
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

Master’s Thesis

Ned Charles

Design of Three-Dimensional, Path Length Matched Optical Waveguides

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

2

Abstract

A method for designing physically path length matched, three-dimensional photonic circuits is
described. These waveguides, with arbitrary endpoints, were fabricated via the femtosecond
laser direct-write technique. The focus is specifically on the case where all waveguides are
uniquely routed from the input to output; a problem which has not been addressed to date and
allows for the waveguides to be used in interferometric measurements. Two iterative design
methods were created for path length matched waveguides with adequate separation in three
dimensions and minimized curvature. These algorithms could be used to calculate predicted
radius of curvature, bend and transition loss in the waveguides, with results confirmed by
computer simulation methods. Demonstrations via interferometric methods show that the
fabricated circuits were indeed optically path length matched to within 45 μm which is well within
the coherence length required for typical applications, including astronomical measurements.

Acknowledgements

This thesis wouldn’t be complete without the acknowledgement of my colleagues who helped
me tremendously along the way. Thanks to Nem Jovanovic at Macquarie University for helping
coordinate all the design, fabrication work and testing, and also for feedback on my paper and
thesis. Thanks to Paul Stewart for letting me bounce ideas, keeping the lab running in top form
and for putting up with my occasional cursing while sharing an office. To my advisor Peter
Tuthill, for doing a thorough review of this thesis, contributing edits to it, and for coordinating the
Dragonfly project. To my co-advisor, John O’Byrne, for all of the feedback despite coming late
to the process, and for also reviewing and contributing edits to this thesis. To Barnaby Norris,
for helping make all of the data analysis happen and for good advice on portions of the design
process.

I’d also like to thank two others at Macquarie University - Simon Gross for his expertise in the
fabrication of the waveguides and Mick Withford for valuable feedback on our results. Also, a
special thanks to Jon Lawrence at the AAO, who got the direct write waveguide design off to
running start so I could pick up where he left off.

Statement of Student Contribution

The first section in this thesis is the introduction and is a review of existing relevant technologies
and is mostly the work of others and cited appropriately. The theory section is also cited
appropriately, however the review of the design requirements of the project was compiled by
myself and based on a review by the Dragonfly team. The third section with the design of the
waveguides using a cubic spline and developing all the software algorithms is my work, except
for portions of the code that are cited appropriately. An extra acknowledgement is made to Jon
Lawrence (at Macquarie University at the time) for originating the design using a type of spline
for the concept. The concept of the sidestep design was created by the Dragonfly team and

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

3

implemented by myself. The circular arc design in Section 5 was suggested by my advisor,
Peter Tuthill, but implemented by myself.

The next two sections rely heavily on the theoretical calculations made by Snyder and Love in
their important textbook and are cited appropriately. The power throughput and loss testing was
all performed by myself and programmed in Python. The RSoft testing in Section 8 was all
performed by myself. The right angle chip was designed by my colleague Nemanja Jovanovic
from Macquarie University and appropriately acknowledged. The analysis of the path length
from the interferomentric fringe data was performed by Barnaby Norris and Peter Tuthill. The
conclusions were written by myself. The Python code in the appendix was all written by myself,
except for particular algorithms which were borrowed and acknowledged.

All waveguides were fabricated by Simon Gross at Macquarie University along with design help
from Nemanja Jovanovic who also contributed many hours grinding and polishing all of the chip
designs. I would like to acknowledge the help of my advisors, Peter Tuthill and John O’Byrne,
for making edits to this thesis.

I certify that this report contains work carried out by myself, except where otherwise
acknowledged.

Signed………………………………………………………………

Date: 27 April 2012

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

4

Table of Contents

1. Introduction .. 7

1.1 Dragonfly .. 9

2. Theory .. 12

2.1 Optical Waveguides ... 12

2.2 Interferometry ... 12

2.3 Aperture Masking and Closure Phases .. 14

2.4 Single-Mode Waveguides .. 15

2.4.1 Direct Write Waveguides ... 15

2.5 Simulations of Optical Waveguides .. 16

2.6 Design Requirements ... 17

2.6.1 Path Length Matching of Waveguides ... 17

2.6.2 Positioning Input and Output Coordinates ... 18

2.6.3 Orthogonal Endpoints .. 18

2.6.4 Continuity of Waveguides .. 19

2.6.5 Waveguide Curvature .. 20

2.6.6 Spatial Separation of Waveguides ... 20

2.6.7 Physical Chip Write Depth ... 21

2.6.8 Waveguides crossing vertically .. 22

3. Design of Three-Dimensional Waveguides .. 23

3.1 Physical Design of the Remapper .. 23

3.1.1 The Interpolating Cubic Spline ... 24

3.1.2 Using the cubic spline to construct a waveguide 25

3.1.3 Path Length Matching Multiple Waveguides .. 29

3.2 Algorithm to Calculate Path Length of a Curve .. 31

3.3 Translating a Two-Dimensional Spline Curve into Three Dimensions 32

3.4 Spatial Separation of Waveguides ... 33

3.4.1 Determining Proximity between Neighboring Waveguides 34

3.4.2 Adjusting the Curves to Meet Proximity Requirements 35

3.4.3 Spatially Aligning Waveguides ... 37

3.5 Determining Radius of Curvature ... 39

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

5

4. Sidestep Design ... 42

4.1 Adding a Lateral Sidestep to Avoid Interference .. 43

4.2 Proximity Challenges ... 44

4.2.1 An Additional Lead-In Straight Section .. 44

4.3 Effects of Sidestep Design on Radius of Curvature ... 46

5. A Waveguide Based on a Circular Arc ... 48

5.1 Design of the Two-Dimensional Arc-based Curve .. 48

5.1.1 Addition of a Bridging Straight Section .. 50

5.1.2 Addition of a Third Circle ... 50

5.1.3 Constructing a Three Arc Curve .. 51

5.2 Construction of Three-Dimensional Arc Based Waveguides and Proximity
Adjustments ... 54

6. Characterization of Optical Power Loss in Waveguides ... 58

6.1 Bend Loss due to Radius of Curvature .. 58

6.1.1 Bend Loss Calculations ... 59

6.1.2 Algorithm Implementation and Demonstration ... 60

6.2 Comparison of Curvature for Spline and Arc Based Waveguides 61

6.3 Bend Loss Comparison .. 64

6.3.1 Step Index Waveguides ... 65

6.3.2 Gaussian Index Waveguides ... 66

7. Estimated Power Loss Calculations ... 69

7.1 Transition Loss ... 69

7.1.1 Loss Equation .. 69

7.1.2 Algorithm Implementation .. 70

7.2 Transition Loss Comparison... 72

7.3 Total Power Loss for Waveguide Sets ... 74

8. Waveguide Simulation using RSoft .. 78

8.1 Bend Loss .. 78

8.2 Bend Loss for Waveguide Sets .. 80

8.3 Modeling HPO Waveguides in RSoft ... 80

8.3.1 HPO Bend Loss Simulation ... 82

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

6

9. Fabrication and Physical Results ... 84

9.1 Physical Bend Loss Radius Scan Chip .. 84

9.2 Predicted Power and Radius of Curvature Throughputs 89

9.3 Physical Waveguide Path Length Measurements .. 91

10. Conclusions ... 96

10.1 Summary .. 96

10.2 Future Work .. 97

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

7

1. Introduction

Astrophotonics is a relatively new field that exploits new advances in optical photonic
technology to solve problems in instrumental astronomy. Traditionally, advances in
optical astronomy have been accomplished using large bulk optic approaches and ever-
larger telescopes. Advances in Astrophotonics are allowing astronomers to create
fundamentally new instrument architectures which interface to the traditional bulk optic
telescopes, yielding better performance while reducing both size and cost [1].
Applications include fiber optics to link arrays of telescopes into interferometers [2], fiber
Bragg gratings to suppress portions of the frequency spectrum [3], multimode/single-
mode photonic lanterns [4], photonic frequency combs and spectrographs [5], with new
applications emerging all of the time. These devices are allowing astronomers to make
better spectral and angular resolution measurements with potential cost savings in the
tens or hundreds of millions of dollars. With the higher angular resolutions and
precision in signal fidelity, one of the great areas in which astronomers are hoping to
make significant advances is the direct optical imaging of extrasolar planets.

For a given telescope, the theoretical maximum angular resolution is given by the
diffraction limit of 1.22𝜆

𝐷
 radians, where λ is the wavelength of the light and D is the

diameter of the telescope. Telescope sizes have been increasing in a long historical
trend since their invention, and the newest generation of extremely large telescopes
presently under construction will have primary mirrors over 20 meters [6]. However, for
terrestrial telescopes, the actual obtainable resolution is strictly limited not by aperture
but by atmospheric turbulence. One way to correct for atmospheric turbulence is with
adaptive optics, technology that senses the distortions in the optical wavefront incident
on the primary mirror, and then adjusts a deformable mirror to correct for distortions due
to turbulence. This gives a considerable improvement to the angular resolution
obtained by the telescope [7].

Another technique to reduce the turbulent effects of the atmosphere is aperture masking
interferometry. This requires a mask at the pupil plane of the telescope which only
allows light to pass through it at several select small holes. An example of an aperture
mask is shown below in Figure 1 [8]. Such a sparse array can be constructed with non-
redundant baseline spacings, a configuration which results in a much reduced exposure
to the unstable phase noise which comprises atmospheric seeing. This allows for
recovery of each baseline’s Fourier amplitude and phase without the addition of the
extra redundancy “noise” [9]. To analyze the data, the spatial frequencies are extracted
from the Fourier transform of the raw data frames and analyzed by extracting complex
visibilities (the Fourier amplitudes and phases). One key observable which turns out to
be particularly robust against atmospheric seeing is the closure phase, which is defined
as the summed phase around a closed triangle of baselines [10]. Closure phases from

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

8

a point source reference star should all be zero, while non-zero closure phases betray
the presence of asymmetric structure (such as a faint binary companion or planet).

Figure 1 - Example of an aperture mask with nine non-redundant holes (Courtesy: Tuthill et al)

Aperture masking can be thought of as an evolution of an earlier method of speckle
imaging, which takes multiple frames with very short exposure time, permitting statistical
calibration of the effects of the atmospheric seeing over a large enough data sample.
These frames are then analyzed for their visibilities and closure phase information with
the results averaged over the entire data volume. To calibrate these data, the telescope
is pointed at a known point-source reference star and complex visibilities recorded.
Because these two sets of information are taken relatively close in time, the
environment in the telescope, temperature, astronomical seeing, and other factors are
hoped to remain constant [11]. Aperture masking interferometry enables observations
near the diffraction limit for ground based telescopes, making it a powerful tool for
astronomical observation. Use of aperture masking has made major breakthroughs in
the observations of binary stars [12], MIRA variables [13], and Wolf-Rayet stars [14], to
name a few, and continued observations on large telescopes will certainly bring more
discoveries.

Another technology useful to Astrophotonics research is the single-mode optical fiber.
If incoming starlight has been perturbed by the turbulent atmosphere, as is light from a
stellar target without adaptive optics correction, the fiber only allows a single-moded
optical wave to travel through it, filtering out all spatial disturbances in the wavefront
[15]. This comes at a cost, as this smoothing of the wavefront means that all of the
complex spatial modes causing the disturbances in the wavefront are absorbed,
reflected, or dispersed. This can cause a dramatic drop in amplitude of the incoming
signal. However, for many interferometric applications, the loss of light is tolerable and
the benefit bestowed by the mode-cleaning to a single planar wavefront outweighs the
lower signal levels.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

9

The last technology that needs to be introduced for the research presented in this thesis
is the creation of direct-write optical waveguides. These waveguides are created by
focusing a high-power ultrashort pulsed laser into a single block of glass [16]. The
energy deposited by the laser pulses creates a deformity in the glass at the spot of laser
focus, resulting in a positive change in the local index of refraction. If the laser focal
spot traverses through this block of glass, a tunnel of index change is created. This
forms an optical waveguide that traps the light inside it in a manner entirely analogous
to the more common method of a doped-core optical fiber. The light can then be
inserted into one end of the formed waveguide and propagated through to the output. If
the power and other pulse timing parameters are adjusted to the right levels, the
created waveguide exhibits single mode properties. Such waveguides confer all of the
spatial filtering advantages as single-mode optical fibers discussed above. In addition,
the laser focal trajectory within the glass is able to be precisely controlled in space,
meaning that with computer-controlled stages, a waveguide can be sculpted in the glass
to a precision of a few micrometers, giving exquisite control over waveguide locus and
length.

Direct write waveguide fabrication techniques have, at the time of this thesis, been used
to create symmetrical circuits with optical path length matching [17]. These circuits
have required fixed input and output points to construct the waveguides, but no design
techniques currently exist that provide for flexible input and output positions. Flexible
waveguide placement opens up various possibilities for design, and the optical path
length matching of all waveguides allow for interferometric measurements to be made.

1.1 Dragonfly

All of the technologies discussed above are used in combination for the project that is
central to this thesis: the Dragonfly instrument [18]. Dragonfly is an optical pupil
remapping interferometer based on direct-write waveguides fabricated in a single block
of glass. An image of the setup of the Dragonfly instrument is shown in Figure 2 below.

As shown in the diagram, light from a distant star falls on the telescope’s primary mirror.
The telescope reduces the beam, which is then guided via mirrors, a lens and a prism to
a segmented mirror. This segmented mirror has individual hex segments that are
steerable in tip, tilt and piston under computer control. The beam from the mirror
passes through a reducing telescope and is focused upon the face of a flat glass block
by a lenslet array. This glass block initally had eight single-mode waveguides sculpted
within it, using the laser direct write technique. The input pattern of these waveguides
corresponds to the selected segments from the steerable mirror. The mirror segments
are individually adjusted in tip and tilt to maximize the light coupling into the block. The
light then travels through the individual waveguides, which all have a path length
matched within several micrometers. When the starlight wavefronts at the inputs of the

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

10

waveguides are all in phase, the path length equalization means that regardless of the
path that each waveguide takes, if the difference in path length is within the coherence
length of the starlight, the light at the output of all waveguides is still in phase. Thus, we
may perform a coherent remapping of the input pupil to any desired output pupil.

Figure 2 - Artist depiction of the Dragonfly instrument setup showing stellar target, main
telescope and bulk optics that interface with the waveguide chip at center bottom of image

In the case discussed here, this remapping takes the two-dimensional input pattern of
the waveguides and remaps the waveguides to a one-dimensional array. This allows
the one-dimensional output beam to be put through a spectrograph, cross-dispersing
the interferometric fringe pattern of the recombined outputs of the waveguides. Such a
spectrograph arrangement yields information about the stellar target fringe pattern over
a range of wavelengths, maximizing the science return. There is also an inverse
relationship between the spectral width of the signal and the coherence length of the
instrument, where a narrower signal makes for a longer coherence length. Thus, if the
waveguides are path length matched within a smaller distance, a larger spectral width
signal can be resolved.

The advantage of this pupil remapper, besides being able to remap from a two-
dimensional array to a one-dimensional array, is that also confers the resistance to
atmospheric seeing noise that aperture masking provides. In essence, this device is a

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

11

photonic reformulation of an aperture mask, as it takes small portions of the incoming
light pupil with little spatial turbulence over each portion. In addition, the light from each
portion passes through its own single mode waveguide, which performs spatial filtering
on the signal, further increasing its fidelity. Also, due to the precision of the laser
fabrication system, the path lengths of all waveguides can be matched to within a few
micrometers. This gives an enormous advantage over trying to match path lengths via
bulk optics or optical fibers. It also gives the waveguides a small form factor, reducing
the space need for optical coupling, as well as a uniform temperature over all
waveguides, which removes thermal drifts within the apparatus which would otherwise
hamper high precision measurements.

The design of this pupil remapper poses several challenges. This thesis describes the
process of creating usable waveguide designs to perform optical interferometry. It
illustrates the concepts of how to create the waveguides and achieve path length
matching while simultaneously minimizing the curvature of each guide. It is also
important to maximize the separation of neighbors at closest approach to minimize
crosstalk between adjacent guides. This is achieved by rotation of the basic curve in
three dimensions. As a final experimental constraint, the waveguides must all fit within
a specified depth set by the laser focusing optics. This thesis examines the geometry of
creating curved waveguides, methods for measuring the curvature value at each point
in the waveguide, and usage of these curvature values to predict throughput power of
the waveguides. The thesis will also discuss simulation methods to confirm power
predictions, and the detailed discussion of several designs which were analyzed to
compare theoretical, simulated, and physically measured results.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

12

2. Theory

2.1 Optical Waveguides

The creation of optical waveguides relies on the basic optical principle known as Snell’s
Law, which relates the behavior of light travelling through a medium to a property known
as the index of refraction [19]. The index of refraction refers to the speed of light
travelling in that medium, with its value

n =
Speed of Light in vacuum
Speed of Light in material

 (1)

Snell’s Law states that when light passes from one medium to another, there is a
relationship of the angle of incidence of the light and the angle of transmission. The
equation for Snell’s Law is

nisinθi = ntsinθt

(2)

Normally, an incident light ray will pass from one medium to the other and be deviated
by a specific angle. However, if ni > nt, it is possible at certain angles of incidence for
the light to be completely reflected back into the incident medium. This “total internal
reflection” occurs at angles equal to or greater than the critical angle, which is found by
the equation

θc = arcsin �
nt

ni
�

(3)

If a light wave is traveling in a specific medium with an index of refraction higher than
the surrounding medium, at an angle of incidence greater than the critical angle, it will
reflect completely back into the medium. An incident light beam entering, greater than
the critical angle, will continually bounce off the surface boundary between the two
media, while propagating down the length of it. This total internal reflection allows for
the creation of optical waveguides, which is the main focus of the material in this thesis.

2.2 Interferometry

Also central to the work here, is the concept of interferometry, which is based on the
principle of superposition where two waves can be summed together. When the two
waves are superimposed on each other, the resulting signal can have greater amplitude
(constructive interference) or lesser amplitude (destructive interference) depending on
the phase shift between them. This principle is best illustrated with Young’s double-slit
experiment [20]. In this experiment, light from a point source passes through two slits
and is projected onto a screen. On the screen, a fringe pattern can be observed from
the light passing through the slits and undergoing interference. The light produces

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

13

either constructive or destructive interference, depending on the distance from each slit
at a particular point on the screen. The spatial frequency of the observed fringes will
depend on the distance between the two slits. An equation relating the spatial
frequency and the distance between slits can be written as

ΔΘ =
λ
b

(4)

Where b is the distance between slits, and λ is the wavelength of the signal. This
equation is illustrated in the left diagram in Figure 3 below.

Figure 3 - Illustration of double slit experiment for one and two point sources, illustrating
properties of interference (courtesy: Monnier)

As the right hand diagram shows, if a second point source of equal intensity is added at
half the distance of the fringe spatial frequency λ

2b
, the waves will combine 180° out of

phase at the observing screen, leaving a constant, non-zero intensity, but no visibility. If

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

14

the two slits are considered to be two input apertures of an interferometer, separated by
a baseline b, and recombined via paths of identical optical path distance, then
interference fringes on a stellar target can be observed. Information can be obtained
about the size of a single star, the distance between binary stars, or the existence of a
luminous object within close proximity to the star. The angular resolution of an
interferometer is given by λ

2b
, in contrast to the single telescope diffraction limit 1.22λ

D

discussed previously. The largest existing optical telescope has a diameter of 10
meters. In contrast, an interferometer can be fabricated with two points placed much
farther apart (several hundred meters), giving a much higher intrinsic resolving power.

2.3 Aperture Masking and Closure Phases

Using these concepts from optical interferometry, aperture masking theory can be
discussed. Considering the aperture mask depicted in Figure 1, if light from a stellar
target is apodized with this on the mask, every pair of holes on the mask will now act
like an interferometer with a specific baseline fringe frequency and phase, the latter
represented by φ [21]. Starlight passing through the atmosphere will also carry
accumulated perturbations due to refractive index fluctuations above each sub-aperture.
These perturbations manifest themselves as observable phase delays in the signal,
represented by ε. To remove these atmospheric phase delays from the signal, a
quantity known as the closure phase is used. If three of the holes in a particular mask
form a closed triangle, a closure phase can be derived. Fringe phase formed on a
baseline spanning holes 1 and 2, along with the atmospheric phase delays of each hole,
can be written as

Ψ12 = φ12 + ε1 − ε2

(5)

The equations for the other two baselines can be written as

Ψ23 = φ23 + ε2 − ε3

(6)

Ψ31 = φ31 + ε3 − ε1

(7)

The closure phase can then be written as the sum of these three signals. By inspection,
it can be seen that the atmospheric error terms will all cancel out when summed, with a
closure phase, Φ, of

Φ123 = Ψ12 + Ψ23 + Ψ31 = φ12 + φ23 + φ31

(8)

Thus, when using the closure phase to get information about the celestial target, the
phase delay errors introduced by the atmosphere can be ignored to first order. Each
unique group of three holes will give its own closure phase, which is also the phase of
the bispectrum, the complex quantity about the interaction between these individual

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

15

frequency components. These bispectral values can then be analyzed to deliver
information about the stellar target. Each hole-pair can be represented in an aperture
mask as a vector with distance and direction. If each hole-pair has a unique distance
and directon, and therefore spatial frequency, the mask is said to be non-redundant,
with each baseline visibility being unique.

Imaging using aperture masking interferometry requires many repeated exposures or
frames over small exposure times. The small exposure minimizes the atmospheric
disturbances in time. To obtain information about the object, the dark frame intensities
are subtracted and the Fourier transform taken for each frame. Summing these
transforms over all frames gives an image of the power spectrum. This power spectrum
then gives information about the intensity of the stellar target over wavelength. An
example of a power spectrum is given later in Figure 61.

2.4 Single-Mode Waveguides

Single-mode optical fibers have achieved widespread use for telecommunication
applications, because the physical structure of the fiber allows only the primary mode of
a beam of light to propagate within it. This retains the fidelity of a light pulse traveling
within the fiber, allowing the signal to be sent longer distances than in a multimode fiber.
This fundamental mode propagation is what makes single-mode fibers useful in
Astrophotonics applications, as any incoming light signal from an astronomical target is
spatially filtered. This does come with a cost, as only allowing the fundamental mode to
propagate leads to a considerable loss of light. A recent application of using single-
mode fibers for spatial filtering is the FIRST project [22], which is similar to the
Dragonfly project in that it also performs aperture masking AND pupil remapping. The
same interferometric measurements as the Dragonfly instrument can be made, with the
addition of better throughput through optical fibers and ease of adding more
waveguides. This does come with a drawback in that path length matching is harder to
achieve than direct write waveguides as it is difficult to add and subtract lengths of
fibers alone on the scale of micrometers.

2.4.1 Direct Write Waveguides

As laser technology improved over the past few decades, the ability to create high
powered laser pulses of the order of several femtoseconds has allowed for
improvements in laser fabrication technology [23-25]. If a femtosecond laser is focused
in a block of glass, the energy deposited at the point of focus can cause subtle
structural changes which affect the refractive index. Because the pulse is short and
tightly focused, the glass is only modified in a narrow region several micrometers wide,
and the surrounding glass is not be affected. For the types of glass considered here, a
positive change in the index of refraction is produced, resulting in a natural pathway to

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

16

fabricate a waveguide. If the glass is placed on a mechanical stage and moved
according to a specific locus of coordinates, the laser then traces a path in the glass,
creating an optical waveguide. This allows for an optical waveguide to be created in
any shape in two or three dimensions, giving a flexible framework for optical design [26].

To date, any path length matched designs in a single photonic circuit, two or three
dimensional, have used route symmetry, where the paths are mirror images of each
other [27,28]. The Dragonfly application is unique in that any design method must have
the ability to cope with flexible placement of endpoints to meet the specific pupil
remapping demands. Likewise, there has been at least one design [29] where three-
dimensional waveguides have been created with flexible endpoints, but these designs
don’t have path length matching. This illustrates the complexity that the design of
Dragonfly will involve.

2.5 Simulations of Optical Waveguides

To predict the optical performance of any given waveguide, the software design suite
RSoft was used. RSoft has a CAD design environment, which allows for waveguides to
be designed in two or three dimensions. When a waveguide is designed, the
BeamPROP tool allows for simulation scenarios to be created. This entails setting up
factors such as wavelength of the light, index of refraction change of the waveguide and
waveguide propagation values. Calculating the intensity of light is extremely difficult
due to the complex Helmholtz equation [19]. The BeamPROP tool works with the
computational technique known as the Beam Propagation Method. This is an
approximation method that allows for a massive reduction in the calculations that need
to be made, by use of the slowly varying envelope approximation (SVEA) and only
accounting for the local waveguide conditions. Using this method only requires the
distribution of the refractive index in three (or two) dimensional space, n(x,y,z) and the
input field u(x,y) at the start of the waveguide. The software then calculates the
wavefront at any point z > 0 by the equation

∂u
∂z

=
i

2k�
�

∂2u
∂x2 +

∂2u
∂y2 + �k�2 − k2�u�

(9)

where u is a slowly varying envelope function and k� is the reference wavenumber [30].

RSoft also has a specific work-around module for modeling curved waveguides by using
a simulated bend. As a waveguide bends in space, the geometry of the above BPM
equation becomes more complicated as the wavefront shifts with respect to the initial
direction of propagation, z. The simulated bend technique significantly improves
computation time by calculating the wave in the z direction, and approximating the bend
in the waveguide as a change in the index of refraction. The basic equation governing
the simulated bends technique is found in Snyder and Love [31] and is shown below:

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

17

ne
2 = n2(r) + 2nco

2 �
r

Rc
� cosΦ

(10)

Where ne is the effective index of refraction, nco the index of refraction in the waveguide
core, n(r) is the index of refraction profile of a straight waveguide, r and Φ are the polar
coordinates of the waveguide, translated from x and y, with respect to the z axis and Rc
is the radius of curvature of the waveguide. With this approximation, calculation times
for some of the three-dimensional waveguides in this thesis were reduced from over
eight hours to less than two minutes.

2.6 Design Requirements

For the initial prototype of the Dragonfly project, to keep the form factor small while
maximizing the Fourier coverage obtained, a design with eight waveguides was chosen.
This would give 56 (select 3 out of 8) possible closure phase triangles. In the initial
design process, along with the analysis of physical form factor, fabrication process, and
desired input and output points, there were eight physical design requirements to be
considered in this design. These requirements were as follows:

• All different waveguide path lengths must be matched
• Flexibility in placement of input and output coordinates
• Waveguides orthogonal to substrate surface at entrance and exit
• Waveguides follow a continuous, smooth locus
• Waveguide curvature minimized
• Adequate spatial separation between adjacent waveguides to avoid crosstalk
• All guides must occupy a limited depth set by the laser write
• For waveguides which cross more than once when viewed from above, the depth

order must be preserved (see below).

Each of these design requirements will now be explained individually and the design
process to meet each requirement will be discussed.

2.6.1 Path Length Matching of Waveguides

The most critical design requirement for the Dragonfly design is the matching of the
path length among all waveguides. If a plane wave hits the inputs of all eight
waveguides instantaneously, then the light traveling in all eight waveguides will be in
phase after any fixed distance. If one of the waveguides has a considerably longer path
length than the others, the light in that waveguide will take longer to get to its output,
and will therefore be out of phase. When this path length mismatch grows large
enough, the interference pattern will lose contrast and visibility loss will be severe. This
maximum difference between any two paths is known as the coherence length, the
equation for which is:

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

18

L =
λ2

Δλ
 (11)

where L equals the coherence length, λ is the center wavelength of the optical signal
and Δλ the full width half maximum spectral width of the optical signal [32].

For the first prototype of Dragonfly, the waveguides were fabricated to be optimized at a
center wavelength of 1550 nm. This wavelength was chosen due to the high availability
of test equipment at that wavelength due to it being in the optical communication C
Band, the demonstrated ability of waveguides to be fabricated to transmit at 1550 nm
using Eagle 2000 glass [33], longer atmospheric coherence time and atmospheric
windows, and the fact that adaptive optics systems on telescopes operate better in the
infrared region due to response times. Typical astronomical observations operate with
fractional bandwidths between 1 and 15 %, giving a range for Δλ of 0.015 – 0.233 µm.
Plugging these numbers into equation 11 gives a coherence length range of 10 - 160
µm, meaning that the difference in path length among all of our waveguides should be
less than that range, depending on the target. Anticipating the small variations in
physical path length that can occur during the fabrication process, a design goal of
matching the mathematical locus of all waveguide path lengths to within 0.1 µm was
chosen for the initial prototype. This length falls well within the needed coherence
length, ensuring phase coherence over all waveguides. This is strictly for the
calculations set by the algorithm and does not include the errors in fabrication, which
may be much greater, hence the large margin.

2.6.2 Positioning Input and Output Coordinates

The next design requirement is the ability to place the input and output coordinates any
desired location on the chip face. The ability to have flexible placement of the input and
output points of the waveguides allows for variations in the sizing of the coupling lenslet
arrays and gives the ability to couple into other optical chips with various spacing. This
feature also enables the remapping of a redundant input pupil into a non-redundant
output pupil.

The design also needed to meet the specification that each waveguide will have a
specific input point matched to a specific output point. In the designs here, however,
the primary concern is the layout at the input and output, with the mapping of which
input leads to which specific output driven by convenience. This allows for added
design flexibility in creation of the waveguide paths, which will be discussed later.

2.6.3 Orthogonal Endpoints

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

19

Another design requirement related to the creation of the optical waveguides is that
each track must couple to both the input and output faces at a 90° angle (orthogonally).
The main reason is to ensure phase coherence across all waveguides and to ensure
maximally efficient injection of the beams. As shown in Figure 2, the light from the
telescope falls on our steering mirror as a flat wavefront. This steering mirror then
allows individual sections of the wavefront to be steered in tilt onto its respective input
on the optical chip, via an individual lenslet in the array. Each waveguide input point is
chosen so that the light falls on the optical chip as a mirror reflection, giving a relatively
flat wavefront at the input to the chip. Because the input wavefront is flat, the input
points of all waveguides should lie on a flat face, so that the wavefront arrives at all
waveguide inputs at the same time. If the input face of the chip is at an angle, the light
wavefront will hit the waveguides’ inputs at different times, creating a phase slope
across the array. The input and output faces of the optical chip are also polished as flat
as possible, to prevent phase differences at the chip faces.

The other reason that the input and output points of the waveguide should be
orthogonally is to maximize light coupling into and out of the chip. The incoming light
wavefront is coupled into each waveguide via lenslets. These lenslets are placed in the
longitudinal axis at a position where the focal point of the lens will fall at the input of the
waveguide. When the focused light enters the waveguide, the propagating mode of the
guide is excited by the incident radiation field. The mode does not instantaneously relax
to the guided form, and therefore requires a specific distance for this to happen. So, the
waveguide needs to have a straight section at the input to allow the light to settle into its
propagation mode for the waveguide. If the light is not allowed to settle, but is
subjected to a bend, more loss will occur than if the light was in the correct mode.
Simulations were performed using the optical waveguide simulation tool, RSoft, and
based on the results of these simulations, it was determined that each waveguide
should have a straight section of 1 mm at the input before introducing any curvature.
This 1 mm straight section is also required at the output, since the mode needs to settle
to maximize coupling into the output lenslet.

For the initial Dragonfly prototypes, the input and output coordinates of the waveguides
were on opposite faces of the optical chip. This means that the direction of the input
and output straight sections will be parallel, even though they may be at different
transverse (x,y) coordinates. The flexibility for designs can be incorporated for input
and output coordinates that end up at different angles to each other (e.g. 45°, 90°, etc.),
but such designs were not examined here.

2.6.4 Continuity of Waveguides

To maximize propagation of light through a waveguide, the entire trajectory needs to
have a continuous locus. Any abrupt change, lateral shift, or gap between sections

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

20

would cause major loss of light. Therefore, whatever mathematical function or
computational algorithm used to create the waveguide must create a continuous curve.

2.6.5 Waveguide Curvature

A design factor closely related to continuity is the curvature of the waveguide. A
continuous curve can be approximated by a finite (but large) number of discrete
segments. Any two segments of this three-dimensional curve will lie on the same plane.
If these segments are represented as three-dimensional vectors, and the direction of
these vectors change in space, there will be a curvature value associated with these
segments. This is given by a value known as the radius of curvature, which is the
radius of a circle, known as the osculating circle, which best approximates the curve at
a specific point.

The importance of this radius of curvature measurement, and how it pertains to a
waveguide, will be extensively discussed throughout the rest of this thesis. A method
for measuring the discrete radius of curvature of a given waveguide will be discussed in
Section 3.5. The effect this radius of curvature value has on the optical power
throughput of a waveguide will be analyzed in-depth in Section 6. With the ability to
correlate curvature with optical power throughput, a design goal can be set for radius of
curvature. For the waveguides to have enough output power to perform closure phase
measurements, the radius of curvature should be large enough such that the total
output power of each waveguide is greater than 25% of the measured input power.

2.6.6 Spatial Separation of Waveguides

If light is traveling in an optical waveguide, the region surrounding the core of the
waveguide will be occupied by an evanescent electromagnetic field. This field extends
outward in all directions orthogonal to the longitudinal axis of propagation, and
exponentially decays as the distance from the waveguide increases [31]. If two
waveguides are running parallel to each other, and are sufficiently close to allow overlap
of their evanescent fields, the light from one waveguide can couple into the other and
vice versa. In some applications, this is desirable, but for these remapping chips, it is to
be avoided, as crosstalk between waveguides will cause degradation of phase
information.

Another reason to keep sufficient spatial separation between neighboring waveguides is
to avoid physical defects during the waveguide creation process. When the
femtosecond laser writes its waveguide into the block of glass, it creates a permanent
physical change in the index of refraction. If two waveguides are fabricated too close to
each other, the process of writing the second can be impaired by the presence of the
first, causing defects which could severely inhibit light propagation.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

21

To avoid these factors, testing in the laboratory revealed that with these input and
output spacing requirements, any two waveguides should be separated by 30 µm or
more. Since the radius of the physical waveguides is about 5 µm, this means that the
centers of any two waveguides should be separated by a distance of 40 µm or more.
This guideline was used in the design of all waveguides discussed in this thesis.

2.6.7 Physical Chip Write Depth

The waveguides for the Dragonfly prototype, as mentioned earlier, are fabricated by a
high powered femtosecond pulsed laser creating a physical positive index of refraction
change in a glass chip. To create the waveguide, the laser focus is translated along the
longitudinal or z axis as shown in Figure 4.

Figure 4 - Illustration of three-dimensional coordinate system for chip design and orientation of
laser for waveguide fabrication

The laser then writes in incremental 25 µm steps in the z direction. At each step, the
laser positions its focal spot based on the lateral x and y axis coordinates, giving a
three-dimensional position array for the entire waveguide. The laser control software
calculates the power settings to best fabricate the waveguide based on several factors.
The laser is coupled to the glass via an index-matched oil immersion objective. When
testing various writing depths on the waveguide, two physical factors were noted.
Firstly, the laser requires a certain level of power focused at the intended x,y,z

Input

Output

y
z

x

Laser

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

22

coordinates. As the coordinates are deeper or farther away from substrate surface,
eventually a depth is reached where the laser focus does not yield sufficient energy
density to precipitate the required index change in the glass. This means that there is a
maximum depth of requirement for writing successful waveguides. The second depth
requirement occurs at the other extreme when the laser is instructed to write at a very
shallow depth near the surface of that face of the glass. High laser energy densities
occur at a focal location close to where the oil couples the laser into the glass surface.
A limit is reached as the heat absorbed by the oil causes it to begin to boil, which
causes dramatic degradation in the laser beam quality. This gives a minimum depth
that the waveguide can be written.

Based on testing the minimum and maximum writing depths, it was determined that the
minimum depth from the surface that a waveguide could be written was 100 µm, while
the maximum depth was measured at 450 µm, giving a depth restriction of 350 µm.
This means that the maximum depth (or y coordinate) of any waveguide and the
minimum depth of any waveguide must be within 350 µm of each other.

2.6.8 Waveguides crossing vertically

The previous section examined the requirements on the writing depth imposed by the
laser. Because the ability to put the input and output coordinates of all waveguides at
more or less arbitrary location in space is needed, it is inevitable that when looking from
the top down perspective of the laser, two waveguides will cross each other. This
causes no problems as long as the waveguide that crosses underneath is written first.
If the upper waveguide is written first, when the laser tries to write the lower waveguide,
the beam will pass through the top waveguide causing an aberration which will mar the
focal spot at the lower guide. So, the waveguides need to be written in order from the
bottom up. A unique problem can arise from this, however, in the process of meeting
the other design requirements, a waveguide could cross one waveguide underneath
and then at a later crossing, pass the same waveguide over the top. This then makes it
impossible for the laser to write two such waveguides, as no matter what order they are
written, the laser will pass through one already written waveguide while trying to write
the second. This issue gives another design requirement that must be accounted for,
and hereafter refers to configurations which do not meet this requirement as entangled.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

23

3. Design of Three-Dimensional Waveguides

3.1 Physical Design of the Remapper

The steerable micromirror array used was an IRIS AO PTT111, which provided the fine-
tuning ability to guide portions of the pupil to different positions on the face of the optical
remapper block, has 37 individual micromirrors with the center of each mirror 606 µm
from the neighboring mirrors. Using this design factor, the positions of the eight mirrors
used were selected to maximize the spatial Fourier information recovered. After
rescaling by beam compression optics, this pattern was reimaged on to the microlens
array and so onto the face of the remapper chip. Thus, the centers of the waveguides
were placed where the focal point from each mirror fell. This gave the input waveguide
pattern, overlaid on the micromirror array for reference, as shown in Figure 5.

Figure 5 - Image of 37 Segment MEMS Array with the selected eight waveguides utilized in the
prototype remapper chip indicated.

The output spacing of the remapper chip was chosen to be a linear array with adjacent
guides separated by 250 µm for several reasons. This was found to offer convenient
coupling to available lenslet arrays and downstream optics, and is also an industry
standard which enables injection into planar photonic chips fabricated by
photolithography [34]. The center of the eight outputs was at the same origin in the x
and y axis as the center of the input waveguide positions. With the input and output

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

24

positions chosen, the baseline requirement for the optical chip design looked like the
image shown in Figure 6.

Figure 6 - Image of desired input and output points on a prototype optical chip

The length of the glass chip was selected to be 30 mm. This gave the best compromise
between high curvatures due to the chip being too short, and too much absorption loss
due to the chip being too long. All of the physical factors needed to create the
waveguides were selected. Next, the method for creating the curved waveguides will
be discussed.

3.1.1 The Interpolating Cubic Spline

The interpolating spline is a piecewise polynomial function that creates a curve based
on a series of points or knots. The curve must pass through all knots specified and the
function describing the curve between any two adjacent knots can be different over the
entire length of the curve, giving the spline the flexibility to create any kind of curve
needed.

After researching the various types of interpolating splines that one could use, the cubic
interpolating spline was chosen for the waveguide creation algorithm. This is a third
order polynomial function that gives us a lot of flexibility without the extra mathematical
complexity that higher order equations would entail. To characterize a spline

Input

Output

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

25

mathematically, the points that the curve should pass through are specified as (xi,yi)
where i = 0,1,2…n for the function y = f(x). This gives a total of n knots with n – 1 line
segments. With the knots selected, the equation for the curve between any two points
is

Si(x) = ai(x − xi)3 + bi(x − xi)2 + ci(x − xi) + di for x ∈ [xi, xi+1]

(12)

With this equation the entire spline can be defined in space, as the value of S(x) for any
value of x can be found by using the specific spline equation between the two knots that
bracket the interval containing x. However, description of the spline is not complete, as
a,b,c and d are all unknown coefficients that need to be solved for. To help solve for
these coefficients, a few additional numerical conditions that specify the creation of a
cubic spline are used. One of the requirements for a cubic spline, as used for the
waveguide design here, is that the entire spline function needs to be continuous. So, at
each knot, the two spline equations joined at that knot must have the same value, i.e.
Si(xi+1) = Si+1(xi+1) . Another condition for the construction of a cubic spline is that it
be as smooth as possible, meaning that at each knot joining two spline sections, we
want the first and second derivatives to be equal to each other, so Si′(xi+1) =
Si+1′(xi+1) and Si′′(xi+1) = Si+1′′(xi+1). Equal first derivatives ensure that the slopes of
the curves don’t change abruptly at a joining knot. Equal second derivatives ensure that
the curvature is smooth at a joining knot. Both of these were design requirements were
enforced for the waveguides.

With the requirements that the spline function and its first two derivatives be equal at the
joining knots, all requirements needed to solve all n - 1 spline equations were met,
except for the conditions at the two end knots of the spline. At the end knots, the
second derivatives can be specified to be equal to zero, meaning they have no
curvature at those points, which is known as a natural spline. The other condition
required specifying that the end segment has a particular slope, or first derivative, so
that the spline curve will terminate at a particular angle. Because there is a requirement
already discussed that the end points of the waveguide end orthogonally to the block
surface, the second condition in the construction of the waveguides arises naturally
from the basic problem statement.

3.1.2 Using the cubic spline to construct a waveguide

Thus far, the locations of the endpoints in three-dimensional space are known, and the
requirement that the waveguide curves terminate orthogonally to the end face of the
chip has been met. If the axis between the two endpoint faces is set as the z axis, the
x,y location of the finishing point could be projected on to the front face and compared
to the (x,y) location of the starting point. With the orientation shown in Figure 7 below, it

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

26

was found to be convenient that the x and y points in Cartesian space could easily be
translated to cylindrical coordinates of r and Θ.

Figure 7 - Diagram of determining lateral offset for an input/output point pair via endpoint
projection

This projection along the radial line segment meant that simpler two-dimensional splines
could be used to create a three-dimensional waveguide. The lateral portion of the
waveguide is the cylindrical projection of r at angle Θ and the longitudinal portion of the
waveguide is the z axis, with r = S(z) being the spline function. After the z and r
coordinates are solved for, the relationship between (x,y,z) and (r,Θ,z) could be used to
translate the spline curve back to Cartesian coordinate in three-dimensional space.

With the ability to translate a two-dimensional cubic spline curve into three-dimensional
space, the number of knots needed for the curve could be defined. The location of the z
and r knots were defined by the positions of the start and end points of the waveguides,
giving two knots. To make the math as simple as possible, only one additional knot was
needed. To also minimize the curvature, the middle knot was placed at the halfway
point of a line connecting the two endpoints. This gave a symmetrical curve about z
and r. The other requirement that needed to be satisfied was the endpoint conditions.
Because the curve should end parallel to the z axis, the slope of the line must be zero,
so f’(z) = 0.

As a shorthand, until conversion back to three-dimensional (x,y,z) coordinates, x and y
will represent the x and y of the two-dimensional spline function (called z and r above).
To solve the integration coefficients for equation 12, the Lagrange interpolation formula

Endpoint

Endpoint
Projection

Start point
Δx

Δy
r
Θ y

z

x

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

27

was needed. Following the math detailed in Section 5.3 of Numerical Methods in
MATLAB [35], the following equation is derived:

hi−1mi−1 + 2(hi−1 + hi)mi + himi+1 = 6 �
yi+1 − yi

hi
−

yi − yi−1

hi−1
�

for i = 1, 2, … , n − 1

(13)

where ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1 and 𝑚𝑖 = Si′′(xi) , the second derivative at point i

What this reduced equation gave was a way to solve all of the second derivatives based
on the values for h and y, which were both known. Since there can be multiple sets of
the equations, it was possible to solve for multiple knots. For equations with several
knots, these could be solved using a matrix solution of [h]*[m] = [u]. For waveguide
creation, there were only three knots, meaning that for equation 13 above, only one
equation was needed for i = 1:

h0m0 + 2(h0 + h1)m1 + h1m2 = 6 �
y2 − y1

h1
−

y1 − y0

h0
�

(14)

This gives the known x and y positions of all three knots, and the requirement that the
first derivatives of the end points should equal zero. The values for m0 and m2 depend
on the end point constraints. Also from the above reference we get the equations for
the end point constraints:

m0 =
3

h0
�d0 − S′(x0)� −

m1

2

(15)

mN =
3

hN−1
(S′(xN) − dN−1) −

mN−1

2

(16)

Substituting the values of m0 and m2 from these two equations into equation 14 above
meant m1 can be solved. With m1 calculated, that value could be plugged back into the
equations for m0 and m2 and could be solved. This gave all of the values for the second
derivatives at each of the three knots. Section 3.3 from Numerical Engineering Methods
in Python [36] gave the following equation for the spline curve

Si(x) =
mi

6
�

(x − xi+1)3

xi − xi+1
 – (x − xi+1)(xi − xi+1)� −

mi+1

6
�

(x − xi)3

xi − xi+1
 – (x − xi)(xi − xi+1)�

+
yi(x − xi+1) − yi+1(x − xi)

xi − xi+1

(17)

This equation gave the ability to solve the value of the spline curve for any value of x.
For the three knot design here, there were two equations to be used. If x fell between

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

28

knot 0 and knot 1, then all values need to be solved in equation 17 with i = 0. If it fell
between knot 1 and knot 2, equation 17 with i = 1 was used.

To fabricate a spline curve for the waveguide design, an arbitrary start point at x and y
coordinates of (0,0) was set. Since this is at the start of the waveguide, the value for z
was set at zero. The end point for this example had a value for x and y of 500 and 0 µm
respectively and as previously mentioned, the length of the physical chip was set to be
30000 µm (30 mm). Because two 1 mm straight sections were needed either end, the
total length in the z axis devoted to curve design was 28 mm. The value for the lateral
offset of the waveguide was Δx or 500 µm. The last required specification was how
many points were needed to interpolate in between each knot in the z axis, which was
used as x in equation 17. The laser fabrication software was calibrated in this instance
to accept a point every 25 µm in length. Meaning there were 28000/25 + 1 points or
1121 points that needed to be calculated.

The algorithm to create the spline was written using the Python language and based on
the equations in this section. The code for this algorithm and the rest of the program,
containing the various algorithms in this thesis, can be found in the Appendix. It first
solved for the second derivative values using all of the information from the knots. It
then took these second derivative values and plugged them into equation 17 above,
evaluating the value of Si(x) based on where the value of x is. When the routine
completed, the endpoints were extrapolated out for 1 mm on both ends, with the
resulting curve shown in Figure 8.

Figure 8 - Graph showing a simple planar waveguide design based on a cubic spline

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

29

3.1.3 Path Length Matching Multiple Waveguides

It has been shown that a three-dimensional waveguide can be created using a two-
dimensional spline based on a direct line between the projection of the endpoint on to
the x,y plane at the start face. Because the flexibility to put the input and output points at
any place on the opposing faces is a requirement, it is inevitable that the direct line
distance between start and end points will not be the same. Two waveguides can be
designed with a lateral offset of 500 for Waveguide 1 and 250 for Waveguide 2.
Creating two waveguide curves for each set of coordinates and translating the start
point of Waveguide 2 to (0,0), gives the curves shown in Figure 9.

Figure 9 - Graph showing design of two spline based curves with different endpoints

This shows that the spline curve algorithm when used for various offset positions of the
output has created a smooth spline curve for both. Intuitively, one can see that the
length of waveguide 2 is less than waveguide 1. To match the path length of waveguide
2, since the end knots are fixed at the end points, the center knot was moved vertically
in small increments until the curve length of waveguide 2 equals waveguide 1. Figure
10 graphically illustrates this principle.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

30

Figure 10 - Graph illustrating how waveguide curve path lengths are matched. Blue curve is
original design of waveguide 1, dashed green curve is origin location for waveguide 2, red lines
show increase of path until the solid green line, which is the path length match for waveguide 2

In this graph, the dashed green line represents the initial curve for waveguide 2. The
center knot was moved vertically until it reaches the position at the solid green line,
which represents the new curve for waveguide 2 with the length of its curve matched to
the length of waveguide 1 to within 0.1 µm. The red lines show intermediate curves
representing waveguide 2 as the knot is moved vertically. This process achieves path
length matching of waveguide 2 to waveguide 1 which satisfies our design requirement.
However, if there is a set of eight waveguides, a method is needed to match the path
length of all eight. To do this, an array is created which finds the direct x,y distance of
the start point of the waveguide and the projection of the end point for all eight
waveguides. Path length can be added to a waveguide with a smaller offset than
another one, but since the center knot of the waveguide with the larger offset is already
placed at the midpoint, there is no way to reduce the distance of the larger waveguide.
So, out of the eight waveguides, the one with the largest direct x,y offset was
designated as the primary waveguide. The trajectory for this waveguide was solved first
and the path length of that waveguide used as a reference for all others. The other
seven waveguides, which were designated the secondary waveguides, each had their
path length increased using the above method all had been path length matched. This
gave a full set of eight path length matched waveguides.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

31

3.2 Algorithm to Calculate Path Length of a Curve

Before proceeding further on meeting the remaining design requirements, there needs
to be an explanation of the method for path length metrology in the previous section. As
discussed previously, to create the waveguide prototypes the three-dimensional position
of a locus of points needs to be provided every 25 µm in the longest direction (z axis).
This value is used in the calculation and construction of the spline curves. However, an
accurate measurement to calculate the path length of these spline curves, or any other
discrete curves, was needed. The method used here was straightforward. When the
curves were created in three-dimensional space, the length was calculated by summing
the lengths between each adjacent three-dimensional point.

Figure 11 - Measurement of length between any two three-dimensional points

The formula to find the length between points is straightforward:

Li , i+1 = �(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (18)

The total length of the waveguide was the sum of all individual segment lengths.
However, because the laser traces its own smooth path between the points given by the
algorithm, on the still finer grid of 1 µm spacing, a comparison of how the length
computed assuming 25 µm spacing compares to 1 µm spacing was made. With 1 µm
spacing, there were 28000 data points that defined the spline curve, plus the 1mm
section on either end. Using the previous example offset of 500 µm against the 30000
µm length, the results were a total curve length of 30005.339 µm for the 25 µm spacing
and 30005.356 µm for 1 µm spacing. This gives a difference of only 0.02 µm, which
was five times less than the 0.1 µm path-matching tolerance. If the offset was
increased to 5000 µm, the result is 30528.6049 for 25 µm spacing and 30528.6052 µm
for 1 µm spacing, giving a difference of less than 0.001 µm. This comparison shows
that using a 25 µm spacing with the algorithms for creating the waveguides and
calculating the path length of spline based waveguides is easily sufficient to meet the
path length design tolerance of 0.1 µm.

[xi, yi, zi]

[xi-1, yi-1, zi-1]

[xi+1, yi+1, zi+1]

[xi+2, yi+2, zi+2]

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

32

3.3 Translating a Two-Dimensional Spline Curve into Three Dimensions

Thus far the examples examined here on translating the two-dimensional spline curve
data into a three-dimensional locus of waveguide points have only had an offset in one
axis, the x axis. However, because there was the requirement that input and output
points could lie anywhere on the two respective surfaces, the angle formed by the input
and output points could lie anywhere on a circle of 360°. To calculate the angle to
rotate the spline, the arc tangent was used, as in Figure 7. This value of Θ gave a
positive or negative orientation for x and y, meaning that the angle would lie in particular
quadrant. Depending on the quadrant, the x and y values of the curve would be scaled
appropriately. To avoid complication from the x and y values of the input point, the
splines were created at a start point of (0,0) and then shifted to the start point after
creation.

Although this method proved successful, an easier way was developed. Instead of
creating one two-dimensional spline along the plane at angle Θ, two separate splines
could be created individually for the x-z and y-z planes, giving the same result. This
worked for the primary spline with no additional offset to the middle knot to increase
path length. For the secondary splines, however, there still needed to be additional
length added to the curve, with the middle knot of the spline shifted at the correct angle
Θ. It was straightforward to split the offset into a shift in x and a shift in y by letting Δx =
OffsetValue * cos(Θ) and Δy = OffsetValue * sin(Θ). As the offset is increased
incrementally the x and y values were also scaled incrementally until the path length of
the entire three-dimensional curve was equal to the primary curve length. Figure 12
shows an example of the creation of a secondary waveguide with input point at (-50,50)
and output point of (200,-200), and a z of 30000, which has been path length matched
to a waveguide with an offset of 500. The graph on the upper panel shows the separate
x and y splines, while the lower panel shows a 3D rendering of the complete waveguide
viewed from above.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

33

Figure 12 – (top) two two-dimensional spline curves in the x and y axes combine to create a three-
dimensional waveguide (bottom)

3.4 Spatial Separation of Waveguides

With the tools to create waveguide paths developed, the start and end points for the
eight waveguides discussed in Section 3.1 could be input into the computer application.
When finished, the application displayed a three-dimensional picture of the eight
waveguides using the library Mayavi2 in Python [37]. This gave the ability to rotate the
image of the waveguides, or zoom into particular areas. Upon closer inspection of the
3D image of these eight waveguides, there were two points where the waveguides were
actually intersecting, shown by the red circles in Figure 13. The width of the

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

34

waveguides in this image was set at 10 µm, so by intersecting, the centers of these two
waveguides were less than 10 µm apart. As discussed previously in Section 2.6.6 on
waveguide separation, the waveguides needed to be separated by 30 µm or more. In
the following sections, methods for measuring the separation of waveguides will be
discussed together with methods for routing the waveguides to keep the required
separation.

Figure 13 - Initial eight waveguide design with two red circles highlighting areas where two
waveguides intersect each other

3.4.1 Determining Proximity between Neighboring Waveguides

The method to determine the separation between waveguides was similar to the
method to determine the path length of each waveguide. This time, however, the
algorithm went through each waveguide individually, and for each point on that
waveguide, checked the distance to all other waveguides using the same length
equation (18). For each waveguide, the algorithm goes incrementally through each
point on the waveguide and compares the distance from that point to the closest points
lengthwise on all of the other waveguides. Figure 14 gives an illustration of how the
proximity is computed.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

35

Figure 14 – Illustration of measurement proximity of distance of two waveguides (red) by
comparison of their three-dimensional points in space

At a specific point i on waveguide 1, the distance is measured to point i on waveguide 2,
where zi is equal for both waveguides, since they are calculated in the same
incremental value in the z direction. This process is repeated at all points from start to
finish between waveguide 1 and waveguide 2 with that minimum value. The same
proximity is then verified individually with waveguides 3 through 8. The algorithm keeps
track of the minimum distance found along that waveguide to any of the other
waveguides. The process is repeated for all eight waveguides, and after verifying the
proximity distances for all waveguides, reports the closest distance found globally, the
two waveguides that make up this distance, and at what point on those waveguides the
distance was measured. This information becomes useful in the next section on
arranging the waveguides to meet proximity requirements.

3.4.2 Adjusting the Curves to Meet Proximity Requirements

The next step was to design a way to adjust the position of our curve in space to
spatially separate the waveguides. A radical change to the locus at this point is
undesirable, since it has already met all of the previous requirements and constraints.
Since these waveguides were created in essentially a polar coordinate structure, an
additional angle of rotation about its longitudinal axis was added to each waveguide.
Looking at Figure 13, imagine that each waveguide is twisted around its endpoints until
each is arranged so that all spatial separation requirements are met. Although at first
sight this seems straightforward, the problem is that the endpoints are laterally offset so
the waveguides do not have an axis of rotation parallel to the z axis which
simultaneously preserves their input and output points and endpoint orthogonality.

[xi, yi, zi]

[xi-1, yi-1, zi-1]

[xi+1, yi+1, zi+1]

[xi+2, yi+2, zi+2]

[xi, yi, zi]
[xi-1, yi-1, zi-1]

[xi+1, yi+1, zi+1] [xi+2, yi+2, zi+2]

Waveguide 1

Waveguide 2

Length(i)

Length(i+1)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

36

Because the primary waveguide is used to set the distance for the other secondary
waveguides, it should remain unaltered while the secondary waveguides are re-oriented
around it. Looking back at Figure 7, the start and end points form an angle θ with
respect to the x axis. Figure 10 also shows that the largest spatial deflection for a
secondary waveguide occurs around the middle knot. This may offer a potential way
forward: instead of rotating the entire curve around the endpoints, the angle that the
middle knot stretches with respect to the start point could be rotated instead. The
middle knot could then be extended along this new angle until the resulting three-
dimensional waveguide curve is path length matched to the same primary waveguide
length. Figure 15 illustrates this concept.

Figure 15 - Diagram illustrating middle knot rotation. The remapper block is viewed from end-on
in this drawing, with the waveguide penetrating into the paper.

As discussed in Section 3.1.3, path length was added to the spline curve by offsetting
the middle knot. If the start and end points lie at an angle Θ with respect to the x axis,
then the middle knot was stretched with the relationship based on that angle, shown in
Figure 15 above as Δx1 = OffsetValue * cos(Θ) and Δy1 = OffsetValue * sin(Θ). To
avoid a spatial clash with a second guide, rotation of the angle at which the middle knot
lies, as shown by the angle Φ above, with a final offset for the middle knot at an angle of
Θ+Φ. This gave a new position for the middle knot shown in Figure 15 as Δx2 =
OffsetValue * cos(Θ+Φ) and Δy2 = OffsetValue * sin(Θ+Φ). With the new middle knot
position, the spline curve algorithm automatically calculated the new trajectories.

Figure 16 below shows the x, y and three-dimensional renderings of two waveguides.
The blue curves show the creation of a secondary waveguide with input point at (0,0)

Start
Point

End
Point

Δy1

Θ

Middle
Knot

New
Middle
Knot
Position

Φ

Δx1

Δy2

Δx2

y

x

Offset 1

Offset 2

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

37

and output point of (250, 50), and a length of 30000, being path length matched to a
primary waveguide with an offset of 500. This waveguide was projected along an angle
Θ of arctan(50/250) = 11.3° or 0.197 radians. The green curves show the design of a
waveguide with the same endpoints and with the addition of middle knot rotation angle
Φ of 10° or 0.175 radians.

Figure 16 - X axis (top left) and Y axis (top right) isometric view and 3D view of non-rotated (blue)
and rotated (green) waveguides (bottom)

The image illustrates the ability to position the waveguides in space by a rotation of the
middle spline knot, while keeping the endpoints the same and the integrity of the
waveguide curve intact. The mathematical machinery described above could now be
used to successfully separate all eight waveguides in space.

3.4.3 Spatially Aligning Waveguides

Using the three-dimensional image of the waveguides, the user can examine images of
the waveguides from every angle as well as zoom into particular sections of the image.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

38

Using this tool, and varying the angle adjustment of the waveguides, as discussed in the
previous section, it is possible with several cycles of adjustments, and using visual
feedback as well as the proximity distance calculations, to create a set of eight
waveguides. These guides were made using the previously stated endpoint
coordinates, shown in Figure 6, now meeting also the proximity tolerance. Figure 17
below shows this design.

Figure 17 - Image of eight three-dimensional waveguides now meeting spatial separation
requirement

Comparing this image to Figure 13, one can see that the two conflict areas that were
found previously have been resolved. In fact, the orange waveguide has been
completely re-oriented to the opposite direction. This was achieved simply by
specifying a rotation angle of the middle knot of 180°.

This set of eight waveguides now meets all but two requirements discussed thus far.
Using the image it was visually verified that no waveguides were entangled (see 2.6.8).
The last requirement that needs to be confirmed is the writing depth constraint. Here a
similar algorithm to the proximity one described in Section 3.2 was used. For each
waveguide, the minimum and maximum values of depth in the y axis were found. All
eight waveguides were compared and the absolute maximum and minimum height
values measured against the origin at the center of the input array are found. For the
design in Figure 17, the minimum height value was –213.5 µm and the maximum value
was +105 µm, giving a height differential of 318.5 µm. This value was under the
physical writing depth requirement of 350 µm. These values were created with the x
and y origin at the center of the input pattern. To ensure that these values fit within the
100 µm to 450 µm depth requirements, the y values of the entire array are shifted to fit
within those coordinates. These waveguides were now designed to meet all
requirements detailed in Section 2.6.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

39

3.5 Determining Radius of Curvature

The waveguides designed in Figure 17 were discrete curves and required an algorithm
to calculate the radius of curvature from many individual line segments. As mentioned in
Section 2.6.5, two adjacent line segments can be represented by two three-dimensional
vectors. It is known that the angle between two vectors a and b can be calculated by
using the dot product of two vectors, which is

𝐚 ∙ 𝐛 = |𝐚||𝐛|cos(θ) (19)

Rearranging for θ gives

θ = arccos �
𝐚 ∙ 𝐛

|𝐚||𝐛|�

(20)

For any two three-dimensional vectors a and b, the dot product of the vectors can be
found by the equation

𝐚 ∙ 𝐛 = (axbx + ayby + azbz) (21)

So, looking at Figure 18 below, a can be represented by the vector from i-1 to i and b as
the vector from i to i+1. This gives values for the vectors of

ax = xi − xi−1 , ay = yi − yi−1 , az = zi − zi−1

(22)

bx = xi+1 − xi , by = yi+1 − yi , bz = zi+1 − zi

Figure 18 – Diagram of two three-dimensional vectors in space illustrating curvature calculation

The value for the dot product is then given by

(xi − xi−1)(xi+1 − xi) + (yi − yi−1)(yi+1 − yi) + (zi − zi−1)(zi+1 − zi)

(23)

The magnitude of each vector a and b can be found by using the length value
calculated in equation 18 and substituting all values into equation 23 gives

[xi, yi, zi]

[xi-1, yi-1, zi-1]

[xi+1, yi+1, zi+1]

i

i-1

i+1

θ

a
b

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

40

θ = arccos �
(xi − xi−1)(xi+1 − xi) + (yi − yi−1)(yi+1 − yi) + (zi − zi−1)(zi+1 − zi)

��(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2���(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2�
�

(24)

This gives the change in angle from one segment to the next, which is one measure of
the curvature. To convert this to an estimate of the radius of curvature, the formula for
vectors is used:

Rc =
|𝐚| + |𝐛|

2θ

(25)

Using the calculated magnitudes of the vectors and using the previously calculated
value for Θ, a value for the radius of curvature at point i on Figure 18 can be
determined. With these formulas, the radius of curvature could be calculated at each
point of our waveguide locus. Calculating the radius of curvature for the primary
waveguide (in yellow) in Figure 17 gives the graph below in Figure 19.

Figure 19 - Radius of curvature for a simple cubic spline in green, with the physical trajectory of
the waveguide itself given in blue

The data in green gives the radius of curvature in millimeters at each point on the
waveguide, while the physical locus of the waveguide itself is drawn in blue and overlaid
for reference purposes (not to scale). Here, the radius of curvature drops to its lowest
value of around 138 mm at either end where the straight sections transition directly to

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

41

the curved portion of the waveguide. As the waveguide straightens out in the middle,
the radius of curvature increases and for most of its length, this waveguide has a high
radius of curvature. This method of displaying the radius of curvature will assist in the
analysis of all further waveguides.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

42

4. Sidestep Design

An initial prototype of the design was fabricated for the set of waveguides shown in
Figure 17. The fabricated pupil remapper was then placed in an optical test setup
shown below in Figure 20 to measure the waveguide properties.

Figure 20 – Optical test setup for measuring interference fringes of pupil remapper chip

This setup consisted of a collimated light source (laser, broadband light source, lamp,
etc.) to illuminate the waveguides and simulate the star light. The pupil from this light
source is projected on to the MEMS array so that it completely fills it. The light is
reflected to and from the MEMS array via a right angle mirror and then passes through
a 20x beam reducing telescope that reduces the beam so the segments on the MEMS
array match up with the individual elements of the two-dimensional input lenslet array.
The lenslet array then matches up with the inputs of the pupil remapper waveguides.
The light passes through each waveguide and then is output through another lenslet
array on the back side of the remapper. The outputs of the remapper can then be
imaged using a video camera. This camera feeds real-time image data to a computer,
which is also connected to the MEMS controller. Using custom software, the computer
scans the selected individual segments of the MEMS array through tip-tilt and piston
adjustments to maximize the power throughput through each waveguide.

Tests of the initial prototype showed that interferometric fringes could be obtained from
a pupil remapper, and that the path length matching among the waveguides was within
the coherence length. However, after further testing concerning the stability of the
closure phases recovered, a problem was found. When observing a spatially coherent
source, closure phases should be zero and furthermore are inherently resistant to
phases errors introduced in the pupil plane. Unfortunately, testing showed that the
performance of our device in this respect was far below expectations, with RMS closure
phase errors of several tens of degrees when piston terms were introduced in the pupil.
Detailed description of these findings is beyond the scope of the present work, however,

Light
Source

Beam
Reducing
Telescope

MEMS
Array

Lenslet
Arrays

Pupil
Remapper

Camera

MEMS
Controller

Video
Capture

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

43

this immediately motivated a search for the root cause and a further generation of
remapper designs to ameliorate the problem.

After a dedicated program of laboratory testing, the cause for the poor phase stability
was tracked down to unguided stray light propagating through the bulk glass and
interfering with the light in the waveguides. As illustrated in Figure 21 below, a
significant fraction of light which does not couple to the guides spreads outward in a
cone depicted as a red triangle. This stray-light interference is unfortunately placed so
as to overlap with the desired signal at the output of the remapper waveguides.

Figure 21 - Image of three-dimensional waveguides with overlaid cone of optical noise
interference

Further details of this laboratory testing campaign is described in Norris et al [38],
however for the purposes here, it is sufficient to state that the performance achieved
was not competitive for astronomical application and further re-designs to mitigate the
phase stability problems were essential.

4.1 Adding a Lateral Sidestep to Avoid Interference

Figure 21 shows that the bulk of the unguided stray light spreads out as a cone at a
specific angle equal to the f-ratio of the final injection lenslet array. Since the remapper
architecture boasts the capability to route the waveguide ports to any desired location,

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

44

the output waveguide array was moved laterally until it lay outside the cone of worst
light interference. Figure 22 illustrates this “sidestep” remapper concept.

Figure 22 – Utilization of sidestep waveguide design to avoid light interference

The output points for this new design have been shifted to the right in the x axis by 5
mm. At this new position, the outputs of the waveguide lie outside most of the
interference cone from the stray input light and should give better results in recovering
robust closure phases. The image of the waveguides in Figure 22 came from the
completed design. To get to this point, additional design challenges arose with the 5
mm sidestep offset, which will be discussed in the next few sections.

4.2 Proximity Challenges

Adopting the most straightforward approach to the design, new input and output points
incorporating the sidestep were fed into the algorithm and the process of adjusting the
positions of the waveguides was performed as described earlier using the rotation
method. By manually adjusting parameters, it was found that very small rotation
adjustments in the secondary waveguides now produce large changes in the y axis.
This is intuitive as the value of the offset is so large in the axis that any change in θ in
Figure 15 will produce a bigger change in the y axis than the previous design. This
causes problems when trying to keep the height of all waveguides within the 350 µm
constraint.

4.2.1 An Additional Lead-In Straight Section

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

45

In the early stages of manually adjusting the rotation angle of the waveguides, the main
difficulty noticed was that the waveguides tended to come into proximity conflict where
they all bunch together turning the corner to implement the sidestep. Figure 23 below
illustrates one such clash.

Figure 23 – Diagram showing two waveguides at input point clashing at the onset of the sidestep

It is seen above that the orange waveguide runs into the purple waveguide as both
waveguides curve laterally towards their respective outputs. The earlier solution to such
clashes, rotation of the waveguides, is now problematic as discussed in the previous
paragraph. However, a solution was found by extending the straight section of the
outside waveguide. There is already a straight section at the beginning of each
waveguide, so if an extra straight section was added to the orange waveguide, the two
waveguides stayed separated and kept their separation all the way to the output. The
successful outcome of this strategy is shown below in Figure 24.

Figure 24 – Same waveguides as Figure 20 now spatially separated with an additional length of
straight waveguide section to the orange waveguide

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

46

This gives yet another design feature to keep the waveguides spatially separated.
However this does come at a cost. With the additional straight section at the beginning,
there was less length to implement the spline curve and so the middle knot needed
more lateral offset, increasing the overall maximum curvature of the waveguide.

4.3 Effects of Sidestep Design on Radius of Curvature

Examining the sidestep waveguides in Figure 22, the radius of curvature as a function
of length was plotted for the primary waveguide (in yellow) and is shown in Figure 25.
Comparing the values for radius of curvature of this sidestep waveguide versus the
straight through design plot in Figure 19 shows the same shape for both graphs, but the
increase in lateral offset has dropped the minimum value of radius of curvature from
around 138 mm down to around 23 mm. Thus, the addition of the sidestep has
contributed to a considerable drop in the radius of curvature.

Figure 25 – Radius of curvature for a simple cubic spline in green, with the physical trajectory of
the waveguide itself given in blue

As a comparison with the relatively benign gentle curves of the primary waveguide
shown in Figure 25, the waveguide with the lowest radius of curvature of the same set
will be examined. Figure 26 below shows one of the secondary waveguide locus (blue)
along with its radius of curvature (green). In that image, the radius of curvature drops to
an even lower value of around 10 mm near the beginning of the waveguide as it

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

47

transitions from the end straight section to the portion of the curve with the largest
slope. As the light travels along this waveguide, it encounters several turning points of
large radius of curvature, and several regions of tight curvature dictated by the spline
solution. The effects of these changes in radius of curvature will be investigated further
in Section 6.

Figure 26 – Radius of curvature (green) for a more complex spline curve design (blue)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

48

5. A Waveguide Based on a Circular Arc

5.1 Design of the Two-Dimensional Arc-based Curve

The radius of curvature measure is based on the radius of the circle that best matches
the curvature at any given point. As an alternative waveguide design method to the
cubic spline, the use of a circular arc to construct the waveguides was explored. This
particular architecture holds great promise for minimizing the bends for it presents the
mathematically lowest curvature solutions when threading a trajectory meeting our
requirements. To construct a simple two-dimensional waveguide in the cylindrical
coordinates z and r with a given lateral offset, similar to the spline based waveguide
shown in Figure 8, the design procedure started with an arc from a circle with a tangent
parallel to the z axis to connect to the input straight section at the beginning of the
waveguide. Likewise, a circular arc, tangential to the z axis, was used at the end. To
connect these two arcs together, the radius of both was selected such that the tangents
of the two arcs intersect perfectly at the midpoint of the line that connects the start and
end points. Figure 27 below illustrates the concept.

Figure 27 – Creation of a waveguide from two circular arc sections with variables for calculation
and design of waveguides are indicated

W

L

θ1

r1

Φ
c

r1

C
r

z

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

49

To construct the left arc, we require the values for r1 and θ1 as a function of L and W.
With some simple geometrical construction, it can be shown that if we define angle Φ to
be:

Φ = arctan �
L
W

�

(26)

Then θ, can be readily found as:

θ1 = 2(90° − Φ)

(27)

To derive the value of the radius r, the value of the chord c and the cosine function can
be used to give:

r1 =
c
2

cos (Φ)

(28)

The arc for the left half of the waveguide could now be created with the values of the
radius and the arc angle θ1. To calculate the values of the right arc in Figure 27, the
process is similar to the left arc calculation, except the center is reflected to the bottom
right corner. The y value is then added to the y value of that center to get the actual y
coordinate, with the two curves meeting in the middle.

With the method for calculating a curve made from arcs given, a primary, arc-based
waveguide can be created, with the same input and output coordinates as the previous
sidestep spline design shown in Figure 8.

For an arc based waveguide, the two arcs for the primary waveguide were created with
the midpoint at the middle, and for any pair of input and output points, the entire path is
uniquely defined. However this causes a problem: the flexibility to adjust the path length
of the guides is needed to meet the matching criterion. At first glance it might appear
that a ready solution might be to move the junction of the two arcs away from the middle
toward one of the endpoints, thus creating one arc of larger radius and one with a
smaller radius. For the waveguide in Figure 27, an equation for the total path length of
the curve is:

Lengthtotal = Lengthends + 2π ∗ rleft ∗
θleft

360°
+ 2π ∗ rright ∗

θright

360°

(29)

with r being the radius of each arc, and θ the angle that each arc swept out. If the
midpoint is shifted along the chord line, the radius of the left arc increases, and the
radius of the right arc decreases. However, the angle θ must remain the same for both
arcs so that they intersect together at the same angle. Subtracting the length of the

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

50

ends and dividing both sides of the equation by 2π and θ
360°

 gives the result that the sum
of rleft and rright is a constant value. Thus, shifting the point of intersection of the two arcs
does nothing to alter the path length.

5.1.1 Addition of a Bridging Straight Section

Another possibility explored for adding path length to a curve made from two arcs was
joining them with a bridging straight section inserted at the tangential meeting point.
Thus, the arcs could be made at any angle and the path length increased. Equation 29
was modified to show what would happen with the addition of such a straight section.

Lengthtotal = Lengthends + Lengthstraight section + 2π ∗ rleft ∗
θleft

360°
+ 2π ∗ rright ∗

θright

360°

(30)

Equation 30 shows that for a fixed total length, the additional straight section leaves less
length for both the left and right arc sections. This means that either the radius or angle
of the arc will need to be decreased. Looking again at Figure 27, if the angle that the
left arc sweeps out only is decreased, the entire geometry fails to deliver a smooth
curve which meets at the other end. So, the addition of a straight section requires a
reduction in the radius of both arcs. This, in turn, implies a reduction in the radius of
curvature of at least one arc. Such a strategy runs counter to the original motivation:
keeping minimal bend loss with as high of overall curvature as possible

5.1.2 Addition of a Third Circle

From the preceding sections, the conclusion was that design of a waveguide curve
based solely on two arcs could not increase path length without significantly decreasing
the radius of curvature and increasing the bend loss. However, the addition of a third
circular arc to connect the other two arcs was found to present a possible solution.

A third circle can be added as depicted in Figure 28 below, such that there are now two
smooth tangential transitions between arcs and the input and output directions are
preserved. However, the third circle is always “wedged” in between the two circles and
gives a parameter to adjust the geometry. The way to increase the path length for the
arc was to decrease the radii of all three circles simultaneously by the same amount.
This way the radius of curvature is the same for all three circles, and is a global
maximum (desirable for minimizing bend losses). While decreasing the radius of each
circle, the original input and output arcs keep their edges tangential to the straight
section endpoints. The third circle is constructed at a position that touches both of the
other circles tangentially.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

51

Figure 28 – Design of waveguide with three arcs from tangential circles with reduced radius to
give additional path length

With the reduction of the radii of all three circles, the waveguide curve now shows an
increased path length over the two circle based waveguide. Because the radius of each
circle was reduced, the radius of curvature for the whole curve (constant over the whole
waveguide) was reduced as well. For the process of ensuring path length matching, the
circles were assembled as in Figure 28, with the radius of each circle set to the same
value as the calculated radius of the primary waveguide. Because the secondary
waveguide had a smaller lateral offset, its length was less than the length of the primary
waveguide. The radius of each circle was then decreased by a small amount until the
path length of the entire curve was within tolerance of the path length of the primary
waveguide curve. The process was repeated until each waveguide’s path length was
matched.

5.1.3 Constructing a Three Arc Curve

Construction of a three arc waveguide required new sets of equations to construct the
sections. Modeling the geometry of the three arc design gave the following equation

Lengthtotal = Lengthends + 2πrleft
θleft

360°
+ 2πrcenter

θcenter

360°
+ 2πrright

θright

360°

(31)

Ignoring the straight end sections for now and focusing on the curved portion only, the
curve is made from three circular arcs, traced from 3 identical circles in different
positions. To calculate the correct angle that each arc sweeps out, with the radius
chosen to meet the path matching criterion as discussed above, the center positions of
all three circles were needed. In addition, the point where arc 1 transitions to arc 2, as

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

52

well as the point where arc 2 transitions to arc 3, was also needed. Once all of these
points were calculated, the curve could be constructed.

Looking at Figure 29 below, the center of circle 1 had an x value the same as the
waveguide start point on the left, and a y value equal to the start point y value plus the
radius. The same held for the center of circle 3 and the waveguide end point on the
right. With these two center points found, a line could be constructed between these
two points, the length of which was found by:

LC1,C3 = �(xC3 − xC1)2 + (yC3 − yC1)2

(32)

This line was used to triangulate the position of the center of circle 2. If two circles are
tangential to each other, a line can be drawn from the center of one circle to the other
that passes through that tangential point. Because circle 2 is tangential to both circle 1
and circle 3, there will be two lines drawn from the center of circle 2 to the other two
circles, creating a triangle with segment L connecting the centers of circle 1 and 3.
Because the radii of all three circles are equal, the lengths of these two lines are also
equal, creating an isosceles triangle, with the angles opposite to the two identical sides
being equal. These angles were denoted as Φ given by the equation, using the bisect
of θ2:

Φ = arccos �
L1,3

2
2r

�

(33)

With the value of Φ, the three different angles needed to construct the three separate
arcs could be calculated and are also shown below in Figure 29.

To first calculate angle θ1, an imaginary horizontal line was drawn from C1 forming the
base of a right triangle with a hypotenuse of L1,3. With a little further simple geometry,
the following angle can be found

θ1 = 90° + arcsin �
yC3 − yC1

L1,3
� − Φ

(34)

With the value of θ 1, the x and y coordinates of C2 were

xC2 = 2r ∗ sin(θ1) + xC1 , yC2 = −2r ∗ cos(θ1) + yC1

(35)

Using the same imaginary horizontal line as the calculation for C1 and considering the
angles at vertex C3 gives the equation

θ3 = arccos �
yC3 − yC1

L1,3
� − Φ

(36)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

53

Figure 29 – Diagram for calculating portions of a three arc waveguide along with variables needed
for calculation

The value of θ 2 is now trivially given by summing the angles in the triangle. The
procedure for creating the curve was similar to the design based on two circular arcs.
The value of x was based on the increment value given previously, and the value y was
calculated. Depending on where the value of x lay, one of three equations was used. If
x lay within the arc traced by θ 1, y will be calculated by the radius and the value of the
local variable, angle α. The x value of the transition point from arc 1 to arc 2 was
determined by

xT12 = r ∗ sin (θ1)

(37)

If the value of x is between the start point and xT12 the value of α was

α = arcsin �
x
r

�

(38)

And using that angle value, the value of y was calculated as

y = yC1 − r ∗ cos (α)

(39)

To determine the next transition point between arc 2 and arc 3, the equation to use was

C3

C2

C1

L1,3

r

r
r

r

Φ

Φ

θ 1

θ 2

θ 3

y

x

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

54

xT23 = xC3 − r ∗ sin (θ3)

(40)

If the value of x lay between xT12 and xT23, the value of α was

α = arcsin �
|xC2 − x|

r �

(41)

Here the absolute value was needed as the value of the inverse sine could change
depending on if the value of x lay to the left or the right of the x value of C2. To get the
value for y, the equation below was used

y = yC2 + r ∗ cos (α)

(42)

Finally, if the value of x lay in arc 3, the value of α was

α = arcsin �
xC3 − x

r
�

(43)

With the value of y found by:

y = yC3 − r ∗ cos (α)

(44)

This now fully specifies the x and y coordinates for all parts of the curve, and the
equations implemented into the algorithm to create secondary waveguide curves based
on circular arcs.

5.2 Construction of Three-Dimensional Arc Based Waveguides and Proximity
Adjustments

The construction of a three-dimensional arc based waveguide used a similar procedure
as the spline based waveguide detailed in Section 3.3. The angle θ of the start point to
endpoint projection was used to interpolate a single two-dimensional curve into three
dimensions. This was also how the primary arc based waveguide was created. The
secondary waveguides were initially created this way, but again the proximity issues
forced a change in the way that the waveguides were developed.

Adjusting the waveguide curve to meet the waveguide proximity requirement was a
more difficult task for the secondary arc based curves than for the spline based curve.
The spline based curve allowed for a rotational movement of the middle knot in space to
move the waveguide, and the spline creation algorithm created the curve based on that
point. The arc curve algorithm was created in either the x or y dimension (three-
dimensional Cartesian coordinates) and was based on a fixed single radius for the
waveguide. As discussed previously, the waveguides were highly constrained in the y
dimension due to the physical chip height requirement from fabrication, meaning that
any curvature in the y dimension must be very small. As before, two waveguides were

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

55

created in both the x and y dimension against the z axis as length. The x axis curve
contained most of the offset and it was to this dimension that the primary and secondary
guides were formed as described above. The y axis could then be constructed by using
the same two arc method as the primary waveguide. Since, the x axis curve accounts
for the majority of the curvature, this design would still be optimized for the highest
radius of curvature.

However because the two-arc method gives a fully prescribed curve for a given input
and output, this gave no intrinsic ability to adjust the position of the waveguide in space
to meet proximity requirements. If instead a three arc curve is employed with a very
large radius then the ability to tune the shape of the guide to avoid clashes is recovered.
Figure 30 below shows how the y axis curve changed for radius values of 50 mm, 100
mm, and 200 mm.

Figure 30 – Change of y-axis arc curve at different radius values showing a decreasing radius of
curvature contributing to increased offset in the y axis

Figure 30 shows that using a specific radius for the y curve, independent of the x curve,
provided a way to adjust the position of the three-dimensional waveguide in space. If
more elevation of the waveguide was needed in the y dimension to avoid a clash, a
lower radius of curvature was passed into the y curve algorithm. In order to
simultaneously match the path lengths for waveguides now curving in both x and y, the
concept of a scaling factor, which adjusts the simultaneous value of the y radius based

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

56

on the current value of the x radius, was introduced. As the x radius decreased from
the value set by the primary waveguide, the y radius decreased in proportion set by the
scaling factor. This permitted a single-parameter adjustment which enabled path length
matching and vertical-height clashes to be resolved simultaneously.

For a waveguide with an x offset of 5 mm, the scaling factors that give the y curves
above in Figure 30 are 1.69, 3.76, and 7.68. The x curves for those same waveguides
are shown below in Figure 31.

Figure 31 - Change of x-axis arc curve at the same different radius values

This graph shows a decrease in the scaling of the curve in the x axis. This was
because as the curve in the y axis increases, it contributed more towards the overall
three-dimensional path length, relieving some of the demands in the x dimension.
When combined, the three-dimensional waveguide had a lower global radius of
curvature, as shown in the table below:

Scaling Factor Radius of Curvature(mm)
1.69 25.5
3.76 25.7
7.68 25.8
None 25.8

Table 1 – Radius of Curvature Values after Waveguide Scaling at Same Total Curve Length

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

57

As the scaling factor decreases, a larger offset in the y axis occurs and when the
waveguide is length matched, the overall radius of curvature decreases. However, the
lower scaling factor and higher curve in the y dimension did not lower the radius of
curvature by a significant amount. Also, the first two scaling factors gave curves that
had a difference of more than 350 µm, so in practice, neither of these could be used
due to the physical chip height requirement. However, the straight forward ability to
yield large vertical height offsets meant that this proximity scaling mechanism could be
useful in creation of the waveguides.

Ensuring that the three-dimensional waveguides algorithm worked properly when the
difference between the end and start points, in x and/or y, was negative required a
slightly different algorithm than the spline based curves. The arc based curve creation
algorithm discussed in Section 5.1 required a fixed calculation with the endpoint greater
than the start point. So, any negative values in x and/or y required the absolute value of
the offset between start and endpoints to be passed in. To then orient the three-
dimensional waveguide correctly in space, an algorithm was created based on the
difference of the endpoints in both the x and y dimensions and also whether the scaling
factor for the y radius is positive or negative. An in-depth discussion of this algorithm is
given in the Appendix. In addition to positioning of the x and y coordinates in space, the
algorithm also has the ability to rotate a waveguide design, like the one in Figure 29,
180 degrees, giving another option for waveguide placement.

Finally, use of the scaling factor to place the waveguides in space was done using
visual alignment from three-dimensional images. In addition, the lead in straight
sections discussed in Section 4.2.1 also worked the same way for the arc based
waveguides as the splines. These lead in sections also reduced the radius of curvature
of the arc based waveguides, so were used carefully.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

58

6. Characterization of Optical Power Loss in Waveguides

Chapter 23 of Snyder and Love’s book, Optical Waveguide Theory [31], is devoted to
bends in optical fibers and waveguides. In that chapter, the relationship between the
radius of curvature of a waveguide and optical power loss due to that radius is
established. This formalism has been applied here to determine the power loss in both
the spline and arc based waveguides based on their radius of curvature values.

6.1 Bend Loss due to Radius of Curvature

In this section, the concept of macrobending loss is investigated, in which the radius of
curvature of the bend in the waveguide is much higher than the cross-sectional radius of
the waveguide itself. Microbending loss, where the bends are on the order of the
waveguide radius, won’t be addressed here, as any microbends in these waveguides
will be errors related to the fabrication process. Any microbending in the design here
would be related to the continuity of the waveguide design, and a continuous waveguide
has already been specified as a basic design requirement.

The physical mechanism of macrobending loss is due to radiation of the modal field
traveling in a bent waveguide. As a light wave travels in a straight waveguide, the entire
field travels at a specific phase velocity, depending on the effective index of refraction
for that mode. When that modal field travels in a bent waveguide with a constant radius
of curvature, the phase velocity now is an angular velocity rotating about the center of
curvature. Because it is an angular velocity, the linear velocity needs to be higher at the
outside edge of the curve than at the center.

Figure 32 – Illustration of bend loss radiation in a waveguide with n as the index of the core
section (shaded), ncl as the cladding section, Rc as the radius of curvature of the waveguide and

the outward lines illustrating the direction of radiating bend loss (courtesy: Snyder and Love)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

59

As the phase velocity is governed by the local refractive index, which is symmetrical
across the guide between the inner and outer edges of the curve, the outside of the field
will start to lag behind the rest of the field. This distorts the wavefront, causing a
component of the wavefront vector to point outward radially. Hence, some of the
energy radiates outward, dissipating into the cladding. Figure 32 illustrates the
concept, with n, the index of refraction of the core, ncl the index of refraction of the
cladding, and Rc the radius of curvature of the waveguide.

6.1.1 Bend Loss Calculations

Calculation of the curvature of the waveguide based on discrete sections was
performed in Section 3.5. To find the bend loss due to the radius of curvature of an
individual waveguide section, the discrete bend loss equation from Snyder & Love [31]
is adopted:

P(z) = P(0)e−γz

(45)

This says that if light travels in a waveguide over a distance of z, and this waveguide is
curved, the power at the output will equal the power at the input multiplied by a negative
exponential factor dependent on the distance z and a coefficient gamma. The
difference between input and output power gives the bend loss. Snyder and Love also
give two bend loss equations, depending on the type of waveguide. For a step profile,
where the transition across the waveguide is nearly instantaneous from core to cladding
and is flat across the core (like most optical fibers), the equation is

𝛾 =
√𝜋
2𝜌 �

𝜌
𝑅𝑐

𝑈2

𝑉2𝑊1.5
1

𝐾1
2(𝑊)

 ∙ 𝑒�−4
3

𝑅𝑐
𝜌

𝑊3∆
𝑉2 �

(46)

For a graded profile fiber, which has a parabolic shape across the core, the bend loss
coefficient is

𝛾 =
√𝜋
2𝜌 �

𝜌
𝑅𝑐

𝑉4

(𝑉 + 1)2√𝑉 − 12
 ∙ 𝑒�(𝑉−1)2

𝑉+1 − −4
3

𝑅𝑐
𝜌

(𝑉−1)3∆
𝑉2 �

(47)

These two equations contain several variables that represent certain physical
parameters of an optical waveguide. The first equation has the term 𝐾1

2(𝑊) and refers
to the modified Bessel function of the second kind. The variable ρ is the cross-sectional
radius of the waveguide itself, while Rc is the radius of curvature for this particular
section of the waveguide. V (or V number) is a common optical waveguide parameter
known as the normalized frequency and is calculated by the equation

V = kρ�ncore − ncladding

(48)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

60

where k is the wave number. The next two variables, U and W, are defined in Snyder
and Love as the core and cladding parameters respectively. These two parameters rely
on another common waveguide parameter, β, known as the propagation constant. The
propagation constant determines how an optical wave travels in a waveguide and can
be calculated by multiplying k with the effective index of refraction. The effective index
of refraction is not a straightforward calculation, and is the overlap integral of a
propagation mode with the physical structure of the core and cladding of a waveguide in
which it travels. Both the propagation constant and effective index of refraction can be
calculated by the software program RSoft or obtained using a Gaussian estimation from
Snyder and Love. These methods will be discussed later.

With the propagation constant calculated, the equations for the core and cladding
parameters are as follows

U = ρ�k2ncore
2 − β2

(49)

W = ρ�β2 − k2ncladding
2

(50)

The last undefined parameter is Δ, which is referred to in Snyder and Love as the profile
height parameter and calculated by

Δ =
ncore

2 − ncladding
2

2ncore
2

(51)

The critical piece information that the combination of equations 45 and either equation
46 or 47 reveal is that for a given waveguide, output power is related to the radius of
curvature by a double exponential function. Thus, small changes in radius of curvature
can cause very large changes in bend loss, assuming the rest of the waveguide
parameters remain the same. This will be very important to remember for the rest of the
waveguide curvature analysis.

6.1.2 Algorithm Implementation and Demonstration

With the equations to determine bend loss over a waveguide section determined, a
demonstration that the bend loss of a full waveguide can be obtained from the sum of
the discrete sections is required. This is straightforward to show mathematically.
Equation 45 shows that for a section of length z, the output power will equal the input
power times the exponential bend loss factor. So, for a total section length ztotal, equal
to the sum of the length of n identical sections, the equation will be

Pout = Pine−γtotal ztotal

(52)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

61

To construct the equation for the combined waveguide of n discrete sections, the same
equation is used, with the power out of the first section becoming the power in of the
second section, the power out of the second becoming the power in of the third and so
on, making the equation a product of all exponential terms like so

Pout = Pin ∙ e−γ1z1 ∙ e−γ2z2 ∙ … ∙ e−γnzn

(53)

For a circular arc of n sections, the radius of curvature for all sections will be the same
as the total arc. Since the value of γ only relies on the radius of curvature, assuming
that all other waveguide parameters remain the same, then γ = γ1 = γ2 = γn = γtotal.
Bringing the gamma value and the negative sign outside of the exponential product
gives

Pout = Pin ∙ e−γ ∙ ez1 ∙ ez2 ∙ … ∙ ezn

(54)

The product of exponentials can be rewritten as a sum of the exponents, giving

Pout = Pin ∙ e−γ ∙ e(z1+z2+ … +zn)

(55)

Since the sum of all individual sections is equal to ztotal, it can be substituted into
equation 55 to get equation 45. Thus, calculating bend loss as a product of discrete
sections equals the bend loss that would be obtained for an entire section of similar
length. This is trivial for a waveguide made up of circular arcs, as the radius of
curvature does not change. For a waveguide based on a cubic spline or similar design,
where the radius of curvature of each section does change, this is important, as it says
the value of γ can be adjusted based on the radius of curvature of that particular
section. Hence, the discrete radius of curvature values calculated for each waveguide
segment can be used to calculate the bend loss for that particular waveguide section.
The product of all bend losses for each section should give an accurate estimation of
the bend loss for the entire waveguide.

Although these are three-dimensional waveguides being constructed, it’s worthy to note
that the curvature and bend loss calculations only involve a two-dimensional model, as
two intersecting line segments will always be in their own plane. Therefore, bend loss
computed in two dimensions can provide an accurate representation of the problem.

6.2 Comparison of Curvature for Spline and Arc Based Waveguides

Now that the importance of a waveguide’s radius of curvature and its effect on power
throughput has been discussed, the radius of curvature for both the spline and arc
methods will be compared. A waveguide using the arc based design method in Section
5 was created with the same input and output positions as the sidestep spline
waveguide shown in Figure 25. Figure 33 below shows the new arc based primary
waveguide curve in blue along with the spline based sidestep in green for comparison.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

62

Figure 33 – Comparison of circular arc (blue) and cubic spline (green) based waveguides

Plotting the values of the radius of curvature for the two waveguide designs gives the
graph below in Figure 34. This shows the blue arc-based waveguide has a larger
minimum radius of curvature than the green spline-based waveguide.

Figure 34 - Radius of curvature profile for arc waveguide (blue) vs. spline waveguide (green)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

63

The spline exhibits dramatically greater curvature near the ends of the trajectory with
little to no curvature in the middle. For the arc based curve (in blue), the values for the
radius of curvature are the same for all points on the curve. This was what one would
expect as the curves were made from a circular arc with a constant radius. It does have
one point in the center section, where the curves join at a tangent, which is straight
(“infinite” radius of curvature). Comparing the arc curve versus the spline curve shows
that for most of the waveguide, the arc actually had a lower radius of curvature over the
waveguide. However, the spline based curvature had a much lower curvature near the
endpoints, with the values at the endpoints being around 23 mm for the spline curve
versus around 35 mm for the arc based curve.

A secondary arc was created using the same endpoints as the spline based curve in
Figure 26 and the radius of curvature also examined. First, the radius from the creation
of the primary curve in Figure 33 was found to be 34.8 mm, and the total path length
from this curve was found to be 30,814 µm. This value was passed into the secondary,
three arc creation algorithm, and the path length of the resulting curve calculated. The
initial value of the path length for the secondary guide was 30,620 µm. To match the
path length, the radius for the secondary curve was decreased by 35 µm increments
until the path length was matched to the primary waveguide. The final radius for the
secondary waveguide, with path length matched, was 25.9 mm. With the path length
matched, the result is the blue waveguide curve shown below in Figure 35. The spline
based waveguide from Figure 26 is shown in green for a comparison.

Figure 35 – Comparison of spline (green) and arc (blue) based waveguides with same endpoints

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

64

The radius of curvature values for the spline (green) and arc (blue) based waveguides
are shown below in Figure 36 for comparison.

Figure 36 - Comparison of radius of curvature for spline (green) and arc (blue) waveguides

The radius of curvature graph shows similar results to the primary waveguide
comparison. The arc based waveguide shows a flat radius of curvature at 25.9 mm
over the length of the curved portion of the waveguide. There are two spots where the
waveguide radius of curvature increased, coinciding with the transition points between
the three arcs as discussed previously. The spline curve had a higher overall radius of
curvature than the arc based curve but has two areas where the radius dips below the
arc radius of curvature. The lowest point reaches a value of the radius of 10.3 mm.
This now raises the key issue that must be further investigated - whether the sections
with lower radius of curvature contribute to a higher overall bend loss for the
waveguides designed with a cubic spline than the circular arcs.

6.3 Bend Loss Comparison

Using the formulas discussed previously, a few tests were performed to see what
happens to the bend loss while varying several parameters. Since the waveguides thus
far have been constructed on a 30 mm long glass block, a sample waveguide length
was chosen of 30 mm. The radius of curvature was varied from 1 mm to 40 mm in 1
mm increments for a 30 mm long waveguide and the bend loss over the range of radii
plotted. To see the effects of changing the waveguide parameters themselves, the

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

65

difference between the core index of refraction and a constant cladding index of 1.4877
was set to three values of 0.005, 0.004 and 0.003. For each of these index values, Beta
coefficient values of 6.041393049, 6.03812908, and 6.035121234 were used,
respectively. These values were determined using a step index waveguide in RSoft
with a waveguide radius of 4.85 µm. Three curves will then be created, so the effects of
changing the core index of refraction can be determined on the bend loss.

6.3.1 Step Index Waveguides

The first test was performed using the step index bend loss Equation 46 with the
resulting graph shown below:

Figure 37 - Power throughput versus radius of curvature for a 30 mm step index waveguide at
three different values of core index of refraction

As expected, the power throughput at all values of the core index of refraction show that
as the radius of curvature of the waveguide is increased, the power throughput is
increased. Also, as the difference in index of refraction between the core and the
cladding decreases, the range of radii of curvature over which power transmission rises
from 0 – 100% increases. This is intuitive as the index of the core decreases, more light
will be lost in waveguide bends, so to contain the same amount of light, the waveguide
must have less curvature. These curves show the existence of a steep slope where the

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

66

power throughput of the waveguide can go from 100% to 0% with only a decrease in the
radius of curvature of 10 mm over the length of the waveguide.

Using this same data, a plot of bend loss per mm of waveguide length was created, as
shown in Figure 38 This shows the bend loss in decibels over a range of radii of
curvature from 5 – 40 mm.

Figure 38 – Power loss vs. radius of curvature in decibels for a 1 mm step index waveguide at
various values of core index of refraction

Because of the double exponential nature of the bend loss equation, even when plotted
in decibels, a logarithmic measure, the bend loss per mm of the three different delta n
curves rises in an exponential curve. As a reference example, with a radius of
curvature of about 8 mm, a 1 mm step index waveguide, with a delta n equal to 0.003,
will lose 75% of its optical power. This reinforces the importance of avoiding low radius
of curvature when designing optical waveguides.

6.3.2 Graded Index Waveguides

The same set of graphs, as in Figure 37 and Figure 38, was produced for a graded
index profile, calculated by equation 47

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

67

Figure 39 – Power throughput vs. radius of curvature for a 30 mm graded index waveguide at
various values of core index of refraction

The graded index profile has increased bend loss for the waveguides at all values of
delta n, shifting the curves to the right, with an extreme shift for a delta n of 0.003. The
slope of these curves isn’t as steep, meaning that a shift in the radius of curvature will
have less effect on the power throughput than for a step index profile.

Figure 40 - Power loss vs. radius of curvature in decibels for a 1 mm graded index waveguide at
various values of core index of refraction

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

68

Plotting the bend loss per mm for the graded profile gives the graph in Figure 40. The
bend loss per mm curves here show that the loss is much greater for a graded index
waveguide than the step index waveguide. The curves here are shifted to the right over
the curves in Figure 38. So, a graded profile waveguide is definitely more prone to
bend losses in a waveguide than a step index profile. From a discussion point, this
makes sense as step index profile has a higher overall average of refractive index
modulation as opposed to the graded profile, which tapers off at the edges.

These graphs further illustrate the importance of radius of curvature and how it affects
power throughput due to bending in the waveguide. A comparison of the power
throughput for both the spline and arc waveguides will be made in the next section, after
investigating all waveguide power loss mechanisms.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

69

7. Estimated Power Loss Calculations

The two different design methods have now been analyzed in terms of loss due to
bends in the waveguides. However, to get a complete theoretical description of
estimated power throughput, and additional loss process must be characterized and
quantified: transition loss.

7.1 Transition Loss

Transition loss results from an abrupt difference in curvature in an optical waveguide.
When a mode is traversing a section of a particular curvature and encounters a section
of different curvature, there is a mismatch between the optical fields, leading to a
radiation loss. There are three scenarios in which this can occur. First, a waveguide
can go from a straight section to a curved section and vice-versa. Second, a waveguide
can go from a section of a particular curvature in one direction and then transition to a
section of the same or different curvature, but in the opposite direction. Third, a
waveguide can go from a section of a particular curvature to another section of a
different curvature in the same direction. These three scenarios are visualized below,
along with the modal fields for the differing section, in Figure 41.

Figure 41 - Transition loss illustrations (a) straight to curved, (b) curved to opposite curvature, (c)
curved to different curvature value in same direction (courtesy: Snyder and Love)

7.1.1 Loss Equation

Snyder and Love [31] give two equations for calculating transition losses. The first is for
a transition between a straight section and a curved.

Pout = Pin �1 −
1

Rc
2

ρ2V4

8Δ2 �
r0

ρ
�

6
�

(56)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

70

The second equation is for a transition between two sections of different curvature.

Pout = Pin �1 − �
R1 ± R2

R1R2
�

2 ρ2V4

8Δ2 �
r0

ρ
�

6
�

(57)

For the second equation, if the two curved sections are in the same direction, then the
two radii should be subtracted. If the bends are in the opposite direction (180° change
of direction), then the two radii should be added. The only variable here that wasn’t
previously defined in section 6.1.1 is the parameter r0 which is the spot size of the
waveguide mode. The determination of the spot size is not straight forward, but in this
case, can be determined by a Gaussian approximation given again in Snyder and Love.

r0 =
ρ

√V − 1

(58)

7.1.2 Algorithm Implementation

As has been discussed previously, the waveguides here are based on discrete sections.
Transition loss is determined by comparing the radii of curvature between two adjacent
sections, and then using either equation 56 or 57, appropriately, to determine the
transition loss. If the radii of curvature between two sections are the same, including a
straight section with an infinite radius of curvature, then obviously, the transition loss are
zero and can be ignored. For the arc based waveguides designed previously, there is
actually no transition loss across most of the waveguide, since the radius of curvature is
identical at all points along a circular arc. However, there are a few key sections where
the transition loss will occur in a basic arc based waveguide.

Figure 42 - Circular arc waveguide with transitions highlighted

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

71

There are two points where the straight end sections transition into the curved section,
(equation 56 calculates this loss), and there is one section in the center of the primary
waveguide where two arcs of the same curvature but opposite direction intersect with
each other (equation 57). These regions are highlighted in Figure 42.

Comparing equations 56 and 57 shows that the only two differing terms between the
two are

1
Rc

2 vs. �
R1 ± R2

R1R2
�

2

(59)

Since the waveguide above has the same radius of curvature throughout, but in
opposite direction, the right term reduces to:

�
Rc + Rc

RcRc
�

2
= �

2Rc

Rc
2 �

2

= �
2

Rc
�

2
=

4
Rc

2

(60)

So, for these circular arc waveguides, the center transition between two opposite arcs
has four times the transition loss than the straight to curved transition loss given by
equation 56. Like the bend loss, the total transition loss will be the product of each
individual transition loss. If the individual transition loss is taken from equation 56, the
output power after all transition losses in the waveguide will be

Pout = Pin �1 −
1

Rc
2

ρ2V4

8Δ2 �
r0

ρ
�

6
�

2

�1 −
4

Rc
2

ρ2V4

8Δ2 �
r0

ρ
�

6
�

(61)

This equation is for a waveguide based on two circular arcs. For a path length matched
waveguide based on three circular arcs, as in Figure 29, there will be an additional
transition from opposite arcs, giving an additional second term as

Pout = Pin �1 −
1

Rc
2

ρ2V4

8Δ2 �
r0

ρ
�

6
�

2

�1 −
4

Rc
2

ρ2V4

8Δ2 �
r0

ρ
�

6
�

2

(62)

These equations allow the entire transition loss for arc based waveguides to be
calculated from one equation, making things simple and saving computation time. For a
waveguide with constantly varying radius of curvature, such as one constructed from a
cubic spline, the computation must be performed for each discrete section. Revisiting
Figure 25 to illustrate transition losses, the image below shows that the cubic spline
waveguide has a transition from straight section to curved waveguide at the points on
the waveguide that have the lowest radius of curvature. This will contribute a significant
transition loss. However, for the rest of the waveguide, the transition loss will be low.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

72

Figure 43 - Cubic spline based waveguide transition illustration

For the circled center transition, where the waveguides transition in different directions,
the actual radius of curvature is very high, meaning the transition loss is very low. For

the rest of the curved waveguide, the �𝑅1±𝑅2
𝑅1𝑅2

�
2
 term will be a subtraction of the two radii,

as the curve is in the same direction. Therefore, for cubic spline based curves the
transition loss will be very small along most of the waveguide.

7.2 Transition Loss Comparison

Figure 44 - Transition loss from straight section to curved section of specified radius at various
values of delta n

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

73

As the equations in the previous section show, transition loss does have a dependence
on the physical parameters of the waveguide itself. To show the effects, the loss for a
transition from a straight waveguide to a curved waveguide was tested at three different
values of the difference in the index of refraction between the core and the cladding and
the radius of curvature of the curved waveguide varied between 5 and 40 mm. The
results are shown in Figure 44. The curves created also show the inverse square
relationship of transition loss to the radius of curvature. The graph also shows the trend
that the transition loss increases as the change in index of refraction decreases. The
transition loss equations 56 and 57 hold regardless of the waveguide index profile or
shape, so the results would be the same for step, graded, or any other index profile.
The next graph in Figure 45 is for a transition from a curved waveguide section of radii
from 5 – 40 mm to a curved waveguide section of the same curvature in the opposite
direction, e.g. 5 mm to -5 mm, 6 mm to -6 mm, etc.

Figure 45 - Transition power loss from curved to opposite curved section of specified radius at
various values of delta n

The curves in this graph have the same shape, except the vertical scale is different and
is exactly four times the scale of the graph in Figure 44. This matches the calculations
made in Section 7.1.2. Both the arc and spline waveguide sets have two straight to
curved transitions, with the spline waveguides having a higher transition loss due to
their higher curvature at that transition. However, the arc based waveguides have
either one or two curve-to-opposite-curve transitions which have four times the
transition loss of the straight-to-curved transition.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

74

This graph also illustrates an important point in that for lower values of delta n, the
transition loss reaches 100%, and if extrapolated further, would go over that amount,
which is impossible as you can’t have more than 100% power loss. Reviewing
equations 56 and 57 also shows that for sufficiently small radii of curvature, these
equations actually predict a negative power. This means that these equations should
only be used for sufficiently high values of radii of curvature as they breakdown below a
certain value, depending on the index of refraction of the waveguide.

This section showed that the loss from a transition is based on a second power term to
radius of curvature. In contrast, the bend loss was showed to have dependence on a
double exponential relation to the radius of curvature, and thus it is the more critical
point of focus. The next section will show how the power throughputs for both the spline
and arc based waveguides are affected by both bend and transition losses.

7.3 Total Power Loss for Waveguide Sets

The two power loss mechanisms above can be combined to give a total power loss
value. For comparison, the set of eight sidestep waveguides previously created using
the cubic spline method in Figure 22 will be analyzed and compared to a set, with
identical endpoints, created with the arc method (shown later in Figure 58). These will
be tested at the three different values of core index of refraction as in the previous
section, giving a total power throughput at each index value. The effects of the step and
graded index profile will both be examined. To calculate bend loss for each waveguide,
the algorithm calculates the three-dimensional coordinates of the waveguide curve in 25
µm along the z axis, as mentioned previously. Over 30 mm, this gives 1200 points. At
each point, the local radius of curvature and the bend loss coefficient γ are calculated
and multiplied by the segment length z between points, with the throughput power
calculated per equation 45. This calculation is then repeated over all 1200 points to
give the total waveguide power throughput. Likewise, the transition loss is calculated
incrementally for the cubic spline waveguide and repeated over the entire waveguide.

The first graph in Figure 46 shows the total combined power throughput of the two sets
of eight waveguides with a step index profile. The arc and spline waveguides are both
displayed at the three different values of core index of refraction. For each set, the
waveguides are ordered from lowest throughput to highest throughput. Here, the power
throughputs for the delta n values of 0.005 and 0.004 give a very slight power
throughput advantage to the cubic spline based waveguides. However, for a delta n
value of 0.003, the arc based waveguides have a clear power throughput advantage
over the cubic spline designs.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

75

Figure 46 – Power throughput for 8 step index profile waveguides using both arc and spline
technique at various values of core index of refraction

Figure 47 - Power throughput for 8 graded index profile waveguides using both arc and spline
technique at various values of core index of refraction

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

76

For the graded index profile waveguides in Figure 47, the arc based waveguides have a
clear advantage in power throughput values except for the delta n value of 0.003, where
the power throughput is near zero for all waveguides. To determine why the total power
throughput values differ between the two designs, the power throughput for all
waveguide designs was measured for bend and transition losses, as well as the total
power throughput after the contribution of both loss factors. The average across all
eight waveguides of each waveguide set was taken with the values given in Table 2 and
Table 3. These tables show that the total throughputs for the arc waveguides are lower
for the high values of delta n, in a step index profile, due to the transition loss. At these
values, the bend losses for both arc and spline waveguides are near zero and the spline
waveguides have much less transition loss. For the lowest step index delta n value, the
increased bend loss of the spline based design becomes the much larger loss factor,
giving a greater total power loss for these designs compared to the arc waveguides.

Waveguide Set Bend Transition Total
Arc - 0.005 100.0 95.7 95.7

Cubic Spline - 0.005 99.9 98.8 98.8
Arc - 0.004 99.9 92.4 92.3

Cubic Spline - 0.004 96.0 97.9 94.0
Arc - 0.003 69.5 82.6 58.4

Cubic Spline - 0.003 45.1 95.0 43.3

Table 2 - Average power throughputs for step index profile waveguides, broken into bend and
transition loss components

Waveguide Set Bend Transition Total
Arc - 0.005 99.5 95.7 95.3

Cubic Spline - 0.005 90.3 98.8 89.3
Arc - 0.004 68.8 92.4 64.1

Cubic Spline - 0.004 41.3 97.9 40.6
Arc - 0.003 1.0 82.6 1.3

Cubic Spline - 0.003 0.9 95.0 1.1

Table 3 - Average power throughputs for graded index profile waveguides, broken into bend and
transition loss components

In the graded waveguide sets, the bend loss factor is much higher for the spline based
designs at the higher delta n values. The bend loss for a delta n value of 0.003 here is
so large that the bend and total losses are near 100%. Note that for both the step and
graded index profile waveguides, the transition losses are the same since the shape of
the waveguide profile does not play a part in these loss mechanisms.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

77

These tables show that as the difference in core index of refraction becomes less, bend
loss plays a more important role. Hence, the use of the arc based waveguide technique
is better suited, as waveguides with the same input and output coordinates can have
much less bend loss. However, these simulated estimates are for a step or graded
index profile and not the actual direct write profile that will be used for fabrication. To
simulate the direct write profile requires a more advanced numerical simulation tool,
known as RSoft, which is the subject of the next chapter.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

78

8. Waveguide Simulation using RSoft

As discussed briefly in the introduction, RSoft is a software simulation tool that allows
for testing and measurement of optical waveguides. RSoft is based around the Beam
Propagation Method and gives an estimate of the power throughput for a given set of
waveguide conditions. The software has the capability to test step index profiles and
also has a Gaussian index profile that closely replicates a graded index profile, allowing
for a comparison between methods. The first test was to compare the bend losses from
RSoft to the values obtained earlier with the theoretical formulas from Snyder and Love.

8.1 Bend Loss

Testing the step and graded index waveguides was performed by coding a straight 30
mm waveguide in RSoft’s BeamPROP program and then utilizing a “simulated bend”
facility. As described in Section 2.5, bend loss can be calculated by simulating the
optical effects of a bend in a waveguide, rather than tackling the more computationally
difficult modeling job of carrying the field propagation through a rotating coordinate
frame which follows the guide. To match the Snyder and Love calculations of bend loss
only for the waveguide, each time the simulated bend radius is changed, the
propagating mode needs to be recalculated for that radius and injected into the
waveguide at the beginning. This will eliminate the effects of a straight mode injection
into a bent waveguide, adding an extra, unwanted transition loss on top.

Figure 48 – Power throughput vs. radius of curvature for a 30 mm step index waveguide at various
values of core index of refraction with RSoft results added

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

79

The bend loss was tested over the same range of radii of curvature from 1 – 40 mm at
three values of the core index of refraction, giving a delta n of 0.005, 0.004 and 0.003.
This was done for both a step index profile and a Gaussian index profile. These values
were then plotted over the earlier bend loss curves shown in Figure 37 and Figure 39.
The new graphs are shown in Figure 48 and Figure 49. Figure 48 shows that there is a
very good correlation between the values for step index waveguide bend loss calculated
from the Snyder and Love algorithms with the results from simulation in RSoft. There
are small offsets between the two methods, especially at a delta n value of 0.003, but
either method will give comparable results in the prediction of bend losses in these
waveguides.

Figure 49 – Power throughput vs. radius of curvature for a 30 mm Gaussian index waveguide at
various values of core index of refraction with RSoft results added

Figure 49 also shows a good correlation between Snyder and Love based algorithms
and RSoft simulations results for a delta n value of 0.005, slightly degraded results for
0.004, but a larger variance for a delta n value of 0.003. So, either method should give
a reasonable estimate of bend losses for Gaussian profile waveguides at delta n values
of 0.005 and 0.004, however this degrades rapidly for a delta n value of 0.003 and
becomes nearly unusable. The reason for this discrepancy was attributed to the
difference in the determination of index profile width for a Gaussian profile in RSoft vs.
the theoretical calculations. As the delta n becomes lower, the index profile widens and

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

80

the larger change in width causes a discrepancy in the volume of the index profile. The
RSoft profile was slightly larger and therefore had a higher power throughput.

8.2 Bend Loss for Waveguide Sets

The arc based waveguide set created in Section 5, was programmed with all bends and
transitions into RSoft. The average calculated power throughputs for this set were
given previously (in Table 2) for step index profile waveguides. To compare the
simulated values from RSoft for a step index profile, the table was updated with the
average total power throughput from the eight waveguides calculated by RSoft. The
Gaussian index was not compared, as the power loss was too great for some values of
core index of refraction, as previously discussed.

Waveguide Set
(Style – delta n)

Avg. Analytical Calculated
Power Throughput (%)

Avg. RSoft Simulation
Power Throughput (%)

Arc - 0.005 95.7 97.3
Cubic Spline - 0.005 98.8 97.9

Arc - 0.004 92.3 93.8
Cubic Spline - 0.004 94.0 94.3

Arc - 0.003 58.4 59.4
Cubic Spline - 0.003 43.3 56.0

Table 4 - Comparison of calculated and simulated power throughput for waveguide sets

This table shows that for most of the waveguide configurations, the average calculated
power and the average simulated power are within 2% of each other. The exception to
this is the power values for the cubic spline at delta n of 0.003, where average
simulated power throughput was 29% higher than the calculated power throughput. To
model waveguides in RSoft using a simulated bend requires sections of a certain length
to have a specific radius of curvature. A cubic spline waveguide has a constantly
changing radius of curvature. To attempt to quantify this in RSoft, the analytical
calculation algorithms were modified to produce a waveguide section at each calculated
point, along with the radius of curvature, in an RSoft readable form. Where the arc
based waveguides were constructed with four or five sections, the spline based
waveguides were created using over 1200 sections. Thus, modeling of cubic spline
waveguides in RSoft is difficult and the results do not compare to the calculated results
at low values of delta n. For the arc based waveguides, however, either analytical
calculations or RSoft simulations can be used effectively to simulate expected power
throughputs for a given step index waveguide.

8.3 Modeling HPO Waveguides in RSoft

So far, it has been shown that total waveguide power losses can be calculated using
analytical equations as well as simulated using RSoft, and that these two methods

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

81

correlate well for the simplest case of a step index profile for the arc based design
method. However, what is needed is a prediction method for waveguides fabricated
using the direct write waveguide technique that has been discussed previously. The
waveguides fabricated for the research in this thesis used a High Power Objective
(HPO) laser, which has a unique index profile shape fabricated in the glass. This
complex profile is due to the specific physics responsible for the index change in the
glass substrate, as discussed further in Jovanovic et al [39]. An effective bend loss
calculation for the HPO profile was not found in the literature, nor can it be effectively
estimated using bend loss equations for simple geometries available. However, the
index of an HPO waveguide can be coded into RSoft and the waveguides simulated
using that index profile. An HPO index profile was measured by the fabrication
laboratory at Macquarie University, creating a numerical profile to input into RSoft. An
image of the index profile entered in RSoft is shown below in Figure 50, along with an
image of the mode as it travels in the waveguide.

Figure 50 - (a) Refractive index profile of an ultrafast laser inscribed waveguide at 1550 nm. (b)
Intensity distribution determined by RSoft of the guided waveguide mode in two dimensions,
overlaid by a vertical and horizontal cut profile shown as the two white curves. Inset shows a

cross-sectional micrograph of the waveguide which has been scaled down to fit in Fig. (b)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

82

This shows a three-dimensional cross section of an HPO profile in the X and Y
dimensions in image (a), with the y position on the left axis (the direction the laser is
coming from) and the x position on the bottom axis. This profile reaches a peak delta n
of 0.0143, but this peak is only about 2 microns in diameter, where the step and
Gaussian profiles used thus far for estimates have a diameter of 10 microns. The
image also shows that the HPO profile actually has a second, smaller peak, also,
illustrating that the HPO profile is complex and is difficult to approximate using any
standard shape. Image (b) shows a snapshot of the mode traveling in the waveguide
indicating that despite its complex form, beams of light are observed to propagate
effectively through this waveguide in a single-moded fashion.

8.3.1 HPO Bend Loss Simulation

With a mode obtained for the HPO waveguide in RSoft, the same bend loss testing
performed with the step and Gaussian index waveguides can be performed using the
HPO waveguides. The graphs created in Section 8.1 were updated with the results of
bend loss testing for a 30 mm long HPO waveguide and given below.

Figure 51 - Power throughput vs. radius of curvature for a 30 mm step index waveguide at various
values of core index of refraction with RSoft results (including HPO) added

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

83

Figure 52 - Power throughput vs. radius of curvature for a 30 mm Gaussian index waveguide at
various values of core index of refraction with RSoft results (including HPO) added

The updated graphs show that the bend loss curve for the HPO waveguide does not
rise as steeply as the step or Gaussian index curves. Thus, neither index curve would
make a good model to simulate the bend loss values for an HPO waveguide. To get an
experimental estimate of bend loss for HPO waveguides requires fabricated
waveguides. It also shows that the HPO profile does have fairly high bend losses, even
at reasonably large radii of curvature. The follow-on effects of this bend loss profile will
be investigated further in the next section.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

84

9. Fabrication and Physical Results

To create the waveguide designs for fabrication, the positional data from all eight
waveguides are translated into a format compatible with the fabrication laboratory
computer. For more detail on the process of fabricating direct write waveguides, refer
again to Jovanovic et al [39].

9.1 Physical Bend Loss Radius Scan Chip

To explore the bend loss for an HPO fabricated waveguide, a chip was created with
right angle waveguides of increasing radius of curvature. Each track on this chip had
two straight to bend transitions, and a series of 90° arcs all in a single plane (no change
in height). The chip was designed and fabricated by Nemanja Jovanovic at Macquarie
University and is illustrated below in Figure 53.

Figure 53 - Design of bend loss radius scan chip (courtesy: Nemanja Jovanovic)

This radius parameter scan chip allows a bend loss per unit length measurement to be
derived for an HPO waveguide under conditions of varying curvature. This can then be
used in a lookup table in the optimization algorithms to give a fairly accurate estimate
for the bend loss of a given waveguide.

This chip was probed by injecting laser light at 1550 nm into each waveguide. Fibers
with index-matched oil were coupled to both the waveguide input for injection and to the
output where a probe fed an optical power meter to measure the transmitted signal.
Figure 54 shows an image of the setup to measure optical power throughput, with red

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

85

light at 630 nm used for the photograph to better illustrate a particular waveguide and
together the injection and probe fibers. The waveguide shown being tested is a pupil
remapper waveguide and not from the radius scan chip.

Figure 54 - Optical power measurement setup for measuring power throughput of waveguides

 An optical power measurement was taken for each waveguide and then normalized to
the power measured when coupling the two fiber optic probes directly together and
setting that value to be a power throughput of 100%. These values are given in the
third column in Table 5. Each waveguide has an absorption loss associated with it due
to the intrinsic properties of the glass. The last remaining loss mechanism is coupling
loss and typical coupling losses for all waveguides and measurement setup is around
9% for both coupled points. By measuring the power through a set of the straight
waveguides fabricated on the right side of the chip, a value for the absorption loss
without bends can be determined.

Removing the coupling loss from the straight waveguides gives the relationship for
absorption loss of (1 - e(-0.0075z)) * 100%, where z is the length of a waveguide section in
millimeters. Thus the glass absorption loss can be isolated by dividing the normalized
throughput value by the above factor and the total length of the waveguide in column 2.
The coupling loss can then also be removed and the remaining power loss should be
solely due to bends in the waveguide, which is given in column 3. Subtracting the lead-
in length in Figure 53 from the total length in column 2 gives the bend length for each
waveguide. This length value can be divided by the power, and then the natural log
applied to that value to give the bend loss per mm of length value in column 5. To get
an estimated power throughput, this bend loss value can be used to give the power
throughput for a hypothetical 30.7 mm waveguide at that bend radius, given in column

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

86

6. This length was chosen as this was the path length for the sidestep arc design
waveguides. Finally, absorption and coupling could be added back in for the 30.7 mm
waveguide to give the throughput in column 7.

Arc
Radius
(mm)

Total
Waveguide

Length (mm)

Normalized
Throughput

(%)

Remove
Absorption

And
Coupling

(%)
Bend

Loss/mm

Throughput
for 30.7 mm
Waveguide

(%)

With
Absorption

and
Coupling

(%)
40 62.83 42.9 75.4 0.00448 87.1 63.0

36.6 57.49 41.9 73.0 0.00549 84.5 61.1
33.3 52.31 40.9 69.3 0.00700 80.7 58.3

30 47.12 39.6 66.2 0.00875 76.5 55.3
26.6 41.78 34.9 57.7 0.01315 66.8 48.3
23.3 36.60 31.6 51.8 0.01800 57.6 41.6

20 31.42 17.6 28.4 0.04005 29.2 21.1
16.6 26.08 8.0 12.8 0.07880 8.9 6.4
13.3 20.89 1.4 2.3 0.18151 0.4 0.3

Table 5 - Results from power probing of arc radius scan waveguides

To compare these physical results, the waveguides in Figure 53 were replicated in
RSoft. The power throughput from RSoft simulations for each waveguide is shown in
column 3 of Table 6.

Arc Radius
(mm)

Arc Length
(mm)

Simulated
Power

Throughput
Bend

Loss/mm

Throughput
for 30.7 mm
Waveguide

w/ A & C (%)
40 62.83 0.77 0.00416 63.6

36.6 57.49 0.74 0.00524 61.5
33.3 52.31 0.71 0.00655 59.1

30 47.12 0.67 0.00850 55.7
26.6 41.78 0.62 0.01144 50.9
23.3 36.60 0.56 0.01584 44.4

20 31.42 0.5 0.02206 36.7
16.6 26.08 0.43 0.03237 26.8
13.3 20.89 0.37 0.04759 16.8

Table 6 – Results from RSoft simulations for arc radius scan waveguides

As RSoft does not incorporate the absorption and coupling losses, the loss in the
waveguide will be due to bend losses alone (ignoring transitions losses for the moment).
Thus, the natural log can be taken of the power throughput and divided by the arc
length to get the bend loss per mm of length values in column 4. This bend loss value

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

87

can be used to estimate the power throughput for a 30.7 mm long with waveguide and
adding in absorption and coupling to get the values in column 5. If the RSoft simulated
and physically measured results for bend loss per mm of length from both Table 5 and
Table 6 are plotted together on a log/linear graph, the result is shown below in Figure
56.

Figure 55 - Bend loss per mm of length vs. radius of curvature for physically measured (blue) and
RSoft simulated (red) waveguides

This graph shows that the bend loss per mm of both the simulated and measured
waveguides have a very good correlation for high values of radius of curvature and this
curve is nearly linear when plotted on a logarithmic scale. However, for radius of
curvature values below about 23 mm, the bend losses for the physically measured
waveguides increase sharply over the simulated results. Thus, the fabrication process
may be showing limitations and imperfections when waveguide radius of curvature
values fall below 23 mm.

These bend loss values can be used compare the simulated and physical extrapolated
results for a theoretical 30.7 mm waveguide. These values are taken from the above
table with coupling and absorption loss added and the resulting graph is shown in
Figure 56.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

88

Figure 56 - Simulated vs. measured power throughputs for 30 mm HPO waveguide

This graph also shows that the measured and simulated measurements for bend loss
correlate very well for radius of curvature values 23 mm and above. For radius values
below that figure, the physical bend loss diverges somewhat from the simulated result
and the power throughput decreases significantly.

The results from the fabrication of the arc radius scan chip waveguides, and the
comparison with simulations of those waveguides, show two important things. First,
that for radius of curvature values down to 23 mm, bend losses in waveguides can be
accurately predicted by RSoft. Second, as the physical waveguide bend losses
increase dramatically for radius of curvature values less than 23 mm, waveguides using
these low radii of curvature values should be avoided. Furthermore the fabrication
results could be difficult to predict using RSoft.

A consequence of this requirement for low curvature is illustrated in Figure 36, which
compares two waveguides created from the arc and spline based sidestep design. It
can be seen that the radius of curvature for the arc waveguide sits just below 23 mm
across the entire waveguide, while the spline based waveguide has a tightest curve with
down to nearly 11 mm. This region, circled in red, illustrated that the arc based design
should be used for the high curvature values in preference to the spline for sidestep
chips. Thus, the circular arc waveguides were the basis for all further designs.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

89

Figure 57 - Comparison of radius of curvature for spline (green) and arc (blue) waveguides with
low radius of curvature region circled in red

The physical mechanism for the excess bend loss observed at the lower radius of
curvature values was determined to be due to mechanical difficulties with the laser
fabrication translation stages when moving at the high velocities. As the radius of
curvature decreases, the translation stage also accelerates around the curve faster,
thereby causing a higher susceptibility for fabrication defects. The data from this
measured radius parameter scan curve was used to implement a lookup table in the
Python application to give a calculated estimate for the bend loss. The physically
calculated values for bend loss per mm in Table 5 were then implemented into the
calculation algorithm as a lookup table. Now, the calculation algorithms finally had a
robust, experimentally derived bend loss estimate for the HPO waveguides. This
lookup table has been used to predict throughputs in the next section.

9.2 Predicted Power and Radius of Curvature Throughputs

Based on the test results in the previous section, the arc design was used to fabricate
the latest sidestep remapper chip. An image of this arc sidestep is shown in Figure 58.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

90

Figure 58 - 8 waveguide sidestep arc based design

In the process of designing these waveguides, the new HPO bend loss lookup table
was implemented and a full power estimate including bend, transition, absorption, and
coupling losses was run on all eight waveguides. In addition, these waveguides were
simulated in RSoft, the power throughputs determined and absorption and coupling loss
added to those values. The physical power throughputs for each waveguide were also
measured using the optical probe setup from Section 9.1. These three power values
were plotted on together and the values of these are shown in Figure 59 with the power
scale on the left hand side. The radius of curvature of each arc based waveguide has
also been plotted on the same graph using the scale on the right hand side.

Figure 59 – Graph of calculated (red), simulated (blue) and measured (aqua) power throughput
results with overlaid radius of curvature (green) values

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

91

The graph in Figure 59 shows that the calculated power throughputs of these
waveguides should range between 36 – 58%. These predictions match the RSoft
values with an error range between 5 and 10%. In addition, the radius of curvature
values show all waveguides were fabricated with radius values above 23 mm, which
was found in the last section to be the minimal radius to be safely used. Despite all of
these separate predictions agreeing that waveguides should have good power
throughputs, the measured throughputs are worse and in some cases dramatically so,
ranging from 5 – 47%. This implies that there are still unknown fabrication
imperfections in the HPO fabrication process that cause lower throughputs in the
waveguides for complex, three-dimensional structures with low radius of curvature
values. Note that the pattern of low throughputs does not show strong correspondence
with tighter radius of curvature. Furthermore, the simple planar arc chip discussed in
section 9.1 did exhibit throughputs which were monotonic with radius and conformed
well with expectations, implying that the difficulties may stem from the challenges of
writing curves into the y dimension. The throughputs for some of these waveguides will
make them unsuitable for stellar measurements, however lab measurements of the
coherence lengths can still be made, which are discussed in the next section.

9.3 Physical Waveguide Path Length Measurements

To measure interferometric fringes in the laboratory, the setup in Figure 20 was used
with the addition of a near-infrared transmission grating between the output lenslet array
and the camera. This cross disperses the output light from all eight waveguides so that
the interferometric fringes can be imaged directly on the camera. “Turning off” six of the
eight waveguides, by mispointing the micromirror for each of those waveguides off-axis,
gives a pair of interference fringes from two waveguides. Selecting different
combinations of waveguide pairs will give different spacing of the fringes. Figure 60
shows interference fringes between waveguide pairs with output spacing of 750 µm
(left) and 1750 µm (right). The fringes run horizontally, following the orientation of the
output waveguides.. The two sets of fringes depicted have different spatial frequencies
as they arise from output apertures separated by different distances, with the image on
the right having a longer baseline and hence higher spatial frequency. The fringes are
cross dispersed by a transmission grating, with wavelength running in the vertical from
shorter wavelengths (top) to longer wavelengths (bottom) over the range 1500 – 1600
nm. The effect of the changing wavelength can be seen in the fringe spatial frequency
which becomes bigger, causing the pattern to appear to expand towards the bottom. If
the wavefronts were in phase across all output apertures, the fringes would run exactly
vertically. However the two images in Figure 60 are seen to exhibit inclined due to the
manifestation of a phase delay between the signals from the two contributing
waveguides.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

92

Figure 60 – Two images of wavelength cross-dispersed interference fringes between waveguide
pairs. Image on left shows interference fringes between two waveguides spaced 750 µm apart,

image on right shows interference fringes between two waveguides spaced 1750 µm apart.
Wavelength runs in the vertical direction while spatial frequency runs horizontally.

Using fringe data like that in Figure 60, it is possible to measure the phase delay
between the wavefronts coming from the two separate waveguides. Using the known
wavelength scale and geometry of the optics, it is then a trivial matter to convert this
phase delay (in radians) into a physical delay length that one optical path has with
respect to the other. This value of the optical path difference can be recorded for all
pair combinations of waveguides in a particular device.

Measuring the phase slopes was essentially achieved with a channel spectrum
analysis. Correct sampling of the Fourier components corresponding to the fringes was
ensured by plotting the power (intensity) spectrum of the fringes between a particular
waveguide pair as a function of wavelength. This is depicted in Figure 61 (where the
data arise from the fringe pattern seen in the left image in Figure 60. This graph is
overlaid by a sampling template (white line) giving the expected locus of fringe power
given the known wavelength scale and interferometer baseline.

Fringe interferograms were then taken while adjusting the path length difference by
pistoning the corresponding segment of the MEMS array. This piston was moved from
a nominal location of -1.5 µm to +1.5 µm in 0.1 µm steps (when used in reflection, this
results in 6 microns of actual optical path difference). As described above, changing the
optical path has the effect of tilting the slope of the fringe phase as a function of
wavelength. If the plots for 31 separate piston locations are all overlaid for the same
waveguide pair, the result is the graph shown in Figure 62.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

93

Figure 61 – Power spectrum for two waveguides 750 µm apart. Wavelength channel is on the
vertical axis, while fringe spatial frequency in inverse pixels is on the horizontal axis. The line of

predicted fringe power is overlaid on fringe spectrum (white overplotted line).

Figure 62 – Difference in fringe phase (radians; vertical axis) plotted as a function of inverse
wavelength (1/microns, horizontal axis). The 31 different plots shown illustrate the change in

fringe phase slope as one contributing waveguide is pistoned from -1.5 µm to 1.5 µm.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

94

It can be seen that by changing the phase offset for this particular baseline, the slope of
the fringe phase as a function of wavelength can be changed. However, over the entire
range available from the MEMS array (6 microns), it can be seen that although a
sizeable difference in slope can be obtained, the phase slope cannot be eliminated.
This tells us immediately that the waveguides are not matched to within 6 microns, and
indeed exhibit a mismatch at least several times worse than this value. By using the
information in these plots, the precise phase difference between that particular pair of
waveguides can be determined, and the process repeated for all waveguide pairs.
Using the line of best fit will give the physical path difference between a waveguide pair.

Using one waveguide as a reference and comparing path length differences to the other
seven waveguides will yield a differential path length measurement for each individual
waveguide. A plot of the path length differences of the fabricated waveguide set given
in Figure 58 is shown in Figure 63.

Figure 63 - Plot of path length differences of remaining waveguides in set compared to reference
waveguide.

By comparing the path length differences in this graph, the relative path length
differences between other waveguides can be determined. Thus, the longest path
length difference in this set of eight waveguides is between waveguide 2 (-19.5 µm) to

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

95

waveguide 5 (25.5 µm) for a total path length difference of 45 µm. This means that this
set of waveguides could be used for scientific measurements in optical setups in which
the tolerance on path length matching to a coherence length was greater than that
value.

Although the performance reported here is within our specification range for various
optical setups, there is a significant degradation in the performance between the
mathematical trajectories (which are path length matched much better than one micron)
and the measured performance of the fabricated component. This could be due to
several factors, such as variations in the refractive index between different guides
(written with different depths, curvatures or times), non-ideal performance of the stages
causing errors in the guides, or possibly other sources of error due to misalignments in
the optical apparatus making the measurements.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

96

10. Conclusions

10.1 Summary

This thesis has covered the process of design and fabrication of path length matched
waveguides in a single block of glass. In the process of investigating the methods to
meet the design challenges, a full analysis of mechanisms of power loss in optical
waveguides was performed. This analysis showed that using a computer
implementation of theoretical equations for curvature, bend loss and transition loss gave
an estimate of the power throughput of a given optical waveguide. This was confirmed
by simulated measurements using Beam Propagation Method (BPM) software.
Furthermore, our custom computer implementation allowed these measurements to be
performed in a fraction of the time it would take to import the waveguides into the BPM
software and have the power measurement calculated.

As part of developing the methods to design the waveguides, waveguides design on
two different geometrical principles were explored. The first method used cubic splines
to route the guides, providing a straight forward method of design. However, if the
calculated power losses were unacceptable, a second method based on joined
segments of circular arc could be used to design the waveguide. This circular arc
design allowed for waveguide design with a higher minimum radius of curvature: a key
feature as losses can be catastrophic for even short sections of high curvature. Either
of these methods could then be used to lay out a waveguide chip, and the power
throughputs calculated. Despite these advances, power throughputs of waveguides
which have curvature in three dimensions created with the HPO process cannot be well
predicted nor guaranteed to meet some user-defined specification. Further
investigation into the reasons for the degraded performance compared to expectations
is still needed.

Laboratory analysis performed on the first set of designed waveguides showed
interferometric fringes obtained using these waveguides. To the best of our knowledge
these were the first arbitrarily routed, path length matched waveguides, fabricated for
interferometric purposes. A more detailed analysis was performed on the waveguides
themselves, and the path length of all waveguides were found to be within 45 µm of
each other.

Despite the power throughput problems, a set of waveguides created by the design
process in this thesis was taken to the Anglo Australian Telescope in May of 2011. The
waveguide chip was installed within the optical setup of the Dragonfly instrument on the
telescope and the first stellar interference fringes were obtained by the system [40].
Visibilities and closure phases were recorded across the astronomical H band (and also

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

97

part of the J band) for all baselines present in the input pupil and for all sets of closing
triangles.

10.2 Future Work

In order to build further upon the designs explored here, a few items of possible
improvements have been added.

Two design methods were created here, the cubic spline and circular arc, but no side by
side direct experimental comparison was performed on the data. A sidestep cubic
spline design was fabricated for interferometric testing, but exhibited the same erratic
power measurements. Likewise, the arc based design method came later in the
process, so no straight through designs were created on that. When the fabrication
process is improved to get more consistent performance, a direct experimental
comparison should be made to give more complete results.

The key advantage of this direct write pupil remapper technology is the ability to use
more of the pupil area than aperture masking. This allows for more light from a stellar
target to be measured. As the MEMS array used for this project has 37 segments, it is
conceivable that a 37 waveguide remapper could one day be created. The next likely
prototypes to be fabricated will have 12 – 16 waveguides fabricated.

If more waveguides are to be added to the design, the process of keeping the required
proximity between the waveguides will increasingly become more complex. This will
require more sophisticated coding algorithms to determine the position of the
waveguides in space and shaping them to fit while keeping the radius of curvature high.

Because of the difficulty with the current HPO laser fabrication technique in fabricating
waveguides with the current design, alternative direct write lasers will be investigated to
fabricate the waveguides. Some of these rely on very different physical processes to
enact a change in the refractive index of the glass, and so the final waveguide produced
may not suffer from the same issues which have hampered progress using the HPO
fabrication. This will also hopefully improve the path length matching distance of all
waveguides.

To expand the capabilities of the direct write pupil remappers, expansion into longer
wavelengths and the mid-infrared is a big science goal. This will require alternate types
of glass or substrate transparent in these regions, which will in turn demand and
different laser parameters for successful fabrication.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

98

Bibliography

1. J. Bland-Hawthorn, P. Kern, “Astrophotonics: a new era for astronomical instruments”,
OPTICS EXPRESS 1880 (2009).

2. G. Perrin et al, “Interferometric coupling of the Keck telescopes with single-mode fibers,”
Science 311, 194 (2006).

3. J. Bland-Hawthorn, M. A. Englund and G. Edvell, “New approach to atmospheric OH
suppression using an aperiodic FBG,” Opt. Express 12, 5902-5909 (2004).

4. R. R. Thomson et al, “Ultrafast laser inscription of an integrated photonic lantern”, OPTICS
EXPRESS 5698 (2011).

5. J. Bland-Hawthorn and A. J. Horton, “Instruments without optics: an integrated photonic
spectrograph,” SPIE 6269, 21-34 (2006).

6. B. Martin, “Optics for the Giant Magellan Telescope”, OPN July/August (2009)

7. J.W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford University Press (1998)

8. P.G. Tuthill, S. Lacour, P. Amico, M. Ireland, B. Norris, P. Stewart, T. Evans, A. Kraus, C.
Lidman, E. Pompei, and N. Kornweibel, “Sparse Aperture Masking (SAM) at NAOS/CONICA
on the VLT”, Proc. SPIE 7735, 77351O (2010).

9. Monnier, J. D., Tuthill, P. G., Lopez, B., Cruzalebes, P., Danchi, W. C., Haniff, C. A., "The
Last Gasps of VY Canis Majoris: Aperture Synthesis and Adaptive Optics Imagery", ApJ,
vol. 512, p. 351-361 (1999)

10. T. J. Cornwell, “The Applications of Closure Phase to Astronomical Imaging”, Science
Magazine, Vol. 245 no. 4915 pp. 263-269 (1989)

11. M.J. Ireland et al, “Dynamical Mass of GJ 802B: A Brown Dwarf in a Triple System”,
Astrophysical Journal, 678:463Y471 (2008)

12. T. Bedding, "The Orbit of the Binary Star Delta Scorpii", Astron.J., 106, pp. 768-772 (1993)

13. H. C. Woodruff, P. G. Tuthill, J. D. Monnier, M. J. Ireland, T. R. Bedding, S. Lacour, W. C.
Danchi, M. Scholz, "The Keck Aperture Masking Experiment: Multi-Wavelength
Observations of 6 Mira Variables", Astrophys.J, 673:418Y433 (2008)

14. P. G. Tuthill, J. D. Monnier, and W. C. Danchi, "A dusty pinwheel nebula around the massive
star WR104", Nature 398, pp. 487-489 (1999)

15. V. Coudé du Foresto, “Fringe benefits: the spatial filtering advantages of single-mode
fibers”, Integrated Optics for Astronomical Interferometry (1997)

16. S. Nolteu et al, “Femtosecond waveguide writing: a new avenue to three-dimensional
integrated optics”, Appl. Phys. A 77, 109–111 (2003)

17. A. Ródenas et al, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass”,
Optics Letters / Vol. 37, No. 3 (2012)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

99

18. P.G. Tuthill et al, “Photonic technologies for a pupil remapping interferometer”, Proc. of
SPIE-Astronomical Instrumentation, paper 7734-59, (2010).

19. Saleh and Teich, Fundamentals of Photonics 2nd Edition, Wiley (2007)

20. J.D. Monnier, “Optical Interferometry in Astronomy”, Reports on Progress in Physics (2003)

21. J.D. Monnier, “Phases in Interferometry”, New Astronomy Reviews Vol. 5 (2007)

22. E. Huby, G. Perrin, F. Marchis, S. Lacour, T. Kotani, G. Duchêne, E. Choquet, E. L. Gates,
J. M. Woillez, O. Lai, P. Fédou, C. Collin, F. Chapron, V. Arslanyan, K. J. Burns, "FIRST, a
fibered aperture masking instrument. I. First on-sky test results", A&A, 541, A55 (2012)

23. K.M. Davis et al, “Writing waveguides in glass with a femtosecond laser”, Optics Letters Vol.
21, No. 21 (1996)

24. C. B. Schaffer et al, “Laser-induced breakdown and damage in bulk transparent materials
induced by tightly focused femtosecond laser pulses”, Meas. Sci. Technol., 12, pp. 1784–
1794 (2001)

25. S. Nolte et al, “Femtosecond waveguide writing: a new avenue to three-dimensional
integrated optics,” Appl. Phys. A – Mater. 77, 109-111 (2003)

26. R.R. Thomson, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore
fiber coupling applications”, Optics Express, Vol. 15, Issue 18, pp. 11691-11697 (2007)

27. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar,
and R. Thomson, "Three-dimensional mid-infrared photonic circuits in chalcogenide glass,"
Opt. Lett. 37, 392-394 (2012)

28. J. P. Berger, Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-
Gabet and W. Traub, "Integrated optics for astronomical interferometry IV: First
measurements of stars," A & A 376, L31 (2001)

29. H. Gu and J. Xu. “Design of 3D Optical Network on Chip”, Proceedings of International
Symposium on Photonics and Optoelectronics (SOPO) (2009)

30. K. Okamoto, Fundamentals of Optical Waveguides (2006)

31. A.W. Snyder and J.D. Love, Optical Waveguide Theory, Chapman and Hall (1983)

32. A. Labeyrie, S.G. Lipson, P. Nisenson, An Introduction to Optical Stellar Interferometry,
Cambridge University Press (2006)

33. S.M. Eaton et al, “Transition from thermal diffusion to heat accumulation in high repetition
rate femtosecond laser writing of buried optical waveguides” Optics Express 9443 (2008)

34. S. Lacour et al, “Characterization of integrated optics components for the second generation
of VLTI instruments”, Proc. of SPIE Vol. 7013, 701316, (2008)

35. J.H. Mathews and K.K. Fink, Numerical Methods Using MATLAB 4th Edition, Prentice Hall
(2003)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

100

36. J. Kiusalaas, Numerical Methods in Engineering with Python, Cambridge University Press
(2005)

37. Ramachandran and Varoquaux, “Mayavi: 3D Visualization of Scientific Data”¸ IEEE
Computing in Science & Engineering (2011)

38. B. Norris et al, “Challenges in Photonic Pupil Remapping for Optical Stellar Interferometry”,
IQEC/CLEO Pac-Rim Proceedings (2011)

39. N. Jovanovic et al, "Direct Laser Written Multimode Waveguides for Astronomical
Applications," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA
Technical Digest, paper JThA28 (2010)

40. N. Jovanovic et al, "First stellar photons through an integrated photonic pupil remapping
interferometer", Proceedings of the International Quantum Electronics Conference and
Conference on Lasers and Electro-Optics Pacific Rim 2011,paper C1212 (2011)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

101

Appendix – Python Application code

This appendix contains the Python code that implements the functionality to create the
waveguides, as well as performing analysis on them. The first portion contains the
various variables and class objects needed for the various functions. The main logic
portion calls out the various functions to perform specific tasks.

• CalculateInputOutputDistance function calculates the linear distance between x
and y end points. This data is used by the DeterminePrimaryWaveguides
function to determine the primary waveguide in each set.
DetermineSecondaryWaveguides populates a list with the rest of the waveguides

• If fabrication of arcs is desired, then the lines under ARC BASED CODE should
be uncommented with the spline code commented.

o CreatePrimaryArcWaveguide creates the primary waveguide. It calls the
function CreateDoubleArcSegment to perform the construction.

o CreateSecondaryArcWaveguides contains the code to fabricate the
secondary arc based waveguides. The positioning code and code to keep
track of radius reduction is here. In this code, it calls the function
CreateTripleArcSegment to fabricate a waveguide from three circular arcs

• If fabrication of splines is desired, then the lines under SPLINE BASED CODE
should be uncommented with the arc code commented.

o CreatePrimarySplineWaveguide creates the primary waveguide. It calls
the function CreateSingleSpline to perform the construction.

o CreateSecondaryArcWaveguides contains the code to fabricate the
secondary splines based waveguides. The positioning code and code to
keep track of radius reduction is here. In this code, it calls the function
CreateDoubleSpline to fabricate a waveguide with an offset middle knot.

• With the waveguides successfully designed and path length matched, the
function SegmentDistanceCurvatureCheck is called. This calculates the
curvature, the closest distance between any two waveguides and the depth at
which the waveguides are created.

o This function also calls CalculatePowerLoss. This function goes through a
specific waveguide and calculates the bend, transition, coupling and
absorption power losses for each waveguide to give an estimated power
throughput. Choosing a step index profile, Gaussian index profile, or an
HPO profile from a lookup table is set here.

• PlotAllSegments creates the three-dimensional plot using the Mayavi library
• CreateLaserWriteFiles takes the three-dimensional coordinates of each

waveguide and writes them to a file in a format to be read by the laser fabrication
computer.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

102

-*- coding: utf-8 -*-
Python file to design best path(s) through an optical chip based on input and output positions

Copyright Ned Charles 2011
The references here are all used for education purposes only

** CLASS DECLARATION **

PositionDimensionDataObject

Contains all start and end positions, physical requirements and dimensions,

class PositionDimensionDataObject(object):

 def __init__(self, NumberOfSegments):
 self.NumberOfSegments = NumberOfSegments
 self.PathXStartPosArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.PathYStartPosArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.PathXEndPosArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.PathYEndPosArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.XDistanceArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.YDistanceArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.DirectDistanceArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.SecondaryIndexList = np.zeros(1, dtype=np.int)
 self.SegmentCreatedArray = np.zeros(NumberOfSegments, dtype=np.float64)
 self.ArcCutoffPoint = np.zeros(NumberOfSegments, dtype=np.float64)
 self.RadiusOffsetArray = np.zeros(NumberOfSegments-1, dtype=np.float64)
 self.LeadInSegmentArray = np.zeros(NumberOfSegments-1, dtype=np.int)

 PrimarySegmentNumber = 0
 PrimarySegmentRadius = 0.0
 BlockSectionWidth = 0
 BlockSectionHeight = 0
 BlockSectionLength = 0
 EdgeStraightSectionLength = 0.0
 CenterBridgeLength = 0.0
 BlockSectionLength = 0.0
 ZSpatialPrecision = 0.0
 CalculatedPathDistance = 0.0
 SegmentLengthPrecision = 0.0
 NumberZSlices = 0

WaveguidePropertiesDataObject

Contains all information about the physical properties of the optical waveguide. This information
will be used to estimate light loss in the waveguide. The parameters are based on Snyder and Love
textbook and the calculations to determine these parameters are performed later on.

class WaveguidePropertiesDataObject(object):

def __init__(self, NumberOfSegments):
self.NumberOfSegments = NumberOfSegments

 # These parameters are set once and good for the physical properties of all waveguides
 IndexCore = 0.0
 IndexCladding = 0.0
 WaveguideRadius = 0.0 # The rho parameter
 Wavelength = 0.0 # microns
 NumericalAperture = 0.0
 NormalizedFrequency = 0.0 # The V parameter
 DeltaParameter = 0.0
 UParameter = 0.0
 WParameter = 0.0
 RadiusZero = 0.0 # The spot size - calculate on pg 341 using relationships there
 BetaCoefficient = 0.0

** AUXILIARY FUNCTIONS **

Function - CalculateWaveguideProperties

The parameters in the WaveguidePropertiesDataObject are calculated here. The calculations are dervied
from the textbook Optical Waveguide Theory by Snyder and Love, 1983.

def CalculateWaveguideProperties(WPData):

 WavePropData.IndexCore = 1.4927
 WavePropData.IndexCladding = 1.4877
 WavePropData.WaveguideRadius = 4.85
 WavePropData.Wavelength = 1.55 # microns

 # Numerical Aperture is based on the core and cladding indices
 WPData.NumericalAperture = np.sqrt(WPData.IndexCore**2 - WPData.IndexCladding**2)

 # Parameters from back of Snyder and Love
 WPData.NormalizedFrequency = ((2.*np.pi)/WPData.Wavelength) * WPData.WaveguideRadius * \
 WPData.NumericalAperture
 WPData.DeltaParameter = (WPData.IndexCore**2 - WPData.IndexCladding**2)/(2.*WPData.IndexCore**2)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

103

 # Beta Coefficient is an arbitrary parameter based on the waveguide characteristics
BetaCoefficientArray = [6.041393049,6.03812908,6.035121234] from RSoft -> delta n = 0.005,0.004,0.003
 WPData.BetaCoefficient = 6.041393049

 # Given beta value, calculate W and U parameters
 kParam = (2.*np.pi)/WPData.Wavelength
 WPData.WParameter = WPData.WaveguideRadius * np.sqrt(WPData.BetaCoefficient**2 - \
 (WPData.IndexCladding**2 * kParam**2))
 WPData.UParameter = WPData.WaveguideRadius * np.sqrt((WPData.IndexCore**2 * kParam**2) - \
 WPData.BetaCoefficient**2)

 # Step Profile
 WPData.RadiusZero = WPData.WaveguideRadius/(np.sqrt(2. * np.log(WPData.NormalizedFrequency)))
 # Gaussian Profile
 WPData.RadiusZero = WPData.WaveguideRadius/np.sqrt(WPData.NormalizedFrequency - 1)

 print "***"
 print "WAVEGUIDE PROPERTIES"
 print "IndexCore: " + str(WPData.IndexCore)
 print "IndexCladding: " + str(WPData.IndexCladding)
 print "WaveguideRadius: " + str(WPData.WaveguideRadius)
 print "Wavelength: " + str(WPData.Wavelength)
 print "NumericalAperture: " + str(WPData.NumericalAperture)
 print "NormalizedFrequency: " + str(WPData.NormalizedFrequency)
 print "DeltaParameter: " + str(WPData.DeltaParameter)
 print "UParameter: " + str(WPData.UParameter)
 print "WParameter: " + str(WPData.WParameter)
 print "RadiusZero: " + str(WPData.RadiusZero)
 print "***"

DESIGN FOR DETERMINING DISTANCES

Function - CalculateInputOutputDistance
This code calculates the differences in x and y between the input and output points of each spline
def CalculateInputOutputDistance(PDData):
 for i in range(0, len(PDData.XDistanceArray)):
 PDData.XDistanceArray[i] = PDData.PathXEndPosArray[i] - PDData.PathXStartPosArray[i]
 PDData.YDistanceArray[i] = PDData.PathYEndPosArray[i] - PDData.PathYStartPosArray[i]
 #Direct distance formed by taking the hypotenuse of the X and Y difference above
 PDData.DirectDistanceArray[i] = np.sqrt((PDData.XDistanceArray[i])**2 + (PDData.YDistanceArray[i])**2)
 return

Function - DeterminePrimarySegments
Find which spline has the largest distance. Returns the index of the largest segment

def DeterminePrimarySegments(DirectDistanceArray):
 LargestDistanceIndex = np.argmax(abs(DirectDistanceArray))
 print "Largest ordinal segment number: " + str(LargestDistanceIndex)
 return LargestDistanceIndex

Function - DetermineSecondarySegments
Find a list with the secondary segments

def DetermineSecondarySegments(PDData):
 PDData.SecondaryIndexList[0] = -1

 for i in range(0, PDData.NumberOfSegments):
 # If this segment doesn't exist in the largest list, add it to the secondary list
 if(i != PDData.PrimarySegmentNumber):
 #If the first item is -1 (first element in the list), replace, otherwise add
 if(PDData.SecondaryIndexList[0] == -1):
 PDData.SecondaryIndexList[0] = i
 else:
 PDData.SecondaryIndexList = np.append(PDData.SecondaryIndexList, i)

AUX FUNCTIONS FOR BELOW
Functions - For tridiagonal matrix deconvolving
Adapted from Numerical Engineering Methods in Python (2005), Section 2.4

def LUdecomp3(c,d,e):
 n = len(d)
 for k in range(1,n):
 lam = c[k-1]/d[k-1]
 d[k] = d[k] - lam*e[k-1]
 c[k-1] = lam
 return c,d,e

def LUsolve3(c,d,e,b):
 n = len(d)
 for k in range(1,n):
 b[k] = b[k] - c[k-1]*b[k-1]
 b[n-1] = b[n-1]/d[n-1]
 for k in range(n-2,-1,-1):
 b[k] = (b[k] - e[k]*b[k+1])/d[k]
 return b

Function - CalculateSegmentLength
Calculates the segment length based on the data points

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

104

def CalculateSegmentLength(PDData, XYZSegmentDataArray, SegNum):
 # Calculate spline length
 totalPathDistance = 0.0
 previousSliceXValue = PDData.PathXStartPosArray[SegNum]
 previousSliceYValue = PDData.PathYStartPosArray[SegNum]
 previousSliceZValue = 0.0

 for i in range(1, len(XYZSegmentDataArray[SegNum,:,0])):
 #Add the path amount to the total distance
 totalSliceDistance = np.sqrt((XYZSegmentDataArray[SegNum,i,0]-previousSliceXValue)**2 + \
 (XYZSegmentDataArray[SegNum,i,1]-previousSliceYValue)**2 + \
 (XYZSegmentDataArray[SegNum,i,2]-previousSliceZValue)**2)
 totalPathDistance += totalSliceDistance
 previousSliceXValue = XYZSegmentDataArray[SegNum,i,0]
 previousSliceYValue = XYZSegmentDataArray[SegNum,i,1]
 previousSliceZValue = XYZSegmentDataArray[SegNum,i,2]
 #end slice for loop

 return totalPathDistance

DESIGN FOR CREATING SPLINE FOR EACH PATH

Function - CreateSpline
To calculate the path, the program uses the spline function. This takes the starting and end
points of the path, then returns the centerpoints of the function for each z-slice.
http://www.physics.utah.edu/~detar/phys6720/handouts/cubic_spline/cubic_spline/node1.html

This spline creation program uses the XY Distance plus the Z Distance to create the spline. The
XY difference will be the difference in YLineValues below on the line to pass in that will create
it. The Z difference will be used to create the XLineValues to pass in below. The slopes of the
line created will then be passed in to the code below. This will return the 2nd derivative
k values to pass into the Evaluate Spline function, which will return the distance values at each
slice. Using the X and Y beginning and end values of the segment will allow the spline to be
translated into an array of X, Y values.

def CreateSpline(XYDistance, ZDistance, Invert = 0, DoubleSpline = 0, DoubleSplineOffset = 0.0):
 XLineValues = np.array([0.0,ZDistance/2.0,ZDistance]) # minimum of three points
 LineSlope = XYDistance/ZDistance
 YLineValues = LineSlope*XLineValues

 if (DoubleSpline == 1):
 YLineValues[1] += DoubleSplineOffset

 if (DoubleSpline == 2):
 XLineValues[1] = ZDistance/3.
 TwoThirdDataPointXVal = (ZDistance*2.)/3.
 YLineValues[1] = LineSlope * XLineValues[1]
 TwoThirdDataPointYVal = LineSlope * TwoThirdDataPointXVal

 YLineValues[1] += DoubleSplineOffset
 TwoThirdDataPointYVal -= DoubleSplineOffset

 XLineValues = np.insert(XLineValues, 2, TwoThirdDataPointXVal)
 YLineValues = np.insert(YLineValues, 2, TwoThirdDataPointYVal)

 if (DoubleSpline == 3):
 # For secondary spline, the line passed in needs to be adjusted by picking two more points at 1/4
 # and 3/4 of the total length and then incrementing these values vertically in the opposite
 # direction to create a 3 segment model. This will increase the total value of the spline.
 # Increment the data points at 1/4 and 3/4 of the lengths to create the 3 segments
 OneQuarterDataPointXVal = ZDistance*.25
 ThreeQuarterDataPointXVal = ZDistance*.75
 OneQuarterDataPointYVal = LineSlope * OneQuarterDataPointXVal
 ThreeQuarterDataPointYVal = LineSlope * ThreeQuarterDataPointXVal

 # Increase these values by the offset
 OneQuarterDataPointYVal += DoubleSplineOffset
 ThreeQuarterDataPointYVal -= DoubleSplineOffset

 # Add these into the X and Y line value arrays
 XLineValues = np.insert(XLineValues, 1, OneQuarterDataPointXVal)
 XLineValues = np.insert(XLineValues, 3, ThreeQuarterDataPointXVal)
 YLineValues = np.insert(YLineValues, 1, OneQuarterDataPointYVal)
 YLineValues = np.insert(YLineValues, 3, ThreeQuarterDataPointYVal)

 x = XLineValues
 y = YLineValues

 # Slope specified at the left and right sides of the splines
 LeftTangent = 0.
 RightTangent = 0.

 # Mathematics from Numerical Methods using MATLAB 4th Edition, Section 5.3
 # with adapted code from Numerical Engineering Methods in Python (2005), Section 3.3
 # This code calculates the second derivative (k) at each knot specified
 n = len(x) - 1

 # The values for the clamped spline can be solved using equation 12 of the MATLAB
 # book. This equation is only valid for the values from 1...n-1, with modifications for
 # 1 & n-1 made below. To solve the equation, the values of k for 0 and n must be substituted

 # h is an intermediate variable that calculates the distance between x values
 h = np.zeros((n), dtype=np.float64)
 h[0:n] = x[1:n+1] - x[0:n]

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

105

 a = np.zeros((n), dtype=np.float64)
 b = np.ones((n+1), dtype=np.float64)
 c = np.zeros((n), dtype=np.float64)
 u = np.zeros((n+1), dtype=np.float64)
 k = np.zeros((n+1), dtype=np.float64)

 # Calculate matrix parameters: a + b + c = u
 a[0:n-1] = h[0:n-1]
 b[1:n] = 2.0*(h[0:n-1] + h[1:n])
 c[1:n] = h[1:n]
 u[1:n] = 6.0*(((y[2:n+1]-y[1:n])/h[1:n])-((y[1:n]-y[0:n-1])/h[0:n-1]))

 # The loop is only valid for parameters from 1 to n-1. For the first value, the value for k[0]
 # is unknown, so the eqn. after the loop to calculate k[0] is substituted into the main loop eqn.,
 # solving for k[0]
 b[1] = 1.5*h[0] + 2*h[1]
 u[1] = u[1] - 3*(((y[1]-y[0])/h[0])-LeftTangent)

 # For the value of c, it depends on how many points the spline has. If it is only three, there
 # is no need to proceed to the matrix solving loop, as there is only one parameter to solve for

 if(n == 2):
 # This means that the value k[2] is also unknown and calculated later. There is also only
 # one unknown, k[1], so that can be solved now instead of needing matrix algebra
 k[1] = (u[1] - 3*(RightTangent - ((y[2]-y[1])/h[1])))/(1.5*(h[0]+h[1]))
 else:
 # There is more than one equation with more than one variable to be solved.
 # There is a special case if the loop variable is equal to n-1. This means that the
 # value for k[n] is not known at this time, so a substitution will need to be performed
 # to be able to solve the matrix. Otherwise the values are as above

 # There is no value for c (zero), b and u are modified
 b[n-1] = 2*h[n-2] + 1.5*h[n-1]
 u[n-1] = u[n-1] - 3*(RightTangent - ((y[n]-y[n-1])/h[n-1]))

 a,b,c = LUdecomp3(a,b,c)
 k = LUsolve3(a,b,c,u)

 # Plug in after solving for all center values
 k[0] = (3./h[0])*(((y[1]-y[0])/h[0]) - LeftTangent) - k[1]/2.
 k[n] = (3./h[n-1])*(RightTangent - ((y[n]-y[n-1])/h[n-1])) - k[n-1]/2.

 return x,y,k

Function - EvaluateSpline
Adapted from Numerical Engineering Methods in Python (2005)

def EvaluateSpline(XYKDataArray,x):

 xData = XYKDataArray[0]
 yData = XYKDataArray[1]
 kData = XYKDataArray[2]

 def findSegment(xData,x):
 iLeft = 0
 iRight = len(xData)- 1
 while 1:
 if (iRight-iLeft) <= 1: return iLeft
 i =(iLeft + iRight)/2
 if x < xData[i]: iRight = i
 else: iLeft = i

 i = findSegment(xData,x)
 h = xData[i] - xData[i+1]
 y = ((x - xData[i+1])**3/h - (x - xData[i+1])*h)*kData[i]/6.0 \
 - ((x - xData[i])**3/h - (x - xData[i])*h)*kData[i+1]/6.0 \
 + (yData[i]*(x - xData[i+1]) \
 - yData[i+1]*(x - xData[i]))/h

 return y

SPLINES

Function DesignPrimarySpline

def DesignSplineSection(DirectDistance, ZDistance, ZPrecision, XStartPos, YStartPos, XDistance, YDistance, \
 XYZSegDataArray, DoubleSpline = 0, DoubleSplineOffset = 0.0, AngleOffset = 0.0):

 # The code will create two splines, one for the x value in space and the other for the y value.
 # The code can be passed in an angle offset that will specify a direction to stretch the segment in.

 # The spline was created using the DirectDistanceArray. This array falls on a line that lies
 # in the x-y plane and was created earlier using the starting and ending x-y points of the
 # segment. We can use the slope of the line to determine the x and y coordinates of a point
 # that lies on this line. The tangent of the corresponding angle equals the line slope

 XYLineAngle = np.arctan2(YDistance,XDistance)
 XDoubleSplineOffset = 0.
 YDoubleSplineOffest = 0.

 # All lateral stretching of the algorithm happens in the plane equal to the slope of the line
 # of the x-y projection of the start to end points of the line in the block. To stretch the knot(s)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

106

 # at another angle in space, an angle offset is specified here. The angle is specified with
 # an angle of zero/2 pi (radians) in the x positive direction, although an angle offset of zero
 # means no offset. Positive angle rotates in a clockwise direction looking from the start end toward
 # the end to match with the right hand curl rule. The middle knot point is taken from the projection
 # line and then moved from the middle point of the segment in the angle specified.
 if (AngleOffset != 0.0):
 XDoubleSplineOffset = np.cos(AngleOffset)*abs(DoubleSplineOffset)
 YDoubleSplineOffset = np.sin(AngleOffset)*abs(DoubleSplineOffset)

 else:
 # Project along the original angle
 # X value = cos(angle)*hypotenuse, Y value = sin(angle)*hypotenuse
 XDoubleSplineOffset = np.cos(XYLineAngle)*DoubleSplineOffset
 # Need to correct for negative angles because the sine value is negative
 YDoubleSplineOffset = np.sin(XYLineAngle)*DoubleSplineOffset

 # Call the create spline routine to get the k (2nd derivative) values based on the lateral distance
 # and the length.
 XKSplineArray = np.array(CreateSpline(XDistance, ZDistance, DoubleSpline = DoubleSpline, \
 DoubleSplineOffset = XDoubleSplineOffset))
 YKSplineArray = np.array(CreateSpline(YDistance, ZDistance, DoubleSpline = DoubleSpline, \
 DoubleSplineOffset = YDoubleSplineOffset))

 # The k values are obtained for the x and y splines. These values will be passed
 # into the Evaluate Spline function. Now, the spline will be passed in x values to give the
 # interpolated y values at each slice.

 # Set the index of the current slice to zero
 sliceIndex = 0

 # Use to calculate each section and sum of the curve
 totalPathDistance = 0.0
 previousSliceXValue = 0.0
 previousSliceYValue = 0.0
 previousSliceZValue = 0.0

 for ZInterpolatedValue in range(0, int(ZDistance+ZPrecision), int(ZPrecision)):
 XInterpolatedValue = EvaluateSpline(XKSplineArray, ZInterpolatedValue)
 YInterpolatedValue = EvaluateSpline(YKSplineArray, ZInterpolatedValue)
 XYZSegDataArray[sliceIndex,2] = ZInterpolatedValue # Z value

 # Add the Interpolated Value to the start position
 NewXPosition = XStartPos + XInterpolatedValue
 NewYPosition = YStartPos + YInterpolatedValue
 XYZSegDataArray[sliceIndex,0] = NewXPosition
 XYZSegDataArray[sliceIndex,1] = NewYPosition

 #Add the path amount to the total distance
 totalSliceDistance = np.sqrt((XInterpolatedValue-previousSliceXValue)**2 + \
 (YInterpolatedValue-previousSliceYValue)**2 + \
 (ZInterpolatedValue-previousSliceZValue)**2)
 totalPathDistance += totalSliceDistance
 previousSliceXValue = XInterpolatedValue
 previousSliceYValue = YInterpolatedValue
 previousSliceZValue = ZInterpolatedValue
 sliceIndex += 1
 #end slice for loop

 return totalPathDistance

Function - CreateSingleSpline
This function goes through and creates the primary spline(s)
def CreateSingleSpline(PDData, segmentIndex, XYZSplineDataArray):

 XStartPos = PDData.PathXStartPosArray[segmentIndex]
 YStartPos = PDData.PathYStartPosArray[segmentIndex]
 XEndPos = PDData.PathXEndPosArray[segmentIndex]
 YEndPos = PDData.PathYEndPosArray[segmentIndex]
 XDistance = PDData.XDistanceArray[segmentIndex]
 YDistance = PDData.YDistanceArray[segmentIndex]
 DirectDistance = PDData.DirectDistanceArray[segmentIndex]

 print "DirectDistance: " + str(DirectDistance)
 print "XDistance: " + str(XDistance)
 print "XEndPos: " + str(XEndPos)

 NetSplineSectionLength = PDData.BlockSectionLength - (PDData.EdgeStraightSectionLength*2.0)

 # Create an XYZ Array for this segment index to pass into the design spline function.
 # It will be returned with data.
 SplineDataArray = np.zeros(((NetSplineSectionLength/PDData.ZSpatialPrecision)+1, 3), dtype=np.float64)

 # No primary conflict. Pass in the distances to the spline creation algorithm
 SplineDistance = DesignSplineSection(DirectDistance, NetSplineSectionLength, PDData.ZSpatialPrecision, \
 XStartPos, YStartPos, XDistance, YDistance, SplineDataArray)
 print "SingleSplineDistance: " + str(SplineDistance)

 # Now configure the data array by extrapolating out the end straight sections
 # Add the left section. X and Y values equal to the starting position. Fill in Z values.
 FirstSectionJoinIndex = int(PDData.EdgeStraightSectionLength/PDData.ZSpatialPrecision)
 XYZSplineDataArray[0:FirstSectionJoinIndex,0] = XStartPos
 XYZSplineDataArray[0:FirstSectionJoinIndex,1] = YStartPos
 ZIncrementArray = np.arange(0.0,PDData.EdgeStraightSectionLength, PDData.ZSpatialPrecision, dtype=np.float64)
 XYZSplineDataArray[0:FirstSectionJoinIndex,2] = ZIncrementArray

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

107

 # Copy the center section. Increment the z-values to match up with beginning straight section
 SplineDataArray[:,2] += PDData.EdgeStraightSectionLength
 SecondSectionJoinIndex = int((PDData.EdgeStraightSectionLength + NetSplineSectionLength) \
 /PDData.ZSpatialPrecision)+1
 XYZSplineDataArray[FirstSectionJoinIndex:SecondSectionJoinIndex,:] = SplineDataArray

 #Add in the end section
 XYZSplineDataArray[SecondSectionJoinIndex:,2] = ZIncrementArray + (PDData.EdgeStraightSectionLength + \
 NetSplineSectionLength + PDData.ZSpatialPrecision)
 XYZSplineDataArray[SecondSectionJoinIndex:,0] = XEndPos
 XYZSplineDataArray[SecondSectionJoinIndex:,1] = YEndPos

 # Return the total distance
 return SplineDistance

Function - CreatePrimarySegments
This function goes through and creates the primary spline(s)

def CreatePrimarySegments(PDData, XYZSegmentDataArray):

 NoPrimarySegmentError = 1
 # First calculate the primary ones

 SegmentIndex = PDData.PrimarySegmentNumber
 XYZSplineDataArray = np.zeros(((PDData.BlockSectionLength/PDData.ZSpatialPrecision)+1, 3), \
 dtype=np.float64)

 SplineDistance = CreateSingleSpline(PDData, SegmentIndex, XYZSplineDataArray)

 if (SplineDistance > 0):
 XYZSegmentDataArray[SegmentIndex,:,:] = XYZSplineDataArray
 PDData.SegmentCreatedArray[SegmentIndex] = 1

 #CalculatedPathDistance is an array
 PDData.CalculatedPathDistance = SplineDistance + (PDData.EdgeStraightSectionLength*2)
 print "Segment distance: " + str(PDData.CalculatedPathDistance)

 return NoPrimarySegmentError

Function - CreateDoubleSpline
This function goes through and creates the primary spline(s)

def CreateDoubleSpline(PDData, segmentIndex, XYZSplineDataArray, DoubleSpline = 1, AngleOffset = 0.0, \
 SegmentLead = 0):

 NetSplineSectionLength = PDData.BlockSectionLength - (PDData.EdgeStraightSectionLength*2.0) - \
 (SegmentLead*PDData.ZSpatialPrecision)

 # Create an XYZ Array for this segment index to pass into the design spline function.
 # It will be returned with data.
 SplineDataArray = np.zeros(((NetSplineSectionLength/PDData.ZSpatialPrecision)+1, 3), dtype=np.float64)

 XStartPos = PDData.PathXStartPosArray[segmentIndex]
 YStartPos = PDData.PathYStartPosArray[segmentIndex]
 XEndPos = PDData.PathXEndPosArray[segmentIndex]
 YEndPos = PDData.PathYEndPosArray[segmentIndex]
 XDistance = PDData.XDistanceArray[segmentIndex]
 YDistance = PDData.YDistanceArray[segmentIndex]
 DirectDistance = PDData.DirectDistanceArray[segmentIndex]
 ZSpatialPrecision = PDData.ZSpatialPrecision
 EdgeStraightSectionLength = PDData.EdgeStraightSectionLength

 print "##################"
 XMidPos = 0.
 YMidPos = 0.
 XDifference = XEndPos - XStartPos
 YDifference = YEndPos - YStartPos

 print "Start/End Positions"
 print XStartPos, YStartPos
 print XEndPos, YEndPos

 XYLineAngle = np.arctan2(YDistance, XDistance)

 print "LineAngle: " + str(XYLineAngle)

 # This while loop will repeat the code below until the spline length comes within the tolerance specified
 IncrementValue = 5.0
 SegmentDistanceDifference = 0.0
 LastSegmentDistanceDifference = 0.0
 ToleranceAchieved = 0
 RunNumber = 1
 SwitchToFlipMethod = 0
 OffsetValue = 5.0

 print "Angle offset: " + str(AngleOffset)

 while(ToleranceAchieved == 0):

 SplineDistance = DesignSplineSection(DirectDistance, NetSplineSectionLength, \

 PDData.ZSpatialPrecision, \
 XStartPos, YStartPos, XDistance, YDistance, SplineDataArray, \

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

108

 DoubleSpline = DoubleSpline, DoubleSplineOffset = OffsetValue, \
 AngleOffset = AngleOffset)

 # Now configure the data array by extrapolating out the end straight sections
 # Add the left section. X and Y values equal to the starting position. Fill in Z values.
 FirstSectionJoinIndex = int(EdgeStraightSectionLength/ZSpatialPrecision + SegmentLead)
 XYZSplineDataArray[0:FirstSectionJoinIndex,0] = XStartPos
 XYZSplineDataArray[0:FirstSectionJoinIndex,1] = YStartPos
 ZIncrementArray = np.arange(0.0,EdgeStraightSectionLength+(SegmentLead*ZSpatialPrecision), \
 ZSpatialPrecision, dtype=np.float64)
 XYZSplineDataArray[0:FirstSectionJoinIndex,2] = ZIncrementArray

 # Copy the center section. Increment the z-values to match up with beginning straight section
 SplineDataArray[:,2] += EdgeStraightSectionLength + SegmentLead*ZSpatialPrecision
 SecondSectionJoinIndex = int((EdgeStraightSectionLength + NetSplineSectionLength)/ZSpatialPrecision) + \
 SegmentLead + 1
 XYZSplineDataArray[FirstSectionJoinIndex:SecondSectionJoinIndex,:] = SplineDataArray

 #Add in the end section
 ZIncrementArray2 = np.arange(0.0,EdgeStraightSectionLength, ZSpatialPrecision, dtype=np.float64)
 XYZSplineDataArray[SecondSectionJoinIndex:,2] = ZIncrementArray2 + (EdgeStraightSectionLength + \
 NetSplineSectionLength + \
 (1+SegmentLead)*ZSpatialPrecision)
 XYZSplineDataArray[SecondSectionJoinIndex:,0] = XEndPos
 XYZSplineDataArray[SecondSectionJoinIndex:,1] = YEndPos

 # Now see how the returned value compares to the needed spline distance
 NewSegmentDistance = 2*EdgeStraightSectionLength + SegmentLead*ZSpatialPrecision + SplineDistance
 SegmentDistanceDifference = PDData.CalculatedPathDistance - NewSegmentDistance
 if(abs(SegmentDistanceDifference) <= PDData.SegmentLengthPrecision):
 # The segment is within tolerance. Use these values and exit the function
 ToleranceAchieved = 1
 else:
 ThisRun = np.sign(SegmentDistanceDifference)
 LastRun = np.sign(LastSegmentDistanceDifference)

 if ((ThisRun != LastRun and LastSegmentDistanceDifference != 0.0) or SwitchToFlipMethod == 1):
 # The segment distance is more than the needed distance, but not within tolerance
 # Flip the sign and reduce the amount by 5%
 SwitchToFlipMethod = 1
 IncrementValue = (-0.95) * IncrementValue

 # Now increase the midpoint
 OffsetValue += IncrementValue
 #Update the last run value
 LastSegmentDistanceDifference = SegmentDistanceDifference

 RunNumber += 1
 #end while

 print "Run number: " + str(RunNumber)
 print "Offset Value: " + str(OffsetValue)
 print "SplineDistance: " + str(SplineDistance)

 # Return the total spline distances
 return NewSegmentDistance

Function - CreateSecondarySegments
This function goes through and creates the secondary spline(s)

def CreateSecondarySegments(PDData, XYZSegmentDataArray):

 #Go through the list of secondary segments and check for any conflicts
 ConflictFlag = 0
 PrimaryConflictFlag = 0

 # KEY 0-red, 1-green, 2-orange, 3-blue, 4-pink, 5-gold, 6-aqua, 7-yellow, 8-white
 # Array should have one less value than total segments, as primary is already created
 AngleOffsetArray = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
 DoubleSplineArray = np.array([1,1,1,1,1,1,1])
 LeadInSegmentArray = np.array([0, 0, 0, 0, 0, 0, 0])

 print "Secondary Segment List: " + str(PDData.SecondaryIndexList)

 for i in range(0, len(PDData.SecondaryIndexList)):

 SegmentIndex = PDData.SecondaryIndexList[i]

 XYZSplineDataArray = np.zeros(((PDData.BlockSectionLength/PDData.ZSpatialPrecision)+1, 3), \
 dtype=np.float64)

 AngleOffset = AngleOffsetArray[i]
 DoubleSpline = DoubleSplineArray[i]
 SegmentLead = LeadInSegmentArray[i]

 SplineDistance = CreateDoubleSpline(PDData, SegmentIndex, XYZSplineDataArray, \
 DoubleSpline = DoubleSpline, AngleOffset = AngleOffset, \
 SegmentLead = SegmentLead)

 TotalDistance = SplineDistance
 print "Segment " + str(SegmentIndex) + " has a distance of " + str(TotalDistance)

 if (SplineDistance > 0):

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

109

 XYZSegmentDataArray[SegmentIndex,:,:] = XYZSplineDataArray
 PDData.SegmentCreatedArray[SegmentIndex] = 1

CIRCULAR ARCS

Function - CreatePrimaryArcSegment
Function to create the primary arc segment

def CreatePrimaryArcSegment(PDData, XYZSegmentDataArray, ArcRadiusDataArray):
 CreateDoubleArcSegment(PDData, XYZSegmentDataArray, PDData.PrimarySegmentNumber)
 ArcRadiusDataArray[PDData.PrimarySegmentNumber] = PDData.PrimarySegmentRadius

Function - CreateDoubleArcSegment
This function is intended to create a particular segment by using two or three circular arcs connected
at the intersection of each arc. Setting parameter MatchLength equal to 1 means the algorithm will
run recursively until the segment length is matched.

def CreateDoubleArcSegment(PDData, XYZSegmentDataArray, SegNum):

 # The mathematical basis for this function is to minimize the curvature of the segments by representing
 # them as the interconnection of two circular arcs for a basic spline, or if more distance is needed
 # to use three circular arcs. The math function will be:
 # Radius1*Angle1 + Radius2*Angle2 = Segment Length

 Width = PDData.DirectDistanceArray[SegNum]
 Length = PDData.BlockSectionLength - 2.*PDData.EdgeStraightSectionLength

 # Basic arc would be two circles with identical radius and arc angle
 # Chord length is the hypotenuse formed by the width and length (divided by 2) which is used as
 # the basis for the radius and angle of the arc
 ChordLength = np.sqrt(Length**2 + Width**2)/2.
 # Angle is formed by the length and width and forms the other angle of the triangle
 # formed by the bisector of the chord
 ChordAngle = np.arctan2(Length,Width)
 # The angle and radius of the arc
 ArcAngle = 2.*(np.pi/2. - abs(ChordAngle))
 ArcRadius = (ChordLength/2.)/np.cos(ChordAngle)

 print "***"
 print "Primary Segment: " + str(SegNum)
 print "Width of segment is: " + str(Width)

 # Now with this information, we can construct the circle and interpolate points along the arc
 # X below is the single lateral dimension of the arc, which will be translated into X and Y using
 # the angle of x and y formed by the start and end points and Y below is the length or Z dimension
 LeftArcCenterPointX = 0
 LeftArcCenterPointY = 1.*ArcRadius
 XDelta = PDData.ZSpatialPrecision
 XSlices = int(Length/XDelta)
 ArcSegmentDataArray = np.zeros((XSlices+1, 2), dtype=np.float64)
 # The left arc will take care of the arc inflection point at the closest slice
 LeftXArcWidth = np.sin(ChordAngle) * ChordLength
 LeftXSlice = LeftXArcWidth/XDelta
 # The left arc will take care of the center, arc inflection point near halfway
 # Now do a mirror image for the Right Arc with the remaining length
 RightArcCenterPointY = -1.*(ArcRadius-Width)

 for i in range(0, XSlices+1):
 XValue = i*XDelta

 if(i <= LeftXSlice):
 # Equation to find y value is based on x = r*cos(theta) and y = r*sin(theta)
 ThetaValue = np.arcsin(XValue/ArcRadius)
 YValue = LeftArcCenterPointY - (ArcRadius*np.cos(ThetaValue))
 else:
 ThetaValue = np.arcsin((Length - XValue)/ArcRadius)
 YValue = RightArcCenterPointY + (ArcRadius*np.cos(ThetaValue))

 ArcSegmentDataArray[i,0] = XValue
 ArcSegmentDataArray[i,1] = YValue

 #####
 # Now interpolate this curve into X and Y dimensions based on the original line slope
 XYLineAngle = np.arctan2(PDData.XDistanceArray[SegNum],PDData.YDistanceArray[SegNum])
 XStartPos = PDData.PathXStartPosArray[SegNum]
 YStartPos = PDData.PathYStartPosArray[SegNum]
 XEndPos = PDData.PathXEndPosArray[SegNum]
 YEndPos = PDData.PathYEndPosArray[SegNum]

 FirstSectionJoinIndex = int(PDData.EdgeStraightSectionLength/PDData.ZSpatialPrecision)
 XYZSegmentDataArray[SegNum,0:FirstSectionJoinIndex,0] = XStartPos
 XYZSegmentDataArray[SegNum,0:FirstSectionJoinIndex,1] = YStartPos
 ZIncrementArray = np.arange(0.0,PDData.EdgeStraightSectionLength, PDData.ZSpatialPrecision, dtype=np.float64)
 XYZSegmentDataArray[SegNum,0:FirstSectionJoinIndex,2] = ZIncrementArray

 # Loop through ArcSegmentDataArray to extrapolate segment into X and Y values
 for i in range(0, len(ArcSegmentDataArray[:,0])):
 # The Z value equals the x value for the arc segment data array
 XYZSegmentDataArray[SegNum,i+FirstSectionJoinIndex,2] = ArcSegmentDataArray[i,0] + \
 PDData.EdgeStraightSectionLength
 # Increment the values by X and Y based on line angle
 XYZSegmentDataArray[SegNum,i+FirstSectionJoinIndex,0] = XStartPos + \
 (ArcSegmentDataArray[i,1]*np.sin(XYLineAngle))

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

110

 XYZSegmentDataArray[SegNum,i+FirstSectionJoinIndex,1] = YStartPos + \
 (ArcSegmentDataArray[i,1]*np.cos(XYLineAngle))

 #Add in the end section
 SecondSectionJoinIndex = int((PDData.EdgeStraightSectionLength + Length)/PDData.ZSpatialPrecision)+1
 XYZSegmentDataArray[SegNum,SecondSectionJoinIndex:,2] = ZIncrementArray + \
 (PDData.EdgeStraightSectionLength + \
 Length + PDData.ZSpatialPrecision)
 XYZSegmentDataArray[SegNum,SecondSectionJoinIndex:,0] = XEndPos
 XYZSegmentDataArray[SegNum,SecondSectionJoinIndex:,1] = YEndPos
 #####

 totalPathDistance = CalculateSegmentLength(PDData, XYZSegmentDataArray, SegNum)
 print "Segment length: " + str(totalPathDistance)

 # Primary segment
 PDData.CalculatedPathDistance = totalPathDistance
 PDData.PrimarySegmentRadius = ArcRadius
 print "Radius length: " + str(ArcRadius)

Function - CreateSecondaryArcSegments
Function to create the secondary waveguides. Breaks the 3D waveguide creation up into x prime and y prime
arcs. These are interpolated to form a 3D waveguide with respect to the x,y prime axis. This is then
translated to x and y based on the radius offset that the endpoints site with respect to the x,y axis.

def CreateSecondaryArcSegments(PDData, XYZSegmentDataArray, ArcRadiusDataArray):

 ReverseXOn = 0
 # This scaling factor works as follows: The x dimension uses the current radius, starting with the
 # radius of the primary waveguide. The current radius is then multiplied by the scaling factor to
 # give the radius to be used in the y dimension. The respective triple arc waveguides are created
 # using those radii and then interpolated to give the three dimensional waveguide. A larger number
 # will scale the y dimension less, whereas a value of 1 should give a 45 degree "rotation". A
 # negative scaling factor will move the y-value in the negative direction. If zero, there will
 # be no additional y value

 # KEY 0-red, 1-green, 2-orange, 3-blue, 4-pink, 5-gold, 6-aqua, 7-yellow, 8-white
 RadiusOffsetArray = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
 LeadInSegmentArray = np.array([0, 0, 0, 0, 0, 0, 0])

 print "Secondary Segment List: " + str(PDData.SecondaryIndexList)
 for i in range(0, len(PDData.SecondaryIndexList)):
 SegmentIndex = PDData.SecondaryIndexList[i]
 SegmentLead = LeadInSegmentArray[i]
 NetArcSectionLength = PDData.BlockSectionLength - (PDData.EdgeStraightSectionLength*2.0) - \
 SegmentLead * PDData.ZSpatialPrecision
 XArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 2), \
 dtype=np.float64)
 YArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 1), \
 dtype=np.float64)
 TmpXArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 1), \
 dtype=np.float64)
 PreAdjustYArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 2), \
 dtype=np.float64)
 RadiusOffset = RadiusOffsetArray[i]

 # Angle to scale into x and y
 XYLineAngle = np.arctan2(PDData.XDistanceArray[SegmentIndex],PDData.YDistanceArray[SegmentIndex])
 XStartPos = PDData.PathXStartPosArray[SegmentIndex]
 YStartPos = PDData.PathYStartPosArray[SegmentIndex]
 XEndPos = PDData.PathXEndPosArray[SegmentIndex]
 YEndPos = PDData.PathYEndPosArray[SegmentIndex]
 XWidth = PDData.XDistanceArray[SegmentIndex]
 YWidth = PDData.YDistanceArray[SegmentIndex]
 Length = PDData.BlockSectionLength - 2.*PDData.EdgeStraightSectionLength

 print "***"
 print "Segment: " + str(SegmentIndex)

 # The Radius here is based on the primary radius calculated for the primary arc segment
 # The radius (for all 3 circles) will be incrementally decreased, which increases the length of the
 # segment. When the segment length is achieved, the loop exits
 CurrentRadius = PDData.PrimarySegmentRadius
 OffsetIncrement = CurrentRadius/1000.
 CurrentRadius -= OffsetIncrement
 CurrentYRadius = abs(CurrentRadius * RadiusOffset)
 DistanceMatched = 0
 SegmentDistanceDifference = 0.0
 LastSliceValue = 0
 LastSegmentDistanceDifference = 0.0
 RunNumber = 1
 SwitchToFineMethod = 0
 PreviousCntr2Slice = 0 #TEMP

 while(DistanceMatched == 0):

 # Create the arc based waveguides for x and y.
 CreateTripleArcSegment(CurrentRadius, XArcDataArray, XWidth, NetArcSectionLength, \
 PDData.ZSpatialPrecision)
 CreateTripleArcSegment(CurrentYRadius, PreAdjustYArcDataArray, abs(YWidth), NetArcSectionLength, \
 PDData.ZSpatialPrecision)

 # The y data needs to be scaled based on the value of the width, as well as the y radius scaling factor
 if(YWidth > 0.0 and RadiusOffset < 0.0):

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

111

 # Flip the array data left to right
 YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1])
 YArcDataArray = YArcDataArray[::-1]
 # Add the width
 YArcDataArray -= YWidth
 # Now flip top to bottom
 YArcDataArray = YArcDataArray[:] * -1.0
 YArcDataArray = YArcDataArray.reshape(len(YArcDataArray[:]),1)
 elif(YWidth < 0.0 and RadiusOffset > 0.0):
 # Flip the array data left to right
 YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1])
 YArcDataArray = YArcDataArray[::-1]
 # Add the negative width
 YArcDataArray += YWidth
 YArcDataArray = YArcDataArray.reshape(len(YArcDataArray[:]),1)
 elif(YWidth < 0.0 and RadiusOffset <= 0.0):
 # Flip the array data top to bottom
 YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1])
 YArcDataArray = YArcDataArray[:] * -1.0
 YArcDataArray = YArcDataArray.reshape(len(YArcDataArray[:]),1)
 else:
 YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1])

 # FLIP X FOR REVERSE BEND
 if(ReverseXOn == 1):
 TmpXArcDataArray = np.copy(XArcDataArray[:,1])
 # Flip the array data left to right
 TmpXArcDataArray = TmpXArcDataArray[::-1]
 # Now flip top to bottom
 TmpXArcDataArray = TmpXArcDataArray[:] * -1.0
 # Add the width
 TmpXArcDataArray += XWidth
 XArcDataArray[:,1] = TmpXArcDataArray

 # Move the segment interpolation to this section, along with the creation of a triple arc
 # x, triple arc y curve. The portion before this should consist of using the ROC from
 # the primary arc, and adjusting that in each triple arc creation section.

 # Now interpolate this curve into X and Y dimensions based on the original line slope
 FirstSectionJoinIndex = int(PDData.EdgeStraightSectionLength/PDData.ZSpatialPrecision + \
 SegmentLead)
 XYZSegmentDataArray[SegmentIndex,0:FirstSectionJoinIndex,0] = XStartPos
 XYZSegmentDataArray[SegmentIndex,0:FirstSectionJoinIndex,1] = YStartPos
 ZIncrementArray = np.arange(0.0,PDData.EdgeStraightSectionLength+(SegmentLead * \
 PDData.ZSpatialPrecision), PDData.ZSpatialPrecision, dtype=np.float64)
 XYZSegmentDataArray[SegmentIndex,0:FirstSectionJoinIndex,2] = ZIncrementArray

 # Loop through ArcSegmentDataArray to extrapolate segment into X and Y values
 for i in range(0, len(XArcDataArray[:,0])):
 # The Z value equals the x value for the arc segment data array
 XYZSegmentDataArray[SegmentIndex,i+FirstSectionJoinIndex,2] = XArcDataArray[i,0] + \
 PDData.EdgeStraightSectionLength + \
 (SegmentLead * PDData.ZSpatialPrecision)
 # Now insert the x and y waveguide data
 XYZSegmentDataArray[SegmentIndex,i+FirstSectionJoinIndex,0] = XStartPos + XArcDataArray[i,1]
 XYZSegmentDataArray[SegmentIndex,i+FirstSectionJoinIndex,1] = YStartPos + YArcDataArray[i]

 #Add in the end section
 SecondSectionJoinIndex = int((PDData.EdgeStraightSectionLength + NetArcSectionLength) \
 /PDData.ZSpatialPrecision) + SegmentLead + 1
 ZIncrementArray2 = np.arange(0.0,PDData.EdgeStraightSectionLength, PDData.ZSpatialPrecision, \
 dtype=np.float64)
 XYZSegmentDataArray[SegmentIndex,SecondSectionJoinIndex:,2] = ZIncrementArray2+ \
 (PDData.EdgeStraightSectionLength + NetArcSectionLength + \
 (1+SegmentLead)*PDData.ZSpatialPrecision)
 XYZSegmentDataArray[SegmentIndex,SecondSectionJoinIndex:,0] = XEndPos
 XYZSegmentDataArray[SegmentIndex,SecondSectionJoinIndex:,1] = YEndPos
 #####

 totalPathDistance = CalculateSegmentLength(PDData, XYZSegmentDataArray, SegmentIndex)

 # Determine if path length is within tolerance
 SegmentDistanceDifference = PDData.CalculatedPathDistance - totalPathDistance
 if(abs(SegmentDistanceDifference) <= PDData.SegmentLengthPrecision):
 DistanceMatched = 1
 else:
 ThisRun = np.sign(SegmentDistanceDifference)
 LastRun = np.sign(LastSegmentDistanceDifference)

 if ((ThisRun != LastRun and LastSegmentDistanceDifference != 0.0) or SwitchToFineMethod == 1):
 # The segment distance is more than the needed distance, but not within tolerance
 # To fix this we go back by twice the amount of the offset increment and then adjust
 # the radius at an offset of one tenth the amount of the previous offset
 if(SwitchToFineMethod == 0):
 print "FINE ADJUSTMENT"
 CurrentRadius += 2*OffsetIncrement
 OffsetIncrement = OffsetIncrement*0.1
 SwitchToFineMethod = 1

 #Update the last run value
 LastSegmentDistanceDifference = SegmentDistanceDifference
 CurrentRadius -= OffsetIncrement
 CurrentYRadius = abs(CurrentRadius * RadiusOffset)

 RunNumber += 1

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

112

 print CurrentRadius
 print CurrentYRadius

 ArcRadiusDataArray[SegmentIndex] = CurrentRadius

 print SegmentLead, NetArcSectionLength

 print "Radius length: " + str(CurrentRadius)
 print "Total runs: " + str(RunNumber)

Function - CreateTripleArcSegment
This function is intended to create a particular segment by using three circular arcs connected at the
intersection of each arc. In addition it uses an additional angle to rotate the shapes in space.

def CreateTripleArcSegment(CurrentRadius, ArcDataArray, Width, Length, XDelta):

 # The segment here is created using three arcs based on circles of identical radii. Looking from
 # the side, the first arc will be constructed from the bottom-right portion of circle 1, with
 # the bottom at the input, the third arc will be constructed from the bottom-left portion of circle
 # 3, with the remaining portion of the segment being created by the top part of circle 2, with
 # the arc going from where the circle touches the other two.
 # The math function will be:
 # Radius1*Angle1 + Radius2*Angle2 + Radius3*Angle3 = Segment Length
 # The centers of circles 1 through 3 all have an X and Y coordinate
 Center1X = 0.0
 Center3X = Length

 # If the current radius is set to zero, calculate what radius will make for a simple double arc curve
 if(CurrentRadius == 0.0):
 ChordLength = np.sqrt(Length**2 + Width**2)/2.
 ChordAngle = np.arctan2(Length,Width)
 CurrentRadius = (ChordLength/2.)/np.cos(ChordAngle)

 # First calculate the locations of circles 1 and 3. Start point on circle 1 is 0,0
 Center1Y = CurrentRadius
 Center3Y = CurrentRadius + Width
 # This is the distance between the two centers of circles 1 and 3
 DistanceCenters13 = np.sqrt((Center3Y-Center1Y)**2 + (Center3X-Center1X)**2)
 # Angles 1-3 are the arc angles that will be used for circles 1-3 in the segment
 # Angle 4 is calculated by using the bisect of the Distance of the centers
 # Angle 4 is for both arcs, as the bisect creates an isoceles triangle
 Angle4 = np.arccos((DistanceCenters13/2)/(2*CurrentRadius))
 Angle1 = np.pi/2. + np.arcsin(abs(Center3Y-Center1Y)/DistanceCenters13) - Angle4
 Angle3 = np.arccos(abs(Center3Y-Center1Y)/DistanceCenters13) - Angle4
 Center2X = 2*CurrentRadius*np.sin(Angle1) + Center1X
 Center2Y = -2*CurrentRadius*np.cos(Angle1) + Center1Y

 # Intersection point 1 is where arc 1 meets arc 2, point 2 is where arc 2 meets arc 3
 IntersectPoint1X = CurrentRadius*np.sin(Angle1)
 IntersectPoint1Y = Center1Y - CurrentRadius*np.cos(Angle1)
 IntersectPoint2X = Length - CurrentRadius*np.sin(Angle3)
 IntersectPoint2Y = Center3Y - CurrentRadius*np.cos(Angle3)

 # Now construct the segment starting from Arc 1 and build the data array.
 XSlices = int(Length/XDelta)

 # The intersect points may or may not coincide with an x slice value. This is OK, but
 # the surrounding slices need to be identified as to which arc to use for each
 Arc1Length = np.sin(Angle1) * CurrentRadius
 Arc1XSlice = Arc1Length/XDelta

 # Arc2 X Slices go from Arc1 Slices + 1 to Arc2 X Slices. Arc 2 end point is at Arc 3
 Arc3Length = np.sin(Angle3) * CurrentRadius
 Arc2XSlice = XSlices - Arc3Length/XDelta

 for i in range(0, XSlices+1):
 XValue = i*XDelta
 if(i <= Arc1XSlice):
 # Equation to find y value is based on x = r*cos(theta) and y = r*sin(theta)
 ThetaValue = np.arcsin(XValue/CurrentRadius)
 YValue = Center1Y - (CurrentRadius*np.cos(ThetaValue))
 elif(i > Arc1XSlice and i <= Arc2XSlice):
 # Use arc 2
 ThetaValue = np.arcsin(abs(Center2X-(i*XDelta))/CurrentRadius)
 YValue = Center2Y + (CurrentRadius*np.cos(ThetaValue))
 else:
 # Use arc 3
 ThetaValue = np.arcsin((Length-XValue)/CurrentRadius)
 YValue = Center3Y - (CurrentRadius*np.cos(ThetaValue))

 ArcDataArray[i,0] = XValue
 ArcDataArray[i,1] = YValue

FINAL CHECK

def SegmentDistanceCurvatureCheck(XYZSegmentDataArray,PDData, WPData, ArcRadiusDataArray):

 print "***** CURVATURES *****"
 SegmentCreatedArray = PDData.SegmentCreatedArray
 MinimumSeparationDistance = PDData.MinimumPathSeparationDist
 ZSpatialPrecision = PDData.ZSpatialPrecision

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

113

 PrimarySegmentNumber = PDData.PrimarySegmentNumber
 PrimaryWaveguideLength = PDData.CalculatedPathDistance

 # Loop through each segment and at each point in the segment, compare the separation distance
 # to each of the other segments.
 ClosestDistance = 10000.
 NoSegmentConflictFound = 1
 MinimumYDistance = 10000.
 MaximumYDistance = 0.
 MinYDistZValue = 0.
 MaxYDistZValue = 0.
 MinimumYDistSegment = 0
 MaximumYDistSegment = 0
 ClosestSegment1 = 0
 ClosestSegment2 = 0
 ClosestZValue = 0.
 NumberOfSegments = len(SegmentCreatedArray)
 NumPoints = len(XYZSegmentDataArray[0,:,0])
 IsPrimary = 1

 # Outer loop is the segment to check
 for i in range(0,NumberOfSegments):
 #Middle loop is each segment to verify against. Need a flag variable to exit loop if conflict found
 for j in range(0,NumberOfSegments):
 if(i != j):
 # Not the same segment, so step through each point in the array. Inner loop is the z values
 for k in range(0,len(XYZSegmentDataArray[0,:,0])):
 XDiff = XYZSegmentDataArray[i,k,0] - XYZSegmentDataArray[j,k,0]
 YDiff = XYZSegmentDataArray[i,k,1] - XYZSegmentDataArray[j,k,1]
 DirectDifference = np.sqrt((XDiff)**2 + (YDiff)**2)

 # Also want to record the closest distance between any two lines
 if(DirectDifference < ClosestDistance):
 ClosestDistance = DirectDifference
 ClosestSegment1 = i
 ClosestSegment2 = j
 ClosestZValue = XYZSegmentDataArray[j,k,2]

 # Find the minimum and maximum y values for laser burn distance
 if(XYZSegmentDataArray[i,k,1] < MinimumYDistance):
 MinimumYDistance = XYZSegmentDataArray[i,k,1]
 MinimumYDistSegment = i
 MinYDistZValue = XYZSegmentDataArray[j,k,2]
 if(XYZSegmentDataArray[i,k,1] > MaximumYDistance):
 MaximumYDistance = XYZSegmentDataArray[i,k,1]
 MaximumYDistSegment = i
 MaxYDistZValue = XYZSegmentDataArray[j,k,2]

 # Also need to calculate the radius of curvature. Take the difference in x and y and calculate
 # it as a radial difference versus the distance in z. This gives an angle in cylindrical coordinates
 # versus z. The arctan of that gives the angle. Once the angle is calculated, take the difference
 # in angle versus the difference in length of the segment for the radius of curvature.
 MinimumROC = 1.0e30
 MaximumCurvature = 0.
 ROCZValue = 0
 CurvatureZValue = 0

 SlopeAngleArray = np.zeros(NumPoints, dtype=np.float64)
 SlopeAngleArray[0] = 0 # due to horizontal input
 CurvatureArray = np.zeros(NumPoints, dtype=np.float64)
 AngleCurvatureArray = np.zeros(NumPoints, dtype=np.float64)
 RadiusOfCurvatureArray = np.zeros(NumPoints, dtype=np.float64)
 SegmentDistanceArray = np.zeros(NumPoints+1, dtype=np.float64)
 XDifferenceArray = np.zeros(NumPoints+1, dtype=np.float64)

 # Calculate the segment distances for the entire array
 # End segment distances are arbitrarily set to a value to calculate the angle difference
 ArbitraryEndSegLength = 25.
 SegmentDistanceArray[0] = ArbitraryEndSegLength
 SegmentDistanceArray[NumPoints] = ArbitraryEndSegLength

 for m in range(1, NumPoints):
 SegmentDistanceArray[m] = \
 np.sqrt((XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0])**2 + \
 (XYZSegmentDataArray[i,m,1] - XYZSegmentDataArray[i,m-1,1])**2 + \
 (XYZSegmentDataArray[i,m,2] - XYZSegmentDataArray[i,m-1,2])**2)

 for m in range(0, NumPoints):
 LeftVector = np.zeros(3, dtype=np.float64)
 RightVector = np.zeros(3, dtype=np.float64)

 # Calculate vector direction
 if(m == 0):
 LeftVector[2] = ArbitraryEndSegLength
 else:
 LeftVector[0] = XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0]
 LeftVector[1] = XYZSegmentDataArray[i,m,1] - XYZSegmentDataArray[i,m-1,1]
 LeftVector[2] = XYZSegmentDataArray[i,m,2] - XYZSegmentDataArray[i,m-1,2]

 if(m == NumPoints-1):
 RightVector[0] = XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0]
 RightVector[1] = XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0]
 RightVector[2] = ArbitraryEndSegLength
 else:

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

114

 RightVector[0] = XYZSegmentDataArray[i,m+1,0] - XYZSegmentDataArray[i,m,0]
 RightVector[1] = XYZSegmentDataArray[i,m+1,1] - XYZSegmentDataArray[i,m,1]
 RightVector[2] = XYZSegmentDataArray[i,m+1,2] - XYZSegmentDataArray[i,m,2]

 if(SegmentDistanceArray[m] > 0 and SegmentDistanceArray[m+1] > 0):
 VectorDifference = ((LeftVector[0]*RightVector[0]) + \
 (LeftVector[1]*RightVector[1]) + \
 (LeftVector[2]*RightVector[2]))/ \
 (SegmentDistanceArray[m]*SegmentDistanceArray[m+1])

 # arc cosine of 90 degrees is infinity
 if(int(VectorDifference) == 1):
 AngleCurvatureArray[m] = 0
 else:
 AngleBetweenSegs = np.arccos(VectorDifference)
 # Curvature is based on angle and length of the two segments
 AngleCurvatureArray[m] = (2.*AngleBetweenSegs)/ \
 (SegmentDistanceArray[m] + SegmentDistanceArray[m+1])

 if(AngleCurvatureArray[m] == 0):
 RadiusOfCurvatureArray[m] = 1.0e30
 else:
 RadiusOfCurvatureArray[m] = 1/AngleCurvatureArray[m]

 # The X Difference is to see if a transition event has occurred in which the curve
 # in the x direction changes direction. Only done in the x dimension, since it
 # accounts for the majority of the curvature.
 XDifferenceArray[m] = RightVector[0] - LeftVector[0]

 if(XDifferenceArray[m] < 0.0):
 RadiusOfCurvatureArray[m] = -1.0 * RadiusOfCurvatureArray[m]

 else:
 AngleCurvatureArray[m] = 0.
 RadiusOfCurvatureArray[m] = 0.

 if(abs(AngleCurvatureArray[m]) > MaximumCurvature):
 MaximumCurvature = abs(AngleCurvatureArray[m])
 CurvatureZValue = XYZSegmentDataArray[i,m,2]

 if(abs(RadiusOfCurvatureArray[m]) < MinimumROC and RadiusOfCurvatureArray[m] != 0):
 MinimumROC = abs(RadiusOfCurvatureArray[m])
 ROCZValue = XYZSegmentDataArray[i,m,2]

 # Now we can calculate the power loss for this waveguide
 if(i == PrimarySegmentNumber):
 IsPrimary = 1
 else:
 IsPrimary = 0
 CalculatePowerLoss(ZSpatialPrecision, RadiusOfCurvatureArray, ArcRadiusDataArray[i], IsPrimary, \
 PrimaryWaveguideLength, WPData)

 print "CURVATURE FOR WAVEGUIDE " + str(i)
 print "Minimum radius of curvature is " + str(MinimumROC) + \
 " at a Z distance of " + str(ROCZValue) + " microns."

 # Print Summary Values
 print "PROXIMITY AND HEIGHT VALUES"
 print "Closest Lateral Distance in the array is " + str(ClosestDistance) + " microns between segment " + \
 str(ClosestSegment1) + " and segment " + str(ClosestSegment2) + " at a Z distance of " + \
 str(ClosestZValue) + " microns."
 print "Maximum Y Value (closest to top) is " + str(MaximumYDistance) + " for segment " + \
 str(MaximumYDistSegment) + " at a Z distance of " + str(MaxYDistZValue) + " microns."
 print "Minimum Y Value (furthest from top) is " + str(MinimumYDistance) + " for segment " + \
 str(MinimumYDistSegment) + " at a Z distance of " + str(MinYDistZValue) + " microns."

 print "**"

CalculatePowerLoss
This function attempts to estimate the power loss in each waveguide, based on calculations from
Snyder and Love's textbook. It uses the calculated waveguide radius of curvature at each point.

def CalculatePowerLoss(ZSpatialPrecision, ROCArray, ArcRadius, IsPrimary, PrimaryWaveguideLength, WPData):

 # The normalized power is set to 1.0 and then the loss from that input power is incremented
 # as z increases. This gives the total power lost FROM CURVATURE ONLY at the end.

 NumSegments = len(ROCArray)
 PowerLossArray = np.zeros(NumSegments, dtype=np.float64)
 StartInputPower = 1.0
 TotalPowerLoss = 0.0
 PreviousROC = 0.0
 TotalGamma = 0.0
 TotalBendLossExp = 0.0
 TotalTransPower = 1.0
 TotalBendPower = 1.0

 # Loop through each segment piece that makes up the waveguide
 for i in range(0,NumSegments):
 CurrentROC = ROCArray[i]

 # Calculate the loss due to bends here (for a step profile)
 if(CurrentROC != 0 and abs(CurrentROC) != 1.0e30):
 # For Step profiles

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

115

 CalculateSectionBendPowerLoss(CurrentROC, ZSpatialPrecision, WPData)

 # For Gaussian profiles
CalculateSectionBendPowerLossGaussian(CurrentROC, ZSpatialPrecision, WPData)

 # To calculate bend loss for an HPO profile based on physical measurements
BendPower = HPOLookupBendLoss(CurrentROC, ZSpatialPrecision)

 else:
 GammaCoefficient = 0
 BendPower = 1.0

 TotalBendPower = TotalBendPower*BendPower

 # Calculate Transition Loss for splines
TransPowerLoss = CalculateSectionsTransitionLoss(CurrentROC, PreviousROC, WPData)
TotalTransPower = TotalTransPower * (1.0 - TransPowerLoss)

 PreviousROC = CurrentROC

 # Or for arc waveguide, just calculate the transition loss for the entire waveguide
 TotalTransPower = CalculateArcTransitionLoss(WPData, ArcRadius, IsPrimary)

 print "Power After Bend Loss: " + str(TotalBendPower)
 print "Power After Transition Loss: " + str(TotalTransPower)
 EndPower = TotalBendPower * TotalTransPower
 print "Total Power after Bend & Transition Losses: " + str(EndPower)
 # Last bit, incorporate the coupling and bend losses
 print "PrimaryWaveguideLength: " + str(PrimaryWaveguideLength)
 AddedLossPower = 0.91 * EndPower * np.exp(-0.0075 * (PrimaryWaveguideLength/1000.))

 print "Total Power after all losses: " + str(AddedLossPower)
 print ""

HPOLookupBendLoss
This function takes the values of bend loss per mm calculated from the right angle parameter scan result
and return a bend loss value.

def HPOLookupBendLoss(InputRadius, SegmentLength):
 # The normalized power is set to 1.0 and then the loss from that input power is incremented
 # as z increases. This gives the total power lost FROM CURVATURE ONLY at the end.
 StartInputPower = 1.0
 CurrentROC = abs(InputRadius)

 # Radius and respective power loss per mm values
 RadiusLookupArray = np.array([10000.0,13300.0,16600.0,20000.0,23300.0,26600.0,30000.0,33300.0,36600.0,\
 40000.0], dtype=np.float64)
 BendLossLookupArray = np.array([0.437972203,0.18150836,0.078795534,0.040054237,0.017996858,0.013146017,\
 0.008745052,0.006998815,0.005485012,0.004484166], dtype=np.float64)

 # Calculate the loss due to bends here (for a step profile). Interpolate between data points or
 # extrapolate from end points
 NumValues = len(BendLossLookupArray)-1
 FindLoss = interpolate.interp1d(RadiusLookupArray, BendLossLookupArray)
 BendLoss = 0.0

 # If the values are outside the range, they will just be linearly interpolated. Most values will
 # be within this range. Unlikely to have smaller radii, but lareger ones should not have much effect anyway
 if(CurrentROC < RadiusLookupArray[0]):
 Slope = (BendLossLookupArray[1]-BendLossLookupArray[0])/(RadiusLookupArray[0]-RadiusLookupArray[1])
 BendLoss = (RadiusLookupArray[0]-CurrentROC)*Slope + BendLossLookupArray[0]
 elif(CurrentROC > RadiusLookupArray[NumValues]):
 Slope = (BendLossLookupArray[NumValues]-BendLossLookupArray[NumValues-1])/\
 (RadiusLookupArray[NumValues]-RadiusLookupArray[NumValues-1])
 BendLoss = BendLossLookupArray[NumValues] - (RadiusLookupArray[NumValues]-CurrentROC)*Slope
 if(BendLoss < 0):
 BendLoss = 0
 else:
 BendLoss = FindLoss(CurrentROC)

 # Scale this bend loss amount by relation of length to 1 mm (1000 microns)
 BendLoss = BendLoss * SegmentLength/1000.0

 # The power loss is Pout = Pin*(1-Loss)
 OutputPower = StartInputPower*(1.-BendLoss)
 return OutputPower

CalculateSectionBendPowerLoss
This function attempts to estimate the power loss in each waveguide, based on calculations from
Snyder and Love's textbook. It uses the calculated waveguide radius over a whole section with a
constant radius and specified length.

def CalculateSectionBendPowerLoss(CurrentROC, SegmentLength, WPData):

 # The normalized power is set to 1.0 and then the loss from that input power is incremented
 # as z increases. This gives the total power lost FROM CURVATURE ONLY at the end.
 StartInputPower = 1.0

 # Calculate the loss due to bends here (for a step profile)
 if(CurrentROC != 0):
 StepProfileCoefficient = (np.sqrt(np.pi)/(2*WPData.WaveguideRadius)) * \
 (np.sqrt(WPData.WaveguideRadius/CurrentROC))
 AreaCoefficient = WPData.UParameter**2/(WPData.NormalizedFrequency**2 * \

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

116

 WPData.WParameter**1.5 * (scisp.kn(1,WPData.WParameter)**2))
 ExponentCoefficient = (-4./3)*(CurrentROC/WPData.WaveguideRadius) * \
 ((WPData.WParameter**3 * WPData.DeltaParameter)/(WPData.NormalizedFrequency**2))
 GammaCoefficient = StepProfileCoefficient * AreaCoefficient * np.exp(ExponentCoefficient)
 else:
 GammaCoefficient = 0

 # The power loss is Pout = Pin*exp(-Gamma*z)
 OutputPower = StartInputPower*np.exp(-1.*GammaCoefficient*SegmentLength)

 return OutputPower

CalculateSectionBendPowerLossGaussian
This function attempts to estimate the power loss in each waveguide, based on calculations from
Snyder and Love's textbook. It uses the calculated waveguide radius over a whole section with a
constant radius and specified length.

def CalculateSectionBendPowerLossGaussian(CurrentROC, SegmentLength, WPData):

 # The normalized power is set to 1.0 and then the loss from that input power is incremented
 # as z increases. This gives the total power lost FROM CURVATURE ONLY at the end.
 StartInputPower = 1.0

 # Calculate the loss due to bends here for a gaussian profile
 if(CurrentROC != 0):
 VMinus1 = WPData.NormalizedFrequency - 1.
 VPlus1 = WPData.NormalizedFrequency + 1.

 GaussCoefficient1 = (np.sqrt(np.pi)/(2.*WPData.WaveguideRadius)) * \
 (np.sqrt(WPData.WaveguideRadius/CurrentROC))
 GaussCoefficient2 = WPData.NormalizedFrequency**4/(VPlus1**2 * np.sqrt(VMinus1))
 ExponentCoefficient = (VMinus1**2 / VPlus1) - ((4./3)*(abs(CurrentROC)/WPData.WaveguideRadius) * \
 ((VMinus1**3 * WPData.DeltaParameter)/(WPData.NormalizedFrequency**2)))
 GammaCoefficient = GaussCoefficient1 * GaussCoefficient2 * np.exp(ExponentCoefficient)
 else:
 GammaCoefficient = 0

 # The power loss is Pout = Pin*exp(-Gamma*z)
 OutputPower = StartInputPower*np.exp(-1.*GammaCoefficient*SegmentLength)
 PowerLoss = 1.0 - OutputPower

 return OutputPower

CalculateSectionsTransitionLoss
This function attempts to estimate the power loss from transitions between two different radii of curvature
from Snyder and Love's textbook. This section calculation allows for two different ROC values to be set.
Straight section calculated as 1.0e30

def CalculateSectionsTransitionLoss(Radius1, Radius2, WPData):

 TransitionCoefficient = 0.0
 if(Radius1 != 0.0 and Radius1 != 1.0e30 and Radius2 == 1.0e30):
 TransitionCoefficient = 1./Radius1**2
 elif(Radius2 != 0.0 and Radius2 != 1.0e30 and Radius1 == 0.0):
 TransitionCoefficient = 1./Radius2**2
 elif(Radius2 != 0.0 and Radius1 != 0.0 and Radius1 != 1.0e30 and Radius2 != 1.0e30):
 # The current ROC can be positive and the previous ROC can be negative and vice versa
 RadiiSum = 0.0
 if((Radius1 > 0.0 and Radius2 < 0.0) or (Radius2 > 0.0 and Radius1 < 0.0)):
 RadiiSum = abs(Radius1) + abs(Radius2)
 else:
 RadiiSum = Radius1 - Radius2
 TransitionCoefficient = (RadiiSum/(Radius1*Radius2))**2

 TransitionLoss = TransitionCoefficient * \
 ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \
 (8*WPData.DeltaParameter**2)) * \
 (WPData.RadiusZero/WPData.WaveguideRadius)**6

 return TransitionLoss

CalculateArcTransitionLoss
This function attempts to estimate the power loss from transitions between two different radii of curvature
from Snyder and Love's textbook. Rather than evaluate a discrete curvature at the radius for each section,
this routine takes into account that the radius is the same over the arc portions of the curve and will
have three transition events for a primary waveguide and four for a secondary waveguide

def CalculateArcTransitionLoss(WPData, Radius, IsPrimary):

 TransitionCoefficient = 0.0
 TotalTransitionLoss = 1.0 # the remaining power after transition losses

 # All arc curves have two transitions from a straight section to the radius of the arcs at each end

 TransitionCoefficient = 1./Radius**2
 TransitionLoss = TransitionCoefficient * \
 ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \
 (8*WPData.DeltaParameter**2)) * \
 (WPData.RadiusZero/WPData.WaveguideRadius)**6
 TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss)

 TransitionCoefficient = 1./Radius**2

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

117

 TransitionLoss = TransitionCoefficient * \
 ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \
 (8*WPData.DeltaParameter**2)) * \
 (WPData.RadiusZero/WPData.WaveguideRadius)**6
 TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss)

 # Both primary and secondary waveguides have one transition where two opposite bends meet
 TransitionCoefficient = (2*Radius/(Radius*Radius))**2
 TransitionLoss = TransitionCoefficient * \
 ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \
 (8*WPData.DeltaParameter**2)) * \
 (WPData.RadiusZero/WPData.WaveguideRadius)**6
 TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss)

 # Secondary waveguides have one additional opposite transtion
 if(IsPrimary != 1):
 TransitionCoefficient = (2*Radius/(Radius*Radius))**2
 TransitionLoss = TransitionCoefficient * \
 ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \
 (8*WPData.DeltaParameter**2)) * \
 (WPData.RadiusZero/WPData.WaveguideRadius)**6
 TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss)

 return TotalTransitionLoss

PLOT SEGMENTS

def PlotAllSegments(XYZSegmentDataArray):
 # Remember that z values are plotting on the y-axis here and y values on z-axis. The plots obey the
 # right-hand rule, so this orients them in the proper direction. y and z axes will be swapped on plot
 line0 = mlab.plot3d(XYZSegmentDataArray[0,:,0], XYZSegmentDataArray[0,:,2], XYZSegmentDataArray[0,:,1], \
 tube_radius=10, tube_sides =12, colormap = 'Spectral', color = (0.5,0,0))
 line1 = mlab.plot3d(XYZSegmentDataArray[1,:,0], XYZSegmentDataArray[1,:,2], XYZSegmentDataArray[1,:,1], \
 tube_radius=10, tube_sides =12, color = (0,0.5,0))
 line2 = mlab.plot3d(XYZSegmentDataArray[2,:,0], XYZSegmentDataArray[2,:,2], XYZSegmentDataArray[2,:,1], \
 tube_radius=10, tube_sides =12, color = (1,0.5,0))
 line3 = mlab.plot3d(XYZSegmentDataArray[3,:,0], XYZSegmentDataArray[3,:,2], XYZSegmentDataArray[3,:,1], \
 tube_radius=10, tube_sides =12, color = (0,0.5,0.9))
 line4 = mlab.plot3d(XYZSegmentDataArray[4,:,0], XYZSegmentDataArray[4,:,2], XYZSegmentDataArray[4,:,1], \
 tube_radius=10, tube_sides =12, color = (0.8,0.4,0.8))
 line5 = mlab.plot3d(XYZSegmentDataArray[5,:,0], XYZSegmentDataArray[5,:,2], XYZSegmentDataArray[5,:,1], \
 tube_radius=10, tube_sides =12, color = (1.0,0.75,0.0))
 line6 = mlab.plot3d(XYZSegmentDataArray[6,:,0], XYZSegmentDataArray[6,:,2], XYZSegmentDataArray[6,:,1], \
 tube_radius=10, tube_sides =12, color = (0.125,0.6,0.65))
 line7 = mlab.plot3d(XYZSegmentDataArray[7,:,0], XYZSegmentDataArray[7,:,2], XYZSegmentDataArray[7,:,1], \
 tube_radius=10, tube_sides =12, color = (1.0,1.0,0))
 return

CREATE FILE FEEDS

This function creates the laser write file that will dictate to the laser write mechanism the positions
to write each segment of the laser. The segments will be ordered from bottom to top in the "y direction"
however for this format, the z-direction becomes the y-axis for the laser, the y direction becomes the
z-axis, and the x direction remains the same.

def CreateLaserWriteAndRSoftFiles(XYZSegmentDataArray):

 # Number of positions is the number of points in the z-direction
 now = datetime.datetime.now()
 NewDirName = "30mmchip" + str(now.year) + str(now.month) + str(now.day) + str(now.hour) + \
 str(now.minute) + str(now.second)
 print "Directory Created: " + NewDirName

 os.mkdir(NewDirName)
 os.chdir(NewDirName)

 # TURKEY
 FileLaserPoints = open('8GuideArcSideStepDesignBRedundant.txt','w')
 FileLaserPoints.write("8 segment, arc based sidestep, bends reversed, redundant output\n")
 SegmentOrderArray = np.array([3,1,5,0,6,2,4,7])

 # First loop goes through all segments
 NumberOfSegments = len(XYZSegmentDataArray[:,0,0])
 NumberOfPositions = len(XYZSegmentDataArray[0,:,2])

 for i in range(0, NumberOfSegments):
 # Use the segment order array for laser write file
 seg = SegmentOrderArray[i]
 print "Segment # " + str(seg)

 # Put a note here for the segment number
 FileLaserPoints.write("Segment " + str(i+1) + "\n")
 FileLaserPoints.write("\n")

 # A line needs to be added at the beginning to set the laser write at 2 mm from the input values

 # Change - all values multiplied by 0.001 to get mm values.
 XLead = XYZSegmentDataArray[seg,0,0]*-0.001
 ZLead = XYZSegmentDataArray[seg,0,1]*-0.001
 YLead = (-2.0)
 LineToWrite = "g1\tx\t" + str(XLead) + "\ty\t" + str(YLead) + "\tz\t" + str(ZLead) + "\n"
 FileLaserPoints.write(LineToWrite)

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

118

 for j in range(0, NumberOfPositions):
 XValue = XYZSegmentDataArray[seg,j,0]
 YValue = XYZSegmentDataArray[seg,j,2]
 ZValue = XYZSegmentDataArray[seg,j,1]

 # All x and z values should be multiplied by -1 for laser write file
 if (XValue != 0.0):
 XValue = XValue * -0.001
 if (ZValue != 0.0):
 ZValue = ZValue * -0.001
 YValue = YValue * 0.001

 XString = "%.4f" % XValue
 YString = "%.4f" % YValue
 ZString = "%.4f" % ZValue
 LineToWrite = "g1\tx\t" + XString + "\ty\t" + YString + "\tz\t" + ZString + "\n"
 FileLaserPoints.write(LineToWrite)

 # the end should have an empty line
 FileLaserPoints.write("\n")

 FileLaserPoints.close()
 print "FILE WRITE COMPLETE"

MAIN PROGRAM VARIABLES

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate, randn
import scipy.special as scisp
from enthought.mayavi import mlab
from enthought import mayavi
import datetime
import os
##from pytools import nmpfit

Number of segments to be created
NumberOfSegments = 8

Declare position and dimension data object
PosDimData = PositionDimensionDataObject(NumberOfSegments)
WavePropData = WaveguidePropertiesDataObject

Optical Section Dimensions (microns)
PosDimData.BlockSectionWidth = 8000 # "X" dimension #Physical chip width 8000
PosDimData.BlockSectionHeight = 1000 # "Y" dimension #Physical chip height 1100
PosDimData.BlockSectionLength = 30000 # "Z" dimension

Number of segments to be created
PosDimData.NumberOfSegments = NumberOfSegments

Initialize and calculate waveguide properties data
CalculateWaveguideProperties(WavePropData)

START POINTS

DESIGN FOR APRIL 2011

New Design, 8 hole, blue dots of diagram
PosDimData.PathXStartPosArray = [-77.94,-51.96,-51.96,0.0,25.98,51.96,77.94,77.94]
PosDimData.PathYStartPosArray = [15.0,60.0,-60.0,90.0,-45.0,60.0,15.0,-45.0]

END POINTS

8 segment redundant array, shifted in +x direction by 5 mm
PosDimData.PathXEndPosArray = [4875.0,4375.0,5375.0,4125.0,5625.0,4625.0,5125.0,5875.0] # Splines
##PosDimData.PathXEndPosArray = [4125.0,4375.0,5375.0,4625.0,5625.0,4875.0,5125.0,5875.0] # Arcs
PosDimData.PathYEndPosArray = [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]

Z Direction finite measurement amount (micron)
The layout of the program is that the chip is modelled as slices of x-y coordinates for each segment
created in the Z direction. This variable specifies the precision (grain) to calculate with. This
will increase the number of slices created, increasing the precision, but also the computing time.

For now - make this an even multiple of the block section length
PosDimData.ZSpatialPrecision = 25.0
PosDimData.NumberZSlices = (PosDimData.BlockSectionLength/PosDimData.ZSpatialPrecision)

length precision is how close each segment lengths must be (microns)
PosDimData.SegmentLengthPrecision = 0.1

Minimum Path Separation Distance
This variable is an optional input parameter. The program will do an optional check to see that
the created paths are separated from each other by this distance. The program is optimised to
maximize the separation distance, so if it is not specified (set to zero), it will assume it is fine.

Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides

119

PosDimData.MinimumPathSeparationDist = 30.0

The calculated path distance is the length that each segment needs to have. Usually determined
by the primary segment. If created as an array, the value can be returned from functions.

The current Dragonfly has a 1 mm straight section at either end of the chip to maximize the light
inpuPosDimData.PathXEndPosArray = [4125.0,4375.0,5375.0,4625.0,5625.0,4875.0,5125.0,5875.0] # Arcs
into the chip. These variables will specify how large of a straight section on either end, as well
as a straight section in the middle to bridge the creation of a double spline section
(in microns)
PosDimData.EdgeStraightSectionLength = 1000.0
PosDimData.CenterBridgeLength = 6000.0

This is the 4 dimensional array that will hold the complete set of XYZ Data for all splines
[X,Y,Z,Segment] - X,Y,Z = 3D coordinates, Segment = number of the segment
XYZSegmentDataArray = np.zeros((PosDimData.NumberOfSegments, PosDimData.NumberZSlices+1, 3), dtype=np.float64)
ArcRadiusDataArray = np.zeros(PosDimData.NumberOfSegments, dtype=np.float64)

PROGRAM DESIGN

To calculate the path, the program uses the spline function. This takes the starting and end
points of the path, then returns the centerpoints of the function for each z-slice.

Main logic loops

This is the main program that calls the sub functions and keeps track of the flow.
Input/Output Coordinates
CalculateInputOutputDistance(PosDimData)

print PosDimData.XDistanceArray
print PosDimData.YDistanceArray
print PosDimData.DirectDistanceArray

PosDimData.PrimarySegmentNumber = DeterminePrimarySegments(PosDimData.DirectDistanceArray)

ARC BASED CODE
CreatePrimaryArcSegment(PosDimData, XYZSegmentDataArray, ArcRadiusDataArray)
DetermineSecondarySegments(PosDimData)
CreateSecondaryArcSegments(PosDimData, XYZSegmentDataArray, ArcRadiusDataArray)

SPLINE BASED CODE
##primaryOK = CreatePrimarySegments(PosDimData, XYZSegmentDataArray)
##DetermineSecondarySegments(PosDimData)
##secondaryOK = CreateSecondarySegments(PosDimData, XYZSegmentDataArray)

SegmentDistanceCurvatureCheck(XYZSegmentDataArray, PosDimData, WavePropData, ArcRadiusDataArray)

#Show the final 3d plot
PlotAllSegments(XYZSegmentDataArray)

Create files if specified
CreateLaserWriteAndRSoftFiles(XYZSegmentDataArray)

print "*** END ***"

	1. Introduction
	1.1 Dragonfly

	2. Theory
	2.1 Optical Waveguides
	2.2 Interferometry
	2.3 Aperture Masking and Closure Phases
	2.4 Single-Mode Waveguides
	2.4.1 Direct Write Waveguides

	2.5 Simulations of Optical Waveguides
	2.6 Design Requirements
	2.6.1 Path Length Matching of Waveguides
	2.6.2 Positioning Input and Output Coordinates
	2.6.3 Orthogonal Endpoints
	2.6.4 Continuity of Waveguides
	2.6.5 Waveguide Curvature
	2.6.6 Spatial Separation of Waveguides
	2.6.7 Physical Chip Write Depth
	2.6.8 Waveguides crossing vertically

	3. Design of Three-Dimensional Waveguides
	3.1 Physical Design of the Remapper
	3.1.1 The Interpolating Cubic Spline
	3.1.2 Using the cubic spline to construct a waveguide
	3.1.3 Path Length Matching Multiple Waveguides

	3.2 Algorithm to Calculate Path Length of a Curve
	3.3 Translating a Two-Dimensional Spline Curve into Three Dimensions
	3.4 Spatial Separation of Waveguides
	3.4.1 Determining Proximity between Neighboring Waveguides
	3.4.2 Adjusting the Curves to Meet Proximity Requirements
	3.4.3 Spatially Aligning Waveguides

	3.5 Determining Radius of Curvature

	4. Sidestep Design
	4.1 Adding a Lateral Sidestep to Avoid Interference
	4.2 Proximity Challenges
	4.2.1 An Additional Lead-In Straight Section

	4.3 Effects of Sidestep Design on Radius of Curvature

	5. A Waveguide Based on a Circular Arc
	5.1 Design of the Two-Dimensional Arc-based Curve
	5.1.1 Addition of a Bridging Straight Section
	5.1.2 Addition of a Third Circle
	5.1.3 Constructing a Three Arc Curve

	5.2 Construction of Three-Dimensional Arc Based Waveguides and Proximity Adjustments

	6. Characterization of Optical Power Loss in Waveguides
	6.1 Bend Loss due to Radius of Curvature
	6.1.1 Bend Loss Calculations
	6.1.2 Algorithm Implementation and Demonstration

	6.2 Comparison of Curvature for Spline and Arc Based Waveguides
	6.3 Bend Loss Comparison
	6.3.1 Step Index Waveguides
	6.3.2 Graded Index Waveguides

	7. Estimated Power Loss Calculations
	7.1 Transition Loss
	7.1.1 Loss Equation
	7.1.2 Algorithm Implementation

	7.2 Transition Loss Comparison
	7.3 Total Power Loss for Waveguide Sets

	8. Waveguide Simulation using RSoft
	8.1 Bend Loss
	8.2 Bend Loss for Waveguide Sets
	8.3 Modeling HPO Waveguides in RSoft
	8.3.1 HPO Bend Loss Simulation

	9. Fabrication and Physical Results
	9.1 Physical Bend Loss Radius Scan Chip
	9.2 Predicted Power and Radius of Curvature Throughputs
	9.3 Physical Waveguide Path Length Measurements

	10. Conclusions
	10.1 Summary
	10.2 Future Work

