 

major sequence groups identified here were compared with previously identified ERV 

sequences in the GenBank and RepBase databases using BLASTX (Altschul et al., 1997) and 

Censor (Kohany et al., 2006) respectively. Unique haplotypes from this study were identified 

using FaBox (Villesen, 2007) and re-aligned against other similar sequences generated in this 

study using the program MACSE (Ranwez et al., 2011). The resulting alignments were 

translated in MEGA5 (Tamura et al., 2011) using the standard vertebrate genetic code tables, 

and putative amino acid sequences were aligned in CLUSTALW using the BLOSUM matrix 

with residue specific and hydrophilic penalties, and high gap penalties as described by Xiong 

and Eickbush (Xiong and Eickbush, 1988). The presence of conserved retroviral motifs and 

domains was assessed based on similarity to motifs defined by Sperber et al. (Sperber et al., 

2007). Genetic distances were calculated using the Jukes-Cantor model for the nucleotide 

alignments and the JTT model for amino acid alignments. The presence of recombinant 

sequences was evaluated using the program RDP3 (Martin et al., 2010) with default program 

settings.  

 

2.2.4:  Phylogenetic analysis 

Phylogenetic analyses were used to detect evidence of sub-lineages within each of the major 

clades. For both major clades, Neighbour Joining and Maximum Likelihood analyses were 

carried out with 1000 bootstrap replicates and representative sequences from the respective 

retroviral genera as outgroups (HERV-E for CERV1 and HERV-L for CERV2). Neighbour 

Joining trees were created in MEGA5 (Tamura et al., 2011) using the Jukes-Cantor and 

Poisson corrections to account for multiple substitutions. The best fit model of substitution 

(CERV1: HKY, JTT; CERV2: GTR, JTT for nucleotide and amino acids respectively) was 

determined using ModelGenerator (Keane et al., 2006) and Maximum Likelihood 

phylogenies were generated in PhyML (Guindon et al., 2010).  

Additional phylogenetic analyses were performed to assess the evolutionary relationship of 

the novel C. porosus sequences with other published ERV sequences. This dataset comprised 

of five representative novel sequences from this study, 55 published sequences from other 
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species within Crocodylia, and 113 published sequences from other species (Herniou et al., 

1998, Jaratlerdsiri et al., 2009, Jern et al., 2005, Martin et al., 1999, Martin et al., 2002) (See 

Appendix I, Table S2.1 for accession numbers and further details). Due to the highly diverse 

nature of the sequences from the various species, sequences were aligned using the program 

MAFFT, and the E-INS-i algorithm (Katoh et al., 2005). Phylogenetic trees were created as 

described above.  

 

2.2.5:  Tests for selection 

Codon based Z-tests were carried out in MEGA5 (Tamura et al., 2011) to investigate overall 

selective forces acting on the two major CERV clades in C. porosus. Datasets were analysed 

using the Nei and Gojobori method with the Jukes-Cantor correction to account for multiple 

substitutions (Nei and Gojobori, 1986). Tests were conducted to test for non-neutrality, 

positive, and purifying selection. Synonymous and non-synonymous ratios were also 

calculated for these datasets in PAML v4.4 (Yang, 2007) using a likelihood ratio test (LRT) 

to assess significance of the detected selection signatures.  

Further details on the amplification conditions, RDP program settings, selection criteria for 

representative sequences, and the PAML model comparisons are available in Appendix III. 

 

2.3:  Results  

2.3.1:  Sequence overview 

A PCR survey of ERVs in 47 individuals yielded a total of 227 clones, which were 

subsequently sequenced. These sequences represented 176 novel DNA haplotypes and 126 

novel amino acid haplotypes [GenBank accession numbers: JX157669 to JX157844]. 

Sequences ranged in length from 665 to 957 nucleotides. Up to 12 unique sequences were 

identified per individual, with all individuals yielding at least one positive clone, although 

very few sequences were recovered from more than one clone per individual. All sequences 

except for two could be assigned to the two CERV clades previously described (Jaratlerdsiri 

et al., 2009) based on visual inspection and genetic similarity values. A total of 45 haplotypes 

belonged to clade CERV1, and 129 haplotypes were assigned to clade CERV2. Overall, 
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CERV2 clones were more prevalent across the 17 sampling locations (Figure 2.1). The 

proportion of sequences from each of the CERV clades did not appear to vary from the 

overall average proportion of sequences recovered across all locations (Table 2.1). Although 

recent genetic studies have revealed some level of diversity among animals from the same or 

similar sampling locations (Jaratlerdsiri et al., 2012, Luck et al., 2012), a comparison with the 

current dataset was not possible as different regions of the genome (mtDNA and gene coding 

regions) were used in these studies. 

BLAST searches and comparisons with sequences in Repbase suggested that one of the 

outlier sequences, haplotype 58, showed similarity to the exogenous Epsilonretrovirus, 

Walleye dermal sarcoma virus (WDSV). Haplotype 119 appeared more similar to a gypsy 

retrotransposon. A third sequence, haplotype 107, also appeared to be divergent from other 

crocodilian sequences but phylogenetic analysis grouped this within clade CERV2. In 

addition to this, 18 sequences belonging to clade CERV1 were found to encode intact ORFs 

(haplotypes 1, 2, 14, 19, 25, 26, 27, 30, 46, 77, 87, 88, 90, 140, 148, 157, 175 and 176). No 

intact ORFs were identified from CERV2 related ERV fragments. There was no apparent 

prevalence of intact ORFs from any particular river basin (data not shown). 



4
7

 

Table 2.1: Sequences obtained from each sampling location and the assigned clades. 

River basin Sampling location 
Number of 

clutches 

Number of 

individuals 

Number of 

sequences 
CERV1

a
 CERV2

a
 Other 

Finniss River Wagait 1 1 3 - 3 - 

 Finniss River 2 2 3 - 3 - 

 Labelle/ Welltree Station 4 4 9 4 5 - 

Bathurst and Melville Islands Tiwi Islands 3 3 10 3 7 - 

Adelaide River Adelaide River Station 2 2 14 1 13 - 

 Beatrice Hill 1 2 9 1 7 1 

 Harrison Dam 4 4 19 4 15 - 

 Djukbinj 4 4 26 6 19 1 

 Woolner Station 3 4 12 5 7 - 

Mary River Marrakai Station 5 5 23 4 19 - 

 Opium Creek 1 1 2 - 2 - 

Wildman River Carmour Plains 1 1 1 1 - - 

Goomadeer River Goomadeer River 3 3 21 3 18 - 

Liverpool River Maningrida 2 2 12 3 9 - 

Goyder River Arafura 2 2 4 1 3 - 

Buckingham River Gove Penninsula 3 3 11 3 8 - 

 Goromuru River 4 4 19 6 13 - 

Total number of samples  45 47 198 45 151 2 
a Note that number of sequences does not equal number of haplotypes as some haplotypes were recovered from more than one individual 
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The YXDD retroviral reverse transcriptase motif was highly conserved in both CERV clades. 

CERV1 sequences also contained a number of gammaretroviral motifs from the protease and 

reverse transcriptase domains. CERV2 sequences had regions showing some similarity to 

spumaviral domains, though only three of the possible six domains were detected (Table 2.2). 

Haplotype 58 was shown to contain an epsilonretroviral motif as well as a number of motifs 

shared between Gamma- and Epsilonretroviruses. 

 

Table 2.2: Conserved retroviral pro-pol motifs in crocodilian ERV sequences. 

CERV 

clade 

Motif Genera Motif sequence
a
 

CERV1 PR2 Gammaretrovirus (A/V)L(V/L)DTG(A/S)TFSM 

PR3 Gammaretrovirus LLG(Q/R)DLLTKL 

RT1 Gammaretrovirus YN(S/T)PILGV(L/P)K(A/V) 

RT2 Gammaretrovirus SVLDLKDAFFSI(P/S(L 

RT3 Gammaretrovirus (Q/R)LMWTVLPQGF(I/V)(A/V)AP 

RT4 Gammaretrovirus LL(H/Q)YVDD(I/L)L 

Haplotype 

58 

PR2 Gammaretrovirus VLLDGTATMSM 

PR3 Gammaretrovirus LLGRDLLCK 

RT1 Gammaretrovirus CNTPVLPVRKP 

RT2 Epsilonretrovirus TVIDLCAAFFPIPV 

RT3 Gammaretrovirus HTLNTQLPQGYTKSP 

RT4 Gammaretrovirus LVQYVDDIL 

CERV2 RT2 Spumavirus (A/T)AID(L/P)K(D/E)MF(C/Y)(H/Q)IPL 

RT3 Spumavirus F(E/K)G(C/H/R)VY(E/K)WKVC(P/S)(E/Q)GYKNSP 

RT4 Spumavirus (L/N)SYVDD(I/L)L 
a Residues presented here are those that occurred in more than one sequence. Motifs are 

based on those defined by Sperber et al. (2007). For the complete alignments, see Appendix 

II, Figure S2.1. 

 

Sequences within each of the CERV clades were highly conserved, with pairwise genetic 

distances of 0.058 and 0.039 between nucleotide sequences, and 0.071 and 0.084 for amino 

acid sequences within CERV1 and CERV2 respectively. Visual inspection of the sequence 

alignments for each of the two clades did not reveal any distinct grouping within CERV1 but 

suggested that an additional two groups exist within CERV2 (Appendix II, Figure 2.1). 

Within CERV2, genetic distances decreased further when calculated within each of these 
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groups, with distance values of 0.008/0.017 (CERV2a), 0.008/0.011 (CERV2b) and 

0.015/0.029 (CERV2c) for nucleotide and amino acid alignments respectively. 

The distribution of stop codons and frameshift mutations differed between the two clades. 

Sequences within CERV1 contained very few stop codons or frameshifts that were shared 

between sequences, and those that were, tended to be present in only a small number of 

sequences. In contrast, stop codons and frameshifts within CERV2 sequences were mostly 

present in all of the sequences within a group. 

Recombination analyses detected five recombinant sequences within the two major CERV 

clades, and two possible recombinants where only trace evidence of a recombination event 

was detected. Within CERV1, the recombinant sequences were haplotype 1, and Csi_IV, with 

Cni_I also suspected to be recombinant. Haplotypes 60, 81, and Ami_II were detected from 

clade CERV2, and Ami_I was also suspected to be a recombinant sequence (Appendix I, 

Table S2.2). Of these, only haplotypes 1 and 81 within C. porosus show strong evidence of 

recombination, being reported as having a significant P-value using all methods 

implemented.  

The expected parental sequences for recombinant sequences were isolated from different 

individuals and in some cases from different species. While this reduces the likelihood that 

the observed recombination occurred during amplification, the possibility cannot be ruled 

out, since we do not know the full extent of the ERV complement of individuals used in this 

study. The sites involved in recombination were different in all recombinant sequences 

detected and did not appear to correspond to specific regions of the pro-pol domain. 

 

2.3.2:  Selection 

Tests for selection across the major clades gave consistent results both across species in 

Crocodylia, and within C. porosus. Codon based Z-tests suggest that purifying selection is 

occurring across crocodilian species (CERV1: Z = 7.496, P < 0.001, CERV2: Z = 2.224, 

P = 0.014), and within C. porosus (CERV1: Z = 7.060, P < 0.001, CERV2: Z = 2.633, 

P = 0.005). Comparisons of dN/dS across the different ERV clades gave average dN/dS ratios 

under the one " model between 0.2696 and 0.5539 (Table 2.3). In all cases, allowing sites to 
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evolve under positive selection produced a better fit in the resulting phylogenies, although the 

overall dN/dS ratios strongly supported purifying selection acting on these elements 

(Appendix I, Table S2.3). Positive selection was detected at a small number of sites in both 

clades, but these sites do not appear to correspond to retroviral motifs. 

 

Table 2.3: Average dN/dS for each of the selection scenarios tested. 

Hn Model
a
 Average dN/dS 

    CERV1 CERV2 

H0 M0: One ratio 0.4904 0.5539 

H1 M3: Discrete 0.5187 0.6898 

H2 M1a: Nearly neutral 0.4344 0.3057 

H3 M2a: Positive selection 0.5234 0.5864 

H4 M7: Beta 0.4217 0.3349 

H5 M8: Beta & " 0.4973 0.6217 
a Analysis was conducted using PAML (Yang, 2007). Model names are those defined in the 

program. 

 

2.3.3:  Sequence clustering and phylogenetic analysis 

Nucleotide and amino acid trees created using Neighbour Joining and Maximum Likelihood 

methods present very similar topologies with little phylogenetic differentiation within each 

clade. Neither Neighbour Joining nor Maximum Likelihood methods provided any better 

resolution of the phylogenetic relationships between the sequences. Overall, the tree topology 

was similar within both clades, with very short internal and terminal branches (Appendix II, 

Figure S2.2). The lack of phylogenetic resolution is most notable within the clade CERV1. 

No highly supported groups or lineages were identifiable within C. porosus, or when these 

sequences were compared with those of other crocodilian species. Interestingly, we observed 

a tendency for sequences encoding intact ORFs to cluster within one clade of the CERV1 

phylogeny. Within CERV2, phylogenetic trees supported the presence of three groups of 

sequences within the clade, with moderate bootstrap support, consistent with what was 

observed with sequence genetic distances.  

Neighbour Joining and Maximum Likelihood analyses incorporating retroviral sequences 

from non-crocodilian taxa consistently placed the CERV1 sequences with the 
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Gammaretrovirus related ERVs. CERV2 related sequences consistently clustered with the 

Spumaviruses. Haplotype 58 clustered with the Epsilonretrovirus related ERVs, while 

haplotype 119 was placed within the Spumaviruses but separate from the CERV2 sequences 

(Figure 2.2). While there appears to be no host species-related sorting among CERV1 

sequences, groupings within CERV2 suggest some degree of lineage specific evolution at the 

level of host family. A Crocodylidae specific group was observed, consisting of sequences 

from C. porosus, C. niloticus, and C. mindorensis (Philippine crocodile). Haplotype 107 was 

placed midway between this lineage and the majority of known CERV2 sequences, which 

consist mostly of those isolated from the alligators and caimans. Notably, within clade 

CERV2, the majority of sequences from Crocodylidae cluster together, while those from 

Alligatoridae appear to be more divergent from each other.  
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Figure 2.2: Phylogenetic clustering of crocodilian ERVs (CERVs). Neighbour Joining tree 

based on aligned amino acid sequences from the retroviral pro-pol gene region. The final 

alignment length was 799 characters including gaps. The general host species taxa are 

indicated by symbols. The two major clades of ERVs found in crocodilians are indicated by 

dashed circles. Circled numbers refer to haplotypes 58, 107, and 119. Arrows indicate 

additional crocodilian ERV sequences. Numbers near branches indicate bootstrap support 

values. 
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2.4:  Discussion  

The data presented in this study suggest that there are high levels of sequence diversity in 

C. porosus ERV sequences. The sequences isolated in this study correspond largely with the 

two major CERV clades previously identified. In addition, we have identified novel 

sequences that appear to be related to other retroviral genera. Within the clades, we have 

found evidence of strong purifying selection acting across both of the major clades which is 

suggestive of recent integration or transposition. We have found preliminary evidence to 

propose the presence of sublineages within clade CERV2. While it is unlikely that this study 

encompasses the full extent of retroviral diversity in C. porosus, the data generated here 

provide a comprehensive insight into the process by which ERVs have populated the 

genomes of crocodilians, and their evolution within the genome of this species. 

 

2.4.1:  High diversity present in CERV clades 

A large number of novel sequences were generated, with very few haplotypes being 

recovered more than once. This high diversity of ERVs haplotypes within C. porosus can be 

explained by several possible scenarios: i) several recent and independent infection events by 

exogenous retroviruses from the various retroviral genera that have resulted in the current 

ERV diversity; ii) a single infection event by an exogenous retrovirus from each of the 

represented retroviral genera followed by repeated reinfection by the same ERV lineages; iii) 

a single infection event by an exogenous retrovirus from each of the represented retroviral 

genera followed by replication of ERVs within the genome, either by retrotransposition or 

complementation. 

The similarity of sequences within each of the two major clades within C. porosus would 

make the first of these scenarios unlikely. Of the remaining scenarios, the second scenario 

would appear to explain the pattern of evolution seen in clade CERV1, while the presence of 

shared stop codons in CERV2 suggests proliferation through retrotransposition or 

complementation (Belshaw et al., 2004). Further support for each of these methods of 

replication will be discussed in the following sections. Both of these scenarios result in many 

lineages of related retroviruses that can replicate and mutate independently (Tristem, 2000). 

This leads to a collection of proviruses that show high levels of nucleotide and amino acid 
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diversity while at the same time retaining the original sequence characteristics, as seen in this 

study. This level of sequence diversity is not uncommon for ERVs, and is comparable to 

what has been observed in mammalian ERVs (Klymiuk et al., 2003, Nascimento et al., 2011).  

A low frequency of recombinant sequences was detected among the crocodilian ERV 

sequences, suggesting that recombination does not play a large role in the generation of ERV 

diversity in C. porosus. The detection of recombinant sequences where the predicted parental 

sequences were isolated from other species is indicative of ancestral recombination events. 

Given the rarity of cross species transmission (Martin et al., 1999) and the distinct 

distributions of crocodilian species, it is unlikely that these lineages arose from cross species 

transmission of ERVs between crocodilian species. 

 

2.4.2:  Potential for autonomous replication in CERV clades 

It is plausible that CERV1 may still be active within the genome of C. porosus, replicating 

through reinfection of host cells. Reinfection restores the fitness of the replicating ERV, 

thereby increasing preservation of the lineage (Bannert and Kurth, 2006, Herniou et al., 1998) 

and allowing for further proliferation within the host genome. Based on the high number of 

sequence variants and high level of sequence similarity, we propose that this clade represents 

the product of a fairly recent integration event. The majority of stop codons present within 

this clade occupied unique positions within each sequence, indicating that it is unlikely that 

these ERVs arose through retrotransposition or by complementation with other related ERVs 

(Belshaw et al., 2004). This is further supported by the presence of sequences with intact 

ORFs, and the strong purifying selection that has been observed within this clade (Bannert 

and Kurth, 2006, Herniou et al., 1998).  

The observed clustering of sequences encoding intact ORFs suggests that there may be a 

particularly active strain of ERV that has largely managed to escape inactivation within 

C. porosus. This clade also includes a number of available sequences from other species 

within Crocodylidae, suggesting that there may also be active ERVs present in these species. 

While most ERV insertions are inactivated by mutation shortly after integration, it is 

plausible that active lineages may still retain their capacity to replicate by reinfection well 

after species divergence (Benit et al., 1999, Katzourakis and Gifford, 2010). 
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On the other hand, shared stop codons in sequences from clade CERV2 mean that replication 

by reinfection is unlikely, lending support to retrotransposition or complementation as 

possible means of replication. Replication by either of these methods does not require that all 

genes are functional. Retrotransposition, for example, does not require a functional env 

domain (Bannert and Kurth, 2006, Herniou et al., 1998). Complementation on the other hand 

does not require functional proteins within the provirus, providing that the required 

regulatory regions within the LTRs are intact, and that missing functional proteins are 

supplied by an exogenous retrovirus or partially intact ERV (Bannert and Kurth, 2006, 

Belshaw et al., 2004). The strong levels of purifying selection detected in this clade suggest 

that this clade has recently been active, although sequence data from the other retroviral 

domains are needed to determine the likely method of replication. 

 

2.4.3:  Low levels of phylogenetic resolution 

The rapid proliferation of ERVs within a host genome can also confound attempts to 

differentiate ERVs by phylogenetic analyses. This is especially in the case of recent 

integration events where not enough evolutionary time has passed to allow insertions to 

develop distinguishing or phylogenetically informative mutations. In addition, the mutation 

rates of the pro-pol domain are, comparatively, the lowest of the various retroviral domains 

(McClure et al., 1988). While this characteristic makes this region ideal for studies of ERV 

proliferation across taxa, it could be argued that regions with typically higher mutation rates 

such as gag or env may be more appropriate for generating phylogenies within a species (Jern 

et al., 2005, McClure et al., 1988). 

Furthermore, studies into the nucleotide substitution rate of crocodilian nuclear and 

mitochondrial sequences suggest that this is much lower in crocodilians than in most other 

vertebrates (Eo and DeWoody, 2010, Hugall et al., 2007, Lynch, 1997, Ray et al., 2004). 

Thus, degenerate ERV sequences are likely to accumulate changes at a slower rate in 

crocodilians than most other vertebrate species, leading to a low level of host lineage specific 

evolution, as well as low levels of lineage differentiation. This has the effect of reducing our 

ability to detect host species specific lineages based on these data alone.  
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For this reason, it could also be argued that other more quickly evolving retroviral domains 

should be considered to provide resolution between host specific lineages. The 

characterisation of the remaining ERV domains will also provide further insights into the 

methods of replication, and potential for reinfection. As such, future studies into the diversity 

of ERVs within crocodilians should now be oriented towards characterising the entire length 

of proviral insertions rather than individual domains.  

 

2.4.4:  Estimated infection times of the ERV clades 

Strong purifying selection and low levels of phylogenetic resolution on both ERV clades 

suggests a recent population expansion may have occurred. Regardless of the method by 

which this is achieved, replication of elements results in the expansion of the population and 

the creation of autonomous, but related lineages that are capable of replicating and evolving 

independently (Tristem, 2000). In relatively recent population expansions, therefore, it would 

be expected that sequences would still share high levels of sequence similarity. This is 

corroborated by short internal branch lengths, and the lack of phylogenetic resolution seen 

across the CERV alignments.  

In the absence of LTRs or knowledge of the founding retroviral sequence, the ages of the 

initial integration events of the crocodilian ERVs can only be estimated from what is known 

about the species phylogenies and the assumed presence or absence of the ERVs in each of 

these species. Based on nucleotide and amino acid similarity to previously classified ERVs, 

and the presence of conserved retroviral motifs, we propose that the ERV complement of 

C. porosus came about through infection by three related lineages of retroviruses belonging 

to the gamma-, epsilon-, and spumaviral genera. The first of these infections would be that 

leading to the CERV2 clade, as sequences have been identified in species representing all 

families within Crocodylia. This integration is likely to pre-date the Alligator-Crocodile split, 

approximately 90 million years ago (MYA) (Oaks, 2011). The infection that gave rise to the 

CERV1 clade is likely to have occurred after this time period. The presence of nearly 

identical CERV1 sequences in other species within Crocodylidae would indicate that this 

integration could have occurred prior to diversification of the various crocodile species, at 

least 20!30 MYA (Oaks, 2011).  
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Sequence divergence and phylogenetic evidence supports the presence of three sublineages 

within CERV2. These three groups are characterised by a number of diagnostic positions 

including shared frameshift mutations and stop codons within each group, and is moderately 

supported by bootstrap analyses on the phylogenetic trees of the CERV2 clade. This evidence 

furthers the notion that this clade represents an older integration event that has been present 

in the genome for a sufficient amount of time for the differentiation of distinct sequence 

lineages. 

In the case of the Epsilonretrovirus related sequence, haplotype 58, the full extent of its 

proliferation within crocodilians is not known, as only one other similar sequence has been 

isolated � from G. gangeticus (gharial) (Herniou et al., 1998). Thus, it cannot yet be 

determined whether this lineage is also present among crocodilians, or if it is the result of 

cross species retroviral infection involving a limited number of crocodilian species. The 

apparent rarity of this sequence within the genome also raises questions as to why it has not 

multiplied further, or why it is so much less likely to be detected. Deeper or different 

sampling strategies may be required to understand the reasons behind this. 

 

2.4.5:  Reclassifying CERV2 

Contrary to the data presented by Jaratlerdsiri et al. (2009), CERV2 related sequences were 

grouped within the Spumaviruses rather than forming a separate distinct clade. This can 

mainly be attributed to the use of different alignment algorithms between studies. The 

conventional strategy of high gap penalties within global alignments can be problematic 

when aligning highly divergent sequences, such as ERV sequences, where the use of high gap 

penalties can result in the forced alignment of non-homologous sequence regions (Huang et 

al., 2006). Instead, we elected to use the alignment program MAFFT, which implements 

algorithms specifically designed for the alignment of highly divergent sequences. These 

algorithms result in alignments based around a series of local alignments of conserved 

regions, and allows for long lengths of un-alignable sequence between the conserved domains 

(Katoh et al., 2005). In studies such as this, where ERV discovery is, more or less, de novo, 

we believe that this may be a more effective method for sequence comparison, as novel 

sequences may share only a low level of similarity with known sequences, making them 

difficult to align and potentially reducing the power of downstream analyses. 
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2.5:  Conclusions  

We propose that the ERV complement of C. porosus has come about through a combination 

of recent infections and replication of ancestral ERVs. Two major clades are present as a 

result of infection by gammaretroviral and spumaviral lineages. Strong purifying selection 

acting on these clades suggests that this activity is recent or still occurring in the genome of 

this species. We have uncovered a large amount of sequence variation within both of the 

major clades of ERV present in C. porosus, as well as the presence of an additional lineage 

that appears to be present in the genome to a much lesser degree. While no host taxa 

dependent clustering was observed, there is evidence for the divergence of sub-lineages 

within the more ancient ERVs in C. porosus. The discovery of elements encoding an intact 

ORF, and therefore the potential for autonomous replication is an interesting development 

that warrants further investigation. 
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Chapter 3: Lineage specific evolution of endogenous retroviruses 

in the freshwater crocodile (Crocodylus johnstoni) 
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3.1:  Introduction 

Endogenous retroviruses (ERVs) are a diverse group of vertebrate transposable elements 

derived from germline infections by exogenous retroviruses (Lower et al., 1996). 

Crocodilians (Crocodylia) have previously been shown to harbour a particularly diverse 

range of ERVs, some of which are only distantly related to the currently recognised retroviral 

genera (Chapter 2) (Jaratlerdsiri et al., 2009, Martin et al., 1999, Martin et al., 2002). 

However, these studies have focussed on examining diversity across species and within a 

population. Given the high degree of ERV sequence variation that may be present within a 

population, studies from a singular genome may provide a better understanding of the micro-

evolutionary processes to which ERV insertions are subjected. To address this, we provide 

insight into the process of replication and diversification of ERVs from a single specimen of 

the C. johnstoni (freshwater crocodile) and compare this with the insights offered by broader 

studies of ERV diversity. 

Retroviruses (family Retroviridae) consist of exogenous and endogenous RNA viruses. These 

are classed into seven major genera based on DNA and amino acid sequence similarity, and 

the structure of the viral genomes (Blomberg et al., 2009, Jern et al., 2005). These genera are: 

Alpharetroviruses, Betaretroviruses, Gammaretroviruses, Deltaretroviruses, 

Epsilonretroviruses, Lentiviruses, and Spumaviruses (Fauquet et al., 2005). Their endogenous 

counterparts, ERVs, are generally found as degraded copies of ancient retroviruses. This 

degradation is a consequence of genetic mutations, such as base substitutions, insertions, 

deletions, and recombination, and can make it difficult to classify older ERV sequences 

within these genera (Barrio et al., 2011, Lower et al., 1996). Consequently, ERV 

classification may reflect the likely exogenous retroviral genera, eg Gammaretrovirus-like, or 

be classed into three major groups: ERV1, ERV2, and ERV3. ERV1 loosely encompasses the 

Gamma- and Epsilonretroviruses, ERV2, the Alpha- and Betaretroviruses, and ERV3 the 

Spumaviruses. (Blomberg et al., 2009, Jern et al., 2005).  

The basic proviral ERV genome consists of three major coding domains flanked by long 

terminal repeats (LTRs). The coding regions encode the viral capsid protiens (gag), retroviral 

enzymes (pro-pol), and the retroviral envelope proteins (env). The LTRs are not translated, 

but contain the promoter regions responsible for initiating transcription and reverse 

transcription at various stages of the retroviral replication cycle (Coffin, 1992).  
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Once integrated into a host genome, ERVs may retain some capacity to replicate, forming 

numerous lineages, some of which will also be capable of replication. This can potentially 

lead to thousands of related insertions of varying ages dispersed throughout the host genome 

(Stoye, 2001, Tristem, 2000). ERV replication within a host genome can largely be explained 

by three major mechanisms. The first of these, reinfection, mimics the retroviral replication 

cycle whereby elements insert into the genome, are replicated, and mature viral particles are 

budded into the extracellular matrix where they can infect naïve host cells. This method of 

replication among ERVs is rare, as it requires that all retroviral genes and domains are intact 

(Belshaw et al., 2004). The second of these mechanisms, retrotransposition in cis, requires 

functional promoter regions and gag and pol domains. Alternatively, the third mechanism, 

complementation in trans, requires only that the promoter regions are intact, with some or all 

retroviral enzymes and proteins provided by other endogenous or co-infecting exogenous 

retroviruses (Bannert and Kurth, 2006, Belshaw et al., 2004). The method of replication by 

which ERVs have proliferated within a genome can be determined by examining sequence 

similarities and phylogenetic relationships between insertions. 

Following the initial integration into the genome, most ERV insertions will be removed from 

the host species by purifying selection against those that reduce the genetic fitness of the host. 

Providing that the effect of the insertion is not immediately lethal, these recently endogenised 

ERVs may retain the capacity to cause disease through active reinfection. This is of particular 

interest in crocodilians as previous studies have suggested that at least one lineage of ERVs 

may retain the capacity to replicate by reinfection (Chapter 2). The association of ERVs with 

novel diseases has been observed in other taxa. One such example of this is the KoRV in P. 

cinereus, which has been associated with neoplasia and increased susceptibility to 

chlamydiosis. The presence of viral transcripts in blood plasma, and variation in the number 

of proviral copies suggests that KoRV is still active within the koala genome (Tarlinton et al., 

2005). While this virus does not appear to be causing disease directly, it has been suggested 

that specific viral variants or insertion locations may play a role in determining susceptibility 

or progression of associated diseases (Rosenberg and Jolicoeur, 1997, Tarlinton et al., 2005).  

On the other hand, it should also be noted that ERVs can cause disease without active 

reinfection of host cells. Silenced or dormant ERVs may also have the capacity to cause 

disease, either by reactivation, or by interfering with normal cellular functions. Dormant 

ERVs may also be reactivated through interaction or recombination with exogenous 
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retroviruses (Bishop, 1978), or released from transcriptional suppression by activation of the 

immune system or other stressors (Cho et al., 2008, Perl, 2003). ERVs that are capable of 

replicating within a host cell by retrotransposition have the capacity to cause disease by 

integrating into new genomic locations, there they can disrupt gene expression by insertion 

within a coding region, or by altering the expression of genes surrounding the insertion site 

(Gifford and Tristem, 2003, Katzourakis et al., 2005, Stoye, 2001). 

There are 23 recognised species of crocodilians (Order Crocodylia), making up three 

families: Alligatoridae (alligators and caimans), Crocodylidae (crocodiles), and Gavialidae 

(gharials) (Li et al., 2007, Roos et al., 2007). C. johnstoni is endemic to Australia and can be 

found in coastal and inland regions of northern Australia, from northern Queensland, across 

to northern Western Australia (Cogger, 1992). This species is generally found in freshwater 

habitats upstream of tidal influence, and in the absence of competition from the C. porosus, 

with which its range overlaps, its range may extend into tidal, saline waters (Webb and 

Manolis, 2010). Hunting and the introduction of invasive species, such as Chaunus [Bufo] 

marinus (cane toad), greatly reduced C. johnstoni populations to the point where it was 

classified as vulnerable (Crocodile Specialist Group, 1996b, Doody et al., 2009, Letnic et al., 

2008, Webb et al., 1984).  Subsequent conservation efforts and the increasing focus on 

ecotourism, have increased population numbers to a level where C. johnstoni is now 

considered a low risk species, although it is still protected (Crocodile Specialist Group, 

1996b, Webb and Manolis, 2010). 

Retroviral diseases have not previously been observed in crocodilians. However, recently, it 

has been noted that a number of juvenile freshwater crocodiles were presenting with an 

unidentified syndrome, typically characterised by cutaneous lesions and extensive lymphoid 

infiltration of internal organs, possibly indicative of a retroviral infection (Melville et al., 

2012). We chose to investigate the potential for replication competent retroviruses from one 

of these diseased individuals as there has been some suggestion that other crocodilian species 

may harbour active retroviral elements. 

To date, ERV knowledge in crocodilians has focussed on phylogenetic analyses across 

species of this lineage and only one other crocodilian species, C. porosus, has been studied 

extensively. Studies using the pro-pol gene region have shown that crocodilian ERVs cluster 

into two major groups (Chapter 2) (Jaratlerdsiri et al., 2009). The first of these clusters with 
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other ERV1 sequences, with one lineage showing similarity to exogenous 

Gammaretroviruses, and another that was more similar to the Spumaviruses. Alignments 

constructed from conserved domains of those genes, demonstrated that the second major 

group appears to be only distantly related to other recognised ERVs, and it has alternately 

been placed in a separate clade from recognised ERVs (Jaratlerdsiri et al., 2009), and as a 

distantly related clade to ERV3 and spumaviral ERVs (Chapter 2). More recently, 

identification of complete proviral sequences from this clade has shown that it is distinct from 

other recognised ERV clades, and thus has been given a new classification, termed ERV4 (J. 

Jurka, pers comm.). Due to the high sequence divergence observed between these proviral 

sequences and the closest related spumaviral ERVs, this latest classification is likely to 

represent the actual relationship between this ERV clade and other sequenced ERVs. 

To our knowledge, this study represents the first study into ERVs within a single animal, 

providing the opportunity to examine the micro-evolution of ERV lineages within a genome, 

rather than their evolution within a population, genus, or family. ERV studies in non-model 

organisms, such as crocodilians, are more likely to focus on the examining diversity across 

taxa and inferences of likely points of ERV integration with regards to speciation, rather than 

a systematic characterisation of the ERV complement of a particular species (Herniou et al., 

1998, Jaratlerdsiri et al., 2009, Martin et al., 1999, Martin et al., 1997). Furthermore, the 

characterisation of ERVs within a species is instead usually restricted to species where the 

genome sequence has been generated, such as in humans, cattle, and in the dog (Barrio et al., 

2011, Belshaw et al., 2004, Garcia-Etxebarria and Jugo, 2010). In the absence of genomic 

resources for C. johnstoni, a targeted study such as this provides an effective, alternative 

method for ERV characterisation. 

Here we present the results of an in-depth survey of ERVs in a single C. johnstoni individual 

by targeted amplification and isolation of the highly conserved pro-pol domain. The ability to 

examine ERVs within a single genome will allow for a closer examination of the 

microevolution of ERVs at the level of a single individual. In particular it will provide useful 

insights into the mechanisms by which ERVs may be replicating, and the potential impacts of 

ERV integration at the gene level. In this current study, we have also investigated the 

possibility of recovering replication competent ERVs from an individual experiencing 

immunological stress. In doing this, we have also investigated the possibility of a novel 
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infection by a crocodilian ERV with the capacity to cause disease, through the investigation 

of possible preferential distribution of ERV insertions across different tissue types.  

 

3.2:  Materials and Methods 

3.2.1:  Sample collection 

Tissue samples for this study were collected from a euthanised C. johnstoni specimen at 

Berrimah Veterinary Laboratories (Berrima, NT) as part of routine necropsy procedures. 

Samples of lung, liver, kidney, and spleen were used for this study. DNA was extracted using 

a standard phenol-chloroform extraction (Sambrook and Russell, 2006).  

 

3.2.2:  PCR amplification and sequencing 

PCR was carried out to amplify fragments of genomic ERV insertions. Universal primers for 

the retroviral pro-pol region were used maximise the number of insertions that could be 

recovered (Forward sequence: GTK TTI KTI GAY ACI GGI KC, reverse sequence: ATI 

AGI AKR TCR TCI ACR TA). These primers amplify a 700�1000 bp region between highly 

conserved, functional,  retroviral motifs (Tristem, 1996). PCR was carried out in duplicate, in 

25 µL reaction volumes, containing 100 pmol of each primer, 2 mM MgCl2, 0.16 mM 

dNTPs, PCR buffer and 1 U of high fidelity Taq polymerase. Thermocycling conditions were 

carried out as follows: initial denaturation at 94°C for 2 min, 35 cycles of 45°C (30 s), 72°C 

(60 s) and 94°C (30 s), followed by a final annealing period of 3 min at 45°C and a final 

extension period of 10 min at 72°C. 

ERVs may be present in the genome in many thousands of copies (Stoye, 2001). 

Consequently, multiple amplicons were expected in each reaction. To distinguish between 

each of these, amplicons were gel purified and artificially cloned using the pGEM-T Easy 

Vector and JM109 Escherichia coli cells (Promega). Bacterial cloning allows the separation 

and amplification of individual DNA fragments by use of a bacterial plasmid vector and 

transfection competent E. coli cells. Positive clones were verified by PCR as described above 

before sequencing by Sanger sequencing at the Australian Genome Research Facility (AGRF, 

Brisbane, Australia).  
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3.2.3:  Sequence analysis 

Nucleotide sequences were initially aligned using CLUSTALW (Thompson et al., 1994) as 

implemented in the program package MEGA5 (Tamura et al., 2011). Primer sequences were 

then trimmed from the alignments as primer mispriming can increase or mask variation at the 

annealing sites. Unique haplotypes were then identified using FaBox (Villesen, 2007) and 

putative amino acid translations obtained by aligning the resulting haplotypes using the 

program MACSE (Ranwez et al., 2011) before translating into amino acids using the standard 

vertebrate genetic code tables. To confirm that the recovered sequences were from ERV 

insertions, nucleotide and amino acid haplotypes were compared against published ERV 

sequences in GenBank using BLASTN (Altschul et al., 1990, Zhang et al., 2000) and 

BLASTP (Altschul et al., 1997). For analyses across species, we realigned the sequences 

using the E-INS-i algorithm in the alignment program MAFFT (Katoh et al., 2005) to take 

into account the presence of multiple conserved regions as well as more variable regions 

within the ERV sequences. 

Sequence identification tags were assigned based on the species of origin (Crjo for 

C.  johnstoni), the region from which the sequence originated (pro-pol), and the haplotype 

number, for example �CrjoERV-pro-pol-1�. Haplotypes were used over individual sequences 

as is not possible to ascertain whether the sequences within a haplotype belong to different 

insertions or are from multiple amplifications of the same insertion. 

We calculated genetic distances using the Jukes-Cantor and JTT models for nucleotide and 

amino acid sequence alignments respectively. These models were selected to account for the 

possibility of multiple mutations at each site in the alignment. Tests for sequence 

recombination were carried out using RDP (Martin et al., 2010) with default settings. 

Sequence clustering and identification of representative sequences was carried out using CD-

HIT with the recommended program settings for nucleotide and amino acid alignments (Li 

and Godzik, 2006). These sequences were then compared with published ERV sequences in 

GenBank and RepBase using the NCBI BLAST suite (Johnson et al., 2008) and Censor 

(Kohany et al., 2006) respectively. We also investigated the selective pressures operating on 

these sequences through the Codon based Z-tests and Tajima�s neutrality test in MEGA5 

(Tamura et al., 2011). Codon based Z-tests were carried out using the Nei and Gojobori 

method with the Jukes-Cantor correction. 
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Phylogenetic analyses using Neighbour Joining and Maximum Likelihood methods were 

used to determine the evolutionary relationships within the sequences recovered in this study 

and between sequences recovered from crocodilians (Chapter 2) (Jaratlerdsiri et al., 2009, 

Martin et al., 2002); as well as the relationships between these insertions and other vertebrate 

species (Herniou et al., 1998, Jern et al., 2005, Martin et al., 1999). Neighbour Joining trees 

were created in MEGA5 using the Jukes-Cantor and Poisson corrections to account for 

multiple substitutions, with 1000 bootstrap replications. Maximum Likelihood analyses were 

implemented in PhyML using HKY and JTT models for nucleotide and amino acid 

alignments as determined by ModelGenerator (Guindon et al., 2010, Keane et al., 2006). 

aLRT values were used to determine statistical support for each of the branches (Anisimova 

and Gascuel, 2006). Due to the divergence between sequences across all retroviral genera, the 

phylogeny incorporating sequences from a range of vertebrate taxa were created using 

Neighbour Joining analyses and the p-distance method with 1000 bootstrap replicates.  

 

3.3:  Results 

3.3.1:  ERV diversity in C. johnstoni 

A total of 43 nucleotide sequences were obtained from this study, ranging from 739�787 

nucleotides in length. These encoded 28 unique nucleic acid haplotypes [GenBank accession 

numbers: KC790541 to KC790568] which were reduced to 19 after translation into amino 

acid sequences. All sequences were found to contain stop codons and/or frameshift 

mutations. The translated amino acid sequences were between 250 and 265 amino acids in 

length, including stop codons and frameshift mutations.  

Sequence haplotypes were made up of between one and 13 sequences recovered from 

positive clones. Most of the haplotypes recovered were unique to a specific tissue type (Table 

3.1), although three haplotypes were shared between at least two tissue types: haplotype 

CrjoERV-pro-pol-2 was found in all four tissue types, CrjoERV-pro-pol-8 was recovered 

from the liver and spleen, and CrjoERV-pro-pol-11 was common between liver and lung. No 

recombination was detected within the sequences generated from this study. Similarities 

between the sequences recovered in this study and those from previous studies revealed that 

all haplotypes except for one, CrjoERV-pro-pol-28, could be assigned to the ERV4 clade 
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(previously CERV2) (Chapter 2) (Jaratlerdsiri et al., 2009). Within these sequences, overall 

p-distances were 0.028 at the nucleotide level, and 0.062 for amino acid sequences.  

 

Table 3.1: Summary of the clones and nucleic acid sequence haplotypes obtained from each 

tissue in this study.  

Tissue type No. clones No. haplotypes
a
 No. unique haplotypes

a
 

Liver 17 12 9 

Lung 5 5 3 

Kidney 14 11 10 

Spleen 7 5 3 

Total 43 

  a Note that the number of haplotypes listed for each tissue type does not equal the total 

number of haplotypes as some haplotypes were recovered from more than one tissue type 

 

Sequence clustering analysis of the C. johnstoni haplotypes suggested the presence of four 

distinct sequence groupings at the 95% similarity level, three of which corresponded to the 

ERV4 related sequences, and the fourth to haplotype CrjoERV-pro-pol-28 (Figure 3.1). The 

first of these clusters (Crjo-ERV4c in Figure 3.1) consisted of 23 out of the 28 haplotypes 

recovered. An additional three sequences (CrjoERV-pro-pol-1, -3, and -11) formed a minor 

group of sequences, and the remaining two sequences (CrjoERV-pro-pol-24 and CrjoERV-

pro-pol-28) were deemed to be distinct from each other as well as the previously identified 

groups of sequences. While certain haplotypes were found in certain tissues, these sequence 

clusters did not appear to be more prevalent in any of the tissue types studied. 
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Figure 3.1: Neighbour Joining tree of crocodilian ERV4 pro-pol sequences, with the larger, 

closely related clades collapsed for clarity (indicated by shaded triangles). C. johnstoni 

sequences are indicated by a shaded circle. The final alignment was 1032 positions in length, 

with sequences ranging from 625 to 787 nucleotides in length. The scale bar at the bottom 

left indicates inferred genetic distance between sequences. Numbers at the nodes indicate 

bootstrap support values greater than 50%. �Crpo� refers to C. porosus ERV clades, �Crjo� 

refers to those from C. johnstoni, and �Croc� refers to crocodilians in general. Other sequence 

names have been retained from their respective publications. 
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CrjoERV-pro-pol-28, showed no similarity to other crocodilian ERVs recovered to date 

(Chapter 2) (Herniou et al., 1998, Jaratlerdsiri et al., 2009, Martin et al., 1999, Martin et al., 

2002). Comparisons with published retroviral sequences in the GenBank and RepBase 

databases showed that this sequence is similar to the foamy viruses, a diverse lineage of 

retroviruses within the Spumavirus genera, although similarity values were low. The closest 

related sequences were the Feline foamy viruses (35% similarity at the amino acid level), and 

the Simian foamy viruses (34% similarity). 

 

3.3.2:  Selection on C. johnstoni ERVs 

Tests for selection within the major sequence cluster in C. johnstoni suggested that purifying 

selection is occurring within this clade. Codon based Z-tests rejected the scenario of 

evolution under neutral selection (Z = -2.160, P = 0.033) in favour of evolution under 

purifying selection (Z = 2.064, P = 0.021). Tajima�s neutrality test supported this (D = -

1.557).  

 

3.3.3:  Phylogenetic analysis 

Neighbour Joining and Maximum Likelihood phylogenetic trees also supported the presence 

of four clades within the C. johnstoni sequences recovered from this study (Figure 3.1). 

However, these analyses did not provide further resolution of the phylogenetic relationships 

between sequences within the clades. Trees derived from the ERV4 sequences were star-like, 

with short internal and terminal branches, and a large number of unresolved divisions or 

polytomies (Appendix II, Figure S3.1), similar to that described in C. porosus (Chapter 2).  

Subsequent phylogenetic comparisons with other crocodilian ERV sequences revealed that all 

except five haplotypes clustered with the C. porosus ERV4c sub-lineage (Figure 3.1). 

CrjoERV-pro-pol-24 clustered with sub-lineages ERV4b in C. porosus. Within these 

lineages, sequences from each species clustered together in distinct clades. CrjoERV-pol-1, 

-3, and -11 clustered within the major C. porosus ERV4a sub-lineage, while CrjoERV-

propol-28 remained separate from the crocodilian ERV4 sequences. Based on these analyses, 
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CrjoERV-pro-pol-1, -10 (representing Crjo-ERV4c), -24 and -28 were selected for further 

interspecies analysis.  

Phylogenetic analysis of the haplotypes from this study compared with a selection of ERVs 

from all vertebrates confirmed that the ERV4 sequences clustered within a crocodilian 

specific clade. These analyses also confirmed that CrjoERV-pro-pol-28 was more closely 

related to the foamy viruses than the crocodilian ERVs (Appendix II, Figure S3.2). 

 

3.4:  Discussion 

3.4.1:  Recent activity and species specific evolution in crocodilian ERV4 lineages 

This study indicates that the ERV insertions within C. johnstoni are still under purifying 

selection, suggesting that these elements have recently been active and replicating. The high 

levels of sequence similarity between the isolated fragments, and presence of shared stop 

codons and frameshift mutations support the view that the observed ERV diversity is a result 

of recent duplication from existing insertions rather than multiple infection events (Belshaw 

et al., 2004). Likewise, the numerous stop codons and frameshift mutations make it unlikely 

that the elements recovered in this study encode intact coding domains within the pro-pol 

region, and are therefore not capable of autonomous replication. Therefore, we propose that 

the proliferation of ERV sequences within the C. johnstoni genome is likely to be a result of 

retrotransposition or complementation (Bannert and Kurth, 2006, Belshaw et al., 2004, 

Katzourakis et al., 2005). 

The ERV sequence data from this study, combined with what has been observed in 

C. porosus provides the first evidence of host specific clustering within sub-lineages in 

crocodilian ERV4 sequences. This is likely to be the result of a pre-speciation infection, 

pre-dating the Alligatoridae-Crocodylidae divergence, approximately 90 MYA (Oaks, 2011). 

We propose that this infection event was then followed by species specific replication and 

lineage evolution (Figure 3.1, Figure 3.2). Sequences from the sub-clades from both species 

share a common node within the wider ERV4 clade, suggestive of common ancestry. 

Furthermore, the high levels of sequence similarity observed in the C. johnstoni ERV4 

sequences from this study, as well as between these sequences and those isolated form 

C. porosus, lend credence to the theory that these lineages arose from a single infection event.  
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Figure 3.2: Graphical representation of the phylogenetic relationships between the 

crocodilians ERV clades described to date and their host species within Crocodylia, 

highlighting the range of ERV lineages recovered from Crocodylidae in comparison with the 

other two families. The tree on the left shows the ERV clades while the tree on the right is the 

three crocodilian families. The lines in the middle indicate which ERV clades have been 

isolated from each of the crocodilian families, with solid lines being those from 

Crocodylidae, dashed lines from Gavialidae, and the dotted line from Alligatoridae. 

 

Species specific evolution of ERV lineages is widespread across vertebrate taxa, although the 

best studied examples of these are from taxa including model organisms due to the 

availability of genomic resources. Notable examples of this include the intracisternal 

A-particles (IAPs) in rodents, and the HERV lineages in primates. IAPs are a Betaretrovirus-

like group of ERVs that have been actively replicating in rodent genomes despite the lack of 

an identifiable env (Magiorkinis et al., 2012, Vogt, 1997). Similarly, a number of HERV 

lineages in primates have been shown to display differing levels of lineage proliferation and 

degradation across primate species (Bannert and Kurth, 2006, Jern et al., 2004). 

Furthermore, once integrated into the genome, proviral insertions are subject to the same 

levels of nucleotide substitution as the surrounding genomic region (Temin, 1992). This 

means that the length of time in which an ERV lineage has been present in the genomes of 

host species can also affect the detection of species specific evolution. It has been proposed 
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that the ERV1 lineages are too recent to allow for the development of host specific lineages. 

ERV4, on the other hand, is a much older insertion, likely pre-dating the Alligatoridae-

Crocodylidae split (Chapter 2) (Jaratlerdsiri et al., 2009). Thus where ERV1 did not show 

any evidence for species specific lineage sorting, the older ERV4 lineages may have had the 

molecular time to evolve species specific lineages.  

Alternatively, species specific expansions such as this may be the result the acquisition of a 

complementary helper virus, resulting in replication by complementation (Bannert and Kurth, 

2006); or a release from transcriptional suppression, allowing the proliferation of a previously 

inactive ERV (Maksakova et al., 2008). The animal from which the samples were obtained 

was observed to be suffering from a novel disease or syndrome not observed in C. porosus 

(see Section 3.1), and it is possible that this could provide the necessary trigger. Stressors 

such as immunological stress from a novel or virulent pathogen can also alter the 

transcriptional restrictions on the genome of a host cell, allowing a previously silenced ERV 

to replicate (Cho et al., 2008, Perl, 2003). As such, it will be interesting to obtain the full 

sequences of these insertions in order to date the likely time of infection and lineage 

expansion. 

We recovered a large number of unique sequences from ERV4a and ERV4c, although there 

is no evidence for the prevalence of specific lineages in any of the tissue types used in this 

study. While this could be due to a technical bias as a result of reaction conditions or 

incomplete sampling of the ERV complement of each tissue type, it may also be due to an 

undetected somatic cell infection from a closely related ERV4-like strain of exogenous 

retrovirus. For example, in the event that this additional infection is from a strain that is 

closely related to those already present in the genome, it is not always possible to distinguish 

between these somatic cell infections and endogenous insertions. Furthermore, the absence of 

tissues for cell or viral culture, and knowledge of the likely physical structure of the 

exogenous counterparts of these viruses means it is not possible to ascertain whether a novel 

infection is taking place. 
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3.4.2:  Identification of a novel crocodilian ERV lineage 

In addition to the ERV4 lineages discussed above, the C. johnstoni genome has revealed an 

additional, novel infection event in crocodilians that appears to be related to the 

Spumaviruses. Unfortunately, only a single sequence (CrjoERV-pro-pol-28) is available for 

the crocodilian foamy virus-like element, and as such, it is not possible to determine the 

extent of this proliferation among crocodilian species. However, given that only a single 

isolate was recovered from this lineage, we hypothesise that it is present in C. johnstoni at a 

much lower copy number than either the ERV1 or ERV4 clades. If remnants of this infection 

event are present in other crocodilian species, it is likely that the prevalence of insertions in 

these species will share similar patterns. Given the apparent rarity of these insertions, it is 

likely that they are the result of infection by an exogenous retroviral strain of low virulency 

or replicative activity. An alternative scenario is that there are a number of ancient copies 

present in the genome that have not been detected through PCR-based surveys such as this 

due to degradation of the primer binding sites as a result of mutation processes.  

 

3.4.3:  Absence of ERV1 sequences in the current study 

Surprisingly, this study did not recover any sequence data from either of the ERV1 lineages 

that have previously been identified in crocodilians. There are a number of reasons why this 

clade may not have been recovered in this study: i) the individual in question did not harbour 

any instances of this ERV lineage; ii) this lineage is still at a low copy number in the genome 

and thus less likely to be detected than other linages; or iii) a technical bias due to universal 

primers and biased reaction conditions.  

It is unlikely that these elements are absent from the genome of the individual used in this 

study, as this clade has previously been identified in this species. Moreover, the 

Gammaretrovirus-like ERV1 lineage has a widespread distribution among species within 

Crocodylidae, and high sequence similarity among the Crocodylus spp. This suggests that it 

is the result of an infection pre-dating speciation of crocodiles. Given the prevalence of this 

ERV lineage within C. porosus, it is very likely that this insertion has become fixed in the 

genome of C. porosus, and would therefore be present in all individuals of that population, 

and possibly the species. Despite the lack of detailed studies from other crocodilian species, 

the widespread distribution and level of sequence conservation suggests that it is also highly 
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probable that a similar trend would be observed in other Crocodylus spp. From this, we can 

extrapolate that these insertions would likely be present in all species within Crocodylidae, 

and therefore would be expected to be present in all individuals of these species.  

It is more likely that the failure to recover these sequences in this study is a combination of a 

lower copy number in the genome, and a technical bias in the methodology. Previous surveys 

of ERVs in C. porosus have suggested that the ERV1 clades were also less likely to be 

recovered. Technical bias cannot be ruled out as a contributing factor either, as such surveys 

use a large pool of primer sequences with different nucleotides at specific positions along the 

sequence. If the specific primer sequences that will anneal to the targeted binding site are not 

present, or are present at a lower proportion than other primers, it is less likely that that 

particular insertion will be amplified, and thus it is less likely to be among the amplicons 

sequenced. 

 

3.4.4:  Crocodilian ERVs may stem from at least four infection events 

Based on the data from this study, and previous investigations into ERVs in crocodilians, we 

propose that the crocodilian genomes have been subject to infection by at least four distinct 

lineages of retrovirus. These lineages include two ERV1 lineages described by Jaratlerdsiri et 

al. (2009) and in Chapter 2 (the Gammaretrovirus-like clade; previously CERV1, and the 

Epsilonretrovirus-like lineage), the lineage leading to the ERV4 clade of crocodilian ERVs 

(previously CERV2), and the foamy virus-like ERV represented by CrjoERV-pro-pol-28 

(Figure 3.2). This is supported by the fact that the sequences within each of the ERV clades 

identified in crocodilians so far are more similar, and therefore likely to be more closely 

related to each other than to sequences from the other clades. Furthermore, the inferred 

phylogenetic relationships between sequences from each of these clades, and shared nodes 

within each group, support a common origin for each lineage. Mutations in these ERV 

lineages likely occurred prior to replication within crocodilians, as many of the stop codons 

and frameshift mutations are shared between species. Such mutations are indicative of 

proliferation of ancestral infections followed by further evolution post-speciation.  

Crocodilians appear to harbour a very different complement of ERVs compared with other 

studied taxa, with sequences identified from the Gammaretroviruses, Epsilonretroviruses, 
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Spumaviruses, and a fourth divergent clade. With the exception of the Danio rerio (zebrafish) 

(Blikstad et al., 2008), this is a greater number of retroviral genera than other characteristed 

vertebrates. This complement of ERVs differs greatly from both Gallus gallus (chicken), 

where ERVs have been identified from the Alpha-, Beta-, and Gammaretroviruses (Blikstad 

et al., 2008), and mammalian taxa, which appear to harbour endogenous copies of beta-, 

gamma-, and spumaviral infections (Barrio et al., 2011, Blikstad et al., 2008, Garcia-

Etxebarria and Jugo, 2010).  

The biological reasons behind these differing complements are not known, although 

immunological, cellular, and genomic factors may all play a part. One theory may be that, 

since these are likely to be signatures of ancestral infections, these insertions reflect 

infections of host species with naïve or developing anti-viral immune responses. The ERV4 

lineage, in particular, may be the remnants of an ancient retroviral lineage that is no longer as 

prevalent as the modern exogenous retroviral strains recognised today. Alternatively it may 

have evolved to a state where it no longer shows similarity to the ancient insertions detected 

in the crocodilians. 

 

3.5:  Conclusions 

In conclusion, this study has identified a C. johnstoni specific lineage of ERVs, and provided 

evidence for species specific biases in ERV proliferation. The data generated in this study 

provide a useful platform for future investigations into the behaviour and impact of ERVs in 

crocodilian species; expanding our knowledge and understanding of ERVs in crocodilians, 

and providing further evidence for the susceptibility of crocodilians to infection by a broad 

range of retroviral pathogens. Future investigations should therefore look into the sequencing 

and characterisation of other retroviral domains to ascertain the likely mechanism of 

replication for each of the ERV lineages recovered from these species.  

While we were not able to identify any ERV insertions capable of autonomous replication, 

further investigations into the expression of crocodilian ERVs may provide some insight into 

the current level of ERV activity in these species. Furthermore, investigations into the 

possible causes of the lesions and lymphoid infiltration in C. johnstoni would benefit from 

investigations into the expression of these ERVs across the affected tissues, and correlations 



 

76 

between presence of ERV insertions and diseased individuals. Despite this, we believe that 

the data presented here represent an important contribution to the understanding of the 

genomic environment of crocodilians, and the ways in which this can impact the genesis of 

disease in these species.  
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Chapter 4: Screening and sequencing of a crocodilian bacterial 

artificial chromosome library 

4.1:  Introduction 

In Chapter 2, a number of ERV sequence fragments encoding intact ORFs were identified, 

suggesting that these ERVS may still retain some capacity for replication.  The availability of 

BAC libraries for a number of key crocodilian species, combined with next generation 

sequencing technologies allows for the investigation of these insertions at the complete 

proviral sequence level; a resource not provided by studies of ORF fragments using standard 

molecular approaches such as those implemented in the previous chapters. As the potential 

functionality of ERV proviruses is of particular interest for studies into the evolution and 

population dynamics of crocodilian ERVs, investigations of the crocodilian ERV lineages 

were expanded in an attempt to obtain sequence data from the four retroviral coding domains, 

and genomic regions immediately surrounding the ERV insertions.  

From a methodological point of view PCR-based methods for the isolation and 

characterisation of ERV sequences are constrained by the need for known sequences from 

which to design oligonucleotide primers, and can be easily confounded by the presence of 

multiple copies of closely related inserts. Sequence data from the previous chapters suggest 

that there many insertions from many lineages present in C. porosus, and that these insertions 

still share a large amount of similarity within the genome. While the data generated from 

such studies is sufficient to provide an overview of the ERV diversity, it does not provide 

sufficient resolution to identify novel lineages and enhance our understanding its possible 

associations with disease (Gifford and Tristem, 2003, Stoye, 2001). For this reason, 

additional methods for sequence retrieval were investigated. 

The work presented in this chapter overcomes some of the limitations of traditional methods 

of ERV detection through the use of DNA hybridisation-based detection in combination with 

next generation sequencing to screen and sequence parts of a C. porosus genomic library 

containing provial ERV sequences. This approach proves to be useful for the identification 

and quantification of the ERVs present in the library, in particular to retrieve the DNA 

fragment containing the ERV lineages of interest, and its surrounding regions.  
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This approach is facilitated by the shot-gun approach used by next generation sequencing 

technologies which allows the sequencing and subsequent characterisation of ERV DNA 

fragments without the need for targeted amplification of the region of interest. The nature of 

this sequencing technology also allows for determination of the surrounding genomic regions, 

and therefore, the insertion sites of these ERVs. To enable this, we have used recently created 

crocodilian BAC libraries, representing two of the three major lineages of crocodilians: 

C  porosus (Shan et al., 2009), and G. gangeticus (Shan, unpublished).  

 

4.1.1:  Classification of ERVs based on genomic structures 

Detection of ERV insertions, and the subsequent assignment of these to one of the three 

major ERV classes, or major retroviral genera can be done based on overall sequence 

similarity and the presence and sequence of conserved structural or functional motifs within 

the env, gag, and pol  domains. As discussed in previous chapters, it is possible to assign 

ERV fragments to different ERV classes based on sequence conservation and maintenance of 

conserved domains within the pro-pol region. However, the gag and env domains are much 

more variable than the pro-pol region, making overall sequence conservation a less useful 

method for classification.  

Despite this, there are a number of conserved motifs and overall structural features that may 

be used. Within the gag domain, motifs such as the major homology region can be used as 

targets for location of gag genes. The major homology region is a highly conserved region of 

20 amino acids that has been found in all retroviral gag domains (Vogt, 1997). Conservation 

of this region is likely due to functional significance as it is thought to play a role in the late 

stages of virion maturation and the release of viral genetic material during infection of a host 

cell (Craven et al., 1995). Another diagnostic feature of the gag domain is the presence of 

Zinc finger-like motifs. These vary in number between the retroviral classes � Class II 

retroviruses (Alpha-, Beta-, Lenti- and Deltaretroviruses) generally have two of these 

domains, while this motif appears to be absent in the Spumavirus gag domains (Jern et al., 

2005, Vogt, 1997). 

The pro and pol domains are much more conserved across retroviral genera due to the 

retroviral enzymes these regions encode. Xiong and Eickbush (1990) describe a number of 
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these with particular focus on sequence conservation across a range of retroviruses and 

related TEs. Indeed, the primer sequences used in previous chapters have been designed from 

these highly conserved regions. While no reasons for the significance of these regions are 

given, it is likely that most of these correspond to structurally or functionally significant 

motifs, such as the YXDD motif which plays an important role in the catalytic functions in 

the reverse transcriptase enzyme (Katz and Skalka, 1994). 

Despite being the most variable of the retroviral coding domains, the env region also contains 

a number of conserved regions that can be used for retroviral classification. Of particular note 

are the regions encoding endocytic signals, and an immunosuppressive domain, both of 

which are important for infection and proliferation within host cells (Denner, 1998, Ohno et 

al., 1997). While the variation within env may prohibit the classification and assignation of 

novel ERV sequences to a particular ERV class, it can allow for further delineation of ERV 

lineages within classes. 

 

4.1.2:  Assessing ERV diversity using BAC resources 

BAC libraries contain large inserts (approximately 150 kb) of genomic DNA in an artificial 

vector, which is then transfected into transfection competent E. coli. These inserts can be 

replicated with high fidelity during bacterial cell division, making them relatively simple to 

amplify for downstream processing. BAC libraries have been touted as relatively low cost 

tools for targeted sequencing of genomic regions, as well as tools to facilitate the physical 

mapping of these regions (Metzker, 2009, Morozova and Marra, 2008, Shan et al., 2009). 

BAC clones containing the region of interest can then be detected by screening by PCR or by 

DNA hybridisation. Hybridisation screening of BAC libraries involves the hybridisation of 

labelled nucleic acid probes to BAC DNA which has been fixed to a nylon membrane. The 

probes may be in the form of short, synthetic nucleic acid sequences, such as overgo probes, 

or longer lengths of DNA fragments derived from the gene or region of interest. By using 

only these clones in downstream procedures, one can effectively restrict the DNA regions 

used for PCR-based analysis or sequencing. 
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BAC libraries have previously been used for the identification and sequencing of ERV 

proviruses in a wide variety of taxa (Arnaud et al., 2007a, Barbulescu et al., 1999, Rogel-

Gaillard et al., 1999, Turner et al., 2001); albeit with a focus on previously characterised ERV 

lineages, and the detection of insertion polymorphisms within or between closely related taxa. 

Additionally, studies such as those by Barbulescu et al. (1999) and Turner et al. (2001) 

demonstrate the potential for these libraries to aid in the recovery of the sequence 

surrounding the known ERV regions through the use of restriction enzyme digests and 

inverse PCR to amplify outwards from known ERV sequence. However, the methodologies 

in these studies rely on knowledge of the proviral sequences of the ERV insertions in 

question.  

Unfortunately, in the case of relatively uncharacterised species, such as crocodilians, these 

data are frequently limited to sequence fragments. In these situations, a more general 

approach to sequencing is required, such as the use of shot-gun sequencing on the DNA BAC 

inserts. Consequently, the use of BACs for isolation of specific genomic regions of interest, 

coupled with the less specific amplification and sequencing mechanisms offered by next 

generation sequencing, may prove to be a useful tool for the recovery of complete proviral 

sequences where only sequence fragments have so far been identified. 

 

4.1.3:  Use of next generation sequencing for analysis of TEs 

Next generation sequencing enables the sequencing of large regions of DNA, such as BAC 

inserts up to whole genomes. Despite the continued interest in the evolutionary dynamics of 

TEs, such as ERVs, and the impacts of these elements on genome function, the use of this 

technology for the targeted sequencing of TEs is not common. Instead, the analysis of 

vertebrate TEs, such as the identification and characterisation of ERV sequences is usually 

carried out in conjunction with whole genome sequencing projects. However, a limited 

number of studies of TEs in plants have been carried out using these sequencing technologies 

in combination with Cot-libraries (collections of DNA fragments separated based on DNA 

renaturation) and BAC libraries (Choulet et al., 2010, Peterson et al., 2002, Wicker et al., 

2006), suggesting that these genomic resources, where available, constitute a largely 

under-utilised asset for wide scale studies of TEs. 
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The assembly of reads over TEs and gene families containing genes of high similarity pose a 

particular problem for next generation sequencing technologies, as the assembly algorithms 

rely on reads mapping to unique positions within the DNA that has been sequenced.  (Macas 

et al., 2007, Wicker et al., 2006). The presence of multiple copies of an ERV or similar 

sequence in one assembly can result in these reads being aligned to form a single consensus 

sequence rather than individual copies of the element (Wicker et al., 2006). The algorithms 

cannot resolve the mismatched ends of the highly repetitive reads, and therefore break the 

assembly at these sites.  

The LTR regions themselves may also cause a problem with the assemblies, given the short 

read lengths and low coverage. The LTRs at each end of the ERV genome are identical when 

initially inserted into the genome, and are likely to remain very similar for some time, 

particularly in a genome such as the crocodilian genomes where there is a low nucleotide 

substitution rate. If the sequencing reads are not long enough to sequence across the repetitive 

R region and into the sequence on either side of the LTRs, this may also cause a break in the 

assembly. The longer reads offered by new sequencing technologies may help to resolve 

these issues. Alternatively, Sanger sequencing using knowledge of the ERV insertion sites or 

primer binding sites at the ends of the LTRs may be useful to target specific insertions. 

A number of methods to deal with this have been developed, primarily involving clustering 

of reads or sequences based on sequence similarity (Li et al., 2005, Macas et al., 2007). These 

methods still have difficulty assembling the more variable TEs, although it has been 

suggested that the use of technologies that provide longer reads, such as the 454 system, can 

improve coverage over these repetitive regions, and improve the contiguity of assemblies 

across TEs (Metzker, 2009). 

Four crocodilian BAC libraries have been developed, representing the three major crocodilian 

lineages. These include: C. porosus (Shan et al., 2009), and G. gangeticus (Shan, 

unpublished), A. mississippiensis (Yohn et al., 2005), and, A. sinensis (He et al., 2012). Of 

these, the C. porosus and G. gangeticus libraries are held at the Mississippi Genome 

Exploration Laboratory (MGEL) at Mississippi State University (MSU), and were readily 

accessible for this part of the project. The C. porosus BAC library consists of 101,760 

individual clones, with an average insert size of 102 kb. It is estimated that the library 

provides 3.7 fold coverage (3.7×, or 3.7 genome equivalents) of the C. porosus genome (Shan 
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et al., 2009). The G. gangeticus library contains 156,000 clones at an estimated 5.67× 

coverage (Shan, unpublished data). 

Despite the importance for the development of TE libraries for functional analysis of 

genomes, very few broad-scale studies have been carried out to characterise these elements 

de novo, and even fewer have been carried out in vertebrate species. This study establishes 

the use of BAC libraries as an alternative to whole genome sequencing for the 

characterisation of ERV sequences, and demonstrates the potential applications of such 

methodologies for the study of ERV dynamics within the genome. In this study, the 

C. porosus BAC library is used to recover the complete proviral genomes of known 

crocodilian ERVs and demonstrate the use of conserved retroviral motifs detect. This study 

provides an overview of the genomic structure of crocodilian ERVs, and novel sequence data 

from other retroviral coding domains, as well as initial insights into ERV evolution in 

crocodilians from a genomic perspective.  

 

4.2:  Materials and Methods 

4.2.1:  Preparation and hybridisation of BAC library macroarrays 

The hybridisation of short DNA fragments to macroarrays containing fixed BAC DNA is a 

versatile and efficient method for the isolation of BAC clones containing the regions of 

interest. In order to screen the BAC libraries for presence of ERV fragments, high density 

macroarrays were created for the C. porosus and G. gangeticus BAC libraries as described by 

Shan et al. (2009). Five complete arrays were created for each of the libraries, using a 

Genetix QPixII Robot and Amersham Hybond N+ membranes (GE Healthcare). Each 

membrane was made up of 6 fields in a 3 × 2 array. Each field contained BAC clones from 

eight plates, double stamped in a 4 × 4 pattern. Each plate occupied a unique pair of locations 

within each grid to allow for easier identification of the corresponding clone ID in 

downstream analyses (Figure 4.1). The estimated genome coverage for the five filters is 

approximately 3.35× coverage for C. porosus, and 3.40× coverage for G. gangeticus. 
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Figure 4.1: Diagrammatic layout of plates on each array, based on a 48 plate array. The six 

fields are created by the stamping of cells from each plate on the membrane. The positions 

indicated within the field and the corresponding location within the duplication pattern 

indicates the location of the colonies for each plate. Well numbers A01 and P24 are indicated 

in the top right and bottom left corners of each field to show the final orientation of the plate. 

  

DNA fragments encoding C. porosus ERV pro-pol domains were used to screen the prepared 

macroarrays for both species to identify BAC clones containing ERV insertions. DNA 

fragments were used rather than overgo probes as the high levels of sequence variation 

observed within each ERV lineage made it difficult to identify conserved regions for the 

design of overgo probes. The DNA probes were selected to represent each of the seven 

potential lineages of ERVs identified in Chapter 2, and consisted of one sequence encoding 

an ORF from the ERV1 Gammaretrovirus-like clade, four lineages from the ERV4 clade, a 

more divergent member of this clade, and a single Epsilonretrovirus related ERV fragment 

(sequence haplotypes 13, 58, 77, 80, 96, 107 and 119 from Chapter 2). DNA inserts were 

excised from the purified plasmids by EcoRI enzyme digest and separated by gel 

electrophoresis. The probe sequences ranged from 665 to 956 nucleotides in length. 



 

84 

Two sets of probes were used for library screening: one consisting of a representative 

sequence from the Gammaretrovirus-like ERV1 fragments (haplotype 77 from Chapter 2), 

and a second pooled set containing all seven lineages. ERV1 insertions were of particular 

interest as previous sequence data (Chapter 2) suggested that these were likely to represent a 

more recent infection, and were therefore more likely to be present as intact proviruses. 

Haplotype 77 was selected as this fragment encoded an intact ORF. Fifty ng of probe DNA 

was labelled with radioactive 32P dCTP using the Amersham Megaprime labelling system 

(GE Healthcare), and excess nucleotides were removed using the QIAquick Nucleotide 

Removal Kit (Qiagen). The reactions were then halved so that 25 ng of probe DNA was used 

to hybridise to each of the two libraries. Hybridisation was carried out at 65°C for a high 

degree of specificity. 

Positive clones were identified using the program MacroArray Reader (Philippe Chouvarine, 

unpublished). This program detects the signals of a BAC clone where the probe has 

hybridised, and matches this to the duplication pattern used when creating the membranes. 

This can be manually adjusted to maximise the accuracy of the final output and remove 

artefacts from strong and weak hybridisation signals. The program then outputs a list of 

positive wells and the position based on the duplication pattern for each field of the array (see 

Figure 4.1 for the layout of plates and wells in each field of the array). These can then be 

matched to the appropriate plates to determine the identity of each positive BAC clone. 

Arrays were then analysed for a non-random distribution of hybridisation signals using 

Holst�s �Theorem 2�, as it takes into account the non-independence of observations of 

integration and the possibility that more than one integration event may be present in any 

given clone. This theorem can be summarised as: 

 

where �N� is the number of DNA containing clones per array accounting for false positives, 

�n� is the expected number of positive clones assuming a random distribution of positively 

hybridised clones, and �pk� is the probability of the probe being in any particular clone. The 

test value was determined based on the mean number of clones that were expected to lack the 

region of interest and the number of times that this exceeds the standard deviation of this 

mean. Statistical significance was determined by comparing the test value to a normal 

distribution Z-table. 
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4.2.2:  Densitometric analysis of BAC hybridisation 

In the absence of a sequenced genome, densitometric analysis was carried out on the 

hybridised C. porosus membranes to provide an estimate of the proportion of the C. porosus 

genome that is made up of ERVs. This is a quantitative method of analysis by which the 

intensity of a fluorescence signal is calculated relative to other signals within the same image, 

and related back to a known measurement, in this case, the length of the DNA probe. Once 

the compete sequence of the ERV insertions has been obtained, this final length can be used 

to infer the estimated proportion of the genome that is ERV related. Image manipulation and 

measurements were carried out in ImageJ, and proportions were calculated using a method 

similar to that described by Magbanua et al. (2011). Briefly, images were cropped to the outer 

bounds of the stamped area to remove artefacts that may be confused with hybridisation 

signals. Hybridisation intensities were calculated by subtracting the background intensity 

from the cropped image and measuring the spot intensity from the perceived centre of each 

spot. The ImageJ macro is provided in Appendix IV. 

The proportion of the genome made up of pro-pol containing ERV fragments was calculated 

based on the assumption that the most intense spots in the membranes were those containing 

the complete pro-pol fragment of approximately 1000 bp. Unlike labelled oligonucleotide 

systems, the probe labelling system for dsDNA fragments generates shorter lengths of 

labelled DNA probes from a dsDNA template. As intensity of signal is relative to the number 

of labelled probe fragments binding to a specific area, more intense signals represent regions 

were more of the probe DNA has been hybridised. Regions containing the complete probe 

sequence are more likely to hybridise with more of these probe fragments, and are therefore 

more likely to show a signal of greater intensity. An assumed target DNA length of 1000bp 

was selected as this was the median length of ERV pro-pol fragments recovered from 

previous PCR surveys (Chapter 2). The lengths of the hybridised fragments were calculated 

independently for each membrane to account for the automated background intensity 

removal. The total proportion of the genome made up of ERVs was then calculated from 

these values (Table 4.1) 
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Table 4.1: Calculations for the determination of the ERV fraction of the C. porosus genome 

based in densitometric estimates. 

Calculation Description 

A Spot intensity a 

B Assumed length of pro-pol fragment 

C = A* x B Intensity calibration factor b 

D = (A x C)/2 Estimated length of ERV fragment c 

E = D1+D2+�Dn Total length of ERVs 

  F Estimated genome size 

G Number of clones in library 

H Approximate library genome coverage 

I Number of arrays 

J Number of clones per array 

K = (I x J) Total number of clones in arrays 

L = K/G Fraction of clones in arrays 

M = L x H Array genome coverage 

N = M X F Approximate genome length in arrays 

  O = E/N Genome fraction made up of ERVs 
a Mean intensity value from ImageJ. 
b Calculated independently for each membrane under the assumption that the highest intensity 

spot for that membrane represents hybridisation across the entire length of the DNA probe. 
c Values are divided by 2 to account for the double spotting pattern of the membranes. 

 

4.2.3:  Library preparation, sequencing, and assembly 

A small number of BAC clones were sequenced to obtain the complete proviral insertions. 

BAC clones selected for sequencing were those that produced high intensity hybridisation 

signals using the probe for the ERV1 Gammaretrovirus-like sequences. To reduce the chance 

of signals being false positives, only BAC clones that were positive on both sets of 

membranes were selected. Positive BACs fitting these criteria were confirmed by PCR using 

a set of three ERV1 pro-pol primers (Appendix I, Table S4.1). PCR was carried out with an 

annealing temperature of 60°C for all primer pairs. These BACs were then subcultured in LB 

media overnight before being purified for sequencing. BAC DNA was purified from selected 

clones using the Qiagen Large-construct kit (Qiagen).  

Due to the large number of positive clones and the high probability that clones would contain 

very similar ERV sequences, two tiers of barcoding were used in order to multiplex the reads. 
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This involved the ligation of SimpleXT linkers to sheared DNA from each BAC, pooling of 

these samples, followed ligation of the RL MID tags as the second tier of barcoding (Figure 

4.2a). 

The purified BAC DNA was sheared to approximately 700 bp using partial enzyme digests. 

The restriction enzymes AluI, MlyI, HaeIII and RsaI were used as the target cutting sites for 

these enzymes are known to occur at moderate frequencies throughout most genomes. For 

this, approximately 1µg of purified BAC DNA was digested for 10 mins at 37°C before the 

reaction was stopped by heating at 80°C for 20 mins. To enable ligation of the SimpleXT 

linkers, a single A nucleotide was then ligated to the 3` end of each DNA fragment using 

0.25 mM dATP and 2.5 U Klenow Fragment. Ligation was carried out at 37°C for 30 mins, 

before being stopped by heating to 75°C for 20 mins. 

Double-stranded CAG_SXT linkers were created by mixing equal concentrations of the 

CAG_SimpleXT##_U (upper) linkers with their corresponding CAG_SimpleXT##_Lp 

(lower) linker with NaCl to a final concentration of 100 mM NaCl. This mix was then heated 

to 95°C and allowed to cool slowly to room temperature to allow the linkers to anneal. 

Approximately 0.5 µg of +A-ended DNA from the previous step was ligated with the double-

stranded CAG_SXT linkers using T4 DNA ligase (see Appendix I, Table S4.2 for linker 

sequences, and Appendix I, Table S4.3 for the individual BACs and their corresponding 

tags). Thermocycling conditions were 22°C for 15 mins, followed by 65°C for 20 mins.  

This linker ligated DNA was then amplified and normalised by PCR with the Phos_Pig_CAG 

primer (/5`Phos/GTTTCAGTCGGGCGTCATCA) in 50 µL reactions. Each reaction 

contained 5 µL of linker ligated fragments, 1x Phusion HF buffer, 200 µM dNTPs, 25 pmol 

primer, and 1 U Phusion DNA polymerase (Thermo Fisher Scientific). The reaction was 

carried out by heating to 97°C for 30 s, followed by 18 cycles of: 97°C for 15 s, 55°C for 15 s 

and 72°C for 30 s. Relative DNA concentrations and fragment sizes were determined by gel 

electrophoresis on a 1.5% agarose gel containing ethidium bromide.  

These reactions were then combined to make five pools of DNA that were used to create the 

RL MID tagged libraries (see Appendix I, Table S4.2 for the RL MID tag sequences). An 8kb 

paired-end library consisting of DNA from all sequenced BAC clones was also made. BAC 

DNA was sequenced at a low coverage on a FLX 454 sequencing platform (Roche). The RL 
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MID library preparation, paired-end library preparation, and 454 sequencing were at the 

Georgia Genomics Facility (UGA, Athens, GA). 

Sequence reads were assembled using the GS De Novo Assembler program from the GS Data 

Analysis software package (Figure 4.2b) (Roche). All reads were screened to remove 

sequences from the BAC vector and potential contamination from the E. coli strain used in 

the creation of the libraries. The resulting contiguous sequences (contigs) and scaffolds were 

then manually checked to minimise the occurrence of assembly artefacts. Sequencing 

coverage was then estimated for each clone based on the length and number of reads after 

removal of vector and adapter sequences. Coverage here is defined as the approximate 

number of times each base in the BAC clone would have been sequenced assuming uniform 

coverage across the sequenced region (Illumina). Calculations were carried out based on the 

formula below, where the average BAC insert length was used for the haploid genome 

length: 

 

Two sets of sequence assemblies were created: one for each of the BAC clones, and another 

containing all of the screened reads, including those that could not be assigned to a particular 

clone. The reads from each of the BAC clones were assembled individually to allow for the 

detection of the individual ERVs within each clone. Due to multiple levels of tagging, the 

sequence reads from each of the BAC clones were separated using the program Demuxipy 

(Brant C. Faircloth; available at https://github.com/faircloth-lab/demuxipy/) prior to the 

individual assemblies. A combined dataset was also generated to increase the likelihood of 

reconstructing a complete ERV sequence for further analysis. To confirm the presence of 

ERV sequences in each of the assemblies, sequence contigs were compared with known ERV 

pro-pol sequences from previous experiments (Chapters 2 and 3) using BLASTN (Altschul et 

al., 1990, Zhang et al., 2000).  

Reads from nine BAC clones sequenced at a high coverage (16× to 102×) for a different 

project were also assembled and analysed alongside these clones. These clones were of 

particular interest as they contained sequence data from the MHC region of C. porosus. The 
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MHC region has previously been observed to contain a large number of TEs (Andersson et 

al., 1998, Edwards et al., 2000, Gasper et al., 2001, Kambhu et al., 1990, Shiina et al., 1999), 

and consequently, is also a good potential source for ERV proviral sequences. 

 

 

Figure 4.2: Diagrammatic representation of (a) the preparation of libraries for sequencing, 

and (b) assembly of the resulting sequencing reads. 
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4.2.4:  Characterisation of sequenced ERVs 

Characterisation of ERV families 

Contigs and scaffolds were then scanned using RetroTector (Sperber et al., 2007) to 

determine the locations of ERV sequences within the contigs. Briefly, RetroTector is a de 

novo detection program written specifically for the identification of ERVs and similar TEs, 

that utilises short regions of sequence homology. RetroTector utilises a database of retroviral 

motifs and attempts to join these into strings or �putiens� (putative proteins) (Sperber et al., 

2007). In addition to identifying the locations of ERVs in the assembled contigs and 

scaffolds, RetroTector was also used to ascertain the presence of the gag and env retroviral 

domains, and the position of the LTRs.  

ERV sequences and coding regions detected by RetroTector were extracted from the 

sequence scaffolds using the sequence locations provided in the program output. Sequences 

were first aligned using MAFFT (Katoh et al., 2005) as used in previous chapters, then 

collapsed into haplotypes using FaBox (Villesen, 2007). These haplotypes were then 

manually checked to ensure that shorter sequences were not truncated copies of longer 

haplotypes and re-aligned using MAFFT for phylogenetic analysis. This dataset comprised 

109 sequences, ranging from 902 to 14472 nucleotides in length.  

To investigate the evolutionary relationships between the recovered sequences, sequence 

clustering and phylogenetic analyses were used. Analysis of sequence clustering was used to 

identify sequences that were highly similar, and thus likely to be related to each other. The 

cd-hit-est program in the CD-HIT package (Li and Godzik, 2006) was used to identify 

sequence clustering and representative sequences  at the 95% nucleotide similarity levels 

using the recommended program settings. Phylogenies were then created to investigate the 

relationships within and between the sequence clusters. Neighbour Joining and Maximum 

Likelihood trees were created in MEGA5 (Tamura et al., 2011) as described in previous 

chapters. As the complete ERV sequences contained both coding domains and LTR regions, 

comparative analyses on this dataset were carried out on nucleotide alignments only.  

A similar analysis was carried out using the pol gene of representative sequences from the 

identified clusters. These alignments and trees were made using the putein sequences 

identified by RetroTector, a collection of published ERV sequences (Herniou et al., 1998, 

Jaratlerdsiri et al., 2009, Jern et al., 2005, Martin et al., 1999, Martin et al., 2002), and the 
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amino acid sequences of representative pro-pol fragments from previous chapters. To reduce 

the number of sequences used in the analysis, the cd-hit program in CD-HIT was used with a 

90% similarity cut-off to select representative sequences from the published datasets. This 

value was chosen as it will collapse very closely related sequences while still maintaining 

distinct sub-lineages within the ERV clades. The final alignment contained 140 published 

sequences, 9 sequences from previous chapters, and 49 predicted pol sequences from the 

assembled BAC clones. 

Characterisation of ERV genomic structure 

Consensus sequences were generated in order to remove spurious variation caused by point 

mutations and indels. The generation of consensus sequences allows for the reconstruction of 

what is likely to be the original ERV sequence at the time of replication within the genome. 

To do this, ERV lineages within the major groups (ERV1, 3, and 4) were identified based on 

the results of the clustering, strong bootstrap support for the phylogeny (>90%) and visual 

examination of the alignments for shared regions of sequence. Sequences from the resulting 

lineages were aligned using MAFFT, and consensus sequences were then created for each of 

these using BioEdit (Hall, 1999). The resulting sequences were used to identify similar 

sequences in the original assembly file using BLASTN, and the process was repeated to 

refine the consensus sequences. 

The NCBI ORF-finder tool (http://www.ncbi.nlm.nih.gov/projects/gorf/orfig.cgi) was then 

used to identify ORFs within the consensus sequences. ORFs longer than 200 nucleotides 

were compared with the GenBank database using BLASTP (Altschul et al., 1997) to 

determine if these were retroviral related. Intact retroviral ORFs range from approximately 

1000 bp in length (pro), through to 4000 bp (epsilonretroviral env domain), although the 

length of these is likely to substantially shorted in ERVs due to the accumulation of 

premature stop codons. The results of this analysis were further corroborated by padding the 

resulting sequences with �neutral� or non-ERV sequence from the assembled contigs and 

RetroTector was used again to identify the conserved domains, LTRs, and promoter regions 

within the consensus retroviral sequences. 

Investigation of an unusual ERV sequence 

An ERV4 lineage containing an additional ORF in addition to the four major retroviral 

domains was identified by the analyses described above. While ERVs have previously been 



 

92 

shown to capture mRNA transcripts of host genes, this usually occurs at the expense of a 

viral domain. This lineage is unusual as the major coding domains appear to be intact. To 

confirm the presence of these sequences, a BLAT alignment (Kent, 2002) was used to locate 

similar regions in the C. porosus genome assembly (available at 

http://crocgenome.hpc.msstate.edu/gb2/gbrowse/). These genome assemblies became 

available during the course of experimental work in this chapter, and will be discussed in 

more detail in the following chapters. 

To determine the gene transcript that was captured, the sequence was compared with the 

GenBank database using BLASTX (Altschul et al., 1997). Genes related to the recovered 

ORF were then retrieved from the crocodilian genomes and UniProt for phylogenetic analysis 

to determine whether the transcript was crocodilian in origin. Amino acid translations of the 

crocodilian sequences were made in using the standard vertebrate codon table for nuclear 

DNA. Sequence alignments of the resulting amino acid translations were created using 

MUSCLE (Edgar, 2004), and phylogenetic trees were created using Maximum Likelihood 

algorithms as described previously. Two datasets were created in this way: the first dataset 

comprised the sequence from the ERV and four predicted transcripts retrieved from the 

crocodilian genomes and two homologous sequences from Gallus gallus (chicken; NCBI 

reference ID: NM_205130.1 and NM_001105315.1), while second set included the four 

crocodilian sequences, the ERV ORF, and 30 sequences from other vertebrates (Table 4.2), 

with the sequences from Gasterosteus aculeatus aculeatus (three-spined stickleback) used as 

an outgroup. 
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Table 4.2: UniProt ID, and scientific and common names of additional species used for 

phylogenetic analysis of the novel ERV ORF. 

UniProt ID Scientific name Common name 

F6SD93 
Macaca mulatta Rhesus macaque 

F6SDB0 

K7D1D2 
Pan troglodytes Chimpanzee 

H2Q6K8 

G1R0E6 Nomascus leucogenys White-cheeked gibbon 

P21583 Homo sapiens Human 

G3S4K2 Gorilla gorilla gorilla Gorilla 

H2NI76 Pongo abelii Sumatran orangutan 

Q95MD2 Equus caballus Horse 

Q28132 Bos taurus Cow 

Q95M19 Capra hircus Goat 

Q29030 Sus scrofa Pig 

P79169 Felis catus Domestic cat 

Q06220 Canis familiaris Domestic dog 

Q95N18 Mustela vison American mink 

P20826 Mus musculus House mouse 

P21581 
Rattus norvegicus Brown rat 

Q54A14 

F7EP53 Monodelphis domestica Opossum 

G3VV70 
Sarcophilus harrisii Tasmanian devil 

G3VV69 

F7C5I3 Ornithorhynchus anatinus Platypus 

Q09108 Gallus gallus Chicken 

Q90314 Coturnix coturnix japonica Japanese quail 

K7FR23 Pelodiscus sinensis Chinese softshell turtle 

Q28DP4 
Xenopus tropicalis Western clawed frog 

B4F6K4 

Q7ZXV0 Xenopus laevis African clawed frog 

A8WC00 
Gasterosteus aculeatus aculeatus Three-spined stickleback 

A8WC01 
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4.3:  Results 

4.3.1:  Hybridisation patterns and observations 

The ERV DNA probes hybridised successfully in both of the C. porosus libraries. Across the 

five membranes, 4559 positive clones were detected using the pooled probe set, and 3710 

positive clones were detected using the probe specific to the Gammaretrovirus-like lineage. 

Forty eight clones produced very strong hybridisation signals with both probe sets and were 

subsequently sequenced. The pooled probe set also produced positive signals in 223 clones of 

the G. gangeticus library. No significant hybridisation was detected in the G. gangeticus 

library when using the Gammaretrovirus specific probe (Figure 4.3). 

The genomic distribution of ERVs in C. porosus was determined to be highly non-random 

(Test statistic = 1082.408, P << 0.001) with the actual number of clones that were positive for 

ERV sequence being significantly higher than the expected number of clones given a random 

distribution of ERVs (See �D� and �n� in Table 4.3 below). This suggests that there is some 

bias in the location of the detected ERV insertions. 
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Figure 4.3: Representative fields showing the difference between the probe sets and between 

species. Parts (a) and (b) above are from the C. porosus library. Black circles indicate 

examples of BAC clones that do not contain the Gammaretrovirus-like sequence. The arrows 

indicate clones that showed strong hybridisation with both probe sets. Parts (c) and (d) show 

representative regions of the G. gangeticus library. Note the lack of hybridisation in (c) and 

the much smaller number of positive clones in (d) compared to the C. porosus library (parts 

(a) and (b)). 
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Table 4.3: Values and calculation of the probablility of a non-random ERV distribution using 

Holst�s Theorum 2 as described in Section 4.2.1 above. 

  Description Calculation Value 

N DNA containing clones/array A*B 18,192.38 

n 

Expected number of positive clones assuming random 

distribution C*D 3,045.28 

pk Probability of an element being in any particular clone 1/N 0.00 

SD Standard Deviation 

 

15.96 

    A Total number of clones in one array 

 

18,432.00 

B Proportion of DNA containing clones in library 

 

0.99 

C Genome equivalent represented by a single array 

 

0.67 

D Total number of positive clones 

 

4,559.00 

E Average number of positive clones per array B/Z 911.80 

    X Average insert size 

 

102,000 

Y Estimated genome size 

 

2,778,000,0

00 

Z Number of arrays screened   5 
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4.3.2:  Densitometric estimates of ERV complement  

Densitometric estimates suggest that approximately 0.01% of the C. porosus genome is 

related to ERV pro-pol sequence (See �O� in Table 4.4 below), based on the lineages 

identified in previous chapters. Assuming that ERVs containing the pro-pol gene region are 

likely to encode other regions of the retroviral genome (for example, the env and gag gene 

regions, and 5� and 3� LTRs), these data can be extrapolated to calculate the approximate 

proportion of the genome that is made up of complete proviral insertions. Based on an 

average proviral length of 6 to 10 kb, this proportion ranges from 0.07�0.1% of the genome.  

 

Table 4.4: Densitometry calculations from Table 4.4 in Section 4.2.2, extended to show the 

values obtained from each stage of the calculation 

Calculation Description Value 

A Spot intensity a Variable 

B Assumed length of pro-pol fragment 1000 

C = A* x B Intensity calibration factor b Variable 

D = (A x C)/2 Estimated length of ERV fragment c Variable 

E = D1+D2+�Dn Total length of ERVs 1,343,749.439 

   F Estimated genome size 2,780,000,000 

G Number of clones in library 101,760 

H Approximate library genome coverage 3.7 

I Number of arrays 5 

J Number of clones per array 18,432 

K = (I x J) Total number of clones in arrays 92,160 

L = K/G Fraction of clones in arrays 0.905660377 

M = L x H Array genome coverage 3.350943396 

N = M X F Approximate genome length in arrays 9,315,622,642 

   O = E/N Genome fraction made up of ERVs 0.000144247 
a Mean intensity value from ImageJ. 
b Calculated independently for each membrane under the assumption that the highest intensity 

spot for that membrane represents hybridisation across the entire length of the DNA probe. 
c Values are divided by 2 to account for the double spotting pattern of the membranes. 
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4.3.3:  Assembly statistics of the sequences BAC clones 

Individual assemblies � DNA probe 

Each of the BAC clones was sequenced to a reasonable depth, although overall coverage was 

low. A total of 242,819 reads were generated from the 48 BAC clones, with an average read 

length of 224.24 bp. Of this, about half of the reads had no recognisable SXT tag, and could 

not be incorporated into the final individual clone assemblies. The PE library returned 

184,982 reads which produced 214,917 single reads after trimming adapter sequence, 

including 60,349 paired reads. After screening, a total of 406,740 single reads were used in 

the assemblies (including trimmed paired-end reads) with an average read length of 179.43 

bp. 

Overall, the sequence coverage of each BAC clone was low, at an average of 4× coverage 

across the 48 clones sequenced, and 11× coverage if paired-end reads were equally 

distributed among the clones. One clone, 205-D13 did not assemble due to unknown reasons 

and was removed from further analysis. Average contig length across the remaining 47 clones 

was 1,710.19 bp, with an average of 2,624.38 contigs generated per clone. The average 

scaffold length was 26,767.28 bp, and the average number of scaffolds created was 117.79 

(see Appendix I, Table S4.4 for max, min lengths and total number of contigs and scaffolds 

per clone). ERV sequences were detected in all of the 47 clones sequenced. BLAST searches 

revealed that all of the assembled clones contained contigs with similarity to the probe 

sequence. In addition, 40 of the 47 clones had scaffolds that contained the probe sequence. 

Pooled assemblies � DNA probe  

Unfortunately, the pooling of all 454 reads prior to assembly did not improve the length or 

contiguity of the ERV sequence assemblies. The pooled assembly produced a total of 5374 

contigs and 314 scaffolds. The longest contig was 9690 bp, with an average contig size of 

1275 bp. The largest scaffold generated was also 9690 bp. Average scaffold size was 

3066 bp. BLAST searches did recover contigs and scaffolds containing the probe sequence, 

but the majority of these were from contigs that were shorter than the query sequence.  
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MHC related BACs 

A total of 233,759 reads were generated from the nine MHC related BAC clones. The 

average length of these reads was 309.564 bp. Estimated coverage for each clone ranged from 

16× to 102×. The average contig length across the nine clones was 5091.556 bases, with an 

average of 58 contigs generated per clone (see Appendix I, Table S4.4 for the individual 

contigs). The longest contig generated was 93,750 bp. Paired-end libraries were not made for 

these clones. 

 

4.3.4:  Classification of ERV genomic sequences 

RetroTector identified 281 ERV insertions of varying degrees of completeness. Of these, 194 

had identifiable gag domains, 147 had the pro domain, 197 had detectable pol domains, and 

118 had detectable env domains. A total of 50 of these insertions had detectable LTR regions. 

The length of the detected insertions (complete and incomplete) ranged between 902 and 

14472 nucleotides. The detected gag and pro domains were highly conserved across the 

sequences recovered, with 27 and 12 nucleotide sequence haplotypes recovered from each set 

respectively. These could be assigned to 15 and 6 groups at 80% nucleotide similarity. The 

pol and env domains were much more variable, with 80 and 67 haplotypes recovered, 

forming 21 and 12 groups of sequences respectively at 80% nucleotide sequence similarity. 

Overall, the detected gag and env domains showed very little similarity to known ERVs from 

other species, although conserved regions were evident. The pol region, on the other hand, 

showed similarity to the previously described crocodilian ERV fragments. This allowed the 

complete ERV sequences to be assigned to either the described ERV clades, or characterised 

as novel sequences. Classification and conservation of sequence motifs will be discussed for 

each major group of sequences below. 

As expected a number of ERV sequences were grouped with the Gammaretrovirus-like 

ERV1 sequences described in Chapter 2, and by Jaratlerdsiri et al.  (2009). However, a 

number of sequences were recovered that were assigned to other ERV clades. These included 

sequences with similarity to the Epsilonretrovirus-like fragments, additional divergent ERV1 

lineages that are, so far, undescribed, and ERV4 sequences (Figure 4.4; see also Appendix I, 

Table S4.5). These will be described individually below. For one of these ERV1 lineages, 
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described below in Section 4.3.5, the probable amino acid sequence could not be predicted 

from the detected motifs despite showing similarity to ERV1 sequences at the nucleotide 

level. Consequently, this group of sequences was not included in the phylogenetic analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 (next page): Five lineages of ERVs were recovered from the C. porosus genomic 

BAC library. The Neighbour Joining phylogeny was generated from the putative amino acid 

translations of the pol domain and ERVs from other species. Sequence names indicate the 

BAC assembly, contig, and chain ID of the detected insertion. Sequence IDs for published 

and previously described sequences have been omitted for clarity. Part (a) is the complete 

tree, (b) and (c) show subtrees containing the majority of the recovered ERVs. The location 

of these subtrees within the main tree is indicated. The scale bars indicate branch lengths and 

values on the branches indicate bootstrap support greater than 70%. 
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4.3.5:  Characterisation of ERV genomic sequences 

Many structural and conserved domains were detected in the assembled ERV sequences 

despite the fragmented nature of the assemblies and the apparent divergence of some of the 

ERV lineages identified. These are outlined below for each of the major ERV clusters.  

ERV1 Gammaretrovirus-like 

As expected, these were the most abundant sequences recovered from the BAC assemblies. 

RetroTector recovered 129 copies of this ERV from the low coverage assemblies, and nine 

from the MHC BACs. These could be assigned to 46 haplotypes. The majority of sequences 

retrieved from the low coverage sequencing were partial sequences consisting of at least one 

internal coding domain. LTRs were detected in insertions from two of the MHC related BAC 

clones. All major ERV domains were detected, as well as a putative PPT. No additional 

coding ORFs were present in any of these sequences. 

Within the internal coding regions, RetroTector was able to detect conserved motifs that 

showed similarity to exogenous Gammaretroviruses and Class I ERVs. Motifs from these 

regions were generally present within the same reading frame, and most of stop codons 

identified were in locations consistent with the gag-pro boundary, and the end of the pro-pol 

region (Figure 4.5). This is typical of Gammaretroviruses and Epsilonretrovirses with these 

regions encoded by a single ORF immediately following the gag ORF, and in the same 

reading frame. The env domain was also identifiable through homology with other ERV env 

regions, although conserved motifs were not always detected. The positions of the predicted 

coding domains within these sequences also confirm that this is likely to be related to 

exogenous Gammaretroviruses.  
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Figure 4.5: Graphical representation of the RetroTector output for the ERV1 

Gammaretrovirus-like consensus sequence, showing the location and reading frame of 

putative ORFs, and the location of the detected conserved domains. Numbers above each row 

indicate nucleotide positions, black boxes indicate detected motifs, vertical lines show the 

detected stop codons, diagonal lines show potential splice acceptors and donors, and the three 

horizontal lines indicate predicted puteins. 

 

ERV1 Epsilonretrovirus-like 

Sequences from this lineage were recovered from each of the low coverage BACs, with the 

47 sequences belonging to 4 haplotypes. The majority of these sequences were identical, with 

44 sequences forming one haplotype. A comparison of these haplotypes revealed that they 

were identical except for the number of �N� bases inserted by the incorporation of the paired 

reads, suggesting that these may be derived from a single sequence.  

This sequence encoded part of the internal portion of an Epsilonretrovirus-like ERV, with 

BLAST searches showing high degree of similarity to previously identified crocodilian pro-

pol fragments. RetroTector corroborated this, with conserved motifs detected from the gag, 

pro and pol domains (Figure 4.6). The motifs for each individual domain were mostly 

encoded in the same reading frame, although these varied between the haplotypes. Stop 

codons were mostly present at the end of the gag domain and within the pro domain, 

although the fragment of the pol domain that was recovered appeared to be intact. No LTR 

regions or additional ORFs were detected for this lineage. 
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Figure 4.6: Graphical representation of the RetroTector output for the ERV1 

Epsilonretrovirus-like consensus sequence, showing the location and reading frame of 

putative ORFs, and the location of the detected conserved domains. Symbols are the same as 

Figure 4.5. 

 

Novel ERV1 sequences 

An additional 54 ERV sequences were recovered that shared very little similarity to the other 

two ERV1 lineages described above. Comparisons with ERV sequences in GenBank and 

RepBase suggested these sequences formed three additional ERV1 lineages. The first of these 

novel lineages was unique to the low coverage BAC clones, and comprised of 47 sequences 

and 13 sequence haplotypes. All insertions were incomplete, with partial env domains 

detected, and no LTRs (Figure 4.7a). Two novel lineages were identified within the MHC 

BACs, and were made up of one and six sequences respectively. All of these insertions 

appeared to be unique and contained predicted LTR regions, although the internal domains 

were not always complete (Figure 4.7b).  
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Figure 4.7: Graphical representation of the RetroTector output showing the location and 

reading frame of putative ORFs, and the location of the detected conserved domains in the 

novel ERV1 lineages identified in this study. Part (a) shows the predictions from the 

consensus sequence from the novel low coverage BAC ERV lineage, and part (b) is from the 

MHC related ERV lineage. Symbols are the same as Figure 4.5. 

 

ERV4 lineage 

A large number of insertions that show similarity to crocodilian ERV4 fragments were also 

identified. With the exception of the LTRs of three sequences, the 41 sequences were 

identical apart from the number of N bases incorporated during assembly of the scaffolds. 

Analysis with RetroTector suggested that these sequences also encoded entire ERVs, with 
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LTRs, PBS, PPT, and motifs from the gag, pro, pol, and env domains detected, although 

these motifs were found across all three reading frames (Figure 4.8).  

 

 

Figure 4.8: Graphical representation of the RetroTector output for the ERV4 consensus 

sequence, showing the location and reading frame of putative ORFs, and the location of the 

detected conserved domains. The light grey region indicates the approximate region of the 

additional ORF that was detected in these sequences. Symbols are the same as Figure 4.5. 

 

An additional ORF was detected in these sequences between positions 5404 and 6231 of the 

consensus sequence, immediately after the pol domain (approximate region shaded in Figure 

4.8). This ORF was 825 nucleotides in length (275 amino acids), and showed similarity to 

mRNA copies of vertebrate KIT-ligand genes. Pairwise genetic distances and phylogenetic 

analysis of the amino acid sequence of this gene compared with predicted KIT-ligand genes 

in the crocodilian genomes show that the crocodilian KIT-ligands are more closely related to 

each other than to the ERV copy. When compared with KIT-ligand transcripts from other 

species, all the crocodilian sequences, including the ERV sequence, formed a monophyletic 

sister clade to avian KIT-ligand sequences (Figure 4.9). 
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Figure 4.9: The captured KIT-ligand ORF clusters with crocodilian KIT-ligand sequences. 

The Maximum Likelihood phylogeny was generated from putative amino acid translations of 

crocodilian KIT-ligand genes and homologs from other species. The scale bar indicates 

branch length and values on the branches indicate bootstrap support greater than 50%. 
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4.4:  Discussion 

4.4.1:  Crocodilians may have a lower abundance of ERVs compared to other 

vertebrates 

Overall, pro-pol containing ERV lineages make up an estimated 0.1% of the total crocodilian 

genome. These estimates are low compared with many sequenced species (Table 4.5), but not 

unexpected since the full extent of ERV integration in the crocodile genome is unknown. 

More accurate estimations of the ERV content from the sequenced genomes and the reasons 

for these differences are provided in Chapters 5 and 6. Despite this, these values are similar to 

predicted ERV abundance in Xenopus tropicalis (western clawed frog) and Canis familiaris 

(dog), suggesting that these values, although low, are not unusual among vertebrates. 

 

Table 4.5: Comparison of estimated ERV content in the genomes of C. porosus and a 

selection of model organisms. 

Species Common name % ERVs in genome Reference 

Danio rerio Zebrafish 0.8% Barrio et al. (2011) 

C. porosus Saltwater Crocodile 0.07�0.1%  

Gallus gallus Chicken 1.3�2.0% Huda et al. (2008) 

Anolis carolinensis Green Anole 3.0% Alfoldi et al. (2011) 

Xenopus tropicalis Western Clawed Frog 0.12% Hellsten et al. (2010) 

Monodelphis domestica Opossum 2.0% Barrio et al. (2011) 

Canis familiaris Dog 0.15�2.0% Barrio et al. (2011) 

Mus musculus Mouse 2.0% Barrio et al. (2011) 

Homo sapiens Human 0.8% Blikstad et al. (2008) 

 

While the exact biological reasons behind this low ERV complement are not obviously 

apparent, it may be a consequence of environmental conditions reducing capacity for 

retroviral proliferation within a population. While not much is known about the stability of 

crocodilian viruses once shed into the external environment, both temperature and pH are 

known to affect the stability of virion particles (Beer et al., 2003, Higashikawa and Chang, 

2001). Furthermore, retrovirus virions may also have reduced survival in damp and aquatic 

environments (Moore, 1993), although it has been suggested that some retroviral lineages 

have developed adaptations for virion persistence in aquatic and semi-aquatic environments. 

One such example is the extended hydrophobic tail and lack of a cytoplasmic domain in the 
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env domain of WDSV and WEHV retroviruses (LaPierre et al., 1999). However, due to the 

lack of a predicted env domain in the closest related crocodilian ERVs, similar characteristics 

cannot be investigated at this stage.  

Likewise, crocodile biology may also play a role as cellular characteristics such as divergence 

or absence of compatible cellular receptors and intracellular restrictions may inhibit retroviral 

entry into cells (Bishop, 1978), thus preventing retroviral replication. Additionally, the data 

generated by hybridisation of the G. gangeticus BAC library suggest that this species appears 

to harbour a much different ERV complement to C. porosus. The markedly different 

hybridisation patterns suggest that these species are hosts to very divergent ERV 

complements, or that the environmental and cellular conditions have resulted in varying 

levels of prevalence of each ERV lineage. However, there is currently very limited 

knowledge of crocodilian cellular biology, which prohibits further speculation on the likely 

role of cellular factors in retroviral, and consequently, ERV proliferation at this stage. 

It should also be noted that these estimates only encompass the proportion of the ERVs in the 

genome that have retained recognisable pro-pol regions. Thus, estimates based on this are 

likely to underestimate the total proportion of the genome that is ERV related, as there may 

also be more degraded copies of ERVs that have not been detected using this screening 

methodology. There may also be a number of ERV lineages present in crocodilians that have 

not been detected in previous PCR screens, and thus will not be represented in the current set 

of probes. 

 

4.4.2:  Crocodilian ERVs appear to show preferential insertion patterns 

Based on the values obtained using Holst�s Theorem 2, ERVs in the C. porosus genome 

appear to display preferential insertion patterns, with the hybridisation patterns suggesting a 

highly non-random distribution of ERVs across the genome. This is typical for ERVs, and 

there are many documented instances of preferences for particular insertion sites or 

preferential insertion into specific regions of DNA. The physical location of the DNA within 

the helix can also play a part, with some ERVs, such as MLV, shown to insert primarily in 

DNA situated on the outer face of nucleosomal DNA (Muller and Varmus, 1994).  
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Retroviruses generally favour insertion into transcriptionally active regions of DNA, although 

it is thought that high transcriptional activity actually has an inhibitory effect on the 

likelihood of ERV integration into that region (Maxfield et al., 2005). ERVs from different 

genera also display different preferences for insertion within transcriptionally active zones. 

The Lentivirus, Simian Immunodeficiency Virus (SIV), for example, has been shown to 

integrate in gene dense regions, primarily in the intronic regions of genes (Hematti et al., 

2004). Human immunodeficiency virus (HIV) has also been shown to demonstrate similar 

preferences, with integration predominantly within transcription units (Bushman et al., 2005). 

On the other hand, the Gammaretrovirus, MLV, shows a weak preference for the regions 

surrounding transcription start sites (Bushman et al., 2005, Hematti et al., 2004). While the 

assemblies of the BAC clones do not permit further investigation of the surrounding genomic 

regions, the annotation of the genome sequences may provide further insights. 

A number of ERV insertions were also detected within MHC related BAC clones. This was 

unsurprising, as the accumulation of ERVs and TEs within the MHC region of other 

vertebrates has previously been noted (Andersson et al., 1998, Edwards et al., 2000, Gasper et 

al., 2001, Kambhu et al., 1990, Shiina et al., 1999). Studies into the location of these 

insertions within the MHC suggest that TEs may play a role in promoting the generation of 

diversity within the MHC region. It has been suggested that ERVs and TEs maintained in this 

region provide sites for recombination to occur, driving duplication or expansion events 

(Balakrishnan et al., 2010, Dawkins et al., 1999, Kulski et al., 1999).  

 

4.4.3:  ERV1 may be the predominant ERV family in C. porosus 

The results generated by hybridisation-based screening of the C. porosus genome suggest that 

ERV1 insertions are likely to be the predominant ERV lineage present in this species. Over 

80% of the insertions detected using the general crocodilian ERV probe set were also 

detected using the probe specific to the ERV1 Gammaretrovirus-like lineage described in 

Chapter 2. The higher relative abundance of these ERV1 insertions compared to ERV4 

insertions differs from what is suggested by the results of the previous PCR-based surveys. 

However, the differing hybridisation patterns suggest that the hybridisation conditions were 

stringent enough to limit detection to those clones containing ERV DNA with high levels of 
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homology to the probe sequences. This means that it is unlikely that this apparent difference 

is due to cross hybridisation between the pro-pol region of the different ERV lineages.  

Likely, this is a consequence of using a different set of techniques, and a different focus 

between the two surveys. The PCR survey implemented previously was less stringent since it 

was a general survey with the primary aim of recovering a wide variety of ERV lineages. The 

hybridisation used here was somewhat more stringent as it used the ERV DNA fragments as 

probes. This eliminates bias due to reaction conditions or abundance of specific primer 

sequences. However, this methodology limits detection to already identified lineages, and 

thus is dependent on the quality of the data used for selection and preparation of the probe 

sequences. 

 

4.4.4:  General genomic characteristics of crocodilian ERVs 

The analysis of the Gammaretrovirus-like ERV1 lineage suggests that these insertions may 

represent a more recent infection event, and given the overall completeness of the sequences 

identified, may be capable of replication by reinfection. This is in concordance with previous 

observations that some pro-pol fragments may encode intact ORFs (Chapter 2). All the major 

retroviral domains included in the RetroTector screening algorithms (Sperber et al., 2007) 

appear to be present, although this cannot be ascertained for all of the insertions since many 

of these insertions were not fully assembled. Notably, all of the detected motifs from within 

the coding domains were found to be present in the same reading frame within the consensus 

sequence. Furthermore, a lack of stop codons within the coding domains suggests that any 

mutations that have occurred in the individual insertions are not shared among many of the 

other detected insertions. Thus is it highly likely that that ERV lineage has retained the ability 

to replicate autonomously, and may still be active within the C. porosus genome. 

Interestingly, the ERV lineage that showed similarity to the exogenous Epsilonretroviruses 

did not appear to contain additional ORFs, although sequences detected were incomplete. 

Three additional ORFs have been identified in exogenous Epsilonretroviruses, and may be 

considered as a component of the structural characteristic of this genus (Holzschu et al., 

1995, Vogt, 1997). These ORFs are located upstream of the gag domain, and downstream of 
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the env domain. As these regions are absent from the current consensus sequence, it is 

possible that these ORFs may be present in crocodilian ERVs as well.  

The degree of degradation observed in the other ERV lineages identified from these clones 

suggests that these may be remnants of ancient infection events that have been inactivated for 

some time. Based on the sequence data for these insertions, they are unlikely to be capable of 

replication by reinfection as multiple stop codons were present throughout each of the 

predicted coding domains. However, recovery of more copies of these lineages from the 

crocodilian genome sequences should provide further insights into the replicative potential of 

these lineages. 

 

4.4.5:  One ERV4 lineage has captured a host mRNA 

The presence of an ERV4 lineage within these BAC clones was unexpected as the probe used 

to select clones for sequencing was specific to a single ERV1 lineage. However, given that all 

of the detected ERVs from this lineage were identical, it is more likely to represent a single 

insertion that was well represented within the paired-end reads rather than multiple insertions 

across all of the BAC clones. Nevertheless, the identification of additional coding regions 

within this insertion offers an interesting insight into the evolution of ERVs within the 

genome of C. porosus, and their potential effects on the genomes of these taxa. 

The acquisition of an additional ORF through capture of host mRNA is a relatively 

uncommon occurrence. ERVs are capable of incorporating host genes through recombination 

and incorporation of the host mRNA into the retroviral genome. This process requires 

transcription of the cellular gene along with proviral DNA, co-packaging of the chimeric 

RNA particle, followed by infection of a new cell and recombination of the chimeric RNA 

with the retroviral RNA genome prior to insertion of the recombinant proviral genome 

(Figure 4.10) (Muriaux and Rein, 2003). This usually results in the deletion of part of the 

internal viral coding domains, rendering the resulting provirus incapable of autonomous 

replication (Katz and Skalka, 1990). 
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Figure 4.10: Capture of a host mRNA transcript by read-through transcription of the proviral 

DNA followed by recombination, leading to the incorporation of the host transcript into the 

retroviral genome. Adapted from Muriaux and Rein (2003). 
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The ERV4 lineage identified in this study is highly unusual in the respect, as it appears that 

incorporation of the KIT-ligand mRNA has taken place without significant loss of viral 

coding regions. To date, only one other example of this occurring has been described, the 

replication competent Rous sarcoma virus (RSV) (Schwartz et al., 1983, Swanstrom et al., 

1983). Identification and comparison of this ERV with other closely related ERV sequences 

from the crocodilian genomes will be required to confirm that this mRNA has been captured 

without the loss of any viral domains. However, the transcript itself appears to be complete, 

and further investigation into potential transcription of this sequence may be warranted. 

 

4.4.6:  Limitations of low coverage sequencing 

The average coverage for each of the BAC clones was much lower than expected, although 

the depth of overage of the assembled contigs and scaffolds were sufficient for basic 

analyses, such as the identification of retroviral domains and prediction of some codign 

regions. Examination of the number of reads incorporated into each assembly suggested that 

the low coverage was likely a result of the number of reads that contained no recognisable 

CAG-SXT tag. Consequently, the resulting assemblies were quite fragmented, with a large 

number of contigs of varying lengths (Appendix I, Table S4.4).  

Although the paired-end libraries increased theoretical coverage of the clone substantially, 

this did not improve the contiguity of the resulting assembly. This lack of contiguity may be a 

result of insufficient sequencing coverage. Guidelines for whole genome sequencing 

recommend between 25× and 70× coverage for de novo assembly (Schuster, 2007). While 

there has been no similar figure published for BAC sequencing, the required coverage is 

likely to be similar. Despite this, the large number of contigs and singleton reads suggests 

that a large proportion of each BAC may have been sequenced. 

Comparisons of the coordinates of the detected ERV insertions and the length of the contigs 

that they were located on suggests that the assembly of the ERV proviruses broke over what 

are likely to be the more repetitive regions of the ERV genome, such as the R region of the 

LTR. Given that the LTRs of many of the detected insertions were truncated or not present, 

this may indicate that the assembly program had difficulty in assembling the sequence reads 

over this region of the ERV genome. While this fragmentation prevented further analysis of 
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the genomic regions immediately surrounding the ERV insertions, the depth of sequencing 

over the internal regions of the ERV sequences recovered in this survey suggested that it did 

not affect the analysis of the assembled internal ERV domains. 

 

4.5:  Conclusions 

The data presented in this chapter provide an important insight into the overall genomic 

structure of crocodilian ERVs. It has allowed for a basic characterisation of the major ERV 

lineages present in C. porosus, and provides an overview of the diversity and diversification 

of crocodilian ERVs. In particular, the discovery of novel lineages and lineage diversification 

within these ERVs suggests that there is still a lot to learn about crocodilian ERV diversity 

and evolution.  

At the time that this study was initiated, these crocodilian BAC libraries were the only 

additional genomic resource available for further characterisation of ERV sequences. While 

the whole genome sequence assemblies of three crocodilian taxa have subsequently been 

released, and have been utilised in the later analyses within this study, BAC libraries, where 

available, continue to be a valuable resource for the discovery of ERV insertions and specific 

investigations into the dynamics of specific ERV lineages or insertions.  

Directly interrogating the genomes of key crocodilian species will provide a more 

comprehensive insight into the evolution of crocodilian ERVs than the methodology 

implemented here. However, the data and methodology devised in this chapter provide the 

framework through which this characterisation and investigation can take place. 

  



 

116 

Chapter 5: A comparison of ERV detection programs 

5.1:  Introduction 

Identification and classification of ERVs, TEs and other repetitive elements is becoming 

increasingly important with the advent of whole genome sequencing projects. The masking of 

repeat sequences in genome sequencing and annotation projects is particularly important 

before performing homology-based searches and predictions, such as used for gene 

annotation (Price et al., 2005). Repeat families that are capable of autonomous replication can 

pose a particular problem, as these encode their own set of genes for replication. These can 

cause problems for large scale gene annotation, particularly if these genes share some 

similarity with genes within the host genome (Bao and Eddy, 2002, Price et al., 2005). 

A wide variety of tools are available for the detection and recovery of ERV sequences. The 

previous chapters have explored primarily laboratory-based methods, such as PCR and DNA 

hybridisation. These methods pose a number of challenges and restrictions � notably, the 

need for prior knowledge of some sequence information to facilitate detection of these 

elements, and facilities and reagents to carry out the experiments. The advent of next 

generation sequencing technologies and availability of vast amounts of sequence data mean 

that in silico or bioinformatics-based detection methods may provide a faster, more viable 

alternative for the recovery of large numbers of these elements. This chapter provides a 

comparison of a number of commonly used ERV detection programs to establish their 

relative effectiveness for the detection of divergent ERVs from a subset of the C. porosus 

genome.  

 

5.1.1:  In silico ERV detection and classification 

In silico, or computer-based ERV detection methods take two general forms: 

Homology-based detection, and de novo detection. Both of these require some prior 

knowledge of ERV structure and sequence, although de novo methods are designed to work 

from minimal prior knowledge, and generally focus more on structural characteristics and 

common features rather than sequence homology. ERVs and related LTR retrotransposons, 

such as those of the Gypsy/Ty-copia and bel classes present a particular challenge for 
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detection methods due to varying levels of conservation throughout their sequences (Benit et 

al., 2001, Katz and Skalka, 1990, Katz and Skalka, 1994, McClure et al., 1988).  

Homology-based detection of TEs relies primarily on identification of sequences that share 

similarity to previously identified TEs, using approaches similar to the BLAST searches 

utilised in previous chapters. Programs such as CENSOR (Jurka et al., 1996) and 

RepeatMasker (Smit et al., 1996-2010) use this method to identify TEs, producing a set of 

�masked� sequences where the identified TEs have been replaced with non-coding characters 

such as �X� or an asterisk. This form of identification is relatively quick compared to the 

other methods assessed here, and therefore is a more efficient alternative for most 

comparative and functional genomic studies where the focus is less on discovery and 

characterisation of repetitive sequence, and more on the removal of such sequence to 

minimise the search space for other analyses, such as gene discovery.  

However, TEs evolve with their host genomes, presenting a challenge for repeat detection 

based solely on sequence similarity. Species where there are no closely related characterised 

genomes, particularly those of non-model taxa such as crocodilians, pose a particular problem 

for these methods of repeat detection, as TE families in these genomes may be quite 

divergent from currently classified families and lineages. In particular, current ERV 

classification is based around similarity to the seven exogenous retroviral genera or a more 

relaxed clustering into the three major ERV classes (see Section 1.2 in Chapter 1). However, 

previous studies (Chapters 2, 3 and 4) (Herniou et al., 1998, Jaratlerdsiri et al., 2009, Martin 

et al., 2002) have demonstrated that ERV lineages do not necessary cluster strongly within 

these groups, with sequences forming intermediate lineages between exogenous retroviral 

genera. In particular the complicated nature of ERV classification is demonstrated by the 

divergent lineages identified in crocodilians by Jaratlerdsiri et al. (2009), Martin et al. (2002), 

and in Chapters 2, 3 and 4.  

The wide variety of genomes currently being sequenced and the identification divergent ERV 

lineages has highlighted the need for the development of de novo detection programs and 

algorithms, to facilitate detection and preliminary classification of such elements. These de 

novo detection programs have been developed with the intention of being able to detect TE 

insertions from uncharacterised genomes or those where there is no closely related, annotated 

reference (summarised in Table 5.1). This can be achieved through two major methods. The 
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first of these involves creating multiple local alignments of sequences to detect and define the 

outer boundaries of repetitive sequences, before comparing detected repeats and assigning 

these to �families�, or groups of related sequences. Programs using this strategy include 

Recon (Bao and Eddy, 2002), RepeatScout (Price et al., 2005), and RepeatModeler (Smit and 

Hubley, 2008-2010). 

The second commonly used method for de novo detection utilises conserved structural 

features of transposons. This is generally used for programs aiming to recover particular 

groups of transposons, as conserved features usually correspond to important functional 

regions of the transposon genome. A number of programs, such as LTR_STRUC (McCarthy 

and McDonald, 2003), LTR_FINDER (Xu and Wang, 2007), and RetroTector (Sperber et al., 

2007) have been developed to utilise these features in LTR retrotransposons. Commonly used 

features of these transposons include the LTR regions, PBS, PPT, and reverse transcriptase 

domain (pol region). 

 

Table 5.1: Summary of commonly used TE detection programs and their detection methods. 

Program 
Detection 

type 

Detection 

method 

Individual 

insertions 
Classification Reference 

Censor Homology Database  Yes Class Jurka et al. (1996) 

LTR_FINDER de novo Alignment 

Structural 

Yes N/A Xu and Wang 

(2007) 

LTR_STRUC de novo Alignment 

Structural 

No Lineage McCarthy and 

McDonald (2003) 

RECON de novo Alignment No Lineage Bao and Eddy 

(2002) 

RepeatMasker Homology Database  Yes Class Smit et al. 

(1996-2010) 

RepeatModeler de novo Alignment 

Database 

No Class 

Lineage 

Smit and Hubley 

(2008-2010) 

RepeatScout de novo Alignment No Lineage Price et al. (2005) 

RetroTector de novo Structural Yes Class Sperber et al.  

(2007) 
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Censor, RECON, RepeatMasker, RepeatModeler, and RepeatScout have been designed to 

recover and classify all repetitive sequences within the dataset, including ERVs, other 

retrotransposons, DNA transposons, and simple repeats. On the other hand, LTR_FINDER, 

LTR_STRUC, and RetroTector, have been written to specifically identify LTR 

retrotransposons. RetroTector, in particular, is specifically designed for the recovery of ERVs 

and the closely related Gypsy transposons. 

Given the diversity and divergence that has been detected in crocodilian ERVs to date, simple 

homology-based searches are unlikely to detect the full complement of ERVs present in the 

crocodilian genomes. This study compares a number of stand-alone ERV detection programs 

to evaluate their relative ability to recover crocodilian ERV sequences and return meaningful 

data that could be used for phylogenetic and evolutionary studies. In particular the focus was 

on the ability to detect divergent ERV lineages. The data presented in this chapter is primarily 

aimed at supporting these comparisons, while a detailed analysis of the detected ERVs has 

been presented in Chapter 4. 

 

5.2:  Methodology 

5.2.1:  Selection of programs for comparison 

Initial insights into the ERV complement of crocodilians from previous chapters have 

demonstrated that crocodilians are hosts to a broad variety of ERV lineages, some of which 

are quite divergent. Therefore, a selection of commonly used detection programs were 

evaluated to determine which would provide the most useful information for identification of 

ERV lineages in the crocodilian genomes and allow for predictions regarding their 

evolutionary history (Table 5.1).  

A comparison of methodologies and program limitations suggested that LTR_STRUC and 

LTR_FINDER would not be suitable for ERV detection. Both of these programs have been 

designed to identify complete LTR retrotransposons based on the structural characteristics 

outlined previously. However, the data from the previous chapters suggested that crocodilian 

ERVs may be quite divergent, even at these more conserved regions. Additionally, these 

programs rely on a high degree of similarity within the LTR regions for detection and 

definition of element boundaries; a feature that may reduce their effectiveness when detecting 
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older, more degraded ERVs. The reliance on LTRs for definition of proviral insertions also 

prevents these programs from detecting solo LTRS, which are expected outnumber complete 

ERVs many times over, limiting their usefulness for estimating the total fraction of the 

genome that may be made up of ERV insertions. 

From the remaining programs, RepeatMasker, RepeatModeler, and RetroTector were 

compared to determine which program would be most suitable to provide data for 

downstream ERV analysis. RepeatMasker utilises the BLAST search algorithms to identify 

repetitive elements within the dataset, providing a useful baseline to assess the specificity and 

sensitivity of the other programs when detecting elements related to known lineages. 

However, its usefulness for identification of more divergent elements maybe limited by the 

absence of known sequences within the database used for classification.  

RepeatModeler incorporates RECON and RepeatScout within its detection strategy, making 

it unnecessary to run these programs separately. It was chosen as it is one of the commonly 

used tools to screen detect repetitive elements, such as ERVs, and mask these sequences for 

downstream analysis of non-repetitive genomic sequence. Using a combination of different 

detection methods, RepeatModeler aligns short lengths of each sequence (l-mers) from the 

input dataset to identify lengths of sequence that are present in multiple copies. These are 

then expanded until the sequences are no longer similar. This point is taken to be the end of 

the repetitive sequence. These ends are then adjusted to recover the likely ends of each 

element based on the multiple alignment. A consensus sequence can then be produced for 

that lineage of element, and compared to known sequences, such as through an iteration of 

RepeatMasker, for initial classification of that lineage. Despite this, it is not limited by the 

collection of known sequences within the database, and provides a collection of �unknown� 

lineages that can be manually classified (Smit and Hubley, 2008-2010).  

The primary aim of RetroTector is the retrieval and classification of ERV sequences, unlike 

RepeatMasker and RepeatModeler which can detect all forms of repetitive sequence. This 

allows the use structural and conserved motifs for identification, rather than sequence 

alignments. The basic premise of this method, as described in Chapter 4, is the identification 

of conserved motifs and structural characteristics of ERVs, such as the PBS, PPT, and TSDs. 

These motifs are then joined into �chains� based on the order of the motifs, predicted reading 

frames, and likely distances between motifs derived from previously identified ERVs and 
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exogenous retroviruses. ERVs are classified into one of the seven exogenous retroviral 

genera based on the detected motifs and the retroviral or ERV sequences these have been 

derived from. This also allows for the prediction of �puteins�, or putative proteins, from the 

retroviral domains (Sperber et al., 2007). While RetroTector does not group ERVs into 

lineages automatically, these puteins are a valuable source of information for the prediction 

of lineages during downstream analyses. 

 

5.2.2:  Dataset and implementation 

As there is limited sequence data available for these ERVs outside of the pro-pol region, it is 

also unclear how effective the various de novo detection programs will be at detection and 

classification of these divergent lineages. The sequence data generated in Chapter 4 provides\ 

a suitable dataset for the comparison of these methods and the opportunity to evaluate the 

effectiveness of these programs for the recovery of ERV data for the purpose of identification 

and characterisation of divergent elements in a non-model species. The data used for 

comparison of these programs were the assembled BAC clones sequenced in Chapter 4.  

Briefly, these data were created by low coverage 454 sequencing of BAC clones from the 

C. porosus genomic library shown in Chapter 4 to contain ERV related fragments, and high 

coverage sequencing of MHC related BAC clones as part of a separate study that is not 

associated with the current project, but were included as they are from a region known to be 

rich in ERVs. The final assemblies comprised 6118 contigs and scaffolds from both the high 

and low coverage BAC clones totalling 149,498,987 bases (86,602,639 excluding �N� 

bases).This dataset was chosen for the comparisons as it is known to contain ERV sequences 

(see BLAST results in Chapter 4, Section 4.3.3) and is much smaller than a complete genome 

making it less computationally intensive. This work was carried out following assembly of 

the BAC clones, but prior to the analysis of ERV structure described in that chapter.  

Both RepeatMasker and RepeatModeler were implemented using the RepeatMasker version 

20120418 of the RepBase database. RepeatMasker version open-4.0.0 was run using 

�vertebrata� as the query species and default sensitivity. RetroTector was run using default 

parameters and RetroTectorEngine, a command-line implementation of the RetroTector 
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program. All programs were run on a Dell Optiplex-745 desktop computer with 2 Intel 

Pentium D processors (3.00 GHz) and 2 GB RAM, running Ubuntu Linux 12.04. 

 

5.2.3:  Comparisons between programs 

Due to the different methods of detection and the format of the final output, direct 

comparisons between RepeatMasker, RepeatModeler, and RetroTector cannot be made 

(Sperber et al., 2007). However, it is still possible to assess relative performances of these 

programs where output formats overlap, and compare these to determine which program, or 

programs, provides the most meaningful data for characterisation of ERV insertions and 

studies of ERV dynamics within a genome. For example, RepeatMasker and RetroTector 

provide the locations and details of specific insertions, while RepeatModeler output consists 

of consensus sequences from detected lineages. On the other hand, RepeatModeler and 

RetroTector provide the predicted sequence of the entire detected insertion, while 

RepeatMasker output is limited to the regions of homology to database sequences (see also 

Table 5.1).  

Comparisons between RepeatMasker and RetroTector were made on the basis of the length 

and number of insertions that were detected. Of particular interest here were insertions that 

were detected by RetroTector that were not present in the RepeatMasker collection. These 

were identified using custom python scripts that compared the contig or scaffold locations of 

each of the RetroTector insertions with those from the RepeatMasker output. Insertions that 

were not present in the latter set of sequences, even in fragmented form, were retrieved for 

manual investigation. This involved comparisons against published sequences from the 

GenBank and RepBase databases as outlined in in previous chapters.  

Sequence clustering and phylogenetic comparisons were used to determine the likely 

groupings of the RetroTector sequences with the RepeatModeler families as the latter 

program does not record the locations of the individual insertions used to create the final 

family consensus sequences reported. The program cd-hit-est in the CD-HIT package (Li and 

Godzik, 2006) was used to identify clusters of sequences based on nucleotide sequence 

similarities. Highly similar sequences (99% or greater similarity) were then removed and the 

remaining sequences aligned in MAFFT (Katoh et al., 2005) using the E-INS-i algorithm as 
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used previously. After removing non-overlapping sequences, Neighbour Joining trees were 

created using MEGA5 (Tamura et al., 2011) based on p-distances with 1000 bootstrap 

replicates to determine statistical support. Novel sequences generated by RepeatModeler 

were again compared against published sequences from GenBank and RepBase to confirm 

their classification. 

 

5.3:  Results  

5.3.1:  Comparison of ERV detection statistics 

The three programs selected for comparison produced varying estimates of the ERV content 

present in the assembled BAC clones differing in the proportion of the data that was 

predicted to be ERV related and the number of potential elements detected. RepeatMasker 

detected a total of 1069 potential elements from the BAC contigs, out of a total of 6118 

contigs. RetroTector detected fewer insertions (280 sequences) but attributed a greater 

proportion of the input sequences to retroviral related fragments. RepeatModeler identified a 

total of eight ERV families within the sequenced BAC clones. However, due to the form of 

output (lineage consensus sequences rather than individual insertions), it was not possible to 

estimate the proportion of the dataset attributed to ERV sequences.  

RepeatMasker attributed 0.28% of the dataset to ERV sequences. Potential retroviral related 

elements were recovered from the low coverage BAC assemblies were equivalent to 

approximately 0.25% of these scaffolds. The MHC region appeared to contain a higher 

proportion of ERV related sequences with approximately 2.33% of the total input attributed 

to retroviral related fragments. This fraction of the MHC assembly was attributed to 34 

potential elements.  

RetroTector attributed a much greater proportion of each dataset to ERV related sequence 

with 0.76% of the assembled BAC contigs and scaffolds incorporated into predicted ERV 

insertions. For the low coverage BAC assemblies, this made up 0.69% of the assembled 

scaffolds. Again the MHC region had a higher proportion of retroviral related sequences with 

8.2% of the assembled contigs attributed to ERV insertions. However, comparisons of the 

locations of these insertions with RepeatMasker output suggested that this program may be 

identifying multiple parts of each insertion and listing these as separate elements. 



 

124 

 

5.3.2:  Classification of ERVs by the tested programs 

Most of the insertions detected by the three programs were classed as ERV1 or ERVK 

(Human endogenous retrovirus-K; HERV-K) sequences. RepeatMasker also identified a 

number of ERVL (ERV3 Foamy virus-like) fragments that were not present in the 

RetroTector output. However, as these were short fragments (13�201 bp), it is unlikely that 

these contained retroviral motifs that would have allowed RetroTector to infer partial ERV 

chains. These fragments were also not shared between contigs, making it unlikely that 

RepeatModeler would have been able to detect them.  

RetroTector also recovered a number of ERV insertions that shared no similarity with any 

sequences in the RepeatMasker database. These were subsequently identified as members of 

the ERV4 lineage previously described from PCR amplified fragments (Chapters 2 and 3), 

and have been more fully described in Chapter 4. Initial examination of the ERV families 

reported by RepeatModeler revealed that the ERV4 lineage identified by RetroTector was not 

found in the RepeatModeler ERV families. This lineage was instead classified as a Gypsy 

retrotransposon. Final alignment sizes ranged from 16 to 30 sequences for each of these 

families.  

Sequence similarities and clustering analyses between the RepeatModeler families and 

RetroTector insertions suggested that only three of these families clustered with RetroTector 

insertions at an 80% nucleotide sequence similarity cut-off. Phylogenetic clustering 

confirmed this with the same three RepeatModeler families clustering within clades of the 

RetroTector insertions (Figure 5.1). A fourth shared clade was also observed, with 

Epsilonretrovirus-like ERV sequences from both programs clustering together. However, the 

remaining three RepeatModeler families did not appear to share any similarity with known 

ERV sequences either from this study or from published material, and did not appear to be 

detected by RetroTector.  
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Figure 5.1: Many of the C. porosus families identified by RepeatModeler correspond to 

major ERV lineages within the insertions identified by RetroTector. Phylogenetic tree was 

generated by Neighbour Joining analysis. The shared clades are indicated by thicker 

branches. Black circles indicate the RepeatModeler families. Brackets beside the sequence 

names indicate previously identified ERV clades. The scale bar indicates branch length and 

the number indicate bootstrap support values greater than 50%. 
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5.4:  Discussion 

One of the major constraints of current ERV detection methods is the detection and 

classification of novel lineages and classes. In particular, the comparisons made in this 

chapter highlight the constraints of methods oriented around global similarity to sequence 

databases for ERV discovery. These comparisons show that similarity-based detection 

methods may have difficulty with this, especially with more divergent classes.  

 

5.4.1:  Relative effectiveness of the different detection methods 

Overall, the de novo detection programs appeared to be more effective than homology based 

methods at predicting the ERV sequences and lineages present in the dataset. Comparisons of 

the insertions masked by RepeatMasker, the ERV chains detected by RetroTector, and the 

families identified by RepeatModeler suggest that RepeatMasker is relatively conservative in 

its predictions of ERV sequences. This is particularly evident from the much smaller 

proportion of ERV related sequence reported by RepeatMasker and the relatively short length 

of the repetitive sequences masked by the program, despite it returning a larger number of 

detected insertions. Likely, this is a result of different purposes of each program, and 

consequently, differing detection strategies. 

The primary form of detection for sequence homology detection methods such as 

RepeatMasker relies solely on sequence similarity to previously classified sequences present 

in the sequence databases  (Jurka et al., 1996, Smit et al., 1996-2010). Thus, these programs 

are reliant on the completeness of these databases to identify potential elements. This form of 

detection is relatively simple, making these programs faster and less computationally 

intensive than de novo detection. Such programs may be best suited to initial screens to 

provide an overview of the range of elements that may be present and quickly remove these 

elements for other genomic analyses such as gene prediction. 

The de novo programs, on the other hand, are designed to infer the presence of ERVs and 

other TEs based on minimal structural and sequence characteristics (Smit and Hubley, 2008-

2010, Sperber et al., 2007). As a result, this form of program may be more effective for initial 

characterisation of ERVs, particularly in new genomes. The data generated in this set of 

comparisons suggest that this form of prediction is more sensitive for detection of TEs as it is 
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capable of predicting insertions or families at varying degrees of sequence degradation. 

RetroTector in particular appears to be particularly suited for detection of ancient insetions, 

with a reported age limit of 200�300 million years for neutral insertions (Sperber et al., 

2007). 

 

5.4.2:  Ability to detect divergent or novel lineages 

The ability of the three tested programs to detect more divergent ERV lineages also varied 

depending on methodology. Unsurprisingly all three programs appeared to detect the ERV1 

sequences in the dataset, including the previously described Gammaretrovirus-like and 

Epsilonretrovirus-like lineages, and a novel lineage. These ERV sequences are the most 

widespread across vertebrate taxa and share a relatively high degree of sequence similarity 

between taxa (Martin et al., 1997) making these lineages relatively easy to detect and classify 

regardless of the methods used.  

On the other hand, the de novo methods were much more effective than RepeatMasker at 

detecting novel insertions, with both RepeatModeler and RetroTector identifying ERV4 

insertions, although initial classification of these insertions differed between the programs. 

The limited capacity for programs such as RepeatMasker to identify these insertions is 

unsurprising, as previous attempts to classify these sequences (Chapters 2 and 3) (Jaratlerdsiri 

et al., 2009) and subsequent analyses (Chapter 4) have shown that this lineage of ERVs 

shares very little similarity to other recognised ERV classes. Furthermore, this class of ERVs 

had no representative sequence in the RepBase databases at the time of analysis. This has 

subsequently been updated, and using subsequent releases of the database may allow for the 

detection of these elements. Despite this, the results generated by these comparisons highlight 

the limitations of sequence homology-based detection for the identification of ERVs from 

non-model species, and the need to consider the desired form of output when selecting 

programs for ERV detection. 

The success of the de novo programs at identifying the ERV4 insertions is almost definitely 

due to their ability to infer sequence characteristics from minimal prior information. In this 

aspect, RepeatModeler may be less constrained than RetroTector as it utilises local sequence 

alignments and copy number to identify and define repetitive elements such as ERVs, and 
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therefore is not reliant on a pre-defined database for identification. However, the reliance on 

sequence alignments also restricts the ability of RepeatModeler to detect very low and single 

copy number elements, as there are limited regions of homologous DNA for the construction 

of the final families and consensus sequences. This detection strategy may also impede the 

ability of RepeatModeler to detect very ancient insertions due to degradation of these 

sequences by mutations. 

Although it is reliant on a database of conserved sequence motifs and characteristics, the use 

of these features allows RetroTector to detect and predict the presence of ERV sequence with 

a degree of confidence. By predicting the insertions individually, the program is able to 

identify single copy and low copy number lineages. Furthermore, the focus on conserved and 

functional motifs facilitates the detection of divergent and novel lineages, making this 

program a particularly useful tool for studies of ERV dynamics in poorly characterised 

genomes. 

 

5.4.3:  Avenues for improvement of ERV detection 

The data generated so far from crocodilian ERV sequences highlight the need for new 

methods or adaptation of current methods to allow the identification and classification of 

novel and divergent sequences. Although the data generated in this chapter came from a 

single iteration of each of the programs tested, it has become apparent that multiple iterations 

of one or more of these detection methods, combined with additional data generated from 

these iterations,  may be desirable for effective discovery of novel ERVs or ERVs from 

previously uncharacterised species.  

Addition of novel data to existing databases has the potential to increase the accuracy and 

subsequent detection of elements by providing a larger range of �characterised� sequence that 

can be used to initiate the search. For example, the addition of sequence data from the ERV4 

lineage to the RepeatModeler database would assist in the correct classification of related 

sequences in subsequent iterations. Likewise, the addition of the novel motifs and 

classification information to the RetroTector databases would rectify the misclassification of 

these insertions, and possibly lead to the identification of other related ERV chains.  
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Unfortunately, the addition of new material and repeated iterations also increases the amount 

of time required for processing of data, particularly if manual curation of novel insertions is 

required at each stage. The automation of this process, through the creation of additional, 

local databases of divergent lineages during processing, has the potential to speed up 

discovery, potentially reducing the need for manual processing of data until the final stages of 

the detection process. RepeatModeler implements this system to some extent, since initial 

definition of the repetitive element families is carried out by clustering of sequences by local 

alignment (Smit and Hubley, 2008-2010).  

Automation of ERV does have some drawbacks, however, in the definition of what may 

constitute a �novel� element or insertion. Many attempts have been made to define the criteria 

for a novel element or family, such as sequence similarities compared to other elements, 

divergence from �model� elements, similarity to exogenous retroviruses, and the presence or 

absence of phylogenetic support for element delineation (Blomberg et al., 2009, Jern et al., 

2005, Wicker et al., 2007). However, the difficulties in implementing a consistent criteria 

across vertebrate taxa means that ERV classification is still a subjective form of analysis, 

based around arbitrary values and combinations of the listed criteria (Barrio et al., 2011, 

Garcia-Etxebarria and Jugo, 2010). Thus, complete automation of classification and retrieval 

may not be possible under current standards for classification and nomenclature.  

 

5.5:  Conclusions 

The comparisons carried out in this chapter demonstrate the relative effectiveness of three 

commonly used ERV and TE detection programs to detect ERVs in a relatively unclassified 

genome, and highlight the need for careful consideration of the detection programs used to 

facilitate characterisation of ERVs in these species. It is evident from the various outputs that 

each program and detection method fulfils a different niche in the detection of ERV 

sequences. Homology and database searches such as implemented in RepeatMasker are more 

effective for screening of data from characterised taxa, while de novo methods are better 

suited to ERV detection and characterisation of uncharacterised genomes. 

Both of the de novo programs were able to detect ERV4 sequences in the assembled contigs 

(see also Chapter 4), which RepeatMasker was unable to identify. While RepeatModeler was 
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equally as effective as RetroTector at detecting the more divergent ERV sequences, the 

program provides only the final consensus sequences created by alignment of the detected 

insertions, necessitating further processing of the raw sequence data to retrieve individual 

insertions. On the other hand, RetroTector provides details of the individual elements as well 

as information on their locations within each scaffold, and general structural data. Thus, 

RetroTector would be a better suited program for the study of ERV dynamics within 

crocodilians as it provides more useful information for studies of ERV lineage evolution and 

replication dynamics. 
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Chapter 6: Automation of ERV detection and classification 

6.1:  Introduction 

Up until now crocodilian ERV characterisation has focussed on fragments from the pro-pol 

domain (Chapters 2 and 3) (Herniou et al., 1998, Jaratlerdsiri et al., 2009, Martin et al., 

1999), or ERVs from a single species (Chapters 2, 3, and 4) (Martin et al., 2002). These 

methodologies are highly reliant on sequence conservation for recovery of ERV data, with 

the PCR surveys focussing on conserved domains, and therefore likely to have missed more 

degraded or rarer ERVs. Given that these sequences comprised the probes used for the 

genomic BAC library screening, it is probable that the estimates generated from this 

screening underestimates the complete ERV complement of C. porosus. As a consequence, 

estimates of ERV content and diversity from these surveys are likely to be lower than the 

actual figures. Furthermore, the primary focus of experimental data for the previous chapters 

has been to identify and detail the ERV complement of C. porosus, limiting the ability to 

draw meaningful comparisons between crocodilians. 

Improvements in next generation sequencing technologies have made these techniques 

accessible and feasible for furthering studies into the biology and evolution of non-model 

organisms. Crocodilians are one such species, and the initiation of the crocodilian genomes 

project has the potential to shed light on the evolution and genome biology of reptiles, avians, 

and modern vertebrate taxa (St John et al., 2012).  De novo detection of ERVs from the 

crocodilian genome sequences may therefore provide a more accurate representation of ERV 

complement of these species. Similarly, a comparative genome-wide approach may be more 

appropriate for the study of evolutionary dynamics across crocodilians given that there are 

now whole genome sequences available. This chapter outlines some of the challenges faced 

when studying ERVs in such an environment and proposes a simple wrapper for the detection 

and initial processing of ERV data using the ERV detection program RetroTector (Sperber et 

al., 2007). 
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6.1.1:  The crocodilian genomes 

The genomes of three crocodilian species (A. mississippiensis, C. porosus, and G. gangeticus) 

have been generated, using a combination of Illumina and 454 sequencing technologies (St 

John et al., 2012). These species represent the three major taxonomic lineages present within 

the Order Crocodylia, namely the alligators, crocodiles, and gharials, respectively.  

The A. mississippiensis genome was sequenced primarily using Illumina technology, utilising 

a combination of high coverage short reads and low coverage BAC-end sequencing. BAC-

end sequencing involves the sequencing of the genomic regions immediately adjacent to the 

integration site of the BAC vector. C. porosus and G. gangeticus were sequenced with a 

hybrid methodology incorporating both Illumina and 454 sequencing technologies. These 

utilised high coverage, short sequence reads from Illumina genomic preparations, as well as 

single and paired-end reads generated using 454 sequencing. As BAC libraries are also 

available for these species, low coverage BAC-end sequencing was also used to combine 

contigs (St John et al., 2012). 

The A. mississippiensis and G. gangeticus genomes have been estimated to be approximately 

2.5 Gb in size (Gigabases, 2.5 × 109 bases), whilst C. porosus has been estimated to be 

slightly larger in size (2.78 Gb). Preliminary estimates of the repetitive DNA content of these 

genomes suggest that upwards of 23.44% for all three species are made up of repetitive DNA 

(St John et al., 2012). Given the divergence and diversity of ERVs detected in crocodilians to 

date, bioinformatic analyses of these genomes will facilitate the recovery of novel ERVs and 

the identification and characterisation of these lineages. 

 

6.1.2:  Challenges associated with analysing whole genomes 

One of the major challenges of genomic ERV discovery is the handling of the vast amounts 

of data that may be produced by any of the de novo detection programs currently available 

(see Chapter 5). This challenge is made more complicated by the need to analyse multiple 

genomes concurrently, as with the three crocodilian genomes.  

The de novo detection program RetroTector attempts to minimise the need for additional data 

handling by generating an SQL (structured query language) database containing the pertinent 
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ERV information for each genome and ERV insertion detected by the program (Sperber et 

al., 2007). However, setting up and querying the database for information regarding the 

detected insertions requires knowledge of SQL programming, a skill not always associated 

with genomic and genetic research. In order to simplify this process, the work outlined in this 

chapter collates pertinent information regarding the location and general structure of the ERV 

insertions into a series of simple tables and sequence files that do not require knowledge of a 

programming language to query or examine.  

This chapter provides an overview of the methodology involved with ERV detection from a 

genomic perspective and initial insights into the ERV content of the crocodilian genomes. It 

expands on some of the complications associated with automated ERV detection as discussed 

in the previous chapter and provides an initial overview of the ERV content of the three 

sequenced crocodilian genomes and complements the comparative analyses in the following 

chapter. The studies outlined in the previous chapters suggest that crocodilians harbour a 

number of divergent ERV lineages that show little similarity to ERVs from other vertebrates. 

Based on the relative efficiencies of the programs discussed in Chapter 5, the de novo 

detection methods such as RetroTector may be more efficient than the traditionally used 

homology-based methods for ERV detection in these species.  

 

6.2:  Methodology 

6.2.1:  Pipeline design 

The methodology discussed in this chapter relates to the automation of ERV detection and an 

initial exploration of the ERV content of the crocodilian genomes. Where possible, 

pre-existing programs and packages used in the previous chapters were also incorporated to 

reduce the amount of optimisation required to adapt previous methodology for automated 

analyses.  

The detection of ERV insertions was carried out using RetroTector, specifically the 

commandline variant of the program, RetroTectorEngine to facilitate automation of the initial 

analyses. Due to the large amounts of data that such analysis is likely to produce, custom 

scripts were written in the python programming language to assist in the retrieval of data, and 

perform some of the basic data analyses. These scripts included initial splitting of the genome 
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assembly scaffolds into individual files for analysis, retrieving the detected ERV sequences 

and ERV gene sequences, identifying and collating sequence haplotypes, and compiling these 

into single files (see Figure 6.1 and Table 6.1).  

The final automated pipeline was written and automated in the python programming language 

using the python module Ruffus (v2.2) to create the pipeline and control the flow of data 

between each stage of analysis. The Ruffus module (available from 

https://code.google.com/p/ruffus/downloads/list) is a python add-on designed to implement 

computational pipelines and manage the dependencies of each stage or �task�. It has built-in 

controls for the processing of multiple tasks in parallel, as well as functions to limit the 

number of tasks that can be run concurrently. It also allows the pipeline to be started or 

restarted from an arbitrary point, and will automatically re-run jobs if output files are deemed 

to be �out of date�, or the modification dates on the input files for a specific task is after the 

modification date of the output (for example if the input files have been updated to 

incorporate new data). The files for the pipeline are provided in Appendix V. 
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Figure 6.1: Flow diagram of the computational pipeline showing the tasks and their input 

and outputs. Briefly, genomic data are separated into individual scaffolds before being 

processed using RetroTector. The pipeline then takes the output from this program, extracts 

the final sequence data, and collates this into a number of easily accessible files. Arrows 

indicate the flow of data between tasks.  
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Table 6.1: Outline of each task specified by the pipeline, and a description of what each 

does. 

Task Description 

split_files Takes the file containing the genome sequences and writes each sequence 

to an individual fasta formatted file for RetroTector.  

These files are created in the directory �-splitfiles� within the main 

project directory. 

ReTe_init Copies the individual fasta files into the RetroTector �NewDNA� 

directory. 

Starts RetroTector � RetroTectorEngine.jar. 

Copies RetroTector output to the directory �-RetroTectoroutput�. 

make_chainfiles Identifies the ERV chains within the RetroTector output and writes the 

details of each chain into a separate set of files within the directory 

�-chainfiles�. 

get_puteins In addition to identifying ERV sequences, or chains, within the input 

data, RetroTector attemts to reconstruct amino acid sequences of the 

retroviral coding regions (puteins). 

This task identifies these within the Retrotector output and collates them 

into separate files for each coding region. 

get_generegions Identifies the start and end coordinates of the retroviral coding regions 

from the RetroTector output. 

Collates these into a single file for easy viewing. 

get_geneseqs Extracts the nucleotide sequences of the retroviral coding domains and 

collates these into separate files for each domain. 

get_coordinates Finds and collates the start and end locations of the detected ERV 

sequences and their LTRs, as well as the predicted PBS, PPT and TSD 

sequences. 

get_LTR Collates the 5` and 3` LTR sequences from each ERV insertion into a 

single fasta file. 

get_soloLTR Identifies the start and end coordinates of solo LTRs from the 

RetroTector output. 

Collates these into a single file for easy viewing. 

get_intseqs Extracts the internal sequences of each ERV insertion and writes this to a 

single fasta file. 

get_ERVs Extracts the complete ERV insertion from the input sequence and writes 

this to a fasta file. 

collapse_haps Identifies identical sequences from all of the fasta files generated in 

previous tasks. 

Output is a fasta file containing all of the haplotypes identified, a list of 

haplotypes and the sequences that belong to each one, as well as a file 

containing the number of sequences belonging to each haplotype. 
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Task Description 

collate_haps Collates the information from each of the haplotype lists and organises 

this into a single table showing the haplotypes that were identified from 

each sequence, the complete ERV sequence, the entire internal domain, 

and for each of the individual coding domains. 

cluster Starts CD-HIT or CD-HIT-EST to perform cluster analyses on the 

sequence haplotypes identified above. Similarity is set at 80% to provide 

an overview of the possible number of lineages present within the 

sequences. 

summary Summarises the data generated by the pipeline into a single overview file. 

This file contains the sequence haplotypes for each ERV insertion 

identified, an indication of whether LTRs have been identified, and 

sequence information for the PBS, PPT and TSDs as generated by 

�get_coordinates�. 

 

6.2.2:  Test datasets 

Two datasets made up of sequences from Chapter 4 were used for the development of this 

pipeline. The first comprised of 15 sequences ranging in length from 12,553 to 284,168 bases 

(Table 6.2). Eight of these contained one of five previously detected crocodilian ERV 

haplotypes placed within randomly generated sequence, and were used only for initial 

development to ensure that the data were correctly parsed by the pipeline. The assembled 

BAC sequences that were obtained in Chapter 4 were used as a larger dataset to test the 

complete pipeline and gauge the computational resources that may be required at each stage 

of the pipeline. The results from this dataset are presented in Chapter 4. The pipeline was 

written and tested in Python 2.7 on a Dell Optiplex-745 desktop computer with 2 Intel 

Pentium D processors (3.00 GHz) and 2 GB RAM, running Ubuntu Linux 12.04. To prevent 

problems with insufficient memory, the pipeline was limited to one job at a time.  
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Table 6.2: Overview of the sequences that made up the preliminary test set for the 

development of the computational pipeline. 

 Scaffold ID Length ERV Haplotype 

1 scaffold_0001 123368 Haplotype 4 

2 scaffold_0002 284186 Haplotype 4 and 5 

3 scaffold_00001 54168 Haplotype 4 

4 scaffold00002 30735 N/A 

5 scaffold00003A 28800 Haplotype 3 

6 scaffold00003B 28800 Haplotype 3 

7 scaffold00004 28439 N/A 

8 scaffold00005 26806 N/A 

9 scaffold00006 15962 N/A 

10 scaffold00007 13946 N/A 

11 scaffold00008 13800 N/A 

12 scaffold00009 13643 N/A 

13 scaffold00010 12553 N/A 

14 001-B17-scaffold00003 131869 Haplotype 2 

15 001-B17-scaffold00001 140642 Haplotype 1 

 

6.2.3:  Analysis of the crocodilian genomes 

The crocodilian genome assemblies were obtained from the ICGWG webpage 

(ftp://ftp.crocgenomes.org/pub/). The final implementation of the pipeline was on a Dell 

PowerEdge R815 server with 2 AMD Opteron 6220 8-core processors (3.00 GHz) and 

128 GB RAM, running Redhat Enterprise Linux 6. On this machine, it was run with Python 

2.6 with the argparse module installed, and no restrictions on the number of jobs that could be 

run concurrently. Each genome was analysed using the above pipeline, and summary 

statistics were obtained from the resulting output.  

Duplicates may occur where scaffolds are too long to be processed by RetroTector and 

randomly split by the program. When this occurs, the ERV insertion may be present in more 

than one of these split sequences giving rise to multiple detections. These can be found by 

comparing the location of the insertion from the program output as the locations within the 

scaffold are maintained regardless of where the division is made. Occasionally these ERV 

sequences had differing internal regions as a result of the RetroTector predictions. When this 

occurred, predictions were manually checked and the information from each entry was 

merged. The estimated proportion of each genome that was likely to be ERV related was 
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calculated from the lengths of the detected ERV chains and the total length of the assembled 

scaffolds (Table 6.3). 

 

6.3:  Results  

6.3.1:  Overview and completeness of ERV chains 

RetroTector recovered a total of 4531 ERV chains from the three crocodilian genomes. Of 

these, 576 were treated as 'complete' as they had all three coding domains and both 5` and 3` 

LTRs present. These chains were retrieved for further analysis as outlined in Chapter 7. 

Between 16% and 25% of detected ERV chains were predicted to contain two LTRs but were 

missing at least one of the internal coding domains (Table 6.3). The average length of ERV 

chains were 8,239 bases in A. mississippiensis, 7,826 in C. porosus, and 7,363 in 

G. gangeticus (see Appendix I, Table S6.1 for individual insertions). The detected ERV 

chains make up between 0.29% and 0.70% of the crocodilian genomes (species specific 

figures below in Table 6.3). Furthermore, a number of ERVs were detected that did not 

appear to encode a recognizable pol domain, and thus would not have been detected by 

hybridisation. 

An additional 339,610 solo LTRs were detected from the three genomes. The average length 

of solo LTRs ranged from 1473 to 1573 bases across the three species. Based on these 

figures, it is estimated that between 6.53% and 9.30% of the genomes are made up of ERV 

related sequences.  
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Table 6.3: Summary of ERV insertions (including Gypsy-like transposons) detected from 

each of the genomes, and an approximation of the ERV content. 

 A. mississippiensis C. porosus G. gangeticus 

Genome sizea 2.5 2.78 2.5 

Version aMiss_AKHW01000000 croc_sub2 ggan_v0.2 

Date uploaded 28/11/2012 10/08/2012 05/09/2012 

Date downloadedb 10/12/2012 15/10/2012 15/10/2012 

Length of assembly 2,144,153,452 2,123,474,087 2,882,656,219 

Number of scaffolds 8,897 23,365 47,351 

Estimated proportion of  

genome in assembly 

0.86× 0.76× 1.15× 

Number of ERV chains 1,817 1,593 1,121 

Complete ERVs 207 249 120 

Both LTRs 1,316 1,013 613 

One LTR 134 130 104 

No LTRs 367 450 404 

Solo LTRs 79,445 119,753 140,412 

Estimated ERV content 6.53% 9.30% 7.46% 

(excluding solo LTRs) (0.70%) (0.59%) (0.29%) 
a Estimates of genome size taken from St John et al. (2012). 
b Genomes were downloaded before the �freeze� of assembly and refinement. Therefore these 

may not represent the latest, or the published version of the genomes. 

 

6.3.2:  Detection of coding domains 

The pol domains were consistently the most commonly detected domain across all three 

species, followed by the gag and pro domains (Table 6.4). The env domain was again the 

least likely of the retroviral domains to be detected in the ERV chains. Similarly, 

proportionally more predicted amino acid sequences could be generated based on predicted 

pol nucleotide sequences than the other domains. The pro domain appeared to be the most 

difficult domain to generate predicted amino acid sequences from, with proportionally less 

puteins generated from these sequences. Additional results and further analysis of these data 

will be discussed in Chapter 7.  
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Table 6.4: Summary of the coding domains detected and the number of haplotypes recovered 

from each. 

  A. mississippiensis C. porosus G. gangeticus 

Number of Gag 1,234 1,143 752 

sequences Pro 1,087 1,065 723 

 Pol 1,736 1,515 1,008 

 Env 666 653 472 

Nucleotide Gag 1,213 1,131 749 

haplotypes Pro 1,062 1,050 713 

 Pol 1,711 1,505 1,002 

 Env 656 652 468 

Number of  Gag 597 (0.48) 683 (0.60) 457 (0.61) 

Puteins a Pro 420 (0.39) 536 (0.50) 373 (0.52) 

 Pol 958 (0.55) 987 (0.65) 743 (0.74) 

 Env 348 (0.52) 407 (0.62) 288 (0.61) 

Putein Gag 580 673 452 

haplotypes Pro 407 526 370 

 Pol 946 982 739 

 Env 344 406 285 
a Brackets indicate the number of predicted puteins as a proportion of the number of predicted 

nucleotide sequences. 

 

6.4:  Discussion 

6.4.1:  Preservation of ERVs within the genome 

An initial overview of the ERV insertions recovered from the genomes of A. mississippiensis, 

C. porosus, and G. gangeticus, suggests that many of the ERVs recovered are highly 

degraded. Degradation of ERVs is generally the result of accumulation of mutations through 

mis-incorporation of nucleotides or production of indels (insertions and deletions) during 

DNA replication. Consequently, the accumulations of these mutations provide a relative 

measure of the age of the insertions. As the majority of ancient ERVs within a genome are 

expected to be selectively neutral, and thus of little consequence to genome function, these 

ERVs are likely to represent remnants of older insertions. Despite this, the presence of a large 

number of relatively intact ERVs suggests that there is some degree of sequence preservation, 

and as such, it will be interesting to compare the relative conservation of the different 

retroviral families within crocodilians. 
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Likewise, the high proportion of solo LTRs detected suggests that ERVs have previously 

proliferated in the genomes of these species before being removed by LTR-LTR 

recombination (Stoye, 2001). These remnants of ERV proviral sequences may be present in 

genomes in tens to thousands of copies per ERV family (Stoye, 2001). Although they are of 

little consequence for classification and description of ERV families in general, solo LTRs 

can still have significant impacts on genome function, altering gene transcription, proving 

alternative splice sites, or causing the formation of pseudogenes by disruption of regulatory 

domains (Jern and Coffin, 2008). While it is not currently possible to establish the impacts of 

solo LTRs on crocodilian genomes at present, the presence of these remnant ERVs is an 

important consideration for studies into gene regulation in these species.  

 

6.4.2:  Comparison of ERV estimates between methods 

The estimated ERV content of the three crocodilian genomes is much higher than the 

previously predicted 0.07!0.1% for C. porosus (Chapter 4). Based on these revised figures, 

the estimated ERV content of crocodilians appears to be similar to that of most other 

characterised vertebrate species (Table 6.5), rather than the smaller ERV complement 

suggested from densitometry analyses. This is particularly apparent when compared with 

other species where ERV content has also been estimated with RetroTector. It is possible that 

some of the ERV sequences included within these estimates are false positives or represent 

mis-assembled regions of the genome. However, these are likely to constitute only a small 

proportion of the estimated ERV content, and therefore do not explain the significantly 

different estimates obtained here and in Chapter 4.  

It is more likely that these differing estimates of ERV content are due to a large number of 

novel lineages within the data that were not present in the probe set used for hybridisation 

screening. This is unsurprising given the limited knowledge of the ERV complement of 

crocodilians from PCR-based analyses, and therefore the limited number of linages 

represented in the probe sets used for screening of the BAC libraries. As discussed in 

Chapters 2, 3, and 4, the PCR-based screening was unlikely to detect all ERV lineages 

present in the crocodilian species assessed as only a limited number of plasmid clones were 

selected for sequencing from each individual. The amplicons selected were also restricted to 

what was considered to be close to full length amplicons to reduce the possibility of 
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nonspecific amplification and highly degraded ERVs being included in these surveys. 

Furthermore, a number of ERVs were detected in the genomes that did not appear to encode a 

recognisable pol domain, and thus would not have been detected by hybridisation. 

 

Table 6.5: Estimated ERV content based on retroviral chains, and a comparison with 

previous estimates and other species. 

Species Common name 
% ERVs 

in genome 
Reference 

A. mississippiensis American Alligator 0.70%  

C. porosus Saltwater Crocodile 0.59%  

G. gangeticus Gharial 0.29%  

Danio rerio
a
 Zebrafish 0.8% Barrio et al. (2011) 

Monodelphis domestica
a
 Opossum 2.0% Barrio et al. (2011) 

Canis familiaris
a
 Dog 0.15% Barrio et al. (2011) 

Mus musculus
a
 Mouse 2.0% Barrio et al. (2011) 

Homo sapiens
a
 Human 0.8% Blikstad et al. (2008) 

Gallus gallus Chicken 2.9% (0.2% a) Huda et al. (2008) 

Anolis carolinensis Green Anole 3.0% Alfoldi et al. (2011) 

Xenopus tropicalis Western Clawed Frog 0.12% Hellsten et al. (2010) 
a These values were also generated using RetroTector, and comparisons to these may be more 

representative as figures generated using other methods may reflect different detection 

biases from the various projects and methodologies (see Chapter 5 for an outline of this). 

 

6.4.3:  Differences in ERV complement between crocodilian species 

Surprisingly, the estimated proportion of ERVs in the genomes of the three crocodilian 

species appeared to vary greatly between species, with the predicted content of the 

A. mississippiensis and C. porosus genomes at least double that of the G. gangeticus genome. 

While some variation in the proportion of genomic ERV content may be expected between 

species as a result of species specific acquisitions, the large difference in estimated content 

was largely unexpected. Differing ERV complements could be due to differing activity of 

ERVs, or acquisition of novel viral strains post speciation, or may be a reflection of the 

completeness of each genome assembly.  

This latter possibility is most likely to explain the large difference in ERV complement 

between G. gangeticus and the two other genomes, as A. mississippiensis and C. porosus 
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were the first two genomes sequenced, and therefore are likely to be the most complete in 

terms of assembly at the time the genomes were obtained. In particular, A. mississippiensis 

was the most advanced, both in terms of contiguity as well as annotation (see also Table 6.3), 

and consequently, is more likely to be representative of the actual crocodilian genomes. The 

more fragmented nature of the G. gangeticus genome may reduce the ability of RetroTector 

to detect ERVs (Barrio et al., 2011, Blikstad et al., 2008) due to potential fragmentation of 

the ERV chains, leading to lower estimates of ERV number and content. 

Interspecies variation in ERV content is also likely to be present, although it is likely to have 

a much lesser impact on the variation observed compared with genome contiguity and 

coverage. It has also been noted that genome complexity is reflected in retroelement content 

of the host genome, with more retroelements being present in more complex genomes (Rowe 

and Trono, 2011), although it is unknown if ERV content correlates with genome size. 

However within vertebrates, and between closely related families, this is less likely to be the 

sole cause of differences in the ERV complement between species. The primary sources of 

interspecies variation are independent acquisitions of novel ERV infections, and differing 

levels of ERV proliferation and loss as result of ERV evolution within host genomes 

(Johnson and Coffin, 1999, Kim et al., 1999). These trends are not immediately obvious from 

the raw data presented here, and therefore will be investigated further following the 

classification of these ERV sequences in the following chapter. 

Genome biology and the genomic environment may also play a role in determining the final 

ERV complement of a genome. Acquisition of specific control mechanisms, exaptation of 

ERV domains, and the insertion location can all dictate the preservation or removal of ERVs 

from a genome. It has also been suggested that some species, notably avians (represented 

here by G. gallus; chicken) and C. familiaris (dog), may have additional mechanisms for 

purging ERVs from the genome or the restriction of retroviral activity  (Barrio et al., 2011). 

As such, it is possible that similar mechanisms have evolved in G. gangeticus, and to a lesser 

extent, possibly C. porosus and A. mississippiensis. Unfortunately, as with C. familiaris, the 

paucity of retroviral data outside of this project, and the current limited understanding of 

crocodilian genome biology limits the extent to which further conclusions can be drawn on 

this. 
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6.5:  Conclusions 

The methodology and data presented in this chapter highlight the complexity of de novo ERV 

discovery. The pipeline presented here extends current ERV detection to include basic 

clustering analyses to facilitate the definition of ERV lineages and families. Furthermore, the 

pipeline acts as a wrapper around the detection program and associated data processing, 

performing the preparation of the data, initiation of the program and collation of the ERV 

data into easily accessible files for further analysis.  

The ERV data suggest that the overall proportion of the crocodilian genomes that can be 

attributed to these elements does not differ greatly from other characterised species, despite 

containing a more divergent range of ERV lineages. The next stage of analysis will involve 

definition and description of the ERVs families that are present in these sequences, and will 

provide more comprehensive insights into the evolution of ERVs within the crocodilian 

genomes. 
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Chapter 7: Comparative studies of crocodilian ERVs 

7.1:  Introduction  

7.1.1:  ERV classification 

Classification of ERVs and other TE families is an ongoing problem as there are a number of 

different taxonomic groupings that may be applied to ERV sequences. The first of these 

classification systems relates ERV sequences to the closest related exogenous retroviral 

genus (e.g. the Gammaretroviruses). However, surveys of ERVs across vertebrates suggest 

that the delineations between these genera are not distinct, with many forming intermediary 

lineages between genera. As a result, broader groupings of ERV lineages may also be used to 

denote classification. Under this system, ERVs are generally assigned to broad classes 

according to general sequence characteristics. These classes correspond approximately with 

the definition of a genus (e.g. Gammaretroviruses, ERV1 or Class I ERVs) and are further 

divided into �families� which can be loosely defined as a group of related elements, likely to 

have originated from a single insertion or infection event.  

There are three main methods that are commonly used to define ERV families: classification 

by similarity to recognised lineages or families; sequence similarity-based classification; and 

classification based on phylogenetic grouping and support. These methods may be used in 

combination or separately. Classification based on similarity to named sequence families can 

be useful in species where large amounts of research have been done, or where the family 

structures are well defined, such as the HERV families in humans and primates, or the 

endogenous avian retrovirus (EAV) and Rous-associated virus (RAV) strains in the domestic 

chicken. However, this becomes more difficult in newly characterised taxa where insertions 

may show only passing similarity to currently classified ERVs (Barrio et al., 2011, Garcia-

Etxebarria and Jugo, 2010). In these cases de novo delineation methods may prove more 

effective. 

One of the major drawbacks to sequence-based classification is the assignation of an arbitrary 

similarity cut-off value for the definition of ERV sequence families. Reviews that have dealt 

with this area (Blomberg et al., 2009, Wicker et al., 2007), suggest relatively conservative 

values, such as 80% amino acid sequence similarity across coding regions, with sub-lineages 

within the major groups designated arbitrarily, on a case by case basis. Classification by 
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phylogenetic clustering can also pose similar problems of support values and the definition of 

sub-lineages (Blomberg et al., 2009) as these analyses are dependent on the dataset and 

methodology used to create the alignment (Chapter 2), and then the quality of the final 

alignment.  

The designation of newly defined families to the major ERV classes is an additional 

challenge, particularly as new species, and therefore new ERV lineages, are characterised. 

Traditionally ERV sequences have been classified by similarity to exogenous retroviruses, 

and thus assigned to one of the seven retroviral genera. However, the identification of 

apparent intermediates that share sequence characteristics with two or more genera suggests 

that this may not be prudent (Jern et al., 2005). Likewise, classification by genomic structure 

can be problematic, as demonstrated by the Epsilonretrovirus-like insertions that were 

recovered in Chapter 4. While these insertions clustered phylogenetically within the 

Epsilonretrovirus lineage along with the exogenous WDSV, analysis of the complete proviral 

genome suggested that these elements did not contain the additional ORFs that have been 

deemed characteristic of this genus (Holzschu et al., 1995, LaPierre et al., 1999, Vogt, 1997). 

 

7.1.2:  ERV evolution in the genome 

The replication and subsequent divergence of ERV lineages within a host genome is driven 

by a number of factors and mechanisms, including mode of replication, selective pressures, 

and consequent effects on genomic function. As outlined in Chapter 2, there are three major 

routes for replication within a host genome: reinfection, retrotransposition, and 

complementation. Reinfection requires an intact provirus with functional coding domains and 

regulatory regions (Bannert and Kurth, 2006, Belshaw et al., 2004, Katzourakis et al., 2005). 

Retrotransposition requires that only the regulatory domains, gag, pro and pol regions are 

functional, as these are important to facilitate transcription and re-integration into the genome 

without the need for viral budding (Bannert and Kurth, 2006, Katzourakis et al., 2005). 

Complementation does not require that the retroviral domains are functional but is dependent 

on transcription and co-packaging by a complementary helper virus (Gifford and Tristem, 

2003, Katzourakis et al., 2005).  
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ERV expansions within the genome tend to follow one of three patterns or models. The 

master gene model involves replication from a single, replication competent integration, and 

is reflected in phylogenetic reconstruction by �star-like� trees where all retroelement 

sequences share a common node (Clough et al., 1996). On the other end of the spectrum is 

the �transposon� model that assumes all elements are capable of replication and will be 

producing new insertions (Deininger et al., 1992). The alternative �intermediate� or �random 

template� model posits that a number of insertions are capable of replication at any given 

time and have evolved and replicated in distinguishable bursts (Clough et al., 1996, Cordaux 

et al., 2004). Phylogenetic reconstruction of these latter two models are characterised by a 

much more random tree structure with multiple clades representing replication events evident 

across the entire phylogeny (Cordaux et al., 2004). 

The data generated in Chapters 2, 3 and 4 have suggested that crocodilian ERVs may be 

capable of replication within the genome, as intact ORFs have been found among those 

retroelements. However, these experiments were limited to hypotheses drawn from fragments 

of the pro-pol domains (Chapters 2 and 3) and consensus sequences from a small number of 

elements (Chapter 4). Subsequent recovery of complete proviral insertions from the 

crocodilian genome sequences will provide the data required for more informed inferences 

about the replicative potential of these ERVs and the mechanisms by which this occurs in 

these species. 

This study aims to establish the distribution and processes driving ERV evolution in 

crocodilians using resources derived from the three sequenced genomes. For this, the ERV 

lineages must first be grouped into likely families, and assigned to the various ERV classes. 

The distribution and sequence characteristics of each family will be described based on 

relatively intact insertions. Following this, ERV families showing unusually high levels of 

proliferation within crocodilians will be examined to determine the mechanisms by which 

they have become established within the genome. Similarity of the surrounding genomic 

regions was also estimated to determine whether regional duplications were also playing a 

role in ERV replication. 
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7.2:  Methodology 

7.2.1:  Definition of ERV families 

ERV families were defined based on the predicted amino acid sequences of the pol domains 

obtained in Chapter 6 from searching the A. mississippiensis, C. porosus, and G. gangeticus 

genomes using RetroTector (Sperber et al., 2007). Due to the large number of insertions from 

all three genomes, only the sequences deemed to be �complete� ERVs were used. These 

sequences were those where both LTRs and all three retroviral coding domains could be 

predicted by RetroTector. Sequences with more than five consecutive ambiguous amino acid 

residues were also excluded to ensure that fragmented insertions and potential assembly 

artefacts were not incorporated into the final dataset. While these criteria may bias analyses 

to insertions that are better preserved or more recently integrated, it also reduces the amount 

of sequence divergence and evolutionary �noise� that may be introduced by the inclusion of 

highly degraded sequences.  

BLASTX (Altschul et al., 1997) was used to classify the predicted pol puteins into the major 

ERV classes based on similarity to pro-pol and pol fragments recovered from previous 

chapters and published papers (Herniou et al., 1998, Jaratlerdsiri et al., 2009, Martin et al., 

1999, Martin et al., 2002). Sequences were then assigned to preliminary groupings based on 

Bit scores and hit coverage. Sequences that showed no similarity to known crocodilian ERV 

fragments where then compared to other published sequences in GenBank and RepBase using 

the NCBI BLAST suite (Johnson et al., 2008) and Censor (Kohany et al., 2006). Sequences 

within each of the major classes were then aligned in MAFFT (Katoh et al., 2005) using the 

E-INS-i algorithm as described previously. 

To determine the likely lineages within these major classes, phylogenetic trees were then 

created in CLUSTALW (Thompson et al., 1994) using Neighbour Joining, uncorrected 

sequence distances (equivalent to the p-distance calculations used in previous chapters), and 

1000 bootstrap replicates. Preliminary lineages were the defined based on clades with more 

than 70% bootstrap support. The sequences from each of these lineages were then re-aligned 

and refined based on sequence similarity and conservation within the pol domain.  

To confirm the final classification of each of these lineages, representative sequences were 

then re-aligned with the pol domain of other published ERVs from other species also 
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recovered and classified using RetroTector (Jern et al., 2005, Sperber et al., 2007), and 

clustered based on Neighbour Joining phylogenies as described above. The final alignment 

comprised 66 sequences from the crocodilian ERV families and 60 published sequences 

(Appendix I, Table S2.1). Representative sequences were those most similar to the consensus 

sequence for each family. To create consensus sequences, the nucleotide sequences of ERV 

insertions for each family were first aligned using MUSCLE (Edgar, 2004) before consensus 

sequences were generated in BioEdit (Hall, 1999). Where two or more sequences were 

equally similar to the consensus, or there were only two sequences present in the lineage, the 

sequence with the least number of stop codons and ambiguous residues in the predicted 

putein was chosen as this is more likely to represent the founding insertion. 

The initial classification of ERV families from relatively intact sequences introduces a bias 

toward better preserved and more recent insertions. To minimise the effect of this bias in 

defining the distribution of these lineages and provide a more general overview of the ERV 

distribution among the various families, BLASTN (Altschul et al., 1990, Zhang et al., 2000) 

was then used to expand the defined lineages to include less intact ERV sequences. To 

minimise the chance of spurious matches to classified sequences, queries were restricted to 

insertions with both LTRs present. Classified insertions were used as the search database and 

output was restricted to the sequence providing the best overall alignment with a minimum 

length of 400 bp to reduce the presence of short, spurious hits.  

 

7.2.2:  Placement of previously described crocodilian ERVs within the ERV 

phylogeny 

The associations of previously described crocodilian ERVs with the insertions recovered 

from the genome were determined using BLASTN (Altschul et al., 1990, Zhang et al., 2000). 

Searches with the pro-pol fragments described in Chapters 2 and 3 were conducted against 

the complete proviral sequences of the insertions assigned to each lineage due to the nature of 

the primer sequences. Similarly, the lineage containing the KIT-ligand-like ORF was 

identified using the ORF sequence as determined in Chapter 4. To confirm that this 

acquisition was a lineage specific event rather than an insertion specific occurrence, this 

search was extended to include the predicted crocodilian KIT-ligand transcripts from the 

genome annotations using TBLASTX (Altschul et al., 1997). 
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7.2.3:  Investigation of ERV expansions 

Most ERV families will undergo low levels of replication within the genome and there is 

little to be gained from assessing selective pressures and mode of replication for all of these 

as they are less likely to have a significant impact on genomic function. However, a number 

of ERV families appeared to have undergone a greater degree of replication within the 

crocodile genomes. These were investigated further to determine the likely mechanism of 

replication and the evolutionary pressures acting on these insertions.  

To clarify the likely evolutionary relationships between the insertions of each family, and 

infer the likely model of evolution, phylogenetic trees were created for the coding sequences 

of each ERV family.  Nucleotide sequences of the internal domains of the complete ERV 

insertions for each family were aligned using the E-INS-i algorithm in MAFFT as described 

previously. Phylogenies were created using PhyML (Guindon et al., 2010) and the best suited 

nucleotide evolution model was determined by ModelGenerator (Keane et al., 2006). The 

likely model of evolution was inferred based on the overall topology of the resulting 

phylogenies.  

 

7.3:  Results 

7.3.1:  Classification of crocodilian ERVs 

A total of 591 �complete� ERVs were recovered from the crocodilian genomes. After the 

removal of sequences that did not meet the criteria listed above, 320 sequences from the three 

genomes were used for the definition of ERV families. Of these 317 could be classified as 

ERV1, ERV3, ERV4 or Gypsy-like insertions. These sequences could be grouped into 66 

families ranging from 1 to 64 sequences per family (Figure 7.1 and Figure 7.2). Families 

CrocERV1, CrocERV14 and CrocERV40 had much higher numbers of classified insertions 

and were investigated further as described in Section 7.3.2. The remaining three sequences 

shared very little similarity to retroviral sequences and were excluded from further analyses. 

Twenty one ERV1 families, 6 ERV3, 19 ERV4 and 5 Gypsy-like families were defined, as 

well as 15 families that appeared to be intermediates between the major ERV classes and 

could not definitively be placed (Table 7.1).  
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The distribution of each ERV family was predicted based on the species that the ERV 

sequences were recovered from. The majority of families were lineage specific, with 21, 14, 

and 11 families found only in A. mississippiensis, C. porosus, and G. gangeticus, 

respectively. A further 15 were found in both C. porosus and G. gangeticus (classed as 

Longirostres in Table 7.1 as defined by Harshman et al. (2003)), and two families were found 

in all three species. An additional two families were identified in A. mississippiensis and 

C. porosus only; and one family was found only in A. mississippiensis and G. gangeticus. 

Given that Alligatoridae is basal to the other two crocodilian families, it is unusual to observe 

lineages showing this distribution, although it is possible that other less intact insertions are 

present in the third species. 

BLAST searches against less intact sequences suggested that most families had maintained 

relatively low levels of replication with small to moderate numbers of insertions detected 

(Table 7.1). However, five families (CrocERV1, 13, 14, 27, and 40), including three with 

large numbers of complete ERVs, appeared to have undergone much higher levels of 

replication with 50 or more related insertions detected. Comparisons of the distribution of 

these less complete ERVs across the three species suggested that many of the families 

identified may in fact be older, showing wider distributions than initially suggested by 

analysis of the complete ERV sequences. 
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Figure 7.1: Distribution of the �complete� ERV sequences from each species within each of the defined ERV families. 
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Figure 7.2: Clustering and distribution of sequences within the ERV families as defined 

using the complete ERV sequences. Specific families of interest are indicated by bold 

branches. An unrooted Neighbour Joining tree was created from amino acid alignments of the 

pol domain. Sequence IDs have been removed for clarity and only the family names are 

shown. Symbols indicate distribution of sequences across the three species: �Crocodylia� 

refers to those found in all three crocodilian families, �Longirostres� to those found in 

Crocodylidae and Gavialidae, and �Family specific� to those found in one of the three 

crocodilian families.  Solid symbols indicate complete ERV sequences and unfilled symbols 

represent the less intact sequences. Scale bar on the left indicates branch length and the 

asterisks within the tree indicate bootstrap support values greater than 70%.  

  



 

155 
 

Table 7.1: Summary of ERV families and their predicted distribution among crocodilians. 

The distribution Crocodylia refers to families found in all three species whereas Longirostres 

refers to those only found in both C. porosus and G. gangeticus. Alligatoridae, Crocodylidae, 

and Gavialidae refer to the predicted distributions of families found only in a single species. 

Family ERV Class 
Complete ERVs 2 LTRs 

Distribution No. seqs Distribution No. seqs 

CrocERV1 ERV1 Longirostres 64 Crocodylia 279 

CrocERV2 ERV1 Longirostres 3 Crocodylia 24 

CrocERV3 ERV1 Alligatoridae 5 Alligatoridae 5 

CrocERV4 ERV1 Alligatoridae 5 Alligatoridae 12 

CrocERV5 ERV1 Longirostres 3 Longirostres 9 

CrocERV6 ERV1 Crocodylia a 7 Crocodylia a 29 

CrocERV7 ERV1 Longirostres 4 Longirostres 10 

CrocERV8 ERV1 Crocodylidae 6 Longirostres 19 

CrocERV9 ERV1 Longirostres 8 Longirostres 31 

CrocERV10 ERV1 Alligatoridae 4 Alligatoridae 11 

CrocERV11 ERV1 Alligatoridae 2 Alligatoridae 4 

CrocERV12 ERV1 Crocodylia a 9 Crocodylia 32 

CrocERV13 ERV1 Alligatoridae 8 Crocodylia 56 

CrocERV14 ERV1 Crocodylia 22 Crocodylia 135 

CrocERV15 ERV1 Alligatoridae 1 Alligatoridae 8 

CrocERV16 ERV1 Alligatoridae 1 Alligatoridae 6 

CrocERV17 Unknown Alligatoridae 1 Crocodylia 46 

CrocERV18 ERV1 Alligatoridae 1 Crocodylia a 11 

CrocERV19 Unknown Alligatoridae 1 Crocodylia 3 

CrocERV20 ERV1 Alligatoridae 1 Alligatoridae 8 

CrocERV21 Unknown Crocodylidae 1 Crocodylia 23 

CrocERV22 Unknown Crocodylidae 1 Crocodylidae 6 

CrocERV23 ERV1 Crocodylidae 1 Crocodylidae 4 

CrocERV24 ERV1 Crocodylidae 1 Crocodylidae 1 

CrocERV25 ERV1 Gavialidae 1 Gavialidae 1 

CrocERV26 ERV3 Gavialidae 4 Crocodylia 44 

CrocERV27 ERV3 Crocodylia 6 Crocodylia 95 

CrocERV28 Unknown Crocodylidae 1 Crocodylia 10 

CrocERV29 ERV4 Longirostres 11 Longirostres 19 

CrocERV30 ERV4 Longirostres 9 Longirostres 24 

CrocERV31 ERV4 Alligatoridae 7 Alligatoridae 18 

CrocERV32 ERV4 Crocodylidae 3 Crocodylidae 7 

CrocERV33 ERV4 Longirostres 8 Longirostres 20 

CrocERV34 ERV4 Longirostres 2 Longirostres 5 

CrocERV35 ERV4 Crocodylidae 3 Crocodylidae 3 

CrocERV36 ERV4 Longirostres 4 Crocodylia 21 
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Family ERV Class 
Complete ERVs 2 LTRs 

Distribution No. seqs Distribution No. seqs 

CrocERV37 ERV4 Longirostres 8 Longirostres 21 

CrocERV38 ERV4 Longirostres 4 Longirostres 6 

CrocERV39 ERV4 Gavialidae 3 Longirostres 4 

CrocERV40 ERV4 Longirostres 31 Crocodylia 81 

CrocERV41 ERV4 Alligatoridae 8 Alligatoridae 16 

CrocERV42 ERV4 Alligatoridae 6 Alligatoridae 38 

CrocERV43 ERV4 Alligatoridae 2 Alligatoridae 6 

CrocERV44 ERV4 Alligatoridae 6 Alligatoridae 24 

CrocERV45 ERV4 Gavialidae 4 Longirostres 8 

CrocERV46 ERV4 Alligatoridae 1 Alligatoridae 6 

CrocERV47 ERV4 Crocodylidae 1 Crocodylidae 2 

CrocERV48 Unknown Gavialidae 1 Crocodylia 6 

CrocERV49 ERV3 Alligatoridae 2 Crocodylia 12 

CrocERV50 ERV3 Longirostres 2 Longirostres 5 

CrocERV51 Unknown Alligatoridae 1 Crocodylia a 4 

CrocERV52 ERV3 Alligatoridae 1 Crocodylia a 3 

CrocERV53 Unknown Crocodylidae 1 Crocodylidae 2 

CrocERV54 Unknown Crocodylidae 1 Crocodylia a 19 

CrocERV55 Unknown Crocodylidae 1 Crocodylia 4 

CrocERV56 Unknown Crocodylidae 1 Longirostres 6 

CrocERV57 ERV3 Gavialidae 1 Crocodylia 15 

CrocERV58 Unknown Gavialidae 1 Crocodylia 8 

CrocERV59 Unknown Gavialidae 1 Longirostres 8 

CrocERV60 Unknown Gavialidae 1 Longirostres 3 

CrocERV61 Gypsy-like Crocodylia a 3 Crocodylia 33 

CrocERV62 Gypsy-like Longirostres 2 Crocodylia 7 

CrocERV63 Gypsy-like Alligatoridae 1 Alligatoridae 1 

CrocERV64 Gypsy-like Crocodylidae 1 Crocodylia 15 

CrocERV65 Gypsy-like Gavialidae 1 Crocodylia 6 

CrocERV66 Unknown Gavialidae 1 Longirostres 3 
a Insertions were detected from Alligatoridae and either Crocodylidae or Gavialidae, 

suggesting either absence of detected insertions meeting the criteria within the third species, 

or that ERVs insertions were the result of multiple infections 
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7.3.2:  Comparisons with crocodilian ERVs from previous studies 

The association of the defined ERV families with previously described ERV sequences 

produced varying results. The Gammaretrovirus-like ERV1 lineage identified by Jaratlerdsiri 

et al. (2009) and in Chapter 2 corresponded to family CrocERV6, which appears to be present 

in Alligatoridae and Crocodylidae, with a possible distribution across all three crocodilian 

species. The Epsilonretrovirus-like lineage represented by haplotype 58 from Chapter 2 

corresponds to CrocERV8 and appears to be specific to C. porosus. Unexpectedly, the ERV3 

lineage identified in C. johnstoni in Chapter 3 showed similarity to the two major ERV3 

families, CrocERV26 and CrocERV27. Given the similarity between the pol domains of 

these two families, it is possible that they are closely related, although the more variable 

domains suggest that these are in fact separate lineages. In general, the ERV4 pro-pol 

fragments varied more with fragments distributed among most of the ERV4 families. In 

particular the complete ERV sequences recovered from C. niloticus by Martin et al. (2002) 

corresponded with family CrocERV31. 

The KIT-ligand containing ERV4 insertions described in Chapter 4 were found within family 

CrocERV40. Regions sharing similarity to the KIT-ligand transcript were recovered from all 

complete sequences from this family. A small number of these insertions appear to have 

maintained relatively intact ORFs, including one sequence from which the intact ORF was 

recovered (Figure 7.3). Subsequent alignment of this sequence with the consensus sequence 

from Chapter 4 suggests that this insertion is very likely to be the same one that was 

sequenced from the BAC clones (99.2% similarity across the entire sequence, 100% 

similarity across internal domains), confirming the hypothesis that the ERV4 lineage from the 

BAC clones was derived from a single insertion that was well represented in the shared 

paired-end libraries. 
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7.3.3:  Detailed investigation of large ERV families 

Three families (CrocERV1, CrocERV14 and CrocERV40) appear to have undergone a 

greater degree of replication within the crocodilian genomes with over 20 relatively complete 

insertions included and over 80 less intact insertions compared to the other families. All 

putein sequences contained stop codons, with a number of domains from all three families 

sharing stop codons within at least some of the sequences. No sequences from the coding 

domains appeared to encode an intact ORF. 

Phylogenies for the two ERV1 families were characterised by short internal branches and 

longer terminal branches, typical of a rapid proliferation followed by divergence of the 

insertions by mutation (Figure 7.3a and b). On the other hand, the ERV4 families displayed 

longer branch lengths overall, suggesting a much slower rate of replication and evolution 

(Figure 7.3c). All families displayed multiple clades of sequences within the phylogenies, 

indicating bursts of replication followed by periods of differentiation. None of the ERV 

sequences examined appeared to have originated from regional duplications of the 

crocodilian genomes. 
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Figure 7.3: Three ERV families showing multiple bursts of radiation resulting in a large 

number of insertions within the crocodilian genomes. Phylogenetic trees were created from 

the internal domains of the three ERV families of interest. The ERV insertion encoding a 

complete KIT-ligand ORF is highlighted by a box. Numbers within the trees indicate 

statistical support for the branches and the scale bars indicate branch length. 
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7.3.4:  Interspecies comparisons 

Phylogenetic comparisons with published ERV pol sequences (Jern et al., 2005) largely 

supported previous observations that the ERV families defined in this chapter are primarily 

made up of families from the ERV4, ERV3, ERV1 and Gypsy-like ERV classes, with a 

number of intermediate lineages (Figure 7.4). While phylogenetic analyses occasionally 

grouped these intermediary sequences within one of the major clusters, statistical support for 

these groupings were very low, and placements were inconsistent. Interestingly, only three 

ERV families were closely associated with mammalian Gammaretrovirus-like ERVs, while 

the remaining ERV1 families appeared to be more divergent Epsilonretrovirus-like lineages. 
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Figure 7.4: Classification and likely relationships between the ERV families and ERVs from 

other species based on representative sequences and a selection of previously published ERV 

sequences (Jern et al., 2005). An unrooted Neighbour Joining tree was created from amino 

acid alignments of the pol domain. ERV families defined in this chapter are indicated by a 

black circle. The scale bar indicates relative branch lengths and the numbers within the tree 

indicate bootstrap support greater than 70%.  
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7.4:  Discussion 

7.4.1:  Crocodilian ERVs may represent ancestral retroviral states 

Crocodilian ERV families belong to a limited subset of known ERV classes. Excluding 

intermediates and unassigned families, the crocodilian ERV sequences were distributed 

among ERV1, ERV3, and ERV4, as well as a number of Gypsy-like lineages. There were no 

sequences or families that showed similarity to ERV2. Unsurprisingly, ERV1 and ERV4 

were the predominant lineages in the genomes, with 21 and 19 families respectively. This is 

in agreement with findings by Jaratlerdsiri et al. (2009) who observed a widespread 

distribution of insertions related to these lineages across a number of crocodilian species. It is 

also supported by the surveys within species (Chapters 2 and 3) where only single Gypsy-like 

and ERV3 insertions were isolated in C. porosus and C. johnstoni compared to numerous 

ERV1 and ERV4 insertions.  

The crocodilian ERV families displayed very weak associations with ERVs from other taxa. 

Notably, the crocodilian ERVs tended to cluster separately from mammalian ERVs. The 

current findings are in accordance with previous studies where it was suggested that 

phylogenetic and evolutionary distance between potential host species may affect the 

potential distribution of ERV and retroviral linages (Herniou et al., 1998, Martin et al., 1999). 

As discussed in Chapter 6, genome biology and the genomic environment may also play a 

role in determining the ERV complement of a genome. These limitations suggest that the 

distinction between crocodilian and mammalian ERVs is the result of co-evolution between 

retroviruses and their host lineages. 

Many of the crocodilian ERV families also appeared to cluster separately from exogenous 

retroviral genera suggesting that these may represent ancient ERV insertions that are 

intermediates or novel lineages between the currently recognised taxa. These findings support 

the theory that the currently recognised exogenous retroviral genera represent a process of 

gradual evolution within the three broader branches of the retroviral phylogeny rather than 

seven separate evolutionary lineages (Herniou et al., 1998, Jern et al., 2005). Notably, further 

investigation of the Epsilonretrovirus-like ERV families did not recover any additional 

ORFs, nor regions sharing similarity to accessory genes from either the Walleye retroviruses 

(WDSV and Walleye epidermal hyperplasia virus; WEHV) (Holzschu et al., 1995, LaPierre 

et al., 1999) or Xen1 (Kambol et al., 2003). Therefore it is possible that these crocodilian 
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ERV families represent an infection by an early predecessor of the modern 

Epsilonretroviruses. 

Retroviruses, ERVs, and related LTR retrotransposons share some common functional 

domains, the most notable of these being the pol domain. It has been proposed that 

retroviruses and ERVs evolved from LTR transposons via the acquisition of an env domain, 

facilitating extracellular movement and production of infectious particles (Xiong and 

Eickbush, 1990). It has been proposed that Gypsy transposons, such as the Tf1/sushi group 

may potentially represent the predecessor of retroviruses and their ERV counterparts (Butler 

et al., 2001). These transposons do not appear to have an exogenous phase in vertebrates, 

although many families encode on ORF similar to the retroviral env domain (Boeke and 

Stoye, 1997). Further investigations to identify similar lineages within other vertebrates, 

particularly the basal taxa such as fish, amphibians, and reptiles, may shed light on the 

distribution of these intermediate elements, and the evolution of retroviruses. 

 

7.4.2:  Crocodilian genomes are host to a larger than expected number of ERV 

families 

The analyses conducted in this chapter have revealed the presence of a large number of ERV 

families in all three crocodilian genomes. Based on classification of relatively intact ERV 

sequences, the A. mississippiensis genome contains 26 ERV families, C. porosus contains 33, 

and G. gangeticus contains 29 families. Of these, two families are common to all three 

genomes, and 15 are shared between C. porosus and G. gangeticus. While the number of 

putative ERV families among non-avian reptilian taxa has not been calculated, these values 

are significantly higher than those reported in RepBase for Danio rerio (zebrafish; 18), 

Xenopus tropicalis (western clawed frog; 9) (Jurka et al., 2005), and Gallus gallus (chicken; 

17) (Huda et al., 2008). Contrary to this, these values are comparable to some mammalian 

taxa (24 in Bos taurus; European cattle (Garcia-Etxebarria and Jugo, 2010), 20 in Mus 

musculus; mouse (McCarthy and McDonald, 2004), and 31 in humans (Katzourakis et al., 

2005)), although much lower than other mammals, such as 42 in Pan troglodytes 

(chimpanzee) (Polavarapu et al., 2006). These findings suggest that crocodilian genomes, and 

possibly those of many other reptilian species, may contain a more similar number of ERV 

lineages to mammalian taxa than avian, amphibian or piscine species. 
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One of the major challenges in defining and characterising crocodilian ERV families is the 

divergence and degradation of ancestral ERV sequences. To combat this, the ERV families 

described here have been defined from relatively complete ERV sequences. This conservative 

approach minimises the likelihood of incorporating false positives into subsequent analyses at 

the risk of underestimating the true number of ERV families present. When these families 

were expanded to include more degenerate copies of ERV insertions, approximately one third 

of the ERV insertions incorporated in this manner were not able to be placed within one of 

the defined families, suggesting that if these were to be classified in a similar manner, 

additional families could be defined. However, it is unlikely that these additional families 

would provide further insights into the mechanisms or impacts of ERVs on the genomes of 

these species, as they are more likely to be highly degraded and therefore non-functional. 

 

7.4.3:  Distribution of ERV families among crocodilians 

A large number of ERV families were recovered from all three genomes although insertions 

showed varying degrees of degradation. Very few of these families were present as relatively 

complete insertions suggesting that the crocodilian genomes have been subject to a large 

number of ancestral infection events followed by subsequent degradation of silenced ERV 

copies. Surprisingly, a large number of ERV families from ERV1 and ERV4 were found to 

be species specific, even when the search was expanded to include less intact ERVs. This 

implies that the exogenous retroviruses that gave rise to these endogenous families were 

active relatively recently in crocodilian evolution. This is particularly significant for the 

ERV4 lineage as no exogenous counterpart has been described for these proviruses. As such, 

it would be interesting to obtain an estimated infection date for these elements and investigate 

their distribution among crocodilians and other vertebrate taxa. 

The species specificity identified may be due, in part, to the high similarity of the ERV4 pro-

pol fragments (Chapters 2 and 3) to the same region across many of the ERV4 families. 

Based on current knowledge of these families, this similarity suggests that these families may 

be the result of a single ancestral infection event followed by host family specific replication 

and evolution. If this is the case, this replication is unusual for ancient ERVs, as it would be 

expected that insertions with a detrimental effect on the host would be quickly silenced or 

removed from the population (Barr et al., 2005, Gifford and Tristem, 2003). That these 
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insertions have maintained some capacity for replication suggests a low level of 

pathogenicity and virulence (Blikstad et al., 2008). This in turn may also support the 

suggestion that these elements represent a less pathogenic pre-cursor to modern retroviruses.  

Another surprise was the recovery of ERV1 families from A. mississippiensis. Given the 

widespread distribution of ERV1 lineages among vertebrate taxa, it is plausible that some 

ERV1 families would be isolated from Alligatoridae. However, the observation of 

A. mississippiensis lineages from family CrocERV6 was unexpected, as this lineage had 

previously been thought to be specific to Crocodylidae and Gavialidae (Chapter 2) 

(Jaratlerdsiri et al., 2009). The alignment and subsequent phylogeny of sequences within this 

lineage show that A. mississippiensis sequences appear to form a separate sublineage to those 

from C. porosus,  suggesting either the presence of species or host family specific 

sublineages within this ERV family, or concurrent infection by closely related strains of the 

same exogenous retrovirus. Subsequent comparisons within less intact ERVs revealed that 

the C. porosus sublineage is likely to be specific to C. porosus, and may represent the 

lineages previously identified in Crocodylidae, while the A. mississippiensis lineage appears 

to be shared between all three species. 

 

7.4.4:  Mechanisms of ERV replication 

Most of the ERV families defined herein appear to have undergone very low levels of 

replication, with only a few families represented by more than 50 insertions across the three 

genomes, even when less intact sequences were included. A small number of families appear 

to have undergone a greater degree of replication. The reasons behind this disparity is 

unclear, although differences in pathogenicity and virulence of the infecting exogenous 

retroviruses might be a contributing factor (Blikstad et al., 2008). However, many families 

also appear to be remnants of ancient retroviral infections, predating divergence of the major 

crocodilian lineages. Thus, it is also possible that there are more degenerate insertions present 

that were not detected or included due to accumulation of mutations or loss of coding 

domains.  

Three of the families showing greater replication were investigated further and the topology 

of their phylogenies imply that all expanded through multiple bursts of replication followed 
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by periods of differentiation, indicating that ERV replication is likely to follow either the 

transposon or random template models of replication. A comparison of the relative branch 

lengths between families (Figures 7.2 and 7.4) indicates that the ERV4 family (CrocERV40) 

has maintained a more steady rate of replication and divergence than the two ERV1 families, 

as internal branches are much longer relative to the terminal branches (Cordaux et al., 2004, 

Katzourakis et al., 2005). On the other hand, the two ERV1 families display very short 

internal branches across many of the clades, characteristic of rapid replication followed by 

periods of reduced activity (Cordaux et al., 2004, Katzourakis et al., 2005).  

It has been suggested that ERV activity and replication within the host genome corresponds 

to radiation of the host taxa, and therefore, that ERV dynamics may mirror the population 

dynamics of the host (Gherman et al., 2007, Romano et al., 2007). None of the three families 

studied in detail showed evidence for host specific divergence or replication, further 

supporting the concept that these represent ancestral radiation events. Thus it is possible that 

the observed bursts of replication correspond to significant periods of radiation and speciation 

in ancient crocodilians. Given an estimated nucleotide substitution rate for crocodilians, it 

would be possible to date these insertions based on divergence of the LTRs (Garcia-

Etxebarria and Jugo, 2010, Romano et al., 2007), and it would be interesting to examine 

whether these radiation events in the ERV phylogeny correspond with divergence of the 

respective host taxa. 

Despite these bursts of replication, the accumulation of stop codons within the coding 

domains of these ERVs suggests that they are no longer capable of replicating autonomously. 

Autonomous replication either by reinfection or retrotransposition requires that some, if not 

all, of these domains retains some degree of functionality. The large number of shared stop 

codons within the env domain of all three families implies that retrotransposition is the 

primary mechanism of replication, with individual insertions then silenced by accumulation 

of other silencing mutations in other domains. Interestingly, shared stop codons found in 

these other domains indicate that other replication mechanisms have also had an impact on 

some ERV elements. These mechanisms may include complementation by a functional virus 

or duplication of genomic regions (Gifford and Tristem, 2003). As no evidence for regional 

duplications were found, it is more likely that these insertions are the result of replication 

through complementation. 
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Loss of a functional env domain appears to permit a greater level of replication within the 

host genome and has been observed in a number of mammalian ERV families. One leading 

example is the IAP superfamily that has been observed primarily in rodents, as well as 

Lagomorpha (rabbits, hares, and pikas) and some primates (Magiorkinis et al., 2012). These 

Class II ERVs have a highly degraded env domain (Mietz et al., 1987) necessitating 

replication by retrotranposition rather than reinfection, and account for up to 75% of ERV 

loci in rodent genomes (Magiorkinis et al., 2012). Other notable examples include the 

HERV-L family and related ERV-L elements (Benit et al., 1999, Magiorkinis et al., 2012), 

and the HERV-K, -H, and W families which have replicated through a combination of 

retrotransposition and complementation but display a low level of reinfection (Belshaw et al., 

2005b). 

It is unclear whether the loss of the env domain is a consequence or a result of a transition to 

intracellular replication methods such as retrotransposition and complementation. 

Furthermore, it is not clear why the loss of a functional env promotes greater proliferation 

within the host genome, although a switch to retrotranposition may facilitate replication 

within germline cells while replication through reinfection may lead to greater levels of 

somatic cell integration. Thus reinfection may result in an overall reduction in host fitness 

through the greater chance of insertional mutagenesis (Magiorkinis et al., 2012). 

Alternatively loss of env and transition to intracellular replication may allow the virus to 

evade innate host anti-viral defences (Magiorkinis et al., 2012), and thus these elements are 

more likely to be observed within the genome.  

It was also interesting to note that one of these crocodilian ERV families appears to have 

captured a host KIT-ligand mRNA (see also Chapter 4, Section 4.4.5). While selection on this 

additional ORF was not assessed, this lineage appears to have captured the KIT-ligand 

mRNA relatively early in its integration cycle, with remnants of this ORF present in all 

complete insertions assigned to this family. The recovery of an intact ORF in C. porosus 

suggests that there may be some functional significance associated with it in this species. If 

this is the case, it would be expected that this insertion or the captured mRNA would be 

expressed in at least some tissues or at some stage in the development of C. porosus. 

The KIT-ligands play an important role in a variety of functions ranging from gametogenesis, 

melanogensis and haematopoesis (Huang et al., 1992). Acquisition of a second, homologous 
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sequence has been described in D. rerio (Hultman et al., 2007) where these genes have 

co-evolved to share complementary functions and display tissue specific expression patterns. 

A similar duplication has been observed in G. gangeticus (ICGWG, unpublished data) 

although the functional significance has not yet been established. 

At this point in time, there is limited knowledge of the role and effects of KIT-ligand and 

these potential duplications in crocodilians. Due to the limited annotation of the crocodilian 

genomes, it is still unclear whether the ERV insertion containing the complete ORF is in a 

region of the genome likely to promote transcription. As further genomic resources become 

available for crocodilians, it will be interesting to establish if and where this ORF is being 

expressed, and what potential functional role this may have in C. porosus.  

 

7.5:  Conclusions 

Overall, the data generated in this chapter indicate that crocodilian ERVs stem from infection 

events by retroviruses from a wide variety of lineages. These data provide a framework to 

facilitate further studies into crocodilian ERV diversification as well as other basal vertebrate 

species. Distributions of the ERV families across the sequenced crocodilian taxa suggest that 

most of these are ancient integration events predating the divergence of the crocodilian 

families. The recovery of apparent intermediates between the major ERV classes and 

recognised retroviral genera lends support for a gradual evolution of the exogenous retroviral 

genera recognised today, further highlighting the need for detailed studies into the ERVs of 

the basal vertebrate families.  

There is evidence that a small number of these families have undergone significant levels of 

replication within crocodilian genomes at some stage in their evolution. Using the resources 

generated here, it will be possible to extend ERV studies in crocodilians to assess the 

interactions of these ERVs with the crocodilian genomes, and the roles they may play in the 

biology of these species. Further investigation into the demographics of these ERVs may 

provide insights into the population demographics of ancient crocodilians and corroborate 

molecular and fossil evidence of crocodilian radiation. In particular, the capture of a host 

mRNA by an ERV insertion followed by the subsequent replication of this family merits 
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further investigation, and highlights the potential impacts and significance of ERV replication 

and maintenance in crocodilians.  
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Chapter 8: General Discussion 

8.1:  Crocodilian ERVs provide a unique perspective on ERV evolution 

One of the main recurring findings from these studies has been the diversity of ERVs present 

in crocodilians. From this, it is evident that crocodilians and other non-mammalian vertebrate 

genomes may be host to a large repertoire of previously uncharacterised ERV diversity. Early 

analyses of crocodilian genomes (Chapters 2, 3, and 4) suggested that there were at least five 

distinct groups of ERVs present in crocodilians, belonging to three major ERV classes: 

ERV1, ERV3, and the newly recognised ERV4, as well as a number of intermediary families 

that share characteristics of two or more ERV classes. The availability of the crocodilian 

genome sequences and subsequent analyses of these genomes (Chapters 6 and 7) indicate that 

not only are crocodilians host to a wide range of ERVs, but many of these ERVs are well 

preserved copies of ancient insertions.  

Of particular interest is the range of novel ERV families and intermediate lineages recovered 

from crocodilians, especially the discovery of the novel Class ERV4. Sequences from this 

class were previously characterised from C. niloticus where they were recognised as a 

divergent and possibly basal member of the Retroviridae (Martin et al., 2002). Subsequent 

analyses of these ERVs from other crocodilians have shown that remnants of these infections 

are found in all crocodilian species (Chapters 2, 3, and 7) (Jaratlerdsiri et al., 2009). 

However, the presence of shared functional motifs makes it difficult to determine whether 

they are the result of multiple infection events by related viral strains or the result of multiple 

episodes of replication and mutation. Regardless, the diversity and divergence of crocodilian 

ERVs suggests that non mammalian vertebrates provide a largely untapped resource for ERV 

studies and their impact on genome evolution and function. 

These findings highlight the importance of non-mammalian vertebrates for evolutionary 

studies of ancient retroviruses and related retroelements. As remnants of an early strain of 

retrovirus, this class of ERVs is of particular evolutionary significance for studies into the 

origins of retroviruses and their subsequent evolution. Low mutation rates (Eo and DeWoody, 

2010, Hugall et al., 2007, Hughes and Mouchiroud, 2001, Ray et al., 2004) and the slow 

evolution of crocodilian genomes (D. Ray, pers comm.) make these species particularly 

useful for further studies of ancient insertion events as they are well preserved, providing 
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there is no significant decrease in survival fitness for the host. Detailed investigations of these 

insertions may allow for the reconstruction of these ancient ERVs and shed light on the 

possible routes of evolution from LTR retroelements to viral particles with the capacity to 

infect new hosts. 

 

8.1.1:  Interaction between ERVs and crocodilian genomes 

The impact that ERVs and other TEs have had on shaping the crocodilian genomes is still 

largely unknown, as is the impact of the genomic environment on the replication dynamics of 

these elements. The analysis of ERVs within the MHC region of C. porosus (Chapter 4) 

provides some initial insights into ERVs in a region that it known to be rich in repetitive 

sequences, and demonstrates evidence of ERV replication within that region, However, 

generating the ERV integration profile of the rest of the crocodilian genome is also important 

as these sequences have the potential to shape and alter the structure, stability, and 

transcription profile of surrounding genomic regions.  

ERVs and other TEs are a major contributing factor to genome plasticity, through 

recombination, transposition, and gene shuffling (Jern and Coffin, 2008, Lower et al., 1996). 

In particular, recombination between ERVs has been associated with large scale 

chromosomal rearrangements, likely to play a role during speciation (Hughes and Coffin, 

2001). Crocodilian karyotypes display a large amount of variation both in the number of 

chromosomes and the arrangement between chromosomes, although the make-up of these 

blocks of genomic material appear to be highly conserved (King et al., 1986). As the 

annotation and mapping of the crocodilian genomes progress, it will be interesting to 

establish the distribution of ERVs across chromosomes, particularly at these chromosomal 

breakpoints across species. 

The orientation of ERV proviruses relative to genes and coding domains is another 

significant aspect of ERV-host genome co-evolution that should be explored, particularly 

with respect to the better conserved insertions. ERV LTRs in particular contain transcription 

promoters and other regulatory factors that have the potential to affect the expression of 

nearby genes by providing alternative transcription start sites or regulatory domains thereby 

altering the transcription profile of that region (Jern and Coffin, 2008, Rosenberg and 
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Jolicoeur, 1997). Orientation of proviruses relative to the surrounding genomic region can 

also affect the preservation or degradation of the insertion, with  an observable bias in 

selection against sense insertions and better preservation of antisense insertions (Jern and 

Coffin, 2008). 

 

8.1.2:  Potential for ERV activity in the crocodilian genomes 

Studies of the ERV insertions and families suggest that a small proportion of these may be 

capable of replication within crocodilians, either through reinfection, or transposition within 

the genome (Chapters 2, 3, 4, and 7). However, these data have not yet been correlated with 

crocodilian genome coding regions and, as such, the potential for each of these insertions to 

be transcribed is still unknown. As ERV transcription is reliant on host cellular mechanisms, 

the underlying genomic structure of surrounding regions, such as chromatin structure and 

chromosomal location, dictates the likelihood of ERV expression  (Rabson and Graves, 

1997). Thus, as the annotations of the crocodilian genome sequences progress, it will be 

important to map the locations of likely ERV sequences to the genomes to identify 

integration sites and the genetic make-up of the surrounding genome. As tissue specific 

RNAseq data becomes available to complement the genomic sequence data, it will also be 

possible to identify ERV transcription within particular tissues. 

The recovery of a potentially exapted ERV in C. porosus (Chapters 4 and 7) is particularly 

interesting as it appears that the host mRNA transcript was captured at the time of the initial 

ERV integration. One insertion appears to have been maintained in C. porosus and, while the 

ERV appears to have been silenced, the captured ORF is still intact. Identification of 

transcripts from this ORF may shed light on the co-evolution of host and viral genes, and 

determine whether these genes are co-expressed or if tissue specific expression is evident. 
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8.1.3:  Evolution of ERV silencing mechanisms 

Vertebrate genomes have developed a variety of mechanisms for silencing ERVs and other 

autonomous TEs, including gene products that specifically target various components of the 

TE genomes or gene products, and epigenetic controls such as methylation. Some examples 

of these mechanisms in mammals include the tripartite motif containing 5 protein (TRIM5  

which has been shown to restrict HIV-1 infection in primates, the apolipoprotein B mRNA 

editing enzyme, catalytic polypeptide-like 3 (APOBEC3) subfamily (Jern and Coffin, 2008), 

tandem zinc finger genes (Thomas and Schneider, 2011), and microRNAs (Cullen, 2006). 

However, while these genes and their activity against ERVs and related TEs are relatively 

well understood in mammalian genomes, equivalents have not yet been identified in reptiles.  

ERV transcription and activity may also be restricted by transcriptional silencing either 

through methylation of the genomic region where they have integrated, or reliance on 

particular host transcription factors (Rabson and Graves, 1997). Thus, while there is no direct 

evidence to suggest that crocodilian ERVs are actively replicating, the possibility of 

replication competent insertions cannot be excluded. Evidence of recent ERV expansions and 

possible ERV activity (Chapters 2 and 7) suggest that some ERV families have retained some 

ability to replicate if released from transcriptional suppression. Thus, situations resulting in 

the relaxing of these suppression mechanisms, such as stress as a result of environmental 

conditions or disease, may release these ERVs from suppression, resulting in proliferation 

within the individual.  

Given the divergence and diversity of ERVs observed in the crocodilian genomes, further 

research into the evolution of transcriptional control of ERVs and TEs may uncover novel 

mechanisms with significance for understanding both virus-host evolution and the 

development of novel anti-viral measures. Interrogation of the genome for genes encoding 

products with similar function to those described in mammals may shed light on the 

acquisition and evolution of these defence mechanisms in vertebrates. It is also possible that 

non-mammalian vertebrates have acquired or retained a separate set of anti-viral and ERV 

suppression mechanisms that has not yet been identified in mammals. 

 

 



 

174 
 

8.2:  Technical perspectives 

8.2.1:  A defined structure for nomenclature of crocodilian ERVs 

During the course of these studies, the need for an unambiguous, consistent system for 

naming ERVs was identified. Early studies (Chapter 2) (Jaratlerdsiri et al., 2009) used the 

name �CERV� to denote �Crocodilian ERV�. However, deeper searches of ERV literature 

revealed that this acronym had previously been used to denote ERVs isolated from Pan 

troglodytes (chimpanzee) (Hughes et al., 2005, Polavarapu et al., 2006, Shih et al., 1991). In 

an attempt to resolve this and avoid further confusion, �CrocERV� has subsequently been 

used as a general term for crocodilian ERVs. ERV insertions from a particular species are 

identified by a four letter species designation based on the first two letters of the genus and 

species names followed by �ERV�; for example: �CrpoERV� for C. porosus, �CrjoERV� for 

C. johnstoni, �AlmiERV� for A. mississippiensis, and �GagaERV� for G. gangeticus.  

The use of PCR to isolate sequence fragments, and the subsequent need to differentiate 

between these fragments and ERV insertions resulted in a further tier of identification. Under 

this scheme fragments should be identified by providing the gene designation, such as pro-

pol or pol, followed by a unique identification number. The PCR data presented in Chapters 2 

and 3 refer primarily to sequence haplotypes, and so were numbered numerically. For 

complete insertions, as identified in Chapters 4, 6 and 7, unique identifiers based on scaffold 

should be used in lieu of chromosome location as the genome sequences have not yet been 

mapped. 

 

8.2.2:  Relative merits of different techniques for ERV studies 

A wide variety of tools are available for the study of ERV sequences, many of which form 

the basis of the studies presented in the previous chapters. These include PCR, high 

stringency hybridisation, and bioinformatics-based mining of genomic sequence data (see 

also Chapter 1, Section 1.4.3). While the relative merits of different ERV detection software 

have previously been discussed with regards to analysis of whole genome sequencing 

projects (Chapter 5), it is also important to consider the use of various data generation 

techniques for ERV characterisation and the study of ERV diversity.  
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Increasing popularity of whole genome sequencing and improvements in sequencing 

technologies have made genomic analyses a more accessible and attractive option for the 

wide-scale identification and classification of ERVs. This is particularly evident from the 

wide range of bioinformatics tools available for such analyses (Chapters 5 and 6). Such 

mining of information from genomic resources provides a rich source of sequence data for 

the classification and subsequent characterisation of ERVs from vertebrate genomes, and an 

important resource for the discovery of novel ERV diversity (Chapter 7). Additionally, whole 

genome sequences allow for the mapping of ERV sequences to specific locations of the 

genome and analysis in relation to the surrounding genomic environment, thereby facilitating 

studies into ERV-host co-evolution and the interactions between ERVs and their host genome 

(see also Section 8.1.1 above) (Gifford and Tristem, 2003).  

On the other hand, the associated (computational) resource costs of de novo assembly and 

annotation of newly sequenced genomes make it unfeasible for such projects to be carried out 

for the primary purpose of studying ERV diversity in a species. Instead, genome-wide ERV 

studies are better carried out in conjunction with, or as a part of, a larger genome sequencing 

project (Gifford and Tristem, 2003). In the absence of such a project, wide-scale analyses 

may be facilitated by the use of genomic BAC libraries where available, using strategies 

similar to those used in Chapter 4, or the creation of Cot-libraries (Choulet et al., 2010, 

Peterson et al., 2002, Wicker et al., 2006).  

The data generated in Chapter 4 suggest that BAC libraries also represent a useful resource 

for the study of specific ERV families or insertions. While the preparation of these libraries is 

a time consuming process, there are a large number of species where these have already been 

constructed. High stringency hybridisation using appropriate probes can be used to identify 

regions of the genome containing the family of interest, and densitometric analyses of the 

resulting arrays provides a means to approximate the ERV content of these genomes (Chapter 

4) (Magbanua et al., 2011, Shan et al., 2009). Furthermore, targeting of specific insertions in 

this manner, combined with next generation sequencing technologies, facilitates the analysis 

of regions surrounding the insertion of interest without the need for techniques such as primer 

walking or inverse PCR. 

In spite of technological advances and a shift towards genome level studies, PCR surveys still 

offer valuable insights into ERV evolution in situations where the previous technologies 
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would be unsuitable. In the absence of a sequenced genome, Chapters 2 and 3 demonstrate 

that PCR still remains a valuable tool for initial surveys of the ERV complement of a species, 

and that the data generated from such surveys is sufficient for an initial characterisation of the 

ERV present in these taxa (Gifford and Tristem, 2003). Furthermore, studies involving 

diversity of ERV domains across multiple individuals, such as within a population (Chapter 

2) or across species (Herniou et al., 1998, Jaratlerdsiri et al., 2009, Martin et al., 1999, Martin 

et al., 1997, Martin et al., 2002), are best suited to PCR amplification-based methods, such as 

those targeting conserved domains (Chapter 2). Likewise, studies canvassing multiple tissue 

types may be better suited to PCR-based approaches in situations where re-sequencing 

projects are not feasible (Chapter 3).  

PCR can also be used to study insertional polymorphisms across individuals or closely 

related taxa in situations where an ERV is not yet fixed in a population, or it is suspected that 

species specific expansion events have occurred (Belshaw et al., 2005a, Turner et al., 2001). 

Moreover, ERVs that are polymorphic across species may be a useful diagnostic tool for the 

resolution of uncertain phylogenies (Johnson and Coffin, 1999), particularly in the case of 

cryptic species such as the two sublineages of C. niloticus. These approaches usually require 

prior knowledge of ERV sequences and their integration sites, relying on amplification, or 

lack thereof depending on the presence of the insertion of interest. Although it was not 

incorporated into these current studies, the data generated from the crocodilian genomes 

(Chapters 6 and 7) will allow for targeted studies such as these to be carried out, particularly 

to assess the distribution of unusual or potentially significant ERV families across crocodilian 

species. 

 

8.3:  Final comments and future studies 

Crocodilians and other non-mammalian vertebrates are a rich source of novel ERV diversity 

that has been largely untapped, despite the occasional study that has previously identified 

unique and divergent lineages of ERVs and other TEs. These studies include two exogenous 

piscine retroviruses (Holzschu et al., 1995, LaPierre et al., 1999), an amphibian ERV 

(Kambol et al., 2003) and a description of a small number of sequences from the ERV4 class 

of crocodilian ERVs (Martin et al., 2002). The studies presented here represent the first 
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comprehensive survey of ERVs in crocodilians, and include an assessment of ERV diversity 

at the species and population levels, as well as the characterisation of ERVs at the genomic 

scale and across tissues.  

The recovery of novel ERV families, intermediate lineages, and a new Class of ERVs 

highlights the importance of studying non-mammalian vertebrates, and the unique 

evolutionary insights that these taxa can provide. The studies presented suggest the presence 

of recently or currently active ERV lineages in crocodilians that warrant further investigation. 

While no further conclusions can be drawn on the current activity of ERVs based on DNA 

sequence data, the development of transcriptome resources will facilitate detection and 

confirmation of ERV activity, and therefore will be important for further studies into the 

potential replicative ability of these ERVs. 

The data presented provide a significant resource for targeted studies of ERV diversity in 

crocodilians and non-mammalian vertebrates, and the means by which functional analyses of 

ERVs in crocodilian genomes may be carried out. The correlation of ERV locations with 

gene regions and chromosomal breakpoints will be important to unravel the underlying 

interactions between these ERVs and the crocodilian genomes, and the impacts that ERV 

replication has imposed on crocodilian evolution. These correlations and identification of 

ERV transcripts from RNAseq data is essential for furthering investigations into the 

possibility of actively replicating ERVs within crocodilians. The possibility of exapted ERVs 

and ERV mediated gene duplications within crocodilians, and C. porosus in particular, 

should also be investigated further as these may play a key role in crocodilian development 

genome evolution.  
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Table S2.1: GenBank accession numbers and chromosome locations for published sequences 

used in this thesis. 

GenBank ID 
a
 Sequence ID Reference 

AJ225210 RV-Brown trout Herniou et al. (1998) 

AJ225211 RV-Common possum Herniou et al. (1998) 

AJ225212 RV-Edible frog Herniou et al. (1998) 

AJ225213 RV-European frog Herniou et al. (1998) 

AJ225214 RV-Freshwater houting Herniou et al. (1998) 

AJ225215 RV-Gharial Herniou et al. (1998) 

AJ225216 RV-Horse Herniou et al. (1998) 

AJ225217 RV-Iberian frog Herniou et al. (1998) 

AJ225218 RV-Leopard frog Herniou et al. (1998) 

AJ225219 RV-Painted frog Herniou et al. (1998) 

AJ225220 RV-Palmate newtI Herniou et al. (1998) 

AJ225221 RV-Palmate newtII Herniou et al. (1998) 

AJ225222 RV-Pit viper Herniou et al. (1998) 

AJ225223 RV-Pufferfish Herniou et al. (1998) 

AJ225224 RV-Rhinatremid caecilianI Herniou et al. (1998) 

AJ225225 RV-Rhinatremid caecilianII Herniou et al. (1998) 

AJ225226 RV-Rocket frog Herniou et al. (1998) 

AJ225227 RV-Slider turtleI Herniou et al. (1998) 

AJ225228 RV-Slider turtleII Herniou et al. (1998) 

AJ225229 RV-Stickleback Herniou et al. (1998) 

AJ225230 RV-Stripe faced dunnartI Herniou et al. (1998) 

AJ225231 RV-Stripe faced dunnartII Herniou et al. (1998) 

AJ225232 RV-Tiger salamanderI Herniou et al. (1998) 

AJ225233 RV-Tiger salamanderII Herniou et al. (1998) 

AJ225234 RV-Tiger salamanderIII Herniou et al. (1998) 

AJ225235 RV-Tinamou Herniou et al. (1998) 

AJ225236 RV-Tuatara Herniou et al. (1998) 

AJ225207 RV-African clawed toad Jaratlerdsiri et al. (2009) 

AJ225208 RV-Bower bird Jaratlerdsiri et al. (2009) 

AJ225209 RV-Brook trout Jaratlerdsiri et al. (2009) 

FJ155500 RV-Cpa-II Jaratlerdsiri et al. (2009) 

FJ155501 RV-Cla-I Jaratlerdsiri et al. (2009) 

FJ155502 RV-Cla-II Jaratlerdsiri et al. (2009) 

FJ155503 RV-Cla-III Jaratlerdsiri et al. (2009) 

FJ155504 RV-Asi-III Jaratlerdsiri et al. (2009) 

FJ155505 RV-Asi-IV Jaratlerdsiri et al. (2009) 

FJ155506 RV-Crh-I Jaratlerdsiri et al. (2009) 

FJ155507 RV-Crh-II Jaratlerdsiri et al. (2009) 

FJ155508 RV-Crh-III Jaratlerdsiri et al. (2009) 
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GenBank ID 
a
 Sequence ID Reference 

FJ155509 RV-Cno-I Jaratlerdsiri et al. (2009) 

FJ155510 RV-Cno-II Jaratlerdsiri et al. (2009) 

FJ155511 RV-Cno-III Jaratlerdsiri et al. (2009) 

FJ155512 RV-Cjo-I Jaratlerdsiri et al. (2009) 

FJ155513 RV-Cjo-II Jaratlerdsiri et al. (2009) 

FJ155514 RV-Cjo-III Jaratlerdsiri et al. (2009) 

FJ155515 RV-Cni-I Jaratlerdsiri et al. (2009) 

FJ155516 RV-Cni-II Jaratlerdsiri et al. (2009) 

FJ155517 RV-Ppa-I Jaratlerdsiri et al. (2009) 

FJ155518 RV-Ppa-II Jaratlerdsiri et al. (2009) 

FJ155519 RV-Ppa-III Jaratlerdsiri et al. (2009) 

FJ155520 RV-Csi-I Jaratlerdsiri et al. (2009) 

FJ155521 RV-Csi-II Jaratlerdsiri et al. (2009) 

FJ155522 RV-Csi-III Jaratlerdsiri et al. (2009) 

FJ155523 RV-Cin-I Jaratlerdsiri et al. (2009) 

FJ155524 RV-Cin-II Jaratlerdsiri et al. (2009) 

FJ155525 RV-Cya-I Jaratlerdsiri et al. (2009) 

FJ155526 RV-Cya-II Jaratlerdsiri et al. (2009) 

FJ155527 RV-Cya-III Jaratlerdsiri et al. (2009) 

FJ155528 RV-Ami-I Jaratlerdsiri et al. (2009) 

FJ155529 RV-Ami-II Jaratlerdsiri et al. (2009) 

FJ155530 RV-Ami-III Jaratlerdsiri et al. (2009) 

FJ155531 RV-Ote-I Jaratlerdsiri et al. (2009) 

FJ155532 RV-Ote-II Jaratlerdsiri et al. (2009) 

FJ155533 RV-Ote-III Jaratlerdsiri et al. (2009) 

FJ155534 RV-Cmo-I Jaratlerdsiri et al. (2009) 

FJ155535 RV-Cmo-II Jaratlerdsiri et al. (2009) 

FJ155536 RV-Cmo-III Jaratlerdsiri et al. (2009) 

FJ155537 RV-Cca Jaratlerdsiri et al. (2009) 

FJ155538 RV-Ccr-I Jaratlerdsiri et al. (2009) 

FJ155539 RV-Ccr-II Jaratlerdsiri et al. (2009) 

FJ155540 RV-Ccr-III Jaratlerdsiri et al. (2009) 

FJ155541 RV-Mni-I Jaratlerdsiri et al. (2009) 

FJ155542 RV-Mni-II Jaratlerdsiri et al. (2009) 

FJ155543 RV-Cmi-I Jaratlerdsiri et al. (2009) 

FJ155544 RV-Cmi-II Jaratlerdsiri et al. (2009) 

FJ155545 RV-Cpo-I Jaratlerdsiri et al. (2009) 

FJ155546 RV-Cpo-II Jaratlerdsiri et al. (2009) 

FJ155547 RV-Cpo-III Jaratlerdsiri et al. (2009) 

FJ155548 RV-Cpo-IV Jaratlerdsiri et al. (2009) 

FJ155549 RV-Cpo-V Jaratlerdsiri et al. (2009) 

FJ155550 RV-Cpo-VI Jaratlerdsiri et al. (2009) 
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GenBank ID 
a
 Sequence ID Reference 

FJ155551 RV-Cpo-VII Jaratlerdsiri et al. (2009) 

FJ155552 RV-Cpo-VIII Jaratlerdsiri et al. (2009) 

FJ155553 RV-Cpo-IX Jaratlerdsiri et al. (2009) 

FJ155554 RV-Cpo-X Jaratlerdsiri et al. (2009) 

FJ155555 RV-Cpo-XI Jaratlerdsiri et al. (2009) 

FJ155556 RV-Cpo-XII Jaratlerdsiri et al. (2009) 

FJ155557 RV-Cpo-XIII Jaratlerdsiri et al. (2009) 

FJ155558 RV-Cpo-XIV Jaratlerdsiri et al. (2009) 

FJ155559 RV-Csi-IV Jaratlerdsiri et al. (2009) 

FJ155560 RV-Csi-V Jaratlerdsiri et al. (2009) 

FJ155561 RV-Csi-VI Jaratlerdsiri et al. (2009) 

NC001408 ALV Jern et al. (2005) 

D10032 BaEV Jern et al. (2005) 

NC001414 BLV Jern et al. (2005) 

 
EIAV Jern et al. (2005) 

Chr7-63865366 b ERV-3 Jern et al. (2005) 

NC001940 FLV Jern et al. (2005) 

M26927 GaLV Jern et al. (2005) 

 
gg01-chr1-156168845 c Jern et al. (2005) 

 
gg01-Chr4-48130894 c Jern et al. (2005) 

 
gg01-chr4-77338201 c Jern et al. (2005) 

 
gg01-chr7-5733782 c Jern et al. (2005) 

 
gg01-chr7-7163462 c Jern et al. (2005) 

 
gg01-ChrU-126703652 c Jern et al. (2005) 

 
gg01-ChrU-163504869 c Jern et al. (2005) 

 
gg01-chrU-49656081 c Jern et al. (2005) 

 
gg01-chrU-52190725 c Jern et al. (2005) 

AJ000387 Gypsy Jern et al. (2005) 

AC005741 HERV-ADP Jern et al. (2005) 

M10976 HERV-E Jern et al. (2005) 

AL354685 HERV-Fc1 Jern et al. (2005) 

AC019088 HERV-Fc2 Jern et al. (2005) 

AC004022 HERV-FRD Jern et al. (2005) 

 
HERV-Hconsensus Jern et al. (2005) 

D11078 HERVH-RGH2 Jern et al. (2005) 

M18048 HERVH-RTVLH2 Jern et al. (2005) 

Chr16-72821350 b HERV-I Jern et al. (2005) 

RepBase HERV-L Jern et al. (2005) 

RepBase HERVL40 Jern et al. (2005) 

RepBase HERVL66 Jern et al. (2005) 

RepBase HERVL74 Jern et al. (2005) 

AC004385 HERV-S Jern et al. (2005) 
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GenBank ID 
a
 Sequence ID Reference 

Chr14-104635791 b HERV-T Jern et al. (2005) 

Chr7-9105739 b HERV-W Jern et al. (2005) 

NC001736 HFV Jern et al. (2005) 

 
hg15-chr3-152465283 b Jern et al. (2005) 

 
HIV-1 Jern et al. (2005) 

 
HIV-2 Jern et al. (2005) 

Chr19-21849393 b HML1 Jern et al. (2005) 

Chr11-101600013 b HML2 Jern et al. (2005) 

Chr1-48344461 b HML3 Jern et al. (2005) 

Chr8-75679221 b HML4 Jern et al. (2005) 

AC004536 HML5 Jern et al. (2005) 

 
HML6 Jern et al. (2005) 

Chr6-121300220 b HML7 Jern et al. (2005) 

Chr3-131452286 b HML8 Jern et al. (2005) 

Chr9-62700428 b HML9 Jern et al. (2005) 

AF033816 HSRV Jern et al. (2005) 

NC001436 HTLV-1 Jern et al. (2005) 

NC001488 HTLV-2 Jern et al. (2005) 

M80216 JSRV Jern et al. (2005) 

Chr13-54208300 b MER4like Jern et al. (2005) 

NC001501 MLV Jern et al. (2005) 

NC001503 MMTV Jern et al. (2005) 

NC001550 MPMV Jern et al. (2005) 

AJ293656 PERV Jern et al. (2005) 

 
pt01-Chr10r-17119458 d Jern et al. (2005) 

 
pt01-Chr5-53871501 d Jern et al. (2005) 

AAN77283 Python-molurus Jern et al. (2005) 

NC001724 SnRV Jern et al. (2005) 

 
Visna Jern et al. (2005) 

NC001867 WDSV Jern et al. (2005) 

AJ506107 Xen1 Jern et al. (2005) 

AJ236109 RV-Green anole Martin et al. (1999) 

AJ236110 RV-Puff adder Martin et al. (1999) 

AJ236111 RV-Boa constrictor Martin et al. (1999) 

AJ236112 RV-Pit viper Martin et al. (1999) 

AJ236113 RV-Bower Bird III Martin et al. (1999) 

AJ236114 RV-Bower Bird II Martin et al. (1999) 

AJ236115 RV-Natterjack Toad Martin et al. (1999) 

AJ236116 RV-Rhinatrematid caecilianIII Martin et al. (1999) 

AJ236117 RV-Rhinatrematid caecilianIV Martin et al. (1999) 

AJ236118 RV-Yellow Martin et al. (1999) 

AJ236119 RV-Echidna Martin et al. (1999) 
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GenBank ID 
a
 Sequence ID Reference 

AJ236120 RV-Garter snake Martin et al. (1999) 

AJ236121 RV-Komodo dragon Martin et al. (1999) 

AJ236122 RV-Koala Martin et al. (1999) 

AJ236123 RV-Opossum Martin et al. (1999) 

AJ236124 RV-African Martin et al. (1999) 

AJ236125 RV-Partridge I Martin et al. (1999) 

AJ236126 RV-Partridge II Martin et al. (1999) 

AJ236127 RV-Pheasant Martin et al. (1999) 

AJ236128 RV-Edible Frog Martin et al. (1999) 

AJ236129 RV-Redwing Martin et al. (1999) 

AJ236130 RV-Rook Martin et al. (1999) 

AJ236131 RV-False gharial Martin et al. (1999) 

AJ236132 RV-European Adder Martin et al. (1999) 

AJ236133 RV-Wood Pigeon Martin et al. (1999) 

AJ236134 RV-Wren Martin et al. (1999) 

FJ155497 RV-Cac-I Martin et al. (1999) 

FJ155498 RV-Cac-II Martin et al. (1999) 

FJ155499 RV-Cpa-I Martin et al. (1999) 

AJ438130 CnEVI Martin et al. (2002) 

AJ438131 CnEVII Martin et al. (2002) 

AJ438132 CnEVIII Martin et al. (2002) 

AJ438133 RV-Chinese alligator I Martin et al. (2002) 

AJ438134 RV-Chinese alligator II Martin et al. (2002) 

AJ438135 RV-Smooth-fronted caiman Martin et al. (2002) 

AJ438136 RV-Broad nosed caiman Martin et al. (2002) 

AJ438137 RV-Orinoco crocodile Martin et al. (2002) 

AJ438138 RV-Gharial II Martin et al. (2002) 
a GenBank accession numbers as provided by the respective  publications. 
b Insertions were retrieved and generated from the Homo sapiens reference assemblies hg15 

and 16 (International Human Genome Sequencing Consortium, 2001). 
c Insertions were generated from the Gallus gallus genome assembly gg01 (International 

Chicken Genome Sequencing Consortium, 2004). 
d Insertions were generated from the Pan  troglodytes reference assembly panTro1 

(Chimpanzee Sequencing and Analysis Consortium, 2005). 
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Table S2.2: Summary of the predicted recombinant and parental sequences as determined by RDP. 

Recombinant 

Sequence 

Breakpoint 

Positions 

Major 

Parental 

Sequence
a
 

Minor 

Parental 

Sequence
b
 

Probability that the detected sequence is a recombinant
c
 

Begin End RDP GENECONV Bootscan Maxchi Chimaera SiSscan 3Seq 

CERV1-All 

1 289 906 148 Cpo_VII 0.0230 NS 0.0234 0.0001 0.0107 0.0000 0.0000 

Csi_IV 753 872 164 142 0.0301 NS 0.0306 NS NS NS 0.0344 

Cni_I 
 

  164 142 Trace evidence only 

  
 

  
 

  
      

  

CERV1-porosus 

1 289 869 175 Cpo_VII 0.0005 NS 0.0005 0.0001 0.0021 NS 0.0000 

  
 

  
 

  
      

  

CERV2-All 

81 23 296 53 52 0.0001 0.0020 0.0001 0.0001 0.0001 0.0000 0.0000 

Ami_II 698 1 Asi_IV Ppa_II 0.0398 NS NS NS NS NS 0.0215 

Ami_I 
 

  Asi_IV Ppa_II Trace evidence only 

  
 

  
 

  
      

  

CERV2-porosus 

81 23 296 53 52 0.0001 0.0013 0.0001 0.0001 0.0001 0.0000 0.0000 

60 16 191 162 34 0.0329 NS NS NS NS NS 0.0003 
a Major Parent: Parent contributing the larger fraction of sequence. 
b Minor Parent: Parent contributing the smaller fraction of sequence. 
c NS: No significant P-value was recorded for this recombination event using this method. 
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Table S2.3: PAML analysis showing parameter estimates, average dN/dS, and significance of the pairwise test comparisons. 

Hn Model Ave dN/dS PAML parameter estimates lnL LRT test statistic df P-value 

CERV1 

H0 M0: One ratio 0.4904 " = 0.49042 -6936.0525 273.3946 4 < 0.001 
  

      
  

H1 M3: Discrete 0.5187 p0 = 0.63002 p1 = 0.36034 p2 = 0.00964 -6799.3552 
  

  
      "0 = 0.14883 "1 = 0.97228 "2 = 7.73167         

H2 M1a: Nearly neutral 0.4344 p0 = 0.66860 p1 = 0.33140P2 -6845.3939 92.0213 2 < 0.001 
  

  
"0 = 0.15403 "1 = 1.00000 

   
  

H3 M2a: Positive selection 0.5234 p0 = 0.64094 p1 = 0.34945 p2 = 0.00962 -6799.3832 
  

  
      "0 = 0.15461 "1 = 1.00000 "2 = 7.78576         

H4 M7: Beta 0.4217 p = 0.37192 q = 0.50996 -6848.2309 96.8512 2 < 0.001 
  

      
  

H5 M8: Beta & " 0.4973 p0 = 0.99019 p = 0.40522 q = 0.54097 -6799.8053 
  

  
  

  
(p1 = 0.00981) " = 7.46662 

   
  

CERV2 

H0 M0: One ratio 0.5539 " = 0.55393 -4029.5600 413.1006 4 < 0.001 
  

      
  

H1 M3: Discrete 0.6898 p0 = 0.79438 p1 = 0.18634 p2 = 0.01928 -3823.0097 
  

  
      "0 = 0.14019 "1 = 1.66189 "2 = 13.93868         

H2 M1a: Nearly neutral 0.3057 p0 = 0.76252 p1 = 0.23748 -3921.6374 178.2283 2 < 0.001 
  

  
"0 = 0.08951 "1 = 1.00000 

   
  

H3 M2a: Positive selection 0.5864 p0 = 0.72223 p1 = 0.25559 p2 = 0.02218 -3832.5232 
  

  
      "0 = 0.10433 "1 = 1.00000 "2 = 11.51932         

H4 M7: Beta 0.3349 p = 0.17755 q = 0.35268 -3923.0792 164.9022 2 < 0.001 
  

      
  

H5 M8: Beta & " 0.6217 p0 = 0.97733 p = 0.21801 q = 0.39323 -3840.6281 
  

  
      (p1 = 0.02267) " = 12.04341         
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Table S4.1: Additional primers used to confirm the presence of the probe sequences in 

selected BAC clones. 

Primer name Primer sequence 

ERV1-1-956-F GTK TTG KTG GAY ACG GGG KC 

ERV1-1-956-R ATG AGG AKR TCR TCG ACR TA 

ERV1-69-375-F ACA GCA TGT AYT TGT RGA AG 

ERV1-69-375-R CGY GCA GGG GTT CCA TCA GCC 

ERV1-88-845-F GGG ATT GAG GGA ATG CAA AC 

ERV1-88-845-R ATG GGG GGC TGC TAT AAA TC 
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Table S4.2: CAG_SXT and RL MID tag sequences used for hierarchical tagging of the purified BAC DNA in preparation for sequencing. 

Linker Sequence 

CAG-SXT Upper (_U) Lower (_Lp) 
CAG_SimpleXT03 CAGTCGGGCGTCATCACGTGCTGCGGAACTT /5`Phos/AGTTCCGCAGCACGTGATGACGCCCGAC 

CAG_SimpleXT04 CAGTCGGGCGTCATCAGCAGCAGCGGAATCT /5`Phos/GATTCCGCTGCTGCTGATGACGCCCGAC 

CAG_SimpleXT06 CAGTCGGGCGTCATCAGCACGAGCGGAACTT /5`Phos/AGTTCCGCTCGTGCTGATGACGCCCGAC 

CAG_SimpleXT07 CAGTCGGGCGTCATCAGGTCGAGCGGAATGT /5`Phos/CATTCCGCTCGACCTGATGACGCCCGAC 

CAG_SimpleXT08 CAGTCGGGCGTCATCAGGTGCAGGCGAATGT /5`Phos/CATTCGCCTGCACCTGATGACGCCCGAC 

CAG_SimpleXT11 CAGTCGGGCGTCATCACGAGCGAGCGAAGTT /5`Phos/ACTTCGCTCGCTCGTGATGACGCCCGAC 

CAG_SimpleXT12 CAGTCGGGCGTCATCAGCTGGCGTCGAAGTT /5`Phos/ACTTCGACGCCAGCTGATGACGCCCGAC 

CAG_SimpleXT13 CAGTCGGGCGTCATCACCAGCACCGGAACAT /5`Phos/TGTTCCGGTGCTGGTGATGACGCCCGAC 

CAG_SimpleXT14 CAGTCGGGCGTCATCACCTGGGCACGAAGAT /5`Phos/TCTTCGTGCCCAGGTGATGACGCCCGAC 

CAG_SimpleXT15 CAGTCGGGCGTCATCACGTCGTGCGGAAACT /5`Phos/GTTTCCGCACGACGTGATGACGCCCGAC 

CAG_SimpleXT16 CAGTCGGGCGTCATCAGCAGCGTCGGAAAGT /5`Phos/CTTTCCGACGCTGCTGATGACGCCCGAC 

CAG_SimpleXT17 CAGTCGGGCGTCATCAGCTCCTGGCGAATCT /5`Phos/GATTCGCCAGGAGCTGATGACGCCCGAC 

RL-MID     

RL-1 ACACGACGACT 
 

RL-2 ACACGTAGTAT 
 

RL-3 ACACTACTCGT 
 

RL-4 ACGACACGTAT 
 

RL-5 ACGAGTAGACT 
 

RL-6 ACGCGTCTAGT 
 

RL-7 ACGTACACACT 
 

RL-8 ACGTACTGTGT 
 

RL-9 ACGTAGATCGT 
 

RL-10 ACTACGTCTCT 
 

RL-11 ACTATACGAGT 
 

RL-12 ACTCGCGTCGT   
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Table S4.3: Summary of the 48 sequenced BAC clones and their corresponding CAG_SXT 

and RL MID tags. 

Plate No. Well BAC ID CAG_SXT-## Pools 1-4 
 

CAG_SXT-## Pool 5 

001 B17 001-B17 3 

Pool 1 

3 

004 E14 004-E14 4 
 

010 F2 010-F2 6 
 

010 M6 010-M6 7 
 

011 C17 011-C17 8 
 

011 P21 011-P21 11 
 

016 E20 016-E20 12 
 

017 C17 017-C17 13 
 

024 L19 024-L19 14 
 

028 L15 028-L15 15 
 

030 I19 030-I19 16 4 

036 I4 036-I4 17 6 

037 K13 037-K13 3 

Pool 2 

 
038 B10 038-B10 4 

 
039 I20 039-I20 6 

 
040 B24 040-B24 7 

 
040 F9 040-F9 8 

 
040 O12 040-O12 11 

 
046 O12 046-O12 12 

 
048 D4 048-D4 13 7 

085 E21 085-E21 14 
 

088 E18 088-E18 15 
 

090 G4 090-G4 16 
 

090 P22 090-P22 17 8 

092 H11 092-H11 3 

Pool 3 

11 

100 E19 100-E19 4 
 

102 K13 102-K13 6 
 

103 M4 103-M4 7 
 

103 N11 103-N11 8 
 

109 I20 109-I20 11 
 

110 M11 110-M11 12 
 

119 H8 119-H8 13 
 

126 M7 126-M7 14 12 

136 B18 136-B18 15 
 

141 H19 141-H19 16 
 

145 N21 145-N21 17 13 

153 O20 153-O20 3 

Pool 4 
 

154 C15 154-C15 4 
 

154 C4 154-C4 6 
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Plate No. Well BAC ID CAG_SXT-## Pools 1-4 
 

CAG_SXT-## Pool 5 

166 F15 166-F15 7 14 

168 L14 168-L14 8 
 

177 H4 177-H4 11 
 

179 J15 179-J15 12 
 

186 N1 186-N1 13 
 

205 D13 205-D13 14 
 

212 L13 212-L13 15 
 

215 B14 215-B14 16 
 

222 M7 222-M7 17 
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Table S4.4: Assembly statistics for the 48 BAC clones sequences at low coverage and 9 

MHC related BAC clones. 

 
Contigs Scaffolds 

 
Ave Max Number N50 Ave Max Number N50 

Low coverage BACs 

001-B17 1727 25287 2571 2324 29255 213113 108 93335 

004-E14 1715 19524 2615 2302 26133 187807 121 74309 

010-F02 1725 25286 2598 2327 26552 213368 118 74699 

010-M06 1705 19524 2643 2286 26138 181904 122 70448 

011-C17 1694 19524 2655 2260 26625 211588 116 74006 

011-P21 1702 19525 2620 2264 27409 212125 115 74075 

016-E20 1705 15748 2611 2291 24419 204511 127 65396 

017-C17 1697 19524 2650 2265 26877 211443 118 75653 

024-L19 1688 19524 2636 2236 26513 216771 117 70216 

028-L15 1712 19524 2615 2296 27822 211997 114 75202 

030-I19 1715 25285 2606 2302 26042 219325 120 71939 

036-I04 1709 19524 2605 2291 27558 188651 116 74984 

037-K13 1709 19524 2647 2288 27105 188307 116 75022 

038-B10 1712 19524 2629 2296 27309 180992 115 75336 

039-I20 1706 19523 2647 2285 27637 211422 113 86768 

040-B24 1700 15749 2642 2266 26028 209155 121 67117 

040-F09 1707 19524 2634 2309 26848 210689 118 73600 

040-O12 1722 19524 2589 2314 27189 212143 117 70562 

046-O12 1708 25286 2626 2286 25899 189240 121 71031 

048-D04 1720 25287 2624 2326 27159 204176 117 82678 

085-E21 1690 15748 2713 2263 26103 209248 118 68016 

088-E18 1696 15749 2617 2261 23914 204114 131 65965 

090-G04 1717 15749 2619 2315 27555 181213 115 75957 

090-P22 1707 19525 2671 2302 27711 202416 115 90328 

092-H11 1720 25285 2629 2326 25149 212332 125 73315 

100-E19 1714 19524 2601 2301 27913 217735 114 85367 

102-K13 1709 19524 2597 2291 27415 188256 115 74941 

103-M04 1706 19524 2625 2296 28148 211903 112 75385 

103-N11 1712 19524 2635 2315 26560 211850 119 73325 

109-I20 1710 19524 2628 2294 26269 181314 119 75614 

110-M11 1706 19524 2606 2302 27039 213240 116 75855 

119-H08 1709 19525 2596 2294 26386 212834 120 74532 

126-M07 1719 25286 2594 2315 27734 180457 114 76072 

136-B18 1704 25285 2623 2278 28897 188503 109 76067 

141-H19 1721 19524 2591 2327 26786 185633 118 70701 

145-N21 1701 25286 2688 2301 26894 204109 118 78301 

153-O20 1707 19525 2618 2288 26403 181819 119 74283 
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Contigs Scaffolds 

 
Ave Max Number N50 Ave Max Number N50 

154-C04 1714 19525 2637 2302 26096 181721 121 75384 

154-C15 1716 25286 2610 2308 27400 213392 114 70877 

166-F15 1738 19524 2622 2352 26292 212752 121 76759 

168-L14 1708 25287 2629 2278 26323 214043 119 74428 

177-H04 1708 25288 2626 2294 27385 211559 115 74326 

179-J15 1709 19524 2642 2294 24693 210940 127 71182 

186-N01 1719 19524 2595 2309 27194 181707 116 75252 

205-D13 N/A N/A N/A N/A N/A N/A N/A N/A 

212-L13 1710 19524 2606 2296 26486 212020 119 85224 

215-B14 1713 19523 2616 2294 25567 217046 121 74224 

222-M07 1718 19524 2649 2294 27233 211650 116 74058 

 
  

       
MHC BACs   

       
009-O17 7448 27545 19 14824 

    
012-F13 3592 31246 61 11851 

    
067-G16 3054 43874 68 26076 

    
077-H5 2020 69203 237 27948 

    
082-I19 10801 92953 16 92953 

    
092-F14 2223 43499 51 43499 

    
186-I16 5544 93750 32 93750 

    
192-O18 2237 28338 30 28338 

    
193-A19 8905 41015 8 41015 
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Table S4.5: Summary of ERV insertions detected within the sequences BAC clones, including scaffold ID and sequence characteristics. NOTE: 

Due to the size and formatting of this table, some columns have been deleted and only selected rows have been presented here. Please see the 

attached CD for the complete table (Associated file: Appendix_I-Table_S4.5.xlsx). 

ERV ID Class Haplotype PBS PPT 5` TSD Length 

RL05-contig00001-S00001 ERV1 MHC_Hap_1 N/A aaaatggggagc tgccc/cg 7915 

RL10-contig00002-P00001 ERV1 MHC_Hap_1 N/A aaaatggggagc tgccc/cg 7915 

RL06-contig00003-P00001 ERV1 MHC_Hap_5 tggagaagctggagagag aagaaagggaggagagcggat aaaa/tg 13217 

RL08-contig00001-P00001 ERV1 MHC_Hap_7 tggtggcagtggtgggat aagaagaagaggaagagaagcc ccccc/tg 14054 

RL10-contig00001-P00005 ERV1 MHC_Hap_9 tggctgccaaccccagct aaggatgaaggggcctg cccaa/gg 11932 

004-E14-scaffold00024-P00001 ERV4 Hap_7 tggaactttccccttgat agagcaaggaaaaggaat cccca/tg 9633 

119-H08-scaffold00021-S00001 ERV4 Hap_69 tggtgctgcgcaggctca agagcaaggaaaaggaat gttat/tg 8607 

166-F15-scaffold00023-S00001 ERV4 Hap_69 tggtgctgcgcaggctca agagcaaggaaaaggaat gttat/tg 8607 

RL05-contig00003-S00001 ERV1 MHC_Hap_2 tggtagtgctcgggggga aggcagagggagaaaagattg gcac/tg 14472 

RL10-contig00001-P00001 ERV1 MHC_Hap_8 tggtcacagggcaccatg aggcagagggagaaaagattg cagggc/tg 13887 

RL06-contig00001-S00001 ERV1 MHC_Hap_4 N/A aggggaaggaaggctg agatcc/tg 5308 

010-F02-scaffold00023-S00001 ERV4 Hap_9 tggaactttccccttgat N/A accc/tg 9826 

030-I19-scaffold00023-P00001 ERV4 Hap_20 tggaactttccccttgat N/A cccca/tg 9726 

092-H11-scaffold00020-S00001 ERV4 Hap_50 tgggtatctgtccctctg N/A ggctg/tg 10298 

102-K13-scaffold00024-P00001 ERV4 Hap_56 tggaactttccccttgat N/A cccca/tg 9662 

RL10-contig00001-S00001 ERV1 MHC_Hap_10 tggtgctgtgacttggat N/A ccatg/tg 8328 



 

 
 

2
1

0
 

Table S6.1: Summary of the ERV insertions detected within the three crocodilian genomes. NOTE: Due to the size and formatting of this table, 

some ERV IDs have been truncated, some columns have been deleted and only selected rows have been presented here. Please see the attached 

CD for the complete table (Associated file: Appendix_I-Table_S6.1.xlsx). 

ERV ID Start End PBS PPT 5`TSD 3`TSD Length 

gi|397455753_1-S00001 67660 59431 tggcgtcatgaacaggat agggtgaaaggggatg tgaagg/tg ca/tgacag 8230 

gi|397455787-P00001 10278 18386 tggcgacgaggatggga agcaagggggcatg atcc/tg ca/atcc 8109 

gi|397455981_4-S00001 361187 351581 tggtgtcaccacccggtg aagaagagagtagc cttgg/tg ca/cttgg 9607 

gi|397456088_2-P00001 111174 119872 tggtgccgtgactcagat aagaagagaaaaatggagttg gtct/tg ca/gtct 8699 

gi|397456325_1-S00001 63244 49519 tggcgtaattccagattt agcaggagggaaggggt ggccag/ga ta/ggcaag 13726 

gi|397456616-S00001 34882 27450 tggcaccccagatgggac aaaaggagggangatg catt/tg ca/cagt 7433 

gi|397456628_4-P00001 376448 385898 tggtgtggtggaagggga aagacaaagaggtg tgtagg/gg ga/tcaagg 9451 

gi|397456663_17-S00001 1679462 1670810 tgggcaccatgtttatag aggagaggagcaggt tttgca/tt ca/tgtgcc 8653 

scaffold-10156_1-S00001 89351 76122 tggcaggcgtatataccc agagagaagtgggggtg attgg/tg ca/agtat 13230 

scaffold-10204-S00001 45156 35571 tggcgacccaggtggtgt aaaaggggggattg ctgt/tg ca/ctgt 9586 

scaffold-10522_9-P00001 862467 872340 tggcactcctgtgtctct aaaggggggagttg cggct/tg ca/cggct 9874 

scaffold-10715-P00001 17551 25592 tggtgtcatgactcggat aaaaaaatgagggaatg caagg/tg ca/caagg 8042 

scaffold-10982-P00001 31320 45569 tggttcttccccatcagg agggaatgaggaggcctg gggat/tg ca/gggat 14250 

scaffold-1103_4-P00001 398493 405707 tgggctacctcacaagcc aaggggacgaagagcttg caag/tg ca/caag 7215 

scaffold-1204_1-P00001 105833 114397 tggtgtcagcagtgctta aaagcaggagtg cccac/tg aa/cccac 8565 

scaffold-12115-S00001 46995 39187 tggcaacccagatgggtc aaagaggggattg catc/tg ca/catc 7809 

scaffold10111-S00001 65174 53750 tggcgtagttggcaggat agagaaacaaaagaggttg agcaag/tg ca/agtagg 11425 

scaffold10246-P00001 43181 51461 tgggtgcttcgtctgcca aagggggaggctg gtat/tg ca/gtat 8281 

scaffold10282_1-P00001 70042 77937 tgggggcttggctggaat aggatggagggggaagatctg cagct/tg ca/ccgct 7896 

scaffold10324_1-S00001 32490 21879 tggtgtaaggacataggc agcaagggggcatg ctaatg/tg ca/atgatt 10612 

scaffold1040_5-P00001 450052 463017 tggtgctgtgactcagat aaaaggggggaatgtg atag/tg ca/atag 12966 

scaffold1075_2-S00002 130709 122578 tggtaaagaaacaggaatc agaaaaaaagaaaacaaggt tcata/tg ca/tgaaa 8132 
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Appendix II: Supplementary Figures 

List of Supplementary Figures 

Figure S2.1: Alignments of putative amino acid translations of selected sequences from 

clades CERV1 (a) and CERV2 (b).  

Figure S2.2: Neighbour Joining trees based on the nucleotide alignments of C. porosus 

sequences from the CERV1 (a) and CERV2 (b) clades.  

Figure S3.1: C. johnstoni pro-pol haplotypes clustered into four major clades belonging to 

ERV3 and ERV4.  

Figure S3.2: C. johnstoni ERV lineages cluster with crocodilian ERV4 sequences and within 

ERV3. 
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Figure S2.1: Alignments of putative amino acid translations of selected sequences from clades CERV1 (a) and CERV2 (b). Conserved retroviral 

motifs are bound by black boxes. The dark and light shaded boxes in (b) highlight the proposed sub-lineages within clade CERV2: the unshaded 

sequences are group CERV2a, dark grey are CERV2b, and lighter grey are CERV2c.  
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Figure S2.2: Neighbour Joining trees based on the nucleotide alignments of C. porosus 

sequences from the CERV1 (a) and CERV2 (b) clades. Outgroups are human ERV sequences 

extracted from the RepBase database and from the same general ERV classes as these 

sequences. Numbers outside the circles indicate the haplotypes included in each tree. Smaller 

numbers within the circle represent bootstrap support values greater than 50%.  
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Figure S3.1: C. johnstoni pro-pol haplotypes clustered into four major clades belonging to 

ERV3 and ERV4. The Neighbour Joining phylogeny was derived from 28 nucleotide 

sequences, and generated using the Jukes-Cantor correction for multiple substitutions and 

1000 bootstrap replicates. Numbers beside the branches indicate bootstrap support values 

greater than 50%. Scale bar on bottom left indicates branch length. 
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Figure S3.2: C. johnstoni ERV lineages cluster with crocodilian ERV4 sequences and within 

ERV3. The Neighbour Joining phylogeny was generated from the putative amino acid 

translations of the pol domain and ERVs from other species. Sequence names indicate the 

representative sequences from the four C. johnstoni lineages. Sequence IDs for published and 

previously described sequences have been omitted for clarity. The scale bars indicate branch 

lengths and values on the branches indicate bootstrap support greater than 70%. 
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Appendix III: Supplementary Methods 

Chapter 2 

PCR conditions 

Forward primer sequence: GTK TTI KTI GAY ACI GGI KC 

Reverse primer sequence: ATI AGI AKR TCR TCI ACR TA 

 

PCR was carried out in duplicate, in 25 µL reaction volumes, containing 100 pmol of each 

primer, 2 mM MgCl2, 0.16 mM dNTPs, PCR buffer and 1 U of high fidelity Taq polymerase. 

PCR cycles were as follows: initial denaturation at 94°C for 2 minutes, 35 cycles of 45°C (30 

seconds), 72°C (60 seconds) and 94°C (30 seconds), followed by final annealing period of 3 

minutes at 45°C and a final extension period of 10 minutes at 72°C. 

RDP settings 

Default program settings were used, implementing the RDP (Martin and Rybicki, 2000), 

GENECONV (Padidam et al., 1999), Bootscan (Martin et al., 2005), MaxChi (Smith, 1992), 

Chimaera (Posada and Crandall, 2001), SiScan (Gibbs et al., 2000) and 3seq methods (Boni 

et al., 2007) for detection of recombinants with a significance cut off of P = 0.05 and the 

Bonferroni correction. Tests were carried out on sequences within C. porosus and across 

species. Sequences were considered to be potential recombinants if two or more of the above 

methods returned a significant value.  

Selection criteria for representative sequences 

Due to the large number of sequences recovered, representative sequences from C. porosus 

selected based on similarity to a consensus sequence from each clade. Since we are also 

interested in the functionality of sequences, sequences with fewer perceived indels or stop 

codons were selected over those with more of these mutations where there were multiple 

equally similar sequences.  Sequences from other crocodilians were treated similarly except 

in cases where there were clearly two divergent lineages represented.  
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PAML model comparisons 

Tests for selection on specific sites were conducted under the assumption of a single rate of 

substitution across branches. The models M0 and M3 were compared to determine if 

selection differed between sites, and the model pairs M2 and M3, and M7 and M8 were used 

to test for selection at each site. Likelihood ratio test (LRT) statistics were calculated for the 

following pairs to determine significance; M0�M3, M1a�M2a, M7�M8 (see Results for 

additional information). 

LRT values were calculated as twice the difference between the likelihood values for each of 

the different models, and compared to the Chi-squared values for one degree of freedom. 
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Chapter 4 

Preparation of the Macroarrays 

Stamped membranes were placed on LB (Luria Bertani) agar containing 12.5 mg/L 

Chloramphenicol and incubated overnight at 37°C. To fix the BAC DNA to the membranes, 

cells were first lysed by incubation in an 0.5 N NaOH/1.5 M NaCl solution for 7 mins, 

followed by incubation in 1.5 M NaOH/0.5 M Tris Cl solution for a further 7 mins. 

Membranes were then allowed to air dry for 1 hour before DNA was fixed using a 0.4 N 

NaOH solution for 20 mins and washed in 5× SSPE solution for 7 mins. Membranes were 

then left to air dry for 24 hours before hybridisation. 

Hybridisation conditions 

Arrays were soaked in fresh hybridisation solution at 65°C overnight for pre-hybridisation 

treatment. This solution was then drained and fresh hybridisation solution added. Membranes 

were incubated for 1 hour before denatured probe solutions were added. Hybridisation of the 

ERV1 specific probe was carried out at 65°C for 2 days before being washed. Macroarrays 

hybridised with the pooled probe set were treated similarly, although hybridisation time was 

extended to three days. 

Membranes were then rinsed with 1× SSC/0.1% SDS wash solution before being washed in 

fresh, preheated wash solution at 65°C for 1 hour. Washed arrays were wrapped in plastic and 

exposed to phosphoimager screens (GE Healthcare) before being scanned using the 

Amersham Storm 820 system. The membranes hybridised with the ERV1 Gammaretrovirus-

like specific probe were exposed for two days before images were scanned. For the pooled 

probe set, exposure was reduced to an overnight exposure. Scanned images were rotated and 

trimmed to remove the membrane edges prior to identification of positive clones. 
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Appendix IV: ImageJ macro for densitometric analysis 

run("Despeckle"); 

run("Subtract Background...", "rolling=15 light"); 

run("Unsharp Mask...", "radius=2 mask=0.60"); 

run("Make Binary"); 

run("Despeckle"); 

run("Fill Holes"); 

run("Erode"); 

run("Watershed"); 

run("Ultimate Points"); 

run("Find Maxima...", "noise=0 output=[Point Selection] 

exclude light"); 

run("Revert"); 

run("Measure"); 

 

See also attached CD for electronic copy. 

Associated file:  

MacroarrayDensitometry.ijm  
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Appendix V: ERV detection pipeline 

Please see attached CD. 

Associated files: 

ERV_detection_pipeline.py (python script) 

 ERV_detection_pipeline.conf (configuration file) 

 

Usage: 

ERV_detection_pipeline.py �i <input fasta file> -o 

<output directory> -c <configuration file> -<run mode> -n 

<integer> 

 

For further details use:  

ERV_detection_pipeline.py --help 
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Appendix VI: Published Material 

Please see attached CD. 

Associated files: 

 1759-8753-3-20.pdf (published document) 

 1759-8753-3-20-s1.pdf (additional file 1) 

 1759-8753-3-20-s2.pdf (additional file 2) 
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Appendix VII: Submitted Material 

Please see attached CD 

Associated file: 

130619_JHerp_Cjohnstoni.pdf (pdf version of the manuscript submitted for review) 

 


