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Abstract 

A method for designing physically path length matched, three-dimensional photonic circuits is 
described.  These waveguides, with arbitrary endpoints, were fabricated via the femtosecond 
laser direct-write technique.  The focus is specifically on the case where all waveguides are 
uniquely routed from the input to output; a problem which has not been addressed to date and 
allows for the waveguides to be used in interferometric measurements. Two iterative design 
methods were created for path length matched waveguides with adequate separation in three 
dimensions and minimized curvature.  These algorithms could be used to calculate predicted 
radius of curvature, bend and transition loss in the waveguides, with results confirmed by 
computer simulation methods. Demonstrations via interferometric methods show that the 
fabricated circuits were indeed optically path length matched to within 45 μm which is well within 
the coherence length required for typical applications, including astronomical measurements. 
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1. Introduction  

Astrophotonics is a relatively new field that exploits new advances in optical photonic 
technology to solve problems in instrumental astronomy.  Traditionally, advances in 
optical astronomy have been accomplished using large bulk optic approaches and ever-
larger telescopes.  Advances in Astrophotonics are allowing astronomers to create 
fundamentally new instrument architectures which interface to the traditional bulk optic 
telescopes, yielding better performance while reducing both size and cost [1].  
Applications include fiber optics to link arrays of telescopes into interferometers [2], fiber 
Bragg gratings to suppress portions of the frequency spectrum [3], multimode/single-
mode photonic lanterns [4], photonic frequency combs and spectrographs [5], with new 
applications emerging all of the time.  These devices are allowing astronomers to make 
better spectral and angular resolution measurements with potential cost savings in the 
tens or hundreds of millions of dollars.  With the higher angular resolutions and 
precision in signal fidelity, one of the great areas in which astronomers are hoping to 
make significant advances is the direct optical imaging of extrasolar planets. 

For a given telescope, the theoretical maximum angular resolution is given by the 
diffraction limit of 1.22𝜆

𝐷
 radians, where λ is the wavelength of the light and D is the 

diameter of the telescope.  Telescope sizes have been increasing in a long historical 
trend since their invention, and the newest generation of extremely large telescopes 
presently under construction will have primary mirrors over 20 meters [6].  However, for 
terrestrial telescopes, the actual obtainable resolution is strictly limited not by aperture 
but by atmospheric turbulence.  One way to correct for atmospheric turbulence is with 
adaptive optics, technology that senses the distortions in the optical wavefront incident 
on the primary mirror, and then adjusts a deformable mirror to correct for distortions due 
to turbulence.  This gives a considerable improvement to the angular resolution 
obtained by the telescope [7]. 

Another technique to reduce the turbulent effects of the atmosphere is aperture masking 
interferometry.  This requires a mask at the pupil plane of the telescope which only 
allows light to pass through it at several select small holes.  An example of an aperture 
mask is shown below in Figure 1 [8].  Such a sparse array can be constructed with non-
redundant baseline spacings, a configuration which results in a much reduced exposure 
to the unstable phase noise which comprises atmospheric seeing.  This allows for 
recovery of each baseline’s Fourier amplitude and phase without the addition of the 
extra redundancy “noise” [9].  To analyze the data, the spatial frequencies are extracted 
from the Fourier transform of the raw data frames and analyzed by extracting complex 
visibilities (the Fourier amplitudes and phases).  One key observable which turns out to 
be particularly robust against atmospheric seeing is the closure phase, which is defined 
as the summed phase around a closed triangle of baselines [10].  Closure phases from 
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a point source reference star should all be zero, while non-zero closure phases betray 
the presence of asymmetric structure (such as a faint binary companion or planet). 

 

Figure 1 - Example of an aperture mask with nine non-redundant holes (Courtesy: Tuthill et al) 

Aperture masking can be thought of as an evolution of an earlier method of speckle 
imaging, which takes multiple frames with very short exposure time, permitting statistical 
calibration of the effects of the atmospheric seeing over a large enough data sample. 
These frames are then analyzed for their visibilities and closure phase information with 
the results averaged over the entire data volume.  To calibrate these data, the telescope 
is pointed at a known point-source reference star and complex visibilities recorded.  
Because these two sets of information are taken relatively close in time, the 
environment in the telescope, temperature, astronomical seeing, and other factors are 
hoped to remain constant [11].  Aperture masking interferometry enables observations 
near the diffraction limit for ground based telescopes, making it a powerful tool for 
astronomical observation.  Use of aperture masking has made major breakthroughs in 
the observations of binary stars [12], MIRA variables [13], and Wolf-Rayet stars [14], to 
name a few, and continued observations on large telescopes will certainly bring more 
discoveries. 

Another technology useful to Astrophotonics research is the single-mode optical fiber.   
If incoming starlight has been perturbed by the turbulent atmosphere, as is light from a 
stellar target without adaptive optics correction, the fiber only allows a single-moded 
optical wave to travel through it, filtering out all spatial disturbances in the wavefront 
[15].  This comes at a cost, as this smoothing of the wavefront means that all of the 
complex spatial modes causing the disturbances in the wavefront are absorbed, 
reflected, or dispersed.  This can cause a dramatic drop in amplitude of the incoming 
signal.  However, for many interferometric applications, the loss of light is tolerable and 
the benefit bestowed by the mode-cleaning to a single planar wavefront outweighs the 
lower signal levels. 
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The last technology that needs to be introduced for the research presented in this thesis 
is the creation of direct-write optical waveguides.  These waveguides are created by 
focusing a high-power ultrashort pulsed laser into a single block of glass [16].  The 
energy deposited by the laser pulses creates a deformity in the glass at the spot of laser 
focus, resulting in a positive change in the local index of refraction.  If the laser focal 
spot traverses through this block of glass, a tunnel of index change is created.  This 
forms an optical waveguide that traps the light inside it in a manner entirely analogous 
to the more common method of a doped-core optical fiber.  The light can then be 
inserted into one end of the formed waveguide and propagated through to the output.  If 
the power and other pulse timing parameters are adjusted to the right levels, the 
created waveguide exhibits single mode properties.  Such waveguides confer all of the 
spatial filtering advantages as single-mode optical fibers discussed above.  In addition, 
the laser focal trajectory within the glass is able to be precisely controlled in space, 
meaning that with computer-controlled stages, a waveguide can be sculpted in the glass 
to a precision of a few micrometers, giving exquisite control over waveguide locus and 
length. 

Direct write waveguide fabrication techniques have, at the time of this thesis, been used 
to create symmetrical circuits with optical path length matching [17].  These circuits 
have required fixed input and output points to construct the waveguides, but no design 
techniques currently exist that provide for flexible input and output positions.  Flexible 
waveguide placement opens up various possibilities for design, and the optical path 
length matching of all waveguides allow for interferometric measurements to be made.   

1.1  Dragonfly 

All of the technologies discussed above are used in combination for the project that is 
central to this thesis: the Dragonfly instrument [18].  Dragonfly is an optical pupil 
remapping interferometer based on direct-write waveguides fabricated in a single block 
of glass.  An image of the setup of the Dragonfly instrument is shown in Figure 2 below. 

As shown in the diagram, light from a distant star falls on the telescope’s primary mirror.  
The telescope reduces the beam, which is then guided via mirrors, a lens and a prism to 
a segmented mirror.  This segmented mirror has individual hex segments that are 
steerable in tip, tilt and piston under computer control.  The beam from the mirror 
passes through a reducing telescope and is focused upon the face of a flat glass block 
by a lenslet array.  This glass block initally had eight single-mode waveguides sculpted 
within it, using the laser direct write technique.  The input pattern of these waveguides 
corresponds to the selected segments from the steerable mirror.  The mirror segments 
are individually adjusted in tip and tilt to maximize the light coupling into the block.  The 
light then travels through the individual waveguides, which all have a path length 
matched within several micrometers.  When the starlight wavefronts at the inputs of the 
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waveguides are all in phase, the path length equalization means that regardless of the 
path that each waveguide takes, if the difference in path length is within the coherence 
length of the starlight, the light at the output of all waveguides is still in phase.  Thus, we 
may perform a coherent remapping of the input pupil to any desired output pupil.   

 

Figure 2 - Artist depiction of the Dragonfly instrument setup showing stellar target, main 
telescope and bulk optics that interface with the waveguide chip at center bottom of image 

In the case discussed here, this remapping takes the two-dimensional input pattern of 
the waveguides and remaps the waveguides to a one-dimensional array.  This allows 
the one-dimensional output beam to be put through a spectrograph, cross-dispersing 
the interferometric fringe pattern of the recombined outputs of the waveguides.  Such a 
spectrograph arrangement yields information about the stellar target fringe pattern over 
a range of wavelengths, maximizing the science return.  There is also an inverse 
relationship between the spectral width of the signal and the coherence length of the 
instrument, where a narrower signal makes for a longer coherence length.  Thus, if the 
waveguides are path length matched within a smaller distance, a larger spectral width 
signal can be resolved. 

The advantage of this pupil remapper, besides being able to remap from a two-
dimensional array to a one-dimensional array, is that also confers the resistance to 
atmospheric seeing noise that aperture masking provides.  In essence, this device is a 
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photonic reformulation of an aperture mask, as it takes small portions of the incoming 
light pupil with little spatial turbulence over each portion.  In addition, the light from each 
portion passes through its own single mode waveguide, which performs spatial filtering 
on the signal, further increasing its fidelity.  Also, due to the precision of the laser 
fabrication system, the path lengths of all waveguides can be matched to within a few 
micrometers.  This gives an enormous advantage over trying to match path lengths via 
bulk optics or optical fibers.  It also gives the waveguides a small form factor, reducing 
the space need for optical coupling, as well as a uniform temperature over all 
waveguides, which removes thermal drifts within the apparatus which would otherwise 
hamper high precision measurements. 

The design of this pupil remapper poses several challenges.  This thesis describes the 
process of creating usable waveguide designs to perform optical interferometry.  It 
illustrates the concepts of how to create the waveguides and achieve path length 
matching while simultaneously minimizing the curvature of each guide.  It is also 
important to maximize the separation of neighbors at closest approach to minimize 
crosstalk between adjacent guides.  This is achieved by rotation of the basic curve in 
three dimensions.  As a final experimental constraint, the waveguides must all fit within 
a specified depth set by the laser focusing optics.  This thesis examines the geometry of 
creating curved waveguides, methods for measuring the curvature value at each point 
in the waveguide, and usage of these curvature values to predict throughput power of 
the waveguides.  The thesis will also discuss simulation methods to confirm power 
predictions, and the detailed discussion of several designs which were analyzed to 
compare theoretical, simulated, and physically measured results. 
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2. Theory 

2.1 Optical Waveguides 

The creation of optical waveguides relies on the basic optical principle known as Snell’s 
Law, which relates the behavior of light travelling through a medium to a property known 
as the index of refraction [19].  The index of refraction refers to the speed of light 
travelling in that medium, with its value 

n =  
Speed of Light in vacuum
Speed of Light in material

 (1) 

 
Snell’s Law states that when light passes from one medium to another, there is a 
relationship of the angle of incidence of the light and the angle of transmission.  The 
equation for Snell’s Law is 

nisinθi =  ntsinθt 
 

(2) 

Normally, an incident light ray will pass from one medium to the other and be deviated 
by a specific angle.  However, if ni > nt, it is possible at certain angles of incidence for 
the light to be completely reflected back into the incident medium.  This “total internal 
reflection” occurs at angles equal to or greater than the critical angle, which is found by 
the equation 

θc = arcsin �
nt

ni
� 

 

(3) 

If a light wave is traveling in a specific medium with an index of refraction higher than 
the surrounding medium, at an angle of incidence greater than the critical angle, it will 
reflect completely back into the medium.  An incident light beam entering, greater than 
the critical angle, will continually bounce off the surface boundary between the two 
media, while propagating down the length of it.  This total internal reflection allows for 
the creation of optical waveguides, which is the main focus of the material in this thesis. 

2.2 Interferometry 

Also central to the work here, is the concept of interferometry, which is based on the 
principle of superposition where two waves can be summed together.  When the two 
waves are superimposed on each other, the resulting signal can have greater amplitude 
(constructive interference) or lesser amplitude (destructive interference) depending on 
the phase shift between them.   This principle is best illustrated with Young’s double-slit 
experiment [20].  In this experiment, light from a point source passes through two slits 
and is projected onto a screen.  On the screen, a fringe pattern can be observed from 
the light passing through the slits and undergoing interference.  The light produces 
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either constructive or destructive interference, depending on the distance from each slit 
at a particular point on the screen.  The spatial frequency of the observed fringes will 
depend on the distance between the two slits.  An equation relating the spatial 
frequency and the distance between slits can be written as 

ΔΘ =  
λ
b
 

 

(4) 

Where b is the distance between slits, and λ is the wavelength of the signal.  This 
equation is illustrated in the left diagram in Figure 3 below. 

 

Figure 3 - Illustration of double slit experiment for one and two point sources, illustrating 
properties of interference (courtesy: Monnier) 

As the right hand diagram shows, if a second point source of equal intensity is added at 
half the distance of the fringe spatial frequency λ

2b
, the waves will combine 180° out of 

phase at the observing screen, leaving a constant, non-zero intensity, but no visibility.  If 
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the two slits are considered to be two input apertures of an interferometer, separated by 
a baseline b, and recombined via paths of identical optical path distance, then 
interference fringes on a stellar target can be observed.  Information can be obtained 
about the size of a single star, the distance between binary stars, or the existence of a 
luminous object within close proximity to the star.  The angular resolution of an 
interferometer is given by λ

2b
, in contrast to the single telescope diffraction limit 1.22λ

D
 

discussed previously.  The largest existing optical telescope has a diameter of 10 
meters.  In contrast, an interferometer can be fabricated with two points placed much 
farther apart (several hundred meters), giving a much higher intrinsic resolving power. 

2.3 Aperture Masking and Closure Phases 

Using these concepts from optical interferometry, aperture masking theory can be 
discussed.  Considering the aperture mask depicted in Figure 1, if light from a stellar 
target is apodized with this on the mask, every pair of holes on the mask will now act 
like an interferometer with a specific baseline fringe frequency and phase, the latter 
represented by φ [21].  Starlight passing through the atmosphere will also carry 
accumulated perturbations due to refractive index fluctuations above each sub-aperture.  
These perturbations manifest themselves as observable phase delays in the signal, 
represented by ε.  To remove these atmospheric phase delays from the signal, a 
quantity known as the closure phase is used.  If three of the holes in a particular mask 
form a closed triangle, a closure phase can be derived. Fringe phase formed on a 
baseline spanning holes 1 and 2, along with the atmospheric phase delays of each hole, 
can be written as  

Ψ12 =  φ12 +  ε1 −  ε2 
 

(5) 

The equations for the other two baselines can be written as 

Ψ23 =  φ23 +  ε2 −  ε3 
 

(6) 

Ψ31 =  φ31 +  ε3 −  ε1 
 

(7) 

The closure phase can then be written as the sum of these three signals.  By inspection, 
it can be seen that the atmospheric error terms will all cancel out when summed, with a 
closure phase, Φ, of 

Φ123 =  Ψ12 +  Ψ23 +  Ψ31 =  φ12 + φ23 + φ31 
 

(8) 

Thus, when using the closure phase to get information about the celestial target, the 
phase delay errors introduced by the atmosphere can be ignored to first order.  Each 
unique group of three holes will give its own closure phase, which is also the phase of 
the bispectrum, the complex quantity about the interaction between these individual 
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frequency components.  These bispectral values can then be analyzed to deliver 
information about the stellar target.  Each hole-pair can be represented in an aperture 
mask as a vector with distance and direction.  If each hole-pair has a unique distance 
and directon, and therefore spatial frequency, the mask is said to be non-redundant, 
with each baseline visibility being unique. 

Imaging using aperture masking interferometry requires many repeated exposures or 
frames over small exposure times.  The small exposure minimizes the atmospheric 
disturbances in time.  To obtain information about the object, the dark frame intensities 
are subtracted and the Fourier transform taken for each frame.  Summing these 
transforms over all frames gives an image of the power spectrum.  This power spectrum 
then gives information about the intensity of the stellar target over wavelength.  An 
example of a power spectrum is given later in Figure 61. 

2.4 Single-Mode Waveguides 

Single-mode optical fibers have achieved widespread use for telecommunication 
applications, because the physical structure of the fiber allows only the primary mode of 
a beam of light to propagate within it.  This retains the fidelity of a light pulse traveling 
within the fiber, allowing the signal to be sent longer distances than in a multimode fiber.  
This fundamental mode propagation is what makes single-mode fibers useful in 
Astrophotonics applications, as any incoming light signal from an astronomical target is 
spatially filtered.  This does come with a cost, as only allowing the fundamental mode to 
propagate leads to a considerable loss of light.  A recent application of using single-
mode fibers for spatial filtering is the FIRST project [22], which is similar to the 
Dragonfly project in that it also performs aperture masking AND pupil remapping.  The 
same interferometric measurements as the Dragonfly instrument can be made, with the 
addition of better throughput through optical fibers and ease of adding more 
waveguides.  This does come with a drawback in that path length matching is harder to 
achieve than direct write waveguides as it is difficult to add and subtract lengths of 
fibers alone on the scale of micrometers. 

2.4.1 Direct Write Waveguides 

As laser technology improved over the past few decades, the ability to create high 
powered laser pulses of the order of several femtoseconds has allowed for 
improvements in laser fabrication technology [23-25]. If a femtosecond laser is focused 
in a block of glass, the energy deposited at the point of focus can cause subtle 
structural changes which affect the refractive index.  Because the pulse is short and 
tightly focused, the glass is only modified in a narrow region several micrometers wide, 
and the surrounding glass is not be affected.  For the types of glass considered here, a 
positive change in the index of refraction is produced, resulting in a natural pathway to 
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fabricate a waveguide.  If the glass is placed on a mechanical stage and moved 
according to a specific locus of coordinates, the laser then traces a path in the glass, 
creating an optical waveguide.  This allows for an optical waveguide to be created in 
any shape in two or three dimensions, giving a flexible framework for optical design [26]. 

To date, any path length matched designs in a single photonic circuit, two or three 
dimensional, have used route symmetry, where the paths are mirror images of each 
other [27,28].  The Dragonfly application is unique in that any design method must have 
the ability to cope with flexible placement of endpoints to meet the specific pupil 
remapping demands.  Likewise, there has been at least one design [29] where three-
dimensional waveguides have been created with flexible endpoints, but these designs 
don’t have path length matching.  This illustrates the complexity that the design of 
Dragonfly will involve. 

2.5 Simulations of Optical Waveguides 

To predict the optical performance of any given waveguide, the software design suite 
RSoft was used.  RSoft has a CAD design environment, which allows for waveguides to 
be designed in two or three dimensions.  When a waveguide is designed, the 
BeamPROP tool allows for simulation scenarios to be created.  This entails setting up 
factors such as wavelength of the light, index of refraction change of the waveguide and 
waveguide propagation values.  Calculating the intensity of light is extremely difficult 
due to the complex Helmholtz equation [19].  The BeamPROP tool works with the 
computational technique known as the Beam Propagation Method.  This is an 
approximation method that allows for a massive reduction in the calculations that need 
to be made, by use of the slowly varying envelope approximation (SVEA) and only 
accounting for the local waveguide conditions.  Using this method only requires the 
distribution of the refractive index in three (or two) dimensional space, n(x,y,z) and the 
input field u(x,y) at the start of the waveguide.  The software then calculates the 
wavefront at any point z > 0 by the equation 

∂u
∂z

=  
i

2k�
�

∂2u
∂x2 + 

∂2u
∂y2 +  �k�2 −  k2�u� 

 

(9) 

where u is a slowly varying envelope function and k� is the reference wavenumber [30].   

RSoft also has a specific work-around module for modeling curved waveguides by using 
a simulated bend.  As a waveguide bends in space, the geometry of the above BPM 
equation becomes more complicated as the wavefront shifts with respect to the initial 
direction of propagation, z.  The simulated bend technique significantly improves 
computation time by calculating the wave in the z direction, and approximating the bend 
in the waveguide as a change in the index of refraction.  The basic equation governing 
the simulated bends technique is found in Snyder and Love [31] and is shown below: 
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ne
2 =  n2(r) +  2nco

2 �
r

Rc
� cosΦ 

 

(10) 

Where ne is the effective index of refraction, nco the index of refraction in the waveguide 
core, n(r) is the index of refraction profile of a straight waveguide, r and Φ are the polar 
coordinates of the waveguide, translated from x and y, with respect to the z axis and Rc 
is the radius of curvature of the waveguide.  With this approximation, calculation times 
for some of the three-dimensional waveguides in this thesis were reduced from over 
eight hours to less than two minutes. 

2.6 Design Requirements 

For the initial prototype of the Dragonfly project, to keep the form factor small while 
maximizing the Fourier coverage obtained, a design with eight waveguides was chosen.  
This would give 56 (select 3 out of 8) possible closure phase triangles.  In the initial 
design process, along with the analysis of physical form factor, fabrication process, and 
desired input and output points, there were eight physical design requirements to be 
considered in this design.  These requirements were as follows: 

• All different waveguide path lengths must be matched 
• Flexibility in placement of input and output coordinates 
• Waveguides orthogonal to substrate surface at entrance and exit 
• Waveguides follow a continuous, smooth locus 
• Waveguide curvature minimized 
• Adequate spatial separation between adjacent waveguides to avoid crosstalk 
• All guides must occupy a limited depth set by the laser write 
• For waveguides which cross more than once when viewed from above, the depth 

order must be preserved (see below). 

Each of these design requirements will now be explained individually and the design 
process to meet each requirement will be discussed. 

2.6.1 Path Length Matching of Waveguides 

The most critical design requirement for the Dragonfly design is the matching of the 
path length among all waveguides.  If a plane wave hits the inputs of all eight 
waveguides instantaneously, then the light traveling in all eight waveguides will be in 
phase after any fixed distance.  If one of the waveguides has a considerably longer path 
length than the others, the light in that waveguide will take longer to get to its output, 
and will therefore be out of phase.  When this path length mismatch grows large 
enough, the interference pattern will lose contrast and visibility loss will be severe.  This 
maximum difference between any two paths is known as the coherence length, the 
equation for which is:     
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L =
λ2

Δλ
 (11) 

 

where L equals the coherence length, λ is the center wavelength of the optical signal 
and Δλ the full width half maximum spectral width of the optical signal [32].  

For the first prototype of Dragonfly, the waveguides were fabricated to be optimized at a 
center wavelength of 1550 nm.  This wavelength was chosen due to the high availability 
of test equipment at that wavelength due to it being in the optical communication C 
Band, the demonstrated ability of waveguides to be fabricated to transmit at 1550 nm 
using Eagle 2000 glass [33], longer atmospheric coherence time and atmospheric 
windows, and the fact that adaptive optics systems on telescopes operate better in the 
infrared region due to response times.  Typical astronomical observations operate with 
fractional bandwidths between 1 and 15 %, giving a range for Δλ of 0.015 – 0.233 µm.  
Plugging these numbers into equation 11 gives a coherence length range of 10 - 160 
µm, meaning that the difference in path length among all of our waveguides should be 
less than that range, depending on the target. Anticipating the small variations in 
physical path length that can occur during the fabrication process, a design goal of 
matching the mathematical locus of all waveguide path lengths to within 0.1 µm was 
chosen for the initial prototype.  This length falls well within the needed coherence 
length, ensuring phase coherence over all waveguides.  This is strictly for the 
calculations set by the algorithm and does not include the errors in fabrication, which 
may be much greater, hence the large margin. 

2.6.2 Positioning Input and Output Coordinates 

The next design requirement is the ability to place the input and output coordinates any 
desired location on the chip face.  The ability to have flexible placement of the input and 
output points of the waveguides allows for variations in the sizing of the coupling lenslet 
arrays and gives the ability to couple into other optical chips with various spacing.  This 
feature also enables the remapping of a redundant input pupil into a non-redundant 
output pupil. 

The design also needed to meet the specification that each waveguide will have a 
specific input point matched to a specific output point.  In the designs here, however, 
the primary concern is the layout at the input and output, with the mapping of which 
input leads to which specific output driven by convenience.  This allows for added 
design flexibility in creation of the waveguide paths, which will be discussed later. 

2.6.3 Orthogonal Endpoints 
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Another design requirement related to the creation of the optical waveguides is that 
each track must couple to both the input and output faces at a 90° angle (orthogonally).  
The main reason is to ensure phase coherence across all waveguides and to ensure 
maximally efficient injection of the beams.  As shown in Figure 2, the light from the 
telescope falls on our steering mirror as a flat wavefront.  This steering mirror then 
allows individual sections of the wavefront to be steered in tilt onto its respective input 
on the optical chip, via an individual lenslet in the array.  Each waveguide input point is 
chosen so that the light falls on the optical chip as a mirror reflection, giving a relatively 
flat wavefront at the input to the chip.  Because the input wavefront is flat, the input 
points of all waveguides should lie on a flat face, so that the wavefront arrives at all 
waveguide inputs at the same time.  If the input face of the chip is at an angle, the light 
wavefront will hit the waveguides’ inputs at different times, creating a phase slope 
across the array.  The input and output faces of the optical chip are also polished as flat 
as possible, to prevent phase differences at the chip faces.   

The other reason that the input and output points of the waveguide should be 
orthogonally is to maximize light coupling into and out of the chip.  The incoming light 
wavefront is coupled into each waveguide via lenslets.  These lenslets are placed in the 
longitudinal axis at a position where the focal point of the lens will fall at the input of the 
waveguide.  When the focused light enters the waveguide, the propagating mode of the 
guide is excited by the incident radiation field.  The mode does not instantaneously relax 
to the guided form, and therefore requires a specific distance for this to happen.  So, the 
waveguide needs to have a straight section at the input to allow the light to settle into its 
propagation mode for the waveguide.  If the light is not allowed to settle, but is 
subjected to a bend, more loss will occur than if the light was in the correct mode.  
Simulations were performed using the optical waveguide simulation tool, RSoft, and 
based on the results of these simulations, it was determined that each waveguide 
should have a straight section of 1 mm at the input before introducing any curvature.  
This 1 mm straight section is also required at the output, since the mode needs to settle 
to maximize coupling into the output lenslet. 

For the initial Dragonfly prototypes, the input and output coordinates of the waveguides 
were on opposite faces of the optical chip.  This means that the direction of the input 
and output straight sections will be parallel, even though they may be at different 
transverse (x,y) coordinates.  The flexibility for designs can be incorporated for input 
and output coordinates that end up at different angles to each other (e.g. 45°, 90°, etc.), 
but such designs were not examined here. 

2.6.4 Continuity of Waveguides 

To maximize propagation of light through a waveguide, the entire trajectory needs to 
have a continuous locus.  Any abrupt change, lateral shift, or gap between sections 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

20 
 

would cause major loss of light.  Therefore, whatever mathematical function or 
computational algorithm used to create the waveguide must create a continuous curve.   

2.6.5 Waveguide Curvature 

A design factor closely related to continuity is the curvature of the waveguide.  A 
continuous curve can be approximated by a finite (but large) number of discrete 
segments.  Any two segments of this three-dimensional curve will lie on the same plane.  
If these segments are represented as three-dimensional vectors, and the direction of 
these vectors change in space, there will be a curvature value associated with these 
segments.  This is given by a value known as the radius of curvature, which is the 
radius of a circle, known as the osculating circle, which best approximates the curve at 
a specific point. 

The importance of this radius of curvature measurement, and how it pertains to a 
waveguide, will be extensively discussed throughout the rest of this thesis.  A method 
for measuring the discrete radius of curvature of a given waveguide will be discussed in 
Section 3.5.  The effect this radius of curvature value has on the optical power 
throughput of a waveguide will be analyzed in-depth in Section 6.  With the ability to 
correlate curvature with optical power throughput, a design goal can be set for radius of 
curvature.  For the waveguides to have enough output power to perform closure phase 
measurements, the radius of curvature should be large enough such that the total 
output power of each waveguide is greater than 25% of the measured input power. 

2.6.6 Spatial Separation of Waveguides 

If light is traveling in an optical waveguide, the region surrounding the core of the 
waveguide will be occupied by an evanescent electromagnetic field.  This field extends 
outward in all directions orthogonal to the longitudinal axis of propagation, and 
exponentially decays as the distance from the waveguide increases [31].  If two 
waveguides are running parallel to each other, and are sufficiently close to allow overlap 
of their evanescent fields, the light from one waveguide can couple into the other and 
vice versa.  In some applications, this is desirable, but for these remapping chips, it is to 
be avoided, as crosstalk between waveguides will cause degradation of phase 
information. 

Another reason to keep sufficient spatial separation between neighboring waveguides is 
to avoid physical defects during the waveguide creation process.  When the 
femtosecond laser writes its waveguide into the block of glass, it creates a permanent 
physical change in the index of refraction.  If two waveguides are fabricated too close to 
each other, the process of writing the second can be impaired by the presence of the 
first, causing defects which could severely inhibit light propagation. 
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To avoid these factors, testing in the laboratory revealed that with these input and 
output spacing requirements, any two waveguides should be separated by 30 µm or 
more.  Since the radius of the physical waveguides is about 5 µm, this means that the 
centers of any two waveguides should be separated by a distance of 40 µm or more.  
This guideline was used in the design of all waveguides discussed in this thesis. 

2.6.7 Physical Chip Write Depth 

The waveguides for the Dragonfly prototype, as mentioned earlier, are fabricated by a 
high powered femtosecond pulsed laser creating a physical positive index of refraction 
change in a glass chip.  To create the waveguide, the laser focus is translated along the 
longitudinal or z axis as shown in Figure 4. 

 

Figure 4 - Illustration of three-dimensional coordinate system  for chip design and orientation of 
laser for waveguide fabrication 

The laser then writes in incremental 25 µm steps in the z direction.  At each step, the 
laser positions its focal spot based on the lateral x and y axis coordinates, giving a 
three-dimensional position array for the entire waveguide.  The laser control software 
calculates the power settings to best fabricate the waveguide based on several factors.  
The laser is coupled to the glass via an index-matched oil immersion objective.  When 
testing various writing depths on the waveguide, two physical factors were noted.  
Firstly, the laser requires a certain level of power focused at the intended x,y,z 
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coordinates.  As the coordinates are deeper or farther away from substrate surface, 
eventually a depth is reached where the laser focus does not yield sufficient energy 
density to precipitate the required index change in the glass.  This means that there is a 
maximum depth of requirement for writing successful waveguides.  The second depth 
requirement occurs at the other extreme when the laser is instructed to write at a very 
shallow depth near the surface of that face of the glass.  High laser energy densities 
occur at a focal location close to where the oil couples the laser into the glass surface.  
A limit is reached as the heat absorbed by the oil causes it to begin to boil, which 
causes dramatic degradation in the laser beam quality.  This gives a minimum depth 
that the waveguide can be written. 

Based on testing the minimum and maximum writing depths, it was determined that the 
minimum depth from the surface that a waveguide could be written was 100 µm, while 
the maximum depth was measured at 450 µm, giving a depth restriction of 350 µm.  
This means that the maximum depth (or y coordinate) of any waveguide and the 
minimum depth of any waveguide must be within 350 µm of each other. 

2.6.8 Waveguides crossing vertically 

The previous section examined the requirements on the writing depth imposed by the 
laser.  Because the ability to put the input and output coordinates of all waveguides at 
more or less arbitrary location in space is needed, it is inevitable that when looking from 
the top down perspective of the laser, two waveguides will cross each other.  This 
causes no problems as long as the waveguide that crosses underneath is written first.  
If the upper waveguide is written first, when the laser tries to write the lower waveguide, 
the beam will pass through the top waveguide causing an aberration which will mar the 
focal spot at the lower guide.  So, the waveguides need to be written in order from the 
bottom up.  A unique problem can arise from this, however, in the process of meeting 
the other design requirements, a waveguide could cross one waveguide underneath 
and then at a later crossing, pass the same waveguide over the top.  This then makes it 
impossible for the laser to write two such waveguides, as no matter what order they are 
written, the laser will pass through one already written waveguide while trying to write 
the second.  This issue gives another design requirement that must be accounted for, 
and hereafter refers to configurations which do not meet this requirement as entangled. 
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3. Design of Three-Dimensional Waveguides 

3.1 Physical Design of the Remapper 

The steerable micromirror array used was an IRIS AO PTT111, which provided the fine-
tuning ability to guide portions of the pupil to different positions on the face of the optical 
remapper block, has 37 individual micromirrors with the center of each mirror 606 µm 
from the neighboring mirrors.  Using this design factor, the positions of the eight mirrors 
used were selected to maximize the spatial Fourier information recovered.  After 
rescaling by beam compression optics, this pattern was reimaged on to the microlens 
array and so onto the face of the remapper chip.  Thus, the centers of the waveguides 
were placed where the focal point from each mirror fell.  This gave the input waveguide 
pattern, overlaid on the micromirror array for reference, as shown in Figure 5. 

 

Figure 5 - Image of 37 Segment MEMS Array with the selected eight waveguides utilized in the 
prototype remapper chip indicated. 

The output spacing of the remapper chip was chosen to be a linear array with adjacent 
guides separated by 250 µm for several reasons.  This was found to offer convenient 
coupling to available lenslet arrays and downstream optics, and is also an industry 
standard which enables injection into planar photonic chips fabricated by 
photolithography [34].  The center of the eight outputs was at the same origin in the x 
and y axis as the center of the input waveguide positions.  With the input and output 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

24 
 

positions chosen, the baseline requirement for the optical chip design looked like the 
image shown in Figure 6. 

 

 

Figure 6 - Image of desired input and output points on a prototype optical chip 

The length of the glass chip was selected to be 30 mm.  This gave the best compromise 
between high curvatures due to the chip being too short, and too much absorption loss 
due to the chip being too long.  All of the physical factors needed to create the 
waveguides were selected.  Next, the method for creating the curved waveguides will 
be discussed. 

3.1.1 The Interpolating Cubic Spline 

The interpolating spline is a piecewise polynomial function that creates a curve based 
on a series of points or knots.  The curve must pass through all knots specified and the 
function describing the curve between any two adjacent knots can be different over the 
entire length of the curve, giving the spline the flexibility to create any kind of curve 
needed. 

After researching the various types of interpolating splines that one could use, the cubic 
interpolating spline was chosen for the waveguide creation algorithm.  This is a third 
order polynomial function that gives us a lot of flexibility without the extra mathematical 
complexity that higher order equations would entail.  To characterize a spline 
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mathematically, the points that the curve should pass through are specified as (xi,yi) 
where i = 0,1,2…n for the function y = f(x).  This gives a total of n knots with n – 1 line 
segments.  With the knots selected, the equation for the curve between any two points 
is 

Si(x) =  ai(x − xi)3 +  bi(x −  xi)2 + ci(x −  xi) +  di    for x ∈ [xi, xi+1]  
 

(12) 

With this equation the entire spline can be defined in space, as the value of S(x) for any 
value of x can be found by using the specific spline equation between the two knots that 
bracket the interval containing x.  However, description of the spline is not complete, as 
a,b,c and d are all unknown coefficients that need to be solved for.  To help solve for 
these coefficients, a few additional numerical conditions that specify the creation of a 
cubic spline are used.  One of the requirements for a cubic spline, as used for the 
waveguide design here, is that the entire spline function needs to be continuous.  So, at 
each knot, the two spline equations joined at that knot must have the same value, i.e. 
Si(xi+1) = Si+1(xi+1) .  Another condition for the construction of a cubic spline is that it 
be as smooth as possible, meaning that at each knot joining two spline sections, we 
want the first and second derivatives to be equal to each other, so Si′(xi+1) =
Si+1′(xi+1) and Si′′(xi+1) = Si+1′′(xi+1).  Equal first derivatives ensure that the slopes of 
the curves don’t change abruptly at a joining knot.  Equal second derivatives ensure that 
the curvature is smooth at a joining knot.  Both of these were design requirements were 
enforced for the waveguides. 

With the requirements that the spline function and its first two derivatives be equal at the 
joining knots, all requirements needed to solve all n - 1 spline equations were met, 
except for the conditions at the two end knots of the spline.  At the end knots, the 
second derivatives can be specified to be equal to zero, meaning they have no 
curvature at those points, which is known as a natural spline.  The other condition 
required specifying that the end segment has a particular slope, or first derivative, so 
that the spline curve will terminate at a particular angle.  Because there is a requirement 
already discussed that the end points of the waveguide end orthogonally to the block 
surface, the second condition in the construction of the waveguides arises naturally 
from the basic problem statement.   

3.1.2 Using the cubic spline to construct a waveguide 

Thus far, the locations of the endpoints in three-dimensional space are known, and the 
requirement that the waveguide curves terminate orthogonally to the end face of the 
chip has been met.  If the axis between the two endpoint faces is set as the z axis, the 
x,y location of the finishing point could be projected on to the front face and compared 
to the (x,y) location of the starting point.  With the orientation shown in Figure 7 below, it 
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was found to be convenient that the x and y points in Cartesian space could easily be 
translated to cylindrical coordinates of r and Θ. 

 

Figure 7 - Diagram of determining lateral offset  for an input/output point pair via endpoint 
projection 

This projection along the radial line segment meant that simpler two-dimensional splines 
could be used to create a three-dimensional waveguide.  The lateral portion of the 
waveguide is the cylindrical projection of r at angle Θ and the longitudinal portion of the 
waveguide is the z axis, with r = S(z) being the spline function.  After the z and r 
coordinates are solved for, the relationship between (x,y,z) and (r,Θ,z) could be used to 
translate the spline curve back to Cartesian coordinate in three-dimensional space. 

With the ability to translate a two-dimensional cubic spline curve into three-dimensional 
space, the number of knots needed for the curve could be defined.  The location of the z 
and r knots were defined by the positions of the start and end points of the waveguides, 
giving two knots.  To make the math as simple as possible, only one additional knot was 
needed.  To also minimize the curvature, the middle knot was placed at the halfway 
point of a line connecting the two endpoints.  This gave a symmetrical curve about z 
and r.  The other requirement that needed to be satisfied was the endpoint conditions.  
Because the curve should end parallel to the z axis, the slope of the line must be zero, 
so f’(z) = 0. 

As a shorthand, until conversion back to three-dimensional (x,y,z) coordinates, x and y 
will represent the x and y of the two-dimensional spline function (called z and r above).  
To solve the integration coefficients for equation 12, the Lagrange interpolation formula 
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was needed.  Following the math detailed in Section 5.3 of Numerical Methods in 
MATLAB [35], the following equation is derived: 

hi−1mi−1 +  2(hi−1 +  hi)mi +  himi+1 = 6 �
yi+1 −  yi

hi
−  

yi −  yi−1

hi−1
� 

 
for i = 1, 2, … , n − 1 

 

(13) 

where ℎ𝑖 = 𝑥𝑖 −  𝑥𝑖−1  and  𝑚𝑖 = Si′′(xi) , the second derivative at point i 

What this reduced equation gave was a way to solve all of the second derivatives based 
on the values for h and y, which were both known.  Since there can be multiple sets of 
the equations, it was possible to solve for multiple knots.  For equations with several 
knots, these could be solved using a matrix solution of [h]*[m] = [u].  For waveguide 
creation, there were only three knots, meaning that for equation 13 above, only one 
equation was needed for i = 1:   

h0m0 +  2(h0 +  h1)m1 + h1m2 = 6 �
y2 −  y1

h1
−  

y1 −  y0

h0
� 

 

(14) 

This gives the known x and y positions of all three knots, and the requirement that the 
first derivatives of the end points should equal zero.  The values for m0 and m2 depend 
on the end point constraints.  Also from the above reference we get the equations for 
the end point constraints: 

m0 =  
3

h0
�d0 −  S′(x0)� −  

m1

2
 

 
 

(15) 

mN =  
3

hN−1
(S′(xN) −  dN−1) −  

mN−1

2
 

 

(16) 

Substituting the values of m0 and m2 from these two equations into equation 14 above 
meant m1 can be solved.  With m1 calculated, that value could be plugged back into the 
equations for m0 and m2 and could be solved.  This gave all of the values for the second 
derivatives at each of the three knots.  Section 3.3 from Numerical Engineering Methods 
in Python [36] gave the following equation for the spline curve 

Si(x) =  
mi

6
�

(x −  xi+1)3

xi −  xi+1
 – (x −  xi+1)(xi −  xi+1)� −  

mi+1

6
�

(x −  xi)3

xi −  xi+1
 – (x −  xi)(xi −  xi+1)�

+  
yi(x −  xi+1) − yi+1(x −  xi) 

xi −  xi+1
 

 

 
 

(17) 

This equation gave the ability to solve the value of the spline curve for any value of x.  
For the three knot design here, there were two equations to be used.  If x fell between 
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knot 0 and knot 1, then all values need to be solved in equation 17 with i = 0.  If it fell 
between knot 1 and knot 2, equation 17 with i = 1 was used. 

To fabricate a spline curve for the waveguide design, an arbitrary start point at x and y 
coordinates of (0,0) was set.  Since this is at the start of the waveguide, the value for z 
was set at zero.  The end point for this example had a value for x and y of 500 and 0 µm 
respectively and as previously mentioned, the length of the physical chip was set to be 
30000 µm (30 mm).  Because two 1 mm straight sections were needed either end, the 
total length in the z axis devoted to curve design was 28 mm.  The value for the lateral 
offset of the waveguide was Δx or 500 µm.  The last required specification was how 
many points were needed to interpolate in between each knot in the z axis, which was 
used as x in equation 17.  The laser fabrication software was calibrated in this instance 
to accept a point every 25 µm in length.  Meaning there were 28000/25 + 1 points or 
1121 points that needed to be calculated. 

The algorithm to create the spline was written using the Python language and based on 
the equations in this section.  The code for this algorithm and the rest of the program, 
containing the various algorithms in this thesis, can be found in the Appendix.  It first 
solved for the second derivative values using all of the information from the knots.  It 
then took these second derivative values and plugged them into equation 17 above, 
evaluating the value of Si(x) based on where the value of x is.  When the routine 
completed, the endpoints were extrapolated out for 1 mm on both ends, with the 
resulting curve shown in Figure 8. 

 

Figure 8 - Graph showing a simple planar waveguide design based on a cubic spline 
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3.1.3 Path Length Matching Multiple Waveguides 

It has been shown that a three-dimensional waveguide can be created using a two-
dimensional spline based on a direct line between the projection of the endpoint on to 
the x,y plane at the start face. Because the flexibility to put the input and output points at 
any place on the opposing faces is a requirement, it is inevitable that the direct line 
distance between start and end points will not be the same.  Two waveguides can be 
designed with a lateral offset of 500 for Waveguide 1 and 250 for Waveguide 2.  
Creating two waveguide curves for each set of coordinates and translating the start 
point of Waveguide 2 to (0,0), gives the curves shown in Figure 9. 

 

Figure 9 - Graph showing design of two spline based curves with different endpoints 

This shows that the spline curve algorithm when used for various offset positions of the 
output has created a smooth spline curve for both.  Intuitively, one can see that the 
length of waveguide 2 is less than waveguide 1.  To match the path length of waveguide 
2, since the end knots are fixed at the end points, the center knot was moved vertically 
in small increments until the curve length of waveguide 2 equals waveguide 1.  Figure 
10 graphically illustrates this principle.   
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Figure 10 - Graph illustrating how waveguide curve path lengths are matched.  Blue curve is 
original design of waveguide 1, dashed green curve is origin location for waveguide 2, red lines 
show increase of path until the solid green line, which is the path length match for waveguide 2 

In this graph, the dashed green line represents the initial curve for waveguide 2.  The 
center knot was moved vertically until it reaches the position at the solid green line, 
which represents the new curve for waveguide 2 with the length of its curve matched to 
the length of waveguide 1 to within 0.1 µm.  The red lines show intermediate curves 
representing waveguide 2 as the knot is moved vertically.  This process achieves path 
length matching of waveguide 2 to waveguide 1 which satisfies our design requirement.  
However, if there is a set of eight waveguides, a method is needed to match the path 
length of all eight.  To do this, an array is created which finds the direct x,y distance of 
the start point of the waveguide and the projection of the end point for all eight 
waveguides.  Path length can be added to a waveguide with a smaller offset than 
another one, but since the center knot of the waveguide with the larger offset is already 
placed at the midpoint, there is no way to reduce the distance of the larger waveguide.  
So, out of the eight waveguides, the one with the largest direct x,y offset was 
designated as the primary waveguide.  The trajectory for this waveguide was solved first 
and the path length of that waveguide used as a reference for all others.  The other 
seven waveguides, which were designated the secondary waveguides, each had their 
path length increased using the above method all had been path length matched.  This 
gave a full set of eight path length matched waveguides. 
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3.2 Algorithm to Calculate Path Length of a Curve 

Before proceeding further on meeting the remaining design requirements, there needs 
to be an explanation of the method for path length metrology in the previous section.  As 
discussed previously, to create the waveguide prototypes the three-dimensional position 
of a locus of points needs to be provided every 25 µm in the longest direction (z axis).  
This value is used in the calculation and construction of the spline curves.  However, an 
accurate measurement to calculate the path length of these spline curves, or any other 
discrete curves, was needed.  The method used here was straightforward.  When the 
curves were created in three-dimensional space, the length was calculated by summing 
the lengths between each adjacent three-dimensional point. 

 

Figure 11 - Measurement of length between any two three-dimensional points 

The formula to find the length between points is straightforward: 

Li ,   i+1 =  �(xi+1 −  xi)2 + (yi+1 −  yi)2 + (zi+1 −  zi)2  (18) 

 

The total length of the waveguide was the sum of all individual segment lengths.  
However, because the laser traces its own smooth path between the points given by the 
algorithm, on the still finer grid of 1 µm spacing, a comparison of how the length 
computed assuming 25 µm spacing compares to 1 µm spacing was made.  With 1 µm 
spacing, there were 28000 data points that defined the spline curve, plus the 1mm 
section on either end.  Using the previous example offset of 500 µm against the 30000 
µm length, the results were a total curve length of 30005.339 µm for the 25 µm spacing 
and 30005.356 µm for 1 µm spacing.  This gives a difference of only 0.02 µm, which 
was five times less than the 0.1 µm path-matching tolerance.  If the offset was 
increased to 5000 µm, the result is 30528.6049 for 25 µm spacing and 30528.6052 µm 
for 1 µm spacing, giving a difference of less than 0.001 µm.  This comparison shows 
that using a 25 µm spacing with the algorithms for creating the waveguides and 
calculating the path length of spline based waveguides is easily sufficient to meet the 
path length design tolerance of 0.1 µm. 

[xi, yi, zi] 

[xi-1, yi-1, zi-1] 

[xi+1, yi+1, zi+1] 

[xi+2, yi+2, zi+2] 
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3.3 Translating a Two-Dimensional Spline Curve into Three Dimensions 

Thus far the examples examined here on translating the two-dimensional spline curve 
data into a three-dimensional locus of waveguide points have only had an offset in one 
axis, the x axis.  However, because there was the requirement that input and output 
points could lie anywhere on the two respective surfaces, the angle formed by the input 
and output points could lie anywhere on a circle of 360°.  To calculate the angle to 
rotate the spline, the arc tangent was used, as in Figure 7.  This value of Θ gave a 
positive or negative orientation for x and y, meaning that the angle would lie in particular 
quadrant.  Depending on the quadrant, the x and y values of the curve would be scaled 
appropriately.  To avoid complication from the x and y values of the input point, the 
splines were created at a start point of (0,0) and then shifted to the start point after 
creation. 

Although this method proved successful, an easier way was developed.  Instead of 
creating one two-dimensional spline along the plane at angle Θ, two separate splines 
could be created individually for the x-z and y-z planes, giving the same result.  This 
worked for the primary spline with no additional offset to the middle knot to increase 
path length.  For the secondary splines, however, there still needed to be additional 
length added to the curve, with the middle knot of the spline shifted at the correct angle 
Θ.  It was straightforward to split the offset into a shift in x and a shift in y by letting Δx = 
OffsetValue * cos(Θ) and Δy = OffsetValue * sin(Θ).  As the offset is increased 
incrementally the x and y values were also scaled incrementally until the path length of 
the entire three-dimensional curve was equal to the primary curve length.  Figure 12 
shows an example of the creation of a secondary waveguide with input point at (-50,50) 
and output point of (200,-200), and a z of 30000, which has been path length matched 
to a waveguide with an offset of 500.  The graph on the upper panel shows the separate 
x and y splines, while the lower panel shows a 3D rendering of the complete waveguide 
viewed from above. 
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Figure 12 – (top) two two-dimensional spline curves in the x and y axes combine to create a three-
dimensional waveguide (bottom) 

3.4 Spatial Separation of Waveguides 

With the tools to create waveguide paths developed, the start and end points for the 
eight waveguides discussed in Section 3.1 could be input into the computer application.   
When finished, the application displayed a three-dimensional picture of the eight 
waveguides using the library Mayavi2 in Python [37].  This gave the ability to rotate the 
image of the waveguides, or zoom into particular areas.  Upon closer inspection of the 
3D image of these eight waveguides, there were two points where the waveguides were 
actually intersecting, shown by the red circles in Figure 13.  The width of the 
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waveguides in this image was set at 10 µm, so by intersecting, the centers of these two 
waveguides were less than 10 µm apart.  As discussed previously in Section 2.6.6 on 
waveguide separation, the waveguides needed to be separated by 30 µm or more.  In 
the following sections, methods for measuring the separation of waveguides will be 
discussed together with methods for routing the waveguides to keep the required 
separation. 

 

Figure 13 - Initial eight waveguide design with two red circles highlighting areas where two 
waveguides intersect each other 

3.4.1 Determining Proximity between Neighboring Waveguides 

The method to determine the separation between waveguides was similar to the 
method to determine the path length of each waveguide.  This time, however, the 
algorithm went through each waveguide individually, and for each point on that 
waveguide, checked the distance to all other waveguides using the same length 
equation (18).  For each waveguide, the algorithm goes incrementally through each 
point on the waveguide and compares the distance from that point to the closest points 
lengthwise on all of the other waveguides.  Figure 14 gives an illustration of how the 
proximity is computed.   
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Figure 14 – Illustration of measurement proximity of distance of two waveguides (red) by 
comparison of their three-dimensional points in space 

At a specific point i on waveguide 1, the distance is measured to point i on waveguide 2, 
where zi is equal for both waveguides, since they are calculated in the same 
incremental value in the z direction.  This process is repeated at all points from start to 
finish between waveguide 1 and waveguide 2 with that minimum value.  The same 
proximity is then verified individually with waveguides 3 through 8.  The algorithm keeps 
track of the minimum distance found along that waveguide to any of the other 
waveguides.  The process is repeated for all eight waveguides, and after verifying the 
proximity distances for all waveguides, reports the closest distance found globally, the 
two waveguides that make up this distance, and at what point on those waveguides the 
distance was measured.  This information becomes useful in the next section on 
arranging the waveguides to meet proximity requirements.   

3.4.2 Adjusting the Curves to Meet Proximity Requirements 

The next step was to design a way to adjust the position of our curve in space to 
spatially separate the waveguides.  A radical change to the locus at this point is 
undesirable, since it has already met all of the previous requirements and constraints.  
Since these waveguides were created in essentially a polar coordinate structure, an 
additional angle of rotation about its longitudinal axis was added to each waveguide.  
Looking at Figure 13, imagine that each waveguide is twisted around its endpoints until 
each is arranged so that all spatial separation requirements are met.  Although at first 
sight this seems straightforward, the problem is that the endpoints are laterally offset so 
the waveguides do not have an axis of rotation parallel to the z axis which 
simultaneously preserves their input and output points and endpoint orthogonality. 
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Because the primary waveguide is used to set the distance for the other secondary 
waveguides, it should remain unaltered while the secondary waveguides are re-oriented 
around it.  Looking back at Figure 7, the start and end points form an angle θ with 
respect to the x axis.  Figure 10 also shows that the largest spatial deflection for a 
secondary waveguide occurs around the middle knot.  This may offer a potential way 
forward: instead of rotating the entire curve around the endpoints, the angle that the 
middle knot stretches with respect to the start point could be rotated instead.  The 
middle knot could then be extended along this new angle until the resulting three-
dimensional waveguide curve is path length matched to the same primary waveguide 
length. Figure 15 illustrates this concept. 

 

Figure 15 - Diagram illustrating middle knot rotation.  The remapper block is viewed from end-on 
in this drawing, with the waveguide penetrating into the paper. 

As discussed in Section 3.1.3, path length was added to the spline curve by offsetting 
the middle knot.  If the start and end points lie at an angle Θ with respect to the x axis, 
then the middle knot was stretched with the relationship based on that angle, shown in 
Figure 15 above as Δx1 = OffsetValue * cos(Θ) and Δy1 = OffsetValue * sin(Θ).   To 
avoid a spatial clash with a second guide, rotation of the angle at which the middle knot 
lies, as shown by the angle Φ above, with a final offset for the middle knot at an angle of 
Θ+Φ.  This gave a new position for the middle knot shown in Figure 15 as  Δx2 = 
OffsetValue * cos(Θ+Φ) and Δy2 = OffsetValue * sin(Θ+Φ).  With the new middle knot 
position, the spline curve algorithm automatically calculated the new trajectories.  

Figure 16 below shows the x, y and three-dimensional renderings of two waveguides.  
The blue curves show the creation of a secondary waveguide with input point at (0,0) 
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and output point of (250, 50), and a length of 30000, being path length matched to a 
primary waveguide with an offset of 500.  This waveguide was projected along an angle 
Θ of arctan(50/250) = 11.3° or  0.197 radians.  The green curves show the design of a 
waveguide with the same endpoints and with the addition of middle knot rotation angle 
Φ of 10° or 0.175 radians. 

 

Figure 16 - X axis (top left) and Y axis (top right) isometric view and 3D view of non-rotated (blue) 
and rotated (green) waveguides (bottom) 

The image illustrates the ability to position the waveguides in space by a rotation of the 
middle spline knot, while keeping the endpoints the same and the integrity of the 
waveguide curve intact.  The mathematical machinery described above could now be 
used to successfully separate all eight waveguides in space. 

3.4.3 Spatially Aligning Waveguides 

Using the three-dimensional image of the waveguides, the user can examine images of 
the waveguides from every angle as well as zoom into particular sections of the image.  
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Using this tool, and varying the angle adjustment of the waveguides, as discussed in the 
previous section, it is possible with several cycles of adjustments, and using visual 
feedback as well as the proximity distance calculations, to create a set of eight 
waveguides.  These guides were made using the previously stated endpoint 
coordinates, shown in Figure 6, now meeting also the proximity tolerance.  Figure 17 
below shows this design. 

 

Figure 17 - Image of eight three-dimensional waveguides now meeting spatial separation 
requirement 

Comparing this image to Figure 13, one can see that the two conflict areas that were 
found previously have been resolved.  In fact, the orange waveguide has been 
completely re-oriented to the opposite direction.  This was achieved simply by 
specifying a rotation angle of the middle knot of 180°. 

This set of eight waveguides now meets all but two requirements discussed thus far.  
Using the image it was visually verified that no waveguides were entangled (see 2.6.8).  
The last requirement that needs to be confirmed is the writing depth constraint. Here a 
similar algorithm to the proximity one described in Section 3.2 was used.  For each 
waveguide, the minimum and maximum values of depth in the y axis were found.  All 
eight waveguides were compared and the absolute maximum and minimum height 
values measured against the origin at the center of the input array are found.  For the 
design in Figure 17, the minimum height value was –213.5 µm and the maximum value 
was +105 µm, giving a height differential of 318.5 µm.  This value was under the 
physical writing depth requirement of 350 µm.  These values were created with the x 
and y origin at the center of the input pattern.  To ensure that these values fit within the 
100 µm to 450 µm depth requirements, the y values of the entire array are shifted to fit 
within those coordinates.  These waveguides were now designed to meet all 
requirements detailed in Section 2.6.   
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3.5 Determining Radius of Curvature 

The waveguides designed in Figure 17 were discrete curves and required an algorithm 
to calculate the radius of curvature from many individual line segments. As mentioned in 
Section 2.6.5, two adjacent line segments can be represented by two three-dimensional 
vectors.  It is known that the angle between two vectors a and b can be calculated by 
using the dot product of two vectors, which is 

𝐚 ∙  𝐛 = |𝐚||𝐛|cos(θ) (19) 
 

Rearranging for θ gives 

θ = arccos �
𝐚 ∙ 𝐛

|𝐚||𝐛|� 

 

(20) 

For any two three-dimensional vectors a and b, the dot product of the vectors can be 
found by the equation 

𝐚 ∙  𝐛 = (axbx +  ayby + azbz) (21) 
 

So, looking at Figure 18 below, a can be represented by the vector from i-1 to i and b as 
the vector from i to i+1.  This gives values for the vectors of 

ax =  xi − xi−1  ,   ay =  yi − yi−1  ,   az =  zi − zi−1 
 

(22) 

bx =  xi+1 − xi  ,   by =  yi+1 − yi  ,   bz =  zi+1 − zi 
 

 

 

Figure 18 – Diagram of two three-dimensional vectors in space illustrating curvature calculation 

The value for the dot product is then given by 

(xi − xi−1)(xi+1 − xi) + (yi − yi−1)(yi+1 − yi) + (zi − zi−1)(zi+1 − zi) 
 

(23) 

The magnitude of each vector a and b can be found by using the length value 
calculated in equation 18 and substituting all values into equation 23 gives 
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θ =  arccos �
(xi − xi−1)(xi+1 − xi) + (yi − yi−1)(yi+1 − yi) + (zi − zi−1)(zi+1 − zi)

��(xi −  xi−1)2 + (yi −  yi−1)2 + (zi −  zi−1)2���(xi+1 −  xi)2 + (yi+1 −  yi)2 + (zi+1 −  zi)2�
� 

 

(24) 

This gives the change in angle from one segment to the next, which is one measure of 
the curvature.  To convert this to an estimate of the radius of curvature, the formula for 
vectors is used: 

Rc =  
|𝐚| + |𝐛|

2θ
 

 

(25) 

Using the calculated magnitudes of the vectors and using the previously calculated 
value for Θ, a value for the radius of curvature at point i on Figure 18 can be 
determined.  With these formulas, the radius of curvature could be calculated at each 
point of our waveguide locus.  Calculating the radius of curvature for the primary 
waveguide (in yellow) in Figure 17 gives the graph below in Figure 19.   

 

Figure 19 - Radius of curvature for a simple cubic spline in green, with the physical trajectory of 
the waveguide itself given in blue 

The data in green gives the radius of curvature in millimeters at each point on the 
waveguide, while the physical locus of the waveguide itself is drawn in blue and overlaid 
for reference purposes (not to scale).  Here, the radius of curvature drops to its lowest 
value of around 138 mm at either end where the straight sections transition directly to 
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the curved portion of the waveguide.  As the waveguide straightens out in the middle, 
the radius of curvature increases and for most of its length, this waveguide has a high 
radius of curvature.  This method of displaying the radius of curvature will assist in the 
analysis of all further waveguides. 
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4. Sidestep Design 

An initial prototype of the design was fabricated for the set of waveguides shown in 
Figure 17.  The fabricated pupil remapper was then placed in an optical test setup 
shown below in Figure 20 to measure the waveguide properties. 

 

Figure 20 – Optical test setup for measuring interference fringes of pupil remapper chip 

This setup consisted of a collimated light source (laser, broadband light source, lamp, 
etc.) to illuminate the waveguides and simulate the star light.  The pupil from this light 
source is projected on to the MEMS array so that it completely fills it.  The light is 
reflected to and from the MEMS array via a right angle mirror and then passes through 
a 20x beam reducing telescope that reduces the beam so the segments on the MEMS 
array match up with the individual elements of the two-dimensional input lenslet array.  
The lenslet array then matches up with the inputs of the pupil remapper waveguides.  
The light passes through each waveguide and then is output through another lenslet 
array on the back side of the remapper.  The outputs of the remapper can then be 
imaged using a video camera.  This camera feeds real-time image data to a computer, 
which is also connected to the MEMS controller.  Using custom software, the computer 
scans the selected individual segments of the MEMS array through tip-tilt and piston 
adjustments to maximize the power throughput through each waveguide.   

Tests of the initial prototype showed that interferometric fringes could be obtained from 
a pupil remapper, and that the path length matching among the waveguides was within 
the coherence length.  However, after further testing concerning the stability of the 
closure phases recovered, a problem was found.  When observing a spatially coherent 
source, closure phases should be zero and furthermore are inherently resistant to 
phases errors introduced in the pupil plane.  Unfortunately, testing showed that the 
performance of our device in this respect was far below expectations, with RMS closure 
phase errors of several tens of degrees when piston terms were introduced in the pupil.  
Detailed description of these findings is beyond the scope of the present work, however, 
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this immediately motivated a search for the root cause and a further generation of 
remapper designs to ameliorate the problem. 

After a dedicated program of laboratory testing, the cause for the poor phase stability 
was tracked down to unguided stray light propagating through the bulk glass and 
interfering with the light in the waveguides.  As illustrated in Figure 21 below, a 
significant fraction of light which does not couple to the guides spreads outward in a 
cone depicted as a red triangle.  This stray-light interference is unfortunately placed so 
as to overlap with the desired signal at the output of the remapper waveguides. 

 

Figure 21 - Image of three-dimensional waveguides with overlaid cone of optical noise 
interference 

Further details of this laboratory testing campaign is described in Norris et al [38], 
however for the purposes here, it is sufficient to state that the performance achieved 
was not competitive for astronomical application and further re-designs to mitigate the 
phase stability problems were essential. 

4.1 Adding a Lateral Sidestep to Avoid Interference 

Figure 21 shows that the bulk of the unguided stray light spreads out as a cone at a 
specific angle equal to the f-ratio of the final injection lenslet array.  Since the remapper 
architecture boasts the capability to route the waveguide ports to any desired location, 
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the output waveguide array was moved laterally until it lay outside the cone of worst 
light interference.  Figure 22 illustrates this “sidestep” remapper concept. 

 

 

Figure 22 – Utilization of sidestep waveguide design to avoid light interference 

The output points for this new design have been shifted to the right in the x axis by 5 
mm.  At this new position, the outputs of the waveguide lie outside most of the 
interference cone from the stray input light and should give better results in recovering 
robust closure phases.  The image of the waveguides in Figure 22 came from the 
completed design.  To get to this point, additional design challenges arose with the 5 
mm sidestep offset, which will be discussed in the next few sections. 

4.2 Proximity Challenges 

Adopting the most straightforward approach to the design, new input and output points 
incorporating the sidestep were fed into the algorithm and the process of adjusting the 
positions of the waveguides was performed as described earlier using the rotation 
method.  By manually adjusting parameters, it was found that very small rotation 
adjustments in the secondary waveguides now produce large changes in the y axis.  
This is intuitive as the value of the offset is so large in the axis that any change in θ in 
Figure 15 will produce a bigger change in the y axis than the previous design.  This 
causes problems when trying to keep the height of all waveguides within the 350 µm 
constraint.   

4.2.1 An Additional Lead-In Straight Section  
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In the early stages of manually adjusting the rotation angle of the waveguides, the main 
difficulty noticed was that the waveguides tended to come into proximity conflict where 
they all bunch together turning the corner to implement the sidestep.  Figure 23 below 
illustrates one such clash. 

 

Figure 23 – Diagram showing two waveguides at input point clashing at the onset of the sidestep 

It is seen above that the orange waveguide runs into the purple waveguide as both 
waveguides curve laterally towards their respective outputs.  The earlier solution to such 
clashes, rotation of the waveguides, is now problematic as discussed in the previous 
paragraph.  However, a solution was found by extending the straight section of the 
outside waveguide.  There is already a straight section at the beginning of each 
waveguide, so if an extra straight section was added to the orange waveguide, the two 
waveguides stayed separated and kept their separation all the way to the output.  The 
successful outcome of this strategy is shown below in Figure 24.   

 

 

Figure 24 – Same waveguides as Figure 20 now spatially separated with an additional length of 
straight waveguide section to the orange waveguide 
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This gives yet another design feature to keep the waveguides spatially separated.  
However this does come at a cost.  With the additional straight section at the beginning, 
there was less length to implement the spline curve and so the middle knot needed 
more lateral offset, increasing the overall maximum curvature of the waveguide.   

4.3 Effects of Sidestep Design on Radius of Curvature 

Examining the sidestep waveguides in Figure 22, the radius of curvature as a function 
of length was plotted for the primary waveguide (in yellow) and is shown in Figure 25.  
Comparing the values for radius of curvature of this sidestep waveguide versus the 
straight through design plot in Figure 19 shows the same shape for both graphs, but the 
increase in lateral offset has dropped the minimum value of radius of curvature from 
around 138 mm down to around 23 mm.  Thus, the addition of the sidestep has 
contributed to a considerable drop in the radius of curvature. 

 

Figure 25 – Radius of curvature for a simple cubic spline in green, with the physical trajectory of 
the waveguide itself given in blue 

As a comparison with the relatively benign gentle curves of the primary waveguide 
shown in Figure 25, the waveguide with the lowest radius of curvature of the same set 
will be examined.  Figure 26 below shows one of the secondary waveguide locus (blue) 
along with its radius of curvature (green).  In that image, the radius of curvature drops to 
an even lower value of around 10 mm near the beginning of the waveguide as it 
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transitions from the end straight section to the portion of the curve with the largest 
slope.  As the light travels along this waveguide, it encounters several turning points of 
large radius of curvature, and several regions of tight curvature dictated by the spline 
solution. The effects of these changes in radius of curvature will be investigated further 
in Section 6. 

 

Figure 26 – Radius of curvature (green) for a more complex spline curve design (blue) 
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5. A Waveguide Based on a Circular Arc 

5.1 Design of the Two-Dimensional Arc-based Curve 

The radius of curvature measure is based on the radius of the circle that best matches 
the curvature at any given point.  As an alternative waveguide design method to the 
cubic spline, the use of a circular arc to construct the waveguides was explored.  This 
particular architecture holds great promise for minimizing the bends for it presents the 
mathematically lowest curvature solutions when threading a trajectory meeting our 
requirements. To construct a simple two-dimensional waveguide in the cylindrical 
coordinates z and r with a given lateral offset, similar to the spline based waveguide 
shown in Figure 8, the design procedure started with an arc from a circle with a tangent 
parallel to the z axis to connect to the input straight section at the beginning of the 
waveguide.  Likewise, a circular arc, tangential to the z axis, was used at the end.  To 
connect these two arcs together, the radius of both was selected such that the tangents 
of the two arcs intersect perfectly at the midpoint of the line that connects the start and 
end points.  Figure 27 below illustrates the concept. 

 

 

Figure 27 – Creation of a waveguide from two circular arc sections with variables for calculation 
and design of waveguides are indicated 
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To construct the left arc, we require the values for r1 and θ1 as a function of L and W. 
With some simple geometrical construction, it can be shown that if we define angle Φ to 
be: 

Φ = arctan �
L
W

� 

 
 

(26) 

Then θ, can be readily found as: 

θ1 = 2(90° −  Φ) 
 

(27) 

To derive the value of the radius r, the value of the chord c and the cosine function can 
be used to give: 

r1 =  
c
2

cos (Φ)
 

 

(28) 

The arc for the left half of the waveguide could now be created with the values of the 
radius and the arc angle θ1.  To calculate the values of the right arc in Figure 27, the 
process is similar to the left arc calculation, except the center is reflected to the bottom 
right corner.  The y value is then added to the y value of that center to get the actual y 
coordinate, with the two curves meeting in the middle. 

With the method for calculating a curve made from arcs given, a primary, arc-based 
waveguide can be created, with the same input and output coordinates as the previous 
sidestep spline design shown in Figure 8.  

For an arc based waveguide, the two arcs for the primary waveguide were created with 
the midpoint at the middle, and for any pair of input and output points, the entire path is 
uniquely defined. However this causes a problem: the flexibility to adjust the path length 
of the guides is needed to meet the matching criterion.  At first glance it might appear 
that a ready solution might be to move the junction of the two arcs away from the middle 
toward one of the endpoints, thus creating one arc of larger radius and one with a 
smaller radius.  For the waveguide in Figure 27, an equation for the total path length of 
the curve is: 

Lengthtotal = Lengthends +  2π ∗ rleft ∗
θleft

360°
+  2π ∗ rright ∗

θright

360°
 

 

(29) 

with r being the radius of each arc, and θ the angle that each arc swept out.  If the 
midpoint is shifted along the chord line, the radius of the left arc increases, and the 
radius of the right arc decreases.  However, the angle θ must remain the same for both 
arcs so that they intersect together at the same angle.  Subtracting the length of the 
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ends and dividing both sides of the equation by 2π and θ
360°

 gives the result that the sum 
of rleft and rright is a constant value.  Thus, shifting the point of intersection of the two arcs 
does nothing to alter the path length.   

5.1.1 Addition of a Bridging Straight Section 

Another possibility explored for adding path length to a curve made from two arcs was 
joining them with a bridging straight section inserted at the tangential meeting point.  
Thus, the arcs could be made at any angle and the path length increased.  Equation 29 
was modified to show what would happen with the addition of such a straight section. 

Lengthtotal = Lengthends + Lengthstraight section +  2π ∗ rleft ∗
θleft

360°
+  2π ∗ rright ∗

θright

360°
  

 

(30) 

Equation 30 shows that for a fixed total length, the additional straight section leaves less 
length for both the left and right arc sections.  This means that either the radius or angle 
of the arc will need to be decreased.  Looking again at Figure 27, if the angle that the 
left arc sweeps out only is decreased, the entire geometry fails to deliver a smooth 
curve which meets at the other end.  So, the addition of a straight section requires a 
reduction in the radius of both arcs.  This, in turn, implies a reduction in the radius of 
curvature of at least one arc.  Such a strategy runs counter to the original motivation: 
keeping minimal bend loss with as high of overall curvature as possible 

5.1.2 Addition of a Third Circle 

From the preceding sections, the conclusion was that design of a waveguide curve 
based solely on two arcs could not increase path length without significantly decreasing 
the radius of curvature and increasing the bend loss. However, the addition of a third 
circular arc to connect the other two arcs was found to present a possible solution.   

A third circle can be added as depicted in Figure 28 below, such that there are now two 
smooth tangential transitions between arcs and the input and output directions are 
preserved. However, the third circle is always “wedged” in between the two circles and 
gives a parameter to adjust the geometry.  The way to increase the path length for the 
arc was to decrease the radii of all three circles simultaneously by the same amount.  
This way the radius of curvature is the same for all three circles, and is a global 
maximum (desirable for minimizing bend losses).  While decreasing the radius of each 
circle, the original input and output arcs keep their edges tangential to the straight 
section endpoints.  The third circle is constructed at a position that touches both of the 
other circles tangentially.  
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Figure 28 – Design of waveguide with three arcs from tangential circles with reduced radius to 
give additional path length 

With the reduction of the radii of all three circles, the waveguide curve now shows an 
increased path length over the two circle based waveguide.  Because the radius of each 
circle was reduced, the radius of curvature for the whole curve (constant over the whole 
waveguide) was reduced as well. For the process of ensuring path length matching, the 
circles were assembled as in Figure 28, with the radius of each circle set to the same 
value as the calculated radius of the primary waveguide.  Because the secondary 
waveguide had a smaller lateral offset, its length was less than the length of the primary 
waveguide.  The radius of each circle was then decreased by a small amount until the 
path length of the entire curve was within tolerance of the path length of the primary 
waveguide curve.  The process was repeated until each waveguide’s path length was 
matched. 

5.1.3 Constructing a Three Arc Curve 

Construction of a three arc waveguide required new sets of equations to construct the 
sections.  Modeling the geometry of the three arc design gave the following equation 

Lengthtotal = Lengthends +  2πrleft
θleft

360°
+  2πrcenter

θcenter

360°
+  2πrright

θright

360°
 

 

(31) 

Ignoring the straight end sections for now and focusing on the curved portion only, the 
curve is made from three circular arcs, traced from 3 identical circles in different 
positions.  To calculate the correct angle that each arc sweeps out, with the radius 
chosen to meet the path matching criterion as discussed above, the center positions of 
all three circles were needed.  In addition, the point where arc 1 transitions to arc 2, as 
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well as the point where arc 2 transitions to arc 3, was also needed.  Once all of these 
points were calculated, the curve could be constructed. 

Looking at Figure 29 below, the center of circle 1 had an x value the same as the 
waveguide start point on the left, and a y value equal to the start point y value plus the 
radius.  The same held for the center of circle 3 and the waveguide end point on the 
right.  With these two center points found, a line could be constructed between these 
two points, the length of which was found by: 

LC1,C3 =  �(xC3 −  xC1)2 + (yC3 −  yC1)2  
 

(32) 

This line was used to triangulate the position of the center of circle 2.  If two circles are 
tangential to each other, a line can be drawn from the center of one circle to the other 
that passes through that tangential point.  Because circle 2 is tangential to both circle 1 
and circle 3, there will be two lines drawn from the center of circle 2 to the other two 
circles, creating a triangle with segment L connecting the centers of circle 1 and 3.  
Because the radii of all three circles are equal, the lengths of these two lines are also 
equal, creating an isosceles triangle, with the angles opposite to the two identical sides 
being equal.  These angles were denoted as Φ given by the equation, using the bisect 
of θ2: 

Φ = arccos �
L1,3

2
2r

� 

 

(33) 

With the value of Φ, the three different angles needed to construct the three separate 
arcs could be calculated and are also shown below in Figure 29. 

To first calculate angle θ1, an imaginary horizontal line was drawn from C1 forming the 
base of a right triangle with a hypotenuse of L1,3.  With a little further simple geometry, 
the following angle can be found 

θ1 = 90° + arcsin �
yC3 −  yC1

L1,3
� −  Φ 

 

(34) 

With the value of θ 1, the x and y coordinates of C2 were 

xC2 = 2r ∗ sin(θ1) + xC1   ,    yC2 = −2r ∗ cos(θ1) + yC1 
 

(35) 

Using the same imaginary horizontal line as the calculation for C1 and considering the 
angles at vertex C3 gives the equation 

θ3 = arccos �
yC3 −  yC1

L1,3
� −  Φ 

 

(36) 
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Figure 29 – Diagram for calculating portions of a three arc waveguide along with variables needed 
for calculation 

The value of θ 2 is now trivially given by summing the angles in the triangle.  The 
procedure for creating the curve was similar to the design based on two circular arcs.  
The value of x was based on the increment value given previously, and the value y was 
calculated.  Depending on where the value of x lay, one of three equations was used.  If 
x lay within the arc traced by θ 1, y will be calculated by the radius and the value of the 
local variable, angle α.  The x value of the transition point from arc 1 to arc 2 was 
determined by 

xT12 =  r ∗ sin (θ1) 
 

(37) 

If the value of x is between the start point and xT12 the value of α was 

α = arcsin �
x
r

� 
 

(38) 

And using that angle value, the value of y was calculated as 

y =  yC1 −  r ∗ cos (α) 
 

(39) 

To determine the next transition point between arc 2 and arc 3, the equation to use was 

C3 

C2 

C1 

L1,3 

r 

r 
r 

r 

Φ 

Φ 

θ 1 

θ 2 

θ 3 

y 

x 
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xT23 =  xC3 −  r ∗ sin (θ3) 
 

(40) 

If the value of x lay between xT12 and xT23, the value of α was 

α = arcsin �
|xC2 − x|

r � 

 

(41) 

Here the absolute value was needed as the value of the inverse sine could change 
depending on if the value of x lay to the left or the right of the x value of C2.  To get the 
value for y, the equation below was used 

y =  yC2 +  r ∗ cos (α) 
 

(42) 

Finally, if the value of x lay in arc 3, the value of α was 

α = arcsin �
xC3 −  x

r
� 

 

(43) 

With the value of y found by: 

y =  yC3 −  r ∗ cos (α) 
 

(44) 

This now fully specifies the x and y coordinates for all parts of the curve, and the 
equations implemented into the algorithm to create secondary waveguide curves based 
on circular arcs.   

5.2 Construction of Three-Dimensional Arc Based Waveguides and Proximity 
Adjustments 

The construction of a three-dimensional arc based waveguide used a similar procedure 
as the spline based waveguide detailed in Section 3.3.  The angle θ of the start point to 
endpoint projection was used to interpolate a single two-dimensional curve into three 
dimensions.  This was also how the primary arc based waveguide was created.  The 
secondary waveguides were initially created this way, but again the proximity issues 
forced a change in the way that the waveguides were developed. 

Adjusting the waveguide curve to meet the waveguide proximity requirement was a 
more difficult task for the secondary arc based curves than for the spline based curve.  
The spline based curve allowed for a rotational movement of the middle knot in space to 
move the waveguide, and the spline creation algorithm created the curve based on that 
point.  The arc curve algorithm was created in either the x or y dimension (three-
dimensional Cartesian coordinates) and was based on a fixed single radius for the 
waveguide.  As discussed previously, the waveguides were highly constrained in the y 
dimension due to the physical chip height requirement from fabrication, meaning that 
any curvature in the y dimension must be very small.  As before, two waveguides were 
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created in both the x and y dimension against the z axis as length.  The x axis curve 
contained most of the offset and it was to this dimension that the primary and secondary 
guides were formed as described above.  The y axis could then be constructed by using 
the same two arc method as the primary waveguide.  Since, the x axis curve accounts 
for the majority of the curvature, this design would still be optimized for the highest 
radius of curvature. 

However because the two-arc method gives a fully prescribed curve for a given input 
and output, this gave no intrinsic ability to adjust the position of the waveguide in space 
to meet proximity requirements.    If instead a three arc curve is employed with a very 
large radius then the ability to tune the shape of the guide to avoid clashes is recovered.  
Figure 30 below shows how the y axis curve changed for radius values of 50 mm, 100 
mm, and 200 mm. 

 

Figure 30 – Change of y-axis arc curve at different radius values showing a decreasing radius of 
curvature contributing to increased offset in the y axis 

Figure 30 shows that using a specific radius for the y curve, independent of the x curve, 
provided a way to adjust the position of the three-dimensional waveguide in space.  If 
more elevation of the waveguide was needed in the y dimension to avoid a clash, a 
lower radius of curvature was passed into the y curve algorithm.  In order to 
simultaneously match the path lengths for waveguides now curving in both x and y, the 
concept of a scaling factor, which adjusts the simultaneous value of the y radius based 
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on the current value of the x radius, was introduced.  As the x radius decreased from 
the value set by the primary waveguide, the y radius decreased in proportion set by the 
scaling factor.  This permitted a single-parameter adjustment which enabled path length 
matching and vertical-height clashes to be resolved simultaneously.   

For a waveguide with an x offset of 5 mm, the scaling factors that give the y curves 
above in Figure 30 are 1.69, 3.76, and 7.68.  The x curves for those same waveguides 
are shown below in Figure 31. 

 

Figure 31 - Change of x-axis arc curve at the same different radius values 

This graph shows a decrease in the scaling of the curve in the x axis.  This was 
because as the curve in the y axis increases, it contributed more towards the overall 
three-dimensional path length, relieving some of the demands in the x dimension.  
When combined, the three-dimensional waveguide had a lower global radius of 
curvature, as shown in the table below: 

Scaling Factor Radius of Curvature(mm) 
1.69 25.5 
3.76 25.7 
7.68 25.8 
None 25.8 

 

Table 1 – Radius of Curvature Values after Waveguide Scaling at Same Total Curve Length 
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As the scaling factor decreases, a larger offset in the y axis occurs and when the 
waveguide is length matched, the overall radius of curvature decreases.  However, the 
lower scaling factor and higher curve in the y dimension did not lower the radius of 
curvature by a significant amount.  Also, the first two scaling factors gave curves that 
had a difference of more than 350 µm, so in practice, neither of these could be used 
due to the physical chip height requirement.  However, the straight forward ability to 
yield large vertical height offsets meant that this proximity scaling mechanism could be 
useful in creation of the waveguides. 

Ensuring that the three-dimensional waveguides algorithm worked properly when the 
difference between the end and start points, in x and/or y, was negative required a 
slightly different algorithm than the spline based curves. The arc based curve creation 
algorithm discussed in Section 5.1 required a fixed calculation with the endpoint greater 
than the start point.  So, any negative values in x and/or y required the absolute value of 
the offset between start and endpoints to be passed in.  To then orient the three-
dimensional waveguide correctly in space, an algorithm was created based on the 
difference of the endpoints in both the x and y dimensions and also whether the scaling 
factor for the y radius is positive or negative.  An in-depth discussion of this algorithm is 
given in the Appendix.  In addition to positioning of the x and y coordinates in space, the 
algorithm also has the ability to rotate a waveguide design, like the one in Figure 29, 
180 degrees, giving another option for waveguide placement. 

Finally, use of the scaling factor to place the waveguides in space was done using 
visual alignment from three-dimensional images.  In addition, the lead in straight 
sections discussed in Section 4.2.1 also worked the same way for the arc based 
waveguides as the splines.  These lead in sections also reduced the radius of curvature 
of the arc based waveguides, so were used carefully.   
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6. Characterization of Optical Power Loss in Waveguides 

Chapter 23 of Snyder and Love’s book, Optical Waveguide Theory [31], is devoted to 
bends in optical fibers and waveguides.  In that chapter, the relationship between the 
radius of curvature of a waveguide and optical power loss due to that radius is 
established.  This formalism has been applied here to determine the power loss in both 
the spline and arc based waveguides based on their radius of curvature values. 

6.1 Bend Loss due to Radius of Curvature 

In this section, the concept of macrobending loss is investigated, in which the radius of 
curvature of the bend in the waveguide is much higher than the cross-sectional radius of 
the waveguide itself.  Microbending loss, where the bends are on the order of the 
waveguide radius, won’t be addressed here, as any microbends in these waveguides 
will be errors related to the fabrication process.  Any microbending in the design here 
would be related to the continuity of the waveguide design, and a continuous waveguide 
has already been specified as a basic design requirement.   

The physical mechanism of macrobending loss is due to radiation of the modal field 
traveling in a bent waveguide.  As a light wave travels in a straight waveguide, the entire 
field travels at a specific phase velocity, depending on the effective index of refraction 
for that mode.  When that modal field travels in a bent waveguide with a constant radius 
of curvature, the phase velocity now is an angular velocity rotating about the center of 
curvature.  Because it is an angular velocity, the linear velocity needs to be higher at the 
outside edge of the curve than at the center.   

 

Figure 32 – Illustration of bend loss radiation in a waveguide with n as the index of the core 
section (shaded), ncl as the cladding section, Rc as the radius of curvature of the waveguide and 

the outward lines illustrating the direction of radiating bend loss (courtesy: Snyder and Love) 
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As the phase velocity is governed by the local refractive index, which is symmetrical 
across the guide between the inner and outer edges of the curve, the outside of the field 
will start to lag behind the rest of the field.  This distorts the wavefront, causing a 
component of the wavefront vector to point outward radially.  Hence, some of the 
energy radiates outward, dissipating into the cladding.  Figure 32  illustrates the 
concept, with n, the index of refraction of the core, ncl the index of refraction of the 
cladding, and Rc the radius of curvature of the waveguide. 

6.1.1 Bend Loss Calculations 

Calculation of the curvature of the waveguide based on discrete sections was 
performed in Section 3.5.  To find the bend loss due to the radius of curvature of an 
individual waveguide section, the discrete bend loss equation from Snyder & Love [31] 
is adopted:  

P(z) = P(0)e−γz 
 

(45) 

This says that if light travels in a waveguide over a distance of z, and this waveguide is 
curved, the power at the output will equal the power at the input multiplied by a negative 
exponential factor dependent on the distance z and a coefficient gamma.  The 
difference between input and output power gives the bend loss.  Snyder and Love also 
give two bend loss equations, depending on the type of waveguide.  For a step profile, 
where the transition across the waveguide is nearly instantaneous from core to cladding 
and is flat across the core (like most optical fibers), the equation is  

𝛾 =  
√𝜋
2𝜌 �

𝜌
𝑅𝑐

  
𝑈2

𝑉2𝑊1.5  
1

𝐾1
2(𝑊)

 ∙  𝑒�−4
3

𝑅𝑐
𝜌

𝑊3∆
𝑉2 �  

 

(46) 

For a graded profile fiber, which has a parabolic shape across the core, the bend loss 
coefficient is 

𝛾 =
√𝜋
2𝜌 �

𝜌
𝑅𝑐

  
𝑉4

(𝑉 + 1)2√𝑉 − 12
 ∙  𝑒�(𝑉−1)2

𝑉+1   − −4
3

𝑅𝑐
𝜌

(𝑉−1)3∆
𝑉2 � 

 

(47) 

These two equations contain several variables that represent certain physical 
parameters of an optical waveguide.  The first equation has the term 𝐾1

2(𝑊) and refers 
to the modified Bessel function of the second kind.  The variable ρ is the cross-sectional 
radius of the waveguide itself, while Rc is the radius of curvature for this particular 
section of the waveguide.  V (or V number) is a common optical waveguide parameter 
known as the normalized frequency and is calculated by the equation 

V = kρ�ncore −  ncladding 
 

(48) 
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where k is the wave number.  The next two variables, U and W, are defined in Snyder 
and Love as the core and cladding parameters respectively.  These two parameters rely 
on another common waveguide parameter, β, known as the propagation constant.  The 
propagation constant determines how an optical wave travels in a waveguide and can 
be calculated by multiplying k with the effective index of refraction.  The effective index 
of refraction is not a straightforward calculation, and is the overlap integral of a 
propagation mode with the physical structure of the core and cladding of a waveguide in 
which it travels.  Both the propagation constant and effective index of refraction can be 
calculated by the software program RSoft or obtained using a Gaussian estimation from 
Snyder and Love.  These methods will be discussed later. 

With the propagation constant calculated, the equations for the core and cladding 
parameters are as follows 

U =  ρ�k2ncore
2 − β2 

 

(49) 

W =  ρ�β2 − k2ncladding
2  

 

(50) 

The last undefined parameter is Δ, which is referred to in Snyder and Love as the profile 
height parameter and calculated by 

Δ =  
ncore

2 −  ncladding
2

2ncore
2  

 

 

(51) 

The critical piece information that the combination of equations 45 and either equation 
46 or 47 reveal is that for a given waveguide, output power is related to the radius of 
curvature by a double exponential function.  Thus, small changes in radius of curvature 
can cause very large changes in bend loss, assuming the rest of the waveguide 
parameters remain the same.  This will be very important to remember for the rest of the 
waveguide curvature analysis. 

6.1.2 Algorithm Implementation and Demonstration 

With the equations to determine bend loss over a waveguide section determined, a 
demonstration that the bend loss of a full waveguide can be obtained from the sum of 
the discrete sections is required.  This is straightforward to show mathematically.  
Equation 45 shows that for a section of length z, the output power will equal the input 
power times the exponential bend loss factor.  So, for a total section length ztotal, equal 
to the sum of the length of n identical sections, the equation will be 

Pout =  Pine−γtotal ztotal 
 

(52) 
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To construct the equation for the combined waveguide of n discrete sections, the same 
equation is used, with the power out of the first section becoming the power in of the 
second section, the power out of the second becoming the power in of the third and so 
on, making the equation a product of all exponential terms like so 

Pout =  Pin ∙ e−γ1z1 ∙ e−γ2z2 ∙ … ∙  e−γnzn 
 

(53) 

For a circular arc of n sections, the radius of curvature for all sections will be the same 
as the total arc.  Since the value of γ only relies on the radius of curvature, assuming 
that all other waveguide parameters remain the same, then γ  = γ1 = γ2 = γn = γtotal.  
Bringing the gamma value and the negative sign outside of the exponential product 
gives 

Pout =  Pin ∙ e−γ ∙ ez1 ∙ ez2 ∙ … ∙  ezn 
 

(54) 

The product of exponentials can be rewritten as a sum of the exponents, giving 

Pout =  Pin ∙ e−γ ∙ e(z1+z2+ … +zn) 
 

(55) 

Since the sum of all individual sections is equal to ztotal, it can be substituted into 
equation 55 to get equation 45.  Thus, calculating bend loss as a product of discrete 
sections equals the bend loss that would be obtained for an entire section of similar 
length.  This is trivial for a waveguide made up of circular arcs, as the radius of 
curvature does not change.  For a waveguide based on a cubic spline or similar design, 
where the radius of curvature of each section does change, this is important, as it says 
the value of γ can be adjusted based on the radius of curvature of that particular 
section.  Hence, the discrete radius of curvature values calculated for each waveguide 
segment can be used to calculate the bend loss for that particular waveguide section.  
The product of all bend losses for each section should give an accurate estimation of 
the bend loss for the entire waveguide. 

Although these are three-dimensional waveguides being constructed, it’s worthy to note 
that the curvature and bend loss calculations only involve a two-dimensional model, as 
two intersecting line segments will always be in their own plane.  Therefore, bend loss 
computed in two dimensions can provide an accurate representation of the problem. 

6.2 Comparison of Curvature for Spline and Arc Based Waveguides 

Now that the importance of a waveguide’s radius of curvature and its effect on power 
throughput has been discussed, the radius of curvature for both the spline and arc 
methods will be compared.  A waveguide using the arc based design method in Section 
5 was created with the same input and output positions as the sidestep spline 
waveguide shown in Figure 25.  Figure 33 below shows the new arc based primary 
waveguide curve in blue along with the spline based sidestep in green for comparison. 
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Figure 33 – Comparison of circular arc (blue) and cubic spline (green) based waveguides 

Plotting the values of the radius of curvature for the two waveguide designs gives the 
graph below in Figure 34.  This shows the blue arc-based waveguide has a larger 
minimum radius of curvature than the green spline-based waveguide. 

 

Figure 34 - Radius of curvature profile for arc waveguide (blue) vs. spline waveguide (green) 
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The spline exhibits dramatically greater curvature near the ends of the trajectory with 
little to no curvature in the middle.  For the arc based curve (in blue), the values for the 
radius of curvature are the same for all points on the curve.  This was what one would 
expect as the curves were made from a circular arc with a constant radius.  It does have 
one point in the center section, where the curves join at a tangent, which is straight 
(“infinite” radius of curvature).   Comparing the arc curve versus the spline curve shows 
that for most of the waveguide, the arc actually had a lower radius of curvature over the 
waveguide.  However, the spline based curvature had a much lower curvature near the 
endpoints, with the values at the endpoints being around 23 mm for the spline curve 
versus around 35 mm for the arc based curve.  

A secondary arc was created using the same endpoints as the spline based curve in 
Figure 26 and the radius of curvature also examined.  First, the radius from the creation 
of the primary curve in Figure 33 was found to be 34.8 mm, and the total path length 
from this curve was found to be 30,814 µm.  This value was passed into the secondary, 
three arc creation algorithm, and the path length of the resulting curve calculated.  The 
initial value of the path length for the secondary guide was 30,620 µm.  To match the 
path length, the radius for the secondary curve was decreased by 35 µm increments 
until the path length was matched to the primary waveguide.  The final radius for the 
secondary waveguide, with path length matched, was 25.9 mm.  With the path length 
matched, the result is the blue waveguide curve shown below in Figure 35.  The spline 
based waveguide from Figure 26 is shown in green for a comparison. 

 

Figure 35 – Comparison of spline (green) and arc (blue) based waveguides with same endpoints 
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The radius of curvature values for the spline (green) and arc (blue) based waveguides 
are shown below in Figure 36 for comparison. 

 

Figure 36 - Comparison of radius of curvature for spline (green) and arc (blue) waveguides 

The radius of curvature graph shows similar results to the primary waveguide 
comparison.  The arc based waveguide shows a flat radius of curvature at 25.9 mm 
over the length of the curved portion of the waveguide.  There are two spots where the 
waveguide radius of curvature increased, coinciding with the transition points between 
the three arcs as discussed previously.  The spline curve had a higher overall radius of 
curvature than the arc based curve but has two areas where the radius dips below the 
arc radius of curvature.  The lowest point reaches a value of the radius of 10.3 mm.  
This now raises the key issue that must be further investigated - whether the sections 
with lower radius of curvature contribute to a higher overall bend loss for the 
waveguides designed with a cubic spline than the circular arcs. 

6.3 Bend Loss Comparison 

Using the formulas discussed previously, a few tests were performed to see what 
happens to the bend loss while varying several parameters.  Since the waveguides thus 
far have been constructed on a 30 mm long glass block, a sample waveguide length 
was chosen of 30 mm.  The radius of curvature was varied from 1 mm to 40 mm in 1 
mm increments for a 30 mm long waveguide and the bend loss over the range of radii 
plotted.  To see the effects of changing the waveguide parameters themselves, the 
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difference between the core index of refraction and a constant cladding index of 1.4877 
was set to three values of 0.005, 0.004 and 0.003.  For each of these index values, Beta 
coefficient values of 6.041393049, 6.03812908, and 6.035121234 were used, 
respectively.  These values were determined using a step index waveguide in RSoft 
with a waveguide radius of 4.85 µm.  Three curves will then be created, so the effects of 
changing the core index of refraction can be determined on the bend loss.   

6.3.1 Step Index Waveguides 

The first test was performed using the step index bend loss Equation 46 with the 
resulting graph shown below: 

 

Figure 37 - Power throughput versus radius of curvature for a 30 mm step index waveguide at 
three different values of core index of refraction 

As expected, the power throughput at all values of the core index of refraction show that 
as the radius of curvature of the waveguide is increased, the power throughput is 
increased.  Also, as the difference in index of refraction between the core and the 
cladding decreases, the range of radii of curvature over which power transmission rises 
from 0 – 100% increases.  This is intuitive as the index of the core decreases, more light 
will be lost in waveguide bends, so to contain the same amount of light, the waveguide 
must have less curvature.  These curves show the existence of a steep slope where the 
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power throughput of the waveguide can go from 100% to 0% with only a decrease in the 
radius of curvature of 10 mm over the length of the waveguide.   

Using this same data, a plot of bend loss per mm of waveguide length was created, as 
shown in Figure 38  This shows the bend loss in decibels over a range of radii of 
curvature from 5 – 40 mm. 

 

Figure 38 – Power loss vs. radius of curvature in decibels for a 1 mm step index waveguide at 
various values of core index of refraction 

Because of the double exponential nature of the bend loss equation, even when plotted 
in decibels, a logarithmic measure, the bend loss per mm of the three different delta n 
curves rises in an exponential curve.  As a reference example, with a radius of 
curvature of about 8 mm, a 1 mm step index waveguide, with a delta n equal to 0.003, 
will lose 75% of its optical power.  This reinforces the importance of avoiding low radius 
of curvature when designing optical waveguides.   

6.3.2 Graded Index Waveguides 

The same set of graphs, as in Figure 37 and Figure 38, was produced for a graded 
index profile, calculated by equation 47 
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Figure 39 – Power throughput vs. radius of curvature for a 30 mm graded index waveguide at 
various values of core index of refraction 

The graded index profile has increased bend loss for the waveguides at all values of 
delta n, shifting the curves to the right, with an extreme shift for a delta n of 0.003.  The 
slope of these curves isn’t as steep, meaning that a shift in the radius of curvature will 
have less effect on the power throughput than for a step index profile.   

 

Figure 40 - Power loss vs. radius of curvature in decibels for a 1 mm graded index waveguide at 
various values of core index of refraction 
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Plotting the bend loss per mm for the graded profile gives the graph in Figure 40.  The 
bend loss per mm curves here show that the loss is much greater for a graded index 
waveguide than the step index waveguide.  The curves here are shifted to the right over 
the curves in Figure 38.  So, a graded profile waveguide is definitely more prone to 
bend losses in a waveguide than a step index profile.  From a discussion point, this 
makes sense as step index profile has a higher overall average of refractive index 
modulation as opposed to the graded profile, which tapers off at the edges. 

These graphs further illustrate the importance of radius of curvature and how it affects 
power throughput due to bending in the waveguide.  A comparison of the power 
throughput for both the spline and arc waveguides will be made in the next section, after 
investigating all waveguide power loss mechanisms. 
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7. Estimated Power Loss Calculations 

The two different design methods have now been analyzed in terms of loss due to 
bends in the waveguides.   However, to get a complete theoretical description of 
estimated power throughput, and additional loss process must be characterized and 
quantified: transition loss. 

7.1 Transition Loss 

Transition loss results from an abrupt difference in curvature in an optical waveguide.  
When a mode is traversing a section of a particular curvature and encounters a section 
of different curvature, there is a mismatch between the optical fields, leading to a 
radiation loss.  There are three scenarios in which this can occur.  First, a waveguide 
can go from a straight section to a curved section and vice-versa.  Second, a waveguide 
can go from a section of a particular curvature in one direction and then transition to a 
section of the same or different curvature, but in the opposite direction.  Third, a 
waveguide can go from a section of a particular curvature to another section of a 
different curvature in the same direction.  These three scenarios are visualized below, 
along with the modal fields for the differing section, in Figure 41. 

 

Figure 41 - Transition loss illustrations (a) straight to curved, (b) curved to opposite curvature, (c) 
curved to different curvature value in same direction (courtesy: Snyder and Love) 

7.1.1 Loss Equation 

Snyder and Love [31] give two equations for calculating transition losses.  The first is for 
a transition between a straight section and a curved. 

Pout =  Pin �1 −  
1

Rc
2  

ρ2V4

8Δ2  �
r0

ρ
�

6
� 

(56) 
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The second equation is for a transition between two sections of different curvature. 

Pout =  Pin �1 − �
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(57) 

For the second equation, if the two curved sections are in the same direction, then the 
two radii should be subtracted.  If the bends are in the opposite direction (180° change 
of direction), then the two radii should be added.  The only variable here that wasn’t 
previously defined in section 6.1.1 is the parameter r0 which is the spot size of the 
waveguide mode.  The determination of the spot size is not straight forward, but in this 
case, can be determined by a Gaussian approximation given again in Snyder and Love. 

r0 =  
ρ

√V − 1
 

 

(58) 

7.1.2 Algorithm Implementation 

As has been discussed previously, the waveguides here are based on discrete sections.  
Transition loss is determined by comparing the radii of curvature between two adjacent 
sections, and then using either equation 56 or 57, appropriately, to determine the 
transition loss.  If the radii of curvature between two sections are the same, including a 
straight section with an infinite radius of curvature, then obviously, the transition loss are 
zero and can be ignored.  For the arc based waveguides designed previously, there is 
actually no transition loss across most of the waveguide, since the radius of curvature is 
identical at all points along a circular arc.  However, there are a few key sections where 
the transition loss will occur in a basic arc based waveguide.   

 

Figure 42 - Circular arc waveguide with transitions highlighted 
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There are two points where the straight end sections transition into the curved section, 
(equation 56 calculates this loss), and there is one section in the center of the primary 
waveguide where two arcs of the same curvature but opposite direction intersect with 
each other (equation 57).  These regions are highlighted in Figure 42. 

Comparing equations 56 and 57 shows that the only two differing terms between the 
two are 

1
Rc

2    vs.   �
R1 ± R2

R1R2
�

2
 

 

(59) 

Since the waveguide above has the same radius of curvature throughout, but in 
opposite direction, the right term reduces to: 
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So, for these circular arc waveguides, the center transition between two opposite arcs 
has four times the transition loss than the straight to curved transition loss given by 
equation 56.  Like the bend loss, the total transition loss will be the product of each 
individual transition loss.  If the individual transition loss is taken from equation 56, the 
output power after all transition losses in the waveguide will be 
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This equation is for a waveguide based on two circular arcs.  For a path length matched 
waveguide based on three circular arcs, as in Figure 29, there will be an additional 
transition from opposite arcs, giving an additional second term as 
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These equations allow the entire transition loss for arc based waveguides to be 
calculated from one equation, making things simple and saving computation time.  For a 
waveguide with constantly varying radius of curvature, such as one constructed from a 
cubic spline, the computation must be performed for each discrete section.  Revisiting 
Figure 25 to illustrate transition losses, the image below shows that the cubic spline 
waveguide has a transition from straight section to curved waveguide at the points on 
the waveguide that have the lowest radius of curvature.  This will contribute a significant 
transition loss.  However, for the rest of the waveguide, the transition loss will be low. 
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Figure 43 - Cubic spline based waveguide transition illustration 

For the circled center transition, where the waveguides transition in different directions, 
the actual radius of curvature is very high, meaning the transition loss is very low. For 

the rest of the curved waveguide, the �𝑅1±𝑅2
𝑅1𝑅2

�
2
 term will be a subtraction of the two radii, 

as the curve is in the same direction.  Therefore, for cubic spline based curves the 
transition loss will be very small along most of the waveguide. 

7.2 Transition Loss Comparison 

 

Figure 44 - Transition loss from straight section to curved section of specified radius at various 
values of delta n 
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As the equations in the previous section show, transition loss does have a dependence 
on the physical parameters of the waveguide itself.  To show the effects, the loss for a 
transition from a straight waveguide to a curved waveguide was tested at three different 
values of the difference in the index of refraction between the core and the cladding and 
the radius of curvature of the curved waveguide varied between 5 and 40 mm.  The 
results are shown in Figure 44.  The curves created also show the inverse square 
relationship of transition loss to the radius of curvature.  The graph also shows the trend 
that the transition loss increases as the change in index of refraction decreases.  The 
transition loss equations 56 and 57 hold regardless of the waveguide index profile or 
shape, so the results would be the same for step, graded, or any other index profile.  
The next graph in Figure 45 is for a transition from a curved waveguide section of radii 
from 5 – 40 mm to a curved waveguide section of the same curvature in the opposite 
direction, e.g. 5 mm to -5 mm, 6 mm to -6 mm, etc. 

 

Figure 45 - Transition power loss from curved to opposite curved section of specified radius at 
various values of delta n 

The curves in this graph have the same shape, except the vertical scale is different and 
is exactly four times the scale of the graph in Figure 44.  This matches the calculations 
made in Section 7.1.2.  Both the arc and spline waveguide sets have two straight to 
curved transitions, with the spline waveguides having a higher transition loss due to 
their higher curvature at that transition.  However, the arc based waveguides have 
either one or two curve-to-opposite-curve transitions which have four times the 
transition loss of the straight-to-curved transition.   
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This graph also illustrates an important point in that for lower values of delta n, the 
transition loss reaches 100%, and if extrapolated further, would go over that amount, 
which is impossible as you can’t have more than 100% power loss.  Reviewing 
equations 56 and 57 also shows that for sufficiently small radii of curvature, these 
equations actually predict a negative power.  This means that these equations should 
only be used for sufficiently high values of radii of curvature as they breakdown below a 
certain value, depending on the index of refraction of the waveguide. 

This section showed that the loss from a transition is based on a second power term to 
radius of curvature.  In contrast, the bend loss was showed to have dependence on a 
double exponential relation to the radius of curvature, and thus it is the more critical 
point of focus.  The next section will show how the power throughputs for both the spline 
and arc based waveguides are affected by both bend and transition losses. 

7.3 Total Power Loss for Waveguide Sets 

The two power loss mechanisms above can be combined to give a total power loss 
value.  For comparison, the set of eight sidestep waveguides previously created using 
the cubic spline method in Figure 22 will be analyzed and compared to a set, with 
identical endpoints, created with the arc method (shown later in Figure 58).  These will 
be tested at the three different values of core index of refraction as in the previous 
section, giving a total power throughput at each index value.  The effects of the step and 
graded index profile will both be examined.  To calculate bend loss for each waveguide, 
the algorithm calculates the three-dimensional coordinates of the waveguide curve in 25 
µm along the z axis, as mentioned previously.  Over 30 mm, this gives 1200 points.  At 
each point, the local radius of curvature and the bend loss coefficient γ are calculated 
and multiplied by the segment length z between points, with the throughput power 
calculated per equation 45.   This calculation is then repeated over all 1200 points to 
give the total waveguide power throughput. Likewise, the transition loss is calculated 
incrementally for the cubic spline waveguide and repeated over the entire waveguide. 

The first graph in Figure 46 shows the total combined power throughput of the two sets 
of eight waveguides with a step index profile.  The arc and spline waveguides are both 
displayed at the three different values of core index of refraction.  For each set, the 
waveguides are ordered from lowest throughput to highest throughput.  Here, the power 
throughputs for the delta n values of 0.005 and 0.004 give a very slight power 
throughput advantage to the cubic spline based waveguides.  However, for a delta n 
value of 0.003, the arc based waveguides have a clear power throughput advantage 
over the cubic spline designs.   

 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

75 
 

 

Figure 46 – Power throughput for 8 step index profile waveguides using both arc and spline 
technique at various values of core index of refraction 

 

Figure 47 - Power throughput for 8 graded index profile waveguides using both arc and spline 
technique at various values of core index of refraction 
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For the graded index profile waveguides in Figure 47, the arc based waveguides have a 
clear advantage in power throughput values except for the delta n value of 0.003, where 
the power throughput is near zero for all waveguides.  To determine why the total power 
throughput values differ between the two designs, the power throughput for all 
waveguide designs was measured for bend and transition losses, as well as the total 
power throughput after the contribution of both loss factors.  The average across all 
eight waveguides of each waveguide set was taken with the values given in Table 2 and 
Table 3.  These tables show that the total throughputs for the arc waveguides are lower 
for the high values of delta n, in a step index profile, due to the transition loss.  At these 
values, the bend losses for both arc and spline waveguides are near zero and the spline 
waveguides have much less transition loss.  For the lowest step index delta n value, the 
increased bend loss of the spline based design becomes the much larger loss factor, 
giving a greater total power loss for these designs compared to the arc waveguides.   

 

Waveguide Set Bend Transition Total 
Arc - 0.005 100.0 95.7 95.7 

Cubic Spline - 0.005 99.9 98.8 98.8 
Arc - 0.004 99.9 92.4 92.3 

Cubic Spline - 0.004 96.0 97.9 94.0 
Arc - 0.003 69.5 82.6 58.4 

Cubic Spline - 0.003 45.1 95.0 43.3 
 

Table 2 - Average power throughputs for step index profile waveguides, broken into bend and 
transition loss components 

 

Waveguide Set Bend Transition Total 
Arc - 0.005 99.5 95.7 95.3 

Cubic Spline - 0.005 90.3 98.8 89.3 
Arc - 0.004 68.8 92.4 64.1 

Cubic Spline - 0.004 41.3 97.9 40.6 
Arc - 0.003 1.0 82.6 1.3 

Cubic Spline - 0.003 0.9 95.0 1.1 
 

Table 3 - Average power throughputs for graded index profile waveguides, broken into bend and 
transition loss components 

In the graded waveguide sets, the bend loss factor is much higher for the spline based 
designs at the higher delta n values.  The bend loss for a delta n value of 0.003 here is 
so large that the bend and total losses are near 100%.  Note that for both the step and 
graded index profile waveguides, the transition losses are the same since the shape of 
the waveguide profile does not play a part in these loss mechanisms. 
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These tables show that as the difference in core index of refraction becomes less, bend 
loss plays a more important role.  Hence, the use of the arc based waveguide technique 
is better suited, as waveguides with the same input and output coordinates can have 
much less bend loss.  However, these simulated estimates are for a step or graded 
index profile and not the actual direct write profile that will be used for fabrication.  To 
simulate the direct write profile requires a more advanced numerical simulation tool, 
known as RSoft, which is the subject of the next chapter. 
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8. Waveguide Simulation using RSoft 

As discussed briefly in the introduction, RSoft is a software simulation tool that allows 
for testing and measurement of optical waveguides.  RSoft is based around the Beam 
Propagation Method and gives an estimate of the power throughput for a given set of 
waveguide conditions.  The software has the capability to test step index profiles and 
also has a Gaussian index profile that closely replicates a graded index profile, allowing 
for a comparison between methods.  The first test was to compare the bend losses from 
RSoft to the values obtained earlier with the theoretical formulas from Snyder and Love. 

8.1 Bend Loss 

Testing the step and graded index waveguides was performed by coding a straight 30 
mm waveguide in RSoft’s BeamPROP program and then utilizing a “simulated bend” 
facility.  As described in Section 2.5, bend loss can be calculated by simulating the 
optical effects of a bend in a waveguide, rather than tackling the more computationally 
difficult modeling job of carrying the field propagation through a rotating coordinate 
frame which follows the guide.  To match the Snyder and Love calculations of bend loss 
only for the waveguide, each time the simulated bend radius is changed, the 
propagating mode needs to be recalculated for that radius and injected into the 
waveguide at the beginning. This will eliminate the effects of a straight mode injection 
into a bent waveguide, adding an extra, unwanted transition loss on top.    

 

Figure 48 – Power throughput vs. radius of curvature for a 30 mm step index waveguide at various 
values of core index of refraction with RSoft results added 
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The bend loss was tested over the same range of radii of curvature from 1 – 40 mm at 
three values of the core index of refraction, giving a delta n of 0.005, 0.004 and 0.003.  
This was done for both a step index profile and a Gaussian index profile.  These values 
were then plotted over the earlier bend loss curves shown in Figure 37 and Figure 39.  
The new graphs are shown in Figure 48 and Figure 49.  Figure 48 shows that there is a 
very good correlation between the values for step index waveguide bend loss calculated 
from the Snyder and Love algorithms with the results from simulation in RSoft.  There 
are small offsets between the two methods, especially at a delta n value of 0.003, but 
either method will give comparable results in the prediction of bend losses in these 
waveguides.   

 

Figure 49 – Power throughput vs. radius of curvature for a 30 mm Gaussian index waveguide at 
various values of core index of refraction with RSoft results added 

Figure 49 also shows a good correlation between Snyder and Love based algorithms 
and RSoft simulations results for a delta n value of 0.005, slightly degraded results for 
0.004, but a larger variance for a delta n value of 0.003.  So, either method should give 
a reasonable estimate of bend losses for Gaussian profile waveguides at delta n values 
of 0.005 and 0.004, however this degrades rapidly for a delta n value of 0.003 and 
becomes nearly unusable.  The reason for this discrepancy was attributed to the 
difference in the determination of index profile width for a Gaussian profile in RSoft vs. 
the theoretical calculations.  As the delta n becomes lower, the index profile widens and 
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the larger change in width causes a discrepancy in the volume of the index profile.  The 
RSoft profile was slightly larger and therefore had a higher power throughput. 

8.2 Bend Loss for Waveguide Sets 

The arc based waveguide set created in Section 5, was programmed with all bends and 
transitions into RSoft.  The average calculated power throughputs for this set were 
given previously (in Table 2) for step index profile waveguides.  To compare the 
simulated values from RSoft for a step index profile, the table was updated with the 
average total power throughput from the eight waveguides calculated by RSoft.  The 
Gaussian index was not compared, as the power loss was too great for some values of 
core index of refraction, as previously discussed. 

Waveguide Set 
(Style – delta n) 

Avg. Analytical Calculated 
Power Throughput (%) 

Avg. RSoft Simulation 
Power Throughput (%) 

Arc - 0.005 95.7 97.3 
Cubic Spline - 0.005 98.8 97.9 

Arc - 0.004 92.3 93.8 
Cubic Spline - 0.004 94.0 94.3 

Arc - 0.003 58.4 59.4 
Cubic Spline - 0.003 43.3 56.0 

 

Table 4 - Comparison of calculated and simulated power throughput for waveguide sets 

This table shows that for most of the waveguide configurations, the average calculated 
power and the average simulated power are within 2% of each other.  The exception to 
this is the power values for the cubic spline at delta n of 0.003, where average 
simulated power throughput was 29% higher than the calculated power throughput.  To 
model waveguides in RSoft using a simulated bend requires sections of a certain length 
to have a specific radius of curvature.  A cubic spline waveguide has a constantly 
changing radius of curvature.  To attempt to quantify this in RSoft, the analytical 
calculation algorithms were modified to produce a waveguide section at each calculated 
point, along with the radius of curvature, in an RSoft readable form.  Where the arc 
based waveguides were constructed with four or five sections, the spline based 
waveguides were created using over 1200 sections.  Thus, modeling of cubic spline 
waveguides in RSoft is difficult and the results do not compare to the calculated results 
at low values of delta n.  For the arc based waveguides, however, either analytical 
calculations or RSoft simulations can be used effectively to simulate expected power 
throughputs for a given step index waveguide.   

8.3 Modeling HPO Waveguides in RSoft 

So far, it has been shown that total waveguide power losses can be calculated using 
analytical equations as well as simulated using RSoft, and that these two methods 
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correlate well for the simplest case of a step index profile for the arc based design 
method.  However, what is needed is a prediction method for waveguides fabricated 
using the direct write waveguide technique that has been discussed previously.  The 
waveguides fabricated for the research in this thesis used a High Power Objective 
(HPO) laser, which has a unique index profile shape fabricated in the glass.  This 
complex profile is due to the specific physics responsible for the index change in the 
glass substrate, as discussed further in Jovanovic et al [39].  An effective bend loss 
calculation for the HPO profile was not found in the literature, nor can it be effectively 
estimated using bend loss equations for simple geometries available.  However, the 
index of an HPO waveguide can be coded into RSoft and the waveguides simulated 
using that index profile.  An HPO index profile was measured by the fabrication 
laboratory at Macquarie University, creating a numerical profile to input into RSoft.  An 
image of the index profile entered in RSoft is shown below in Figure 50, along with an 
image of the mode as it travels in the waveguide. 

 

Figure 50 - (a) Refractive index profile of an ultrafast laser inscribed waveguide at 1550 nm. (b) 
Intensity distribution determined by RSoft of the guided waveguide mode in two dimensions, 
overlaid by a vertical and horizontal cut profile shown as the two white curves.  Inset shows a 

cross-sectional micrograph of the waveguide which has been scaled down to fit in Fig. (b) 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

82 
 

This shows a three-dimensional cross section of an HPO profile in the X and Y 
dimensions in image (a), with the y position on the left axis (the direction the laser is 
coming from) and the x position on the bottom axis.  This profile reaches a peak delta n 
of 0.0143, but this peak is only about 2 microns in diameter, where the step and 
Gaussian profiles used thus far for estimates have a diameter of 10 microns.  The 
image also shows that the HPO profile actually has a second, smaller peak, also, 
illustrating that the HPO profile is complex and is difficult to approximate using any 
standard shape.  Image (b) shows a snapshot of the mode traveling in the waveguide 
indicating that despite its complex form, beams of light are observed to propagate 
effectively through this waveguide in a single-moded fashion.  

8.3.1 HPO Bend Loss Simulation 

With a mode obtained for the HPO waveguide in RSoft, the same bend loss testing 
performed with the step and Gaussian index waveguides can be performed using the 
HPO waveguides.  The graphs created in Section 8.1 were updated with the results of 
bend loss testing for a 30 mm long HPO waveguide and given below. 

 

Figure 51 - Power throughput vs. radius of curvature for a 30 mm step index waveguide at various 
values of core index of refraction with RSoft results (including HPO) added 

 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

83 
 

 

Figure 52 - Power throughput vs. radius of curvature for a 30 mm Gaussian index waveguide at 
various values of core index of refraction with RSoft results (including HPO) added 

The updated graphs show that the bend loss curve for the HPO waveguide does not 
rise as steeply as the step or Gaussian index curves.  Thus, neither index curve would 
make a good model to simulate the bend loss values for an HPO waveguide.  To get an 
experimental estimate of bend loss for HPO waveguides requires fabricated 
waveguides.  It also shows that the HPO profile does have fairly high bend losses, even 
at reasonably large radii of curvature.  The follow-on effects of this bend loss profile will 
be investigated further in the next section. 

  



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

84 
 

9. Fabrication and Physical Results 

To create the waveguide designs for fabrication, the positional data from all eight 
waveguides are translated into a format compatible with the fabrication laboratory 
computer.  For more detail on the process of fabricating direct write waveguides, refer 
again to Jovanovic et al [39]. 

9.1 Physical Bend Loss Radius Scan Chip 

To explore the bend loss for an HPO fabricated waveguide, a chip was created with 
right angle waveguides of increasing radius of curvature.  Each track on this chip had 
two straight to bend transitions, and a series of 90° arcs all in a single plane (no change 
in height).  The chip was designed and fabricated by Nemanja Jovanovic at Macquarie 
University and is illustrated below in Figure 53. 

 

Figure 53 - Design of bend loss radius scan chip (courtesy: Nemanja Jovanovic) 

This radius parameter scan chip allows a bend loss per unit length measurement to be 
derived for an HPO waveguide under conditions of varying curvature.  This can then be 
used in a lookup table in the optimization algorithms to give a fairly accurate estimate 
for the bend loss of a given waveguide. 

This chip was probed by injecting laser light at 1550 nm into each waveguide. Fibers 
with index-matched oil were coupled to both the waveguide input for injection and to the 
output where a probe fed an optical power meter to measure the transmitted signal.   
Figure 54 shows an image of the setup to measure optical power throughput, with red 
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light at 630 nm used for the photograph to better illustrate a particular waveguide and 
together the injection and probe fibers.  The waveguide shown being tested is a pupil 
remapper waveguide and not from the radius scan chip. 

 

Figure 54 - Optical power measurement setup for measuring power throughput of waveguides 

 An optical power measurement was taken for each waveguide and then normalized to 
the power measured when coupling the two fiber optic probes directly together and 
setting that value to be a power throughput of 100%.  These values are given in the 
third column in Table 5.  Each waveguide has an absorption loss associated with it due 
to the intrinsic properties of the glass.  The last remaining loss mechanism is coupling 
loss and typical coupling losses for all waveguides and measurement setup is around 
9% for both coupled points.  By measuring the power through a set of the straight 
waveguides fabricated on the right side of the chip, a value for the absorption loss 
without bends can be determined.   

Removing the coupling loss from the straight waveguides gives the relationship for 
absorption loss of (1 - e(-0.0075z)) * 100%, where z is the length of a waveguide section in 
millimeters.  Thus the glass absorption loss can be isolated by dividing the normalized 
throughput value by the above factor and the total length of the waveguide in column 2. 
The coupling loss can then also be removed and the remaining power loss should be 
solely due to bends in the waveguide, which is given in column 3.  Subtracting the lead-
in length in Figure 53 from the total length in column 2 gives the bend length for each 
waveguide.  This length value can be divided by the power, and then the natural log 
applied to that value to give the bend loss per mm of length value in column 5.  To get 
an estimated power throughput, this bend loss value can be used to give the power 
throughput for a hypothetical 30.7 mm waveguide at that bend radius, given in column 
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6.  This length was chosen as this was the path length for the sidestep arc design 
waveguides.  Finally, absorption and coupling could be added back in for the 30.7 mm 
waveguide to give the throughput in column 7. 

Arc 
Radius 
(mm) 

Total 
Waveguide 

Length (mm) 

Normalized 
Throughput 

(%) 

Remove 
Absorption 

And 
Coupling 

(%) 
Bend 

Loss/mm 

Throughput 
for 30.7 mm 
Waveguide 

(%) 

With 
Absorption 

and 
Coupling 

(%) 
40 62.83 42.9 75.4 0.00448 87.1 63.0 

36.6 57.49 41.9 73.0 0.00549 84.5 61.1 
33.3 52.31 40.9 69.3 0.00700 80.7 58.3 

30 47.12 39.6 66.2 0.00875 76.5 55.3 
26.6 41.78 34.9 57.7 0.01315 66.8 48.3 
23.3 36.60 31.6 51.8 0.01800 57.6 41.6 

20 31.42 17.6 28.4 0.04005 29.2 21.1 
16.6 26.08 8.0 12.8 0.07880 8.9 6.4 
13.3 20.89 1.4 2.3 0.18151 0.4 0.3 

 

Table 5 - Results from power probing of arc radius scan waveguides 

To compare these physical results, the waveguides in Figure 53 were replicated in 
RSoft.  The power throughput from RSoft simulations for each waveguide is shown in 
column 3 of Table 6.   

Arc Radius 
(mm) 

Arc Length 
(mm) 

Simulated 
Power 

Throughput 
Bend 

Loss/mm 

Throughput 
for 30.7 mm 
Waveguide 

w/ A & C (%) 
40 62.83 0.77 0.00416 63.6 

36.6 57.49 0.74 0.00524 61.5 
33.3 52.31 0.71 0.00655 59.1 

30 47.12 0.67 0.00850 55.7 
26.6 41.78 0.62 0.01144 50.9 
23.3 36.60 0.56 0.01584 44.4 

20 31.42 0.5 0.02206 36.7 
16.6 26.08 0.43 0.03237 26.8 
13.3 20.89 0.37 0.04759 16.8 

 

Table 6 – Results from RSoft simulations for arc radius scan waveguides 

As RSoft does not incorporate the absorption and coupling losses, the loss in the 
waveguide will be due to bend losses alone (ignoring transitions losses for the moment).  
Thus, the natural log can be taken of the power throughput and divided by the arc 
length to get the bend loss per mm of length values in column 4.  This bend loss value 
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can be used to estimate the power throughput for a 30.7 mm long with waveguide and 
adding in absorption and coupling to get the values in column 5.  If the RSoft simulated 
and physically measured results for bend loss per mm of length from both Table 5 and 
Table 6 are plotted together on a log/linear graph, the result is shown below in Figure 
56. 

 

Figure 55 - Bend loss per mm of length vs. radius of curvature for physically measured (blue) and 
RSoft simulated (red) waveguides 

This graph shows that the bend loss per mm of both the simulated and measured 
waveguides have a very good correlation for high values of radius of curvature and this 
curve is nearly linear when plotted on a logarithmic scale.  However, for radius of 
curvature values below about 23 mm, the bend losses for the physically measured 
waveguides increase sharply over the simulated results.   Thus, the fabrication process 
may be showing limitations and imperfections when waveguide radius of curvature 
values fall below 23 mm.   

These bend loss values can be used compare the simulated and physical extrapolated 
results for a theoretical 30.7 mm waveguide.  These values are taken from the above 
table with coupling and absorption loss added and the resulting graph is shown in 
Figure 56. 
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Figure 56 - Simulated vs. measured power throughputs for 30 mm HPO waveguide 

This graph also shows that the measured and simulated measurements for bend loss 
correlate very well for radius of curvature values 23 mm and above.  For radius values 
below that figure, the physical bend loss diverges somewhat from the simulated result 
and the power throughput decreases significantly.   

The results from the fabrication of the arc radius scan chip waveguides, and the 
comparison with simulations of those waveguides, show two important things.  First, 
that for radius of curvature values down to 23 mm, bend losses in waveguides can be 
accurately predicted by RSoft.  Second, as the physical waveguide bend losses 
increase dramatically for radius of curvature values less than 23 mm, waveguides using 
these low radii of curvature values should be avoided.  Furthermore the fabrication 
results could be difficult to predict using RSoft.   

A consequence of this requirement for low curvature is illustrated in Figure 36, which 
compares two waveguides created from the arc and spline based sidestep design.  It 
can be seen that the radius of curvature for the arc waveguide sits just below 23 mm 
across the entire waveguide, while the spline based waveguide has a tightest curve with 
down to nearly 11 mm.  This region, circled in red, illustrated that the arc based design 
should be used for the high curvature values in preference to the spline for sidestep 
chips.  Thus, the circular arc waveguides were the basis for all further designs. 

 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

89 
 

 

Figure 57 - Comparison of radius of curvature for spline (green) and arc (blue) waveguides with 
low radius of curvature region circled in red 

The physical mechanism for the excess bend loss observed at the lower radius of 
curvature values was determined to be due to mechanical difficulties with the laser 
fabrication translation stages when moving at the high velocities.  As the radius of 
curvature decreases, the translation stage also accelerates around the curve faster, 
thereby causing a higher susceptibility for fabrication defects.  The data from this 
measured radius parameter scan curve was used to implement a lookup table in the 
Python application to give a calculated estimate for the bend loss.  The physically 
calculated values for bend loss per mm in Table 5 were then implemented into the 
calculation algorithm as a lookup table.  Now, the calculation algorithms finally had a 
robust, experimentally derived bend loss estimate for the HPO waveguides.  This 
lookup table has been used to predict throughputs in the next section. 

9.2 Predicted Power and Radius of Curvature Throughputs 

Based on the test results in the previous section, the arc design was used to fabricate 
the latest sidestep remapper chip.  An image of this arc sidestep is shown in Figure 58. 
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Figure 58 - 8 waveguide sidestep arc based design 

In the process of designing these waveguides, the new HPO bend loss lookup table 
was implemented and a full power estimate including bend, transition, absorption, and 
coupling losses was run on all eight waveguides.  In addition, these waveguides were 
simulated in RSoft, the power throughputs determined and absorption and coupling loss 
added to those values.  The physical power throughputs for each waveguide were also 
measured using the optical probe setup from Section 9.1.  These three power values 
were plotted on together and the values of these are shown in Figure 59 with the power 
scale on the left hand side.  The radius of curvature of each arc based waveguide has 
also been plotted on the same graph using the scale on the right hand side. 

 

Figure 59 – Graph of calculated (red), simulated (blue) and measured (aqua) power throughput 
results with overlaid radius of curvature (green) values 
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The graph in Figure 59 shows that the calculated power throughputs of these 
waveguides should range between 36 – 58%.  These predictions match the RSoft 
values with an error range between 5 and 10%.  In addition, the radius of curvature 
values show all waveguides were fabricated with radius values above 23 mm, which 
was found in the last section to be the minimal radius to be safely used.  Despite all of 
these separate predictions agreeing that waveguides should have good power 
throughputs, the measured throughputs are worse and in some cases dramatically so, 
ranging from 5 – 47%.  This implies that there are still unknown fabrication 
imperfections in the HPO fabrication process that cause lower throughputs in the 
waveguides for complex, three-dimensional structures with low radius of curvature 
values.  Note that the pattern of low throughputs does not show strong correspondence 
with tighter radius of curvature. Furthermore, the simple planar arc chip discussed in 
section 9.1 did exhibit throughputs which were monotonic with radius and conformed 
well with expectations, implying that the difficulties may stem from the challenges of 
writing curves into the y dimension.  The throughputs for some of these waveguides will 
make them unsuitable for stellar measurements, however lab measurements of the 
coherence lengths can still be made, which are discussed in the next section. 

9.3 Physical Waveguide Path Length Measurements 

To measure interferometric fringes in the laboratory, the setup in Figure 20 was used 
with the addition of a near-infrared transmission grating between the output lenslet array 
and the camera.  This cross disperses the output light from all eight waveguides so that 
the interferometric fringes can be imaged directly on the camera.  “Turning off” six of the 
eight waveguides, by mispointing the micromirror for each of those waveguides off-axis, 
gives a pair of interference fringes from two waveguides.  Selecting different 
combinations of waveguide pairs will give different spacing of the fringes.  Figure 60 
shows interference fringes between waveguide pairs with output spacing of 750 µm 
(left) and 1750 µm (right).  The fringes run horizontally, following the orientation of the 
output waveguides..  The two sets of fringes depicted have different spatial frequencies 
as they arise from output apertures separated by different distances, with the image on 
the right having a longer baseline and hence higher spatial frequency.  The fringes are 
cross dispersed by a transmission grating, with wavelength running in the vertical from 
shorter wavelengths (top) to longer wavelengths (bottom) over the range 1500 – 1600 
nm. The effect of the changing wavelength can be seen in the fringe spatial frequency 
which becomes bigger, causing the pattern to appear to expand towards the bottom.  If 
the wavefronts were in phase across all output apertures, the fringes would run exactly 
vertically. However the two images in Figure 60 are seen to exhibit inclined due to the 
manifestation of a phase delay between the signals from the two contributing 
waveguides. 
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Figure 60 – Two images of wavelength cross-dispersed interference fringes between waveguide 
pairs.  Image on left shows interference fringes between two waveguides spaced 750 µm apart, 

image on right shows interference fringes between two waveguides spaced 1750 µm apart.  
Wavelength runs in the vertical direction while spatial frequency runs horizontally. 

Using fringe data like that in Figure 60, it is possible to measure the phase delay 
between the wavefronts coming from the two separate waveguides. Using the known 
wavelength scale and geometry of the optics, it is then a trivial matter to convert this 
phase delay (in radians) into a physical delay length that one optical path has with 
respect to the other.  This value of the optical path difference can be recorded for all 
pair combinations of waveguides in a particular device. 

Measuring the phase slopes was essentially achieved with a channel spectrum 
analysis. Correct sampling of the Fourier components corresponding to the fringes was 
ensured by plotting the power (intensity) spectrum of the fringes between a particular 
waveguide pair as a function of wavelength. This is depicted in Figure 61 (where the 
data arise from the fringe pattern seen in the left image in Figure 60.  This graph is 
overlaid by a sampling template (white line) giving the expected locus of fringe power 
given the known wavelength scale and interferometer baseline.  

Fringe interferograms were then taken while adjusting the path length difference by 
pistoning the corresponding segment of the MEMS array.  This piston was moved from 
a nominal location of -1.5 µm to +1.5 µm in 0.1 µm steps (when used in reflection, this 
results in 6 microns of actual optical path difference).  As described above, changing the 
optical path has the effect of tilting the slope of the fringe phase as a function of 
wavelength.  If the plots for 31 separate piston locations are all overlaid for the same 
waveguide pair, the result is the graph shown in Figure 62.   
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Figure 61 – Power spectrum for two waveguides 750 µm apart.  Wavelength channel is on the 
vertical axis, while fringe spatial frequency in inverse pixels is on the horizontal axis.  The line of 

predicted fringe power is overlaid on fringe spectrum (white overplotted line). 

 

 

Figure 62 – Difference in fringe phase (radians; vertical axis) plotted as a function of inverse 
wavelength (1/microns, horizontal axis). The 31 different plots shown illustrate the change in 

fringe phase slope as one contributing waveguide is pistoned from -1.5 µm to 1.5 µm.   
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It can be seen that by changing the phase offset for this particular baseline, the slope of 
the fringe phase as a function of wavelength can be changed. However, over the entire 
range available from the MEMS array (6 microns), it can be seen that although a 
sizeable difference in slope can be obtained, the phase slope cannot be eliminated. 
This tells us immediately that the waveguides are not matched to within 6 microns, and 
indeed exhibit a mismatch at least several times worse than this value. By using the 
information in these plots, the precise phase difference between that particular pair of 
waveguides can be determined, and the process repeated for all waveguide pairs.  
Using the line of best fit will give the physical path difference between a waveguide pair. 

Using one waveguide as a reference and comparing path length differences to the other 
seven waveguides will yield a differential path length measurement for each individual 
waveguide.  A plot of the path length differences of the fabricated waveguide set given 
in Figure 58 is shown in Figure 63. 

 

Figure 63 - Plot of path length differences of remaining waveguides in set compared to reference 
waveguide. 

By comparing the path length differences in this graph, the relative path length 
differences between other waveguides can be determined.  Thus, the longest path 
length difference in this set of eight waveguides is between waveguide 2 (-19.5 µm) to 
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waveguide 5 (25.5 µm) for a total path length difference of 45 µm.  This means that this 
set of waveguides could be used for scientific measurements in optical setups in which 
the tolerance on path length matching to a coherence length was greater than that 
value.  

Although the performance reported here is within our specification range for various 
optical setups, there is a significant degradation in the performance between the 
mathematical trajectories (which are path length matched much better than one micron) 
and the measured performance of the fabricated component. This could be due to 
several factors, such as variations in the refractive index between different guides 
(written with different depths, curvatures or times), non-ideal performance of the stages 
causing errors in the guides, or possibly other sources of error due to misalignments in 
the optical apparatus making the measurements. 
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10. Conclusions 

10.1 Summary 

This thesis has covered the process of design and fabrication of path length matched 
waveguides in a single block of glass.  In the process of investigating the methods to 
meet the design challenges, a full analysis of mechanisms of power loss in optical 
waveguides was performed.  This analysis showed that using a computer 
implementation of theoretical equations for curvature, bend loss and transition loss gave 
an estimate of the power throughput of a given optical waveguide.  This was confirmed 
by simulated measurements using Beam Propagation Method (BPM) software.  
Furthermore, our custom computer implementation allowed these measurements to be 
performed in a fraction of the time it would take to import the waveguides into the BPM 
software and have the power measurement calculated. 

As part of developing the methods to design the waveguides, waveguides design on 
two different geometrical principles were explored.  The first method used cubic splines 
to route the guides, providing a straight forward method of design.  However, if the 
calculated power losses were unacceptable, a second method based on joined 
segments of circular arc could be used to design the waveguide.  This circular arc 
design allowed for waveguide design with a higher minimum radius of curvature: a key 
feature as losses can be catastrophic for even short sections of high curvature.  Either 
of these methods could then be used to lay out a waveguide chip, and the power 
throughputs calculated.  Despite these advances, power throughputs of waveguides 
which have curvature in three dimensions created with the HPO process cannot be well 
predicted nor guaranteed to meet some user-defined specification.  Further 
investigation into the reasons for the degraded performance compared to expectations 
is still needed. 

Laboratory analysis performed on the first set of designed waveguides showed 
interferometric fringes obtained using these waveguides.  To the best of our knowledge 
these were the first arbitrarily routed, path length matched waveguides, fabricated for 
interferometric purposes.  A more detailed analysis was performed on the waveguides 
themselves, and the path length of all waveguides were found to be within 45 µm of 
each other. 

Despite the power throughput problems, a set of waveguides created by the design 
process in this thesis was taken to the Anglo Australian Telescope in May of 2011.  The 
waveguide chip was installed within the optical setup of the Dragonfly instrument on the 
telescope and the first stellar interference fringes were obtained by the system [40].  
Visibilities and closure phases were recorded across the astronomical H band (and also 
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part of the J band) for all baselines present in the input pupil and for all sets of closing 
triangles. 

10.2 Future Work 

In order to build further upon the designs explored here, a few items of possible 
improvements have been added. 

Two design methods were created here, the cubic spline and circular arc, but no side by 
side direct experimental comparison was performed on the data.  A sidestep cubic 
spline design was fabricated for interferometric testing, but exhibited the same erratic 
power measurements.  Likewise, the arc based design method came later in the 
process, so no straight through designs were created on that.  When the fabrication 
process is improved to get more consistent performance, a direct experimental 
comparison should be made to give more complete results. 

The key advantage of this direct write pupil remapper technology is the ability to use 
more of the pupil area than aperture masking.  This allows for more light from a stellar 
target to be measured.  As the MEMS array used for this project has 37 segments, it is 
conceivable that a 37 waveguide remapper could one day be created.  The next likely 
prototypes to be fabricated will have 12 – 16 waveguides fabricated. 

If more waveguides are to be added to the design, the process of keeping the required 
proximity between the waveguides will increasingly become more complex.  This will 
require more sophisticated coding algorithms to determine the position of the 
waveguides in space and shaping them to fit while keeping the radius of curvature high. 

Because of the difficulty with the current HPO laser fabrication technique in fabricating 
waveguides with the current design, alternative direct write lasers will be investigated to 
fabricate the waveguides. Some of these rely on very different physical processes to 
enact a change in the refractive index of the glass, and so the final waveguide produced 
may not suffer from the same issues which have hampered progress using the HPO 
fabrication.  This will also hopefully improve the path length matching distance of all 
waveguides. 

To expand the capabilities of the direct write pupil remappers, expansion into longer 
wavelengths and the mid-infrared is a big science goal.  This will require alternate types 
of glass or substrate transparent in these regions, which will in turn demand and 
different laser parameters for successful fabrication.   
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Appendix – Python Application code 

This appendix contains the Python code that implements the functionality to create the 
waveguides, as well as performing analysis on them.  The first portion contains the 
various variables and class objects needed for the various functions.  The main logic 
portion calls out the various functions to perform specific tasks. 

• CalculateInputOutputDistance function calculates the linear distance between x 
and y end points.  This data is used by the DeterminePrimaryWaveguides 
function to determine the primary waveguide in each set.  
DetermineSecondaryWaveguides populates a list with the rest of the waveguides 

• If fabrication of arcs is desired, then the lines under ARC BASED CODE should 
be uncommented with the spline code commented. 

o CreatePrimaryArcWaveguide creates the primary waveguide.  It calls the 
function CreateDoubleArcSegment to perform the construction. 

o  CreateSecondaryArcWaveguides contains the code to fabricate the 
secondary arc based waveguides.  The positioning code and code to keep 
track of radius reduction is here.  In this code, it calls the function 
CreateTripleArcSegment to fabricate a waveguide from three circular arcs 

• If fabrication of splines is desired, then the lines under SPLINE BASED CODE 
should be uncommented with the arc code commented. 

o CreatePrimarySplineWaveguide creates the primary waveguide.  It calls 
the function CreateSingleSpline to perform the construction. 

o  CreateSecondaryArcWaveguides contains the code to fabricate the 
secondary splines based waveguides.  The positioning code and code to 
keep track of radius reduction is here.  In this code, it calls the function 
CreateDoubleSpline to fabricate a waveguide with an offset middle knot. 

• With the waveguides successfully designed and path length matched, the 
function SegmentDistanceCurvatureCheck is called.  This calculates the 
curvature, the closest distance between any two waveguides and the depth at 
which the waveguides are created. 

o This function also calls CalculatePowerLoss.  This function goes through a 
specific waveguide and calculates the bend, transition, coupling and 
absorption power losses for each waveguide to give an estimated power 
throughput.  Choosing a step index profile, Gaussian index profile, or an 
HPO profile from a lookup table is set here. 

• PlotAllSegments creates the three-dimensional plot using the Mayavi library 
• CreateLaserWriteFiles takes the three-dimensional coordinates of each 

waveguide and writes them to a file in a format to be read by the laser fabrication 
computer. 
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# -*- coding: utf-8 -*- 
# Python file to design best path(s) through an optical chip based on input and output positions 
# 
# Copyright Ned Charles 2011 
# The references here are all used for education purposes only 
# 
 
############################################################################################################ 
# ** CLASS DECLARATION ** 
############################################################################################################ 
# 
# PositionDimensionDataObject 
# 
# Contains all start and end positions, physical requirements and dimensions,  
 
class PositionDimensionDataObject(object): 
 
    def __init__(self, NumberOfSegments): 
        self.NumberOfSegments = NumberOfSegments 
        self.PathXStartPosArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.PathYStartPosArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.PathXEndPosArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.PathYEndPosArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.XDistanceArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.YDistanceArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.DirectDistanceArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.SecondaryIndexList = np.zeros(1, dtype=np.int) 
        self.SegmentCreatedArray = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.ArcCutoffPoint = np.zeros(NumberOfSegments, dtype=np.float64) 
        self.RadiusOffsetArray = np.zeros(NumberOfSegments-1, dtype=np.float64) 
        self.LeadInSegmentArray = np.zeros(NumberOfSegments-1, dtype=np.int) 
 
    PrimarySegmentNumber = 0 
    PrimarySegmentRadius = 0.0 
    BlockSectionWidth = 0 
    BlockSectionHeight = 0 
    BlockSectionLength = 0 
    EdgeStraightSectionLength = 0.0 
    CenterBridgeLength = 0.0 
    BlockSectionLength = 0.0 
    ZSpatialPrecision = 0.0 
    CalculatedPathDistance = 0.0 
    SegmentLengthPrecision = 0.0 
    NumberZSlices = 0 
 
############################################################################################################ 
# 
# WaveguidePropertiesDataObject 
# 
# Contains all information about the physical properties of the optical waveguide.  This information 
# will be used to estimate light loss in the waveguide.  The parameters are based on Snyder and Love 
# textbook and the calculations to determine these parameters are performed later on. 
 
class WaveguidePropertiesDataObject(object): 
 
##    def __init__(self, NumberOfSegments): 
##        self.NumberOfSegments = NumberOfSegments 
 
    # These parameters are set once and good for the physical properties of all waveguides 
    IndexCore = 0.0 
    IndexCladding = 0.0 
    WaveguideRadius = 0.0        # The rho parameter 
    Wavelength = 0.0            # microns 
    NumericalAperture = 0.0 
    NormalizedFrequency = 0.0   # The V parameter 
    DeltaParameter = 0.0 
    UParameter = 0.0 
    WParameter = 0.0 
    RadiusZero = 0.0            # The spot size - calculate on pg 341 using relationships there 
    BetaCoefficient = 0.0 
     
 
############################################################################################################ 
# ** AUXILIARY FUNCTIONS ** 
############################################################################################################ 
# Function - CalculateWaveguideProperties 
# 
# The parameters in the WaveguidePropertiesDataObject are calculated here.  The calculations are dervied 
# from the textbook Optical Waveguide Theory by Snyder and Love, 1983. 
 
def CalculateWaveguideProperties(WPData): 
 
    WavePropData.IndexCore = 1.4927 
    WavePropData.IndexCladding = 1.4877 
    WavePropData.WaveguideRadius = 4.85 
    WavePropData.Wavelength = 1.55  # microns 
 
    # Numerical Aperture is based on the core and cladding indices 
    WPData.NumericalAperture = np.sqrt(WPData.IndexCore**2 - WPData.IndexCladding**2) 
 
    # Parameters from back of Snyder and Love 
    WPData.NormalizedFrequency = ((2.*np.pi)/WPData.Wavelength) * WPData.WaveguideRadius * \ 
                                     WPData.NumericalAperture 
    WPData.DeltaParameter = (WPData.IndexCore**2 - WPData.IndexCladding**2)/(2.*WPData.IndexCore**2) 
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    # Beta Coefficient is an arbitrary parameter based on the waveguide characteristics 
##    BetaCoefficientArray = [6.041393049,6.03812908,6.035121234] from RSoft -> delta n = 0.005,0.004,0.003 
    WPData.BetaCoefficient = 6.041393049 
 
    # Given beta value, calculate W and U parameters 
    kParam = (2.*np.pi)/WPData.Wavelength 
    WPData.WParameter = WPData.WaveguideRadius * np.sqrt(WPData.BetaCoefficient**2 - \ 
                                                         (WPData.IndexCladding**2 * kParam**2)) 
    WPData.UParameter = WPData.WaveguideRadius * np.sqrt((WPData.IndexCore**2 * kParam**2) - \ 
                                                         WPData.BetaCoefficient**2) 
 
    # Step Profile 
    WPData.RadiusZero = WPData.WaveguideRadius/(np.sqrt(2. * np.log(WPData.NormalizedFrequency))) 
    # Gaussian Profile 
    WPData.RadiusZero = WPData.WaveguideRadius/np.sqrt(WPData.NormalizedFrequency - 1) 
 
    print "*******************************************************************" 
    print "WAVEGUIDE PROPERTIES" 
    print "IndexCore: " + str(WPData.IndexCore) 
    print "IndexCladding: " + str(WPData.IndexCladding) 
    print "WaveguideRadius: " + str(WPData.WaveguideRadius) 
    print "Wavelength: " + str(WPData.Wavelength) 
    print "NumericalAperture: " + str(WPData.NumericalAperture) 
    print "NormalizedFrequency: " + str(WPData.NormalizedFrequency) 
    print "DeltaParameter: " + str(WPData.DeltaParameter) 
    print "UParameter: " + str(WPData.UParameter) 
    print "WParameter: " + str(WPData.WParameter) 
    print "RadiusZero: " + str(WPData.RadiusZero) 
    print "*******************************************************************" 
     
     
############################################################################################################ 
# DESIGN FOR DETERMINING DISTANCES 
############################################################################################################ 
# Function - CalculateInputOutputDistance 
# This code calculates the differences in x and y between the input and output points of each spline 
def CalculateInputOutputDistance(PDData): 
    for i in range(0, len(PDData.XDistanceArray)): 
        PDData.XDistanceArray[i] = PDData.PathXEndPosArray[i] - PDData.PathXStartPosArray[i]  
        PDData.YDistanceArray[i] = PDData.PathYEndPosArray[i] - PDData.PathYStartPosArray[i] 
        #Direct distance formed by taking the hypotenuse of the X and Y difference above 
        PDData.DirectDistanceArray[i] = np.sqrt((PDData.XDistanceArray[i])**2 + (PDData.YDistanceArray[i])**2) 
    return 
 
############################################################################################################ 
# Function - DeterminePrimarySegments 
# Find which spline has the largest distance.  Returns the index of the largest segment 
 
def DeterminePrimarySegments(DirectDistanceArray): 
    LargestDistanceIndex = np.argmax(abs(DirectDistanceArray)) 
    print "Largest ordinal segment number: " + str(LargestDistanceIndex) 
    return LargestDistanceIndex 
 
############################################################################################################ 
# Function - DetermineSecondarySegments 
# Find a list with the secondary segments 
 
def DetermineSecondarySegments(PDData): 
    PDData.SecondaryIndexList[0] = -1 
     
    for i in range(0, PDData.NumberOfSegments): 
        # If this segment doesn't exist in the largest list, add it to the secondary list 
        if(i != PDData.PrimarySegmentNumber): 
            #If the first item is -1 (first element in the list), replace, otherwise add 
            if(PDData.SecondaryIndexList[0] == -1): 
                PDData.SecondaryIndexList[0] = i 
            else: 
                PDData.SecondaryIndexList = np.append(PDData.SecondaryIndexList, i) 
 
############################################################################################################ 
# AUX FUNCTIONS FOR BELOW 
# Functions - For tridiagonal matrix deconvolving 
# Adapted from Numerical Engineering Methods in Python (2005), Section 2.4 
 
def LUdecomp3(c,d,e): 
    n = len(d) 
    for k in range(1,n): 
        lam = c[k-1]/d[k-1] 
        d[k] = d[k] - lam*e[k-1] 
        c[k-1] = lam 
    return c,d,e 
 
def LUsolve3(c,d,e,b): 
    n = len(d) 
    for k in range(1,n): 
        b[k] = b[k] - c[k-1]*b[k-1] 
    b[n-1] = b[n-1]/d[n-1] 
    for k in range(n-2,-1,-1): 
        b[k] = (b[k] - e[k]*b[k+1])/d[k] 
    return b 
 
############################################################################################################ 
# Function - CalculateSegmentLength 
# Calculates the segment length based on the data points 
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def CalculateSegmentLength(PDData, XYZSegmentDataArray, SegNum): 
    # Calculate spline length 
    totalPathDistance = 0.0 
    previousSliceXValue = PDData.PathXStartPosArray[SegNum] 
    previousSliceYValue = PDData.PathYStartPosArray[SegNum] 
    previousSliceZValue = 0.0 
     
    for i in range(1, len(XYZSegmentDataArray[SegNum,:,0])): 
        #Add the path amount to the total distance 
        totalSliceDistance = np.sqrt((XYZSegmentDataArray[SegNum,i,0]-previousSliceXValue)**2 + \ 
                                     (XYZSegmentDataArray[SegNum,i,1]-previousSliceYValue)**2 + \ 
                                     (XYZSegmentDataArray[SegNum,i,2]-previousSliceZValue)**2) 
        totalPathDistance += totalSliceDistance 
        previousSliceXValue = XYZSegmentDataArray[SegNum,i,0] 
        previousSliceYValue = XYZSegmentDataArray[SegNum,i,1] 
        previousSliceZValue = XYZSegmentDataArray[SegNum,i,2] 
    #end slice for loop 
 
    return totalPathDistance 
 
############################################################################################################ 
# DESIGN FOR CREATING SPLINE FOR EACH PATH 
############################################################################################################ 
# Function - CreateSpline                     
# To calculate the path, the program uses the spline function.  This takes the starting and end 
# points of the path, then returns the centerpoints of the function for each z-slice. 
# http://www.physics.utah.edu/~detar/phys6720/handouts/cubic_spline/cubic_spline/node1.html 
# 
# This spline creation program uses the XY Distance plus the Z Distance to create the spline.  The 
# XY difference will be the difference in YLineValues below on the line to pass in that will create 
# it.  The Z difference will be used to create the XLineValues to pass in below.  The slopes of the 
# line created will then be passed in to the code below.  This will return the 2nd derivative 
# k values to pass into the Evaluate Spline function, which will return the distance values at each 
# slice.  Using the X and Y beginning and end values of the segment will allow the spline to be 
# translated into an array of X, Y values. 
 
def CreateSpline(XYDistance, ZDistance, Invert = 0, DoubleSpline = 0, DoubleSplineOffset = 0.0): 
    XLineValues = np.array([0.0,ZDistance/2.0,ZDistance]) # minimum of three points 
    LineSlope = XYDistance/ZDistance 
    YLineValues = LineSlope*XLineValues 
 
    if (DoubleSpline == 1): 
        YLineValues[1] += DoubleSplineOffset 
 
    if (DoubleSpline == 2): 
        XLineValues[1] = ZDistance/3. 
        TwoThirdDataPointXVal = (ZDistance*2.)/3. 
        YLineValues[1] = LineSlope * XLineValues[1] 
        TwoThirdDataPointYVal = LineSlope * TwoThirdDataPointXVal 
 
        YLineValues[1] += DoubleSplineOffset 
        TwoThirdDataPointYVal -= DoubleSplineOffset 
         
        XLineValues = np.insert(XLineValues, 2, TwoThirdDataPointXVal) 
        YLineValues = np.insert(YLineValues, 2, TwoThirdDataPointYVal) 
         
    if (DoubleSpline == 3): 
        # For secondary spline, the line passed in needs to be adjusted by picking two more points at 1/4 
        # and 3/4 of the total length and then incrementing these values vertically in the opposite 
        # direction to create a 3 segment model.  This will increase the total value of the spline. 
        # Increment the data points at 1/4 and 3/4 of the lengths to create the 3 segments 
        OneQuarterDataPointXVal = ZDistance*.25 
        ThreeQuarterDataPointXVal = ZDistance*.75 
        OneQuarterDataPointYVal = LineSlope * OneQuarterDataPointXVal 
        ThreeQuarterDataPointYVal = LineSlope * ThreeQuarterDataPointXVal 
 
        # Increase these values by the offset 
        OneQuarterDataPointYVal += DoubleSplineOffset 
        ThreeQuarterDataPointYVal -= DoubleSplineOffset 
 
        # Add these into the X and Y line value arrays 
        XLineValues = np.insert(XLineValues, 1, OneQuarterDataPointXVal) 
        XLineValues = np.insert(XLineValues, 3, ThreeQuarterDataPointXVal) 
        YLineValues = np.insert(YLineValues, 1, OneQuarterDataPointYVal) 
        YLineValues = np.insert(YLineValues, 3, ThreeQuarterDataPointYVal) 
     
    x = XLineValues 
    y = YLineValues 
 
    # Slope specified at the left and right sides of the splines 
    LeftTangent = 0. 
    RightTangent = 0. 
     
    # Mathematics from Numerical Methods using MATLAB 4th Edition, Section 5.3 
    # with adapted code from Numerical Engineering Methods in Python (2005), Section 3.3 
    # This code calculates the second derivative (k) at each knot specified 
    n = len(x) - 1 
 
    # The values for the clamped spline can be solved using equation 12 of the MATLAB 
    # book.  This equation is only valid for the values from 1...n-1, with modifications for 
    # 1 & n-1 made below.  To solve the equation, the values of k for 0 and n must be substituted 
 
    # h is an intermediate variable that calculates the distance between x values 
    h = np.zeros((n), dtype=np.float64) 
    h[0:n] = x[1:n+1] - x[0:n] 
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    a = np.zeros((n), dtype=np.float64) 
    b = np.ones((n+1), dtype=np.float64) 
    c = np.zeros((n), dtype=np.float64) 
    u = np.zeros((n+1), dtype=np.float64) 
    k = np.zeros((n+1), dtype=np.float64) 
 
    # Calculate matrix parameters: a + b + c = u 
    a[0:n-1] = h[0:n-1] 
    b[1:n] = 2.0*(h[0:n-1] + h[1:n]) 
    c[1:n] = h[1:n] 
    u[1:n] = 6.0*(((y[2:n+1]-y[1:n])/h[1:n])-((y[1:n]-y[0:n-1])/h[0:n-1])) 
 
    # The loop is only valid for parameters from 1 to n-1.  For the first value, the value for k[0] 
    # is unknown, so the eqn. after the loop to calculate k[0] is substituted into the main loop eqn., 
    # solving for k[0] 
    b[1] = 1.5*h[0] + 2*h[1] 
    u[1] = u[1] - 3*(((y[1]-y[0])/h[0])-LeftTangent) 
     
    # For the value of c, it depends on how many points the spline has.  If it is only three, there 
    # is no need to proceed to the matrix solving loop, as there is only one parameter to solve for 
 
    if(n == 2): 
        # This means that the value k[2] is also unknown and calculated later.  There is also only 
        # one unknown, k[1], so that can be solved now instead of needing matrix algebra 
        k[1] = (u[1] - 3*(RightTangent - ((y[2]-y[1])/h[1])))/(1.5*(h[0]+h[1])) 
    else: 
        # There is more than one equation with more than one variable to be solved. 
        # There is a special case if the loop variable is equal to n-1.  This means that the 
        # value for k[n] is not known at this time, so a substitution will need to be performed 
        # to be able to solve the matrix.  Otherwise the values are as above 
         
        # There is no value for c (zero), b and u are modified 
        b[n-1] = 2*h[n-2] + 1.5*h[n-1] 
        u[n-1] = u[n-1] - 3*(RightTangent - ((y[n]-y[n-1])/h[n-1])) 
         
        a,b,c = LUdecomp3(a,b,c) 
        k = LUsolve3(a,b,c,u) 
 
    # Plug in after solving for all center values 
    k[0] = (3./h[0])*(((y[1]-y[0])/h[0]) - LeftTangent) - k[1]/2. 
    k[n] = (3./h[n-1])*(RightTangent - ((y[n]-y[n-1])/h[n-1])) - k[n-1]/2. 
 
    return x,y,k 
 
############################################################################################################ 
# Function - EvaluateSpline 
# Adapted from Numerical Engineering Methods in Python (2005) 
 
def EvaluateSpline(XYKDataArray,x): 
 
    xData = XYKDataArray[0] 
    yData = XYKDataArray[1] 
    kData = XYKDataArray[2] 
 
    def findSegment(xData,x): 
        iLeft = 0 
        iRight = len(xData)- 1 
        while 1: 
            if (iRight-iLeft) <= 1: return iLeft 
            i =(iLeft + iRight)/2 
            if x < xData[i]: iRight = i 
            else: iLeft = i 
  
    i = findSegment(xData,x) 
    h = xData[i] - xData[i+1] 
    y = ((x - xData[i+1])**3/h - (x - xData[i+1])*h)*kData[i]/6.0 \ 
      - ((x - xData[i])**3/h - (x - xData[i])*h)*kData[i+1]/6.0   \ 
      + (yData[i]*(x - xData[i+1])                            \ 
       - yData[i+1]*(x - xData[i]))/h 
     
    return y 
 
############################################################################################################ 
# SPLINES 
############################################################################################################ 
# Function DesignPrimarySpline 
 
def DesignSplineSection(DirectDistance, ZDistance, ZPrecision, XStartPos, YStartPos, XDistance, YDistance, \ 
                        XYZSegDataArray, DoubleSpline = 0, DoubleSplineOffset = 0.0, AngleOffset = 0.0): 
 
    # The code will create two splines, one for the x value in space and the other for the y value. 
    # The code can be passed in an angle offset that will specify a direction to stretch the segment in. 
 
    # The spline was created using the DirectDistanceArray.  This array falls on a line that lies 
    # in the x-y plane and was created earlier using the starting and ending x-y points of the 
    # segment.  We can use the slope of the line to determine the x and y coordinates of a point 
    # that lies on this line.  The tangent of the corresponding angle equals the line slope 
 
    XYLineAngle = np.arctan2(YDistance,XDistance) 
    XDoubleSplineOffset = 0. 
    YDoubleSplineOffest = 0. 
 
    # All lateral stretching of the algorithm happens in the plane equal to the slope of the line 
    # of the x-y projection of the start to end points of the line in the block.  To stretch the knot(s) 
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    # at another angle in space, an angle offset is specified here.  The angle is specified with 
    # an angle of zero/2 pi (radians) in the x positive direction, although an angle offset of zero 
    # means no offset.  Positive angle rotates in a clockwise direction looking from the start end toward 
    # the end to match with the right hand curl rule.  The middle knot point is taken from the projection 
    # line and then moved from the middle point of the segment in the angle specified. 
    if (AngleOffset != 0.0): 
        XDoubleSplineOffset = np.cos(AngleOffset)*abs(DoubleSplineOffset) 
        YDoubleSplineOffset = np.sin(AngleOffset)*abs(DoubleSplineOffset) 
         
    else: 
        # Project along the original angle 
        # X value = cos(angle)*hypotenuse, Y value = sin(angle)*hypotenuse 
        XDoubleSplineOffset = np.cos(XYLineAngle)*DoubleSplineOffset 
        # Need to correct for negative angles because the sine value is negative 
        YDoubleSplineOffset = np.sin(XYLineAngle)*DoubleSplineOffset 
     
    # Call the create spline routine to get the k (2nd derivative) values based on the lateral distance 
    # and the length. 
    XKSplineArray = np.array(CreateSpline(XDistance, ZDistance, DoubleSpline = DoubleSpline, \ 
                                           DoubleSplineOffset = XDoubleSplineOffset)) 
    YKSplineArray = np.array(CreateSpline(YDistance, ZDistance, DoubleSpline = DoubleSpline, \ 
                                           DoubleSplineOffset = YDoubleSplineOffset)) 
     
    # The k values are obtained for the x and y splines.  These values will be passed 
    # into the Evaluate Spline function.  Now, the spline will be passed in x values to give the 
    # interpolated y values at each slice. 
     
    # Set the index of the current slice to zero 
    sliceIndex = 0 
 
    # Use to calculate each section and sum of the curve 
    totalPathDistance = 0.0 
    previousSliceXValue = 0.0 
    previousSliceYValue = 0.0 
    previousSliceZValue = 0.0 
      
    for ZInterpolatedValue in range(0, int(ZDistance+ZPrecision), int(ZPrecision)): 
        XInterpolatedValue = EvaluateSpline(XKSplineArray, ZInterpolatedValue) 
        YInterpolatedValue = EvaluateSpline(YKSplineArray, ZInterpolatedValue) 
        XYZSegDataArray[sliceIndex,2] = ZInterpolatedValue # Z value 
         
        # Add the Interpolated Value to the start position 
        NewXPosition = XStartPos + XInterpolatedValue 
        NewYPosition = YStartPos + YInterpolatedValue 
        XYZSegDataArray[sliceIndex,0] = NewXPosition 
        XYZSegDataArray[sliceIndex,1] = NewYPosition 
 
        #Add the path amount to the total distance 
        totalSliceDistance = np.sqrt((XInterpolatedValue-previousSliceXValue)**2 + \ 
                                     (YInterpolatedValue-previousSliceYValue)**2 + \ 
                                     (ZInterpolatedValue-previousSliceZValue)**2) 
        totalPathDistance += totalSliceDistance 
        previousSliceXValue = XInterpolatedValue 
        previousSliceYValue = YInterpolatedValue 
        previousSliceZValue = ZInterpolatedValue 
        sliceIndex += 1 
    #end slice for loop 
         
    return totalPathDistance 
 
############################################################################################################ 
# Function - CreateSingleSpline 
# This function goes through and creates the primary spline(s) 
def CreateSingleSpline(PDData, segmentIndex, XYZSplineDataArray): 
 
    XStartPos = PDData.PathXStartPosArray[segmentIndex] 
    YStartPos = PDData.PathYStartPosArray[segmentIndex] 
    XEndPos = PDData.PathXEndPosArray[segmentIndex] 
    YEndPos = PDData.PathYEndPosArray[segmentIndex] 
    XDistance = PDData.XDistanceArray[segmentIndex] 
    YDistance = PDData.YDistanceArray[segmentIndex] 
    DirectDistance = PDData.DirectDistanceArray[segmentIndex] 
 
    print "DirectDistance: " + str(DirectDistance) 
    print "XDistance: " + str(XDistance) 
    print "XEndPos: " + str(XEndPos) 
     
    NetSplineSectionLength = PDData.BlockSectionLength - (PDData.EdgeStraightSectionLength*2.0) 
     
    # Create an XYZ Array for this segment index to pass into the design spline function. 
    # It will be returned with data. 
    SplineDataArray = np.zeros(((NetSplineSectionLength/PDData.ZSpatialPrecision)+1, 3), dtype=np.float64) 
 
    # No primary conflict.  Pass in the distances to the spline creation algorithm 
    SplineDistance = DesignSplineSection(DirectDistance, NetSplineSectionLength, PDData.ZSpatialPrecision, \ 
                            XStartPos, YStartPos, XDistance, YDistance, SplineDataArray) 
    print "SingleSplineDistance: " + str(SplineDistance) 
 
    # Now configure the data array by extrapolating out the end straight sections 
    # Add the left section. X and Y values equal to the starting position.  Fill in Z values. 
    FirstSectionJoinIndex = int(PDData.EdgeStraightSectionLength/PDData.ZSpatialPrecision) 
    XYZSplineDataArray[0:FirstSectionJoinIndex,0] = XStartPos 
    XYZSplineDataArray[0:FirstSectionJoinIndex,1] = YStartPos 
    ZIncrementArray = np.arange(0.0,PDData.EdgeStraightSectionLength, PDData.ZSpatialPrecision, dtype=np.float64) 
    XYZSplineDataArray[0:FirstSectionJoinIndex,2] = ZIncrementArray 
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    # Copy the center section.  Increment the z-values to match up with beginning straight section 
    SplineDataArray[:,2] += PDData.EdgeStraightSectionLength 
    SecondSectionJoinIndex = int((PDData.EdgeStraightSectionLength + NetSplineSectionLength) \ 
                                     /PDData.ZSpatialPrecision)+1 
    XYZSplineDataArray[FirstSectionJoinIndex:SecondSectionJoinIndex,:] = SplineDataArray 
 
    #Add in the end section 
    XYZSplineDataArray[SecondSectionJoinIndex:,2] = ZIncrementArray + (PDData.EdgeStraightSectionLength + \ 
                                                            NetSplineSectionLength + PDData.ZSpatialPrecision) 
    XYZSplineDataArray[SecondSectionJoinIndex:,0] = XEndPos 
    XYZSplineDataArray[SecondSectionJoinIndex:,1] = YEndPos 
 
    # Return the total distance 
    return SplineDistance 
 
############################################################################################################ 
# Function - CreatePrimarySegments 
# This function goes through and creates the primary spline(s) 
 
def CreatePrimarySegments(PDData, XYZSegmentDataArray): 
 
    NoPrimarySegmentError = 1 
    # First calculate the primary ones 
 
    SegmentIndex = PDData.PrimarySegmentNumber 
    XYZSplineDataArray = np.zeros(((PDData.BlockSectionLength/PDData.ZSpatialPrecision)+1, 3), \ 
                                          dtype=np.float64) 
 
    SplineDistance = CreateSingleSpline(PDData, SegmentIndex, XYZSplineDataArray) 
 
    if (SplineDistance > 0): 
        XYZSegmentDataArray[SegmentIndex,:,:] = XYZSplineDataArray 
        PDData.SegmentCreatedArray[SegmentIndex] = 1 
 
    #CalculatedPathDistance is an array 
    PDData.CalculatedPathDistance = SplineDistance + (PDData.EdgeStraightSectionLength*2) 
    print "Segment distance: " + str(PDData.CalculatedPathDistance) 
 
    return NoPrimarySegmentError 
 
############################################################################################################ 
# Function - CreateDoubleSpline 
# This function goes through and creates the primary spline(s) 
 
def CreateDoubleSpline(PDData, segmentIndex, XYZSplineDataArray, DoubleSpline = 1, AngleOffset = 0.0, \ 
                           SegmentLead = 0): 
 
    NetSplineSectionLength = PDData.BlockSectionLength - (PDData.EdgeStraightSectionLength*2.0) - \ 
                                 (SegmentLead*PDData.ZSpatialPrecision) 
     
    # Create an XYZ Array for this segment index to pass into the design spline function. 
    # It will be returned with data. 
    SplineDataArray = np.zeros(((NetSplineSectionLength/PDData.ZSpatialPrecision)+1, 3), dtype=np.float64) 
 
    XStartPos = PDData.PathXStartPosArray[segmentIndex] 
    YStartPos = PDData.PathYStartPosArray[segmentIndex] 
    XEndPos = PDData.PathXEndPosArray[segmentIndex] 
    YEndPos = PDData.PathYEndPosArray[segmentIndex] 
    XDistance = PDData.XDistanceArray[segmentIndex] 
    YDistance = PDData.YDistanceArray[segmentIndex] 
    DirectDistance = PDData.DirectDistanceArray[segmentIndex] 
    ZSpatialPrecision = PDData.ZSpatialPrecision 
    EdgeStraightSectionLength = PDData.EdgeStraightSectionLength 
 
    print "##################" 
    XMidPos = 0. 
    YMidPos = 0. 
    XDifference = XEndPos - XStartPos 
    YDifference = YEndPos - YStartPos 
 
    print "Start/End Positions" 
    print XStartPos, YStartPos 
    print XEndPos, YEndPos 
 
    XYLineAngle = np.arctan2(YDistance, XDistance) 
 
    print "LineAngle: " + str(XYLineAngle) 
 
    # This while loop will repeat the code below until the spline length comes within the tolerance specified 
    IncrementValue = 5.0 
    SegmentDistanceDifference = 0.0 
    LastSegmentDistanceDifference = 0.0 
    ToleranceAchieved = 0 
    RunNumber = 1 
    SwitchToFlipMethod = 0 
    OffsetValue = 5.0 
 
    print "Angle offset: " + str(AngleOffset) 
     
    while(ToleranceAchieved == 0): 
         
        SplineDistance = DesignSplineSection(DirectDistance, NetSplineSectionLength, \ 

      PDData.ZSpatialPrecision, \ 
                                XStartPos, YStartPos, XDistance, YDistance, SplineDataArray, \ 
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                                DoubleSpline = DoubleSpline, DoubleSplineOffset = OffsetValue, \ 
                                AngleOffset = AngleOffset) 
         
        # Now configure the data array by extrapolating out the end straight sections 
        # Add the left section. X and Y values equal to the starting position.  Fill in Z values. 
        FirstSectionJoinIndex = int(EdgeStraightSectionLength/ZSpatialPrecision + SegmentLead) 
        XYZSplineDataArray[0:FirstSectionJoinIndex,0] = XStartPos 
        XYZSplineDataArray[0:FirstSectionJoinIndex,1] = YStartPos 
        ZIncrementArray = np.arange(0.0,EdgeStraightSectionLength+(SegmentLead*ZSpatialPrecision), \ 
                                        ZSpatialPrecision, dtype=np.float64) 
        XYZSplineDataArray[0:FirstSectionJoinIndex,2] = ZIncrementArray 
 
        # Copy the center section.  Increment the z-values to match up with beginning straight section 
        SplineDataArray[:,2] += EdgeStraightSectionLength + SegmentLead*ZSpatialPrecision 
        SecondSectionJoinIndex = int((EdgeStraightSectionLength + NetSplineSectionLength)/ZSpatialPrecision) + \ 
                                         SegmentLead + 1 
        XYZSplineDataArray[FirstSectionJoinIndex:SecondSectionJoinIndex,:] = SplineDataArray 
 
        #Add in the end section 
        ZIncrementArray2 = np.arange(0.0,EdgeStraightSectionLength, ZSpatialPrecision, dtype=np.float64) 
        XYZSplineDataArray[SecondSectionJoinIndex:,2] = ZIncrementArray2 + (EdgeStraightSectionLength + \ 
                                                                NetSplineSectionLength + \ 
                                                                (1+SegmentLead)*ZSpatialPrecision) 
        XYZSplineDataArray[SecondSectionJoinIndex:,0] = XEndPos 
        XYZSplineDataArray[SecondSectionJoinIndex:,1] = YEndPos 
 
 
        # Now see how the returned value compares to the needed spline distance 
        NewSegmentDistance = 2*EdgeStraightSectionLength + SegmentLead*ZSpatialPrecision + SplineDistance 
        SegmentDistanceDifference = PDData.CalculatedPathDistance - NewSegmentDistance 
        if(abs(SegmentDistanceDifference) <= PDData.SegmentLengthPrecision): 
            # The segment is within tolerance.  Use these values and exit the function 
            ToleranceAchieved = 1 
        else: 
            ThisRun = np.sign(SegmentDistanceDifference) 
            LastRun = np.sign(LastSegmentDistanceDifference) 
             
            if ((ThisRun != LastRun and LastSegmentDistanceDifference != 0.0) or SwitchToFlipMethod == 1): 
                # The segment distance is more than the needed distance, but not within tolerance 
                # Flip the sign and reduce the amount by 5% 
                SwitchToFlipMethod = 1 
                IncrementValue = (-0.95) * IncrementValue 
 
            # Now increase the midpoint            
            OffsetValue += IncrementValue 
            #Update the last run value 
            LastSegmentDistanceDifference = SegmentDistanceDifference 
 
        RunNumber += 1 
    #end while 
     
    print "Run number: " + str(RunNumber) 
    print "Offset Value: " + str(OffsetValue) 
    print "SplineDistance: " + str(SplineDistance) 
 
    # Return the total spline distances 
    return NewSegmentDistance 
 
############################################################################################################ 
# Function - CreateSecondarySegments 
# This function goes through and creates the secondary spline(s) 
 
def CreateSecondarySegments(PDData, XYZSegmentDataArray): 
 
    #Go through the list of secondary segments and check for any conflicts 
    ConflictFlag = 0 
    PrimaryConflictFlag = 0 
 
    # KEY 0-red, 1-green, 2-orange, 3-blue, 4-pink, 5-gold, 6-aqua, 7-yellow, 8-white 
    # Array should have one less value than total segments, as primary is already created 
    AngleOffsetArray = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) 
    DoubleSplineArray = np.array([1,1,1,1,1,1,1]) 
    LeadInSegmentArray = np.array([0, 0, 0, 0, 0, 0, 0]) 
 
    print "Secondary Segment List: " + str(PDData.SecondaryIndexList) 
 
    for i in range(0, len(PDData.SecondaryIndexList)): 
     
        SegmentIndex = PDData.SecondaryIndexList[i] 
 
        XYZSplineDataArray = np.zeros(((PDData.BlockSectionLength/PDData.ZSpatialPrecision)+1, 3), \ 
                                          dtype=np.float64) 
 
        AngleOffset = AngleOffsetArray[i] 
        DoubleSpline = DoubleSplineArray[i] 
        SegmentLead = LeadInSegmentArray[i] 
 
        SplineDistance = CreateDoubleSpline(PDData, SegmentIndex, XYZSplineDataArray, \ 
                           DoubleSpline = DoubleSpline, AngleOffset = AngleOffset, \ 
                           SegmentLead = SegmentLead) 
 
        TotalDistance = SplineDistance 
        print "Segment " + str(SegmentIndex) + " has a distance of " + str(TotalDistance) 
 
        if (SplineDistance > 0): 
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            XYZSegmentDataArray[SegmentIndex,:,:] = XYZSplineDataArray 
            PDData.SegmentCreatedArray[SegmentIndex] = 1 
 
############################################################################################################ 
# CIRCULAR ARCS 
############################################################################################################ 
# Function - CreatePrimaryArcSegment                   
# Function to create the primary arc segment 
 
def CreatePrimaryArcSegment(PDData, XYZSegmentDataArray, ArcRadiusDataArray): 
    CreateDoubleArcSegment(PDData, XYZSegmentDataArray, PDData.PrimarySegmentNumber) 
    ArcRadiusDataArray[PDData.PrimarySegmentNumber] = PDData.PrimarySegmentRadius 
 
############################################################################################################ 
# Function - CreateDoubleArcSegment                   
# This function is intended to create a particular segment by using two or three circular arcs connected 
# at the intersection of each arc.  Setting parameter MatchLength equal to 1 means the algorithm will 
# run recursively until the segment length is matched. 
 
def CreateDoubleArcSegment(PDData, XYZSegmentDataArray, SegNum): 
 
    # The mathematical basis for this function is to minimize the curvature of the segments by representing 
    # them as the interconnection of two circular arcs for a basic spline, or if more distance is needed 
    # to use three circular arcs.  The math function will be: 
    # Radius1*Angle1 + Radius2*Angle2 = Segment Length 
    
    Width = PDData.DirectDistanceArray[SegNum] 
    Length = PDData.BlockSectionLength - 2.*PDData.EdgeStraightSectionLength 
 
    # Basic arc would be two circles with identical radius and arc angle 
    # Chord length is the hypotenuse formed by the width and length (divided by 2) which is used as 
    # the basis for the radius and angle of the arc 
    ChordLength = np.sqrt(Length**2 + Width**2)/2. 
    # Angle is formed by the length and width and forms the other angle of the triangle 
    # formed by the bisector of the chord 
    ChordAngle = np.arctan2(Length,Width) 
    # The angle and radius of the arc 
    ArcAngle = 2.*(np.pi/2. - abs(ChordAngle)) 
    ArcRadius = (ChordLength/2.)/np.cos(ChordAngle) 
 
    print "*******************************************************************" 
    print "Primary Segment: " + str(SegNum) 
    print "Width of segment is: " + str(Width) 
     
    # Now with this information, we can construct the circle and interpolate points along the arc 
    # X below is the single lateral dimension of the arc, which will be translated into X and Y using 
    # the angle of x and y formed by the start and end points and Y below is the length or Z dimension 
    LeftArcCenterPointX = 0 
    LeftArcCenterPointY = 1.*ArcRadius 
    XDelta = PDData.ZSpatialPrecision 
    XSlices = int(Length/XDelta) 
    ArcSegmentDataArray = np.zeros((XSlices+1, 2), dtype=np.float64) 
    # The left arc will take care of the arc inflection point at the closest slice 
    LeftXArcWidth = np.sin(ChordAngle) * ChordLength 
    LeftXSlice = LeftXArcWidth/XDelta 
    # The left arc will take care of the center, arc inflection point near halfway 
    # Now do a mirror image for the Right Arc with the remaining length 
    RightArcCenterPointY = -1.*(ArcRadius-Width) 
 
    for i in range(0, XSlices+1): 
        XValue = i*XDelta 
 
        if(i <= LeftXSlice): 
            # Equation to find y value is based on x = r*cos(theta) and y = r*sin(theta) 
            ThetaValue = np.arcsin(XValue/ArcRadius) 
            YValue = LeftArcCenterPointY - (ArcRadius*np.cos(ThetaValue)) 
        else: 
            ThetaValue = np.arcsin((Length - XValue)/ArcRadius) 
            YValue = RightArcCenterPointY + (ArcRadius*np.cos(ThetaValue)) 
         
        ArcSegmentDataArray[i,0] = XValue 
        ArcSegmentDataArray[i,1] = YValue 
         
    ##### 
    # Now interpolate this curve into X and Y dimensions based on the original line slope 
    XYLineAngle = np.arctan2(PDData.XDistanceArray[SegNum],PDData.YDistanceArray[SegNum]) 
    XStartPos = PDData.PathXStartPosArray[SegNum] 
    YStartPos = PDData.PathYStartPosArray[SegNum] 
    XEndPos = PDData.PathXEndPosArray[SegNum] 
    YEndPos = PDData.PathYEndPosArray[SegNum] 
 
    FirstSectionJoinIndex = int(PDData.EdgeStraightSectionLength/PDData.ZSpatialPrecision) 
    XYZSegmentDataArray[SegNum,0:FirstSectionJoinIndex,0] = XStartPos 
    XYZSegmentDataArray[SegNum,0:FirstSectionJoinIndex,1] = YStartPos 
    ZIncrementArray = np.arange(0.0,PDData.EdgeStraightSectionLength, PDData.ZSpatialPrecision, dtype=np.float64) 
    XYZSegmentDataArray[SegNum,0:FirstSectionJoinIndex,2] = ZIncrementArray 
 
    # Loop through ArcSegmentDataArray to extrapolate segment into X and Y values 
    for i in range(0, len(ArcSegmentDataArray[:,0])): 
        # The Z value equals the x value for the arc segment data array 
        XYZSegmentDataArray[SegNum,i+FirstSectionJoinIndex,2] = ArcSegmentDataArray[i,0] + \ 
                                                                PDData.EdgeStraightSectionLength 
        # Increment the values by X and Y based on line angle 
        XYZSegmentDataArray[SegNum,i+FirstSectionJoinIndex,0] = XStartPos + \ 
                                            (ArcSegmentDataArray[i,1]*np.sin(XYLineAngle)) 
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        XYZSegmentDataArray[SegNum,i+FirstSectionJoinIndex,1] = YStartPos + \ 
                                            (ArcSegmentDataArray[i,1]*np.cos(XYLineAngle)) 
 
    #Add in the end section 
    SecondSectionJoinIndex = int((PDData.EdgeStraightSectionLength + Length)/PDData.ZSpatialPrecision)+1 
    XYZSegmentDataArray[SegNum,SecondSectionJoinIndex:,2] = ZIncrementArray + \ 
                                            (PDData.EdgeStraightSectionLength + \ 
                                            Length + PDData.ZSpatialPrecision) 
    XYZSegmentDataArray[SegNum,SecondSectionJoinIndex:,0] = XEndPos 
    XYZSegmentDataArray[SegNum,SecondSectionJoinIndex:,1] = YEndPos 
    ##### 
 
    totalPathDistance = CalculateSegmentLength(PDData, XYZSegmentDataArray, SegNum) 
    print "Segment length: " + str(totalPathDistance) 
 
    # Primary segment 
    PDData.CalculatedPathDistance = totalPathDistance 
    PDData.PrimarySegmentRadius = ArcRadius 
    print "Radius length: " + str(ArcRadius) 
            
############################################################################################################ 
# Function - CreateSecondaryArcSegments                   
# Function to create the secondary waveguides.  Breaks the 3D waveguide creation up into x prime and y prime 
# arcs.  These are interpolated to form a 3D waveguide with respect to the x,y prime axis.  This is then 
# translated to x and y based on the radius offset that the endpoints site with respect to the x,y axis. 
 
def CreateSecondaryArcSegments(PDData, XYZSegmentDataArray, ArcRadiusDataArray): 
 
    ReverseXOn = 0 
    # This scaling factor works as follows: The x dimension uses the current radius, starting with the 
    # radius of the primary waveguide.  The current radius is then multiplied by the scaling factor to 
    # give the radius to be used in the y dimension.  The respective triple arc waveguides are created 
    # using those radii and then interpolated to give the three dimensional waveguide.  A larger number 
    # will scale the y dimension less, whereas a value of 1 should give a 45 degree "rotation".  A 
    # negative scaling factor will move the y-value in the negative direction.  If zero, there will 
    # be no additional y value 
 
    # KEY 0-red, 1-green, 2-orange, 3-blue, 4-pink, 5-gold, 6-aqua, 7-yellow, 8-white 
    RadiusOffsetArray = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) 
    LeadInSegmentArray = np.array([0, 0, 0, 0, 0, 0, 0]) 
 
    print "Secondary Segment List: " + str(PDData.SecondaryIndexList) 
    for i in range(0, len(PDData.SecondaryIndexList)): 
        SegmentIndex = PDData.SecondaryIndexList[i] 
        SegmentLead = LeadInSegmentArray[i] 
        NetArcSectionLength = PDData.BlockSectionLength - (PDData.EdgeStraightSectionLength*2.0) - \ 
                              SegmentLead * PDData.ZSpatialPrecision 
        XArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 2), \ 
                                          dtype=np.float64) 
        YArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 1), \ 
                                          dtype=np.float64) 
        TmpXArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 1), \ 
                                          dtype=np.float64) 
        PreAdjustYArcDataArray = np.zeros(((NetArcSectionLength/PDData.ZSpatialPrecision)+1, 2), \ 
                                          dtype=np.float64) 
        RadiusOffset = RadiusOffsetArray[i] 
 
        # Angle to scale into x and y 
        XYLineAngle = np.arctan2(PDData.XDistanceArray[SegmentIndex],PDData.YDistanceArray[SegmentIndex]) 
        XStartPos = PDData.PathXStartPosArray[SegmentIndex] 
        YStartPos = PDData.PathYStartPosArray[SegmentIndex] 
        XEndPos = PDData.PathXEndPosArray[SegmentIndex] 
        YEndPos = PDData.PathYEndPosArray[SegmentIndex] 
        XWidth = PDData.XDistanceArray[SegmentIndex] 
        YWidth = PDData.YDistanceArray[SegmentIndex] 
        Length = PDData.BlockSectionLength - 2.*PDData.EdgeStraightSectionLength 
 
        print "*******************************************************************" 
        print "Segment: " + str(SegmentIndex) 
 
        # The Radius here is based on the primary radius calculated for the primary arc segment 
        # The radius (for all 3 circles) will be incrementally decreased, which increases the length of the 
        # segment.  When the segment length is achieved, the loop exits 
        CurrentRadius = PDData.PrimarySegmentRadius 
        OffsetIncrement = CurrentRadius/1000. 
        CurrentRadius -= OffsetIncrement 
        CurrentYRadius = abs(CurrentRadius * RadiusOffset) 
        DistanceMatched = 0 
        SegmentDistanceDifference = 0.0 
        LastSliceValue = 0 
        LastSegmentDistanceDifference = 0.0 
        RunNumber = 1 
        SwitchToFineMethod = 0 
        PreviousCntr2Slice = 0 #TEMP 
         
        while(DistanceMatched == 0): 
 
            # Create the arc based waveguides for x and y. 
            CreateTripleArcSegment(CurrentRadius, XArcDataArray, XWidth, NetArcSectionLength, \ 
                                   PDData.ZSpatialPrecision) 
            CreateTripleArcSegment(CurrentYRadius, PreAdjustYArcDataArray, abs(YWidth), NetArcSectionLength, \ 
                                   PDData.ZSpatialPrecision) 
 
            # The y data needs to be scaled based on the value of the width, as well as the y radius scaling factor 
            if(YWidth > 0.0 and RadiusOffset < 0.0): 
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                # Flip the array data left to right 
                YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1]) 
                YArcDataArray = YArcDataArray[::-1] 
                # Add the width 
                YArcDataArray -= YWidth 
                # Now flip top to bottom 
                YArcDataArray = YArcDataArray[:] * -1.0 
                YArcDataArray = YArcDataArray.reshape(len(YArcDataArray[:]),1) 
            elif(YWidth < 0.0 and RadiusOffset > 0.0): 
                # Flip the array data left to right 
                YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1]) 
                YArcDataArray = YArcDataArray[::-1] 
                # Add the negative width 
                YArcDataArray += YWidth 
                YArcDataArray = YArcDataArray.reshape(len(YArcDataArray[:]),1) 
            elif(YWidth < 0.0 and RadiusOffset <= 0.0): 
                # Flip the array data top to bottom 
                YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1]) 
                YArcDataArray = YArcDataArray[:] * -1.0 
                YArcDataArray = YArcDataArray.reshape(len(YArcDataArray[:]),1) 
            else: 
                YArcDataArray = np.copy(PreAdjustYArcDataArray[:,1]) 
 
            # FLIP X FOR REVERSE BEND 
            if(ReverseXOn == 1): 
                TmpXArcDataArray = np.copy(XArcDataArray[:,1]) 
                # Flip the array data left to right 
                TmpXArcDataArray = TmpXArcDataArray[::-1] 
                # Now flip top to bottom 
                TmpXArcDataArray = TmpXArcDataArray[:] * -1.0 
                # Add the width 
                TmpXArcDataArray += XWidth 
                XArcDataArray[:,1] = TmpXArcDataArray 
 
            # Move the segment interpolation to this section, along with the creation of a triple arc 
            # x, triple arc y curve.  The portion before this should consist of using the ROC from 
            # the primary arc, and adjusting that in each triple arc creation section. 
 
            # Now interpolate this curve into X and Y dimensions based on the original line slope 
            FirstSectionJoinIndex = int(PDData.EdgeStraightSectionLength/PDData.ZSpatialPrecision + \ 
                                        SegmentLead) 
            XYZSegmentDataArray[SegmentIndex,0:FirstSectionJoinIndex,0] = XStartPos 
            XYZSegmentDataArray[SegmentIndex,0:FirstSectionJoinIndex,1] = YStartPos 
            ZIncrementArray = np.arange(0.0,PDData.EdgeStraightSectionLength+(SegmentLead * \ 
                                    PDData.ZSpatialPrecision), PDData.ZSpatialPrecision, dtype=np.float64) 
            XYZSegmentDataArray[SegmentIndex,0:FirstSectionJoinIndex,2] = ZIncrementArray 
 
            # Loop through ArcSegmentDataArray to extrapolate segment into X and Y values 
            for i in range(0, len(XArcDataArray[:,0])): 
                # The Z value equals the x value for the arc segment data array 
                XYZSegmentDataArray[SegmentIndex,i+FirstSectionJoinIndex,2] = XArcDataArray[i,0] + \ 
                                        PDData.EdgeStraightSectionLength + \ 
                                        (SegmentLead * PDData.ZSpatialPrecision) 
                # Now insert the x and y waveguide data 
                XYZSegmentDataArray[SegmentIndex,i+FirstSectionJoinIndex,0] = XStartPos + XArcDataArray[i,1] 
                XYZSegmentDataArray[SegmentIndex,i+FirstSectionJoinIndex,1] = YStartPos + YArcDataArray[i] 
 
            #Add in the end section 
            SecondSectionJoinIndex = int((PDData.EdgeStraightSectionLength + NetArcSectionLength) \ 
                                         /PDData.ZSpatialPrecision) + SegmentLead + 1 
            ZIncrementArray2 = np.arange(0.0,PDData.EdgeStraightSectionLength, PDData.ZSpatialPrecision, \ 
                                         dtype=np.float64) 
            XYZSegmentDataArray[SegmentIndex,SecondSectionJoinIndex:,2] = ZIncrementArray2+ \ 
                            (PDData.EdgeStraightSectionLength + NetArcSectionLength + \ 
                            (1+SegmentLead)*PDData.ZSpatialPrecision) 
            XYZSegmentDataArray[SegmentIndex,SecondSectionJoinIndex:,0] = XEndPos 
            XYZSegmentDataArray[SegmentIndex,SecondSectionJoinIndex:,1] = YEndPos 
            ##### 
 
            totalPathDistance = CalculateSegmentLength(PDData, XYZSegmentDataArray, SegmentIndex) 
 
            # Determine if path length is within tolerance 
            SegmentDistanceDifference = PDData.CalculatedPathDistance - totalPathDistance 
            if(abs(SegmentDistanceDifference) <= PDData.SegmentLengthPrecision): 
                DistanceMatched = 1 
            else: 
                ThisRun = np.sign(SegmentDistanceDifference) 
                LastRun = np.sign(LastSegmentDistanceDifference) 
 
                if ((ThisRun != LastRun and LastSegmentDistanceDifference != 0.0) or SwitchToFineMethod == 1): 
                    # The segment distance is more than the needed distance, but not within tolerance 
                    # To fix this we go back by twice the amount of the offset increment and then adjust 
                    # the radius at an offset of one tenth the amount of the previous offset 
                    if(SwitchToFineMethod == 0): 
                        print "FINE ADJUSTMENT" 
                        CurrentRadius += 2*OffsetIncrement 
                        OffsetIncrement = OffsetIncrement*0.1 
                    SwitchToFineMethod = 1 
 
                #Update the last run value 
                LastSegmentDistanceDifference = SegmentDistanceDifference 
                CurrentRadius -= OffsetIncrement 
                CurrentYRadius = abs(CurrentRadius * RadiusOffset) 
 
            RunNumber += 1 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

112 
 

 
        print CurrentRadius 
        print CurrentYRadius 
 
        ArcRadiusDataArray[SegmentIndex] = CurrentRadius 
 
        print SegmentLead, NetArcSectionLength 
 
        print "Radius length: " + str(CurrentRadius) 
        print "Total runs: " + str(RunNumber) 
 
############################################################################################################ 
# Function - CreateTripleArcSegment                   
# This function is intended to create a particular segment by using three circular arcs connected at the  
# intersection of each arc.  In addition it uses an additional angle to rotate the shapes in space. 
 
def CreateTripleArcSegment(CurrentRadius, ArcDataArray, Width, Length, XDelta): 
 
    # The segment here is created using three arcs based on circles of identical radii.  Looking from 
    # the side, the first arc will be constructed from the bottom-right portion of circle 1, with 
    # the bottom at the input, the third arc will be constructed from the bottom-left portion of circle 
    # 3, with the remaining portion of the segment being created by the top part of circle 2, with 
    # the arc going from where the circle touches the other two. 
    # The math function will be: 
    # Radius1*Angle1 + Radius2*Angle2 + Radius3*Angle3 = Segment Length 
    # The centers of circles 1 through 3 all have an X and Y coordinate 
    Center1X = 0.0 
    Center3X = Length 
 
    # If the current radius is set to zero, calculate what radius will make for a simple double arc curve 
    if(CurrentRadius == 0.0): 
        ChordLength = np.sqrt(Length**2 + Width**2)/2. 
        ChordAngle = np.arctan2(Length,Width) 
        CurrentRadius = (ChordLength/2.)/np.cos(ChordAngle) 
 
    # First calculate the locations of circles 1 and 3.  Start point on circle 1 is 0,0 
    Center1Y = CurrentRadius 
    Center3Y = CurrentRadius + Width 
    # This is the distance between the two centers of circles 1 and 3 
    DistanceCenters13 = np.sqrt((Center3Y-Center1Y)**2 + (Center3X-Center1X)**2) 
    # Angles 1-3 are the arc angles that will be used for circles 1-3 in the segment 
    # Angle 4 is calculated by using the bisect of the Distance of the centers 
    # Angle 4 is for both arcs, as the bisect creates an isoceles triangle 
    Angle4 = np.arccos((DistanceCenters13/2)/(2*CurrentRadius)) 
    Angle1 = np.pi/2. + np.arcsin(abs(Center3Y-Center1Y)/DistanceCenters13) - Angle4 
    Angle3 = np.arccos(abs(Center3Y-Center1Y)/DistanceCenters13) - Angle4 
    Center2X = 2*CurrentRadius*np.sin(Angle1) + Center1X 
    Center2Y = -2*CurrentRadius*np.cos(Angle1) + Center1Y 
 
    # Intersection point 1 is where arc 1 meets arc 2, point 2 is where arc 2 meets arc 3 
    IntersectPoint1X = CurrentRadius*np.sin(Angle1) 
    IntersectPoint1Y = Center1Y - CurrentRadius*np.cos(Angle1) 
    IntersectPoint2X = Length - CurrentRadius*np.sin(Angle3) 
    IntersectPoint2Y = Center3Y - CurrentRadius*np.cos(Angle3) 
 
    # Now construct the segment starting from Arc 1 and build the data array. 
    XSlices = int(Length/XDelta) 
 
    # The intersect points may or may not coincide with an x slice value.  This is OK, but 
    # the surrounding slices need to be identified as to which arc to use for each 
    Arc1Length = np.sin(Angle1) * CurrentRadius 
    Arc1XSlice = Arc1Length/XDelta 
     
    # Arc2 X Slices go from Arc1 Slices + 1 to Arc2 X Slices.  Arc 2 end point is at Arc 3 
    Arc3Length = np.sin(Angle3) * CurrentRadius 
    Arc2XSlice = XSlices - Arc3Length/XDelta 
         
    for i in range(0, XSlices+1): 
        XValue = i*XDelta 
        if(i <= Arc1XSlice): 
            # Equation to find y value is based on x = r*cos(theta) and y = r*sin(theta) 
            ThetaValue = np.arcsin(XValue/CurrentRadius) 
            YValue = Center1Y - (CurrentRadius*np.cos(ThetaValue)) 
        elif(i > Arc1XSlice and i <= Arc2XSlice): 
            # Use arc 2 
            ThetaValue = np.arcsin(abs(Center2X-(i*XDelta))/CurrentRadius) 
            YValue = Center2Y + (CurrentRadius*np.cos(ThetaValue)) 
        else: 
            # Use arc 3 
            ThetaValue = np.arcsin((Length-XValue)/CurrentRadius) 
            YValue = Center3Y - (CurrentRadius*np.cos(ThetaValue)) 
         
        ArcDataArray[i,0] = XValue 
        ArcDataArray[i,1] = YValue 
         
############################################################################################################         
############################################################################################################ 
# FINAL CHECK 
 
def SegmentDistanceCurvatureCheck(XYZSegmentDataArray,PDData, WPData, ArcRadiusDataArray): 
 
    print "***** CURVATURES *****" 
    SegmentCreatedArray = PDData.SegmentCreatedArray 
    MinimumSeparationDistance = PDData.MinimumPathSeparationDist 
    ZSpatialPrecision = PDData.ZSpatialPrecision 
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    PrimarySegmentNumber = PDData.PrimarySegmentNumber 
    PrimaryWaveguideLength = PDData.CalculatedPathDistance 
     
    # Loop through each segment and at each point in the segment, compare the separation distance 
    # to each of the other segments. 
    ClosestDistance = 10000. 
    NoSegmentConflictFound = 1 
    MinimumYDistance = 10000. 
    MaximumYDistance = 0. 
    MinYDistZValue = 0. 
    MaxYDistZValue = 0. 
    MinimumYDistSegment = 0 
    MaximumYDistSegment = 0 
    ClosestSegment1 = 0 
    ClosestSegment2 = 0 
    ClosestZValue = 0. 
    NumberOfSegments = len(SegmentCreatedArray) 
    NumPoints = len(XYZSegmentDataArray[0,:,0]) 
    IsPrimary = 1 
     
    # Outer loop is the segment to check 
    for i in range(0,NumberOfSegments): 
        #Middle loop is each segment to verify against.  Need a flag variable to exit loop if conflict found 
        for j in range(0,NumberOfSegments): 
            if(i != j): 
                # Not the same segment, so step through each point in the array.  Inner loop is the z values 
                for k in range(0,len(XYZSegmentDataArray[0,:,0])): 
                    XDiff = XYZSegmentDataArray[i,k,0] - XYZSegmentDataArray[j,k,0] 
                    YDiff = XYZSegmentDataArray[i,k,1] - XYZSegmentDataArray[j,k,1] 
                    DirectDifference = np.sqrt((XDiff)**2 + (YDiff)**2) 
 
                    # Also want to record the closest distance between any two lines 
                    if(DirectDifference < ClosestDistance): 
                        ClosestDistance = DirectDifference 
                        ClosestSegment1 = i 
                        ClosestSegment2 = j 
                        ClosestZValue = XYZSegmentDataArray[j,k,2] 
 
                    # Find the minimum and maximum y values for laser burn distance 
                    if(XYZSegmentDataArray[i,k,1] < MinimumYDistance): 
                        MinimumYDistance = XYZSegmentDataArray[i,k,1] 
                        MinimumYDistSegment = i 
                        MinYDistZValue = XYZSegmentDataArray[j,k,2] 
                    if(XYZSegmentDataArray[i,k,1] > MaximumYDistance): 
                        MaximumYDistance = XYZSegmentDataArray[i,k,1] 
                        MaximumYDistSegment = i 
                        MaxYDistZValue = XYZSegmentDataArray[j,k,2] 
       
        # Also need to calculate the radius of curvature.  Take the difference in x and y and calculate 
        # it as a radial difference versus the distance in z.  This gives an angle in cylindrical coordinates 
        # versus z.  The arctan of that gives the angle.  Once the angle is calculated, take the difference 
        # in angle versus the difference in length of the segment for the radius of curvature. 
        MinimumROC = 1.0e30 
        MaximumCurvature = 0. 
        ROCZValue = 0 
        CurvatureZValue = 0 
 
        SlopeAngleArray = np.zeros(NumPoints, dtype=np.float64) 
        SlopeAngleArray[0] = 0  # due to horizontal input 
        CurvatureArray = np.zeros(NumPoints, dtype=np.float64) 
        AngleCurvatureArray = np.zeros(NumPoints, dtype=np.float64) 
        RadiusOfCurvatureArray = np.zeros(NumPoints, dtype=np.float64) 
        SegmentDistanceArray = np.zeros(NumPoints+1, dtype=np.float64) 
        XDifferenceArray = np.zeros(NumPoints+1, dtype=np.float64) 
 
        # Calculate the segment distances for the entire array 
        # End segment distances are arbitrarily set to a value to calculate the angle difference 
        ArbitraryEndSegLength = 25. 
        SegmentDistanceArray[0] = ArbitraryEndSegLength 
        SegmentDistanceArray[NumPoints] = ArbitraryEndSegLength 
 
        for m in range(1, NumPoints): 
            SegmentDistanceArray[m] = \ 
                    np.sqrt((XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0])**2 + \ 
                            (XYZSegmentDataArray[i,m,1] - XYZSegmentDataArray[i,m-1,1])**2 + \ 
                            (XYZSegmentDataArray[i,m,2] - XYZSegmentDataArray[i,m-1,2])**2) 
 
         
        for m in range(0, NumPoints): 
            LeftVector = np.zeros(3, dtype=np.float64) 
            RightVector = np.zeros(3, dtype=np.float64) 
 
            # Calculate vector direction 
            if(m == 0): 
                LeftVector[2] = ArbitraryEndSegLength 
            else: 
                LeftVector[0] = XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0] 
                LeftVector[1] = XYZSegmentDataArray[i,m,1] - XYZSegmentDataArray[i,m-1,1] 
                LeftVector[2] = XYZSegmentDataArray[i,m,2] - XYZSegmentDataArray[i,m-1,2] 
 
            if(m == NumPoints-1): 
                RightVector[0] = XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0] 
                RightVector[1] = XYZSegmentDataArray[i,m,0] - XYZSegmentDataArray[i,m-1,0] 
                RightVector[2] = ArbitraryEndSegLength 
            else:                    
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                RightVector[0] = XYZSegmentDataArray[i,m+1,0] - XYZSegmentDataArray[i,m,0] 
                RightVector[1] = XYZSegmentDataArray[i,m+1,1] - XYZSegmentDataArray[i,m,1] 
                RightVector[2] = XYZSegmentDataArray[i,m+1,2] - XYZSegmentDataArray[i,m,2] 
 
            if(SegmentDistanceArray[m] > 0 and SegmentDistanceArray[m+1] > 0): 
                VectorDifference = ((LeftVector[0]*RightVector[0]) + \ 
                                             (LeftVector[1]*RightVector[1]) + \ 
                                             (LeftVector[2]*RightVector[2]))/ \ 
                                             (SegmentDistanceArray[m]*SegmentDistanceArray[m+1]) 
              
                # arc cosine of 90 degrees is infinity 
                if(int(VectorDifference) == 1): 
                    AngleCurvatureArray[m] = 0 
                else: 
                    AngleBetweenSegs = np.arccos(VectorDifference) 
                    # Curvature is based on angle and length of the two segments 
                    AngleCurvatureArray[m] = (2.*AngleBetweenSegs)/ \ 
                          (SegmentDistanceArray[m] + SegmentDistanceArray[m+1]) 
   
                if(AngleCurvatureArray[m] == 0): 
                    RadiusOfCurvatureArray[m] = 1.0e30 
                else: 
                    RadiusOfCurvatureArray[m] = 1/AngleCurvatureArray[m] 
 
                # The X Difference is to see if a transition event has occurred in which the curve 
                # in the x direction changes direction.  Only done in the x dimension, since it 
                # accounts for the majority of the curvature. 
                XDifferenceArray[m] = RightVector[0] - LeftVector[0] 
 
                if(XDifferenceArray[m] < 0.0): 
                    RadiusOfCurvatureArray[m] = -1.0 * RadiusOfCurvatureArray[m] 
 
            else: 
                AngleCurvatureArray[m] = 0. 
                RadiusOfCurvatureArray[m] = 0. 
 
            if(abs(AngleCurvatureArray[m]) > MaximumCurvature): 
                MaximumCurvature = abs(AngleCurvatureArray[m]) 
                CurvatureZValue = XYZSegmentDataArray[i,m,2] 
 
            if(abs(RadiusOfCurvatureArray[m]) < MinimumROC and RadiusOfCurvatureArray[m] != 0): 
                MinimumROC = abs(RadiusOfCurvatureArray[m]) 
                ROCZValue = XYZSegmentDataArray[i,m,2] 
 
        # Now we can calculate the power loss for this waveguide 
        if(i == PrimarySegmentNumber): 
            IsPrimary = 1 
        else: 
            IsPrimary = 0 
        CalculatePowerLoss(ZSpatialPrecision, RadiusOfCurvatureArray, ArcRadiusDataArray[i], IsPrimary, \ 
                           PrimaryWaveguideLength, WPData) 
             
        print "CURVATURE FOR WAVEGUIDE " + str(i) 
        print "Minimum radius of curvature is " + str(MinimumROC) + \ 
            " at a Z distance of " + str(ROCZValue) + " microns." 
 
    # Print Summary Values 
    print "PROXIMITY AND HEIGHT VALUES" 
    print "Closest Lateral Distance in the array is " + str(ClosestDistance) + " microns between segment " + \ 
          str(ClosestSegment1) + " and segment " + str(ClosestSegment2) + " at a Z distance of " + \ 
          str(ClosestZValue) + " microns." 
    print "Maximum Y Value (closest to top) is " + str(MaximumYDistance) + " for segment " + \ 
          str(MaximumYDistSegment) + " at a Z distance of " + str(MaxYDistZValue) + " microns." 
    print "Minimum Y Value (furthest from top) is " + str(MinimumYDistance)  + " for segment " + \ 
          str(MinimumYDistSegment) + " at a Z distance of " + str(MinYDistZValue) + " microns." 
 
    print "************************************************************" 
 
############################################################################################################ 
# CalculatePowerLoss 
# This function attempts to estimate the power loss in each waveguide, based on calculations from 
# Snyder and Love's textbook.  It uses the calculated waveguide radius of curvature at each point. 
 
def CalculatePowerLoss(ZSpatialPrecision, ROCArray, ArcRadius, IsPrimary, PrimaryWaveguideLength, WPData): 
 
    # The normalized power is set to 1.0 and then the loss from that input power is incremented 
    # as z increases.  This gives the total power lost FROM CURVATURE ONLY at the end. 
 
    NumSegments = len(ROCArray) 
    PowerLossArray = np.zeros(NumSegments, dtype=np.float64) 
    StartInputPower = 1.0 
    TotalPowerLoss = 0.0 
    PreviousROC = 0.0 
    TotalGamma = 0.0 
    TotalBendLossExp = 0.0 
    TotalTransPower = 1.0 
    TotalBendPower = 1.0 
    
    # Loop through each segment piece that makes up the waveguide 
    for i in range(0,NumSegments): 
        CurrentROC = ROCArray[i] 
         
        # Calculate the loss due to bends here (for a step profile) 
        if(CurrentROC != 0 and abs(CurrentROC) != 1.0e30): 
            # For Step profiles 
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            CalculateSectionBendPowerLoss(CurrentROC, ZSpatialPrecision, WPData) 
 
            # For Gaussian profiles 
##            CalculateSectionBendPowerLossGaussian(CurrentROC, ZSpatialPrecision, WPData) 
 
            # To calculate bend loss for an HPO profile based on physical measurements 
##            BendPower = HPOLookupBendLoss(CurrentROC, ZSpatialPrecision) 
             
        else: 
            GammaCoefficient = 0 
            BendPower = 1.0 
         
        TotalBendPower = TotalBendPower*BendPower 
 
        # Calculate Transition Loss for splines 
##        TransPowerLoss = CalculateSectionsTransitionLoss(CurrentROC, PreviousROC, WPData) 
##        TotalTransPower = TotalTransPower * (1.0 - TransPowerLoss) 
         
        PreviousROC = CurrentROC 
 
    # Or for arc waveguide, just calculate the transition loss for the entire waveguide 
    TotalTransPower = CalculateArcTransitionLoss(WPData, ArcRadius, IsPrimary) 
 
    print "Power After Bend Loss: " + str(TotalBendPower) 
    print "Power After Transition Loss: " + str(TotalTransPower) 
    EndPower = TotalBendPower * TotalTransPower 
    print "Total Power after Bend & Transition Losses: " + str(EndPower) 
    # Last bit, incorporate the coupling and bend losses 
    print "PrimaryWaveguideLength: " + str(PrimaryWaveguideLength) 
    AddedLossPower = 0.91 *  EndPower * np.exp(-0.0075 * (PrimaryWaveguideLength/1000.)) 
     
    print "Total Power after all losses: " + str(AddedLossPower) 
    print "" 
 
############################################################################################################ 
# HPOLookupBendLoss 
# This function takes the values of bend loss per mm calculated from the right angle parameter scan result 
# and return a bend loss value.   
 
def HPOLookupBendLoss(InputRadius, SegmentLength): 
    # The normalized power is set to 1.0 and then the loss from that input power is incremented 
    # as z increases.  This gives the total power lost FROM CURVATURE ONLY at the end. 
    StartInputPower = 1.0 
    CurrentROC = abs(InputRadius) 
 
    # Radius and respective power loss per mm values 
    RadiusLookupArray = np.array([10000.0,13300.0,16600.0,20000.0,23300.0,26600.0,30000.0,33300.0,36600.0,\ 
                                    40000.0], dtype=np.float64) 
    BendLossLookupArray = np.array([0.437972203,0.18150836,0.078795534,0.040054237,0.017996858,0.013146017,\ 
                                    0.008745052,0.006998815,0.005485012,0.004484166], dtype=np.float64) 
     
    # Calculate the loss due to bends here (for a step profile).  Interpolate between data points or 
    # extrapolate from end points 
    NumValues = len(BendLossLookupArray)-1 
    FindLoss = interpolate.interp1d(RadiusLookupArray, BendLossLookupArray) 
    BendLoss = 0.0 
 
    # If the values are outside the range, they will just be linearly interpolated.  Most values will 
    # be within this range.  Unlikely to have smaller radii, but lareger ones should not have much effect anyway 
    if(CurrentROC < RadiusLookupArray[0]): 
        Slope = (BendLossLookupArray[1]-BendLossLookupArray[0])/(RadiusLookupArray[0]-RadiusLookupArray[1]) 
        BendLoss = (RadiusLookupArray[0]-CurrentROC)*Slope + BendLossLookupArray[0] 
    elif(CurrentROC > RadiusLookupArray[NumValues]): 
        Slope = (BendLossLookupArray[NumValues]-BendLossLookupArray[NumValues-1])/\ 
                    (RadiusLookupArray[NumValues]-RadiusLookupArray[NumValues-1]) 
        BendLoss = BendLossLookupArray[NumValues] - (RadiusLookupArray[NumValues]-CurrentROC)*Slope 
        if(BendLoss < 0): 
            BendLoss = 0 
    else: 
        BendLoss = FindLoss(CurrentROC) 
 
    # Scale this bend loss amount by relation of length to 1 mm (1000 microns) 
    BendLoss = BendLoss * SegmentLength/1000.0 
 
    # The power loss is Pout = Pin*(1-Loss) 
    OutputPower = StartInputPower*(1.-BendLoss) 
    return OutputPower 
     
############################################################################################################ 
# CalculateSectionBendPowerLoss 
# This function attempts to estimate the power loss in each waveguide, based on calculations from 
# Snyder and Love's textbook.  It uses the calculated waveguide radius over a whole section with a 
# constant radius and specified length. 
 
def CalculateSectionBendPowerLoss(CurrentROC, SegmentLength, WPData): 
 
    # The normalized power is set to 1.0 and then the loss from that input power is incremented 
    # as z increases.  This gives the total power lost FROM CURVATURE ONLY at the end. 
    StartInputPower = 1.0 
     
    # Calculate the loss due to bends here (for a step profile) 
    if(CurrentROC != 0): 
        StepProfileCoefficient = (np.sqrt(np.pi)/(2*WPData.WaveguideRadius)) * \ 
                                 (np.sqrt(WPData.WaveguideRadius/CurrentROC)) 
        AreaCoefficient = WPData.UParameter**2/(WPData.NormalizedFrequency**2 * \ 



Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides 
 

116 
 

                            WPData.WParameter**1.5 * (scisp.kn(1,WPData.WParameter)**2)) 
        ExponentCoefficient = (-4./3)*(CurrentROC/WPData.WaveguideRadius) * \ 
                              ((WPData.WParameter**3 * WPData.DeltaParameter)/(WPData.NormalizedFrequency**2)) 
        GammaCoefficient =  StepProfileCoefficient * AreaCoefficient * np.exp(ExponentCoefficient) 
    else: 
        GammaCoefficient = 0 
 
    # The power loss is Pout = Pin*exp(-Gamma*z) 
    OutputPower = StartInputPower*np.exp(-1.*GammaCoefficient*SegmentLength) 
 
    return OutputPower 
 
############################################################################################################ 
# CalculateSectionBendPowerLossGaussian 
# This function attempts to estimate the power loss in each waveguide, based on calculations from 
# Snyder and Love's textbook.  It uses the calculated waveguide radius over a whole section with a 
# constant radius and specified length. 
 
def CalculateSectionBendPowerLossGaussian(CurrentROC, SegmentLength, WPData): 
 
    # The normalized power is set to 1.0 and then the loss from that input power is incremented 
    # as z increases.  This gives the total power lost FROM CURVATURE ONLY at the end. 
    StartInputPower = 1.0 
     
    # Calculate the loss due to bends here for a gaussian profile 
    if(CurrentROC != 0): 
        VMinus1 = WPData.NormalizedFrequency - 1. 
        VPlus1 = WPData.NormalizedFrequency + 1. 
 
        GaussCoefficient1 = (np.sqrt(np.pi)/(2.*WPData.WaveguideRadius)) * \ 
                                 (np.sqrt(WPData.WaveguideRadius/CurrentROC)) 
        GaussCoefficient2 = WPData.NormalizedFrequency**4/(VPlus1**2 * np.sqrt(VMinus1)) 
        ExponentCoefficient = (VMinus1**2 / VPlus1) - ((4./3)*(abs(CurrentROC)/WPData.WaveguideRadius) * \ 
                              ((VMinus1**3 * WPData.DeltaParameter)/(WPData.NormalizedFrequency**2))) 
        GammaCoefficient =  GaussCoefficient1 * GaussCoefficient2 * np.exp(ExponentCoefficient) 
    else: 
        GammaCoefficient = 0 
 
    # The power loss is Pout = Pin*exp(-Gamma*z) 
    OutputPower = StartInputPower*np.exp(-1.*GammaCoefficient*SegmentLength) 
    PowerLoss = 1.0 - OutputPower 
 
    return OutputPower 
   
############################################################################################################ 
# CalculateSectionsTransitionLoss 
# This function attempts to estimate the power loss from transitions between two different radii of curvature 
# from Snyder and Love's textbook.  This section calculation allows for two different ROC values to be set. 
# Straight section calculated as 1.0e30 
 
def CalculateSectionsTransitionLoss(Radius1, Radius2, WPData): 
 
    TransitionCoefficient = 0.0 
    if(Radius1 != 0.0 and Radius1 != 1.0e30 and Radius2 == 1.0e30): 
        TransitionCoefficient = 1./Radius1**2 
    elif(Radius2 != 0.0 and Radius2 != 1.0e30 and Radius1 == 0.0): 
        TransitionCoefficient = 1./Radius2**2 
    elif(Radius2 != 0.0 and Radius1 != 0.0 and Radius1 != 1.0e30 and Radius2 != 1.0e30): 
        # The current ROC can be positive and the previous ROC can be negative and vice versa 
        RadiiSum = 0.0 
        if((Radius1 > 0.0 and Radius2 < 0.0) or (Radius2 > 0.0 and Radius1 < 0.0)): 
            RadiiSum = abs(Radius1) + abs(Radius2) 
        else: 
            RadiiSum = Radius1 - Radius2 
        TransitionCoefficient = (RadiiSum/(Radius1*Radius2))**2 
 
    TransitionLoss = TransitionCoefficient * \ 
                   ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \ 
                    (8*WPData.DeltaParameter**2)) * \ 
                   (WPData.RadiusZero/WPData.WaveguideRadius)**6 
 
    return TransitionLoss 
 
############################################################################################################ 
# CalculateArcTransitionLoss 
# This function attempts to estimate the power loss from transitions between two different radii of curvature 
# from Snyder and Love's textbook.  Rather than evaluate a discrete curvature at the radius for each section, 
# this routine takes into account that the radius is the same over the arc portions of the curve and will 
# have three transition events for a primary waveguide and four for a secondary waveguide 
 
def CalculateArcTransitionLoss(WPData, Radius, IsPrimary): 
 
    TransitionCoefficient = 0.0 
    TotalTransitionLoss = 1.0  # the remaining power after transition losses 
 
    # All arc curves have two transitions from a straight section to the radius of the arcs at each end 
 
    TransitionCoefficient = 1./Radius**2 
    TransitionLoss = TransitionCoefficient * \ 
                   ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \ 
                    (8*WPData.DeltaParameter**2)) * \ 
                   (WPData.RadiusZero/WPData.WaveguideRadius)**6 
    TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss) 
 
    TransitionCoefficient = 1./Radius**2 
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    TransitionLoss = TransitionCoefficient * \ 
                   ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \ 
                    (8*WPData.DeltaParameter**2)) * \ 
                   (WPData.RadiusZero/WPData.WaveguideRadius)**6 
    TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss) 
 
    # Both primary and secondary waveguides have one transition where two opposite bends meet 
    TransitionCoefficient = (2*Radius/(Radius*Radius))**2 
    TransitionLoss = TransitionCoefficient * \ 
                   ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \ 
                    (8*WPData.DeltaParameter**2)) * \ 
                   (WPData.RadiusZero/WPData.WaveguideRadius)**6 
    TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss) 
 
    # Secondary waveguides have one additional opposite transtion 
    if(IsPrimary != 1): 
        TransitionCoefficient = (2*Radius/(Radius*Radius))**2 
        TransitionLoss = TransitionCoefficient * \ 
                       ((WPData.WaveguideRadius**2 * WPData.NormalizedFrequency**4)/ \ 
                        (8*WPData.DeltaParameter**2)) * \ 
                       (WPData.RadiusZero/WPData.WaveguideRadius)**6 
        TotalTransitionLoss = TotalTransitionLoss * (1.0 - TransitionLoss) 
     
    return TotalTransitionLoss 
                
############################################################################################################ 
# PLOT SEGMENTS 
 
def PlotAllSegments(XYZSegmentDataArray): 
    # Remember that z values are plotting on the y-axis here and y values on z-axis.  The plots obey the 
    # right-hand rule, so this orients them in the proper direction.  y and z axes will be swapped on plot 
    line0 = mlab.plot3d(XYZSegmentDataArray[0,:,0], XYZSegmentDataArray[0,:,2], XYZSegmentDataArray[0,:,1], \ 
                        tube_radius=10, tube_sides =12, colormap = 'Spectral', color = (0.5,0,0)) 
    line1 = mlab.plot3d(XYZSegmentDataArray[1,:,0], XYZSegmentDataArray[1,:,2], XYZSegmentDataArray[1,:,1], \ 
                        tube_radius=10, tube_sides =12, color = (0,0.5,0)) 
    line2 = mlab.plot3d(XYZSegmentDataArray[2,:,0], XYZSegmentDataArray[2,:,2], XYZSegmentDataArray[2,:,1], \ 
                        tube_radius=10, tube_sides =12, color = (1,0.5,0)) 
    line3 = mlab.plot3d(XYZSegmentDataArray[3,:,0], XYZSegmentDataArray[3,:,2], XYZSegmentDataArray[3,:,1], \ 
                        tube_radius=10, tube_sides =12, color = (0,0.5,0.9)) 
    line4 = mlab.plot3d(XYZSegmentDataArray[4,:,0], XYZSegmentDataArray[4,:,2], XYZSegmentDataArray[4,:,1], \ 
                        tube_radius=10, tube_sides =12, color = (0.8,0.4,0.8)) 
    line5 = mlab.plot3d(XYZSegmentDataArray[5,:,0], XYZSegmentDataArray[5,:,2], XYZSegmentDataArray[5,:,1], \ 
                        tube_radius=10, tube_sides =12, color = (1.0,0.75,0.0)) 
    line6 = mlab.plot3d(XYZSegmentDataArray[6,:,0], XYZSegmentDataArray[6,:,2], XYZSegmentDataArray[6,:,1], \ 
                        tube_radius=10, tube_sides =12, color = (0.125,0.6,0.65)) 
    line7 = mlab.plot3d(XYZSegmentDataArray[7,:,0], XYZSegmentDataArray[7,:,2], XYZSegmentDataArray[7,:,1], \ 
                        tube_radius=10, tube_sides =12, color = (1.0,1.0,0)) 
    return 
 
############################################################################################################ 
# CREATE FILE FEEDS 
# 
# This function creates the laser write file that will dictate to the laser write mechanism the positions 
# to write each segment of the laser.  The segments will be ordered from bottom to top in the "y direction" 
# however for this format, the z-direction becomes the y-axis for the laser, the y direction becomes the 
# z-axis, and the x direction remains the same. 
 
def CreateLaserWriteAndRSoftFiles(XYZSegmentDataArray): 
 
    # Number of positions is the number of points in the z-direction 
    now = datetime.datetime.now() 
    NewDirName = "30mmchip" + str(now.year) + str(now.month) + str(now.day) + str(now.hour) + \ 
                      str(now.minute) + str(now.second) 
    print "Directory Created: " + NewDirName 
 
    os.mkdir(NewDirName) 
    os.chdir(NewDirName) 
 
    # TURKEY 
    FileLaserPoints = open('8GuideArcSideStepDesignBRedundant.txt','w') 
    FileLaserPoints.write("8 segment, arc based sidestep, bends reversed, redundant output\n") 
    SegmentOrderArray = np.array([3,1,5,0,6,2,4,7]) 
 
    # First loop goes through all segments 
    NumberOfSegments = len(XYZSegmentDataArray[:,0,0]) 
    NumberOfPositions = len(XYZSegmentDataArray[0,:,2]) 
            
    for i in range(0, NumberOfSegments): 
        # Use the segment order array for laser write file 
        seg = SegmentOrderArray[i] 
        print "Segment # " + str(seg) 
 
        # Put a note here for the segment number 
        FileLaserPoints.write("Segment " + str(i+1) + "\n") 
        FileLaserPoints.write("\n") 
         
        # A line needs to be added at the beginning to set the laser write at 2 mm from the input values 
 
        # Change - all values multiplied by 0.001 to get mm values. 
        XLead = XYZSegmentDataArray[seg,0,0]*-0.001 
        ZLead = XYZSegmentDataArray[seg,0,1]*-0.001 
        YLead = (-2.0) 
        LineToWrite = "g1\tx\t" + str(XLead) + "\ty\t" + str(YLead) + "\tz\t" + str(ZLead) + "\n" 
        FileLaserPoints.write(LineToWrite) 
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        for j in range(0, NumberOfPositions): 
            XValue = XYZSegmentDataArray[seg,j,0] 
            YValue = XYZSegmentDataArray[seg,j,2] 
            ZValue = XYZSegmentDataArray[seg,j,1] 
 
            # All x and z values should be multiplied by -1 for laser write file 
            if (XValue != 0.0): 
                XValue = XValue * -0.001 
            if (ZValue != 0.0): 
                ZValue = ZValue * -0.001 
            YValue = YValue * 0.001 
                 
            XString = "%.4f" % XValue 
            YString = "%.4f" % YValue 
            ZString = "%.4f" % ZValue 
            LineToWrite = "g1\tx\t" + XString + "\ty\t" + YString + "\tz\t" + ZString + "\n" 
            FileLaserPoints.write(LineToWrite) 
 
        # the end should have an empty line 
        FileLaserPoints.write("\n") 
             
    FileLaserPoints.close() 
    print "FILE WRITE COMPLETE" 
 
############################################################################################################  
############################################################################################################  
# MAIN PROGRAM VARIABLES 
############################################################################################################ 
 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import interpolate, randn 
import scipy.special as scisp 
from enthought.mayavi import mlab 
from enthought import mayavi 
import datetime 
import os 
##from pytools import nmpfit 
 
# Number of segments to be created 
NumberOfSegments = 8 
 
# Declare position and dimension data object 
PosDimData = PositionDimensionDataObject(NumberOfSegments) 
WavePropData = WaveguidePropertiesDataObject 
 
# Optical Section Dimensions (microns) 
PosDimData.BlockSectionWidth = 8000   # "X" dimension   #Physical chip width 8000 
PosDimData.BlockSectionHeight = 1000  # "Y" dimension   #Physical chip height 1100 
PosDimData.BlockSectionLength = 30000 # "Z" dimension 
 
# Number of segments to be created 
PosDimData.NumberOfSegments = NumberOfSegments 
 
# Initialize and calculate waveguide properties data 
CalculateWaveguideProperties(WavePropData) 
 
############################################################################################################ 
# START POINTS 
############################################################################################################ 
 
### DESIGN FOR APRIL 2011 
 
# New Design, 8 hole, blue dots of diagram 
PosDimData.PathXStartPosArray = [-77.94,-51.96,-51.96,0.0,25.98,51.96,77.94,77.94]  
PosDimData.PathYStartPosArray = [15.0,60.0,-60.0,90.0,-45.0,60.0,15.0,-45.0] 
 
############################################################################################################ 
# END POINTS 
############################################################################################################ 
 
# 8 segment redundant array, shifted in +x direction by 5 mm 
PosDimData.PathXEndPosArray = [4875.0,4375.0,5375.0,4125.0,5625.0,4625.0,5125.0,5875.0]   # Splines 
##PosDimData.PathXEndPosArray = [4125.0,4375.0,5375.0,4625.0,5625.0,4875.0,5125.0,5875.0]   # Arcs 
PosDimData.PathYEndPosArray = [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0] 
 
 
############################################################################################################ 
 
# Z Direction finite measurement amount (micron) 
# The layout of the program is that the chip is modelled as slices of x-y coordinates for each segment 
# created in the Z direction.  This variable specifies the precision (grain) to calculate with.  This 
# will increase the number of slices created, increasing the precision, but also the computing time. 
 
# For now - make this an even multiple of the block section length 
PosDimData.ZSpatialPrecision = 25.0 
PosDimData.NumberZSlices = (PosDimData.BlockSectionLength/PosDimData.ZSpatialPrecision) 
 
# length precision is how close each segment lengths must be (microns) 
PosDimData.SegmentLengthPrecision = 0.1 
 
# Minimum Path Separation Distance 
# This variable is an optional input parameter.  The program will do an optional check to see that 
# the created paths are separated from each other by this distance.  The program is optimised to 
# maximize the separation distance, so if it is not specified (set to zero), it will assume it is fine. 
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PosDimData.MinimumPathSeparationDist = 30.0 
 
# The calculated path distance is the length that each segment needs to have.  Usually determined 
# by the primary segment.  If created as an array, the value can be returned from functions. 
 
# The current Dragonfly has a 1 mm straight section at either end of the chip to maximize the light 
inpuPosDimData.PathXEndPosArray = [4125.0,4375.0,5375.0,4625.0,5625.0,4875.0,5125.0,5875.0]   # Arcs 
# into the chip.  These variables will specify how large of a straight section on either end, as well 
# as a straight section in the middle to bridge the creation of a double spline section 
# (in microns) 
PosDimData.EdgeStraightSectionLength = 1000.0 
PosDimData.CenterBridgeLength = 6000.0 
 
# This is the 4 dimensional array that will hold the complete set of XYZ Data for all splines 
# [X,Y,Z,Segment] - X,Y,Z = 3D coordinates, Segment = number of the segment 
XYZSegmentDataArray = np.zeros((PosDimData.NumberOfSegments, PosDimData.NumberZSlices+1, 3), dtype=np.float64) 
ArcRadiusDataArray = np.zeros(PosDimData.NumberOfSegments, dtype=np.float64) 
 
############################################################################################################ 
# PROGRAM DESIGN 
############################################################################################################ 
 
# To calculate the path, the program uses the spline function.  This takes the starting and end 
# points of the path, then returns the centerpoints of the function for each z-slice. 
 
############################################################################################################ 
# Main logic loops 
############################################################################################################ 
 
# This is the main program that calls the sub functions and keeps track of the flow. 
# Input/Output Coordinates 
CalculateInputOutputDistance(PosDimData) 
 
print PosDimData.XDistanceArray 
print PosDimData.YDistanceArray 
print PosDimData.DirectDistanceArray 
 
PosDimData.PrimarySegmentNumber = DeterminePrimarySegments(PosDimData.DirectDistanceArray) 
 
# ARC BASED CODE 
CreatePrimaryArcSegment(PosDimData, XYZSegmentDataArray, ArcRadiusDataArray) 
DetermineSecondarySegments(PosDimData) 
CreateSecondaryArcSegments(PosDimData, XYZSegmentDataArray, ArcRadiusDataArray) 
 
# SPLINE BASED CODE 
##primaryOK = CreatePrimarySegments(PosDimData, XYZSegmentDataArray) 
##DetermineSecondarySegments(PosDimData) 
##secondaryOK = CreateSecondarySegments(PosDimData, XYZSegmentDataArray) 
 
SegmentDistanceCurvatureCheck(XYZSegmentDataArray, PosDimData, WavePropData, ArcRadiusDataArray) 
 
#Show the final 3d plot 
PlotAllSegments(XYZSegmentDataArray) 
 
# Create files if specified 
CreateLaserWriteAndRSoftFiles(XYZSegmentDataArray) 
 
print "*** END ***" 
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