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ABSTRACT 

Background: Low serum 25-hydroxyvitamin-D [25(OH)D] concentration during pregnancy 

have been associated with adverse pregnancy outcomes by a few studies, and not by others.  

Objective: To assess serum 25(OH)D concentration at 10-14 weeks of pregnancy and its 

association with adverse pregnancy outcomes, and examine the predictive accuracy. 

Design: This nested case-control study measured serum 25(OH)D in 5,109 women with 

singleton pregnancies attending first trimester screening in New South Wales, Australia. 

Multivariate logistic regression was conducted to examine the association between low 25(OH)D 

concentrations and adverse pregnancy outcomes (small for gestational age, preterm birth, 

preeclampsia, gestational diabetes, miscarriage and stillbirth). The predictive accuracy of models 

was assessed.  

Results: Median (interquartile range) 25(OH)D concentrations for the total population was 56.4 

nmol/L (43.3-69.8). Serum 25(OH)D concentrations showed significant variation by parity, 

smoking, weight, season of sampling, country of birth and socio-economic status. After adjusting 

for maternal and clinical risk factors, low 25(OH)D concentrations were not associated with most 

adverse pregnancy outcomes. The area under the Receiver Operating Characteristic curve (AUC) 

and likelihood ratio (LR) for a composite of severe adverse pregnancy outcomes of 25(OH)D 

<25nmol/L were 0.51 and 1.44; and for risk factors alone were 0.64 and 2.87, respectively. 

Adding 25(OH)D information to maternal and clinical risk factors did not improve the ability to 

predict severe adverse pregnancy outcomes (AUC=0.64; LR=2.32; P=0.39). 

Conclusion: Low 25(OH)D serum concentrations in first trimester of pregnancy are not 

associated with adverse pregnancy outcomes and do not predict complications any better than 

routinely assessed clinical and maternal risk factor information.  
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INTRODUCTION 

The prevalence and significance of vitamin D deficiency during pregnancy has attracted much 

recent public health interest. The main function of vitamin D is to maintain normal ranges of 

serum calcium and phosphorus by enhancing calcium absorption from the intestine and 

promoting the  mobilization of calcium and other minerals from the skeleton (1). It also has 

immunomodulatory roles during pregnancy that enables successful implantation and stimulates 

antimicrobial activity (2). From early in pregnancy, there are high demands for calcium to 

support both maternal calcium homeostasis and fetal skeletal development and growth (2).  

 

The definition and the terminology used to describe adequate concentrations of vitamin D are 

inconsistent. A recent Institute of Medicine report recommends serum 25-hydroxyvitamin D 

[25(OH)D] concentrations >50 nmol/L for adequate bone health (3), but, clinical guidelines from 

The Endocrine Society have defined vitamin D deficiency and insufficiency as serum 

concentration <50 nmol/L and 50–72.5 nmol/L, respectively (4). The National Institute for 

Health and Clinical Excellence (NICE) guidelines (5) defines 25(OH)D concentrations <25 

nmol/L as insufficiency while other researchers (6) propose that 25(OH)D concentrations <37.5 

nmol/L are associated with lower bone mass density and increased risk of fracture. These 

definitions refer to the general population, are not universally accepted and are not specific to 

pregnancy populations. In addition to the increased physiological demands in pregnancy, 

geographical and/or ethnic differences in 25(OH)D concentrations suggest the important need to 

establish locally determined population reference ranges and normative concentrations during 

pregnancy (7).   
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Studies reporting the association between 25(OH)D concentrations in early pregnancy and 

adverse pregnancy outcomes are conflicting. Some report low 25(OH)D concentrations are 

associated with an increased risk of preeclampsia (8), small for gestational age (9-11), 

gestational diabetes mellitus (12, 13) and miscarriage (14), while others have not reported a 

significant association with pregnancy complications (15-23). However these studies have 

limitations including: small sample size, limited generalizability due to low response rates or no 

information on several pregnancy outcomes. No large study has assessed these associations. 

Furthermore, there is no information about the predictive accuracy of low 25(OH)D 

concentrations in early pregnancy in identifying pregnancies at-risk. First trimester screening 

provides an ideal opportunity for early identification of pregnancies at-risk. The aims of this 

study were three-fold: i) describe normative concentrations of serum 25(OH)D in the first 

trimester of pregnancy; ii) examine the association between maternal 25(OH)D and risk of 

adverse pregnancy outcomes; and  iii) assess the diagnostic accuracy of low 25(OH)D in 

predicting adverse pregnancy outcomes.  

 

 SUBJECTS AND METHODS 

Participants and study design 

A nested case-control study was conducted based on a study population of 11,358 women 

attending first trimester Down syndrome screening between October 2006 and September 2007 

in New South Wales (NSW), Australia. Existing data from banked serum and routinely collected 

electronic health databases were used.  Serum samples were collected by the Pacific Laboratory 

Medicine Services, and then archived and stored at -80°C. During this period, this was the state’s 

only public screening service and received samples from throughout NSW. Serum samples were 

stored according to time of collection in boxes containing 81 samples in 9x9 rows. Cases of each 

study outcome of interest (small for gestational age (SGA), preterm birth, preeclampsia, 
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gestational diabetes mellitus, miscarriage and stillbirth) were randomly selected from the 

maternal screening population using a computerized random-number function, with the specific 

box and row of the case identified. Controls were then sourced using the remaining eight samples 

in each row, regardless of their outcome status. These were selected by laboratory technicians 

from the relevant box containing the case and who analysed the full row (9 samples) unaware of 

the case’s position within the row. This ensured random selection of samples, allowed laboratory 

technicians to remain blinded to pregnancy outcomes and increased the efficiency of processing. 

Half of cases from the study population were initially selected but in the end, 63% were 

identified because some samples in the control group were cases of other adverse pregnancy 

outcomes.  

 

Biochemical analysis 

Serum samples were thawed once and serum concentrations of 25(OH)D were measured by an 

automated immunoassay system (LIAISON, Diasorin S.p.A. Saluggia, Italy). Intra-assay and 

inter-assay coefficient of variation were <9.5% and reported analytic sensitivity of the 

immunoassay was 4.9 - 368 nmol/L. Commonly used cut-points to define 25(OH)D status were 

assigned: <15, <25, <37.5, <50 and  <75 nmol/L (4-6). 

 

Data sources 

Maternal information for archived serum samples were derived from the laboratory database and 

corresponding pregnancy and birth outcomes were ascertained via record-linkage to the Perinatal 

Data Collection (PDC) and Admitted Patient Data Collection (APDC). The PDC is a statutory 

surveillance system of all births in NSW of at least 400 grams birthweight, or at least 20 weeks’ 

gestation; it includes information on maternal demographic, pregnancy and delivery factors and 

infant outcomes.  The APDC is a census of all in-patient hospital admissions from NSW public 
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and private hospitals, with records for both mothers and liveborn infants. Relevant diagnoses are 

recorded for each admission and coded according to the International Classification of Diseases 

version 10–Australian Modification (ICD10-AM). Validation studies of the PDC and the APDC 

show excellent level of agreement with the medical record and low rates of missing data (24, 25). 

Reporting in both datasets have high specificity (> 99%) indicating few false positive reports. 

Only factors and outcomes accurately reported in birth or hospital data were included in analyses 

(26). Record-linkage was conducted by the NSW Centre for Health Record Linkage with 

identifying information removed prior to the release of data for analysis. The study was approved 

by the NSW Population and Health Services Research Ethics Committee. 

 

Study outcomes assessed included: small for gestational age (SGA) defined as birthweight <10th 

and <3rd centile of the distribution for gestational age and infant sex (27); preterm birth at <37 

weeks’ and very preterm birth <34 weeks’ gestation; early-onset and all preeclampsia, 

gestational diabetes mellitus (GDM), miscarriage and stillbirth. During the study period, 

preeclampsia was defined as onset of hypertension (systolic blood pressure ≥140 mmHg and/or 

diastolic blood pressure ≥90 mmHg) from 20 weeks’ gestation accompanied by proteinuria (28), 

and early-onset preeclampsia classified for women requiring delivery at ≤34 weeks gestation. 

GDM was characterised as fasting glucose ≥5.5 mmol/l or 2-hour plasma glucose ≥8.0 mmol/l 

(29). Information on preeclampsia and gestational diabetes was obtained from both the APDC 

and PDC data, to maximize ascertainment. Preeclampsia (regardless of severity) and gestational 

diabetes were determined either the box was checked in the PDC record, or if any APDC record 

had a diagnosis in any of the 55 fields of gestational hypertension (ICD10-AM: O13 and O16), 

preeclampsia (O11 and O14) or eclampsia (O15) (for preeclampsia) and gestational diabetes 

(O24) (30, 31). Miscarriage was defined as spontaneous fetal loss between 10-20 weeks 

gestation and identified from APDC data (O00, O01, O02, O03, O05 or O06), while stillbirth 
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classified for spontaneous fetal death after 20 weeks gestation and was identified from PDC data. 

A composite of severe adverse pregnancy outcome variable was also developed comprising 

occurrence of either SGA<3rd centile, preterm birth <34 weeks, early-onset preeclampsia or 

stillbirth. Controls were defined as pregnancies unaffected by each outcome. 

 

The key maternal and clinical risk factors used in this analysis included maternal age and weight 

(kilograms) calculated at the time of first trimester screening, parity (nulliparae/multiparae), 

smoking during pregnancy, any previously diagnosed hypertension (chronic or pregnancy) or 

diabetes (pre gestational or gestational), season at sampling, country of birth and socio-economic 

disadvantage. Season of sample collection (Southern Hemisphere) was defined as spring 

(September-November), summer (December-February), autumn (March-May) and winter (June-

August). Socio-economic disadvantage was determined using the Socio-Economic Indexes for 

Areas (SEIFA) relative disadvantage scores developed by the Australian Bureau of Statistics (32) 

and categorised into quintiles. Maternal weight was missing in 831 (16.3%) of the records. 

Multiple imputation was used to account for the missing maternal weight, a technique that 

predicts missing values using existing values from other variables (33). Other missing data were 

infrequent and were excluded from the analyses: maternal age missing in 1 record (0.002%), 

smoking in 42 (0.8%), country of birth in 6 (0.1%) and socio-economic disadvantage information 

missing in 13 (0.25%) records. 

 

Statistical analysis 

As each case and control had a known probability of selection calculated as the prevalence of 

each pregnancy outcome, concentrations of 25(OH)D were weighted to account for sampling 

probabilities to determine normative concentrations for our pregnancy sample. Weight 

calculation involved multiplying each case and control by the inverse proportion of the 
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probability of selection. The 25(OH)D distribution was then calculated applying individual 

weights. Similarly, to ensure comparability with the NSW state maternity population, we 

weighted all observations for the population rates of age, parity, smoking and socio-economic 

disadvantage using SEIFA quintiles (34).  

 

Normative concentrations in the overall population and by maternal characteristics were 

examined at various percentiles (5th, 10th, 25th, 50th, 75th, 90th, 95th) and differences assessed 

using Kruskall-Wallis test. Spearman coefficient was used to determine correlations between 

25(OH)D and maternal weight. Comparison of maternal characteristics and concentrations of 

25(OH)D between women with and without each study outcome was performed using 

contingency table, student’s t-test or Wilcoxon-rank sum test for categorical, normal or non-

normally distributed data, respectively. Conditional univariate and multivariate logistic 

regression analysis was performed to asses crude and adjusted association between low 25(OH)D 

and adverse pregnancy outcomes, taking into account important maternal and clinical risk factors 

in the latter analysis.  

 

In assessing predictive accuracy we defined low 25(OH)D concentrations at <25 and <37.5 

nmol/L. The performance in predicting severe pregnancy outcomes in the total population and 

among a group of women at high-risk (weight >85kg or born in countries most likely to have 

dark skin or covered) was determined by examining the area under the Receiver Operating 

Characteristics (ROC) curves (AUC), derived from logistic regression models. AUC results were 

also examined to determine whether models performed better than chance (0.5). Models for 

25(OH)D alone, those including maternal and clinical risk factors only and with 25(OH)D and 

risk factors combined were compared. Comparison of predictive accuracy of the models was 

performed by evaluating the maximum likelihood estimates and applying likelihood ratio (X2) 
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test. Finally, estimates of predictive accuracy were calculated including sensitivity, specificity, 

positive (PPV), negative predictive values (NPV) and positive likelihood ratio with exact 

binominal confidence intervals. A P-value of <0.05 was considered statistically significant and 

analyses performed using SAS software 9.2 (SAS Institute Inc., Cary, NC, USA).  

 

RESULTS 

A total of 5,762 serum samples were tested for 25(OH)D, with linked health information relevant 

to the pregnancy available for 5,397 (93.7%) women. We excluded 288 women whose blood 

sample was taken before 10 or after 14 weeks gestation; 25(OH)D concentrations were outside 

limits of assay detection; or who had a medical abortion, twin pregnancy or infant with major 

congenital anomaly. A total of 5,109 women were included in the analysis. The demographic 

characteristics and percentile distribution of serum 25(OH)D concentrations are presented in 

Table 1. Median (interquartile range, IQR) serum concentrations of 25(OH)D for the total 

population were 56.4 (43.4 – 69.9) nmol/L; 294 (5.8%) women had serum <25 nmol/L, 835 

(16.3%) <37.5 nmol/L and 999 (19.6%) >75 nmol/L. Women having a first baby, who smoked 

during pregnancy, women born in Middle Eastern, Asian, African and Caribbean countries had 

lower 25(OH)D concentrations, as well as women living in socially disadvantaged areas 

(P<0.05). There was a negative correlation with maternal weight (r = −0.36, P=0.01) (Table 1). 

There was also significant variation by season of sampling (P<0.001). 25(OH)D concentrations 

were highest in Autumn (median 63.5; IQR: 52.0 – 78.4) and lowest in Winter (median 51.5, 

IQR: 37.5 – 64.4) (P<0.001) (Figure 1). 

 

Table 2 presents maternal characteristics and 25(OH)D serum concentrations by adverse 

pregnancy outcome. Compared with unaffected pregnancies (median 56.9, IQR 43.9 - 70.8 

nmol/L), median concentrations of 25(OH)D in the first trimester were lower for women 
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diagnosed with GDM (median 52.1, IQR 41.5 - 63.6 nmol/L; P<0.001). The association between 

25(OH)D and adverse pregnancy outcomes are presented in Table 3. After adjusting for risk 

factors, women with 25(OH)D <25 nmol/L had increased risk of having an SGA <10th centile 

infant (Adjusted odds ratio (aOR) 1.58 95% CI: 1.06, 2.35). In univariate analysis, women with 

25(OH)D concentrations <37.5 nmol/L had increased risk of GDM; however this association was 

attenuated after adjusting for maternal factors (aOR 1.08 95% CI: 0.74, 1.56). Women with low 

25(OH)D concentrations had a tendency towards an increased risk of spontaneous preterm birth 

(P=0.09) or a severe pregnancy outcome (P=0.07), but a reduced risk of preeclampsia (P=0.07) 

(Table 3). There was also a slight tendency for high 25(OH)D concentrations >75 nmol/L to be 

protective against early-onset preeclampsia (P=0.09), however, numbers were small and results 

imprecise. There was no association between women with low 25(OH)D concentrations and any 

other of the adverse pregnancy outcomes (Table 3), and regardless of the various cut-points 

applied (data not presented). In particular, there was no relationship between 25(OH)D 

<15nmol/L and the composite measure of any adverse pregnancy outcome (aOR 1.20; 95% CI: 

0.69, 2.07) (data not included in tables). When the association between 25(OH)D concentrations 

and severe adverse pregnancy outcomes were analysed in a sub-group of high risk women 

(N=758), the adjusted odds for <25 and <37.5nmol/L was 2.34 (95% CI: 1.01, 5.50) and 2.42 

(95% CI: 1.20, 4.92), respectively. In absolute terms, up to 11 in 100 women with 25(OH)D 

<37.5nmol/L compared with 6 in 100 without low 25(OH)D had a severe adverse pregnancy 

outcome. 

 

Table 4 presents the predictive accuracy results for severe adverse pregnancy outcomes.  The 

AUC of the univariate model was not different from chance and the predictive accuracy of prior 

risk factors was poor. Adding 25(OH)D information to maternal and clinical risk factors  did not 

improve the ability to predict adverse pregnancy outcomes (X2=0.75, P=0.39). When restricting 



12 
 

 

the analysis to women at high risk of low 25(OH)D, the predictive accuracy of 25(OH)D alone 

was inferior compared with information from maternal and clinical history risk factors (X2=0.75, 

P=0.39) (Table 4).  

 

DISCUSSION 

This is the largest study to examine maternal vitamin D concentrations among women in first 

trimester, and to assess the association with adverse pregnancy outcomes. Our results indicate 

that there is variation in serum 25(OH)D concentrations in first trimester by a range of maternal 

characteristics and season. In general, low 25(OH)D concentrations were not associated with 

most adverse pregnancy outcomes, although women at high risk, such as those overweight or 

from Middle-Eastern and Asian countries, were more likely to develop a severe outcome. In spite 

of this, on further analysis, our findings revealed that low 25(OH)D concentrations did not 

predict complications any better than routinely collected maternal and clinical risk factor 

information, even when limiting analyses to these high risk women. Overall, our findings suggest 

that routine screening for 25(OH)D concentrations in early pregnancy would not help predicting 

those pregnancies at-risk of adverse pregnancy outcomes. These also support recent Australian 

Government antenatal care clinical practice guidelines which only recommend 25(OH)D testing 

of pregnant women at high risk of vitamin D deficiency (35).  

 

Our results provide important information and a moderating message for the current enthusiasm 

for screening and vitamin D supplementing in pregnancy (36).  Support for vitamin D testing and 

supplementation is based on certain studies suggesting low 25(OH)D concentrations are 

associated with potential harms in pregnancy (8-13). However, a recent randomised trial of 

vitamin D supplementation in pregnancy has suggested that there is no impact or decrease on 

adverse pregnancy outcomes, including preeclampsia, GDM and fetal growth (37). Despite not 
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having information regarding vitamin D supplementation amongst women, screening and 

supplementation were uncommon during the study period. Since then, vitamin D testing amongst 

Australian women aged 15-44 years has increased over 13-fold and with significant cost to the 

public healthcare system of $31.8 million in 2011 (38). Moreover, some studies have found 

elevated maternal concentrations >75 nmol/L were associated with increased risk of SGA infants 

(9), while ours did not. Subsequent development of atopic eczema in the offspring has also been 

identified (39). Although, our study did not assess childhood health, the potential long-term 

effect of vitamin D supplementation on the mother and offspring is unknown.  

 

Our study found no significant association between low 25(OH)D concentrations and most 

adverse pregnancy outcomes and is consistent with the majority of previous studies (15-23) 

assessing 25(OH)D in early pregnancy. Although we found women with 25(OH)D  <25nmol/L 

to be more likely to have an infant diagnosed SGA< 10th centile, this may be a chance finding 

due to multiple testing, given the result was not replicated in infants SGA< 3rd centile and results 

were imprecise. Other studies have evaluated 25(OH)D later in pregnancy when it may be too 

late to intervene and testing may provide no additional benefit. Only few studies have reported 

increased risks for women tested in early pregnancy; two found an association between 25(OH)D 

<30 and <37.5 nmol/L and SGA infants amongst white women (9, 11), one reported a five-fold 

increased risk of preeclampsia in white women with 25(OH)D <37.5 nmol/L at <22 weeks of 

pregnancy (8) and one study showed a two-fold risk of GDM in women with 25(OH)D <73.5 

nmol/L at 15-18 weeks (12). Unique to our study, we assessed the predictive accuracy of low 

25(OH)D concentrations for severe adverse pregnancy outcomes and found these were poor, also 

revealing that 25(OH)D adds very little information in addition to maternal risk factors. 

 



14 
 

 

Variation in findings between studies may also be explained by differences in cut-points used, 

population characteristics and methods used to measure 25(OH)D concentrations. Cut-points to 

define vitamin D sufficiency/insufficiency have been traditionally determined based on the 

threshold above where 25(OH)D serum concentrations have no correlation with serum 

parathyroid hormone (PTH) concentrations (PTH plateau) (40). A recent systematic review of 70 

studies found 25(OH)D level thresholds varied between 25-150 nmol/L (41), suggesting large 

individual variation. Therefore, use of particular cut-points to define vitamin D status may be 

unreliable given this heterogeneity. Furthermore, a recent study found no overall correlation 

between concentrations of PTH with 25(OH)D in pregnant women tested in first trimester. The 

authors concluded that 25(OH)D threshold estimates could not be precisely defined and are, 

therefore, less useful for determining optimum vitamin D status during pregnancy (42). In 

addition, recent studies have demonstrated that genetic differences in vitamin D receptor (VDR) 

has a strong influence on individual vitamin D metabolism which may impact on susceptibility to 

disease (43) and low birth size in infants from 25(OH)D deficient mothers (44).  Thus, future 

studies stratified by genetic variation are warranted. 

 

Significant population and geographic variation based on latitude and ethnic background have 

also been shown in a recent review of serum concentrations of 25(OH)D amongst women in first 

trimester (7). Regional differences in 25(OH)D concentrations are confirmed when comparing 

our results (latitude 34°S, median 56.4 nmol/L) with  a recent study examining 25(OH)D 

concentrations in pregnant women before 20 weeks living in tropical Australia (latitude 16.9°S), 

with mean 25(OH)D of 114 nmol/L and no women with concentrations <50nmol/L (45). 

Therefore, our findings are relevant to sun-rich latitudes with low prevalence of vitamin D 

deficiency and may not be applicable to other settings. Additionally, maternal risk factors for low 

25(OH)D concentrations in pregnancy such as obesity (due to storage of vitamin D in fat) and 
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race/ethnicity are also risk factors for preeclampsia and gestational diabetes. Therefore, adjusting 

for such factors may not completely control for the dual effect that these can have on adverse 

pregnancy outcomes (46). Finally, studies have found a lack of standardisation of 25(OH)D 

measurement methods and significant variability in results between assay methods and 

laboratories (47, 48).   

 

Strengths of the study were the assessment of a large sample of pregnant women attending first 

trimester screening over four seasons. Record-linkage of laboratory to birth and hospital data 

ensured follow-up and ascertainment of pregnancy outcomes for 93% of samples with minimal 

missing information. Missing health and pregnancy information was mostly attributable to 

women residing in bordering towns and giving birth in hospitals out of state, but these women 

had similar characteristics compared with those included in the study. Given limited resources, 

we were unable to include all women undergoing first trimester screening in our study and 

conducted a nested case-control, instead. To overcome this potential limitation and ensure 

representativeness of our sample, cases were randomly selected according to population 

prevalence rates and corresponding controls randomly identified based on unknown outcome 

status and matched by timing of collection. Furthermore, we adjusted and weighted our results 

back to population rates of maternal characteristics to ensure comparability with the NSW 

maternity population. A possible weakness of the study is that outcomes were not verified with 

individual medical records, but we only used data in this study that have been previously 

validated (26). However, other potential confounders such as ethnicity, BMI, sun exposure, 

education and lifestyle behaviour were not measured or available in the datasets and could not be 

taken into account. 
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In conclusion, our findings confirm that there is variation in 25(OH)D serum concentrations in 

first trimester by maternal characteristics and season of testing. Low 25(OH)D concentrations 

were not associated with an increased risk of most adverse pregnancy outcomes and have poor 

predictive accuracy. Results reveal that widespread screening for vitamin D deficiency in the 

first trimester of pregnancy would not efficiently identify women at-risk of adverse pregnancy 

outcomes. Our findings suggest that current screening and testing for vitamin D in early 

pregnancy without taking into account individual variability leads to over-diagnosis and 

unnecessary and potentially harmful treatment of women, and causes excessive burden and costs 

to healthcare providers. 
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TABLE 1  First trimester 25(OH)D serum levels by maternal characteristics   

 
1 P-values for Kruskall-Wallis test; 25(OH)D: 25-hydroxyvitamin D

Maternal characteristics  25(OH)D  percentiles (nmol/L)   

n (%) 5th 10th 25th  50th  75th 90th 95th P-value1 

All woman 5109 23.4 31.2 43.4 56.4 69.9 84.8 92.8  

         
 

Maternal age (y)                 0.91 
<25   313 (6.1) 25.5 35.9 45.5 56.5 68.2 83.3 89.5  
25 - 29  1035 (20.3) 21.2 28.4 42.2 56.9 71.3 85.6 93.4  
30 - 34  1957 (38.3) 24.0 31.0 43.1 55.9 69.8 85.1 95.5  
35 - 39  1538 (30.1) 24.4 31.4 43.1 56.4 70.3 84.6 92.3  
40+   265 (5.2) 20.0 27.1 38.9 55.5 69.4 85.1 104.0  
          

 
       

Number of previous pregnancies   
 

       <0.001  
0  2448 (47.9) 23.1 31.5 42.0 54.5 67.1 80.5 88.7  
1  1722 (33.7) 23.8 31.5 44.6 57.5 71.4 85.8 93.0  
2+   929 (18.2) 21.4 30.2 42.5 57.1 71.8 90.5 96.1  
          

 
       

Smoking during pregnancy        
 

      0.01  
Yes   326 (6.4) 29.0 36.2 45.2 58.4 71.3 88.7 93.4  
No 4739 (93.6) 22.6 30.4 42.6 56.0 69.6 84.2 92.7  
          

 
       

Maternal weight (kg)         
 

      <0.001  
<55  798 (18.6) 23.2 29.5 43.1 56.2 71.0 86.8 92.5  
55 - 64 1434 (33.5) 23.7 31.5 43.7 57.4 71.5 86.6 96.9  
65 - 74 1076 (25.1) 25.1 31.5 43.7 57.5 70.4 85.0 93.3  
75 - 84  494 (11.5) 21.3 32.3 43.2 55.8 67.6 84.2 90.1  
85+  478 (11.2) 24.0 32.2 41.4 51.2 61.9 76.5 85.8  
          

 
       

Gestational week at sampling               0.21 
10   467 (9.1) 26.0 33.5 42.4 57.5 72.5 85.9 95.1  
11  1609 (31.5) 21.9 30.9 43.2 56.5 68.8 82.3 91.3  
12  2092 (41) 24.6 31.4 44.2 56.4 69.8 85.8 93.2  
13   806 (15.8) 20.6 29.5 42.0 56.4 70.1 85.3 95.7  
14   135 (2.6) 26.9 32.5 40.3 53.7 73.3 83.3 90.7  
          

 
       

Country of birth         
 

      <0.001  
Australia & New Zealand 3343 (65.5) 28.2 35.7 46.1 58.4 72.5 86.8 94.9  
Pacific Islands   39 (0.8) 17.9 21.2 36.4 51.8 61.6 74.5 74.5  
Europe, North America & 
South Africa  552 (10.8) 28.9 33.2 48.9 60.3 72.6 88.2 96.9  

Middle East  114 (2.2) 17.0 17.9 30.8 44.5 59.4 67.9 89.2  
South east Asia  341 (6.7) 19.5 24.6 37.3 49.2 62.5 77.1 84.0  
China, Hong Kong & Taiwan  269 (5.3) 23.5 29.7 39.0 52.7 64.5 80.3 86.2  
Japan & Koreas  144 (2.8) 20.6 24.0 33.5 45.9 59.5 68.2 85.3  
India, Pakistan, Sri-Lanka, 
Nepal & Bangladesh 195 (3.8) 11.3 13.6 20.0 34.3 46.0 56.3 60.0  

Central & South America   70 (1.4) 26.9 30.4 40.2 51.9 61.1 83.3 87.7  
Africa & Caribbean   36 (0.7) 21.3 22.0 23.4 44.4 51.8 69.5 87.4  
                   
Socio-economic disadvantage quintiles     

 
      <0.001  

1   (most disadvantage)   387 (7.6) 20.8 25.4 39.5 52.7 65.4 82.0 88.4  
2   626 (12.3) 27.1 33.6 44.9 57.9 70.2 85.9 94.1  
3   811 (16) 24.1 31.5 42.1 54.5 67.5 83.1 90.4  
4   737 (14.5) 23.2 30.1 43.2 56.3 70.8 86.1 93.0  
5   (least disadvantage)  2524 (49.6) 24.5 33.7 45.7 58.7 73.3 88.8 98.1  
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TABLE 2  Maternal characteristics and 25(OH)D serum levels by adverse pregnancy outcomes 

     
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 Mean ± SD (all such values) 

* P<0.05 for assessment of outcomes compared with pregnancies unaffected by each outcome using chi-square test, t-test or Kruskall-Wallis test as appropriate; SGA: Small for gestational age ; 

25(OH)D: 25-hydroxyvitamin D 

 

 
 
 
 
 
 
 
 

Maternal 
characteristics 

Unaffected 
N=3714           
n (%) 

SGA<10th 
centile    
N=580            
n (%)   

SGA<3rd 
centile       
N=149               
n (%) 

Preterm birth 
<37 weeks  

N=388            
n (%) 

Preterm birth 
<34 weeks    

N=115            
n (%) 

All 
preeclampsia 

N=223                
n (%) 

Early-onset 
preeclampsia  

N=29              
n (%) 

Gestational 
diabetes 
N=376            
n (%) 

Miscarriage 
N=39           
n (%) 

Stillbirth     
N=33              
n (%) 

Age (y) 33.1 ± 4.71 32.8 ± 5.0 33.6 ± 5.2 32.6 ± 4.8 32.7 ± 5.2 32.8 ± 5.1 31.2 ± 6.0 34.5 ± 4.6 * 34.9 ± 5.5 * 32.7 ± 5.8 

Smoking  200 (5.4) 61 (10.7) * 19 (12.9) * 36 (10) * 12 (13.5) * 12 (5.4) 1 (3.6) 23 (6.2) 2 (5) 5 (12.5) * 

Nulliparous 1634 (44.2) 368 (64.2) * 94 (64) * 191 (53.1) * 48 (53.9) 150 (67.6) * 21 (75) * 188 (50) - 18 (45) 

Maternal weight (kg) 66.4 ± 13.8 61.0 ± 13.4 * 59.3 ± 12.5 * 67.3 ± 15.9 66.8 ± 14.9 72.6 ± 16.8 * 68.9 ± 18.1 69.8 ± 17.8 * 69.0 ± 13.6 75.6 ± 17.9 * 

Season of sampling           
Summer  884 (23.8) 142 (24.5) 30 (20.1) 100 (25.8) 29 (25.2) 67 (30.0) 11 (37.9) 97 (25.9) 8 (20.5) 4 (12.1) 

Autumn 859 (23.1) 133 (22.9) 43 (28.9) 91 (23.5) 30 (26.1) 53 (23.8) 3 (10.3) 83 (22.2) 10 (25.6) 10 (30.3) 

Winter 1008 (27.1) 158 (27.2) 35 (23.5) 99 (25.5) 30 (26.1) 51 (22.9) 5 (17.2) 97 (25.9) 8 (20.5) 12 (36.4) 

Spring 963 (25.9) 147 (25.3) 41 (27.5) 98 (25.7) 26 (22.6) 52 (23.3) 10 (34.5) 97 (25.9) 13 (33.3) 7 (21.2) 

Median 25(OH)D  
[nmol/L (IQR)] 

56.9                        
(43.9 - 70.8) 

55.3              
(41.1 - 68.1) 

 54.5              
(40.1 - 69.1) 

 56.5              
(43.0 - 69.6) 

55.9                
(40.2 - 69.8) 

 54.6               
(45.5 - 69.6) 

 53.5               
(42.4 - 61.7) 

52.1               
(41.5 - 63.6) * 

52.7                
(43.0 - 64.8) 

 59.1                 
(33.2 - 71.4) 

<25 nmol/L 198 (5.3) 52 (9.0) 13 (8.7) 25 (6.4) 9 (7.8) 8 (3.6) 2 (6.9) 24 (6.4) 3 (7.7) 4 (12.1) 

<37.5 nmol/L 588 (15.8) 114 (19.6) 33 (22.2) 67 (17.3) 23 (20.0) 23 (10.3) 6 (20.7) 77 (20.5) 6 (15.4) 7 (21.2) 
37.5 - 49.9 nmol/L 702 (18.9) 110 (19.0) 20 (13.2) 78 (20.1) 25 (21.7) 58 (26.1) 9 (31.0) 95 (25.3) 10 (25.6) 8 (24.2) 
50 - 75 nmol/L 1663 (44.8) 256 (44.1) 70 (47.0) 171 (44.1) 49 (42.6) 105 (47.1) 13 (44.8) 155 (41.2) 14 (35.9) 12 (36.4) 
>75 nmol/L 761 (20.5) 100 (17.2) 26 (17.5) 72 (18.6) 18 (15.7) 37 (16.6) 1 (3.5) 49 (13.0) 9 (23.1) 6 (18.2) 
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TABLE 3  Association between first trimester 25(OH)D serum levels and adverse pregnancy outcomes 
 

Adverse pregnancy 
outcome 

Univariate OR  Adjusted OR1  
<25                

nmol/L 
<37.5           

nmol/L 
37.5 - 49.9 

nmol/L 
50 - 75        
nmol/L 

>75             
nmol/L 

<25                
nmol/L 

<37.5           
nmol/L 

37.5 - 49.9 
nmol/L 

50 - 75        
nmol/L 

>75             
nmol/L 

SGA<10th centile 
(n=580) 1.77 (1.22, 2.56)2 1.28 (0.99, 1.66) 1.02 (0.79, 1.31) 1.0 (Ref) 0.87 (0.66, 1.13) 1.58 (1.06, 2.35) 1.10 (0.83, 1.46) 0.94 (0.72, 1.23) 1.0 (Ref) 0.96 (0.73, 1.27) 

SGA<3rd centile 
(n=149)  1.84 (0.91, 3.73) 1.32 (0.82, 2.11) 0.73 (0.43, 1.26) 1.0 (Ref) 0.81 (0.49, 1.36) 1.80 (0.82, 3.95)  1.12 (0.66, 1.90) 0.70 (0.39, 1.23) 1.0 (Ref) 0.90 (0.52, 1.55) 

All preterm birth <37 
weeks  (n=388) 1.21 (0.75, 1.96) 1.08 (0.78, 1.48) 1.04 (0.77, 1.41) 1.0 (Ref) 0.90 (0.66, 1.23) 1.23 (0.75, 2.00) 1.06 (0.77, 1.47) 1.01 (0.74, 1.37) 1.0 (Ref) 0.92 (0.68, 1.27) 

Spontaneous preterm 
birth <37 weeks  (n=217) 1.44 (0.75, 2.75) 1.32 (0.87, 2.01) 1.04 (0.69, 1.56) 1.0 (Ref) 0.92 (0.61, 1.38) 1.47 (0.77, 2.82) 1.32 (0.86, 2.01) 1.01 (0.67, 1.53) 1.0 (Ref)  0.96 (0.63, 1.46) 

All preterm birth <34 
weeks  (n=115) 1.51 (0.68, 3.36) 1.39 (0.80, 2.42) 1.09 (0.65, 1.85) 1.0 (Ref) 0.76 (0.42, 1.36) 1.75 (0.77, 3.96) 1.41 (0.80, 2.48) 1.10 (0.64, 1.87) 1.0 (Ref) 0.74 (0.41, 1.34) 

Spontaneous preterm 
birth  <34 weeks  (n=56)  2.66 (0.93, 7.61)  1.80 (0.81, 4.01)  1.14 (0.52, 2.49) 1.0 (Ref)  1.15 (0.53, 2.50) 2.71 (0.92, 7.97) 1.61 (0.71, 3.63) 1.11 (0.50, 2.49) 1.0 (Ref) 1.25 (0.57, 2.75) 

All preeclampsia 
(n=223) 0.53 (0.24, 1.17) 0.66 (0.40, 1.07) 1.45 (0.98, 2.08) 1.0 (Ref) 0.83 (0.54, 1.26)  0.46 (0.19, 1.10) 0.63 (0.37, 1.06) 1.30 (0.87, 1.94) 1.0 (Ref) 0.90 (0.57, 1.41) 

Early-onset 
preeclampsia  (n=29) 1.67 (0.28, 9.98) 1.27 (0.43, 3.69) 1.24 (0.49, 3.14) 1.0 (Ref) 0.18 (0.02, 1.42) 1.40 (0.20, 9.89)  1.01 (0.31, 3.29) 1.50 (0.50, 4.47) 1.0 (Ref) 0.11 (0.01, 1.18) 

Gestational diabetes 
(n=376) 1.40 (0.85, 2.32) 1.48 (1.08, 2.04) 1.46 (1.09, 1.95) 1.0 (Ref) 0.61 (0.43, 0.87) 0.97 (0.56, 1.69)  1.08 (0.74, 1.56) 1.16 (0.83, 1.62) 1.0 (Ref) 0.88 (0.59, 1.30) 

Miscarriage (n=39) 1.13 (0.27, 4.84) 0.81 (0.29, 2.23) 1.27 (0.52, 3.08) 1.0 (Ref) 1.36 (0.55, 3.35) 1.41 (0.31, 6.50) 0.90 (0.32, 2.54) 1.39 (0.56, 3.46) 1.0 (Ref) 1.09 (0.42, 2.80) 

Stillbirth (n=33) 2.21 (0.62, 7.92)  1.23 (0.44, 3.46) 1.35 (0.51, 3.5) 1.0 (Ref) 1.20 (0.41, 3.51)  2.66 (0.70, 10.11) 1.10 (0.38, 3.16) 1.44 (0.54, 3.87) 1.0 (Ref) 1.27 (0.42, 3.87) 

Severe outcomes (n=272) 1.81 (1.05, 3.10) 1.38 (0.96, 1.98) 1.02 (0.71, 1.47) 1.0 (Ref) 0.82 (0.56, 1.20) 1.73 (0.97, 3.08) 1.25 (0.85, 1.85) 0.99 (0.68, 1.45) 1.0 (Ref) 0.86 (0.58, 1.27) 

 
1 Adjusted for maternal age, parity, smoking during pregnancy, maternal weight, previously diagnosed hypertension, previously diagnosed diabetes, season at sampling, country of birth or 

socio-economic disadvantage;  
2 Odds ratio: 95% CI in parentheses (all such values) using logistic regression 

SGA: Small for gestational age;  COB: Country of birth 
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TABLE 4  Predictive accuracy results of 25(OH)D in first trimester on severe pregnancy outcomes1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1Severe pregnancy outcome defined as a composite outcome of either SGA<3rd centile, preterm birth <34 weeks, early-onset preeclampsia or stillbirth 
2P- value: test of AUC against chance (0.5) by likelihood ratio (X2) test;  
3 Percentage; 95% confidence intervals in parentheses (all such values) 
4Maternal and clinical risk factors: Maternal age, parity, smoking during pregnancy, maternal weight, previously diagnosed hypertension, previously diagnosed diabetes, season at sampling, 

country of birth or socio-economic disadvantage 
5Sub-analysis among high risk women (weight >85 kg or born in India, Pakistan, Bangladesh, Sri-Lanka, Middle East or African countries) with severe pregnancy outcomes compared to those 

high-risk women without severe pregnancy outcomes  

AUC: Area under the ROC curve; PPV: Positive predictive value; NPV: Negative predictive value; LR (+): Positive likelihood ratio; 25(OH)D: 25-hydroxyvitamin D 

 

 

 

Variable AUC P-value2 Sensitivity  Specificity  PPV  NPV  LR (+) 

Total sample (n=5,109)        
25(OH)D <25 nmol/L 0.51 0.14 8.4 (5.3, 12.4)3 94.4 (93.7, 95.0) 7.6 (4.8, 11.3) 94.9 (94.2, 95.5) 1.44 

25(OH)D <37.5 nmol/L  0.52 0.09 20.5 (15.8, 25.9) 83.8 (82.7, 84.9) 6.6 (5.0, 8.5) 95.0 (94.3, 95.7) 1.29 
Maternal and clinical risk 
factors only4 0.64 <0.0001 14.4 (10.4, 19.1) 95.0 (94.3, 95.6) 13.9 (10.1, 18.5) 95.2 (94.5, 95.8) 2.87 

25(OH)D <25 nmol/L +  
maternal and clinical risk 
factors 

0.64 <0.0001 14.0 (10.1, 18.7) 94.0 (93.3, 94.6) 11.6 (8.3, 15.5) 95.1 (94.5, 95.7) 2.32 

25(OH)D <37.5 nmol/L +  
maternal and clinical risk 
factors 

0.64 <0.0001 12.9 (9.2, 17.5) 94.3 (93.6, 95.0) 11.3 (8.0, 15.4) 95.1 (94.4, 95.7) 2.27 

High risk women (n=758)5   
     

25(OH)D <25 nmol/L 0.52 0.37 19.6 (10.2, 32.4) 85.3 (82.5, 87.8) 9.6 (4.9, 16.6) 93.0 (90.7, 94.8) 1.34 

25(OH)D <37.5nmol/L  0.57 0.06 42.9 (29.7, 56.8) 70.2 (66.6, 73.6) 10.3 (6.7, 14.9) 93.9 (91.5, 95.8) 1.44 
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FIGURE 1 Seasonal variation of maternal serum 25(OH)D concentrations at 10 to 14 weeks gestation (n=5,109)  

 
1 Median: IQR in parentheses (all such values); P<0.001 for overall difference in median values using Kruskall-Wallis test;  

Black line represents polynomial regression trend; 25(OH)D: 25-hydroxyvitamin D. 


