
 i

 
 
 
 
 
 
 
 

Acetylcholine in Central 

Cardiorespiratory Regulation in Health 

and Depression 
 
 
James Robert Padley 
 
 
 
 
 
 
 
A thesis submitted in fulfilment of the requirements for the degree of  

Doctor of Philosophy (Medicine), University of Sydney 

 

 

February 2007 

 

 

 

 

 

 

 

 

 

 

 

 



 ii

Declaration of Originality 

 

I certify that the contents of this thesis represent the original experimental and written work 

of the candidate except where due acknowledgement is made. All work was conducted in 

the Hypertension and Stroke Research Laboratories under the supervision of Dr Ann K 

Goodchild and Professor Paul M Pilowsky. This thesis has not been previously submitted 

for a degree or diploma to any other Institution. Parts of this text have been published, 

details of which can be found on page ix.  

 

 

            

Signature of candidate       Date 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii

Acknowledgements 

 

This thesis would not have been possible without the support of numerous colleagues, 

friends and family. 

 

First and foremost, thank you to my wonderful supervisors, Ann Goodchild and Paul 

Pilowsky. Ann, you have been a constant source of knowledge, advice and encouragement. 

Paul, your humour and boundless energy and enthusiasm for research has always kept me 

buoyed. None of this would have been possible without you both. I feel very lucky to have 

had the opportunity to work with you and with the simply wonderful group of people you 

have attracted to the lab, and whom you continue to attract. 

 

Thank you also to Jean-Luc Elghozi, Dominique Laude, Veronique Baudrie and Arlette 

Girard, of the Faculté de Médecine, Université René Descartes Paris V, for accepting me 

and making my time in Paris so enjoyable and fruitful. I am also very grateful to the 

Ramsey Health Care Foundation for providing a Travel Fellowship. 

 

I am very grateful to the Centenary Foundation of Royal North Shore Hospital and the 

Australian Postgraduate Award scheme for financial support. 

 

Thank you to all the staff at Gore Hill Research Laboratories. I am especially grateful to 

Giselle Berend and Lal for their work in establishing and maintaining breeding colonies of 

the Flinders lines. Many thanks to David Overstreet from the University of North Carolina 

for making this possible. 

 

Thank you to all the wonderful people I’ve known and worked with in the Postgraduate 

Research Students’ Society of Royal North Shore Hospital (PReSS). 

 

To the many past and present members of HSRL, thank you so much for the joy and fun 

you brought to my time there. Without you I could not have become addicted to coffee, or 

survived with my sanity intact. I won’t forget you. I hope you find happiness and success 

in the paths you take. Tash (the Phantom!) thank you for being with me on this crazy 

journey and making me smile, Maz I will miss you, Tina and Simo you are the most 

legendary young old people I know (hehe), Pete (the guerrilla gardener) thank you mate 

your positive energy is truly contagious and Cara and Mel you girls are awesome, good 



 iv

luck with all your PhDs. Todd, it was great travelling with you mate (and having many a 

traveller!). Thank you Qun for your wonderful nature and the beautiful work you do, thank 

you also Deb, Qi-Jian, Felicity, Darryl, Thomas, Kiran, Kuan, Liz, John, Val, Jemima, 

Natalie, Koji, Max, Diana, Susan, Tara and James. 

 

To my best mates, Graham, Andy, Lea and Richie: thank you so much, for being there, 

running amok and staying young at heart. Big hugs. Grae, you have been a constant 

support and true friend. To Amy, my foreign correspondent, thank you for your support 

and friendship. 

 

To my family, Mum, Ben and Alex, thank you for your love and support, for putting up 

with me and sharing my hopes and fears. I know they say you can’t choose your family, 

but I could not have chosen better partners for this journey so far. This thesis is dedicated 

to you Mum. You have been my inspiration. 

 
 
 

Sound, sound the clarion, fill the fife, 
Throughout the sensual world proclaim, 
One crowded hour of glorious life, 
Is worth an age without name. 
 
     Thomas Osbert Mordaunt 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v

Abstract 

Circulation and breathing movements that are essential for life are regulated by neurons in 

the hypothalamus and lower brainstem. Activity of these neurons is regulated by peripheral 

afferent and higher order inputs that release a diverse array of amino acids, amines and 

peptides. In this thesis we investigated the role of the neurotransmitter acetylcholine (ACh) 

and its receptors in regulation of cardiorespiratory homeostasis. Secondly, we determined 

whether or not genetic disturbances in regulation of acetylcholine receptor sensitivity 

affect central control of circulation, body temperature or respiration.  

 

The findings presented in Chapter 3 reveal a novel functional role of ACh and G-protein 

coupled muscarinic receptor (mAChR) activation in the rostral ventrolateral medulla 

(RVLM). We showed for the first time that some non-C1 RVLM neurons express mRNA 

for the M2 or M3 receptor; however, both C1 and enkephalinergic RVLM neurons were 

closely apposed by cholinergic terminals positive for the vesicular acetylcholine 

transporter (vAChT). Physiological studies demonstrated that activation of mAChR within 

the RVLM in anaesthetised rats increases arterial pressure and sympathetic nerve activity 

and has differential effects on major cardiorespiratory reflexes: RVLM mAChR activation 

resets the sympathetic baroreflex to higher arterial pressures and increases its gain and, 

concomitantly, attenuates excitatory reflexes evoked by peripheral chemoreceptor or 

somatic afferent stimulation. Retrograde tracing from the RVLM combined with vAChT 

immunoreactivity showed that neurons in the pedunculopontine tegmental nucleus (PPT) 

are the sole source of cholinergic input to the RVLM. The PPT-RVLM pathway appears to 

be part of a central command circuit concerned with adjusting circulatory function 

appropriate to increased muscle activity. These data support the notion that activation of 

specific neurotransmitter receptors in the RVLM encodes functional specificity in control 

of sympathetic outflow and reflex function.  

 

The extent to which genetic variations in central mAChR sensitivity influence autonomic 

function is unknown. Flinders Sensitive Line (FSL) rats were bred from Sprague Dawley 

(SD) rats for exaggerated behavioural and hypothermic responses to cholinesterase 

inhibitors and direct-acting mAChR agonists. A control genetic counterpart, the Flinders 

Resistant Line (FRL), was also bred in parallel for reduced responses to cholinergic 

agonists. The findings of Chapter 5 showed for the first time that FSL rats exhibit an 

increase in M2 and reduction in M3 receptor expression in the rostral medulla, suggesting 

that cholinergic signalling in this region may be altered. However, alterations of mAChR 
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expression specific to FSL rats were restricted to this area and there were no changes in 

cerebellar expression of mAChR in any strain. Physiological studies showed that conscious 

or anaesthetised FSL rats were more sensitive to thermoregulatory responses to central 

mAChR activation (ie hypothermia and increase in cutaneous blood flow); whereas pressor 

responses were reduced compared to SD and FRL rats. The increase in sympathetic 

activity and depression of respiration evoked by central mAChR activation was unchanged 

and attenuated, respectively, in FSL rats compared to control strains. These findings 

indicate that mAChR involved in control of different autonomic functions are regulated 

independently at the genetic and / or post-transcriptional level. 

 

The findings of Chapters 4 and 6 reveal a novel effect of breeding for cholinergic 

hypersensitivity in FSL rats on control of vagal and sympathetic outflow. Spectral analysis 

of blood pressure recordings in conscious FSL rats showed a reduction in total and high 

frequency power of heart rate variability (HRV), an increase in the LF/HF ratio and 

reduction in baroreflex sensitivity (BRS) compared to controls. These changes reflect a 

reduction in reflex vagal input and relative predominance of sympathetic input to the sinus 

node in FSL rats. Under urethane anaesthesia, FSL rats had a higher heart rate and 

exhibited lower gain of baroreflex control of splanchnic sympathetic nerve activity (SNA). 

Moreover, FSL rats were more susceptible to ventricular arrhythmias during infusion of 

the cardiac glycoside ouabain under anaesthesia compared to controls. These data indicate 

that FSL rats exhibit impaired reflex regulation of vagal and sympathetic outflow that 

could underlie increased vulnerability to arrhythmia seen in this strain. The precise brain 

regions and neurotransmitters that underlie autonomic disturbances seen in FSL rats are 

unclear. As well as muscarinic hypersensitivity, FSL rats also exhibit increased sensitivity 

to nicotine, serotonin and dopamine. Multiple chemical sensitivities in FSL rats may arise 

from functional interactions with mAChR or changes in common intracellular regulatory 

or signalling pathways.  

 

FSL rats exhibit a number of behavioural and somatic abnormalities consistent with 

clinical depression, including reduced motivated behaviour and sleep and psychomotor 

disturbances. These symptoms are also alleviated by treatment with antidepressants, 

suggesting that similar neurochemical abnormalities may underlie behavioural disturbances 

seen in FSL rats and human depression. Symptoms of depression are an emerging risk 

factor in the development of cardiovascular disease and are associated with increased risk 

of dying from a cardiac-related event. A reduction in HRV and BRS in depressed patients 
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has been widely reported and is considered to be a key substrate predisposing to 

arrhythmia in this patient group. In this thesis we demonstrate for the first time that FSL 

rats exhibit similar autonomic abnormalities to those reported in human depression and are 

more vulnerable to ouabain-induced ventricular arrhythmias. These findings suggest that 

biological factors predisposing to autonomic dysfunction and arrhythmia in FSL rats could 

also operate in human depression. This may involve altered neurotransmission in 

cardiovascular brain regions, or inappropriate regulation of cardiovascular function by 

arousal or motor control pathways.  

 

Overall, this thesis provides novel insights into cholinergic mechanisms that regulate 

cardiorespiratory homeostasis. ACh is important in physiological regulation of circulation 

via activation of G-protein coupled mAChR in the RVLM. Selective breeding for 

cholinergic hypersensitivity in FSL and FRL rats results in region- and subtype-specific 

changes in mAChR expression in the lower brainstem and differentially influences 

muscarinic control of circulation and breathing. Variations in central mAChR sensitivity 

may contribute to impaired reflex control of vagal and sympathetic outflow and could 

hence predispose to cardiac complications including arrhythmias. Future studies may aim 

to further understand the relationship between endogenous sensitivity of metabotropic 

neurotransmitter receptors in the CNS and cardiovascular disturbances associated with 

depression.  
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‘When life came out of the ocean, it had to figure out a way to carry around its own bathing 
ocean and circulate it…I’ve thought of each of us, you and me, as our own pinched-off, 
ambulatory seas, ones in which only our hearts keep us buoyed.’ 

from ‘A Man After His Own Heart ‘ 
by Charles Siebert 

 

I. Central control of the Circulation 
 

Introduction 
Neurons that regulate cardiovascular function are primarily located within the 

hypothalamus, brainstem and spinal cord. Their activity patterns are responsible for the 

rhythmic discharge in sympathetic vasoconstrictor nerves that innervate vascular smooth 

muscle and sympathetic and vagal nerves that supply the heart. A critical function of these 

central neurons is to match perfusion with the rate of aerobic metabolism and pulmonary 

gas-exchange in order to maintain acid-base homeostasis. The critical afferent inputs to 

these neurons originate from specialised peripheral receptors that encode information about 

arterial blood pressure (AP) and oxygen saturation, and from central neurons that control 

respiration whose activity is dictated by interstitial H+ (Dampney, 1994b; Pilowsky, 1995; 

Guyenet, 2006). Descending inputs from higher brain regions also modulate patterns of 

cardiorespiratory activity to meet specific behavioural demands, ranging from intense 

exercise to sleep (Dampney et al., 2005). 

 

Sympathetic Control of the Circulation 
Noradrenergic sympathetic fibres innervating the heart and blood vessels originate in pre- 

or paravertebral ganglia that in turn receive an excitatory cholinergic input from 

sympathetic preganglionic neurons (SPN). SPN are located in longitudinal cell clusters 

within the spinal cord. Most SPN are found within the intermediolateral cell column (IML) 

(Strack et al., 1988) where their segmental distribution is topographically correlated with 

the outflow to different target organs and ganglia (Fig. 1.1.1) (Oldfield and McLachlan, 

1981; Anderson et al., 1989; Pilowsky et al., 1992).  

 

The ongoing activity of SPN is necessary for maintaining vasoconstrictor tone and AP. 

SPN receive ongoing excitatory inputs that are mainly supraspinal in origin, as 

demonstrated in intracellular recordings from thoracic and lumbar SPN in cat (Coote and 

Westbury, 1979; Hirst and McLachlan, 1980; Dembowsky et al., 1985; Pilowsky et al., 

1994a).  



Figure 1.1.1      Topographical distribution of SPN in the rat spinal cord. Histograms are 
shown illustrating the proportion of SPN labeled following Fluorgold injections into the major 
sympathetic ganglia and adrenal gland in rats, as indicated on right. The segmental distribution 
of SPN is topographically correlated with the outflow to different target organs and beds. 
Adapted from Strack et al. 1988.
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Patch-clamp recordings in isolated spinal cord slices from cat and rat show that SPN also 

receive inhibitory inputs (Dun et al., 1992). GABAergic interneurons located close to the 

central canal are a potential intraspinal source of ongoing SPN inhibition (Deuchars et al., 

2005). Inhibitory neuropeptides including enkephalin also richly innervate SPN and a 

proportion of these inputs originate from within the spinal cord (Llewellyn-Smith et al., 

2005). The functional role of inhibition in control of SPN activity is at present unclear.  

 

Excitatory inputs to SPN originate from several cell groups in the brain (Loewy et al., 

1979; Loewy, 1981; Loewy et al., 1981; Luiten et al., 1985) as well as neurons in the upper 

cervical spinal cord (Jansen and Loewy, 1997; Seyedabadi et al., 2006). A key observation 

by Loewy and colleagues was the restricted distribution of central neurons with inputs to 

multiple sympathetic beds, demonstrated by transneuronal labeling from the superior 

cervical (SCG), stellate or celiac ganglia or adrenal medulla (Strack et al., 1989). These 

presympathetic neurons are located in five major cell groups in the medulla, pons and 

hypothalamus. A cornerstone of research in this field remains an understanding of the 

central circuitry that determines the coordinated activity of multiple sympathetic outflows 

and their responses to different afferent signals. In particular, how do single afferent 

signals generate complex and selective changes in regional sympathetic outflow? In the 

following sections, the location, connections, neurochemistry and functions of 

presympathetic cell groups are reviewed with a focus on the role of neurons in the rostral 

ventrolateral medulla (RVLM). 

 

The Rostral Ventrolateral Medulla (RVLM) 

Introduction 
The region of the RVLM located immediately caudal to the facial nucleus contains neurons 

whose activity largely determines ongoing vasomotor and reflex activity in sympathetic 

efferent pathways (Reis et al., 1984; Dampney, 1994b, 1994a; Pilowsky and Goodchild, 

2002; Guyenet, 2006). Its discovery was heralded by Dittmar’s experiment in rabbits 

which found that a knife cut placed at this level caused AP to fall to spinal levels (50 

mmHg) and abolished the pressor response to stimulation of a sciatic nerve (Fig. 1.1.2) 

(Dittmar, 1873). Later studies showed that electrical stimulation within the dorsal or 

ventral medulla produced large increases in AP (Wang and Ranson, 1939; Alexander, 

1946). The work of Feldberg and others in the early 1970s showed that bilateral inhibition 

of the region of the ventral surface caudal to the trapezoid body and lateral to the pyramids  



The first cut went through the fovea anterior and the 
rostral margin of the trapezoid body. The second cut 
was 4mm lower and 3mm ahead of the calamus 
scriptorius, 2mm caudal to the caudal margin of the 
trapezoid body. Both vagi are cut.

1. Stimulation of the nervus ischiadicus (sciatic)
2. First cut
3. Stimulation
4. Stimulation
5. Second cut
    Further stimulations were without effect.
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Figure 1.1.2    Experimental set-up and findings in Dittmar’s first stereotaxic 
experiment in rabbits (1873) (translated from the German by the candidate). 
Dittmar’s study was the first to demonstrate the importance of the rostral medulla 
in tonic and reflex control of blood pressure. A knife cut through the medulla 2 mm 
caudal to the trapezoid body (but not more rostral) produced a dramatic fall in 
carotid AP (to 50 mmHg) and abolished the increase in AP evoked by stimulation of 
a sciatic nerve. 
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using pentobarbital, glycine or GABA caused large falls in AP in cats (Feldberg and 

Guertzenstein, 1972; Guertzenstein, 1973; Guertzenstein and Silver, 1973; Feldberg and 

Guertzenstein, 1976). Subretrofacial lesions or inhibition of the RVLM in several species 

causes loss of vasomotor tone and an inability to reflexly restore AP in the short term 

(Dampney and Moon, 1980; McAllen et al., 1982; Ross et al., 1984b). 

 

Neurons in the RVLM that are exquisitely sensitive to baroreceptor activity project to the 

spinal cord where they excite, probably monosynaptically, a large number of 

vasoconstrictor and cardiac SPN (Brown and Guyenet, 1985; Morrison et al., 1988; 

Haselton and Guyenet, 1989b; Lipski et al., 1995; Lipski et al., 1996; Oshima et al., 2006). 

The ongoing activity of RVLM neurons is partly dependent upon activation of ionotropic 

glutamate receptors and metabotropic receptors (Seyedabadi et al., 2001; Dampney et al., 

2003b; Horiuchi et al., 2004); their excitability is powerfully restrained by ongoing 

GABAergic inputs (Sun and Guyenet, 1985; Li et al., 1991; Lipski et al., 1996). An 

enduring theoretical framework for understanding the regulation of AP is that continuous 

activity of RVLM neurons and their sensitivity to inhibitory baroreceptor input maintains 

normal levels of vasomotor tone (Horiuchi and Dampney, 1998). Branching projections 

from RVLM neurons to hypothalamic and other brainstem regions (Tucker et al., 1987; 

Verberne et al., 1999a) also regulates functions closely linked to control of AP, including 

control of sodium and water balance. Excitation of cell bodies within the RVLM evokes 

large increases in AP, adrenal medullary catecholamine and posterior pituitary hormone 

release (Goodchild et al., 1982; Ross et al., 1984b).  

 

The RVLM is also a key nodal point in several somatic and cardiovascular reflexes where 

largely convergent afferent inputs modulate the ongoing activity of sympathoexcitatory 

neurons (Verberne et al., 1999a). Blockade of excitatory or inhibitory amino acid 

transmission in the RVLM abolishes the sympathetic components of several key 

homeostatic reflexes, including the arterial baroreflex, peripheral chemoreflex and 

nociceptive somatosympathetic reflex (Guertzenstein and Silver, 1973; Feldberg and 

Guertzenstein, 1976; Miyawaki et al., 1996a; Miyawaki et al., 1996b). RVLM neurons also 

play an important role in sympathetic glucoregulatory responses (Madden et al., 2006).  

 

Several amino acid, amine and peptide inputs modulate the ongoing activity of RVLM 

neurons or selectively alter their reflex responsiveness (Dampney et al., 1996; Miyawaki et 

al., 2001, 2002b; Padley et al., 2003; Saigusa et al., 2003; Makeham et al., 2005). 
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Presumably these inputs arise from regions of the brain concerned with adjusting 

circulatory function to meet specific behavioural (eg. during sleep/wake or exercise) or 

adaptive requirements (eg. thirst and satiety), or following injury (eg. haemorrhage or 

acute pain). However, the precise functional role of many of these inputs in regulation of 

cardiovascular reflexes or sympathetic tone is unknown. 

 

Much of this work has been performed in anaesthetised animals and the precise role of the 

RVLM in the waking state is yet to be defined. Recent studies have indicated at least that 

the magnitude of depressor and pressor effects of amino acids injected into the RVLM is 

similar in conscious and anaesthetised rats (Araujo et al., 1999; Campos and McAllen, 

1999b; Sakima et al., 2000). In the absence of RVLM activity an adaptive central response 

acts to restore normal levels of AP. For example, normal AP is maintained in rats that have 

been recovered following bilateral electrolytic lesion of the RVLM under anaesthesia 

(Cochrane et al., 1988; Cochrane and Nathan, 1989). An enduring paradox is that other 

presympathetic cell groups do not appear to provide increased excitatory drive to raise the 

threshold of vasoconstrictor SPN. Rather, AP is restored mainly by increased activity of 

the renin-angiotensin system and release of vasopressin (Cochrane and Nathan, 1994).  

 

Caudal Medullary Regions Involved in Cardiovascular 

Regulation 
Several regions in the caudal medulla provide input to the RVLM, hypothalamus or spinal 

cord and modulate sympathetic or neurohumoral functions. Excitation of the region 

immediately caudal to the RVLM (caudal ventrolateral medulla (CVLM)) evokes 

depressor responses and inhibition or lesion of this area leads to increases in AP (Pilowsky 

et al., 1987). GABA-containing interneurons in the CVLM exhibit tonic baroreceptor-

related discharge (Schreihofer and Guyenet, 2003) and project monosynaptically to inhibit 

RVLM neurons (Li et al., 1991; Masuda et al., 1991). Activation or withdrawal of this 

pathway is crucial in the arterial baroreflex (Ross et al., 1984b; Dampney et al., 1988; 

Masuda et al., 1991; Horiuchi and Dampney, 1998). Injection of the GABA-A receptor 

antagonist bicuculline bilaterally into the RVLM evokes large increases in AP (Ross et al., 

1984b; Horiuchi and Dampney, 1998; Miyawaki et al., 2003) and prevents reflex 

reductions in firing rate of RVLM neurons induced by increases in AP (Sun and Guyenet, 

1985). Other inputs to CVLM neurons also contribute to ongoing inhibition of RVLM 

activity; large increases in AP are evoked by bicuculline injection into the RVLM or 
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following blockade of excitatory inputs to the CVLM in baro-intact or barodenervated rats 

(Sved et al., 2000; Schreihofer and Guyenet, 2002, 2003).  

 

Catecholaminergic neurons caudal to the RVLM project to hypothalamic neurosecretory 

neurons in the paraventricular nucleus and control posterior pituitary hormone release; 

their stimulation evokes release of vasopressin following baroreceptor activation (Blessing 

and Willoughby, 1985; McAllen and Blessing, 1987). A caudal pressor area (CPA) is 

located at a level just caudal to the emergence of the hypoglossal roots (Gordon and 

McCann, 1988; Possas et al., 1994; Natarajan and Morrison, 2000; Horiuchi and 

Dampney, 2002; Sun and Panneton, 2002; Seyedabadi et al., 2006). The CPA may directly 

excite (Possas et al., 1994) or inhibit ongoing inhibitory inputs (Horiuchi and Dampney, 

2002) into the RVLM; for example, inhibition of the CPA leads to falls in AP and pressor 

responses evoked from the region are blocked by inhibition of the RVLM (Possas et al., 

1994; Seyedabadi et al., 2006). Neurons in a recently defined medullo-cervical pressor 

area (MCPA), located in the caudal most VLM extending into upper cervical segments, 

appear to provide descending excitatory input to SPN independent of the RVLM 

(Seyedabadi et al., 2006). A schematic illustration of the major afferent and efferent 

connections of the RVLM and other medullary regions involved in cardiovascular 

regulation is shown in Fig 1.1.3. 

 

Location and Neurochemical Phenotype of 

Sympathoexcitatory Neurons in the RVLM 
The VLM extends from the pyramidal decussation caudally to the caudal pole of the facial 

nucleus rostrally. In rat, the VLM is located within the paragigantocellular reticular 

nucleus and contains the lateral reticular nucleus (Paxinos and Watson, 1996). The RVLM 

extends caudally from the facial nucleus and is bordered dorsally by the compact formation 

of the nucleus ambiguus (NA). In cat the RVLM is synonymous with the subretrofacial 

nucleus, which accurately describes the location of spinally projecting sympathoexcitatory 

RVLM neurons (Dampney and Moon, 1980; McAllen et al., 1994). In rat, these neurons 

are clustered immediately caudal to the facial nucleus extending for approximately 1 mm 

(Verberne et al., 1999a; Phillips et al., 2001).  

 

The identity of neurons in the RVLM important in AP control was focused originally on 

catecholamine-containing neurons whose distribution overlaps sites where effective lesion 
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lowers AP or stimulation alters autonomic and neurosecretory function (Blessing et al., 

1981; Goodchild et al., 1982; Ross et al., 1984b). Dahlström and Fuxe described 

catecholamine-fluorescing neurons throughout the medulla and proposed that some had 

spinal projections based upon increased fluorescence following spinal transection 

(Dahlström and Fuxe, 1965). Hökfelt et al. showed that many rostrally-located cells that 

project to the cord also contained the adrenaline-synthesizing enzyme PNMT (Hökfelt et 

al., 1974). It is now well established that cells in the VLM differentially express the 

enzymes required for adrenaline (C1 cell group) or noradrenaline synthesis (A1 cell group) 

and that they are topographically distributed (Fig. 1.1.3) (Blessing et al., 1981; Chalmers et 

al., 1981; Blessing et al., 1986; Minson et al., 1990a; Halliday and McLachlan, 1991b, 

1991a; Goodchild et al., 2000; Phillips et al., 2001). 

 

Many C1 neurons form part of the descending sympathoexcitatory projection from the 

RVLM (70 - 80 %) (Haselton and Guyenet, 1989b; Jeske and McKenna, 1992); however, 

the bulbospinal projection includes both C1 and non-C1 RVLM neurons. Some rostral C1 

and non-C1 cells have branching hypothalamic and spinal projections and C1 cells located 

in the caudal third of the RVLM project exclusively to the hypothalamus (Tucker et al., 

1987; Verberne et al., 1999a). This explains why RVLM stimulation leads to increases in 

AP as well as release of posterior pituitary hormones (Ross et al., 1984b). Almost all 

bulbospinal RVLM neurons (incl. 80 % of C1 cells) utilise glutamate as a primary 

transmitter indicated by expression of the type 2 vesicular glutamate transporter (vGLUT2) 

(Stornetta et al., 2002).  

 

Is the expression of adrenaline-synthetic enzymes in C1 neurons indicative of a functional 

role for adrenaline in control of SPN activity? Many cell bodies in the VLM are 

immunoreactive to TH or DβH, which are required for dopamine synthesis and conversion 

to noradrenaline respectively, in several species including rat, cat, rabbit, guinea pig and 

sheep (Blessing et al., 1986; Tillet, 1988; Halliday and McLachlan, 1991a, 1991b; 

Goodchild et al., 2000; Phillips et al., 2001). The number of cell bodies immunoreactive to 

PNMT, which converts noradrenaline to adrenaline, however, shows considerable species 

variation ranging from high abundance in rat to very little in cat and virtually none in sheep 

(Tillet, 1988; Halliday and McLachlan, 1991b; Phillips et al., 2001). Hence, the 

assumption that ‘C1’ neurons utilise adrenaline may not be true for all species.  
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Phillips et al. demonstrated that in rat most bulbospinal ‘C1’ neurons contained all the 

enzymes required for adrenaline synthesis, although about a quarter had very low or 

undetectable message for the catecholamine precursor aromatic L-amino acid 

decarboxylase (AADC) (Phillips et al., 2001). Thus, in this species it appears that a 

majority of sympathoexcitatory neurons utilise adrenaline as a co-transmitter. This is 

supported by the modulatory effect of adrenaline on cervical SPN recorded in adult rat in 

vivo (Lewis and Coote, 1990) or in slice preparations from neonatal rat (Miyazaki et al., 

1989). Adrenaline can have excitatory or inhibitory effects on SPN depending on the 

receptor subtype that is activated (α−1 or α−2) (Shi et al., 1988).  

 

Several neuropeptides that modulate activity of SPN in the spinal cord are co-expressed in 

bulbospinal C1 and non-C1 neurons in the RVLM. The endogenous opiate precursor 

preproenkephalin (PPE) is expressed in most non-C1 bulbospinal neurons and ~ 20 % of 

bulbospinal C1 neurons (Stornetta et al., 2001). In contrast, neuropeptide Y is virtually 

absent in C1 cells projecting only to the thoracic cord but present in 96 % of C1 neurons 

projecting to the hypothalamus (Stornetta et al., 1999). The substance P precursor 

preprotachykinin (PPT) is also co-expressed in ~ 20 % of bulbospinal C1 neurons: TH- and 

substance P-immunoreactivity is colocalised in terminals within the IML in rat (Li et al., 

2005). RVLM neurons that project to the cord and hypothalamus are therefore likely to be 

a rich source of aminergic and peptidergic input into these areas. Other neurochemicals, 

including cocaine- and amphetamine-related transcript (CART) (Burman et al., 2004), are 

thought to be expressed in a majority of C1 and non-C1 sympathoexcitatory neurons, 

although their precise functions are unknown.  

 

Role of C1 Neurons in Tonic and Reflex Functions of the 

RVLM  
The importance of C1 neurons in the RVLM in generating vasomotor tone has been 

questioned by recent selective lesioning studies using the neurotoxin saporin conjugated to 

DβH. Following injection into the IML the toxin is taken up selectively by 

catecholaminergic terminals and transported back to cell bodies, which are then destroyed. 

Schreihofer and Guyenet showed that delivery of the toxin in this way destroys ~ 80 % of 

RVLM neurons containing DβH or PNMT, as well as other bulbospinal catecholamine-

containing cell groups (Schreihofer and Guyenet, 2000; Schreihofer et al., 2000). Madden 

and Sved documented up to 99 % loss of C1 neurons in some animals following direct 
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injection of DβH-saporin into the RVLM (Madden and Sved, 2003). Despite destruction of 

almost all C1 neurons, AP remains fairly normal (Schreihofer et al., 2000; Guyenet et al., 

2001; Madden and Sved, 2003). This could suggest either that only a few remaining C1 

cells are sufficient to maintain AP, or that only non-C1 bulbospinal neurons are critical in 

this regard, or alternatively that AP is maintained by release of vasopressin or angiotensin. 

 

Specific destruction of the C1 cell group by direct injection of DβH-saporin into the 

RVLM (Madden et al., 1999; Madden and Sved, 2003; Madden et al., 2006) or IML 

(Schreihofer and Guyenet, 2000) markedly diminished cardiovascular reflexes: > 80 % loss 

of C1 neurons markedly attenuated or eliminated reflex sympathoexcitatory responses to 

baroreceptor unloading, hypoxia or sciatic nerve stimulation and reflex increases in plasma 

noradrenaline in response to hypotension or hypoglycaemia. The fact that the RVLM is a 

critical synaptic relay in the expression of cardiovascular reflexes is well established; these 

data were the first to indicate a specific contribution of the C1 cell group. 

 

Electrophysiological Characteristics of RVLM Neurons  
Electrical stimulation of the RVLM elicits early and late discharges in sympathetic nerves 

that putatively arise from activation of groups of neurons with myelinated vs lightly- or 

unmyelinated axons (Morrison et al., 1988). In general, RVLM neurons with exclusively 

bulbospinal projections are fast conducting (2 - 3 m/s); whereas neurons with branching 

projections to the hypothalamus and thoracic cord are slowly conducting (<1 m/s) 

(Haselton and Guyenet, 1989b; Stornetta et al., 1999; Verberne et al., 1999a). Neurons 

with slowly-conducting (lightly- or unmyelinated) axons appear to be C1 cells; whereas the 

majority of fast-conducting bulbospinal neurons are non-C1 cells (Schreihofer and 

Guyenet, 1997). 

 

Intracellular recordings from bulbospinal barosensitive RVLM neurons in vivo showed that 

they have an irregular discharge and their membrane excitability is regulated by ongoing 

excitatory and inhibitory inputs (Lipski et al., 1996). An intriguing observation was that 

interspike intervals of RVLM neurons become highly regular during depolarization 

induced by injury or large depolarizing currents (Lipski et al., 1996). In barodenervated 

cats RVLM neurons exhibit regular rhythmic discharge that is dependent upon activation 

of excitatory amino acid receptors: presumably inhibitory baroreceptor-related inputs to the 

RVLM are substantially reduced in barodenervated animals (Barman and Gebber, 1992; 

Barman et al., 2005). Inhibitory inputs therefore play an important role in regulating 
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excitability of RVLM neurons and account for their typically irregular firing pattern in 

vivo. 

 

Presumed AP-regulating RVLM neurons displayed a regular pacemaker-like discharge in 

medullary slices isolated from their natural afferents (Sun et al., 1988b; Kangrga and 

Loewy, 1995) or after blockade of excitatory synaptic inputs in vivo (Sun et al., 1988a). 

Hence, one possibility is that some RVLM neurons have intrinsic bursting characteristics 

that set the basic rhythm, which is then modulated by synaptic inputs (Sun et al., 1988a; 

Sun et al., 1988b; Kangrga and Loewy, 1995). Lipski et al. did not find evidence for 

pacemaker potentials in RVLM neurons in adult rats in vivo (Lipski et al., 1996), 

supporting a predominant role for antecedent synaptic inputs at least in the anaesthetised 

animal with major afferents intact. Nevertheless, other evidence suggests that an intrinsic 

membrane conductance of some neurons within the RVLM may be important. Miyawaki et 

al. explored the effects of microinjection of various ion channel modulators into the RVLM 

of anaesthetised rats (Miyawaki et al., 2003). Only nickel (in relatively high amounts) was 

found to have a profound sympathoinhibitory and hypotensive effect, which the authors 

suggest resulted from selective inhibition of low voltage-activated ‘T-type’ calcium 

channels (Miyawaki et al., 2003). These channels can generate burst firing and pacemaker 

activity (Chemin et al., 2002).  

 

Origin of Ongoing Synaptic Inputs to RVLM Neurons 
The spontaneous activity of RVLM neurons and the characteristic bursting pattern of 

sympathetic nerve discharge are both absent above ~ 150 mmHg (Brown and Guyenet, 

1985; Morrison et al., 1988; Haselton and Guyenet, 1989b; Lipski et al., 1995). RVLM 

neurons receive ongoing inhibitory baroreceptor-related input evident in strong pulse-

synchronous activity characterised by increased firing during the falling phase of the AP 

wave (Brown and Guyenet, 1985; Lipski et al., 1996). Low frequency stimulation of aortic 

nerve afferents produced chloride-mediated IPSPs in bulbospinal RVLM neurons recorded 

intracellularly, providing evidence for direct baromediated inhibition (Lipski et al., 1996).  

 

Many RVLM neurons also exhibit firing patterns related to respiration, the proportion and 

strength of which is related to central respiratory drive. In vivo these are characterised 

either by an inspiratory depression, inspiratory activation, early inspiratory depression and 

post-inspiratory activation or no clear modulation (McAllen, 1987; Haselton and Guyenet, 

1989a; Miyawaki et al., 1995) (see Section III).  
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Peripheral chemoreceptor- and somatic afferent-related input are important sources of 

excitatory drive to many RVLM neurons. Short lasting hypoxia induced activation of 

almost all presympathetic RVLM neurons recorded in rat (Sun and Spyer, 1991a; Sun and 

Reis, 1993, 1994) whereas others found that about half were excited by hypoxia (Kanjhan 

et al., 1995). Similarly, nociceptive stimulation excites many RVLM neurons (Sun and 

Spyer, 1991b; Kanjhan et al., 1995; Verberne et al., 1999a). Cardiopulmonary receptor 

activation with phenylbiguanide also inhibits many baro-inhibited RVLM neurons 

(Verberne et al., 1999a).  

 

Neurons that are strongly inhibited by baroreceptor and cardiopulmonary inputs but 

weakly modulated by nociceptive afferents are found within 300 µm caudal to the facial 

nucleus and project to the hypothalamus or thoracic cord but not both (Verberne et al., 

1999a). In contrast, most baroinhibited neurons that are strongly activated by noxious 

stimuli are located 600-800 µm caudal to facial and project to the hypothalamus (Verberne 

et al., 1999a). Convergent afferent inputs are integrated via summation of synaptic inputs 

in RVLM neurons; for example, the degree of cardiac rhythmicity and sensitivity to aortic 

nerve stimulation of single RVLM units is modulated by periodic inputs from central 

respiratory neurons (Miyawaki et al., 1995). 

 

McAllen et al. demonstrated using cross-correlation analysis that there is little evidence for 

synchronicity (unrelated to baroreceptor or respiratory inputs) between pairs of RVLM 

neurons recorded extracellularly in cat (McAllen et al., 2001). Moreover, there was little 

evidence for synaptic interconnections between pairs of RVLM neurons (McAllen et al., 

2001). Hence, as a group of premotor units driving rhythmic discharge of sympathetic 

nerves, RVLM neurons do not appear to be part of a synaptically interconnected or 

oscillator driven network. Rather, they appear to act as independent units that are 

rhythmically entrained by the arrival of common afferent inputs. A role for descending 

inputs that release angiotensin or glutamate to tonically excite RVLM neurons has been 

postulated (Dampney et al., 2000; Dampney et al., 2005; Stocker et al., 2006), although the 

sources and significance of these inputs in normal physiological states is still unclear.  

 

Afferent and Efferent Connections of the RVLM 
Direct spinal projections from the RVLM have been demonstrated using injection of 

retrograde tracers into various levels of the thoracic cord (Amendt et al., 1979; Blessing et 
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al., 1981; Ross et al., 1981; Caverson et al., 1983; Ross et al., 1984a). RVLM neurons do 

not appear to have a topographical organisation correlated to spinal outflow level, although 

C1 neurons located more rostrally appear to target the adrenal medulla (Jeske and 

McKenna, 1992; Pyner and Coote, 1998). The projection to the cord is bilateral with 

ipsilateral predominance (Jeske and McKenna, 1992); projections to adrenal SPN have a 

strong ipsilateral predominance (Moon et al., 2002). Direct synaptic contacts have been 

demonstrated between RVLM terminals in the cord and SPN retrogradely labeled from the 

SCG or adrenal medulla (Zagon and Smith, 1993; Pyner and Coote, 1998; Moon et al., 

2002).  

 

The RVLM is also reciprocally connected to regions of the rostral and caudal medulla and 

several higher brain regions (Blessing and Willoughby, 1987; Haselton and Guyenet, 1990; 

Yasui et al., 1990; Verberne, 1995; Horiuchi et al., 1999). Injections of retrograde tracing 

agents into the RVLM labels cells predominantly ispilaterally in the medulla (inferior 

olive, ventromedial and midline medulla, medial nucleus tractus solitarius (NTS), area 

postrema, dorsal motor nucleus of the vagus (DMX), the CVLM, the NA and a 

contralateral region just medial to the NA), and pons (periaqueductal grey and adjacent 

cuneiform nucleus, lateral parabrachial (PBN) / Kölliker-Fuse (K-F) nucleus, laterodorsal 

and pedunculopontine tegmental nuclei, A5). The RVLM also connects with regions of the 

hypothalamus (lateral, perifornical, dorsomedial and paraventricular (PVN) subnuclei), 

basal forebrain (central nucleus of the amygdala) and cortex (insular and medial prefrontal 

cortex) (Dampney, 1994b; Verberne and Owens, 1998). Projections to the RVLM from 

these numerous brain regions are important sources of amine, peptide and amino acid 

inputs. 

 

Innervation of the RVLM by higher brain structures presumably plays an important role in 

modulation of circulatory function. In most cases, however, the functional significance of 

input from pontine, hypothalamic or cortical regions is unclear (Verberne and Owens, 

1998). In some cases there is more information. For example, a small group of cells in the 

PVN appears to selectively target the RVLM and IML (Toth et al., 1999; Pyner and Coote, 

2000). A glutamatergic projection from the PVN to the RVLM is activated in rats deprived 

of water (Stocker et al., 2006), suggesting that it may play a role in central 

sympathoregulatory responses to changes in osmolality and blood volume. Numerous PVN 

neurons with spinal or RVLM projections express the immediate early gene c-fos, a marker 

of neuronal activation, following non-hypotensive haemorrhage (Badoer et al., 1993), 
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water deprivation (Stocker et al., 2006), blood volume expansion or right atrial stretch 

(Pyner et al., 2002).  

 

Other studies have used c-fos expression to map patterns of CNS activation following other 

homeostatic disturbances. RVLM neurons express c-fos following hypertension (Horiuchi 

et al., 1999), hypotension (Polson et al., 1995) or hypoxia in conscious rabbits (Hirooka et 

al., 1997) or hypotensive and non-hypotensive blood loss in anaesthetised rats (Badoer et 

al., 1993). Neurons in the K-F and medial NTS that project to the RVLM are also activated 

following AP-altering or hypoxic stimuli but neurons in the CVLM are selectively 

activated by changes in AP (Polson et al., 1995; Hirooka et al., 1997; Horiuchi et al., 

1999). Hence, the RVLM is part of an integrated lower brainstem network concerned with 

homeostasis, although it is probably the final common pathway for modulation of 

sympathetic outflow. Neurons in the central nucleus of the amygdala and PBN, but not 

those that project to the RVLM, are also activated following AP-altering stimuli (Polson et 

al., 1995; Hirooka et al., 1997; Horiuchi et al., 1999). These neurons are presumably 

involved to some extent in the emotional, arousal or respiratory responses to homeostatic 

disturbance.  

 

Although immediate early gene expression has been widely used to mark neuronal 

activation, it has several disadvantages including a long time course of activation (1-2 hrs). 

A promising alternative may be to utilise the rapid phosphorylation of intracellular proteins 

as a marker of activated or inhibited neurons following different stimuli. Immunoreactivity 

to phosphorylated mitogen-activated protein kinase (MAPK) specifically labels neurons in 

the RVLM, CVLM and other autonomic regions following short-term anaesthesia or 

hypotension (Springell et al., 2005).  

 

Peptides and Monoamines are Neuromodulators in the 

RVLM  
Diverse aminergic and peptidergic inputs to the RVLM differentially modulate their 

ongoing activity and or their responses to reflex inputs; these include acetylcholine 

(Giuliano et al., 1989; Huangfu et al., 1997), serotonin (Miyawaki et al., 2001), opiates 

(Stasinopoulos et al., 2000; Miyawaki et al., 2002b), cannabinoids (Padley et al., 2003), 

angiotensin (Li and Guyenet, 1995; Saigusa et al., 2003), substance P (Makeham et al., 



 18

2005), orexin (Machado et al., 2002) and many others (see (Pilowsky and Goodchild, 

2002).  

 

Amino acid transmission in the RVLM is critical to all sympathetic reflexes (Kiely and 

Gordon, 1993; Miyawaki et al., 1996a; Miyawaki et al., 1996b). Metabotropic receptor 

activation, on the other hand, appears to selectively modulate inhibitory or excitatory 

sympathetic reflexes. The selective 5-HT1A receptor agonist 8-OHDPAT (Miyawaki et al., 

2001) and the δ-opiate receptor agonist DPDPE (Miyawaki et al., 2002b) when injected 

into the RVLM inhibit the somatosympathetic reflex but leave other reflexes unaffected. In 

contrast, the µ-opiate receptor agonist DAMGO selectively inhibits the baroreflex 

(Miyawaki et al., 2002b). Activation of neurokinin-1 receptors (NK-1R) does not affect 

sympathetic reflexes; whereas their antagonism selectively attenuates sympathoexcitation 

induced by brief hypoxia (Makeham et al., 2005). These effects are thought to be mediated 

by activation of receptors selectively located presynaptically on either somatic, 

baroreceptor- or peripheral chemoreceptor-related afferents innervating the RVLM (eg 

(Stasinopoulos et al., 2000; Makeham et al., 2001). Activation of angiotensin type 1 (AT-

1) receptors in the RVLM produces brief sympathoexcitation and has been shown to 

slightly increase maximum SNA baroreflex responses (Saigusa et al., 2003) or have no 

effect on baroreflex gain (Head and Mayorov, 2001). Many RVLM neurons express AT-1 

receptor postsynaptically (Li and Guyenet, 1995; Hu et al., 2002), suggesting that direct 

excitation of some RVLM neurons by angiotensin may indirectly affect the reflex 

sympathetic effects of activating or unloading baroreceptors. 

 

The fact that cardiovascular reflexes can be selectively modulated suggests that 

neurotransmitter inputs may encode specific patterns of autonomic responses appropriate 

to different behavioural or homeostatic adaptations. For example, serotonergic raphé 

neurons in the medulla play an important role in patterned autonomic responses to 

nociceptive stimuli (Snowball et al., 1997) and haemorrhage (Heslop et al., 2002). Inputs 

to the RVLM from the raphé may evoke appropriate parallel cardiovascular adjustments, 

including sympathoinhibition and a selective inhibition of the nociceptive 

somatosympathetic reflex, via 5-HT1A receptor activation, (Miyawaki et al., 2001). The 

neurochemical content and putative physiological roles of various inputs to RVLM 

neurons are illustrated in Fig 1.1.4. 
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Differential Control of Sympathetic Outflow by the RVLM 
Several hypotheses have been proposed to explain how centrally-evoked patterns of 

behaviour and some peripheral afferent signals lead to selective and or differential effects 

on regional sympathetic outflow. The classic example of this phenomenon in terms of 

behaviour is the stereotypic response evoked by defensive reactions; so called ‘fight or 

flight’. This is characterised by redistribution of blood flow away from the gut and skin to 

skeletal muscle and coronary beds in preparation for sudden activity. Some homeostatic 

reflexes also require specific circulatory adaptations. The ‘volume reflex’ elicits reductions 

in renal and increases in cardiac sympathetic outflow in response to reduced blood volume, 

for example during haemorrhage or water deprivation. Hypoxia or the ‘diving reflex’ 

selectively constricts blood vessels supplying viscera and muscle with the aim of 

preserving blood flow to the major vital organs, the brain and heart. 

 

One hypothesis is that neurons that preferentially control muscle or visceral 

vasoconstrictors are topographically distributed in the RVLM (McAllen et al., 1995). There 

is some support for this hypothesis based upon anatomical (Pyner and Coote, 1998) and 

microinjection studies (McAllen and Dampney, 1990; McAllen and May, 1994; Ootsuka 

and Terui, 1997). Neurons projecting to the kidney or adrenal gland appear to be found 

most rostrally (Pyner and Coote, 1998) and the largest increase in renal blood flow could 

also be elicited from GABA injections centered rostrally in the RVLM (Ootsuka and Terui, 

1997). Neurons controlling other vascular beds appear to be more widely distributed in the 

RVLM, although neurons that control sympathetic outflow to the heart muscle are a special 

case. Different positive effects on inotropy, dromotropy or chronotropy are evoked 

following glutamate microinjection into either the left or right RVLM or following 

stimulation of the left or right cardiac nerve in vagotomised cats (Campos and McAllen, 

1999a).  

 

An intriguing hypothesis is that RVLM neurons controlling different vascular beds are 

coded either by their neurochemical content or neurotransmitter inputs (Pilowsky and 

Goodchild, 2002). For example, δ-opioid receptor activation in the RVLM selectively 

inhibited lumbar but not splanchnic SNA (Miyawaki et al., 2002b). Microinjection of 8-

OHDPAT into the RVLM at rostral injection sites selectively inhibited renal sympathetic 

activity; whereas at caudal sites muscle sympathetic activity was selectively inhibited 

(Bago et al., 1999). An enduring question is whether or not expression of PNMT or various 
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neuropeptides including preproenkephalin or NPY encodes separate populations of RVLM 

neurons that drive different sympathetic outflows.  

 

Input from different presympathetic cell groups to SPN may control not only blood flow 

but also different aspects of organ function. The stimulus for different functional effects 

may be encoded in frequency versus amplitude responses of peripheral sympathetic nerves; 

for example, as is observed in the renal nerve following stimulation of A5 or RVLM in 

rabbit (Malpas et al., 1996; Maiorov et al., 2000). Fine control of renal function (ie. renal 

vascular resistance, hormone release or sodium / water re-absorption) may be achieved via 

alterations of renal nerve frequency and or amplitude (Malpas et al., 1996; Janssen et al., 

1997; Maiorov et al., 2000). For example, moderate (10 %) but not mild (13 %) hypoxia 

increased renin excretion, which depended upon increased amplitude and low frequency 

bursting of renal SNA (Janssen et al., 1997).  

 
Some afferent reflexes may selectively recruit different premotor units to evoke differential 

patterns of sympathetic activation or withdrawal. For example, the gut polypeptide 

cholecystokinin is released following food intake and, via a vagal afferent pathway, evokes 

intestinal vasodilatation by inhibiting of a subpopulation of sympathoexcitatory RVLM 

neurons (Sartor and Verberne, 2002, 2003; Verberne and Sartor, 2004; Sartor et al., 

2006). The volume reflex is triggered by reduced venous filling pressure and atrial stretch 

receptor activation (Bainbridge, 1915) and probably elicits differential effects on renal and 

cardiac sympathetic activity via a central synapse in the PVN (Lovick et al., 1993). 

 

Sympathetically-mediated dilatation or constriction of cutaneous blood vessels is essential 

for control of body temperature. Neurons in the RVLM and raphé are labeled from the rat 

tail artery (Smith et al., 1998); in rat the tail is a major thermoregulatory organ because of 

its large surface area and lack of hair. Heat loss and heat preservation mediated by 

modulation of cutaneous blood flow depends on the level of input to cutaneous SPN from 

the raphé nuclei; in contrast, input from the RVLM is thought to be only minor or 

redundant (Nalivaiko and Blessing, 2002; Nakamura et al., 2004; Ootsuka et al., 2004). 

The recent work of Ootsuka and McAllen suggests that in fact the RVLM, although not 

concerned with temperature, is crucial to regulation of cutaneous blood flow (Ootsuka and 

McAllen, 2005). Muscimol inhibition of the RVLM in rat reduced the temperature 

threshold and sensitivity of tail fibre activation in response to lowering of core body 

temperature (Ootsuka and McAllen, 2005). The authors conclude that, although the raphé 
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determines the temperature-sensitivity of cutaneous SPN, the ability to finely regulate their 

activity is dependent upon a background excitatory drive from the RVLM that raises the 

threshold and hence excitability of cutaneous SPN (Ootsuka and McAllen, 2005). A similar 

system could account for high gain control of numerous sympathetic outflows in response 

to different afferent signals.  

 

 

Medullary Raphé and Rostral Ventromedial Medulla 

(RVMM) 
Midline and parapyramidal regions of the medulla contain a large population of neurons 

that provide descending input to SPN supplying diverse sympathetic beds (Strack et al., 

1989). These neurons are largely distributed within the serotonergic medullary raphé nuclei 

(raphé magnus, pallidus and obscurus) and the neighbouring nucleus reticularis 

gigantocellularis or rostral ventromedial medulla (RVMM) (Steinbusch, 1981; Strack et 

al., 1989). The medullary raphé nuclei are the largest source of serotonin input to the cord 

(Dahlstrom and Fuxe, 1964; Pilowsky et al., 1986; Minson et al., 1990b; Jensen et al., 

1995; Pilowsky et al., 1995a). Dual labeling experiments in rat demonstrate diverse 

neurotransmitter content colocalised with 5-HT, including thyrotropin-releasing hormone, 

substance P, enkephalin and GABA (Kachidian et al., 1991). There are also many non-

serotonergic cells intermingled within these areas. 

 

Neurons in the raphé project monosynaptically to SPN the IML (Bacon et al., 1990) and 

may have axon collaterals that synapse on catecholamine-containing neurons in the RVLM 

(Nicholas and Hancock, 1990). Functional evidence indicates a polysynaptic pathway to 

the RVLM since stimulation of a depressor region within the raphé inhibits barosensitive 

RVLM neurons but raphé neurons could not be antidromically activated from the RVLM 

(McCall, 1988; Verberne et al., 1999b). Serotonin- and substance P-containing neurons in 

the raphé project directly to the ventrolateral medulla (Holtman and Speck, 1994) and may 

be implicated in 5-HT or NK-1 receptor-mediated cardiovascular or respiratory effects 

(Gray et al., 1999; Miyawaki et al., 2001; Makeham et al., 2005). Raphé neurons receive 

projections from the dorsal horn, NTS, RVLM, lateral tegmental field, ventrolateral 

periaqueductal grey and preoptic hypothalamic area (Snowball et al., 1997; Nogueira et 

al., 2000; Wang and Wessendorf, 2002) and a subset of 5-HT-containing cells is inhibited 
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by baroreceptor discharge (Pilowsky et al., 1995b; Gao and Mason, 2001). Hence, a wide 

array of visceral, nociceptive and somatic information reaches raphé neurons.  

 

The effects on sympathetic vasomotor outflow elicited by stimulation of the raphé are 

often contradictory and appear to reflect a mixed population of sympathoexcitatory and -

inhibitory neurons (Coleman and Dampney, 1995; Henderson et al., 1998). Pressor 

responses are evoked from the RVMM (Minson et al., 1987) whereas depressor or pressor 

effects are evoked from the caudal midline medulla depending on species or anaesthesia 

(Coleman and Dampney, 1995; Henderson et al., 1998; Verner et al., 2004). 

Microinjection of GABA or muscimol into the raphé does not alter renal sympathetic 

activity or AP (Coleman and Dampney, 1995), suggesting that it does not contribute to 

vasomotor tone generation.  

 

The functional role of 5-HT in control of SPN activity is still unclear (Minson et al., 

1990b; Jensen et al., 1995). Glutamatergic raphé neurons are the largest source of 

temperature-sensitive excitatory drive to cutaneous SPN and brown adipose tissue (see 

above and (Nakamura et al., 2004). Most raphé neurons that were activated by cold 

exposure or fever that expressed the type 3 vesicular glutamate transporter (vGLUT3) did 

not contain 5-HT (Nakamura et al., 2004), suggesting that these populations of neurons are 

functionally and morphologically separate. Raphé neurons also play a role in 

cardiovascular responses to haemorrhage (Heslop et al., 2002), descending control of 

nociception (Mason, 2001) and respiration (Verner et al., 2004). However, the precise role 

of 5-HT in many of these functions is unclear. 5-HT-containing neurons in the raphé are 

very sensitive to changes in pH and are associated with medullary arteries suggesting that 

they may function as central chemosensors (Bradley et al., 2002; Nattie et al., 2004).  

 

 

Pontine A5 
The A5 cell group is located within the caudal ventral pons between the facial nucleus and 

its emerging fibre bundle and the caudal pole of the superior olivary nucleus. By definition 

it contains cells that synthesize noradrenaline and traditionally it was defined by 

immunoreactivity to the catecholamine synthetic enzymes TH or DβH (Byrum et al., 1984; 

Byrum and Guyenet, 1987). Using this approach, several authors have estimated that 

approximately 90 % of the A5 neurons project to the spinal cord IML and central 
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autonomic area (Byrum et al., 1984). Goodchild and colleagues showed, however, that 

some cells in the A5 region contain DβH but not TH and do not project to the thoracic cord 

or the RVLM (Goodchild et al., 2001), suggesting that A5 is not a homogeneous cell 

population. Nevertheless, it is well established that the A5-spinal projection plays a role in 

control of sympathetic outflow and is presumably the only supraspinal source of 

noradrenaline regulating activity of SPN.  

 

Byrum, Stornetta and Guyenet proposed a method for identifying sympathoregulatory A5 

cells in vivo in rat based upon their location, antidromic activation from the spinal cord and 

inhibition by clonidine (Byrum et al., 1984). Some A5 cells are inhibited by baroreceptor 

discharge but are unaffected by nociceptive input (Byrum et al., 1984; Guyenet, 1984; 

Huangfu et al., 1991). Some A5 cells also have extensive ascending and intramedullary 

projections (Byrum et al., 1984; Byrum and Guyenet, 1987). Connections to the RVLM 

have been disputed, although the best evidence is that A5 cells are destroyed after toxin 

uptake following injection of DβH-saporin into the RVLM (Madden et al., 1999). A recent 

study also revealed labeling in A5 following CTB injection into the retrotrapezoid nucleus 

in rat, which overlaps the rostral tip of the group of C1 RVLM neurons (Rosin et al., 

2006). 

 

Despite this knowledge the functional role of A5 cells in cardiovascular regulation is 

unclear. Electrical stimulation of the region produced large increases in AP in 

anaesthetised rabbits (Woodruff et al., 1986; Drye et al., 1990; Maiorov et al., 1999). 

Studies using chemical stimulation showed clearly, however, that activation of A5 evokes 

depressor responses or minimal effects on AP in anaesthetised (Drye et al., 1990; Maiorov 

et al., 1999) or conscious rabbits (Maiorov et al., 1999; Maiorov et al., 2000) and 

anaesthetised rats (Stanek et al., 1984; Loewy et al., 1986; Huangfu et al., 1992). These 

responses may be due to differential effects on regional blood flow (Stanek et al., 1984) 

and sympathetic activity (Huangfu et al., 1992). For example, injection of NMDA into the 

A5 region increased splanchnic and renal SNA but reduced lumbar SNA and AP (Huangfu 

et al., 1992). Depletion of spinal cord noradrenaline using injections of 6-OHDA in rat 

attenuated the depressor response to A5 stimulation (Loewy et al., 1986). Blockade of 

spinal GABA-A receptors using intrathecal injection of bicuculline also prevented 

depressor responses to glutamate stimulation of A5 (Hara et al., 1997). This suggests that 

sympathoinhibition produced by A5 is mediated by activation of an intraspinal inhibitory 



 25

interneuron to at least some SPN. The putative role of A5 neurons in chemoreflex control 

of the circulation is discussed in Section V. 

  

 

Paraventricular Nucleus of the Hypothalamus (PVN) 
The PVN is located around the dorsolateral edges of the 3rd ventricle and contains neurons 

important in autonomic and neurosecretory function. Together with several other 

hypothalamic nuclei it provides descending input to SPN (Luiten et al., 1985) but it is 

unique in that it targets the entire sympathetic outflow (Strack et al., 1989). Direct synaptic 

connections have been demonstrated between PVN neurons and SPN supplying the SCG 

(Hosoya et al., 1991), stellate ganglion (Ranson et al., 1998) and adrenal gland (Motawei 

et al., 1999).  

 

The PVN is subdivided into five parvocellular and three magnocellular subdivisions 

(Swanson and Kuypers, 1980). PVN neurons that target SPN are concentrated in the dorsal 

and posterior parts of the parvocellular PVN (Swanson and Kuypers, 1980; Swanson et al., 

1980; Strack et al., 1989). PVN neurons transneuronally labeled from the stellate ganglion 

or SCG were located medially; whereas those labeled from the adrenal gland or celiac 

ganglion were located dorsolaterally within the parvocellular subdivision (Strack et al., 

1989; Jansen et al., 1995). Neurons in the magnocellular PVN secrete vasopressin, 

oxytocin and corticotrophin-releasing factor (CRF) directly into the portal circulation via 

terminals that synapse in the posterior pituitary. This vascular access allows indirect 

neurohumoral control of autonomic function in addition to direct regulation of autonomic 

outflow via parvocellular neurons.  

 

Around a third of spinally projecting PVN neurons also contain vasopressin and oxytocin 

(Sawchenko and Swanson, 1982; Cechetto and Saper, 1988). 22 % of PVN neurons 

transneuronally labeled from the superior cervical ganglion but only 6 % of neurons 

labeled from the adrenal or celiac ganglion contained vasopressin (Strack et al., 1989). The 

PVN is probably the only supraspinal source of vasopressin within the spinal cord 

(Cechetto and Saper, 1988). Other peptides and neurotransmitters expressed by spinally 

projecting PVN neurons include somatostatin (Sawchenko and Swanson, 1982), met-

enkephalin (Sawchenko and Swanson, 1982; Cechetto and Saper, 1988), angiotensin II and 

CRF (Jansen et al., 1995). 
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The PVN also has extensive projections to other autonomic cell groups in the brainstem 

(Luiten et al., 1985; Toth et al., 1999). PVN fibres descend through the ventrolateral 

midbrain and pons synapsing in the substantia nigra, periaqueductal grey and pontine 

reticular nuclei [dorsal raphe, pedunculopontine and parabrachial nuclei, locus coeruleus 

and A5]. Posterior to the pons, PVN fibres traverse the floor of the medulla and send 

branches into the dorsal medulla (NTS, DMX), ventrolateral medulla (RVLM, CVLM, 

NA), and midline raphe. Most fibres terminate bilaterally via segmental decussations with 

the exception of exclusively ipsilateral input to the RVLM (Toth et al., 1999).  

 

Presympathetic PVN neurons do not appear to be concerned with changes in AP level, 

with very few neurons showing c-fos activation after hypotensive stimuli (Badoer et al., 

1993; Dampney et al., 2003a). Some PVN neurons are reported to be barosensitive and 

display tonic activity (Lovick and Coote, 1988; Chen and Toney, 2003). Most PVN 

neurons are extremely sensitive to changes in blood volume or plasma osmolality (Badoer 

et al., 1993; Pyner et al., 2002; Stocker et al., 2006). Blood volume expansion causes a 

distinct efferent response characterised by an increase in sympathetic outflow to the heart 

and a corresponding decrease in sympathetic outflow to the renal bed. This response is 

thought to be mediated in part by activation of PVN neurons via input from 

circumventricular organs or from vagal afferent pathways responsive to changes in right 

atrial venous filling pressure (Bainbridge, 1915). Ibotenic acid lesion of the PVN inhibited 

the effect of blood volume expansion on renal vasodilatation in rat (Lovick et al., 1993). 

Expansion of a balloon catheter located at the junction of the superior vena cava and right 

atrium in rats inhibited renal sympathetic activity and induced c-fos expression in a small 

number of PVN neurons (Pyner et al., 2002). A reduction in renal and increase in cardiac 

or splanchnic sympathetic nerve activity was observed following discrete injections of 

excitatory amino acids into the PVN (Deering and Coote, 2000). 

 

A role for the PVN in tonic AP regulation is controversial. In rats deprived of water for 

two days, inhibition of the PVN with the GABA-A receptor agonist muscimol dramatically 

reduces AP and renal or lumbar sympathetic nerve discharge; whereas it has little effect in 

control animals (Stocker et al., 2004; Stocker et al., 2005). Thus descending input from the 

PVN may be critical for AP maintenance in certain circumstances. In spontaneously 

hypertensive rats (SHR) injection of muscimol bilaterally into the PVN reduced 

sympathetic nerve discharge and AP much more markedly compared to normotensive 
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animals (Allen, 2002). Reduced inhibition or increased excitation of PVN neurons via 

glutamatergic or angiotensinergic inputs may contribute to the tonic elevation of 

sympathetic activity that occurs in SHR or experimental heart failure (Dampney et al., 

2005).  

 

 

II. Central Control of Cardiac Vagal Outflow 

 

Introduction 
Vagal efferent outflow to the heart mediates negative chronotropic, dromotropic and 

ionotropic effects. Vagal fibres project to ganglia located on epicardial fat pads on right 

and left atria that selectively regulate sinoatrial node rate and atrioventricular conduction, 

respectively (Randall and Ardell, 1985; Ardell and Randall, 1986; Gatti et al., 1995). A 

third intracardiac cranioventricular ganglion was identified in cat that mediates effects of 

vagal stimulation on left ventricular contractility (Gatti et al., 1997). Vagal tone is subject 

to powerful reflexogenic mechanisms that produce strong vagal activation during lung 

inflation, pulmonary C-fibre and arterial baroreceptor activation (Haymet and McCloskey, 

1975; Davidson et al., 1976; Daly, 1993). In addition, vagal efferent discharge is coupled 

to respiration being most active during post-inspiration / expiration (Davidson et al., 1976). 

 

Cardiac Vagal Preganglionic Neurons (CVPN) 
In mammals the level of background activity in vagal nerves is determined by groups of 

cardiac vagal preganglionic neurons (CVPN) in two regions of the medulla, the DMX and 

ventrolateral NA illustrated in Fig 1.2.1 (Hopkins and Armour, 1984; Hopkins et al., 1984; 

Izzo et al., 1993; Taylor et al., 1999). Separate pools of motoneurons in the NA are labeled 

following dual injection of retrograde tracers into the sinoatrial and atrioventricular nodes 

(Blinder et al., 1998b) or sinoatrial node and cranioventricular ganglion in cat (Blinder et 

al., 1998a). Hence, the NA may contain separate groups of cardioinhibitory neurons that 

control different cardiac functions via parallel but morphologically distinct pathways. 

 

Input from the DMX or NA can independently affect heart rate, atrioventricular conduction 

and ventricular contractility (Jones et al., 1995; Garcia Perez and Jordan, 2001; Jones, 

2001). Cheng and Powley demonstrated a largely convergent pattern of inputs to atrial  
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ganglia following anterograde tracing from the NA and DMX in rat (Cheng et al., 1999; 

Cheng and Powley, 2000). Their results show, however, that axons arising from the NA 

target greater numbers of postganglionic neurons and exhibit greater divergence (more 

postganglionic neurons contacted / axon) compared to axons arising from the DMX 

(Cheng et al., 1999; Cheng and Powley, 2000). These anatomical differences may reflect 

functional specializations of the two preganglionic neuronal pools. Neurons in the NA are 

thought to be the major source of reflex cardioinhibitory input based upon their short 

latency antidromic activation from branches of the cardiac vagus that mediate rapid cardiac 

slowing in cat (McAllen and Spyer, 1976). The activity of NA neurons is strongly coupled 

to the cardiac cycle and respiration and their small myelinated axons suggest that they 

probably comprise the majority of fast-conducting (10-30 m/s) vagal B-fibres (McAllen 

and Spyer, 1976, 1978a, 1978b; Gilbey et al., 1984; Jones, 2001). Neurons in the DMX do 

not display baroreflex or respiratory modulation and have unmyelinated axons; hence they 

probably comprise the majority of slower conducting (< 2 m/s) vagal C-fibres (Jones et al., 

1995, 1998).  

 

Synaptic Inputs to CVPN – Critical Role of Amino Acids 
CVPN are intrinsically silent and require synaptic inputs to drive their activity 

(Mendelowitz, 1999). Intracellular recordings from CVPN in the NA revealed that they 

receive ongoing excitatory and inhibitory synaptic inputs (Gilbey et al., 1984). Very few 

NA neurons recorded in vivo are spontaneously active (McAllen and Spyer, 1976, 1978a, 

1978b); when present they fire most strongly during expiration and have a strong pulse-

modulated activity being most active during the rising phase of the AP wave (McAllen and 

Spyer, 1976, 1978b; Gilbey et al., 1984).  

 

Strong increases in CVPN activity are mediated by iontophoretic application of excitatory 

amino acids or activation of arterial baroreceptors (McAllen and Spyer, 1978b). A direct 

projection to CVPN from the NTS has been reported in cat (Blinder et al., 1998b). 

Electrical stimulation of the NTS in medullary slices results in excitatory amino acid 

receptor-dependent EPSPs in retrogradely labeled CVPN (Neff et al., 1998a). Hence a 

direct excitatory pathway from the NTS to CVPN in the NA is likely to mediate 

bradycardia following baroreflex activation. 
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Patch-clamp recordings from rat CPVN in medullary slices revealed GABA and 

glycinergic inhibitory postsynaptic potentials during inspiration (Neff et al., 2003). 

Consistent with this, intracellular recordings in cat showed that inspiratory inhibition was 

mediated by chloride-mediated IPSPs (Gilbey et al., 1984). The source of central 

inspiratory-related inhibition of CVPN is at present unclear. Some CVPN in the NA 

receive excitatory input from superior laryngeal neurons (Mendelowitz, 2000), which may 

impose their own respiratory rhythmicity onto CVPN. The synaptic inputs to CVPN are 

illustrated in Fig 1.2.2. 

 

Peptide and Amine Inputs to CVPN 
The NA receives diverse aminergic and peptidergic inputs that contribute to the ongoing 

and occasional regulation of CVPN activity in concert with changes in behaviour, arousal 

or metabolic requirements (Jordan, 2005; Paton et al., 2005). The origin of many of these 

inputs is unknown, given that the utility of neuronal tracers is limited because of the small 

size of the NA and diverse functions of vagal preganglionic neurons clustered together in 

the NA.  

 

In medullary slices patch-clamp recordings of retrogradely labeled CVPN showed that the 

frequency of GABAergic and glycinergic IPSPs was enhanced by bath application of 

orexin-A (Wang et al., 2005). Input to CVPN from orexin-synthesising neurons in the 

lateral / perifornical hypothalamus (Saper et al., 2005) may hence contribute to the 

profound tachycardia evoked by stimulation of this region (McDowall et al., 2006). Other 

peptides including substance P injected into the NA evoke bradycardia without altering 

atrioventricular conduction (Massari et al., 1996). Numerous substance P immunoreactive 

terminals form synapses in the NA but not directly with CVPN (Blinder et al., 1998c), 

indicating a site of action presynaptic to CVPN. 

 

5-HT-containing terminals closely appose CPVN within the NA in rat (Izzo et al., 1993). 

Antagonism of 5-HT1A receptors using intracisternal injection of WAY prevents 

baroreflex reductions in heart rate in rabbit (Skinner et al., 2002). Activation of presynaptic 

5-HT1A receptors located on GABA inputs to CVPN is thought to facilitate baroreflex-

evoked bradycardia via disinhibition (Skinner et al., 2002; Jordan, 2005). Serotonergic 

medullary raphé nuclei have projections to airway vagal preganglionic neurons in the NA 

(Haxhiu et al., 1993), although whether or not they also target CVPN is at present unclear. 
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Acetylcholine acting at pre- and post-synaptic nicotinic receptors within the NA has a 

powerful excitatory influence on CVPN (Mendelowitz, 1998). Collateral inputs from 

ambiguual motoneurons colocalised within the NA may be an important source of 

cholinergic inputs to CVPN (Mendelowitz, 2000). Nicotinic receptors appear to be 

activated phasically to facilitate glutamatergic excitation of CVPN by baroreceptor inputs, 

and conversely to facilitate GABAergic inhibition of CVPN during inspiration (Neff et al., 

1998b; Wang et al., 2001; Neff et al., 2003; Wang et al., 2003). For details see Section VI. 

 

Inspiratory Gating of Reflex Bradycardia  
Vagal bradycardia elicited by baroreceptor or carotid chemoreceptor activation is 

attenuated during lung inflation or central inspiration (Haymet and McCloskey, 1975; 

Davidson et al., 1976; Daly, 1993). CVPN in the NA that receive both reflex and 

respiratory inputs are likely to be involved since single CVPN are less sensitive to 

baroreceptor activation during inspiration, when they are actively inhibited (McAllen and 

Spyer, 1978b; Gilbey et al., 1984). Hence, the gating of reflex bradycardia during 

inspiration most likely reflects a reduced capacity of reflex excitatory inputs to induce 

activation of CVPN when their membrane is relatively hyperpolarized at this stage of the 

respiratory cycle. In contrast, reflex bradycardia mediated by pulmonary C-fibre activation 

is equally effective during inspiration (Daly, 1993). Neurons in the DMX at least partly 

mediate this response, since they are activated by phenylbiguanide and are not inhibited by 

central respiratory inputs (Jones et al., 1998).  

 

Respiratory Sinus Arrhythmia 
In all mammals there are rhythmic variations of heart rate at the frequency of respiration 

characterised by tachycardia during inspiration. The mechanisms of this respiratory sinus 

arrhythmia (RSA) are of immense interest since a reduction in the amplitude of RSA is 

strongly predictive of early mortality in several clinical settings (TaskForce, 1996). The 

amount of RSA is thought to reflect the level or degree of reflex control of vagal efferent 

activity, which protects the heart against ischaemic damage and arrhythmia (see Section 

VII). 

 

RSA arises in part from the centrally generated pattern of inspiratory inhibition of CVPN 

(McAllen and Spyer, 1976; Gilbey et al., 1984; Neff et al., 2003). Secondly, lung stretch 

receptor afferents reflexly activate CVPN following inspiration (Paton and Nolan, 2000). 
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Thirdly, respiratory muscular movements cause oscillations of AP that lead to phasic 

baroreflex activation, which in turn modulates CVPN activity in time with respiration (see 

Section V). Baroreceptor and cardiopulmonary afferents also modulate sympathetic input 

to the heart. However, vagal activity is thought to largely determine beat-to-beat control of 

heart rate because ACh is released and degraded rapidly compared to the slower rate of 

release and clearance of noradrenaline from sympathetic nerve terminals (Levy et al., 

1993). Supporting evidence for central respiratory-vagal coupling in humans has come 

from studies demonstrating that respiratory oscillations of heart rate persist in the absence 

of respiratory movements during voluntary apnoea (Passino et al., 1997; Cooper et al., 

2003; Cooper et al., 2004). Support for baroreflex involvement in humans was 

demonstrated by showing that sinusoidal neck suction, to damp respiratory AP oscillations 

reaching carotid baroreceptors, effectively damped RSA (Piepoli et al., 1997).  

 

 

 

III. Central Control of Respiration 

 

Introduction 
Rhythmic respiratory activity is generated by a network of respiratory neurons in the dorsal 

and the ventral medulla (Ezure, 1990; Feldman et al., 1990; Bianchi et al., 1995; Pilowsky, 

1995; Onimaru et al., 1997; Ballanyi et al., 1999; Feldman et al., 2003; Duffin, 2004; 

Ramirez and Viemari, 2005). Respiratory neurons in general have firing patterns 

synchronous with three major phases of the respiratory cycle; inspiration (I), post-

inspiration (post-I) and expiration (E) (Salmoiraghi and Burns, 1960; Salmoiraghi and 

vonBaumgarten, 1961). The coordinated firing of populations of I and E neurons generates 

rhythmic motor outflow to primary muscles of respiration (diaphragm, abdominal wall and 

intercostal muscles) and the airways. Different components of the network determine 

respiratory rate (rhythm) and amplitude (McCrimmon et al., 2000; Monnier et al., 2003). 

Intrinsic chemosensitivity of the respiratory network (or some of its neurons) and afferent 

inputs from peripheral O2-sensitive chemoreceptors determine appropriate levels of 

ventilation (Hayashi and Fukuda, 2000; Mahamed et al., 2001; Mulkey et al., 2004; 

Richerson, 2004).  
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From birth the respiratory network is capable of generating respiratory-like activity in 

phrenic and hypoglossal nerves recorded in isolated slice or brainstem-spinal cord 

preparations (Smith et al., 1991; Onimaru et al., 2003). A hybrid network-pacemaker 

model originally proposed by Smith et al has provided an enduring theoretical framework 

for understanding respiratory rhythm generation, with some caveats (Smith et al., 2000). 

Normal inspiratory activity is generated by some neurons with bursting pacemaker-like 

potentials that excite a group of synaptically interconnected glutamatergic interneurons 

(Smith et al., 1991; Koshiya and Smith, 1999). The activity of this network recruits 

inspiratory muscles, presumably via separate premotor pathways supplying cranial and 

phrenic motorneurons (Peever et al., 2001).  

 

In adults, transitions between inspiration and expiration are dependent upon mutual 

inhibitory synaptic connections between various components of the network. Blockade of 

glycine receptors with strychnine or Cl--mediated inhibition abolishes rhythmic respiratory 

output in adults (Feldman and Smith, 1989; Hayashi and Lipski, 1992; Paton and Richter, 

1995). Early postnatally the inspiratory ‘off switch’ appears to depend more on the 

bursting properties of the pacemaker network driving inspiration (Onimaru et al., 1997). 

Glycinergic IPSPs are recorded in numerous respiratory neurons at this stage of 

development (Shao and Feldman, 1997; Brockhaus and Ballanyi, 1998); however, 

blockade of synaptic inhibition (Onimaru et al., 1989) or glycine receptors (Paton and 

Richter, 1995; Shao and Feldman, 1997) in neonates does not abolish rhythmic respiratory 

output. Hence, postnatal development of the respiratory network is dependent upon 

maturation of respiratory neurons and their synaptic connections.  

 

The Dorsal Respiratory Group 
Large pools of medullary respiratory neurons are found in a dorsal (DRG) and ventral 

respiratory group (VRG) identified in cat, rat, rabbit and several other species (Bianchi et 

al., 1995). The DRG is located at the level of the obex within the ventrolateral NTS and 

contains I neurons that are an important source of excitatory drive to spinal motorneurons 

in cat (Cohen et al., 1974). Although early studies in rat found very few respiratory 

neurons in this area (Ezure et al., 1988; Zheng et al., 1991), those that are clustered here 

seldom project to the spinal cord suggesting that the DRG may be functionally less 

relevant for premotor control of respiration in rat (de Castro et al., 1994). The DRG is 

likely to be an important site of integration of somatic and visceral reflex input into the 



 35

respiratory network in many species. Several I neurons in the DRG in rat project to the 

spinal cord and are activated by lung deflation (Ezure and Tanaka, 2000).  

 

The Ventral Respiratory Group 
In the ventral medulla, respiratory neurons form a lateral column extending from the 

pyramidal decussation to the caudal pole of the facial nucleus; collectively they form the 

VRG. Neurons within this region are vital for generating normal and adaptive breathing 

patterns (Smith et al., 1991; Lieske et al., 2000; Lieske et al., 2001; Paton et al., 2006). 

The location and major connections of neurons in the VRG are illustrated in Fig 1.3.1. 

 

In general there is a distinct topographic distribution of respiratory neurons in the VRG in 

adults (Ezure et al., 1988; Connelly et al., 1992; Sun et al., 1998; McCrimmon et al., 

2000), although in neonatal animals different classes of respiratory neuron are distributed 

throughout the VRG (Onimaru et al., 1997). The caudal most part of the VRG caudal to 

the obex (equivalent to the nucleus retroambigualis as defined in cat) contains 

predominantly E neurons that project to the spinal cord (Ezure et al., 1988). Rostral to this 

region and contiguous with the emergence of the NA are a large pool of I neurons that 

project monosynaptically to the cervical cord (Ezure et al., 1988). They form the major 

excitatory output pathway driving inspiratory diaphragmatic activity.  

 

The Bötzinger Complex 
Immediately caudal to the facial nucleus there is a concentration of inhibitory E neurons, 

many of which project to the cord (Merrill and Fedorko, 1984) and have widespread 

inhibitory connections with other neurons of the DRG and VRG (Kalia et al., 1979; Lipski 

and Merrill, 1980) as well as with themselves (Duffin and van Alphen, 1995). This region 

is termed the Bötzinger complex (BOT) (Lipski and Merrill, 1980). In rat it occupies about 

600 µm caudal to the facial nucleus (Sun et al., 1998). The majority of BOT neurons are 

located dorsal to the presympathetic catecholamine-synthesising neurons of the RVLM 

(Pilowsky et al., 1990; Kanjhan et al., 1995) and are immunoreactive for the type 2 glycine 

transporter (Schreihofer et al., 1999; Ezure et al., 2003). BOT neurons may function as an 

inspiratory off switch and prolong expiratory time via widespread glycinergic inhibition of 

I neurons and phrenic motorneurons (Duffin and Douse, 1993; Tian et al., 1999). 
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The Pre-Bötzinger Complex 
Between the BOT and the caudally located premotor I neurons lies a transition zone 

containing a concentration of I, E and E-I phase-spanning neurons whose connections are 

mainly propriobulbar (Connelly et al., 1992; Sun et al., 1998). This region has been termed 

the pre-Bötzinger complex (pre-BOT); its anatomical equivalent is the caudal most part of 

the retrofacial nucleus as defined in cat (Connelly et al., 1992) or the rostral part of the 

CVLM depressor region in rat (Sun et al., 1998). The neurons of the pre-BOT fire 

rhythmically in the absence of synaptic inputs and lesion of the area results in severely 

distorted patterns of breathing (Smith et al., 1991; Koshiya and Smith, 1999; Gray et al., 

2001). It is thought that this region plays a critical role in generation of respiratory rhythm 

(see following section). 

 

Retrotrapezoid Nucleus / Parafacial Respiratory Group 
At the rostral tip of the VRG are neurons located at the medial border of the facial nucleus 

close to the ventral surface that provide afferent input to both the DRG, VRG and several 

other brain regions (Rosin et al., 2006). This area is referred to as the retrotrapezoid 

nucleus (RTN) or parafacial respiratory group (pfRG) and contains neurons that are 

intrinsically sensitive to H+ and can generate, via their connections to the VRG, graded 

ventilatory responses to low pH (Mulkey et al., 2004; Guyenet et al., 2005a). Although 

other elements of the central respiratory network are chemosensitive (Bradley et al., 2002; 

Nattie et al., 2004), the RTN is emerging as an important site of central and peripheral 

chemoreception (Guyenet et al., 2005b).  

 

Numerous neurons with pre-I firing patterns are found within the pfRG in neonates, 

usually close to the ventral surface (Onimaru et al., 1989; Onimaru and Homma, 2003). 

Rhythmic activity of these neurons is preserved after cooling of the pre-BOT, which 

abolishes phrenic discharge, suggesting that the pre-BOT may be driven by these rostrally-

located pre-I neurons (Onimaru et al., 1997). Also within the pfRG are putative pacemaker 

neurons that can drive activity of expiratory muscle groups independent of inspiratory 

activity (Janczewski and Feldman, 2006). Mammals may have evolved separate rhythm 

generators driving inspiratory and expiratory activity with a major evolutionary transition 

in breathing, either from water to air breathing or with the origin of the diaphragm 

(Feldman et al., 2003; Janczewski and Feldman, 2006). 
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Reciprocal connections of the VRG 
The VRG is reciprocally connected with all levels of the VRG on both sides of the medulla 

demonstrated using combined retrograde and anterograde tract tracing (Ellenberger and 

Feldman, 1990) and functionally using cross-correlation analysis in rat (Duffin and van 

Alphen, 1995; Duffin et al., 2000). In addition, anatomical connections have been 

demonstrated between the VRG and NTS, lateral gigantocellular field (RVMM) and 

midline raphé (Ellenberger and Feldman, 1990). It is unclear if these areas provide input 

into respiratory neurons in the ventral medulla, as colocalised in this region are neurons 

with functionally diverse roles in control of the airways, circulation and organ function.  

 

Respiratory Rhythm Generation 
Normal respiratory rhythm depends on the bursting discharge of one or more groups of 

neurons. The kernel for respiratory rhythm generation was originally thought to reside in 

the pre-BOT. A thin section (~ 350 µm) of the medulla from neonatal rat containing only 

this region and lacking any afferent input is capable of generating rhythmic discharge in 

XIIn roots emerging from the slice (Smith et al., 1991). The pre-BOT contains at least two 

classes of pacemaker-like neurons; some depend on a persistent sodium current whereas 

others depend on calcium to drive their intrinsic bursting activity (Pena et al., 2004). 

Either class of pacemaker appears to be able to maintain normal breathing based upon 

studies where rhythmic respiratory output was maintained after selective blockade of 

calcium currents with cadmium (Thoby-Brisson and Ramirez, 2001) or persistent sodium 

currents with riluzole (St-John et al., 2006). Pacemakers that utilise this latter current to 

drive their bursting activity appear to be crucial to certain patterns of respiratory activity, 

including gasping evident under severe hypoxia (Paton et al., 2006).  

 

In less reduced preparations, eg brainstem-spinal cord or en bloc brainstem, the activity of 

pre-BOT neurons appears to be driven at least partly by pre-I neurons in the RTN/pfRG 

that fire up to 500 ms prior to inspiration (Ballanyi et al., 1999; Onimaru and Homma, 

2003). Whether or not there are morphologically distinct groups of pacemaker neurons in 

adult is unclear. Selective inhibition of the pre-BOT using opiate administration in juvenile 

rats is thought to uncouple their activity, resulting in quantal reductions in breathing 

frequency due to failure of the pre-I cell group to trigger pre-BOT activity (Takeda et al., 

2001; Mellen et al., 2003).  
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Reciprocal excitatory and inhibitory connections between the network of I neurons in the 

pre-BOT are necessary to drive rhythmic inspiratory activity. In slice preparations from 

neonatal rat containing pre-BOT neurons, rhythmic XIIn discharge was abolished by bath 

application of the non-NMDA receptor antagonist CNQX (Smith et al., 1991; Funk et al., 

1993). Release of glutamate acting predominantly at AMPA receptors appears to be 

essential for this to occur (Smith et al., 1991; Funk et al., 1993). I and E neurons within the 

pre-BOT also have reciprocal inhibitory connections that are glycinergic (Shao and 

Feldman, 1997).  

 

Peptide inputs converge on pre-BOT neurons and are important for bidirectional 

modulation of respiratory rhythm. In slice preparation from neonatal rats and mice, 

injection of substance P depolarized pre-I neurons in the pre-BOT whereas opiate 

administration hyperpolarized these neurons (Gray et al., 1999). Expression of the 

substance P neurokinin-1 receptor (NK1-R) may distinguish a key group of  ~ 600 

glutamatergic neurons with a pre-I firing pattern in pre-BOT (Gray et al., 1999; Gray et 

al., 2001; Guyenet and Wang, 2001; Guyenet et al., 2002). Selective destruction of NK1-R 

pre-BOT neurons by microinjection of the neurotoxin saporin conjugated to substance P 

led to severely ataxic breathing patterns during wakefulness in adult rat (Gray et al., 2001). 

However, many of the caudal most NK1-R containing neurons in rat are bulbospinal 

(Makeham et al., 2001) and contain preproenkephalin (PPE) mRNA (Guyenet et al., 2002), 

suggesting that NK-1R is not a specific marker of propriobulbar glutamatergic pre-BOT 

neurons.   

 

Respiratory-Sympathetic Integration 
Adrian, Bronk and Philips first identified respiratory rhythmicity in cervical and abdominal 

sympathetic nerves in rabbit and cat that persisted following sensory denervation and under 

paralysis (Adrian et al., 1932). All vasoconstrictor sympathetic outflows are modulated by 

central respiratory drive (Numao et al., 1987; Janig and Habler, 2003), although the 

pattern of respiratory modulation varies considerably depending on the outflow, acid-base 

balance and animal species. In cat cervical preganglionic fibres are most active during 

inspiration (Boczek-Funcke et al., 1992b); whereas lumbar sympathetic fibres showed a 

post-inspiratory peak (Boczek-Funcke et al., 1992a). In rat cervical and lumbar nerves have 

a post-inspiratory peak; whereas most others have a predominant I peak (Numao et al., 
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1987; Bartsch et al., 1999; Miyawaki et al., 2002b). Muscle and visceral sympathetic 

fibres are in general strongly modulated by respiration; whereas fibres supplying cutaneous 

beds are weakly modulated (Janig and Habler, 2003). Integration between control of 

respiration and regional and systemic blood flow is thought to be critical to the efficiency 

of O2 uptake (Taylor et al., 1999). In rat more sympathetic fibres with predominantly 

inspiratory activity are recruited by hypoventilation (Bartsch et al., 1999).  

 

SPN in rat show at least four different respiratory-modulated firing patterns; they are most 

active during either i) inspiration, ii) post-inspiration, iii) expiration or iv) have no 

respiratory modulation (Zhou and Gilbey, 1992; Pilowsky et al., 1994a). Neurons in 

presympathetic cell groups RVLM and A5 also exhibit similar patterns of respiratory-

modulated activity (Fig. 1.3.2) (Haselton and Guyenet, 1989a; Guyenet et al., 1993; 

Miyawaki et al., 1995). Hence, it is likely that presympathetic neurons receive direct inputs 

from respiratory neurons with different firing patterns. E and I neurons in the BOT have 

extensive local arborisations; their dendrites often project towards the ventral surface and 

their terminals intermingle with TH-containing neurons in the RVLM (Pilowsky et al., 

1990; Pilowsky et al., 1994b; Kanjhan et al., 1995). Some filled intracellularly recorded E 

neurons of the BOT formed close appositions with TH or spinally projecting neurons in the 

RVLM in rat (Sun et al., 1997). This input may explain the respiratory modulation of some 

RVLM neurons that show an expiratory-related depression of their activity, although this 

population is relatively small (Miyawaki et al., 1995). 

 

Excitatory inputs to presympathetic neurons in the RVLM are a potent source of post-

inspiratory excitation of SNA. Blockade of non-NMDA receptors using CNQX in the 

RVLM selectively abolished the post-inspiratory peak in splanchnic nerve activity 

(Miyawaki et al., 1996a). Blockade of GABA-A receptors in the RVLM with bicuculline 

enhanced post-inspiratory discharge of splanchnic and lumbar nerves, suggesting that 

excitatory post-inspiratory inputs are also tonically inhibited within the RVLM (Miyawaki 

et al., 2002a). The source of these inputs is unclear. Recently, four types of respiratory 

modulation were demonstrated in extracellularly-recorded GABAergic neurons in the 

CVLM (Mandel and Schreihofer, 2006). Hence it is possible that some neurons that relay 

inhibitory baroreceptor drive to the RVLM also transmit respiratory-related inputs.  

 



Type I Inspiratory inhibition Type II Early inspiratory activation

Type IV Post-inspiratory inhibitionType III Post-inspiratory activation

Type V No respiratory modulation Ventilation-related firing

Figure 1.3.2. Different patterns of respiratory modulation and ventilation-
related firing of presympathetic RVLM neurons in anaesthetised rats 
(adapted from Miyawaki et al. 1995). These patterns of activity drive 
respiratory-synchronous discharges in peripheral sympathetic nerves. Most 
sympathetic fibres exhibit an inspiratory and or post-inspiratory burst discharge. 
In the absence of central respiratory drive there is activity in RVLM neurons and 
sympathetic nerves coupled to the ventilator: this pattern is due to reflex activation 
of lung stretch receptors and feedback from arterial baroreceptors due to changes 
in AP generated by positive airway pressure. Natural respiration also generaters 
rhythmic fluctuations of AP due to an inspiration-induced decrease in intrathoracic
pressure, which momentarily increases venous return and stroke volume. 
Abbreviations: AP, arterial pressure; PND, phrenic nerve discharge; TP, tracheal 
pressure. 
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Fluctuations of AP arise due to the mechanical effects of respiration and produce feedback 

effects on SNA via the baroreflex. AP oscillations result primarily from a reduction in 

intrathoracic pressure during inspiration that momentarily increases venous return and 

stroke volume (Dornhorst et al., 1952). In vagotomised, ventilated animals where 

respiration is out of phase with ventilation, oscillations of SNA can be seen to be coupled 

both to central respiratory activity recorded in the phrenic nerve and to the rate of the 

ventilator (eg (Miyawaki et al., 1995). The latter is dependent upon intact baroreceptor 

afferents (Habler et al., 1996). Activity of single units in the RVLM is also entrained 

independently to phrenic activity as well as to ventilation (Miyawaki et al., 1995).  

 

 

 

IV. Cardiovascular Reflex Function 

 

Cranial and Spinal Afferent Reflex Pathways  
Several cranial and spinal afferent pathways modulate peripheral vasomotor and cardiac 

sympathetic and vagal outflow via inputs to autonomic nuclei in the brainstem. In the 

following sections the peripheral afferent and central pathways subserving several 

powerful cardiovascular reflexes (the baroreflex, peripheral chemoreflex and 

somatosympathetic reflex) are briefly reviewed.  

 

Arterial Baroreceptors 
Acute changes in AP are sensed by stretch-sensitive baroreceptors located in the wall of 

the aortic arch and bifurcation of the internal and external carotid arteries. Aortic and 

carotid baroreceptor afferents run in the glossopharyngeal (IX) and vagal (X) nerves, via 

branches known as the sinus and aortic nerves that also carry chemoreceptor information in 

most species. In rat, rabbit and mouse, aortic nerves only carry baroreceptor information 

(Kobayashi et al., 1999) (see below). Baroreceptor activation caused by increases in AP 

results in reductions in peripheral sympathetic activity and heart rate; conversely, 

baroreceptor deactivation elicits opposite compensatory changes. Activity in sympathetic 

nerves supplying the spleen, heart and renal beds was silenced at different AP (148, 167 

and 173 mmHg, respectively), suggesting non-uniform control of regional sympathetic 

outflow by baroreceptors (Ninomiya et al., 1971). 
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Central pathways and neurotransmitters subserving the arterial baroreflex have been 

extensively reviewed (Kumada et al., 1990; Chalmers and Pilowsky, 1991; Pilowsky and 

Goodchild, 2002). The first central synapse is in the caudal NTS where primary 

baroreceptor afferents terminate in the dorsolateral and medial subdivisions (Lipski et al., 

1975; Ciriello, 1983). Glutamate appears to be an important transmitter relaying 

baroreceptor information, as baroreflexes are largely eliminated by blockade of excitatory 

amino acid receptors in the NTS in the anaesthetised adult rat (Leone and Gordon, 1989).  

 

The central baroreflex pathway from the NTS is presumed to include a direct connection 

with CVPN (see Section II) and indirect connections with the RVLM sympathetic 

premotor neurons that relay via GABAergic neurons in the CVLM (see Section I) (Fig 

1.4.1). NTS neurons have monosynaptic excitatory connections with CVLM neurons 

(Bailey et al., 2006); however, at this stage it is still not clear if CVLM neurons receive 

direct input from NTS neurons that are contacted by baroreceptor afferents. It is likely that 

baroreceptor information is first relayed to interneurons within the NTS, some of which are 

inhibitory (Pilowsky and Goodchild, 2002). Some barosensitive presympathetic neurons in 

the PVN and A5 presumably also receive baroreceptor input along with several other 

central sites including A1, midline raphé, pontine reticular nuclei (LC and PBN), lateral 

tegmental field and supra-optic nucleus of the hypothalamus (Yamashita, 1977; Pilowsky 

et al., 1995b; Barman et al., 2002; Bailey et al., 2006). The baroreflex is hence not only 

integrated within the lower brainstem but also modulates several higher brain areas 

including, amongst others, those connected with hormonal control and arousal.  

 

Contribution of the Baroreflex to Long Term Levels and 

Short Term Variability of AP 
At normal levels of AP the majority of carotid and aortic baroreceptor fibres are tonically 

active (Coleridge and Coleridge, 1980). At least in the short term, tonic baroreceptor firing 

contributes to setting resting levels of sympathetic activity (Horiuchi and Dampney, 1998). 

The importance of the baroreflex in long term control of AP has been debated. McCubbin 

and colleagues originally showed that baroreceptor function in dogs with chronic renal 

hypertension was reset to higher AP, such that baroreceptor afferents fired at higher  
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stimulus threshold and had normal phasic responses to changes in AP (McCubbin et al., 

1956). Baroreceptor resetting occurs rapidly and has been argued to preclude any 

contribution of the baroreflex to setting long term levels of AP (Coleridge et al., 1984). 

Rather, baroreflex resetting is thought to be a key mechanism promoting higher levels of 

AP in several forms of hypertension (Krieger, 1989).  

 

Loss of baroreceptors, on the other hand, would presumably result in chronically elevated 

sympathetic activity and sustained increases in AP. However, mean levels of AP remain 

fairly normal for many weeks following complete baroreceptor denervation in dog (Cowley 

et al., 1973), rabbit (Saito et al., 1986) or rat (Norman et al., 1981; Schreihofer et al., 

2005). Thrasher recently re-addressed this question in a novel preparation in dog by 

denervating both sets of aortic and one set of carotid baroreceptors: the common carotid 

artery was chronically ligated on the side with intact carotid baroreceptors (Thrasher, 

2002). Chronic baroreceptor unloading tested in this way led to a sustained increase in 

mean AP (~ 20 mmHg) recorded over 7 days (Thrasher, 2002)). Raised sympathetic 

activity was indicated by a sustained increase in HR and, despite a presumed increase in 

renal perfusion pressure, normal sodium excretion and elevated plasma renin (Thrasher, 

2002). Hence, despite the phenomenon of resetting, baroreceptors appear capable of long 

term adjustments of the level of sympathetic outflow. The error signal for the baroreceptors 

is still unclear, however, since although carotid sinus pulse pressure was reduced 

chronically, mean carotid sinus pressure remained normal throughout the 7 days (Thrasher, 

2002).  

 

Studies are in full agreement, however, that chronic baroreceptor denervation results in 

marked increases in short term fluctuations of AP (Fig 1.4.2) (Cowley et al., 1973; Norman 

et al., 1981; Saito et al., 1986; Schreihofer et al., 2005). Hence, baroreceptor activity plays 

a critical role in buffering beat-to-beat and daily perturbations in AP. In animals with 

sinoaortic denervation there is evidence for left ventricular hypertrophy and impaired 

contractility and endothelial stress (Eto et al., 2003; Martinka et al., 2005). Hence, 

increased blood pressure variability is an important factor predisposing to organ damage 

even in the absence of overt hypertension (Mancia and Grassi, 2000).  

 

The dynamic properties of the baroreflex show that it is a high gain system operating over 

a limited range of sympathetic and vagal nerve firing (Sato et al., 1999; Petiot et al., 2001; 

Kawada et al., 2004). Baroreflex function is described using logistic curves based on four  



systolic
arterial pressure

pulse interval

systolic
arterial pressure

pulse interval

CONTROL FOLLOWING
SINOAORTIC

DENERVATION

Figure 1.4.2. Effect of sinoaortic denervation on arterial pressure and heart rate
variability in awake cats (adapted from Di Rienzo et al. 1991). Mean systolic 
pressure (A) and heart rate (pulse interval, B). Systolic pressure is much more erratic, 
whereas there is less variability in heart rate 7-10 days following sinoaortic denervation 
(right panels) compared to the control period (left panels). Lower panels illustrate individual 
systolic pressure and pulse interval power spectra over time showing a marked increase
in power at ~0.3 Hz in systolic pressure, and a corresponding reduction in power at this 
frequency in heart rate. These data indicate that baroreceptors are critical for buffering 
short term fluctuations of AP and that a proportion of heart rate variability is driven by 
baroreceptor input. Similarly, sinoaortic denervation results in marked reductions in the 
amplitude of low frequency periodic discharges in vasoconstrictor sympathetic nerves 
(see text), indicating that baroreceptors provide rhythmic feedback to CNS pathways in 
order to reflexly modulate regional blood flow and buffer variations of systemic pressure. 
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or five parameters that describe threshold and saturation points and the gain of changes in 

sympathetic activity or heart rate throughout a range of arterial pressures (Ricketts and 

Head, 1999; McDowall and Dampney, 2006). The resting level of AP is also referred to as 

the set-point of the baroreflex. This is usually situated at a point of high baroreflex gain, 

close to the midpoint of the curve; presumably this enables maximum buffering of AP 

around its resting level.  

 

Baroreceptor-effector coupling has an inherent time delay due to integration within the 

neural arc and delayed responses of efferent organs (Sato et al., 1999; Keyl et al., 2001). 

This is in part thought to generate slow regular fluctuations of AP at a frequency slower 

than respiration, originally observed by Mayer – so-called low frequency (LF) oscillations 

(Mayer, 1876). The frequency is close to 0.1 Hz in humans (Pagani et al., 1986), dogs 

(Akselrod et al., 1981; Pagani et al., 1986) and cats (Di Rienzo et al., 1991), 0.3 Hz in 

rabbits (Head et al., 2001) and 0.4 Hz in rats and mice (Julien et al., 2003; Baudrie et al., 

2007). Mayer waves are coupled to LF oscillations of SNA and HR (Bertram et al., 1998; 

Ringwood and Malpas, 2001). Changes in HR at this frequency tend to oppose; whereas 

changes in sympathetic activity reinforce Mayer waves in AP (Cerutti et al., 1991; 

Ringwood and Malpas, 2001). The amplitude of Mayer waves is greatly reduced after 

alpha-adrenergic (Cerutti et al., 1991) or chronic ganglionic blockade (Julien et al., 1995) 

or sinoaortic denervation (Kunitake and Kannan, 2000; Julien et al., 2003; Barres et al., 

2004). Thus the generation of Mayer waves is related both to phasic changes in 

sympathetic outflow and to normal operation of the baroreflex. 

 

Peripheral Chemoreceptors 
Acute mild hypoxia is detected as a change in PaO2 by peripheral chemoreceptors located 

in the carotid and aortic bodies in cat and dog; only the former are present in rabbit, mouse 

and rat (Comroe and Mortimer, 1964; Marshall, 1994). Chemoreceptor activation triggers 

cardiorespiratory adjustments that function to maintain oxygenation in vital organs 

including the brain and heart (Marshall, 1994). Generally, the response is characterised by 

an increase in ventilation, bradycardia and vasoconstriction in the skeletal muscle and 

splanchnic beds. An increase in ventilation has secondary effects on the circulation 

characterised by tachycardia and peripheral vasodilatation. These effects are mediated 

secondary to hyperventilation due to resulting hypocapnia, reflex effects of lung inflation, 

and increased activity of central inspiratory neurons (Daly, 1993; Daly and Cook, 1994). In 
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rat direct chemoreceptor influences appear to predominate over these secondary effects. 

For example, the magnitude of bradycardia and vasoconstriction evoked by N2 inhalation 

in spontaneously breathing rats was unaffected by vagotomy or constant ventilation under 

paralysis (Marshall, 1987).  

 

Chemoreceptor afferents run in the IX and X cranial nerves that also carry baroreceptor 

information and synapse in the medial and commissural NTS. The integrated circuitry that 

coordinates sympathetic (and phrenic) responses to chemoreceptor activation is thought to 

be contained wholly within the lateral pons and medulla (see Fig 1.4.1) (Koshiya and 

Guyenet, 1994a; Guyenet, 2000). Select neuronal groups express c-fos following hypoxia 

in conscious rabbits; these include mainly the K-F nucleus in the caudolateral pons and 

medial NTS and RVLM in the medulla (Hirooka et al., 1997). Blockade of glutamatergic 

inputs into the RVLM using kynurenate (Koshiya et al., 1993) or selective blockade of 

AMPA/Kainate receptors using CNQX (Miyawaki et al., 1996b) abolished the 

sympathoexcitatory response to hypoxia (see Section I).  

 

The origin of peripheral chemoreceptor drive to RVLM neurons is unclear. In part the 

sympathetic activation that occurs during hypoxia is transmitted via increased inspiratory 

drive from central respiratory neurons. Muscimol inhibition of the pre-BOT, which 

eliminates the increase in inspiratory-related sympathetic discharge, does not however alter 

the magnitude of excitation of RVLM neurons in response to hypoxia (Koshiya and 

Guyenet, 1996b). More caudally, muscimol inhibition of the CVLM also has no effect on 

sympathoexcitatory responses to N2 inhalation in rat (Koshiya et al., 1993). Hence, RVLM 

neurons must receive direct excitatory chemoreceptor-related inputs, probably directly 

from the NTS (Aicher et al., 1996; Koshiya and Guyenet, 1996b). The commissural part of 

the NTS contains neurons that are excited by hypoxia, are antidromically activated from 

the RVLM and have axon collaterals in the NA (Koshiya and Guyenet, 1996a). A 

monosynaptic connection between some NTS neurons and C1 RVLM neurons has also 

been documented anatomically (Aicher et al., 1996).  

 

Guyenet and colleagues proposed that the A5 region is a critical synaptic relay in the 

sympathetic chemoreflex since unit activity and post-inspiratory modulation of A5 neurons 

increased along with splanchnic SNA during N2 inhalation (Guyenet et al., 1993). Bilateral 

inhibition of A5 using muscimol in anaesthetised rats markedly reduced the splanchnic 

sympathoexcitatory response to hypoxia  (Koshiya and Guyenet, 1994b). In conscious 
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rabbits, however, muscimol inhibition of A5 enhanced renal sympathetic activation under 

20 min of 10 % O2 inhalation (Maiorov et al., 2000). Recently, it was shown that pressor 

responses to cyanide-induced hypoxia were unaffected by destruction of the A5 cell group 

using localised injection of 6-hydroxydopamine in rat (Madden and Sved, 2003). Hence, 

A5 may play a modulatory, but not obligatory role in the peripheral chemoreflex. 

 

Somatic Afferents  
Somatic nerves are mixed nerves containing numerous motor and sensory fibres. The 

reflex effects on circulation of stimulating somatic nerves under experimental conditions 

has been of considerable value in understanding mechanisms that operate to adjust 

cardiovascular function in response to pain or muscle contraction. Single afferent volleys 

in muscle or cutaneous nerves elicit sympathetic reflex discharges and post-excitatory 

depression of their activity (Sato and Schmidt, 1973). Short trains of stimulation at 100 – 

200 Hz augment the reflex sympathoexcitation. Electrical stimulation of myelinated low-

threshold cutaneous afferents evokes strong increases in sympathetic activity (Sato and 

Schmidt, 1973). Stimulation of high-threshold group II muscle afferents evokes responses 

only at higher stimulus strength; whereas group I afferents (muscle spindle and Golgi 

tendon organ) have no excitatory or inhibitory influence on the sympathetic system (Coote 

and Perez-Gonzalez, 1970; Sato and Schmidt, 1973). This is in contrast to effects of 

metaboreceptor activation in active muscle; for example, tetanic contraction of hindlimb 

muscle evokes increases in BP (Ally et al., 1994). This latter reflex is thought to be part of 

the feedback pathway contributing to elevated blood flow to active muscle during exercise 

(Fisher and White, 2004). 

 

Brief high voltage low frequency stimulation of somatic nerves in rat produces 

characteristic two peak responses in sympathetic nerves with latencies of about 70 and 170 

ms (Morrison and Reis, 1989; Miyawaki et al., 2001, 2002b). The origin of different 

latency peaks involves properties of both the afferent and efferent pathways (Fig 1.4.3). 

For example, early vs late peaks are in part mediated by a short-latency spinal component 

and longer latency medullary and pontine components arising from branches of the 

ascending sensory spinothalamic pathway. A critical nodal point in this pathway is the 

RVLM (Morrison and Reis, 1989). Increased activity of bulbospinal neurons in this region 

precedes and corresponds to early and late peaks in splanchnic discharge seen following 

sciatic nerve stimulation in rat (Morrison and Reis, 1989). Tested in this way, the two clear  
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peripheral discharges characteristic of the somatosympathetic reflex may result from early 

and late activation of RVLM neurons with fast-conducting axons, as well as late activation 

of neurons with slower conducting axons (Morrison and Reis, 1989; Verberne et al., 

1999a).  

 

 

V. The Central Cholinergic Nervous System 

 

Cholinergic Innervation of the CNS 
Cholinergic cell bodies are located in a loosely contiguous axis arising from the cranial 

nerve nuclei of the brainstem to cholinergic cell groups in the mesopontine tegmentum and 

basal forebrain. Ascending cholinergic pathways are organized in six projection systems 

originally designated Ch1-Ch6 based upon combined immunohistochemistry and tract 

tracing studies in macaque and rat (Mesulam et al., 1983a; Mesulam et al., 1983b) 

(Figure). Ch1-Ch4 systems are located within various basal forebrain nuclei, including the 

medial septal nucleus, diagonal band and nucleus basalis, and provide the major 

cholinergic projections to the hippocampus, olfactory bulb, cortex and amygdala. In 

addition, intrinsic cholinergic projections richly innervate the striatum. The Ch5 and Ch6 

systems arise from the pedunculopontine tegmental nucleus of the pontomesencephalic 

reticular formation (PPT) and the laterodorsal tegmental grey of the periventricular area 

(LDT) and provide the major cholinergic innervation of the thalamus (Mesulam et al., 

1983b). Cholinergic neurons in the PPT and LDT are also the major source of descending 

cholinergic projections to the caudal pons and medulla (Fig. 1.5.1) (Rye et al., 1988; Woolf 

and Butcher, 1989; Jones, 1990; Yasui et al., 1990).  

 

Fundamental Aspects of Cholinergic Neurotransmission 
Acetylcholine (ACh) is synthesized in the presynaptic terminal from choline and acetyl-

CoA by the cytoplasmic protein choline acetyl transferase (ChAT) and subsequently 

transported into synaptic vesicles by the vesicular acetylcholine transporter (vAChT). Co-

expression of both ChAT and vAChT is required for a neuron to be cholinergic, ie whose 

terminals contain a releasable pool of ACh. The vAChT gene lies within the first intron of 

the ChAT gene and both have the same transcriptional orientation (Tanaka et al., 1998).  
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This conserved structure enables the coordinated expression of both genes, which are also 

thought to share common upstream regulatory sequences (Berrard et al., 1995; Shimojo et 

al., 1998; Tanaka et al., 1998).  

 

Cholinesterases terminate the synaptic action of ACh through hydrolysis and 

acetylcholinesterase (AChE) is widely distributed throughout the CNS. AChE is found in 

the cell bodies, axons and dendrites of cholinergic neurons as well as in the cell bodies of 

many non-cholinergic cholinoceptive neurons (Mesulam and Geula, 1992). The hydrolysis 

of ACh leads to liberation of choline, whose reuptake by the presynaptic terminal is the 

main mechanism regulating choline availability for de novo synthesis of ACh. A key 

regulator of choline reuptake is Na+-dependent transport via the high affinity choline 

transporter (HAChT) (Parsons, 2000).  

 

ACh mediates synaptic transmission via binding to ion channel-gated nicotinic (nAChR) 

and G-protein coupled muscarinic receptors (mAChR). Neuronal nAChR are composed of 

five transmembrane subunits surrounding a water-filled pore that gates the selective 

passage of cations into the cell (Dani and Bertrand, 2006). In mammals, nAChR composed 

of heteromeric αβ or homomeric α7 subunit combinations are widely distributed in the 

CNS (Dani and Bertrand, 2006). MAChR exist as five molecularly distinct subtypes (M1-

M5) whose structures are otherwise highly conserved, consisting of seven α-helical 

transmembrane segments and an extracellular N-terminal portion that recognises and binds 

ACh (Caulfield and Birdsall, 1998). Sequence divergence in the second or third 

intracellular cytoplasmic loops probably determines the preferential coupling of different 

subtypes either to Gαq/11 (M1, M3, M5) or Gαi/o proteins (M2, M4) (Caulfield and Birdsall, 

1998). In general, these subgroups mediate intracellular excitation and inhibition, 

respectively, via activation of phospholipase C (M1, M3, M5) or inhibition of adenylyl 

cyclase (AC) (M2, M4) (Caulfield and Birdsall, 1998). There is also evidence for direct 

K+ channel activation mediated by M2 receptor-activated Gαi/o subunits (Wickman and 

Clapham, 1995) or M2/M4 receptor-mediated stimulation of AC (Onali and Olianas, 

1995) and others also report excitatory responses linked to M2 receptor activation in the 

periphery (Eglen et al., 1994; Ehlert, 2003). For example, the contractile response in gut 

smooth muscle is linked to synergistic activation of M2 and M3 receptors leading to 

increased Ca2+ influx and enhanced Ca2+ sequestration from intracellular stores, 

respectively (Ehlert, 2003).  
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The diversity of cholinergic receptors and their pre- and postsynaptic and axonal locations 

contribute to the varied roles these receptors play in modulating neuronal excitability. In 

the CNS mAChR play fundamental roles in several higher processes including learning, 

memory and attention and extrapyramidal motor control (Bymaster et al., 2003a). Some 

mAChR subtypes located centrally are also linked to control of body weight and 

temperature regulation (Bymaster et al., 2003a), cardiovascular function (Sundaram et al., 

1988; Giuliano et al., 1989) and respiration (Nattie and Li, 1990; Boudinot et al., 2004). 

This is supported by the fact the administration of AChE-inhibitors and direct acting 

mAChR agonists evoke profound autonomic effects including hypertension and 

hypothermia and respiratory disturbances in several species including man (see following 

sections). The anatomical substrates involved in central cholinergic effects on circulation 

and respiration are less clear, and in most cases their physiological importance is unknown. 

The following sections discuss the evidence for descending cholinergic innervation of the 

ventral medulla and interactions with neurons important in control of cardiovascular and 

respiratory function.   

 

Cholinergic Innervation of the Ventrolateral Medulla  
Descending projections to the ventral medulla from pontomesencephalic cholinergic 

neurons have been demonstrated using anterograde or retrograde tracing and combined 

immunohistochemical detection of ChAT or AChE (Rye et al., 1988; Woolf and Butcher, 

1989; Jones, 1990; Yasui et al., 1990). These cells are located in diffuse and discrete cell 

clusters within the PPT and periventricular LDT (Mesulam et al., 1983b). Cholinergic PPT 

neurons are found as far caudal as the parabrachial nucleus and occasionally embedded in 

the superior cerebellar peduncle; more rostrally they are found clustered adjacent to the 

lateral lemniscus and in a more diffuse medial group (Mesulam et al., 1983b). Neurons in 

the PPT appear to provide most of the cholinergic input to ventrolateral regions; whereas 

both the PPT and LDT provide input to medial and midline regions of the ventral medulla 

(Rye et al., 1988; Yasui et al., 1990). Following Fluorogold injection into the RVLM in rat, 

approximately 10 % of ChAT-positive PPT neurons were labeled on the ipsilateral side but 

very few were found in the LDT (Yasui et al., 1990). Descending projections from the PPT 

to the ventral medulla are predominantly ispilateral but always have a contralateral 

component (Woolf and Butcher, 1989; Yasui et al., 1990). Cholinergic input to the RVLM 

may also arise from small ChAT-labeled somata in the gigantocellular field of the medial 

medulla that send fibres into the neighbouring VLM (Ruggiero et al., 1990). 
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A dense plexus of cholinergic terminals innervates the VLM revealed by 

immunohistochemical detection of ChAT (Jones and Beaudet, 1987; Giuliano et al., 1989; 

Milner et al., 1989; Ruggiero et al., 1990), vAChT (Arvidsson et al., 1997; Schafer et al., 

1998) or HAChT (Kus et al., 2003). Antibodies to AChE also densely stain the VLM and 

subjacent ventral surface in rat (Satoh et al., 1983) and cat (Jones and Webster, 1988). The 

colocalisation of many of the components required for cholinergic neurotransmission 

indicates an active turnover of ACh and the existence of local cholinoceptive neurons 

within the VLM. At rostral levels containing the majority of sympathoexcitatory RVLM 

neurons, femtomolar amounts of ACh could be continuously microdialysed from the 

region following neostigmine injection in freely moving rats (Taguchi et al., 1999). In 

micropunches of RVLM resting ChAT enzyme activity is high relative to medullary 

somatomotor nuclei (eg. hypoglossal nucleus) (Arneric et al., 1990). 

 

ChAT-immunoreactive (IR) terminals interdigitate with TH/PNMT labeled cells in the 

RVLM (Milner et al., 1989; Ruggiero et al., 1990). According to an ultrastructural study in 

sections of rat VLM, ChAT-IR terminals rarely form synapses with TH/PNMT labeled 

cells (8 %) (Milner et al., 1989). In contrast, ChAT-IR terminals form abundant synaptic 

contacts with non-TH cell bodies and dendrites (77 %) and ChAT-IR perikarya (15 %) and 

occasionally with unlabeled terminals that contact other unlabeled perikarya (Milner et al., 

1989). These findings are not definitive, however, with regard to neurons located 

specifically in the rostral region of the RVLM since quantitation was only conducted on 

sections taken from 0.5 - 2 mm caudal to the facial nucleus (Milner et al., 1989). This 

would exclude the majority of C1 neurons with descending projections to the spinal cord 

(Verberne et al., 1999a; Phillips et al., 2001). The abundance of synaptic contacts formed 

by ChAT-labeled terminals in the VLM caudal to this area, however, reflects cholinergic 

innervation of other regions essential to control of circulation and breathing including the 

CVLM and pre-BOT. 

 

Muscarinic Receptor Genes and Protein in the Ventrolateral 

Medulla 
Genes encoding the mAChR subtypes M1 – M5 were cloned in the late 1980s and were 

found to have a strong sequence homology (Kubo et al., 1986; Bonner et al., 1987; Bonner 

et al., 1988). Gene expression of mAChR in the VLM has been investigated using PCR 
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amplification of cDNA from tissue punches of the RVLM from spontaneously 

hypertensive and Wistar Kyoto rats; all mAChR subtypes were found to be expressed 

although their relative abundance was not calculated (Gattu et al., 1997b). 

 

Antisera specific to each subtype were produced by bacterial expression of proteins 

incorporating the non-conserved third cytoplasmic loops (Levey et al., 1991; Levey, 1993). 

According to subtype-specific immunoprecipitation, 80 % of mAChR protein in the 

brainstem is made up of M2 receptors with equal amounts of the other subtypes making up 

the remaining 20% (Levey, 1993). The localisation of mAChR subtypes in the medulla was 

reported to mostly presynaptic based upon M2 receptor binding confined to terminals and 

fibres rather than cell bodies in human infant medulla (Mallard et al., 1999). Using the 

radioligand quinuclidinyl benzilate (QNB) to preferentially bind M2 receptors, a high 

density of M2 receptor was reported in rat RVLM (Ernsberger et al., 1988a; Ernsberger et 

al., 1988b) and a proportion of these were present extrasynaptically (Ernsberger et al., 

1988b). In other regions of the brain M2 receptors are located mainly on presynaptic 

terminals (Quirion et al., 1995) but are also often found clustered at the postsynaptic 

membrane (Hersch et al., 1994). The precise cellular and subcellular locations of M2 or 

other receptor subtypes within the RVLM is unknown. Expression or binding of mAChR 

in more caudal regions of the medulla has not been investigated. 

 

Cholinergic Influences on Blood Pressure  
The profound pressor effects of central mAChR activation are well established and have 

been reviewed in detail (Hornykiewicz and Kobinger, 1956; Brezenoff and Giuliano, 1982; 

Buccafusco, 1996; Kubo et al., 1997; Kubo, 1998). It was known as early as 1867 that 

eserine (physostigmine) produced a central pressor effect in dogs that could be blocked by 

atropine (see (Hornykiewicz and Kobinger, 1956). It was not until the early 1900s that 

specific effects of physostigmine were related to prolongation of the synaptic actions of 

ACh (see (Dale, 1962). In several species, including man, dose-dependent increases in AP 

are evoked by cholinesterase inhibitors (carbamates such as physostigmine, neostigmine or 

organophosphates including di-isopropyl fluorophosphate and sarin) or direct acting 

cholinomimetics (including carbachol, oxotremorine, arecoline) when administered into 

the systemic circulation or directly into the CSF (cat: (Day and Roach, 1977); dog: (Lang 

and Rush, 1973); man: (Petrie et al., 2001); rat: (Varagic, 1955; Walker and Weetman, 

1970; Brezenoff, 1972; Brezenoff and Rusin, 1974; Buccafusco and Brezenoff, 1978; Kubo 
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and Tatsumi, 1979; Buccafusco and Spector, 1980; Giuliano et al., 1989). This pressor 

response is consistently antagonised by atropine or scopolamine administered via the same 

route (eg (Brezenoff and Caputi, 1980). The magnitude of the pressor response is similar in 

anaesthetised or conscious animals; an exception is in cat where under anaesthesia the 

pressor response to carbachol reverts to a depressor effect (Armitage and Hall, 1967).  

 

The CNS sites that mediate cholinergic pressor responses are thought to include 

hypothalamic and lower brainstem regions. Regions of the forebrain and hypothalamus are 

activated in response to intracereberoventricular administration of physostigmine (Li et al., 

1997). The posterior hypothalamus contains mAChR that when activated lead to 

vasopressin release and increases in AP (Buccafusco and Brezenoff, 1979), although 

atropine injected into this region did not prevent pressor responses to physostigmine in rat 

(Brezenoff et al., 1982). Moreover, pressor responses to intravenous physostigmine 

(Varagic, 1955; Willette et al., 1984) or oxotremorine (Walker and Weetman, 1970) or 

intracerebroventricular injection of oxotremorine (Ozawa and Uematsu, 1976) were 

completely unaffected by transection rostral to the medullary sympathetic outflow. In 

contrast, pressor effects were completely abolished by cervical transection or blockade of 

ganglionic transmission (Sundaram and Sapru, 1988) or peripheral adrenoceptors 

(Varagic, 1955). Hence, a key site of action was likely to be in the medulla within regions 

involved in generating or modulating sympathetic outflow. 

 

Microinjection of ACh or carbachol into the NTS lowered AP in anaesthetised rats 

(Criscione et al., 1983). In contrast, microinjections of ACh, physostigmine or 

cholinomimetics directly into the RVLM produce a profound increase in AP, heart rate and 

sympathetic nerve activity in anaesthetised rats (Willette et al., 1984; Punnen et al., 1986; 

Sundaram et al., 1988; Sundaram and Sapru, 1988; Giuliano et al., 1989; Kubo, 1998). 

Moreover, blockade of mAChR bilaterally within the RVLM with scopolamine abolished 

the increase in sympathetic activity and AP evoked by intravenous physostigmine in 

anaesthetised rats (Giuliano et al., 1989). Hence, the RVLM is a key site of action of 

systemically administered cholinesterase inhibitors responsible for producing 

sympathetically-mediated increases in AP. 

 

Cholinergic Influences on Cardiovascular Reflexes  
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Despite extensive investigation of the central pathways subserving the baroreflex and other 

major cardiovascular reflexes including the somatosympathetic and peripheral and central 

chemoreflex, little is known about the involvement of central cholinergic receptors. One 

study reported that the late peak of the somatosympathetic reflex evoked by intercostal 

nerve stimulation was inhibited by intravenous oxotremorine in anaesthetised cats (Baum 

and Shropshire, 1978). MAChR are thought to play an important role in central and 

peripheral chemosensitivity (Nattie and Li, 1990; Shao and Feldman, 2000; Boudinot et 

al., 2004); for example, conscious mice lacking the M3 receptor displayed reduced 

compensatory ventilatory responses to hypercapnia or moderate hypoxia using whole-body 

plethysmography (Boudinot et al., 2004). The involvement of mAChR in cardiovascular 

components of these reflexes is unknown.  

 

Other data point to the involvement of mAChR in central integration of the arterial 

baroreflex. In conscious rats intracerebroventricular injection of physostigmine enhanced 

reflex bradycardia but inhibited reflex tachycardia evoked by noradrenaline and sodium 

nitroprusside, respectively (Caputi et al., 1980). This reflects an acute resetting of the 

baroreflex, presumably to the higher pressures evoked by physostigmine, without marked 

changes in range or sensitivity of the cardiac component of the reflex. In anaesthetised rats, 

intracerebroventricular or intravenous injection of physostigmine potentiates the carotid 

arterial occlusion reflex (CAOR) (Brezenoff et al., 1982; Park and Long, 1991), which 

produces an increase in AP in part via carotid baroreceptor unloading. Park and Long also 

found a parallel reduction in the fall in AP produced by 45º head-up tilt (Park and Long, 

1991), suggesting that physostigmine may act centrally to enhance the gain of the 

vasomotor component of the baroreflex. The conclusions of these previous studies, 

however, are limited given that the reflex pathway evoked by CAOR is complex and 

probably not limited to arterial baroreflex activation. Carotid occlusion unloads carotid 

baroreceptors, signaling for a rise in AP, but the opposite occurs for aortic baroreceptors, 

limiting the increase in AP. Moreover, carotid occlusion leads to central ischaemia as well 

as local deoxygenation that could activate carotid body chemoreceptors (Franchini and 

Krieger, 1992).  

 

The central sites responsible for effects on baroreflex function evoked by physostigmine 

are not clear. Potentiation of the carotid occlusion reflex by physostigmine was prevented 

by atropine injected into the posterior hypothalamus (Brezenoff et al., 1982). The potential 

involvement of medullary sites where mAChR activation alters AP is unclear.  
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The NTS may be involved as it receives input from baroreceptor afferents and transmits 

baroreceptor information to both vagal and sympathetic premotor nuclei. NAChR 

containing homomeric α7 subunits are located presynaptically on terminals of primary 

baroreceptor afferents in the medial NTS, indicated by the dramatic reduction in α-

bungarotoxin binding in this region following unilateral nodose ganglionectomy in rat 

(Ashworth-Preece et al., 1998a). Whether or not nAChR or mAChR in the NTS play a role 

in the baroreflex is unclear. Local administration of the α7-nAChR antagonist mecylamine 

reduced glutamate release in the NTS following aortic nerve stimulation (Ashworth-Preece 

et al., 1998b) although central administration of hexamethonium or mecylamine (Caputi et 

al., 1980) or microinjection of atropine directly into the NTS (Tsukamoto et al., 1994) has 

little effect on baroreflex-evoked bradycardia.  

 

The RVLM may also be involved since barosensitive neurons here are excited by local 

mAChR activation (see following sections). One study claimed that the amount of ACh 

microdialysed from the RVLM increased following tetanic stimulation of aortic 

baroreceptor afferents or injection of phenylephrine in anaesthetised rats (Kubo et al., 

1998d), suggesting that mAChR activation may contribute to normal baroreflex responses. 

The involvement of RVLM mAChR in the sympathetic baroreflex or other 

sympathoexcitatory reflexes mediated within the region is unknown.  

 

Muscarinic Cholinergic Modulation of RVLM Neuronal 

Activity 
Increases in sympathetic activity and AP evoked via mAChR activation in the RVLM 

appear to be mediated via the inhibitory M2 receptor subtype; M2 receptor-preferring 

antagonists injected into the RVLM prevent cardiovascular effects following local 

injection of cholinergic agonists (Sundaram et al., 1988; Sundaram and Sapru, 1988) or 

intravenous physostigmine (Giuliano et al., 1989). It is well recognised that there are no 

antagonists specific for mAChR subtypes, although some show higher affinity for certain 

subtypes (Table. 1.5.1) (Caulfield and Birdsall, 1998). Some studies also showed that 

nicotine evoked a pressor response when injected into the RVLM (Tseng et al., 1994); 

however, in anaesthetised rats the sympathoexcitatory response to physostigmine or 

carbachol was unaffected by blockade of nAChR with hexamethonium (Giuliano et al., 

1989). 



Table 1.5.1     Antagonist affinity constants for mammalian muscarinic receptors. 
Data are from a variety of mammalian species including human. Last two drugs are 
toxins from Eastern Green Mamba venom. Adapted from Caulfield and Birdsall (1998).  
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Carbachol enhanced the firing rate of spinally projecting barosensitive neurons recorded in 

vivo and presumed AP-regulating neurons in vitro (Huangfu et al., 1997; Kubo et al., 

1997; Wang et al., 2000). Many of the cells recorded in vitro (~70%) were also 

immunoreactive for TH (Huangfu et al., 1997). Voltage clamp recordings of the same 

neurons showed that carbachol produced an inward current (ie. carried by a cation), which 

was unaffected by a low Ca2+ / high Mg2+ perfusate or tetrodotoxin, indicating a direct 

postsynaptic site of action (Huangfu et al., 1997). Carbachol-evoked depolarisation could 

also result from an increase in discharge of local interneurons, or possibly even direct 

depolarisation of presynaptic terminals (McGehee et al., 1995; Huangfu et al., 1997). In 

neonates activation of RVLM neurons produced by carbachol is inhibited by either nAChR 

or mAChR antagonists (Huangfu et al., 1997). In contrast, mAChR effects predominate in 

adult (Huangfu et al., 1997; Kubo et al., 1997; Wang et al., 2000), which could reflect 

maturation of the neurons or synaptic environment in the RVLM.  

 

Sensitivity to carbachol in the RVLM is not restricted to presympathetic neurons. In fact a 

large majority of cells, many of which display respiratory-related discharge, respond to 

iontophoretically-applied carbachol in vivo (Huangfu et al., 1997). Pressor responses to 

local activation of mAChR could result from direct and or indirect effects on 

sympathoexcitatory RVLM neurons (Fig. 1.5.2). Since M2 receptors are in general coupled 

to inhibitory G proteins, it is thought that one likely mechanism explaining cholinergic 

sympathoexcitatory responses is that M2 receptors are located presynaptically on 

inhibitory inputs to RVLM neurons (Arneric et al., 1990). In many other brain regions, 

cholinergic receptors usually modulate neuronal excitability via a combination of receptors 

located pre- and postsynaptically. The receptor subtypes and site/s of action underlying 

cholinergic effects in RVLM remain to be fully resolved.  

 

A tentative conclusion that could be drawn from the robust pressor effects of 

physostigmine is that ACh is constitutively released in the RVLM. Whether or not this is 

physiologically significant (as it pertains to vasomotor tone generation) remains 

questionable. Bilateral antagonism of mAChR or nAChR in the RVLM produces 

negligible reductions in AP in the majority of studies (Willette et al., 1984; Sundaram et 

al., 1988; Sundaram and Sapru, 1988; Giuliano et al., 1989; Nattie and Li, 1990). The 

effects of iontophoretically applied antagonists on the firing rate of RVLM neurons are 

also inconsistent (Kubo et al., 1997; Wang et al., 2000). 
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Bilateral blockade of mAChR in the RVLM with atropine or scopolamine does, however, 

produce a large reduction in AP in spontaneously hypertensive rats (SHR) compared to 

their normotensive controls (Lee et al., 1991; Kubo et al., 1995a). This suggests that 

release of ACh in the RVLM may contribute to basal levels of sympathetic activity under 

conditions where AP is elevated. Similar doses of physostigmine also generate larger 

increases in AP in hypertensive animals (SHR: (Kubo and Tatsumi, 1979; Buccafusco and 

Spector, 1980; Lee et al., 1991; Kubo et al., 1995a); Dahl-salt-sensitive hypertension: 

(McCaughran et al., 1983); DOCA salt-sensitive and renal hypertension: (Kubo et al., 

1996). This does not appear to be explained by differences in AChE enzymatic activity or 

spontaneous ACh release in the RVLM of SHR compared to Wistar Kyoto rats (Arneric et 

al., 1990; Kubo, 1998). An increase in mAChR number may contribute since binding was 

enhanced in some studies (Gattu et al., 1997a; Gattu et al., 1997b) but not others 

(Hernandez et al., 2003). An increase in receptor sensitivity is also possible, although 

again some studies report larger pressor responses to ACh or physostigmine in SHR (Lee 

et al., 1991) but others report no difference in SHR or DOCA-salt sensitive rats (Kubo et 

al., 1995a; Kubo et al., 1996). 

 

The most likely explanation for enhanced cholinergic tone in the RVLM of hypertensive 

animals is an increase in ACh synthesis and release. ChAT activity was increased in the 

RVLM but not other medullary regions of SHR (Kubo et al., 1995b; Kubo et al., 1998b) or 

DOCA-salt-sensitive and renal hypertensive rats (Kubo et al., 1996). DOCA-salt-sensitive 

hypertensive animals exhibited an increased number of ChAT-expressing neurons in 

RVLM (Kubo et al., 1998c), although ChAT-IR was similar between SHR and WKY 

(Xiong et al., 1998). Furthermore, high affinity uptake of free choline was greater in crude 

synaptosomal fractions from medulla/pons in mature SHR compared with WKY 

(Trimarchi and Buccafusco, 1987). 

 

The precise origin of cholinergic inputs that act to increase AP via the RVLM is unknown. 

Pressor responses evoked by glutamate or D-L-homocysteic acid stimulation of the PVN 

(Kubo et al., 2000), midbrain central grey (Kubo et al., 1999) or lateral PBN (Kubo et al., 

1998a) were reportedly prevented by scopolamine injected bilaterally into the RVLM. All 

of these sites project directly or indirectly to the RVLM, although they conspicuously lack 

any cholinergic neurons with demonstrated projections to the RVLM. An exception is the 

lateral PBN / Kölliker-Fuse nucleus, whose rostral extension contains ChAT-positive 

neurons that are part of the diffuse caudal part of the PPT (Mesulam et al., 1983b; Yasui et 
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al., 1990). Kubo argued, however, that the cholinergic projection from the PPT to the 

RVLM does not increase AP, since the pressor response evoked by unilateral injection of 

glutamate within the PPT was not prevented by mAChR blockade ispilaterally in the 

RVLM (Kubo et al., 1999). It is clearly possible that fibres projecting contralaterally from 

the PPT (Rye et al., 1988; Woolf and Butcher, 1989; Yasui et al., 1990) may have been 

able to evoke equivalent pressor effects in this study. Alternatively, the lateral PBN may be 

functionally distinct from the PPT but many cholinergic PPT neurons are in fact located 

within this area (Mesulam et al., 1983b). Li and Ku have also documented a cholinergic 

pressor effect mediated via the RVLM that is initiated within the amygdala and relays via 

the hypothalamus (Li and Ku, 2002). 

 

Nicotinic Cholinergic Modulation of CVPN 
The phasic release of ACh in cardiac vagal premotor nuclei may play an important role in 

modulating reflex and respiratory inputs to CVPN and hence contribute to the genesis of 

naturally-occurring sinus arrhythmias. Vagal preganglionic neurons receive ongoing 

excitatory inputs from arterial baroreceptor-related afferents and inhibitory inputs from 

respiratory neurons and pulmonary afferents (see Section II). Neff et al. demonstrated that 

respiratory-related inhibitory inputs were abolished by bath application of the nAChR 

antagonist dihydro-β-erythroidine in α4β2 subunit-selective concentrations in slice 

preparations of rat medulla (Neff et al. 2003). Hence, normal respiratory sinus arrhythmia 

is dependent upon fast nAChR-gated facilitation of inhibitory inputs to CVPN. A similar 

mechanism appears to facilitate excitatory baroreceptor-related inputs to CVPN but is 

dependent upon activation of nAChR containing α7 subunits (Neff et al., 1998b).  

 

Cholinergic Influences on Respiration 
Activation of mAChR (Shao and Feldman, 2000; Bellingham and Ireland, 2002) or 

nAChR in the ventral medulla (Shao and Feldman, 2001) modulates central respiratory 

output and airway patency. Topical application of atropine to the chemosensitive zones of 

the ventral medulla (Dev and Loeschcke, 1979) or injections of M3 or M1 receptor-

preferring antagonists under the VLM surface in anaesthetised cats (Nattie and Li, 1990) 

reduced resting ventilation and phrenic nerve output and blunted CO2 sensitivity. 

Constitutive activation of M3 receptors on pre-Bötzinger neurons in the caudal VLM 

contributes to their ongoing phasic activity based upon in vitro preparations recording 

hypoglossal motor output (Shao and Feldman, 2000, 2005). M3 receptor knockout mice 
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also show reduced compensatory ventilatory responses to increases in CO2 or moderate 

hypoxia (Boudinot et al., 2004). M1 receptor knockout mice had elevated tidal volume but 

normal frequency and normal ventilatory responses to hypoxia and hypercapnia (Boudinot 

et al., 2004). Hence, M3 receptors are likely to be involved in central chemoreception; 

whereas M1 receptors may modulate activity of respiratory premotor units. In contrast, 

medullary M2 receptors do not appear to modulate respiration (Nattie and Li, 1990).  

 

ACh applied to the ventral medullary surface increases ventilation (Haxhiu et al., 1984); 

whereas application to the dorsal surface depresses respiration (see (Bianchi et al., 1995). 

In several species direct iontophoresis of ACh has been shown to either excite or inhibit 

different medullary respiratory neurons. Jordan and Spyer reported that expiratory neurons 

with spinal or propriobulbar projections were inhibited by ACh but inspiratory neurons 

were unaffected (Jordan and Spyer, 1981). Several others have reported mixed effects on 

inspiratory and excitatory neurons. Bohmer et al. reported that ACh inhibited inspiratory 

neurons, inhibited and excited expiratory neurons and excited most neurons with phase-

spanning activity (Bohmer et al., 1987). ACh excites, via activation of mAChR, mainly 

laryngeal motorneurons or bulbospinal premotor neurons; whereas equal numbers of 

respiratory neurons with intrinsic medullary projections are excited or inhibited (Haji et 

al., 1996). Hence, overall respiratory responses to cholinergic stimulation may arise from 

mixed effects on different populations of respiratory neurons.  

 

Muscarinic Cholinergic Influences on Thermoregulation 
It is well established that systemic or central application of cholinesterase inhibitors or 

cholinomimetics lowers body temperature in several species (Gordon, 1994). The mAChR 

subtypes involved in the cholinergic hypothermic response are still unresolved. M2 

receptors appear to be crucial since hypothermic responses evoked by oxotremorine in 

mice selectively deficient in this subtype are present but markedly attenuated compared to 

wildtype (Bymaster et al., 2003a). Cholinergic hypothermia appears to involve a 

combination of increased heat loss mechanisms (eg. evaporative water loss and  increased 

cutaneous blood flow) and reduction in heat-generating mechanisms (shivering / non-

shivering thermogenesis) (Gordon, 1994). 

 

The major central sites responsible for control of body temperature include the preoptic 

hypothalamic area, which is thought to primarily regulate whole-body responses to 
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changes in ambient temperature, and medullary sites including the RVLM and midline 

raphé that directly control cutaneous sympathetic fibres (McAllen, 2004). 

Thermoregulatory raphé neurons are an important source of excitatory input to SPN 

supplying cutaneous beds necessary for temperature-dependent regulation of their activity 

(Nalivaiko and Blessing, 2002; Nakamura et al., 2004; Ootsuka et al., 2004). RVLM 

neurons are considered non-essential for thermoregulatory sympathetic functions, although 

it is likely that they provide the background excitatory drive to cutaneous SPN (Ootsuka 

and McAllen, 2005). Reductions or increases in body temperature have been reported 

following microinjection of cholinergic agonists into the preoptic hypothalamus (Gordon, 

1994). Whether or not there are direct cholinergic effects on body temperature mediated by 

the RVLM or raphé has not been investigated. 

 

 

 

VI. The Flinders Sensitive Line 

 

Origin of the Flinders Lines 
Whilst at Flinders University in the early 1970s, Janowsky and Overstreet established a 

selective breeding program where Sprague Dawley (SD) rats were selected for low and 

high responses to the anticholinesterase di-isopropyl fluorophosphate (DFP) (Overstreet et 

al., 1979). Several selection criteria were used; in particular a robust marker was the 

reduction in body temperature, one of several well known sequelae of anticholinesterase 

agents (Gordon, 1994). Originally, these lines were generated in order to establish 

tolerance to the effects of DFP in the resistant rats (Flinders Resistant Line, FRL). This 

was not the case, however, with successive generations of FRL rats continuing to display 

fairly normal responses (Overstreet et al., 1979). On the other hand, they found that rats 

bred for sensitivity to DFP (Flinders Sensitive Line, FSL) showed markedly increased 

physiological and behavioural responses to DFP, physostigmine or direct acting muscarinic 

agonists compared to both control lines (FRL and SD) (Overstreet and Russell, 1982; 

Overstreet et al., 1992b). At around the same time, Janowsky and colleagues published 

work showing that patients with symptoms of major depression exhibited enhanced 

sensitivity to some specific central effects of cholinergic agonists, including arecoline-

induced REM sleep (Gillin et al., 1991) and physostigmine-induced ACTH and beta-
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endorphin release (Risch et al., 1983). Subsequent testing revealed key behavioural 

differences in FSL compared to FRL and SD rats (Table 1.6.1), igniting enduring interest 

in the FSL rat as a genetic model of depression.  

 

Neurochemical Abnormalities in FSL Rats 
Cholinergic hypersensitivity in FSL rats was originally thought to involve predominantly 

changes in central mAChR function. This was based on the finding that AChE activity was 

not different in whole brains from FSL and FRL rats (Overstreet et al., 1979); whereas 

mAChR binding with saturating concentrations of QNB was increased in adult FSL rats in 

the striatum and hippocampus but was unchanged in the cortex (Overstreet et al., 1984; 

Pepe et al., 1988). FSL rats display greater sensitivity to the hypothermic and locomotor 

suppressant effects of muscarinic agonists as early as postnatal day 13 (Daws and 

Overstreet, 1999). However, QNB binding in animals around this age revealed no 

differences in mAChR number in any brain region (Daws et al., 1991; Daws and 

Overstreet, 1999). Increases in binding were apparent in the hippocampus and striatum 

only at later stages of development (~ postnatal day 60) and in the hypothalamus only at 

postnatal day 120 (Daws et al., 1991; Daws and Overstreet, 1999).  

 

There is limited evidence for changes in specific mAChR subtypes in FSL rats. Based 

upon displacement of specific QNB binding using pirenzepine, the ratio of M1:M2 binding 

increased from 2:1 at postnatal day 13 to 4:1 at day 120 in striatal preparations from FSL 

rats; whereas the ratio remained fairly constant in FRL rats or other brain regions of FSL 

rats (Daws and Overstreet, 1999). Others examined ChAT and mAChR subtype expression 

levels in tissue pooled from pontine reticular nuclei including the locus coeruleus, LDT 

and PPT in FSL rats using semi-quantitative PCR (Southern analysis and radiolabeling of 

the cDNA oligonucleotide) (Greco et al., 1998). There were no differences in the relative 

expression levels of ChAT, M2 or M5 receptor mRNA; whereas M3 receptor mRNA 

expression tended to be reduced in FSL rats compared to FRL and SD rats (Greco et al., 

1998). 

 

Several genes are likely to be involved in inheritance of muscarinic supersensitivity in FSL 

rats (Overstreet et al., 1992b). Supersensitivity to the hypothermic effects of arecoline,  



Behavioural task % Difference (FSL v FRL)

Bar-pressing for water

Bar-pressing for food

Active avoidance

Passive avoidance

Swim test immobility

Elevated Plus Maze

Accuracy in matching task

Saccharin preference (SP)

SP after Chronic Mild Stress

REM sleep

61

61

52

262

167 - 457

100

100

100

57

161, 141

Table 1.6.1.   Key behavioural differences between FSL and FRL rats. Adapted from
a

Overstreet et al (2002). Interpretations are the candidate’s and also indicated from 
reviews on this subject (Overstreet et al. 2002; 2005) 

Table 1.6.2.   Similarities and differences between neurobiological abnormalities
in FSL rats and those reported in human depression. Adapted from Overstreet 
et al. (2005).

Key finding in FSL rat Key observation in depression

Cholinergic hypersensitivity
No change in swim test immobility
with cholinergic antagonist

Increased sensitivity to hypothermic
effects of 5-HT1A agonists, BUT reduced
accumbal dopamine release induced by
5-HT

Altered TH expression

Reduced dopamine transporter

Not assessed

Normal corticosterone

Reduced NPY levels

Normal levels of neurotrophin
Increase with antidepressant

Cholinergic hypersensitivity
No antidepressant effect of 
cholinergic antagonists

Reduced 5-HT1A sensitivity

Altered noradrenaline sensitivity

Reduced dopamine transporter

Reduced GABA levels

Elevated / normal cortisol

Reduced NPY

Reduced levels of neurotrophin
Increase with antidepressant

Bold in both columns indicates match; italics indicates mismatch

a
Interpretation

Psychomotor retardation

Tendency to adopt passive
behavioural strategy,
behavioural ‘despair’

No anxious behaviour

Normal cognition

Normal basal response to 
pleasurable stimuli; stress

precipitates anhedonia
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oxotremorine or physostigmine was lost after crossbreeding FSL and FRL and was 

partially restored by mating their progeny with FSL but not with each other (Overstreet et 

al., 1992b). This indicated that predominantly additive and recessive genes contribute to 

the FSL phenotype.  

 

The polygenic phenotype of FSL rats may also explain why several neurotransmitter 

systems are affected in these animals. It was demonstrated early on that FSL rats are more 

sensitive to the hypothermic effects of nicotinic receptor agonists (Dilsaver et al., 1992). 

FSL rats exhibited increased binding of cytisine (selective for nicotinic α4β2 subunits) but 

not α-bungarotoxin (selective for α7 subunits) in frontal cortex, striatum, midbrain and 

colliculi compared to FRL rats (Tizabi et al., 1999). Chronic nicotine exposure, which 

normally readily evokes nicotinic receptor desensitization, fails to do so in FSL rats (Tizabi 

et al., 2000).  

 

FSL rats are also more sensitive to dopaminergic and serotonergic receptor agonists and 

amine pathways appear to be altered centrally (Yadid et al., 2000; Overstreet et al., 2005). 

FSL rats were found to be more sensitive to the hypothermic and behavioural effects of the 

serotonergic agonist l(m-chlorophenyl) piperazine (Wallis et al., 1988) or the selective 5-

HT1A receptor agonist 8-OHDPAT (Overstreet et al., 1992a; Overstreet et al., 1994; 

Shayit et al., 2003). In adults there appear to be overall increases in 5-HT1A receptor 

numbers indicated initially by elevated 8-OHDPAT binding in cortex of FSL rats (Schiller 

et al., 1991). 5-HT1A receptor expression is moderately increased whereas 5-HT2C 

receptor expression is reduced in several brain regions of FSL rats compared to FRL rats, 

with the exception of selective increases in 5-HT2C receptor mRNA in the CA2-3 regions 

of the hippocampus in FSL rats (Osterlund et al., 1999). 

 

The amount of 5-HT and its metabolite 5-HT1AA was increased 3 to 8-fold in tissue 

punches from limbic regions (nucleus accumbens, prefrontal cortex or hippocampus) and 

hypothalamus but not the striatum or dorsal or median raphé in FSL compared to FRL rats 

(Zangen et al., 1997). The ratio of 5-HT1AA to 5-HT was lower in FSL rats indicating 

reduced 5-HT turnover (Zangen et al., 1997). Despite the high tissue content of 5-HT, a 

recent study using regional autoradiographic detection of α-[14C]methyl-L-tryptophan 

demonstrated reduced 5-HT synthesis throughout the brain of FSL rats (Hasegawa et al., 

2006). Somewhat paradoxically, the amounts of extracellular 5-HT dialysed from the 

nucleus accumbens was similar in FSL and FRL rats (Zangen et al., 2001; Dremencov et 
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al., 2005), despite the previous report of dramatic increases in tissue content of 5-HT and 

5-HT1AA in this region in FSL rats (Zangen et al., 1997). Although appearing disparate, 

the various data point towards a reduction in the releasable pool of 5-HT. It is possible that 

this is a consequence of enhanced numbers or sensitivity of 5-HT1A receptors, which are 

usually associated with inhibitory autocrine regulation of serotonergic neurons.  

 

Noradrenaline levels were also found to be 2 to 3-fold higher in tissue punches from limbic 

regions and median raphé; whereas dopamine levels were 6-fold higher in nucleus 

accumbens and 2-fold higher in striatum, hippocampus and hypothalamus of FSL rats 

(Zangen et al., 1999). Gene expression of the catecholamine biosynthetic enzyme TH was 

similar in substantia nigra but elevated two-fold in the adrenal medulla and ventral 

tegmental area of FSL rats compared to SD rats (Serova et al., 1998). Again paradoxically, 

extracellular dopamine levels were 40 % lower in nucleus accumbens in microdialysates 

from FSL rats compared to SD rats (Zangen et al., 2001) despite the high tissue content in 

this region (Zangen et al., 1999). It is likely that impaired 5-HT regulation of accumbal 

dopamine release can explain the lower extracellular levels since microinjection of 5-HT 

into the accumbens fails to release dopamine (Zangen et al., 2001) and inhibition of 

accumbal dopamine release mediated by 5-HT2C receptors is enhanced in FSL rats 

compared to controls (Dremencov et al., 2005).  

 

FSL rats also exhibit changes in pharmacological sensitivity and expression of components 

of several neuropeptide systems, including NPY (Caberlotto et al., 1999), endorphins 

(Zangen et al., 2002), vasopressin (Overstreet and Griebel, 2005) and corticotrophin-

releasing factor (Owens et al., 1991). The underlying mechanisms leading to alteration of 

multiple neurotransmitter systems in FSL rats are unknown. It may be a consequence of 

how these systems interact functionally with central mAChR or from changes in second 

messenger signaling common to specific neurotransmitter receptors. For example, the M2 

and 5-HT1A receptors activate a common pool of Gi/o proteins leading to inhibition of 

adenylyl cyclase (Odagaki and Fuxe, 1995).  

 

Behavioural and Physiological Sequelae of Cholinergic 

Hypersensitivity 
The specific neurotransmitter abnormalities present in FSL rats appear to result in a 

distinct phenotype in these animals. So far attention has been directed towards their 
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performance in behavioural tasks thought to reflect anxiety or depressed-like behaviour. 

For example, key features of the FSL rat are their high immobility time in the Porsolt 

forced swim test or following exposure to mild stressors including footshock (Overstreet, 

1986; Pucilowski and Overstreet, 1993; Overstreet et al., 1994), psychomotor retardation 

characterised by reduced operant responding for food or water reward (Russell et al., 1982; 

Bushnell et al., 1995), and reduced active and increased passive behaviours in avoidance 

tasks (Overstreet et al., 1990; Overstreet et al., 1992b). Moreover, abnormal behaviour in 

these tasks can be normalised by chronic but not acute treatment with conventional 

antidepressants (Zangen et al., 1997; Overstreet et al., 2005). Together with evidence for 

early postnatal development of some depressed-like behaviours (Daws and Overstreet, 

1999; Shayit et al., 2003), the FSL rat appears to reflect the long time course and delayed 

response to treatment that are hallmarks of depression in humans. In contrast, their 

adequate performance in the elevated plus maze and similar responses to benzodiazepines 

suggests that FSL rats lack an anxious phenotype (Overstreet et al., 1995; Braw et al., 

2006). 

 

A key feature of depression is anhedonia, which in rodents is modeled by preference for 

sucrose but which is normal in FSL rats (Pucilowski et al., 1993). Their preference for 

sucrose is markedly reduced compared to controls, however, following exposure to chronic 

mild stress (Pucilowski et al., 1993), one of the traditional methods for inducing anhedonia 

as a model of depressed-like behaviour. Hence, these observations appear to strengthen the 

value of the FSL rat as a model of depression in which some of the core symptoms of 

depression are innate and others are precipitated by environment. Similarly, maternal 

separation in FSL rats leads to exacerbation of depressed symptoms (El Khoury et al., 

2006).  

 

FSL rats also model changes in sleep architecture and somatic symptoms of depression. 

They have elevated amounts of REM sleep and shorter latency between REM episodes 

consistent with a depressed phenotype (Shiromani et al., 1988; Shiromani et al., 1991b), 

but normal slow wave sleep unlike human depression (Shiromani et al., 1991b). FSL rats 

also exhibit reduced body weight (Overstreet, 1993; Friedman et al., 1996) and required 

smaller food pellets for training to bar-press for reward (Bushnell et al., 1995) suggesting 

that they have reduced appetite. Evidence for gastric dysmotility (Djuric et al., 1995; 

Mattsson et al., 2005), immune dysfunction (Friedman et al., 1996; Friedman et al., 2002) 
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and airway hyperresponsiveness (Djuric et al., 1995; Djuric et al., 1998) in FSL rats is 

also indicative of a complicated somatic disease. 

 

The importance of cholinergic abnormalities in the expression of some behavioural 

changes in FSL rats has been questioned. When FSL and FRL rats were crossbred to 

produce F1 progeny, which were then mated or crossed back to produce three additional 

groups, it was found that immobility time in adults was strongly correlated to the 

hypothermic responses to 8-OHDPAT but not oxotremorine in juvenile animals 

(Overstreet et al., 1994). Hence, this is an important indication that behavioural changes in 

FSL rats may not be a direct result of muscarinic supersensitivity; rather they appear to 

involve 5-HT1A receptor supersensitivity. 

 

Disturbances in sleep architecture (Shiromani et al., 1988; Shiromani et al., 1991b; Benca 

et al., 1996) and possibly related changes in circadian rhythms of body temperature 

(Shiromani et al., 1991a; Shiromani and Overstreet, 1994) and activity (Shiromani and 

Overstreet, 1994), may also be unrelated to a primary cholinergic abnormality. It is clear 

that FSL rats exhibit increased amounts of REM and corresponding reductions in NREM 

sleep (Shiromani et al., 1988; Shiromani et al., 1991b; Benca et al., 1996). The amount of 

REM sleep induced by intermittent exposure to brief periods of dark was similar in FSL 

and FRL rats, however, casting doubt over the importance of putative differences in 

cholinergic activity responsible for producing this rapid phase-switching between wake, 

NREM and REM (Benca et al., 1996). 

 

It is possible that diminished HPA axis reactivity is linked to changes in stress-

responsiveness in FSL rats, although this is controversial. Lower plasma ACTH 

concentrations were reported in some studies (Owens et al., 1991) but not others 

(Friedman et al., 1996) and levels of plasma corticosterone are consistently similar 

between FSL and FRL rats (Owens et al., 1991; Friedman et al., 1996). Lower plasma 

ACTH as well as corticosterone levels, however, were reported in juvenile (30-41 day old) 

FSL compared to SD rats (Malkesman et al., 2006). Putative neural substrates of 

diminished HPA axis activity may include changes in peptides involved in control of 

anterior pituitary hormone release. For example, FSL rats had lower CRF concentrations in 

the median eminence, locus coeruleus and prefrontal cortex but displayed elevated CRF 

binding in the anterior pituitary (Owens et al., 1991). 
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Neurochemical abnormalities in pontine, hypothalamic, limbic and basal forebrain 

structures may underlie behavioural abnormalities and sleep-disturbances in the FSL rat 

(Yadid et al., 2000; Overstreet et al., 2005). In many cases there is support for the notion 

that similar neurotransmitter differences occur in human depression (Table 1.6.2), 

providing support for the potential value of the FSL rat as a model of endogenous 

depression (Yadid et al., 2000; Overstreet et al., 2005). Despite extensive investigation, 

there are currently no data on the consequences of selective breeding for cholinergic 

sensitivity on mAChR or other neurotransmitter systems in regions of the lower brainstem 

concerned with control of cardiovascular, thermoregulatory or respiratory function. 

Whether or not there are changes in physiological regulation of these vital systems in FSL 

or FRL rats is unknown.  

 

 

VII. Depression: an Internal Dialogue 

 

Depression and Cardiovascular Disease 
Depression is a debilitating illness affecting more than one million Australians each year 

and contributing to premature death by suicide, cardiovascular disease and other health 

problems (Mathers et al., 1999; Bunker et al., 2003; Hickie, 2004). Depressive illnesses 

are complex and have varied clinical presentations that range in severity. Hallmarks of 

depression include low mood, loss of motivation, low self esteem or excessive guilt, and 

feelings of hopelessness (Mann, 2005). Fundamentally, depression is a central nervous 

system disorder that also influences cognition, behaviour and physiological regulation of 

sleep, appetite, immune, gastrointestinal and cardiovascular functions (DSM-IV, 1994; 

Nestler et al., 2002). 

 

A link between depression and increased incidence of cardiovascular disease has been 

known for a long time. Symptoms of depression are much more common in patients with 

coronary heart disease (CHD) (~ 25 %) compared to the general population (Rudisch and 

Nemeroff, 2003). Depression is now widely regarded as an important risk factor for 

development of CHD in previously disease-free individuals (Bunker et al., 2003; Wulsin, 

2004) and appears to be strongly predictive of subsequent early mortality (Ahern et al., 

1990; Frasure-Smith, 1991).  
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CHD is defined by the presence of coronary atherosclerosis but often the first clinical signs 

are angina and myocardial infarction (MI). Sudden death with evidence for underlying 

CHD is the most common cause of mortality from cardiovascular disease (Zipes and 

Wellens, 1998). Sudden death is usually precipitated by the rapid onset of lethal ventricular 

arrhythmias resulting from underlying tissue damage or following a subsequent MI 

(Greene et al., 1989; Zipes and Wellens, 1998). 

 

Depression and CHD may share a common genetic basis (McCaffery et al., 2006). The 

mechanisms linking depression with increased incidence and severity of CHD are 

unknown. Several biological and social factors are hypothesised to play a role, including 

increased propensity to smoke or drink alcohol, lack of social support and medical non-

compliance and links with prevalence of inflammatory and immune disorders (Freedland 

et al., 2005; Gehi et al., 2005a; Lett et al., 2005; McCaffery et al., 2006). The association 

between depression and increased mortality has also been directly attributed to exacerbated 

autonomic nervous system (ANS) dysfunction (Frasure-Smith et al., 1993; Carney et al., 

2005a). A recent study has indicated that a proportion of the risk associated with 

depression in post-MI patients is directly attributable to low heart rate variability (HRV), 

an index of impaired cardiac autonomic control (Carney et al., 2005b). This hypothesis is 

controversial, however; here the evidence for increased risk of arrhythmia and abnormal 

ANS function in depression is carefully reviewed and scrutinized.  

 

Depression and Mortality Following MI 
In most but not all studies symptoms of depression have been associated with increased 

risk of cardiac mortality in patients with CHD (Ahern et al., 1990; Frasure-Smith, 1991; 

Stewart et al., 2003). It is likely that the effect of depression is greatest in some patient 

groups particularly those at risk of MI. The seminal studies of Frasure-Smith et al. showed 

that depression is associated with a 4 – 5 fold increase in the risk of mortality in the first 6 

months following an MI (Frasure-Smith et al., 1993, 1995). Its predictive value is 

equivalent to that of left ventricular dysfunction or previous history of MI (Frasure-Smith 

et al., 1993). Severity of depression at admission for MI is positively correlated with risk 

of mortality over the subsequent 5 years (Lesperance et al., 2002). Although not studied as 

extensively, depression has been found to have similar prognostic value in patients with 
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unstable angina (Lesperance et al., 2000) or following coronary artery bypass graft surgery 

(Connerney et al., 2001). 

 

Depression and Arrhythmia 
Following acute MI, ventricular electrical instability characterised by frequent premature 

ventricular complexes (PVC) or non-sustained ventricular tachycardia (VT) is predictive of 

subsequent death (Hallstrom et al., 1992; Moss et al., 1996; La Rovere et al., 1998). In the 

18 months following MI the increased risk of mortality associated with depression was 

greatest in patients with frequent PVCs (≥ 10 per hour) (Frasure-Smith et al., 1995). In 103 

patients with stable CHD, ventricular tachycardia (VT) during 24 hr Holter monitoring was 

more common in patients with mild-severe depression symptoms (23 %) compared to non-

depressed subjects (3.5 %) (Carney et al., 1993). In a larger study in 645 patients recruited 

following surgery for an implantable cardioverter defibrillator (ICD), moderate-severe 

depression scores were significantly associated with time to first shock and total 

occurrence of shocks for VT or fibrillation (Whang et al., 2005). In a recent study of 940 

patients with documented CHD receiving cardiac catheterization and followed up for a 

median of 3 years, in-hospital depression scores were significantly related to subsequent 

incidence of ventricular arrhythmias (Watkins et al., 2006). In contrast, in the five years 

following MI, depression was not associated with readmission to hospital for angioplasty, 

bypass surgery or recurrence of non-fatal MI (Lesperance et al., 2002). These studies 

suggest that in the post-MI patient group in particular, the risk associated with depression 

may be explained by a pro-arrhythmic rather than pro-ischaemic mechanism.  

 

In patients with CHD depression symptoms are often associated with conventional cardiac 

risk factors including hypertension (Jonas et al., 1997) and left ventricular dysfunction 

(van Melle et al., 2005). Underlying cardiovascular abnormalities have been widely 

reported in depressed patients with or without existing cardiac disease; these include an 

increase in platelet aggregability (von Kanel, 2004), impaired brachial artery flow-

mediated dilatation (Rajagopalan et al., 2001; Broadley et al., 2002), elevated plasma 

noradrenaline (Esler et al., 1982; Veith et al., 1994), reduced HRV (Carney et al., 1995; 

Stein et al., 2000; Agelink et al., 2001; Agelink et al., 2002; Guinjoan et al., 2004; Carney 

et al., 2005b), reduced baroreflex sensitivity (BRS) (Watkins and Grossman, 1999; 

Broadley et al., 2005) and increased QT interval variability (Carney et al., 2003). Several 

of these factors may contribute to the higher incidence of mortality in depression. In 



 76

particular, ECG abnormalities or autonomic dysfunction indicated by elevated plasma 

noradrenaline and low HRV and BRS could explain the higher incidence of arrhythmia 

(Zipes and Wellens, 1998).  

 

The Autonomic Nervous System and Ventricular Arrhythmia 
Several models of arrhythmia have been used to uncover potential substrates of 

susceptibility to lethal ventricular arrhythmia (Walker et al., 1988; Barron and Lesh, 1996; 

Hamlin, 2006). The model developed by Schwartz and coworkers has arguably provided 

the most information about the role of the autonomic nervous system (ANS). In this model, 

conscious dogs receive an anterior MI and following a month long recovery are subjected 

to an exercise stress test and transient ischaemia induced by occlusion of the left 

circumflex coronary artery (Schwartz et al., 1984): the incidence of ventricular fibrillation 

(VF) and sudden death is about 50 % (Schwartz et al., 1984; Schwartz et al., 1988; De 

Ferrari et al., 1991; Vanoli et al., 1991).  

 

Schwartz and coworkers made the seminal observation that reflex changes in heart rate 

induced by the combination of exercise and ischaemia reflect arrhythmia susceptibility; 

heart rate reduced in resistant animals and increased in susceptible animals (Schwartz et 

al., 1984). Moreover, differences in autonomic outflow were directly responsible for 

inducing or protecting from arrhythmias: left stellate ganglionectomy prevented sudden 

death, whereas stimulation of the right cervical vagus prevented recurrence of fibrillation 

(Schwartz and Stone, 1980; Schwartz et al., 1984; Vanoli et al., 1991). Beta-adrenergic 

receptor blockade with propranolol was effective in lowering heart rate and preventing 

arrhythmias (De Ferrari et al., 1993); whereas vagomimetic effects of oxotremorine (De 

Ferrari et al., 1992; De Ferrari et al., 1993) or low dose pirenzepine (Pedretti et al., 2003) 

were partially effective. Hence, reductions in heart rate in dogs resistant to fibrillation 

appeared to reflect reflex vagal activation during ischaemia that was cardioprotective. In 

contrast, heart rate increases reflected sympathetic overactivity and impaired reflex vagal 

activation that was arrhythmogenic. The reduction in heart rate per se may not be 

imperative, however, since vagal stimulation conferred a protective effect even when heart 

rate was kept constant by atrial pacing (Vanoli et al., 1991).  

 

Markers of Cardiac Autonomic Control in Prediction of 

Cardiac Risk  
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The clinical utility of monitoring moment to moment variations of heart rate as a marker of 

neural autonomic control was first noted by Hon and Lee in the 1960s. They observed in 

perinatal recordings of fetal ECG that a reduction in variations of fetal heart rate predicted 

fetal distress and death in utero (Hon and Lee, 1963b, 1963a). In babies prone to fetal 

distress there are episodes of profound bradycardia prior to delivery due to reflex vagal 

activation. Most commonly these are the result of transient hypoxic episodes (Parer and 

Livingston, 1990). Reductions in heart rate variability (HRV) were thought to reflect a 

shutdown of the mechanisms responsible for reflexly modulating heart rate, which pre-

empted fetal death linked to the inability to compensate for hypoxia.  

 

In the conscious dog model of sudden death, HRV was found to be reduced 1 month after 

anterior MI and low values predicted susceptibility to VF (Hull et al., 1990). BRS, 

assessed by the reflex reduction in heart rate following phenylephrine infusion, was also 

much lower in dogs susceptible to VF (Schwartz et al., 1988). Lower BRS prior to the 

initial MI predicted sudden death in the month allowed for recovery (Schwartz et al., 

1988).  

 

It is now well established that low HRV and BRS are strong prognostic markers in several 

clinical settings (Kleiger et al., 1987; Bigger et al., 1992a; Bigger et al., 1993; La Rovere 

et al., 1998; La Rovere et al., 2001). Following MI, HRV < 70 ms and BRS < 3 ms/mmHg 

were associated with a 3.2 and 2.8 times higher risk of cardiac mortality, respectively 

(ATRAMI; (La Rovere et al., 1998)). Risk of cardiac mortality is substantially increased 

with the combination of reduced BRS or HRV and frequent PVC (> 10 per hour) (La 

Rovere et al., 1998) or episodes of non-sustained VT (La Rovere et al., 2001). HRV is also 

temporally related to the incidence of ventricular arrhythmia; HRV indices were markedly 

depressed in the minutes preceding onset of VT/VF in post-MI patients who received an 

ICD (Pruvot et al., 2000). Although the majority of studies have measured HRV and BRS 

early after MI (~ two weeks), when measured late after infarction (1 year) a reduction in 

HRV is independently associated with subsequent mortality (Bigger et al., 1993).  

 

Interpretation of the Predictive Value of HRV and BRS 
The predictive value of reduced HRV and BRS is widely interpreted to reflect an 

autonomic imbalance that favours pro-arrhythmic sympathetic activity (Pagani et al., 

1984; Pagani et al., 1986; Lombardi et al., 1987; Pagani et al., 1991; Lombardi et al., 

1996; Lombardi, 2002). HRV and BRS are predominantly markers of autonomic input to 
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the sinus node. As such, how a reduction in HRV or BRS predicts ventricular electrical 

instability is unclear, since autonomic innervation of the atria and ventricles can be easily 

dissociated (Chiou and Zipes, 1998). Furthermore, HRV and BRS only reflect the end-

organ response to a complex, interconnected collection of afferent, neural and efferent 

pathways that regulate autonomic activity (see Sections I – IV). A substantial problem that 

remains is elucidating the causes of autonomic dysfunction related to a specific disease 

process. 

 

The complexity of the physiological components of HRV is an additional challenge to the 

interpretation of abnormal HRV (TaskForce, 1996). HRV is in large part a product of 

reflex influences on autonomic outflow to the heart related to respiration that occur at high 

frequencies (HF) and baroreflex buffering of LF Mayer wave oscillations of AP (see 

Sections I – IV). It has been argued that HRV is in large part driven via feedback from 

arterial baroreceptors in response to spontaneous fluctuations of AP (Bertinieri et al., 

1985; Sleight et al., 1995; Persson et al., 2001; Laude et al., 2004). This is based mainly 

on the fact that there is good agreement between values for BRS measured using traditional 

methods (eg. phenylephrine, carotid neck suction) versus modern techniques based on 

computing the gain of spontaneous beat-to-beat fluctuations of R-R interval with 

corresponding AP fluctuations (eg. sequence method, α-coefficient) (Persson et al., 2001; 

Laude et al., 2004). Very low frequency (VLF) variations of heart rate may be related to 

activity of the renin-angiotensin system or temperature (Akselrod et al., 1981; Taylor et al., 

1998). There is also evidence for non-neural mechanisms generating HRV. In heart 

transplant recipients who unavoidably have an initial complete autonomic denervation, a 

small amount of HRV was generated by deep breathing or exercise (Bernardi et al., 1990; 

Radaelli et al., 1996). This suggested that respiratory-related heart rate oscillations could 

also result from direct mechanical effects of ventilation on the myocardium.  

 

Phasic vagal activity has a strong influence on beat-to-beat variations of sinus cycle length 

(see Section II). The magnitude of HRV is correlated to vagal tone and it is mostly 

abolished by atropine in human (Fouad, 1994; Medigue et al., 2001), dog (Akselrod et al., 

1981), rat (Elghozi et al., 2001) and mouse (Mansier et al., 1996; Baudrie et al., 2006). 

The SA node pacemaker cells respond in a non-linear fashion to increasing concentrations 

of ACh (Zaza and Lombardi, 2001), indicating that vagal activity is non-linearly related to 

HRV. This does not detract from its predictive validity but does complicate its 

physiological interpretation.  
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Current understanding of physiological components of HRV suggests that specific 

frequencies reflect vagal activity or the relative balance of sympathetic and vagal activity 

(TaskForce, 1996). Oscillations of heart rate occurring at HF (RSA) typically dominate the 

HRV spectrum; they are almost entirely vagally mediated (see Section II) although as 

mentioned above there is evidence for a small non-neural component (Bernardi et al., 

1990). LF oscillations of heart rate are synchronous with Mayer wave oscillations of AP 

(see Section IV). They appear to be due to combined activities of sympathetic and vagal 

activities, since their amplitude is reduced by atropine or beta-adrenergic receptor blockade 

(Akselrod et al., 1981). In controlled experiments the VLF component of HRV has been 

shown to depend largely on vagal activity (Taylor et al., 1998) and power at these 

frequencies is increased by blockade of the renin-angiotensin system (Akselrod et al., 

1981; Taylor et al., 1998). 

 

Experimental findings of changes in HRV associated with increased sympathetic activity 

have been difficult to reconcile. For example, HRV is virtually absent during intense 

exercise (Arai et al., 1989) or in heart failure (Kienzle et al., 1992) where there is marked 

cardiac sympathetic activation. One explanation for these findings is that saturating levels 

of sympathetic activity may completely antagonise vagal actions at the sinus node and 

hence eliminate the predominate source of HRV (Malik, 1998). Clearly, in 

pathophysiological settings, an interpretation of the predictive value of HRV must 

reconcile how the causes of a reduction in variability lead to an increase in ventricular 

electrical instability.  

 

Reduced HRV in Depression 
HRV can be defined using measures of the variation of R-R intervals around a mean 

recorded from the ECG or pulse interval of AP; these include the standard deviation of R-

R intervals (SDNN) or other measures including the root mean square of successive 

differences (RMSDD) (TaskForce, 1996). HRV can also be measured as the variations 

occurring at specific frequencies by using fast-Fourier or related transformations (Akselrod 

et al., 1981). This analysis relies on blocks of R-R interval data ranging from a few 

minutes up to 24 hrs that contain enough of the relevant oscillations. A third technique, 

time-frequency analysis, has been used to examine spectral parameters of HRV as 

continuous variables (Bianchi et al., 1993; Mainardi et al., 2002), much like one would 
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examine continuous recordings of AP or heart rate. Finally, healthy subjects’ HRV 

displays scale-invariance (Guzzetti et al., 1996; Braun et al., 1998), a fundamental feature 

of a complex system that appears erratic but is in fact non-randomly organized. Although 

all of these measures have been studied in detail in cardiovascular and other diseases, the 

depression literature covers only time and frequency domain parameters of HRV. Hence, 

attention is focused on these techniques.  

 

HRV measured using SDNN was reduced in depressed patients who were otherwise 

medically well compared to controls (Rechlin et al., 1994). Severe depression rated 

according to the Hamilton Depression scale (HAM-D) was associated with reduced 

RMSSD and HF power in patients with no history of cardiovascular-related disease 

compared to moderately depressed and control groups (Agelink et al., 2002). The 

relationship between HRV and depression symptoms has been examined using 24 hour 

ambulatory ECG measurements (Carney et al., 1995; Stein et al., 2000). in patients with 

stable CHD moderate-severe depression (Beck Depression Inventory (BDI)) was 

associated with reduced 24 hr average SDNN and VLF power compared to mildly 

depressed or control subjects (Stein et al., 2000). Similarly, patients undergoing elective 

coronary angiography with major or minor depression showed reduced 24 hr average 

SDNN compared to non-depressed patients (Carney et al., 1995). LF but not HF power 

was significantly reduced in patients with stable CHD with moderate-severe depression 

scores (Stein et al., 2000). In contrast, HF but not LF power was reduced in older patients 

(> 60 yo) with recent MI or unstable angina and depression according to HAM-D 

(Guinjoan et al., 2004). In the latter study there was a significant correlation between total 

and HF power and severity of depression (Guinjoan et al., 2004).  

 

In the largest study so far, however, there was no association between HRV and depression 

symptoms in 24 hr ECG recordings from 873 patients with stable CHD (Gehi et al., 

2005b). Patients in this study were mostly men (82 %) and were included on the basis of 

either a recent MI or revascularization procedure, or diagnosis of CHD based on 

angiography or exercise treadmill test (Gehi et al., 2005b). It is possible that differences in 

HRV in these patients are not apparent because of improvements in treatment intervention 

for CHD that could have positive effects on HRV. Secondly, it may be that there are no 

detectable differences in HRV in this cohort because most patients had stable CHD and 

differences are manifest only in patients at risk of MI. In support of this there is a strong 

association between depression symptoms and reduced HRV in at-risk CHD patients, as 
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demonstrated in 24 ambulatory ECG monitoring of patients screened for the Enhancing 

Recovery In Coronary Heart Disease (ENRICHD) trial who had a recent acute MI (Carney 

et al., 2001). All spectral parameters of HRV (ULF, VLF, LF and HF) were significantly 

reduced in patients with major or minor depression compared to non-depressed controls 

(Carney et al., 2001). After adjusting for age, gender, smoking and diabetes, which were 

also associated with HRV, depression remained significantly associated with all 

parameters except HF power (P<0.07) (Carney et al., 2001).  

 

In a follow-up study, the impact of depression on survival in the 30 month follow-up 

period was adjusted for the log of VLF power of HRV (Carney et al., 2005b). The 

reduction in VLF power accounted for a proportion of the increased risk of mortality 

associated with depression (Carney et al., 2005b). Reduced VLF power is also strongly 

related to reduced survival in patients with a recent acute MI independent of depression 

(Bigger et al., 1992a; Bigger et al., 1993). In depressed patients there appears to be a 

correlation in a majority of studies between severity of depression and risk of cardiac 

events and a reduction in HRV at frequencies associated with autonomic input to the heart.  

 

Reduced BRS in Depression 
BRS measured using the sequence method has been reported to be reduced (Broadley et 

al., 2005) or unchanged (Broadley et al., 2002) in patients with treated depression and no 

history of CHD or conventional risk factors for CHD. Interestingly, in these two studies 

BRS was similar in the depressed group (19.5 and 19.3 ms/mmHg) but differed in controls 

(25.4 and 20.9 ms/mmHg), suggesting that an ambient factor, possibly the recording 

environment, may have contributed to the negative finding. In a small study of 66 patients 

with stable CHD, age-adjusted BRS measured using cross-spectral analysis was 

significantly reduced (4.5 vs 6.5 ms/mmHg) in patients with high vs. low BDI scores 

(Watkins and Grossman, 1999). 

 

Direct Evidence for Differences in Autonomic Outflow in 

Depression 
Several small studies have reported changes in peripheral noradrenaline kinetics in 

depression. Two studies using the isotope dilution technique have reported increased 

noradrenaline spillover in five (Esler et al., 1982) and seventeen (Veith et al., 1994) 
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depressed patients compared to controls. Noradrenaline clearance from the plasma is 

reported to be higher (Esler et al., 1982) or unchanged (Veith et al., 1994) in depressed 

patients compared to controls. Carney et al. (1999) reported no difference in plasma 

noradrenaline levels in 50 depressed vs. 39 non-depressed patients with CHD (Carney et 

al., 1999). Agelink et al. reported a reduction in the Valsalva ratio; the ratio of longest 

(during recovery) to shortest (during Valsalva) R-R intervals, in medically well depressed 

patients [the Valsalva manoeuver is a maximum inspiratory capacity-forced expiration 

against a closed glottis] (Agelink et al., 2001; Agelink et al., 2002). Presumably, this 

reflects a reduction in maximum vagal activation in the recovery phase of the Valsalva 

when AP increases rapidly.  

 

Summary 
In a majority of studies there appears to be a correlation between severity of depression, 

risk of cardiac events, a reduction in 24 hr average HRV and reductions in LF and HF in 

short term recordings. The reduction in HRV in depression appears to reflect a reduction in 

reflex vagal activity and relative increase in sympathetic activity, which is in part 

supported by direct evidence for changes in the level of peripheral noradrenaline (see 

above). The finding that 24 hr average SDNN and RMSSD correlate to short term spectral 

components of HRV (Bigger et al., 1992b) also supports the conclusion that the reduction 

in HRV in depression is not spurious but is due to abnormal physiological regulation of 

heart rate. Recent studies provide some support for a reflex origin of the reduction in HRV, 

for example 2 out of 3 studies found that BRS was reduced in depressed patients with or 

without cardiac disease compared to control subjects (Watkins and Grossman, 1999; 

Broadley et al., 2005) and reflex vagal activation during Valsalva also appeared to be 

reduced (Agelink et al., 2001; Agelink et al., 2002). These studies support the possibility 

that depression is associated with an autonomic imbalance, possibly of reflex origin, that 

may explain the increased susceptibility to arrhythmia and sudden death. Figure 1.7.1 

illustrates possible mechanisms in depressed individuals that disrupt normal cardiovascular 

regulation and predispose to arrhythmia.  



depression CHD

Figure 1.7.1. Hypothetical flow diagram illustrating biological factors affecting the progression 
and severity of coronary heart disease (CHD) and the influence of depression. Depression is a 
neurobiological disorder that affects mood, behaviour and cognition and physiological regulation 
of immune and cardiovascular function. In depressed patients with or without existing cardiac disease
there is evidence of impaired immune and autonomic function, which can heighten sensitivity to 
inflammation and endothelial dysfunction and lead to abnormal cardiovascular regulation. In patients
with CHD the presence of depression symptoms is predictive of early mortality, particularly
following an initial MI. Depression is thought to promote development of fatal arrhythmias rather 
than further thrombus formation or ischaemia. Autonomic dysfunction characterised by low HRV and 
BRS may be directly linked to higher incidence of arrhythmia in post-MI patients with depression. Low
HRV and BRS reflect an imbalance in autonomic outflow to the heart, characterised by reduced reflex 
vagal activity and a relative predominance of sympathetic activity, which promotes ventricular
electrical instability. 
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VIII. Aims and Objectives 
 

Although the basic organisation of cardiorespiratory neural networks in the lower 

brainstem is well established, the significance of the diverse range of amines and peptides 

that modulate their activity is unclear. In particular, the role of cholinergic inputs to the 

RVLM in control of circulation is poorly understood. Local mAChR activation in the 

RVLM evokes potent sympathoexcitatory responses, although the receptor subtypes and 

neurochemical phenotype/s of RVLM neurons that mediate this response are unknown. 

The first aims of this thesis were firstly to further elucidate the neurochemical and -

anatomical substrates underlying cholinergic sympathoexcitatory effects in the RVLM and, 

secondly, to determine the physiological role of cholinergic inputs to the RVLM in control 

of the circulation. 

 

FSL and FRL rats were originally bred from SD rats for increased or reduced hypothermic 

responses, respectively, to cholinesterase inhibitors and direct acting muscarinic agonists. 

FSL rats exhibit a number of central changes in mAChR and other neurotransmitter 

receptors that influence behaviour, sleep architecture and appetite. In FRL rats the integrity 

of major CNS functions appears to be unaltered compared to SD rats. No previous studies 

have determined the effect of this selective breeding protocol in FSL or FRL rats on the 

expression or function of mAChR involved in control of peripheral circulation or 

breathing. Hence, the second aim of this thesis was to determine if there are alterations in 

tonic or reflex cardiorespiratory regulation in FSL or FRL rats and to determine if this 

involves genetic disturbances in mAChR function within the lower brainstem.  

 

Depression symptoms are associated with impaired autonomic control of heart rate 

(reduced HRV and BRS) and increased susceptibility to arrhythmia. The causes of 

autonomic dysfunction in depression are unknown. Previous data show that the FSL rat 

models many of the behavioural and somatic symptoms seen in human depression. Hence, 

this strain has potential value in further understanding biological factors associated with a 

depressed phenotype that predispose to cardiac complications. Hence, the final aims of this 

thesis were firstly to determine if FSL rats exhibit autonomic abnormalities that resemble 

those reported in human depression and, secondly, to determine if vulnerability to 

ventricular arrhythmia is increased in FSL rats compared to control strains.  
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I. Ethical Approval 
 

All studies were approved by the Animal Care and Ethics Committee of Royal North Shore 

Hospital and University of Technology Sydney. Rats were killed whilst deeply 

anaesthetised, unconscious and unresponsive to noxious stimuli with overdose of 

anaesthetic or potassium chloride (KCl, 3 M) or toxic doses of the cardiac glycoside 

ouabain (see Chapter 6).  

 

II. Animals 
 

Male rats were used in all experiments. Rats were maintained in local breeding colonies at 

Gore Hill Research Laboratories in a 12 hour light-dark cycle with access to food and 

water ad libitum. Sprague Dawley (SD) rats aged 10 – 15 weeks were used. FSL and FRL 

rat breeders were imported from the University of North Carolina in September 2003 and 

used to establish local breeding colonies (importation and liaison with AQIS organized by 

candidate). All rats were tested for differences in their sensitivity to hypothermia induced 

by the mAChR agonist oxotremorine prior to their use in experimental procedures, as 

described previously (Daws and Overstreet, 1999). Briefly, conscious (or lightly 

halothane-anaesthetised, 1 % in O2) animals were administered the peripheral mAChR 

antagonist atropine methylnitrate (2 mg / kg) followed by oxotremorine (0.2 mg / kg) 

intraperitoneally (ip) and the change in rectal temperature from baseline recorded after 30 

minutes. Cholinergic hypersensitive FSL rats (> 2 ºC fall in rectal temperature) and FRL 

rats (<1 ºC fall) aged 10 – 15 weeks, and in some cases younger rats (~4 wks) (see Chapter 

4), were used.    

 

III. Surgical Procedures 

Anaesthesia and Maintenance 
For non-recoverable procedures animals were anaesthetised with urethane (ethyl 

carbamate, 1.2 – 1.5 g / kg ip, Sigma) diluted to 10 % to minimize peritoneal irritation. 

Depth of anaesthesia was continuously assessed by testing withdrawal responses to strong 

hindpaw pinch and by stroking the cornea with a cotton bud. Additional anaesthetic 

(urethane 30mg) was administered when required. Rectal temperature was maintained 
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between 37 and 38 ºC with an infrared lamp and thermoregulated heating blanket (Harvard 

Apparatus, USA). 

 

Intra-Arterial AP Measurement and Intravenous Drug 

Administration 
AP was measured via an intra-arterial cannula containing heparinised saline (heparin 3-5 

drops, 5000 IU in 1 ml, David Bull Laboratories) placed into the right common carotid or 

deep or superficial femoral arteries, depending upon the procedure. The internal carotids 

and vertebral arteries join the circle of Willis at the base of the brain; this arrangement 

allows collateral circulation into the cerebral arteries such that ligation of one carotid artery 

will not greatly hinder cerebral perfusion. In most animals the circle of Willis is well 

developed. In humans, however, there is considerable congenital anatomical variability, 

which has been linked to differences in susceptibility to cerebral aneurysm and stroke 

(Kayembe et al., 1984). The superficial femoral artery was cannulated in recovery 

experiments in order to maximise blood supply to the limb. 

 

Drugs were administered via intravenous cannulas containing saline placed into the right 

jugular or femoral vein. The latter was preferred for experiments where the cardiac 

component of the baroreflex was analysed; since intrajugular injections elicit transient 

volume expansion in the right atrium and briefly perturb the ECG and recordings of HR. 

The arterial and venous catheters used were clear polyvinylchloride tubing ID 0.58 mm, 

OD 0.96 mm; superficial femoral catheters were ID 0.28 mm, OD 0.61 mm. 

 

Nerve Isolation and Placement of Blood Flow Probes and 

ECG and EMG Electrodes 
The left greater splanchnic nerve was isolated via a retroperitoneal approach and cut at its 

junction with the celiac ganglion in order to record from sympathetic preganglionic fibres 

supplying the mesenteric and abdominal beds. The left phrenic nerve was also isolated 

using a subscapular approach and cut distally. The left aortic nerve (AN) was also isolated 

using the same approach, tied and cut distally in some studies (Chapters 3 and 6). In one 

study the right tibial nerve (TN) was also isolated and left intact (Chapter 3). 
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Nerves were placed onto bipolar silver wire electrodes and bathed in paraffin oil (the TN 

was covered in cotton wool soaked with an approximately 1:1 mixture of paraffin oil and 

Vaseline). In most experiments the electrocardiogram (ECG) was also recorded using a 3-

lead placement: a ground lead was inserted subcutaneously in the neck and positive and 

negative leads inserted on either side of the chest through the right atrial-ventricular apical 

axis. In some studies a laser Doppler flow probe (λ = 780 ± 10 nm, power = 0.5 – 1.0 mW, 

Oxford Optronics, UK) was placed within a ventral incision close to the base of the tail, 

overlying the ventral tail artery (Chapters 3 and 5). In some experiments Teflon-coated 

stainless steel filaments were inserted into the left biceps femoris in order to record 

electromyographic activity (EMG) (Chapter 3). In young animals (Chapter 4) respiratory 

activity was recorded by placement of bipolar electrodes into the diaphragm or intercostal 

muscles. 

 

Recording and Data Acquisition 
The arterial line was connected to a pressure transducer and the AP signal was sampled at 

200 Hz. Splanchnic sympathetic nerve activity (SNA), phrenic nerve activity (PNA) and 

EMG were recorded differentially (Bioamplifier, CWE Inc., USA). Raw signals were 

amplified (x5000), band pass filtered (30-1000 Hz) and sampled at 1000 Hz. ECG 

recordings containing clear P and QRS deflections were usually obtained by filtering the 

raw signal between 10-100 Hz and ECG was sampled at 1000 Hz. Tail blood flow (TBF) 

was also sampled at 1000 Hz using laser Doppler flowmetry. All signals were acquired 

online using an analog-to-digital converter (1401 Plus, Cambridge Electronic Design 

(CED) Ltd, UK) and analysed online and offline using Spike2 software (CED Ltd, UK).  

 

Stimulation and Activation of Cardiovascular Reflexes 
Arterial baroreflexes were activated by sequential intravenous injection of sodium 

nitroprusside (SNP) and phenylephrine (PE) (10 µg / kg) (Chapters 3 – 5). Submaximal 

baroreflex inhibition of SNA was achieved by electrical stimulation of the AN with tetanic 

100 Hz pulses (pulse width 1 ms, 0.5-2 V) (Chapter 6) or intermittent 0.5 Hz pulses (100 

sweeps, twin pulses separated by 2.5 ms) (pulse width 1 ms, 5-10 V) (Chapter 3). The 

somatosympathetic reflex was evoked by intermittent electrical stimulation of the TN (0.5 

Hz x 100, twin pulses separated by 2.5 ms, pulse width 1 ms, 15-20 V) (Chapter 3). Carotid 

chemoreceptor activation was achieved by substitution of the inhaled gas mixture for 100% 

N2 for a period of 15s.  
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Microinjection 
For microinjection of drugs into discrete brain regions, animals were placed in a 

stereotaxic frame, mechanically ventilated via a tracheostomy (14G cannula) and paralysed 

with pancuronium dibromide (0.8mg + 0.4mg/hr, 2mg/ml). Adequacy of neuromuscular 

blockade was assessed by monitoring PNA and chest wall movements. Rats were 

ventilated with 100% O2 mixed with room air (Ugo Basile, Italy). End-tidal CO2 was 

monitored using a CO2 analyser (Capstar-100, CWE Inc., USA) and maintained between 4 

– 5 % of expired gases. In Chapter 3 drugs were microinjected into the pons before and 

after paralysis; in these animals the cervical vagus was cut bilaterally in order to stabilise 

AP recordings and breathing movements.  

 

For microinjection into the RVLM the dorsal surface of the medulla was exposed via an 

atlanto-occipital craniotomy and the head angled forward to give a horizontal medullary 

surface. For microinjections into the pons, animals were placed in a flat-skull position and 

the calvarium was partially removed to expose the parietal cortex bilaterally. For 

microinjection into the IML, a laminectomy was performed between T1 and T2 vertebral 

segments to expose the dorsal surface of the spinal cord bilaterally. 

 

Single or triple-barrel glass micropipettes were manufactured under high temperature using 

a moving-coil single electrode puller (Camden Instruments Ltd) or programmable multi-

electrode puller (Micro Data Instruments Inc, USA). Pipettes were filled with drugs for 

microinjection and lowered using a micromanipulator (Narishige, Japan) into the brain or 

spinal cord using previously defined coordinates (RVLM, 2 mm rostral, 2 mm lateral to 

calamus scriptorious and 3.5 – 3.8 mm ventral to the dorsal surface: IML, 0.4 mm lateral 

to midline, 0.9 mm ventral; Lateral pons and PPT, the region explored was from 6.5 – 10 

mm caudal to Bregma, 1.5 – 2 mm lateral to midline and 5 – 9 mm below the dorsal 

surface of the parietal cortex) (Paxinos and Watson, 1996). The RVLM was identified 

functionally as the site where glutamate (100 mM, 50 nl) evoked a profound transient 

increase in AP (>50 mmHg) and SNA (>200 %). In recovery experiments (pentobarbital 

anaesthesia) injections of retrograde tracer were made into the RVLM identified 

functionally as the site where glutamate evoked pressor responses >80 mmHg.  
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Drugs were administered via pressure microinjection by monitoring movement of the fluid 

meniscus against a calibrated grid viewed through an operating microscope. Other delivery 

methods include iontophoretic ejection of drug through the pipette achieved by passing 

current through the solution. These techniques were pioneered for delivering small 

volumes of excitatory amino acids to evoke responses from restricted brain regions. 

Microinjection of glutamate, for example, has the distinct advantage over electrical 

stimulation in that in activates only cell bodies rather than axons of passage (Goodchild et 

al., 1982). Any drug can theoretically be administered in this way, although there are 

several considerations including determining an effective in vivo concentration based on 

receptor-binding studies, endogenous uptake mechanisms and the chemical nature of the 

compound (eg. size, lipophilic?). Depending on the diffusion characteristics of the drug, 

small volumes occupy extracellular space within an approximate ‘sphere’ of influence (a 

50 nl injection corresponds to a sphere with radius of ~360 µm, assuming volume fraction 

α = 0.21) (Nicholson, 1985; Tao and Nicholson, 1996). However, small or highly 

lipophilic molecules may diffuse rapidly. Moreover, spread of drug (even glutamate) to 

regions distal from the injection site can result in additional late responses not associated 

with the region of interest (Lipski et al., 1988). Despite these considerations, 

microinjection remains a relatively simple and powerful technique for modulating 

neurotransmission within discrete brain regions. 

  

Drugs  
All drugs for iv injection were dissolved in saline (0.9% NaCl, pH 7.4): atropine 

methylnitrate (mATR, a peripheral mAChR blocker, t1/2 4 hrs, Sigma, 5 mg/ml); 

oxotremorine sesquifumarate salt (OXO, a broad spectrum mAChR agonist, t1/2 1.6 hrs, 

Sigma, 0.5 mg/ml); (-) scopolamine hydrobromide (SCOP, a broad spectrum mAChR 

antagonist, t1/2 8 hrs, 5 mg/ml); sodium nitroprusside (SNP, Faulding) and phenylephrine 

(PE, ICN Biomedicals Inc.); prazosin hydrochloride (a selective α1-adrenoceptor 

antagonist, Sigma, 2.5 mg/ml); atenolol (a selective β-adrenoceptor antagonist, Sigma, 2.5 

mg/ml). All drugs were administered in a volume of 0.4 ml/kg. Ouabain (cardiac glycoside 

selective for Na+/K+ ATPase, Sigma) was dissolved in saline and prepared for infusion in a 

20 ml syringe.  

 

The following drugs were used for microinjection; all were dissolved in phosphate buffered 

saline (PBS, 0.01M, pH 7.4): l-glutamic acid (glut, monosodium salt, Sigma, 100 mM (5 
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nmol / 50 nl)); (-) scopolamine hydrobromide, (SCOP, a broad spectrum mAChR 

antagonist, Sigma, 60 mM (3 nmol / 50 nl)); DL-homocysteic acid (DLH, an excitatory 

amino acid, MP Biomedicals USA, 100 mM); (-)-bicuculline methiodide (a selective 

GABA-A receptor antagonist, Sigma, 4 mM); injection site markers, either colloidal gold 

(Sigma, 20 nM) or methylene blue (4%). See below for details of retrograde tracer 

microinjections. 

 

IV. Histological Procedures 
 

In microinjection studies brains and spinal cords were removed and fixed overnight in 4 % 

formaldehyde in saline and sectioned (50 µm) using a vibrating microtome (Leica 

VT1000S, Germany). Brain sections were either mounted immediately onto gelatinized 

slides (RVLM sites marked with methylene blue or injection sites in the pons) or processed 

for detection of gold-labeled injection sites in the RVLM using a silver intensification 

reaction (Silver Enhancer Kit, Sigma). Briefly, gold-labeled sections were developed under 

agitation in a silver salt and an initiator for 10 mins; these solutions were extracted and the 

reaction was fixed in 2.5 % aqueous sodium thiosulphate. Mounted sections were 

counterstained in Cresyl Violet following dehydration (ascending concentrations of 

ethanol), removal of lipids (chloroform), hydration and differentiation (95 % EtOH / acetic 

acid). Sections were observed under light microscopy (Leica, Germany) and compared to 

standard sections of Paxinos and Watson (1996), photographed and images adjusted for 

brightness and contrast using SPOT2 software (Diagnostic Instruments). Injection of 

retrograde tracers in the RVLM and IML were confirmed using immunohistochemical 

procedures described below.  

 

V. Retrograde Tracing and Immunohistochemical 

Procedures 

Retrograde Tracing and Transcardial Perfusion 
Rats were anaesthetised with sodium pentobarbital (60 mg / kg ip) and received long-

lasting analgesia pre-operatively (carprofen (non-steroidal), 2.5 mg ip). Small pressure 

injections of the retrograde tracing agent cholera toxin β subunit (CTB, 1 %) were made 

into the pressor region of the RVLM on one side (20 nl) or bilaterally into the IML (200 nl 
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/ side). Wounds were sutured and rats were allowed to recover for 36 hrs (RVLM group) or 

3 – 5 days (IML group). Following recovery, rats were deeply anaesthetised with sodium 

pentobarbital (70 mg / kg ip). The chest was opened and the animal was perfused through 

the ascending aorta with tissue culture medium (ph 7.4, Dulbeco’s Modified Eagle’s 

Medium, Sigma) followed by 4 % formaldehyde in 0.1 M phosphate buffer (PB). Brains 

and spinal cords were removed and post-fixed overnight. 

 

Light and Fluorescence Immunohistochemistry  
Serial transverse sections (50 µm) were cut using a vibrating microtome (Leica VT1000S). 

Sections were washed in 50 % ethanol (30 min) and Tris-phosphate-buffered saline (TPBS; 

Tris-HCl 0.01 M, sodium PB 0.01 M, 0.9 % NaCl, pH 7.4) (3 x 30 min). Sections were 

processed for detection of single or multiple proteins using light and fluorescence 

immunohistochemistry.  

 

For fluorescence immunohistochemistry, sections were incubated with three primary 

antibodies (see below) diluted in 5 % normal horse serum (NHS) prior to overnight 

incubation with fluorophore-conjugated secondary anti-sera diluted 1:500 in 2 % NHS (see 

below). For light immunohistochemistry, sections were reacted with species-specific 

primary antibodies and biotinylated secondary antibodies. For detection of multiple 

proteins using light microscopy, sections were incubated with ExtrAvidin peroxidase 

(Sigma, 1:1000 in TPBS) for 3 – 4 hrs and proteins detected using enhanced 

diaminobenzidine (DAB) reactions (nickel and imidazole). DAB reactions consisted of 

pre-incubation of sections in a mixture of DAB-tetrahydrochloride (10 mg, Sigma), 

glucose (20 %), ammonium chloride (0.4 % NH4Cl), distilled water and nickel ammonium 

sulphate (1 %, 800 µl) + sodium PB (0.4 M) or imidazole (1 M, 100 µl) + Tris-HCl (100 

mM). Sections were reacted with glucose oxidase (1 µl / ml, Sigma) for 10 – 30 mins until 

reaction product was visible (nickel – black; imidazole – brown). Each reaction was 

stopped by removing reaction mix and washing sections in buffer.  

 

Spinally projecting neurons were visualised using goat anti-CTB (light 1:50 000, 

fluorescence 1:1000, List). Cholinergic perikarya and terminals were visualised using 

rabbit anti-vAChT (light 1:500, fluorescence 1:800, Chemicon, USA) or sheep anti-ChAT 

(light, 1:500, Chemicon). Catecholaminergic neurons were visualised using mouse anti-TH 

(fluorescence 1:2000, Sigma, Australia). All secondary antisera (Jackson Immunoresearch) 
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were diluted 1:500 in TPBS-merthiolate (TPBS-M) containing 2% NHS. Sections 

incubated with single primary antibodies were incubated with donkey anti-rabbit IgG to 

detect vAChT or biotinylated donkey anti-goat IgG to detect ChAT. Sections for light 

microscopy containing vAChT and CTB primary antibodies were incubated sequentially 

with biotinylated donkey anti-rabbit IgG or biotinylated donkey anti-goat IgG and the 

order of addition of secondaries (and subsequent DAB reactions) was varied. Sections for 

fluorescence microscopy containing two or three primary antibodies were incubated 

overnight in a mixture of fluorescein isothiocyanate (FITC)-conjugated donkey anti-rabbit 

IgG to detect vAChT, Texas Red (TR)-conjugated donkey anti-goat IgG to detect CTB and 

7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated donkey anti-mouse IgG to 

detect TH. All sections were mounted onto slides with Prolong anti-fade (Molecular 

Probes, Invitrogen, Australia) and viewed using a fluorescent microscope (Leica DML or 

Zeiss imager Z.1, Germany). Images were acquired using a SPOT2 digital camera 

(Diagnostic Instruments). Fluorescence images were merged using SPOT2 and brightness 

and contrast adjusted using Zeiss Imaging software. 

 

VI. Data Analysis 
 

All data were analysed post-hoc using Spike 2 software (CED Ltd, UK). Heart rate (HR) 

was derived from the R-R interval of ECG or pulse interval (PI) from the AP wave. Mean 

AP (MAP) and systolic AP (SAP) were recorded from the AP wave. SNA and PNA were 

full wave rectified and smoothed with a time constant of 40 ms.  

 

Drug Effects 
Cardiovascular, blood flow and respiratory responses to various drugs were expressed as 

the peak change in each variable from a control period (2 – 5 min) expressed as units or 

percent baseline (MAP (mmHg), HR (bpm), tail blood flow (TBF, % baseline), mean SNA 

amplitude (% baseline), PNA amplitude (% baseline) or frequency (Hz) or minute 

inspiratory activity (PNA amplitude x frequency x 60)). In some chapters the time course of 

responses was evaluated (see Chapters 5 and 6 for details).  

 

Cardiovascular Reflexes 
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Electrical Stimulation of Aortic Baroreceptor and Somatic 

Afferents 
Reflex responses of SNA to intermittent AN or TN stimulation (0.5 Hz, 100 sweeps) were 

quantified by peri-stimulus averaging. The peak changes in average SNA were expressed as 

a percent of baseline taken over 200 ms prior to the stimulus. The magnitude of the 

respiratory-related modulation of SNA was quantified by phrenic-triggered averaging of 

SNA over at least 50 phrenic cycles. The magnitude of the post-inspiratory peak in average 

SNA was quantified as percent baseline taken over 200 ms prior to onset of phrenic 

discharge (late expiration), which shows the most constant amplitude during the respiratory 

cycle (Miyawaki et al., 2002b).  

 

Tetanic stimulation of the AN (100 Hz) was used to quantify the magnitude of reflex 

bradycardia evoked by submaximal stimulation of the baroreflex (Chapter 6). To control 

for differences in preparation of the nerve and resulting stimulus strengths (3 x threshold), 

the amount of bradycardia was calibrated to the fall in AP elicited by AN stimulation 

(ms/mmHg).  

 

Peripheral Chemoreceptor Activation with Brief Hypoxia 
Following brief hypoxia maximal changes in SNA and MAP were expressed as a percent of 

baseline SNA or MAP (mmHg) taken over 10 s prior to the stimulus. 

 

Baroreflex Function Curves 
Sympathetic baroreflex function curves were generated by plotting the relationship 

between reflex changes in SNA evoked by maximal changes in MAP following sequential 

bolus injection of SNP and PE (10 µg / kg iv). AP and SNA were averaged with a time 

constant of 1 s. SNA was normalized by setting maximum SNA inhibition following PE as 

0 % and resting SNA as 100 %. Normalized values of SNA vs MAP were fitted to a four-

parameter sigmoid logistic function (Eq 1.) by non-linear regression (GraphPad Prism®) 

over the duration of the baroreflex stimulus. Goodness of fit was shown by r2 values ≥ 

0.95. 

 

Eq 1.   y  =  P4  +             P1    

                    (1 + 10[P2 (P3 – x)]) 
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where y is SNA and x is MAP, P1 is the range of SNA response, P2 is the slope 

coefficient, P3 is MAP at 50% SNA range (MAP50) and P4 is the lower plateau. The first 

derivative of the logistic function was used to calculate maximal gain (Gmax; gain at 

MAP50), and gain at resting MAP (GMAP).  

 

In Chapter 4, heart rate baroreflex gain in response to ramp changes in MAP was also 

calculated. Unlike SNA, however, peak HR responses following SNP or PE were delayed 

and hence did not initially correspond to the rate of change in MAP. A linear rather than a 

logistic approach was used to overcome this problem, although this is likely to have 

underestimated HR gain. R-R interval and MAP were averaged with a time constant of 0.2 

s. Linear regression analysis was applied to R-R interval and MAP data over a defined 

change in MAP (40 mmHg).  

 

Spontaneous Baroreflex Sensitivity (BRS)  
The sequence method was used to calculate spontaneous heart rate BRS from R-R interval 

time series and the AP wave using an easily applied script in Spike 2 (see Appendix 1). 

The algorithm detects all sequences of three consecutively lengthening or shortening R-R 

intervals that correspond to an increase or decrease in MAP of at least 0.5 mmHg, 

respectively, and calculates the slope of individual regression lines through these points. 

Spontaneous BRS was calculated as the average slope of R-R interval sequences for all 

sequences detected during 5 minute segments of data.  

 

Heart Rate Variability (HRV) 
In Chapter 4, a time domain measure of HRV was calculated from R-R interval time series 

generated from the ECG. The standard deviation of R-R intervals (SDNN) was calculated 

over 5 minute segments of data. All data segments were visually inspected for stationarity 

(no wandering baseline or large deviations from baseline) and lack of artefacts or ectopic 

beats. 

 

Spectral Analysis  
Spectral analysis was performed using fast Fourier transformation (FFT, size 256, 

resolution 0.04 Hz) of R-R interval, PI, SAP or SNA time series that had been uniformly 
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resampled at 10 Hz. The length of segments for spectral analysis varied in different studies. 

In anaesthetised animals spectra were determined over 2-5 minutes of resting data;  in 

conscious animals spectra were calculated over 80 s of data to maximize suitable periods 

for analysis where animals were quiescent. Summed power was calculated at low 

frequencies containing sympathetic and baroreflex-related oscillations (LF; 0.25 – 0.75 Hz) 

and high frequencies synchronous with ventilation and central inspiratory activity (HF; 1-

2.5 Hz); and occasionally VLF (< 0.2 Hz). Where possible, HF power was calculated at the 

exact frequency of phrenic discharge (Chapter 3). Baroreflex gain was also estimated using 

the α-coefficient, calculated as the square root of the ratio between PI and SAP power in 

the LF or HF range (Pagani et al., 1988; Persson et al., 2001). See Appendix 2 for further 

details and an easily applied Excel® spreadsheet for calculating various spectral 

parameters. 

 

Ouabain Infusion and Classification of Arrhythmia 
Ouabain was infused through the right femoral vein at 3 ml / hr at a dose of 200 µg / kg / 

min. Cardiovascular parameters were acquired continuously prior to and throughout 

infusion. BRS was calculated using the reflex bradycardia induced by stimulation of the 

AN over three similar trials separated by 100 s conducted prior to and during ouabain 

infusion. Average AP, PI and BRS were taken immediately prior to and every 5 minutes 

throughout ouabain infusion. The maximal change in these variables was recorded as the 

difference from control levels to the level prior to conduction block. All analysis was 

blinded to strain by random coding of data files. Ventricular arrhythmias were identified 

from the ECG using Lambeth conventions (Walker et al., 1988). Ventricular premature 

beats (VPB) were classified as a premature QRS complex without a preceding P-wave and 

ventricular tachycardias (VT) as a run of four or more consecutive VPBs (see Chapter 6). 

 

Definition of Appositions  
Cholinergic terminal appositions with neurons in the RVLM were detected at high 

magnification using light and fluorescence microscopy. Light microscopic sections were 

viewed at 100 x to identify close appositions between vAChT-positive terminals (black 

reaction product) and CTB-labelled neurons in the RVLM (brown reaction product). An 

apposition was defined as a site where there was no discernible gap between a bouton and 

neuron (soma or proximal dendrite) that appeared to make contact in the same plane of 

view. Similarly, close appositions were detected under fluorescence microscopy; 
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appositions between vAChT-positive boutons and CTB-labeled neurons or dual labeled 

CTB and TH neurons in the RVLM were quantified as described below.  

 

Cell Counts 
Cells immunoreactive (IR) for CTB or TH and the number of cells / section that were 

closely apposed by vAChT were counted in serial sections of medulla (separated by 200 

µm) extending caudally from the caudal pole of the facial nucleus (VII) (Bregma -11.60 to 

-13.40 mm). The RVLM was defined anatomically as being bordered dorsally by the 

nucleus ambiguus pars compacta, laterally by the spinal trigeminal tract, and medially by 

the lateral edge of the inferior olive (at caudal levels) or pyramidal tract (at most rostral 

levels).  

 

VII. Statistical analysis 
 

See Chapters 3 – 6 for statistical tests used appropriate to each data set. 

 

 

VIII. Additional Materials and Methods 
 

The following procedures were not performed by the candidate and are included for 

completeness, with respect to manuscripts published during the period of candidature. 

 

Combined In Situ Hybridisation Immunohistochemistry 
For immunohistochemical detection of mRNA as well as protein, floating brain sections 

were processed with a combined method of in situ hybridisation (ISH) and fluorescence 

immunocytochemistry (Li et al., 2005). Sections were firstly hybridized with 

preproenkephalin (PPE), M2 or M3 receptor antisense riboprobe, washed in descending 

concentrations of salt, then reacted with primary antibodies against digoxigenin (DIG, 

alkaline phosphatase conjugated) and other proteins (see below) for 48 hrs at 4ºC. The 

proteins were then detected by fluorophore-conjugated secondary antibodies (1:500, 

Jackson); DIG-labelled in situ neurons were detected by a histochemical reaction using 
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nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate salts described in detail 

previously (Li et al., 2005). 

 

For visualisation of enkephalinergic neurons in the RVLM sections were reacted with 

primary antibodies against DIG (alkaline phosphatase-conjugated sheep anti-DIG (1:1000, 

Roche, Germany), mouse anti-neuron-specific nuclear protein (NeuN, 1:2000, Chemicon, 

USA) and rabbit anti-vAChT (1:800). For visualisation of M2 or M3 receptor mRNA 

within the RVLM sections were reacted with primary antibodies against DIG, mouse anti-

TH (1:2000) and rabbit anti-CTB (1:5000, Virostat, USA).  

 

For visualisation of enkephalinergic neurons and cholinergic terminals in the RVLM, 

sections were incubated overnight in Cy3-conjugated donkey anti-mouse IgG (for NeuN), 

FITC-conjugated donkey anti rabbit (for vAChT) and DIG-labelled in situ neurons (for 

PPE mRNA) were detected as described above (Li et al., 2005). For visualisation of M2 or 

M3 receptor mRNA colocalised with catecholaminergic and spinally projecting neurons in 

the RVLM, sections were incubated for 24 hrs at 4ºC with Cy3-conjugated donkey anti-

mouse IgG (for TH) and FITC-conjugated donkey anti-rabbit IgG (for vAChT). DIG-

labelled neurons (for M2 or M3 mRNA) were detected as described above (Li et al., 2005).  

 

Synthesis of DIG-labeled Riboprobes for M2, M3 Receptor 

and PPE  
DNA fragments for PPE was firstly amplified by PCR from rat brain cDNA using forward 

and reverse primers with SP6 and T7 promoters attached at the 5′ end, respectively. 

Homology analysis using nucleotide BLAST searches of the National Centre for 

Biotechnology Information (NCBI, USA) were carried out to ensure that the RNA probe 

sequence was specific to the mRNA of interest only. Antisense sequences, riboprobe 

length and GeneBank accession source numbers for M2 receptor, M3 receptor and PPE 

mRNA are shown in Table 2.1. 
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Table 2.1. Sp6- and T7-tagged primer sequences for DIG-labelled riboprobes 

Gen

e 

Prime

r 

GenBan

k 

Nucleotide sequence (5’-->3’)* Size 

(bp) 

fwd ATTTAGGTGACACTATAGAAGtgcctccgttatgaatctc

c 

M2 

rvse 

NM_031

016 

TAATACGACTCACTATAGGGAGAcgacccaactagttc

tacagt 

750 

 

fwd ATTTAGGTGACACTATAGAAGatcaaaggaaacgctgtg

ct 

M3 

rvse 

NM_012

527 

TAATACGACTCACTATAGGGAGAgtcggctgtaaacac

cacct 

514 

 

fwd GGATCCATTTAGGTGACACTATAGAAGctaaatgca

gctaccgcctg 

PPE 

rvse 

BC0835

63 

GAATTCTAATACGACTCACTATAGGGAGAttccat

ctcgggaacttcttt 

743 

 

*Upper case denotes Sp6 and T7 tag sequences and lower case denotes primer sequence 

 

The antisense and sense riboprobes were then transcribed in vitro using DIG-11-UTP 

(Roche Applied Sciences) and Ampriscibe T7 or Sp6 transcription Kit (Epicenter, USA).  

 

All sections were mounted onto slides with Prolong anti-fade (Molecular Probes, 

Invitrogen, Australia) or Vectorshield Hard Set (Vector laboratories, USA) and viewed 

using a fluorescent microscope (Leica DML or Zeiss imager Z.1, Germany). Images were 

acquired using a SPOT2 digital camera (Diagnostic Instruments). Fluorescence images 

were merged using SPOT2 and contrast adjusted using Zeiss Imaging software. 

 

Quantitative RT-PCR 
Rats were deeply anaesthetized with sodium pentobarbital (70 mg/kg ip) and transcardially 

perfused with ice-cold sterile saline (0.9 % NaCl in phosphate buffer, PB) as described 

previously (Kumar et al., 2006). The brainstem and spinal cord was cut into 350 µm 

sections in freezing conditions using a vibratome (Leica VT1000S). Single sections were 

visualised using a dissecting microscope; tissue was isolated from the rostral (Bregma -

11.7 to -12.4) and most caudal medulla (Bregma -15.0 to 15.7) ventral to the nucleus 

ambiguus, and from the posterior cerebellum.  
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Total RNA was extracted from each tissue section using the SV total RNA isolation system 

(Promega, USA) (Nuyts et al., 2001). Total RNA (150 ng) was reverse transcribed 

(ImProm-II™, Promega, USA) and gene-specific target amplification was performed using 

quantitative real time PCR in 20 µl reactions containing 1 µl cDNA and 100 µmol/l each 

primer (RotorGene-2000, Corbett Research, Australia). The reaction conditions consisted 

of an initial 10 min denaturation at 95ºC followed by 40 cycles of denaturation at 95ºC, 

annealing at 62ºC for 20 s, extension at 72ºC for 20 s, then 82 ºC for 10 s to allow for data 

acquisition.  

 

Primers specific for M1 - M5 receptor mRNA and GAPDH were designed from GenBank 

sequences using commercially available software and obtained from Sigma-Genosys 

(Australia) (Table 2.2). Samples of the amplified M1-M5 receptor gene products were 

electrophoresed in an ethidium bromide-stained 2% agarose gel. Gene products were 

recovered enzymatically using QiaQuick gel extraction kit (Qiagen, Australia) and the 

DNA was sequenced using the ABI Prism 3730 platform (SUPAMAC, Australia) to 

confirm specificity to the GenBank sequence. Expression levels of M1 - M5 receptor 

mRNA were evaluated by normalizing relative to expression of the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as previously described (Li et al., 

2003). 

 

 

Table 2.2. Primer sequences for RT-PCR detection of M1-M5 receptor mRNA 

Gene Primer GenBank Nucleotide sequence (5’-->3’) Size (bp) 

fwd GCCTACAGCTGGAAGGAAGA M1 

rvse 

NM_080773

 
GGGCATCTTGATCACCACTT 

105 

 

fwd TGCCTCCGTTATGAATCTCC M2 

rvse 

NM_031016 

 
TCCACAGTCCTCACCCCTAC 

192 

 

fwd TGCTAGCCTTCATCATCACG M3 

rvse 

NM_012527

 
TCACACTGGCACAAGAGGAG 

202 

 

fwd CGCCCAGAGACTACAGGAAC M4 

rvse 

D78485 

 
GGGCTCAGGAATACCTCAAA 

155 
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fwd ACCATCACTTTTGGGACTGC M5 

rvse 

NM_017362

 
TCCTTGGTTCGCTTCTCTGT 

104 

 

fwd TGCACCACCAACTGCTTAGC GAPDH 

rvse 

X02231 

 
GGCATGGACTGTGGTCATGAG 

87 

 

 

Radiotelemetric Probe Implantation 
A Dataquest (IV) telemetry system (Data Science Int., MN) consisting of an implantable 

transmitter, radio receiver, ambient pressure monitor, data matrix and acquisition software 

was used to measure blood pressure (BP) and temperature in FSL, FRL and SD rats (n ≥ 5 

per group). Rats were housed individually and received pre and post-operative antibiotics 

(amoxicillin trihydrate (9.3 mg/L) and tylosin tartrate (6.2 mg/L) po). Probes were 

implanted aseptically under general anaesthesia (sodium pentobarbitone, 60 mg/kg ip) 

following intraperitoneal administration of analgesia (carprofen, 2.5 mg) and an antibiotic 

(cephazolan, 0.55 g/kg). Depth of anaesthesia was continuously monitored by testing 

withdrawal responses to hindpaw pinch and corneal reflexes and additional doses of 

sodium pentobarbitone (6 mg ip) were administered as required. The probes were 

implanted into the aorta via the femoral artery and the body of the probe was sutured in 

place in the peritoneal cavity. All wounds were closed with interrupted sutures and topical 

tissue adhesive (cyanoacrylate). Rats were kept under close supervision in a warm 

environment until ambulatory and allowed to recover for 7 – 14 days. Recovery was 

confirmed by the presence of circadian rhythms in blood pressure, adequate food and water 

intake, increased body weight and adequate wound healing (Leon et al., 2004).  
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I. Abstract  
 

Central command is a feedforward neural mechanism that evokes parallel modifications of 

motor and cardiovascular function during arousal and exercise. The neural circuitry 

involved has not been elucidated. We have identified a cholinergic neural circuit that when 

activated mimics effects on tonic and reflex control of circulation similar to those evoked 

at the onset of and during exercise. Central mAChR activation increased SNA as well as 

the range and gain of the sympathetic baroreflex via activation of mAChR in the RVLM in 

anaesthetised artificially ventilated SD rats. RVLM mAChR activation also attenuated and 

inhibited the peripheral chemoreflex and somatosympathetic reflex, respectively. 

Cholinergic terminals made close appositions with a subpopulation of sympathoexcitatory 

RVLM neurons containing either preproenkephalin mRNA or TH immunoreactivity. M2 

and M3 receptor mRNA was present postsynaptically in non-TH RVLM neurons only. 

Cholinergic inputs to the RVLM arise only from the pedunculopontine tegmental nucleus 

(PPT). Chemical activation of this region produced increases in muscle activity, SNA and 

blood pressure and enhanced the SNA baroreflex: the latter effect was attenuated by 

mAChR blockade. These findings indicate a novel role for cholinergic input from the PPT 

to the RVLM in central cardiovascular command. This pathway is likely to be important 

during exercise where a centrally-evoked facilitation of baroreflex control of the 

circulation is required to maintain blood flow to active muscle. 

 

II. Introduction 
 

A distinct pattern of tonic and reflex cardiovascular adjustments is mediated by central 

command to ensure appropriate muscle and organ perfusion during different arousal or 

behavioural states, such as sleep and exercise (Rowell and O'Leary, 1990; White et al., 

2001; Williamson et al., 2006). Limited evidence implicates some regions within the pons 

and hypothalamus that could provide descending input to cardiovascular control sites 

(Krout et al., 2003; Garcia-Rill et al., 2004; Dampney et al., 2005), however the neural 

circuitry and neurotransmitters involved are yet to be elucidated. 

 

Activation of the central cholinergic system has a profound effect on cardiovascular and 

other autonomic functions. Systemic or central administration of acetylcholinesterase 

inhibitors or muscarinic agonists increases blood pressure (Buccafusco and Brezenoff, 
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1979; Brezenoff et al., 1982; Brezenoff and Giuliano, 1982; Giuliano et al., 1989; Kubo, 

1998), lowers body temperature (Daws and Overstreet, 1999) and alters respiration (Nattie 

and Li, 1990; Shao and Feldman, 2000). Pressor responses can be evoked via activation of 

mAChR within several cardiovascular nuclei, including the posterior hypothalamus 

(Buccafusco and Brezenoff, 1979), NTS (Criscione et al., 1983) and RVLM (Giuliano et 

al., 1989; Kubo, 1998). Effects of central mAChR activation on cardiovascular reflexes are 

less well understood (Caputi et al., 1980; Brezenoff et al., 1982; Park and Long, 1991). 

 

Sympathoexcitatory and hypertensive effects of intravenously administered physostigmine 

are largely mediated by excitation of RVLM neurons (Giuliano et al., 1989; Huangfu et 

al., 1997; Kubo, 1998). The RVLM generates basal sympathetic vasomotor activity and is 

a critical synaptic relay in cardiovascular reflexes (Pilowsky and Goodchild, 2002; 

Guyenet, 2006). Descending cholinergic projections to the RVLM arise from neurons in 

the pedunculopontine tegmental nucleus (PPT) (Yasui et al., 1990), although local 

medullary neurons may also be a source of cholinergic input (Ruggiero et al., 1990). The 

function of this input into the RVLM is unknown. A dense cholinergic terminal field is 

present within the RVLM (Giuliano et al., 1989; Milner et al., 1989; Ruggiero et al., 

1990), although supportive anatomical evidence that cholinergic terminals provide input to 

C1 or non-C1 spinally projecting neurons is lacking. Activation of the inhibitory M2 

mAChR subtype in the RVLM is thought to mediate pressor responses (Giuliano et al., 

1989; Kubo, 1998) but its cellular location or that of other mAChR subtypes within the 

RVLM is unknown.  

 

We hypothesised that cholinergic input to the RVLM from the PPT is involved in central 

command-mediated effects on cardiovascular function. Previous studies have shown that 

the PPT is involved in initiation of movement and modulation of muscle tone during 

locomotion, exercise and arousal (Bedford et al., 1992; Pahapill and Lozano, 2000; 

Garcia-Rill et al., 2004). Additionally, the PPT connects albeit indirectly with both motor 

and sympathetic outflows (Krout et al., 2003).  

 

We aimed, firstly, to determine the role of the RVLM in the autonomic responses and 

effects on reflex control of the circulation evoked by central mAChR activation. Secondly, 

we identified the mAChR subtypes involved by examining gene expression within 

phenotypically identified RVLM neurons and determined the exact sources of cholinergic 
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input to the RVLM. Finally, we determined the tonic and reflex cardiovascular effects 

generated by chemical stimulation of the PPT.  

 

III. Materials and Methods 
 

Anaesthesia, Surgical Procedures and Recording 
SD rats (n = 17) were anaesthetised with urethane, intubated and instrumented for 

recording of AP, SNA, PNA and TBF as described in Chapter 2. Microinjections into the 

RVLM were made in 13 rats. Microinjections were made into the pons in 4 rats; in these 

experiments both vagi were cut and in two rats muscle EMG was recorded from the 

hindlimb. Rats were paralysed and ventilated as described in Chapter 2. 

 

Activation of Cardiovascular Reflexes 
Cardiovascular reflexes were activated as described in Chapter 2, via sequential iv injection 

of SNP and PE, intermittent electrical stimulation of the AN or TN, and brief hypoxia. 

 

Experimental Protocol   
All animals were pretreated with mATR to block peripheral mAChR (2 mg / kg). In nine 

rats, all reflexes were activated before and after central mAChR activation with iv injection 

of OXO (0.2 mg / kg). SCOP was injected bilaterally into the RVLM to determine if this 

reversed effects of OXO on SNA, AP and reflexes. Repeat doses of OXO were 

administered and reflexes were again tested. In four rats reflexes were not tested during 

experiments to examine effects of OXO on SNA, AP, PNA, TBF and spectral parameters 

of SAP and SNA before and after SCOP injection into the RVLM. In four additional rats, 

DLH (8 nmol) or bicuculline (0.2 nmol) was injected into the pons at 6.5 – 9.5 mm caudal 

and 2 mm lateral to Bregma at varying depths (5.5 – 9 mm ventral) to examine site-specific 

effects on AP, SNA and SNA baroreflex responses. In some animals effects on the SSR 

were also examined. Effects on EMG were examined in two rats prior to neuromuscular 

blockade and nerve recording. In three animals, sites within the PPT where stimulation 

evoked increases in SNA and SNA baroreflex responses were tested following SCOP (2 mg 

/ kg) administered intravenously to block central mAChR.  
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Data Analysis 
Data were analysed as described in Chapter 2 in order to examine baseline 

cardiorespiratory responses and effects on respiratory modulation of SNA and 

cardiovascular reflex responses of SNA and AP. SNA baroreflex function curves and their 

first derivatives were generated as described in Chapter 2. Spectral parameters were 

quantified at low (0.25 – 0.75 Hz) and phrenic nerve frequencies (1.0 - 2.5 Hz) as described 

in Chapter 2.  

 

Retrograde Labeling from the Spinal Cord or RVLM and 

Immunolabeling of Protein and mRNA 
CTB was injected into the RVLM in 3 rats and into the IML in 10 rats in order to 

retrogradely label neurons with projections to these areas. Following recovery, rats were 

transcardially perfused and brain and spinal cord sections processed for light or 

fluorescence immunohistochemistry or combined in situ hybridisation 

immunohistochemistry as described in Chapter 2. Sections were processed in order to 

visualise cholinergic neurons with projections to the RVLM, the location of ChAT or 

vAChT labelled neurons in the medulla, to visualise and quantify the number of 

cholinergic appositions on phenotypically identified sympathoexcitatory RVLM neurons 

(CTB +/- TH or PPE mRNA) or proportion of neurons containing M2 or M3 receptor 

mRNA. In some animals RNA was isolated from a tissue punch from the RVLM and RT-

PCR carried out to detect M1-M5 receptor mRNA as described in Chapter 2. 

 

 Statistical analysis 
All data are presented as mean ± standard error of the mean. A paired Students’ t-test was 

used to calculate effects of treatment versus control or following SCOP and P<0.05 was 

considered significant.  

 

IV. Results 

RVLM mAChR Mediate Sympathoexcitatory but not Other 

Autonomic Effects Evoked by Central mAChR Activation  
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Central mAChR activation (OXO) significantly increased AP, mean and post-inspiratory-

related discharge of SNA, HR and TBF and reduced PNA amplitude (Fig. 3.1A, B, D). 

Bilateral injection of SCOP into the RVLM (Fig. 3.1C) significantly attenuated the increase 

in AP (n=8, P<0.01), SNA (n= 8, P<0.01), HR (n=8, P<0.05) and post-inspiratory 

activation of SNA (n=4, P<0.05) but had no effect on changes in TBF (n= 4, n.s.) or PNA 

amplitude (n=4, n.s.) evoked by OXO (Fig. 3.1D).  

 

Spectral analysis of systolic AP (SAP) and SNA revealed an increase in low frequency (LF, 

~0.4 Hz) oscillations following OXO (0.3 ± 0.1 vs 36.5 ± 15.1 mmHg2, P<0.05; 4.6 ± 1.4 

vs 47.5 ± 17.9 SNA%2, P<0.05). Respiratory-related oscillations of SNA also tended to be 

increased (P=0.051). SCOP injected bilaterally into the RVLM had no effect on baseline 

parameters but prevented the increase in LF oscillations evoked by OXO (0.3 ± 0.1 vs 0.4 ± 

0.1 mmHg2; 3.3 ± 1.0 vs 7.3 ± 2.5 SNA%2, n=7, P<0.05) (Fig. 3.2). 

 

Activation of RVLM mAChR Facilitates the Sympathetic 

Baroreflex and Inhibits the Somatosympathetic and 

Chemoreflexes  
OXO significantly enhanced the reflex sympathoexcitatory and inhibitory responses evoked 

by equipotent doses of SNP and PE (Fig. 3.3). This effect was reproducible following 

repeat injection of OXO (Fig. 3.3A). OXO significantly increased the maximum plateau 

(146 ± 4 vs. 321 ± 12 %, P<0.01) and maximum gain of the SNA baroreflex (4.4 ± 0.5 vs. 

8.2 ± 0.6 %/mmHg, P<0.05) (Fig. 3.3B, C). The operating point (resting MAP) also shifted 

closer to the point of maximum gain (Fig. 3.3C).  

 

Figure 3.4 shows the effects of OXO on cardiovascular reflexes before and after blockade 

of mAChR bilaterally in the RVLM. OXO increased the magnitude of SNA inhibition 

evoked by AN stimulation (166 ± 13 % control, n=6, P<0.01) or excitation following SNP 

administration (4 ± 3 vs 217 ± 2 %SNA/50mmHg, n=4, P<0.01). In contrast, OXO 

inhibited both excitatory peaks of SNA evoked by TN stimulation (early peak 37 ± 3 % 

control, P<0.01, late peak 41 ± 5 % control, n=9, P<0.01). Sympathoexcitatory and pressor 

responses to brief hypoxia were attenuated and inhibited, respectively (53 ± 6 % control, 

P<0.01; +33 ± 2 mmHg vs -17 ± 5 mmHg, n=7, P<0.01). Bilateral injection of SCOP into 

the RVLM reversed effects of OXO on reflexes, such that they were mostly 

indistinguishable from controls. The early peak of the somatosympathetic reflex was only  
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mAChR activation in urethane-anaesthetised rats. A: Following pre-treatment with 

mATR, OXO (0.2mg/kg iv) evokes an increase in SNA, AP and TBF but a reduction in 

PNA amplitude. Following identification of RVLM pressor sites (glut), SCOP (9 

nmol/site) is injected into the RVLM bilaterally substantially reducing the pressor, 

sympathetic and HR effects but not the TBF or PNA response to OXO. Increases in HR 

are due to sympathetic activation. B: Average SNA (bold line) and PNA (thin line) 

waveforms showing increase in post-inspiratory (P-I)-related discharge of SNA 

following OXO and blockade of this effect by SCOP injection in the RVLM. C: 

Injection sites in the RVLM (open circles, only unilateral sites shown). D: Group data 

from 8 animals illustrating effects seen in A and B. Data shown are mean ± SEM. 
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non significant.
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Figure 3.3 Effects of central mAChR activation on sympathetic baroreflex function. 

A: OXO (0.2mg/kg iv) evokes significant facilitation of the sympathetic reflex effects 

evoked by baroreceptor unloading (SNP) and loading (PE). This effect is reproducible. B: 

Average four-parameter sympathetic baroreflex function curves generated from data 

(n=3) including that shown in A and C: their first derivatives (error bars are omitted for 

clarity). Central mAChR activation with OXO shifts the SNA baroreflex to higher AP and 

SNA and increases its range and gain. 
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SCOP bilaterally in the RVLM. Mean changes in SNA are overlaid on the raw SNA 

signal to illustrate effect of OXO on reflex responses to baroreceptor unloading with 
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Figure 3.5 MAChR activation within the RVLM enhances the baroreflex and 

inhibits the somatosympathetic and peripheral chemoreflex. Grouped data from nine 

animals showing OXO-evoked effects on cardiorespiratory reflex function. OXO 

enhances SNA baroreflex responses, inhibits both early and late peaks of the 

somatosympathetic reflex and attenuates sympathoexcitatory and pressor effects of the 

peripheral chemoreflex. Most reflexes return to control level following SCOP 

injection bilaterally into the RVLM, although the early peak of the somatosympathetic 

reflex remains attenuated and chemoreflex activation evokes no change in AP. Prior 

injection of SCOP into the RVLM blocks all effects on cardiorespiratory reflexes 

evoked by OXO. Data are mean ± SEM, *P<0.05, ** P<0.01, ns = non significant.
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partially restored (66 ± 4 % control, P<0.01). A repeat injection of OXO 30 min following 

SCOP failed to elicit effects on any reflex similar to its initial robust effects (n≥4 per 

group). The pressor response to brief hypoxia did not return to normal after the initial dose 

of OXO. Grouped data are illustrated in Fig 3.5.  

 

Cholinergic Terminals Closely Appose Sympathoexcitatory 

RVLM Neurons  
vAChT-IR terminals were found throughout the VLM and in cell bodies within the facial 

and ambigual motor nuclei, consistent with previous reports (Arvidsson et al., 1997; 

Schafer et al., 1998). A choline acetyltransferase (ChAT)-positive cell group previously 

identified in the ventromedial medulla (Ruggiero et al., 1990) was not present using 

vAChT labeling (Fig. 3.6). vAChT-IR terminals were closely apposed to CTB-labelled 

spinally projecting cells in the RVLM; 32.6 ± 7.4 % (379 / 1118 cells, n = 3) of all CTB-IR 

neurons and 31.1 ± 5.6 % (66 / 206 cells, n = 3) of TH-positive CTB-IR cells (Fig. 3.7, 

3.8A). vAChT-IR varicosities also formed perisomatic appositions with NeuN-positive 

non-TH RVLM neurons that expressed PPE, as well as other PPE-negative NeuN-positive 

cells (Fig. 3.8B).  

 

M2 and M3 Receptor mRNA is Expressed in Spinally 

Projecting Non-TH Neurons in the RVLM  
All mAChR subtypes were expressed in an RVLM tissue punch (Fig. 3.9). We analysed the 

cellular distribution of M2 receptor expression in the RVLM and found that no spinally 

projecting TH neurons contained M2 receptor mRNA (0/310, n=5) (Fig. 3.10A). In 

contrast, 23 ± 4 % of spinally projecting non-TH RVLM neurons did express M2 receptor 

mRNA (78/367, n=5) (Fig. 3.10C). M3 receptor mRNA was also expressed in some TH-

IR/non-CTB-IR and some CTB-IR/non-TH neurons (Fig. 3.10B, D). 
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Figure 3.6 Comparison of ChAT and vAChT immunoreactivity in the ventral 

medulla. Coronal sections of the medulla at the same level of the RVLM are shown 

at low (left panel) and high power (right panel) from different SD rats that were 

perfused transcardially. 50 mm brainstem sections were reacted for immunoreactivity 

against ChAT (sheep, 1:500, Chemicon, USA) or vAChT (rabbit 1:500, Chemicon, 
1

USA) and detected using nickel-intensified diaminobenzidine reactions . ChAT 

labelling in the medulla identifies large motoneurons of the compact and loose 

formation of the nucleus ambiguus that can be seen to send fine ChAT containing 

fibres ventrally into the RVLM. Smaller ChAT-positive perikarya are clearly visible 

in the medial ventral medulla. In comparison, vAChT labelling identifies ambiguual 

motoneurons and cholinergic terminal fields in the RVLM but labelling in the 

ventromedial region is clearly absent. Scale bars = 200 mm. Abbreviations: NAc, 

nucleus ambiguus pars compacta; pyr, pyramidal tract; SpV, spinal trigeminal tract.
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Figure 3.7 Spinally projecting neurons in the RVLM are closely apposed by vAChT-IR 

varicosities. A: Sagittal section of the medulla stained for immunoreactivity to CTB 

(brown reaction product) and vAChT (black reaction product). Note the neurons in the 

more dorsal nucleus ambiguus that are immunoreactive for vAChT. B: CTB-positive 

neurons in the RVLM (boxed area in A) retrogradely labeled from the thoracic IML 

surrounded by vAChT-IR terminals (arrows). C and D: Close appositions between 

vAChT-IR varicosities and CTB-labeled neurons in the RVLM (arrowheads). Scale bars: 

A; 400 mm, B; 200 mm, C and D; 50 mm. Abbreviations: IOL, inferior olivary nucleus; 

NAc, nucleus ambiguus pars compacta; pyr, pyramidal tract. 
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Figure 3.8 Phenotypically identified sympathoexcitatory neurons in the RVLM are 

closely apposed by vAChT-IR varicosities. A: CTB-labeled neurons in the RVLM that 

are immunoreactive to TH (*) or negative for TH are closely apposed by vAChT-

positive terminal varicosities (arrowheads). B: Neurons in the RVLM identified by the 

neuron-specific marker NeuN that express PPE mRNA (arrows) are closely apposed 

by vAChT-IR, as are PPE-negative neurons (arrowheads). Scale bars: A and B; 25 mm.



Figure 3.9 M1-M5 receptor subtypes are expressed in the 

RVLM. 2% Ethidium bromide stained agarose gel with high 

intensity amplicons confirming the presence of M1-M5 receptor 

mRNA in a tissue punch taken from the RVLM in an SD rat.
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Figure 3.10 Cellular distribution of M2 (A, C) or M3 receptor mRNA (B, D) and 

TH-IR neurons in the RVLM. M2 receptor mRNA is colocalised in RVLM neurons 

that project to the thoracic IML (CTB-IR) (C) but none of these contain TH-IR. M3 

receptor mRNA is expressed in some CTB-IR neurons (arrows) or in TH-IR cells 

lacking CTB-IR (arrowheads) (boxed area in B shown in D). Scale bars: A and B 250 

mm; C and D 100 mm.
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Direct Cholinergic Projections to the RVLM from the PPT 
To determine the source of cholinergic input to the RVLM, discrete injections of CTB were 

made unilaterally into the RVLM (Fig. 3.11A) and cholinergic neurons were identified by 

vAChT-IR. CTB-IR neurons were found in regions previously described including the 

parabrachial nucleus, the paraventricular nucleus of the hypothalamus (Fig. 3.11B), central 

nucleus of the amygdala and the cortex (Yasui et al., 1990; Horiuchi et al., 1999). vAChT-

IR neurons were also found in regions previously described (Arvidsson et al., 1997; Schafer 

et al., 1998) (Fig. 3.11C, D). Neurons that were double-labeled for CTB and vAChT had a 

restricted distribution and were confined within the PPT (Fig. 3.11C, D).  

 

Chemical Stimulation of the PPT Increases Muscle Activity 

and SNA and Facilitates the Sympathetic Baroreflex via 

mAChR Activation 
Bilateral injection of bicuculline into the PPT evoked increases in AP and EMG activity 

(Fig. 3.12A). EMG activity but not the increase in AP was abolished by subsequent 

neuromuscular (NM) blockade (Fig. 3.12A). Injection of DLH into the PPT produced an 

increase in SNA and AP and increased the magnitude of SNA excitation produced by 

injection of SNP (Fig. 3.12B). These effects could be evoked throughout the rostrocaudal 

extent of the PPT (~7 to 9 mm caudal to Bregma). Smaller increases in SNA were evoked 

at sites dorsal or ventral but facilitation of baroreflex-evoked SNA responses was restricted 

to the PPT (6.5-7.5 mm ventral) (Fig. 3.12B). Transient alterations in PNA frequency were 

observed following stimulation of the PPT and surrounding brain areas; whereas the 

somatosympathetic reflex was unaffected. Prior blockade of central mAChR receptors with 

SCOP iv prevented the facilitation of baroreflex-evoked SNA responses (n=3, P<0.05) but 

did not abolish sympathoexcitation produced by DLH injection into the PPT (Fig. 3.12C).  
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Figure 3.11 Distribution of retrogradely labelled neurons in the hypothalamus (B) and 

pons (C and D) following injection of CTB into the pressor region of the RVLM (A, CTB 

green). Neurons double-labelled (arrows) for CTB and vAChT (red) were found only 

within rostral and caudal parts of the PPT (C, D, schematics adapted from Paxinos and 
rdWatson, 1996). Scale bars: A and B 500 mm; C 100 mm; D 200 mm. 3v, 3  ventricle; pyr, 

pyramidal tract; VII, facial nucleus.
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Figure 3.12 Activation of the PPT elicits increases in muscle activity, SNA and 

baroreflex responses. Coronal sections of the pons showing tracks and injection sites 

of bicuculline (bic 4mM, A) and DLH (100mM, B) (arrows) and cardiovascular 

responses evoked from the PPT. A: Disinhibition (bic) of the PPT increases AP and 

EMG activity. B: Unilateral injection of DLH into the PPT (2), but not more 

dorsally (1) or ventrally (3), increases SNA and AP and enhances the reflex increase 

in SNA following SNP injection. C: Pre-treatment with SCOP (2 mg/kg iv) blocks 

the facilitation of the baroreflex evoked by PPT stimulation (lowercase letters 

indicate reference levels of SNA; a: baseline, b: new level reached following DLH 

injection into the PPT, c: peak level reached following SNP injection before SCOP. 

Data are mean ± SEM. Schematics adapted from Paxinos and Watson (1996). Cu, 
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V. Discussion  
 

The novel findings of this study are 1) mAChR activation in the RVLM facilitates the 

sympathetic baroreflex and attenuates and inhibits the sympathetic chemoreflex and 

somatosympathetic reflex, respectively; 2) identified sympathoexcitatory neurons in the 

RVLM receive cholinergic input and differentially express M2 and M3 receptor subtypes; 

3) Chemical stimulation of the PPT, which provides the only direct cholinergic input to the 

RVLM, evokes a similar pattern of tonic and baroreflex SNA responses to that seen 

following RVLM mAChR activation. Neurons in the PPT control muscle tone during 

locomotion, exercise and arousal (Bedford et al., 1992; Pahapill and Lozano, 2000; 

Garcia-Rill et al., 2004). Our findings indicate that tonic and reflex cardiovascular 

adjustments are also evoked from the PPT via direct cholinergic projections to the RVLM. 

These data support our hypothesis that cholinergic input to the RVLM is involved in 

central command. 

 

RVLM mAChRs mediate the increase in SNA and HR evoked by centrally acting OXO, in 

agreement with previous studies (Giuliano et al., 1989; Kubo, 1998). Post-inspiratory-

related discharge of SNA was also enhanced, indicating a direct effect on respiratory-

related inputs to the RVLM (Miyawaki et al., 1996a) that presumably contributes to the 

mean increase in SNA evoked by OXO. This effect was elicited independently of the 

OXO-evoked depression of phrenic amplitude, which is mediated by sites other than the 

RVLM (Nattie and Li, 1990; Shao and Feldman, 2000). The OXO-evoked increase in 

TBF, presumably contributing to the well described hypothermic effect of this drug (Daws 

and Overstreet, 1999), is also mediated via other central sites. These may include the 

preoptic area of the hypothalamus as it receives cholinergic input and carbachol 

microinjections here evoke hypothermia (Tanaka et al., 2002).  

 

We show for the first time that the reflex responses of SNA to baroreceptor loading or 

unloading, demonstrated following vasoactive drug administration and by direct 

stimulation of baroreceptor afferents, were markedly enhanced by OXO and were mediated 

by RVLM mAChRs. Furthermore, baroreflex-related LF oscillations of both SAP and 

SNA (Ringwood and Malpas, 2001) were enhanced.  
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Our findings show that RVLM mAChR activation resets the SNA baroreflex to higher 

pressures and increases its range and gain. Earlier studies showed that the pressor effect of 

bilateral carotid occlusion was greater after central or systemic administration of 

physostigmine (Brezenoff et al., 1982; Park and Long, 1991). Caputi et al. (1980) 

demonstrated an upward shift in baroreflex HR responses without changes in range or gain 

following intracerebroventricular injection of physostigmine (Caputi et al., 1980). A 

limitation of the present study was that pretreatment with mATR to block peripheral 

mAChR precluded analysis of vagally-mediated HR responses. Our findings indicate that 

RVLM mAChR activation facilitates sympathetic vasomotor responses to baroreflex 

activation; whereas cholinergic effects at brain sites important in reflex vagal control, 

including the nucleus ambiguus (Wang et al., 2001), may evoke resetting of the HR 

baroreflex without changing its gain.  

 

OXO evoked differential effects on cardiovascular reflexes via RVLM mAChR activation. 

Baroreflex SNA responses mediated by direct inhibition or disinhibition of RVLM neurons 

(Lipski et al., 1996) were enhanced. Somatosympathetic and chemoreflex SNA responses 

mediated by direct excitation of RVLM neurons (Miyawaki et al., 1996a) were inhibited 

and attenuated, respectively. The clear inhibition of the somatosympathetic reflex suggests 

that these effects were not indirectly due to raised sympathetic activity. To our knowledge, 

one study in anaesthetised cats also showed that a somatosympathetic reflex evoked by 

intercostal nerve stimulation was inhibited by OXO (Baum and Shropshire, 1978). As 

single RVLM neurons receive largely convergent input from baroreceptors, peripheral 

chemoreceptors, somatic afferents and central respiratory neurons (Guyenet et al., 1990; 

Miyawaki et al., 1995; Pilowsky et al., 1996; Verberne et al., 1999a) three mechanisms are 

possible to explain our data: OXO activates inhibitory presynaptic mAChRs located on 

reflex inputs to RVLM neurons, postsynaptic excitatory mAChRs on RVLM neurons, or a 

combination of both. Pre- and postsynaptic effects of carbachol on RVLM neurons have 

been demonstrated in vitro (Huangfu et al., 1997).  

 

Phenotypically-identified sympathoexcitatory (CTB+TH) and putative sympathoexcitatory 

(CTB+non-TH, or PPE+) neurons in the RVLM were closely apposed by vAChT-IR 

varicosities. This is the first anatomical evidence indicating that cholinergic terminals may 

synapse with sympathoexcitatory RVLM neurons. Milner et al (1989) showed that ChAT-

IR terminals formed abundant synaptic contacts in the ventral medulla but these were 

rarely seen with TH-containing neurons. In Milner’s study, however, only caudal sections 
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of the RVLM were examined (0.5 – 2.0 mm caudal to the facial nucleus); these contain 

few spinally projecting TH neurons (Phillips et al., 2001).  Furthermore, compared to 

ChAT, immunoreactivity to vAChT as used here gives better cholinergic terminal labeling 

(Arvidsson et al., 1997; Schafer et al., 1998). 

 

Our results show for the first time that the M2 receptor was not expressed in TH neurons 

but was expressed in a subpopulation of spinally projecting non-TH neurons. M2 receptor-

preferring antagonists prevent pressor effects of RVLM mAChR activation (Giuliano et 

al., 1989). The ligands used, however, do not display high affinity for any one particular 

subtype (Caulfield and Birdsall, 1998). If M2 receptors do mediate OXO-evoked 

sympathoexcitatory responses then they are most likely located presynaptically in the 

RVLM or this effect is mediated by non-TH spinally projecting neurons. Huangfu et al. 

(1997) showed in neonatal RVLM that both C1 and non-C1 cells depolarized in response 

to mAChR activation. Because vAChT-IR terminals apposed both classes of RVLM 

neurons we sought evidence for expression of other receptor subtypes. A subpopulation of 

spinally projecting non-TH RVLM neurons also contain M3 receptor mRNA. We have 

further demonstrated that mRNA for all 5 mAChR subtypes was present in the RVLM, 

confirming earlier studies in WKY and SHR (Gattu et al., 1997b). Our results suggest that 

different or multiple mAChR subtypes may be expressed by sympathoexcitatory RVLM 

neurons.  

 

In agreement with Yasui and coworkers (Yasui et al., 1990) we found that the projection 

from the PPT to the RVLM is cholinergic. In addition, we show that the PPT is the only 

cholinergic cell group that provides input to the RVLM. Local inputs from ChAT-positive 

neurons in the ventromedial medulla (Ruggiero et al., 1990) are not functionally 

cholinergic since we found that these cells did not contain vAChT.  

 

We demonstrated for the first time that chemical stimulation of the PPT facilitates 

baroreflex-evoked excitation of SNA, mimicking effects of RVLM mAChR activation. 

Blockade of mAChR with SCOP prevented this effect but did not completely abolish 

sympathoexcitation generated by PPT activation. Electrical stimulation of the PPT 

increases AP, HR and renal SNA (with a lesser increase in lumbar SNA) in decerebrate 

animals (Chong and Bedford, 1997; Koba et al., 2006). Sympathoexcitatory responses are 

also evoked from surrounding brain areas including the cuneiform nucleus (Verberne, 
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1995). At present we cannot explain the lack of effect of stimulating the PPT on other 

reflex responses that are modified by activation of RVLM mAChR.  

 

Disinhibition of the PPT increased EMG activity, consistent with studies that reported 

increases in muscle activity following electrical or chemical stimulation of the PPT in 

anaesthetised or decerebrate animals (Chong and Bedford, 1997; Pahapill and Lozano, 

2000; Koba et al., 2006). Single cholinergic neurons in the PPT have dual connections 

with the motor cortex and stellate ganglion, as revealed by polysynaptic viral tracing(Krout 

et al., 2003). The PPT may therefore be a key nodal point where changes in motor signals 

can be coordinated with descending modulation of sympathetic function. The simplest 

explanation of our data is that stimulation of the PPT evokes muscular activity and releases 

acetylcholine activating RVLM mAChR pre and/or postsynaptically located on 

sympathoexcitatory neurons causing an increase in AP and SNA as well as increasing the 

range and gain of the sympathetic baroreflex. 

  

Functional Implications 
The involvement of the PPT in initiating and modulating movement related to arousal and 

locomotion, including exercise, is well recognised (Bedford et al., 1992; Pahapill and 

Lozano, 2000; Garcia-Rill et al., 2004). The present findings indicate that the cholinergic 

projection to the RVLM may be activated in parallel to elicit tonic and reflex 

cardiovascular adjustments that are appropriate to different behaviours. The pattern of 

effects bears a striking similarity to those evoked by central command during exercise 

(Rowell and O'Leary, 1990; Raven et al., 2002; Williamson et al., 2006).  

 

Exercise is accompanied by a resetting of baroreflex control of SNA and HR to higher AP 

(Kamiya et al., 2001; Raven et al., 2002; Miki et al., 2003; Williamson et al., 2006). This is 

thought to be crucial to AP elevation at exercise onset and AP stabilization during exercise 

and can oppose other reflex influences on circulation, including nociceptive and peripheral 

chemoreflexes (Rowell and O'Leary, 1990). In addition to an increase in AP and SNA, the 

increase in the range and gain of the sympathetic baroreflex as seen here strongly 

resembles that evoked during treadmill exercise in conscious rats (Miki et al., 2003). 

Studies showing complete sympathetic baroreflex function curves during exercise in 

humans are sparse, although some studies have demonstrated large increases in linear 

baroreflex gain of muscle SNA during static exercise (Kamiya et al., 2001) or no change 
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during moderate intensity arm cycling (Fadel et al., 2001). In contrast, exercise appears to 

reset the cardiac component of the baroreflex to higher AP without changing its gain 

(Raven et al., 2002), also resembling effects on the HR baroreflex evoked by central 

administration of physostigmine (Caputi et al., 1980). Recent evidence indicates that the 

cardiac baroreflex is transiently inhibited at exercise onset, which may facilitate immediate 

vagal withdrawal (Matsukawa et al., 2006).  

 

In conclusion, our data indicate that the cholinergic projection from the PPT to the RVLM 

is an integral component of the central command pathway that regulates circulatory 

function during exercise, and possibly other arousal or behavioural states. 
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I. Abstract 
 

AChR are important in premotor and efferent control of autonomic function; however, the 

extent to which cardiovascular function is affected by genetic variations in AChR 

sensitivity is unknown. We assessed HRV and BRS in rats bred for resistance (FRL) or 

sensitivity (FSL) to cholinergic agents compared to SD rats, confirmed using hypothermic 

responses evoked by the muscarinic agonist OXO (n ≥ 9 / group). AP, ECG, SNA and 

PNA were acquired under urethane anaesthesia. HRV was assessed in time and frequency 

domains from short term R-R interval data and spontaneous heart rate BRS was obtained 

using a sequence method at rest and after mATR (2 mg/kg iv). HR and SNA baroreflex 

gains were assessed using conventional pharmacological methods. FRL and FSL were 

normotensive but displayed elevated heart rates, reduced HRV and HF power and 

spontaneous BRS compared to SD rats. In FRL and FSL rats, mATR had no effect on these 

parameters, indicating a reduction in cardiovagal tone. FSL rats exhibited reduced PNA 

frequency, longer baroreflex latency and reduced baroreflex gain of HR and SNA 

compared to FRL and SD rats, indicating dual impairment of cardiac and circulatory 

baroreflexes in FSL rats. These findings indicate that AChR resistance results in 

cardiovagal insufficiency, presumably as a result of reduced cardiac mAChR function. In 

contrast, AChR sensitivity results in autonomic and respiratory abnormalities arising from 

alterations in central mAChR and or other neurotransmitter receptors.  

 

II. Introduction 
 

Baroreflex and respiratory modulation of HR and AP are important homeostatic 

mechanisms and can be severely impaired in cardiac and non-cardiac disease (Kleiger et 

al., 1987; Grassi et al., 1995; La Rovere et al., 1998; La Rovere et al., 2001; Laude et al., 

2004). In the human population interindividual differences in responses to drugs that 

influence cardiac autonomic function have been shown to have an inherited basis (Kirstein 

and Insel, 2004). These differences are likely to be polygenic and may significantly 

influence susceptibility to cardiac disease (Kirstein and Insel, 2004). Loss of function of 

ganglionic or smooth muscle AChR results in profound impairment of cardiac autonomic 

function (Fisher and White, 2004). However, the importance of smaller genetic variations 

in AChR function is not known.  
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AChR exist as ligand-gated ion channels (nAChR) or G-protein coupled receptors 

(mAChR) and are expressed as subtypes differing in subunit composition or G-protein 

signalling, respectively (for review (Caulfield and Birdsall, 1998)). AChR subtypes are 

widely distributed throughout the autonomic nervous system and contribute differentially 

to control of sympathetic and vagal outflow. With respect to cardiac autonomic control, 

nicotinic α7 subunits mediate fast synaptic transmission in ganglia supplying the heart and 

muscarinic M2 receptors in the sinoatrial node are the target of vagal stimulation (Fisher 

and White, 2004; Kirstein and Insel, 2004). In the central nervous system nAChR 

modulate cardiovagal premotor activity via baroreflex- and respiratory-related inputs to the 

NA (Neff et al., 1998b; Neff et al., 2003; Wang et al., 2003). Cholinergic mechanisms 

(both nicotinic and muscarinic) play a significant role in control of sympathetic vasomotor 

tone mediated at both central and peripheral sites (Giuliano et al., 1989; Arneric et al., 

1990; Kubo, 1998; Sartori et al., 2005).  

 

FSL and FRL rat lines were bred for differential sensitivity to the hypothermic effects of 

cholinesterase inhibition from SD rats (Overstreet, 1986). FSL rats are more sensitive to 

the behavioural and physiological effects of muscarinic agonists, whereas responses are 

attenuated in FRL compared to SD rats (Overstreet, 1986; Daws and Overstreet, 1999; 

Overstreet et al., 2005). FRL and FSL rat also exhibit differential binding of mAChR 

ligands in striatum and hippocampus with some evidence for subtype-specific alterations 

(Overstreet, 1986; Daws and Overstreet, 1999). FRL are otherwise genetically similar to 

SD (Overstreet et al., 1992b), thus either the resistant line or outbred SD has been 

considered an appropriate control for FSL. Muscarinic sensitivity develops early 

postnatally in FSL (Daws and Overstreet, 1999) and is likely to be polygenic (Overstreet 

et al., 1992b). This results in increased sensitivity to nicotine (Tizabi et al., 1999; Tizabi et 

al., 2000), dopaminergic agonists (Yadid et al., 2000) and 5-HT1A receptor agonists 

(Overstreet et al., 1998); occurring via functional interactions with mAChR or from 

changes in G-protein signalling common to specific neurotransmitter receptors (Overstreet 

et al., 1998). At present there is no data demonstrating functional or genetic differences in 

AChR in cardiovascular brain regions, ganglia or target organs in FRL or FSL rats. 

 

In light of these inherited differences in AChR sensitivity, we hypothesised that vagal and 

sympathetic control of cardiovascular function would be altered in FRL and FSL compared 

to SD. In order to test this we used analysis of HR, HRV and BRS in response to 

endogenous or induced changes in blood pressure under anaesthesia. Analysis of HRV and 
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BRS is used extensively to examine cardiovascular autonomic function in normal subjects 

and in patients with cardiac and non-cardiac disease (Kleiger et al., 1987; Grassi et al., 

1995; La Rovere et al., 1998; La Rovere et al., 2001; Lombardi, 2002; Laude et al., 2004). 

 

III. Methods 
 

Anaesthesia, Surgical Procedures and Recording 
SD (n = 10), FRL (n = 11) and FSL rats (n = 9) and 4 wk old FRL (n = 3) and FSL rats (n 

= 3) were used in this study. Adult animals were anaesthetised with urethane and 

instrumented for recording of AP, ECG, SNA and PNA as described in Chapter 2. Animals 

were allowed to freely breathe room air mixed with 100 % 02 delivered through a nose 

cone placed close to the animal. Juvenile FRL and FSL rats were anaesthetised as above 

and instrumented for recording of AP and respiratory EMG activity as described in 

Chapter 2.  

 

Experimental Protocol 
Cardiorespiratory parameters were acquired at rest for 30 – 60 mins. Baroreflexes were 

activated using injection of SNP and PE as described in Chapter 2. After a period of 

recovery (~ 10 min), a subset of rats (n ≥ 5 / group) was administered mATR and 

cardiorespiratory parameters were monitored for a further 10 mins. Young FRL and FSL 

rats were administered mATR (2 mg / kg), atenolol (1 mg / kg) and prazosin (1 mg / kg), 

with at least 15 min separating each drug and the order of administration of the first two 

drugs switched in different animals. Resting cardiorespiratory parameters were calculated 

on three 5 minute segments of data per animal, between 3 and 4 hours after anaesthesia 

induction.  

 

Heart Rate Variability (HRV) 
HRV was assessed in both time and frequency domains as described in Chapter 2 before 

and after mATR. Overall spectral power was divided into three frequency ranges; VLF 

(≤0.2 Hz), LF (0.2-1 Hz) and HF (1-3 Hz) and recorded as absolute values or in 

normalized units as a proportion of combined LF and HF power (excluding VLF 

component). For each animal, VLF, LF and HF power from the three separate 5 minute 

spectra were averaged. 
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Sympathetic and Heart Rate Baroreflex Function  
Spontaneous heart rate BRS was calculated using the sequence method (see Chapter 2 and 

Appendix 1). Separate values of mean BRS were recorded for lengthening (bradycardia) 

and shortening (tachycardia) interval sequences and only when at least 3 sequences per 5 

minute segment were present. BRS was recorded before and after mATR.  

 

SNA baroreflex function curves and HR-MAP regression lines were generated as 

described in Chapter 2. For HR, separate values for BRS (SNP) and BRS (PE) were 

recorded for each animal. For SNA, the first derivative of the logistic function was used to 

calculate maximal gain (Gmax; gain at MAP50), and gain at resting MAP (GMAP).  

 

Statistical Analysis 
All data are presented as individual data points or mean ± standard error. Data were 

analysed using one-way analysis of variance (ANOVA) and a post-hoc test for significance 

performed with Bonferroni’s correction, an unpaired t-test on individual means or a paired 

t-test to compare effects of mATR.   

 

IV. Results 

Sensitivity to Oxotremorine-induced Hypothermia  
Administration of OXO (0.2 mg / kg i.p.) following mATR (2 mg / kg i.p.) produced a fall 

in rectal temperature in FSL rats (- 2.5 ± 0.1 ºC, n = 9) that was significantly greater (p < 

0.001) and non-overlapping compared with FRL (- 0.7 ± 0.1 ºC, n = 11) and SD rats (- 0.6 

± 0.2 ºC, n = 10). Changes in rectal temperature in FRL rats compared with SD rats were 

not significantly different. Juvenile FSL rats exhibited larger OXO-evoked falls in 

temperature (3.4 ± 0.2 ºC, n = 3) compared to age-matched FRL rats (1.2 ± 0.1 ºC, n = 3). 

 

Resting Cardiovascular Parameters 
MAP was similar in SD, FRL and FSL rats (Table 4.1). In contrast, resting HR was 

significantly elevated (p < 0.01) in FRL and FSL rats compared with SD rats (Table 4.1). 

Mean heart rate in SD rats exhibited significantly greater variance (p < 0.001) compared 

with FRL and FSL rats (Table 4.1, Fig 4.1C). In the presence of mATR (2 mg / kg) there 
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was no significant change in MAP, HR or PNA frequency in FRL and FSL rats. MATR 

had a significant effect (p < 0.01) on heart rate in SD rats producing a sustained 

tachycardia (∆ 95 ± 12 bpm). In the presence of mATR, MAP and HR were similar 

between SD, FRL and FSL rats (Table 4.1).  

 

Resting Respiratory Parameters 
The frequency of phrenic nerve discharge was significantly reduced in FSL rats compared 

with FRL (p < 0.01) and was not different between FRL and SD rats (Table 4.1). In the 

presence of mATR, respiratory frequency was unchanged in all groups and remained 

significantly lower in FSL compared to FRL (p < 0.05) and SD rats (p < 0.01) (Table 4.1). 

 

HRV 

Time Domain Analysis 
HRV in the time domain (SDNN) was markedly reduced in FRL and FSL rats compared 

with SD rats (p < 0.01) (Table 2, Figure 4.1A). SDNN in SD showed greater variance (p < 

0.001) compared with FRL and FSL rats. In the presence of mATR (2 mg / kg), SDNN 

was unchanged in FSL and FRL rats but significantly reduced in SD rats (p < 0.01). In the 

presence of mATR SDNN was similar in all three groups (Table 4.2).  

 

Frequency Domain Analysis  
Spectral analysis of HRV showed distinct VLF, LF and HF components in SD rats with 

central frequencies around 0.1, 0.6 and 2 Hz, respectively (Figure 4.1B). HF was 

synchronous with mean phrenic nerve frequency during the 5 minute segment, consistent 

with work showing coupling of the HF band and respiratory sinus arrhythmia (Pomeranz et 

al., 1985; Medigue et al., 2001). HRV spectra from FRL and FSL rats showed a reduction 

in spectral power over all frequencies (Figure 4.1B). Total spectral power, LF and HF 

power were significantly reduced (p < 0.01) in FSL and FRL rats compared with SD rats 

(Table 4.2). Normalized LF power was also reduced, whereas normalized HF power was 

increased in FSL and FRL rats compared with SD rats (Table 4.2). HF predominance was 

also evident as a reduction in LF / HF ratio in FSL and FRL rats compared with SD rats 

(Table 4.2).  

 

 



Table 2. Time and frequency domain analysis of heart rate variability in Sprague Dawley 

(SD), Flinders Sensitive (FSL) and Resistant Line rats (FRL) under urethane anaesthesia  

(n ? 5 group) 

      SD              FRL       FSL 

5-min resting  
SDNN (ms)   2.19 ± 0.31  0.50 ± 0.04 **  0.48 ± 0.03 ** 
Total power (ms2)  5.05 ± 1.33  0.07 ± 0.01 **  0.10 ± 0.01 **  
VLF (ms2)    0.95 ± 0.20  0.01 ± 0.002 **  0.02 ± 0.005 **

  
LF (ms2)   0.90 ± 0.20  0.01 ± 0.001 **  0.01 ± 0.001 **

 

HF (ms2)   3.57 ± 0.92  0.05 ± 0.01 **  0.08 ± 0.01 ** 
LF / HF   0.34 ± 0.06  0.14 ± 0.02 **     0.14 ± 0.04 ** 
LF (nu)   25 ± 3   12 ± 2 **  11 ± 3 **

  
HF (nu)   75 ± 3   88 ± 2 **  89 ± 3 ** 
 
5-min mATR (2 mg/kg) 
SDNN (ms)   0.65 ± 0.20 #  0.41 ± 0.07  0.69 ± 0.16  
 

Values are mean ± SE. See Methods for calculation. Abbreviations: nu, normalized 

units. ** p < 0.01 (vs. SD); # p < 0.01 (significant effect of methylatropine). 

Table 1. Resting cardiorespiratory parameters in Sprague Dawley (SD), Flinders Resistant 

(FRL) and Sensitive Line rats (FSL) at rest under urethane anaesthesia (n ? 6 / group) 

 
     Resting             Methylatropine (2 mg / kg) 
 

SD  102 ± 4  96 ± 4 
MAP (mmHg) FRL  113 ± 4  105 ± 4 
   FSL  105 ± 4  106 ± 6 
 
   SD  335 ± 17  432 ± 14 # 
Heart rate (bpm) FRL  459 ± 4 **  459 ± 12 
   FSL  451 ± 16 **  446 ± 19 
 
   SD  2.1 ± 0.1  2.2 ± 0.1 
   FRL  2.2 ± 0.1   2.1 ± 0.4 
   FSL  1.7 ± 0.1 ††  1.6 ± 0.1 ** † 
 

Values are mean ± SE. See Methods for calculation. Abbreviations: MAP, mean  

arterial pressure; PNA, phrenic nerve activity. ** p < 0.01, * p < 0.05 (vs. SD); †† p < 0.01,  

† p < 0.05 (vs. FRL); # p < 0.01 (significant effect of methylatropine). 
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Figure 4.1. Time and frequency domain analysis of heart rate variability and the 

relationship with mean heart rate in SD, FRL and FSL under urethane anaesthesia. 

Representative R-R interval time series (A) and power spectra (B) show that in FRL and FSL 

fluctuations of R-R interval around the mean were markedly reduced as was total power 

within the frequency range 0 to 2.5 Hz, low frequency power (LF, 0.2 to 1 Hz) and high 

frequency power (HF, 1 Hz to 3 Hz) compared with SD. Linear regression (dashed lines) of 

data from SD (filled squares) indicates that heart rate was inversely correlated with SDNN 

(Ci) and HF power (Cii). In contrast, SDNN (Ci) and HF power (Cii) were consistently 

clustered at high mean heart rate in FRL (filled circles) and FSL (open circles).
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Figure 4.2 Cardiorespiratory responses to sequential autonomic blockade in 
urethane-anaesthetised 4 wk old FRL and FSL rats. A: Methylatropine (2 mg/kg 
iv) did not significantly alter cardiorespiratory parameters in either FRL (n=3) or 
FSL rats (n=3). B: Atenolol (1 mg/kg iv) evoked a large reduction in HR, an 
increase in HRV (SDNN) and small reduction in respiratory frequency; these 
effects did not differ in FRL (n=3) and FSL rats (n=3). C: Prazosin (1mg/kg iv) 
evoked a reduction in MAP, HR and respiratory frequency in FRL (n=3)and FSL 
rats (n=2); the reduction in MAP appeared to be larger in FSL rats. Prazosin 
evoked a much larger increase in HRV in FRL compared to FSL rats. Data are 
mean  SEM.± 
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Heart Rate-Dependency of HRV Parameters 
In SD rats there was a significant inverse correlation between mean HR and SDNN (p < 

0.01, Figure 4.1Ci), HF power (p < 0.01, Figure 4.1Cii) and LF power (p < 0.01, data not 

shown) and a non-significant positive correlation between mean heart rate and LF / HF 

ratio (data not shown). HRV parameters were clustered at high mean heart rates in FRL 

and FSL rats and there was no correlation with heart rates in these animals (Figure 4.1Ci, 

ii). In all three groups high mean HR was associated with low SDNN and reduced LF and 

HF power. 

 

Comparison with Autonomic Outflow in Young FRL and FSL 

Rats  
In order to determine whether or not there are differences in cardiac or vascular 

sympathetic outflow between FRL or FSL rats early in development, the effect of 

sequential autonomic blockade was examined in 4 wk old rats. MATR had little effect on 

MAP, HR, respiratory frequency or SDNN in either FRL or FSL rats (Figure 4.2A). 

Atenolol caused large reductions in HR, no change in MAP and increases in SDNN in both 

FRL and FSL rats (Figure 4.2B). Prazosin was successfully administered in two FSL and 

three FRL rats. Prazosin caused larger falls in MAP in FSL rats but similar reductions in 

HR in both FRL and FSL rats; whereas in FRL rats, prazosin caused a much larger 

increase in SDNN compared to FSL rats (Figure 4.2C). 

 

Spontaneous Heart Rate BRS 
Spontaneous BRS for lengthening and shortening interval sequences combined was 

significantly reduced (p < 0.01) in FRL (0.41 ± 0.04 ms / mmHg) and FSL rats (0.17 ± 

0.02 ms / mmHg) compared to SD rats (1.52 ± 0.19 ms / mmHg). In SD mean HR was 

inversely correlated with spontaneous BRS for both lengthening and shortening interval 

sequences (p < 0.01, Figure 4.3A). Spontaneous BRS was clustered at high mean heart 

rates in FRL and FSL rats; however, BRS was significantly reduced (p < 0.01) in FSL 

compared to FRL rats (Figure 4.3A). Administration of mATR significantly reduced (p < 

0.05) spontaneous BRS in SD but not in FRL or FSL rats (Figure 4.3B). In the presence of 

mATR spontaneous BRS of lengthening interval sequences was compared between groups 

and found to be significantly reduced (p < 0.05) in FSL rats (0.16 ± 0.05 ms / mmHg) 
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compared to FRL (0.62 ± 0.19 ms / mmHg) and SD rats (41 ± 0.10 ms / mmHg) (Figure 

3B).  

 

Baroreflex Sensitivity Derived from Ramp Changes in AP 
Ramp decreases and increases in MAP and corresponding reflex changes in HR and SNA 

produced by intravenous injection of SNP or PE (10 µg / kg) are illustrated in Figure 4.4A. 

SNP evoked very similar reductions in MAP in all groups (SD, 43 ± 3 mmHg; FRL, 38 ± 2 

mmHg; FSL, 41 ± 2 mmHg; n ≥ 8 / group). Similarly, increases in MAP evoked by PE 

were not significantly different between groups (SD, 50 ± 3 mmHg; FRL, 46 ± 2 mmHg; 

FSL, PE, 54 ± 3 mmHg; n ≥ 8 / group). 

 

Heart Rate Baroreflex Latency 
The time delay to peak change in HR following peak change in MAP evoked by SNP or 

PE was significantly increased in FSL rats (SNP; 24 ± 4 s, PE; 2.6 ± 0.3 s) compared to 

FRL (SNP; 11 ± 2 s, PE; 1.0 ± 0.4 s) and SD rats (SNP; 5 ± 1 s, PE; 0.7 ± 0.2 s) (p < 0.05). 

 

Heart Rate BRS 
Heart rate baroreflex gain, assessed as the slope of R-R interval and MAP following SNP 

or PE, was reduced in FSL rats (SNP 0.14 ± 0.03; PE; 0.42 ± 0.10 ms / mmHg) compared 

to FRL (SNP 0.36 ± 0.09; PE 0.69 ± 0.08 ms / mmHg) and SD rats (SNP 0.49 ± 0.10; PE 

0.80 ± 0.17 ms / mmHg); however, reduced gain in FSL only reached significance 

compared to SD (p < 0.05, n = 3 / group) (Figure 4.4C).  

 

Splanchnic Sympathetic Baroreflex Sensitivity  
The range and mid-point of average baroreflex function curves for SNA were not 

significantly different between SD, FRL or FSL rats (Figure 4.4B, n ≥ 6 / group). Resting 

MAP was close to threshold (MAP50) in all groups. However, GMAP was reduced in FSL 

rats (2.27 ± 0.15 % nu / mmHg) compared to FRL rats (3.21 ± 0.51 % nu / mmHg) and 

significantly reduced (p < 0.05) compared to SD rats (3.98 ± 0.36 % nu / mmHg). Gmax 

was significantly reduced (p < 0.05) in FSL rats (2.54 ± 0.10 % nu / mmHg) compared to 

both SD (4.59 ± 0.45 % nu / mmHg) and FRL rats (4.04 ± 0.45 % nu / mmHg) (Figure 

4.4C).  
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Figure 4.3. Spontaneous baroreflex sensitivity measured using the sequence method 

and its relationship with mean heart rate in SD, FRL and FSL under anaesthesia (n = 

8 / group). Linear regression (dashed lines) of data from SD (filed squares) shows that 

heart rate was inversely correlated with the slope of lengthening and shortening 

sequences (A). The slope of lengthening and shortening sequences was reduced in 

FRL (filled circles) and FSL (open circles), and despite comparably high heart rates 

values for baroreflex sensitivity were reduced in FSL compared with FRL (A). The 

slope of lengthening sequences detected using the sequence method was significantly 

reduced (* p < 0.05) after treatment with methylatropine (2 mg / kg i.v.) in SD (filled 

squares) whereas it had little effect on the low values for slope obtained in FSL (open 

circles) (B). After methylatropine administration the slope of lengthening sequences 

was reduced in FSL compared with FRL (filled circles) and SD whereas slope was 

similar in FRL and SD (B). 



50 100 150 200

0

50

100

150

mean arterial pressure (mmHg)

sp
la

n
ch

n
ic

 n
e

rv
e

 a
ct

iv
ity

 (
n

u
)

SD

FRL

FSL

B

0

1

2

3

0

1

2

3

4

5
R-R interval

splanchnic
nerve activity

se
qu

en
ce

L

se
qu

en
ce

S

lin
ea

r PE

lin
ea

r SN
P

re
st
in
g

M
AP

m
ax

im
al

b
a

ro
re

fl
e

x
s
e

n
s
it
iv

it
y

(m
s

/
m

m
H

g
)

b
a

ro
re

fle
x

g
a

in
(-%

s
n

a
/

m
m

H
g

)

C

A 340

260
240

40
9

3
60 sec

heart rate
(bpm)

arterial
pressure
(mmHg)

SNA
(  V)ì 

SNP PE
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illustrated in a representative trace from an SD rat (A). Splanchnic logistic function curves 

in SD (solid line, filled square), FRL (dashed line, filled circle) and FSL (dotted line, open 

circle) (n = 6 / group) were in general similar, although gain was selectively reduced in FSL 

(B). Heart rate baroreflex sensitivity was reduced in FSL compared with FRL (p < 0.05) 

and SD (p < 0.01) using the slope of lengthening (sequence L) or shortening intervals 

(sequence S) or gain of R-R interval responses to ramp increases (linear PE) or decreases 

(linear SNP) in arterial pressure (p < 0.05 vs. SD) (C). Resting (ie. at mean arterial pressure 

(MAP)) and maximal splanchnic nerve baroreflex gain was also selectively reduced in FSL 

compared with FRL and SD (p < 0.05) (C). 
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Comparison of Baroreflex Sensitivity Measurements 
FRL and FSL rats showed a reduction in spontaneous BRS compared to SD rats (Figure 

4.3A, 4.4C); however, spontaneous BRS was significantly reduced in FSL compared to 

FRL also (Figure 4.3A, 4.4C). Considering the rate-dependency of spontaneous BRS 

(Figure 4.3A), higher mean HR was not a factor skewing BRS to lower values in FSL 

versus FRL rats. HR baroreflex gain following ramp changes in pressure was significantly 

reduced in FSL compared to SD rats (Figure 4.4C) and SNA baroreflex gain obtained 

using similar methods was significantly reduced in FSL rats compared to both FRL and SD 

rats (Figure 4.4C). There was general agreement in values of HR BRS obtained using 

lengthening or shortening interval sequences or using pharmacological methods. A notable 

exception was that in three SD spontaneous BRS was greater than BRS obtained using 

ramp changes in MAP (Figure 4.4C).  

 

V. Discussion 
 

We show that in anaesthetised FRL and FSL rats normal AP is maintained but cardiovagal 

tone and spontaneous baroreflex control of HR are diminished. Additionally in adult FSL 

rats, baroreflex control of sympathetic activity and respiratory frequency is reduced 

compared to FRL and SD rats. These findings indicate that selective breeding for reduced 

or increased AChR sensitivity results in specific cardiorespiratory deficits. FRL rats have 

reduced muscarinic sensitivity and may exhibit a reduction in functional cardiac mAChR 

required for vagal modulation of sinus rhythm (Fisher and White, 2004). In contrast, FSL 

rats show a number of central changes in ACh (nicotinic and muscarinic) and aminergic 

receptors (Yadid et al., 2000; Overstreet et al., 2005) that accompany increased muscarinic 

sensitivity and these may be linked to the vagal, baroreflex and respiratory abnormalities 

described. In addition, similar impairments of autonomic control are present in young rats 

that also differ in hypothermic muscarinic sensitivity.  

 

In the present work we characterized HRV and BRS (both spontaneous and 

pharmacological gains) in SD rats compared to FRL and FSL rats under anaesthesia. These 

methods predominantly reflect reflex vagal and sympathetic modulation of sinus rhythm, 

and where applicable AP, but do not directly reflect levels of autonomic tone. Reduced 

HRV and BRS are powerful predictive markers of prognosis and cardiac mortality in 

clinical settings (La Rovere et al., 1998; La Rovere et al., 2001) and have been interpreted 
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as indicators of sympathovagal balance as it pertains to cardiac autonomic modulation 

(Pagani et al., 1986; Lombardi, 2002).  

 

Cardiac vagal activity was reduced in adult FRL and FSL rats compared to SD rats, 

indicated by reduced HRV in the time domain and reduced HF power. HF oscillations in 

heart rate originate from vagal modulation as they are synchronous with vagally-mediated 

respiratory sinus arrhythmia and are abolished after atropine (Pomeranz et al., 1985; 

Fouad, 1994). Cardiac vagal tone was markedly diminished in both lines, indicated by 

elevated resting heart rates unresponsive to mATR. Under these conditions it is likely that 

sympathetic modulation of HR predominates and risk of ventricular arrhythmia is 

increased (Pagani et al., 1986; Hull et al., 1990; Lombardi, 2002). In juvenile FRL and 

FSL rats we also found that heart rates were unresponsive to mATR and blockade of beta-

adrenoceptors using atenolol evoked a large reduction in HR that was similar in the two 

strains. 

 

The reduction in vagal activity was the clearest difference between FRL rats and their 

parent strain SD. Vagal efferent modulation of HR is mediated almost entirely by M2 

receptors in the sinoatrial node (Fisher and White, 2004). It is likely that a reduction in 

functional cardiac M2 receptors accounts for reduced vagal activity in FRL rats compared 

to SD rats, particularly since they are otherwise genetically and phenotypically similar 

(Overstreet et al., 1992b; Yadid et al., 2000; Overstreet et al., 2005). Furthermore, apart 

from their resistance to mAChR agonists, multiple chemical sensitivities are unaltered in 

FRL rats (Overstreet et al., 1992b; Yadid et al., 2000; Overstreet et al., 2005). Opposite 

effects on vagal modulation of HR were not seen in FSL rats, suggesting that cardiac M2 

receptors in this strain are not more sensitive to vagal stimulation. Peripheral muscarinic 

sensitivity is evident in FSL rats in some tissues; for example, methacholine-induced 

intestinal and bronchial constriction were enhanced in FSL compared to FRL rats (Djuric 

et al., 1995; Djuric et al., 1998). Since M3 receptors predominantly mediate the contractile 

response in these tissues (Matsui et al., 2002) FSL rats may show enhanced M3 but not M2 

receptor-mediated effects in the periphery. Subtype-selective differences in muscarinic 

sensitivity in FSL rats have also been observed in striatum, where M1 but not M2 receptor 

binding was found to be elevated (Daws and Overstreet, 1999).  

 

The diminution of vagal activity seen in FSL rats may result from changes in central 

pathways regulating vagal premotor output. This could also potentially mask any change in 
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muscarinic sensitivity at the level of the heart. Furthermore, it is possible that mAChR are 

not involved as FSL rats exhibit increased nicotinic (Tizabi et al., 1999; Tizabi et al., 2000) 

and 5-HT1A receptor sensitivities (Wallis et al., 1988; Overstreet et al., 1998) that could 

contribute to vagal inhibition. For example, nicotinic α4β2 subunits (Neff et al., 2003) and 

5-HT1A receptors (Skinner et al., 2002) strongly modulate the tonic and reflex inhibition 

of CVPN in the NA. Nicotinic α4β2 subunit binding is increased in brains of FSL rats 

(Tizabi et al., 1999) and chronic nicotine exposure fails to evoke receptor desensitization in 

FSL compared to FRL rats (Tizabi et al., 2000). However, the precise mechanisms 

underlying reduced vagal activity in FSL rats remain to be elucidated.  

 

FSL rats exhibited a significantly slower rate of phrenic nerve discharge, indicating a 

reduction in central respiratory drive compared to FRL and SD rats. Although blood-gas 

analysis was not performed phrenic activity exhibited a typical augmenting pattern in all 

cases indicating normocapnic conditions. M1 and M3 receptors are important in neural 

control of breathing where they strongly modulate activity of ventral medullary cell groups 

controlling respiratory rhythmogenesis (Nattie and Li, 1990; Shao and Feldman, 2000). 

This may indicate abnormal rhythmogenic control of breathing by mAChR in FSL rats. 

Respiratory patterns also influence cardiovagal activity; however, whether or not reduced 

respiratory frequency in FSL rats contributes to diminished cardiac vagal nerve traffic is 

unclear (Pomeranz et al., 1985; TaskForce, 1996).  

 

Normal AP appeared to be maintained in FRL and FSL rats compared to SD rats under 

anaesthesia, indicating an absence of cholinergic tone in AP regulation. Descending 

cholinergic input to the VLM may influence long term levels of blood pressure as local 

mAChR activation evokes sustained increased in sympathetic vasomotor activity (Giuliano 

et al., 1989). This pathway does not appear to be tonically active under normotensive 

conditions (Willette et al., 1984; Giuliano et al., 1989) but it is strongly activated in 

animals with spontaneous (Kubo et al., 1995b) or deoxycorticosterone acetate-salt 

hypertension (Kubo et al., 1996). Our findings indicate that increased AChR sensitivity 

alone is not sufficient to produce hypertension in FSL rats, at least at the ages tested. 

However, since sympathetic tone was not directly assessed it is possible that compensatory 

mechanisms (renal or neurohumoral) act to maintain normal blood pressure. Of note is that 

blockade of alpha-adrenoceptors in juvenile FSL rats produced a larger fall in MAP 

compared to FRL rats, suggesting that peripheral vascular sympathetic activity may be 

enhanced in FSL rats at least at this young age. 
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Baroreflex control of HR and AP were markedly and differentially affected in FRL and 

FSL rats. Diminished cardiovagal activity in both lines is likely to account for the observed 

reduction in spontaneous (HR) BRS compared to SD rats, as in the latter group BRS was 

sensitive to mATR and was correlated with mean HR. Following ramp changes in AP, FSL 

rats alone showed reduced HR baroreflex gain and longer latency to peak changes in HR. 

Sympathetic and vagal activities contribute relatively equally to HR gain under these latter 

conditions (Head and McCarty, 1987), suggesting that FSL rats show a disturbed 

sympathetic component. This was also apparent as a selective reduction in the gain of 

splanchnic SNA following baroreflex activation in FSL rats compared to FRL and SD rats. 

Furthermore, SNP and PE elicited comparable blood pressure changes in SD, FRL and 

FSL rats indicating no differences in vascular α-adrenoreceptor sensitivity. Since responses 

to peripheral β-adrenergic agonists are also similar in FRL and FSL rats (above and (Yadid 

et al., 2000)) the sympathetic effects seen in FSL rats appear to be generated centrally. 

Reduced sympathetic baroreflex gain may result from changes in AChR, 5-HT1A or other 

aminergic receptors involved in the central integration and modulation of the baroreflex 

(Pilowsky and Goodchild, 2002). For example, baroreflex activation evokes release of ACh 

in the rat RVLM (Kubo et al., 1998d). Muscarinic M2 and 5-HT1A receptors also strongly 

modulate activity of presympathetic neurons in this region (Huangfu et al., 1997; 

Miyawaki et al., 2001).  

 

Anaesthesia is an important consideration in this study; firstly, since urethane anaesthesia 

affects cardiorespiratory function in general and respiratory sinus arrhythmia in particular 

(Bouairi et al., 2004). Furthermore, FRL and FSL rats may be more or less sensitive to the 

cardiovascular effects of anaesthesia. Confirmation of the present observations will require 

similar studies in conscious animals. An advantage of the use of anaesthesia here is to 

enable comparison of autonomic regulation in the absence of locomotor activity, higher 

order inputs and stress reactivity that are known to differ between FRL and FSL rats 

(Ayensu et al., 1995; Yadid et al., 2000; Overstreet, 2002). 

 

In conclusion, the present study shows that autonomic control of the heart and circulation 

is impaired in rats differing in AChR sensitivity. FRL rats may exhibit a functional 

reduction in cardiac mAChR resulting in reduced vagal control of HR. Given that FRL are 

otherwise genetically and phenotypically similar to their parent strain SD, FRL rats may 

provide a novel model of innate vagal insufficiency. Furthermore, this indicates that care 
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should be taken in future studies using FRL as a control for FSL. In contrast, FSL rats 

show a number of central changes in ACh (nicotinic and muscarinic) and aminergic 

receptors that may be linked to concomitant alteration of vagal, sympathetic baroreflex and 

respiratory functions observed here. FRL and FSL may have an increased susceptibility to 

arrhythmia and myocardial damage and may provide a model for investigating an inherited 

basis of increased cardiac risk. FRL and FSL may be important also for evaluating the 

cardio-protective or -toxic effects of agents that differentially influence cardiac vagal and 

sympathetic outflow. 
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I. Abstract 
 

FSL rats selectively bred for exaggerated cholinergic hypothermic responses also exhibit 

cardiovascular abnormalities. Here, we quantified expression levels of M1 – M5 mAChR 

subtypes in the ventral medulla, cerebellum and spinal cord in FSL rats compared to FRL 

and SD rats. We also determined autonomic responses to central mAChR activation with 

OXO (0.2 mg/kg) in conscious animals using radiotelemetry to measure AP, HR and 

temperature, or under urethane anaesthesia to measure sympathetic and phrenic nerve 

activity and cutaneous blood flow. Baroreflex function curves for SNA before and after 

OXO were constructed using bolus injections of SNP and PE. FSL rats exhibited a three-

fold increase in M2 and reduction in M3 receptor expression in 700 µm thick sections of 

the ventral medulla containing the rostral portion of the RVLM and midline and 

parapyramidal raphé nuclei. Pressor responses to OXO were significantly reduced in 

conscious or anaesthetised FSL rats compared to controls, whereas maximal SNA 

responses were not different between lines. The peak reductions in body temperature as 

well as peak increases in TBF under anaesthesia were enhanced in FSL rats compared to 

controls. These findings indicate a region- and subtype-specific alteration of mAChR gene 

expression in the lower brainstem of FSL rats. Muscarinic hypersensitivity seems to to be 

limited to the thermoregulatory system in FSL rats; however, disturbance of M2 and M3 

receptor expression described here in the rostral medulla may contribute to altered 

respiratory or arterial baroreflex control seen in this strain.  

 

II. Introduction 
 

Acetylcholinesterase inhibitors and mAChR agonists evoke hypertension, respiratory 

disturbances and hypothermia via central actions in the hypothalamus and/or ventral 

medulla (Brezenoff and Giuliano, 1982; Giuliano et al., 1989; Nattie and Li, 1990; 

Gordon, 1994). Five molecularly distinct mAChR subtypes exist that are coupled either to 

inhibitory (M2, M4) or excitatory G-proteins (M1, M3, M5) (Caulfield and Birdsall, 

1998). The precise mAChR subtypes mediating the autonomic responses described are 

unclear. Mice deficient in the M2 receptor, but not other subtypes, have an attenuated 

hypothermic response to the mAChR agonist oxotremorine (OXO) (Bymaster et al., 

2003a). Pharmacological studies have implicated M2 receptors in the ventral medulla in 

control of circulation (Willette et al., 1984; Giuliano et al., 1989; Kubo, 1998); whereas 
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M1/M3 receptors in this area are involved in control of respiration (Nattie and Li, 1990; 

Shao and Feldman, 2000).  

 

A key site of action of systemically administered cholinesterase inhibitors and mAChR 

agonists is the ventral medulla (Giuliano et al., 1989; Nattie and Li, 1990), and see 

Chapter 3). Activation of mAChR on the ventral surface increases ventilation (Haxhiu et 

al., 1984). Activation of mAChR in the RVLM increases sympathetic activity and arterial 

pressure and differentially modulates the sensitivity of cardiorespiratory reflexes including 

the arterial baroreflex (Giuliano et al., 1989; Huangfu et al., 1997), and see Chapter 3). 

Only a subgroup of non-catecholamine containing sympathoexcitatory neurons in the 

RVLM contain M2 or M3 receptor mRNA (Chapter 3), suggesting that some mAChR 

important in autonomic functions may be located presynaptically.  

 

We reported previously that FSL and FRL rats selectively bred for increased or reduced 

central muscarinic receptor sensitivity, respectively, have impaired autonomic function 

under anaesthesia (Chapter 4). FSL and FRL rats exhibited higher heart rates compared to 

their parent strain SD; whereas, FSL rats had reduced sympathetic baroreflex sensitivity 

and respiratory frequency compared to FRL and SD rats (Chapter 4). A defining feature of 

FSL rats is that they have exaggerated hypothermic responses to central mAChR 

activation; whereas, FRL rats have normal responses compared to their parent strain 

(Overstreet et al., 1998; Daws and Overstreet, 1999). Limited evidence suggests that 

mAChR receptors levels and/or their kinetics are altered in FSL rats: M1 receptor binding 

is elevated in the striatum and hippocampus but not cortex of FSL rats (Daws and 

Overstreet, 1999); whereas M1-M5 receptor expression levels were similar in the pons of 

FSL compared to FRL rats (Greco et al., 1998). We sought to determine if in FSL rats 

cardiovascular or respiratory responses evoked by central mAChR activation differed, and 

whether or not these effects could be due to differences in mAChR gene expression.  

 

Specifically, we determined whether or not there were differences in gene expression of 

M1 – M5 receptors in rostral and caudal regions of the ventral medulla in FSL and FRL 

compared to SD rats. Secondly, we determined whether or not there were altered tonic and 

reflex cardiovascular, thermoregulatory or respiratory responses to central mAChR 

activation in conscious and anaesthetised FSL, FRL and SD rats.  
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III. Materials and Methods 

Quantitative PCR and In Situ Hybridisation Analysis of 

mAChR Subtype Expression  
These experiments were not carried out by the candidate (see Chapter 2). FSL (n = 3), FRL 

(n = 3) and SD rats (n = 7) were anaesthetised with sodium pentobarbital, transcardially 

perfused with ice-cold sterile saline (0.9 % NaCl in PB) and tissue extracted from the 

rostral (RVM) and caudal ventral medulla (CVM) and cerebellum as described in Chapter 

2. Expression levels of M1 - M5 receptor mRNA were evaluated using RT-PCR as 

described in Chapter 2.  
 

Conscious RadioTelemetric Recording  
This procedure was not carried out by the candidate (see Chapter 2). FSL (n = 9), FRL (n = 

6) and SD (n = 7) rats were instrumented for radiotelemetric recordings of AP and 

temperature in conscious animals as described in Chapter 2.   

 

Anaesthesia, Surgical Procedures and Recording 
FSL, FRL and SD rats (n = 6 / group) were anaesthetised with urethane and instrumented 

for recording of AP, SNA, PNA and TBF as described in Chapter 2.  

 

Experimental protocol 
Anaesthetised and conscious rats were administered sequential doses of mATR (2 mg / kg) 

and OXO (0.2 mg / kg). Conscious animals received an ip injection of mATR and OXO 

was administered after 30 mins. In at least three animals per group, baroreflexes were 

tested under anaesthesia by administration of SNP and PE.  

 

Data analysis 
Cardiorespiratory parameters were continuously monitored following administration of 

mATR and OXO. In conscious animals mean values for AP, HR and temperature were 

acquired continuously with a moving average of 10 s. Peak response were taken 35 mins 

post-injection coinciding with the maximal temperature effects. Under anaesthesia, average 

values of MAP, SNA, TBF and minute inspiratory activity (PNA burst frequency x 
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amplitude x 60) were taken over 100 s segments following mATR (control) and at 2, 10 

and 30 min following OXO. Peak changes in each variable as well as response area (area 

under curve from 0 to 30 min post OXO) were calculated. Logistic function curves 

describing the SNA-MAP relationship and their first derivatives for calculation of 

baroreflex gain were generated as described in Chapter 2.  

 

Statistical analysis 
Data were compared using one-way analysis of variance (ANOVA) and a post hoc test for 

significance with Bonferroni’s correction. A paired t-test was used to compare changes in 

SNA baroreflex parameters within groups. All data are presented as mean ± standard error 

of the mean (SEM) and P<0.05 was considered statistically significant. 

 

IV. Results 

Region- and Subtype-Specific Alteration of mAChR Subtype 

Expression in Medulla and Spinal Cord of FSL Rats  
M1 – M5 receptors were sometimes expressed at different levels relative to GAPDH in the 

same brain and spinal cord regions isolated from FSL, FRL and SD rats (Fig. 5.1). Our 

results do not show, however, the relative abundance of different subtypes compared 

between brain regions (i.e M1 vs. M2). In the RVM, M2 receptor mRNA levels were 

increased more than three-fold in FSL compared to FRL and SD rats (P < 0.01). In 

contrast, M3 receptor mRNA levels were reduced around three-fold in FSL compared to 

FRL and SD rats (P < 0.05). Expression levels of M1 and M4 receptors were similar 

between all three strains; whereas, M5 receptor mRNA levels were significantly lower in 

the RVM in FRL compared to SD rats (P < 0.05). In the caudal ventral medulla, M1 

receptor mRNA was increased in FRL rats compared to SD rats (P < 0.05) and M3 

receptor mRNA was reduced in FSL and FRL rats compared to SD rats (P < 0.05). In the 

posterior cerebellum in FSL and FRL rats, all mAChR subtypes were expressed at similar 

levels compared to SD rats (Fig. 5.1).  
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Reduced Pressor and Enhanced Hypothermic Responses to 

Central mAChR Activation in Conscious FSL Rats  
Figure 5.2A shows that in conscious SD rats OXO evokes a pressor response accompanied 

by a bradycardia and a fall in temperature. Grouped data shows that although a pressor 

response was evoked in SD and FRL rats, a large depressor response was evoked in FSL 

rats (Fig. 5.2B). In all three strains of rat, the change in AP (pressor or depressor) was 

accompanied by bradycardia. In FSL rats, the onset of bradycardia preceded any change in 

AP. The magnitude of the bradycardia evoked in FSL rats (-75 ± 7 bpm) was greater 

compared with the response evoked in FRL (-11 ± 11 bpm, P < 0.01) or SD rats (-33 ± 11, 

P < 0.05) (Fig. 5.2B). Time course changes in the hypothermic response to OXO were 

different between FRL and SD rats (P < 0.05); however, peak hypothermic responses did 

not differ (FRL, -1.5 ± 0.2°C; SD, -1.9 ± 0.2, P = n.s.). The peak hypothermic response 

evoked by OXO in FSL rats (-2.7±0.2°C) was greater compared with both FRL and SD 

rats (P < 0.05) rats (Fig. 5.2B). The time course of hypothermia was also significantly 

longer in FSL rats compared to FRL (P < 0.01) and SD rats (P < 0.01). 

 

Reduced Pressor, Equivalent Sympathoexcitatory and 

Enhanced Cutaneous Blood Flow Responses to Central 

mAChR Activation in FSL Rats 
OXO evoked a large increase in AP, SNA and TBF in anaesthetised SD rats (Fig. 5.3). 

OXO evoked a marked tachycardia in anaesthetised SD rats, in contrast to the bradycardia 

evoked in conscious animals (compare Fig. 5.2 and 5.3). OXO produced the same pattern 

of responses in SD, FSL and FRL rats, but the magnitude of some effects differed between 

strains. The magnitude and response area of the increase in SNA and HR evoked by OXO 

was similar in FSL, FRL and SD rats (Fig. 5.3B). OXO evoked a smaller pressor response 

in FSL rats (29 ± 2 mmHg) compared to FRL (39 ± 3 mmHg, P < 0.05) and SD rats (50 ± 2 

mmHg, P < 0.01) (Fig. 5.3B). In contrast, OXO evoked a much larger peak increase in TBF 

in FSL rats (62 ± 8 %) compared to FRL (19 ± 6 %, P < 0.01) and SD rats (16 ± 8 %, P < 

0.01) (Fig. 5.3B).  

 

 

 



Figure 5.2 Reduced pressor response but enhanced bradycardia and hypothermic 

response to central mAChR activation in conscious FSL rats. A: Typical recording from a 

conscious unrestrained SD and B: group data from SD (n = 7), FRL (n = 6) and FSL rats  (n = 

9) illustrating changes in MAP, HR and temperature following intraperitoneal injection of 

OXO (0.2 mg/kg) after pre-treatment with mATR (2 mg/kg ip). Data are mean ± SEM, 

*P<0.05, **P<0.01.
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Figure 5.3 Altered thermoregulatory, cardiovascular and respiratory responses to 

central mAChR activation in anaesthetised FSL rats. A: Typical recording from a urethane-

anaesthetised SD rat illustrating increases in HR, MAP, SNA and TBF and reductions in 

minute inspiratory activity (= PNA frequency (Hz) x amplitude (% baseline) x 60) in 

response to OXO (0.2 mg/kg iv) after pretreatment with mATR (2 mg/kg iv). B: Group data 

illustrating differences in magnitude of responses to OXO in SD, FRL and FSL rats (n = 6 / 

group) expressed as peak response or area under curve (response area) between 0 and 30 min 

post-injection. Data are mean ± SEM, *P<0.05, **P<0.01. 
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Figure 5.4 Reduced sympathetic baroreflex sensitivity but no difference in maximal 

baroreflex responses to central mAChR activation in FSL rats. Comparison of average SNA 

baroreflex function curves (top) and their first derivatives (bottom) before (control) and 5 

min after OXO (0.2 mg/kg iv) in anaesthetised FSL, FRL and SD rats (n = 3 / group). Resting 

baroreflex gain is reduced in FSL rats compared to FRL and SD rats. OXO shifts the SNA-

MAP relationship upward and to the right and markedly increases the maximum plateau of 

SNA and gain in all strains (see Results). Error bars are omitted for clarity. 
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Attenuated Respiratory Depressant Effects of Central 

mAChR Activation in FSL and FRL Rats 
Under anaesthesia OXO produced a marked reduction in central inspiratory activity (Fig. 

5.3A). The peak reduction and area under the curve of the depression of PNA was 

significantly attenuated in FSL rats (-16 ± 6 %) compared to SD rats (-41 ± 5 %, P < 0.05) 

(Fig. 5.3B). The magnitude of the respiratory depression evoked by OXO also tended to be 

lower in FRL rats (-24 ± 4 %, n.s.) compared to SD rats but this was not significantly 

different (Fig. 5.3B).  

 

Reduced Resting SNA Baroreflex Sensitivity but Equivalent 

Maximal SNA Responses to Central mAChR Activation in 

FSL Rats  
OXO shifted baroreflex function curves upward and to the right, producing a dramatic 

increase in the maximum plateau and gain of the SNA baroreflex (Fig. 5.4) as shown 

previously in SD (26). A similar effect in both direction and amplitude was seen in all 

strains (Fig. 5.4). Maximum SNA plateau in control conditions was similar in FSL (153 ± 

13 %), FRL (160 ± 7 %) and SD rats (145 ± 6 %). Following OXO, maximum SNA plateau 

was increased around two-fold but was not significantly different in FSL (343 ± 19 %), 

FRL (310 ± 26 %) or SD rats (316 ± 18 %). SNA baroreflex gain in control conditions was 

significantly reduced (P < 0.05) in FSL rats (2.5 ± 0.2 %/mmHg) compared to FRL (4.7 ± 

0.6 %/mmHg) and SD rats (4.4 ± 0.5 %/mmHg). Following OXO baroreflex gain was 

increased by around two-fold in SD (8.1 ± 0.6 %/mmHg) or FRL rats (6.7 ± 1.4 %/mmHg); 

whereas in FSL rats gain was increased by around three-fold (9.0 ± 1.7 %/mmHg). 

However, there was no significant difference in gain in FSL, FRL or SD rats following 

OXO. 

 

V. Discussion 
 

We demonstrated differences in gene expression of brainstem mAChR subtypes, using 

quantitative real time PCR, and in the thermoregulatory and respiratory responses to a 

mAChR agonist in FSL and FRL rats. M2 receptor expression was increased; whereas, M3 

receptor expression was reduced in the RVM of FSL rats. Differences in gene expression 
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were restricted to the rostral part of the medulla, since M1 receptor expression was 

increased but M3 receptor expression was reduced in the CVM of both FSL and FRL rats; 

whereas, there were no line differences in subtype expression in the cerebellum. Our 

results indicate region- and subtype-specific differences in mAChR subtype expression in 

the ventral medulla of FSL rats that could account for differences in thermoregulatory or 

respiratory function in this strain. In contrast, differences in muscarinic regulation of 

cardiovascular function were less clear cut as we observed equivalent sympathoexcitatory 

responses but attenuated pressor effects in conscious or anaesthetised FSL rats.  

 

The dramatic reduction in temperature after OXO was expected in FSL rats as this strain 

was bred for hypersensitivity to hypothermic effects of muscarinic agonists (Overstreet et 

al., 1998; Daws and Overstreet, 1999). The exaggerated hypothermic response is 

suspected to be due to both reduced heat generation and dilatation of the peripheral 

circulation, causing heat loss to the ambient environment. In rats, the tail is the major 

thermoregulatory organ. Furthermore, blood flow to the tail is regulated by sympathetic 

vasoconstrictor fibres supplied by the RVLM and raphé nuclei (Tanaka et al., 2002; 

Ootsuka et al., 2004). We demonstrate for the first time that there is a larger increase in 

TBF in FSL rats after OXO, indicating that enhanced peripheral vasodilatation contributes 

to the heightened hypothermic response. It is possible that M2 receptors in the rostral 

medulla are involved as mice deficient in this subtype have attenuated hypothermic 

responses to OXO compared to wildtype (Bymaster et al., 2003b). We found that FSL rats 

exhibit increased levels of M2 receptor expression in the rostral medulla, which contains 

raphé neurons involved in thermoregulation (Nakamura et al., 2004). The simplest 

explanation is that activation of M2 receptors in the raphé leads to increased cutaneous 

dilatation in FSL rats; however, it is not known if the cholinergic hypothermic response is 

mediated through the raphé in rat. This region is important in several CNS mechanisms 

that lead to heat loss and is a target of several centrally acting agents, including the 5-

HT1A receptor agonist 8-OHDPAT, in evoking hypothermia (Nakamura et al., 2004; 

Ootsuka and Blessing, 2006). Of note is that hypothermic responses to 8-OHDPAT are 

also exaggerated in FSL rats (Overstreet et al., 1998) suggesting that this strain may 

exhibit abnormal control of cutaneous blood flow by cholinergic as well as serotonergic 

mechanisms in the raphé. Other brain regions may be involved in FSL rats, including the 

preoptic hypothalamus where injection of cholinergic agonists has been reported to elicit 

either reductions or increases in body temperature (Gordon, 1994). RVLM neurons 

supplying cutaneous sympathetic fibres are probably not involved, as we showed 
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previously that blockade of mAChR in the RVLM does not attenuate the increase in TBF 

evoked by OXO in SD rats (Chapter 3).  

 

Given the dramatic differences in thermoregulatory responses to OXO, the lack of line 

differences in sympathoexcitatory responses after OXO was surprising. Moreover, pressor 

responses to OXO were markedly reduced in conscious and anaesthetised FSL rats 

compared to control strains. The simplest explanation for the attenuated pressor response 

in FSL rats, given equivalent levels of sympathetic activation, is an altered haemodynamic 

balance because of increased vasodilatation in the tail. Sympathoexcitation and increases in 

arterial pressure following OXO are mediated almost entirely via mAChR activation in the 

RVLM (see Chapter 3). M2 receptors are involved as M2-preferring antagonists prevent 

pressor responses to cholinergic agonists (Giuliano et al., 1989) and some 

sympathoexcitatory neurons express M2 receptor mRNA (Chapter 3). Although we 

observed increased M2 receptor expression levels in the RVM of FSL rats, the increases in 

HR and SNA following OXO under anaesthesia were virtually the same in FSL, FRL and 

SD rats. Two explanations are possible to explain our data. Firstly, the difference in gene 

expression seen in FSL rats may not be restricted to RVLM neurons. As we reported 

previously, mAChR are expressed only a small subpopulation of sympathoexcitatory 

RVLM neurons (Chapter 3). Secondly, both pre- and postsynaptic mAChR are involved in 

eliciting sympathoexcitatory effects in the RVLM (Arneric et al., 1990; Huangfu et al., 

1997). Hence, there may be changes in presynaptic mAChR levels in FSL rats that were 

not able to be detected using the methods here. If so, the relative balance of pre- versus 

postsynaptic effects on RVLM neurons may be altered in FSL rats. In support of this, we 

found that OXO evoked a relatively larger increase in baroreflex gain in FSL rats. This 

response is mediated presumably via presynaptic mAChR in the RVLM that modulate 

release of neurotransmitter from baroreceptor-related inputs.  

 

In conscious rats we found that OXO evoked a bradycardia that was much larger in FSL 

rats compared to FRL or SD rats. The finding that anaesthesia reversed the direction of the 

change in HR evoked by OXO is consistent with previous studies (Brezenoff and Giuliano, 

1982). The simplest explanation is that anaesthesia blocks inhibitory muscarinic effects on 

HR. Both the tachycardia and bradycardia are mediated via sympathetic effects on HR as 

peripheral vagal effects were blocked with mATR. Activation of mAChR in the posterior 

hypothalamus or NTS has been shown to have variable effects on HR including 

bradycardia in conscious animals (Brezenoff and Giuliano, 1982; Criscione et al., 1983; 
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Tsukamoto et al., 1994). The reason for the exaggerated fall in HR seen here in FSL rats is 

not clear. Presumably, this is mediated by increased sympathoinhibitory effects on HR 

mediated by mAChR in sites such as the hypothalamus or NTS. The RVLM is unlikely to 

be involved as we noted that the bradycardia followed a different time course to the blood 

pressure profile.  

 

OXO elicited a marked respiratory depression in SD rats, as reported in Chapter 3. 

Unexpectedly, the reduction in phrenic activity after OXO was attenuated in FSL rats 

compared to SD rats. FRL rats also tended to have attenuated respiratory depressant 

responses to OXO, suggesting that this may not be a specific cholinergic trait of FSL rats. 

These data indicate that FSL and FRL rat strains may have undergone genetic drift 

resulting in some phenotypic similarities compared to their parent strain. In support of this, 

we found similar differences in M1 and M3 receptor expression in the CVM of FSL and 

FRL rats compared to SD rats. Pharmacological and gene knockout studies implicate M3 

and M1 receptors in the ventral medulla in control of respiratory rhythm and amplitude, 

respectively (Nattie and Li, 1990; Shao and Feldman, 2000; Boudinot et al., 2004). The 

region of the RVM examined here contains inhibitory Bötzinger neurons that determine 

respiratory timing; the region of the CVM contains mainly expiratory neurons supplying 

spinal motorneurons (Sun et al., 1997; McCrimmon et al., 2000). M3 receptor levels were 

reduced in both the RVM and CVM of FSL rats, supporting our finding that muscarinic 

agonists have less effect on respiration in this strain.  

 

In summary, using telemetry in conscious animals and recordings made under anaesthesia, 

specific differences in the pattern of autonomic responses evoked by the muscarinic 

agonist OXO were found in FSL rats compared to FRL and SD rats. Secondly, using 

quantitative RT-PCR we demonstrated altered gene expression of certain mAChR subtypes 

in the rostral and caudal ventral medulla of FSL rats. Genetic differences, specific to FSL 

rats, were noted in the rostral medulla only and limited to some mAChR subtypes. We 

demonstrated that thermoregulatory but not sympathoexcitatory responses in FSL rats were 

enhanced. As both responses involve M2 receptors, the data indicate that genetic 

mechanisms regulating M2 receptors involved in either thermoregulation or cardiovascular 

function are inherited independently. These data provide support for the notion that 

cholinergic mechanisms that regulate body temperature are separate to those that regulate 

arterial pressure. Respiratory responses to OXO were attenuated in FSL rats indicating an 

opposite effect of cholinergic control on temperature versus respiration. This is supported 
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by the finding that M3 receptor expression was reduced rather than enhanced in the ventral 

medulla of FSL rats. Hence, our data demonstrate that functional mAChR supersensitivity 

in FSL rats is limited to the thermoregulatory system; whereas other muscarinic autonomic 

responses are either unaffected or attenuated.  
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I. Abstract 
 

Acetylcholine plays a role in control of cardiovascular function via interacting with central 

neurons that regulate vagal and sympathetic outflow. FRL and FSL rats bred for 

differences in cholinergic responses appear to have an altered level of vagal and or 

sympathetic input to the heart under urethane anaesthesia (Chapter 4). In the present study 

we investigated whether or not there were differences in diurnal patterns of AP, HR or 

activity in conscious freely behaving FRL and FSL rats compared to SD rats. Rats were 

implanted with telemetric probes under pentobarbital anaesthesia and, following recovery, 

cardiovascular variables were monitored for 24 hours by continuous samping of HR and 

AP for 5 mins, 4 times every hour. Spectral analysis of pulse interval (PI) and systolic AP 

(SAP) was used to investigate short-term regulation of AP and HR at high frequencies 

(HF, 1 – 3 Hz) that reflect vagal activity and low frequencies (LF, 0.25 – 0.75 Hz) 

associated with sympathetic outflow and baroreflex function. The results show that there 

was no difference in HR, AP or activity in conscious FSL rats compared to SD rats; 

whereas FRL rats selectively had an elevated HR during the day and night. FSL rats 

exhibited reduced HF power of HR during the day and night and an increased LF/HF ratio 

at night. BRS measured using the alpha-coefficient was also significantly reduced in 

conscious FSL rats compared to both FRL and SD rats. In addition, we hypothesised that 

FRL and / or FSL rats would be differentially susceptible to cardiovascular effects and 

arrhythmias produced by the cardiac glycoside ouabain, which inhibits the cardiac Na+/K+ 

ATPase leading to calcium overload in the myocardium and release of acetylcholine and 

noradrenaline from nerve terminals. FSL rats exhibited the highest incidence of ventricular 

premature beats and ventricular tachycardia during ouabain infusion. These findings 

indicate that reflex vagal input to the sinus node is reduced in FSL rats compared to control 

strains. In addition, FSL rats exhibit a predominance of sympathetic activity at night and 

increased susceptibility to arrhythmia under anaesthesia. In light of evidence that FSL rats 

resemble behavioural and neurochemical abnormalities associated with depressive 

disorders, the present findings may shed light on underlying mechanisms of autonomic 

dysfunction in depression.  
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II. Introduction 
 

Depression symptoms are associated with autonomic dysfunction and early mortality in 

patients with CHD (Frasure-Smith et al., 1993; Carney and Freedland, 2003). The 

underlying mechanisms are unclear but appear to involve increased susceptibility to 

arrhythmia rather than ischaemia or thrombosis (Frasure-Smith et al., 1995; Lesperance et 

al., 2002; Watkins et al., 2006). An imbalance of autonomic inputs to the heart is proposed 

to generate electrical instability and promote arrhythmia formation (Schwartz et al., 1992; 

Zipes and Wellens, 1998). Ongoing vagal activity is thought to be cardioprotective because 

it entrains the cardiac pacemaker and has powerful inhibitory effects on heart rate and 

atrioventricular conduction (Vanoli et al., 1991; Jones, 2001). In contrast, sympathetic 

overactivity leads to ventricular electrical instability and predisposes to development of 

potentially fatal arrhythmias (Schwartz et al., 1984; De Ferrari et al., 1993). 

 

Spectral analysis of HRV has been widely used to discriminate between sympathetic and 

vagal components of HR modulation in humans and animals occurring at low or high 

frequencies (see Chapter 1) (Akselrod et al., 1981; Medigue et al., 2001). A reduction in 

vagal activity and relative increase in sympathetic activity manifests as a reduction in HRV 

at low (LF) and high frequencies (HF) and an increase in the LF/HF ratio (Pagani et al., 

1991; Lombardi, 2002). Reduced HRV is often found in depressed subjects with or 

without history of CHD compared to controls (Carney et al., 1995; Stein et al., 2000; 

Agelink et al., 2002; Guinjoan et al., 2004). Some studies also report a reduction in BRS 

measured using spectral and spontaneous indices in depressed subjects (Watkins and 

Grossman, 1999; Broadley et al., 2005), suggesting that impaired reflexogenic control of 

HR may underlie the reduction in HRV. 

 

FSL rats exhibit a number of physiological and behavioural abnormalities consistent with 

clinical depression, including psychomotor retardation (Overstreet et al., 1986), reduced 

motivated behaviour (including eg. high immobility in the forced swim test) (Overstreet 

and Russell, 1982; Overstreet, 1986), reduced appetite (Bushnell et al., 1995) and elevated 

REM sleep (Shiromani et al., 1988; Benca et al., 1996). Depressed-like behaviour in FSL 

rats is alleviated by chronic, but not acute, treatment with antidepressants (Zangen et al., 

1997, 1999). FSL rats also exhibit somatic abnormalities including impaired immune 

responses and gastric dysmotility (Friedman et al., 2002; Mattsson et al., 2005), 
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supporting the potential value of this strain in understanding the link between behavioural 

and somatic symptoms of depression.  

 

In Chapter 4 we found that, under urethane anaesthesia, FSL rats exhibit a reduction in 

HRV in 5 minute data segments compared to outbred but not inbred control strains. Further 

interpretation of these data is limited by the presence of anaesthesia. In the present study 

we tested the hypothesis that freely behaving FSL rats would exhibit impaired cardiac 

autonomic control in 24 hr recordings of HRV and APV. Secondly, we determined and 

compared cardiovascular and cardiotoxic effects of the cardiac glycose ouabain in SD, 

FRL and FSL rats.  

 

Ouabain selectively inhibits the cardiac Na+/K+-ATPase resulting in accumulation of 

intracellular Ca2+ and positive inotropic effects (Hauptman and Kelly, 1999; Demiryurek 

and Demiryurek, 2005). Ca2+ overload can cause afterdepolarisations and increased 

automaticity that can lead to atrial and ventricular arrhythmias (Hauptman and Kelly, 

1999). Ouabain administration also leads to Ca2+ channel-mediated exocytotic release of 

ACh from vagal nerve terminals (Kawada et al., 2001) and release of noradrenaline from 

sympathetic nerve terminals (Yamazaki et al., 1996; Yamazaki et al., 1999). Increases in 

autonomic activity lead to conduction slowing (due to release of ACh) and perturb 

ventricular electrical stability (mainly due to increased noradrenaline) (Yamazaki et al., 

1996; Hauptman and Kelly, 1999; Yamazaki et al., 1999). We hypothesised that FRL and 

FSL rats would be differentially susceptible to arrhythmias produced by ouabain due to 

differences in their resting levels of cardiac autonomic activity. We also determined 

whether or not there were differences in HR responses to aortic baroreceptor stimulation in 

FRL and FSL rats compared to SD rats prior to and during infusion of ouabain. 

 

III. Materials and Methods 

Conscious RadioTelemetric Recording 
This procedure was not carried out by the candidate (see Chapter 2). FSL (n = 5), FRL (n = 

5) and SD rats (n = 3) were instrumented for conscious radiotelemetric recording of ECG 

and AP as described in Chapter 2.  
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Anaesthesia, Surgical Procedures, Recording and Activation 

of Cardiovascular Reflexes  
SD (n = 6), FRL (n = 6) and FSL rats (n = 7) were anaesthetised with urethane and 

instrumented for recording of AP, SNA and ECG. The AN was also isolated for 

stimulation of aortic baroreceptor afferents (pulse train 100 Hz, 5 – 10 V) as described in 

Chapter 2. Drugs and maintenance anaesthesia were infused into the femoral vein. Ouabain 

(Sigma) was dissolved in physiological saline and infused at 3 ml / hr at a dose of 200 µg / 

kg / min.  

 

Data Analysis 

Diurnal Changes in HR, AP and activity 
HR, AP and activity were acquired continuously for 5 minutes every 15 minutes over a 24 

hour period. Data were exported offline in 1 hour bins and averaged into quartiles, ie. 

during the day AM (6am – 12pm), day PM (12pm – 6pm), night PM (6pm – 12am) and 

night AM (12am – 6am) to incorporate changes in activity, feeding and sleep cycle (van 

den Buuse, 1994; Head et al., 2004).  

 

Spectral Analysis of HR and SAP 
Spectral analysis was used to examine the variability of SAP and HR (pulse interval (PI)) 

in short term recordings from conscious animals using methods described in detail in 

Chapter 2 and Appendix 2. Over the entire 24 hrs of data, only segments that were 

stationary and did not include ectopic beats or noise artefacts were included (77 ± 5 % of 

total segments). Total power (0.04 Hz – 3 Hz), LF (0.25 – 0.75 Hz) and HF powers (1 – 

3 Hz) were calculated within the defined frequency ranges. The LF / HF ratio of HRV was 

calculated from these data. Values for total power, LF and HF power, and LF / HF ratio 

were binned into hourly averages. 24 hr data were acquired and averaged into 6 hour-

quartiles.  

 

HR Baroreflex Sensitivity 
BRS was estimated using the α-coefficient (see Chapter 2). Since indices of spontaneous 

BRS have been shown to be related to mean HR interval (Zaza and Lombardi, 2001) and 

see Chapter 4), we used analysis of covariance (ANCOVA, see below) to test whether 
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resting HR was a contributing factor. BRS was corrected for mean HR, using similar 

methods to Abrahamsson et al (2003), by first fitting individual linear regression lines 

between HR and BRS for data obtained from each strain (Abrahamsson et al., 2003). The 

equations of the lines were then used to calculate BRS, at the mean HR of SD rats, in FRL 

and FSL rats.  

 

Ouabain-Induced Cardiovascular Effects and Arrhythmia 
Cardiovascular effects of ouabain and susceptibility to ventricular arrhythmia were 

examined as described in Chapter 2.  

 

Statistical analysis 
All values are expressed as mean ± SEM and were compared using two-way analysis of 

variance (ANOVA) to determine the effect of time of day (quartiles) and strain on 

physiological variables. One-way ANOVA was used for group comparisons with a post 

hoc test for significance performed with Bonferroni’s correction. ANCOVA was used to 

test the degree to which HR (quantitative variable) and strain (categorical variable) 

contributed to variability of BRS (dependent variable) and linear regression was used to 

determine whether this was significantly non-zero.  

 

IV. Results 

Sensitivity to Oxotremorine-Evoked Hypothermia 
FSL rats exhibited much larger hypothermic responses in response to OXO (2.2 ± 0.1 vs. 

0.3 ± 0.1 ºC, P<0.0001) and had slightly lower body weights (314 ± 13 vs. 351 ± 14 g, 

P=0.09) compared to FRL rats. 

 

Diurnal Changes in HR, AP and activity 
All rats exhibited nocturnal elevations in HR, mean AP (MAP) and activity (Fig 6.1). Two-

way ANOVA showed a highly significant effect (P<0.001) of time of day on HR and 

activity. Strain had a significant effect on HR (P=0.039) and activity (P=0.024). FRL rats 

had a predominantly higher resting HR compared to both FSL and SD rats (Fig. 6.1). FSL 

rats had a significantly elevated MAP compared to SD rats but not FRL rats (Fig. 6.1).  



Figure 6.1 Diurnal patterns of HR, MAP and activity level in conscious SD (triangles, 

dashed line), FRL (filled circles, thin line) and FSL rats (open circles, bold line) recorded 

using radiotelemetric probes implanted into the abdominal aorta over 24 hrs in 1 hr 

averages (A) and 6 hr quartile averages (B). Values are mean ± SEM. 

A B
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Locomotor activity was lowest in all strains in the second half of the day and highest in SD 

rats compared to FRL and FSL rats (Fig. 6.1).  

 

Reduced HRV in FSL Rats during Day and Night 
To obtain a snapshot of the pattern of variability during the day and night in FSL rats 

compared to controls, average SAPV and HRV spectra were taken at 12 pm and 3am from 

each animal. Figure 6.2 illustrates average spectra on log scales with error bars omitted for 

clarity. Power was clearly distributed in LF and HF bands. Frequencies < 0.25 Hz were 

included in the total power calculation but were not analysed separately. HRV was 

significantly reduced in FSL rats compared to FRL and SD rats in both LF and HF ranges 

at 12 pm and in the HF range at 3 am (Fig. 6.2). At these times SAPV was not different in 

FSL rats compared to FRL and SD rats (Fig. 6.2). SAPV was slightly but significantly 

elevated in the HF band at 12 pm in FRL rats compared to SD rats (Fig. 6.2).  

 

Figure 6.3 shows that this pattern of a reduced HRV in FSL rats was maintained over the 

24 hrs. Spectral parameters did not show consistent circadian variation between strains. 

There was a significant effect of strain on total power (P=0.023), HF power (P<0.001) and 

LF/HF ratio of PI (P=0.0098). During the day and night HRV was reduced in both LF and 

HF ranges in FSL rats compared to controls (Fig. 6.3). The difference was more marked 

within the HF range (P<0.01, Fig. 6.3). LF/HF ratio of PI was elevated ~ 1.5 fold in FSL 

rats compared to FRL and SD rats at night (P<0.05 vs FRL, Fig. 6.3). Total power of PI 

(0.04 – 3 Hz) was significantly higher in FRL rats compared to SD and FSL rats (Fig. 6.3). 

Total and LF power of SAP were not significantly different between strains although total 

SAPV was higher at night in FSL rats compared to controls (Fig. 6.3). HF power of SAP 

was significantly elevated in both FRL and FSL rats compared to SD rats (P<0.01, Fig. 

6.3).  

 

Reduced BRS in Conscious FSL Rats  
BRS, estimated using α LF, was significantly reduced in FSL rats compared to FRL and 

SD rats (P<0.01 vs SD, P<0.05 vs FRL, Fig. 6.4A). There was no consistent circadian 

variation in α LF. ANCOVA showed a significant effect of mean HR on values of α LF 

(P<0.008). In FRL, but not FSL rats, α LF was inversely correlated to mean HR (P=0.014). 

Estimates of α LF corrected for mean HR showed that α LF was increased in FRL rats but 

remained unchanged in FSL rats (Fig. 6.4B).  
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Figure 6.2 Average power spectral density functions of SAP (top) and PI (bottom) at 

two time points; 12PM (left) and 3AM (right), in conscious SD (dashed line), FRL (thin 

line) and FSL rats (bold line). Vertical lines denote bandwidths for calculation of power 

in low frequency (LF, 0.25  0.75 Hz) and high frequency (HF, 1  3 Hz) components of 
#

variability. Error bars are omitted for clarity. *P<0.05, **P<0.01 FSL vs. SD; P<0.05, 
##
P<0.01 FSL vs. FRL.



SAPPI

Figure 6.3 Reduced HRV during the day and night and increased LF/HF ratio during 

the active night period in FSL rats. Power spectral densities of PI (left) and SAP (right) 

for total (0.04 - 3 Hz), low frequency (LF, 0.25 - 0.75 Hz) and high frequency (HF, 1 - 3 

Hz) components of variability and LF / HF ratio in conscious SD (triangles, dashed line), 

FRL (filled circles, thin line) and FSL rats (open circles, bold line) over 24 hrs. Power 

was calculated using fast Fourier transformation of 80 s stationary data segments four 

times every hour. Values are mean ± SEM. 
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Ouabain-Induced Cardiovascular Effects  
As described in Chapter 4, resting HR was higher in FRL and FSL rats compared to SD 

rats under urethane anaesthesia. Cardiovascular responses produced by continuous infusion 

of ouabain were compared between FRL, FSL and SD rats. Ouabain elicited a significant 

reduction in SAP in SD (124 ± 2 to 90 ± 3 mmHg), FRL (131 ± 7 to 99 ± 7 mmHg) and 

FSL rats (132 ± 9 to 99 ± 11 mmHg). In contrast, ouabain produced a significant 

shortening of R-R interval only in SD rats (175 ± 10 to 141 ± 4 ms) compared to FRL (132 

± 3 to 133 ± 2 ms) and FSL rats (140 ± 7 to 134 ± 4 ms). The change in R-R interval 

produced by stimulation of the AN was reduced in FRL and FSL rats compared to SD rats 

prior to ouabain infusion. Ouabain significantly reduced the reflex bradycardia evoked by 

AN stimulation in SD rats (0.83 ± 0.16 to 0.34 ± 0.08 ms/mmHg) to levels similar to those 

evoked at rest or following ouabain in FRL (0.19 ± 0.10 to 0.12 ± 0.05 ms/mmHg) and 

FSL rats (0.36 ± 0.11 to 0.19 ± 0.05 ms/mmHg). In contrast, the magnitude of SNA 

inhibition evoked by AN stimulation was unchanged by ouabain infusion in all strains (Fig. 

6.5). There was a significant positive correlation between the reflex increase in R-R 

interval / mmHg evoked by AN stimulation prior to ouabain infusion and the dose of 

ouabain required to elicit conduction block (r2 = 0.83, P<0.05, pooled data from all 

strains). 

 

Ouabain-Induced Arrhythmia  
Continuous infusion of ouabain produced conduction slowing indicated by prolongation of 

the P-R interval and increased duration of the QRS complex QRS (Fig. 6.5). Conduction 

block was elicited in all animals at cumulative doses of 883 ± 38 µg in SD, 747 ± 64 µg in 

FRL and 713 ± 72 µg in FSL rats. Preceding conduction block, isolated VPBs were present 

in 3 / 7 FSL, 0 / 6 FRL and 1 / 6 SD rats and non-sustained runs of VT in 5 / 7 FSL, 2 / 6 

FRL and 0 / 6 SD rats (Fig. 6.6). 
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Figure 6.6 Types and incidence of arrhythmia during continuous infusion of ouabain 

(200 mg/kg/min) in urethane-anaesthetised SD, FRL and FSL rats. The top panels show 

characteristic patterns of ECG and BP used to identify different arrhythmias that occurred 

sporadically during ouabain infusion (see Methods). The bottom panels show the 

cumulative incidence of ventricular arrhythmias and / or conduction block in FRL, FSL 

and SD rat strains.
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V. Discussion 
 

The major findings of this study are that conscious FSL rats exhibited reduced HRV and 

BRS during the day and night and increased LF/HF ratio at night compared to FRL and SD 

rats. FSL and FRL rats were slightly more susceptible to conduction block elicited by 

ouabain compared to SD rats, although this result is limited by the small sample number. 

This effect may be related to the initial high resting HR seen in FRL and FSL rats under 

urethane anaesthesia due to a reduced vagal tone (see Chapter 4). FSL rats were most 

susceptible to ventricular tachyarrhythmias, which may be because in anaesthetised 

conditions there is a combination of impaired reflex vagal activation and sympathetic 

overactivity in this strain as seen in conscious FSL rats. These findings support the 

conclusion that FSL rats may have value in understanding neurobiological mechanisms 

linked to arrhythmia vulnerability in depressive disorders.  

 

Conscious FSL rats had reduced HRV during the day and night compared to controls 

indicating an underlying reduction in vagal modulation of the sinoatrial node independent 

of sleep/wake influences. In contrast, LF/HF ratio was increased in FSL rats only at night 

indicating a relative predominance of sympathetic activity during wakefulness. Depressive 

symptoms in humans are associated with a reduction in HRV that is thought to be linked to 

altered sympathovagal control of the heart and increased risk of cardiac complications, 

including arrhythmias (Carney et al., 2005b). Moreover, some studies have shown an 

increase in levels of plasma noradrenaline in depressed subjects (Esler et al., 1982). 

 

Genetic vulnerability is an important contributing factor in depression (Fava and Kendler, 

2000), although the extent to which reduced HRV in depressive disorders is dependent 

upon genes or environment is unknown. The present findings demonstrate for the first time 

that FSL rats, a well validated genetic animal model of depression, exhibits reduced HRV 

consistent with clinical observations in depression. Other rodent models of depression 

including olfactory bulbectomy (Ob) and chronic mild stress (CMS) also exhibit higher HR 

and reduced HRV (Moffitt et al., 2002; Grippo et al., 2005). It is uncertain to what degree 

changes in cardiovascular status are influenced by the stressful procedures involved in 

inducing depressed-like behaviour in Ob and CMS models. Hence, one advantage of the 

behavioural phenotype in FSL rats is that it does not require any external intervention. 

Furthermore, we compared cardiovascular data obtained in conscious FSL rats to that in 
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obtained in two established control lines, neither of which shows depressed-like behaviour 

(Overstreet et al., 2005). These data indicate that an underlying biological abnormality in 

FSL rats may be linked to the reduction in HRV seen in the conscious state. Whether or not 

external or early life influences contribute to changes in cardiovascular status in FSL rats is 

not known. 

 

Conscious FSL rats had significantly reduced BRS during the day and night compared to 

both FRL and FSL rats. Recent studies demonstrated a reduction in spontaneous BRS in 

depressed patients (Watkins and Grossman, 1999; Broadley et al., 2005). Indices of 

spontaneous BRS are inversely related to resting HR due to the influence of sinus cycle 

length on vagal inputs to the sinoatrial node (Zaza and Lombardi, 2001). We found that 

FRL rats also exhibit a reduction in BRS that could be almost entirely accounted for by the 

fact that their heart rates are higher at rest. In contrast, correcting for HR had no effect on 

the low values of BRS obtained in conscious FSL rats. This may reflect an alteration in 

reflex regulation of HR independent of resting levels of autonomic tone to the sinoatrial 

node in FSL rats (Pagani et al., 1988; Persson et al., 2001). There were some similarities 

between FRL and FSL rats including increased HF power of SAPV compared to SD rats. 

These characteristics may arise from separate mechanisms. In FRL rats they are likely due 

to resting tachycardia; whereas, in FSL rats they are likely due to reduced baroreflex 

buffering of respiratory-related AP oscillations. 

 

Susceptibility to ouabain-induced arrhythmias was examined in FSL and FRL rats 

compared to SD rats under urethane anaesthesia. Under this anaesthetic, FSL and FRL rats 

both exhibit a marked lack of vagal tone leading to tachycardia and reduced spontaneous 

BRS (Chapter 4). These findings indicate that urethane has an exaggerated influence on 

HR in FSL rats, since under conscious conditions HR was normal in this strain. In FRL rats 

HR is elevated under urethane as well as in conscious conditions. Ouabain primarily had 

potent negative dromotropic effects on the heart and led to conduction block in all strains. 

In contrast, incidence of VPB and VT was higher in FSL rats compared to both SD and 

FRL rats. The cardiotoxic effects of ouabain are due to a combination of direct effects on 

the myocardium and increases in autonomic activity (Yamazaki et al., 1996; Yamazaki et 

al., 1999). The dose of ouabain required to elicit conduction block in FRL and FSL rats 

was slightly less than in SD rats. One could speculate that, because negative dromotropic 

effects of ouabain result primarily from exocytotic release of ACh, this difference is 

because the initial level of vagal tone is lower in FRL and FSL rats compared to SD rats. In 
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contrast, ventricular tachyarrhythmias are caused primarily via arrhythmogenic actions of 

intracellular Ca2+ and exocytotic release of noradrenaline. It is possible that the higher 

incidence of ventricular tachyarrhythmias seen in FSL rats compared to both FRL and SD 

rats is because there is, additionally, a higher basal level of sympathetic activity in FSL 

rats. Although limited by a relatively small sample size, our findings indicate that FSL rats 

are more vulnerable to arrhythmogenic effects of ouabain compared to FRL and SD rats. 

 

Although relatively specific for the cardiac Na+/K+-ATPase, ouabain is known to have 

other effects centrally and putative direct effects on baroreceptor fibres. A single bolus 

dose of ouabain (30 µg) was reported to increase discharge of vagal superior laryngeal 

fibres in rat, which the authors suggest reflects an excitatory effect on afferent baroreceptor 

activity (Abreu et al., 1998). Our results do not support this finding, since ouabain did not 

alter the magnitude of SNA inhibition evoked by AN stimulation. In contrast, a decline in 

reflex bradycardia evoked by AN stimulation was noted during infusion of ouabain, until it 

was ineffective in producing reflex bradycardia just prior to conduction block. Presumably, 

this is due to a selective reduction in responsiveness of the sinoatrial node rather than 

changes in sensitivity of afferent or neural components of the baroreflex, since reflex 

effects on splanchnic SNA were intact throughout the experiments. We speculate that 

reduced responsiveness of the sinoatrial node or atrioventricular conduction system to 

baroreflex input is related to the arrhythmogenic effects of ouabain. This is supported by 

our observation that the greater the magnitude of resting bradycardia evoked by AN 

stimulation prior to ouabain infusion, the larger the dose of ouabain required to elicit 

complete conduction block.  

 

The neurobiological basis of reduced HRV and BRS in depression is unknown. FSL rats 

exhibit several neurochemical abnormalities that may account for abnormal autonomic 

regulation of HR seen in this strain. This may include the cholinergic hypersensitivity for 

which they were originally bred, although several behavioural characteristics in FSL rats 

have now been shown to be independent of cholinergic responses (Overstreet, 2002). 

Serotonergic abnormalities have also been observed in several brain regions although 

cardiovascular brain regions have not been explored (Yadid et al., 2000; Overstreet et al., 

2005). Neurotransmitters, such as acetylcholine (Greco et al., 1999) or serotonin (Depres-

Brummer et al., 1998), modulated by the sleep-wake cycle may also be relevant since 

indices of cardiac sympathetic activity were increased only at night. Similarly, 

neuroendocrine factors altered in FSL rats may play a role. For example, corticotrophin-
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releasing hormone is diurnally regulated by pre-autonomic hypothalamic nuclei (Buijs et 

al., 2003) and modulates HRV (Arlt et al., 2003). Alternatively these differences in HRV 

at night may be secondary to autonomic effects of activity, feeding or stress-reactivity 

known to differ in FSL rats compared to controls (Yadid et al., 2000; Overstreet et al., 

2005).  

 

Summary 
In conclusion, we demonstrate for the first time reduced HRV and BRS in a genetic animal 

model of depression, closely resembling the cardiac autonomic abnormalities seen in 

human depression. Reduced reflex vagal modulation and predominance of sympathetic 

activity at the sinoatrial node seen in FSL rats may predispose to development of cardiac 

complications, including arrhythmias. Urethane anaesthesia may exacerbate autonomic 

abnormalities in FSL rats leading to increased susceptibility to ouabain-induced 

arrhythmias. Future investigation of biological causes of reduced HRV and BRS in FSL 

rats may shed light on neurochemical abnormalities underlying increased cardiovascular 

risk in depression.  
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Chapter 7 Concluding Remarks and Future 

Directions 
 

 

The critical neural circuitry underlying circulation and breathing movements is located 

within the hypothalamus and lower brainstem. This circuitry is wired from birth to respond 

to homeostatic challenges that permit survival in the face of raised CO2, injury or blood 

loss. This circuitry must also adapt to changes in oxygen requirements during exercise, 

such as when catching prey or fleeing predators, or changes in arousal state. In addition, 

there must be adaptive solutions to long term physical changes including aging, pregnancy 

and disease. Hence, identifying and understanding the synaptic and genetic mechanisms 

that regulate activity of cardiorespiratory circuits are of immense importance. Figure 7.1 

shows a simplified schema of the organisation of peripheral afferent and higher order 

inputs to the lower brainstem that modulate autonomic function and respiration, as a result 

of this thesis and extensive previous work. Neurotransmitters implicated in different 

pathways are shown. 

 

The findings of Chapter 3 provide new information about the neuronal targets and function 

of cholinergic inputs to the RVLM. Cholinergic agonists increase sympathetic activity via 

activation of pre- and postsynaptic mAChR in the RVLM (Giuliano et al., 1989; Huangfu 

et al., 1997). This response was presumed to involve the M2 receptor and was thought to 

excite RVLM neurons mainly via disinhibition (Giuliano et al., 1989; Milner et al., 1989; 

Arneric et al., 1990). We showed for the first time that some non-TH spinally projecting 

neurons express mRNA for the M2 or M3 receptor; however, both TH and PPE+ spinally 

projecting neurons receive inputs from cholinergic terminals. Endogenous cholinergic 

inputs hence presumably modulate activity of a subpopulation of C1 and non-C1 RVLM 

neurons via activation of pre and post-synaptic mAChR, respectively.  

 

The specific functional roles of RVLM neurons that receive cholinergic inputs are not 

known. Presumably many of them are barosensitive vasomotor neurons, as local mAChR 

activation increased splanchnic SNA, HR, AP and barosensitivity. RVLM neurons that 

supply cutaneous beds probably do not receive cholinergic inputs, since increases in TBF 

evoked by central mAChR activation were not mediated via the RVLM. Others may be 
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non-vasomotor in function; eg RVLM neurons that are low glucose-sensitive and supply 

the adrenal gland (Madden et al., 2006), although we did not test the effect of local  

mAChR activation on this subgroup. Future studies could record from multiple 

sympathetic outflows following direct injection of muscarinic agonists into the RVLM to 

elucidate precisely which populations of RVLM neurons are affected.  

  

In this thesis it was demonstrated that RVLM mAChR activation differentially affects 

cardiovascular reflexes, producing a resetting of the sympathetic baroreflex to higher AP 

and higher gain but attenuating sympathoexcitatory reflexes. This is unlike other amine or 

peptide receptors in the RVLM that when activated selectively gate effectiveness of one 

reflex but do not tend to alter others. For example, activation of 5-HT1A (Miyawaki et al., 

2001) or δ-opiate receptors (Miyawaki et al., 2002b) in the RVLM selectively inhibits the 

somatosympathetic reflex; whereas activation of µ-opiate receptors selectively inhibits the 

sympathetic baroreflex (Miyawaki et al., 2002b). These data support the notion that 

different neurotransmitter inputs to the RVLM encode functional specificity in control of 

sympathetic outflow and reflex function. 

 

The modulation of cardiovascular reflexes by different inputs is presumably critical to 

certain patterns of behaviour. During exercise, for example, the increase in visceral 

resistance and buffering capacity of the baroreflex acts to maintain high systemic AP and 

offset fluctuations of muscle blood flow (Rowell and O'Leary, 1990; Williamson et al., 

2006). Other stimuli that reset the baroreflex to higher SNA and AP include air jet stress 

(Kanbar et al., 2007) or activation of the dorsomedial hypothalamus (DMH) (McDowall et 

al., 2006). Baroreflex adjustments during ‘fight or flight’ responses or stress may also 

serve to anticipate cardiovascular challenges accompanying potential sudden movement. 

Conversely, there is a suppression of baroreflex control during REM sleep, which is 

accompanied by muscle atonia (Nagura et al., 2004). Similarly, opiates may be released in 

the RVLM to inhibit the baroreflex during pain or blood loss to promote 

sympathoinhibition and inactivity. Hence, the set-point and sensitivity of the baroreflex are 

determined by the CNS depending on behaviour or arousal state.  

 

Our data indicate that the cholinergic pathway from the PPT to the RVLM is one important 

subcortical pathway involved in resetting of the baroreflex (Figure 7.1). Recent work in 

humans also indicates the importance of subcortical structures in cardiovascular changes 

associated with anticipated exercise (Green et al., 2007). Input from cortical regions  
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probably relays via brainstem circuits capable of parallel adjustments of muscle and 

cardiorespiratory activity, such as the PPT. These circuits can also operate independent of 

higher input, eg during ‘fight or flight’ responses (McDowall et al., 2006; Kanbar et al., 

2007) or in decerebrate animals (Chong and Bedford, 1997; Koba et al., 2006) and hence 

have probably been crucial to survival.  

 

Future studies may examine effects of central mAChR blockade on cardiovascular 

adjustments, including modulation of the baroreflex, during exercise or sleep in animals. 

Are the same brain regions involved in baroreflex resetting during ‘fight or flight’ 

responses as well as exercise? Moreover, are the same neurochemicals involved, eg are 

mAChR in the RVLM involved in cardiovascular responses to air jet stress? Recent work 

has shown that diurnal activation of orexinergic projections from the lateral hypothalamus 

to the PPT mediates muscle activation during wake and muscle atonia during sleep 

(Takakusaki et al., 2005). Future studies may determine whether or not orexinergic inputs 

to the PPT contribute to diurnal variations of AP or baroreflex function.  

 

As described in Chapters 1 and 3, nAChR and mAChR have widespread effects in 

autonomic and respiratory nuclei within the ventral medulla. As shown in Chapters 4 – 6, 

rats selectively bred for differences in sensitivity to cholinergic agonists show specific 

autonomic and respiratory disturbances. These data suggest that genetic differences in 

central mAChR sensitivity have long term consequences for regulation of cardiorespiratory 

function. Previously, only gene knockout models have been used to illustrate 

cardiorespiratory abnormalities following deletion of specific mAChR or nAChR subtypes 

(Bymaster et al., 2001; Bymaster et al., 2003b; Fisher et al., 2004). These models are 

useful but the interpretation of central changes is limited because loss of nAChR or M2 or 

M3 receptors also disrupts peripheral autonomic transmission and studies have examined 

only knockout rather than knock-in or overexpression models. Future studies might utilise 

alternative knockout models that target kinases involved in regulation of receptor-G 

protein phosphorylation (GPRKs). For example, mice lacking GPRK-5 are supersensitive 

to behavioural and hypothermic effects of OXO and lack mAChR desensitisation 

(Gainetdinov et al., 1999). Moreover, peripheral mAChR involved in airway and cardiac 

responses appear to be regulated by a different isoform, GPRK-3 (Walker et al., 1999). 

 

Changes in central mAChR function in FSL rats may be complex and hence interpretation 

of data is not straightforward. We showed that in some brain regions there are increases in 
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mRNA indicating increased receptor levels. However, as we and others (Greco et al., 

1998; Daws and Overstreet, 1999) have shown, this is not the case in all brain regions, 

which could indicate regional differences in mAChR regulation. Our data also show that 

mAChR supersensitivity in FSL rats is limited to thermoregulatory responses; whereas 

sympathetic effects appear unaffected and respiratory depressant effects are attenuated. 

Hence, mAChR involved in different CNS functions must be regulated independently at 

the genetic or post-transcriptional level and clearly the breeding protocol used in FSL rats 

does not result in upregulation of all mAChR systems. Moreover, it is clear that there are 

several neurotransmitter abnormalities in FSL rats, including changes in serotonin, 

dopamine and peptide signaling (Yadid et al., 2000; Overstreet et al., 2005) that could 

account for the autonomic and respiratory disturbances. Presumably, these arise due to 

functional interactions between mAChR and other G-protein coupled receptor pathways, or 

changes in common intracellular regulatory mechanisms. 

 

The reduction in HRV and BRS seen in FSL rats has several implications. Because we 

found a reduction in reflex control of vagal input to the heart as well as peripheral 

sympathetic activity, autonomic disturbances in FSL rats presumably have a central 

component. The precise areas involved are unclear but the activity of neurons in several 

key regions of the medulla, including the NTS, RVLM or NA, may be disrupted by 

variations in nAChR or mAChR function. Future studies may address the involvement of 

other neurotransmitters such as endogenous opioids, angiotensin or serotonin in central 

baroreflex pathways in FSL rats, or the functional interaction between cholinergic and 

other neurotransmitter receptors. 

 

We observed a heightened susceptibility to ouabain-induced arrhythmia in FSL rats under 

anaesthesia. It remains to be seen whether or not this reflects altered basal levels of 

autonomic input to the sinus node. The reduction in HRV seen in FSL rats, and increased 

LF/HF ratio at night reflects a reduction in reflex vagal activity and elevated sympathetic 

activity. This altered autonomic imbalance has been considered pro-arrhythmic (Hull et al., 

1990; Barron and Lesh, 1996; Zipes and Wellens, 1998; Lombardi, 2002). However, 

issues surrounding interpretation of spectral indices, particularly as a marker of 

sympathetic activity in rat, are still controversial. The best evidence to data has come from 

studies using autonomic blockade. For example, in conscious rats LF/HF ratio is reduced 

by beta-adrenergic receptor blockade with atenolol following pre-treatment with atropine 

to block vagal inputs (Waki et al., 2006). Ongoing work in our laboratory has also shown 
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that in conscious FSL rats LF/HF ratio is normalised by atenolol (C. Hildreth, personal 

communication). Hence, the simplest interpretation and one supported by our data is that 

the LF/HF ratio does reflect the level of sympathetic activity, particularly against a low 

background level of vagal activity, as presumably is the case in FSL rats. 

 

FSL rats had an exaggerated increase in HR under urethane anaesthesia compared to the 

conscious state compared to other strains. This effect was intriguing because non-volatile 

as well as volatile anaesthetic agents exert their effects by binding specific 

neurotransmitter gated ion channels (eg. GABA, muscarinic, nicotinic, NMDA, AMPA) 

(Hara and Harris, 2002). Hence, the exaggerated effect of urethane on HR may reflect 

underlying changes in nicotinic or GABA receptors, for example, that control HR in FSL 

rats. Moreover, because urethane altered autonomic activity, it could have contributed to 

the increased susceptibility to arrhythmia seen in FSL rats. 

 

In humans, perioperative complications associated with anaesthesia including arrhythmias 

are a major problem (Newland et al., 2002). Many anaesthetic agents bind nAChR and 

mAChR (for review see (Cohen et al., 2006). Volatile and non-volatile anaesthetics also 

cause reductions in HRV and BRS (Constant et al., 2000); although to our knowledge 

there have been no studies that have examined the relative autonomic effects of 

anaesthetics with actions at cholinergic versus other neurotransmitter receptors. Variations 

in central cholinergic receptor sensitivity could directly modulate autonomic effects of 

anaesthetics and hence predispose to, or protect from, anaesthesia-related arrhythmia and 

possibly death.  

 

The FSL rat is considered to model many of the symptoms seen in depressive disorders 

(Yadid et al., 2000; Overstreet et al., 2005). Alterations in behaviour, sleep and 

psychomotor function in FSL rats reflect in part the widespread involvement of mAChR in 

cortical and subcortical functions (Yadid et al., 2000; Overstreet et al., 2005). Other 

neurotransmitter disturbances besides ACh, in particular serotonin, are also implicated in 

behavioural alterations seen in FSL rats (Overstreet et al., 1998). Moreover, two week 

administration of conventional (eg SSRI) or novel antidepressants can alleviate these 

symptoms in FSL rats (Zangen et al., 1997; Yadid et al., 2000). 

 

The findings of this thesis are the first to show that FSL rats exhibit cardiovascular 

disturbances similar to those reported in depressed humans, ie reduced HRV and BRS 
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(Agelink et al., 2001; Agelink et al., 2002). Increased risk of fatal arrhythmia in patients 

with depression and cardiovascular disease has been attributed to abnormal autonomic 

nervous system activity as well as other pro-arrhythmic factors (Carney et al., 2005a). The 

finding that FSL rats are also more susceptible to ouabain-induced ventricular arrhythmia 

further supports this possibility. Despite the adverse relationship between depression and 

cardiac mortality, there is doubt as to the precise aetiology of autonomic disturbances in 

depressive disorders and whether or not they involve psychosocial or biological factors or 

a combination of both (Carney et al., 2005a; Freedland et al., 2005; Gehi et al., 2005a). 

The present findings in FSL rats demonstrate that cardiovascular disturbances associated 

with a depressed phenotype could have a biological foundation in changes in central 

neurotransmitter sensitivity. Figure 7.2 presents a hypothetical model of how genes that 

influence muscarinic or related neurotransmitter receptors involved in control of central 

autonomic outflow could lead to increased cardiovascular risk in depression.  

 

Evidence for hypersensitive mAChR in depression comes from pharmacological challenge 

studies, which have shown increased cortisol, endorphin and induction of REM sleep in 

response to mAChR agonists in depressed patients (Risch et al., 1983; Gillin et al., 1991). 

Also, chronic stress, which may contribute to the pathogenesis of depression, has been 

shown to increase the sensitivity of mAChR in rat (Gonzalez and Pazos, 1992; Roman et 

al., 2006). At present, few studies have directly examined the sensitivity of muscarinic or 

other receptors in control of autonomic outflow in human depression. Intriguingly, the 

same polymorphisms in the gene encoding the M2 receptor are associated with alcohol 

dependence and depressive disorders (Wang et al., 2004) as well as indices predictive of 

increased cardiovascular risk (increased LF/HF ratio and delayed heart rate recovery after 

maximal exercise) (Hautala et al., 2006).  

 

Clearly there is a spectrum of neurotransmitter disturbances in FSL rats that could 

contribute to altered autonomic outflow in this strain. It is also possible that inappropriate 

regulation of autonomic function by arousal or motor systems contributes to cardiovascular 

abnormalities seen in FSL rats and depressed humans (see Fig. 7.1). Future studies may 

determine whether or not conventional or novel antidepressants can alleviate autonomic 

dysfunction seen in FSL rats. Moreover, the use of agents that target serotonin or 

noradrenaline uptake selectively, or other agents that target peptide systems or 

neurotrophins, may help elucidate the underlying causes of autonomic dysfunction seen in 

FSL rats.  
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Figure 7.2     Hypothetical flow diagram of factors predisposing to increased
cardiac risk in depression. A combination of genetic and environmental factors 
is thought to underlie the onset and recurrence of depression symptoms, mainly 
as a result of neurotransmitter perturbations in brain regions concerned with 
mood, behaviour and sleep. Autonomic inputs to the heart are also altered in 
depression, although the underlying cause is unknown. This thesis shows that
a genetic animal model of depression bred for muscarinic receptor hyper-
sensitivity, the FSL rat, exhibits similar autonomic disturbances to those reported 
in human depression (ie. reduced HRV and BRS). This suggests for the first time 
that a depressed behavioural as well as cardiovascular phenotype in rat may be 
due to disturbances in similar neurotransmitter systems. It is likely that other 
factors, including prevalence of smoking, also contribute to increased 
cardiovascular risk in human depression.
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Chapter 8  Appendices 
 

I. Appendix 1 
 

A Guide to R-R Interval Sequence Analysis in Spike 2  
A script for use in Spike2 (Cambridge Electronic Design Ltd, UK) to calculate 

spontaneous heart rate baroreflex sensitivity using the sequence method is transcribed in 

full at the end of this guide. The algorithm and initial version of the script were written by 

David Crick and Greg Smith (CED Ltd, UK). The version transcribed below was adapted 

by the candidate to allow heart rate to be derived from an AP wave (not just ECG) and to 

increase user-friendliness and enable settings to be altered without going back into the 

programming.  

 

The version below has default settings of three consecutively lengthening or shortening 

sequences and a corresponding rise or fall in MAP of 0.5 mmHg, respectively, with no 

time lag. The first dialogue box will let you change the number of consecutive sequences 

and or the size of the corresponding change in MAP (Fig 8.1A, Dlg 1). The mode of import 

of ECG or AP events is alternative (corresponding integers in the dialogue box are 0 peaks, 

1 troughs, 2 data rising through level, 3 data falling through level) (Fig. 8.1A, Dlg 2). The 

script will also let you find sequences corresponding to changes in systolic or diastolic 

pressure or in fact any waveform in the data file. All you have to do is first create the 

channel of interest in the data file (eg systolic pressure) (if not already a separate channel) 

and then choose this channel as the waveform channel containing BP data when the first 

dialogue box opens up. 

 

Once the script is running, an XY view (X: R-R interval in sec; Y: MAP in mmHg) will 

pop up containing all lengthening sequences and the slope is displayed (MAP(mmHg)/R-R 

interval(s)) (Average slope (1)) (Fig. 8.1B). It is inconvenient but naturally the baroreflex 

sensitivity is the inverse of this value in s/mmHg (x 1000 to obtain ms/mmHg). You have 

to record this value; it will not remain once you next click OK. Similarly, the next click 

plots the additional shortening sequences on the XY view and displays the slope (Average 

slope (0)) – record this too. On the next click you will return to the data file and the XY 
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view remains open. In the data file, you will find that a heart rate event channel has been 

created and each sequence is captured in a separate event channel (Fig 8.1B). If you do not 

save these new memory channels then they will be deleted once you close the file. There 

are numerous additional things one might do with these channels – for example, the total 

number of sequences with respect to total number of changes in MAP has been used in cats 

as an index of “baroreflex effectiveness” (Di Rienzo et al., 2001). 

  

The only catch if you have long recordings is that you have to export the bit of the data file 

you want to analyse before running the script (2 – 5 mins of data, or longer). Another PhD 

student in the lab (Cara Hildreth) has overcome this potential frustration by creating a 

script to export short segments of data for sequence analysis from the main data file before 

she starts the analysis itself.  

 

The minimum requirement for application of this script is an AP waveform recording. 

ECG is optional but recommended if there is to be no doubt about the R wave fiducial 

point or if you suspect vascular remodeling in an animal or if there is doubt over the 

integrity of the AP wave recording. Changes in arterial stiffness / aortic wave propagation 

may affect measures of heart rate variability measured using pulse interval. In our 

experience there is little difference between heart rate variability calculated from R-R 

interval from the ECG or pulse interval from intra-arterial pressure recordings in rat. There 

are certainly data in humans to indicate differences between R-R interval variability taken 

from the ECG and pulse interval variability when AP was recorded non-invasively from a 

finger cuff (Constant et al., 1999). Recommended minimum sampling rate for AP or ECG 

is 200 Hz. 
 
Sequence Analysis 2005© 
 
'in this version events are extracted from ECG to the MEMchannel as they rise through a level. At 
present this is set to  
'7.8, but obviously can be changed to suit. 
'need to have output data stored somewhere. 
 
'18th Jan changes (JP). 1) HR channel changed to event positive MemChan(3,0,0,0) 
'2) Added MemImport variables for ECG event channel 
'3) Added Dlg for creating heart rate channel and changed to var in MemImport 
'4) Changed Interact to all possible interactions 8191 
'5) Undelete memory channels 
 
'$BaroRef|Locate areas with baro reflex and mark them 
var RWave%;             'the memchan that holds the events from the ECG peaks 
var BP% := 1;           'the waveform channel with the BP data 
var ec% := 2;           'the waveform channel with ECG data 



 187

var numint% :=3;        'the number of intervals used as a default 
var bpchng  :=0.5;       'the minimum fall in BP to seek if consecutive rise or fall in RR periods 
var mcl%, mcs%;              'The memory channels to hold our "interesting" places 
var mode% :=2;    'the mode of the ECG event channel for MemImport 
var time :=0.08;   'the minimum interval for detecting ECG events for MemImport 
var level :=10;   'the level for detecting ECG events depending on mode for 
MemImport 
 
'make sure we have a time view first 
var tv%, xy%;         'the original time view and an xy view 
tv% := FileOpen ("", 0, 3, "Browse to find a data file"); 'find a file to open 
Interact("find a file to work on",1023); 'find a file 
'if ViewKind()<>0 then message("Select a time view first"); halt endif; 
 
DlgCreate("Values to use in baroRef program");  'Start new dialog 
DlgChan(1,"Where is the ECG - Channel ?",16384+1); 
DlgChan(2,"Where is the BP channel",16384+1); 
DlgInteger(3,"How many R-R intervals?",2,6,0,0,1); 
DlgReal(4,"What change in BP do you want to seek?",0.000000,20.000000,0,0,0.100000); 
DlgButton(0,"Cancel"); 
DlgButton(1,"OK"); 
if DlgShow(ec%,bp%,numint%,bpchng) = 0 then    'ok is 0 if user cancels,  variables updated if not 
   halt; 
endif; 
 
xy% := FileNew(12,1); 'make an xy view 
if xy%<=0 then halt endif; 
View(tv%);            'back to the time view 
 
DlgCreate("Values for creating memory channel holding ECG events"); 'Start new dialogue 
DlgInteger(1,"Detect peak or level?",0,3,0,0,1); 
DlgReal(2,"Minimum interval for detecting events?",0.000000,1.000000,0,0,0.100000); 
DlgReal(3,"Level?",0.000000,100.000000,0,0,0.100000); 
DlgButton(0,"Cancel"); 
DlgButton(1,"OK"); 
if DlgShow(mode%,time,level) = 0 then    'ok is 0 if user cancels,  variables updated if not 
   halt; 
endif; 
 
' Now create a memory channel holding events for ECG peaks 
rwave% := MemChan(3,0,0,0); 
ChanShow(rwave%); 
MemImport(rwave%,ec%,0.0,MaxTime(),mode%,time,level); 
 
mcl% := MemChan(2);    'create a memory channel 
if mcl%<=0 then halt endif; 
ChanShow(mcl%);        'make it visible 
ChanTitle$(mcl%, "Lengthen"); 
FindIncInc(numint%, bpchng, 0, maxtime(), RWave%, BP%, mcl%, xy%, 1); 
 
mcs% := MemChan(2);    'create a memory channel 
if mcs%<=0 then halt endif; 
ChanShow(mcs%);        'make it visible 
ChanTitle$(mcs%, "Shorten"); 
FindIncInc(numint%, bpchng, 0, maxtime(), RWave%, BP%, mcs%, xy%, 0); 
 
Interact("Admire data", 1023); 
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'n%     The number of periods of consecutive changes we want 
'minInc The minimum increment over the n beats that we will accept 
'st   Start time of the range to search 
'et     End time of the range to search 
'ec%    The event channel that marks the peaks 
'bp%    Channel holding blood pressure data 
'mc%    memory channel to hold marks of the first interesting beat 
'xy%    an XY view to fill with the data points 
'up%    Selects lengthening rr interval if 1, shortening if zero 
'Return the number of marks we inserted 
Func FindIncInc(n%, minInc, sT, eT, ec%, bp%, mc%, xy%, up%) 
if n% < 2 then return -1 endif;   'stupid count of periods 
if (ChanKind(ec%)<2) or (ChanKind(ec%)>8) then return -2 endif; 
if (ChanKind(bp%)<>1) and (chankind(bp%)<>9) then return -3 endif; 
var ne%, ok%; 
ne% := Count(ec%, sT, eT);   'count events in the time range 
if ne% <= n% then return 0 endif; 
var t[ne%], p[ne%], b[ne%], i%, j%; 
if ChanData(ec%, t[], sT, et)<>ne% then return -4 endif; 
arrconst(p, t);               'copy all array t into p 
arrdiff(p);                   'convert to periods 
for i% := 0 to ne%-2 do 
   b[i%+1] := Chanmeasure(bp%, 2, t[i%], t[i%+1]); 
   next; 
 
var s, slopesum := 0, found% := 0; 
 
'Now search for n% consecutive increasing periods. 
for i% := 1 to ne%-2-n% do 
   j% := 0; 
   if (up% > 0) then 
      while (j%<n%-1) and 
            (p[i%+j%] < p[i%+j%+1]) and 
            (b[i%+j%] < b[i%+j%+1]) do 
         j% += 1; 
      wEnd; 
   else 
      while (j%<n%-1) and 
            (p[i%+j%] > p[i%+j%+1]) and 
            (b[i%+j%] > b[i%+j%+1]) do 
         j% += 1; 
      wEnd; 
   endif; 
   if (j% = n%-1) then 
      if (up% > 0) then 
         ok% := (b[i%+n%-1] - b[i%]) >= minInc; 
      else 
         ok% := (b[i%+n%-1] - b[i%]) <= minInc; 
      endif; 
      if ok% then 
         MemSetItem(mc%, 0, t[i%-1]); 
         View(xy%).XYAddData(1, p[i%:n%], b[i%:n%]); 
         s := Slope(p[i%:n%], b[i%:n%]); 
         slopesum += s; 
         found% += 1; 
      endif; 
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   endif; 
   next; 
 
if found% > 0 then 
   Message(Print$("Average slope (%d) is %g", up%, slopesum/found%)); 
else 
   Message("No places meet the criterion %d", up%); 
endif; 
return found%; 
end; 
 
 
Func Slope(x[], y[]) 
var coef[2]; 
FitPoly(coef, y[], x[]); 
return coef[1]; 
end; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Dlg 1

Dlg 2

Average
slope = BRS

Figure 8.1.   Sequence Analysis in Spike2 software (CED Ltd, UK) using user-defined 
parameters for detecting R-R or pulse interval baroreflex sequences

A

B
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II. Appendix 2 
 

A Guide to Spectral Analysis in Spike 2 
 
Spectral analysis was performed using Spike2 software (Cambridge Electronic Design Ltd, 

UK) and an Excel® spreadsheet was created to capture data. 

 

Spike2 has an in-built power spectrum analysis tool that converts time series into the 

frequency domain using a fast-Fourier transform (FFT). The major pitfall when using this 

tool to create power spectra of AP, R-R interval and nerve activity is inappropriate 

processing of the raw signals. The critical factor is that all waveforms for spectral analysis 

must be uniformly re-sampled at a frequency not less than double the highest frequency 

you are interested in (Nyquist frequency). For example, Mayer wave and respiratory 

frequencies occur below ~ 3 Hz in rat; hence a resampling rate of 10 Hz is appropriate. If 

interested in cardiac rhythmicity (~ 6 Hz under anaesthesia) then a resampling rate of 20 

Hz is appropriate, and so on… It is OK to resample at higher frequencies, eg. 100 Hz, but 

bear in mind that the size of the FFT will need to be increased to improve frequency 

resolution in the power spectra. The frequency resolution = sampling frequency / size of 

FFT (eg. a size 256 FFT on 10 Hz data will give a spectral resolution of ~0.04 Hz). 

 

Signal processing  
Systolic Pressure and R-R Interval 

When deriving R-R (or pulse) interval and systolic pressure (or mean or diastolic) from 

ECG / AP, bear in mind that these will need to be converted into a waveform. I found the 

easiest method is to create these channels as RealMark data (using 

Analysis/Measurements/Data Channel). Then using the Create Virtual Channel analysis 

tool this can be converted into a waveform by linear interpolation (Expression is 

Rm({ChanNum})) and the sampling interval can be specified (eg. 0.1 sec for a 10 Hz 

sampling rate). Also make sure that all channels are aligned to the same time origin when 

resampling (Fig. 8.2A).  

 

SNA (or other waveforms acquired online eg PNA) 

Full wave rectify and smooth SNA with a modest time constant (~ 40 ms). Under Channel 

Process choose Interpolate, and here you can select the sampling interval (0.1 sec for 10 
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Hz sampling rate) and align the resampling to begin at the same time as all other channels 

(Fig. 8.2A). 

 

Removal of DC Component 

Prior to spectral analysis make sure that the DC component of all channels is removed 

using Channel Process; this will avoid a very large very low frequency band in the power 

spectra, which will also influence broadband power. One consideration is the time constant 

for DC removal; Spike calculates the mean of data in this time period (as a moving 

average) and subtracts this value from each data point as it moves along the channel. This 

means that fairly stationary data will be unaffected no matter what the time constant, as 

long as it is not too small or large (10 – 30 seconds seems appropriate). Also bear in mind 

the data around the edges of the region selected for spectral analysis; artifacts or dramatic 

changes from baseline here will dramatically affect the data inside the region of interest if 

the time constant for DC removal is too large.  

 

Quantifying Spectral Power 

Spike 2 result files (Fig. 8.2B, 8.4A) can be copied as text and pasted directly into an 

Excel® spreadsheet (Fig. 8.3, 8.4B). Power in specific frequency ranges can be summed 

and the raw values used for calculation of normalised power, LF/HF ratio and other indices 

such as the α-coefficients (Fig. 8.3, 8.4B). In order to obtain meaningful values for SNA 

variability, which can then also be compared between treatment regimens and between 

strains etc, data must be normalised. Absolute deviations of SNA from zero after DC 

removal (µV) (ie power) can be expressed as a percent of absolute mean SNA of the data 

segment (µV). Hence, summed power in frequency ranges is expressed as %2. The 

advantage of Excel is that data can be linked to embedded graphs that automatically 

update, and data can be easily transferred to other programs for presentation etc. Moreover, 

there is also potential for programming using Macros in Excel in order to generate 

autospectra and calculate the transfer function between SAP and RRI or SNA throughout a 

range of frequencies.  

 
 
 
 
 
 

 

 



Virtual channel to create
Waveform from Event
(must be set up as RealMark):
note sampling interval 0.1s

Nerve signals interpolated
using sampling interval of 
0.1s: note all channels DC
removed with time constant
of 10s (moving average).

Virtual channel to create
Waveform from Event
(must be set up as RealMark):
note sampling interval 0.1s

Analysis; Power Spectrum, size 256, Hanning window

Figure 8.2  Signal Processing for Spectral Analysis using Spike2 software (CED Ltd, UK)



Source data linked
to columns on left

SNA power normalised by
expressing every data point
of the SNAvar result as a percent
of mean SNA of the data segment

Summed power in specific
frequency bands, LF/HF ratio

Range of phrenic
frequencies used
to calculate HF

Alpha-coefficients calculated 
from SAP and RRI power 
(formula: SQRT([RRI ]/[SAP ]))LF LF

Copy as text from Spike Result file
and paste - all frequencies of all
result files will match if everything
resampled at 10 Hz

Figure 8.3.  Excel spreadsheet for calculating spectral parameters of SAP, RR interval and 
sympathetic nerve activity



HF range 1-2.5 Hz

Figure 8.4.  Spectral Analysis of SAP and R-R interval in conscious telemetered rats
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